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Abstract. We consider the relative strengths of three formal approaches
to public knowledge: “any fool” knowledge by McCarthy (1970), Com-
mon Knowledge by Halpern and Moses (1990), and Justified Knowledge
by Artemov (2004). Specifically, we show that epistemic systems with
the Common Knowledge modality C are conservative with respect to
Justified Knowledge systems on formulas χ ∧ Cϕ → ψ, where χ, ϕ, and
ψ are C-free.
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1 Multi-agent Logics

The logics Tn, S4n, and S5n are logics in which each of the finitely many (n)
agents has a knowledge operator Ki which is T, or S4, or S5 respectively. We
only consider cases where all agents’ modalities are of the same logical strength.

Definition 1. The formal systems for Tn, S4n, and S5n are as follows:
Propositional Logic plus for Ki, i = 1, 2, . . . , n we have
Axioms for S4n:

K : Ki(ϕ → ψ) → (Kiϕ → Kiψ) each agent can do modus ponens
T : Kiϕ → ϕ agents can know only true propositions
4 : Kiϕ → KiKiϕ agents have positive introspection

Rules:

Necessitation: � ϕ ⇒ � Kiϕ, for i = 1, 2, . . . , n

For Tn, omit the final axiom.
For S5n, add negative introspection: ¬Kiϕ → Ki¬Kiϕ.

Definition 2. Kripke models for S4n: M = 〈W, R1, R2, . . . , Rn, �〉 where

• W is a non-empty set of worlds
• Ri ⊆ W × W is agent i’s accessability relation. Ri is reflexive and transitive.
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• � ⊆ W × V ar where V ar is the set of propositional variables. The forcing
relation � is naturally extended to all formulas so that Ri corresponds to Ki:

M, u � Kiϕ ⇔ (∀v ∈ M)[uRiv → M, v � ϕ] .

For Tn-models, each Ri is reflexive while for S5n-models, each Ri is an equiva-
lence relation.

Theorem 1. Tn, S4n, and S5n are sound and complete with respect to their
models (cf. [10]).

Multi-agent systems are enhanced by the addition of modalities which take into
account shared or public knowledge of agents. Three such modalities C, J , and
O will be discussed, all of which model variations of public information. We will
compare their logical strengths, semantics, and complexity and will see why Jus-
tified Knowledge (J) systems are sufficient to solve classical epistemic scenarios,
a role usually designated for Common Knowledge (C).

2 Common Knowledge

The most recognized concept of public knowledge is common knowledge, and
the literature addressing it, both philosophical and mathematical, is vast. The
initial investigation was philosophical: Lewis’s book [15] on convention. The in-
tuition behind the informal definition of common knowledge below derives from
Aumann’s oft-cited [5], where it was used in the context of agents having com-
mon priors. McCarthy’s ‘any fool’ operator of 1970 ([10], p. 13) is closely related
to common knowledge and his systems in [16] (see section 4 of this paper) may
be the first to address it axiomatically . Rigorous work on common knowledge
in the context of multi-agent systems was done by Halpern and Moses in [13]
(an expansion of a 1984 work of the same title) and Lehmann [14]. Much of the
work by Halpern and Moses appears in [10]. Common knowledge continues to
be actively investigated.

Informally, the epistemic operator Cϕ, to be read ‘ϕ is common knowledge,’
can be given as infinite conjunction:

Cϕ ↔ ϕ ∧ Eϕ ∧ EEϕ ∧ EEEϕ ∧ E4ϕ ∧ · · · ∧ Enϕ ∧ · · · (1)

where Eϕ = K1ϕ∧K2ϕ∧· · ·∧Knϕ (‘everyone knows ϕ’) and Ki is an individual
agent’s knowledge operator corresponding to T, S4 or S5 as appropriate. One
formal characterization which [10] and [7] take is via the Fixed Point Axiom

Cϕ ↔ E (ϕ ∧ Cϕ) (2)

and the Induction Rule
ϕ → E (ϕ ∧ ψ)

ϕ → Cψ
(3)

yielding Common Knowledge to be the greatest fixed point solution to X ↔
E(ϕ ∧ X) [10]. Common Knowledge does not take into account the means by
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which the knowledge is acquired. As we will see, this is in contrast to Justified
Knowledge. The distinction between the infinite conjunction, the fixed point
axiom, and how common knowledge is achieved is addressed in [6]. [12] too,
provides a survey with examples but does not include a distinct formalism.
There is also an equivalent axiomatic formulation of common knowledge which
replaces the induction rule with the induction axiom in [17], which, for technical
convenience, we will use.

