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Abstract. Instance retraction is a difficult problem for concept learn-
ing by version spaces. This chapter introduces a family of version-space
representations called one-sided instance-based boundary sets. They are
correct and efficiently computable representations for admissible concept
languages. Compared to other representations, they are the most efficient
usefuversion-space representations for instance retraction.

1 Introduction

Currently, there is a renewed interest in version spaces caused by their applicabil-
ity in inductive databases [5l6]. This chapter considers version spaces when the
inductive query constraints are instances of a concept to be learned; i.e., the task
is essentially a concept-learning task. In this context we study two important
problems of inductive databases: the problem of efficiently representing version
spaces and the problem of efficiency of version spaces for instance retraction.
Mitchell defined version spaces as sets of concept descriptions that are con-
sistent with training data [7I8]. Version-space learning is an incremental process:

— If an instance i is added, the version space is revised so that it consists of all
the concept descriptions consistent with the processed training data plus 7.

— If an instance i is retracted, the version space is revised so that it consists
of all the concept descriptions consistent with the processed training data
minus 1.

For the learning processes version spaces are represented. The standard rep-
resentation is the boundary-set representation [7l§]. It is correct for the class
of admissible concept languages [7], but its size can grow exponentially in the
size of training data [I]. To overcome this problem alternative version-space rep-
resentations were introduced [2IBJ49TOTTIT2(T3]. They extended the classes of
concept languages for which version spaces are efficiently computable.

However a remaining problem for most version-space representations is that
they are inefficient for instance retraction, since they lack a structure that de-
termines the influence of an individual training instance. Hence, if a training
instance is retracted, the representations are recomputed [II]. To avoid this
problem two version-space representations were proposed. The first one is the

! In this chapter, the notion useful has a technical meaning defined in subsection
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training-instance representation [3]. By its definition it is efficient for instance
retraction. However, the representation has only a theoretical value, since the
classification of each instance requires search in the concept language using all
the training data. The second representation is instance-based boundary sets
(IBBS) [ITI12]. Tt is correct and efficiently computable for the class of admissi-
ble concept languages. The instance-retraction algorithm of the IBBS is efficient
and it does not recompute the representation. At the moment the IBBS is the
most efficient useful version-space representation for instance retraction.

In this chapter we address the question whether it is possible to design new
version-space representations that are even more efficient than the IBBS in terms
of computability and instance retraction. To answer the question we introduce a
family of version-space representations called one-sided instance-based boundary
sets. The family consists of two dual representations: instance-based maximal
boundary sets (IBMBS) and instance-based minimal boundary sets (IBmBS).
Without loss of generality we consider in detail only the IBMBS representation.

The course of the chapter is as follows. In section 2] we formalise the necessary
basic notions. They are used in section [3] to define the IBMBS representation.
There, we prove that the representation is correct for the class of admissible
concept languages and derive the conditions for finiteness. Section [ presents
four IBMBS algorithms for instance addition, instance retraction, version-space
collapse and instance classification. It is shown that the IBMBS can be used for
instance classification in the presence of noisy training data. In sections [H] and
we provide an analysis and an evaluation of usefulness of the IBMBS. The dual
representation of the IBMBS, instance-based minimal boundary sets (IBmBS),
is touched upon in section [l We compare the new representations with relevant
work in section Bl Finally, in section [ conclusions are given.

2 Formalisation

This section formalises the necessary basic notions. In subsection 2] we for-
mulate the concept-learning task. Then, in subsection 2221 we introduce version
spaces as a solution of the task and we consider the notion of version-space rep-
resentations together with their characteristics of usefulness. In this context we
present the class of admissible concept languages in subsection 2.3

2.1 The Concept-Learning Task
Concept learning assumes the presence of a universe of all the instances [I1].

Notation 1. The universe of all the instances is denoted by I.
Definition 2 (Concept). A concept ¢ is subset of I: ¢ C I.

Given a concept, there exist two types of instance sets.

Definition 3 (Set of Positive/Negative Instances). A set IT C I is a set
of positive instances of a concept ¢ C I if and only if IT Cc. Aset I- CIisa
set of negative instances of a concept ¢ C I if and only if I~ Nc= 0.
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The set of all the concepts defined on the universe I is the power set P(I).
To represent concepts from P(I) we introduce a language.

Definition 4 (Concept Language). The concept language Lc is a set of de-
scriptions c.

To associate a description ¢ € Le with a concept ¢ € P(I) that ¢ represents,
we define a function R..

Definition 5. The function R. : L¢c — P(I) is an injective function that maps
a concept description ¢ € Le to a concept ¢ € P(I).

Since R, is a function, no two distinct concepts in P(I) can be represented
by the same description in Le. Since R, is injective, no two distinct descriptions
in Lc can represent the same concept in P(T).

Instances are related to concepts by the membership relation. The relation is
projected into a cover relation between instances and concept descriptions [7].

Definition 6 (Cover Relation V).
M : Lc x I — Boolean
defined by: M(c,i) < i € R¢(c).

The cover relation M holds for a description ¢ € Lc¢ and an instance ¢ € I if
and only if 7 is a member of the concept R.(c). If the relation M holds for ¢ € Le
and ¢ € I, we say that c covers ¢; otherwise, we say that ¢ does not cover i.

After the introduction of the elements of the concept-learning task we formu-
late the task itself according to [7IRITI]. Given a universe I of all the instances,
a concept language Lc, a cover relation M, and the training sets IT and I~ of a
target concept, the task is to find descriptions of the target concept in Lc.

2.2 Version Spaces

A version space is a solution of the concept-learning task. It is a set of all the
concept descriptions that are consistent with the training sets I™ and I~ [7lg].
A description ¢ € Lc is consistent with the sets /T and I~ if and only if ¢ covers
each instance p € I and does not cover any instance n € I~. Below we give a
formal definition of version spaces.

