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Abstract. The aim of this paper is to study communication in networks
where nodes fail in a random dependent way. In order to capture fault de-
pendencies, we introduce the neighborhood fault model, where damaging
events, called spots, occur randomly and independently with probability
p at nodes of a network, and cause faults in the given node and all of its
neighbors. Faults at distance at most 2 become dependent in this model
and are positively correlated. We investigate the impact of spot prob-
ability on feasibility and time of communication in the fault-free part
of the network. We show a network which supports fast communication
with high probability, if p < 1/clogn. We also show that communica-
tion is not feasible with high probability in most classes of networks, for
constant spot probabilities. For smaller spot probabilities, high proba-
bility communication is supported even by bounded degree networks. It
is shown that the torus supports communication with high probability
when p decreases faster than 1/n'/2?, and does not when p € 1/0(n'/?).
Furthermore, a network built of tori is designed, with the same fault-
tolerance properties and additionally supporting fast communication. We
show, however, that networks of degree bounded by a constant d do not
support communication with high probability, if p € 1/0(n'/?). While
communication in networks with independent faults was widely studied,
this is the first analytic paper which investigates network communication
for random dependent faults.

Keywords: Fault-tolerance, dependent faults, communication, crash
faults, network connectivity.

1 Introduction

As interconnection networks grow in size and complexity, they become increas-
ingly vulnerable to component failures. Links and nodes of a network may fail,
and these failures often result in delaying, blocking, or even distorting transmit-
ted messages. It becomes important to design networks in such a way that the
desired communication task be accomplished efficiently in spite of these faults,
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usually without knowing their location ahead of time. Such networks are called
fault-tolerant.

The fundamental questions of network reliability have received much atten-
tion in past research under the assumption that components fail randomly and
independently (cf., e.g. [[I203l4] and the survey [5]). On the other hand, empirical
work has shown that positive correlation of faults is a more reasonable assump-
tion for networks [GI7U8]. In [8], the authors provide empirical evidence that data
packets losses are spatially correlated in networks, and in [7], the authors use
the assumption of failure spatial correlation to enhance network traffic manage-
ment. Furthermore, in [6], the authors simulate failures in a sensor network using
a model much like that of the present paper; according to these authors, the en-
vironment provides many spatially correlated phenomena resulting in such fault
patterns. Physical and logical phenomena generally affect physical components,
causing failures in a positively correlated way. E.g., on August 14, 2003, faults
cascaded on the power distribution network and deprived part of North America
of electricity. Logical phenomena, like computer viruses and worms, also cause
dependent faults. Lightning strikes hitting one node of an electric network cause
power outages in entire city blocks.

As our society is increasingly dependent on information networks, it becomes
essential to study questions relating to tolerance of dependent positively corre-
lated faults. However, no analytic work has been done for communication net-
works under this assumption about faults.

In this paper, we consider the problem of feasibility and time of communica-
tion in networks with dependent positively correlated faults. To the best of our
knowledge, this is the first analytic paper which provides this type of results for
network communication.

1.1 Model and Problem Definition

A communication network is modeled as an undirected graph G = (V, E) with
a set of nodes V connected by a set of undirected links E. We say that two
nodes are adjacent (or neighbors) if they share a link. The distance between
nodes u,v € V is the minimum number of links which must be traversed from
u to reach v; it is denoted by dist(u,v). In a network, I'(u) is the set of nodes
adjacent to u; I;(u) is the set of nodes v € V whose distance from w is i; we also
denote by I'<;(u) the set of nodes v € V' whose distance from w is at most 7. A
node is said to be functional, or fault-free, when it executes only its predefined
algorithm without any deviation, and doing so, transmits all messages correctly,
in a timely manner and without any loss; a node which is not functional is said
to be faulty. Faults can be of different types: at opposite ends of the spectrum
are crash and Byzantine faults. Faults of the crash type cause faulty components
to stop all communication; these components can neither send, receive nor relay
any message. Faulty nodes of the Byzantine type may behave arbitrarily (even
maliciously) as transmitters. We say that faults are permanent when they affect
the nodes for the entire duration of a communication process; otherwise, the
faults are said to be transient. In this paper, we assume that faults are permanent
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and of crash type. Throughout the paper, log means logarithm with base 2 and
In means the natural logarithm.

