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Abstract. By its very nature, inductive inference performed by ma-
chine learning methods is mainly data-driven. Still, the consideration of
background knowledge – if available – can help to make inductive infer-
ence more efficient and to improve the quality of induced models. Fuzzy
set-based modeling techniques provide a convenient tool for making ex-
pert knowledge accessible to computational methods. In this paper, we
exploit such techniques within the context of the regularization (penal-
ization) framework of inductive learning. The basic idea is to express
knowledge about an underlying data-generating model in terms of flexi-
ble constraints and to penalize those models violating these constraints.
Within this framework, an optimal model is one that achieves an optimal
trade-off between fitting the data and satisfying the constraints.

1 Introduction

The common framework of learning from data assumes an underlying functional
relation f(·) that is a mapping DX → DY from an input space DX to an output
space DY . One basic goal of learning from data is to approximate (or even
recover) this function from given sample points (xı, yı) ∈ DX × DY . Depending
on the type of function to be learned, several special performance tasks can
be distinguished. For example, in classification (pattern recognition) f(·) is a
mapping DX → L with L a finite set of labels (classes). If f(·) is a continuous
function, the problem is one of regression. Here, the sample outputs are usually
assumed to be noisy, e.g. corrupted with an additive error term: yı = f(xı) + ε.

On the basis of the given data, an approximation (estimation) h0(·) of the
function f(·) is chosen from a class H of candidate functions, called the hypoth-
esis space in machine learning [9]. The adequate specification of the hypothesis
space is crucial for successful learning, and the complexity of H is a point of spe-
cial importance. In fact, if the class of candidate functions is not rich (flexible)
enough, it is likely that f(·) cannot be approximated accurately: There might be
no h(·) ∈ H that is a good approximation of f(·). On the other hand, if H is too
flexible, the learning problem might become ambiguous in the sense that there
are several hypotheses that fit the data equally well. Apart from that, too much
flexibility involves a considerable risk of overfitting the data. Roughly speaking,
overfitting means reproducing the data in too exact a manner. This happens if
the hypothesis space is flexible enough to provide a good or even exact approx-
imation of any set of sample points. In such cases the induced hypothesis h0(·)
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14 E. Hüllermeier

is likely to represent not only the structure of the function f(·) but also the
structure of the (noisy) data.

The specification of a hypothesis space allows for the incorporation of back-
ground knowledge into the learning process. For instance, if the relation between
inputs and outputs is known to follow a special functional form, e.g. linear, one
can restrict the hypothesis space to functions of this type. The calibration of
such models through estimating free parameters is typical for classical statisti-
cal methods. However, if only little is known about the function f(·), restricting
oneself to a special class of (simple) functions might be dangerous. In fact, it
might then be better to apply adaptive methods which proceed from a very rich
hypothesis space.

As pointed out above, for adaptive methods it is important to control the
complexity of the induced model, that is, to find a good trade-off between the
complexity and the accuracy of the hypothesis h0(·). One way to accomplish
this is to “penalize” models which are too complex. Thus, the idea is to quantify
both the accuracy of a hypothesis as well as its complexity and to define the task
of learning as one of minimizing an objective function which combines these two
measures. This approach is also referred to as regularization.

Fuzzy set-based (linguistic) modeling techniques provide a convenient way
of expressing background knowledge in learning from data [5]. In this paper,
we propose fuzzy sets in the form of flexible constraints [4,3,7] as a means for
regularization or, more specifically, for expressing background knowledge about
a functional relation to be learned.

The rest of the paper is organized as follows: We briefly review the regular-
ization framework in Section 2. The idea of expressing background knowledge
about a model in terms of flexible constraints is detailed in Section 3. Section 4
is devoted to “constraint-based regularization”, that is the application of flexible
constraints in learning from data. We conclude the paper with some remarks in
Section 5.

2 The Regularization Framework

Without loss of generality, we can assume H to be a parameterized class of
functions, that is H = {h(·, ω) | ω ∈ Ω}. Here, ω is a parameter (perhaps of very
high or even infinite dimension) that uniquely identifies the function h = h(·, ω),
and h(x, ω) is the value of this function for the input x.