Definition 7 (Version Space). Given the training sets IT and I~ of a target
concept, the version space VS(I',17) is defined as follows:

VS(IT,I7)={c€ Le|(Vp e IT)M(c,p) A (Vn € I")=M(c,n)}.

To learn version spaces we need a representation. A version-space represen-
tation is a structure that contains “information needed to reconstruct every de-
scription in the version space” [7]. It has four possible characteristics: (1) com-
pactness; (2) finiteness; (3) efficient computability [2I11]; and (4) efficiency of
the algorithms for instance addition, instance retraction, version-space collapse
and instance classification. To encapsulate these characteristics we introduce the
notion of a useful version-space representation.
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Definition 8 (Useful Version-Space Representation). A version-space rep-
resentation is useful if and only if it is compact, finite, efficiently computable and
has efficient algorithms for instance addition, instance retraction, version-space
collapse, and instance classification.

2.3 Admissible Concept Languages

The key to find a compact version-space representation is to observe that concept
languages can be ordered. This can be done by a partially-ordering relation
“more general”. The relation is taken from [7I8] and is defined below.

Definition 9 (Relation “More General” (>)).
(Ver,eo € Le)((e1 > ea) « (Vi € I)(M(c1,4) — M(ca,1))).

A description ¢; € Le is more general than a description ¢ € Le (¢ > ¢3)
if and only if for each instance i € I if ¢y covers ¢, then ¢ covers i as well. If a
description ¢; € Lc is more general than a description ¢y € Le we say that ¢; is
a generalisation of ¢y and ¢y is a specialisation of ¢;.

If the relation “>” is defined on a concept language Lc, then Lc is partially-
ordered. For defining version-space representations one class of partially-ordered
languages was extensively used, viz. the class of admissible concept languages
[ZITT]. It is introduced after the definition of minimal and maximal sets of a
partially-ordered set (cf. [7]).

Definition 10 (Minimal/Maximal Set). If C' is a partially-ordered set, then:
MIN(C)={ceC|(Vd € C)((c>) — (d =¢))}
MAX(C)={ceC|(Vd e O)((d >¢c)— (d =0))}.

A partially-ordered concept language Lc is admissible if each subset of Lc is

bounded. A partially-ordered set is bounded if all the elements of the set are
between its minimal and maximal elements. Below we give a formal definition.

Definition 11 (Admissible Concept Language). A partially-ordered con-
cept language Lc is admissible if and only if for every nonempty subset C' C Lc:

C C{c€ Le|(3s € MIN(C))(c > s) A (Jg € MAX(C))(g > ¢)}.

Given a version space VS(IT,I7) in an admissible concept language, the
maximal set of VS(I*,I7) is known as the maximal boundary set of VS(I*,17)
and the minimal set of V.S(IT,I7) as the minimal boundary set of V.S(IT,I7).

Notation 12. The maximal boundary set and the minimal boundary set of
version space VS(IT, 1) are denoted by G(I*,17) and S(I*, 1), respectively.

3 Instance-Based Maximal Boundary Sets

Below we introduce instance-based maximal boundary sets (IBMBS) as a new
version-space representation. The correctness of the representation is proven for
the class of admissible concept languages. The IBMBS are shown to be compact
and their conditions for finiteness are derived.
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3.1 Definition and Correctness

The IBMBS representation consists of the set of positive training instances and a
family of maximal boundary sets indexed by negative training instances. Below
the representation is formally defined.

Definition 13 (Instance-Based Maximal Boundary Sets). Consider an
admissible concept language Lc and training sets IT C I and I~ C I so that
I~ # (. Then the instance-based-mazximal-boundary-set representation of a ver-

sion space VS(IT,17) is the ordered pair (IT,{G(I",{n})}ner-)-

The IBMBS are “instance-based” since each of their elements corresponds to
particular training instances. The IBMBS are “maximal boundary sets” since
each of their elements in {G(I",{n})},cr- is a maximal boundary set. The
IBMBS are a one-sided version space representation since its first part is the set
It;i.e., this part does not contain any boundary-set element.

To prove that the IBMBS are a correct version-space representation we
give theorems [I4] and [[T from [II]. Theorem [I4] states that if a description
¢ € Lc is more specific than at least one element of each maximal boundary
set G(IT,{n}) for all n € I, then c is consistent with the set I~ of negative
instances.

Theorem 14. If the concept language Lc is admissible, then:
(Ve € Le)((Wn € I7)(3g € GUT,{n}))(g > ¢) — (¥n € I7)=M(c,n)).

Theorem [I5] states that a version space VS(I;,I;) is a subset of a version
space VS(I, 1) if and only if every description in VS(I;",I;) is consistent
with the sets I and I .

Theorem 15. VS(I;,I;) C VS(I),I;,) <
(Ve € VS(IF, ID)(¥p € I )M (e,p) A (v € T3 )~M(e,n).

Theorem 16 (Correctness of IBMBS). Consider a version space VS(It,17)

represented by IBMBS: (It {G(I",{n})}ner-). If the concept language Lc is
admissible, then:

(Ve€ Le)(ce VST T )« (Vpe I )M (e, p)N¥ne I )(3ge G(IT{n}))(g9>¢))).