We consider communication in the fault-free part of the network, where all
nodes exchange messages with each other. Communication among functional
nodes is feasible if the fault-free part of the network is connected and contains
at least two nodes. We measure communication time under the all-port message
passing model, where nodes can communicate with all their neighbors in one
round, and under the 1-port model, in which every node can send a message to at
most one neighbor in one round. Under the all-port model, communication can be
completed in time D if the fault-free part of the network has diameter D. Hence,
we study the connectivity and diameter of the fault-free part of the network.
Moreover, we seek networks of low maximum degree A. Since in the 1-port
model communication can be completed in time DA, networks of low maximum
degree and low diameter of the fault-free part support fast communication also
in the 1-port model.

In order to capture fault dependencies, we introduce the neighborhood fault
model, where damaging events, called spots, occur randomly and independently
at nodes of a network, with probability p, and cause permanent crash faults
in the given node and all of its neighbors. Faults at distance at most 2 become
dependent in this model and are positively correlated. We investigate the impact
of spot probability on feasibility and time of communication in the fault-free part
of the network.

We design general networks and bounded degree networks which support fast
and highly reliable communication despite relatively high spot probabilities. We
also prove bounds on spot probability such that highly reliable communication
is not supported.

We focus attention on the problem of feasibility and time of communication,
guaranteed with high probability, i.e., with probability converging to 1 as the size
of the network grows. Under the all-port model, in which time of communication
is proportional to the diameter, this problem reduces to the question for what
spot probability the fault-free part of the network is connected and when it has
diameter at most D, with high probability. Under the 1-port model, the same
reduction is valid for networks of a given degree.

1.2 Related Work

Dependent fault models were introduced in the study of integrated circuit man-
ufacturing yields. This research models defects as the result of impurities, po-
sitioned randomly and independently, affecting nearby circuit components in a
dependent way. Results were proposed mainly according to the quadrat-based
and center-satellite approaches. In [9], the author proposed a coarse approach
to analyzing production yields based on the assumption that faults occurred in
clusters inside a defined grid pattern on Very Large Scale Integration (VLSI)
walfers; this quadrat-based model offered provably good results and ease of use
required by the industry. Then, in [I0], the authors introduced a detailed model
of manufacturing defects in VLSI wafers based on the center-satellite concept



Communication in Networks with Random Dependent Faults 421

for ecological sampling [I1]. Later on, in [I2], the authors proposed a simplified
center-satellite model of manufacturing defects on VLSI wafers for the study of
the memory array reconfiguration problem. In fact, both the center-satellite and
quadrat-based approaches are still in use for System on Chip (SoC) (cf., e.g.,
[13]) and VLSI (cf., e.g., [I4/15]) applications. Throughout this field of literature,
the consensus is that results originating from the center-satellite approach, as
opposed to quadrat-based approaches, are more difficult to apply but provide
better prediction quality.

The above approach should be contrasted with the literature on fault-tolerant
communication in networks. Many results concerned random link and/or node
failures (cf., e.g. [1I2I3l4] and the survey [5]) but, to the best of our knowledge,
in all cases faults were assumed to be independent. In [I], the author shows
the existence of networks in which O(logn)-time broadcast can be done, under
the 1-port model, with high probability, despite links which fail randomly and
independently with positive constant probability. In [2], the authors design a
network of logarithmic degree which can support high probability communica-
tion in time O(logn) when faults occur randomly and independently on links
and nodes with any constant probabilities smaller than 1. In [4], the authors de-
sign a similar network which can support communication with high probability
in time O(log®n) with Byzantine faults.

