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PREFACE

Computer Science, or Informatics as it is often called in Europe, is viewed
by many as being both a science and a technology. Clearly, its technological
aspects are very much upon us on a day to day basis. Yet all other exact
sciences such as physics, biology or chemistry are also very present in our
daily lives through the technologies they generate, and yet we do not doubt
that they have scientific foundations.

In some ways, Informatics is akin to a mathematical science, since
formalisation, definition and deduction play an important role in the
development of its concepts and in the embodiment of the concepts into
artifacts. Informatics is also very similar to physics and engineering science,
where models have to be linked to observation and measurement. Current
research on computer networks and computer systems is an illustration of
this second approach.

Some of the confusion about Informatics as a Science and as a
Technology may arise from the fact that most of its pioneering contributors,
many of whom are fortunately still alive, have actively contributed (and still
do) to both the scientific principles, often based on mathematics, and to its
technological and practical developments.

The links between computer arithmetic, which is based on algebra and
algorithms, and digital circuit design are one example. The connection
between mathematical models of queueing networks, which were originally
inspired by telecommunications, computer systems and computer networks,
and the commercial software tools that are used to analyse the performance
of computer systems, and which incorporate these mathematical models,
are another example. Yet another instance of this connection lies in the use
of formal methods for the verification and testing of programs and software
systems, which have enjoyed a long standing interaction with mathematical
logic.

v
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Much of the history of Informatics still remains to be written, and this
effort can be undertaken after scholarly historians of science will have a
better understanding of the field. However, aside from the original papers
where seminal ideas were first presented, and surveys or discussions that
appear at conferences and in a few specialised journals, the origins of the
concepts in Informatics are not always well documented.

Furthermore, although basic concepts in Informatics are disseminated
through educational programmes, the increasingly practical orientation of
many undergraduate courses, and the increasing specialisation of many
post-graduate courses, imply that pointers to the broad initial scientific
concepts of Informatics are often not adequately transmitted to future
generations. On the other hand, developments in computer technology,
which are naturally far more “visible” both to the public and to students
of the subject, are well documented both in every day life, in industry and
commerce, in exhibits, and in specialised museums.

As we have already stated, we do believe that the writing of a history of
Computer Science is best left to professional historians of science. However
this book responds to an urgent need to grasp a unique opportunity, and
to capitalise on the fact that contrary to the other sciences, many of the
founders of Informatics are still professionally active.

This collection of essays is an attempt to reach out to Computer
Scientists who wish to write about their own or others’ seminal
contributions, and we have been able to collect contributions representing
a broad range of areas within Informatics. This volume has attracted a nice
balance of papers, some with a theoretical outlook and others that concern
significant practical developments. Most of the chapters are authored by
the originators of the ideas and technologies themselves, while some are
authored by computer scientists who have had a first-hand knowledge of
the developments and of the pioneers whom they discuss.

The first chapter, devoted to a fundamental contribution by Corrado
Bohm, one of the European pioneers of Computer Science, on Bohm’s
Theorem, relates to a fundamental and early result on program schemata,
i.e. formalised flowcharts, and it is written by some of Bohm’s distinguished
students, Stefano Guerrini, Adolfo Piperno, and Mariangiola Dezani-
Ciancaglini, with guidance from Prof. Bohm himself. The next chapter, on
Membrane Computing is contributed by Prof. Gheorghe Păun, the person
who actually launched the concepts in that area. The following chapter
is authored by Giuseppe Longo, who discusses the distinction between
simulation of nature based on highly causal computation, and nature
itself in which non-determinism and randomness can play a dominant
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role. The fourth chapter is authored by the originator of a class of
mathematical models called G-networks, together with colleagues who
have made significant contributions to the subject; these are models
of service systems (such as computer networks) as well as of neuronal
networks, and it is shown these probabilistic models are also deterministic
models of approximate computation. The next contribution by Tony
Hoare, a pioneer of several areas of Informatics, including algorithms,
programming methodology and parallel processing, discusses one of his
important contributions to programming methods and to the verification
of computer programmes. The fifth chapter is written by Steve Furber,
a leading researcher and entrepreneur in computer processor technology,
where he describes a processor technology based on a very successful design
that has resulted in widespread use in commercial computing devices. The
chapter on Carl Adam Petri is biographical nature, and also discusses the
contributions and perspectives brought by Petri Nets. It is written by his
eminent colleagues and friends Wilfried Brauer and Wolfgang Reisig, who
have first hand knowledge of the contributions of this major pioneer. Jeff
Buzen’s chapter concerning some of the origins and successes of stochastic
models of computer performance modelling is written by the person whose
work gave rise to most of the basic algorithms used in this area. Jeff was also
involved in bringing these techniques “to market” via a successful industrial
venture. Finally, the last chapter by Olivier Pironneau on high performance
computing, discusses the transformation that this field has effected on the
design of aircraft and other modern transportation systems.

Most of the authors of this volume are members of their relevant
National Academies, or of Academia Europaea, or both. Their articles
in this volume express not only the fact that they have made imortant
contributions to the field of Informatics, but that they also feel strongly
about presenting the ideas and techniques that Informatics has generated
and which need to be understood and appreciated by the scientific
community and by future historians of the field.

We hope that this first volume will be followed by others that continue
the presentation of Fundamental Concepts in Computer Science, through
the eyes of the pioneers of this exciting field.

Erol Gelenbe Jean-Pierre Kahane
Member, Member,
Turkish Academy French Academy of Sciences
of Sciences, and French National
“Académie des Technologies”
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Chapter 1

BÖHM’S THEOREM

STEFANO GUERRINI∗ and ADOLFO PIPERNO†

Dipartimento di Informatica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

∗guerrini@di.uniroma1.it
†piperno@di.uniroma1.it

MARIANGIOLA DEZANI-CIANCAGLINI

Dipartimento di Informatica
Università di Torino, Corso Svizzera 185

10149 Torino, Italy
dezani@di.unito.it

1. Introduction

The technical significance of Böhm’s theorem [3] suffices to deserve it a
prominent place in any monograph on the theory of the λ-calculus [1,22,23]
and makes it a basic result that any researcher working on λ-calculus
must know. In addition to its technical content, we think that behind this
beautiful result there is something of interest for a much wider audience.
The clear thread that starting from his thesis [2] led Corrado Böhm to the
research on λ-calculus and to the quest for an “internal” way to discriminate
λ-terms, the deep analysis of the structures of λ-terms required by the
proof of the theorem, the so-called Böhm-out technique, and the many
unexpected consequences and applications of this technique [29] clearly
put Böhm’s theorem on a relevant position in the bookshelf of the main
achievements of theoretical computer science. Moreover, as in the case
of almost all the relevant results of Mathematics, the interest of Böhm’s

Under the exceptional guidance of Corrado Böhm.

1
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theorem is not only in the statement that it asserts, but also, and maybe
mainly, in the constructions required by its proof.

As we already mentioned, Böhm’s theorem is one of the main results
of the theory of λ-calculus. Looking at the theorem from a computer
science perspective, it states that the extensional equivalence of λ-calculus
“normal forms” may be defined by means of a syntactic equivalence.
More precisely, let us interpret λ-terms as programs, assuming that two
programs/λ-terms are equivalent when they behave in the same way on all
the inputs (extensional equivalence); then, it is a consequence of Böhm’s
theorem that two programs/λ-terms in “normal form” are equivalent if and
only if they are written in the same way (syntactic equivalence), apart for
some expansions corresponding to the so-called η-equivalence of λ-terms
(which is easily decidable). Let us remark that when we say “on all the
inputs”, we mean “on all the λ-terms”, since we are in an untyped setting
and any λ-term can be the argument of any other λ-term.

By the way, Böhm’s theorem does not imply at all that in the
λ-calculus the equivalence of programs is decidable: the equivalence of
two λ-terms (not in normal form) was the first problem for which
undecidability could be proved [13], even before the undecidability of
the halting problem [43]. In fact, in the 1930s, Church proposed the
λ-calculus as a foundational system for mathematical logic [12]. Then,
while his former student Kleene analyzed the notion of λ-definability,
showing that every recursive function can be coded (by means of “normal
forms”) into the λ-calculus [26, 27], Church related the notion of effective
calculability to that of recursive function, and then of λ-definability,
proving at the same time that the equivalence of two λ-terms (not in
normal form) is undecidable [13]. Immediately after the work of Church,
Turing introduced his machine approach to computation and proved the
undecidability of the halting problem [43]; then, he also proved the
equivalence between his notion of computability and that of λ-definable
function [44].

In λ-calculus, programs/λ-terms are constructed in a purely functional
way, and there is no distinction between programs and data: every program
can be passed as the argument of another program. The evaluation
mechanism, the so called β-rule, mimics the operation of replacing equally
labeled formal placeholders with a specific λ-term, neither looking at its
actual structure nor if the places are for functions or for arguments.
A λ-term is in normal form when it cannot be reduced any further, by
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the application of the β-rule, implicitly declaring the end of the evaluation
process. Being the ending results of the evaluation of a λ-term (when this
evaluation terminates), normal forms play the role of values and Böhm’s
theorem ensures that two values are equal only if they are written in the
same way.

In λ-calculus, the normal form, if any, of a term is unique; in other
words, the result of a computation is independent of the order in which
the computational steps are applied. Because of this, normal forms can
be seen as the “denotations” of λ-terms, or equivalently, as their primary
meaning. Böhm’s theorem ensures that in λ-calculus, every denotation of a
λ-term (if we limit to programs/λ-terms that terminate) can be written in
only one way: two syntactically distinct values/normal forms correspond in
fact to two distinct denotations. Such a property makes the λ-calculus an
ideal mathematical model in which to interpret programs and in which to
study their properties — in particular, their equivalence. Moreover, Böhm’s
theorem ensures that the way in which we can separate two distinct λ-terms
is internal to the calculus; it suffices to apply the distinct λ-terms to the
same suitable sequence of inputs. The construction of such a sequence of
inputs requires the determination of a set of combinatory operations on
the tree structure of λ-terms that are at the basis of the so-called Böhm-
out technique (see Section 2). Proving his theorem, Corrado Böhm not only
recognized the basic operations of the Böhm-out technique, but also had the
great intuition that such combinatory operations could be internalized into
the λ-calculus by means of suitable λ-terms. Such a deep understanding of
the computational mechanism behind the β-rule was a great breakthrough
in the analysis of the basic computational mechanisms of programs and
played a central role in the development of the mathematical studies of the
semantics of programs (see Section 4 on the follow-up to Böhm’s theorem).

The idea that an interesting computational system should have enough
power to be able to speak about itself has played a central role in all the
research works of Corrado Böhm, not only in his studies on λ-calculus, but
also in his thesis [2]. Corrado Böhm defined the first compiler that could
be described in its own language (see also Ref. 28) in his thesis. Since then,
one of the main questions that guided Corrado Böhm in his research on
computational systems was, “how much of its meta-theory is contained into
the system itself?” Therefore, when he started to think at the λ-calculus
as a basis for defining programming languages (actually, he believes that
the λ-calculus is THE programming language), one of the first questions
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that he tried to answer was if there was an internal way for studying the
equality of λ-terms, and the answer was Böhm’s theorem.

This note is organized as follows: in Section 2, we explain Böhm’s
theorem in an informal way using trees, while in Section 3, we introduce the
λ-calculus in order to properly formulate Böhm’s theorem. Finally, Section 4
gives an overview of the impressive research activity which originated from
Böhm’s theorem.

2. Böhm’s Theorem for Trees

Assume that we are given two disjoint sets of labels, namely a set L =
{A, B, C, . . . }, and a set � = {a, b, c, . . .}. We consider the set T of trees
labeled with elements from L ∪ �, with the restriction that, for any T ∈ T
and for any x ∈ �, the label x appears at most once in T .

In the example given above, the first tree is an element of T , while the
second one is not in T , since the label c appears twice in it.

A notion of equivalence is established over elements of T : two trees
T1, T2 ∈ T are equivalent if they are equal or they both can be made equal
to a tree T ∈ T by adding nodes, labeled in �, as rightmost sons of some
nodes. In such a case, we say that T1 and T2 expand to T . Clearly, both T1

and T2 are equivalent to T .
As an example, the first two trees in the following figure are equivalent,

since they both expand to the third one.
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The defined equivalence is relevant since it allows, when comparing trees,
to abstract from their structure. In effect, given T1, T2 ∈ T , there always
exist T ′

1, T
′
2 ∈ T , having the same tree structure, such that Ti is equivalent

to T ′
i (i = 1, 2).
A tree transformation is an operator which, when substituted to a label,

rearranges its sons according to some rule. We will use tree transformations
of three different kinds:

Replacement: Replace(k, S), where S ∈ T , is the operator which takes
k subtrees, discards them and returns the tree S:

Selection: Select(k, i) is the operator which takes k subtrees and returns
the ith one:

Rotation: Rotate(k) is the operator which takes k + 1 subtrees, where
the k + 1th one is a leaf and its label is from �, and moves the k + 1th up
to the root:

Böhm’s theorem (rephrased): Let S1, S2 ∈ T be arbitrary trees. Then
for every pair of non-equivalent trees, T1, T2 ∈ T , there exist T ′

1, T
′
2 ∈ T

such that:

(1) T ′
1 is equivalent to T1 and T ′

2 is equivalent to T2;
(2) there exist tree operations which discriminate T ′

1 from T ′
2, transforming

any tree with the same structure of T ′
1 and equivalent to T1 into S1, and
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any tree with the same structure of T ′
2 and equivalent to T2 into S2,

respectively.

We proceed modulo the previously defined equivalence relation over
trees, thus assuming that the trees to be discriminated have the same
structure. The proof of the theorem is split into three cases:

A simple case: Let T1, T2 ∈ T be such that their roots have different
labels, say A and B, respectively, as in the following example:

then the substitution A ← Replace(3, S1), B ← Replace(3, S2)
transforms T1 into S1 and T2 into S2.

Information extraction: In general, the difference between the two trees
to be discriminated is not immediately visible at the roots. Such information
must be extracted from some deeper level by means of selection operators.
As an example, if T1, T2 ∈ T are the following trees:

then the substitution:

A← Select(3, 2), B ← Select(2, 1),

C ← Replace(1, S1), D ← Replace(1, S2)

transforms T1 into S1 and T2 into S2.

The hard case: In the previous example, the labels C and D have
been easily extracted from the trees using suitable selectors. This is not
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immediately feasible in the following example:

since the same selector, when substituted to different occurrences of A,
is now required to have two different behaviors; namely, in the topmost
occurrence, it must select the second of three subtrees, in the second
occurrence it must select the first of two subtrees. To solve this case, we
first consider the trees T ′

1, T
′
2 ∈ T , equivalent to T1 and T2, respectively:

We then apply the substitution A ← Rotate(3), thus obtaining the
following trees, which can be discriminated as in the previous case.
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In fact the substitution

a← Select(3, 2), c← Select(3, 1),

C ← Replace(1, S1), D ← Replace(1, S2),

transforms T1 into S1 and T2 into S2.

3. Böhm’s Theorem for λ-Calculus

The λ-calculus, also sometimes referred to as the calculus of λ-notation,
was introduced by Alonzo Church in the 1930s [12]. In the attempt to
give a complete system for the foundations of mathematics, Church took
as primitive the notion of function instead of that of set. Even if the
foundational project failed, because of the fact that the Russell’s paradox
of “the set of all sets that do not contain themselves as members” can
be reformulated in the λ-calculus, Church used the λ-calculus to start the
study of computability. In particular, by proving that the equivalence of
two λ-terms is undecidable [13], Church gave the first problem for which
undecidability could be proved, even before the halting problem [43]. Since
then, the λ-calculus has played a relevant role in the development of
theoretical computer science, in particular, it has inspired programming
languages like LISP [30, 39] and ML [21, 31, 32] and has proved to be a
fundamental tool in the analysis of the semantics of programming languages
[34, 41, 42, 46].

The main idea of the λ-calculus is that every expression of the calculus,
i.e. every λ-term, stands for a function. λ-terms are built from variables,
the basic elements of the calculus, in two ways:

(i) application: given two λ-terms T and S, the composition TS

represents the application of the function T to the argument S;
(ii) abstraction: given a λ-term T and a variable x, the abstraction λx.T

represents the function defined by the λ-term T viewed as an expression
parametric in x.

In an abstraction λx.T , the name x of the variable is no longer relevant,
but just a way to denote the places in which the parameter of the function
built by abstraction occurs. Therefore, the name x could be replaced by any
other name y, provided that this would not cause that some occurrences
of y in T be improperly associated with the renamed abstraction
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(e.g., in λx.xy, the x can be renamed by z getting the equivalent λ-term
λz.zy, but it cannot be renamed by y, that would lead to λy.yy). The
equivalence induced by variable renaming is the so-called α-congruence.

A λ-term is closed if all its variables are abstracted.
The only “computational rule” of the λ-calculus is the β-rule that,

given the application of an abstraction λx.T to S, replaces S to every
occurrence of the variable x in T (this may also require some variable
renaming in order to avoid that the variables in S not associated with any
abstraction might be “captured” by some abstraction in T ). A λ-term is
in normal form when it cannot be transformed (reduced) by means of the
β-rule.

The β-equivalence is the equivalence relation induced on λ-terms by the
β-reduction, assuming that two λ-terms are equivalent when they are
the same λ-term or when they can be β-reduced to equivalent λ-terms
(equivalently, the β-equivalence is the congruence generated by the reflexive,
symmetric and transitive closure of the β-rule).

The η-equivalence is the equivalence obtained by assuming that given
a λ-term T , if we apply it to a fresh variable x and we construct then the
abstraction λx.Tx, we obtain a function that is equivalent to T . In fact, the
two functions are extensionally equivalent, since the application of λx.Tx

to any λ-term S, immediately reduces to TS by using the β-rule, namely
(λx.Tx)S β-reduces to T .

Böhm’s theorem says that the equational theory induced by the β-
reduction is complete for its normal forms. In fact, trying to equate any
pair of non-η-equivalent normal λ-terms would correspond to equating the
whole set of the normal λ-terms, forcing the collapse of the whole set of
λ-terms into one point.

Normal forms have a structure which is similar to that of the trees
as defined in Section 2. The η-equivalence corresponds to the equivalence
defined over those trees and a representation of normal forms can be
obtained by adding abstractions in suitable positions: the λ-calculus expert
can recognize the so-called Böhm trees (see Section 4.4). The tree operations
in Section 2 can be represented by λ-terms, so that the discrimination
algorithm for closed normal forms can be internalized: it can be performed
by objects of the calculus itself. For instance, the operators Replace(k, S),
Select(k, i) and Rotate(k) correspond to the λ-terms

λx1 · · ·xk · S, λx1 · · ·xk · xi and λx1 · · ·xk+1 · xk+1x1 · · ·xk,
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respectively. We are now able to state Böhm’s theorem in its original form:

Theorem [3]: Let Λ0
N be the set of closed normal forms, and let S1 and

S2 be arbitrary λ-terms. For any non-η-equivalent terms T1, T2 ∈ Λ0
N there

exists a λ-term ∆ such that the application of ∆ to T1 evaluates to S1 and
the application of ∆ to T2 evaluates to S2.

4. Follow-Up to Böhm’s Theorem

The semantics of a programming language gives meanings to programs.
This can be done in two different ways: operationally, providing a way in
which programs are evaluated; denotationally, defining an interpretation of
programs into a model, a mathematical structure which is constructed in
order to be able to describe some desired computational properties. A huge
amount of research has derived from the result and from the technique of
Böhm’s theorem, characterizing relevant properties of λ-terms, from both
the operational and the denotational perspectives.

4.1. Böhm’s work on Böhm’s theorem

Corrado Böhm himself, together with some of his collaborators, has
continued investigating discriminability of λ-terms, essentially from an
operational perspective. In Ref. 5 a finite set of closed normal forms pair-
wise non-η-equivalents are discriminated. In Ref. 7 the proof of the theorem
is revisited according to some restrictions on the shape of the discriminating
solution. The notion of X-separability has been introduced in Ref. 10 and
then characterized in Ref. 8. In some sense, X-separability avoids the use
of rotation operators at the outer level of λ-terms, introducing the set X

of variables to be substituted by operators. The notion of X-separability
has interesting relationships with invertibility of λ-terms. The Böhm-out
technique is the basis of the implementation, presented in Ref. 9, of the
CuCh-machine, a λ-calculus interpreter introduced by Böhm and Gross
in Ref. 6.

4.2. Generalizations of Böhm’s theorem

The first generalizations of Böhm’s theorem considered the pure λ-calculus.
Wadsworth [45] extended Böhm’s theorem to two arbitrary λ-terms which
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are different in Scott’s D∞ model [38]. We already mentioned [5] in
previous subsection. Finally in Ref. 14 the discriminability of a finite set of
arbitrary λ-terms is characterized. The original Böhm’s theorem and this
last generalization are essentially the content of Section 10.4 in Ref. 1. The
discrimination of infinite sets of λ-terms has been studied in Refs. 35,36,40.

Successively, the λ-calculus has been extended or immersed in other
languages in order to obtain finer observations on the behavior of λ-terms.
Sangiorgi [37] considers the encoding of λ-calculus in the π-calculus, a
calculus of mobile processes, and the addition of a unary non-deterministic
operator. A notion of resource is the extension considered in Ref. 11, while
Refs. 16 and 20 add a binary parallel operator and a non-deterministic
choice. All the above-mentioned extensions are equivalent from the point
of view of discriminability. A weaker discriminability result is obtained by
adding to the λ-calculus a binary non-deterministic choice and a numeral
system in Ref. 18. A finer discriminability is presented in Ref. 19 by means
of two suitable projection operators.

4.3. Theories and models of λ-calculus

One immediate consequence of Böhm’s theorem is that the theory of η-
equivalence for closed normal forms is Hilbert-Post complete, i.e. given two
arbitrary λ-terms T1, T2 ∈ Λ0

N , either they are η-equivalent or the theory
obtained by adding the equality T1 = T2 is inconsistent (see Corollary 10.4.3
of Ref. 1).

Therefore, no consistent model of λ-calculus can equate non-η-
equivalent closed normal forms.

Similarly, the generalization of Böhm’s theorem of Ref. 45 (already
mentioned in Section 4.2), implies that the theory of Scott’s D∞ model [38]
turns out to be maximal [45].

4.4. Böhm trees and Böhm-out-technique

The paramount historical importance of Böhm’s theorem lies in the fact,
already stressed by the author in the original paper and afterwards pointed
out by various researchers, that its proof is constructive; an elegant
implementation in categorical abstract machine language (CAML) is given
in Ref. 24.
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Exactly, the original proof of Böhm’s theorem has inspired a
representation of normal forms as trees, similar to the representation
discussed in Section 2, which was first introduced in Ref. 4 and then
discussed in Ref. 15. Barendregt [1] extended this representation to
arbitrary λ-terms and called Böhm trees the so-obtained trees. Barendregt
also called Böhm-out-technique essentially the tree operators on trees that
we introduced in Section 2. Other trees have been proposed to represent
λ-terms: a recent survey can be found in Ref. 25, where Böhm trees for
term rewriting systems are studied. The representation of closed normal
forms of Ref. 4 has been later used in Ref. 35 in order to express Böhm’s
theorem as a non-equality predicate over the algebra of normal forms.

4.5. Observational equivalence

In the same year as Böhm’s theorem [3], Morris [33] for the first time defined
a notion of an observational or contextual equivalence, which was going to
have such important developments in more recent years, particularly in
the domain of interactive concurrent computing: two λ-terms were defined
equivalent if, whenever they are put in the same context, either they
both make it reducible to a normal form or they both make it divergent.
Böhm’s theorem can then be viewed as stating that such an observational
equivalence coincides, for normal forms, with η-equivalence. A survey on the
relations between Böhm’s theorem and observational equivalence is found
in Ref. 17.
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[24] G. Huet, An analysis of Böhm’s theorem, Theor. Comput. Sci. 121(1–2)
(1993) 145–167.
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At the moment when these notes are written, membrane computing is only
eight years old. Is this an age when a “history” can be recalled? The doubt
suggested by the mere formulation of this question is removed by the personal
feeling that, actually, the domain has a long history, a feeling grounded on the
large number of notions, research directions, results, applications, publications,
and events related to membrane computing. The second part of these notes will
(try to) prove these assertions, providing the reader with a quick introduction
to membrane computing, pointing out mainly basic ideas and types of results
and of applications. Before that, the first part of the paper, provides a personal
view about these last (more than) eight years, remembering facts which might
not have a great significance for somebody not involved in this field or not
knowing the persons which will be mentioned below, but significant for me.
This is, indeed, a personal history of membrane computing.

Consequently, the reader is asked not to evaluate this text with
modest/non-modest measures. I used to say several times (e.g. in interviews
for Romanian newspapers) that, while everybody tries to become a name in
science, I “failed”, because I just became a letter: the computing devices studied
in membrane computing are called P systems. It is not easy to become a letter
and then to discuss about it in conferences or in texts like the present one, but,
at the same time, your vanity is highly pleased when doing it. This should be
the same for everybody, the only difference being that customarily the people

do not admit that they are vanitous. Moreover, in general, the scientists are not
modest, and mathematicians still less. Pretending to be exact, they promote
themselves, without any thought paid to any shame, because no thought is
paid to any self-promotion. The same with my recollections here: I will just try
to be exact.

17
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1. Personal Views on the History of Membrane Computing

1.1. The pre-history

In some sense, everything goes back to the seventies of the last century. I was
then a student of the contagious Professor Solomon Marcus, at the Faculty
of Mathematics of the University of Bucharest. I was dreaming to become
a teacher in a high school (not any one, but the one from Curtea de Argeş,
a picturesque small town on the Argeş river, close to Carpathians), but I
became a researcher in language theory after meeting Marcus. Explicitly
or implicitly, Marcus induced me the conviction that “everything can be
described by a (formal) language”, with a great part of the research in our
group done at that time under the slogan “linguistics as a pilot science”.
I was at the same time lucky to get a copy of Arto Salomaa’s book Formal
Languages, published in 1973 by the Academic Press. Years later, Marcus
used to say something like “this was the book which gave the name to the
domain”. Influential, indeed. Crystal-clear, written perfectly from a didactic
point of view, with a wise selection and arrangement of the material. I was
definitely (de)formed by this book; it was probably the only mathematical
book which I have almost completely read just for the pleasure of reading
it, and later it was no way to escape from its influence. I became a formal
language theorist in the Marcus-Salomaa sense.

Anticipating the story, I had the privilege to remain around Marcus
until now, and, after (the changes from Romania in) 1989, I also had
the privilege to work with Salomaa (and with his “brother” — Grzegorz
Rozenberg), also until now (and, I hope, still for a long future).

Already in the seventies, Marcus wrote about the use of linguistics and
formal languages in the study of genome, but at that time I was more
interested in the applications of formal grammars in modeling economic
processes — the topic of my PhD thesis and of my first book, published in
1980 in Romanian.

Looking backwards, almost everything which I have studied in the
“old times” was useful to membrane computing, everything was a sort
of preparation of tools for it. For instance, I have spent many years
investigating grammars with restrictions in derivations, especially matrix
grammars — the first universality proof (well, the second, see below) about
P systems was based on matrix grammars with appearance checking in
the strong binary normal form. I mention on purpose all these technical
terms, in order to point out the level of technicality/detail at which this
link between the two domains is established. The research on this topic
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was concluded with a monograph, written together with Jürgen Dassow
(Magdeburg, Germany — initially, East Germany, hence possible for me
to visit in the communist time) and published in 1989 by Springer-Verlag.
Another “campaign” was devoted to grammar systems, sets of grammars
cooperating according to a specified protocol in generating a unique
language. Again, a monograph has concluded that work (Gordon and
Breach, 1994, in collaboration with Erzsébet Csuhaj-Varjú from Hungary,
J. Dassow from Germany, and Jozef Kelemen from the Czech Republic).

An important stage after that was devoted to DNA computing.
A parenthesis: I sometimes believe that someone’s life and career are a

series of lucky or non-lucky events, that we live in a “multiverse” (M. Gell–
Mann term), which is actualized in one particular “universe” just by chance.
I can illustrate this belief with many happenings from my life, including the
involvement in DNA computing.

In April 1991 (Arto remembers also the day, I only remember the
meeting with him in the Turku railway station, after two days and three
nights spent in the train, from Bucharest to Chişinău, Moscow, Leningrad,
Helsinki, Turku), I visited for the first time the group of Salomaa, in Turku.
In 1992–1993, I was mainly in Magdeburg, Germany, as a fellow of the
Alexander von Humboldt Foundation, then from 1994 I started a long stay
in Turku. Practically, until 1999, I have spent more than half of each year
in Finland. I was there together with the late Alexandru Mateescu, Sandu
for friends (he passed away in January 2005). Sandu mentioned me once
about problems of combinatorics on words related to the genome project,
and he has also shown to me some papers of this kind. I did not like any of
them, they were not dealing with languages and grammars, and I was not
impressed at all. But in April 1994 (I think it was in April — I can check,
but I will not do, Arto will correct me if I am wrong), I was visiting Vienna,
at the invitation of a great friend, Rudi Freund, and from Vienna I have
also gone to Graz, where a symposium was held in honor of Arto Salomaa,
on the occasion of his 60th birthday. Somebody — I think that it was Lila
Kari, a former student of mine, who had completed a brilliant PhD with
Arto and after that moved to Canada, to London Ontario — brought to
Sandu several new papers about DNA and languages, including a paper by
Tom Head (published in 1987, hence not so new).

This paper made history, as marking the beginning of (theoretical)
DNA computing. Seven years before the seminal experiment of L. M.
Adleman, of solving a small instance of the Hamiltonian path problem
in a laboratory, by handling DNA molecules in the same way — but with
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other goals — as the biochemists used to do it, Tom Head introduced the
splicing operation, a language-theoretic model of the recombinant behavior
of DNA molecules under the influence of restriction enzymes and ligase
enzymes. I was immediately conquered by the novelty and elegance of this
operation — so much conquered that the next five years I have done almost
nothing else. Actually, the enthusiasm was complete only after proving that
splicing systems (together with Salomaa and Rozenberg, I have called them
H systems, in honor of Tom Head) can compute whatever a Turing machine
can compute. Well, this happens when the rules are controlled in various
ways, suggested by regulated rewriting and not too much by bio-chemistry,
but this is just a small “detail”. From a computational point of view, this
shows that the whole theory of computation can be reformulated in terms
of splicing (cutting two strings in two parts each and crossingover, gluing
together the prefix of the first string with the suffix of the second string
and the prefix of the second string with the suffix of the first one), that
rewriting, i.e. local substitutions in a string, as used in all classic computing
models, Turing machines, Markov algorithms, Chomsky grammars, Post
systems, and so on, can be replaced by the much different cut-and-paste
operation. The discussion can be prolonged — I conclude it with mentioning
that my enthusiasm for splicing was so high that in a survey-paper that
I have written for the Bulletin of the European Association for Theoretical
Computer Science I have forecasted that H systems will become similarly
popular as L systems (with L coming from “Lindenmayer”), three decades
before. The paper appeared in the formal language column of the Bulletin,
at the invitation of Arto; wise enough, he added a note at the end of the
paper, saying something like “this will happen only if H systems will have
similarly good applications as L systems”. At least up to now, Arto was
right: DNA computing has lost a good part of its initial attraction, because,
more than a decade after Adleman’s experiment, no real-life computation
was reported.

This long detour through DNA computing has the point especially
in the last phrase above: after the initial years of hot enthusiasm, many
researchers were looking without success for a “killer-app” and started to
be disappointed with the possibility of using DNA computing for practical
purposes. The main difficulty was related to the errors and the passage
from toy problems to problems of real-life size. The idea was formulated
several times that we have to look closer to what happens in vivo, maybe
to implement DNA computations in the natural framework where DNA
evolves, in the cell.
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I am sure, now, a posteriori, that this idea of looking to the cell in order
to implement DNA computations was the one of the unconscious triggers
of coming to the idea of membrane computing.

Another trigger, again unconscious (the psychologists will probably say
that it always happens in this manner), was a paper presented by Vincenzo
Manca (at that time, from Pisa, now from Verona, Italy), at a workshop
on DNA computing that I have organized in Mangalia, Romania, in 1997
(it was the first of this kind in Europe, one week before a similar meeting
which was organized in Turku, Finland; Tom Head has participated in both
of them). The title of the paper was “String rewriting and metabolism:
A logical perspective”; the investigation is conducted in terms of logics,
but there is a notion, that of metabolite, which looks now very much like
a . . . P system.

1.2. The first years

It was in October 1998, in Turku, when I came to the explicit idea of defining
a computing model inspired from the structure and the functioning of a cell.
Membranes enclosing “protected reactors”, where chemicals swimming in
water react according to given rules (pale reminiscences of the biology I have
learned in high school . . . ); because the multiplicity of chemicals matter
(pale reminiscence of the chemistry I learned in high school . . . ), multisets
in the compartments of the device. Rules used in parallel, transitions among
configurations, computations. I called the machinery a super-cell, because
of the generality — in particular, in what concerns the number of levels of
hierarchically arranged membranes. A bad name, of course. A lucky mis-
inspiration: because people did not like this term, they have used to the
one now used — P systems.

