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Abstract. Fixed-angle polygonal chains in 3D serve as an interesting
model of protein backbones. Here we consider such chains produced
inside a “machine” modeled crudely as a cone, and examine the con-
straints this model places on the producible chains. We call this notion
a-producible, and prove as our main result that a chain is a-producible
if and only if it is flattenable, that is, it can be reconfigured without
self-intersection to lie flat in a plane. This result establishes that two
seemingly disparate classes of chains are in fact identical. Along the way,
we discover that all a-producible configurations of a chain can be moved
to a canonical configuration resembling a helix. One consequence is an al-
gorithm that reconfigures between any two flat states of a nonacute chain
in O(n) “moves,” improving the O(n?)-move algorithm in [ADD702].
Finally, we prove that the a-producible chains are rare in the following
technical sense. A random chain of n links is defined by drawing the
lengths and angles from any “regular” (e.g., uniform) distribution on
any subset of the possible values. A random configuration of a chain
embeds into R® by in addition drawing the dihedral angles from any
regular distribution. If a class of chains has a locked configuration (and
we know of no nontrivial class that avoids locked configurations), then
the probability that a random configuration of a random chain is a-
producible approaches zero geometrically as n — oo.

1 Introduction

The backbone of a protein molecule may be modeled as a 3D polygonal chain,
with fixed link (edge) lengths. The joints are not universal; rather the bonds
between residues form nearly fixed angles in space. The motions at the joints are
then called dihedral motions. The study of such fized-angle chains was initiated
in [STO0] and continued in [ADMT02| and [BDD"02]. These papers identified
flat states of a chain—embeddings into a plane without self-intersection—as
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geometrically interesting. A chain that can reconfigure in R? via dihedral motions
between any two of its flat states is called flat-state connected. A chain that has
a flat state but is in a configuration that cannot reach that state (via dihedral
motions, without self-intersection) is called unflattenable or simply locked[]

We look here at a particularly simple but natural
constraint on the “production” of a fixed-angle chain. z
Our inspiration derives from the ribosome, which is
the “machine” that creates protein chains in biolog-
ical cells. However, we quickly deviate from reality
and replace the ribosome by a simple geometric con-
straint: the chains are produced inside a cone of half-
angle a < 7/2, emerging through its apex.

We show in Section [3 that this simple constraint
guarantees that all producible chains are flattenable
and furthermore mutually reachable. There are sev-
eral interesting aspects to this result. First, cones
with > 7/2 (concave cones) permit the produc-
tion of locked chains, as shown in Section [, so the
< /2 constraint is needed. Second, we are naturally
led in our proof to a canonical form, called a-CCC,
which bears a resemblance to the helical form pre-
ferred by many proteins. Third, we show in Section Bl
that long “random” chains are locked with probabil-
ity approaching 1, implying that producible protein

chains are rather special. Fig.1. The chain is pro-
duced in C,, and emerges
2 Definitions at. the origin into the com-
plimentary cone B, below
2.1 Chains and Motions the zy-plane.

The fixed-angle polygonal chain P has n + 1 vertices V = (vp,...,v,) and is
specified by the fixed turn angle 6; at each vertex v;, ¢ = 1,...,n — 1, and by
the edge length d; between v; and v;4+1, i =0,...,n— 1. When all angles §; < o
for some 0 < a < 7/2, P is called a (< «a)-chain. We write P[i, j|, i < j, for the
polygonal subchain composed of vertices v;, ..., v;.

A configuration Q = {(qo, . .., qs) of the chain P (see Fig.[2]) is an embedding
of P into R3, i.e., a mapping of each vertex v; to a point ¢; € R?, satisfying
the constraints that the angle between vectors ¢;—1¢; and ¢;q;+1 is 6;, and the
distance between ¢; and ;11 is d;. The points ¢; and ¢;4+1 are connected by a
straight line segment e;. Thus, a configuration can be specified by the position of
ep and dihedral angles §;, i = 1,...,n — 2, where d; is the angle between planes
e;—1e; and e;e; 1. The configuration is simple if no two nonadjacent segments
intersect.