Our present research focuses on communication network failures which occur
in a dependent way. We consider networks modeled by arbitrary graphs, hence
the geometry-dependent, quadrat-based approach to fault dependencies is not
appropriate. Our neighborhood fault model, more appropriate for general graphs,
is a simplified version of the center-satellite approach.

1.3 Our Results

All our results address the general problem for which spot probabilities p there
exist networks supporting communication with high probability, and if so, if this
communication is fast in the all-port and 1-port models. Hence we ask for which
spot probabilities the fault-free part of the network is connected of size larger
than 1, and if so, does it have a small diameter. Moreover, in our positive results
we seek networks of low maximum degree.

In Section 2 we address the questions regarding general networks. We first
show that there exists a constant ¢, such that for spot probability p < 1/clogn,
there exists an n-node graph whose fault-free part has logarithmic diameter and
logarithmic degree, with high probability. Hence it supports high probability
communication in time O(logn) in the all-port model and in time O(log®n) in
the 1-port model. On the negative side, we show that for constant spot proba-
bility p, there exist constants ¢; and ¢, such that: if all degrees in a graph are at
most ¢1 logn then the graph is disconnected with high probability; if all degrees
in a graph are at least cslogn then the graph has all nodes faulty with high
probability. In either case, highly reliable communication is not possible. This
leaves some very particular networks undecided. For example, this negative re-
sult does not cover the important case of the hypercube, for some constant spot
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probabilities. Therefore, we study the hypercube separately and prove that, for
any constant spot probability 0 < p < 1, this network does not support high
probability communication. The above should be contrasted with the results
from [2I3] showing that, for independent faults, fast highly reliable communica-
tion is possible for arbitrary constant fault probabilities in some graphs and for
small constant fault probability, even in the hypercube.

In Section Bl we investigate communication in bounded degree networks. We
show that the torus supports communication with high probability when p €
1/w(n'/?). (As usual, w(f) denotes the set of functions ¢ such that g/f — o0.)
However, the diameter of an n-node torus is at least ©@(y/n) and the fault-
free part has the same large diameter. Hence we seek networks with the same
fault-tolerance properties, but with small diameter. We construct a bounded de-
gree network built of tori, whose fault-free part has diameter O(logn) whenever
p € 1/w(n'/?). Hence this network supports high probability communication in
logarithmic time, both in the all-port and in the 1-port models. On the negative
side, we show that neither the torus nor the above network can support highly
reliable communication when p € 1/0(n'/?). Finally, we prove that networks
of degree bounded by a constant d cannot support communication with high
probability when p € 1/0(n'/%). Due to lack of space, many proofs are deferred
to the journal version of this paper.

2 General Networks

In this section, we focus on general networks. We first design a network which
supports communication with high probability when the spot probability is at
most 1/clogn, for some positive constant ¢. We then establish two bounds on
node degrees showing that a large class of networks cannot support communica-
tion with high probability when spot probability is a positive constant.

2.1 Upper Bounds
This section is dedicated to proving the following result.

Theorem 1. There exists an n-node graph whose fault-free part has diameter
O(logn) and logarithmic degree, with high probability, for spot probability p <
1/clogn, where c is some positive constant.

The network construction is based on a binary tree structure where each node
of the tree represents a group of nodes and each link of the tree represents a
random set of links between nodes in adjacent groups. To be more precise, for a
fixed m, we define a random n-node graph G(n,m). Let & = [n/m]. Partition
the set of all nodes into subsets Si,...,S,, of size m, (S, of size at most m)
called supernodes. Let S = {S1,...,Sz} be the set of all supernodes.

Let L = |logz]. Arrange all supernodes into a binary tree 7" with L+ 1 levels
0,1,..., L, placing each supernode S; on level |logi]. Level 0 contains the root
and levels L — 1 and L contain leaves of T'. The supernode 51, is the root of T
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For every 1 <i < |x/2], Sa; is the left child of S; and So;41 is the right child of
Siin T' (S2i11 exists if x > 2i +1). For every 1 < i <z, supernode S|;/5 is the
parent of S;. If a supernode is a parent or a child of another supernode, we say
that these supernodes are adjacent in T'.

