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Abstract. In this paper we answer the question what implicit proof
assertions in the provability logic GL can be realized by explicit proof
terms. In particular we show that the fragment of GL which can be
realized by generalized proof terms of GLA is exactly S4 N GL and equals
the fragment that can be realized by proof-terms of LP. In the final
sections of this paper we establish the disjunction property for GLA and
give an axiomatization for GL N S4.

1 Introduction

One of the most striking applications of classical propositional modal logic to
mathematics is without much doubt the interpretation of (] as ‘provable in Peano
Arithmetic PA’ (for a neat introduction to the purpose of this see [6], we will
aim here at a quick technical treatment). The normality axiom () below is a
a most simple and clear example of a modal formula with an intuitively clear
‘provable in PA’ interpretation:

0(A — B) — (A — OB). (1)

Clearly this scheme expresses the rule of modus ponens. The project of studying
provability (and other meta-mathematical notions) in an axiomatic setting using
modal logic, originally suggested by Godel, really came to flourish after the
arithmetical completeness theorem of Solovay [I5]. This theorem identifies the
logic GL as the logic of provability, see also [8]. GL is a remarkable system of
modal logic that not only proofs Goédel’s second incompleteness theorem, and
more generally a formalized version of Lob’s Theorem, but even satisfies a fixed-
point theorem, very much in the spirit of Gddel’s fixed-point lemma but in a
purely propositional setting.

However, Godel originally suggested the modal logic S4 as the logic of prov-
ability. This is indeed a most natural candidate for a provability logic but as it
turns out incompatible with GL (the least normal modal logic extending both is
the inconsistent one). Basically when the O is read as provable the schemes ex-
pressed by S4 are both too strong (reflection) and too weak (no Lob’s Theorem).

Artemov’s Logic of Proofs LP was invented to tackle this problem [BII]. In
LP the O’s are replaced by proof-terms and the notion under study switched
from s provable to is proved by. These proof-terms are build up from axiom-
constants, proof-variables and function symbols that represent effective opera-
tions on proofs. For example there is a binary function symbol - that constructs
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from a proof x of A — B and a proof y of A a proof x-y of B. Which gives a
means to express the rule of modus ponens, just as () but now in an explicit way:

z:(A — B) — (y:A — (z-y):B).

There are natural translations between modal formulas and LP-formulas. In
one direction we can ‘forget’ the proof-terms in an LP formula by substituting
O’s for them (forgetful-projection) and in the other direction we can substitute
proof-terms for the [’s in a modal formula (realizations). The link of LP with
S4 is as follows. For any theorem F' of LP, the forgetful projection of F' is a
theorem of S4 and for any theorem A of S4 there exists a realization of A that is
a theorem of LP. The latter is nicely formulated as LP can realize all theorems of
S4. This, together with the arithmetical completeness theorem for LP does give
a provability reading to S4 for which S4 is complete.

In [I6] and [I2] (cf. also []) the axiomatic study of provability (Provability
Logic) and the axiomatic study of proofs (Logic of Proofs) are combined in a
single logic that contains both the [ for formal provability and proof-terms for
explicit proofs. The logic LPP from [I6] contains a richer language of proof-
terms than LP. In [I2] this is shown to be not necessary, there an arithmetically
complete logic GLA[J has been recovered that has exactly the same term language
as LP.

Recently F. Montagna posed the question whether GLA allows for the real-
ization of more modal formulas than just S4 (given what we know about LP it
is immediate that GLA realizes at least S4). A negative answer to this question
is the main contribution of this paper.

This paper is organized as follows. In Section [2 we define the Logic of Proofs
LP. In Section Bl we define the Logic of Proofs and Formal Provability GLA and
formulate the main research question addressed in this paper. In Section H we
give an answer to these questions. In the final sections of this paper we consider
some related issues and give some directions for further research.

2 Logic of Proofs

See [3] for an extensive overview of LP. Here we only state the basic definitions
and theorems relevant to this paper. The language of LP is two-sorted. We have
proofs terms that are build up using

— Countably many proofs variables x,y, z, ... and countably many axiom con-
stants a, b, c, . ..

and two binary function symbols +, - and a unary one !:

— if t and s are proof terms then so are t+s, t-s and !t.