! In fact, this definition is slightly more specific than the usual notion of “locked,”

which says that there are two arbitrary configurations of the linkage that are mutu-
ally unreachable.
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9i+1
5
9i+2
Fig. 2. Notation for a configuration Q.
A motion M = (mg,...,m,) of a chain P is a list of n + 1 continuous

functions m; : [0,00] — R3, i =0,...,n, such that M (t) = (mg(t),...,mu(t)) is
a configuration of P for all ¢ € [0, 0o]. The motion is said to be simple if all such
configurations M (t) are simple. We normally assume that the motion is finite in
the sense that, after some time 7T, M becomes independent of ¢.

2.2 Chain Production

As mentioned above, our model is that the chain is produced inside an infinite
open cone C,, with apex at the origin, axis on the z axis, and half-angle (to the
positive z-axis) a < 7/2; see Fig. [ Let C, be the corresponding closed cone.
We similarly define the cone B, the mirror image of C, with respect to the
xy-plane.

The vertices and edges are created inside C,, and exit the machine at the
apex of C. The portion of the chain already produced is allowed to move freely
as long as it stays simple and never meets C,. At time t; = 0, the machine
creates vg at the apex of Cy, v; inside C,, and the segment ey connecting them.
In general, at time t;, vertex v; reaches the apex of C,, and v;;; and e; are

created inside C,. The vertex v; stays in C, between times ¢;_; and ¢; and
O=tog<t1 < - <ty

Formally, an a-production F is a set of n + 1 continuous functions f; :
[ti_l,OO] — R37 i = 0,...,n, such that, for all t € [tj—lath fj(t) € 604,
F(t) = (fo(t),..., f;(t)) is a simple configuration of P[0, j], and no segment
e; intersects C,, i < j. A configuration @ is said to be a-producible if there
exists an a-production F with F'(c0) = Q.

One consequence of this model is the following:

Lemma 1. An (< «)-chain can be produced only in a cone Cq /o or larger.

Proof. Suppose 0; = «. At time t;, when v;41 is created inside the cone, v; is
at the apex, and v;_1 is outside. Because we stipulate continuous motion, v;_1
must be inside the cone B, 2 below the zy-plane, for it must have been there
throughout ¢ € [t;_1,t;). If e;_; is on that cone surface, then v;11 can just barely
be inside éa/g, on its surface, with turn angle « at v;. Note that, for t > ¢;, v;_1

need no longer remain in B, /. 0
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We will prove that there exists a simple motion between any two a-producible
configurations of the same chain, and that all such configurations are flattenable.
Next we define the notion of a “simple” motion.

2.3 Complexity of a Motion

There are of course many ways to define the complexity of a motion M. As
a first approximation, we could assume that each dihedral angle 5 (¢) of the
segment e; is a piecewise-linear function of time ¢, and the complexity T (M) of
the motion M is the total number of linear pieces over all functions 6 (¢). That
is, T(M) = Z?;f T(6M), where T(6M) is the number of linear pieces in the
function 6. Unfortunately, this definition is not acceptable, as it restricts the
range of possible motions M. The definition can be generalized to allow arbitrary
functions 6 (¢), given some corresponding measure of complexity T'(6), with
the added restriction that for every time range ¢ € [r,s] during which 6 (¢)
is a linear function, that time range contributes at most 1 to the complexity
T(6M). For example, if 5 (¢) is a piecewise-polynomial function, 7'(6M) could
be defined as the sum of the degrees of the polynomial pieces; or more generally
T(6M(t)) might measure the number of inflection points or monotonic pieces of
SM(¢).