The set of edges of G(n,m) is defined as follows. If supernodes S; and S; are
adjacent in T, then there is an edge in G(n, m) between any node in S; and any
node in S; with probability p;. Moreover, supernodes have no interior links. The
graph G(n,m) is called a Random Binary Thick Tree (RBT'T).

In the remainder of this section, we analyze RBTT and show that, if p <
1/clogn, for some constant ¢ > 0 to be defined below, then it supports commu-
nication with high probability in time O(logn). We consider the n-node RBTT
with link probability p; = 1/18Inn and m = [11521n% n] nodes per supernode,
when spot probability is p < 1/(768 Inn). Hence, we take ¢ = 768/ 1In2.

Let C7 be the event that all supernodes in RBTT contain less than 6Inn + 1
spots.

Lemma 1. The event Cy occurs with probability at least 1 — 1/n.

For a given constant 0 < € < 1, let C5 be the event that all supernodes in RBTT
have more than 288(1 — ¢) In® n functional nodes.

Lemma 2. The event Co occurs with probability at least 1 —1/n%1°8™  for some
positive constant d.

Using the previous results, we now present two connectivity lemmas in prepara-
tion for the proof of the main theorem of this section.

Lemma 3. All functional nodes are connected to at least one functional node
in each supernode adjacent to their own, with probability exceeding 1 —1/n'3.

Proof. Fix a node u. Let N(u) denote the set of supernodes adjacent to the
supernode containing u. Consider the event v, s, that v has a link to at least
one functional node in a given supernode Sy € N(u). The event 7, g, occurs
unless all links from w to functional nodes in Sy do not exist. From Lemma 2]
we get for any constants 0 < ¢/,¢” <1

Pr[’Y’U«,Sk} > Pr[’yu,sk A 02} = Pr[CQ} Prh/u,sk ‘ CQ}
> Pr[Cy] (1 —(1- 1/181nn)288(1*6’>(1*6”>“l"’ﬂ)

> (1 — n—dln") (1 _ n—16(1—e’)(1—e”)) 7

and hence Pr[vy, s,] > 1 — n~!5. Furthermore, since the graph contains at most
n functional nodes, which should be connected to at least one functional node
in at most 3 supernodes, the estimated probability is at least

Pr((Vu €V (VS € N(u) Yus,) = 1= > > Prl-mus,]
u€V SpEN (u)

>1- 3nn P >1—n"13, O
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Lemma 4. All functional node pairs in supernodes at distance 3 are connected
by a fault-free path with probability at least 1 — 1/n'-9.

Proof. This lemma is proven in steps, defining connection probabilities and lower
bounds on the number of connected nodes at distances 1, 2, and 3.

Fix 4 supernodes, S, S;, Sj, Sk, which form a simple path in RBTT. Le., S,
is adjacent to S;, which is adjacent to S;, which is adjacent to S.

Fix a node u in S,,. Let X; be the random variable which counts the number
of functional nodes ¢ € I'(u) located in S;. From Lemma [] each supernode
contains more than 288(1 — €)In®n fault-free nodes, for any 0 < e < 1 with
probability 1—1/n%1°8" for some positive constant d. Since the link probability
is p; = 1/181nmn,

288(1 — €)In’*n
18Inn

with some 1 > € > e. We also have that a fixed functional node has at most
16(1 — 1/3/8(1 — ¢))(1 — €') Inn such neighbors with probability

3 _ s 216(1—€¢')Inn .
X; <16 (1—\/8(1_6/)>(1—e/)1nn] <e (\/8(1—6)) 2 —n 3.

Let A be the event that node u has at least 16(1 — /3/(8(1 — ¢)))(1 — ¢')Inn
functional neighbors in 5.