Proof. (—) Consider an arbitrarily chosen description ¢ € VS(I™,17). By theo-
rem [ (Vne I )(VS(IH17) C VS, {n})). Thus, (YVnel)(c € VS(IT,{n})).
Since Lc is admissible, according to definition [ for each VS(IT,{n}) we
have:

(Wnel)(3g € GUT,{n}))(g > c). (1)
Since ¢ € VS(IT,17), according to definition [Tt

(Vp € I")M(c,p). (2)
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From () and (@) the first part of theorem is proven.
(<) Let ¢ € Lc be arbitrarily chosen so that:

(Vp € I")M(c,p). (3)
(VneI™)(3g e G(I™,{n}))(g = ¢). (4)

By theorem [[4l formula ) implies:
(Yn eI )-M(c,n). (5)
Thus, ¢ € Le, @), and @) imply ¢ € VS(IT,I7) according to definition[@ O

Given the IBMBS of a version space VS(I*,17) and an admissible concept
language, theorem 16 states that the concept descriptions in VS(I+,17) are
exactly those that (1) cover all the positive instances in I, and (2) are more
specific than at least one element of each maximal boundary set G(I*,{n}).
This means that the size of IBMBS is not tied to the number of descriptions in
the version space. Thus, the IBMBS are a compact version-space representation.

Example 1. Let the instance universe I and the concept language Lc be 1-CNF
languages with 8 attributes. The domain of the k-th attribute in I is {0, 1} and in
Lc is {0,1, 7}, where the symbol “?” indicates that any value is acceptable. The
procedure of the cover relation M returns true for a concept description ¢ € Lc
and an instance ¢ € I if and only if for each attribute the values of ¢ and ¢ are
equal or the value of ¢ equals “7”. In this context we consider a concept-learning
task with the set I consisting of one positive instance: zf =(1,1,1,1,1,1,1,1)
and the set I~ consisting of three negative instances: i; = (0,0,1,1,1,1,1, 1),
i =(1,1,0,0,1,1,1,1) and ¢, =(1,1,1,1,0,0,1,1). For this task, the IBMBS:
(IT,{G(I*,{n})}ncr-) of the version space VS(IT, 1) consist of four sets:

It ={(1,1,1,1,1,1,1,1)},
G {ig}) = {(1,2,2,2,2,2,2,7,(2,1,2,2,2, 2,2, N},
GUI, iz ) ={(2,1,7,2, 2,7, 0,(2,7,2,1,7,2,2.N)},
GUT iz ) ={,2,2,2,1,2,2,7),(2,2,2,2,7,1,7, 1) }. g

3.2 Finiteness

Since the IBMBS are compact, it is important to determine when they are finite.

We introduce constraints on the training sets and the concept language. We show

that they are sufficient and necessary conditions for the finiteness of the IBMBS.
We start with the constraints on the training sets.

Constraint 17. The training sets [T and I~ are finite.

Constraint [[7] implies that the number of the maximal boundary sets G(I™,
{n}) is finite. Hence, IBMBS are finite in this case if each set G(I", {n}) is finite.
To guarantee this property we introduce a constraint on the concept language.
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Constraint 18. The maximal boundary set G(0, {n}) is finite for all n € I.

To explain how constraint [I§ affects each maximal boundary set G(I*,{n})
theorem [[Ais taken from [7]. The theorem states that the set G(IT U {i}, 1) is
equal to the set of those elements of the set G(I+, ™) that cover the instance 4.

Theorem 19. Consider training sets 17,1~ C I. If the concept language Lc is
admissible, then for allp € I:

G U{p},I7)={9e G, I7)|M(g,p)}-
An important consequence of theorem [[9is given in corollary 20 below.

Corollary 20. Consider sets I;, 17 C I so that I C If". Then for alln € I:
G(If {n}) € G(I3, {n}).

Using corollary 20] we formulate the following theorem.

Theorem 21. The mazimal boundary set G(I*,{n}) is finite for alln € I and
It C I if and only if constraint[I8 holds.

Combining constraints [ and I8 and using theorem 2] we finish the section
by formulating the theorem of the IBMBS being finite.

Theorem 22. The IBMBS are finite if and only if constraints[I7 and[I8 hold.

4 Algorithms of the IBMBS

This section introduces four algorithms of the IBMBS. The instance-addition
algorithm is given in subsection FI} the instance-retraction algorithm is given
in subsection .2} the algorithm for version-space collapse is given in subsection
43} and the instance-classification algorithm and its extension for noisy training
data are given in subsection .4l

4.1 Instance-Addition Algorithm

The instance-addition algorithm of the IBMBS revises the representation given a
new training instance. It is correct for the class of admissible concept languages.
The algorithm consists of two parts for handling positive and negative training
instances. They are based on theorem 23] and theorem 16, respectively.

Theorem 23. Consider a wversion space VS(IT,I7) represented by IBMBS:
(I, {G(I",{n})}ner-), and a version space VS(It U {i},I7) represented by
IBMBS: (It U {i},{GUIT U {i},{n})}ner-)- If the concept language Lc is ad-
missible, then:

GUITU{il,{n})={9€ GU",{n})| M(g,i)} for alln € I.

Proof. The theorem follows from theorem [I9 a
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Instance-Addition Algorithm
Input: i: a new training instance.
I {GUI 1, {n})}her—): IBMBS of VS(It,I7).
Output:
(It U i}, {GUIT U {i}, {n}) }ner-): IBMBS of VS(IT U {i},I7) if i is positive.
I AGUT {n}) b er-ugay): IBMBS of VS(I*, 17 U {i}) if i is negative.
Precondition: Lc is admissible.

if instance 7 is positive then
forne I do
G U{i} {n}) ={g € GUI, {n})| M(g,7)}
return (I7 U {i}, {GIT U {i}, {n)}res-)
if instance ¢ is negative then
Generate the set G(0, {i})
G {i}) = {g € GO {i})|(Vp € I*)M(g,p)}
return ({I*,{G(I*, {n) ber-o(1))-

Fig. 1. The Instance-Addition Algorithm

The instance-addition algorithm can be described as follows (see in figure ).
If a new positive training instance ¢ is given, the algorithm forms the maximal
boundary sets G(ITU{i}, {n}) for alln € I~. Each set G(ITU{i}, {n}) is formed
from those elements of the corresponding set G(I*,{n}) that cover the instance
i. The resulting IBMBS of the version space VS(I*T U {i},I~) are formed from
the set I U {i} and the maximal boundary sets G(I1T U{i},{n}) foralln € I~.