The first person to propose this name was Kamala Krithivasan, from
Madras, India. After having the main definitions and the first results,
including universality theorems, I felt that there is “something” here.
The flexibility of the model was obvious. Symbol-objects, string-objects;
multisets or usual sets; multiset rewriting rules for symbol-objects, string
rewriting rules for string-objects. Also, splicing rules for processing string-
objects, which directly makes (part of) DNA computing part of membrane
computing. Universality, as well as the possibility of defining restricted
classes. Visibly, a lot of work to be done. With automata, languages,
grammars and complexity connections — which is always good, because
many people know automata, languages, grammars and complexity and
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they are eager to apply what they know in a new area, especially, if this
new area is related to biology, a fashion in science in the last decades.
I felt scientifically thrilled, much more than in other situations. I wanted to
make as soon as possible known the idea, also in order to check whether it is
really new or not, and to this aim, I have sent the file of the paper to several
friends and collaborators, from many countries. Very few answered — yes,
interesting, well, it seems nice, let us see — with Kamala being super-
positive, predicting that the devices I have proposed will be called soon
P systems. I do not remember now which was the first paper using this
term and which were its authors, a fact is that the “super-cells” were used
in very few papers and after that the current terminology won.

I was sometimes asked what P from “P system” means, and my favorite
answer was “it comes from promising”; with the continuation that, “if
somebody will find that these systems are not promising, (s)he may call
them non-promising, in short, NP systems, and in this way we will have
a first case where P = NP”. In some papers, some authors explain that
P comes from Păun, in a few papers, one even writes, “Păun systems”,
but there are also papers where one looks for original explanations; I have
recently seen a paper where P comes from “priority”!

But, enough with the name, let us go back to the first proofs. As
usual, when defining a new model/device/whatever, at the beginning
there is no known technique to handle it, and in most cases, the first
results are not obtained with the most efficient tools. The first universality
theorem for P systems was based on computing polynomials, using the
Robinson–Davis–Matijasevich characterization of recursively enumerable
sets of numbers, as sets of positive values of polynomials with integer
coefficients. Impressive proof — unfortunately, non-necessarily impressive.
Just after completing the proof, I have realized that a much simpler one can
be obtained starting from the characterization of recursively enumerable
languages by means of matrix grammars (of the form mentioned in the
previous section). In this form, the paper was circulated among friends, in
this form it has appeared already in November 1998 as a technical report
of Turku Center for Computer Science, TUCS (Report 208) [5].

At that time, it was a real “Romanian invasion” at TUCS — “old”
researchers as me and Sandu, a series of PhD students, short-term visitors.
Among the PhD students, Lucian Ilie, now at the same University of
Western Ontario, London, Canada, as Lila Kari. Some years later, he
remembered to me that in a discussion on the corridor at TUCS, I (was
so trustful in the fate of membrane computing that I) predicted that in a
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few years I will organize an international meeting about this subject, and
that he was skeptical about this. I have forgotten this discussion, so for sure
the first Workshop on Membrane Computing, Curtea de Argeş, Romania,
August 2000, was not organized in order to prove Lucian that he was too
skeptical.

Actually, the name of the first meeting was “Workshop on Multiset
Processing”, on the one hand, because I wanted to start “from the
foundations”, being somewhat uneasy with what was known before about
handling multisets, on the other hand, because I was not sure that a five-
days workshop can be organized on the basis only of membrane computing
papers. I succeeded to bring in Curtea de Argeş many people who have
worked with multisets before, in particular, Jean-Pierre Banâtre, who had
introduced already in 1986, together with Daniel Le Métayer, the so-called
gamma language (multiset processing by means of chemically inspired
rules — of a rather general form and without using compartments, hence
membranes). In this context, I have also learned about the chemical abstract
machine (CHAM), of Gérard Berry and Gérard Boudol, where membranes
and multisets play a central role — but the approach is totally different,
based on process algebra and interest in modeling concurrent processes.

The interest for membrane computing has grown unexpectedly fast, so
that the workshop from 2001 was explicitly called “on embrane computing”,
and the name remained the same until now. The 2001 and 2002 editions took
place again in Curtea de Argeş, Romania, but from 2003, the meeting was
organized every year in another country: Tarragona, Spain, in 2003; Milano,
Italy, in 2004; Vienna, Austria, in 2005; Leiden, The Netherlands, in 2006
(with the plans to have it in Thessaloniki, Greece, in 2007, in England in
2008, and back to Curtea de Argeş in 2009, at the tenth edition). It was at
the second workshop when Solomon Marcus launched a nice “definition” of
life, in the form of the slogan-equation “Life = DNA software + membrane
hardware”.

Coming back to the initial paper: I have submitted it at the beginning
of 1999 to Journal of Computer and System Sciences, and in about four
months (“Received January 13, 1999; revised June 30, 1999”) I got the
referee reports as Positive enough. The paper appeared in 2000, after
counting already some dozens of titles in the area, that is why the paper
both uses the term “P system” and ends with a bibliography containing
many titles which were not mentioned in its first version. In February 2003,
Thomson Institute for Scientific Information, ISI, nominated it as “fast
breaking paper” (see http://esi-topics.com/fbp/fbp-february2003.html).



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch02

24 G. Păun

By this time, already the membrane computing community was much
developed, especially at the mathematical level. In 2001, the first PhD thesis
in this area was presented: S. N. Krishna, on Languages of P Systems.
Computability and Complexity, IIT Madras, India. Also in 2001, the web site
in Ref. 7 was organized — it is now the most comprehensive source
of information on membrane computing. In 2000, I have introduced the
so-called P systems with active membranes, having rules for dividing
membranes; this makes possible the generation of an exponential workspace
in a linear number of steps, and in this way, by trading space for time, in
this framework we can solve NP-complete problems in linear time. This is
a very active area of research in this moment. In 2002, I have published a
first monograph [6], again with Springer-Verlag. It was maybe too early to
write a monograph, but it turned out to be very beneficial for the field, as
the book has unified the notation and systematized the stuff — including
the problems open at that time and looking of interest to me. (Several of
them have been solved in the meantime, so that a possible second edition
of the book would now look much different.)

1.3. The recent years

Let me consider “recent” the period after introducing in membrane
computing the idea of symport/antiport. Initially, it was only intuitive
that starting with multisets of objects placed in the compartments defined
by a cell-like arrangement of membranes and only moving objects across
membranes we can compute. Computing by communicating objects, not
by changing them, creating, deleting etc. Purely conservative. I have
formulated the question of find a way to formalize this intuition to several
collaborators, but without having any answer.

The solution arose during the second Workshop on Membrane
Computing, where Ioan I. Ardelean, a biologist working for the Institute
of Biology of the Romanian Academy, Bucharest (by the way: I have met
him at a bureaucratic meeting, where I have abruptly asked him whether
he would be interested in listening some details of membrane computing
and he immediately got involved in this matter; a rare situation where
the participation in a bureaucratic meeting was scientifically useful to me),
had an invited talk about the biology of the membrane, and he presented
two beautiful processes, those of symport and antiport (two chemicals pass
together through the same protein channel, in the same direction in the
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case of symport and in opposite directions in the case of antiport). Only
in the bus towards Bran Castle (for tourists, having a direct connection
with Dracula . . . ), in the tourist day of the workshop, in a discussion with
my son, Andrei already “intoxicated” by membrane computing, I had the
revelation: that’s it! So simple, so elegant, fully biological! In the next days,
we have proved that, indeed, using symport and antiport rules we can reach
again the power of Turing machines.

This idea, together with the idea of active membranes (of involving
membranes in the evolution rules, more generally, to make evolve also
the membrane structure, not only the multisets from its compartments),
have diversified very much the landscape. Indeed, a small jungle of
classes of P systems is now studied in the literature. This should not be
a surprise, because membrane computing has motivations coming from
several contradictory directions: biologists want to have as realistic as
possible models (hence full of real-biology aspects), mathematicians want
to have as elegant as possible models (hence as restrictive as possible), the
computer scientists want to have as powerful (in comparison with Turing
machines) and as efficient as possible models (solving computationally hard
problems in a feasible time, e.g. by space-time trade-off).

In the meantime, there started to appear applications. At
the beginning, as it is natural, in biology. Among the first, T. Y.
Nishida, studying photosynthesis; Yasuhiro Suzuki and his collaborators,
studying populations in ecosystems; Krishna, Krithivasan, Rama, with
(hypothetical) applications in cryptography. Then many others: I. I.
Ardelean, in collaboration with Matteo Cavaliere or Daniela Besozzi;
Vincenzo Manca and his strong group from Verona; Claudio Zandron (the
second holder of a PhD in membrane computing), Giancarlo Mauri, Alberto
Leporati and their collaborators from Milan, Italy; Marian Gheorghe,
a Romanian who moved to Sheffield, UK, especially interested in quorum
sensing in bacteria, hence in tissue-like P systems, not cell-like; Sevilla
group, in Spain, led by Mario J. Pérez-Jiménez, with rather elaborated
applications in biology/medicine (and major contributions to complexity
issues); A. Păun, at Louisiana Tech, Ruston, USA; G. Rozenberg and his
group from Leiden, The Netherlands. And others, to whom I apologize not
to mention them now.

In 2003, I started a second series of meetings devoted to membrane
computing, of a kind not very usual in (modern) science and of which
I am very proud to came to idea of organizing: some kind of workshops
with emphasis on work, with only a few (“provocative”) presentations,
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without any submission of papers and no program (committee); one week
for working together. Because everything should have a name, I called it
Brainstorming Week on Membrane Computing. Tarragona 2003, Sevilla
2004, 2005, 2006, and probably Sevilla also in the next years. The intention
was to have 10–15 researchers together, the result was around 30 in the
first year and around 45 in the next years. Incredibly efficient. People free
of any duty, just spending the time cooperating with other people from the
same area. Large volumes with papers emerged from these meetings were
edited each year — see details in the web page [7].

In the third Brainstorming, participated also by a Luca Cardelli,
who initiated a series of “brane calculi” (with “brane” coming from
“membrane”) interested only in processes based on membrane operations
(and process algebra issues). The bridge of membrane computing with brane
calculi is now an intensive direction of research — for instance, a workshop
was devoted to this topic during ICALP 2006, Venice, Italy. This bridge is of
interest also in view of the fact that the Microsoft company — with which
Luca is associated, is more and more involved in computational biology
and systems biology: in December 2005, a Centre for Computational and
Systems Biology was founded in Trento, Italy, in collaboration with the
local university (my former PhD student, Matteo Cavaliere got a position
in that center and started a good cooperation with colleagues coming from
process algebra).

Other names of the area? The list of authors of P papers from Ref. 7
is rather long, so I will only mention a very few: Dragoş Sburlan, who,
like Matteo Cavaliere started the PhD with me in Tarragona and, when
I moved to Sevilla, he also moved here (he is teaching now in Constanţ a
University, Romania). Artiom Alhazov, from Chişinău, Moldova (the most
active participant in any workshop or brainstorming, always having a
question to formulate or a new open problem after having settled a
problem). Oscar H. Ibarra and his super-efficient group from Santa Barbara,
California, USA (Oscar settled several basic open problems of membrane
computing: there are classes of P systems with infinite hierarchies on
the number of membranes; the deterministic catalytic P systems used
in the accepting mode are not universal; one can characterize context-
sensitive languages in terms of P systems with symport/antiport etc.).
Petr Sosik, from Opava, Czech Republic, always coming with surprising
results (catalytic P systems are universal, P systems with active membranes
allowed to divide non-elementary membranes characterize PSPACE).
Serghei Verlan, France, and Pierluigi Frisco, The Netherlands and then



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch02

Membrane Computing 27

England, who clarified many issues related to P systems with string-objects
processed by splicing rules. The Indian groups, centered around Kamala
Krithivasan and R. Rama, the Romanian groups (especially of Gabriel
Ciobanu, from Iaşi and Timişoara). Yurii Rogozhin (Moldova), Maurice
Margenstern (France), Natasha Jonoska (USA), Erzsébet Csuhaj-Varjú
and György Vaszil (Hungary), Rudi Freund and his group from Vienna,
Linqiang Pan and Haiming Chen (China), Natalio Krasnogor (England),
all those mentioned in the previous pages and many others who I do not
recall now.

1.4. The next years

Well, the past is hard to remember, the present is hard to understand, the
future is hard to predict.

Still, I can safely say that membrane computing will continue to be
active for a while at least because at this moment it is still growing.

For instance, a very recent and fruitful idea is that of spiking neural
P systems, incorporating ingredients from “neural computing of the third
generation”, that dealing with spiking neurons — these systems were
introduced in Ref. 4; and further details can be found in Ref. 7.

Then, membrane computing passes “Salomaa criterion”, having
applications (at least as many and at least as convincing as L systems). The
big stack is related to applications in biology and medicine. The discussion
can be longer. Biology needs models and simulation tools; after completing
the genome project, the main challenge for bio-informatics is to model and
simulate the cell as a whole. The cell is small in size but too complex for
the current models, based on differential equations. Differential equations,
continuous mathematics, in general, cannot handle processes with a small
number of agents/molecules/reactants. Exactly, this is what membrane
computing is doing. And it starts from a biological intuition, explicitly
taking the cell as a whole as its inspiration. Then, membrane computing
models are distributed, easily scalable, understandable, and programmable,
can cope with small populations of molecules and with slow reactions (none
of these features is shared with models based on differential equations).

Moreover, the range of applications was recently enlarged with two
rather promising directions: applications in economics, and in approximate
optimization. Economy is the same as biology (discrete, dealing with
multisets, in compartments etc.), with a “small” difference: in economy,
the “atoms” think (it is attributed to M. Gell-Mann, “the man with
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five brains”, the phrase “Imagine that electrons could think”), and this
makes some difference in the kind of models one can use in approaching
economic processes. Recent papers by collaborators of Adam Obtulowicz,
from Warsaw, Poland, and of Radu Păun (no coincidence of name: he
is my second son, now completing a PhD in economics at Maryland,
USA) indicate however that this is a worth-pursuing direction of research.
Similarly with the “membrane algorithms” proposed in 2004 by T. Y.
Nishida: a sort of distributed evolutionary algorithms organized in form of
P systems, and proving to be rather efficient (rapidly convergent, in many
cases giving the optimal solution, in many cases having the worst and the
average solutions better than those provided by other methods etc.).

Whether or not multiset rewriting in a cell-like membrane structure,
that is, very shortly membrane computing, will sometime become a folklore
technique in biology and economics, in the same way as today differential
equations are in physics, astronomy, meteorology and other areas, is a
question to be checked after, say, some decades. Let me only close these
historical notes with the optimistic forecast that this will be the case, and let
us pass now to a more technical (though informal) discussion of membrane
computing.

2. Elements of Membrane Computing

Of course, this is a very short introduction to membrane computing, only
pointing a few basic notions and only presenting some (types of) results
and of applications. The reader interested in details should consult [2, 6],
and the comprehensive bibliography from Ref. 7. To keep the text shorter,
I will not indicate the place where each notion was first introduced, and,
moreover, the presentation is not chronological. Such information can be
found in the three places just mentioned.

2.1. The three main classes of P systems

The field started by looking to the cell in order to learn something possibly
useful to computer science, but then the research also considered cell
organization in tissues (in general, populations of cells, such as colonies
of bacteria), and, recently, also neurons organization in brain. Thus, there
are in this moment three main types of P systems: (i) cell-like P systems;
(ii) tissue-like P systems and (iii) neural-like P systems.
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The first type imitates the (eukaryotic) cell, and its basic ingredient
is the membrane structure, a hierarchical arrangement of membranes
(understood as three dimensional vesicles), delimiting compartments where
multisets of symbol objects are placed; rules for evolving these multisets
as well as the membranes are provided, also localized, acting in specified
compartments or on specified membranes. The objects not only evolve, but
they also pass through membranes (we say that they are “communicated”
among compartments). The rules can have several forms, and their use can
be controlled in various ways: promoters, inhibitors, priorities, etc.

In tissue-like P systems, several one-membrane cells are considered
as evolving in a common environment. They contain multisets of
objects, while also the environment contains objects. Certain cells can
communicate directly (channels are provided between them), but all cells
can communicate through the environment. The channels can be given in
advance or they can be dynamically established — this latter case appears
in so-called population P systems.

Finally, there are two types of neural-like P systems. One of them are
similar to tissue-like P systems in the fact that the cells (neurons) are placed
in the nodes of an arbitrary graph and they contain multisets of objects,
but they also have a state which controls the evolution. A more promising
device was recently introduced in Ref. 4, under the name of spiking neural
P systems, where one uses only one type of object, the spike, and the main
information one works with is the distance between consecutive spikes.

The cell-like P systems were introduced first and their theory is now
very well developed; tissue-like P systems have also attracted a considerable
interest, while the neural-like systems, mainly under the form of spiking
neural P systems, are only recently investigated. Applications were reported
so far only for the first two classes of P systems, the cell-like and the tissue-
like ones.

In what follows, in order to let the reader having a flavor of membrane
computing, I will discuss in some details only cell-like P systems and refer
to the area literature for other classes.

2.2. Cell-like P systems: An informal presentation

Because from now on I only consider cell-like P systems, I will simply call
them as P systems.

In short, such a system consists of a hierarchical arrangement of
membranes, which delimit compartments, where multisets (sets with
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multiplicities associated with their elements) of abstract objects are placed.
These objects correspond to the chemicals from the compartments of a
cell; the chemicals swim in water (many of them are bound on membranes,
but we do not consider this case here, although it started recently to
be investigated), and their multiplicity matters — that is why the data
structure most adequate to this situation is the multiset (a multiset can be
seen as a string modulo permutation, that is why in membrane computing
one usually represents the multisets by strings). In what follows, I consider
the objects unstructured, hence, I represent them by symbols from a given
alphabet.

The objects evolve according to rules which are also associated with
the regions. The rules say both how the objects are changed and how
they can be moved (communicated) across membranes. There also are rules
which only move objects across membranes, as well as rules for evolving
the membranes themselves (e.g. by destroying, creating, dividing, merging
membranes). By using these rules, we can change the configuration of
a system (the multisets from its compartments as well as the membrane
structure); we say that we get a transition among system configurations.

The rules can be applied in many ways. The basic mode imitates the
biological way the chemical reactions are performed — in parallel, with
the mathematical additional restriction to have a maximal parallelism: one
applies a bunch of rules which is maximal, no further object can evolve at
the same time by any rule. Besides this mode, there were considered several
others: sequential (one rule is used in each step), bounded parallelism (the
number of membranes to evolve and/or the number of rules to be used in
any step is bounded in advance), minimal parallelism (in each compartment
where a rule can be used at least one rule is used). In all cases, a common
feature is that the objects to evolve and the rules by which they evolve
are chosen in a non-deterministic manner. A sequence of transitions forms
a computation and with computations which halt (reach a configuration
where no rule is applicable) we associate a result, for instance, in the form
of the multiset of objects present in the halting configuration in a specified
membrane.

This way of using a P system, starting from an initial configuration and
computing a number, is a grammar-like (generative) one. We can also work
in an automata style: an input is introduced in the system, for instance, in
the form of a number represented by the multiplicity of an object placed
in a specified membrane, and we start computing; the input number is
accepted if and only if the computation halts. A combination of the two
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modes leads to a functional behavior: an input is introduced in the system
(at the beginning, or symbol by symbol during the computation) and also
an output is produced. In particular, we can have a decidability case, where
the input encodes a decision problem and the output is one of two special
objects representing the answers yes and no to the problem.

Thus, we can address several types of problems in this framework. The
main two concerns the computing power of P systems (working in the
generative or accepting modes), and their usefulness in solving decision
problems (making use of the inherent parallelism, it is expected that fast
solutions to problems which are hard to solve by sequential algorithms
can be found). From both these two points of view, the results are quite
attractive: P systems with simple ingredients (number of membranes,
forms and sizes of rules, controls of using the rules) are Turing complete,
while classes of P systems with enhanced parallelism (e.g. having rules
for membrane division) can provide polynomial solutions to NP-complete
(even PSPACE-complete) problems.

The generality of this approach is obvious. We start from the cell, but
the abstract model deals with very general notions: membranes interpreted
as separators of regions with filtering capabilities, objects and rules assigned
to regions; the basic data structure is the multiset. Thus, membrane
computing can be interpreted as a bio-inspired framework for distributed
parallel processing of multisets.

2.3. Basic ingredients of P systems

Let us now go into some more specific details — still remaining at an
informal level.

As said above, we look to the cell structure and functioning, trying
to get suggestions for an abstract computing model. The fundamental
feature of a cell is its compartmentalization through membranes. The
membranes both define protected “reactors”, where specific biochemical
reactions take place (starting with the cell membrane which delimit and
protect the cell from the environment), and contain proteins which catalyze
reactions and, through protein channels, ensure the passage of chemicals
from a compartment of the cell to another compartment, as well as
the communication with the environment. Thus, the main ingredient of
a P system is the membrane structure, a hierarchical arrangement of
membranes, which delimit compartments; in these compartments, there are
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Fig. 2.1. A membrane structure.

objects, which evolve by means of rules which are also localized, assigned
to compartments.

A large variety of P systems can be obtained based on the form of
rules and the way they are used, but the membrane structure is common
to all cell-like P systems. A suggestive representation of this notion is
as in Fig. 2.1. We distinguish the external membrane (corresponding to
the plasma membrane and usually called the skin membrane) and several
internal membranes; a membrane without any other membrane inside it
is said to be elementary. Each membrane determines a compartment, also
called region, the space delimited from above by it and from below by
the membranes placed directly inside, if any exists. The correspondence
membrane-region is one-to-one, so that we identify by the same label a
membrane and its associated region.

In the basic class of P systems, each region contains a multiset of
symbol-objects, described by symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. The typical form of
such a rule is cd → (a, here)(b, out)(b, in), with the following meaning: one
copy of object c and one copy of object d react and the reaction produces one
copy of a and two copies of b; the newly produced copy of a remains in the
same region (indication here), one of the copies of b exits the compartment,
going to the surrounding region (indication out) and the other enters one
of the directly inner membranes (indication in). We say that the objects
a, b, b are communicated as indicated by the commands associated with
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them in the right-hand member of the rule. When an object exits the skin
membrane, it is “lost” in the environment, it never comes back into the
system. If no inner membrane exists (that is, the rule is associated with an
elementary membrane), then the indication in cannot be followed, and the
rule cannot be applied.

A rule as above, with several objects in its left-hand member, is said
to be cooperative; a particular case is that of catalytic rules, of the form
ca → cx, where a is an object and c is a catalyst, appearing only in such
rules, never changing. A rule of the form a → x, where a is an object, is
called non-cooperative.

The rules associated with a compartment are applied to the objects
from that compartment. The most investigated way to use the rules is the
maximally parallel one: all objects which can evolve by means of local rules
should do it (we assign objects to rules, until no further assignment is
possible). The used objects are “consumed”, the newly produced objects
are placed in the compartments of the membrane structure according to
the communication commands assigned to them. The rules to be used and
the objects to evolve are chosen in a non-deterministic manner. In turn,
all compartments of the system evolve at the same time, synchronously (a
common clock is assumed for all membranes). Thus, we have two layers of
parallelism, one at the level of compartments and one at the level of the
whole “cell”.

Note that evolution rules are stated in terms of names of objects, they
are “multiset rewriting rules”, while their application/execution is done
using copies of objects.

A membrane structure and the multisets of objects from its
compartments identify a configuration of a P system. By a non-
deterministic maximally parallel use of rules as suggested above we pass
to another configuration; such a step is called a transition. A sequence
of transitions constitutes a computation. A computation is successful if
it halts, it reaches a configuration where no rule can be applied to the
existing objects. With a halting computation we can associate a result in
various ways. The simplest possibility is to count the objects present in the
halting configuration in a specified elementary membrane; this is called
internal output. We can also count the objects which leave the system
during the computation, and this is called external output. In both cases
the result is a number. If we distinguish among different objects, then we
can have as the result a vector of natural numbers. The objects which
leave the system can also be arranged in a sequence according to the
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moments when they exit the skin membrane, and in this case the result is a
string.

Because of the non-determinism of the application of rules, starting
from an initial configuration, we can get several successful computations,
hence several results. Thus, a P system computes (one also uses to say
generates) a set of numbers, or a set of vectors of numbers, or a language.

As mentioned in the previous section, a P system can also be used in
the accepting mode, with a particular case being that of solving decision
problems, which will be discussed further in Section 2.6.

2.4. A large number of variants

Let us start by considering the possibility offered by the form of rules.
In the systems described above, the symbol objects were processed by
multiset rewriting-like rules (some objects are transformed into other
objects, which have associated communication targets). Coming closer to
the trans-membrane transfer of molecules, we can consider rules which
model the active passage of chemicals through membranes, by so-called
uniport, symport, and antiport (see Ref. 1 for details). Symport refers to
the transport where two (or more) molecules pass together through a
membrane in the same direction, antiport refers to the transport where
two (or more) molecules pass through a membrane simultaneously, but
in opposite directions, while the case when a molecule does not need a
“partner” for a passage is referred to as uniport.

In mathematical terms, we can consider object processing rules of
the following forms: a symport rule (associated with a membrane i)
is of the form (ab, in) or (ab, out), stating that the objects a and b

enter/exit together membrane i, while an antiport rule is of the form
(a, out; b, in), stating that, simultaneously, a exits and b enters membrane
i; uniport corresponds to a particular case of symport rules, of the
form (a, in), (a, out). An obvious generalization is to consider symport
rules (x, in), (x, out) and antiport rules (x, out; y, in) with x, y arbitrary
multisets of objects.

Symport/antiport rules can be used alone, thus leading to
symport/antiport P systems, or in combination with multiset rewriting
rules. In the first case, because by communication we do not create new
objects, we need a supply of objects in the environment, otherwise we
are only able to handle a finite population of objects, those provided in
the initial multisets. Thus, the environment takes an active part in the
computation, which is an attractive feature of this class of P systems,
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together with the conservation of objects, the mathematical elegance, the
computational power, the direct biological inspiration. Also the case of
evolving objects by means of multiset rewriting rules and communicating
by symport/antiport rules leads to a rather interesting class of P systems,
the so-called evolution-communication P systems.

A more general form of rules, covering both multiset rewriting and
symport/antiport rules, is that of boundary rules: u[iv → u′[iv′, where
u, v are multisets of objects and i is a membrane, specifies the fact that
the multiset u placed outside membrane i and multiset v placed inside
membrane i evolve simultaneously into multisets u′, v′, respectively. Such
rules are very powerful, because they have a high degree of context-
sensitivity.

Recently, efforts are made to also take into considerations the fact
that the cell biochemistry is controlled in a large extent by the proteins
embedded in the membranes. For instance, rules of the form a[ip|b →
a′[ip′|b′ are proposed, where a, a′, b, b′ are objects, p, p′ are proteins, and [ ip|
is a notation of the fact that p is placed on membrane i; several restrictions
can be considered, for instance, with p = p′, and/or a = b′, b = a′, etc.

We can then pass to rules which handle not only objects, but also
membranes. There is a large list of suggestions coming from biology:
membranes can be broken (and the contents remains free in the surrounding
region), divided (with the replication of the contents), their contents
can be merged or separated according to given criteria; then, there are
operations like exocytosis and endocytosis/phagocytosis, budding, matting,
gemmating (sending vesicles at specified destinations), and so on and so
forth. These last rules ensure that not only the multisets of objects evolve,
but also the membrane structure of a P system.

Many possibilities arise in what concerns the way the rules are used.
More precisely, the non-determinism of choosing the rules to apply can
be decreased in various ways: using a priority among rules (a partial
order relation), using promoters (objects which should be present in order
to apply a rule) or inhibitors (objects which should not be present),
controlling the permeability of membranes (some rules can increase the
permeability of the membrane where they are used, other rules can decrease
the permeability; a rule which asks for sending an object across a membrane
which is not permeable cannot be applied, and in this way the rules can
influence the way the next rules are chosen).

Then, we can use the rules in the maximally parallel manner, but also
in other ways: sequentially (one rule in the whole system, or in each region),
with a bounded parallelism (at least k or exactly k rules in the whole system
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or in each region), with a minimal parallelism (at least one rule is used in
each region where a rule can be used). These strategies of applying the rules
are biologically inspired but mathematically oriented; when using P systems
as models of biological systems/processes, we have to use more realistic
features, in general, of a numerical nature (e.g. reaction rates, probabilities),
computed dynamically, depending on the current population of objects in
the system.

I do not give here a formal definition of a P system. The reader
interested in mathematical and bibliographical details can consult the
mentioned monograph [6], as well as the relevant papers from Ref. 7. Of
course, when presenting a P system we have to specify: the alphabet of
objects (a usual finite non-empty alphabet of abstract symbols identifying
the objects), the membrane structure (usually represented by a string of
labeled matching parentheses), the multisets of objects present in each
region of the system (represented by strings of symbol-objects), the sets
of evolution rules associated with each region, possibly also the priority
relation for each set of rules, as well as the indication about the way the
output is defined. In the case of symport/antiport systems, also the objects
available in the environment should be specified.

2.5. Computational completeness

As we have mentioned before, many classes of P systems, combining
various ingredients (as described above or similar) are able of simulating
Turing machines, hence they are computationally complete. Always, the
proofs of results of this type are constructive, and this has an important
consequence from the computability point of view: there are universal
(hence programmable) P systems. In short, starting from a universal Turing
machine (or an equivalent universal device), we get an equivalent universal
P system. Among others, this implies that in the case of Turing complete
classes of P systems, the hierarchy on the number of membranes always
collapses (at most at the level of the universal P systems). Actually, the
number of membranes sufficient in order to characterize the power of Turing
machines by means of P systems is always rather small.

We only mention here three of the most interesting (types of)
universality results:

(1) P systems with symbol-objects with catalytic rules, using only two
catalysts and two membranes, are computationally universal.
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(2) P systems with symport/antiport rules of a restricted size (example:
three membranes, symport rules of weight 2 and no antiport rules,
or three membranes and minimal symport and antiport rules) are
universal.

(3) P systems with symport/antiport rules (of arbitrary size), using only
three membranes and only three objects, are universal.

There are several results similar to those mentioned above,
improvements or extensions of them; details can be found in Refs. 3 and 7.

We can conclude that the compartmental computation in a cell-
like membrane structure (using various ways of communicating among
compartments) is rather powerful. The “computing cell” is a powerful
“computer”.

Universality results were obtained also in the case of P systems working
in the accepting mode. An interesting problem appears in this case, because
we can consider deterministic systems. Most universalities were obtained in
the deterministic case, but there also are situations where the deterministic
systems are strictly less powerful than the non-deterministic ones.

The hierarchy on the number of membranes collapses in many cases
also for non-universal classes of P systems, but there are also cases when
the number of membrane matters, and the corresponding hierarchies are
infinite.

2.6. Computational efficiency

The computational power (the “competence”) is only one of the important
questions to be dealt with when defining a new (bio-inspired) computing
model. The other fundamental question concerns the computing efficiency.
Because P systems are parallel computing devices, it is expected that
they can solve hard problems in an efficient manner — and this
expectation is confirmed for systems provided with ways for producing
an exponential workspace in a linear time. Three main such biologically
inspired possibilities have been considered so far in the literature, and all
of them were proven to lead to polynomial — often linear — solutions to
NP-complete problems.

These three ideas are membrane division, membrane creation, and
string replication. The standard problems addressed in this framework
were decidability problems, starting with SAT, the Hamiltonian Path
problem, the Node Covering problem, but also other types of problems
were considered, such as the problem of inverting one-way functions, or
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the Subset-sum and the Knapsack problems (note that the last two are
numerical problems, where the answer is not of the yes/no type, as in
decidability problems).

Roughly speaking, the framework for dealing with complexity matters is
that of accepting P systems with input: a family of P systems of a given type
is constructed starting from a given problem, and an instance of the problem
is introduced as an input in such systems; working in a deterministic mode
(or a confluent mode: some non-determinism is allowed, provided that the
branching converges after a while to a unique configuration, or, in the
weak confluent case, all computations halt and all of them provide the
same result), in a given time one of the answers yes/no is obtained, in the
form of specific objects sent to the environment. The family of systems
should be constructed in a uniform way by a Turing machine, working a
polynomial time.

This direction of research is very active at the present moment. More
and more problems are considered, the membrane computing complexity
classes are refined, characterizations of the P �=NP conjecture were
obtained in this framework, improvements are looked for. Two important
recent results in this area are the following.

(1) The family PSPACE is equal to PMCD, the family of problems
which can be solved in polynomial time by P systems with the
possibility of dividing both elementary and non-elementary membranes.
The PSPACE-complete problem used in the proof of the inclusion
PSPACE ⊆ PMCD was QSAT.

(2) The family P, of problems which can be solved in polynomial time
by deterministic Turing machines, is the same with the family of
problems which can be solved in polynomial time by P systems with
membrane division, without using polarizations, and without using
membrane dissolution. The proof cannot be extended to the case when
membrane dissolution is used, which points out to a surprising role
played in this context by the operation of membrane dissolution, never
so far believed to be so powerful (from the efficiency point of view).
Furthermore, when both dissolution and division of non-elementary
rules are used (but not polarizations), one can solve NP-complete
problems in polynomial time, which (unless if P = NP) implies
that either dissolution or the fact that one divides non-elementary
membranes, or both together, make the difference between efficiency
and non-efficiency in this framework.
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There are in this area a series of interesting open problems, mainly
related to the borderline between efficiency (the possibility to solve
computationally hard problems in polynomial time) and non-efficiency.
For instance, we know that membrane division is necessary for efficiency.
However, all constructions from the proofs of the results mentioned
above about P systems using division of elementary membranes use
“polarized” membranes, marked with one of the three “electrical charges”
+,−, 0. It was recently shown that the number of polarizations can be
decreased to two, but it is an intriguing open problem whether or not
the polarizations can be completely removed. A similar borderline question
concerns the characterization of PSPACE: the proof uses division of non-
elementary membranes, which is a rather powerful operation, because also
the inner membranes are replicated; can this be avoided, e.g. solving QSAT
in polynomial time by using systems with division of only elementary
membranes?

