Eric Jendrock + lan Evans * Devika Gollapudi
Kim Haase * Chinmayee Srivathsa

The Java EE 6 Tutorial

Basic Concepts
Fourth Edition

The Java Series
Enterprise Edition

The Java EE 6 Tutorial

Basic Concepts

Fourth Edition

This page intentionally left blank

The Java EE 6 Tutorial

Basic Concepts

Fourth Edition

Eric Jendrock, lan Evans, Devika Gollapudi,
Kim Haase, Chinmayee Srivathsa

vvAddison-Wesley

Upper Saddle River, NJ « Boston < Indianapolis < San Francisco
New York < Toronto ¢« Montreal « London ¢ Munich ¢ Paris « Madrid
Capetown ¢ Sydney < Tokyo « Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim
any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document.
This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without our prior written permission.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

The Java EE 6 tutorial : basic concepts / Eric Jendrock ... [et al.]. --
4th ed.
p. cm.

Includes index.

ISBN 0-13-708185-5 (pbk. : alk. paper)
1. Java (Computer program language) 2. Application program interfaces
(Computer software) 3. Application software—Development. 4. Internet
programming. I. Jendrock, Eric.

QA76.73.J38]3652 2010

006.7'6--dc22

2010025759

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood Shores, CA 94065

Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-013-708185-1
ISBN-10: 0-137-08185-5

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, August, 2010

Partl

Contents

Preface ... xxi
INErOAUCTION ... 1
OVEIVIEW 3
Java EE 6 Platform Highlightscccocveeiniiciiccrecreneeeeeeeieeee e 4
Java EE Application MOdelc.ocueuciiinieieiriinicineiicieseiseeseiseeee et seseene 5
Distributed Multitiered Applications ..l6
SECUTLILY -t 7
Java EE COMPONENLSovuiiiiiiiiciiiiiciictc s ssssssssases 8
JAVAEE CLENLS ...vveeeveeeceeeeeeeeeteeeet ettt eve e esess st s ss et eseesese s eseasesenensesensenen 8
WED COMPONENLS ...ttt sttt ses et ses 10
Business COMPONENLSccccuiiiiiiiiiiiiiiiii s 11
Enterprise Information SYStem TIeTc..cveureueuneuriueeceneerieeeneineieeeseseneseseeseseesenens 12

Java EE Containers

COoNtAINET SEIVICES ...vucvrieircrieiictcte ettt naes 13
CONLANET TYPES ..ottt 14
WED SErVICes SUPPOITcouvrreiciieicireieieciretseeeietseeetsetseteeseeset s ssetsese st sseesetsesessessesenaes 15
XML ¢t 15
SOAP Transport Protocol ... 16
WSDL Standard FOrmat ...
Java EE Application Assembly and Deployment
Packaging APPLICATIONS ..c.cuvcueueeeicriieecireiseeietreeeeetsessese et sseseeae et esessesens
DevelOPMENt ROLEScciuieiiirieicieireicicireieee ettt 19
Java EE Product PIOVIAETccueueveeieiiiieietcicecccee ettt 20
TOOLPIOVIAET ...ttt eaens 20
Application Component PrOVIdercocoeicueinieininienieienecsercieseeieeeeseeienes 20

Contents

Vi

Application ASSEMDIETcovcuiirieeiiirieceec e eans 21
Application Deployer and Administratorcoceeeeveereeeeceneereeeneeneeneereeensenneeeeaens 21
JAVAEE 6 APIS ... 22
Enterprise JavaBeans Technologyccccveeieniercinienicrnireeseencneeenseneeseeens 25

Java Servlet Technology

JavaServer Faces Technology

JavaServer Pages TEChNOLOZYc.coeueurvueeirrieeieireieieeieeeeeieeseseesesenseaensessesenaes 27
JavaServer Pages Standard Tag LIDraryccccvecneerecencneeenceneenecenetneeenseenenennes 27
Java Persistence APTcouoviiiieieeee e 28
Java Transaction API ..ottt ebe st s et a s eneeneen
Java API for RESTful Web Services

Managed BEAMS ..ot
Contexts and Dependency Injection for the Java EE Platform (JSR 299) 29
Dependency Injection for Java (JSR 330) ...c.oceeveurerriceneereeeincineeeiceneineeeeetseeeseesenennes 29
Bean Validation ...

Java Message Service APT ...
Java EE Connector Architecture ...
JAVAMAIL AP ..ottt ettt v et et es st s s s ensenenenetens

Java Authorization Contract for CONtaINEersccoeeveviveeeieeieeeeeieeeeeeeeeseeeseenens 30

Java Authentication Service Provider Interface for Containersccoeoevevevnnene. 30
Java EE 6 APIs in the Java Platform, Standard Edition 6.0cccoceveveieveeeeveneererennnes 31
Java Database Connectivity APIc.cccovcureurecineineeineineieicireieeeeieeseieeeeseseeeessesseaennes
Java Naming and Directory Interface API
JavaBeans Activation FrameWOrKccooovveeieveiiiieeieeeeieeeeeceeeeeee e vesesesessnenens
Java APIfOr XML PrOCESSING ...cvuveemeerieincireireeeinetreieietseseeseesessesesetsesessessesessessessesenne
Java Architecture for XML Bindingcccoceeeeeneurieererneinecerenneenenreeneeseseeensessenennes 33
SOAP with Attachments AP fOT JAVA ...c.ovvvevieeeiiieeieececeeeeeeeeete et snenees
Java API for XIML WeDb SEIVICEScoveuivirerereiieieeicieere e seas
Java Authentication and Authorization Service

(@ Y R ST 7= o I Yo KOO

Using the Tutorial EXamPpIEsc.cocooviireeniniiccceeeieee st sesesens 37
Required Software
Java Platform, Standard Editionccccoeeveeiiieeeeereetceeeeeeeeeeete et 37
Java EE 6 Software Development Kitc.ococevererineeirinienencinneieeeeeesecieeenenseenns 38

The Java EE 6 Tutorial: Basic Concepts

Contents

Partll

Java EE 6 Tutorial COMPONENLTc.veeuiureerecirieeiecenieeneeetesesensessesensessesessessessesessessesens 38
NetBeans IDE ...t s
APACHE AN <ottt
Starting and Stopping the GlassFish Server
Starting the Administration CONSOLEc.oc.eueurerreucineirieieireireereireieeei e seeaeene
WV To Start the Administration Console in NetBeans IDEcccccocevenevevcnerreennennee 43
Starting and Stopping the Java DB SErvercoccerecunereerneineeineineseeenneeseessesscaesenne 43
WV To Start the Database Server Using NetBeans IDEc.cccoceveneeencrnernevcnnerneennennes 43
Building the EXAmPIEScccuiuieeieiiericitirieieireieeiseie et ssesesse s senns 44
Tutorial Example Directory STrUCTULEovcueueererieerereeeenereseneseeenseneseeseseseesesenne 44
Getting the Latest Updates to the Tutorialccocveeicunericincneeneneeenceeeneecenenne 44
V To Update the Tutorial Through the Update Centerccoocuveeeeeernerreccrrerreenncnnee 45
Debugging Java EE APPLICAtIONSccueuuiuiiiiciciciniieeiniiciseicise e senes 45
UsSING the SEIVET LOGuvuvuieeiecieieecieireieeireieeeieteeeeesetsese s sess e ssessesessessesessesessnaes 45
UsSING @ DEDUGEET ... 46
ThEWEDBTIEr ... 47
Getting Started with Web Applicationsccccoovviieccceecee e 49
WED APPLICALIONS ..ouvueeirieiiniiciricieiecireeict ettt ettt sesaes 50
Web Application LIfECYCLEcvurvcuirreeciciriieicireiriecietneieectseseeeesenseeesetseseesessesseeessenseees 51
Web Modules: The hel101 EXAMPIE ...ccuviecuriiciricieiicieeicinecieeeeciseeeeeseecreseeessesesennes 53
Examining the hel1o01 Web Moduleccccvecniricnienicienieeneneeeeseeencnneaens 54
Packaging a Web Module ..o 57
Deploying a Web Modulecceineeicneinicneinieeneeecneeseeeseiseseesessesseeessenseees 59
Runninga Deployed Web Module ..o 59
Listing Deployed Web Modules
Updatinga Web Module ...
Dynamic RElOAdINGc.cccueveecuneirreeieineieicireinecetseeeietseieeseesetseeeesseseesessesessessenseees
Undeploying Web Modulesccciciininicniiciiccieeeeiseesees s 61
Configuring Web Applications: The he1102 EXampleccoceeverreerercrnernecencrneeerennennen. 62
Mapping URLSs to Web COMPONENLScoucuiuueceiiieciiirieeeeieieeeseesesenseesesessesseeees 62
Examining the he1102 Web Modulecccvecniriciniericicniecneneeeeseienceneees 63
Building, Packaging, Deploying, and Running the hello2 Examplecc..c...... 64
Declaring Welcome FIles ... easesessessessssessesseees 66

vii

Contents

viii

Setting Context and Initialization Parameterscccocveeevcereercererneeencrneueescenenenees 66
Mapping Errors to Error SCreens ...

Declaring Resource Referencescveureeeeeereereeenerneeeeenreieeensesseessessesesensenenees

Further Information about Web Applications

JavaServer FacesTeChNOlogyccooiiiineninecceee et 73
What Is a JavaServer Faces APPliCAtioN?ccceuveueuriniueinicisineieinineeeeseietseeieeseesessesessenenns 74
JavaServer Faces Technology Benefitsccccoeveuneevecrcuenees

Creating a Simple JavaServer Faces Application

Developing the Backing Beanccccvcueecencureeineinienicineinicincineeeicnesseeeesesseeesensenennes
Creating the Web Pagec.cccvcuiueicincinicrcirecicneiscnciseecectseee ettt sesese s 78
Mapping the FacesServiet INStance ... 78
The Lifecycle of the he110 APPLiCAtIONcccueveeererieeininieiireereie e 79
V¥V To Build, Package, Deploy, and Run the Application in NetBeans IDE 80
Further Information about JavaServer Faces Technologycc.coecuvceevevveeneneenerrennenn. 81
Introductionto Faceletscccooii e, 83
What Is FACEIELS?ucoueiieiiiiiicii it 83
Developing a Simple Facelets APPLICationc..ccvcureeeercuneurecineineeeeerneineeenerseeeesesseanesenne 85
Creating a Facelets APPIICAtIONc.cvcureeeecureeeineineieicineiseeeiciseee e sesseeessetsesesessesenaes 85
Configuring the APPCAtiONcccucuuiuiuniuniiniiniiicic e seeseseeeaseseseees 88
Building, Packaging, Deploying, and Running the guessnumber Facelets
EXAIMIPLE .ottt ettt 89
TEMPIAING vrevveiiiecieireeee ettt et e 91
Composite COMPONENLSccuiuuiiiiiiiiiicieiisce s 94
RESOUICES ..ottt s 96
Expression Language
Overview of the EL ...
Immediate and Deferred Evaluation SYNtaxcc.cecevcneeeenernernercenerneeesennenseennernenenne 100
Immediate Evaluation ... s 101
Deferred Evaluation 101
Value and Method Expressions
Valte EXPIESSIONS ...ccuvvrrvruiireiiecieiriecieiniieieisesessesseseesetsasese s ssesessesssssesesssanesessssnesens
Method EXPIeSSIONS ...c.cccueueecereerieeieirieeietseseeeetsetseseseesesessessessesessessesessessesessessesseaes

The Java EE 6 Tutorial: Basic Concepts

Contents

Defining a Tag AtrIDULE TYPE .vecvcvierecireiricrerreieicireiseeereisee et ssesens 108
Literal EXPIESSIONS ...c.cveuiviuceiireeeieireireseiseisesesetseietsetsessese et ssesseae s sescas 109
OPLTALOLS .ottt ettt b st sesenes 111

ReSEIVEd WOIAS . ..ottt aeee 111

Examples Of EL EXPIESSIONSc.euueuieremcireinieinerneieteineiseessessesesessessesessessesesessessssessesens 112

Using JavaServer Faces Technology inWeb Pagescccoooveeienirreiceeennne

Setting UpaPage . ..o

Adding Components to a Page Using HTML Tagscccocveeevreureueecereeneeemneerereesennerneens
Common Component Tag Attributescocccveureeenererincnenienereeeereeeenenne 117
Adding HTML Head and Body Tagsccccoeuveueeeinerrecencineencinereecenesseeeeceseseneans 119
Adding a Form COMPONENLcccuiuieeuieieeicireieeeieieieeetseseeenseseesensesessesessesensenns 120
Using Text COMPONENLSc.oveuevieeriieeirieieieieneieessieseseeseesesesssesesseseseesesessesesenas 121
Using Command Component Tags for Performing Actions and Navigation126
Adding Graphics and Images with the h:graphicImage Tag.c.coenenenennes 127
Laying Out Components with the h:panelGrid and h: panelGroup Tags 128
Displaying Components for Selecting One Valueccocceveuveureeencrneecrcrneneeenenne 130
Displaying Components for Selecting Multiple Valuescccccoevererrerrcrercneene 132
Using the f:selectItemand f:selectItems Tagscunncncnenennenn. 133
Using Data-Bound Table COMPONENLScovuevemreereecererreecreirereeenreneeeeneesenenennes 135
Displaying Error Messages with the h:message and h:messages Tags 138
Creating Bookmarkable URLs with the h:buttonand h: link Tagsccc..c..... 139
Using View Parameters to Configure Bookmarkable URLSccocveeercrrerrercunn. 140
Resource Relocation Using h:output Tagsccccovevvecenerreecnnee