Given observed data in the form of a (finite) sample

S =
{

(x1, y1), (x2, y2), . . . , (xn, yn)
} ∈ (DX × DY )n,

the selection of an (apparently) optimal hypothesis h0(·) is guided by some in-
ductive principle. An important and widely used inductive principle is empirical
risk minimization (ERM) [11]. The risk of a hypothesis h(·, ω) is defined as

R(ω) .=
∫

DX×DY

L(y, h(x, ω)) p(x, y) d(x, y),
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where L(·) is a loss function and p(·) is a probability (density) function: p(x, y)
is the probability (density) of observing the input vector x together with the
output y. The empirical risk is an approximation of the true risk:

Remp(ω) .=
1
n

n∑

ı=1

L(yı, h(xı, ω)) . (1)

The ERM principle prescribes to choose the parameter ω0 resp. the associated
function h0 = h(·, ω0) that minimizes (1).

Now, let φ(ω) = φ(h(·, ω)) be a measure of the complexity of the function
h(·, ω). The penalized risk to be minimized for the regularization inductive prin-
ciple is then given by a weighted sum of the empirical risk and a penalty term:

Rpen(ω) .= Remp(ω) + λ · φ(ω). (2)

The parameter λ is called the regularization parameter. It controls the trade-off
between accuracy and complexity.

As already indicated above, the function h(·, ω0) minimizing (2) is supposed
to have a smaller predictive risk than the function minimizing the empirical risk.
In other words, it is assumed to be a better generalization in the sense that it
predicts future outputs more accurately.

Without going into detail let us mention that the practical application of
the regularization framework requires, among other things, optimization meth-
ods for the minimization of (2) as well as techniques for specifying an optimal
regularization parameter λ.

Fig. 1. The function f(·) to be learned (solid line) together with the given sample
points and least squares approximation (dashed line).

To illustrate regularized learning, let us consider a very simple example.
Suppose that the function to be learned is given by the polynomial f : [0, 1] →
R , x �→ 2x3 − x2 + x, and let the hypothesis space consist of all polynomials
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x �→ ω0 +
m∑

k=1

ωk · xk

whose degree is at most m = 5. We have generated seven sample points at
random, assuming a uniform distribution for x and a normal distribution with
mean f(x) and standard deviation 1/2 for y. Fig. 1 shows the function f(·)
together with the given data. Furthermore, the figure shows the optimal least
squares approximation, i.e. the approximation h0(·) that minimizes the empirical
risk with loss function L(y, h(x, ω)) =

(
y − h(x, ω)

)2. As can be seen, h0(·) does
obviously overfit the data. In fact, the approximation of the true function f(·)
is very poor.

Fig. 2. The function f(·) to be learned (solid line), ridge regression with λ = 0.01
(dashed line) and λ = 0.1 (small dashes).

A special type of regularization is realized by so-called (standard) ridge re-
gression [8] by using the sum of squared parameters (ωk)2 as a penalty term.
Thus, ridge regression seeks to minimize the penalized risk

Rpen(ω) =
n∑

ı=1

(
yı − h(xı, ω)

)2 + λ ·
m∑

k=1

(ωk)2

that favors solutions with parameters being small in absolute value.1 This type
of regression problem can still be solved analytically. Fig. 2 shows the approxi-
mations for λ = 0.01 and λ = 0.1. The regularization effect becomes obvious in
both cases. As can be seen, the larger the parameter λ is chosen, the smaller the
variation of the approximating function will be.

1 The intercept ω0 is usually not considered in the penalty term.
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3 Flexible Constraints

This section is meant to provide some background information on fuzzy sets and
flexible constraints. Moreover, it will be shown how the framework of flexible
constraints can be used for expressing properties of (real-valued) functions.

3.1 Background on Fuzzy Sets

A fuzzy subset of a set D is identified by a so-called membership function, which
is a generalization of the characteristic function IA of an ordinary set A ⊆ D
[12]. For each element x ∈ D, this function specifies the degree of membership of
x in the fuzzy set. Usually, membership degrees are taken from the unit interval
[0, 1], i.e. a membership function is a mapping D → [0, 1]. We shall use the same
notation for ordinary sets and fuzzy sets. Moreover, we shall not distinguish
between a fuzzy set and its membership function, that is, A(x) denotes the
degree of membership of the element x in the fuzzy set A.