2.7. Applications

I have already mentioned a series of applications of membrane computing —
and the good features of P systems which make them attractive, especially
when devising models for biology.

Actually, the applications reported up to now are developed at various
levels. In many cases, what is actually used is the language of membrane
computing, having in mind the long list of concepts either newly introduced,
or related in a new manner in this area, the mathematical formalism, and
the graphical language, the way to represent cell-like structures or tissue-
like structures, together with the contents of the compartments and the
associated evolution rules (the “evolution engine”). However, this level of
application/usefulness is only a preliminary, superficial one. The next level
is to use tools, techniques, results of membrane computing, and here there
appears an important question: to which aim? Solving problems already
stated, e.g. by biologists, in other terms and another framework, could be
an impressive achievement, and this is the most natural way to proceed —
but not necessarily the most efficient one, at least at the beginning. New
tools can suggest new problems, which either cannot be formulated in a
previous framework (in plain language, as it is the case in biology, whatever
specialized the specific jargon is, or using other tools, such as differential
equations) or have no chance to be solved in the previous framework.
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Applications of all these types were reported in the literature of
membrane computing. As expected and as natural, most applications were
carried out in biology, but also applications in computer graphics (where
the compartmentalization seems to add a significant efficiency to well-
known techniques based on L systems), linguistics (both as a representation
language for various concepts related to language evolution, dialogue,
semantics, and making use of the parallelism, in solving parsing problems
in an efficient way), economics, in devising sorting and ranking algorithms,
cryptography, approximate algorithms for optimization problems etc.

These applications are usually based on experiments using programs
for simulating/implementing P systems on usual computers, and there
are already many such programs, more and more elaborated (e.g. with
better and better interfaces, which allow for the friendly interaction with
the program). I plainly avoid to say that we have “implementations”
of P systems, because of the inherent non-determinism and the massive
parallelism of the basic model, features which cannot be implemented,
at least in principle, on the usual electronic computer — but which can
be implemented on a dedicated, re-configurable, hardware, or on a local
network, on clusters etc. This does not mean that simulations of P systems
on usual computers are not useful; such programs were used in all biological
applications mentioned above, and can also have important didactic and
research applications.

The scenario of these applications in biology (economics) is the
following: one takes a process, especially related to controlling pathways
in the cell (interplay of agents, e.g. in a market, respectively), one builds
a P system modeling it, then one writes a program for simulating this
model or one uses a program available on the Internet; using the program,
one runs experiments, changing the initial configuration, changing some
rules, tuning certain parameters. The output is in general in the form
of diagrams showing the evolution in time of the population of certain
objects. In all cases, these diagrams are much similar to the ones suggested
by laboratory experiments or by other models, and this proves that the
approach is faithful, reliable, the machinery works. Of course, this is only
half of the road, this is only “postdiction”; what remains to do is to try
predictions, working with hypotheses and providing conclusions not know
yet from experiments. The things are pretty advanced and such results are
expected soon.

Another rather promising direction of application is that proposed
recently by T. Y. Nishida: distributed evolutionary computing algorithms
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using ingredients from membrane computing in organizing the search of
good solutions to hard optimization problems. The basic variant of such
evolutionary membrane algorithms is the following one: a (small) number of
candidate solutions to an optimization problem are placed in the regions
of a membrane structure of a linear shape (with the membranes embedded
one in another one), together with local sub-algorithms which can improve
the local solutions; after a (small) number of steps of local work, when the
solutions from each membrane are evolved, the best of them is sent to the
immediately lower membrane and the worst is sent to the immediately
upper membrane (with exceptions to this rule in the innermost and the
outermost membrane); in this way, the better solutions are moved down
and the worst ones are moved up in the membrane hierarchy; this process
is iterated until either a specified number of steps is reached, or no
improvement of the best solution is obtained for a specified number of steps.
When halting, the central membrane provides the answer, the solution
to the problem. There are several variants, in terms of the number of
membranes, with the initial solutions generated by a first generation of
membrane algorithms (thus working in a two-stage manner, which proves
to be very efficient), with the possibility to create or to destroy certain
membranes during the computation etc. This strategy was checked both by
T. Y. Nishida and other researchers for a variety of problems and the results
are rather encouraging. Trusting the cell biology, I am quite optimistic with
this type of applications.
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In this text, we attempt to shortly highlight certain constitutive principles of
the particular form of knowledge provided by the digital machine, the modern
computer, in its relationship to mathematics (from which it originates) and
to the natural sciences (physics and biology). Our basic thesis is that the
historical and conceptual richness of the theory which enabled the concrete
realization of this extraordinary type of machine is far from being neutral or
transparent with regard to reality. Specifically, we will see that the digital
machine proposes causal structures and the breakings of symmetry which are
intrinsic to its theory as being the central structures of the intelligibility of
nature. This will enable to point out a distinction between “imitation” and
“modeling” in terms of simulation or formalization, and therefore enable to
highlight the limits and the potentialities of digital simulation.

1. From the Alphabet to the Machine

The extraordinary innovation to which we are confronted today is a machine
which is the result of a very specific historical evolution. This machine did
not exist “before”, in the way in which there were no mammals on earth
300 million years ago. It is within the evolutive system’s dynamics, which
constantly produces novelty, that mammals emerge: nothing miraculous,

∗Text originally written in Italian as Lezione Galileana, Pisa, 25 Ottobre 2006, in
Pianeta Galileo, 2007. A French version is also downloadable at: http://www.di.ens.fr/
users/longo.
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only a very complex mixture between invariance and variability, continuity
and change, which are in part random, and in part not yet properly
classifiable into current physical categories of determination. In a similar
or more complex fashion, human history develops, and within it, with a
continuity/discontinuity which is rich in terms of common practices, of
language, and of symbolic culture, we invented this machine, which is
in the process of changing the world. Such a machine is the culminating
point of a very specific process which begins with language, but which is
mainly influenced by the birth and development of the alphabet: the digital
machine is at first an alphabetic machine, and then a logical and formal
one. In short, it is an invention which is both extraordinary and contingent
to our culture, which is marked by the birth of the alphabet, of Cartesian
rationality, of Fregean logic, of Hilbertian formalism.

So let us enunciate the problem of considering what is the impact of
such a machine on the construction of knowledge. The machine is indeed
not neutral; it imposes upon one who uses it a history and a logic, an
organizing view of phenomena. The most deleterious cultural attitudes are
of those who remain naive before the novelty brought on by evolution and
history (or that we bring into it): not knowing how to live according to our
own knowledge, not knowing how to appreciate the originality of our own
knowledge, and projecting our latest invention onto the past, as if, while
rich in human history, it was already in the world, or if it were an accurate
image of it. And continuing to say: the universe is a big computer, or . . .

each physical or biological process is a computation. Or that Turing’s theory
is “complete” and “maximal”: even a cell’s activity or quantum computing
can be reduced to it. This is a pretense to having the “Definitive theory”,
in an Aristotelian sense.

And, most of all, we do not consider the originality of this extraordinary
science and of this technology which, by organizing our view upon
phenomena in their own way (and in their own image), help and guide
us in the acquisition of knowledge. The machine, as other instruments in
the past did and even more so, deeply impacts our relationship to science,
as the alphabet and the printing press have transformed and impacted our
societies, even the way in which we construct knowledge. I will not dwell
on all the themes we have evoked, and I will only point out the view which
computer science proposes, one imbued by a very effective organization
of knowledge into little boxes, into bits, into pixels, into a discrete or
sometimes absolute exactitude, with no smoothness, no fuzziness, no gestalt
and no alea. Or with at best some very important imitations (in a sense to
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be specified below) of such components of the world and of knowledge, but
ones which are forced or biased by their own logic.

So, I would like to readdress the fact that the roots of this machine are
very old and can be found in the alphabet. First of all, 5,000–6,000 years
ago, the alphabet was, for different reasons, an invention comparable to the
computer-mediated discretization of knowledge we have now performed.
Think of the originality of these first social groups from Mesopotamia who
fractioned the linguistic flux, a continuous spoken song, marking certain
pitches as first consonants [12]. It was the onset of a development and of
a culture which were quite different to those inherent to the hieroglyphic
writing of ideograms which proposed concepts or evoked whole images,
situations, or feelings, by means of drawings. Conversely, the alphabet
discretizes, subdivides continuous language into insignificant atoms, into the
bits which are letters. This constitutes an extraordinary leap of abstraction
by man, a way of representing linguistic interaction which absolutely did
not exist before and which will mark human culture by the (re-)construction
of meaning from elementary and simple signs without meaning, signs that
were highly abstract as such. Moreover, and this is crucial, meaning is
reconstructed through sound: the alphabet is phonetic. Meaning is provided
by the reproduction of sound, and not by the evocation of an image or of
a concept, a huge revolution. In computer science terms, the phoneme is
the alphabet’s compiler, or the “interpreter” if you wish, and it produces
meaning. By means of the drawing, hieroglyph or ideogram, the evocation
of a concept, of an emotion or of a god is conveyed in silence. The road sign,
an ideogram, imposes a direction, an order, or a prohibition in the visual
immediateness of a significant evocation: it is understood, acted upon,
without the production of sound, not even mental. If on the other hand,
for example, the indication which prohibits turning right by means of an
evocative sign is written, as is often the case in the USA, you will necessarily
pronounce the words “no right turn”, at least in thought. Producing
a phoneme, one which is exclusively mental when reading in silence, is
necessary to obtain meaning, and we all go through the difficulties posed
by our first attempts at decryption during childhood, which is necessary
performed vocally when learning (it would appear that silent reading was
not invented until the IIIrd or IVth century: before that, western man would
always read aloud). Musical writing will undergo the same process and an
expert musician mentally hears music when reading it, even silently, just as
we hear alphabet-based significant words, because they resound.
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2. The Elementary and the Complex

With the observations on the alphabet’s role, I took up the detailed and
profound observations made by Herrenschmidt in Paris, by Sini [21] and
his school in Milan, as well as to other authors: alphabetic fractioning will
orient human culture in a very strong way. Let us see how and why this has
anything to do with computer science.

The alphabet is extraordinarily effective: it forces into shape, it
canalizes and organizes thought, and it structures knowledge. First, it
introduces an original form of dualism: here, notation, there, signification,
linked by means of the phoneme, but also independent (with the ideogram,
signification is immanent to the drawing). Then, there is the conception
according to which, in order to understand the world, it is necessary to
fraction it into elementary and simple components. Democritus designated
atoms by means of the letters of the alphabet: the universe is constructed in
the image of our invention, the alphabet, and is formed by the combination
of elementary and simple components, which are indivisible, like letters.
Today, the genome is still described by means of letters of the alphabet.
Atoms, or genome’s bases and molecules, aggregate between each other,
and then, there emerges, as a pop-out, the physical object, the phenotype,
the behavior: just how meaning emerges by aggregation of letters and by
means of the phoneme. And man projects, once more, this manner of re-
constructing and of talking about the world, onto the absolute: he says that
God (or evolution) invented the world and life in the way he constructs
meaning himself with alphabetic reading, by juxtaposing signs with no
signification. Once more, the alphabet is very effective and extraordinary,
but it is not a neutral instrument, it imposes by its own force the paradigms
which will be at the origin of western science and which are still re-visited
today in contemporary science. Particularly, it proposes the paradigm that
Descartes, more than anyone else, placed at the center of knowledge: the
elementary components of the construction of knowledge must be very
simple, insecable links of the rational chain of Cartesian reasoning. Letters,
in themselves, are indecomposable (elementary), are very simple, and do
not have meaning, but when arranged together, they produce meaning that
can be very complex. Such is Democritus’s approach to science, but also, I
insist, that of Aristotle and of Descartes: intelligibility is produced by the
decomposition of the universe into atoms and the discourse on the universe
into simple and elementary links. It is the maximal, atomic decomposition
of elements which makes the universe intelligible and discourse rigorous.
This is how Galileo and Newton work and all of modern science, with an
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incredible effectiveness, constructs knowledge, from the elementary and the
simple. It has been more productive than any other science (the Chinese
come to mind, for instance) especially for making machines, though not
exclusively. Clocks are made like this: they are composed and highly
complex objects made from simple gears and belts, in the way XVIIIth
century clockmakers would make them. And so is made the computer: the
logical gates and elementary components are very simple; programming
languages are composed of elementary and simple linguistic atoms, and used
to make systems and programs of an extraordinary degree of complexity.

However, we are faced today with an enormous difficulty, a new
challenge in terms of knowledge: in the two most innovative fields, at the
difficult frontier of knowledge, quantum physics and biology, the elementary
is in fact very complex, and this is the great challenge to our understanding,
with our being so alphabetized. We can refer to the case of strings or to the
phenomena of non-separability and non-locality specific to quantum physics
which are of an extreme level of complexity and which concern elementary
components of matter. So, our projection of the alphabet upon the world,
the letter-atoms of Democritus, suddenly faces an obstacle, which is for the
moment insurmountable (we cannot understand microphysics in classical
or relativistic terms). The same thing is happening with the analysis of
living phenomena: the cell, as elementary component of living matter (if
we split it, it dies; it is no longer living) is very complex, and must be
considered in its unity. Some biologists (Gould, among many others) assert
that a eukaryotic cell is as complex as an elephant. Indeed, within a cell
reside the same proteinic cascades, the same type of energy production
(mitochondria, metabolism. . . ), a structuring into organs that is analogous
to that which exists in a metazoan. An aspect of complexity, the objective
one, is therefore similar in the elephant and in the eukaryotic cell. An animal
is obviously more complex than a cell from the phenotypical point of view,
but that is another type of complexity (morphological). The new challenge,
the complexity of the elementary is a conceptual obstacle to our alphabetic
and digital decomposition of the world, which is otherwise very effective:
we have difficulties overcoming it. As in quantum physics, where there lacks
unity with the classical or relativistic “field”, we have trouble unifying
the “field” of living phenomena (which we have also not yet defined)
with current biochemical theories, the theories which use macromolecules
and bases as words and alphabet. A reflection in this regard, thanks
to the contribution (by duality) of digital computer science, could
possibly help.
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3. Imitations and Models

Let us return to the digital. So, it is the strength of alphabetic culture which
has given us this machine, the digital computer, as its ultimate expression,
the culminating point of human, alphabetic, and Cartesian invention. The
machine is alphabetical, above all because everything is composed of 0s and
1s. The basic alphabet is very simple and also has very simple elements,
and it then becomes very complex, by composition. It is Cartesian because
it is the maximal locus of Cartesian dualism, realized from Turing’s idea in
1936: the electrical calculating machines of that era and which continued to
be used until the 1950s did not have software that was distinguishable from
the hardware. They would have multiplication implemented within them,
in a way, and it would remain inscribed in the gears: the rules, one by one,
would shape the hardware which was constructed ad hoc. These machines
were constructed as were clocks 200 years earlier, only being more complex.
Turing’s idea, having some predecessors, was to clearly and mathematically
distinguish, in the abstract machine, the hardware, as multi-functional
physical material, from the software. Then the theory of programming,
completely independent from hardware, emerged from specific electronics.
The main idea making computer science possible is the portability of
software, in its independence from hardware: a program is written, is moved
from one machine to another, and it works. It can be sold independently.
There exists a line of work which I have practiced for a long time, that of
mathematical logician in Programming Theory, and which is completely
independent from the analysis of hardware. Naturally, to a monist like
myself, this has nothing to do with the world, and even less to do with
living phenomena: it is rather the modern image of mind/body Cartesian
dualism, with its lot of metempsychosis (the transferal of programs and
operating system from a dying computer to another) which enjoys a great
success in Artificial Intelligence and in bad sci-fi movies. I do insist,
however, that such a paradigm is rich in knowledge, beginning with the
construction of the alphabet, may be the first truly dualist experience of
man, as we were saying: insignificant sign and signification, each being
highly distinguished from the other. And, I would re-call Aristotle once
more. He outlines a theory of memory and of reasoning based on the
alphabet according to which, he asserts, the unfolding of reasoning is like
the marking, the stamping of “alphabetic signs on the body, as on a wax
tablet” [10]: it is the alphabetic signs that enable reasoning with their purely
formal dynamic which is independent from meaning. Thought resides in
the mobile impression of signs. This constitutes Aristotle’s and Turing’s
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alphabetic model of reasoning (the Turing machine could be called the
Aristotle–Turing machine): letters which move and which are impressed
upon matter (living matter, as on wax), or on the ribbon of a Turing
machine, the prototype of the modern computer. From then on, we get
to a machine which represents everything, through Cartesian and atomist
reasoning, by means of a sequence of letters without signification. This way
of understanding human (and animal) intelligence canalizes the view on
reality with great effectiveness, but it is biased, by a bias resulting on the
one hand from its dualistic aspects (that I would qualify as ferocious) and
on the other hand, from the fact of only proposing intelligibility by means
of the reduction to the simple and elementary, the sequence of ultimate and
very simple signs/atoms, without meaning. Once more, this paradigm was
very rich for (classical) physico-mathematical knowledge and technologies,
particularly, but today it remains confronted to the obstacle of this very
complex, non-alphabetical elementarity which we find in quantum physics
and biology, and which is rich in entanglements and causal circularities
specific to these two theoretical frames.

The first consequence to draw from these considerations is an invitation
to a lot of circumspection when using the computer as instrument of
intelligibility. In other words, it is important to not do like some colleagues,
in the natural sciences too, who consider as valid everything they see on
the screen, the models which the machine enable. To this day, the richness
of the digital simulation is such that it deserves a fine, an epistemological
analysis in particular, precisely in order to do better and more.

I would like to note that Turing himself, in this regard, introduced an
implicit but fine distinction between “imitation” and “model”, with the
intuition, after 1948, of an intrinsic limit to his machine which he will
qualify as “Laplacian” in the 1950s. To understand what he meant, let us
take an example, the double pendulum. It consists in a physical object
which is very sensitive to the initial conditions. It may be formalized by
two very informative differential equations determining its movements: two
rods connected by a pivot, two weights. . . from the mathematical viewpoint,
there are only two variables, one single law, gravitation, and despite that. . .
chaos. From the intelligibility standpoint, those who know non-linear
systems will immediately understand that this artifact is very sensitive to
initial conditions (the Lyapounov coefficients can tell the mathematician
this). If we launch the pendulum from certain initial values, inevitably,
within the range of possible physical measurement, and if we then re-
launch it, within the same range, that of observability, then a variation, a
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fluctuation below the observable (or non-measurable, for example thermal
fluctuation) suffices to give the double pendulum a completely different
course. The double pendulum, a perfectly deterministic machine (it is only
determined by two equations!), is sensitive to minor variations, below the
threshold of observability: it is a typical chaotic deterministic system, as
there are many of them.1

On the other hand, when observing digital simulations (an
implementation can be found on http://www.mathstat.dal.ca/∼selinger/
lagrange1/doublependulum.html), we can clearly see dense trajectories:
thanks to the simulation, we can make the pendulum oscillate long enough
and can observe that it tends to cover all the space of possible trajectories.
This is an aspect of chaos. Yet, when we click on “restart” (re-launching
the pendulum with the same initial data), it again takes the exact same
trajectory. With a real and physical pendulum however, this is absolutely
impossible. If we have a good pendulum at hand, one sufficiently insensitive
to friction, but a physical pendulum, not a virtual one, then even the
thermal fluctuation, which is inherent to the physical process, suffices to
launch it upon another trajectory, if re-initialized. Therefore, this excellent
imitation which tells us so many very useful things, what does it actually
propose? On the one hand, it shows us the density of the trajectories,
typical of deterministic chaos, but on the other hand, it causes us to

1The notion of deterministic chaos is mathematically very solid and is 110 years old
(Poincaré), even if its modern definitions date back only to the 1960s and 1970s. These
definitions may be summarized as follows: a deterministic physical system (a system
considered to be determined or determinable by an evolution function or a finite number
of equations, such as a double pendulum, the planetary system, a coin tossed within
a gravitational field over a mathematically describable area. . . ) is chaotic when it is
“topologically transitive” (there are dense orbits, that is, orbits that go everywhere within
the border conditions), when it has a “dense set of periodic points” and is “sensitive to
the initial conditions”. These properties can be described with mathematical rigor (let
us note that such is the case for the three above-mentioned systems: so is the solar
system, according to recent results, see [14]. In what concerns images, the attractor of
a non-linear system, even in one dimension (an equation, such as xn+1 = 4xn(1 − xn)),
truly evokes what Plato would also qualify as chaos (superimposition of lines or points,
“creazy” oscillations. . . ). Deterministic chaos is therefore not an oxymoron, despite of
some bad vulgarization, but a very solid mathematical notion. As a great instrument of
intelligibility, it enables to understand classical randomness, as opposed to quantum

randomness, see [4], as a determination which does not imply predictability (nor
iterability: a classical process is random when, in general, it does not follow the same
“trajectory” despite being iterated with the same initial conditions, within the limit of
physical measure); this is the great shift relatively to Laplace’s conjecture, according to
which “determination implies predictability”.



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch03

Critique of Computational Reason 51

lose an essential piece of information: in a dynamic (non-linear) system,
it especially occurs that, once re-initialized, the systems never take the
same “trajectory”. And this because of “principles” which are inherent to
physics (modern physics): physical measurement is always an interval and
the (inevitable) variation, below the threshold of measurement, suffices to
very quickly produce a different evolution. The analysis of the equations
within the continuum leads to an understanding of this random aspect
of chaos, whereas computational imitation makes it disappear completely,
by the discrete nature of its data types. Only tricks and stratagems
(pseudo-synchronization with distant watches, pseudo-random generators
introduced ad hoc) can imitate, but not modelize, the physical phenomenon.
That is, they can deceive the observer of virtual reality, as Turing hopes
to deceive the observer in the man/machine/woman imitation game, as
he called it, but they cannot propose a physico-mathematical “model” of
the possible causal structure of the physical phenomenon, as I would like
to explain. For those with a physico-mathematical sensitivity, it is almost
funny to see a computer simulation in which, by giving the same numeric
initial values, a double pendulum, or a turbulence, will take the exact same
trajectory, because this makes no physical sense. This is a case of imitation,
as Turing would rightfully say. Indeed: this term which I have used in a few
articles (downloadable from my web page), has been suggested by Turing
who, after 1948, began to take interest in dynamical systems, and stopped
asserting that his machine was a huge brain. In 1950, he wrote an article
on how to imitate human behavior using his machine [22] (the imitation
game between the machine and. . . a woman: can they be distinguished
in a teletype-mediated dialog? Turing had a complex relationship with
women and was homosexual). In 1952, though, he published an article on
morphogenesis [22] which proposed a very original non-linear system of
action-reaction and dynamic diffusion, in which he provided what he called
a model of the physical phenomenon in question. He thus sought to propose
a structure of determination, by means of the equations describing causal
interaction in the action-reaction process.

I hope that the implicit distinction to be found in Turing and which I
have developed here can be useful to better understand what is done thanks
to the digital machine: so I will return to it.

A model (a physico-mathematical one) is an attempt to express a
possible structure of physical causality. For example, Newton considers
movement (of planets and of masses) and writes equations, among
which f = ma, that make the dynamics intelligible. That is, he makes a
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formidable proposition, as follows: force causes acceleration, with mass as
proportionality coefficient. He proposes, with his equations, a structure of
causality which will enable to deduct, among other things, the Kepler orbits.
From there on, extremely interesting and fertile relationships have been
developed between physics and mathematics. We have learned to make
organizing propositions of the physical world like never before. Someone
who, like Newton, is mainly preoccupied with metaphysics, believes that
the latter is reality as such; someone more laic would rather say: this
is construction of knowledge, with all the objectivity of modern science,
but with its own specific conceptual and practical instruments, and so
with its own dynamic and evolution. In Einstein’s relativity, this causal
relationship is profoundly altered and, in a certain sense, it is inversed: it
is the acceleration over a geodesic in curve Riemannian varieties which,
by producing a field, induces a force. A formal symmetry, the equation, is
broken in various ways (reversed in some cases), thus changing intelligibility
(and physics). These are great successes of the relationship between physics
and mathematics. In reference to the mathematical modelization of physical
phenomena, in [3], we further highlight the role of symmetries and their
breakings in the analysis of physical causality.

Imitation is something different, and Turing puts it quite nicely:
imitation is a construction which does not claim to make the phenomenon
intelligible, by proposing a causal structure for it (or better, symmetries
or symmetry breakings). Imitation resembles causality, it can even be
indistinguishable from it, but it does not assume any obligation towards
it, towards this aspect of physical intelligibility of what is observed or
imitated. For example, if you throw a coin, you will get a sequence of 0s
and 1s: you will then be able to imitate the process, the sequence, with a
random number generator, on a computer. You will have an imitation in
the sense where the distribution of probabilities of 0s and 1s is analogous
and indistinguishable, for a sequence of reasonable length. One can say that
this imitation is excellent, but it has nothing to do with the modelization of
a toss of a coin. Because one — the toss of a coin — is the process related
to a deterministic system, which is extremely sensitive to the conditions of
the environment, to the slightest variation in the parameters at play, and
is therefore another paradigmatic example, although a bit different from
the previous, of deterministic chaos, and a paradigm of randomness by the
extreme sensitivity to border conditions. The other, the computer’s pseudo-
generator of random numbers, is also a system that is deterministic, but not
chaotic: a computer’s random number generator is a short one-line program
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which multiplies sines and cosines, rounds up the results, in a manner
inherent to the machine, and produces a sequence of 0s and 1s, seemingly
distributed at random. But there is nothing random to the process, as
opposed to the completely unpredictable toss of a coin: if you click “restart”
while leaving all of the machine’s parameters identical (something quite
possible, even most easy), the supposedly random series will in fact be
an identical reproduction, according to the arithmetic law/determination
written into the program, which unfolds in the realm of the discrete. The
process is Laplacian and is predictable, by iteration, identically, as a time
symmetry shift. You will never manage to reproduce such a succession of
0s and 1s with a second launch sequence of the same coin. The causal
structures differ profoundly, even if the imitation is excellent.

The essential difference resides in the fact that the basis of digital
data is exact; it has, “naturally”, the discrete topology, that is, its access
proceeds bit by well separated bit. Physical measurement is, conversely,
and by physical principle, always an interval that is well represented by
continuous mathematics (where discrete topology is not “natural”). In
chaotic deterministic systems, a fluctuation/variation below the interval
of measurement induces radically different evolutions for the system. This,
Turing observes in the 1950s, is theoretically avoidable in the Discrete State
Machine he has invented and as he named it in those years (and such is
also the case in practice: iteration and portability of software, a fundamental
form of iteration, work; see [16] for references and further reflections; note
that in the 1930s Turing had called his machine the Logical Computing
Machine).

3.1. Models, processes, and unpredictability

The notion of chaotic dynamics is a mathematical notion and, as we re-
called above, it is possible to give a precise definition of a dynamical
chaotic system, determined by one or several equations or, more directly,
by an evolution function (an endomorphism of a metric or topological
space) with the properties enumerated in the note. Unpredictability, on
the other hand, is given in the interface between a physical process and
mathematics: in order to be able to speak of unpredictability, it is necessary
to try to predict (pre-dicere, in Latin), by means of mathematics, the
evolution of a phenomenon, a physical one, typically. A process is not
unpredictable in itself, without an attempt to account for it or to predict
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it by means of a mathematical system. On the other hand, a system of
functions or a mathematical function is not unpredictable in itself either,
as some claim. On the contrary, theorems demonstrate that each Cauchy
problem, a very large class of differential equations or, more generally, any
reasonable system of equations (or of functions) that is expressible and
has a solution, has a computable one. And it is indeed necessary to look
attentively to find a system of equations with computable coefficients, of
course, having non-computable solutions (see [13] for references). In fact,
staying in the field of mathematics, we compute, and if we have good
theorems of existence (and unicity, if possible) of solutions, we can predict
the evolutions, point by point, each time that computable data is provided
to the given system. Mathematics is written in an finite and effective
language, even when speaking of infinity: it is very difficult, if we do not
make efforts by using stratagems and tricks, to mathematically provide
a non-computable function or number (we only know of diagonal tricks,
since Turing).

In general, thus, any mathematical determination (by a system of
equations, by an evolution function) is computable, hence predictable, when
it is given a computable input. And randomness, within mathematics, only
happens at infinity. In short, an infinite sequence is Martin-Löf random
when it passes all the effective tests (for a recent survey, see [19]): its
initial (finite) segments will be just uncompressible; they coincide with their
shortest formal generation program rather than being random, for the very
reason that they are generated by a program (by the finite sequence itself)
and are therefore predictable. It is necessary to have an underlying physical
process in order for a finite sequence or for the production of a single number
(the 0s or 1s of a toss of a coin) to be considered as random: unpredictability
then, and hence even finite randomness, is once again the result of a friction
between mathematics and the world. In a system of equations or for an
evolution function, having no reference to a physical process, but which
satisfy the mathematical definition of chaotic determination, randomness
is asymptotic, as is Martin-Löf type of randomness (which is well defined
at infinity).

The problem is precisely that of the intended meaning of the given
mathematical formalism, that is, of the relationship to the process one
wants to formalize/modelize. Or, better, in the measurement which enables
to pass from the physical process to the mathematical system. When this
is an interval, one cannot provide the mathematical model with an exact
value, even less than with an integer or with a computable number and,
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in non-linear dynamics, the input interval is “mixed” and (exponentially)
extended through the evolution (over time, generally). This makes the
modeling mathematical system obviously computable, but unable to predict
the evolution of the modelized physical process. This does not prevent
very important qualitative information from making formalization of great
interest (this is Poincaré’s geometry of dynamical systems, but Hadamard
as well should be quoted, for his early work on the geodetic flow on
hyperbolic surfaces).

To summarize, it does not make sense to speak of the unpredictability
of a mathematical system, even a chaotic one, if it is not in relationship
with a (presumed) physical process which it modelizes: it is the latter which
will be unpredictable (relatively so); the mathematics, for their part, are
(almost always) computable. There are also systems and processes which
are deterministic and predictable, that is, Laplacian ones: in this category
we find processes of which the modelization is well expressed by linear
(continuous) systems, or by systems of which the relevant databases are
discrete. In both cases, the problem of measurement does not have any
important consequence (linearity: the interval is not “mixed”) or is not an
issue (discreteness: each datum is well separated and accessible, exactly).

In the second case, the difference, I insist, is due to the exact nature
of the discrete database, “digit by digit”, well separated the ones from
the others, without the problem of measurement: its “natural” topology
(and the term “natural” has a mathematical sense) is discrete, it isolates
each point from the other and enables to access it with exactitude). By
physically realizing Turing’s discrete state machine, we dared to invent
a physical process where measure is exact, in contrast to what happens
for all (classical) processes.2 Moreover, iteration, which is also a form
of prediction, is a constitutive principle of computer science, daughter
of formal arithmetics: Herbrand and Gödel’s primitive recursion, since
1930–1931, when the first ideas on computability appear, is iteration (in
addition to the updating of a register). The portability of software is
also a question of iteration, as we said: one wants to be able to run an
expensive program identically, so that it may perform adequately and do
always exactly the same thing. On the other hand, we summarize and
insist, the physical measure (classical and relativistic) is not an integer,
but always an interval, which we represent better by means of a Euclidean

2Unfortunately, computer scientists, reverse the names and call exact in reference to
physical measure (in a continuum), and approximated the round-off.
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topology within a continuum: a fluctuation/variation below the interval,
therefore an inaccessible one, causes different evolutions in deterministic
non-linear or chaotic systems. And in non-linear continuous dynamics, what
is most interesting is exactly the role of variation, if possible under the
threshold of physical observability, as Turing remarked in his 1952 paper,
a pioneer in this as in inventing the discrete artificial processes. Obviously,
these two different mathematical structures construct different ideas of
the world; both being very effective in terms of their own objectives, but
remaining profoundly different, at least as for proposed causal relations
and symmetry breakings (the round-off is a symmetry breaking, at each
step of the computation and this is very relevant in computer modeling of
non-linear dynamics).

One who does not make the difference and who identifies the physical
process and its various mathematical representations, a double pendulum or
the toss of a coin, say, which we understand as a dynamics in the continuum,
with discrete computational imitation, even enhanced with pretty virtual
images of a rolling coin, loses the intelligibility of both processes, and
will not manage to do better. How can one indeed “do better” and
introduce randomness into a discrete state machine? Concurrent networks
and systems enable better imitations than pseudo-random generators: a
network of discrete state machines, typically the Web, or a system of
concurrent processes (which concur with a same process and are not
a priori synchronized by an absolute and common Newtonian clock), that
are distributed in space, are indeed immersed in the space-time which
we understand better by means of continuous mathematics. The spatio-
temporal shifts, even of relativistic type if the network is distributed over
the surface of the earth, and multi-tasking, be it local or global, would
present phenomena specific to “continuous dynamics”. However, if we
simulate with network randomness or concurrency the local randomness due
to thermal fluctuation in a double pendulum, we will considerably improve
the discrete imitation, but will still continue to produce an imitation:
we do not take what we consider to be the local cause, inaccessible to
measurement, of random variation. But it is already better to import, into
discreteness which iterates, the classical or relativist randomness of space-
time, which does not iterate.