The complexity of a production F' can be defined in an analoguous way,
where §1'(¢) is defined only for the time range ¢t > t;;1. The resulting value
will only account for the dihedral motions outside the cone C,. We still need
to add the complexity of the movement of point f;11(t) before it exits the cone
for all 4, i.e., at time t € [t;,t;11). If we assume that the chain exits the cone
at a constant rate, we only need to consider the vector uf'(t) = (0, f;411(t)) for
t € [ti,tit1), described in polar coordinates by the angle pf'(¢) of u®'(t) with
the z-axis, and the angle v¥'(¢) of the projection of u!'(t) onto the xy-plane
with the z-axis. The complexity will be expressed by T(vF) and T(pf"), with
the restriction that T'(pf") be at least the number of connected components in
{t: pP'(t) = 0}. For example, the number of pieces in a piecewise-linear function,
or the sum of degrees in a piecewise-polynomial function, would qualify. No
restrictions are imposed on T(y%). The total complexity of the production is
then T(F) = Y12 T(6F) + T(p") + T(47).

3 Producible = Flattenable

Key to our main theorem is showing that every a-producible configuration can
be moved to a canonical configuration, and therefore to every other a-producible
configuration.

3.1 Canonical Configuration

We begin by defining the canonical configuration of a-producible chains, called
the a-cone canonical configuration or a-CCC. To better understand the con-
straints of a configuration ), consider normalizing all edge vectors ¢;g;+1 to unit
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vectors u; = (gi+1 — qi)/||¢i+1 — g:|| which lie on the unit sphere. The a-CCC is
constructed to have the property that all such vectors lie along a circle of radius
a/2 on that sphere. In other words, the vectors u; lie on the boundary of a cone
with half-angle a/2.

To ease the description, we use the cone
5(1/2 (not C,) to define a-CCC, but note
that the cone and the chain could be rotated
and translated. By convention, we place ug
on the boundary of C, s2 in the positive
quadrant of the yz-plane. Because @ is a con-
figuration of P, the angle between u;_; and
u; is 6; and so, on the sphere, u; lies on the
circle of radius 6; centered at u;_;. Because
0; < a, this circle intersects the boundary of
(o s2- We set u; to be the first intersection
counterclockwise from w;_; on the boundary
of C, /2 (where counterclockwise is viewed
from the origin). See Fig. @ for an example.

The position of the u;’s on the unit sphere Fig.3. uo lies on the cone Cp /4.
as described above, along with the position (61,62,03) = (7/4,7/6,7/5), re-
of qg, uniquely determine the position of the spectively.
a-CCC of the chain. Because the u; vectors
all have positive z coordinates, we know that the resulting configuration is simple.
We can also show that the a-CCC is completely contained in C,, /2t

Lemma 2. If all unit edge vectors u; are contained in a cone 65 for some half-
angle 3 > 0, then the configuration Q is inside qo + ag, the cone translated so
its apex is at qo. Furthermore, if ug # w1, then only the first bar of the chain
can touch the boundary of qo + a@.

Proof. The proof is by induction on n. The claim holds for the 1-point chain
Q[n,n]. Assume Q[1,n] is contained in a cone with apex ¢;. Now ¢; is on the
boundary of the cone with apex qg, so the cone with apex at ¢; is contained
in the one with apex at gg. Furthermore, the boundary of these cones intersect
only at the line of support goq:. O

In the a-CCC, u; is always different from ;1.

3.2 Canonicalization

Next we show how to find a motion from any a-producible configuration of an
a-producible chain to the corresponding a-CCC.

Theorem 1. If a configuration Q of a (< a)-chain P is a-producible by a pro-
duction F, then there is a motion M from Q to the a-CCC, with T(M) <
T(F) + 3n.
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Proof. Because @ is a-producible, there exists an a-production F with F(c0) =
Q. By scaling time appropriately, we can arrange that ¢; = 7, and the configura-
tion freezes at time n+ 1, i.e., F(t) = F(n+1) for t > n+ 1.