Using Core Tags

Using Converters, Listeners, and Validators, 145

Using the Standard Converters

Converting a Component’s Valteocccceeernenecencinenencrneneennenneeeeensesseesnenne 146
Using DateTimeCONVErTer . ..ttt 147
Using NUMDErCONVEITEr . oo 149
Registering Listeners on COMPONENLSccuvvuerriiieieiieiieieee e 151

Registering a Value-Change Listener on a Component

Registering an Action Listener on a Componentc..ccoeeveeueereierecrneeiicreenennenn. 152
Using the Standard Validatorsc..ccecvurecncinicincineinencneneeeeeeessenseeesseseesessenens 152

Contents

10

Validating a Component’s Valuec.cccveureerneenieeeciniinrereeneeeneeneeensesseeseseneenesens 153
Using LongRangeValidatorttt 154
Referencing a Backing Bean Methodcccovevinerniicrcrerneneneneeeneneneeeeesenensenenne 154
Referencing a Method That Performs Navigation
Referencing a Method That Handles an Action Event
Referencing a Method That Performs Validationcccccoveveeencnereencineenecenennenee 156
Referencing a Method That Handles a Value-Change Eventc.ccccccovevevernenneee 156
Developing with JavaServer Faces Technologyccococcencnnicinnccincccnnccnnenes 159
BacKing BEAISvueuciiicireiiieicteieecireieie ettt eaene 159
Creating a Backing Bean ..o 160
Using the EL to Reference Backing Beansceecuvcuveeeencrneieecinenneeenceneencenennnnes 161
Writing Bean Properties ...t 162
Writing Properties Bound to Component Valuesccccveeeeeuneereerneeneeercnnenns 163
Writing Properties Bound to Component INStancesoceceeevecuecureecucenenne 168
Writing Properties Bound to Converters, Listeners, or Validatorsccc..... 170
Writing Backing Bean Methodscccviriiiiincieicieieinnecse e 170
Writing a Method to Handle Navigationccceenreereeneeerceneeneenieneeenenneeens 171
Writing a Method to Handle an Action EVentccoevevcncmcevcmcnnnncneenennenenn. 172
Writing a Method to Perform Validationc..ccecvvecrcneencninecneneenceneees 173
Writing a Method to Handle a Value-Change Event ... 173
Using Bean Validationccccvecureurecincinicincineinicineineeeseiseeseesnessesesesseseesessessesesessesene 174
Validating Null and Empty Strings ... 177
Java Servlet Technology 179
What Is @ SEIVIET? ... 180
SerVIet LIFECYCLE .vuimiiiiiicireiriccrcrce ettt ettt

Handling Servlet Lifecycle Events

Handling Serviet EITOTSc.cocviurreiiinieeieireeeicinetseieeeiseteeetseteesessetsesesesseseesessesenaes 182
Sharing INfOrmMationccvcurieecirerricrereeeeeeee e eaeae 182
USING SCOPE ODJECES .uvvvuervreierreeeieireeeietreteesetset ittt st sese et sesessesseseeaes 182
Controlling Concurrent Access to Shared Resourcesoccveureeevcereeeevcnrernenes 183

Creating and Initializing a Servlet
Writing Service Methodst ssesensensesenaes 184

Getting Information from ReQUESEScveurecirerreueincinieeicireineecinetneeeeceseeeeeenenneaes 185

The Java EE 6 Tutorial: Basic Concepts

Contents

Partlil

11

12

Constructing RESPONSESccccuiiviiiiiciiiiiiiiiccc e 186
Filtering Requests and RESPONSEScccrureeeerrieeereineinieieieeeeneieesenessesene e sesens 187
Programming Flters ..o 187
Programming Customized Requests and Responsescccoceeueerurciueuniuccnnes 188

Specitying Filter Mappings

Invoking Other Web ReSOUICESvucuuiureuereriericiiieieieineeeeeneieeseneasesessessesessessesessenne 191
Including Other Resources in the RESPONSEcccuevvecererriecercrneeeienerneeereeenenne 192
Transferring Control to Another Web Componentccccccecincinivcincininnnes 192

Accessing the Web CONtEXt ..ot

Maintaining CHENt StALEcvcurveevrcrrieeeeireiriereireieecteiseere e tsebeese e sesens
ACCESSING A SESSION .uiiiiiii s

Associating Objects with a Session

Session Management ...ttt
SeSSION TTACKING « wovuevriviuciiieiicircireeeciet ettt seb sttt seb et ses et eeae 195
FINalizing @ SEIVIEtc.ocuiuiicireireceireeicrcirecreeie ettt aeae 195
Tracking Service REQUESEScccuiueiciriiricicirieceeceeee e
Notifying Methods to Shut DOWIcveuieciniinieieineieicineireescineeeeeeseseeecesesseeesennes
Creating Polite Long-Running Methods
The mood Example APPLICATIONcueeceurereueieireieieineisieeseiseseteisesese et senne 198
Components of the mood Example Applicationccevceereeeeeneeineneeeeneneeneneennene 198
Building, Packaging, Deploying, and Running the mood Exampleccccccoceeee. 198
Further Information about Java Servlet Technologyccccocveeeveunerecrneneernerncennenn. 200
WED SEIVICES 201
Introduction toWeb Services 203
What Are Web Services? ...
TYPES Of WED SEIVICES ...ttt eaene
“Big” WED SEIVICES ...ucorieeiiieiicici e esssssna
RESTEUl Web Services ..ot sesssassssssssssesaes

Deciding Which Type of Web Service to Use

Building Web Services with JAX-WS 207
Creating a Simple Web Service and Clients with JAX-WSccocvvvvinnncnencrcnernenen. 208

Xi

Contents

xii

13

PartiVv

14

Requirements of a JAX-WS ENdpPOintc.oceeceereureeeencerereecererneceneeneeeeesseeeressennenes 209

Coding the Service Endpoint Implementation Classc..ccecccreureveercrreerrvcrrernenee 210

Building, Packaging, and Deploying the Serviceccoevevecenerrieencneniccenennenne 210

Testing the Methods of a Web Service Endpoint ..., 211

A Simple JAX-WS Application Client

A SImple JAX-WS Web CHENL ..ottt
Types SUPPorted by JAX-WS ..ot sene
Web Services Interoperability and JAX-WS ..o 217
Further Information about JAX-WSooiiieeeeeeeeeeeeeee et 217
Building RESTful Web Services with JAX-RScccooiiiiiiniccccceceeene 219
What Are RESTTUl Web SEIVICES? ...uuvuiiviecieirieeicireieecireiseeeietsesetsetsessesessesseeessessesenaes 219

Creating a RESTful Root Resource Class
Developing RESTful Web Services with JAX-RS

Overview of a JAX-RS APPLiCationc.cccuveureeeinerneeeicireineeinetseeeeeeseseseesessesessessenes 222
The @Path Annotation and URI Path Templatesccoeoeereerrneernencenencreinennne 223
Responding to HTTP RESOUICEScuvvrvrviriciiiiiiiiicicicic s 226
Using @Consumes and @Produces to Customize Requests and Responses 229
Extracting Request Parameters ... 231
Example Applications for JAX-RS ..o sesens 235
A RESTEUL WeDb SEIVICE ...ouvureeeiiiiciieeiceiree et nssaeaens 235
The rsvp Example APPLICAtionc.coeeveeuneereeeineenieeieineineeieeseeeeeseeeesesseeseseseenesens 237
Real-World EXAMPIESc.viueirieiiieieiricicireeieiseeiscie ettt 240
Further Information about JAX-RS . c.c.ovoviiiieeceeeeee et 240
ENtErpriS@ BEANScoovouiiiieeece ettt nn 243
ENTErpriS@ BEANSc.cooouiiiiiiiececee ettt nn
What Is an Enterprise Bean?
Benefits of ENterprise BEanscccveureeeincureveicineiniecineineieieseieeesetsesesessesesesseseeaes
When to Use Enterprise BEansccvecerineeunieieinieinicieiseeesineee e
Types of ENterprise BEans ssssssessessssssssssnn 246
What Is @ Session Bean?c.ceeevcureueicineinieineiniieicineieecesesseeessessesessessessssessessesessessesesses 247

Types of Session Beans

The Java EE 6 Tutorial: Basic Concepts

Contents

15

16

When to Use Session Beans . ..o 248

What Is a Message-Driven Bean? sessenens 249
What Makes Message-Driven Beans Different from Session Beans? 249
When to Use Message-Driven Beans.

Accessing Enterprise Beans ...
Using Enterprise Beans in CHENEScccvvueveureereerrerreeeeneeeensereeensessesenenseneeennes
Deciding on Remote 0r LOCal ACCESScuvucuiieucieinienicireineeeineeeeeseiseeeseiseseenenne 253
LOCAl CHENTS . w.eeviviiciiiic s s 254
Remote Clients

Web Service CHENtScouiiiiiiiiiiiicsii s ssses 256
Method Parameters and ACCESSc.ccucuuuimiuniiniincicicicieisieesieese e seseanes 257

The Contents of an Enterprise Beanc..ccceveuviiencncinineeinicenecseeieseciseseeeiseenenne 258
Packaging Enterprise Beans in EJB JAR ModUlesc.coocveeuneuneeencinenencencrnenenenne 258
Packaging Enterprise Beans in WAR Modulesccccoveviveuneinecencrnenencnnerneennenn. 259

Naming Conventions for Enterprise Beanscococveureeenerneneneineneeenernenecinesneennenne 260

The Lifecycles of ENterprise Beansoccveveererneeeeerneineenereseneneeenensessesessessesesenne 261
The Lifecycle of a Stateful Session Beanc..cevcveeveceneirecineineeecnenecncneeeennes 261
The Lifecycle of a Stateless Session Beancccocveuveceneuneeernerneeeeennenneenrerseeensenns 262
The Lifecycle of a Singleton Session Bean
The Lifecycle of a Message-Driven Beanccccveuveeeencen.

Further Information about Enterprise Beansccoceveveeuneneeinernenecrneneeeneinceenenne 264

Getting Started with Enterprise Beans.cccooviiiecceeneeeee e 265
Creating the Enterprise Beanccocccecuneunee
Coding the Enterprise Bean Class
Creating the converter Web Clent 266
Building, Packaging, Deploying, and Running the converter Example 267
Modifying the Java EE APPLCAtiON . ..cc.ovueeemmeemereererecineieisenenensenseneesssisessessesensensenees 269
V¥V To Modify a Class File
Running the Enterprise Bean Examplesc.cccooovviviieeeennneceee s 271
The cart EXAMPIE ..ottt ettt e

The Business Interface ...
SESSION BEAI ClASS ...viivieieiieiceiceietcececeteeeet ettt es et ettt eresresteaensensenes
The @REMOVE MEROA . ..ottt ettt ssesaessesenenne 276

Xiii

Contents

HELIPET CLASSES «...vovevervreiairieiecireieeeeieteee ettt seae ettt st sese st sesessesesenaes 276
Building, Packaging, Deploying, and Running the cart Examplecccc.c..c.. 276
A Singleton Session Bean Example: COUNTEr . ..o 278
Creating a Singleton Session Beanccocceevcuveunenee.
The Architecture of the counter EXampleccveeiereereeineineeineinieeireeeeseineens
Building, Packaging, Deploying, and Running the counter Example 285
A Web Service Example: NeTT0SEIVICE « o.cuiicuricueinicerireicreceeeneceseseietseseieesesessesesenes 286
The Web Service Endpoint Implementation Classcevcureveeeenerreerrcrreenncnnes 287
Stateless Session Bean Implementation Classc.ccceveeneneeeinecrnincecnenceeenecnnen. 287
Building, Packaging, Deploying, and Testing the helloservice Example288
Using the TIMer SEIVICEccuiurieuieicieireeiereeeeee e eaeas 290
Creating Calendar-Based Timer EXPreSsionscocrrerreureeencrneenerersesseseeenne 290
Programmatic TIMETS . ..c.cccviiiiiiiiiiiiiiciiic s 293
Automatic TIMETS . ..o 294
Canceling and Saving Timerscccoccevevereunernennn.
Getting Timer INfOrmationcoecevcreencineneenenerereseeeseeee e senne 296
Transactions and TIMETSccccviiiiriicicii e 296
The timersession EXAMPIe . ..ot seseeseeseseeeeeessesenennes 297
Building, Packaging, Deploying, and Running the timersession Example.299
Handling EXCEPHONS w....cueuieirirreecieireeeieineiseeineiseeeeetseisesessessesesesseseesessessesessessesessessesens 300
PartV Contexts and Dependency Injection for the Java EE Platformccccoco.e..... 303
17 Introduction to Contexts and Dependency Injection for the Java EE Platform.......305
OVEIVIEW Of CDI ..ottt et
ADOUL BEANS ..ottt
About Managed BEANSc.ocueveueuiecineiriieieineirecinetseieeetsei ettt
Beans as Injectable Objectsccoceeevcureuenec.
USING QUALITIETS .voeiaieiciciretreeireteietct ettt e
INjecting BEansccccviiiiiiniiiiiic s
USING SCOPES .ottt
Giving Beans EL NAMEScccccoiiiiiiiiiiiiiii s
Adding Setter and Getter Methods

Using a Managed Bean in a Facelets Page

Injecting Objects by Using Producer Methods

Xiv The Java EE 6 Tutorial: Basic Concepts

Contents

18

PartVI

19

Configuring a CDI APPLCAtIONcueeeecurerrecierrieeicireieeeinetseeeeesseseesessessesesessessesesesens 315
Further Information about CDIccvrieuinimeineiniieicineiseeieisese et 315
Running the Basic Contexts and Dependency Injection Examples 317
The simplegreeting CDI EXample . ..o ssesscsesenne 317

The simplegreeting SOUrce FIlesciiieieieeieeeeeieeie e 318

The Facelets Template and Page

ConfiGUration FILEScocueueucirieeicireinicineineieeneteecnei et sese et seeesessesenacs

Building, Packaging, Deploying, and Running the simplegreeting CDI

EXAIMPLE ..ttt
The guessnumber CDI Exampleccooveeeerercerencnnnee

The guessnumber SOUICE FILESttt 322

The Facelets PAZec.cueveeuiieeeieireieicieieeeeieieeeeeenseseee e sessese s nse s s sssasesens 326

Building, Packaging, Deploying, and Running the guessnumber CDI

EXAMPLE ..ttt s 328
PerSISTENCE e 331
Introduction to the Java Persistence API, 333
EDEIIES 1o 333

Requirements for Entity CIaSSesccocveeeecrreureercrnierinernenneenenseeeeessesseseesessesenenne 334

Persistent Fields and Properties in Entity Classescccceveuniionincineinniuneiennnne. 334

Primary Keys in Entities 339

Multiplicity in Entity Relationshipsccccccoeuviriiciiniiniiiccccccces 341

Direction in Entity Relationshipscocevcureureeineinenincneincneeeeneeseceneineennenne 342

Embeddable Classes in ENtities 344
Entity INheritance . c.occvcveeeeceneereccineeicnesecnciceeicteieeesse et sesens 345

Abstract Entities

Mapped Superclasses

Non-Entity SUPErclasses ...