! GLA was first introduced (under the name LPGL) supplied with Kripke-style seman-
tics and proved to be arithmetically complete in E. Nogina’s part of [4].
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And we have LP formulas, which are generated by the following clauses.

— ‘Propositional Logic’,
— If F'is a formula and ¢ a proof term then ¢:F' is a formula.

We say that an LP formula F' is normal when all negative occurrences off sub-
formulas t:G of F' are of the form z:G, where x is a proof variable.
The logic LP is axiomatized by the following schemata and rules.

A0 ‘Classical Propositional Logic’ (with Modus Ponens),
Al t:A — A,

A2 s:(A— B) — t:A— (s1):B,

A3 s:A — (s+1t):A, st A — (t+ 5):A,

A4 t:A >lt(t:A),

A5 c:A, ¢ an axiom constant and A an instance of A0-A4.

If F is an LP formula then its forgetful projection F° is obtained by replacing
all the proof terms by ’s. More formally:

A realization of a modal formula F is an LP formula G for which G° = F
One of the fundamental theorems concerning LP is the following.

Theorem 1 (Artemov[l]). S4 = G iff there exists a normal F such that LP F
Fand F° =G.

Anther fundamental theorem concerning LP is its arithmetical completeness the-
orem [I]. See also [2[9]. In the spirit of the arithmetical reading of modal formulas
OF as ‘F is provable’ ([T5lg]), formulas of the form ¢:F are read as ‘t is a proof
of F’. By Theorem [ this provides us with a natural provability semantics for
modal logic for which S4 is complete. Given this interpretation of LP it is natu-
ral to consider a system that includes both expressions of the form OJF and ¢:F'.
This has been done in detail in [T6J12]. However natural liftings of Theorem [
have not been addressed yet and one of those liftings is the main topic of this

paper.

3 The System GLA

In this section we present the logic GLA from [12] and formulate two questions
that will be answered in the remainder of the paper.

A joint logic of formal provability and explicit proofs has first been studied in
[16]. The logic there however has a richer language of explicit proofs than LP. In
[12] (cf. also []) a logic GLA, also a joint logic of formal provability and explicit
proofs has been recovered in which the language of explicit proofs is exactly that
of LP. This is the system we will study here.
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The language of GLA is that of LP enriched with the modal operator [J. The
formulas of the system GLA are generated by the following rules.

— ‘Propositional Logic’,
— if A is a formula and ¢ is a proof term then ¢:A4 is a formula,
— if A is a formula then [JA is a formula.

The logic GLA is axiomatized by the following axiom schemata and rules.

— ‘Classical Propositional Logic’,
— Provability Logic GL:
L1 O(A— B) — (0A — OB),
L2 0OA — OOA,
L3 OUA — A) - OA,
e - A implies - OA.
— Logic of Proofs LP:
Al t:A — A,
A2 s:(A— B) — t:A — (s1):B,
A3 s:A — (s+1):A, s:A— (t+ s5):A,
A4 t:A Sl(L:A),
A5 c:A, c an axiom constant and A an instance of A0-A4, L1-L3 or C1-C3.
— Connecting principles:
Cl t:A— A,
C2 —t:A — O-t:A,
C3 .04 — A.

Notice that A5 is richer than its analog in LP. The forgetful projection of an
LP formula obviously generalizes to GLA formulas by setting ((JA)° = OA°. The
following question about GLA will be addressed.

For which modal formulas A can we find O-free GLA formulas B with B° = A
and GLA + B.

As we will argue in the next subsection, the obvious generalization of the forgetful
projection to GLA formulas as given above does not give us much to work with
for solving this question. But first we finish this section with a few lemmata from
[12] that will be of interest later.

In what follows we write

GLA X17...7Xn}_Y1,...7Yk

for the assertion that Y7 V- --VY} is provable using modus ponens only from the
theorems of GLA and X1, ..., X,.

Lemma 1. For any formula A there exists a term t such that
GLAF z:A — :00A

Proof. We have GLA F ¢:(x:A — OA) and GLA F 2:A —lx:(2:A). Thus GLA
A — (clx):0A
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Lemma 2 (Constructive necessitation). If GLA = A then for some ground
term t we have GLA - ¢:A.

