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Abstract. The assessment and diagnosis of breast cancer with ultra-
sound is a challenging problem due to the low contrast between cancer
masses and benign tissue. Due to this low contrast it has proven to be
difficult to achieve reliable segmentation results on breast cancer masses.
An autoregressive model has been employed to filter out of the backscat-
tered RF-signal from a tissue harmonic image which is not degraded by
harmonic leakage. Measurements on the filtered image have shown a sig-
nificant (up to 45 %) increase in contrast between cancer masses and
benign tissue.

1 Introduction

Ultrasonic imaging has become an indispensable tool used in diagnosis of cancer
masses during breast cancer diagnosis. However, despite its central role in breast
cancer diagnosis, even for skilled radiologists it is still a challenging problem to
correctly diagnose and measure cancer masses. This challenge is reflected in the
high number of false positive cancer diagnoses made, leading to roughly half of
all biopsies made being unnecessary. The main cause of the high uncertainty in
ultrasonic cancer diagnosis is strong image artifacts characteristic to ultrasound
imagery, such as attenuation, speckle, shadowing and general low contrast.

It is hoped to decrease the uncertainty of the cancer diagnosis with the help
of automated medical image segmentation. However, due to the highly variable
nature of cancer masses in both shape and image texture, segmentation methods
based on statistical priors such as [I2] have not shown as much promise as in other
areas of medical image analysis. Other recent methods, such as those based on a
Bayesian frameworks [34] or local image statistics [B], fail to segment cancer
masses reliably. The problem these methods face is that, unlike with cysts, the
contrast between cancer masses and surrounding tissue is very low and speckle is
the predominant image feature. Therefore one question is whether it is possible to
develop an enhancement method specifically aimed at enhancing cancer masses.

Recent advances in signal processing have reduced the effect of speckle on
the overall image appearance with the introduction of new techniques such as
dynamic beam focussing and tissue harmonic imaging. However, speckle still
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remains the predominant texture feature in any ultrasound B-mode image. A
lot of research has gone into speckle reducing filters, with one of the most recent
ones being the Speckle Reducing Anisotropic Filter [6] derived from the Frost
and Lee filters [78]. Despite their general effectiveness in reducing speckle, they
tend to oversmooth the image, and are consequently rarely used for diagnostic
breast ultrasound.

For breast cancer diagnosis the only clinically used method which appears to
considerably increase the contrast between cancer masses and surrounding tissue
is tissue harmonic imaging [9]. This method can be regarded as one of the current
state of the art filtering techniques, which is usually implemented by using finite
impulse filters (FIR). This therefore suggests that one should take advantage of
the principles of tissue harmonic imaging and filtering in the frequency domain
to develop a novel filter which will increase the general contrast of breast cancers.

1.1 Tissue Harmonic Imaging

Due to the nonlinear nature of tissue, the back scattered signal from an ultra-
sound pulse interacting with its target will contain, besides the fundamental
frequency band of the emitted pulse, also higher harmonics of this band. These
higher harmonics are mostly generated due to the peaks of transmitted pulse
traveling faster than the troughs due to tissue having different velocities for
sound wave propagation in compressed tissue as opposed to relaxed tissue. This
effect causes very weak harmonics which are accumulated as the emitted ul-
trasound pulse propagates through tissue [I0]. Hence, the signal received at the
ultrasound transducer is made up of the fundamental frequency generated by di-
rect reflections of the ultrasound pulse at tissue interfaces and inhomogeneities,
and the higher harmonics generated by the tissue itself, called here the tissue
harmonic signal.

There are two principal methods for harmonic imaging, the first one is based
on using the pulse inversion technique [I1], and the other one is by the application
of FIR filters to retrieve the fundamental harmonic and second harmonic from
the received signal. While the pulse inversion technique is effective in reducing
the effects of harmonic leakage from the fundamental harmonic, it has the major
disadvantage of halving the effective frame rate and being more susceptible to
motion artifacts. Hence, for tissue harmonic imaging the FIR method is preferred
despite its problem of harmonic leakage to the fundamental harmonic affecting
the higher harmonics [I2], which adds additional noise to these harmonics.