Let us note, by the way, that Turing, in his 1950 article, says twice that
his machine “is Laplacian”, because, in such machine, determination implies
predictability. “In concrete machines also”, he insists. Let us restate it like
this: prediction is possible, at least by iteration, even if there are tricks,
not inherent to either sequential or concurrent calculus, which can nicely
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imitate randomness. On the other hand, his 1952 system for morphogenesis
is profoundly non-Laplacian and such is its most important property, Turing
emphasizes: the dynamics of forms always vary, are deterministic and
unpredictable, because are very sensitive to the initial conditions.

I spoke earlier of microphysics, and I would like to mention that it
is now possible to enhance a computer with the randomness of quantum
mechanics, modifying even more deeply the nature of our digital machines,
which are deterministic in the Laplacian sense. Actually, it is possible to
improve the computational imitation of classical randomness (dice, the
coin) with “intrinsic” forms of randomness thanks to quantum physics.
We can purchase a box in Geneva which produces 0s and 1s, according
to the up spin and down spin of an electron. In this case, the standard
theory says: the probability is intrinsic, because it is the theoretical
consequence of the principle of indetermination of quantum physics and
of quantum measurement, which is always a value of probability. From the
standpoint of the analysis of the 0–1 sequence, the probability distribution
is analogous. But the difference is radical with regards to both the classical
digital computer and to the toss of a coin (the quantum probabilities are
“entangled”, see [4]. It is then a question of three different structures of
randomness which can at best resemble each other by possible reciprocal
imitation, but nothing more.3

3In the computer scientist jargon, a formal process is called “non-deterministic” when
it is described by a non-functional relation (a non-deterministic Turing Machine, for
example: to one input value, there correspond many outputs). We are then simply away
from the classical notion of (mathematical) determination, for which a given evolution
function or the solution of the intended system of equations, if any, is supposed to be
“single-valued”. Then and in contrast to the claim by many, in this case randomness and
unpredictability are not at stake: the formalism simply does not describe a deterministic
process, whether chaotic or not. It is a non-functional formalism, where an input number
does not determine an output number, but an entire set of them. Unpredictability
and randomness may be called upon if one happens to associate the non-functional
relation to, say, the measure of a quantum process: the result then may be considered a
possible (random) value amongst probable ones, thus unpredictable, in the interface
between mathematics and physical processes, as usual. We then get into quantum
randomness, which we mentioned and which differs from classical randomness as related
to deterministic chaotic systems, with their peculiar properties of sensitivity to initial
conditions etc. In this and many other cases, the conceptual confusion is often remarkable
in unexperienced people and lead to the vision of a “Computing Nature”. The point is
that Frege and Hilbert have forbidden to relate the foundation of mathematics (as logic
or formal systems) to physical space and time, or meaning in them, and computing
originated from logic, programmatically far away then from natural sciences. Without
their courageous step, of which they were largely aware, we would not have these fantastic
artifical machines, but we must now be as well aware of the conceptual gap we created
by the peculiarities of the arithmetic tool.
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4. Calculus, Physics, and Living Phenomena

I hope that everything we have covered, the dualist and alphabetical nature
of these extraordinary machines, the specificity of their causal, Laplacian
regime as Turing observed, the difference between computational imitation
and physico-mathematical modeling, helps to perceive the immense yet
singular role of computer science for the sciences. When we see human
beings moving or cells developing in a virtual context, I hope the reason
why they seem a bit strange is clear: the dynamics of the images, even their
aesthetics, gives an intuition of it at first glance: they actually iterate,
and that is what produces this sensation of something. . . artificial and
unaesthetic. Indeed, you know perfectly well that if you press “restart”,
they will make exactly the same movements (when has anyone seen a group
of extras on a movie set or a group of monocellulars who, if we produce them
again in their Petri, will take exactly the same trajectories, make exactly
the same movements?). The astute creator of virtual realities, if required to,
will imitate physical (and animal) variation by means of variegated effects
(economical, classical pseudo-randomness generators or using temporal
shifts by multi-tasking or concurrency), but often, the designer will not
think of it and the “restart” will be somewhat disappointing. It is not
a question here of life or of “will” et similia: I have recently seen some
very nice images of lots of balls bumping into each other but. . . after
having pressed the “restart” button, they took the exact same, identical
trajectories. Try to make a real swarm of physical balls circulate and bang
each other: you will see a different dynamic each time (the programmer
immediately improved the imitation in question, by means of network’s
randomness). One must be cautious, because what I am trying to describe
is an evocative problem, an issue for the imagination, one of great scope: it is
a play between the representation, the model, and the imitation of dynamics
that is at the center of scientific intelligibility and, I would add, of human
intelligibility. Without speaking of human movements which are not balls
and which are complicated by a series of other causal elements, as always
among living phenomena. This, for intelligibility, is a huge problem that has
not yet been fully analyzed. Computational simulations cost a lot less than
experiments: hence, many physicists renounce to conducting experiments
and work only on implementations. The simulation of turbulence, an
extreme case of chaos, not only enables to save on wind tunnels, but its
iterability is also an asset: the expert’s qualitative judgment at a glance
may require as many iterations as necessary in order to appreciate the
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behavior of an airplane’s wing or of the cockpit, and the small variations
induced give a good appreciation of the dynamic’s sensitivity (but this does
not enable to analyze an assemblage of wing and cockpit: virtuality in this
case is too far removed from the phenomenon which is excessively complex).

The debate in physics in this regard becomes more profound and
with intelligence: theorems of stability or of “shadowing” (the physical
or continuous trajectory “follows” the virtual trajectory), in some cases,
make explicit that which discrete simulations show us: the analogies and
differences with regard to processes which we understand better by means
of the analysis of the non-linear continuum.

To summarize, in computational imitation one can have a very original
detachment from the world, which is a possible asset if it is well understood.
The digital world is an extraordinary invention, as important as the
alphabet of which it is a further extension, as I was saying. But we should
know how to remain in our knowledge, how to grasp its originality with
regard to previous history or the way our knowledge re-proposes each
time a different perspective on the world: like the alphabet, which did not
exist prior to its very audacious invention, the computer is a very original
proposition by mankind, it shapes our way of constructing knowledge, it
marks it with its own constitutive logic, its own causal regime. We are now
able to construct, by means of imitation, absolutely fantastic structures
that are, if completely static, true models. However, it must be clear
that, each time a dynamic is involved, the imitation can differ completely
from the modelization. What is needed is only some element of a non-
linear dynamic or a bit of something human (or animal). In physical (and
biological) dynamics, variation also counts, and very much so; in particular,
the variation below the threshold of observability, which rapidly modifies
the same observable processes. The computer, which has a single “intrinsic”
level of observability, that of digital round-off, which is specific to its discrete
data structure, does not know how to capture such a variation, the one
which counts the most in sensitive dynamics, and for this reason, it can
iterate in an always identical manner.

In the imitation of living phenomena, the problem is particularly
serious. If we perform a virtual animation of a living organism, we will
right away have the impression that something is wrong, as I was saying,
because variability is at the center of life, exactly in the way that identical
iteration is at the center of digital computation. What counts in living
phenomena, is that a cell is never identical to a mother cell: the orgin of the
phylogenetic drift; then, we have Darwinian selection. At the cognitive level,
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an action is never identical to a preceding action, though it may sometimes
bear a close resemblance. The difference in this case is particularly marked,
also with regard to the physical notion of variation, because variability
includes the individuation of living entities (its “specificity” with regard
to the “genericity” of the physical experimental object, see [3]). Although,
there does exist in living phenomena a very rigid chemical fragment of
phylogenetic memory, DNA, it is only a component of the ontogenetic
dynamic: with RNA and non-linear reciprocal interactions, it is at the
origin of the proteinic cascades which occur during mitosis, meiosis, and
embryogenesis, in one of the most complex and least understood dynamics
there are. DNA is of course a very important component from the hereditary
point of view but, from the cell structure to the epigenetic context,
many other factors contribute to ontogenesis; particularly, a multitude of
irreproducible and irreversible dynamics, which are at the center of the
variability of living phenomena. In this case also, the presumed Democritean
alphabet and the notion of program are absolutely insufficient (causally
incomplete, see [17]) for understanding the biological dynamic in which
non-reversible and uniterable processes contribute in an essential way to
the production of ontogenetic and phylogenetic variability, without which
there would be no evolution nor life.

I would like to insist here on a later distinction and precision concerning
the more general difficulty of making life intelligible using our current
mathematical tools. Mathematics is a science of invariants and of the
transformations preserving them. We begin with rotations, translations,
Euclidean homotheties that preserve symmetries, up to transformation
groups and invariants, as in Klein’s classifications of various Riemannian
geometries (Euclidean, elliptic, hyperbolic). The (mathematical) theory of
categories explains this well, by identifying the objects (invariants) and
the transformations which preserve them (morphisms, functors, natural
transformations). Discrete mathematics, and hence computer science, adds
invariance to this by iteration, a sort of symmetry by temporal translation.
What can one say when mathematics, constructed this way, are applied to
the analysis of living phenomena? Where can one find as much conceptual
and physical stability? At the phenomenal level, life exists precisely by
opposite properties: next to “structural stability”, a very weak form of
invariance, variability is perhaps the main “invariant”, because without it
there would be no phylogenetic drift, in other words, no evolution. And no
ontogenesis, with its variability and non-iteratability of relevant processes.
Structural stability does not have the characteristics of mathematical
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invariance, despite the attempts by René Thom to grasp it using the
instruments of Singularity Theory (and the successes in the analysis of
the morphogenesis of some organs, in phyllotaxis in particular).

The efforts of some research groups (including mine) consist in
identifying the invariants that are specific to living phenomena and are
insufficiently described by current physico-mathematical theories. We speak
of this in the book we mentioned, where we put the emphasis on the great
temporal, even inter-specific invariants, and also on a notion derived from
physics, but which is unsuitable for known physical dynamics, that of the
“extended critical situation”. Living phenomena, we conjecture and try to
express rigorously, would find itself in a singular mathematical situation in
the technical sense, usually punctual in mathematics, but yet extended, in
this case, in a non-zero measure space, a spatio-temporal interval.

5. But. . . Natural Processes Compute?

Let us take once more a step back into history. In the 1930s, from the works
of Herbrand and Gödel, numerous formal systems for computability enabled
to make rigorous the intuitions of the founding fathers of mathematical logic
(Peano and Hilbert, among others): the deductive certainty of mathematics
lies in its potential mechanization. It was then an issue of associating with
formal deduction, so clearly defined by Hilbert and his school, an adequate
mathematical notion of effective calculus or of “potentially mechanizable”.
And this in the domain of systems based on arithmetics, which Frege
and Hilbert had set at the center of the foundational project, and for
good reasons at that: the profound crisis which toppled the geometrical
certitudes of Euclidean space. Over the course of the following years,
Church, Kleene, and others proposed other logico-formal systems, which
were apt to grasp this originally informal notion of effective deduction. The
breakthrough however, the forerunner of computer science, occurred in the
years 1935–1936: at that time, Turing invented his “abstract” machine,
and Turing and Kleene demonstrated the equivalence of various formalisms
for effective calculus, all being grounded on integer arithmetics, of course.
But why would the TM, beyond the demonstrated universality (invariance)
of computational systems, have such an important role for the successive
developments of computer science? Well, some other formalisms would in
fact be much better, from several points of view, and more interesting from
the mathematical standpoint.
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The lambda calculus by Church, for example, possesses “specific
theorems” which are very interesting (Church–Rosser, normalization. . . )
and which rigorously correlate the notion of calculus to that of formal
proof, which is the aim of such works (certainty in a proof is the
effective computability of it, they said). Conversely, the TM does not
possess interesting theorems of its own and if it is used for purposes
of demonstration, for complexity analyses for instance, one is eager to
prove that they are independent from the chosen computational formalism
(modulo some “simple” translations). But Turing’s system expresses better
than any other the nature of the effective computation: it is a writing-re-
writing of the numbers and of the very rules for the calculation. The logical
Computing Machine, as the author calls it in 1936, writes or deletes 0s or 1s,
moves a read/write head one notch to the left or to the right over a ribbon,
by changing its internal state at each step, on the basis of a finite set of
instructions (here is the afore-mentioned distinction between hardware —
ribbon and head — and software, the instructions: write, delete, move left-
right, change state etc.).

Inspired by Gödel, Turing codifies also the instructions with 0s and 1s:
on the ribbon, the instructions themselves can be written and modified, as
numbers. A machine whose ribbon has instructions and inputs written on
it and which is programmed to apply the former to the latter, the universal
machine, will become the model for modern compilers and operating
systems, in short, the model for computer science, even current. Hence, its
mathematical and practical importance: it makes explicit the computation
in its elementary and simple components, as transformation of numbers
and of programs on numbers, them too being codified by numbers. And
this because the calculation is the writing–re-writing of numbers.

Yet, some claim that Nature computes. What sense does it make then to
wonder if this table, a waterfall, a strike of lightning, a falling body, a double
pendulum, an electric current, a growing tree, a quantum dynamic. . . any
natural process, computes? To make them compute, it is necessary, first of
all, to decide where is the input (when the computation begins), where it
ends (the output), and then associate numbers to them. In other words,
it is necessary to associate these pre-chosen input–output states/instants
to numbers by means of physical measurement. Since Riemann–Einstein
or Poincaré and Planck, it had been understood that this process, the
measurement, has a huge importance for physics: reference systems and
measure are crucial in relativity; the evolution of a chaotic dynamic
can depend on fluctuations or variations below the threshold of possible
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measurement; quantum indetermination, a key property of measurement,
has changed microphysics. But Frege and Hilbert have forbidden us to
think to the guys above when doing foundations of mathematics, as if
this foundation could be detached from that of physics (see [3]) and lead
us to excellent mathematics (logic), to a fantastic digital device and. . . to
the catastrophic philosophy of nature that largely accompanied logic and
computing or their vulgarization (the brain, the DNA, the Universe. . . are
a big logical computing machine; a Laplacian one, of course4).

I think that, as first approximation, we should, instead, assert that

no natural process computes .

And this is due to the key issue, for modern non-Laplacian physics: the
issue of measure and access to phenomena. Yet, following a path that went
from the invention of the number, of course rooted in pre-human, animal
practices of “small-scale counting”, and from the writing of the number and
of the alphabet which alone enabled to conceive the numeric codification of
meaningless letters,5 we have achieved the masterpiece of formalizing the
alphanumeric Cartesian dualism which is the TM. Then, we were able to
transfer such a logico-mathematical invention to physical machines, using
artificial processes that are truly original, having the rare quality of evolving
by discrete states, a quality obtained with great intelligence by means of
valves and transistors, diodes and chips. Therefore, at each moment, the
access to the data is exact, measurement is certain (and easy), and does
not present the problems of continuous dynamics, as Turing observes with
a rare lucidity in his 1950 article (only under the bias and the myths of
Artificial Intelligence one could fail to grasp his point, see [16] where that
paper is understood in parallel with the 1952 paper by Turing [22]), nor
does it present the problems associated with quantum processes. In short,
to make non-Laplacian, dynamic or quantum processes “compute”, it is
necessary to take measurements, and this is a crucial issue for both theories.
The huge problem of modern “quantum computing” is precisely that “what
is computed is not what is measured”. In other words, the evolution of a

4Fortunately, some have started to reverse the trend and open logic to the world.
By symmetries in rules, for examples, or by ideas inspired from the non-commutative
geometry, based on quantum non-commutative measurement.
5In the many Chinese war treaties there exists no cryptography, already present with
Caesar or in the biblical Kabala; at most, in Chinese, a concept would be evoked instead
of another, in order to deceive the enemy who remained uninformed of the ambiguity
game.
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system, described for instance by Schrödinger equations, occurs in Hilbert
spaces with complex values and formal calculations, for example, the sums
that express quantum superposition, are performed within the field of
complex numbers. Measurement, on the other hand, is performed within
the field of real numbers, by taking the modules of complex values and by
losing that which constitutes the very structure of entanglement. This is the
conceptual barrier which still fails to make the numerical use of quantum
superimposition or entanglement phenomena something topical: in other
words, we are still theoretically far from obtaining, after the measurement,
the numeric (real) results which fully use quantum non-separability (the
original contribution of quantum computing).

It is obvious that some physical phenomena, Laplacian or linear ones
for example, enable an easy and effective association of numbers to process
and that it is therefore possible to say that they “compute”. In chemistry,
say, the processes of molecular interaction may be exhaustively described
by “discrete state” systems (atom by atom), to a point of making a
great part of theoretical chemistry into a “system of alphabetic rewriting”.
Nonetheless, in general, the problem of measurement or the production
of data from the world, a challenge of modern physics, is not an issue
within the inventive audacity of discrete state, digital, computer science.
Addressing this problem confers precise meaning to otherwise vague and
wild imaginings about computation and nature: in order to associate a
physical process to numbers and to an input/output computation, it is
necessary to perform a measurement.

And here lies one of the reasons for the lack of success of analogous
computations. Created prior to Turing’s type of discrete computability,
the Differential Analyzer by V. Bush from MIT was, for example, and
since 1931, a splendid system of analog integration (a little bit in the way
that a surface “computes” a curve’s integral): it was later on developed by
Shannon in 1944 as the general purpose analog computer (GPAC). But,
once again, the approximation of the measurement, the low effectiveness
of the underlying continuous process, the uncertainty of iterability and
portability, all these blocked its developments. And there were probably
other reasons too, such as the effectiveness of digital technology (its
compressibility and its varied codificability: how can one analogically
transfer via a telephone cable the equivalent of 20 megabytes, thus
providing digital TV, the Internet and unlimited phone services?), but also,
maybe, the conveyance of an arithmetico-linguistic prejudice. Mathematical
certainty lies in arithmetics, all foundationalists will say from Frege and
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Hilbert onwards; knowledge is in language, will say Frege and the analytical
philosophers, especially from the Vienna podium; language, broken down
in the alphabet, is codified in arithmetics (Gödel and Turing). And the
virtuous-vicious circle sets in, excluding the rest: arithmetics language
(arithmetic) machine and back.

To return to the alphabet, to think that natural processes compute is
like thinking that we produce sequences of letters when we speak. It is a
“comic strip” vision of language; western comic strips, that is, because
Chinese children certainly think that when speaking, humans produce
ideograms which are concepts and sounds, as in their comics. And we
do emit a continuous song, decomposed by our very audacious ancestors
from Mesopothamia into a musical-alphabetic notation, who linked writing
and song together by means of the phoneme. An undertaking with deep
historical roots, yet conventional. Try transcribing an animal’s cry or song:
in the four languages which come to my mind, the dog’s bark is transcribed
as bau-bau, arf-arf, bu-bu, woof-woof. However, I have observed that dogs
do bark the same way in the four countries in question. The transcription
of Keshua, an exclusively spoken Andean language, was a difficult and
highly controversial undertaking, for being transcribed into Latin letters
(and why not into Arabic or Jewish alphabets? a pure contingency of
history). Typically, Spanish phonemes were forced upon it, while modeling,
while forcing it into a stream and transforming the language which had
an obviously very original musicality. No, we do not produce letters when
speaking, in the same way that natural processes do not produce numbers
and do not compute, and the mediation of measurement is a critical node.
Grasping this point is essential to making the most of our extraordinary
human logico-mathematical and then physical invention, the discrete state
arithmetic machine, the electronic-digital calculator. And maybe, begin to
think of the next machine: history is not over, with digital computability.

6. Mnemonic Interlude

After an excess of mathematical evocations, I would like to comfort the
reader by brushing, briefly and less formally, the issue of memory. It is a
curse that the same word is used in reference to animal (human) memory
and to digital databases. The difference is abysmal indeed. What is most
important in human (and animal) memory is forgetfulness. Forgetfulness is
constitutive of invariance and, therefore, of conceptual abstraction, because
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in this way, we can forget the details, that which are “unimportant”. Let
me explain. We do not remember an image, an event, pixel by pixel,
exactly. Our view or understanding is intentional, from the onset, that
is, that there is a “goal”, an objective to our comprehension or emotions,
an intent in our reading of the world which is always active, and which
selects that which must be preserved by memory, that which is of interest.
Our perception of the world is always a hermeneutic. Memory, moreover,
evokes and causes one to re-live events by reconstructing, each time at least
a little bit differently, the image, the event, by interpolating, by revisiting
meaning, by emphasizing one trait instead of another. Never will memory
reproduce experience exactly, pixel by pixel. And so memory contributes to
abstracting “that which counts”, it proposes and constitutes invariants, that
is, traits, gestures, “Gestalts” and then relatively stable concepts, which
language and writing contribute to make common and to later stabilize, to
make them relatively independent from transformations in the ecosystem.

And so it re-constructs while forgetting the relatively insignificant
elements, those which are insignificant with regard to our goals, by
jettisoning that which is useless. This way, we can recognize a school mate
30 years later thanks to his smile, which is a movement, or thanks to a
certain tilt of the head, or a fold which forms under his eyes when he
speaks. These are dynamics which are all important in our old affective
rapports. Pixel by pixel, this face has nothing in common with the one from
30 years earlier: movements, selected by us as invariants and intentionally
meaningful, are all that remain. But that is enough for us, and it is precisely
what counts: to have forgotten the exact face, in this case, is fundamental
in order to recognize the new, because the old one and its details no longer
exist. And all this is the opposite of digital memory, which must be exact:
what a disaster it would be if, when opening a file a year later, a comma was
to be in a different place. What a disaster it would be if a Web page, opened
a second time, were to be scrambled due to a memory or communication
failure. In computer science, everything is done in order for databases
(and communication) to be exact, pixel by pixel. The Web (Internet), this
extraordinary “database” for humanity, potentially available to all, must
be exact: there lies its strength. Of course, even the Web is dynamic and
“forgetful”: sites will appear and disappear, and they are modified. But, this
will be due to human intervention: the network of machines must have, in
itself, an exact and perfect memory. This is the opposite of intentional,
selective and constitutive dynamic of meaning and invariance, in the
variability, in the active forgetfulness which is animal memory, in which the
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forgetting of irrelevant details contributes to the construction of the relevant
invariant, the very intelligibility of the world. The extraordinary interest of
the Web resides precisely in its role as complement (for its originality as
a human invention, in my view one as important as the invention of the
printing press) to the forgetfulness and the dynamic of our animal memory a
memory which language, writing and the printing have already considerably
enhanced for mankind, by contributing to its stabilization. What a mistake
to believe that the relevance of digital computing was to be the artificial
copy or replacement of human intelligence: it did much more, it enriched it
in a revolutionary way.

7. Conclusion: A Question of Principles

In this short presentation, we have attempted to highlight some “principles”
or foundational elements which govern great mathematical options for the
intelligibility of natural phenomena. If we consider the objective of this
informal remarks, being mainly computer-science oriented, we have not
addressed with sufficient detail the direct and highly fecund relationship
between mathematics and physics, even if it was always in the background.
Specifically, we have only brushed upon the resemblance of the great
principles of conceptual construction, between physics and mathematics,
which justify the “very reasonable” effectiveness of mathematics in physics
(there are, as to say, “co-constituted”, as stressed in [3], in contrast
to the arithmetized foundation, Frege-Hilbert style). And only will such
an analysis enable to better grasp the limits of mathematical or digital
modelization in biology, even to move forward, maybe with new ideas
(and conceptual structures). The identification of order or symmetry
principles, in mathematics, or the highlighting of the foundational role,
in physics, of the geodesic principle, as we did in [3], must be developed
in order to grasp “that which underlies” and which unifies or distinguishes
whole branches of knowledge, the choice of methods and of instruments,
explicit and implicit, the constitution of their meaning or the “origin”,
in an often more conceptual than historic sense, but also in a historical
sense. And this in order to question these very principles, if necessary
and if that enables to make other fragments of the world intelligible.
Indeed, on the one hand, understanding that common construction
principles, from Euclid to Riemann and to Connes (the major name in
contemporary geometry of quantum mechanics), on the basis of the access
to and measurement of space (from Riemann’s rigid body to Heisenberg’s
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non-commutative matricial algebra, to which Connes refers), by founding
geometric organization, reinforces the sense of each corresponding theory,
all the while grasping the radical changes of perspective provided by each
of these approaches. Likewise, the fact of highlighting that the geodesic
principle may make intelligible a scientific span going from Copernic and
Kepler to Schrödinger’s equations (derivable from Hamiltonian optimality,
as are Newton’s equation, in suitable abstract spaces) enables to grasp, in a
single glance, the strength of the theoretical proposition in modern physics,
in its successive developments. On the other hand, the “foundational”
operation, which counts for us too, consists in a critical “reflection” upon
the principles of each science, of “taking a step to the side”, of looking at
them from a distance, even in order to put them into question, particularly
when turning to other scientific fields.

This is what we do when observing, in the book with Bailly, how the
phylogenetic (and, in part, ontogenetic) “trajectories” of living matter must
no longer be understood as “specific” (geodesics), but rather as “generic”
(“possibilities” of evolution), whereas, it is rather the living individual
who is “specific”. In other words, in physics, the (experimental) object
is generic (a body, a photon. . . can be replaced by any other, in theory
and in experiments) and follows specific “trajectories” (critical geodesics),
in opposition to biology. It is a duality with physics which enables to
appreciate the necessity of a theory specific to living phenomena and
which enriches the underlying physical principles — which also participate
to the intelligibility of living phenomena. It is the foundational analysis
conducted in the book which should enable to highlight the strength and the
limitations of the physico-mathematical and computer science framework,
its non-absolute character, and the boundaries of its universality. A
framework which therefore needs to be completely re-thought outside of
its historical fields of construction: the very fruitful relationship between
physics and mathematics.

The aim of a foundational analysis today is certainly not that of the
founding fathers who rightly sought certitudes during a period of great
foundational crises, particularly that of the crumbling of absolute Euclidean
time-space, a goal which was highly justifiable 100 years ago and which
was already put into question by a few, including the second Wittgenstein
(some still existing logician philosophers reveal rather psychotic traits, in
their quest for “unshakable certainties”). Today’s aim is rather one of
practicing an “ethic” of knowledge, in order to move forward: the duty
of each researcher of making explicit the great organizing principles of his
or her knowledge, of viewing them with a critical eye, in order to do better,
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especially by turning towards other scientific fields, where they may be
insufficient for understanding or may be put into question, even radically,
as happened in both relativity and quantum mechanics. This is the sense
of the dynamic universality specific to scientific knowledge, which is quite
different from any form of absoluteness.

Particularly, it is important to be cautious with regard to these
extraordinary images provided by the discrete state machine: they are rich
of knowledge, but propose an understanding of the world which is deeply
rooted in the principles of alphabetic representation/reduction and even
more so on atomism, dualism, and iterability, which are insufficient today
for understanding physical processes, and even less so for understanding
those specific to living phenomena. Contemporary science, however, with its
technical depth and strength, could not exist without the digital simulation
and, in general, without the contribution of computer science: for this
reason, it is necessary to develop a scientific analysis of what it says,
precisely, by putting aside, in the same way that Vaucanson’s mechanical
puppets were quickly forgotten, the myths of a computational Universe,
of digital calculating brains, of genetic “programs” and other projections
of latest available technologies upon phenomena, an increasingly ridiculous
reading of the world, with its iteration over the centuries.
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The theory of computation generally considers functions that map discrete
denumerable structures into structures, while most practical computation is
numerical in scope and deals with real numbers. Computing with real numbers
is still the bread and butter of the key computer applications such as medical
diagnostics, large science, engineering design, sensing and signal processing,
business, commerce, the stock market, and so on. While Turing machines and
models derived from the logical behavior of computation provide universal
models of computation for discrete structures, one can also consider the
question of how to characterize universal models of numerical computation.
By describing the “G-Network” or “random neural network” and examining its
ability to approximate functions, this paper provides an example of a “universal
model” of computation for continuous and bounded functions, and also shows
how discrete continuous time stochastic systems can offer intriguing models of
computation.

1. Introduction

The G-network (GNN) or random neural network (RNN) was introduced in
the late 1980s [5,6,12] based on two different paradigms. The first paradigm
was motivated by the need to develop a precise mathematical representation
of the apparently spiked and random behavior of most neurons in the
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mammalian brain. Thus, in this respect, the RNN is one possible model of
how the brain computes, which in itself is an important scientific question.
The second paradigm that has inspired GNN [9,10, 13, 14, 17, 25, 29, 30, 32]
is that of queueing theory, a topic in probability theory which is over 100
years old, and which is widely used in industry to evaluate the performance
of manufacturing systems, service systems, communication networks, etc.
Within queueing theory GNN have introduced new paradigms including
“negative customers” which destroy work (rather than add additional work
as normal customers do), and “triggers” which are special control customers
which displace work from one queue to another. In the sequel, we will
refer to the models covered by the RNN and G-networks as the GNN, a
compromise between the term G-networks and the term RNN.

The GNN is a mathematical model which has a countable and
unbounded state space, and in this respect it is an infinite state automaton,
with “jumps” between states over time. Furthermore, the GNN operates
in continuous time, differing from automaton models whose dynamics is
described in discrete unit time steps. Thus, the GNN is also quite different
from other models of neuronal computation such as the McCulloch-Pitts
“sigmoidal” or so-called “connexionist model”. With respect to the Hopfield
model, or the Boltzman machine models of neuronal computation inspired
by spin glass theory of statistical mechanics, the GNN allows for an infinite
number of internal states for each neuron contrary to these earlier models
which typically only allow binary values for the internal state of neurons.
For a review of classical models of neuronal networks the reader is referred
to [3].

Although, the GNN is a discrete state-state space model, it is also
a probabilistic model in that transitions from state to state over time
do not occur in a deterministic manner but are defined via probability
distributions. The probabilistic nature of the model is required by both of
the application areas which have motivated the model. As we had mentioned
earlier, spike trains observed in the neuronal networks of the mammalian
brain have an apparent random nature; similarly in complex systems such as
the Internet, flows of packets occur at apparently random intervals induced
by the numerous complex interactions within such systems and by the
unpredictable nature of network users. Thus, the probability distribution of
the state of the network, rather than the state itself, is the quantity that can
be computed. As a result, even though the underlying structure is discrete,
the quantity one is computing is a real number and hence the GNN is also a
tool for modeling real-valued rather than discrete computation. As we shall
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see below, it is in a well-defined sense a universal model of computation
in that it can be used to approximate a class of useful functions, i.e. those
which are continuous and bounded. Note that the approximation capability
of neural networks is a well-known question that has been studied by
different authors, for instance in [4].

Several applications to practical problems in information engineering
[8, 15, 16, 20–23, 35, 36] have used the GNN because of its ability to store
or learn patterns efficiently [12] and because of its ability to act as an
optimizing network, i.e. a network whose dynamics reduces some well-
defined cost function over time.

In this paper, we review the introductory theory of the GNN and
consider two of its extensions: the bipolar GNN (BGNN) [7] and the
clamped GNN (CGNN) introduced in [26]. The introductory theory will
be presented for the general network that admits feedback loops among
its cells or neurons. Then, we will show that the feed-forward CGNN and
the BGNN with s hidden layers (total of s + 2 layers) can be used to
uniformly approximate continuous and bounded functions of s variables.
This text relies heavily on the presentation in [33]. In [26], we develop
a different approach to show that the clamped and bipolar GNN’s have
the universal approximation property, using a constructive method which
exhibits networks constructed from a polynomial approximation of the
function to be approximated. However, the construction in [26] does not
offer a scheme to restrict the size of the network as a function of the number
of variables s. Thus, the approach we discuss here not only offers a universal
approximation for a class of significant numerical functions, but also
indicates that the size of the network being used, in numbers of neurons or
cells, is proportional to the square of the number of variables of the function.
In this sense, we are proposing a “small” universal model of computation.

2. The GNN and Its Extensions

Consider a system consisting of n interconnected “neurons” which
communicate via “positive” and “negative” signals. The ith neuron’s state
i = 1, . . . , n at time t is represented by its “potential” Ki(t), which is a
non-negative integer, and the state of the network at time t, is a vector of
non-negative integers K(t) = (K1(t), . . . , Kn(t)). We will denote by k and
ki arbitrary values of the state vector and of the ith neuron’s state.

If Ki(t) > 0, then neuron i may “fire” in the interval [t, t + dt] with
probability r(i)dt + o(dt), or not fire with probability 1 − r(i)dt + o(dt),
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where r(i) ≥ 0 is a real number which we call the firing rate of neuron i.
This firing activity of different cells at time t occurs independently between
cells and only depends on the internal state of the neuron itself. If the
neuron fires, the following events occur:

• Ki(t + dt) = Ki(t) − 1;
• With probability p−(i, j), Kj(t + dt) = Kj(t) − 1 if Kj(t) > 0 and

Kj(t + dt) = 0 if Kj(t) = 0 and
• With probability p+(i, j), Kj(t + dt) = Kj(t) + 1,

where for each i,
∑n

j=1[p
+(i, j) + p−(i, j) = 1 − di, and 0 ≤ di ≤ 1 is

interpreted as the probability that the signal or spike that left neuron i when
it fired has not been able to reach another neuron, or has been forwarded
out of the network. Note that p−(i, j) is the probability that the spike
leaving neuron i “inhibits” neuron j, while p+(i, j) is the probability that
it excites it. It is convenient to define the excitatory and inhibitory firing
rates of neurons via the quantities ω+(i, j) = r(i)p+(i, j) and ω−(i, j) =
r(i)p−(i, j).

In addition to the firing activity of the neurons, spikes may also enter
the network from some outside source and this is represented as follows: In
the interval [t, t + dt]

• With probability Λidt + o(dt) an excitatory spike arrives to neuron i

from outside the network and Ki(t + dt) = Ki(t) + 1, where Λi ≤ 0, or
• With probability λidt + o(dt) an inhibitory spike arrives to neuron i

from outside the network and Ki(t+dt) = Ki(t)−1 if Ki(t) > 0, where
λi ≤ 0, while Ki(t + dt) = 0 if Ki(t) = 0.