Entity Inheritance Mapping Strategies
Managing ENtities ..o

The EntityManager Interface .

Persistence UNILScoovueveiiieiiicict e
Querying ENtities ...

Xv

Contents

XVi

20 Running the Persistence Examples

21

Further Information about PErsiStEIICeocviiveiuivieeiieeeeieeeeeceeeeeeeeeeee e 355

The 0rder APPLICAtION . ..c.cuiiuieiricieieecieieer ettt 357
Entity Relationships in the order Applicationc.ceeeveveencevceneeecennenerennns 358
Primary Keys in the order Applicationccccoveeeceneureeeencerereecenerneeeenerneeencnseneeees 360
Entity Mapped to More Than One Database Table
Cascade Operations in the order Applicationcccceveeerinceeireeeeneenineeneeens
BLOB and CLOB Database Types in the order Applicationccccccceuvererreunee 364
Temporal Types in the order Applicationeccvcereeeencrneeecenerneeenerreeenennenneees 365
Managing the order Application’s ENtitiescccccoevurevniiosinicncineisniniesecneinns 365
Building, Packaging, Deploying, and Running the order Application 368

The roster APPLHCAtION ... 369
Relationships in the roster Applicationccovceureeeeencenincenecesce e 369
Entity Inheritance in the roster Applicationccceceevererneenerenereeeneeeenennenn. 370
Criteria Queries in the roster Applicationccccvcveeencureeecenerreeenerneeersennenenaes 372
Automatic Table Generation in the roster Applicationccccocceeecviveccuniunenees 374
Building, Packaging, Deploying, and Running the roster Application 374

The address -booK APPLCAtION ...c.ueueeerierieireirieeieireiee st 376
Bean Validation Constraints in address-bookcccrueinieniniineinsicicieinienns 376
Specifying Error Messages for Constraints in address-bookccccccevcuniunces 377
Validating Contact Input from a JavaServer Faces Applicationc.cccceeveunnce 378

Building, Packaging, Deploying, and Running the address-book Application .379

The Java Persistence Query Languagec.ccoooeuriiueinirininieinieieeneeseieiseeieeeaes 381
Query Language Terminologyc.ccccveureeeneuneunecineineerneineeeeensessesesesseeeesensessesessesseseene 382
Creating Queries Using the Java Persistence Query Languagecccccccuceeeureureunen. 382

Named Parameters in Queries

Positional Parameters in QUETIES . ..c.ccvevieiveieieieeieeeeeeeeceee ettt nenes 383

Simplified Query Language Syntax

Select STALEIMENLScvvuieceirieiricieiecirteeet ettt ettt nnacaes
Update and Delete Statements
Example Queries
SIMPLE QUETIES ...euvueiineiiacieieieteeeie sttt ettt bttt ettt
Queries That Navigate to Related ENtitiesccccceueiriuncincincincicecienseseseecnns 386

The Java EE 6 Tutorial: Basic Concepts

Contents

22

Part VIl

23

Queries with Other Conditional EXpressionsc.cueveereurceererneenerernernecerernennene 388
Bulk Updates and Deletesoerueuriierinieinincieireeieereesieseiseseeenese e sseene 389
Full Query Language SYNAXcocveeeeueeeerneereeniieienensesessesessese e esessessssessesesssssenns

BNF SYMDOIS ..ottt sees
BNF Grammar of the Java Persistence Query Language
FROM CIAUSE ...ouvrieiiiiiiiiiiiiciiicis it

Path EXPIeSSIONSc.curvueeeiiuciririietriceeireeiseneietsteietseeestsesesesaesessesesessesesesassesseaesesssenas
WHERE CIAUSEvvviiiiiiiiiiicitcctce s ss s sassssas e
SELECT CIAUSE . oottt ss st 410
ORDER BY ClaAUSE ...oocuuvriiriiiiiiiiiiiiisinis e s 412
GROUP BY and HAVING ClaUSESccccccviuimmirimiieiciiieiisncisssssssssssisssssssssssssns 412
Using the Criteria APl to Create QUENIEScoovvereeuerereieeiecee s 415
Overview of the Criteria and Metamodel APISc.ocoveuneurecenernieercrneneeneneeenenene 415
Using the Metamodel API to Model Entity Classesccoovurenrvcinnicininninniencincnnn. 417
Using Metamodel CLASSESocuiuiucucuciiieiieieieie et sasesnes 418
Using the Criteria API and Metamodel API to Create Basic Typesafe Queries 418
Creating a Criteria QUETYcooviuieiciieeeece e 418
QUETY ROOLS . e 419
Querying Relationships Using JOINSccccveureemnerrerincmnernienereeereeeeseeeeeenne 420
Path Navigation in Criteria QUETIEScocoeureureeereureeeireirerrieireireeeeetseeseeesessesesenne 421
Restricting Criteria QUery ReSUILScevcueurecmernieincrnenceeeeeieeeneeeeeenne 421
Managing Criteria Query Results ... 424
Executing QUETIESccuiiiiiiiiiiiiiiii e 425
SEOCUIITY ..ottt ettt e s s s s s st s e e snsnses 427
Introduction to Security in the JavaEE Platformccccoovvveniccniccens 429
Overview of Java EE SECULTLY ..c.vucvcureeeecireiricireireicecreiseeneiseie et sesene 430
A Simple Security EXamPleccccveirieiiinieeneeeeeneecieieeereseeee e 430
Features of a Security Mechanism, 433

Characteristics of Application Security

Security MEChaniSImSc.cccuiuieiiiiicreccec e

Java SE Security MeChaniSmsccocveureeereineueeneenereecinerneeenseenesensesneseesessessesessennes 435

Xvii

Contents

24

25

Xviii

Java EE Security MecChaniSmsccocveeercureueecenerneecencineeeecsneteeeeenessesessessesessessessnees 436
Securing CONAINETSccuiiiiiiiiii s 439
Using Annotations to Specify Security Informationc.ccocccvereencneeiccnnenenns 439
Using Deployment Descriptors for Declarative SECUrityc.coocveeneereeeecerernenes 439
Using Programmatic SECUTItYcococoiiiiiiiiiiiiiiiiiiiscccceccceeeae 440
Securing the GIassFish SEIVEr ..o 440
Working with Realms, Users, Groups, and ROLESccoveureeeineureeeencirernicnenreeeineereneenes 441
What Are Realms, Users, Groups, and Roles?cocoeueuvevernecinenceincceninceeneenns 441
Managing Users and Groups on the GlassFish Serverocccovereencnenivcneneans 444
Setting Up Security ROLEScovuveeieiiecicireieicretreeeireeeeeteeeessesseaensesseseesenseneeaes 446
Mapping Roles to Users and Groupscoc.eeeereereeeeneereeeeeeresneeeesessesesessesesessesnenes 447
Establishing a Secure Connection Using SSLcocceueuniureernemneernerneeeenneeeenseseesenenne 449
Verifying and Configuring SSL SUPPOTIL . ..c.vuvueuiereecenieriieieereeeieineeseseeeiseseseeseaees 450
Working with Digital Certificatescccererenieeernireerereenerneeeeeneeseeenesseeens 450
Further Information about SECUTILYcveueecuriuriucineireieireireireereieieeeeisee e seseene 454
Getting Started Securing Web Applicationsccooovieeennneeccccee e 455
Overview of Web Application SECULILYcceuevueuririiremerrererenieeienieeeseiseese e saenaenans 455
Securing Web APPLICAtIONS . ..c.eueucuieeecireinieicieieectreieeessetseee et ssessesesesees 457
Specifying Security CONSIIAINESccuuueriueiieiiiiciieiisiciseeiessecsssss e sssssenen 457
Specifying Authentication MechaniSmscccoceeeencereeeenerrereecenerneeenneeneeerennenneees 461
Declaring Security ROIES . ..o 468
Using Programmatic Security with Web Applicationsccccocveeevcunenecencrnenencrnennn. 469
Authenticating Users Programmatically
Checking Caller Identity Programmaticallyccccocreueeecuneinecincineeencneeicenennenes
Example Code for Programmatic SECUTIILYc.ccveueevururiurereerererenienenieeseesensenenne
Declaring and Linking Role Referencesccocveencurereeceneuneceneuneenncenereeeenennenes
Examples: Securing Web Applicationscoeucuriueecuniirecmnemneenneeeeseeeenseseesenenne 474
V¥V To Set Up Your System for Running the Security Examplesc.ccoceecererrecencnnee 474
Example: Basic Authentication with a Servletcccocovvcvveccnnicnncrnccnncenenes 475
Example: Form-Based Authentication with a JavaServer Faces Application479
Getting Started Securing Enterprise Applications
Securing Enterprise Beans 486
Securing an Enterprise Bean Using Declarative Securitycccovcveeevcrncerevennenn. 489

The Java EE 6 Tutorial: Basic Concepts

Contents

Part VIII

26

27

Securing an Enterprise Bean Programmaticallyccccooevveneneencninncencneennenn. 493
Propagating a Security Identity (RUN-AS) . .c..c.oceuerrererernerrecnnerreeeeeieeennenreenenne 494
Deploying Secure Enterprise Beanscccccveeeeeeneureceneeneeeeneeneeeeenrenneeeeensenenenne 496
Examples: Securing Enterprise Beans 496
Example: Securing an Enterprise Bean with Declarative Securitycccooeueuee. 497
Example: Securing an Enterprise Bean with Programmatic Securityc......... 501
Securing Application CLENTScovuveeeiureeererieeereieeneirese e ssenes 504
Using Login Modules ... 505
Using Programmatic LOGIN ... 505
Securing Enterprise Information Systems Applicationsc..cceeveureereerrerrecrnerneecenenne 506
Container-Managed Sign-Omnccccoeereireeinerneeeeneereeenneesesseseeessessesensessenes 506
Component-Managed Sign-Onccocceceeuneuee
Configuring Resource Adapter Security
'V To Map an Application Principal to EIS Principalsccocoeeeevereerncenevecencenecnnees 508
Java EE Supporting Technologies ... 511
Introduction to Java EE Supporting Technologies.cccccooerevirccceenee 513
TIANSACHIONS . wocvvviciieict s s 513
RESOUICES . . s 514
The Java EE Connector Architecture and Resource Adaptersc.ccococeverceeenenee 514
Java MeSSage SEIVICE . ..cuvuvueviiiiciciiieiciei ettt 514
Java Database Connectivity SOftWareccccveeeeurerrecencrreerncinereeenesneeeeeeseneneans 515
Transactions
What Is @ TTransaction?ccceccerercureneernieeinicteiereseeieeseee e ssesessesesesessesessescsesseseses 517
Container-Managed TTansactionsc..cccvcureeeecereuneeerrerneeserersersesessersessesessessesessesseseene 518
Transaction AtribULes ... 519
Rolling Back a Container-Managed Transactionccoveveeeneereueercereeneeeneenenes 523
Synchronizing a Session Bean’s Instance Variablescccoccvenenvecnenccnenenne 523
Methods Not Allowed in Container-Managed Transactionscceeveeeeveereene 523

Bean-Managed TTansactionsecevcereeeeerrerneernerneeensenserenessennenes

JTA Transactions

Returning without COmMmMIttINGccocveueveurerrrcenerreeecireeecrereeeseereeeeesseseeeeesesseaes 525

Xix

Contents

XX

28

Methods Not Allowed in Bean-Managed Transactionsccecveeeeecereereceneenenes 525
Transaction TIMEOULSc.cuevviiuiiiiiiiieiiiceeeee e 525
V To Set a Transaction TIMEOULcccvurveueerieereenieereniiree e seseesensesseaens
Updating Multiple Databases
Transactions in Web COMPONENLSc.ccvvcuimicincinieicircirereeceeeeee e 528
Further Information about Transactionsc..cccveeereureurercenerneeemnernersesensersesessenseneene 528
Resource CoNNections ...t 529
Resources and INDI NAIMINEcocueuerciriinecereinieeieteineennesseseesessessesesessesessessesessessessesenne 529
DataSource Objects and Connection POOLSccccueereeineineecincrneieicinereeneisee e 530
Resource INJECHION ... s 531
Field-Based INJECHIONcccuureermciiercierieeicieeeecineteeeenetseee e tsesessessesseeessessesessessesenacs 532
Method-Based INJECHONc..cuveeeeiuciiiriecieireieeiseieectseieeie et seeseaees 533
Class-Based INJECHIONcuvurcerieeicieiieceeireieecieteeeeneiseee e nsessesessessesenaes 534
Resource Adapters and CONLIACESc.ccureurercunerreeeirerneieeretrerreeenerseeeeessessesessessesesessesene 534
Management CONEIACESc.eveviveiriiiieice et as 536
Generic Work Context CONLIACEc.vveeeureuercurerreecneireeenesreseeeessesseeenessesensensesenees 537
Outbound and INbouNd CONLIACEScecveueveecererriecireireeeicireieeecesetseeeeeeseeesesseneeaes 537
Metadata ANNOLALIONSc.cuvueeeureceeeiecieiieirecieieeeiseeaeereses et se e st seseaesesaeaes

Common Client Interface

Further Information about RESOUICEScvvviuiiieiiiiciieeeeeceeeee e 541

The Java EE 6 Tutorial: Basic Concepts

Preface

This tutorial is a guide to developing enterprise applications for the Java Platform,
Enterprise Edition 6 (Java EE 6) using GlassFish Server Open Source Edition.