We construct a motion M from @ to the a-CCC, constructed inside C,. A
key idea in our construction is to play the production movements backwards.
More precisely, for all ¢ = 0,...,n, we define m;(t) = fi(n + 1 —t) for the
(reverse) time interval ¢ € [0,n 4+ 2 — ¢]. (Beyond reverse time n + 2 — i, the
original production time is less than n + 1 — (n +2 —¢) = ¢ — 1 and thus f; is
no longer defined.) To complete the construction, we just have to define m;(t)
for ¢ > n + 2 — 4, that is, the motion of the part of the chain that has already
re-entered the cone Cl,.

During the time interval (n—4,n+1—1), the edge e; is entering the cone C,,
through the origin, P[0, 4] is outside C,, and P[i+1,n] is inside C,. We maintain
the invariant that P[i,n] is in a-CCC, contained in a cone C, /> translated and
rotated to some position C'/, /2- S0 the dihedral angle of e; does not change for
j > 4, i.e., P[i+ 1,n] is held rigid. Because P[0,4] moves freely outside of C,
according to the reversed movements of the a-production, we can only control
the dihedral angle of ¢; in order to maintain that C'), 5 (and so P[i+1,n]) stays
inside Cl.

Again, consider the vectors u;. The invariant means that all u;, j =4,...,n—
1, touch the boundary of some circle o of radius /2 on the unit sphere centered
on the apex of the cone, and o must be inside C,. The last condition will be true
whenever o contains the unit vector u,, along the z-axis, because we selected
o to have radius «/2, so it has diameter «, which is the angle between u .
and the side of C,. Thus, for any position u;, we place o so that its diameter
from w; contains uy,. As long as u; # u4., this position is unique and the
resulting motion is continuous because the production is continuous. When u; =
U4z, a discontinuity might be introduced, but these discontinuities can easily be
removed by stretching the moment of time at which a discontinuity occurs and
filling in a continuous motion between the two desired states.

At time t = n+1—1, vertex i enters C, and the invariant needs to be restored
for the next phase. At that time, the vector u;_; lies in Cy, and u; is on a circle 7
of radius 6; centered at u;_1. Let o’ be the desired new position for o, that is,
the circle whose diameter is «, passes through u;_1, and contains u .. We know
that ¢’ and 7 intersect and all intersections are inside C,, because ¢’ is in Cl.
We first move u; to the first intersection between ¢’ and 7 counterclockwise from
u;_1 on o’ by changing the dihedral angle of e;_1, and simultaneously moving o
accordingly as described above by changing the dihedral angle of e;. We then
rotate o about u; to the position ¢’ by changing the dihedral angle of e;. This
motion can be done in such a way that o always contains wu, ., because the set
of dihedral angles of e; for which o contains u . is connected.

The complexity of all dihedral motions outside of C,, is Z?:_f T(6F). The
dihedral motions of e; during times t € (n—i, n+1—i) mirror exactly v (n+1-t),
except at discontinuities, which correspond to times for which u; = u ., which is
exactly when pf' (n+1—t) = 0, so the total complexity of these dihedral motions
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is bounded by C(p?") +C(yF). Finally, whenever a vertex attains the apex of the
cone, we perform three dihedral rotations (linear functions of time) to restore the
invariant. Summing it all, we obtain C(M) < S\" 2 T(6F) + C(p") + C(+F) +
3n = C(F) + 3n. O

Corollary 1. For any two simple a-producible configurations Q1 and Q2 of a
common chain, with respective productions Fy and F5, there is a simple motion
M from Q1 to Qa—that is, M(0) = Q1 and M(00) = Q2—for which T(M) <
T(Fl) + T(FQ) + 6n.