Again, the assumption is that these external arrival streams of spikes
to each cell are independent of each other. We see that in all cases, an
inhibitory spike that arrives to a neuron that is quiescent (i.e. whose state
has the value zero) has no effect.

Based on these assumptions, the state transitions of the network can
be derived as a system of Chapman–Kolmogorov (C–K) equations [1]
which describe in precise terms the dynamics or state transitions for the
probability distribution:

p(k, t) = Prob[K(t) = k|K(0) = k0], (1)

where k = (k1, . . . , kn), ki ≥ 0, denotes a particular value of the state
vector. Here k0 is some appropriate initial value of the state and is the
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equivalent of the “initial” state of an automaton. The C–K equation is the
counterpart of the state transition function of conventional finite or infinite
automata. Let ei denote an n-vector each of whose elements are zero, except
for the ith element which takes the value +1.

For the GNN the C–K equation becomes:

dp(k, t)
dt

=
n∑

i=1,j=1,i�=j

[(p(k + ei + ej) + p(k + ei)1[kj = 0])ω−(i, j)

+ p(k + ei − ej)1[kj > 0]ω+(i, j)]

+
n∑

i=1

[p(k + ei)(ridi + λi) + p(k)1[ki = 0]λi

+ p(k − ei)1[ki > 0]Λi] (2)

for any vector k, with ki ≥ 0 for all i ∈ {1, . . . , n}.

2.1. Stationary or steady-state solution

The first result we present concerns the stationary joint probability
distribution of network state:

p(k) = lim
t→+∞ p(k, t). (3)

Consider the following system of non-linear equations for i = 1, . . . , n:

qi =
λ+(i)

r(i) + λ−(i)
(4)

λ+(i) = Λ(i) +
n∑

j=1

qjω
+(j, i),

λ−(i) = λ(i) +
n∑

j=1

qjω
−(j, i). (5)

Theorem 1 (Theorem 1 of [5]). If all the qi, which are the solution
of the equation (4) exist and satisfy 0 ≤ qi < 1, then the stationary joint
probability of the GNN state is given by:

p(k) =
n∏

i=1

(1 − qi)qki

i . (6)

Intuitively speaking, the λ+(i) and λ−(i) are the total average arrival
rates of positive and negative signals to each neuron i. Furthermore, the qi
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is the stationary probability that neuron i is excited and therefore that it
is able to fire. Note that the qi whose form is given above, are expressed
as the solution of a non-linear system of equations. Therefore, the second
result that we will recall concerns the existence of the solution presented
in Theorem 1. The proof of the following result, given in the Appendix of
[12], is based on Brower’s fixed-point theorem.

Theorem 2. There always exists a non-negative solution (λ+(i) ≥
0, λ−(i) ≥ 0) to the equation (4).

2.2. The bipolar GNN or BGNN

The GNN model was extended in [7] by introducing the artifact of “positive
and negative” neurons. The resulting Bipolar GNN (BGNN) can also be
viewed as the coupling of two complementary standard GNN models. In
the BGNN, the two types of neurons have opposite roles.

A positive neuron behaves exactly as a neuron in the original GNN.
A negative neuron has a completely symmetrical behavior, namely, only
negative signals can accumulate at this neuron, and the role of positive
signals arriving to a negative neuron is to eliminate negative signals which
have accumulated in a negative neuron’s potential. A positive signal arriving
to a negative neuron i cancels a negative signal (adds +1 to the neuron’s
negative potential), and has no effect if ki = 0.

This extension is in fact mathematically equivalent to the original GNN
described above, with respect to the specific form taken by the stationary
solution (Theorems 1 and 2). However, the use of both positive and negative
neurons allows the BGNN to become a convenient universal approximator
for continuous functions because of the possibility of using both positive
and negative valued functions of the input variables. Let P and N denote,
respectively, the indices of the positive and negative neurons in the BGNN.
In the BGNN, the state of the network is represented by the vector k(t) =
(k1(t), . . . , kn(t)), so that ki(t) ≥ 0 if i ∈ P and ki(t) ≤ 0 if i ∈ N .

In the BGNN, the emission of signals from a positive neuron is the same
as in the original GNN. Similarly, a negative neuron may emit negative
signals. A signal leaving negative neuron i arrives to neuron j as a negative
signal with probability p+(i, j) and as a positive signal with probability
p−(i, j). Also, a signal departs from the network upon leaving neuron i

with probability d(i). Other assumptions and denotations retain as in the
original model. If we take into account the distinction between positive and
negative neurons, Theorems 1 and 2 can be summarized as follows for the



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch04

Deterministic Computation with Random G-Networks 77

BGNN. The flow of signals in the network is described by the following
equations:

λ+(i) = Λ(i) +
∑
j∈P

qjω
+(j, i) +

∑
j∈N

qjω
−(j, i), (7)

λ−(i) = λ(i) +
∑
j∈P

qjω
−(j, i) +

∑
j ∈ Nqjω

+(j, i), (8)

and

qi =
λ+(i)

r(i) + λ−(i)
, i ∈ P, (9)

qi =
λ−(i)

r(i) + λ+(i)
, i ∈ N. (10)

Using a direct extension of the results for the conventional GNN, it can
be shown that a non-negative solution {λ+(i), λ−(i), i = 1, . . . , n} exists to
the above equations. If the 0 ≤ qi < 1, i = 1, . . . , n, then the steady-state
joint probability distribution of network state is given by [7]:

p(k) =
n∏

i=1

(1 − qi)q
|ki|
i , (11)

where the quantity qi is the steady-state probability that node i is “excited”.
Notice the |ki| exponent in the expression which is due to the fact that
the k′

is can be positive or negative, depending on the polarity of the ith
neuron.

3. Approximation of Functions of One Variable by the GNN
with a Bounded Number of Layers

Consider a continuous function f : [0, 1]s �→ R of an input vector X =
(x1, . . . , xs). Since, an [0, 1]s �→ Rw function can always be separated into
a group of w distinct functions [0, 1]s �→ R, we will only consider outputs
in one dimension. The sequel of this paper is therefore devoted to how a
continuous function f : [0, 1]s �→ R can be approximated by neural networks
derived from the GNN model. To approximate f , we will construct s-input,
1-output, L-layer feed-forward GNN’s. We will use the index (l, i) for the
ith neuron at the lth layer. Furthermore, when we need to specify this, we
will denote by Ml the number of neurons in the lth layer.
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The network under consideration is organized as follows:

• In the first layer, i.e. the input layer, we set Λ(1, i) = xi, λ(1, i) = 0,
r(1, i) = 1, so that q1,i = xi, for i = 1, . . . , s.

• In the lth layer (l = 2, . . . , L), Λ(l, i), λ(l, i), and r(l, i) are adjustable
parameters, and ql,i is given by:

ql,i =
Λ(l, i) +

∑
1≤h<l

∑
1≤j≤Mh

qh,jω
+((h, j), (l, i))

λ(l, i) + r(l, i) +
∑

1≤h<l

∑
1≤j≤Mh

qh,jω−((h, j), (l, i))
(12)

where the connection “weights” ω+(·, ·) and ω−(·, ·) are also adjustable
parameters.

• In the Lth or output layer there is only one neuron. As suggested in
[5], we can use the output function:

AL,1 =
qL,1

1 − qL,1
(13)

whose physical meaning is that it is the average potential of the output
neuron as the output of the network. In this manner, we will have
AL,1 ∈ [0, +∞), rather than just qL,1 ∈ [0, 1].

3.1. Technical premises

Before we proceed with the developments concerning GNN approximations,
we need some technical results. They are similar to some technical results
used in [26] concerning continuous and bounded functions f : [0, 1] �→ R for
a scalar variable x. The generalization to f : [0, 1]s �→ R is direct and will
be examined in Section 4. The proofs are given in the Appendix.

Lemma 1. For any continuous and bounded f : [0, 1] �→ R and for any
ε > 0, there exists a polynomial:

P (x) = c0 + c1

(
1

1 + x

)
+ · · · + cm

(
1

1 + x

)m

, 0 ≤ x ≤ 1, (14)

such that supx∈[0,1] |f(x) − P (x)| < ε is satisfied.

The second technical result concerns the relationship between
polynomials of the form (14) and the GNN.
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Lemma 2. Consider a term of the form

1
(1 + x)v

,

for 0 ≤ x ≤ 1, and any v = 1, 2, . . . . There exists a feed-forward GNN with
a single output neuron (v + 1, 1) and input x ∈ [0, 1] such that

qv+1,1 =
(

1
1 + x

)v

. (15)

The following lemma shows how an arbitrary polynomial of the form
(14) with non-negative coefficients can be realized by a feed-forward GNN.

Lemma 3. Let P+(x) be a polynomial of the form (14) with the restriction
that cv ≥ 0, v = 1, . . . , m. Then there exists a feed-forward GNN with a
single output neuron (O) such that:

qO =
P+(x)

1 + P+(x)
, (16)

so that the average potential of the output neuron is AO = P+(x).

The fourth technical result will be of use in proving the approximating
power of the “clamped GNN” discussed below.

Lemma 4. Consider a term of the form

x

(1 + x)v
,

for 0 ≤ x ≤ 1, and any v = 1, . . . , m. There exists a feed-forward GNN with
a single output neuron (v + 1, 1) and input x ∈ [0, 1] such that

qv+1,1 =
(

x

1 + x

)v

. (17)

We state without proof another lemma, very similar to Lemma 3, but
which uses terms of both forms of 1/(1 + x)v and x/(1 + x)v to construct
polynomials. Its proof uses Lemmas 3 and 4, and follows exactly the same
lines as Lemma 3.
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Lemma 5. Let P o(x) be a polynomial of the form

P o(x) = c0 +
m∑

v=1

[
cv

1
(1 + x)v

+ dv
x

(1 + x)v

]
, 0 ≤ x ≤ 1, (18)

with non-negative coefficients, i.e. cv, dv ≥ 0, v = 1, . . . , m. Then there
exists a feed-forward GNN with a single output neuron (O) such that:

qO =
P o(x)

1 + P o(x)
, (19)

so that the average potential of the output neuron is AO = P o(x).

The next lemma is a technical premise of Lemma 7.

Lemma 6. For any ( 1
1+x )i (0 ≤ x ≤ 1, i = 1, 2, . . .) and for any ε > 0,

there exists a function

P1(x) = b0 +
b1

x + a1
+

b2

x + a2
+ · · · + br

x + ar
, 0 ≤ x ≤ 1, (20)

where ak > 0, k = 1, . . . , r, such that supx∈[0,1] |( 1
1+x )i − P1(x)| < ε is

satisfied.

Proof. We proceed by induction. For i = 1, the conclusion obviously holds.
Now assume it is true for i = j, i.e. for any ε > 0, there exists a

P (j)(x) = b
(j)
0 +

b
(j)
1

x + a
(j)
1

+
b
(j)
2

x + a
(j)
2

+ · · ·+ b
(j)
m

x + a
(j)
m

, 0 ≤ x ≤ 1, (21)

where a
(j)
k > 0, k = 1, . . . , m, such that supx∈[0,1] |( 1

1+x )j − P (j)(x)| < ε.
Then for i = j + 1,

(
1

1 + x

)j+1

=
(

1
1 + x

)j ( 1
1 + x

)
= b

(j)
0

1
1 + x

+
m∑

k=1

b
(j)
k

x + a
(j)
k

1
1 + x

.

(22)
When a

(j)
k �= 1,

b
(j)
k

x + a
(j)
k

1
1 + x

=
b
(j)
k

a
(j)
k − 1

(
1

1 + x
− 1

x + a
(j)
k

)
(23)
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which is in the form of Eq. (20). When a
(j)
k = 1,(

1
1 + x

)2

= lim
η→0

1
(1 − η + x)(1 + η + x)

= lim
η→0

1
2η

(
1

1 − η + x
− 1

1 + η + x

)
(24)

which can be arbitrarily approximated by a function of the form (20).
Therefore, ( 1

1+x )j+1 can also be approximated by a function in the form
of Eq. (20). Through mathematical induction, the conclusion holds for any
i = 1, 2, . . . . �

The following lemma is the preparation for the construction of a single-
hidden-layered BGNN for the approximation of one dimensional continuous
function.

Lemma 7. For any continuous function f : [0, 1] �→ R and for any ε > 0,

there exists a function P1(x) in the form of (20) such that supx∈[0,1] |f(x)−
P1(x)| < ε is satisfied.

Proof. This is a direct consequence of Lemmas 1 and 6. �

3.2. BGNN approximation of continuous functions of one

variable

The technical results given above now pave the way for the use of the
Bipolar GNN (BGNN) with a bounded number of layers. Specifically in
Theorem 4, we show that a BGNN with a single hidden layer can uniformly
approximate functions of one variable. The multi-variable case is discussed
in Section 4.

Let us first recall a result from [26] concerning the case when the
number of layers is not bounded.

Theorem 3. For any continuous function f : [0, 1] �→ R and any ε > 0,

there exists a BGNN with one positive output neuron (O, +), one negative
output neuron (O,−), the input variable x, and the output variable y(x)
such that:

y(x) = AO,+ + AO,−, (25)

AO,+ =
qO,+

1 − qO,+
, (26)

AO,− =
−qO,−

1 − qO,−
, (27)



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch04

82 E. Gelenbe, Z.-H. Mao and Y. Li

and supx∈[0,1] |f(x) − y(x)| < ε. We will say that the BGNN’s output
uniformly approximates f(x).

Proof. The result is a direct application of Lemmas 1 and 3. Apply
Lemma 1 to f and express the approximating polynomial as P (x) =
P+(x) + P−(x), so that the coefficients of P+(x) are non-negative, while
the coefficients of P−(x) are negative:

P+(x) =
m∑

i=1

max{0, ci}
(

1
1 + x

)i

, (28)

P−(x) =
m∑

i=1

min{0, ci}
(

1
1 + x

)i

. (29)

Now simply apply Lemma 3 to obtain the feed-forward GNN with an output
neuron (O, +) whose value is:

qO,+ =
P+(x)

1 + P+(x)
, (30)

and the average potential of the output neuron is AO,+ = P+(x). Similarly,
using the non-negative polynomial |P−(x)| construct a feed-forward BGNN
which has positive neurons throughout, except for its output neuron, along
the ideas of Lemma 4. Its output neuron (O,−) however is a negative
neuron, yet all the parameter values are the same as those prescribed in
Lemma 4 for the output neuron, as they relate to the polynomial |P−(x)|.
Thus the output neuron takes the value:

qO,− =
|P−(x)|

1 + |P−(x)| , (31)

and the average potential of the output neuron is: AO,− = −|P−(x)|,
completing the proof. �

The next theorem shows the approximation capability of a BGNN with
a single hidden layer.

Theorem 4. For any continuous function f : [0, 1] �→ R and any ε > 0,

there exists a BGNN of three layers (only one hidden layer), one positive
output neuron (O, +), one negative output neuron (O,−), the input
variable x, and the output variable y(x) determined by (25) such that
supx∈[0,1] |f(x) − y(x)| < ε.
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Proof. The result is obtained by using Lemma 7. Applying Lemma 7 to f ,
we express the approximating function as P1(x) = P+

1 (x) + P−
1 (x) so that

the coefficients of P+
1 (x) are non-negative, while the coefficients of P−

1 (x)
are negative:

P+
1 (x) = max{0, b0} +

r∑
k=1

max{0, bk} bk

x + ak
, (32)

P−
1 (x) = min{0, b0} +

r∑
k=1

min{0, bk} bk

x + ak
. (33)

Now construct a BGNN of three layers: one output layer with one
positive output neuron (O, +) and one negative output neuron (O,−) in
it, one input layer with one input neuron (1, 1) in it, and one hidden layer
with r neurons (2, 1), . . . , (2, r) in it. Now set:

• Λ(1, 1) = x, λ(1, 1) = 0, r(1, 1) = 1, d(1, 1) = 0,
• ω+((1, 1), (2, k)) = 0, ω−((1, 1), (2, k)) = 1/r, r(2, k) = ak/r, Λ(2, k) =

ak/r, λ(2, k) = 0, for k = 1, . . . , r,
• p+((2, k), (O, +)) = p−((2, k), (O, +)) = (max{bk, 0}r)/(2a2

kCMAX),
p+((2, k), (O,−)) = p−((2, k), (O,−)) = (|min{bk, 0}|r)/(2a2

kCMAX),
for k = 1, . . . , r, where CMAX = max{1, |b0|, |bk|r

a2
k

, k = 1, . . . , r},
• Λ(O, +) = λ(O, +) = max{b0, 0}/(2CMAX), r(O, +) = 1/(2CMAX),

Λ(O,−) = λ(O,−) = |min{b0, 0}|/(2CMAX), r(O,−) = 1/(2CMAX).

It is easy to see that q1,1 = x, and that

q2,k =
ak

ak + x
, k = 1, . . . , r, (34)

qO,+ =
P+(x)

2CMAX

1
2CMAX

+ P+(x)
2CMAX

=
P+(x)

1 + P+(x)
, (35)

qO,− =
|P−(x)|
2CMAX

1
2CMAX

+ |P−(x)|
2CMAX

=
|P−(x)|

1 + |P−(x)| . (36)

Therefore, AO,+ = P+(x), AO,− = −|P−(x)|, and y(x) = P1(x),
completing the proof. �
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3.3. CGNN approximation of continuous functions

of one variable

We can also demonstrate the approximating power of a normal feed-forward
GNN by just adding a “clamping constant” to the average potential of
the output neuron. We call this extension the “clamped GNN (CGNN)”
since the additive constant c resembles the clamping level in an electronic
clamping circuit. Let us first see the corresponding result from our previous
work [26].

Theorem 5. For any continuous function f : [0, 1] �→ R and any ε > 0,

there exists a GNN with two output neurons (O, 1), (O, 2), and a constant
c, resulting in a function y(x) = AO,1 + AO,2 + c which approximates f

uniformly on [0, 1] with error less than ε.

Proof. Use Lemma 1 to construct the approximating polynomial (14),
which we write as P (x) = P+(x) + P−(x) where P+(x) only has non-
negative coefficients c+

v , while P−(x) only has non-positive coefficients c−v :

c+
v = max{0, cv},

c−v = min{0, cv}.
Notice that

− 1
(1 + x)i

= 1 − 1
(1 + x)i

− 1 =
i∑

j=1

x

(1 + x)j
− 1,

so that

P−(x) =
m∑

v=1

|c−v |
v∑

j=1

x

(1 + x)j
+

m∑
v=1

c−v . (37)

Call c = c0 +
∑m

v=1 c−v and for some dv ≥ 0 write:

P (x) = c +
m∑

v=1

[
c+
v

1
(1 + x)v

+ dv
x

(1 + x)v

]
. (38)

Let us write P (x) = c + P ∗(x) + P o(x) where both P ∗(x) and P o(x) are
polynomials with non-negative coefficients, and

P ∗(x) =
m∑

v=1

c+
v

1
(1 + x)v

,

P o(x) =
m∑

v=1

dv
x

(1 + x)v
.
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Then by Lemma 5 there are two GNNs whose output neurons (O, 1), (O, 2)
take the values:

qO,1 =
P+(x)

1 + P+(x)
,

qO,2 =
P o(x)

1 + P o(x)
.

Clearly, we can consider that these two GNNs constitute one network with
two output neurons, and we have y(x) = c + P ∗(x) + P o(x) = P (x),
completing the proof. �

This result can be extended to the CGNN with only one output neuron
by applying Lemma 5. However, let us first consider the manner in which a
positive “clamping constant” c > 0 can be added to the average potential
of an output neuron of a GNN using the ordinary structure of the network.

Remark 1 (Adding a positive clamping constant). Consider a GNN
with an output neuron q̂ and an input vector x which realizes the function
q̂(x) = P (x). Then there is another GNN with output neuron Q(x) which,

for real c > 0 realizes the function:

Q(x) =
P (x) + c

1 + P (x) + c
(39)

and hence, whose average potential is P (x) + c. More generally, we can
exhibit a GNN with output neuron Q1(x) whose average potential is bP (x)+
c, for b > 0, c > 0.

Proof. The proof is by construction. We first take the output of the neuron
of the original network (whose firing rate is denoted 2r), and feed it into a
new neuron with probability 0.5 as an excitatory signal and with probability
0.5 as an inhibitory signal. We set the firing rate of the new neuron to r,
and introduce additional exogenous inhibitory and excitatory arrivals to
the new neuron, both of rate rc. As a result we have:

Q(x) =
rP (x) + rc

r + rP (x) + rc
,

=
P (x) + c

1 + P (x) + c
.

As a result, the new neuron’s average potential is:

Q(x)
1 − Q(x)

= P (x) + c
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and we have been thus able to obtain a new neuron with an added positive
“clamping constant” c with respect to the average potential P (x) of the
original neuron. The extension to a neuron with average potential bp(x)+ c

is straightforward. Let the additional neurons firing rate be R > 0 rather
than r and take its exogenous excitatory and inhibitory arrival rates to be
Rc. We then obtain:

Q(x) =
rP (x) + Rc

R + rP (x) + Rc
,

=
r
RP (x) + c

1 + r
RP (x) + c

,

so that if we call b = r
R , this leads to an average potential of bP (x) + c.

�

Theorem 6. For any continuous function f : [0, 1] �→ R and any ε > 0,

there exists a GNN with one output neuron (O), and a constant c, resulting
in a function y(x) = AO + c which approximates f uniformly on [0, 1] with
error less than ε.

Proof. Use Lemma 1 to construct the approximating polynomial of (14),
which we write as P (x) = P+(x) + P−(x) where P+(x) only has non-
negative coefficients c+

v , while P−(x) only has non-positive coefficients c−v :

c+
v = max{0, cv},

c−v = min{0, cv}.
Notice that

− 1
(1 + x)i

= 1 − 1
(1 + x)i

− 1 =
i∑

j=1

x

(1 + x)j
− 1,

so that

P−(x) =
m∑

v=1

|c−v |
v∑

j=1

x

(1 + x)j
+

m∑
v=1

c−v . (40)

Call c = c0 +
∑m

v=1 c−v and for some dv ≥ 0 write:

P (x) = c +
m∑

v=1

[
c+
v

1
(1 + x)v

+ dv
x

(1 + x)v

]
. (41)

Let us write P (x) = c + P o(x), where P o(x) is a polynomial with non-
negative coefficients. Then by Lemma 5 there is a GNN whose output
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neurons (O) takes the value:

qO =
P o(x)

1 + P o(x)
.

This GNN has only one output neuron, and y(x) = c + P o(x) = P (x),
completing the proof. �

The next theorem shows that a CGNN with a single hidden layer is also
a universal approximator for continuous functions on [0, 1]. We omit the
proof, which follows closely the approach used in the proofs of Theorems 4
and 6.

Theorem 7. For any continuous function f : [0, 1] �→ R and any ε > 0,

there exists a GNN of three layers (only one hidden layer), one output
neuron (O), and a constant c called the clamping constant, resulting in a
function y(x) = AO +c which approximates f uniformly on [0, 1] with error
less than ε.

4. Approximation of Continuous Functions of s Variables

Now that the process for approximating a one-dimensional continuous
functions with the BGNN or the CGNN having a single hidden layer is well
understood, consider the case of continuous functions of s variables, i.e.
f : [0, 1]s �→ R. As a starting point, consider the straightforward extension
of Lemma 1 to the case of s-inputs such that there is a polynomial:

P (x) =
∑

m1≥0,...,ms≥0,
P

s
v=1 mv=m

c(m1, . . . , ms)Πs
v=1

1
(1 + xv)mv

, (42)

with coefficients c(m1, . . . , ms) which approximates f uniformly. We now
extend Lemma 2 to Lemma 8 and Theorem 8 which are given below.

Lemma 8. Consider a term of the form

1
(1 + xz1)mz1

· · · 1
(1 + xzK)mzK

for 0 ≤ xzj ≤ 1, positive integers mzj > 0 and j = 1, . . . , K. There exists a
feed-forward GNN with a single output neuron (µ+1, 1) and input x ∈ [0, 1]
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such that

qµ+1,1 =
1

(1 + xz1)mz1
· · · 1

(1 + xzK)mzK
. (43)

Proof. Without loss of generality, set mz1 ≤ mz2 ≤ · · · ≤ mzK . The
resulting network is a cascade connection of a set of networks. The first
network is identical in structure to the one of Lemma 2, and has mz1 + 1
neurons numbered (1, 1), . . . , (1, mz1 + 1). Now set:

• Λ(1, 1) = xz1, Λ(1, 2) = 1/mz1, and Λ(1, j) = 0 for j = 3, . . . , mz1 + 1,
• λ(1, j) = 0 for all j = 1, . . . , mz1 +1, and d(1, j) = 0 for j = 1, . . . , mz1,
• ω−((1, 1), (1, j)) = 1/mz1, and ω+((1, 1), (1, j)) = 0 for j =

2, . . . , mz1 + 1,
• r(1, j) = ω+((1, j), (1, j + 1)) = 1/mz1 for j = 2, . . . , mz1 + 1,
• Finally, the connection from the first network into the second network

is made via p+((1, mz1+1), (2, 2)) = mz1/mz2 ≤ 1, with d(1, mz1+1) =
(1 − mz1/mz2).

It is easy to see that q1,1 = xz1, and that

q1,mz1+1 =
1

(1 + xz1)mz1
. (44)

The second network has mz2 + 1 neurons numbered (2, 1), . . . , (2, mz2 + 1).
Now set:

• Λ(2, 1) = xz2 and Λ(1, j) = 0 for j = 2, . . . , mz2 + 1,
• λ(2, j) = 0 for all j = 1, . . . , mz2 +1, and d(2, j) = 0 for j = 1, . . . , mz2,
• ω−((2, 1), (2, j)) = 1/mz2, and ω+((2, 1), (2, j)) = 0 for j =

2, . . . , mz2 + 1,
• r(2, j) = ω+((2, j), (2, j + 1)) = 1/mz2 for j = 2, . . . , mz2 + 1,
• The connection from the second network into the third network is made

via p+((2, mz2 + 1), (3, 2)) = mz2/mz3 ≤ 1, with d(2, mz2 + 1) =
(1 − mz2/mz3).

It is easy to see that q2,1 = xz2, and that

q2,mz2+1 =
1

(1 + xz1)mz1

1
(1 + xz2)mz2

. (45)

The remaining construction just pursues the same scheme. �

Theorem 8. For any continuous function f : [0, 1]s �→ R and any ε > 0,

there exists a BGNN with one positive output neuron (O, +), one negative
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output neuron (O,−), s input variables X = (x1, . . . , xs), and the output
variable y(X) such that:

y(X) = AO,+ + AO,−, (46)

AO,+ =
qO,+

1 − qO,+
, (47)

AO,− =
−qO,−

1 − qO,−
, (48)

and supx∈[0,1] |f(X) − y(X)| < ε. We will say that the BGNN’s output
uniformly approximates f(X).

Proof. The proof follows the proof of Theorem 3, using the polynomial
of (42). Lemma 7 establishes that the terms of such a polynomial can be
realized by a GNN. We then construct two polynomials, one with non-
negative coefficients only, and the other with negative coefficients, and
show how they are realized with the BGNN. We will not go through the
steps of the proof, since it is a step by step duplicate of the proof of
Theorem 3. �

We now extend Lemma 7 to the case of s-inputs.

Lemma 9. For any continuous function f : [0, 1]s �→ R and for any ε > 0,

there exists a function of the form

Ps(x) =
r∑

i=1

∑
0≤m1≤1,...,0≤ms≤1

b(m1, . . . , ms, i)
s∏

v=1

1
(av,i + xv)mv

, (49)

where av,i > 0, v = 1, . . . , s, i = 1, 2, . . . , such that supx∈[0,1] |f(x) −
Ps(x)| < ε is satisfied.

Proof. This is simply an extension of Lemma 7. �

As a consequence we can now establish the following general result.

Theorem 9. For any continuous function f : [0, 1]s �→ R and any ε > 0,

there exists a BGNN of no more than s + 2 layers (s hidden layers), one
positive output neuron (O, +), one negative output neuron (O,−), s input
variables X = (x1, . . . , xs), and the output variable y(X) determined by
(46) such that supx∈[0,1] |f(X) − y(X)| < ε.

Proof. The proof is by construction. By Lemma 9, we only need to find
an appropriate BGNN of the form as described in Theorem 9 to realize
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any function of the form (49). We construct a BGNN with s input neurons
(1, 1), . . . , (1, s), one positive output neuron (O, +), one negative output
neuron (O,−), and M parallel sub-networks between the input layer and
the output layer, where

M ≡
r∑

i=1

∑
0≤m1≤1,...,0≤ms≤1

1(b(m1, . . . , ms, i) �= 0), (50)

1(X) = 1 when X is true otherwise 1(X) = 0. Each sub-network is a cascade
connection of no more than s neurons. The output of the last neuron of each
sub-network takes the value in proportion to each term in function (49).

Without loss of generality, we consider a term of the form

1
az1 + xz1

· · · 1
azK + xzK

(51)

where az1 ≥ az2 ≥ · · · ≥ azK . Now, we want to construct a sub-network
which has K neurons and of which the last neuron’s output takes the value
in proportion to the term. Number the K neurons as (2, 1), (3, 1), . . . , (K +
1, 1), and set:

• Λ(1, i) = xi, λ(1, i) = 0, r(1, i) = 1, for i = 1, . . . , s,
• ω+((1, z1), (2, 1)) = 0, ω−((1, z1), (2, 1)) = 1/M ,
• r(2, 1) = az1/M , Λ(2, 1) = az1/M , λ(2, 1) = 0.

It is easy to see that

q2,1 =
az1

az1 + xz1
. (52)

Then set:

• p+((k, 1), (k + 1, 1)) = azK/az(K−1), for k = 2, . . . , K,
• ω+((1, zk), (k + 1, 1)) = 0, ω−((1, zk), (k + 1, 1)) = 1/M , for k =

2, . . . , K,
• r(k + 1, 1) = azk/M , Λ(k + 1, 1) = 0, λ(k + 1, 1) = 0, for k = 2, . . . , K.

We will find

q3,1 =
az1az2

(az1 + xz1)(az2 + xz2)
, (53)

· · · ,

az1 · · · azK

(az1 + xz1) · · · (azK + xzK)
(54)

which is in proportion to (51).
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Next we connect all the last neurons of the sub-networks to (O, +) or
(O,−). The parameter setting follows the steps in the proof of Theorem 4
which connects the neurons in the hidden layer to the output neurons. Since
the sub-networks are parallel and each sub-network contains no more than
s neurons, there are totally no more than s hidden layers in this constructed
BGNN. Thus, we complete the construction. �

We can now obtain Theorems 10 and 11, which generalize Theorems 6
and 7, in a similar manner.

Theorem 10. For any continuous function f : [0, 1]s �→ R and any ε > 0,

there exists a GNN with one output neuron (O), and a constant c called
the clamping constant, resulting in a function y(X) = AO + c which
approximates f uniformly on [0, 1]s with error less than ε.

Theorem 11. For any continuous function f : [0, 1]s �→ R and any ε > 0,

there exists a GNN of no more than s + 2 layers (s hidden layers), one
output neuron (O), and a constant c called the clamping constant, resulting
in a function y(X) = AO + c which approximates f uniformly on [0, 1]s

with error less than ε.

5. Conclusions

An important requirement for a computational model is that it should offer
the ability to compute exactly or approximately, some sufficiently general
and useful class of functions. In this paper, we discuss the GNN model and
show that it is tool for approximating continuous and bounded real-valued
functions.

However, our results are even stronger in the following sense. First, we
show that this approximation can be achieved by the feed-forward GNN,
i.e. by a network in which only a finite number of past values of the input
variables need to be stored. Secondly, and quite intriguingly, we show that
the amount of memory needed in the network is actually bounded by the
number of input variables of the function.
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Appendix: Proof of Technical Lemmas

Proof of Lemma 1. This is a direct consequence of Weierstrass’ Theorem
(see [2], p. 61) which states that for any continuous function h: [a, b] �→ R,
and some ε > 0, there exists a polynomial P (u) such that supu∈[a,b] |h(u)−
P (u)| < ε. Now let u = 1/(1+x), u ∈ [1/2, 1] and select x = (1−u)/u with
h(u) = f(1−u

u ) = f(x). If f(x) is continuous, then so is h(u) so that there
exists an algebraic polynomial of the form:

P (u) = c0 + c1u + · · · + cmum, 1/2 ≤ u ≤ 1, (55)
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such that supu∈[1/2,1] |h(u) − P (u)| < ε. Therefore P (x) is given by (14),
and supx∈[0,1] |f(x) − P (x)| < ε.

Proof of Lemma 2. Construct a feed-forward GNN with v + 1 neurons
numbered (1, 1), . . . , (v + 1, 1). Now set:

• Λ(1, 1) = x, Λ(2, 1) = 1/v, and Λ(j, 1) = 0 for j = 3, . . . , v + 1,
• λ(j, 1) = 0 for all j = 1, . . . , v + 1, and d(j, 1) = 0 for j = 1, . . . , v,
• ω−((1, 1), (j, 1)) = 1/v, and ω+((1, 1), (j, 1)) = 0 for j = 2, . . . , v + 1,
• r(j, 1) = ω+((j, 1), (j + 1, 1)) = 1/v for j = 2, . . . , v,
• Finally, d(v + 1, 1) = 1.