Definition 3. TC
n , S4C

n , and S5C
n axiom systems:

Propositional Logic plus
Axioms:

T, S4, or S5 axioms for Ki, i = 1, 2, . . . , n, respectively;
K: C(ϕ → ψ) → (Cϕ → Cψ) ;
T: Cϕ → ϕ ;
Cϕ → E(Cϕ), where Eϕ = K1ϕ ∧ K2ϕ ∧ . . . ∧ Knϕ ;
Induction Axiom: ϕ ∧ C(ϕ → Eϕ) → Cϕ .

Rules:

Necessitation: � ϕ ⇒ � Kiϕ , for i = 1, 2, . . . , n
Necessitation: � ϕ ⇒ � Cϕ .

Definition 4. Models for TC
n , S4C

n , and S5C
n : M = 〈W, R1, R2, . . . , Rn, RC , �〉

where

•M = 〈W, R1, R2, . . . , Rn, �〉 is a Tn, S4n, or S5n model, respectively

• RC = (
n⋃

i=1
Ri)∗, that is the transitive closure of all the agents’ relations

• The forcing relation � is extended to all formulas so RC corresponds to C:

M, u � Cϕ ⇔ (∀v ∈ M)[uRCv → M, v � ϕ] .

Theorem 2. TC
n , S4C

n , and S5C
n are sound and complete with respect to their

models (cf. [10], p. 70ff, [17], p. 47ff).

The agents’ logic plays a role in determining the strength of the common knowl-
edge operator C. In the systems defined above, C is always at least as strong as
Ki. Showing that in TC

n , S4C
n , and S5C

n , C satisfies the T, S4, and S5 axioms,
respectively, is given as an exercise in [10], p. 93.

3 Justified Knowledge

Justified Knowledge was introduced by Artemov in [3,4] as the forgetful projec-
tion of the evidence-based knowledge represented by an appropriate adaptation
of LP (Logic of Proofs). In LP systems (TnLP, S4nLP, S5nLP), each formula /
subformula carries with it a proof term representing a particular proof of the
formula / subformula from the axioms. Justified knowledge systems are ones in
which all proofs are identified as one. Whereas Cϕ asserts that ϕ is common
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knowledge, Jϕ asserts that ϕ is common knowledge arising from a proof of ϕ
or some other agreed-upon acceptable set of evidences. Though the proof of ϕ
is not explicitly presented with the assertion Jϕ, it is reproducible. This is the
important Realization Theorem which provides an algorithm to reconstruct LP
proof terms. For more details on this, the reader should consult [4].

As with the common knowledge logics, the construction of the justified knowl-
edge logics TJ

n, S4J
n, and S5J

n builds on the multi-agent logics. In C systems the
agents’ logic determines the strength of C while in J systems the strength of J is
chosen independently to be weaker, stronger, or the same as that of the agents’.
In the aforementioned logics, the modality J will be assumed to be S4 unless
otherwise specified.

Definition 5. TJ
n, S4J

n, and S5J
n axiom systems:

Propositional Logic plus
Axioms:

T, S4, or S5 axioms for Ki, i = 1, 2, . . . , n;
S4 axioms for J ;
Connection Principle: Jϕ → Kiϕ .

Rules:

Necessitation for all Ki: � ϕ ⇒ � Kiϕ ;
Necessitation for J : � ϕ ⇒ � Jϕ .

Definition 6. Models for TJ
n, S4J

n, and S5J
n: M = 〈W, R1, R2, . . . , Rn, RJ , �〉

where

• M = 〈W, R1, R2, . . . , Rn, �〉 is a Tn, S4n, or S5n model, respectively

• RJ ⊆ W × W is reflexive and transitive relation such that RJ ⊇ (
n⋃

i=1
Ri)∗

(where ∗ is transitive closure)
• The forcing relation � is extended to all formulas so RJ corresponds to J :

M, u � Jϕ ⇔ (∀v ∈ M)[uRJv → M, v � ϕ] .