Assume event A occurs. Now, fix a node z in S;. Fix a subset S C I'(u) N .S;
of functional nodes, with size 16(1 —/3/(8(1 — ¢)))(1 — €') In n. Denote by Ps,
the event that there exists a link between the node x and any node from S. This
event occurs unless z has no link to some node in S. Hence,

E[X;] > Pr[Cy] = (1 —n"°8™)16(1 —¢)Inn > 16(1 — €) Inn,

Pr

Pr[Ps,[A] =1~ (1 - 1/181nn)16(1‘\/3/(8(1‘€’>>) (1=)Inn
> 1 SOmVEEa=e) 0=y 14

for some small €.

Let X; be the random variable which counts the number of functional nodes
j € S; which are adjacent to some node in S. We have that E[X;] > (1/4)-288(1—
¢/)In® n, assuming that A holds. Let B be the event that X; > 72(1 — €”)In* n,
for some small ¢/ > ¢. Since all events Ps,, for fixed S and varying x, are
independent, we use a Chernoff bound to show that, if event A occurs, event B
oceurs with probability 1 — 1/n* 1987 for some positive constant .

Assume event AN B. Fix a functional node k in Sy. Fix a subset S’ C S; of
functional nodes, each of which is a neighbor of some element of S, with size
72(1 — €") In® n. Denote by Psy, the event that there exists a link between node
k and some node in S’. This event occurs unless k has no link to any node in
S’. Hence,

Pr[PS/k;‘B ﬂA (]_ _ ]_ _ 1/181nn)72(1 €'y In? n)

>1— —72(1 ¢YIn? n/(181nn) >1- n_4(1 e”)
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Consider the event P,;;;, that there exists a fault-free path of the form uijk from
a fixed node u to a fixed node k. Clearly, P,;; is a subset of the event detailed
in the above argument. Hence,

Pr[P,jx] > Pr[Psx N B N A] = Pr[A] Pr[B|A] Pr[Ps/i,| B N A
> (1= n%) (1= 1 osn) (1= 00 > (1=,

for some 0 < ¢ < 0.1.

There are at most n functional nodes in RBTT, each with O(log?n) other
functional nodes in supernodes at distance 3. Hence, there are O(n log? n) func-
tional node pairs in supernodes at distance 3. It follows that all node pairs in
supernodes at distance 3 are connected with probability at least 1 —n~1?. 0O

Combining the previous lemmas, we are now ready to prove Theorem [Il

Proof of Theorem[. The RBTT contains O(n/ log® n) supernodes connected in a
binary-tree structure of diameter D € O(logn). It follows from the construction
that the maximum degree of the RBTT is O(logn), with high probability. By
Lemma [l all functional node pairs in supernodes at distance 3 are connected
by at least one fault-free path of length 3 with probability greater than 1 —
1/n'9. Therefore, all functional nodes in the subgraph RBTT’ composed of
the root supernode S; and of all supernodes at distances multiple of 3 from
Sy are connected with this probability. Clearly, functional nodes not in RBTT”
are in supernodes adjacent to supernodes in RBTT’. Thus, by Lemma [Bl all
these functional nodes are also connected to at least one functional node in
RBTT' with probability exceeding 1 —1/n'3. Hence, with probability exceeding
1 —1/n"8, the fault-free part of RBTT is connected.

We now investigate the diameter of the fault-free part of RBTT. From the
above argument, we observe that 1) nodes in supernodes at distances multiple of
3 are connected with high probability by a path of length equal to the distance of
the supernodes; 2) functional nodes in all other supernodes are connected with
high probability by a path of length at most 2 longer than the distance of the
supernodes. This leads to the conclusion that the diameter of the fault-free part
of RBTT is also in O(logn), with high probability. O

2.2 Lower Bounds

We have shown that it is possible to build a logarithmic-degree graph which
supports communication with high probability in spite of spot probabilities p <
1/clogn, for some positive constant ¢. The natural question then is whether it
is possible to build arbitrarily large networks which can support communication
with high probability despite larger spot probabilities. In what follows, we show
that for constant spot probabilities, most networks do not have this property.
More formally, the following theorem holds.