Oracle GlassFish Server, a Java EE compatible application server, is based on GlassFish
Server Open Source Edition, the leading open-source and open-community platform
for building and deploying next-generation applications and services. GlassFish Server
Open Source Edition, developed by the GlassFish project open-source community at
https://glassfish.dev.java.net/, is the first compatible implementation of the
Java EE 6 platform specification. This lightweight, flexible, and open-source
application server enables organizations not only to leverage the new capabilities
introduced within the Java EE 6 specification, but also to add to their existing
capabilities through a faster and more streamlined development and deployment
cycle. Oracle GlassFish Server, the product version, and GlassFish Server Open Source
Edition, the open-source version, are hereafter referred to as GlassFish Server.

The following topics are addressed here:

= “Before You Read This Book” on page xxi

= “Oracle GlassFish Server Documentation Set” on page xxii
“Related Documentation” on page xxiv

“Symbol Conventions” on page xxiv

“Typographic Conventions” on page xxv

“Default Paths and File Names” on page xxv

= “Documentation, Support, and Training” on page xxvi

= “Searching Oracle Product Documentation” on page xxvii
= “Third-Party Web Site References” on page xxvii

Before You Read This Book

Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through The Java
Tutorial, Fourth Edition, Sharon Zakhour et al. (Addison-Wesley, 2006).

XXi

https://glassfish.dev.java.net/

Preface

Oracle GlassFish Server Documentation Set

XXii

The GlassFish Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for GlassFish Server
documentation is http://docs.sun.com/coll/1343.13. For an introduction to
GlassFish Server, refer to the books in the order in which they are listed in the

following table.

TABLEP-1 Books in the GlassFish Server Documentation Set

BookTitle Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary
of the supported hardware, operating system, Java Development Kit
(JDK), and database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide

Upgrade Guide

Administration Guide

Application Deployment
Guide

Your First Cup: An
Introduction to the Java EE
Platform

Application Development
Guide

Explains how to install the software and its components.

Explains how to upgrade to the latest version of GlassFish Server.
This guide also describes differences between adjacent product
releases and configuration options that can result in incompatibility
with the product specifications.

Explains how to configure, monitor, and manage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Explains how to assemble and deploy applications to the GlassFish
Server and provides information about deployment descriptors.

For beginning Java EE programmers, provides a short tutorial that
explains the entire process for developing a simple enterprise
application. The sample application is a web application that consists
of a component that is based on the Enterprise JavaBeans
specification, a JAX-RS web service, and a JavaServer Faces
component for the web front end.

Explains how to create and implement Java Platform, Enterprise
Edition (Java EE platform) applications that are intended to run on
the GlassFish Server. These applications follow the open Java
standards model for Java EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

The Java EE 6 Tutorial: Basic Concepts

http://docs.sun.com/coll/1343.13

Preface

TABLE P-1

Books in the GlassFish Server Documentation Set

(Continued)

BookTitle

Description

Add-On Component
Development Guide

Embedded Server Guide

Scripting Framework Guide

Troubleshooting Guide

Error Message Reference

Reference Manual

Domain File Format
Reference

Java EE 6 Tutorial

Message Queue Release
Notes

Message Queue
Administration Guide

Message Queue Developer’s
Guide for]MX Clients

Explains how to use published interfaces of GlassFish Server to
develop add-on components for GlassFish Server. This document
explains how to perform only those tasks that ensure that the add-on
component is suitable for GlassFish Server.

Explains how to run applications in embedded GlassFish Server and
to develop applications in which GlassFish Server is embedded.

Explains how to develop scripting applications in such languages as
Ruby on Rails and Groovy on Grails for deployment to GlassFish
Server.

Describes common problems that you might encounter when using
GlassFish Server and explains how to solve them.

Describes error messages that you might encounter when using
GlassFish Server.

Provides reference information in man page format for GlassFish
Server administration commands, utility commands, and related
concepts.

Describes the format of the GlassFish Server configuration file,
domain.xml.

Explains how to use Java EE 6 platform technologies and APIs to
develop Java EE applications.

Describes new features, compatibility issues, and existing bugs for
GlassFish Message Queue.

Explains how to set up and manage a Message Queue messaging
system.

Describes the application programming interface in Message Queue
for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions
(JMX).

xxiii

Preface

Related Documentation

Javadoc tool reference documentation for packages that are provided with GlassFish
Server is available as follows.

= The API specification for version 6 of Java EE is located at http: //
download.oracle.com/docs/cd/E17410 01/javaee/6/api/.

= The API specification for GlassFish Server 3.0.1, including Java EE 6 platform
packages and nonplatform packages that are specific to the GlassFish Server
product, islocated at https://glassfish.dev.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications at http://www.oracle. com/technetwork/
java/javaee/tech/index.html might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see http: //www.netbeans.org/kb/.

For information about the Java DB database for use with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

The GlassFish Samples project is a collection of sample applications that demonstrate
abroad range of Java EE technologies. The GlassFish Samples are bundled with the
Java EE Software Development Kit (SDK) and are also available from the GlassFish
Samples project page at https://glassfish-samples.dev.java.net/.

Symbol Conventions

XXiv

The following table explains symbols that might be used in this book.

TABLEP-2 Symbol Conventions

Symbol Description Example Meaning

[1] Contains optional 1s [-1] The -1 option is not required.
arguments and command
options.

{ |} Containsasetofchoices -d {y|n} The -d option requires that you
for a required command use either the y argument or the n
option. argument.

${ } Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun. javaRoot variable.

- Joins simultaneous Control-A Press the Control key while you
multiple keystrokes. press the A key.

The Java EE 6 Tutorial: Basic Concepts

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/
https://glassfish.dev.java.net/nonav/docs/v3/api/
https://glassfish-samples.dev.java.net/

Preface

TABLEP-2 Symbol Conventions (Continued)

Symbol Description Example Meaning

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it,
keystrokes. and then press the subsequent

keys.

- Indicates menu item File - New — Templates From the File menu, choose New.
selection in a graphical From the New submenu, choose
user interface. Templates.

Typographic Conventions

The following table describes the typographic changes that are used in this book.

TABLEP-3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer .
Use 1s -a to list all files.
output
machine name% you have mail.

AaBbCc123 What you type, contrasted with machine_name% su

onscreen computer output b g
assword:

AaBbCc123 A placeholder to be replaced with a The command to remove a file is rm
real name or value filename.

AaBbCcl23 Book titles, new terms, and terms to Read Chapter 6 in the User’s Guide.
be emphasized (note that some .)
emphasized items appear bold online) A cacheis a copy that is stored locally.

Do not save the file.

Default Paths and File Names

The following table describes the default paths and file names that are used in this
book.

XXV

Preface

TABLE P-4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base Installations on the Solaris operating system,
installation directory for the ~ Linux operating system, and Mac operating
GlassFish Server or the SDK system:
of which the GlassFish Server , .))
. user’s-home-directory/glassfishv3/glassfish
isapart.
Windows, all installations:
SystemDrive:\glassfishv3\glassfish

as-install-parent ~ Represents the parent of the Installations on the Solaris operating system,
base installation directory for ~ Linux operating system, and Mac operating
GlassFish Server. system:

user’s-home-directory/glassfishv3
Windows, all installations:
SystemDrive:\glassfishv3

tut-install Represents the base as-install/docs/javaee-tutorial
installation directory for the
Java EE Tutorial after you
install the GlassFish Server or
the SDK and run the Update

Tool.
domain-root-dir Represents the directory in as-install/domains/
which a domain is created by
default.
domain-dir Represents the directory in domain-root-dir/domain-name

which a domain’s
configuration is stored.

In configuration files,
domain-dir is represented as
follows:

${com.sun.aas.instanceRoot}

Documentation, Support, and Training

The Oracle web site provides information about the following additional resources:

= Documentation (http://docs.sun.com/)
= Support (http://www.sun.com/support/)
= Training (http://education.oracle.com/)

XXVi The Java EE 6 Tutorial: Basic Concepts

http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/

Preface

Searching Oracle Product Documentation

Besides searching Oracle product documentation from the http://docs. sun.com
web site, you can use a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Oracle web sites in your search (for example, the Java Developer site
on the Oracle Technology Network at http://www.oracle.com/technetwork/java/
index.html), use oracle.comin place of docs.sun.com in the search field.

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related
information.

Note — Oracle is not responsible for the availability of third-party web sites mentioned
in this document. Oracle does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through such
sites or resources. Oracle will not be responsible or liable for any actual or alleged
damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such
sites or resources.

Acknowledgments

The Java EE tutorial team would like to thank the Java EE specification leads: Roberto
Chinnici, Bill Shannon, Kenneth Saks, Linda DeMichiel, Ed Burns, Roger Kitain, Ron
Monzillo, Dhiru Pandey, Sankara Rao, Binod PG, Sivakumar Thyagarajan, Kin-Man
Chung, Jan Luehe, Jitendra Kotamraju, Marc Hadley, Paul Sandoz, Gavin King,
Emmanuel Bernard, Rod Johnson, Bob Lee, and Rajiv Mordani.

We would also like to thank the Java EE 6 SDK team, especially Carla Carlson,
Snjezana Sevo-Zenzerovic, Adam Leftik, and John Clingan.

The JavaServer Faces technology and Facelets chapters benefited from the
documentation reviews and example code contributions of Jim Driscoll and Ryan
Lubke.

XXVii

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://docs.sun.com

Preface

XXviii

The EJB technology, Java Persistence API, and Criteria API chapters were written with
extensive input from the EJB and Persistence teams, including Marina Vatkina and
Mitesh Meswani.

We'd like to thank Pete Muir for his reviews of the CDI chapters and Tim Quinn for
assistance with the application client container. Thanks also to the NetBeans
engineering and documentation teams, particularly Petr Jiricka, John
Jullion-Ceccarelli, and Troy Giunipero, for their help in enabling NetBeans IDE
support for the code examples.

We would like to thank our manager, Alan Sommerer, for his support and steadying
influence.

We also thank Dwayne Wolft for developing the illustrations and Jordan Douglas for
updating them. Julie Bettis, our editor, contributed greatly to the readability and flow
of the book. Sheila Cepero helped smooth our path in many ways. Steve Cogorno
provided invaluable help with our tools.

Finally, we would like to express our profound appreciation to Greg Doench, John
Fuller, Vicki Rowland, Evelyn Pyle, and the production team at Addison-Wesley for
graciously seeing our large, complicated manuscript to publication.

The Java EE 6 Tutorial: Basic Concepts

PART 1

Introduction

Part I introduces the platform, the tutorial, and the examples. This part contains the
following chapters:

= Chapter 1, “Overview”
= Chapter 2, “Using the Tutorial Examples”

This page intentionally left blank

CHAPTER 1

Overview

Developers today increasingly recognize the need for distributed, transactional, and
portable applications that leverage the speed, security, and reliability of server-side
technology. Enterprise applications provide the business logic for an enterprise. They
are centrally managed and often interact with other enterprise software. In the world
of information technology, enterprise applications must be designed, built, and
produced for less money, with greater speed, and with fewer resources.

With the Java Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to
provide developers with a powerful set of APIs while shortening development time,
reducing application complexity, and improving application performance.

The Java EE platform is developed through the Java Community Process (the JCP),
which is responsible for all Java technologies. Expert groups, composed of interested
parties, have created Java Specification Requests (JSRs) to define the various Java EE
technologies. The work of the Java Community under the JCP program helps to
ensure Java technology’s standard of stability and cross-platform compatibility.

The Java EE platform uses a simplified programming model. XML deployment
descriptors are optional. Instead, a developer can simply enter the information as an
annotation directly into a Java source file, and the Java EE server will configure the
component at deployment and runtime. These annotations are generally used to
embed in a program data that would otherwise be furnished in a deployment
descriptor. With annotations, you put the specification information in your code next
to the program element affected.

In the Java EE platform, dependency injection can be applied to all resources that a
component needs, effectively hiding the creation and lookup of resources from
application code. Dependency injection can be used in EJB containers, web containers,
and application clients. Dependency injection allows the Java EE container to
automatically insert references to other required components or resources, using
annotations.