Theorem 3. TJ
n, S4J

n, and S5J
n are sound and complete with respect to their

models, as shown in [4].

Recall that in common knowledge models, RC = (
n⋃

i=1
Ri)∗ and so RC ⊆ RJ .

Thus in a context where we can compare the two, i.e. a hybrid model with both
RC and RJ , it seems (if ϕ contains no Js) Jϕ ⇒ Cϕ but not vice versa. More
formally, we have the following proposition.

Definition 7. Let ϕ∗ be ϕ with each instance of a J replaced by a C.

Proposition 1. (S4J
n)∗ ⊂ S4C

n but (S4J
n)∗ �= S4C

n .
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Proof. It needs to be shown that the ∗-translation of each each rule and axiom
of S4J

n is provable in S4C
n . Artemov shows this in [4] using the equivalent axiom-

atization of S4C
n from [10]. It is only the Induction Axiom of S4C

n which is not
provable in (S4J

n)∗, yielding the strict inclusion. ��

The case in which the J of S5J
n is an S5 modality, that is S5J(S5)

n , is considered in
[18] (where she names it S5nS5). An S5J(S5)

n -model is like an S5J
n model except

that RJ will now be an equivalence relation.

Corollary 1. Let I.A. be the induction axiom. Then

S4C
n ≡ (S4J

n)∗ + I.A. ,
TC

n ≡ (TJ
n)∗ + I.A. ,

S5C
n ≡ (S5J(S5)

n )∗ + I.A. .

Proof. The strict inclusion of the J systems follows from Proposition 1 and
noticing that C satisfies the 4 axiom in TC

n and the 5 axiom in S5C
n . When the

induction axiom is added, the equivalence is clear. ��

Indeed, from Corollary 1, in any of the justified knowledge systems mentioned,
Jϕ ⇒ Cϕ∗.

The evidence-based common knowledge semantics for J systems are further
enriched by Artemov’s Realization Theorem mentioned at the start of the sec-
tion. This gives a constructive approach to recovering or realizing the full proof
terms of the evidence-based knowledge systems.

Theorem 4 (Realization Theorem). There is an algorithm that, given an
S4J

n-derivation of a formula ϕ, retrieves an S4nLP-formula ψ, a realization of
ϕ, such that ϕ is ψ◦, where ◦ replaces all proof terms with J , and S4nLP proves
ψ.

This theorem and a realization theorem for S5J
n (where J is an S4-modality) is

established in [4] while a realization theorem for S5J(S5)
n is given in [18].

Other major advantages to justified knowledge are

• proofs in S4J
n are normalizable ([4]), but those in S4C

n are not
• S4J

2 is PSPACE-complete [9], whereas for n ≥ 2, S4C
n is EXPTIME-

complete [10].

These features have been exploited by Bryukhov in [8] to develop an auto-
mated theorem prover for S4J

n. Justified Knowledge offers simpler, more con-
structive, and more automation-friendly approach to common knowledge.

4 Any Fool’s Knowledge

McCarthy’s model of common knowledge via “any fool knows” apparently goes
back to roughly 1970 ([10], p. 13), though its first published appearance is in [16].
In this epistemic multi-agent system, the modality for each agent is denoted by S,
with an additional virtual agent, “any fool” denoted by O. In [16] p. 2, whatever
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any fool knows, “everyone knows that everyone else knows,” and so someone
knows. Thus we may add an additional axiom linking the fool to the other people:
Oϕ → Sϕ. Call this the linking axiom. This corresponds exactly to Artemov’s
connection principle: Jϕ → Kiϕ. When McCarthy et al. use subscripted modals,
Si, to specify individual agents, S0 is the distinguished any fool operator O. Thus
we see that the “fool” is a particular agent, hence in any axiom, we may replace
all S modals by Os, though not vice versa.

Definition 8. The McCarthy et al. axioms are based on propositional logic plus:

linking axiom: Oϕ → Sϕ
K0: Sϕ → ϕ
K1: O(Sϕ → ϕ)
K2: O(Oϕ → OSϕ)
K3: O(Sϕ ∧ S(ϕ → ψ) → Sψ)
K4: O(Sϕ → SSϕ)
K5: O(¬Sϕ → S¬Sϕ) .