It is easy to see that q1,1 = x, and that

qj+1,1 =
(

1
1 + x

)j

, (56)

for j = 1, . . . , v so the lemma follows.
The next result exhibits a simple construction process for algebraic

expressions using the feed-forward GNN.

Remark. If there exists a feed-forward GNN with a single output neuron
(L, 1), and a function g: [0, 1] �→ [0, 1] such that:

qL,1 = g(x), (57)

then there exists an L + 1 layer feed-forward GNN with a single output
neuron (Q) such that:

qO =
g(x)

1 + g(x)
. (58)

Proof. The simple proof is by construction. We simply add an additional
neuron (Q) the original GNN, and leave all connections in the original GNN
unchanged except for the output connections of the neuron (L, 1). Let the
firing rate of neuron (l, 1) be r(L, 1). Then:

• (L, 1) will now be connected to the new neuron (L + 1, 1) by
ω+((L, 1), Q) = r(L, 1)/2, ω−((L, 1), Q) = r(L, 1)/2,

• r(Q) = r(L, 1)/2 .

This completes the proof. �

Proof of Lemma 3. The proof is by construction. Let CMAX be the
largest of the coefficients in P+(x) and write P ∗(x) = P+(x)/CMAX . Let
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c∗j = cj/CMAX ≤ 1 so that now each term c∗j
1

(1+x)j in P ∗(x) is no greater
than 1, j = 1, . . . , m. We now take m networks of the form of Lemma 2
with r(j, 1) = 1, j = 1, . . . , m and output values

qj,1 =
(

1
1 + x

)j

, (59)

and connect them to the new output neuron (O) by setting the probabilities
p+((j, 1), O) = c∗j/2, p−((j, 1), O) = c∗j/2. Furthermore, we set an external
positive and negative signal arrival rate Λ(O) = λ(O) = c∗0/2 and r(O) =
1/(2CMAX) for the output neuron. We now have:

qO =
P∗(x)

2

1
2CMAX

+ P∗(x)
2

. (60)

We now multiply the numerator and the denominator on the right-hand
side of the above expression by 2CMAX to obtain

qO =
P+(x)

1 + P+(x)
(61)

so that which completes the proof of the lemma.

Proof of Lemma 4. The proof is very similar to that of Lemma 2.
Construct a feed-forward GNN with v+1 neurons numbered (1, 1), . . . , (v+
1, 1). Now set:

• Λ(1, 1) = x, and Λ(j, 1) = 0 for j = 2, . . . , v + 1,
• λ(j, 1) = 0 for all j = 1, . . . , v + 1, and d(j, 1) = 0 for j = 1, . . . , v,
• ω+((1, 1), (2, 1)) = 1/(v + 1), ω−((1, 1), (j, 1)) = 1/(v + 1) for j =

2, . . . , v + 1, and ω+((1, 1), (j, 1)) = 0 for j = 3, . . . , v + 1,
• r(j, 1) = ω+((j, 1), (j + 1, 1)) = 1/(v + 1) for j = 2, . . . , v,
• Finally, d(v + 1, 1) = 1.

It is easy to see that q1,1 = x, and that

qj+1,1 =
x

(1 + x)j
, (62)

for j = 1, . . . , v so the lemma follows.

Finally, we state without proof another lemma, very similar to Lemma
4, but which uses terms of the form x/(1 + x)v to construct polynomials.
Its proof uses Lemma 5, and follows exactly the same lines as Lemma 4.



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch04

96 E. Gelenbe, Z.-H. Mao and Y. Li

Lemma 6. Let P o(x) be a polynomial of the form

P o(x) = c0 + c1
x

1 + x
+ · · · + cm

x

(1 + x)m
, 0 ≤ x ≤ 1, (63)

with non-negative coefficients, i.e. cv ≥ 0, i = 1, . . . , m. Then there exists
a feed-forward GNN with a single output neuron (O, +) such that:

qO =
P o(x)

1 + P o(x)
, (64)

so that the average potential of the output neuron is AO = P o(x).
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Chapter 5

ASSERTIONS: A PERSONAL PERSPECTIVE

TONY HOARE

Senior Researcher, Microsoft Research Ltd.
Cambridge, England
thoare@microsoft.com

An assertion is a Boolean formula written in the text of a program, at a place
where its evaluation will always be true — or at least, that is the intention
of the programmer. In the absence of jumps, it specifies the internal interface
between the part of the program that comes before it and the part that comes
after. The interface between a procedure declaration and its call is defined by
assertions known as pre-conditions and post-conditions. If the assertions are
strong enough, they express everything that the programmers on either side of
the interface need to know about the program on the other side, even before
the code is written. Indeed, such strong assertions can serve as the basis of a
formal proof of the correctness of a complete program.

In this paper, I will describe how my early experience in industry triggered
my interest in assertions and their role in program proofs; and how my
subsequent research at university extended the idea into a methodology for
the specification and design of programs. Now that I have returned to work in
industry, I have had the opportunity to investigate the current role of assertions
in industrial program development. My personal perspective illustrates the
complementary roles of pure research, aimed at academic ideals of excellence,
and the unexpected ways in which the results of such research contribute to
the gradual improvement of engineering practice.

1. Experience in Industry, 1960–1968

My first job was as a programmer for a small British computer
manufacturer, Elliott Brothers of London at Borehamwood. My task was to

This chapter is based on “Assertions: A Personal Perspective” by C.A.R. Hoare which
appeared in the IEEE Annals of the History of Computing, Vol. 25(2): 14–25, c© [2003]
IEEE.
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write library programs in decimal machine code [1] for the company’s new
803 computer. After a preliminary exercise which gave my boss confidence
in my skill, I was entrusted with the task of implementing a new sorting
method recently invented and published by Shell [2]. I really enjoyed
optimizing the inner loops of my program to take advantage of the most
ingenious instructions of the machine code. I also enjoyed documenting the
code according to the standards laid down for programs to be delivered
to customers as part of our library. Even testing the program was fun;
tracing the errors was like solving mathematical puzzles. How wonderful
that programmers get paid for this too! In fairness, surely the programmers
should pay the cost for removal of their own mistakes.

But not such fun was the kind of error that caused my test programs
to run wild (crash); quite often, they even over-wrote the data needed to
diagnose the cause of the error. Was the crash due perhaps to a jump into
the data space, or to an instruction over-written by a number? The only
way to find out was to add extra output instructions to the program, tracing
its behaviour up to the moment of the crash. But the sheer volume of the
output only added to the confusion. Remember, in those days the lucky
programmer was one who had access to the computer just once a day. Even
40 years later, the problem of crashing programs is not altogether solved.

When I had been in my job for six months, an even more important
task was given to me, that of designing a new high-level programming
language for the projected new and faster members of the Company’s
range of computers. By great good fortune, there came into my hands a
copy of Peter Naur’s Report on the Algorithmic Language ALGOL 60 [3],
which had recently been designed by an international committee of experts;
we decided to implement a subset of that language, which I selected with
the goal of efficient implementation on the Elliott computers. In the end,
I thought of an efficient way of implementing nearly the whole language.

An outstanding merit of Peter Naur’s Report was that it was only
21 pages long. Yet, it gave enough accurate information for an implementer
to compile the language without any communication with the language
designers. Furthermore, a user could program in the language without any
communication either with the implementers or with the designers. Even
so, it was possible for the program to work on the very first time it was
submitted to the newly implemented compiler. Apart from a small error in
the character codes, this is what actually happened one day at an exhibition
of an Elliott 803 computer in Eastern Europe. Few languages designed since
then have matched such an achievement.
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Part of the credit for this success was the very compact yet precise
notation for defining the grammar or syntax of the language, the
class of texts that are worthy of consideration as meaningful programs.
This notation was due originally to the great linguist, psychologist and
philosopher Noam Chomsky [4]. It was first applied to programming
languages by John Backus [5], in a famous article on the Syntax and
the Semantics of the proposed International Algorithmic Language of
the Zurich ACM-GAMM Conference, Paris, 1959. After dealing with the
syntax, Backus looked forward to a continuation article on the semantics.
It never appeared: in fact it laid down a challenge of finding a precise and
elegant formal definition of the meaning of programs, which inspires good
research in computer science right up to the present day.

The syntactic definition of the language served as a pattern for the
structure of the whole of our ALGOL compiler, which used a method
now known as recursive descent. As a result, it was logically impossible
(almost) for any error in the syntax of a submitted program to escape
detection by the compiler. If a successfully compiled program went wrong,
the programmer had complete confidence that this was not the result
of a misprint that made the program meaningless. Chomsky’s syntactic
definition method was soon more widely applied to earlier and to later
programming languages, with results that were rarely as attractive as for
ALGOL 60. I thought that this failure reflected the intrinsic irregularity
and ugliness of the syntax of these other languages. One purpose of a good
formal definition method is to guide the designer to improve the quality of
the language it is used to define.

In designing the machine code to be output by the Elliott ALGOL
compiler [6], I took it as an over-riding principle that no program compiled
from the high-level language could ever run wild. Our customers had to
accept a significant performance penalty, because every subscripted array
access had to be checked at run time against both upper and lower array
bounds; they knew how often such a check fails in a production run, and
they told me later that they did not want even the option to remove the
check. As a result, programs written in ALGOL would never run wild, and
debugging was relatively simple, because the effect of every program could
be inferred from the source text of the program itself, without knowing
anything about the compiler or about the machine on which it was running.
If only we had a formal semantics to complement the formal syntax of the
language, perhaps the compiler would be able to help in detecting and
averting other kinds of programming error as well.
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Interest in semantics was widespread. In 1964, a conference took
place in Vienna on Formal Language Description Languages for Computer
Programming [7]. It was attended by 51 scientists from 12 nations. One
of the papers was entitled “The definition of programming languages by
their compilers” [8], by Jan Garwick, pioneer of computing science in
Norway. The title appalled me, because it suggested that the meaning of
any program is determined by selecting a standard implementation of that
language on a particular machine. So, if you wanted to know the meaning of
a Fortran program, for example, you would run it on an IBM 709, and see
what happened. Such a proposal seemed to me grossly unfair to all computer
manufacturers other than IBM, at that time the world-dominant computing
company. It would be impossibly expensive and counter-productive on an
Elliott 803, with a word length of 39 bits, to give the same numerical
answers as the IBM machine, which had only 36 bits in a word — we could
more efficiently give greater accuracy and range. Even more unfair was
the consequence that the IBM compiler was by definition correct; but any
other manufacturer would be compelled to reproduce all of its errors — they
would have to be called just anomalies, because errors would be logically
impossible. Since then, I have always avoided operational approaches to
programming-language semantics. The principle that “a program is what a
program does” is not a good basis for exploration of the concept of program
correctness.

I did not make a presentation at the Vienna conference, but I did
make one comment: I thought that the most important attribute of a
formal definition of semantics should be to leave certain aspects of the
language carefully undefined. As a result, each implementation would have
carefully circumscribed freedom to make efficient choices in the interests
of its users and in the light of the characteristics of a particular machine
architecture. I was very encouraged that this comment was applauded, and
even Garwick expressed his agreement. In fact, I had mis-interpreted his
title: his paper called for an abstract compiler for an abstract machine,
rather than selection of an actual commercial product as standard.

The inspiration of my remark in Vienna dates back to 1952, when
I went to Oxford as an undergraduate student. Some of my neighbours
in College were mathematicians, and I joined them in a small unofficial
night-time reading party to study Mathematical Logic from the textbook
by Quine [9]. Later, a course in the philosophy of mathematics pursued
more deeply this interest in axioms and proofs, as an explanation of the
unreasonable degree of certainty which accompanies the contemplation of
mathematical truth. It was this background that led me to propose the
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axiomatic method for defining the semantics of a programming language,
while preserving a carefully controlled vagueness in certain aspects. I drew
the analogy with the foundations of the various branches of mathematics,
like projective geometry or group theory; each branch is in effect defined
by the set of axioms that are used without further justification in all proofs
of the theorems of that branch. The axioms are written in the common
notations of mathematics, but they also contain a number of undefined
terms, like lines and points in projective geometry, or units and products
in group theory; these constitute the conceptual framework of that branch.
I was convinced that an axiomatic presentation of the basic concepts of
programming would be much simpler than any compiler of any language
for any computer, however abstract.

I still believe that axioms provide an excellent interface between the
roles of the pure mathematician and the applied mathematician. The pure
mathematician deliberately gives no explicit meaning to the undefined
terms appearing in the axioms, theorems, and proofs. It is the task of the
applied mathematician and the experimental scientist to find in the real
world a possible meaning for the terms, and check by carefully designed
experiment that this meaning satisfies the axioms. The engineer is even
allowed to take the axioms as a specification which must be met in
the design of a product, for example, the compiler for a programming
language. Then all the theorems for that branch of pure mathematics can
be validly applied to the product, or to the relevant real-world domain. And
surprisingly often, the more abstract approach of the pure mathematician is
rewarded by the discovery that there are many different applications of the
same axiom set. By analogy, there could be many different implementations
of the axiom set which defines a standard programming language. That
was exactly, the carefully circumscribed freedom that I wanted for the
compiler writer, who has to take the normal engineer’s responsibility that
the implementation satisfies the axioms, as well as efficiently running its
users’ programs.

My first proposal for such an axiom set took the form of equations, as
encountered in school texts on algebra, but with fragments of program on
the left and right hand sides of the equation instead of numbers and numeric
expressions. The same idea was explored earlier and more thoroughly in a
doctoral dissertation by Shigeru Igarashi at the University of Tokyo [10].
In November 1967, I showed my first pencilled draft of a paper on the
axiomatic approach to Peter Lucas; he was leading a project at the IBM
Research Laboratory in Vienna to give a formal definition to IBM’s new
programming language, later known as PL/I [11]. He was attracted by the
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proposal, but he fairly soon abandoned the attempt to apply it to PL/I as
a whole. The designers of PL/I had a very operational view of what each
construct of the language would do, and they had no inclination to support
a level of abstraction necessary for an attractive or helpful axiomatic
presentation of the semantics. I was not disappointed: in the arrogance of
idealism, I was confirmed in my view that a good formal definition method
would be one that clearly reveals the quality of a programming language,
whether bad or good; and the axiomatic method had shown its capability
of at least revealing badness. Other evidence for the badness of PL/I was
its propensity for crashing programs.

2. Research in Belfast, 1968–1977

By 1968, it was evident that research into programming language semantics
was going to take a long time before it found application in industry; and
in those days it was accepted that long-term research should take place
in universities. I therefore welcomed the opportunity to take up a post
as Professor of Computer Science at the Queen’s University in Belfast.
By a happy coincidence, as I was moving house, I came across a preprint
of Robert Floyd’s paper on Assigning Meanings to Programs [12]. Floyd
adopted the same philosophy as I had, that the meaning of a programming
language is defined by the rules that can be used for reasoning about
programs in the language. These could include not only equations, but
also rules of inference. By this means, he presented an effective method of
proving the total correctness of programs, not just their equality to other
programs. I saw this as the achievement of the ultimate goal of a good
formal semantics for a good programming language, namely, the complete
avoidance of programming error. Furthermore, the quality of the language
was now the subject of objective scientific assessment, based on simplicity
of the axioms and the guidance they give for program construction. The
axiomatic method is a way to avoid the dogmatism and controversy
that so often accompanies programming language design, particularly by
committees.

For a general-purpose programming language, correctness can be
defined only relative to the intention of a particular program. In many cases,
the intention can be expressed as a post-condition of the program, that is an
assertion about the values of the variables of the program that is intended
to be true when the program terminates. The proof of this fact usually
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depends on annotating the program with additional assertions in the middle
of the program text; these are expected to be true whenever execution of
the program reaches the point where the assertion is written. At least one
assertion, called an invariant, is needed in each loop: it is intended to be true
before and after every execution of the body of the loop. Often, the correct
working of a program depends on the assumption of some pre-condition,
which must be true before the program starts. Floyd gave the proof rules
whose application could guarantee the validity of all the assertions except
the pre-condition, which had to be assumed. He even looked forward to the
day when a verifying compiler could actually check the validity of all the
assertions automatically before allowing the program to be run. This would
be the ultimate solution to the problem of programming error, making it
logically impossible in a running program; though I correctly predicted its
achievement would be some time after, I had retired from academic life,
which would be in 30 year’s time.

I was even worried that my axiomatic method was too powerful, because
it could deal with jumps, which Dijkstra had pointed out to be a bad feature
of the conventional programming of the day [22]. My consolation was that
the proof rule for jumps relies on a subsidiary hypothesis, and is inherently
more complicated than the rules for structured programming constructs.
Subsequent wide adoption of structured programming confirmed my view
that simplicity of the relevant proof rule is an objective measure of quality
in a programming language feature. Further confirmation is now provided
by program analysis tools like Lint [23] and PREfix [24], applied to less
disciplined languages such as C; they identify just those constructions that
would invalidate the simple and obvious proof methods, and warn against
their use.

A common objection to Floyd’s method of program proving was the
need to supply additional assertions at intermediate points in the program.
It is very difficult to look at an existing program and guess what these
assertions should be. I thought this was an entirely mistaken objection.
It was not sensible to try to prove the correctness of existing programs,
partly because they were mostly going to be incorrect anyway. I followed
Dijkstra’s constructive approach [25] to task of programming: the obligation
of ultimate correctness should be the driving force in designing programs
that were going to be correct by construction. In this top-down approach,
the starting point for a software project should always be the specification,
and the proof of the program should be developed along with the program
itself. Thus, the most effective proofs are those constructed before the
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program is written. This philosophy has been beautifully illustrated in
Dijkstra’s own book on A Discipline of Programming [26], and in many
subsequent textbooks on formal approaches to software engineering [27].

In all my work on the formalisation of proof methods for sequential
programming languages, I knew that I was only preparing the way for a
much more serious challenge, which was to extend the proof technology into
the realm of concurrent program execution. In the early 1970s, I took as
my first model of concurrency a kind of quasi-parallel programming (co-
routines), which was introduced by Ole-Johan Dahl and Kristen Nygaard
into Simula (and later Simula 67) for purposes of discrete event simulation
[28, 29]. I knew the Simula concept of an object as a replicable structure
of data, declared in a class together with the methods which are allowed
to update its attributes. As an exercise in the application of these ideas, I
took the structured implementation of a paging system (virtual memory).
I suddenly realised that the purpose and criterion of correctness of the
program was to simulate the more abstract concept of a single-level memory,
with a much wider addressing range than could be physically fitted into the
random access memory of the computer. The concept had to be represented
in a complicated (but fortunately concealed) way, by storing temporarily
unused data on a disk [30]. The correctness of the code could be proved with
the aid of an invariant assertion, later known as the abstraction invariant,
that connects the abstract variable to its concrete representation [31]. The
introduction of such abstractions into programming practice is one of the
main achievements of still current craze for object-oriented programming.

The real insight that I derived from this exercise was that exactly the
same proof was valid, not only for sequential use of the virtual memory, but
also for its use by many processes running concurrently. As in the case of
proof-driven program development, it is the obligation of correctness that
should drive the design of a good programming language feature. Of course,
efficiency of implementation is also important. A correct implementation of
the abstraction has to prevent more than one process from updating the
concrete representation at the same time. This is efficiently done by use of
Dijkstra’s semaphores protecting critical regions [32]; the resulting structure
was called a monitor [33, 34]. The idea was simultaneously put forward and
successfully tested by Per Brinch Hansen in his efficient implementation
of Concurrent PASCAL [35]. The monitor has since been adopted for
the control of concurrency by the more recently fashionable language
Java [36], but with extensions that prevent the use of the original simple
proof rules.
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To test the applicability of these ideas, I used them to design the
structure of a simple batch processed operating system [37]. Jim Welsh and
Dave Bustard implemented the system in an extended version of Pascal,
called Pascal Plus, which they also designed and implemented [38]. We
made extensive use on the inner statement of Simula 67, which enables
the code of a user process to be embedded deep inside an envelope of code
which implements the abstract resources that it uses. The same effect is
achieved in object-oriented languages today by methods which initialise
and finalise an object. In Simula, the semantics of the inner statement is
described like that of the procedure call in ALGOL 60 (and inheritance in
current object-oriented languages), in terms of textual copying of portions
of the user program inside the code of the object which it is using.
Dijkstra rightly pointed out to me that such a copy rule completely fails
to explain or exploit the real merit of the language feature, which is to
raise the level of abstraction of the program. So, we spent some time
together at a Marktoberdorf Summer School, exploring the underlying
abstraction, and to design notations that would most clearly express it.
But it took several more years of personal research, and I was still not
satisfied with my progress. Inspiration eventually came from an unexpected
direction.

That was the time at which the promise of very large scale integration
was beginning to be realised in the form of low-cost microprocessors. In
order to multiply their somewhat modest computing power, it was an
attractive prospect to connect several such machines by means of wires
along which they could communicate with each other during program
execution. To write programs for such an assembly of machines, a
programming language would have to include input and output commands;
these removed the need for an explanation by textual copying. The idea of
sharing storage among microprocessors was ruled out by the expense, and
without shared store, monitors are unnecessary. An obvious requirement
for a parallel programming language is a means of connecting two program
fragments in parallel, rather than in series. Naturally, I chose the structured
parallel command (parbegin . . . parend) suggested by Dijkstra [32], rather
than the jump-like forking primitive made popular by C and UNIX. I also
included a variant of Dijkstra’s guarded command [39], to enable a program
to reduce latency by waiting for the first of two (or more) inputs to become
available. The resulting program structures were known as Communicating
Sequential Processes [40]. To answer the question of the sufficiency of these
few features, I showed that they could easily encode many other useful
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programming language constructions, both sequential and parallel. These
included semaphores, subroutines, co-routines, and of course monitors.

I was very happy with the unification of programming concepts that
I had achieved, but very dissatisfied that I had no means of proving the
correctness of the programs that used them. Furthermore, there were a
number of language design decisions which I left open, and which I wanted
to resolve by investigating their impact on the ease of proving programs
correct. I hoped that a Communicating Process could be understood in
terms of the trace (or history) of all the communications in which it could
engage. On this basis, I found it was possible to get proofs of partial
correctness, but only by ignoring problems of non-termination and of non-
deterministic deadlock, which causes a computer to stop when a cycle
of processes are each waiting for its neighbour. I was by then ashamed
that I had ignored such problems in my early exposition of Floyd’s proof
method. Fortunately, Dijkstra had shown in his Discipline of Programming
[26] how to deal safely with the problem of non-determinism. He assumed
that it would be resolved maliciously by a demon, intent on frustrating our
intentions, whatever they might be. He also dealt correctly with the problem
of non-termination. Now, I resolved that any acceptable proof method for
CSP would have to incorporate Dijkstra’s solutions.

3. Move to Oxford, 1977–1999

At that time, an opportunity arose to move to Oxford University, where
I wanted to study the methods of denotational semantics that had been
pioneered by Christopher Strachey and Dana Scott, and ably expounded in
a more recent textbook by Joe Stoy [41]. Among my first research students,
jointly supervised with Joe Stoy, were a couple of brilliant mathematicians,
Bill Roscoe and Steve Brookes. We followed the suggestion of Robin Milner
that the meaning of a concurrent program could be determined by the
collection of tests that could be made on it. Following Karl Popper’s
criterion of falsification for the meaning of a scientific theory, Roscoe and
Brookes concentrated on failures of these tests, with particular attention
to the circumstances in which they could deadlock or fail to terminate.
This led to the now standard model of CSP, with traces, refusals, and
divergences [42, 43].

This research found remarkably early application in industry. Iain
Barron, who had earlier worked for Elliott Brothers on the design of the 803
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computer, was inspired by the vision of a new computer architecture, the
transputer, which he defined as a complete microprocessor, communicating
with its neighbours in a network by input and output along simple wires
[44]. He started up a company called Inmos to design and make the
hardware, he hired David May as its chief architect, and he hired me as
a consultant on the design of a programming language based on CSP to
control it. The language was named occam [45, 46], after the medieval
Oxford philosopher, who proposed simplicity as the ultimate touchstone
of truth.

An important commercial goal of the company was to ensure that
the same parallel program would have logically the same effect when
implemented by multi-programming on a single computer as when
distributed over multiple processors on a network. The level of abstraction
provided by CSP gave just this assurance. For 10 years or more, the
transputer enjoyed commercial success and the language excited scientific
interest; but today’s advances in microprocessor power, storage capacity,
and network communications technology favour a more dynamic model
of network configuration and a buffered model of communication, which
are more directly represented in more recent process algebras, like the
pi-calculus [47].

Fundamental to the philosophy of top-down development of programs
from their specifications is the ability of programmers to write the
specifications in the first place. Obviously, these specifications have to be
at least an order of magnitude simpler and more obviously correct than the
eventual program is going to be. In the 1980s, it was accepted wisdom that
the language for writing specifications should itself be executable, making
it, in effect, just another more powerful programming language. But, I
knew that in principle a language like that of set theory, untrammelled by
considerations of execution (or of efficiency), could express many important
abstract concepts far more concisely than any executable language; and
I believed that these concepts drawn from mathematics would make it
easier to reason about the correctness of the program at the design stage.
There is no conceivable way of proving a specification correct (against what
specification would that be? Such a higher-level specification, if it existed,
should have been chosen originally as the starting place for the design).
So, the only hope is to make the original specification so clear and so
easily understandable that it obviously describes what is wanted, and not
some other thing. That is why it would be dangerous to recommend for
specification anything less than the full language of mathematics. Even if
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this view is impractical, it represents the kind of extreme in expressive
power that makes it an appropriate topic for academic research. Certainly,
if the basic mathematical concepts turn out to be inadequate to describe
what is wanted, there is little hope for help from mathematics in making
correct programs.

Mathematicians through the ages have developed a great many
notations, and each branch of the subject uses the same notations for
different purposes, and unfortunately different notations for the same
purpose. What is needed for purposes of programming is a uniform
notational framework to match the generality of a general-purpose
programming language, and sufficiently powerful for the definition of all
concepts of any particular branch of mathematics that might be relevant to
any computer application in the future. Fortunately, this was provided by
abstract set theory, developed as a foundation for mathematics by logicians
at the beginning of the last century. Set theory already provides a range of
concepts known to be relevant in computing — Cartesian products, direct
sums, trees, sequences, bags, sets, functions, and relations. The same idea
had inspired Jean-Raymond Abrial, a successful French software engineer;
and he came to Oxford in the early eighties to continue his work on the
Z specification language [48]. The power of the Z notation was first tested
by researchers at Oxford, working on small tutorial examples; and many
improvements resulted, both in notation and style of usage. But the crucial
question was: would they provide any practical benefit when applied to a
large programming project in industry?

At that time, the IBM development laboratories in Hursley were
supporting our research in Oxford, both financially and scientifically, in
a project led by Ib Sorensen and Ian Hayes. One of their teams was
responsible for the development of the Customer Information and Control
System CICS, one of their most successful commercial software products;
and they were planning the next release of this system, primarily devoted
to the re-structuring of some of its basic components. For one of the more
tricky components, they bravely decided to try our new recommended top-
down development method, starting with a specification in Z. This involved
more work in the early stages of the project, but it gave good confidence
in the soundness of the design of the new structure; and the early rigorous
formalisation averted many errors that might have been troublesome at
later stages in the project. In the end, the development costs, even on first
use of Z, were less than on components developed in the traditional way,
and the quality as perceived by the customer was greater [49].
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The characteristic feature of Z is the schema, consisting of a declaration
of the names of certain free variables and their types, together with a
predicate expressing a desired invariant relationship between the values
of those variables. The free variables play the same role as in a scientific
theory: they stand for measurements like time and distance that can be
made in the real world, or (in our application) they stand for observations of
the state or behaviour of computer programs. The meanings of the variables,
and the justification for the invariants, must be described informally in
the extremely important natural-language prose that accompanies the
specification. As in science, there are many common conventions: so in
a schema that specifies a fragment of a sequential program, a dashed
variable x′ always stands for the final value of a global program variable
whose initial value is denoted by x. It was Cliff Jones, a leader in the
development of the Vienna Development Method (VDM), who persuaded
me of the need to make explicit both initial and final values of all the
variables [50].

The extra flexibility of these extra variables makes it easy to introduce
extensions to the model of a programming language. For example, to model
timing properties, just introduce a special real-valued variable called time.
So time′ would be the time at which a program terminates, and time would
be when it starts. Of course, the programmer is not allowed to assign
arbitrary values to such a special variable. It can be updated only by
special operations like delay (interval), whose effect is simply modelled by
adding the interval to the time; though the intended implementation is also
rather special: just wait for the clock on the wall to move on. Such extra
variables played a vital role in my later attempts at unifying theories of
programming.

Like predicates in logic, Z schemas can be connected by any of the
operators of the propositional calculus: conjunction, disjunction, and even
negation. But the schema calculus also uses sequential composition; which
is defined in the same way as the binary composition of relations in
relational calculus. The final values of the variables of the first program
(before the semicolon) are identified with the initial values of the second
program (after the semicolon), and these intermediate values are hidden by
existential quantification. A careful treatment of non-termination ensures
that the composition of two schemas accurately describes the result of
sequential execution of any pair of programs which satisfy those schemas.
More formally, if P1 and P2 are programs, and if S1 and S2 are schemas,
then the axiomatic proof rule for correctness of sequential composition of
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programs can be elegantly expressed:

P1 satisfies S1 P2 satisfies S2
(P1; P2) satisfies (S1; S2)

One day in the middle of 1981, Rick Hehner, on a sabbatical visit
to Oxford, came into my office and spent an embarrassingly long time
persuading me that something much simpler was possible [51, 52]. Just
define the semantics of the programming language directly in terms of
the schema calculus of Z. Each program is interpreted as the strongest
schema describing its observable behaviour on all its possible executions. As
a result, the concept of satisfaction of a specification can be identified with
the most pervasive concept in all mathematical reasoning, that of logical
implication. Furthermore, there is no need any longer for an axiomatic
semantics, because all the useful proof rules can themselves be proved
as theorems. All the operators of the programming language are defined
simply as operators on schemas. For example, the definition of semicolon in
the programming language is identical to its definition given above in the
schema calculus. The proof rule displayed above is no longer an axiom; it
is a proven theorem stating the simple fact that relational composition is
monotonic in both its operands, with respect to implication ordering. For
the next 10 years, I travelled the world giving a series of keynote addresses
with different illustrative examples, but with the same message and the
same title: Programs are Predicates [53–55].

The first application of this wonderful insight was to solve the
long-standing problem of the specification and proof of correctness of
Communicating Sequential Processes. All that is needed is to introduce the
observable attributes of a process, its trace and its refusals, as free variables
of a Z schema. Then, the various choice and parallel constructions of CSP
are defined using predicate calculus as operators on schemas. This insight
has inspired all my subsequent research. In a continuing collaboration
with He Jifeng, we have developed a specification-oriented semantics for
many other computational paradigms, including hardware and software,
declarative and procedural, sequential and parallel. Even within parallel
programming, there are many variations, some with distributed processing
some with shared store, with dedicated channels or with shared buses,
with synchronised or with buffered communication. It turns out that
there is much in common between the mathematical properties of all the
paradigms; and this led us to describe our activity as Unifying Theories of
Programming [56]. This work brought to fruition a strand of my research
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that was started by Peter Lauer, my first successful doctoral student in
Belfast [57].

That concludes a brief account of my long research association with
assertions. They started as simple Boolean expressions in a sequential
programming language, testing a property of a single machine state at
the point that control reaches the assertion. By adding dashed variables
to stand for the values of variables at the termination of the program, an
assertion is generalised to a complete specification of an arbitrary fragment
of a sequential program. By adding variables that record the history of
interactions between a program and its environment, assertions specify
the interfaces between concurrent programs. By defining the semantics
of a program as the strongest assertion that describes all its possible
behaviours, we give a complete method for proving the total correctness
of all programs expressed in the language. My interest in assertions was
triggered by problems that I had encountered as a programmer in industry.
The evolution of the idea kept me occupied throughout my academic career.
Now on return to industrial employment, I have the opportunity to see how
the idea has progressed towards practical application, and maybe help to
progress it a bit further.

4. Back in Industry, 1999

The contrast between my academic research and current software
engineering practice in industry could not be more striking. A programmer
working on legacy code in industry rarely has the privilege of starting again
from scratch. If a specification is provided, it is usually no more than the
instruction “do something useful and attractive, making as little change
as possible in the existing code base or its behaviour”. The details of
the design are largely determined by what turns out to be possible and
adequately efficient after exploration of the existing code and testing a
number of possible changes by experiment. The only way of improving
the correctness of the result is by debugging. The practice of specification
of an interface even as simple as a histogram graphics package is quite
unattractive, and formal proof is clearly inconceivable on existing code
bases, measured in millions of lines of code. So, how can the results of
theoretical research, inspired by purely academic ideals, be brought to bear
on the pervasive problems of maintaining large-scale legacy code written in
legacy languages?
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It is the concept of an assertion that links my earlier research with
current industrial software engineering practice, and provides the basis for
hopes of future improvement. Assertions figure very strongly in Microsoft
code. A recent count discovered over quarter of a million of them in the
code for Office. The primary role of an assertion today is as a test oracle,
defining the circumstances under which a program under test is considered
to fail. A collection of aptly placed assertions is what permits a massive
suite of test cases to be run overnight, in the absence of human intervention.
Failure of an assertion triggers a dump of the program state, to be analysed
by the programmer on the following morning. Apart from merely indicating
the fact of failure, the place where the first assertion fails is likely to give
a good indication of where and why the program is going wrong. And
this indication is given in advance of any crash, so avoiding the risk that
the necessary diagnostic information is over-written. So assertions have
already found their major application, not to the proof of the correctness of
programs, but to the diagnosis of their errors. They are applied as a partial
solution to the problems of program crashes, which I first encountered as
a new programmer in 1960. The other solution is the ubiquitous personal
work-station, which reduces the turn-round for program correction from
days to minutes.