If the instance ¢ is negative, the algorithm first forms the maximal boundary
set G(I',{i}) in two steps. In the first step it generates the maximal boundary
set G(0,{i}). In the second step the algorithm forms G(I™,{i}) from the ele-
ments of G(0, {i}) that cover all the instances in I (see theorem [[9)). Then, the
resulting IBMBS of the version space VS(IT, I~ U {i}) are formed from the set
I and the maximal boundary sets G(I", {n}) for all n € I~ U {i}.

Example 2. Let us illustrate the instance-addition algorithm given the IBMBS
from example 1. Assume that we have a new negative training instance i; =
(1,1,1,1,1,1,0,0). The algorithm first generates the maximal boundary set
GUIt, iz }) ={(,2,2,2,2,2,1,7),(2,2,7,2,2,2,2, 1) }. Then, it adds G(I*, {i5 })
to the IBMBS. The resultlng IBMBS consist of five sets:

It ={{1,1,1,1,1,1,1,1)},
G( {12_}) = {< ’?7?7?7?7?7?7?>7<‘?’ 17 ?’ ?’? ? ? ?>}7
G(I Ais ) ={(".7,1,7,2,7,7,7), (17,7, L7777},
G(It {15}):{<??????17>,<???????, >}
Assume now that we have a new positive instance 26 =(1,0,1,0,1,0,1,0).
The algorithm forms for each n € I~ the maximal boundary set G(ITU{ig }, {n})
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from the elements of the set G(I",{n}) that cover the instance ig. It adds the
instance ig' to the training set 1. The resulting IBMBS consist of five sets:

I ={(1,1,1,1,1,1,1,1),(1,0,1,0,1,0,1,0)},
GUI™ {is})={(1,2,2,2,2, 2,2, )}, GUI T, {is }) = {(2,7,1,2,2,2,2, D)},
G {irH)={2221,2,2.0)}L,GIT, {is}) = {(2,2,2,2,2,2,1,7)}. O

4.2 Instance-Retraction Algorithm

The instance-retraction algorithm of the IBMBS revises the representation when
an instance is removed from one of the training sets. It is correct for the class of
admissible concept languages when the property G holds [11].

Definition 24 (Property G). An admissible concept language is said to have
property G if for allny,ng € I:

{9 € GO0, {m})|=M(g,n2)} = {g € G(0,{n2})|=M(g,n1)}.

An admissible concept language has the property G if for all ni,ny € I the
subset of the elements of the set G(0, {n1}), that do not cover the instance na,
equals the subset of the elements of the set G(0, {n2}), that do not cover the
instance ny. A simple consequence of the property G is given in a corollary below.

Corollary 25. If the property G holds, then for all ni,no € I, and all IT C I:
{9 € G {ni})[=M(g,n2)} = {g € G(I'", {na2})|=M(g,m1)}-

The instance-retraction algorithm consists of two parts for handling positive
and negative instances. They are based on theorems [26] and 16, respectively.

Theorem 26. Consider a version space VS(I',17) represented by IBMBS:
(I, {GUI*,{n})}necr-), and a second version space VS(IT\{i}, ") represented
by IBMBS: (It \ {i},{G(I" \ {i},{n})}ner-), where i € I*. If the concept
language Lc is admissible and the property G holds, then:

G\ {i}{n})=G(I* {n})U{ge G\ {i},{i})|-M(g,n)} for alln € I".
Proof. For each n € I™:
GUI\{i} {n}) ={ge G \{i}.{n})IM(g,9) }U{ge G \{i}.{n})|=M(g,i)}.
According to theorem [Tt
{9 € GU"\ {i},{n})|M(g,9)} = G(I", {n})
and according to corollary
{g e G\ {i}, {n})|=M(g,i)} = {g € G\ {i}, {i})|=M(g,n)}.
Thus,
G\ {i},{n}) = GUIT {n})U{g € G\ {i}, {i})|=M(g,n)}. 0
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Instance-Retraction Algorithm
Input: i: a training instance in IT U ™.
{1t {GUIt, {n})}er-): IBMBS of VST, 17).
Output: ({It\ i}, {GUI T\ {i}, {n})}ne;-): IBMBS of VST \ {i},17) ifiel".
{It,{cut, {n}}ner-\qi3): IBMBS of VST, I-\{i})ifie .
Precondition: Lc is admissible, property G holds, and |[I7| > 1ifi e I™.

ifi € IT then
Generate the set G(0, {i})
?(ﬁ \ {Ill ;{ii}) ={g€ GO, {i})|(¥p € I'" \ {i})M(g,p)}
or n o
G(I*\ {i}, {n}) = G, {n}) U {g € G(I* \ {i}, {i}) | ~M(g,n)}
return (I7\ {i}, {GUT\ {i}, {n}) }nes-)
if i € I~ then
return (I, {G(I™, {n})}ner\{i})

Fig. 2. The Instance-Retraction Algorithm

The instance-retraction algorithm can be described as follows (see figure ).
If an instance 4 is removed from the set IT, the algorithm executes two steps
following theorem 26l In the first step it forms the maximal boundary set G(I1\
{i},{i}). This is done by first generating the maximal boundary set G(0,{i})
and then by removing those elements of G(0,{i}) that do not cover at least
one instance in I \ {i} (see theorem [MJ). In the second step the algorithm
forms the maximal boundary set G(I1 \ {i},{n}) for each n € I~. The set
G(IT\ {i},{n}) is formed as a union of the corresponding sets G(I*,{n}) and
{9 € GUI" \ {i},{i})|~M(g,n)}. The resulting IBMBS of the version space
VS(I*+ \ {i},I7) are formed from the set I\ {i} and the maximal boundary
sets G(IT\ {i},{n}) foralln e I.