Proof. Induction on a GLA derivation of A. If A is one of the axioms other than
A5 we can take any axiom constant for ¢. If A is an instance of A5, say A = a:B,
then we can take la for ¢. Suppose A is obtained by modus ponens from B — A
and B. Thus GLA + B — A and GLA + B. By (IH) we have terms ¢; and
to such that GLA F ¢1:(B — A) and GLA F ¢2:B. And thus for ¢ we can take
t1-t2. Suppose that A is obtained from B using necessitation. Thus GLA + B.
By (IH) we have GLA F ¢:B for some t. By Lemma [I] we that have for some s
that GLA F s:0B.

Lemma 3 (Lifting lemma). If
GLA: z1:X4,...,2,: X, FY
then for some term t we have
GLA: z1:Xq,...,2p: X, F LY.
Moreover the proof-variables in t are all among {x1,...,Tn}.

Proof. Induction on a derivation of Y from the z;:X;’s. If Y is one of the X;’s,
say X;, then for ¢t we can take z;,. If Y is a theorem of GLA the required ¢ is
given by Lemma I The inductive case when Y is obtained by modes ponens
from previously obtained formulas is similar as in Lemma

3.1 The Trouble with the Forgetful Projection in GLA

Obviously, since LP is a sub-system of GLA we have that LP - A implies GLA - A.
And thus in particular by Theorem [Tl we have the following. (Recall that an LP
formula is normal when all negative occurrences of proof-terms are variables, we
use the same terminology for the more general formulas of GLA.)

Theorem 2. IfS4+ A then for some normal B with B° = A we have GLA+ B.

It is also true that GLA does not realize all the theorems of GL. For suppose that
for some terms ¢ and r we have

GLAF 2:(r:iL — 1) — t: L.

Since GLA I ¢:(r: L — 1) we thus have GLA I t[z/c]: L and by reflection GLA I
L. A contradiction.

As we will see below the theorems of GL that can be realized in GLA are pre-
cisely those formulas that are also theorems of S4. Clearly to show this it suffices
to show the the other direction of Theorem [ this however is less straightfor-
ward then in the S4/LP case. One easily sees that if LP = A then S4 F A°. If
we however in the most straightforward way extend the definition of forgetful
projection to formulas in the language of GLA, then the set of theorems of GLA
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under this projection is not even closed under modus ponens. For the following
three formulas are theorems of GLA.

— 0O(0p — p) — Op,
- rp—p
~ Oz — p).
Their forgetful projections are respectively

— 0O(@p — p) — Op,
- Up—p,
- 0(p — p).

From which p follows using modus ponens. Obviously p is not the forgetful
projection of any theorem of GLA. The trick is to not study the ‘plain’ forgetful
projection but a variant that remembers which [0’s came from proof terms and
which where already there. This is what we will carry out in the coming sections.

4 The System EI

In this section we will show that only the theorems of S4 can be realized in
GLA. The main tool is a modal propositional logic with two modalities (] and .
In particular we will be interested in the modal formulas in this language that
constitute images of the following generalization of forgetful projection to GLA
formulas.

Definition 1 (Forgetful projection). For an GLA formula A we define the
forgetful projection A° with induction on A as follows.

—p°=pand 1°=1,

— (A — B)°=(A° — B°),
- (B4 =0(A°),

— (t:A)° = K(A°).

Let El (for Explicit/Implicit) be the normal bi-modal logic axiomatized by the
following axiom schemata and rules.

CP ‘Classical Propositional Logic’,
L1 O(A— B) — (DA — 0OB),
L2 OA — O0OA,

L3 OUA — A) — OA,

S1 X(A — B) — (KA — XB),
S2 KA - XX A,

S3 XA — A,

C1l XA — OA,

C2 - XA-O-KA,

C3 XA — A,

R F A implies - XA.