Proof. Because (01 and ()2 are a-producible, the previous theorem gives us two
motions M1 and M2 with Ml(O) = Ql, Ml(OO) = OL—CCC, MQ(O) = QQ, and
M;s(00) = a-CCC. By rescaling time, we can arrange that M;(t) = Mz(t) = a-
CCC for t beyond some time T. Then define M(t) = M;(t) for 0 < ¢t < T,
M(t) = Ma(2T —¢t) for T < t < 2T, and M (t) = Q2 for t > 2T. O

3.3 Connection to Flat States

Finally, we relate flat configurations to productions and prove our main result
that flattenability is equivalent to producibility.

Lemma 3. All flat configurations of a (< «)-chain have an a-production F for
a < 7/2. Furthermore, T(F) < n.

Proof. Assume the configuration is in the zy-plane. Any such flat configuration
can be created using the following process. First, draw eg in the xy-plane. Then,
for all consecutive edges e;, create e; in the vertical plane through e; 1 at angle
0;_1 with the xy-plane, then rotate it to the desired position in the xy-plane by
moving the dihedral angle of e;_;. During the creation and motion of e;, it is
possible to enclose it in some continuously moving cone C' of half-angle o whose
interior never intersects the xy-plane: at the creation of e;, C' is tangent to the
xy plane on the support line of e;_; and with its apex at p;. During the rotation
of e;, e; will eventually touch the boundary of C'. We then move C' along with
e; so that both e; and the xzy-plane are tangent to C. When e; reaches the zy
plane, we translate C' along e; until its apex is p;41. Viewing the construction
relative to C and placing C on C\, gives the desired a-production. a

Corollary 2. (< 7/2)-chains are flat-state connected. The motion between any
two flat configurations uses at most 8n dihedral motions.

Proof. Consider two flat configurations @ and @’ of a (< m/2)-chain. By
Lemma [, @ and @’ are both (7/2)-producible, and so by Corollary [, there
exists a motion M such that M(0) = @ and M(+o0) = Q’. O

Corollary 3. All a-producible configurations are flattenable, provided o < 7 /2.
For a production F, the flattening motion M has complezity T (M) < T(F)+Tn.

Proof. Consider an a-producible configuration @ of an (< «)-chain P. Because
a < /2, the chain P also has a flat configuration Q' [ADDT02|. By Lemma [3]
Q' is producible, and so by Corollary [[l there exists a motion M such that
M(0) =Q and M (+o0) = Q. m|



402 E.D. Demaine, S. Langerman, and J. O’Rourke

4 A More Powerful Machine

We now show that, under a different model, our result does not hold. Suppose
that v;11 is not created at t;, but rather imagine the time instant t; stretched
into a positive-length interval [¢;, #;], allowing time for v;v;_1 to rotate exterior to
the cone prior to the creation of v; 41 (at time ¢}). This flexibility would remove
the connection in Lemma [[] between the half-angle of the cone and the turn
angles produced, permitting chains of large turn angle to be produced. Indeed,
the sequence of motions depicted in Fig. @] exploits this large-angle freedom to

emit a 4-link fixed-angle chain that is locked.

|

(a)
(

3
(d)

0
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Fig. 4. Production of a locked chain under a model that permits large turning angles
to be created. For clarity, the cone is reflected to aim upward. (a) eo = (qo, q1) emerges;
(b) turn at g1; (c) turn at g2 and dihedral motion at ¢1 places e in front of cone; (d) ez
nearly fully produced; (e) chain spun about ex (or viewpoint changed); (f) rotation at
g3 away from viewer places chain behind cone; (g) es emerges; (i) final locked chain
shown loose; the turn angle 63 at g3 can be made arbitrarily close to 7.

It is possible to view this model as the same as the previous, but with an
a > /2, so that the chain inside C,, can form angles at the apex as large as 2«
which could approach 27.

5 Random Chains

This section proves that the producible/flattenable configurations are a van-
ishingly small subset of all possible configurations of a chain, for almost any
chain. Essentially, the results below say that, if there is one configuration of
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one chain in a class that is unflattenable, then a randomly chosen configuration
of a randomly chosen chain from that class is unflattenable with probability
approaching 1 geometrically as the number of links in the chain grows. Further-
more, this result holds for any “reasonable” probability distribution on chains
and their configurations.