2 Method

One way to overcome the effects of harmonic leakage is to develop a linear predic-
tive model of the emitted pulse and then, using parametric spectral estimation,
to both estimate the spectral content of the emitted pulse and the remaining tis-
sue harmonic signal. If one has found a good parametric model, the advantages of
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using such a model compared to Fourier Transform based methods is its ability
to detect peaks at superresolution, greater resistance to spectral ringing and re-
duced computational complexity. In several articles [I3[T4] an autoregressive (AR)
model of the received RF-signal has been used to estimate various tissue param-
eters from ultrasound data. The output y(n) of such an AR-model of order M is
defined as the output of the following linear filter driven by white Gaussian noise

n(n):

M
y(n) =n(n) =Y a(k)y(n — k) 1)
k=1
where a(k) are the AR coefficients of an order M AR-model. Intuitively, most
users of ultrasound devices regard the B-mode image as a two dimensional rep-
resentation of the power of the reflected signal of an insonified target. With
this observation and using the model in (1) one can directly compute the power
spectral density (PSD) P, (f), and consequently the power of the signal, as:

_ Tp
Pl = 5 oy )

In linear predictive modeling this model will correspond to an all-poles model,
whose power spectrum will be a series of peaks, corresponding to the AR co-
efficients a(k), among a general flat noise level, whose power is defined by the
residual r,. The received signal of the emitted pulse can be modelled very closely
by an all-poles model, as its power spectrum is, by design, a Gaussian bell-curve.
Any noise in the received RF-signal will be due to non-linear interaction of this
pulse with tissue, hence corresponding to the signal of the tissue harmonics, as
described in the previous section. Using this model, the power of the received
tissue harmonic signal is defined by the residue r,, which can be directly dis-
played to yield an estimation of the tissue harmonic signal without the noise
introduced by harmonic leakage.

In its current implementation a(k) and r, are estimated from RF-data using
Burg’s iterative algorithm [I5], using an AR-model order of seven, following the
recommendation from [I3]. Experiments have shown that the results are very
robust to the chosen AR-model order. As the resulting residue signal has still a
very high dynamic range, the dynamic range has been compressed by applying
the Gamma-Brightness correction function, as it is used in analogue screens, to
the data before displaying it:

Pyynew = Pyyexp(1/v)  withy =45 (3)

The value for the parameter v = 4.5 was experimentally chosen to give, in the
experiment, a sufficient contrast to detect subtle image details in the filtered
image. The value for this variable is image dependent and will vary between 3.5
and 5.0 depending on the desired contrast and viewing preferences of the user.
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3 Methods for Evaluation

Unfortunately, due to the cross-patient variability of ultrasound data one can-
not compare directly the image statistics of ultrasound data across individual
image sets. However, despite these variations, the relative difference of statistics
measured between cancer regions and "normal” tissue regions remain remark-
ably similar across multiple data sets. Hence, in order to evaluate any improve-
ments the filtering technique has on the ability to distinguish cancer masses
from healthy tissue, the following procedure was used: various image classifiers
computed from a region within the cancer mass and a region of healthy tissue
with fully developed speckle were compared in each image. For each image, the
contrast to noise ratio (CNR) of each classifier was computed as:

| 1te — penl]
CNR = 4
Vo2 + o} W

where p. and pp, are the mean of the classifier in the cancer and healthy tissue
regions, and o, and o}, are the standard deviation of the classifier in the cancer
and healthy tissue regions, respectively. Having calculated both the CNR of the
filtered image CNR; and the original B-mode data CNRy, one can calculate the
percentage fractional improvement of the classifier frac;,,, as:

fracimp = (CNR/CNRy) * 100 (5)

3.1 Intensity Based Statistics

Using the above method, one can directly compute and compare the general gray-
scale contrast between cancer masses and healthy tissues. Furthermore, one can
also compute the SNR of both the cancer region SNR. and healthy region SNRy,
by [16]:

SNR =1/0; (6)

with I being the mean intensity and o; being the standard deviation of the
intensity of the region of interest. However, as the physical principles causing
speckle cannot be removed, one should not expect any significant improvement
of the SNR by filtering the image, and it will remain by definition close to unity.
The main purpose of the SNR is to judge the degree to which speckle is fully
developed in the region of interest.

3.2 Texture Measures

Due to the texture created by speckle, any trained clinician will not evaluate a
region of interest solely on its image intensity, but rather on the general appear-
ance of image texture. Hence, the 1st order statistics give an incomplete picture
of the quality of the filtered image. One of the texture based metrics chosen
for the validation of this method is the Neighbourhood Gray-Level Difference
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Matrix (NGTDM) [I7] and the metrics derived from this statistic. The details
on how to populate the NGTDM matrix s(i) can be read in [I7]. Using this
matrix one can calculate the contrast feon¢, busyness fpusy, complexity feomp
and coarseness f.oqr Of a texture.