Lemma 4. GLA + A implies EI F A°.
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Proof. Induction on a GLA derivation of A. If A is an instance of A5 then A
is of the form ¢:B, B° is an axiom of El and XB°(= (¢:B)°) is derivable using
X necessitation. If A is an instance of any of the other axiom schemata then
A° is an axiom of El. Suppose A = OB, and the last step in the derivation of
A is necessitation. By (IH) we obtain El = B°. By X necessitation we obtain
El - XB° and by C1 and modus ponens we get El = [JB°. The case ‘the last
step is modus ponens’ is trivial.

Next we formulate a Kripke semantics for El. A binary relation R is conversely
well-founded when every R increasing path xoRxqRxo --- is finite.

Definition 2 (El-frame). A bi-modal Kripke frame (W, RP, R®) is an El-frame
if

RP is transitive and conversely well-founded,

R¥ is transitive and reflexive,

xRy implies xR®y,

xRy and xR®z implies yR®z,

for all x there exists y such that xR®y and yRx.

Notice that no finite frames satisfying both [[l and [l exist. For if Bl holds then one
inductively constructs a sequence

m1Rlzm2Rg$3 e

SR o de

For which we in addition have - - -angngRDxl. Thus by transitivity of RY we
have for all ¢ < j
€ RDI'i.
But if the frame is finite then for some 7 < j we must have x; = z;, contradicting
the conversely well-foundedness of R5.
Nevertheless, as is shown in [I0], El can be embedded in a sub-logic that does
have finite models and is complete for a class of finite frames.

Lemma 5 (Modal soundness). If EI - A then A is valid on any El-frame.

Proof. As usual it suffices to show the lemma for A an axiom of El. All instances
of GL and S4 are well-known to hold because of properties [Il and 2] of El-frames.

We show that KA — A is valid. Suppose w I KA and suppose wRPz. By
Bl we have wR®z and thus z I+ A.

To show that also KA — [OX A is valid, suppose that in addition 2R®y then
by Bl wR®y and thus y IF A as well.

Now we show that =X A — (0K 4 is valid. Suppose w IF =X A and wR z.
For some y with wR®y we have y IF =A. By Hlwe have zR®y and thus z - =X A.

Finally we show that KOOA — A is valid. Suppose w |- K[JA. By Bl there exists
some x with wR¥z and zRPw. We thus have z IF JA and thus w |- A.

We aim at showing that the O-free fragment of El coincides with S4. One direc-
tion, namely that S4 is a subset of the [-free fragment is obvious. For the other
direction we will make use of the completeness of S4 with respect to transitive
and reflexive Kripke frames [7]. We will use bounded morphisms to connect these
frames with our El-frames.
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Definition 3 (Bounded morphism). Let M and M’ be two Kripke models.
A bounded morphism from M to M’ is a surjective mapping M — M' such
that for all x,y € M we have

—zlFpiff f(x)IH p,
— xRy implies f(x)R' f(y),
— If f(z)R'y’ then for some y we have f(y) =y’ and xRy.

The following lemma is well-known, see [7].

Lemma 6. If [ is a bounded morphism from M to M' then for all w € M,
M, w is bi-similar with M', f(w). Consequently for any formula A, M = A iff
M E A.

Proposition 1. For any transitive and reflevive Kripke model M there exists
an El model M, = (W,,, RY, R® IF) such that there exists a bounded morphism
from (W, R®IF) to M.

Proof. Let M = (W, R,IF) be an S4 model. Let W7, W, ...be countably many
disjoint copies of W. For z € W we denote with x; the copy of x in W;. Define
M, = (W, R® RY,IF) as follows.

- We = UiZI Wi7
— xingj iff xRy,
— miRDyj iff x =y and j <1,
—x;lFpiff x Ik p.

First we will show that M,, is based on an El-frame. That R¥ is transitive and
reflexive is immediate. That R is transitive and conversely well-founded is also
easy to see. Suppose that axiRDyj. Then we thus have in particular that z = y
and by reflexivity of R we get minyj. Suppose that xiRDyj and z; R®z;,. We
have to show that yRz. But this follows immediately since from our assumptions
it follows that y = x and zRz. Let x; € W,,. We have to show that for some
y; € W, we have xingj and ij':’a;i. Just take y; = z;41. This completes the
proof that M, is based on an El-frame.