Assertions are usually compiled differently for test runs and for code
that is shipped to the customer. In ship code, the assertions are often
omitted, to avoid the run-time penalty and the confusion that would follow
from an error diagnostic or a checkpoint dump in view of the customer.
Ideally, the only assertions to be omitted are those that have been subjected
to proof. But more practically, many teams leave the assertions in ship
code to generate an exception when false; to continue execution in such an
unexpected and untested circumstance would run a grave risk of crash. So
instead, the handler for the exception makes a recovery that is sensible to
the customer in the environment of use.

Assertions are also used to advantage by program analysis tools like
PREfix [23]; this is being developed within Microsoft, for application
to the maintenance of legacy code. The value of such tools is limited
if they give so many warning messages that the programmer cannot afford
the time to examine them. Ideally, each warning should be accompanied
by an automatically generated test case that would reveal the bug; but
that will depend on further advances in model checking and theorem
proving. Assertions and assumptions provide a means for the programmer
to explain that a certain error cannot occur, or is irrelevant, and the tool
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will suppress the corresponding sheaf of error reports. This is another
motivating factor for programmers to include more and stronger assertions
in their code. Another acknowledged motive is to inform programmers
engaged in subsequent program modification that certain properties of the
program must be maintained.

My work with Microsoft concentrates on further design and
development of tools to assist in the programming of trustworthy systems
and applications. In other engineering disciplines, design automation
tools embody an increasing amount of scientific knowledge, mathematical
calculations, and engineering know-how. My hope is that similar tools will
lead the way in delivering the results of research into programming theory
to the working software engineer, even to one who is working primarily
on legacy code. I suggest that assertional proof principles should define
the direction of evolution of sophisticated program analysis tools. Without
principles, a program analysis tool has to depend only on heuristics,
and after a time, further advance becomes increasingly difficult. There
is the danger that programmers can learn to write code that has all the
characteristics of good style as defined by the heuristics, and yet be full
of bugs. The only principles that guard against this risk are those which
are directly based on considerations of program correctness. And that is
why program correctness has been, and still remains, a suitable topic for
academic research.
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By the end of 2007, more than 10,000,000,000 ARM processors had been
manufactured, making the ARM the highest volume processor in the 32-and-
above-bit space of all time, by a very large margin. The origins of the ARM can
be traced back to a small UK supplier of desk-top machines, Acorn Computer
Ltd, in the early 1980s, for whose staff the original ARM (then the “Acorn RISC
Machine”) was a first attempt at designing a microprocessor. The ultimate
success of the ARM is a result of serendipity (of course) combined with a
little good technical judgement, a great deal of creativity in developing a novel
business model, and a focus on customer service. The technical development
of the ARM has as its foundations some of the important developments in
computer science over the last quarter of a century: its architectural conception
was a result of skillful selling of the RISC philosophy by its exponents at
Berkeley; its silicon design employed very early design automation tools; its
simplicity, small size and power-efficiency suited it to the emerging System-on-
Chip (SoC) technology of the early 1990s, and its foothold there enabled it to
climb into its dominant position in the consumer technology of the digital
age — the pervasive mobile multimedia communications appliances of the
early 21st century. This chapter will principally cover the early period of ARM
history, during the 1980s, before the ARM emerged onto the world stage under
the management of the company that bears its name.

1. Acorn Computer Ltd

The company that begat the ARM started sometime around 1978.
Chris Curry (ex-Sinclair Radionics, then running Science of Cambridge)
and Hermann Hauser (then at the University of Cambridge Cavendish
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laboratory) decided to pursue their interest in microcomputers and formed
CPU (Cambridge Processor Unit) Limited. CPU Ltd first carried out
consultancy work on microprocessor-based controllers for fruit machines,
but when Sophie Wilson went home from university one Easter and came
back with a design for a small 6502-based microcomputer system (inspired
by, though in no way based upon, the Science of Cambridge SC/MP-based
MK14 product) Curry and Hauser decided to market Wilson’s design as the
Acorn Microcomputer (later renamed the Acorn System 1), introducing the
Acorn name for trading purposes to avoid confusion with the consultancy
business. It did not go unnoticed that Acorn comes before Apple in the
phone book!

The timing for the Acorn Microcomputer was good as public interest
in microprocessors was growing rapidly. Over the next year or two, the
company’s focus moved away from consultancy to selling the System 1
and its successors, and the company changed its name to Acorn Computer
Limited. It was based at 4a, Market Hill, in the centre of Cambridge, in
rather un-prepossessing offices above the electricity board showrooms which
faced the market. The approach, through a narrow passage to the side of
the shop, was particularly popular with the local pigeons!

The Acorn System 1 comprised two standard 100mm by 160mm
“Eurocard” printed circuit boards (PCBs), one of which was dominated by
the LED display and hexadecimal keypad, the other incorporating the 6502
microprocessor and most of the other electronics. The system could be used
stand-alone, but the processor card could also be configured for plugging
into a 19-inch rack, and Acorn developed a range of cards that could
be plugged into the rack with it — floppy disk drive controllers, display
controllers, analogue-digital converters, and so on. Various rack-mounted
configurations were sold as the System 2 and 3. These were adaptable and
suited to various industrial control applications, but the rack system was
expensive. To bring a higher specification product to the consumer market
required a different approach.

By this time the Apple II was well-established in the United States,
and this showed the way forward from the hexadecimal-keypad-and-display
bare PCB system. Acorn developed the Atom product, again based on the
6502, but now incorporating a full typewriter-style keyboard and an output
to drive a display monitor or TV. The display driver generated a 60Hz
(US-standard) frame rate picture, which was a bit of a problem in the
UK where the standard is 50Hz, but this was survivable and the Atom
sold well. Initially, the Atom was sold in kit form (as had the System 1),
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but the market for microprocessor products was expanding beyond those
enthusiasts who knew which end to hold a soldering iron. After a number
of kits had been returned with constructional faults (the most extreme
of which was the machine whose chips had been glued-in to avoid the
risk of heat damage from soldering!) the company increasingly sold fully-
manufactured products.

The Atom introduced a number of innovations to the UK market,
including low-cost computer networking — the Acorn Econet.

To build on the success of the Atom, Acorn began to look at possible
successor products, and surveyed what might succeed the 6502 as the core
microprocessor around which such a system might be based. Various 16-bit
microprocessors were investigated. One plan, which was known internally
as the Proton, was a dual-processor system that used a 6502 as a front-end
IO processor together with an unspecified 16-bit processor that ran the
application code. This design was on the drawing board together when the
company got wind of the BBC’s plans.

2. The BBC Micro

In 1980, the BBC had conceived the idea of basing a computer literacy
series around a specific machine, but the machine they planned to use was
not progressing well. They were persuaded to visit Acorn early in 1981, and
Acorn planned to use the front-end of the Proton as their offering. The full
dual-processor Proton was too expensive, although the second processor
interface would be retained for future expansion. With a week’s notice of
the visit, the company planned to do what it could to impress them. Allen
Boothroyd was asked to mock up a case design, and Hermann Hauser played
one of his legendary games with the technical team. During the weekend
before the BBC’s visit (which was on the following Friday) he rang Sophie
Wilson asking if a prototype could be built for the visit. All we had at that
time was a rough paper sketch of the Proton circuit. Wilson did not think
there was enough time. Hermann then rang me with the same question,
saying Wilson thought it could be done. I was doubtful, but agreed that if
Wilson thought it could be done I would give it a go, so he then rang Wilson
again, this time saying that I thought it could be done, and Wilson also
agreed. I fleshed out the circuit diagram, Ram Banerjee (the fastest [wire-
wrap] gun in the west!) spent from Monday to Wednesday wire-wrapping
the prototype, then a 24-hour-a-day debugging process yielded a working
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system at 7 am on the Friday morning. When the BBC arrived mid-morning
BASIC was running, and by the afternoon some graphics could be displayed.

The BBC was duly impressed by the working prototype, the case model,
and generally by Acorn’s ability to move quickly, and Acorn was awarded
the contract to develop the BBC Microcomputer. The design was refined
and put into production between Easter 1981 and the end of the same year,
and shipped in January 1982. The early forecasts of up to 12,000 sales
proved hopelessly wrong, and Acorn struggled to keep up with demand
for several years, with over 1.5 million Beebs produced in total. The Beeb
provided the computing resource for most of the UK education system
through the 1980s and found many other markets in universities (sometimes
just as a cheap dumb terminal), in homes, and overseas.

3. Why Design a Microprocessor?

The BBC Micro was a major technical as well as a commercial success.
Enormous technical risks were taken in its design, such as the use of very
early gate arrays (Ferranti ULAs — Uncommitted Logic Arrays) to reduce
the chip count, the use of telesoftware downloads (exploiting unused lines
in the teletext content of broadcast TV pictures), 2nd processors, and so
on. All of these paid-off (though not without some difficulty in certain
cases), and the young and somewhat inexperienced technical team grew
in confidence, perhaps even arrogance? Everything we touched seemed to
turn to gold (though not much of that ended up in our pockets thanks to a
certain naivety regarding financial matters). So, when we came to address
the issue of the next machine to build on the success of the BBC Micro all
options were open.

At that time we knew how to put chips together on a PCB, and
we had solid experience of Ferranti’s ULA technology, so we knew a bit
about gate-array-level chip design. But microprocessors were a black art
practised only by the big semiconductor companies, and even then they took
several expensive iterations to get designs right. We visited the National
Semiconductor 16032 (later renamed the 32016) design team in Israel, who
were on the 6th or 7th revision of the processor and it still had bugs. We
heard similar stories from elsewhere — this was clearly not a game that a
small-system company could play.

However, the 16-bit processors that were being produced in the early
1980s did not impress us. On the whole their design was derivative,
reflecting what had been best practice in minicomputers in the late 1970s
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(when the VAX 11/780 was king). In particular, two features of these
processors disappointed us:

• they had very complex, uninterruptible instructions, which compromised
the interrupt latency. The BBC Micro did all of its IO on interrupts, but
the 16-bit processors had a worse interrupt performance than the Beeb’s
6502. This did not seem like progress!

• worse still, the new 16-bit processors did not perform very well. We had
looked at what determined processor performance and worked out that,
above all, it was the processor’s ability to exploit memory bandwidth that
mattered. These 16-bit processors could not exploit the full bandwidth
available from commodity memories at the time — indeed, they were
no faster than the contemporary high clock rate 8-bit processors. A
4MHz 6502 could outrun a 6MHz 16032, and despite the “primitive”
8-bit instruction set of the 6502 and the “nice” instruction set of the
16032, the performance seemed to correlate only with the useful memory
bandwidth.

Then (this is now 1983) we heard about the Berkeley work, and in particular
“The Case for the Reduced Instruction Set Computer” [1], and everything
started to fall into place. If a class of postgraduate students could design
a competitive microprocessor in a year the task could not be so much of a
black art as we had previously believed.

Alongside this thinking, the Acorn management (and in particular
Hermann Hauser) had looked at developments in the industry and had
concluded that “in the future there will only be two sorts of computer
company: those that have learnt to design on silicon, and those that have
gone out of business”. On the basis of this insight alone, and with no idea as
to how they might be used, Acorn had started to recruit experienced chip
designers, bought Apollo workstations, and acquired VLSI design software
from VLSI Technology, Inc., a company with whom Acorn had already
established a business relationship as a result of them second-sourcing
NMOS replacements for some of the Ferranti ULAs in Acorn’s products.

Thus, in 1983, Sophie Wilson began to design an instruction set for a
new microprocessor. At this time we were far from convinced that designing
our own microprocessor was sensible, but we thought we would set out down
this path, expecting at any point to discover where the roadblock lay. At
that point we would abandon the project, but would have gained knowledge
with which we could return to the job of sourcing a commercial processor.
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The final experience that launched the project was a visit I made
with Sophie Wilson to Phoenix, Arizona, in October 1983. We went to
observe progress on the 65C816, an extended version of the 6502 with a
24-bit address space. What we found took us by surprise. The Western
Design Centre, who were responsible for this design, were set up in a
normal residential bungalow and employed school kids during the summer
vacation to do the silicon layout of basic logic gates using ordinary Apple II
computers. Sure, there were a few big bits of kit lying around for plotting
large layouts and the like, but there were no deep mysteries in what we
saw. If these guys could design a microprocessor then so could we.

It was time to go back to Cambridge and to talk Hermann into putting
the project onto an official footing.

4. The ARM Design Process

In the early 1980s RISC was a new idea, espoused only by a few academic
teams, and disdained by industry. The thrust towards simplicity that is
implicit in the RISC philosophy was clearly a key to Acorn designing its own
processor, with the very limited resources it could afford to apply to the job,
but there was the fear that the academic instruction set architectures might
have taken this a bit too far. Also, the Berkeley RISC design confused the
picture somewhat with its register windows architecture which, although it
has some clear benefits, also has drawbacks in terms of cost and context
switching performance.

So there were debates about load-store architectures, the need for
load-store multiple register instructions, conditional execution, and so on.
I do not recall all of the issues, but Sophie Wilson was very firmly in
control of the ISA definition. In the end the result was near-RISC, with
a load-store architecture, a (fairly) large (almost) regular register file
arrangement, (mainly) 3-address instructions, very powerful instructions
for loading and storing multiple register, all instructions conditionally
executed, and so on — very much the core of the ISA that is still in use
today. Wilson’s considerable experience in writing software — especially
at that time BASIC interpreters — ensured that the ISA would support
software efficiently.

Wilson also wrote an instruction set emulator so that the software team
could develop and test ARM programs before any silicon became available.
In particular, they developed validation programs — programs that test
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a particular aspect of the instruction set as exhaustively as possible —
that were used to check out the ARM reference model that was the central
component of the microarchitecture design.

The hardware design philosophy was based on the observation noted
above — that memory bandwidth is the primary determinant of processor
performance. Therefore, the ARM microarchitecture started from the idea
that the processor clock would be tied to the memory clock, and the
processor would use the memory for something (instruction fetch or data
load or store) during every clock cycle. In order not to compromise the
memory clock rate, the processor should deliver an address as early as
possible in the clock cycle — possibly slightly before the start of the cycle
if the memory allowed — and it would expect data to be returned as late as
possible in the cycle. For cost reasons, the architecture would use a single
memory with a single port, so the performance should be defined by the
total number of memory accesses and the memory cycle time.

At that time commodity memory used DRAM chips that would deliver
around 4 million random accesses per second, but in “page” mode they
could operate at twice this rate. Page mode is restricted to addresses within
the same row in the DRAM memory, but can readily be exploited when the
processor is fetching instructions from consecutive memory locations, or
performing any pattern of sequential accesses such as those that arise in
a load or store multiple instruction, provided a test is made to detect the
end-of-row.

A quick sum suggested that a 32-bit DRAM memory with around 75%
sequential accesses would deliver approximately 25Mbytes/s of bandwidth.
The BBC Micro provided the 6502 processor with 2 Mbytes/s of memory
bandwidth (plus another 2 Mbyte/s for the graphics), so if an ARM
could make good use of 25Mbyte/s it would deliver more than an
order of magnitude performance improvement over a BBC Micro, and
would significantly outperform any other microprocessor available at
that time.

The microarchitecture design began from the objective of delivering this
25Mbyte/s of usable bandwidth. The data-processing instructions required
external memory only for instruction fetch, so it was necessary to be able
to fetch an instruction in every clock cycle, implying some sort of pipelined
execution (which was not a common feature of early 1980s microprocessors,
though it had been used on the academic RISC prototypes whose
protagonists declared it a better use of silicon resource than a complex
micro-coded instruction set). After a little thought a Fetch-Decode-Execute



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch06

124 S. Furber

pipeline was chosen as the simplest microarchitecture that could keep up
with the memory.

Mapping the instruction set onto the processor datapath was a process
of trial-and-error. Various datapath organisations were sketched, and
replicated by photocopying. Then, for each clock cycle of each instruction,
a sheet was coloured-in to indicate the datapath resource usage. If a conflict
arose that seemed to cause the processor to take more than the ideal number
of clock cycles to complete an instruction the datapath organisation was
modified, replicated, and the colouring-in started again.

Then the ARM reference model was written. This was an 800-line
program written in BBC Basic, using 32-bit integers to represent 32-bit data
values. Each block (of which there were 20 or so, representing, for example,
the instruction decoder PLA, the ALU or the instruction pipeline) was
described using two subroutines, one of which was called in phase 1 of the
clock and the other in phase 2. The 2-phase non-overlapping clock scheme
was a fairly common design style for custom VLSI at the time [2] — one
clock cycle comprised a phase 1 clock pulse followed by a phase 2 clock
pulse, each clock phase controlling its own set of transparent latches — and
allowed the control of race conditions by adjusting the non-overlap from
outside the chip.

The ARM reference model ran the validation programs that had
previously been developed and debugged using the instruction set emulator,
and these were used to debug the reference model. Then the reference model
function was documented in the form of block specifications — formal
documents (of only a page or two each) that defined the function of each
of the blocks that made up the processor. The block specs were the formal
interface between the microarchitecture design and the VLSI design group,
who each took responsibility for taking a number of blocks and generating
schematics, layout and tests for them. The blocks were assembled into the
complete chip layout, which was then tested, checked and made ready for
fabrication.

The complete chip design was taken to VLSI Technology, Inc.’s offices in
Munich early in January 1985, for final checks before tape-out — shipping
the physical layout design files to the foundry for manufacture. The first
silicon arrived on April 26, 1985, and at about 3 o’clock in the afternoon it
was running BBC Basic.

There was a minor bug in an obscure corner of the shifter logic, but
nothing of any real consequence. ARM1 was a working, usable processor
that was faster than any on the market at that time, and the first
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commercial RISC microprocessor [3]. It would take a couple of years to
complete the design of the full chip set, which included highly integrated
memory, IO and video controllers to accompany the ARM, during which
time a second iteration of the processor would be designed on a smaller
(2 micron) CMOS process.

5. The Formation of ARM Ltd

In 1987, the ARM chip set formed the hardware basis for the Acorn
Archimedes personal desk-top computers. These machines were well ahead
of their time in performance terms, but the development of the sophisticated
software that was required to exploit the hardware had suffered some
setbacks. As a result, the first Archimedes machines were sold with
rather inadequate software, somewhat compensated for by a reasonable
backwards compatibility with the BBC Micro (which by then enjoyed a
very substantial software base).

Acorn continued to develop the Archimedes system software which,
unusually for the time, was delivered in ROMs (giving the machine
extremely good start-up characteristics), but the IBM PC had established a
standard throughout most of the desktop computing market that was hard
for Acorn to compete with. Sales kept Acorn viable for a time, but there
was no sign of the exponential growth that the company had enjoyed during
the heyday of the BBC Micro, and maintaining a competitive position with
a proprietary microprocessor was an increasingly expensive business. At the
end of the 1980s, Acorn was looking for a way to relieve its balance sheet
of the overhead of ARM development.

At the same time, Apple had a vision for the next generation of hand-
held devices and was working on what would become the Newton. Their
early developments were based around the AT&T Hobbit microprocessor,
but they were reviewing this decision and approached Acorn to see if they
could access the ARM under suitable conditions. One condition was that the
ARM would be spun-out of Acorn into a new joint-venture company. They
were pushing on an open door, and ARM Limited (the acronym expansion
was first adjusted to “Advanced RISC Machine” and then later dropped
altogether) was formed in November 1990.

The new company was formed around the ex-Acorn hardware and VLSI
design teams (apart from me — I left to take up the ICL Chair in Computer
Engineering at the University of Manchester in August 1990), the ARM
technology, and was a joint venture of Apple, Acorn and VLSI Technology.
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Robin Saxby was brought in as CEO, and devised the business model based
on an up front fee to become an ARM partner (together with a royalty
per manufactured chip) that generated positive cash flow and enabled the
company to bootstrap itself effectively with no further investment beyond
the small amounts provided by the founding parent companies.

ARM Ltd found itself ideally positioned to exploit the emerging SoC
market of the early 1990s. After a bit of a struggle to break loose from the
demands of the founding partners, it found the small size and low power of
the ARM processor ideally suited to the needs of that time, when silicon
resource was much more restricted than it is today and a small processor
core left significantly more room for the remaining SoC components.

Throughout the 1990s, ARM Ltd focussed on simplifying the job of
designing the ARM into an SoC. Debugging a complex system on a PCB is
a hard job. Debugging a complex system inside a chip is about as difficult
an engineering task as you will meet as everything has to be inferred from
evidence that is available at the periphery through the pins, and chips are
always designed to have as few pins as possible to minimise packaging costs.
The original 3-stage ARM pipeline was augmented with on-chip debug
resources, the compressed “Thumb” instruction set (to reduce code size by
30%), faster multipliers, and so on [4]. From the mid 1990s, new pipeline
structures were developed to allow the architecture to address higher-end
applications, complementing rather than replacing the simpler basic model.
The major breakthrough came with the rapidly growing market for mobile-
phone handsets, which ARM rapidly came to dominate (and which is still
responsible for around a third of the ARM processors sold).

ARM has become the de-facto standard in the 32-bit embedded
processor marketplace, powering the great majority of the consumer
electronics products of the early 21st century.

6. A 20-year Perspective

A great deal of what happens in business, including high-tech business,
cannot be put down to technology alone. The best technology often does
not become the most successful product in the marketplace, and ARM’s
dominant position in the embedded processor market is the result of many
factors, among which technological advantage plays at most a minor role.

So what are the lessons for computer science in general from the ARM
story, if indeed there are any? In my view, the most fundamental is the one
so often forgotten in the computing field: the high desirability of simplicity.
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The RISC philosophy represented the return to basics in processor design
that made the entire ARM project feasible.

Hermann Hauser, explaining the reasons for the success of the ARM,
is quoted as asserting that the Acorn team had two advantages over the
established industry at the time: (i) no money and (ii) no manpower. I am
inclined to agree with this analysis. The very low resource available to
the project made simplicity the highest imperative among the competing
design criteria. I remember using the simplicity argument against all sorts
of suggestions — if we let the design get at all complicated we would never
finish it and it would never work if we did finish it. The final processor was
indeed very simple, using fewer transistors than some 8-bit microprocessors
and one-tenth the number used by some contemporary 16- and 32-bit
processors.

Today’s microprocessors (including some of the high-end ARM
processors) have become ferociously complex. This is in part simply because
the economics of chip design make it possible, and in part because we
have so far failed to solve the problem of general-purpose parallelism, so it
still makes some sense to add a lot of complexity to make a single thread
go a bit faster. However, there is a dramatic paradigm shift underway
in the microprocessor business with the end of the road for ever-faster
uniprocessors having arrived, and already multicore processors dominate
the new PC business. The software to exploit these multicore machines is
lagging, but this is a problem that now must be solved!

Once we know how to program general-purpose multicore systems,
where will it lead? My analysis is that what then matters is performance
density (MIPS/mm2 of silicon) and power-efficiency (MIPS/watt). On
these measures simpler processors outperform their more complex brothers,
so perhaps we will again see a return to simplicity in mainstream
microprocessor design?
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1. Introduction

Scientific tradition frequently names a fundamental notion, insight, or
theory after its explorer or eminent representative. Typical examples
include “Abelian group”, “Planck’s constant” or “Keynesian economic
theory”. Informatics occasionally names algorithms after their inventors,
such as Dijkstra, Lamport or Floyd. Entire sub-fields of informatics are
named after their respective persons only rarely. One of these few persons
is Carl Adam Petri. Probably, every professional knows “Petri Nets” as a
modeling technique. This paper will survey Petri’s exceptional life and work.

Petri started his scientific career with his dissertation “Communication
with Automata”, which he submitted to the science faculty of Darmstadt
Technical University in July, 1961. He defended his thesis there in June,
1962. [1]

In the rest of this paper, we first discuss this unusual and exceptional
work, which laid the foundations for the success story of Petri Nets

∗This paper has been adapted from an earlier paper published by the same authors in
Informatik-Spektrum, Vol. 29, No. 5, pp. 369–374, Springer-Verlag, 2006.
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including stimulations and challenges still to be taken up. We then consider
the personal background of Carl Adam Petri and the pre-requisites and
motivation for his work. We finish with the impact of Petri’s dissertation
and his other publications on the evolution of informatics.

Altogether, it will become transparent why some of Petri’s ideas from
the early 1960s had been taken up much later, and why some of his ideas
are still pending for further elucidation and formalization.

2. The Dissertation

Since its publication in 1962, Petri’s dissertation has been cited frequently
(even though it probably has been read much less frequently).

This is not a conventional PhD dissertation, solving an open problem or
elaborating a new theory. Instead, like in many later papers, Petri presented
a wealth of ideas and proposals for revising the foundations of informatics.
The text, thus, resembles sketches of a research program to some degree.

Nevertheless, as an excellent motivation for this fundamentally new
approach, Petri starts out with an absolutely concrete and practical problem
concerning the computation of recursive functions. The problem focuses on
the observation, which was already well known in those years, that for a
general recursive function f and an argument n, the amount of intermediate
space necessary to compute f(n) cannot be assessed in advance.
Consequently, you cannot get hold of the required resources and then
compute f(n). Instead, you have to start out with a given set of resources.
If the resources suffice, meaning that the computation of f(n) terminates,
it means that you have good luck. Otherwise, you have to assemble more
resources and start again. Petri challenged the necessity of re-starting from
scratch: can you not organize a computing system in such a way that fresh
components can be allocated whenever necessary, and that the computation
continues right away after adding components? Of course, the number of
extensions must be unlimited and extensions should not significantly slow
down the computation. Conventional computer architectures fail, as the
following arguments show: each extension enlarges the system’s overall size.
This requires longer wires, in particular to the clock pulse. This, however,
lengthens the runtime of the signals. Hence, the clock frequency must be
reduced. Furthermore, the clock pulse generator’s fan-out increases and
consequently its power consumption increases without bounds. The clock
frequency and power consumption of a switching element cannot be changed
at will. Thus the clock pulse generator eventually collapses.
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Therefore, the question arises whether there is an extendable
architecture that does not need longer wires and which does not suffer
from growing fan-out actually does exist. Petri has proven that this can
be achieved by attaching each fresh component to that component having
been attached previously. This construction comes with a price, since each
component must be able to act autonomously and the entire system must
work asynchronously.

As a feasibility study, Petri designed an asynchronous pushdown
device composed of a sequence of modules, with each module containing
a single data element and communicating with its two neighbors. The
most recently attached module has one neighbor only. This way, a further
fresh module can be attached. It is well known that two such devices
suffice to implement a Turing Machine. Hence, Petri’s construction is
computationally universal! Petri presented this architecture at the first IFIP
World Computer Conference in Munich, 1962. [2]

With the help of this thought experiment, Petri intended to show
that asynchronous systems are more powerful than synchronous systems.
From this insight, he deduced the consequence that a general theory
of information processing, if intended to be practically relevant and not
unnecessarily idealizing, must start out with asynchronous, locally limited
operations. He concluded that it is therefore inappropriate to base the
theory of informatics on sequential models.

In the course of his work, Petri employs a multitude of formal notations
for asynchronous, distributed systems, including graphical representations
and algebraic formulae with a “parallel” operator, in analogy to what later
became process algebra. He additionally coined the basic notions of Petri
Nets, i.e., “places” to describe local states and “transitions” for locally
bounded actions.

Petri Nets — as they are known these days — first appeared in Petri’s
1965 talk “Fundamentals on the description of discrete processes” at the
3rd Colloquium on Automata Theory in Hannover, 1966 [3]. However, at
the end of 1964 already, the well-known software pioneer Tom DeMarco
was exposed to Petri Nets at Bell Telephone Laboratories in the ESS-1
project (developing “the world’s first commercial stored program telephone
switch”). Tom was a member in the project’s simulation team. In his
contribution to the volume on “Software Pioneers” [4], DeMarco writes
“Among the documents describing the simulation was a giant diagram that
Ms. Hoover called a Petri Net (Ms. Erna Hoover ran the team). It was
the first time I had ever seen such a diagram. It portrayed the system
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being simulated as a network of sub-component nodes with information
flows connecting the nodes. In a rather elegant trick, some of the more
complicated nodes were themselves portrayed as Petri Nets. . . .” And some
lines later: “The one document that we found ourselves using most was
Erna’s Petri Net. It showed how all the pieces of the puzzle were related
and how they were obliged to interact. The lower-level network gave us
a useful pigeon-holing scheme for information from the sub-system specs.
When all the elemental requirements from the spec had been slotted by
node, it was relatively easy to begin implementation. One of my colleagues,
Jut Kodner, observed that the diagram was a better spec than the spec”.

Petri did not just demand an adequate modeling technique for
asynchronous distributed systems. His technique should additionally meet
a number of further requirements.

First of all, Petri’s modeling technique should obey the laws of physics.
In particular, this implied giving up the fiction of global states. A discrete
action of a system usually does not affect all system components, but only
a few of them. An evident example is a computing step of an Internet-
embedded computer: it is not adequate to conceive such a step as an update
of the Internet’s global state. Petri suggested that the locality of actions
be modeled during system runs with utmost precision and to respect and
exploit this aspect. Describing an action as a pair of an old state and a
new state, as it is usually done, represents this aspect only implicitly. It is
entirely inadequate to represent a single system run as a sequence of (global
state occurrences and) action occurrences. Petri suggested that action
occurrences not be ordered along a fictitious, idealized time scale, but by the
partial order induced by the cause and effect relation instead. Two action
occurrences a and b may remain unordered. This happens, when neither of
them depends on the outcome of the other. Unorder then represents causal
independence (“concurrency”, in Petri’s terminology). We observe that a

may be causally independent of b, and b may be causally independent of c,
with a causally before c. Hence, concurrency is not necessarily a transitive
relation, in contrast to “temporally coincident”. Relativity theory likewise
assigns a “pre-cone” and a “post-cone” to each a. These cones consist of
the action occurrences causally before and after a, respectively. Many years
later this was re-detected and re-formulated in other system models by
Lamport, Pratt, Gurevich, and others. The transfer of the idea of causal
order from physics to informatics is a particularly impressive example of
Petri’s demand to design the theory of informatics in accordance with the
laws of physics.
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As a second requirement, Petri suggested to form models of informatics
in the tradition of models of science. Profound scientific theory is rooted
in conservation laws. Examples are the mass equations of chemistry or the
energy conservation laws of physics. Elementary discrete actions should
likewise obey a law of conservation. A typical necessary condition for
conservation laws is the reversibility of processes. In informatics, this means
for a step S

a−→ S′ of an action a from a state S to a state S′, that not only
S′ can be computed from S and a, but also S can be re-computed from
S′ and a as well. As an example, the assignment statement x := x + 1 is
reversible, whereas x := 1 is not. Petri Net transitions are designed such
that local causes and effects become evident and that they are reversible.

Petri’s third requirement demands that a modeling technique should
not only be adequate to describe implementable behavior, but it should
also describe the human pragmatic use of computing systems. This
aspect motivates the dissertation’s ambiguous title “Communication with
Automata”: it covers humans communicating with automata, as well as the
communication between different persons with the help of automata. Petri
outlined these aims, together with ideas about how to attain them.

This was certainly not been a conventional dissertation – it was more
to be conceived as a program of how to lay the foundations for the emerging
science of informatics. This program however, was disconcerting in its long-
term aims, and it contradicted prevailing ideas in its short-term proposals.
So, it is easy to imagine that this piece of work caused its readers quite
a headache. One of the leading pioneers of the first-generation electronic
computers in Germany, Prof. Alwin Walter of Darmstadt Technical
University, recognized the value of Petri’s work and ensured that it was
awarded as the best dissertation of his school in 1961/1962.

Petri’s dissertation was also translated to English: in the context of the
venture MAC at MIT, as part of Anatol W. Holt’s “Information Systems
Theory Project” [5].

3. Carl Adam Petri, The Man

Distributed and concurrent processes as the foundations of informatics,
theoretical constructs in accordance with the laws of physical, conservation
laws in analogy to science, formal modeling of the pragmatic use of
computing systems — these were indeed exotic topics for the emerging
science of informatics in the early 1960s, and rarely expected in a
dissertation. Who is the person to dare build up his own scientific world,
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detached from current fashion and tendencies, but nevertheless respectful
of the needs of practice and of scientific tradition?

Petri’s biography was typical for his age-group in Germany, and it can
be rapidly reported. Decisive experiences as a child and as a young man
clearly influenced his scientific work later on.

Carl Adam Petri was born in Leipzig in 1926. He graduated in 1944
from the famous Thomas School and was immediately forced into military
service. He was a British prisoner of war and remained in England until
1949. He then studied mathematics in Hannover and followed his teacher
Heinz Unger as a PhD student to Bonn University. After receiving his PhD
in 1962, he set up and ran the computer center of Bonn University, as
well as the Institute for Information Systems Research at the “Gesellschaft
fuer Mathematik und Datenverarbeitung” (GMD) in Birlinghoven (which
later became an institute of Fraunhofer Society). He ran this institute until
1991. He turned down an offer for a position as a full-time professor at the
University of Dortmund in 1973. During his entire career as well as after his
retirement, Petri developed and published those ideas that he had already
sketched out in his dissertation.