3.3 Frequency Domain Analysis

As with all applications of linear predictive modeling, a very important ques-
tion is the applicability of the employed AR-model to the data. Here the power
spectral density (PSD) from a 256 pixel window of a patch with fully developed
speckle and of a cancer mass is estimated using a Periodogram. This PSD is then
compared to the PSD obtained by estimating ([2]) over the same data windows.

4 Results and Discussion

4.1 Experimental Set-Up

Since tissue phantoms cannot reproduce the subtleties of real diagnostic ultra-
sound data, and the main advantage of harmonic imaging is the ability to iden-
tify more subtle features, it was chosen to base all experiments solely on already
recorded patient data. All data was recorded during a breast cancer study, on
an Analogic AN-2300 with a BK-Medical 8805 probe using a centre frequency of
4.0 MHz, and recording the RF-data at a sampling frequency of 40 MHz. From
the datasets recorded during this study 25 cancer cases were arbitrarily chosen
and analysed using the methods described in Section [Bl

4.2 Power Spectrum Analysis

Regarding Fig. [l proves that the current AR-model indeed estimates with high
precision the main harmonics of the backscattered RF-signal. The AR-model
also closely follows the frequency shift of the backscattered signal, which is very
significant with approximately 2MHz at the cancer patch, and 1MHz at the
other one. In terms of power, the difference between the AR-model and the
Periodogram is larger in the speckle patch than in the cancer mass patch. Hence,
using the model from Section 2l one would expect a stronger r, signal from the
speckle patch. As this is indeed the case in Fig. 3] one can conclude that the
model developed here has its validity on real life data, despite the AR-model
also following the second harmonic and a non-harmonic peak in the speckle
signal.

4.3 Discussion of Experimental Data

As can be seen in Fig. Bl when comparing the filtered image to classical B-
mode, the quality of the image has been significantly improved. In the filtered
image Fig. spiculations from the cancer mass are much more pronounced,
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Fig. 1. comparison of the power spectral density estimated by the employed AR-model
and using an Periodogram. Both PSD where computed over 256 data point Hamming
window. a) Was computed over a patch with fully developed speckle, b) over a cancer
mass.

(b)

Fig. 2. the image quality improvement is easily noticable between the classical B-Mode
image a) and the filtered image b)

and the overall size of the mass appears a bit larger. As cancer masses tend to
appear in ultrasound B-Mode images smaller than their true mass, this difference
could be of clinical significance. The visual impression is also strongly supported
by the image intensity based statistics, with the fractional improvement of the
CNR being on average 145%. This large improvement in the CNR was found
for almost all images. However there were still some images, such as the first set
displayed in 2l where there was no improvement. Surprisingly, the SNR improved
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noticeably with an average fractional improvement of the SNR,. being 105% and
the SNR;, being 118%. As it can be seen in Table [Il the results of the texture
measures are more ambiguous. Here, only the contrast f.,,: and coarseness fcoqr
classifiers have shown consistent results, as the individual values for the busyness
Jousy and complexity feomp measures have shown a too large variance across
the set of images to make any conclusions possible. It appears that these two
measures do not well describe the image textures found in ultrasound data.
The improvement of the contrast measure of the NGTDM in the filtered was
caused by the reduction of speckle inside most cancer regions, producing a very
low contrast texture compared to surrounding tissue. The reduction of speckle
inside most cancer regions is also responsible for the improvement of coarseness
CNR, as the coarseness of the cancer texture in the filtered image has been
reduced by a factor of 10, while the coarseness of the surrounding tissue still
remains similar to the values for the B-mode data.

Table 1. Experimental Results

meany,, mMeangy Ony Ofl¢ (FaCimp
CNR 0.817 1.187 0.052 0.129 145%
SNR. 0.94 0.99 0.017 0.014 105%
SNRy,  0.98 1.16  0.008 0.025 118%

CNRbm CNRﬁlt fracimp
fousy 0.226 049  216%
feont  2.65 7.89  297%
feoar 0.094 2387 2539%
feomp 1.33 127 95%

5 Conclusion

Both visual inspection and quantitative analysis have shown that the filtered
image has in the majority of the datasets a much higher contrast between the
cancer masses and its surrounding tissue. This contrast has shown by visual in-
spection on many cancer masses an improved ability to discern its shape and
size. Regarding the quantitative analysis, the improvement of the image intensity
CNR is a notable result. This encourages the possibility of developing a more ro-
bust breast cancer segmentation algorithm, which is currently work in progress.
The algorithm is not computationally demanding, and could be readily imple-
mented in real time on current hardware. Hence, the next step of our research
is to implement this filter on to an ultrasound machine, to assess the degree to
which the measured increase in contrast and the subjective image improvement
effect the diagnosis of breast cancer in clinical practice.
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