Is it reasonable to say that (in a certain context) 30◦C is a high temperature
and 29.9◦C is not high? In fact, any sharp boundary of the set of high tem-
peratures will appear rather arbitrary. Fuzzy sets formalize the idea of graded
membership and, hence, allow for “non-sharp” boundaries. Modeling the concept
“high temperature” as a fuzzy set A, it becomes possible to express, for exam-
ple, that a temperature of 30◦C is completely in accordance with this concept
(A(30) = 1), 20◦C is “more or less” high (A(20) = 0.5, say), and 10◦C is clearly
not high (A(10) = 0). As can be seen, fuzzy sets can provide a reasonable inter-
pretation of linguistic expressions such as “high” or “low”. This way, they act
as an interface between a quantitative, numerical level and a qualitative level,
where knowledge is expressed in terms of natural language.

Membership degrees of a fuzzy set can have different semantic interpretations
[6]. For our purposes, the interpretation of fuzzy sets in terms of preference
is most relevant. Having this semantics in mind, a (fuzzy) specification of the
temperature as “high” means that, e.g., a temperature of 30◦C is regarded as
fully satisfactory, but that other temperatures might also be acceptable to some
extent. For example, with the fuzzy set of high temperatures being specified as
above, 20◦C would be accepted to degree 0.5.

3.2 Flexible Constraints

In connection with the preference semantics, a fuzzy set defines a “flexible con-
straint” in the sense that an object can satisfy the constraint to a certain degree.
Formally, let C : DX → [0, 1] be a fuzzy set associated with a constraint on the
variable X; C(x) is the degree to which x ∈ DX satisfies the constraint.

Now, consider constraints C1, C2, . . . , Cn with a common domain DX and
let C be the conjunction of these constraints. The degree to which an object
x ∈ DX satisfies C can then be defined as

C(x) .= C1(x) ⊗ C2(x) ⊗ . . . ⊗ Cn(x), (3)
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where ⊗ is a t-norm. A t-norm is a generalized logical conjunction, that is, a
binary operator [0, 1] × [0, 1] → [0, 1] which is associative, commutative, non-
decreasing in both arguments and such that α ⊗ 1 = α for all 0 ≤ α ≤ 1. Well-
known examples of t-norms include the minimum operator (α, β) �→ min{α, β}
and the Lucasiewicz t-norm (α, β) �→ max{α + β − 1, 0}. Set-theoretically, C as
defined in (3) is the intersection C1 ∩ C2 ∩ . . . ∩ Cn of the fuzzy sets Cı.

Note that a common domain DX can be assumed without loss of generality.
In fact, suppose that C ′

1 specifies a constraint on a variable Y with domain DY

and that C ′
2 specifies a constraint on a variable Z with domain DZ . The fuzzy

sets C ′
1 and C ′

2 can then be replaced by their cylindrical extensions to the domain
DX

.= DY × DZ of the variable X = (Y, Z), that is by the mappings

C1 : (y, z) �→ C ′
1(y), C2 : (y, z) �→ C ′

2(z).

The definition of a cylindrical extension is generalized to higher dimensions in a
canonical way.

In connection with the specification of fuzzy constraints, it is useful to dispose
of further logical operators:

– The common definition of the negation operator ¬ in fuzzy logic is the map-
ping given by ¬x = 1 − x for all 0 ≤ x ≤ 1 (though other negations do
exist).

– A t-conorm ⊕ is a generalized logical disjunction, that is, a binary operator
[0, 1] × [0, 1] → [0, 1] which is associative, commutative, non-decreasing in
both arguments and such that α ⊕ 0 = α for all 0 ≤ α ≤ 1. Given a t-
norm ⊗, an associated t-conorm ⊕ can be defined by the mapping (α, β) �→
1 − (1 − α) ⊗ (1 − β) or, more generally, as (α, β) �→ ¬(¬α ⊗ ¬β). For
example, the t-conorm associated with the Lucasiewicz t-norm is given by
(α, β) �→ min{α + β, 1}.

– A (multiple-valued) implication operator � is a mapping [0, 1] × [0, 1] →
[0, 1] which is non-increasing in the first and non-decreasing in the second
argument, i.e., α� β ≤ α′ � β for α′ ≤ α and α� β ≤ α� β′ for β ≤ β′.
Besides, further properties can be required [2]. An example of an implication
is the Lucasiewicz operator (α, β) �→ max{1−α+β, 0}. Implication operators
can be used for modeling fuzzy rules: Let C1 and C2 be two constraints. A
new constraint C can then be expressed in terms of a fuzzy rule

IF C1(x) THEN C2(x).