A number of reports and anecdotes help explain why Petri focused on
very special scientific problems and methodological approaches. We will
mention just three of them:

Petri’s father had a PhD in mathematics and had met Minkowsi
and Hilbert. He supported his son’s interest in science. From a bankrupt
bookseller’s estate, Petri got two thick textbooks on chemistry on his
12th birthday, which he diligently worked through. His father arranged
for his son to have an exceptional permit to use the Leipzig central
library unrestrictedly. There he delved into publications of Einstein and
Heisenberg.

Young Carl Adam as a flak auxiliary in the Air Force, observed officers
who estimated the height, distance, and speed of approaching aircraft by
simple means including visual judgment and hearing. The combination of
measurement and estimation and mainly the quest for the responsibility
for — inevitable — mistakes, has pre-occupied him and influenced much of
his scientific work.

In his years in England, Petri solved some challenging land-
measurement problems, such as the construction of concentric ellipses on
rolling country.

The three topics mentioned, i.e., the methods of science, the pragmatic
aspects of erroneous measurement, and the reasoning on geometrical
objects, turn up again and again in Petri’s later scientific work.
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4. The Years Until 1980

Petri’s dissertation was initially taken notice of, despite the important
impact that we mentioned earlier on the representation of the ESS-1 system
at Bell Labs, and its translation at MIT. This is hardly surprising, since
the environment: computing technology at that time consisted of huge
mainframe computers for numerical calculation, with punched paper tape
and punch cards for input and output. A global clock seemed to be a natural
course of action. Nobody thought about computer networks. Application
software focused on numerical problems.

Since 1956 such software was mainly written in FORTRAN. The
ALGOL 60 language initiated systematic research on the theory of
sequential programs and sequential processes. Petri’s proposal to organize
input and output as parallel processes had been rejected. Missing I/O
standards would hamper the success of ALGOL 60 later on. Applied
informatics favored sequential processes. Mastering analog computers and
asynchronous switching networks appeared to be difficult and too slow,
despite their capability for parallel execution.

Theoretical informatics focused on sequential models for automata
and computers, as well as on computable foundations, formal languages
and compiler theory. In addition, highly speculative theoretical papers on
“cybernetics” and “artificial intelligence” circulated, mostly without any
realistic ideas on their realization (for example, speculations on a “general
problem solver”).

In contrast, Petri outlined the feasibility of his proposals by using
the technology of that time. Even more, he discussed pragmatically the
adequate use of this technology.

In summary, Petri’s proposals came too early for applied informatics,
and theory at that time focused on other topics. However, this poor response
did not confuse or deter Petri. Together with his staff and numerous visitors,
he strengthened his proposals in the sixties and seventies.

Still, in the sixties, he formulated several basic principles that have
been re-invented by others later on. This includes alternating local states
and steps (later in message-sequence-charts), side-effect free actions (later
in functional languages) and multisets of tuples as states together with
“put” and “take” replacing “write” and “read” (later in the “tuple space”
of LINDA and in the Chemical Abstract Machine).

On the occasion of his acceptance speech for the Turing Award in 1991,
Robin Milner stated that “Much of what I have been saying was already well
understood in the sixties by Carl Adam Petri, who pioneered the scientific
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modeling of discrete concurrent systems. Petri’s work has a secure place at
the root of concurrency theory.”

As a first breakthrough, MIT had considered Petri Nets in Project
MAC, at the end of the sixties. This successful project related to time-
sharing computer systems and “Multiple Access Computers” (and other
topics), reflected some of Petri’s ideas. This gave rise to a line of research
that conceives Petri Nets as a mechanism to characterize classes of Petri
Nets with the help of formal languages. Some insight into Petri Nets can
be indeed gained in this way. But Petri was reluctant to appreciate such
results: he felt that they confuse concurrent and causally ordered event
occurrences, whereas Petri considers this distinction to be fundamental in
order to conceive systems properly. A number of theoretical results on Petri
Nets emerged in the seventies, in particular linear-algebraic methods to
compute system invariants.

Essentially, all theoretical results and applied case studies that were
available in the late seventies were compiled and presented at the First
Advanced Course on Petri Nets in Hamburg, 1979 (published as LNCS
84 [6]). In those years, distributed systems gained more attention and
alternative modeling and analysis techniques were suggested, including
process algebras and temporal logic.

5. The Years Since 1980

The number of publications on Petri Nets have grown sharply since the
early eighties. As an entirely new concept, the marking of places with sets of
uniform “black” tokens has been generalized to individual, “colored” tokens
of different kinds. This step increased the modeling power of Petri Nets
decisively, while structurally retaining the fundamental analysis technique,
in particular the linear algebraic calculi of place invariants and transition
invariants.

The eighties also saw a growing interest in distributed and reactive
systems, boosting not only Petri Nets, but a number of alternatives. Many
of them vanished without trace. The durable ones include the already
mentioned process algebras with Robin Milner’s π-calculus of the 1990s,
as well as David Harel’s Statecharts. Starting with Amir Pnueli’s seminal
work in the late 1970s, temporal logic became the favorite analysis technique
of the field.

There is no clear evidence to what extent the graphical form of Petri
Nets may have influenced the graphical form of other calculi. The idea of
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conceiving a distributed run as a partially ordered set of action occurrences
has initiated partial order model checking: conventional model checking
cannot cope with partially ordered runs, but only with total orders. A
partial order, however, corresponds to a set of total orders. Some temporal
logic properties hold for either all or none of those total orders in each set.
So, it can effectively be tested for all total orders in a set by testing just
one of them.

Petri Nets nowadays contribute to the actual discussion of model driven
software design. Many currently favored modeling techniques include Petri
Net-based components; most prominently the activity diagrams of UML2.

Meanwhile, Petri Nets are well established as a technique to model and
to analyze embedded computer systems. A large community of scientists
and software engineers employ Petri Nets in fairly different projects. Less
known to computer scientists is the mechanical engineers’ high esteem
for Petri Nets. Carl Adam Petri has been awarded the 30th Werner-von-
Siemens-Ring as a “scientist and designer of technology of outstanding
merit”. Petri is the second computer scientist who was honored with
this prize (the first was Konrad Zuse). In his laudatory speech, Prof.
Gottzein pointed out: “Petri Nets brought engineers a breakthrough in
their treatment of discretely controlled systems. Petri Nets are a key to
solve the design problem, as this is the first technique to allow for a unique
description, as well as powerful analysis of discrete control systems. Based
on Petri Nets, it is now possible to formulate system invariants for discrete
systems”.

Nowadays, a number of useful software tools are available, mutually
linked with the help of the “Petri Net Kernel”, to design and to
analyze Petri Nets. Conferences are organized on a regular basis, in
particular the annual “International Conference on Applications and
Theory of Petri Nets”, with satellite tutorials, workshops etc., since 1980.
Meanwhile, the special interest group “Petri Nets and related system
models” publishes a regular newsletter with almost 60 issues. The Computer
Laboratory of the University of Hamburg organizes the Internet portal
www.informatik.unihamburg.de/TGI/PetriNets/index.html with a wealth
of current references to literature, tools, events etc.

6. Honors

With the establishment of Petri Nets as a recognized modeling technique
in the eighties, Carl Adam Petri was honored many times. His outstanding
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awards include:

• 1988 — Verdienstkreuz 1. Klasse des Verdienstordens der
Bundesrepublik Deutschland;

• 1988 — Honorary Professor at Hamburg University;
• 1989 — Member of Academia Europaea, London;
• 1993 — Konrad-Zuse-Medaille der Gesellschaft für Informatik, for

distinguished credit for informatics;
• 1997 — Werner-von-Siemens-Ring, for outstanding merits for

techniques in connection with science;
• 1997 — Member of the New York Academy of Sciences;
• 1999 — Honorary doctorate of the University of Zaragossa and
• 2003 — Commandeur in de Orde van de Nederlandse Leeuw.

7. What Will the Future Bring?

In his invited speech at the 26th International Conference on Application
and Theory of Petri Nets, Miami, June 2005, Petri appreciated the diversity
and the quality of the applications of his theory. But he called for a
substantial expansion of the theory. Not for another “bunch” of Petri Net
classes, or more sophisticated analysis algorithms, but for taking up the
long-term aims as outlined in his dissertation. Much remains to be explored!
It may be a matter of time until progress in hardware or demands of software
will be strong enough to recall Petri’s old proposals.

An example for such a long-term aim are the conservation theorems of
information processing, in analogy to the preservation theorems of physics
(such as Einstein’s e = mc2) or chemistry (such as equations like NaJ + Cl
→ NaCl + J). Maybe — as Petri speculates — future software interfaces
may be formulated in a much more abstract way, as well as more precisely,
compared with today’s state-of-the-art. This, however, would require that
be developed a fundamental notion of what is preserved during dynamic
information processing.

As a first approximation, Petri suggests a new concept of “information”.
Information processing then would mean to reshuffle the given information,
while its overall amount remains constant. Apparently, none of the presently
used notion of “information” would meet this requirement. It is yet
entirely unknown whether or not there is a corresponding smallest unit
of information. Up until now Petri is still looking for such concepts.
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Informatics has evolved quite fiercely and in an unplanned manner,
driven by its technological and economical potential. This kind of
progression, together with today’s common short-term projects, affects the
structure of scientific development. Petri himself would not have stood a
chance in this kind of environment. Only very few, such as he, ask long-term
questions concerning the foundations of a systematic science of informatics.
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1. Stochastic Processes and the Central Server Model

I was introduced to queuing theory and stochastic modeling in the fall
of 1969 during my third year of graduate study at Harvard. Having just
returned after two years as a systems programmer at the National Institutes
of Health in Bethesda, MD, I was eager to see if my experience in designing
and building real-time systems for biomedical laboratories [1] could serve
as the springboard for my PhD dissertation.

I experimented briefly with deterministic analysis of real-time
scheduling, but soon found myself drawn to the mathematics of stochastic
modeling. I quickly recognized that queuing models could provide a
powerful tool for analyzing the type of performance issues I had encountered
at NIH. In particular, I was interested in characterizing the factors that
influence the overall throughput and response time of executing programs
as they alternate between bursts of CPU processing and periods of delay
while waiting for I/O transfers to complete.

In multi-programmed environments, several programs are typically
executing at the same time, leading to the possibility of additional delays
as programs queue for access to processors, I/O devices and main memory.
Overloaded devices can become bottlenecks, queues can shift from one
resource to another as devices are upgraded, and memory itself can become
the bottleneck if there is not enough space to accommodate a sufficient
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number of active programs. I was interested in discovering the mathematical
equations that govern these interactions, and it appeared to me that
stochastic models provided the most promising avenue for pursuing this
quest.

Other researchers had already demonstrated the value of queuing
models for the analysis of algorithms that schedule processing requests for
CPUs and I/O devices. However, these earlier models treated individual
processing resources in isolation. There were no analytic models capable of
representing the overall throughput and response time of typical programs
(or transactions) flowing through a system and contending for CPUs and
I/O devices while subject to constraints imposed by a limited amount of
main memory.

The central server model, which formed the basis of my PhD
dissertation [2], was the first analytic model capable of representing all
these factors in an integrated fashion. I developed this model by thinking
carefully about the life cycle of an idealized program, beginning with its
arrival at a system and concluding when the program finally terminates.
The set of processing resources that the program utilizes during its life cycle,
its trajectory from resource to resource, and the points where queuing delays
can occur because of contention with other programs, were all represented
within the framework of this model.

Once I had formulated the central server model, the next step was
to derive an analytic expression for the steady-state distribution of the
underlying stochastic process. The steady-state distribution is important
because, according to the Ergodic Theorem, this distribution can be used
to predict the observable behavior of a real-world system operating over
an interval of time (assuming that the real-world system is a realization
of the underlying stochastic process, and that the interval of time is
sufficiently long). This crucial connection between abstract mathematics
and observable reality would later become one of my major concerns, but
at the time I was happy to accept it without question and move ahead with
the analysis.

Deriving the steady-state distribution involved solving a set of
simultaneous linear equations. I was able to solve a small model with one
CPU and two I/O devices by writing down the associated equations and
applying basic algebraic techniques. While attempting to generalize my
solution to larger models, I conducted a literature search and discovered
that a general solution for the class of equations I was investigating had been
published a few years earlier by Jackson [17] and by Gordon and Newell [16].
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Although this was a great help, applying these results to the central
server model left me with a “solution” expressed in terms of equations
that were dauntingly complex and seemed computationally intractable.
After studying these equations intensively for several months, I discovered
a set of previously unknown recursive relationships within the closed
form solution. These relationships enabled me to derive new closed form
expressions for utilization, throughput, response time, and queue lengths.
More significantly, these discoveries also enabled me to develop simple
and highly efficient algorithms for computing the major quantities of
interest. The new algorithms extended directly to a general class of queuing
network models (not just the central server model), giving my work broader
applicability than I had originally anticipated.

2. Early Concerns About Stochastic Modeling

Although I was quite satisfied with the theoretical content of my
dissertation, I was also beginning to feel somewhat apprehensive about
using steady-state stochastic processes as models of real-world phenomena.
My concern was that stochastic processes were, in some ways, too powerful
a tool for the task at hand.

For example, steady-state distributions are typically used to predict the
average values one can expect to measure when observing systems for long
intervals of time. They are also used to predict the observable distribution
of time spent in each state. While these predictions seemed very reasonable
to me, I was aware that steady-state stochastic processes could also be
used to predict more exotic quantities such as the expected time between
successive visits to a given state or the probability that the number of visits
to a given state will exceed a certain threshold during some finite interval of
time. At some point, I was concerned that the computation of these exotic
quantities could become a mathematical exercise with little or no relevance
to the values one could actually expect to encounter in the real world.
Despite the established view that steady-state stochastic models were well
suited for the analysis of real-world behavior, I was uneasy about pushing
the mathematics too far.

I expressed these concerns on page 99 of my dissertation [2]: “The basic
assumptions of the model regarding program behavior were assumed to be
sufficiently realistic to permit the model to be of value in exploring the
effect of queuing delays on system performance. However, this does not
imply that these assumptions are sufficiently realistic to permit the model
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to be of value in further exploring program behavior itself. Hence, these
derived results should not be interpreted as intrinsically useful information
about program behavior in actual systems.”

Even though I felt the central server model would be useful for
predicting quantities related directly to the steady-state distribution such
as throughput, response time, and queue length, I was trying to warn the
reader that it would be dangerous to assume that the model was equally well
suited for predicting detailed aspects of program behavior. At that time,
I was unable to be more explicit about my warning. However, the problem of
drawing a line between reasonable and unreasonable expectations regarding
the accuracy of model predictions has evolved into one of my principal
intellectual concerns for nearly four decades.

3. Impact of Empirical Success

The central server model quickly attracted the attention of experimentalists
and practitioners in North America and Europe who were able to validate
its predictive accuracy in a variety of real world settings [12, 13]. In an
effort to better understand why the model worked as well as it did, I
carried out a series of analyses [3, 4, 18] aimed at determining how sensitive
the predictions were to the mathematical assumptions associated with the
underlying stochastic process. I was still thinking that stochastic processes
would be the best vehicle for modeling system performance. While studying
one special case, I collaborated with the statistician Donald B. Rubin, my
Harvard classmate and good friend, to derive a result that was essentially
distribution-free [5]. Even then, our formulation of the model was still
stochastic in nature.

My thinking began to change when I examined the way experimentalists
were actually applying stochastic models. Generally speaking, almost all
experimentalists operate using the same basic paradigm: they observe the
behavior of a system during an interval of time, collect measurements
during that interval, and then substitute the measured values into
equations which are based upon the steady-state distribution of the model’s
underlying stochastic process. If the equations produce accurate results, the
experimentalists conclude that the model is accurate.

At the time I was wrestling with these issues, Ugo Gagliardi and I were
teaching a two semester graduate course on Operating Systems (Applied
Math 251a & 251br) at Harvard. As part of the course, I presented several
lectures each year on queuing theory and computer performance modeling.
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During my first year of teaching this course (1971–1972), my lectures
presented mathematical derivations of major results and then examined the
implications of these equations for the performance of real-world systems.

Since class time was limited, I was trying to find a way to get
through the derivations more quickly so I could spend more time on the
applications. I knew that I could not simply ask my students to “trust me”
when I asserted that the queuing equations were correct, but I also knew
that understanding all the mathematical details required for a rigorous
derivation was not necessarily going to help my students become better
operating system designers. [It is interesting to note that Microsoft’s co-
founder Bill Gates audited AM 251a and then enrolled in AM 251br
during his freshman year at Harvard (1973–1974). Perhaps, a detailed
understanding of the way embedded Markov chains are used in the analysis
of M/G/1 queuing models does contribute in some small way to success in
the design of operating systems.]

4. Lectures at Serre Chevalier and Bologna

In any event, as I thought more deeply about the way experimentalists apply
the results of stochastic models to the analysis of real-world systems, I began
to realize that this might be the key to simplifying the way I presented these
results to my students. Simplification became even more of a concern when
I began presenting lectures on computer performance modeling at special
“short courses” in various locations around the world. The first of these
was organized by Professor Louis Bolliet of the University of Grenoble. It
was held at Serre Chevalier in the French Alps in December 1974.

I wanted to present the same material that I covered in my course at
Harvard, but I only had about half the time. To reach the main conclusions
more efficiently, I decided to dispense with the usual stochastic modeling
assumptions. Traditionally, I would begin my lectures on modeling by
stating: Let us assume that system behavior can be represented by a
steady-state stochastic process. At Serre Chevalier, I began with a simpler
statement: Let us assume that we are observing the behavior of a real
system operating over an interval of time. I was very happy with the way
my lectures were received, and when I returned home I immediately began
writing up my lecture notes so I could use them for another European
meeting, which was scheduled for February 1975 in Bologna.

I completed my lecture notes in January. They were in fact published
in a proceedings that was distributed at the Bologna meeting [6]. Here
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are some passages from these proceedings that illustrate the shift in my
perspective:

A. The context for all the analytic derivations presented in the Bologna
paper is defined in terms of an observer and an observation interval:
“Suppose that an observer records the behavior of such a system during
a time period of length W.” (page 4)

B. I was interested in deriving relationships among values that an observer
can, in principle, measure during the observation interval. These
relationships were expressed as expected values since I was still working
in a stochastic context. “The expected amount of time the observer will
find the system in state j is equal to W × P (j). Thus there is a direct
and simple relationship between the steady state distribution and the
empirical data an observer can expect to collect.” (page 4)

C. My derivations made use of the “flow conservation” assumption that is
identical to the assumption we now call “flow balance”: “The number
of times the token enters a particular node will thus equal the number
of times it leaves that node during any period of length W. This
observation is a specific example of a general principle known as the
flow conservation law.” (page 6)

5. Emergence of Operational Analysis

Despite the very strong operational orientation of the Bologna paper, it was
still written from a conventional stochastic perspective: the paper implicitly
assumes that the ultimate objective of any rigorous queuing analysis is
to derive equations that characterize the steady-state distribution of the
underlying stochastic process. The operational arguments I presented in
the Bologna paper are, in fact, the most critical steps in these stochastic
derivations. However, I viewed these steps as being only part of the story. At
the time the Bologna paper was written, I still believed it was necessary to
add additional arguments to prove rigorously that the operational equations
(pertaining to values that can be measured during a finite observation
interval) can in fact be extended to the steady-state distributions of the
underlying stochastic processes.

The fact that operational arguments are entirely sufficient to derive
useful results within an alternative mathematical context (which I
ultimately called Operational Analysis) did not occur to me until shortly
after I returned from Italy. This realization represented a major turning
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point in my thinking. There was no longer any need to rely upon the
assumption of an underlying stochastic process when deriving equations
that characterize the observable performance of real systems as they operate
over intervals of time. Operational solutions could be equally rigorous, while
at the same time being directly applicable to problems of genuine interest
to experimentalists and practitioners.

In March 1975, I began compiling a set of notes that formed the basis
of the inaugural papers on Operational Analysis [7, 8]. Since I had already
covered much of this material in my lectures at Serre Chevalier and Bologna,
the mechanical process of writing down and deriving the “Fundamental
Laws” was a straightforward algebraic exercise. However, articulating the
essential nature of operational analysis and characterizing the principal
differences between operational analysis and traditional stochastic modeling
was, for me, a significantly more difficult challenge.

During the summer and fall of 1975, I had a number of vigorous
discussions with colleagues regarding these issues. The most productive
conversations were with Peter Denning and Erol Gelenbe (who had both
attended the Bologna conference), and also with Don Rubin [7, 8].

The first formal publications on operational analysis, which appeared in
the spring of 1976 [7, 8], presented relationships between average response
time, average arrival rate, average queue length, average utilization,
etc. Some earlier reviewers of these papers expressed the concern that
operational analysis might be limited to relationships between interval-wide
averages. I felt it was important to correct this view as soon as possible
by demonstrating that operational analysis could also be used to derive
expressions for complete distributions. Specifically, I focused on attained
distributions that correspond to the fraction of time a system spends in
each possible state.

To derive operational expressions for attained distributions, I simply
re-visited the arguments presented in the Bologna paper, this time without
any requirement to assume the existence of an underlying stochastic
process. The Bologna paper followed the traditional stochastic approach
of identifying the state transition diagrams ([6], page 5), assuming global
balance is satisfied at each state as a consequence of the steady-state
assumption ([6], page 6), and using the assumption of exponentially
distributed service and inter-arrival times (memoryless processes) to
conclude that certain conditional arrival and completion rates that appear
in the state transition diagram must be state-independent ([6], page 8).

It was immediately clear to me that the structure of the state transition
diagram corresponded directly to the observable behavior of a real system
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operating over an interval of time. In addition, the operational assumption
of flow balance, which had already been introduced in the “Fundamental
Laws” papers [7, 8], was sufficient to imply that the global balance equations
must be satisfied. To complete the analysis of an M/M/1/N queue in
an operational context, all I had to do was introduce new operational
assumptions that would require the conditional arrival rates and service
completion rates to be state independent.

These new operational assumptions, which I identified as “homogeneous
arrivals” and “homogeneous service” [9], provided the basis for an
operational derivation of the attained distribution of the M/M/1/N queue.
This settled the concern that operational analysis might be limited solely
to deriving relationships among interval-wide averages.

Over the next few months, I continued my efforts to clarify and
articulate the essential nature of operational analysis and its relationship
to stochastic modeling [10, 11]. I also collaborated with Peter Denning on
a paper [14] that extended my earlier analysis of the M/M/1/N queue [9]
to a general class of product form queuing networks. A year later, Peter
and I collaborated on a tutorial paper [15] that assembled most of the
previously published work on operational analysis into a single document,
added a number of illustrative examples, and made the entire subject
readily accessible to a large audience.
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Chapter 9
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Applied mathematicians, such as John Von Neumann, have had a great
influence on the design of computers and have adapted them to their need
such as optimal control of trajectories, game theory and the numerical study
of fluid flows. Ordinary differential equations and optimization problems were
among the first to be solved after the Fortran language came into being,
but computational fluid dynamics took much longer to mature, and still one
cannot say that the partial differential equations of fluid mechanics are solvable
using today’s computers. For this reason such open problems continue to
influence computer architectures. Nevertheless it is now possible to design
a virtual aircraft prototype entirely and fairly accurately, and the impact
of this technology is felt even more on software development for Computer
Aided Design systems. This paper is a short history of the interaction between
numerical simulations in engineering, and the development of hardware and
software over the past thirty years based on the author’s personal experience.

1. Computational Fluid Dynamics

From the very early age of computing up to the end of the cold war,
Computational Fluid Dynamics was given top priority because of its
applications to the design of fighter aircraft, and to the simulation of nuclear
explosions.

The fundamental equations of fluid dynamics, the Navier Stokes
equations, are non linear partial differential equations (partial differential
equations). They admit a number of simplifications corresponding to
potential flow, boundary layer flow, Euler flow, etc. For airplanes each is
useful in its own regime but ultimately the full compressible Navier-Stokes
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Fig. 1.1. The “tetrahedrisation” of a nozzle for the computation of a potential 3D flow
in 1973 on an IBM 360 (courtesy of J. Periaux [11]).

equations with turbulence modeling are necessary, together with sensitivity
analysis, in order to carry out design improvements and optimizations for
advanced aircraft (see Fig. 2.1).

By 1970 computers could solve fairly accurately large classes of
optimization problems and ordinary differential equations. I had myself
solved two of these in 1969 on a small computer which seemed to be used by
no one else in the Electrical Engineering and Computer Science Department
at the University of California, Berkeley. Thus I was almost using a personal
computer! The program was typed on a paper ribbon or input directly on
the console and, of course, a single spelling mistake was heavily punished.

The partial differential equations of solid mechanics were among the
first to be solved numerically using the Finite Element Method and in
three dimensions even in the sixties; but translating the technique to fluid
flows had not yet been done. Thus in those early days scientists at NASA,
ONERA, the Los Alamos Laboratory and others where using the finite
difference method [7] which is an extension of the tools developed for the
ordinary differential equations of rocket trajectory calculations.

The finite difference method is not adapted to the complex shape of
airplanes.
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At Dassault Aviation in France, P. Perrier was a strong promoter of
numerical simulation because he saw it to be the only way to compete with
the American industries which had much larger resources for wind tunnel
testing. However the constraint was to use an arbitrary mesh. Among the
first to solve a flow around an entire wing in 3D was J. Periaux at Dassault
on an IBM 360; an example is shown on Fig. 1.1).

The Fortran IV language was used at that time via punched cards;
graphics were displayed with a pen plotter, mostly on Benson tables, and
we note that Benson was a French company.

At IRIA at the same time, during the period running from 1974 to
1988, the institute’s mainframe computer was not connected to the Benson
plotting table and a tedious manual data transfer on tape had to be used
resulting in endless delay and which required much good will on the part
of the computer operators. Personal computers, the Apple II in 1978 in my
case, were paving the way to a final relief from the arrogant abuse that
some of us had to experience on the part of some computer centers.

The situation improved considerably at the end of the seventies with
the advent of remote graphic terminals connected to virtual memory time-
sharing systems, the Honeywell-Bull Multix machine, which in my case
meant the possibility of using a local Tektronics graphic display which
was remotely connected to the time-sharing computer system. At this
time computations for an entire aircraft covering compressible potential
flow — a world premiere — were conducted at Dassault-Aviation with our
collaboration (see Fig. 1.2). This was followed soon after by A. Jameson’s
finite volume solution of Euler’s equation around an almost complete
aircraft frame [5].

Later the Apollo workstation made the biggest and final revolution in
the laboratory; now the CPU and the graphics were tightly integrated in
one machine and consequently greatly increased the number of computer
runs that one could accomplish per day. Most importantly, people such
as I became the operators of the computing resource and we were then
motivated to learn much more about Computer Science itself, rather than
just being numerical users of a remote computing resource.

This type of powerful workstation was used in competition, or in
addition to, the minicomputers that were already commonly available at
that time. Every decent Computational Fluid Dynamics laboratory had to
acquire one of these expensive machines: a budget constraint that forced us
to hunt for industrial contracts, in itself not a bad thing after all, but also a
significant strain on the frontier between applied research and commercial
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Fig. 1.2. Compressible potential flow over an entire aircraft computed in 1980 [3] on an
ibm 370 by the Finite Element Method, courtesy of Dassault Aviation.

services. At that time, the technical stress was on mesh generation and
three-dimensional graphic tools, as much as on algorithmic speedup.

Since then, the working environment has not changed much. We still
use powerful computer graphics on desktop machines with the possibility
to defer computing to parallel clusters or mainframes supercomputers.
However these set-ups are no longer a financial burden to most laboratories,
and CFD is available to everyone at the cost of a top end personal computer.

2. Open Problems

After fifty years of numerical research, turbulence is still not fully
understood. Depending on the situation one may choose to use Reynolds
averaged Navier-Stokes equations or large eddy simulations [12] or Direct
eddy simulations models with no certainty about the level of precision that
may be attained for a given problem. Better results are often synonymous
with bigger meshes, and there is still a great need for faster computers and
more sophisticated algorithms.

It is now also possible to treat coupled problems, or so called
“multiphysics”. For instance, it is possible to study the interactions between
air flows and the structure of an aircraft when it turns, or of the aircraft’s
electromagnetic reflections during flight for radar studies, as illustrated in
Fig. 2.2. Perhaps one day in the near future we may see a numerically



December 13, 2008 10:22 spi-b703 9in x 6in b703-ch09

From Rocket Control to Virtual Design 155

Fig. 2.1. Pressure color map from a RANS calculation [6] on a business jet performed
in 1998 on a workstation (computed by Bijan Mohammadi).

Fig. 2.2. Electromagnetic impact on a business jet computed on a parallel cluster by
an integral formulation and the fast multipole method with Domain Decomposition in
2004 on a PC cluster 32 CPU (computed by Pascal Have).

perfectly optimized aircraft using active devices on deformable wings to
provide less drag. This short history has shown the importance of meshes
and graphics, and jokingly some have said that Computational Fluid
Dynamics has the same initials as “color fluid dynamics”. The present
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importance of Computer Aided Design systems could also have been
predicted. Currently fluid flow modules and advanced mesh generation are
not well embedded in Computer Aided Design systems, but we expect
they will soon be. Also Computer Aided Design system developers are
pressed to include parallelism and task decompositions because of multiple
core processors are becoming common in high performance computing
engines and, more surprisingly, because of the cooperative effort that is
required in the design of an aircraft; the problems encountered by aerospace
companies such as EADS with its dual head leadership and its difficulties
with subcontractors illustrate the importance of modular and concurrent
engineering.

Despite all of these unsolved problems, forty years of research have
made possible the design of an aircraft without extensive wind tunnel
testing, and the author himself would be quite willing to fly in such an
“untested” vehicle: it is safe!

3. Computational Fluid Dynamics and Computer Science

Computational Fluid Dynamics has had a strong influence on high speed
computing both in terms of hardware and on software tools. For instance
the first parallel computer, the University of Illinois’ ILLIAC IV [8],
was designed for aerospace applications. One important customer of the
the celebrated Connection Machine CM5 was the US Government’s Los
Alamos Laboratory. The DAP (Distributed Array Processors) at Queen
Mary College [10] in the UK was designed with meteorology in mind;
Bjarne Stroustrup, who worked on the DAP, was certainly influenced
by his difficulties on this machine when he later designed the C++
language.

However, in the seventies and the eighties, teams of computer designers
lived in their own world, while the Computational Fluid Dynamics research
community contributed very little to computer science. As we tried to
explain earlier in this article, the “old” computing centers were “just a
window and a counter” for the end user to submit punched card stacks.

Having have worked on a variety of computers, and suffered greatly
from their limitations, this author first learned computer assembly language
at the University of California at Berkeley in 1969, the only time one could
access the punch card room without queuing was at 3 am! At D.A.M.T.P.
in Cambridge, UK, in 1971 no one was interested in computing so we had
the access terminal for ourselves and the working conditions were good but
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it was impossible to make a decent graphical plot directly from computer
output. At IRIA in 1974, still then a rich institute with a large Honeywell
mainframe computer, it was impossible to access any documentation and
the driver software for the Benson plotting table was never written. That
no one assigned this as a summer project for a computer science class
illustrates well enough the ivory tower in which fundamental system design
people were living in.

In 1978 being the head of the computer center at the university of Paris
13, I was determined to stop such abuse, and it was not a small task. For
instance, one day an operator threw the card deck of a student on the floor
because it wasn’t tidy enough to his taste. Basically the situation changed
when personal computers arrived, to the great fear of the operators who
immediately sensed the danger and refused to install them in our computer
center.

At Dassault-Aviation, the computing center was a true service but there
too no one was allowed to tamper with the system, if ever one was tempted
to struggle with the Job Control Language!.

The plunge of sophisticated users into computer science only came with
the minicomputer era in the eighties. Partial Differential Equation solution
software packages began to appear, such as Nastran for solid mechanics
[9]. For fluid mechanics, Phoenix and Fidap were fairly successful Fortran
language based packages, but they would produce output for specific
graphics like the Tektronics terminal. The fight of the day was to be able to
port the code on a variety of hardware without having graphic standards
such as OpenGL, and without a user interface. This is to be compared
with today’s advanced finite element software such as Abaqus[1] which can
be interfaced with Computer Aided Design tools such as Catia [4] and
customized with Python scripts.

Many researchers trained in Computational Fluid Mechanics went into
computer graphics, and the first Computer Aided Design Systems was born
in the French Laboratory LIMSI at Université Paris-Sud; so finally users
were contributing to the user-friendliness of their machines through:

• Unified geometry input languages,
• Automatic mesh generators (EMC2 for example),
• Versatile libraries of flow solvers, and
• Visualization packages.

One important item was still missing: a unified job submission system.
This came with the Unix, DOS and Mac OS operating systems. Strangely
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enough at that time only a few Computational Fluid Dynamics scientists
saw the potential of personal computers, and yet 20 years later this is
their most preferred tool. Since then, the contribution of this community to
computer science is much more visible: numerical analysts push the limits
of languages such as C++ and invent new concepts such as “straights”,
“generic programming”, and optimized templated libraries such as Blitz
[2]. Furthermore most of the algorithms for the parallelization of a single
task have been developed in the context of partial differential equation
simulations (such as OpenMP, PVM, and MPI).

This fruitful interaction between super computing and the design of
computers is not likely to stop. At present in centers for research in nuclear
physics, which are often equipped with the largest available computers,
software which is potentially useful to many communities of users is
being developed, offering capabilities such as high speed retrieval of large
data sets, break points in parallel programs for effective recovery and
restart, parallel visualization, and multithreading/domain-decomposition
optimizers.Thus numerical science is finally contributing significantly to
the areas of high performance computing and computer science, areas on
which numerical science depends critically for its ability to move forward
in answering key problems in science and engineering.
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