Theorem 2. For any constant spot probability p > 0, there exist constants cy
and co such that: if all degrees in a graph are at most ¢y logn then the fault-free



426 E. Kranakis, M. Paquette, and A. Pelc

part of the graph is disconnected with high probability; if all degrees in a graph
are at least cologn then the graph has all nodes faulty with high probability. In
either case, highly reliable communication is not possible.

The preceding theorem leads to the conclusion that high probability commu-
nication is not possible, for a large class of graphs, when spot probability is
a positive constant. However, the bounds ¢; logn and cologn do not coincide.
Since ¢1 < log(l/(;(l—p))) and co > log(l/l(l—p))7 we have ¢; < ¢y for all positive
values of p. It remains open whether or not there exists an arbitrarily large graph
which supports reliable communication despite constant spot probabilities.

We will now attempt to provide insight into the question of what happens
when node degrees lie between these bounds. For example, when p = 1/2, we
have ¢; < 1/2 and ¢o > 1. Thus, with degree logn, the important case of the
n-node hypercube is not covered by Theorem [2I We will investigate this case in
the following section.

2.3 Communication in the Hypercube

The hypercube H}, of dimension k is a 2¥-node graph with the set of nodes with
identifiers from {0, 1}* and the set of links between nodes whose identifiers have
a Hamming distance of 1. Hence the n-node hypercube Hj has dimension log n.

Theorem 3. The n-node hypercube Hy does not support high probability com-
munication for any constant spot probability 0 < p < 1.

We first show that for constant 0 < p < 1/2, the fault-free part of the graph
is disconnected with high probability. We then show that for 1/2 < p < 1, the
graph has all nodes faulty with high probability, and that for p = 1/2, the graph
has all nodes faulty with constant probability. This will prove Theorem

3 Bounded Degree Networks

The RBTT presented in Section [2] remained connected despite relatively high
spot probabilities. However, its degree is unbounded. For certain applications,
smaller-degree networks may be preferred as they are easier to implement and
give shorter communication time in the 1-port model. Therefore, it is natural to
ask if bounded-degree networks can also support high-probability communication
with comparable spot probabilities.

In this section we construct bounded-degree networks which tolerate inverse
polynomial spot probabilities and which support high-probability communica-
tion with optimal time complexity. Furthermore, we prove that bounded-degree
networks can tolerate at most inverse polynomial spot probabilities.

3.1 Upper Bounds

We now study the properties of two networks: the torus and a torus-based tree-
like network that we call the toroidal tree. We show that the torus supports
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high-probability communication for spot probability in 1/w(n'/?). However, the
diameter of the torus is quite large, which prohibits fast communication. Thus
we design a tree-like structure based on the torus which provides the same fault-
tolerance properties and supports communication in time O(logn), even in the
1-port model.

The Torus. In this section, we show an upper bound on the spot probability
such that the fault-free part of the torus remains connected. Denote by 7, xk
the m x k torus with m,k > 4. The torus has the set of nodes {u = (ugz,uy) :
uz € {0,1,...,m —1},u, € {0,1,...,k — 1}} and the set of links {(u,v) :
[uy — vg| mod m + |uy — v,| mod k = 1}.

Theorem 4. The fault-free part of the n-node torus Tp,« i is connected with high
probability for p € 1/w(n'/?).

The Toroidal Tree. We now design a network which provides the same fault-
tolerance as the torus, while also providing optimal-order communication time
for bounded-degree graphs. Since the diameter of a bounded-degree graph is at
least logarithmic, our aim is to construct a network whose fault-free part has
logarithmic diameter. Such a network supports highly reliable communication
in optimal time O(logn), even in the 1-port model. The network construction
is based on two binary trees, T' and T”, connected by a link between their root
nodes. Each node of T, T’ represents a group of nodes, and groups adjacent in
T, T’ have a subset of nodes in common. More precisely, for constant k > 4, we
define a n-node graph G(n, k). Assume that the set of nodes can be partitioned
exactly as described below; this is easy to modify in the general case, by adding
nodes to a leaf group.