If the instance ¢ is removed from the set I, the algorithm forms the resulting
IBMBS of the version space VS(IT, I~ \ {i}) from the set I™ and the maximal
boundary sets G(IT,{n}) for all n € I~ \ {i}.

Example 3. Let us illustrate the instance-retraction algorithm given the last
IBMBS from example 2. Note that the property G holds for the concept lan-
guage used. Assume that we have to retract the positive training instance if =
(1,0,1,0,1,0,1,0). The algorithm forms the boundary set G(I*\{ig},{id}) =
{2, 1,0,7,7,2,2,0, (3,070,120, (,2,20,0,7,1,7,7), (2,0,2,7,7,7,7, 1) 1.
Then, it forms for each n € I~ the maximal boundary set G(IT \ {id },{n}) as
a union of the sets G(I*,{n}) and {g € GI T\ {ig}, {if}) | ~M(g,n)}. The in-
stance ig is excluded from the training set I+ and the resulting IBMBS coincide
with the first IBMBS from example 2.

Assume now that we have to retract the negative training instance iy =
(1,1,1,1,1,1,0,0). The algorithm excludes: (1) the instance from the training
set I, and (2) the maximal boundary set G(I,{i5}) from the IBMBS. The

resulting IBMBS coincide with those from example 1. a
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4.3 Algorithm for Version-Space Collapse

The algorithm for version-space collapse checks whether a version space repre-
sented by IBMBS is empty. It is proposed for the class of admissible concept
languages when the intersection-preserving property (IP) holds [T1].

Definition 27 (Intersection-Preserving Property (IP)). An admissible
concept language is said to have the intersection-preserving property if for each
nonempty set C' C Lc there exists a description ¢ € Lc so that:

(Vi € I)((Vc' € C)M(c,i) < M(c,i)).

An admissible concept language Lc¢ exhibits the property IP when for each
nonempty subset C' C Lc there exists a description ¢ € Lc¢ so that an instance
i € I is covered by all the descriptions ¢’ € C' if and only if ¢ is covered by ¢. The
property is introduced because it guarantees that if the training set I~ is not
empty, the version space V.S(IT,I7) is not empty if and only if for each n € I~
the version space VS(IT,{n}) is not empty (see theorem 28] taken from [11]).

Theorem 28. Consider an admissible concept language Lc such that the prop-
erty IP holds. If the set I~ is nonempty, then:

(VSIT,I7)#0) < (Yne I7)(VS(IT,{n}) £0).

To check a version space VS(I+, I7) for collapse, by theorem 28 we can check
for collapse of the version spaces VS(I,{n}) for n € I". Since VS(I*,{n}) are
given by maximal boundary sets G(I",{n}) in the IBMBS of VS(I*,I7), we
give a relation between the sets G(I1, {n}) and version spaces VS(It,{n}) [11].

Theorem 29. (VS(IT,17) #0) « (GUIT,17) #0).

Theorems 2§ and 9 imply corollary B0 below. It states that if the property
IP holds and the training set I~ is nonempty, the version space VS(IT,17) is
nonempty if and only if for each n € I~ the set G(I",{n}) is nonempty.

Corollary 30. Consider an admissible concept language Lec such that the prop-
erty IP holds. If the set I~ is nonempty, then:

(VS(IF,I7) #0) & (Yn € I7)(GUT, {n}) #0).

The version-space collapse algorithm is given in figure Bl If a version space
VS(I*t,I7), given by IBMBS, is checked for collapse, the algorithm visits the
maximal boundary sets G(I™,{n}) for n € I". If none of the sets G(I,{n}) is
empty, by corollary VS(I*,I7) is not empty and the algorithm returns false.
Otherwise, by corollary B0 VS(I+, I7) is empty and the algorithm returns true.

Example 4. Let us illustrate the algorithm for version-space collapse given
the IBMBS from example 1. Note that property IP holds for the concept lan-
guage used. The algorithm checks the maximal boundary sets G(IT,{i5}),
G(It,{i3}), and G(I",{i; }). Since none of them is empty, the algorithm re-
turns false; i.e., the version space is nonempty. ad
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VS-Collapse Algorithm
Input: ({IT, {GUT,{n})} e/ ): IBMBS of VS(IT,17).
Output: true if VS(IT,17) = 0.
false if VS(I1,17) # 0.
Precondition: Lc is admissible and the property IP holds.

forne I™ do
if G(It,{n}) =0 then
return true
return false.

Fig. 3. The Algorithm for Version-Space Collapse

4.4 Instance-Classification Algorithm

Instance classification with version spaces is realised by the unanimous-voting
rule: an instance is classified if and only if all the descriptions in a version space
agree on a classification of the instance [7J8]. The rule can be implemented using
theorems BIl and [B2] taken from [11]. Theorem BTl states that all the descriptions
of a version space VS(I*, 1) do cover an instance i € I if and only if the version
space VS(IT, I~ U{i}) is empty. Theorem 32 states that all the descriptions of
a version space VS(IT,I7) do not cover an instance i € I if and only if the
version space VS(It U {i}, I7) is empty.

Theorem 31. (Vi € I)((Ve e VS(IT,I7))M(c,i) < (VSUIT, I~ U{i}) =10)).

Theorem 32. (Vi€ I)((Vee VS(IT,17))=M(c,i) < (VST T U{i}, ™) =10)).