Java EE 6 Platform Highlights

This tutorial uses examples to describe the features available in the Java EE platform
for developing enterprise applications. Whether you are a new or experienced
Enterprise developer, you should find the examples and accompanying text a valuable
and accessible knowledge base for creating your own solutions.

If you are new to Java EE enterprise application development, this chapter is a good
place to start. Here you will review development basics, learn about the Java EE
architecture and APIs, become acquainted with important terms and concepts, and
find out how to approach Java EE application programming, assembly, and
deployment.

The following topics are addressed here:

“Java EE 6 Platform Highlights” on page 4

“Java EE Application Model” on page 5

“Distributed Multitiered Applications” on page 6

“Java EE Containers” on page 13

“Web Services Support” on page 15

“Java EE Application Assembly and Deployment” on page 17
“Packaging Applications” on page 17

“Development Roles” on page 19

“Java EE 6 APIs” on page 22

“Java EE 6 APIs in the Java Platform, Standard Edition 6.0” on page 31
“GlassFish Server Tools” on page 34

Java EE 6 Platform Highlights

The most important goal of the Java EE 6 platform is to simplify development by
providing a common foundation for the various kinds of components in the Java EE
platform. Developers benefit from productivity improvements with more annotations
and less XML configuration, more Plain Old Java Objects (POJOs), and simplified
packaging. The Java EE 6 platform includes the following new features:

= Profiles: configurations of the Java EE platform targeted at specific classes of
applications. Specifically, the Java EE 6 platform introduces a lightweight Web
Profile targeted at next-generation web applications, as well as a Full Profile that
contains all Java EE technologies and provides the full power of the Java EE 6
platform for enterprise applications.

= New technologies, including the following:
= Java API for RESTful Web Services (JAX-RS)
= Managed Beans

= Contexts and Dependency Injection for the Java EE Platform (JSR 299),
informally known as CDI

4 The Java EE 6 Tutorial: Basic Concepts

Java EE Application Model

= Dependency Injection for Java (JSR 330)
= Bean Validation (JSR 303)
= Java Authentication Service Provider Interface for Containers (JASPIC)

= New features for Enterprise JavaBeans (EJB) components (see “Enterprise
JavaBeans Technology” on page 25 for details)

= New features for servlets (see “Java Servlet Technology” on page 26 for details)

= New features for JavaServer Faces components (see “JavaServer Faces Technology”
on page 26 for details)

Java EE Application Model

The Java EE application model begins with the Java programming language and the
Java virtual machine. The proven portability, security, and developer productivity they
provide forms the basis of the application model. Java EE is designed to support
applications that implement enterprise services for customers, employees, suppliers,
partners, and others who make demands on or contributions to the enterprise. Such
applications are inherently complex, potentially accessing data from a variety of
sources and distributing applications to a variety of clients.

To better control and manage these applications, the business functions to support
these various users are conducted in the middle tier. The middle tier represents an
environment that is closely controlled by an enterprise’s information technology
department. The middle tier is typically run on dedicated server hardware and has
access to the full services of the enterprise.

The Java EE application model defines an architecture for implementing services as
multitier applications that deliver the scalability, accessibility, and manageability
needed by enterprise-level applications. This model partitions the work needed to
implement a multitier service into the following parts:

= The business and presentation logic to be implemented by the developer
= The standard system services provided by the Java EE platform

The developer can rely on the platform to provide solutions for the hard systems-level
problems of developing a multitier service.

Chapter1 « Overview 5

Distributed Multitiered Applications

Distributed Multitiered Applications

The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and
the application components that make up a Java EE application are installed on
various machines, depending on the tier in the multitiered Java EE environment to
which the application component belongs.

Figure 1-1 shows two multitiered Java EE applications divided into the tiers described
in the following list. The Java EE application parts shown in Figure 1-1 are presented
in “Java EE Components” on page 8.

= (Client-tier components run on the client machine.

= Web-tier components run on the Java EE server.

= Business-tier components run on the Java EE server.

= Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in

Figure 1-1, Java EE multitiered applications are generally considered to be three-tiered
applications because they are distributed over three locations: client machines, the Java
EE server machine, and the database or legacy machines at the back end. Three-tiered
applications that run in this way extend the standard two-tiered client-and-server
model by placing a multithreaded application server between the client application
and back-end storage.

6 The Java EE 6 Tutorial: Basic Concepts

Distributed Multitiered Applications

FIGURE1-1 Multitiered Applications

Java EE Java EE
Application 1
‘ Client Client
Application Tier Machine
Client
JavaServer
Faces 7
Pages Web
Tier
| Java EE
Server
Enterprise Enterprise l
Beans Beans Business

L

EIS Database

' Database Database :
: ' Tier Server

Security

Although other enterprise application models require platform-specific security
measures in each application, the Java EE security environment enables security
constraints to be defined at deployment time. The Java EE platform makes
applications portable to a wide variety of security implementations by shielding
application developers from the complexity of implementing security features.

The Java EE platform provides standard declarative access control rules that are
defined by the developer and interpreted when the application is deployed on the
server. Java EE also provides standard login mechanisms so application developers do
not have to implement these mechanisms in their applications. The same application
works in a variety of security environments without changing the source code.

Chapter1 « Overview 7

Distributed Multitiered Applications

Java EE Components

Java EE applications are made up of components. A Java EE component is a
self-contained functional software unit that is assembled into a Java EE application
with its related classes and files and that communicates with other components.

The Java EE specification defines the following Java EE components.

= Application clients and applets are components that run on the client.

= Java Servlet, JavaServer Faces, and JavaServer Pages (JSP) technology components
are web components that run on the server.

= Enterprise JavaBeans (EJB) components (enterprise beans) are business
components that run on the server.

Java EE components are written in the Java programming language and are compiled
in the same way as any program in the language. The difference between Java EE
components and “standard” Java classes is that Java EE components are assembled
into a Java EE application, are verified to be well formed and in compliance with the
Java EE specification, and are deployed to production, where they are run and
managed by the Java EE server.

Java EE Clients

A Java EE client is usually either a web client or an application client.

Web Clients

A web client consists of two parts:

= Dynamic web pages containing various types of markup language (HTML, XML,
and so on), which are generated by web components running in the web tier

= A web browser, which renders the pages received from the server

A web client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications. When
you use a thin client, such heavyweight operations are off-loaded to enterprise beans
executing on the Java EE server, where they can leverage the security, speed, services,
and reliability of Java EE server-side technologies.

Application Clients

An application client runs on a client machine and provides a way for users to handle
tasks that require a richer user interface than can be provided by a markup language.
An application client typically has a graphical user interface (GUI) created from the
Swing or the Abstract Window Toolkit (AWT) APL, but a command-line interface is
certainly possible.

8 The Java EE 6 Tutorial: Basic Concepts

Distributed Multitiered Applications

Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open an
HTTP connection to establish communication with a servlet running in the web tier.
Application clients written in languages other than Java can interact with Java EE
servers, enabling the Java EE platform to interoperate with legacy systems, clients, and
non-Java languages.

Applets

A web page received from the web tier can include an embedded applet. Written in the
Java programming language, an applet is a small client application that executes in the
Java virtual machine installed in the web browser. However, client systems will likely
need the Java Plug-in and possibly a security policy file for the applet to successfully
execute in the web browser.

Web components are the preferred API for creating a web client program, because no
plug-ins or security policy files are needed on the client systems. Also, web
components enable cleaner and more modular application design because they
provide a way to separate applications programming from web page design. Personnel
involved in web page design thus do not need to understand Java programming
language syntax to do their jobs.

The JavaBeans Component Architecture

The server and client tiers might also include components based on the JavaBeans
component architecture (JavaBeans components) to manage the data flow between the
following:

= Anapplication client or applet and components running on the Java EE server
= Server components and a database

JavaBeans components are not considered Java EE components by the Java EE
specification.

JavaBeans components have properties and have get and set methods for accessing
the properties. JavaBeans components used in this way are typically simple in design
and implementation but should conform to the naming and design conventions
outlined in the JavaBeans component architecture.

Java EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or,
as in the case of a client running in a browser, by going through web pages or servlets
running in the web tier.

Chapter1 « Overview 9

Distributed Multitiered Applications

10

FIGURE1-2 Server Communication

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, and 7
Components Optional JavaBeans
\QJ Components N \/
\\gjk \&'@ Client
: - ° Tier
Web Tier .
Business Tier ’
Java EE
Server

Web Components

Java EE web components are either servlets or web pages created using JavaServer
Faces technology and/or JSP technology (JSP pages). Servlets are Java programming
language classes that dynamically process requests and construct responses. JSP pages
are text-based documents that execute as servlets but allow a more natural approach to
creating static content. JavaServer Faces technology builds on servlets and JSP
technology and provides a user interface component framework for web applications.

Static HTML pages and applets are bundled with web components during application
assembly but are not considered web components by the Java EE specification.
Server-side utility classes can also be bundled with web components and, like HTML
pages, are not considered web components.

As shown in Figure 1-3, the web tier, like the client tier, might include a JavaBeans
component to manage the user input and send that input to enterprise beans running
in the business tier for processing.

The Java EE 6 Tutorial: Basic Concepts

Distributed Multitiered Applications

FIGURE 1-3 Web Tier and Java EE Applications

Application Client and
Optional JavaBeans

Web Browser, Web
Pages, Applets, and

»

Components Optional JavaBeans
" Components - :
\@g} Ny clent
¢ s Tier
JavaBeans Web Pages
Components Serviets - >
(Optional)) Wi VTVIZ': <
v
Business ~ JavaEE
Tier Server

Business Components

Business code, which is logic that solves or meets the needs of a particular business
domain, such as banking, retail, or finance, is handled by enterprise beans running in
either the business tier or the web tier. Figure 1-4 shows how an enterprise bean
receives data from client programs, processes it (if necessary), and sends it to the
enterprise information system tier for storage. An enterprise bean also retrieves data
from storage, processes it (if necessary), and sends it back to the client program.

Chapter1 « Overview

1

Distributed Multitiered Applications

FIGURE 1-4 Business and EIS Tiers

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, and 7
Components Optional JavaBeans 5
\Q‘Jﬁ Components H \ >
Rl v\"\\ﬁ Cllent
b b Tier
JavaBeans Web Pages
Components Servlets
. (< Web
| gl
(Optional) e ﬁg Tior
T
A
v
Java Persistence Entities
Session Beans :
Message-Driven Beans Bu3|_ness Java EE
' Tier Server
| Database EIS
~and Legacy Ti
ier
Systems

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems, such as enterprise resource planning (ERP), mainframe
transaction processing, database systems, and other legacy information systems. For
example, Java EE application components might need access to enterprise information
systems for database connectivity.

12 The Java EE 6 Tutorial: Basic Concepts

Java EE Containers

Java EE Containers

Normally, thin-client multitiered applications are hard to write because they involve
many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The
component-based and platform-independent Java EE architecture makes Java EE
applications easy to write because business logic is organized into reusable
components. In addition, the Java EE server provides underlying services in the form
of a container for every component type. Because you do not have to develop these
services yourself, you are free to concentrate on solving the business problem at hand.

Container Services

Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before it can be executed, a web, enterprise
bean, or application client component must be assembled into a Java EE module and
deployed into its container.

The assembly process involves specifying container settings for each component in the
Java EE application and for the Java EE application itself. Container settings customize
the underlying support provided by the Java EE server, including such services as
security, transaction management, Java Naming and Directory Interface (J]NDI) API
lookups, and remote connectivity. Here are some of the highlights.

= The Java EE security model lets you configure a web component or enterprise bean
so that system resources are accessed only by authorized users.

= The Java EE transaction model lets you specify relationships among methods that
make up a single transaction so that all methods in one transaction are treated as a
single unit.

= JNDIlookup services provide a unified interface to multiple naming and directory
services in the enterprise so that application components can access these services.

= The Java EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a client
invokes methods on it as if it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application
components within the same Java EE application can behave differently based on
where they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database data in one production environment
and another level of database access in another production environment.

The container also manages nonconfigurable services, such as enterprise bean and
servlet lifecycles, database connection resource pooling, data persistence, and access to
the Java EE platform APIs (see “Java EE 6 APIs” on page 22).

Chapter1 « Overview 13

Java EE Containers

Container Types

The deployment process installs Java EE application components in the Java EE
containers as illustrated in Figure 1-5.

FIGURE 1-5 Java EE Server and Containers

Application Client
Container
Client
Application Machine
Client
Servlet Web Page
g = | Web
\ v Container
‘ Java EE
Server
Enterprise Enterprise l
Bean . Bean . EJB
Container

Database

= Java EE server: The runtime portion of a Java EE product. A Java EE server
provides EJB and web containers.

= Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans
for Java EE applications. Enterprise beans and their container run on the Java EE
server.

14 The Java EE 6 Tutorial: Basic Concepts

Web Services Support

= Web container: Manages the execution of web pages, servlets, and some EJB
components for Java EE applications. Web components and their container run on
the Java EE server.

= Application client container: Manages the execution of application client
components. Application clients and their container run on the client.

= Applet container: Manages the execution of applets. Consists of a web browser
and Java Plug-in running on the client together.

Web Services Support

Web services are web-based enterprise applications that use open, XML-based
standards and transport protocols to exchange data with calling clients. The Java EE
platform provides the XML APIs and tools you need to quickly design, develop, test,
and deploy web services and clients that fully interoperate with other web services and
clients running on Java-based or non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass
parameter data to the method calls and process the data returned; for
document-oriented web services, you send documents containing the service data
back and forth. No low-level programming is needed, because the XML API
implementations do the work of translating the application data to and from an
XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following
sections.