The degree to which an object x satisfies this constraint can be evaluated
by means of an implication �, that is C(x) = C1(x)� C2(x).

3.3 Flexible Constraints on Functions

Flexible constraints of the above type can be used for expressing knowledge about
a functional relation f : DX → DY . For the sake of simplicity, and without loss of
generality, we shall assume that DY ⊆ R. If f(·) is a vector-valued function with
domain DY ⊆ Rm, m > 1, then each of its components fı(·) can be considered
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separately. Subsequently, we shall introduce some basic types of constraints and
illustrate them through simple examples.

The most obvious type of constraint is a restriction on the absolute values of
the function. Knowledge of this type can be expressed in terms of a fuzzy rule
such as [ IF x is close to 0 THEN f(x) is approximately 1 ] or, more formally, as

∀x ∈ DX : C1(x)� C2(f(x)),

where the fuzzy set C1 models the constraint “close to 0” and C2 models the
constraint “approximately 1”. The degree of satisfaction of this constraint is
given by

C(f) .= inf
x∈DX

C1(x)� C2(f(x)). (4)

Note that the infimum operator in (4) generalizes the universal quantifier in
classical logic.

Constraints of such type can simply be generalized to the case of m > 1 input
variables:

C(f) .= inf
x1,... ,xm∈DX

( C1(x1) ⊗ . . . ⊗ Cm(xm) ) � Cm+1(f(x1, . . . , xm)).

Note that constraints on the input variables need not necessarily be “non-
interactive” as shown by the following example: [ IF x1 is close to x2 THEN
f(x1, x2) is approximately 1 ]. This constraint can be modeled in terms of an
implication whose antecedent consists of a constraint such as C1 : (x1, x2) �→
max{1 − |x1 − x2|, 0}.

In a similar way, constraints on first or higher (partial) derivatives of f(·)
can be expressed. For instance, let f ′(·) denote the (existing) derivative of f(·).
Knowing that f(·) is increasing then corresponds to the (non-fuzzy) constraint

C(f) .= inf
x∈DX

f ′(x) ≥ 0.

A flexible version of this constraint could be specified as

C(f) .= inf
x∈DX

C1(f ′(x)),

where C1 is the fuzzy set of derivatives strictly larger than 0, e.g. C1(dx) =
min{1, dx} for dx ≥ 0 and C1(dx) = 0 otherwise. This version takes into account
that f(·) can be increasing to different degrees and actually expresses that f(·)
is strictly increasing. Of course, a constraint on the derivative of f(·) can also be
local in the sense that it is restricted to a certain (fuzzy) subset of DX . Thus,
a constraint such as “For x close to 0, the derivative of f(·) is close to 1” could
be modeled as follows:

C(f) .= inf
x∈DX

C1(x)� C2(f ′(x)),

where the fuzzy sets C1 and C2 formalize, respectively, the constraints “close to
0” and “close to 1”.
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Other types of constraints include restrictions on the relative values of the
function. For example, the constraint “The values of f(·) for x close to 0 are
much smaller than those for x close to 1” can be modeled as follows:

C(f) .= inf
x1,x2∈DX

(
C1(x1) ⊗ C2(x2)

)
� C3(f(x1), f(x2)),

where the fuzzy relation C3 ⊆ DY × DY might be defined, e.g., by C3(y1, y2) =
min{1, y2 − y1} for y1 ≤ y2 and C3(y1, y2) = 0 otherwise.

4 Regularization with Flexible Constraints

The regularization framework of Section 2 and the framework of flexible con-
straints as presented in Section 3 can be combined in order to express back-
ground knowledge about a function in learning from data. The basic idea of
“constraint-based regularization” is to replace the term φ(ω) in the penalized
risk functional (2) by a fuzzy constraint C(ω) = C(h(·, ω)). Thus, one arrives at
the following functional:

Rpen(ω) .= Remp(ω) − λ · C(ω). (5)

As can be seen, an evaluation Rpen(ω) is a trade-off between the accuracy of the
hypothesis h(·, ω), expressed by Remp(ω), and the extent to which h(·, ω) is in
accordance with the background knowledge, expressed by C(ω).