The instance-classification algorithm of the IBMBS realises the unanimous-
voting rule for the class of admissible concept languages if the property IP holds.
The positive instance classification is based on theorem BIl and the negative
instance classification is based on theorem [B3l Theorem [B3] is used instead of
theorem for efficiency reasons. It states that if the concept language is ad-
missible and the property IP holds, then all the descriptions of a version space
VS(I*T,I7) do not cover an instance i € I if and only if there exists a version
space VS(IT,{n}) of which all the descriptions do not cover the instance i.

Theorem 33. Consider an admissible concept language Lc such that the prop-
erty IP holds. If the set I~ is nonempty, then:
(Vie I)((Ve e VS(IT,I7))=M(c,i) « (3n € I7)(Ve € VST, {n}))=M(c,i)).

Proof. Consider an arbitrary ¢ € I. Then:

(Ve € VS(IT,17))=M(c,i) iff (theorem [32))

VS(Itu{i},I7) = 0 iff (theorem 28]

(3n € IT)VS(IT U {i}, {n}) = 0 iff (theorem [32))

(In e I7)(Ve e VST, {n}))~M(c,q) O
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By theorem [33] a negative instance classification can be obtained by the ver-
sion spaces VS(IT,{n}). Since VS(I,{n}) are given with the maximal bound-
ary sets G(I'",{n}) in the IBMBS of VS(I,I7), we show how to use these sets
for the classification using theorem B4 from [11].

Theorem 34. (VieI)((Vee VS(It,17))~M(c,i)« (VgeG(IT,I7))=M(g,1)).

Theorems [33] and B4] imply corollary B3 below. Corollary B3l states that if an
admissible concept language has the property IP, then none of the descriptions
of a version space VIS(I",I7) covers an instance ¢ € I if and only if there exists
a set G(I'",{n}) of which all the descriptions do not cover the instance i.

Corollary 35. Consider an admissible concept language Lc such that the prop-
erty IP holds. If the set I~ is nonempty, then:

(Vi e I)((Ve e VST, I7))~M(c,i) < (3n € I7) (Vg € GUIT,{n}))~M(g,7)).

The instance-classification algorithm of the IBMBS is shown in figure @l
Given a nonempty version space VS(I1,I7), it classifies an instance ¢ € I in
two steps. In the first step the algorithm forms the IBMBS of the version space
VS(It, I~ U{i}) using the instance-addition algorithm applied on the IBMBS of
VS(It,I7) with the instance i labeled as negative. If VS(I*, I~ U{i}) is empty,
by theorem [31] all the descriptions in VS(IT,I7) cover the instance. Hence,
the instance 4 is positive and the algorithm returns “+”. If VS(IT, I~ U {i})
is not empty, during the second step the algorithm visits the sets G(I",{n})
for n € I7. If none of the elements of one of these sets covers the instance i,
by corollary all the descriptions in V.S(I™,I7) do not cover the instance.
Thus, the instance i is negative and the algorithm returns “—”. Otherwise, the
algorithm returns “?”.

Instance-Classification Algorithm
Input: ¢: an instance to be classified.
(I {GI Y, {n})}er-): IBMBS of VS(IT,I7).
Output: “+” if (Ve € VS(IT,I7))M(c,i).
“—7if (Ve € VST, T17))=M(c,19).
“?” otherwise.
Precondition: Lc is admissible, the property IP holds, and VS(I*,17) # 0.

label 7 as negative
I {GUI {n)her- Ui} = Instance-Addition(i, ({I", {G(I'*, {n})}ner-))
if VS-Collapse((I*,{G(I*,{n})} c1-upiy)) then

return “+”
forne€ I” do

if (Vg € GU",{n}))~M(g,i) then

return “-”

return “7”.

Fig. 4. The Instance-Classification Algorithm
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Example 5. Let us illustrate the classification algorithm given the IBMBS from
example 1. Assume that we have to classify instance ¢ = (1,1,1,1,1,1,0,0). In
the first step the algorithm updates the IBMBS with the instance i considered
as negative. The resulting IBMBS coincide with the first IBMBS from example
2 and represent a nonempty version space. In the second step the algorithm
determines that all the elements of the maximal boundary sets G(I*,{i5 }),
G(I't,{i3}), and G(I",{i; }) do cover the instance. Thus, the algorithm returns
“?7: i.e., the instance classification cannot be determined. O

The instance classification with the IBMBS can be extended to situations
when the training instances are noisy. The key idea is to use flexible matching
between instances and concept descriptions. Below we describe two procedures,
based on flexible matching, for positive and negative classification, respectively.

The positive classification procedure, given an instance i to be classified,
first forms the maximal boundary set G((, {i}). Then for each positive training
instance p € I'" it determines the number of descriptions g € G(0, {i}) that do
not cover the instance. If at least P, positive training instances are not covered
by at least P, descriptions g € G(0, {i}), the instance ¢ is classified as positive,
where P, and P, are parameters of flexible matching.

The negative classification procedure is similar to that given in [I0]. Given
an instance ¢ to be classified, it determines for each negative training instance
n € I~ the number of descriptions g € G(I",{n}) that do not cover the instance
i. If there exist at least INV,, maximal boundary sets G(I",{n}) of which at least
N, descriptions do not cover the instance ¢, then the instance is classified as
negative, where N,, and N, are parameters of flexible matching.

5 Analysis

This section analyses the IBMBS. Subsection [B.1] gives a worst-case complex-
ity analysis of the IBMBS and the algorithms presented. Subsection uses
the results of the analysis to determine (1) whether the IBMBS algorithms are
efficient, and (2) whether the IBMBS are efficiently computable.