The translation of data to a standardized XML-based data stream is what makes web
services and clients written with the Java EE XML APIs fully interoperable. This does
not necessarily mean that the data being transported includes XML tags, because the
transported data can itself be plain text, XML data, or any kind of binary data, such as
audio, video, maps, program files, computer-aided design (CAD) documents, and the
like. The next section introduces XML and explains how parties doing business can
use XML tags and schemas to exchange data in a meaningful way.

XML

Extensible Markup Language (XML) is a cross-platform, extensible, text-based
standard for representing data. Parties that exchange XML data can create their own
tags to describe the data, set up schemas to specify which tags can be used in a
particular kind of XML document, and use XML style sheets to manage the display
and handling of the data.

Chapter1 « Overview 15

Web Services Support

16

For example, a web service can use XML and a schema to produce price lists, and
companies that receive the price lists and schema can have their own style sheets to
handle the data in a way that best suits their needs. Here are examples.

= One company might put XML pricing information through a program to translate
the XML to HTML so that it can post the price lists to its intranet.

= A partner company might put the XML pricing information through a tool to
create a marketing presentation.

= Another company might read the XML pricing information into an application for
processing.

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access
Protocol (SOAP) messages over HT'TP to enable a completely interoperable exchange
between clients and web services, all running on different platforms and at various
locations on the Internet. HTTP is a familiar request-and-response standard for
sending messages over the Internet, and SOAP is an XML-based protocol that follows
the HTTP request-and-response model.

The SOAP portion of a transported message does the following:

= Defines an XML-based envelope to describe what is in the message and explain
how to process the message

= Includes XML-based encoding rules to express instances of application-defined
data types within the message

= Defines an XML-based convention for representing the request to the remote
service and the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for
describing network services. The description includes the name of the service, the
location of the service, and ways to communicate with the service. WSDL service
descriptions can be published on the Web. GlassFish Server provides a tool for
generating the WSDL specification of a web service that uses remote procedure calls to
communicate with clients.

The Java EE 6 Tutorial: Basic Concepts

Packaging Applications

Java EE Application Assembly and Deployment

A Java EE application is packaged into one or more standard units for deployment to
any Java EE platform-compliant system. Each unit contains

= A functional component or components, such as an enterprise bean, web page,
servlet, or applet

= Anoptional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment
typically involves using a platform’s deployment tool to specify location-specific
information, such as a list of local users who can access it and the name of the local
database. Once deployed on alocal platform, the application is ready to run.

Packaging Applications

A Java EE application is delivered in a Java Archive (JAR) file,a Web Archive (WAR)
file, or an Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (. jar)
file witha .war or . ear extension. Using JAR, WAR, and EAR files and modules makes
it possible to assemble a number of different Java EE applications using some of the
same components. No extra coding is needed; it is only a matter of assembling (or
packaging) various Java EE modules into Java EE JAR, WAR, or EAR files.

An EAR file (see Figure 1-6) contains Java EE modules and, optionally, deployment
descriptors. A deployment descriptor, an XML document with an . xml extension,
describes the deployment settings of an application, a module, or a component.
Because deployment descriptor information is declarative, it can be changed without
the need to modify the source code. At runtime, the Java EE server reads the
deployment descriptor and acts upon the application, module, or component
accordingly.

Chapter1 « Overview 17

Packaging Applications

FIGURE 1-6 EAR File Structure

’ Assembly Root

| | |
META-INF Web EJB
Module Module

Application Client | Resource Adapter
Module Module

application.xml
sun-application.xml
(optional)

The two types of deployment descriptors are Java EE and runtime. A Java EE
deployment descriptor is defined by a Java EE specification and can be used to configure
deployment settings on any Java EE-compliant implementation. A runtime
deployment descriptor is used to configure Java EE implementation-specific
parameters. For example, the GlassFish Server runtime deployment descriptor
contains such information as the context root of a web application, as well as GlassFish
Server implementation-specific parameters, such as caching directives. The GlassFish
Server runtime deployment descriptors are named sun-moduleType.xml and are
located in the same META- INF directory as the Java EE deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container
type and, optionally, one component deployment descriptor of that type. An
enterprise bean module deployment descriptor, for example, declares transaction
attributes and security authorizations for an enterprise bean. A Java EE module can be
deployed as a stand-alone module.

18 The Java EE 6 Tutorial: Basic Concepts

Development Roles

Java EE modules are of the following types:

= EJB modules, which contain class files for enterprise beans and an EJB deployment
descriptor. EJB modules are packaged as JAR files with a . jar extension.

= Web modules, which contain servlet class files, web files, supporting class files, GIF
and HTML files, and a web application deployment descriptor. Web modules are
packaged as JAR files with a .war (web archive) extension.

= Application client modules, which contain class files and an application client
deployment descriptor. Application client modules are packaged as JAR files with a
.jar extension.

= Resource adapter modules, which contain all Java interfaces, classes, native
libraries, and other documentation, along with the resource adapter deployment
descriptor. Together, these implement the Connector architecture (see “Java EE
Connector Architecture” on page 29) for a particular EIS. Resource adapter
modules are packaged as JAR files with an . rar (resource adapter archive)
extension.

Development Roles

Reusable modules make it possible to divide the application development and
deployment process into distinct roles so that different people or companies can
perform different parts of the process.

The first two roles, Java EE product provider and tool provider, involve purchasing
and installing the Java EE product and tools. After software is purchased and installed,
Java EE components can be developed by application component providers,
assembled by application assemblers, and deployed by application deployers. In a large
organization, each of these roles might be executed by different individuals or teams.
This division of labor works because each of the earlier roles outputs a portable file that
is the input for a subsequent role. For example, in the application component
development phase, an enterprise bean software developer delivers EJB JAR files. In
the application assembly role, another developer may combine these EJB JAR files into
aJava EE application and save it in an EAR file. In the application deployment role, a
system administrator at the customer site uses the EAR file to install the Java EE
application into a Java EE server.

The different roles are not always executed by different people. If you work for a small
company, for example, or if you are prototyping a sample application, you might
perform the tasks in every phase.

Chapter1 « Overview 19

Development Roles

20

Java EE Product Provider

The Java EE product provider is the company that designs and makes available for
purchase the Java EE platform APIs and other features defined in the Java EE
specification. Product providers are typically application server vendors that
implement the Java EE platform according to the Java EE 6 Platform specification.

Tool Provider

The tool provider is the company or person who creates development, assembly, and
packaging tools used by component providers, assemblers, and deployers.

Application Component Provider

The application component provider is the company or person who creates web
components, enterprise beans, applets, or application clients for use in Java EE
applications.

Enterprise Bean Developer

An enterprise bean developer performs the following tasks to deliver an EJB JAR file
that contains one or more enterprise beans:

= Writes and compiles the source code
= Specifies the deployment descriptor (optional)
= Packages the . class files and deployment descriptor into the EJB JAR file

Web Component Developer

A web component developer performs the following tasks to deliver a WAR file
containing one or more web components:

= Writes and compiles servlet source code
m Writes JavaServer Faces, JSP, and HTML files
= Specifies the deployment descriptor (optional)

= Packagesthe .class, .jsp,and.html files and deployment descriptor into the
WAR file

The Java EE 6 Tutorial: Basic Concepts

Development Roles

Application Client Developer

An application client developer performs the following tasks to deliver a JAR file
containing the application client:

= Writes and compiles the source code
= Specifies the deployment descriptor for the client (optional)
= Packages the . class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application modules
from component providers and may assemble them into a Java EE application EAR
file. The assembler or deployer can edit the deployment descriptor directly or can use
tools that correctly add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing
the Java EE application:

= Assembles EJB JAR and WAR files created in the previous phases into a Java EE
application (EAR) file

= Specifies the deployment descriptor for the Java EE application (optional)

= Verifies that the contents of the EAR file are well formed and comply with the Java
EE specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who configures
and deploys the Java EE application, administers the computing and networking
infrastructure where Java EE applications run, and oversees the runtime environment.
Duties include setting transaction controls and security attributes and specifying
connections to databases.

During configuration, the deployer follows instructions supplied by the application
component provider to resolve external dependencies, specify security settings, and
assign transaction attributes. During installation, the deployer moves the application
components to the server and generates the container-specific classes and interfaces.

Chapter1 « Overview 21

JavaEE 6 APIs

A deployer or system administrator performs the following tasks to install and
configure a Java EE application:

= Configures the Java EE application for the operational environment

= Verifies that the contents of the EAR file are well formed and comply with the Java
EE specification

= Deploys (installs) the Java EE application EAR file into the Java EE server

Java EE 6 APIs

Figure 1-7 shows the relationships among the Java EE containers.

FIGURE 1-7 Java EE Containers

Applet HTTP Web Container EJB
Container SSL __, | Container
Applet JavaServer
\\/ r, Faces ‘Servlet . EJB
HTTP
SSL
Application
Client
Container . J
Application
Client
Database

Figure 1-8 shows the availability of the Java EE 6 APIs in the web container.

22 The Java EE 6 Tutorial: Basic Concepts

JavaEE 6 APIs

FIGURE 1-8 Java EE APIsin the Web Container

Web
Container

Servlet

JavaServer
Faces

JavaMail

JSP

Connectors

Java Persistence

JMS

Management

WS Metadata

Web Services

JACC

JAX-WS

SAAJ

JAX-RPC

Java SE

Chapter1 « Overview

i New in Java EE 6

Figure 1-9 shows the availability of the Java EE 6 APIs in the EJB container.

23

JavaEE 6 APIs

FIGURE1-9 Java EE APIsin the EJB Container

EJB
Container

Java SE
tors

ed Beans

JavaMail

Java Persistence
JTA

Connectors

JMS

Management

EJB

WS Management

Web Services

JACC
JAXR
JAXWS | 3
JAX-RPC | &§

i New in Java EE 6

Figure 1-10 shows the availability of the Java EE 6 APIs in the application client
container.

24 The Java EE 6 Tutorial: Basic Concepts

JavaEE 6 APIs

FIGURE1-10 Java EE APIsin the Application Client Container

Application Java Persistence Java SE
Cllent' Management
Container

WS Metadata

Web Services
Application L R 299

Client JMS
JAXR
JAX-WS -
<
JAX-RPC | &5

h New in Java EE 6

The following sections give a brief summary of the technologies required by the Java
EE platform and the APIs used in Java EE applications.

Enterprise JavaBeans Technology

An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having
fields and methods to implement modules of business logic. You can think of an
enterprise bean as a building block that can be used alone or with other enterprise
beans to execute business logic on the Java EE server.

Enterprise beans are either session beans or message-driven beans.

m A session bean represents a transient conversation with a client. When the client
finishes executing, the session bean and its data are gone.

= A message-driven bean combines features of a session bean and a message listener,
allowing a business component to receive messages asynchronously. Commonly,
these are Java Message Service (JMS) messages.

Chapter1 « Overview 25

JavaEE 6 APIs

In the Java EE 6 platform, new enterprise bean features include the following:

= The ability to package local enterprise beans in a WAR file
= Singleton session beans, which provide easy access to shared state

= Alightweight subset of Enterprise JavaBeans functionality (EJB Lite) that can be
provided within Java EE Profiles, such as the Java EE Web Profile.

The Interceptors specification, which is part of the EJB 3.1 specification, makes more
generally available the interceptor facility originally defined as part of the EJB 3.0
specification.

Java Servlet Technology

Java Servlet technology lets you define HTTP-specific servlet classes. A servlet class
extends the capabilities of servers that host applications accessed by way of a
request-response programming model. Although servlets can respond to any type of
request, they are commonly used to extend the applications hosted by web servers.

In the Java EE 6 platform, new Java Servlet technology features include the following:

Annotation support
Asynchronous support

Ease of configuration
Enhancements to existing APIs
Pluggability

JavaServer Faces Technology

JavaServer Faces technology is a user interface framework for building web
applications. The main components of JavaServer Faces technology are as follows:

= A GUI component framework.

= A flexible model for rendering components in different kinds of HTML or different
markup languages and technologies. A Renderer object generates the markup to
render the component and converts the data stored in a model object to types that
can be represented in a view.

= Astandard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

Input validation

Event handling

Data conversion between model objects and components
Managed model object creation

26 The Java EE 6 Tutorial: Basic Concepts

JavaEE 6 APIs

= Page navigation configuration
= Expression Language (EL)

All this functionality is available using standard Java APIs and XML-based
configuration files.

In the Java EE 6 platform, new features of JavaServer Faces include the following:

= The ability to use annotations instead of a configuration file to specify managed
beans

= Facelets, a display technology that replaces JavaServer Pages (JSP) technology
using XHTML files

= Ajax support
= Composite components

= Implicit navigation

JavaServer Pages Technology

JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a
text-based document. A JSP page is a text-based document that contains two types of
text:

= Static data, which can be expressed in any text-based format such as HTML or
XML

= JSP elements, which determine how the page constructs dynamic content

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality
common to many JSP applications. Instead of mixing tags from numerous vendors in
your JSP applications, you use a single, standard set of tags. This standardization
allows you to deploy your applications on any JSP container that supports JSTL and
makes it more likely that the implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating
XML documents, internationalization tags, tags for accessing databases using SQL,
and commonly used functions.