We show that the mapping f defined by f(z;) = x is a bounded morphism
from (W,,, R¥,IF) to M. f is clearly surjective and by definition of I- we have
x; Ik piff f(x;) IF p. Suppose xiR'xyj. Then xRy and thus f(z;)Rf(y;). Suppose
f(zi)Ry. f(x;) = z, thus zRy. By definition of R® we have z; R®y;. And by
definition of f we have f(y;) = y.

Theorem 3. If A is O-free and EI - A then S4 + A.

Proof. We show that any A satisfying the assumptions of the theorem is valid
on all transitive and reflexive frames. The theorem then follows from the modal
completeness of S4 ([7]). So let F' be some S4 frame and let M be a model based
on F. Let M,, be the El-model from Proposition [Il By Lemma [ of El we have
that M, = A. And since M is a bounded morphic image from M, we also have
by Lemma [6] that M = A.
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Theorem 4. Any modal formula that is realizable in GLA is a theorem of S4.

Proof. Let B be a realization of A (that is B is O-free and B° = A) such that
GLA+ B. By Lemma[ El - B° and thus by Theorem 3 S4 - B°.

5 The Disjunction Property for GLA

In this section we will prove the disjunction property for GLA. The analog for
LP was first established in [I1] using a minimal model construction for LP and
we will use the same technique here.

With a constant specification we mean a set CS of pairs (¢, A) where ¢:A is
an instance of A5. With GLA(CS) we denote the fragment of GLA where A5 is
restricted to ¢:A for (¢, A) € CS. For the sake of completeness we repeat some
definitions from [4].

Definition 4 (GLA-model). A GLA-model is a structure (W, R, ) where

1. R is a transitive conversely well-founded relation on W,
2. I is a forcing relation satisfying for all w,v € W,
(a) the usual constraint on boolean connectives and O,
(b) for all t:F, wlF t:F iff v - t:F,
(¢c) wlk t:F implies w I+ F,
(d) wlk s:(F — Q) and w Ik t:F implies w I+ (s-1):G,
(e) wlkt:F implies w - (t + s):F and w Ik (s + t):F,
(f) wlk t:F implies w IF1¢:(¢:F).

Let F be a formula and let Sub(F") be the set of sub-formulas of F. Put

S(F) = \{0A — A|0A € Sub(F)}.
We say that a rooted GLA-model (W, R, IF) with root r is F-sound when

- S(F).

A rooted GLA-model is a CS-model when it is A-sound for all (¢, A) € CS and
¢:A holds in the whole model. The following theorem is shown in [4].

Theorem 5 (Modal completeness). GLA(CS) - A iff A is valid in all A-
sound CS-models.

For the remainder of this section we fix a finite constant specification CS. Let
be the least map
% : GLA-terms — P(GLA-formulas)

for which

- *(C) = {A ‘ <Ca A> € CS}?

F — G € *(s) and F € *(t) implies G € x(s-t),
— F € x(s) implies F € *(s+t) and F € *(t + s),
F € «+(t) implies t:F' € (1t).
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The following lemma follows immediately from minimality of x.

Lemma 7. [. For all variables z, x(z) =0,

2. for all constants ¢, *(c) = {A | (¢, A) € CS},

3. F ex(t+s) implies F' € %(t) or F' € x(s),

4. F € x(s-t) implies that for some G, G € %(t) and G — F € x(s),
5. F € «x(It) implies that for some G € x(t), F = t:G.

Corollary 1. If F' € x(t) then GLA(CS) F t:F.
Proof. Induction on the complexity of ¢ using Lemma [7l
Now given this map * we define a GLA-model M = (W, R IF) as follows.

- W= {w07’u}1,w2, .. .},

— w; Rw; iff ¢ > 7,

— wlk pfor all w € W and all p,
—wlkt:Aiff A€ x(t) and for all v e W, v I A.

Lemma 8. M is a GLA-model. Moreover it is a GLA-model in which c:A holds
for all (¢, A) € CS.

Proof. R is clearly transitive and conversely well-founded. All constraints on I+
hold by definition and the properties of the map *. For (¢, A) € CS we have by
Theorem [B] that A holds in M. We also have that A € (c) and thus ¢:A holds
in M.