We will look at three systems identified in [16] given by axioms K0-K3, K0-K4,
and K0-K5.1 These will be referred to as MT, M4, and M5 respectively. Model
semantics and completeness results for a variant of M5 is stated in [16]. From
this and Lemma 3 below, it follows that S5J(S5)

n is also sound and complete.
These logics immediately lend themselves to epsitemic scenarios, of which

Wise Men and Unfaithful Wives are addressed in [16]. These particular axioms
do not seem to be built on standard formulations of modal logics yet we can
see that Artemov’s justified knowledge operator J plays a role equivalent to
McCarthy’s any fool operator O. In particular, we have the following theorem.

Definition 9. Let ϕ� be ϕ with each instance of a J replaced by an O and each
Ki replaced by an Si.

Theorem 5. (TJ
n)� ≡ MT , (S4J

n)� ≡ M4 , and (S5J(S5)
n )� ≡ M5 .

Proof. Immediate from the following three lemmas. ��

Lemma 1. (TJ
n)� ≡ MT.

Proof. Recall that J is an S4 modality while the Ki are T modalities.
(⇐) To show (TJ

n)� ⊃ MT, TJ
n must satisfy MT axioms (K0-K3 and the link-

ing axiom), where Os are Js and Sis are Kis.

Linking axiom: TJ
n � Jϕ → Kiϕ ; the connection principle

K0: TJ
n � Kiϕ → ϕ ; T axiom for Ki

K1: TJ
n � J(Kiϕ → ϕ) ; J necessitation of T axiom of Ki

K2: TJ
n � J(Jϕ → JKiϕ) ;

1 In [16], K0 is omitted from these lists. Given other statements in the paper, this
clearly is just an oversight.
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1. TJ
n � Jϕ → JJϕ 4 axiom for J

2. TJ
n � Jϕ → Kiϕ the connection principle

3. TJ
n � J(Jϕ → Kiϕ) from 2. by J necessitation

4. TJ
n � JJϕ → JKiϕ from 3. by K axiom for J

5. TJ
n � Jϕ → JKiϕ from 1. and 4.

6. TJ
n � J(Jϕ → JKiϕ) from 5. by J necesitation

K3: TJ
n � J(Kiϕ ∧ Ki(ϕ → ψ) → Kiψ) ; J necessitation of K axiom for Ki.

As mentioned above, “any fool” is a particular agent and so in any axiom all
the Ss may be replaced by Os. Consider K0′-K3′ and the linking axiom′ where
we do just that:

Linking axiom′: TJ
n � Jϕ → Jϕ ; propositional tautology

K0′: TJ
n � Jϕ → ϕ ; T axiom for J

K1′: TJ
n � J(Jϕ → ϕ) ; J necessitation of T axiom of J

K2′: TJ
n � J(Jϕ → JJϕ) ; J necessitaton of 4 axiom for J

K3′: TJ
n � J(Jϕ ∧ J(ϕ → ψ) → Jψ) ; J necessitation of K axiom for J .

(⇒) (TJ
n)� ⊂ MT. We must show that MT satisfies the (TJ

n)� axioms and
rules. Remember that “any fool” O is a particular S agent.

S axioms:
K: MT � Sϕ ∧ S(ϕ → ψ) → Sψ ; by K3, linking axiom, K0
T: MT � Sϕ → ϕ ; K0

O axioms:
T: MT � Oϕ → ϕ ; by K0, O is a particular S
K: MT � Oϕ ∧ O(ϕ → ψ) → Oψ ; by K axiom for S, O is a an S
4: MT � Oϕ → OOϕ ; by K2, T axiom for O, O is an S

Connection axiom: MT � Oϕ → Sϕ ; the linking axiom

O necessitation: This follows from the fact that each S and O axiom is ne-
sessitated.

K axiom for S and O is necessitated by K3.
T axiom for S and O is necessitated by K1.
4 axiom for O is necessitated by K2.

S necessitation: This follows from O necessitation and the linking axiom. ��
Lemma 2. (S4J

n)� ≡ M4 .