Chapter1 « Overview 27

JavaEE 6 APIs

28

Java Persistence API

The Java Persistence API is a Java standards-based solution for persistence. Persistence
uses an object/relational mapping approach to bridge the gap between an
object-oriented model and a relational database. The Java Persistence API can also be
used in Java SE applications, outside of the Java EE environment. Java Persistence
consists of the following areas:

= The Java Persistence API
= The querylanguage
= Object/relational mapping metadata

Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating
transactions. The Java EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other applications
that are viewing data will see the updated data after each database read or write
operation. However, if your application performs two separate database access
operations that depend on each other, you will want to use the JTA API to demarcate
where the entire transaction, including both operations, begins, rolls back, and
commits.

Java API for RESTful Web Services

The Java API for RESTful Web Services (JAX-RS) defines APIs for the development of
web services built according to the Representational State Transfer (REST)
architectural style. A JAX-RS application is a web application that consists of classes
that are packaged as a servlet in a WAR file along with required libraries.

The JAX-RS API is new to the Java EE 6 platform.

Managed Beans

Managed Beans, lightweight container-managed objects (POJOs) with minimal
requirements, support a small set of basic services, such as resource injection, lifecycle
callbacks, and interceptors. Managed Beans represent a generalization of the managed
beans specified by JavaServer Faces technology and can be used anywhere in a Java EE
application, not just in web modules.

The Managed Beans specification is part of the Java EE 6 platform specification (JSR
316).

Managed Beans are new to the Java EE 6 platform.

The Java EE 6 Tutorial: Basic Concepts

JavaEE 6 APIs

Contexts and Dependency Injection for the Java EE
Platform (JSR 299)

Contexts and Dependency Injection (CDI) for the Java EE platform defines a set of
contextual services, provided by Java EE containers, that make it easy for developers to
use enterprise beans along with JavaServer Faces technology in web applications.
Designed for use with stateful objects, CDI also has many broader uses, allowing
developers a great deal of flexibility to integrate different kinds of componentsin a
loosely coupled but type-safe way.

CDI is new to the Java EE 6 platform.

Dependency Injection for Java (JSR 330)

Dependency Injection for Java defines a standard set of annotations (and one
interface) for use on injectable classes.

In the Java EE platform, CDI provides support for Dependency Injection. Specifically,
you can use DI injection points only in a CDI-enabled application.

Dependency Injection for Java is new to the Java EE 6 platform.

Bean Validation

The Bean Validation specification defines a metadata model and API for validating
data in JavaBeans components. Instead of distributing validation of data over several
layers, such as the browser and the server side, you can define the validation
constraints in one place and share them across the different layers.

Bean Validation is new to the Java EE 6 platform.

Java Message Service API

The Java Message Service (JMS) APIis a messaging standard that allows Java EE
application components to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

Java EE Connector Architecture

The Java EE Connector architecture is used by tools vendors and system integrators to
create resource adapters that support access to enterprise information systems that can
be plugged in to any Java EE product. A resource adapter is a software component that

Chapter1 « Overview 29

JavaEE 6 APIs

30

allows Java EE application components to access and interact with the underlying
resource manager of the EIS. Because a resource adapter is specific to its resource
manager, a different resource adapter typically exists for each type of database or
enterprise information system.

The Java EE Connector architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of Java EE based web services
with existing EISs that can be either synchronous or asynchronous. Existing
applications and EISs integrated through the Java EE Connector architecture into the
Java EE platform can be exposed as XML-based web services by using JAX-WS and
Java EE component models. Thus JAX-WS and the Java EE Connector architecture are
complementary technologies for enterprise application integration (EAI) and
end-to-end business integration.

JavaMail API

Java EE applications use the JavaMail API to send email notifications. The JavaMail
API has two parts:

= Anapplication-level interface used by the application components to send mail
= A service provider interface

The Java EE platform includes the JavaMail API with a service provider that allows
application components to send Internet mail.

Java Authorization Contract for Containers

The Java Authorization Contract for Containers (JACC) specification defines a
contract between a Java EE application server and an authorization policy provider.
All Java EE containers support this contract.

The JACC specification defines java.security.Permission classes that satisfy the
Java EE authorization model. The specification defines the binding of container access
decisions to operations on instances of these permission classes. It defines the
semantics of policy providers that use the new permission classes to address the
authorization requirements of the Java EE platform, including the definition and use
of roles.

Java Authentication Service Provider Interface for
Containers

The Java Authentication Service Provider Interface for Containers (JASPIC)
specification defines a service provider interface (SPI) by which authentication
providers that implement message authentication mechanisms may be integrated in

The Java EE 6 Tutorial: Basic Concepts

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

client or server message-processing containers or runtimes. Authentication providers
integrated through this interface operate on network messages provided to them by
their calling container. The authentication providers transform outgoing messages so
that the source of the message can be authenticated by the receiving container, and the
recipient of the message can be authenticated by the message sender. Authentication
providers authenticate incoming messages and return to their calling container the
identity established as a result of the message authentication.

JASPIC is new to the Java EE 6 platform.

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

Several APIs that are required by the Java EE 6 platform are included in the Java
Platform, Standard Edition 6.0 (Java SE 6) platform and are thus available to Java EE
applications.

Java Database Connectivity API

The Java Database Connectivity (JDBC) APIlets you invoke SQL commands from
Java programming language methods. You use the JDBC API in an enterprise bean
when you have a session bean access the database. You can also use the JDBC API from
aservlet or a JSP page to access the database directly without going through an
enterprise bean.

The JDBC API has two parts:

= Anapplication-level interface used by the application components to access a
database

= A service provider interface to attach a JDBC driver to the Java EE platform

Java Naming and Directory Interface API

The Java Naming and Directory Interface (JNDI) API provides naming and directory
functionality, enabling applications to access multiple naming and directory services,
including existing naming and directory services, such as LDAP, NDS, DNS, and NIS.
The JNDI API provides applications with methods for performing standard directory
operations, such as associating attributes with objects and searching for objects using
their attributes. Using JNDI, a Java EE application can store and retrieve any type of
named Java object, allowing Java EE applications to coexist with many legacy
applications and systems.

Java EE naming services provide application clients, enterprise beans, and web
components with access to a JNDI naming environment. A naming environment

Chapter1 « Overview 31

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

32

allows a component to be customized without the need to access or change the
component’s source code. A container implements the component’s environment and
provides it to the component as a JNDI naming context.

A Java EE component can locate its environment naming context by using JNDI
interfaces. A component can create a javax.naming.InitialContext objectand look
up the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects, are
stored in the environment naming context java: comp/env. The Java EE platform
allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, and message connections. An object
should be named within a subcontext of the naming environment according to the
type of the object. For example, enterprise beans are named within the subcontext
java:comp/env/ejb,and JDBC DataSource references are named within the
subcontext java: comp/env/jdbc.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides
standard services to determine the type of an arbitrary piece of data, encapsulate access
to it, discover the operations available on it, and create the appropriate JavaBeans
component to perform those operations.

Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the
processing of XML documents using Document Object Model (DOM), Simple API for
XML (SAX), and Extensible Stylesheet Language Transformations (XSLT). JAXP
enables applications to parse and transform XML documents independently of a
particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might
otherwise have naming conflicts. Designed to be flexible, JAXP lets you use any
XML-compliant parser or XSL processor from within your application and supports
the Worldwide Web Consortium (W3C) schema. You can find information on the
W3C schema at this URL: http://www.w3.0rg/XML/Schema.

The Java EE 6 Tutorial: Basic Concepts

http://www.w3.org/XML/Schema

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

Java Architecture for XML Binding

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an
XML schema to a representation in Java language programs. JAXB can be used
independently or in combination with JAX-WS, where it provides a standard data
binding for web service messages. All Java EE application client containers, web
containers, and EJB containers support the JAXB APIL.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAA]J) is alow-level API on which JAX-WS
depends. SAAJ enables the production and consumption of messages that conform to
the SOAP 1.1 and 1.2 specifications and SOAP with Attachments note. Most
developers do not use the SAAJ AP], instead using the higher-level JAX-WS APL

Java API for XML Web Services

The Java API for XML Web Services (JAX-WS) specification provides support for web
services that use the JAXB API for binding XML data to Java objects. The JAX-WS
specification defines client APIs for accessing web services as well as techniques for
implementing web service endpoints. The Implementing Enterprise Web Services
specification describes the deployment of JAX-WS-based services and clients. The EJB
and Java Servlet specifications also describe aspects of such deployment. It must be
possible to deploy JAX-WS-based applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process
message requests and responses. In general, these message handlers execute in the
same container and with the same privileges and execution context as the JAX-WS
client or endpoint component with which they are associated. These message handlers
have access to the same JNDI java: comp/env namespace as their associated
component. Custom serializers and deserializers, if supported, are treated in the same
way as message handlers.

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Java
EE application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable
Authentication Module (PAM) framework, which extends the Java Platform security
architecture to support user-based authorization.

Chapter1 « Overview 33

GlassFish ServerTools

GlassFish Server Tools

The GlassFish Server is a compliant implementation of the Java EE 6 platform. In
addition to supporting all the APIs described in the previous sections, the GlassFish
Server includes a number of Java EE tools that are not part of the Java EE 6 platform
but are provided as a convenience to the developer.

This section briefly summarizes the tools that make up the GlassFish Server.
Instructions for starting and stopping the GlassFish Server, starting the
Administration Console, and starting and stopping the Java DB server are in
Chapter 2, “Using the Tutorial Examples.”

The GlassFish Server contains the tools listed in Table 1-1. Basic usage information for
many of the tools appears throughout the tutorial. For detailed information, see the
online help in the GUI tools.

TABLE 1-1 GlassFish Server Tools

Tool Description

Administration Console A web-based GUT GlassFish Server administration utility. Used to stop
the GlassFish Server and manage users, resources, and applications.

asadmin A command-line GlassFish Server administration utility. Used to start
and stop the GlassFish Server and manage users, resources, and
applications.

appclient A command-line tool that launches the application client container and

invokes the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database,
producing a schema file that the GlassFish Server can use for
container-managed persistence.

package-appclient A command-line tool to package the application client container
libraries and JAR files.

Java DB database A copy of the Java DB server.

xjc A command-line tool to transform, or bind, a source XML schema to a

set of JAXB content classes in the Java programming language.

schemagen A command-line tool to create a schema file for each namespace
referenced in your Java classes.

34 The Java EE 6 Tutorial: Basic Concepts

GlassFish ServerTools

TABLE 1-1 GlassFish Server Tools (Continued)
Tool Description
wsimport A command-line tool to generate JAX-WS portable artifacts for a given

wsgen

WSDL file. After generation, these artifacts can be packaged ina WAR
file with the WSDL and schema documents, along with the endpoint
implementation, and then deployed.

A command-line tool to read a web service endpoint class and generate
all the required JAX-WS portable artifacts for web service deployment
and invocation.

Chapter1 « Overview

35

This page intentionally left blank

L K R 4 CHAPTER 2

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the
examples. The following topics are addressed here:

“Required Software” on page 37

“Starting and Stopping the GlassFish Server” on page 41
“Starting the Administration Console” on page 42
“Starting and Stopping the Java DB Server” on page 43
“Building the Examples” on page 44

“Tutorial Example Directory Structure” on page 44
“Getting the Latest Updates to the Tutorial” on page 44
“Debugging Java EE Applications” on page 45

Required Software

The following software is required to run the examples:

“Java Platform, Standard Edition” on page 37
“Java EE 6 Software Development Kit” on page 38
“Java EE 6 Tutorial Component” on page 38
“NetBeans IDE” on page 40

“Apache Ant” on page 41

Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of the Java Platform, Standard
Edition 6.0 Development Kit (JDK 6). You can download the JDK 6 software from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Download the current JDK update that does not include any other software, such as
NetBeans IDE or the Java EE SDK.

37

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Required Software

38

Java EE 6 Software Development Kit

GlassFish Server Open Source Edition 3.0.1 is targeted as the build and runtime
environment for the tutorial examples. To build, deploy, and run the examples, you
need a copy of the GlassFish Server and, optionally, NetBeans IDE. To obtain the
GlassFish Server, you must install the Java EE 6 Software Development Kit (SDK),
which you can download from http://www.oracle.com/technetwork/java/
javaee/downloads/index.html. Make sure you download the Java EE 6 SDK, not the
Java EE 6 Web Profile SDK.

SDK Installation Tips
During the installation of the SDK, do the following.

= Configure the GlassFish Server administration user name as admin, and specify no
password. This is the default setting.

= Accept the default port values for the Admin Port (4848) and the HTTP Port
(8080).

= Allow the installer to download and configure the Update Tool. If you access the
Internet through a firewall, provide the proxy host and port.

This tutorial refers to as-install-parent, the directory where you install the GlassFish
Server. For example, the default installation directory on Microsoft Windows is
C:\glassfishv3, so as-install-parent is C:\glassfishv3. The GlassFish Server itself is
installed in as-install, the glassfish directory under as-install-parent. So on Microsoft
Windows, as-install is C:\glassfishv3\glassfish.

After you install the GlassFish Server, add the following directories to your PATH to
avoid having to specify the full path when you use commands:

as-install-parent/bin

as-install/bin

Java EE 6 Tutorial Component

The tutorial example source is contained in the tutorial component. To obtain the
tutorial component, use the Update Tool.

If you are behind a firewall that prevents you from using the Update Tool to obtain
components, you can obtain the tutorial from the java.net web site.

The Java EE 6 Tutorial: Basic Concepts

http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.oracle.com/technetwork/java/javaee/downloads/index.html

Required Software

Next Steps

v

To Obtain the Tutorial Component Using the Update Tool
Start the Update Tool.
= From the command line, type the command updatetool.

= OnaWindows system, select Start — All Programs — Java EE 6 SDK — Start Update
Tool.