The next lemma implies that for any F' there exists some w € W such that w
generates an F-sound CS-model.

Lemma 9. Let X = {OF;, — F; | 0 < i < n}. There exists some k < n such
that wy - \ X.

Proof. If not then by a pigeon hole argument it follows that for some i < n
and r < s < n we have w, I OF; A =F; and w, I OF; A —=F;. But wsRw,. A
contradiction.

Theorem 6 (Disjunction property). If GLA(CS) - t:AV s:B then
GLA(CS) Ft:A or GLA(CS) F s:B.

Proof. Suppose GLA(CS) F t:A V s:B. Let M be the model defined above. For
any ¢ > 0 let M; be the sub-model of M generated by w;. Since CS is finite
by Lemma [0 there exists an ¢ > 0 such that M; is an (:A V s:B)-sound CS-
model. By Theorem B we have w; IF t:A Vv s:B. But then w; IF ¢:A or w; I- s:B.
In the first case by Corollary [[l we get GLA(CS) F t:A and in the second case
GLA(CS) I s:B.

Notice that Theorem [0l generalizes to arbitrary constant specifications.
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6 The Intersection of S4 and GL

We give an axiomatization of all formulas in the intersection of S4 with GL. We
show that this normal modal logic has the Craig-interpolation property.

We follow the terminology from [I4]. That is, a modal logic is a proper subset
of the set of all modal formulas closed under substitution and modes ponens. A
modal logic is normal when it is also closed under necessitation and contains all
instances of J(A — B) — (OA — OB). The following lemmata are folklore.

Lemma 10. S4 is the smallest modal logic that contains all the theorems of K4
and all instances of A — A and O(OA — A).

Lemma 11. GL is the smallest modal logic that contains all the theorems of K4
and all instances of O(0A — A) — UA and O(O(HA — A) — OA).

In what follows we abbreviate
L(p) =0(0Op — p) — Op,
R(p) =0p — p.

Lemma 12. S4+ —L(L) and GL - L(L1).

Proof. We have S4 + 0T and S4 F OT and thus S4 - —L(L). GL - L(L) is
clear.

For I a formula we write [IF for LJF A F. Let K4Lg Ty be the smallest normal
modal logic that contains all the instances of

4 OA — 004,
Lo L(L) — GL(A),
To —L(L) — OR(A).

We write S4 N GL - A for S4 + A and GL - A.
Theorem 7. S4NGLF A iff KAy To - A

Proof. The right to left direction is immediate from Lemma To show the
other direction let A be a theorem of both S4 and GL. Then by Lemma [I0 we
get some X1, ... Xy such that

Kat- A\ DOX; — X;) — A
1<i<k
And by Lemma [IT] we get some Y7,...,Y, such that
Kak A D@O0QY: —Y;) —0Y) — A

1<i<n
As K4 - K4LOT0 and
KaloTo F -L(L)VL(L) —» A BOX;, - X,)v A DO0OY - V) — 0Y)

1<i<k 1<i<n

we have K4LoTo F —L(L) VL(L) — A and thus K4LoTo F A.
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Theorem 8. K4LyTq enjoys the Craig-interpolation property.

Proof. Suppose K4LyTo - A — B. Then both GL+ A — B and S4 + A — B.
By the interpolation theorems for GL ([§]) and S4 ([7]) we find I; and I, in the
common language of A and B such that GLF A — I} - Band S4+ A — I, —
B. Now put

I= (L AL(L))V (T2 A—L(L)).

Since GL F L(L) we have GL F I <> I; and since S4 - —L(L) we have S4 - [ <
I5. Thus I is an interpolant for A — B in both S4 and GL.

We have shown in the main body of this paper that the intersection of S4 with
GL is of interest when studying combined logics of explicit and formal proofs.
Therefore the standard questions in the studies of modal logic are in order.
However, intersections of modal logics are in general not the nicest objects in
existence [I3]. Apparently, by Theorem B with GL and S4 we might be more
lucky and therefore desirable and well-behaved answers to the questions below
are plausible.

Question 1. Is there a nice cut-free formulation of K4LyTo?
Question 2. What is the explicit version of K4LyTo?

Question 3. What is the closed fragment of K4LyTo?
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