Proof. Recall that J and Ki are S4 modalities.
(⇐) (S4J

n)� ⊃ M4 follows from Lemma 1 and
K4: S4J

n � J(Kiϕ → KiKiϕ) ; by J necessitation of 4 axiom for Ki

K4′ = K2′

(⇒) (S4J
n)� ⊂ M4 follows from Lemma 1 and

S axioms:
4: M4 � Sϕ → SSϕ ; by K4, T axiom for O.

O necessitation: 4 axiom for S is necessitated by K4. ��
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Lemma 3. (S5J(S5)
n )� ≡ M5 .

Proof. Recall that J and Ki are S5 modalities.
(⇐) (S5J(S5)

n )� ⊃ M5 follows from Lemma 2 and
K5: S5J(S5)

n � J(¬Kiϕ → Ki¬Kiϕ) ; by J necessitation of 5 axiom for Ki.
K5′: S5J(S5)

n � J(¬Jϕ → J¬Jϕ) ; by J necessitation of 5 axiom for J .

(⇒) (S5J(S5)
n )� ⊂ M5 follows from Lemma 2 and

S axioms:
5: M5 � ¬Sϕ → S¬Sϕ ; by K5, T axiom for O

O axioms:
5: M5 � ¬Oϕ → O¬Oϕ ; by K5, T axiom for O, O is an S.

O necessitation: 5 axiom for O and S necessitated by K5. ��

Lemma 3 completes the proof of Theorem 5. Despite quite different motiva-
tions and technical backgrounds, McCarthy’s “any fool” and Artemov’s justified
knowledge approaches lead to the same multi-modal logics.

Corollary 2. There is a Realization Theorem for MT, M4, and M5 providing
evidence-based semantics for McCarthy’s “any fool” knowledge operator O.

5 Limited Conservativity

A logic T with language L is a conservative extension of a logic T′ with language
L′ ⊆ L if for sentences ϕ of L′, T proves ϕ if and only if T′ proves ϕ. Recall
the definition for ∗ from Section 3 which renames J to C. As the logics (S4J

n)∗

and S4C
n have the same language and yet are not equal, it is clear that S4C

n can
not be a conservative extension of (S4J

n)∗, it is however a conservative extension
over all formulas in which C occurs only negatively. We say that a symbol or
subformula X occurs negatively in a formula F if, when F is rewritten to have no
implication symbols, X is in the scope of a negation symbol (or an odd number
of negations). For example, X occurs only negatively in these first two formulas
and both positively and negatively in the last: X → Y , (¬(A ∧ X) → B) → Y ,
A ∧ X → B ∨ X .

Theorem 6. If ϕ is a formula of S4J
n such that all occurrences of J in ϕ are

negative, then S4J
n � ϕ ⇔ S4C

n � (ϕ)∗.

In some sense this result is tight as the induction axiom (ϕ∧J(ϕ → Eϕ) → Jϕ)
which distinguishes (S4J

n)∗ from S4C
n has, along with a negative occurrence of J ,

a single positive occurrence of J .

Proof. (⇒) is secured by the inclusion (S4J
n)∗ ⊂ S4C

n of Proposition 1.

(⇐) This direction is a consequence of the Main Lemma which follows. We
show this direction by proving the contrapositive. Suppose ϕ is a formula of S4J

n

such that all occurrences of J in ϕ are negative and S4J
n �� ϕ. By completeness,
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there is a model M and a world x such that M, x � ¬ϕ. By the Main Lemma,
MC, x �C ¬(ϕ)∗, hence S4C

n �� (ϕ)∗, since MC (with RJ ignored) is a model for
S4C

n . ��

Lemma 4 (Main Lemma). Let M be a S4J
n-model. Add the relation RC of

reachability along R1, . . . , Rn to M and get the augmented model MC, where �C

coincides with � on variables, and the modality C corresponds to RC . Let ϕ be
a formula of S4J

n. Then
if all occurrences of J in ϕ are positive, then x � ϕ ⇒ x �C (ϕ)∗;
if all occurrences of J in ϕ are negative, then x �� ϕ ⇒ x ��C (ϕ)∗.

Proof. By induction on ϕ.

Base case is secured by the definition of �C .