To define probability distributions, it is useful to embed chains and their
configurations into Euclidean space. A chain P = (#,...,0,_1;do,...,dp_1) €
[0,7/2]"7t x [0,00)™ is specified by its turn angles 6; and edge lengths d;. A
configuration Q = (6,...,0,_2) € [0,27)"2 of P is specified by its dihedral
angles. We also need to be precise about our use of the term “unflattenable” for
chains vs. configurations. A simple configuration @ is unflattenable or simply
locked if it cannot reach a flat configuration; a chain P is lockable if it has a
locked configuration.

We consider the following general model of random chains of size n. Call
a probability distribution regular if it has positive probability on any positive-
measure subset of some open set called the domain, and has zero probability
density outside that domainE For Euclidean d-space R?, a probability distribu-
tion is regular if it has positive probability on any positive-radius ball inside the
domain. Uniform distributions are always regular.

For chains of & links, we emphasize the regular probability distribution P,?’D
obtained by drawing each turn angle §; independently from a regular distribution
©, and drawing each edge length d; independently from a regular distribution
D. Similarly, for not-necessarily-simple configurations of a fixed chain P, we em-
phasize the regular probability distribution obtained by drawing each dihedral
angle §; independently from a regular distribution A. We can modify this prob-
ability distribution to have a domain of all simple configurations of P instead
of all configurations of P, by zeroing out the probability density of nonsimple
configurations, and rescaling so that the total probability is 1. The resulting
distribution is denoted Q4. and it is regular because the subspace of simple
configurations of a chain P is open.

First we show that individual locked examples immediately lead to positive
probabilities of being locked. The next lemma establishes this property for con-
figurations of chains, and the following lemma establishes it for chains.

Lemma 4. For any regular probability distribution Q on simple configurations
of a lockable chain P, if there is a locked simple configuration in the domain of
Q, then the probability of a random simple configuration Q of P being locked is
at least a constant ¢ > 0.

Lemma 5. For any regqular probability distribution P on chains, if there is a
lockable chain in the domain of P, then the probability of a random chain P
being lockable is at least a constant p > 0.

Next we show that these positive-probability examples of being locked lead
to increasing high probabilities of being locked as we consider larger chains.

2 A closely related but more specific notion of regular probability distributions in 1D
was introduced by Willard [Wil85] in his extensions to interpolation search.
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Theorem 2. Let P, be a random chain drawn from the regular distribution
POD . If there is a lockable chain in the domain of PSP for at least one
value of m, then lim,_, . Pr[P, is lockable) = 1. Furthermore, if Q, is a
random simple configuration drawn from the reqular distribution QF», then
lim,, oo Pr[Qn is flattenable] = lim,,_, o Pr(Q, is producible] = 0. Both limits
converge geometrically.

Proof. Suppose there is a lockable chain of k links. By Lemma [l
Pr[Py; is lockable] > p > 0. Break P, into |n/k| subchains of length k. Each
of these subchains is chosen independently from 73,? "D and is not lockable with
probability < 1 — p. Now P, is lockable (in particular) if any of the subchains
are lockable, so the probability that P, is not lockable is < (1 — p)l"/*] which
approaches 0 geometrically as n grows. Likewise, by Lemma M the probability
that Qg is locked is > c¢p for some constant 0 < ¢ < 1, and so the probability
that Q,, is flattenable is < (1 — ¢p)™/*) which approaches 0 as n grows. m|

Thus, producible configurations of chains become rare as soon as one chain
in the domain of the distribution is lockable. Surprisingly, we do not know of any
nontrivial regular probability distributions P2:P that have no lockable chains in
their domain. For example, if D always picks unit edge lengths, and @ always
picks turn angles > 7/2, then we do not know whether any lockable equilateral
(> m/2)-chains result.
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