5.1 The Worst-Case Complexity Analysis

The worst-case complexity analysis is made in terms of the computational char-
acteristics of admissible concept languages. The characteristics are chosen so
that they do not depend on the size of the training data. They are given below:

I',: the maximal size of the maximal boundary set G(0, {n}) for all n € I;

tl: the maximal time for generating the set G(0, {n}) for all n € I;

Xyt the maximal size of the minimal boundary set S({p},0) for all p € I;

tl: the maximal time for generating the set S({p}, ) for all p € I 2

tm: the maximal time of the operator of the relation M (c, i) for all ¢ € Le,i € 1.

2 The computational characteristics Xy and té are given for the complexity analysis
of the instance-based minimal boundary sets presented in section [l
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The condition for the worst-case complexity analysis is that the size of the
maximal boundary sets G(I'",{n}) is equal to the size I, for alln € I,1" C I.

Space Complexity
The worst-case space complexity of the IBMBS is |IT| plus the worst-case space
complexity O(|I~|I},) of the G-part. Thus, it is O(|IT| 4+ |I7|},).

Time Complexities
The Instance-Addition Algorithm. The worst-case time complexity of the algo-
rithm part for processing one positive instance is O(|I ™|yt ). The factor |1~ |
arises because we have |I~| maximal boundary sets G(I1tU{i},{n}). The factor
I, t,y, arises because in order to form each maximal boundary set G(ITU{i}, {n})
we test I}, elements of the set G(IT, {n}) whether they cover the instance.
The worst-case time complexity of the algorithm part for processing one
negative instance is O(t] + [I7|Iut,n). The term O(t]) arises because the max-
imal boundary set G(, {i}) is generated. The term O(|IT|I,t,,) arises because
the maximal boundary set G(I'", {i}) is generated from I, elements of the set
G(0,{i}) that are tested to cover all the positive instances in the set 1.

The Instance-Retraction Algorithm. The worst-case time complexity of the algo-
rithm part for processing one positive instance is the sum O(t] + |I|Tt,,) +
O(|I7|Tptm). The term O(t], + [IT|,t,,) is the worst-case time complexity
for generating the maximal boundary set G(I* \ {i},{i}). (The sub-term t]
arises because the set G(0), {i}) is generated. The sub-term |I*|I,¢,, arises be-
cause the size of the set G(0, {i}) is I}, and each element of G(0, {¢}) is checked
whether it covers all the positive instances in the set I \ {i}.) The second
term O(|I~|Ihty,) is the time complexity for constructing the maximal bound-
ary sets G(IT \ {i},{n}) for all n € I~. (The factor |I~| arises because we
have |I~| sets G(IT \ {i},{n}). The factor I,t,, arises because formation of
each set G(IT U {i},{n}) requires I', elements of the set G(I \ {i}, {i}) to be
tested not to cover the corresponding instance n.) Thus, the worst-case time
complexity of this part of the algorithm is O(t], + |IT|Tty) + O(| I [ Tnty) =
O(t), + (|| + | ) Tutyn).

The worst-case time complexity of the algorithm part for processing one
negative instance is O(1) because its maximal boundary set is removed only.

The Algorithm for Version-Space Collapse. The worst-case time complexity of
the algorithm is O(]7~]). The term |I~| arises because in the worst case |1~ |
maximal boundary sets G(I*,{n}) are checked whether they are empty.

The Instance-Classification Algorithm. The instance-classification algorithm con-
sists of two parts. The first part is the positive instance-classification part.
Its worst-case time complexity is the sum O(t], + |IT|Tty,) + O(|I7]). (The
first term is the worst-case time complexity of the instance-addition algorithm
given the instance i to be classified labeled as negative. The second term is
the worst-case time complexity of the algorithm for version-space collapse.)
The second part is the negative instance-classification part. Its worst-case time
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complexity is O(|1~ |[Itm). The factor |I—| arises because we have |I~| maxi-

mal boundary sets G(I*,{n}). The factor I',t,, arises because the elements of

each maximal boundary set G(I",{n}) are tested not to cover the instance i.

Thus, the worst-case time complexity of the instance-classification algorithm is:

O(IL~ )+ O, + I [ Tnten) +O( I ) +O(I ™ [Ttim) = O, +(TH [+ ) Tutin)-
The IBMBS complexities are summarised in table [

Table 1. Worst-Case Complexities of the IBMBS and their Algorithms

Space: O(IT |+ 111w

Time
Instance-Addition Algorithm (@ instance): O(|I ™ |Intm)
Instance-Addition Algorithm (& instance): O(t} 4+ [IT|Tntym)
Instance-Retraction Algorithm (@ instance): O(t}, + (17| + |17 |) Tntm)
Instance-Retraction Algorithm (6 instance): O(1)
Version-Space Collapse Algorithm: o(lI7))
Instance-Classification Algorithm: Oth + (I + [T~ Nntm)

5.2 IBMBS and Efficiency

To determine whether the algorithms of the IBMBS are efficient we employ a rule
proposed in [2]: an algorithm of a version-space representation is efficient for a
concept language if the worst-case time complexity of the algorithm is polynomial
in the computational features of the language and the size of the input. From
the previous subsection we know that the worst-case time complexities of the
IBMBS algorithms are polynomial in the computational characteristics t!, I},
tm, and the sizes |[I7| and |I~|. In this context we note that the upper bound of
the size of the input of the algorithms is the size of the IBMBS; i.e., |[IT| plus
|I7|I%,. Thus, we conclude that the IBMBS algorithms for instance addition,
instance retraction, version-space collapse and instance classification are efficient
for admissible concept languages. In addition, we emphasise that the instance-
retraction algorithm does not recompute the IBMBS.

To determine whether the IBMBS are efficiently computable we employ a
second rule proposed in [2]: a version-space representation is efficiently com-
putable for a concept language if in the worst case its size is polynomial in the
computational features of the language and the sizes of the training sets, and
the representation has an efficient instance-addition algorithm. ;From the pre-
vious subsection we know that the worst-case space complexity of the IBMBS is
polynomial in the computational characteristic I, and the sizes |I*| and |I~].
Since the IBMBS instance-addition algorithm is efficient we conclude that the
IBMBS are efficiently computable for admissible concept languages.