4.1 Example

To illustrate, let us return to our small example presented in Section 2. Again,
suppose that the function to be learned is given by the polynomial f : x �→
2x3 − x2 + x and let the hypothesis space consist of all polynomials whose
degree is at most five. Moreover, the same sample points as before shall be
given (cf. Fig. 1). Finally, suppose the prior knowledge about the function f(·)
to be reflected by the following flexible constraints:

– If x is almost 0, then f(x) is also close to 0.
– f ′(x) is approximately 3 for x around 0.8.
– f ′(x) is roughly between 6 and 7 for x close to −0.8.

The fuzzy sets used to model these constraints (i.e. the linguistic terms “almost”,
“close to”, ...) are specified in terms of trapezoidal membership functions (we
omit details due to reasons of space). Moreover, as generalized logical operators
we employed the Lucasiewicz t-norm, t-conorm, and implication. Fig. 3 shows
the function h(·, ω0) minimizing the penalized risk functional (5) for λ = 1. The
optimal parameter ω0 = (0.08, 1.17,−0.17, 2.62,−0.53,−0.51) has been found
by means of a general stochastic search algorithm. As can be seen, the induced
function h(·, ω0) is already quite close to the true function f(·).

It is worth mentioning that constraint-based regularization naturally sup-
ports a kind of “interactive” learning and optimization process. Namely, the
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Fig. 3. Optimal approximation (solid line) of the underlying function (dashed line) for
λ = 1.

optimal approximation obtained for a certain set of constraints might give the
human expert cause to modify these constraints or to adapt the regularization
parameter. That is, the inspection of the apparently optimal function might
suggest weakening or strengthening some of the original constraints, or adding
further constraints not made explicit so far. This way, learning a function from
data is realized in the form of an iterative process.

4.2 Search and Optimization

As already pointed out, the minimization of the penalized risk functional (5) will
generally call for numerical optimization techniques, such as stochastic search
methods. The search process can often be made more efficient by exploiting the
fact that parameters ω with C(ω) = 0 can usually be left out of consideration.

Let ω1 denote the optimal solution to the unconstrained learning problem,
that is, the parameter vector minimizing the empirical risk Remp(·). This vector
can often be found by means of analytic methods, at least for common types of
loss functions. Moreover, let ω2 minimize the penalized risk (5) over the subspace

Ω0
.= { ω ∈ Ω | C(ω) > 0 }.

For the overall optimal solution ω0, we obviously have

ω0 =
{

ω1 if ω1 ≤ ω2
ω2 if ω2 < ω1

.

Consequently, the learning problem can be decomposed into two steps (followed
by a simple comparison):

– Find the solution ω1 to the unconstrained learning task.
– Find the optimal solution ω2 to the constrained problem in Ω0.
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Essentially, this means that the search process can focus on the subspace Ω0 ⊆ Ω,
which will often be much smaller than Ω itself. In order to construct Ω0, or
an outer approximation thereof, the constraints on the function f(·) must be
translated into constraints on the parameter ω. This translation clearly depends
on which type of constraints and parameterized functions are used.

To illustrate the basic principle, consider an absolute value constraint C of
the form

IF x ∈ A THEN f(x) ∈ B, (6)

where A and B are fuzzy subsets of DX and DY , respectively. Since 1� 0 = 0 for
any implication operator� satisfying the neutrality property, we have C(ω) = 0
as soon as A(x) = 1 and B(h(x, ω)) = 0, i.e. as soon as

x ∈ cr(A) .= {x ∈ DX | A(x) = 1},

h(x, ω) �∈ sp(B) .= cl{x ∈ DY | B(y) > 0}.

Here, cr and sp denote, respectively, the so-called core and support of a fuzzy
set, and clX is the closure of the set X. It follows that

∀x ∈ cr(A) : h(x, ω) ∈ sp(B) (7)

is a necessary (though not sufficient) condition for ω ∈ Ω0.
Now, suppose the functions h(·, ω) to be expressed in terms of basis functions

βı(·), that is

h(x, ω) =
m∑

ı=0

αı · βı(x).