Let the sets Tq,...,7, and 77 ..., T/, be tori with 2k rows {0,1,...2k — 1}
and k columns {0,1,...k — 1}; |# — 2’| < 1. We describe the construction for
the tree T'; the same construction is applied for the tree T”. Arrange all 7; as
the nodes of T, with L + 1 levels 0,1,2,..., L, placing each 7; on level |logi| of
T. Level 0 contains the root of T" and levels L — 1 and L contain the leaves. For
every 1 <14 < |z/2], Ty; is the left child of 7; in T and 73;4+1 is the right child
of T; in T' (Tgi41 exists if 2 > 24 1). For every 1 < i < =, 7];9) is the parent
of 7;. Use row 0 of each child torus to connect it to its parent in T'. Use row k
of each parent torus to connect it to both its children in 7. Use row 0 of both
roots in T, T" to connect them together. Connections between tori adjacent in
T, T’ are done by identifying the respective rows.

It follows from the above description that z + 2" = [(n—2k?)/((2k —1)k)| +
tori are located on L = [log(x + 2’ + 1)] levels in G(n, k). The graph G(n, k)
called a Toroidal Tree. It has bounded maximal degree.

1
is

Theorem 5. For p € 1/w(n'/?), the n-node Toroidal Tree supports high proba-
bility communication in time O(logn).
3.2 Lower Bounds

In this section, we show that bounded-degree graphs do not support high prob-
ability communication even for relatively small spot probabilities. We first show
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that the bounds on spot probability provided in Theorem [ and Theorem [ are
tight for tori and toroidal trees. We then show that for general bounded-degree
networks, if spot probability is the inverse of some polynomial, then high prob-
ability communication is not supported.

The Torus and Toroidal Tree. The following lower bounds match the upper
bounds from Theorem [ and Theorem [ thus showing that the results are tight.

Theorem 6. For spot probability p € 1/0(n'/?), the n-node torus Tp,xi does
not support high probability communication.

Theorem 7. For spot probability p € 1/O(n'/?), the n-node Toroidal Tree does
not support high probability communication.

General Bounded Degree Graphs. We showed in the preceding section
that in the case of the torus and the Toroidal Tree, spot probabilities at most
1/w(n'/?) can be tolerated if these graphs support high-probability communica-
tion. In the following theorem, we show that a similar phenomenon occurs for
all graphs whose degree is bounded by a constant.

Theorem 8. For spot probability p € 1/0(n'/?), no n-node graph with degree
bounded above by d € O(1) supports high probability communication.

4 Conclusion

We provided what is, to the best of our knowledge, the first analytic results on
fault-tolerance of networks in the presence of dependent, positively correlated
faults. To do so, we introduced the neighborhood fault model where damaging
events, called spots, occur randomly and independently at nodes of a network
with probability p, and cause faults in the affected node and its neighbors.

We addressed questions regarding the connectivity and diameter of the fault-
free part of networks in this fault model, as these characteristics of the network
are responsible for the feasibility of communication and for its time. Our results
show clear differences between the assumption of independent faults and that
of the neighborhood fault model. For example, while under independent faults
with small constant fault probability p > 0 the fault-free part of the hypercube
remains connected with high probability [3], this is not the case under the neigh-
borhood fault model with any positive constant spot probability. Likewise, the
fault-free part of the torus is connected with high probability for fault probabil-
ity p € 1/02(n'/*) when faults are independent, but this is not the case for such
spot probabilities under the neighborhood fault model.

It remains open whether or not there exists a network, which, under the
neighborhood fault model, has the fault-free part connected with high probability
despite constant spot probabilities. We conjecture that this is not the case.

The neighborhood fault model is the first step in modeling dependent pos-
itively correlated faults in networks. It would be interesting to analyze more
precise center-satellite based models in which independent spots yield faults in
nodes with probability decreasing with the distance of the node from the spot.
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