6 Usefulness of the IBMBS

This section evaluates the usefulness of the IBMBS. For this purpose we sum-
marise the IBMBS employing the characteristics of a useful version-space repre-
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sentation (definition [§]). The characteristics are compactness, finiteness, efficient
computability, and efficiency of the IBMBS algorithms.

We showed that the IBMBS are a correct and compact version-space rep-
resentation for admissible concept languages (section B)). They are finite if the
training sets are finite and the maximal boundary set G(@,{n}) is finite for all
n € I. The IBMBS are efficiently computable and have efficient algorithms for
instance addition, instance retraction, version-space collapse and instance classi-
fication for admissible concept languages (sections[@and Bl). The only restrictions
are that the instance retraction algorithm requires the property G while the algo-
rithms for version-space collapse and instance classification require the property
IP on the concept language used.

From this summary we conclude according to definition[§ that the IBMBS are
a useful version-space representation for the class of admissible concept languages
if the training sets are finite, the maximal boundary set G((),{n}) is finite for
all n € I, and the property G as well as the property IP hold.

7 Instance-Based Minimal Boundary Sets
Instance-based minimal boundary sets (IBmBS) and their algorithms can be de-

rived by duality from the previous sectiondd. T herefore, we refrain from providing
details. The IBmBS complexities are given in table 21

Table 2. Worst-Case Complexities of the IBmBS and their Algorithms

Space: O(IT| X, +1I7])

Time
Instance-Addition Algorithm (& instance): O(t} + |17 | Zptm)
Instance-Addition Algorithm (& instance): O(|I1|Zptsm)
Instance-Retraction Algorithm (@ instance): O(1)
Instance-Retraction Algorithm (© instance): O(t} + (|7 + |17 ) Zptm)
Version-Space Collapse Algorithm: o(I™
Instance-Classification Algorithm: Oty + (I + I ) Zptm)

(
(
(
(

8 Comparison with Relevant Work

Below we compare the IBMBS and the IBmBS with the training-instance rep-
resentation [3] and the instance-based boundary-set representation [ITJ12], i.e.,
with version-space representations that are efficient for instance retraction. The
comparison is made using the characteristics of useful version-space representa-
tions (definition []).

The training-instance representation is a version-space representation that
consists of the sets of positive and negative training instances. By definition the

3 We note that the dual of the property G is the property S, and the dual of the
intersection-preserving property (IP) is the union-preserving property (UP) [II].
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representation is compact. Obviously, the conditions for finiteness of the training-
instance representation are a subset of the conditions for finiteness of the IBMBS
(IBmBS). An analogous conclusion can be derived when the representations are
compared with respect to efficient computability. The training-instance represen-
tation allows much more efficient algorithms for instance addition and instance
retraction. This advantage comes with a price: the instance-classification algo-
rithm determines the classification of each instance by a search in the concept
language using all the training data and the instance [2]. Thus, the training-
instance representation has only a theoretical value. This contrasts with the
IBMBS and the IBmBS: their instance-classification algorithms are not based
on search and this is one of the factors of their usefulness.

The instance-based boundary-set representation (IBBS) is a useful version-
space representation that consists of a family of minimal boundary sets indexed
by positive training instances and a family of maximal boundary sets indexed
by negative training instances [I1JI2]. The representation is correct and com-
pact for admissible concept languages. It is possible to prove that the conditions
for finiteness of the IBBS are a superset of the conditions for finiteness of the
IBMBS (IBmBS). In order to compare the representations in terms of efficiency
we examine the IBBS worst-case complexities given in table Bl An analysis of
these complexities shows that each of them is equal to the sum of the correspond-
ing complexities of the IBMBS and IBmBS. Thus, the IBMBS and the IBmBS
have two advantages: (1) they are more efficiently computable than the IBBS,
and (2) the IBMBS and the IBmBS algorithms for instance addition, instance
retraction, version-space collapse, and instance classification are more efficient.
Moreover, the applicability of the IBBS instance-retraction algorithm is more
restricted: the algorithm can be applied only if both properties S and G hold.

Table 3. Worst-Case Complexities of the IBBS and their Algorithms

Space: O(IT|X, +1I"|Iy)
Time
Instance-Addition Algorithm (@ instance):
Instance-Addition Algorithm (© instance):

Oty + I [(Zp + Tn)tm
O
Instance-Retraction Algorithm (@ instance): O(¢
O(t
@)
@)

( )
(tT + [IF|(Zp 4 In)tm)
(th + (| + 1T [) Patn)
Instance-Retraction Algorithm (© instance): O(t} + (|17 + |17 ) Zptm)
Version-Space Collapse Algorithm: (
(

Instance-Classification Algorithm:

\I+\+|I )
ty +th + (I + 17D (Zp + Tn)tm)

9 Conclusion

This chapter introduced a family of useful version-space representations called
one-sided instance-based boundary sets (IBMBS and IBmBS). We showed that
these representations are correct and compact for the class of admissible concept
languages. This allowed us to derive the conditions for finiteness. In addition,
we demonstrated that the one-sided instance-based boundary sets are efficiently
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computable and have efficient algorithms for instance addition, instance retrac-
tion, version-space collapse and instance classification for the class of admissible
concept languages. We compared the one-sided instance-based boundary sets
with other existing version-space representations that are efficient for instance
retraction. From the comparison we conclude that the one-sided instance-based
boundary sets are at the moment the most efficient useful version-space repre-
sentations for instance retraction. So, our research question from section 1 has
been answered positively.
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