Moreover, let sp(B) = [l, u] and

lı
.= inf

x∈cr(A)
βı(x), uı

.= sup
x∈cr(A)

βı(x)

for 0 ≤ ı ≤ m. The following conditions are necessary for the parameters αı to
satisfy (7):

l ≤
m∑

ı=0

lıαı, u ≥
m∑

ı=0

uıαı. (8)

Thus, the original absolute value constraint (6) can be translated into constraints
on the parameter ω, which are given in the form of linear inequalities.

In our example, we have cr(T ) = [β, γ] and sp(T ) = [α, δ] for a trapezoidal
fuzzy set

T [α, β, γ, δ] : x �→






(x − α)/(β − α) if α ≤ x < β
1 if β ≤ x ≤ γ

(δ − x)/(δ − γ) if γ < x ≤ δ
0 if x �∈ [α, δ]

.
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Moreover, the basis functions are of the form βı(x) = xı, hence lı and uı are
attained at 0 or at the boundary points of the interval [β, γ].

Finally, note that 0 ⊗ t = 0 for any t-norm ⊗ and 0 ≤ t ≤ 1. Therefore,
conditions on the parameter ω derived from different constraints can be combined
in a conjunctive way. Thus, if Ωappr

0,ı denotes an outer approximation of the set
Ω0,ı

.= {ω | Cı(ω) > 0}, then

Ωappr
0

.=
⋂

Ωappr
0,ı ⊇ Ω0

is an outer approximation of Ω0. Particularly, this means that linear inequalities
(8) stemming from different constraints can simply be lumped together.

4.3 Relation to Bayesian Inference

It is illuminating to compare constraint-based regularization with other types of
inductive principles. In this respect, Bayesian inference appears to be particularly
interesting. In fact, just like constraint-based regularization, Bayesian inference
[1] is concerned with the incorporation of background knowledge in learning from
data.2 (As opposed to this, other frameworks such as structural risk minimiza-
tion [11] or minimum description length [10] are more data-driven.) In fact, it
can be shown that constraining the class of models as detailed above can be
interpreted as specifying a prior probability distribution for Bayesian inference.
(Again, we refrain from a detailed discussion due to reasons of space.) This is
quite interesting, since the acquisition of a reasonable prior in the Bayesian ap-
proach is generally considered a quite difficult problem. Especially, it should be
noted that a prior distribution is generally given as a global (parameterized)
function on Ω. The specification of such a function is hence difficult for high-
dimensional input spaces. For instance, in our example above, one has to define a
density over the space of polynomials of degree 5, i.e. over a six-dimensional pa-
rameter space. Apart from that, the relation between a parameter vector, such as
(ω0, ω1, . . . , ω5) in our example, and the induced function is often not obvious. In
fact, in order to define a distribution over Ω, one first has to “translate” known
properties of a function into properties of the parameters. For instance, what
does it mean for the prior distribution of (ω0, ω1, . . . , ω5) that “the derivative
of f(·) is small for x close to 1”? In this respect, our constraint-based approach
is more flexible and by far less demanding as it allows one to specify constraints
that are local and that refer to aspects of the function f(·) directly.

5 Concluding Remarks

We have introduced (fuzzy) constraint-based regularization where the basic idea
is to embed fuzzy modeling in regularized learning. This approach provides a
simple yet elegant means for considering background knowledge in learning from
2 The same is true for inductive logic programming and knowledge-based neurocom-

puting.
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data. Using fuzzy set-based (linguistic) modeling techniques, such knowledge can
be expressed in terms of flexible constraints on the model to be learned.

Due to limited space, the paper could hardly go beyond presenting the ba-
sic idea and its “ingredients” (regularized learning and fuzzy modeling), and
the method obviously needs further elaboration. An important aspect of ongo-
ing work concerns its practical realization, namely the development of suitable
modeling tools and efficient optimization methods. A first prototype offering a
restricted language for expressing constraints already exists. Such restrictions,
concerning the type of fuzzy sets and logical operators that can be used as well
as the type of constraints that can be specified, are reasonable not only from
a modeling point of view, they also enable the development of specialized and
hence efficient optimization methods.

There are also several theoretical questions which are worth further investiga-
tion. For instance, one such question concerns the sensitivity of constraint-based
regularization, that is the dependence of the induced function h(·, ω0) on the
specification of fuzzy sets and the choice of logical operators.
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