Boolean case: ϕ ≡ ψ → θ.
Subcase: all occurrences of J in ϕ are positive and x � ϕ. Then x �� ψ or

x � θ. In the former case all occurrences of J in ψ are negative and, by the
induction hypothesis, x ��C (ψ)∗. In the latter case all occurrences of J in θ are
positive and, by the induction hypothesis, x �C (θ)∗. In either case, x �C (ϕ)∗.

Subcase: all occurrences of J in ϕ are negative and x �� ϕ. Then x � ψ and
x �� θ. Since all occurrences of J in ψ are positive and all occurrences of J in
θ are negative, by the induction hypothesis, x �C (ψ)∗ and x ��C (θ)∗, hence
x ��C (ϕ)∗.

Case: ϕ ≡ Kiψ.
Subcase: all occurrences of J in ϕ are positive and x � ϕ. Then all occurrences

of J in ψ are positive and y � ψ, for all y such that xRiy. By the induction
hypothesis, y �C (ψ)∗, for all y such that xRiy, hence x �C (Kiψ)∗, i.e., x �C

(ϕ)∗.
Subcase: all occurrences of J in ϕ are negative and x �� ϕ. Then for some y

such that xRiy, y �� ψ. Since all occurrences of J in ψ are also negative, by the
induction hypothesis, y ��C (ψ)∗, hence x ��C (Kiψ)∗, i.e., x ��C (ϕ)∗.

Case: ϕ ≡ Jψ.
Subcase: all occurrences of J in ϕ are positive and x � ϕ. Then all occurrences

of J in ψ are also positive and y � ψ, for all y such that xRJy. Since RC ⊆ RJ ,
y � ψ, for all y such that xRCy. By the induction hypothesis, y �C (ψ)∗, for all
y such that xRCy. Hence x �C C(ψ)∗, i.e., x �C (Jψ)∗, i.e., x �C (ϕ)∗.

Subcase: ‘all occurrences of J in ϕ are negative and x �� ϕ’ is impossible, since
ϕ ≡ Jψ and the displayed occurrence of J is positive in Jψ. ��

Corollary 3. If χ, ϕ and ψ are formulas in the language of S4n, then
S4C

n � χ ∧ Cϕ → ψ ⇔ S4J
n � χ ∧ Jϕ → ψ.

Proof. As per Theorem 6, χ ∧ Jϕ → ψ has J only in negative position. ��

Corollary 4. If χ, ϕ and ψ are formulas in the language of Tn, then
TC

n � χ ∧ Cϕ → ψ ⇔ TJ
n � χ ∧ Jϕ → ψ.
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Proof. Analogous to the proof of Theorem 6 if the Main Lemma starts with
TJ

n-models (J is an S4 modality) and completeness for TJ
n. ��

Corollary 5. If χ, ϕ and ψ are formulas in the language of S5n, then
S5C

n � χ ∧ Cϕ → ψ ⇔ S5J(S5)
n � χ ∧ Jϕ → ψ.

Proof. Analogous to the proof of Theorem 6. if the Main Lemma starts with
S5J(S5)

n -models (J is an S5 modality) and completeness for S5J(S5)
n . ��

In fact, in Corollary 5, the justified knowledge system can be weakened to S5J
n,

where J is an S4 modality. Note that in the proof of Theorem 6, the case of ϕ ≡
Jψ requires only that RC ⊆ RJ and not that RJ be of the same logical strength.
The proof will actually go through with any modality whose accessibility relation
contains RC . However, if J is to be knowledge, RJ is semantically required to
be reflexive and transitive. Thus for all formulas with only negative occurences
of C, S5C

n is a conservative extension of (S5J
n)∗.

6 Conclusions
This conservativity of C over J limited to formulas with C in negative position
would seem to lend itself to uses of J in place of C in situations in which common
knowledge is applied or assumed, rather than derived or concluded.

We have also seen that Artemov’s evidence-based approach to common knowl-
edge leads to the same multi-modal logic systems as McCarthy’s ‘any fool’ ax-
iomatic approach. This points towards applications of J and endows the O sys-
tems with a constructive, evidence-based semantics via the Realization Theorem.

We may also care to consider whether conservativity holds for a larger class of
formulas and what benefits there may be to considering a logic which contains
both J and C modalities.
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