Expand the GlassFish Server Open Source Edition node.
Select the Available Add-ons node.

From the list, select the Java EE 6 Tutorial check box.
Click Install.

Accept the license agreement.

After installation, the Java EE 6 Tutorial appears in the list of installed components.
The tool is installed in the as-install/docs/javaee-tutorial directory. This directory
contains two subdirectories: docs and examples. The examples directory contains
subdirectories for each of the technologies discussed in the tutorial.

Updates to the Java EE 6 Tutorial are published periodically. For details on obtaining
these updates, see “Getting the Latest Updates to the Tutorial” on page 44.

To Obtain the Tutorial Component from the java.net Web Site

Follow these steps exactly. If you place the tutorial in the wrong location, the examples
will not work.

Open the following URL in a web browser:
https://javaeetutorial.dev.java.net/

Click the Documents & Files link in the left sidebar.

In the table on the Documents & Files page, locate the latest stable version of the Java
EE 6 Tutorial zip file.

Right-click the zip file name and save it to your system.

Copy or move the zip file into the GlassFish SDK directory.
By default, this directory is named glassfishv3.

Chapter2 « Using the Tutorial Examples 39

https://javaeetutorial.dev.java.net/

Required Software

40

Unzip the zip file.

The tutorial unzips into the directory glassfish/docs/javaee-tutorial.

NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE
for developing Java applications, including enterprise applications. NetBeans IDE
supports the Java EE platform. You can build, package, deploy, and run the tutorial
examples from within NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can
download NetBeans IDE from http://www.netbeans.org/downloads/index.html.

To Install NetBeans IDE without GlassFish Server

When you install NetBeans IDE, do not install the version of GlassFish Server that
comes with NetBeans IDE. To skip the installation of GlassFish Server, follow these
steps.

Click Customize on the first page of the NetBeans IDE Installer wizard.

In the Customize Installation dialog, deselect the check box for GlassFish Server and
click OK.

Continue with the installation of NetBeans IDE.

To Add GlassFish Server as a Server in NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must add your GlassFish Server as
aserver in NetBeans IDE. Follow these instructions to add the GlassFish Server to
NetBeans IDE.

Select Tools — Servers to open the Servers dialog.

Click Add Server.

Under Choose Server, select GlassFish v3 and click Next.

Under Server Location, browse the location of your GlassFish Server installation and
click Next.

Under Domain Location, select Register Local Domain.

Click Finish.

The Java EE 6 Tutorial: Basic Concepts

http://www.netbeans.org/downloads/index.html

Starting and Stopping the GlassFish Server

Apache Ant

Ant is a Java technology-based build tool developed by the Apache Software
Foundation (http://ant.apache.org/) and is used to build, package, and deploy the
tutorial examples. To run the tutorial examples, you need Ant 1.7.1. If you do not
already have Ant 1.7.1, you can install it from the Update Tool that is part of the
GlassFish Server.

V¥ To Obtain Apache Ant
1 Startthe UpdateTool.
= From the command line, type the command updatetool.

= OnaWindows system, select Start — All Programs — Java EE 6 SDK — Start Update
Tool.

2 Expand the GlassFish Server Open Source Edition node.
3 Select the Available Add-ons node.

4 From thelist, select the Apache Ant Build Tool check box.
5 ClicklInstall.

6 Acceptthelicense agreement.

After installation, Apache Ant appears in the list of installed components. The tool is
installed in the as-install-parent/ant directory.

NextSteps To use the ant command, add as-install/ant/bin to your PATH environment variable.

Starting and Stopping the GlassFish Server

To start the GlassFish Server, open a terminal window or command prompt and
execute the following:

asadmin start-domain --verbose

Chapter2 « Using the Tutorial Examples 41

http://ant.apache.org/

Starting the Administration Console

A domain is a set of one or more GlassFish Server instances managed by one
administration server. Associated with a domain are the following:

= The GlassFish Server’s port number. The default is 8080.
= The administration server’s port number. The default is 4848.
= Anadministration user name and password.

You specify these values when you install the GlassFish Server. The examples in this
tutorial assume that you chose the default ports.

With no arguments, the start-domain command initiates the default domain, which
isdomainl. The - -verbose flag causes all logging and debugging output to appear on
the terminal window or command prompt. The output also goes into the server log,
which is located in domain-dir/logs/server. log.

Or, on Windows, choose Start — All Programs — Java EE 6 SDK — Start Application
Server.

After the server has completed its startup sequence, you will see the following output:

Domain domainl started.

To stop the GlassFish Server, open a terminal window or command prompt and
execute:

asadmin stop-domain domainl

Or, on Windows, choose Start — All Programs — Java EE 6 SDK — Stop Application
Server.

When the server has stopped, you will see the following output:

Domain domainl stopped.

Starting the Administration Console

42

To administer the GlassFish Server and manage users, resources, and Java EE
applications, use the Administration Console tool. The GlassFish Server must be
running before you invoke the Administration Console. To start the Administration
Console, open a browser at http://localhost:4848/.

Or, on Windows, choose Start — All Programs — Java EE 6 SDK — Administration
Console.

The Java EE 6 Tutorial: Basic Concepts

Starting and Stopping the Java DB Server

To Start the Administration Console in NetBeans IDE
Click the Services tab.
Expand the Servers node.

Right-click the GlassFish Server instance and select View Admin Console.

Note - NetBeans IDE uses your default web browser to open the Administration
Console.

Starting and Stopping the Java DB Server

Next Steps

The GlassFish Server includes the Java DB database server.

To start the Java DB server, open a terminal window or command prompt and execute:

asadmin start-database

To stop the Java DB server, open a terminal window or command prompt and execute:

asadmin stop-database

For information about the Java DB included with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html.

To Start the Database Server Using NetBeans IDE
Click the Services tab.
Expand the Databases node.

Right-click Java DB and choose Start Server.

To stop the database using NetBeans IDE, right-click Java DB and choose Stop Server.

Chapter2 « Using the Tutorial Examples 43

http://www.oracle.com/technetwork/java/javadb/overview/index.html

Building the Examples

Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE
or Ant. Directions for building the examples are provided in each chapter. Either
NetBeans IDE or Ant may be used to build, package, deploy, and run the examples.

Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from
compiled files, the tutorial examples use the Java BluePrints application directory
structure.

Each application module has the following structure:

= puild.xml: Ant build file
® src/java: Java source files for the module

= src/conf: configuration files for the module, with the exception of web
applications

= web: web pages, style sheets, tag files, and images (web applications only)
= web/WEB- INF: configuration files for web applications (web applications only)
= nbproject: NetBeans project files

Examples that have multiple application modules packaged into an EAR file have
submodule directories that use the following naming conventions:

= example-name-app-client: application clients
= example-name-ejb: enterprise bean JAR files
= example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create
a build subdirectory and to copy and compile files into that directory; a dist
subdirectory, which holds the packaged module file; and a client- jar directory,
which holds the retrieved application client JAR.

Getting the Latest Updates to the Tutorial

Check for any updates to the tutorial by using the Update Center included with the
Java EE 6 SDK.

44 The Java EE 6 Tutorial: Basic Concepts

Debugging Java EE Applications

¥ To Update the Tutorial Through the Update Center

1 Openthe Services tab in NetBeans IDE and expand Servers.

2 Right-click the GlassFish v3 instance and select View Update Center to display the
Update Tool.

3 Select Available Updates in the tree to display a list of updated packages.
4 Lookfor updates to the Java EE 6 Tutorial (javaee-tutorial) package.

5 Ifthereisan updated version of the Tutorial, select Java EE 6 Tutorial (javaee-tutorial)
and click Install.

Debugging Java EE Applications

This section explains how to determine what is causing an error in your application
deployment or execution.

Using the Server Log

One way to debug applications is to look at the server log in
domain-dir/logs/server.log. The log contains output from the GlassFish Server and
your applications. You can log messages from any Java class in your application with
System.out.println and the Java Logging APIs (documented at
http://download.oracle.com/

docs/cd/E17409 01/javase/6/docs/technotes/guides/logging/index.html)
and from web components with the ServletContext.log method.

If you start the GlassFish Server with the - -verbose flag, all logging and debugging
output will appear on the terminal window or command prompt and the server log. If
you start the GlassFish Server in the background, debugging information is available
only in the log. You can view the server log with a text editor or with the
Administration Console log viewer.

¥ To UsetheLogViewer
1 Selectthe GlassFish Server node.

2 Clickthe View Log Files button.

The log viewer opens and displays the last 40 entries.

Chapter2 « Using the Tutorial Examples 45

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/logging/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/logging/index.html

Debugging Java EE Applications

46

3

To display other entries, follow these steps.
a. Click the Modify Search button.
b. Specify any constraints on the entries you want to see.

¢. Clickthe Search button at the top of the log viewer.

Using a Debugger

The GlassFish Server supports the Java Platform Debugger Architecture (JPDA). With
JPDA, you can configure the GlassFish Server to communicate debugging information
using a socket.

To Debug an Application Using a Debugger
Enable debugging in the GlassFish Server using the Administration Console:
a. Expand the Configuration node.

b. Selectthe JVM Settings node. The default debug options are set to:

-Xdebug -Xrunjdwp:transport=dt socket,server=y,suspend=n,address=9009

Asyou can see, the default debugger socket port is 9009. You can change it to a port
not in use by the GlassFish Server or another service.

c. Select the Debug Enabled check box.
d. Click the Save button.

Stop the GlassFish Server and then restart it.

The Java EE 6 Tutorial: Basic Concepts

PART 11

The Web Tier

Part IT introduces the technologies in the web tier. This part contains the following
chapters:

Chapter 3, “Getting Started with Web Applications”

Chapter 4, “JavaServer Faces Technology”

Chapter 5, “Introduction to Facelets”

Chapter 6, “Expression Language”

Chapter 7, “Using JavaServer Faces Technology in Web Pages”
Chapter 8, “Using Converters, Listeners, and Validators”
Chapter 9, “Developing with JavaServer Faces Technology”
Chapter 10, “Java Servlet Technology”

47

This page intentionally left blank

CHAPTER 3

Getting Started with Web Applications

A web application is a dynamic extension of a web or application server. Web
applications are of the following types:

Presentation-oriented: A presentation-oriented web application generates
interactive web pages containing various types of markup language (HTML,
XHTML, XML, and so on) and dynamic content in response to requests.
Development of presentation-oriented web applications is covered in Chapter 4,
“JavaServer Faces Technology,” through Chapter 9, “Developing with JavaServer
Faces Technology”

Service-oriented: A service-oriented web application implements the endpoint of
aweb service. Presentation-oriented applications are often clients of
service-oriented web applications. Development of service-oriented web
applications is covered in Chapter 12, “Building Web Services with JAX-WS,” and
Chapter 13, “Building RESTful Web Services with JAX-RS,” in Part ITI, “Web
Services”

The following topics are addressed here:

“Web Applications” on page 50

“Web Application Lifecycle” on page 51

“Web Modules: The hellol Example” on page 53

“Configuring Web Applications: The hello2 Example” on page 62
“Further Information about Web Applications” on page 71

49

Web Applications

Web Applications

50

In the Java EE platform, web components provide the dynamic extension capabilities
for a web server. Web components can be Java servlets, web pages implemented with
JavaServer Faces technology, web service endpoints, or JSP pages. Figure 3-1
illustrates the interaction between a web client and a web application that uses a
servlet. The client sends an HTTP request to the web server. A web server that
implements Java Servlet and JavaServer Pages technology converts the request into an
HTTPServletRequest object. This object is delivered to a web component, which can
interact with JavaBeans components or a database to generate dynamic content. The
web component can then generate an HTTPServletResponse or can pass the request to
another web component. A web component eventually generates a
HTTPServletResponse object. The web server converts this object to an HTTP
response and returns it to the client.

FIGURE3-1 Java Web Application Request Handling

Web @ HttpServiet 2 @
Client * HTTP Request — ||| Web et

Request |[L——— 1] Components

Database
© l@
® HttpServlet
) HTTP Response JavaBeans
Response | 4] Components

@

Database

Servlets are Java programming language classes that dynamically process requests and
construct responses. Java technologies, such as JavaServer Faces and Facelets, are used
for building interactive web applications. (Frameworks can also be used for this
purpose.) Although servlets and Java Server Faces and Facelets pages can be used to
accomplish similar things, each has its own strengths. Servlets are best suited for
service-oriented applications (web service endpoints can be implemented as servlets)
and the control functions of a presentation-oriented application, such as dispatching
requests and handling nontextual data. Java Server Faces and Facelets pages are more
appropriate for generating text-based markup, such as XHTML, and are generally
used for presentation—oriented applications.

The Java EE 6 Tutorial: Basic Concepts

Web Application Lifecycle

Web components are supported by the services of a runtime platform called a web
container. A web container provides such services as request dispatching, security,
concurrency, and lifecycle management. A web container also gives web components
access to such APIs as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is
installed, or deployed, to the web container. The configuration information can be
specified using Java EE annotations or can be maintained in a text file in XML format
called a web application deployment descriptor (DD). A web application DD must
conform to the schema described in the Java Servlet specification.

This chapter gives a brief overview of the activities involved in developing web
applications. First, it summarizes the web application lifecycle and explains how to
package and deploy very simple web applications on the GlassFish Server. The chapter
moves on to configuring web applications and discusses how to specify the most
commonly used configuration parameters.

Web Application Lifecycle

A web application consists of web components; static resource files, such as images;
and helper classes and libraries. The web container provides many supporting services
that enhance the capabilities of web components and make them easier to develop.
However, because a web application must take these services into account, the process
for creating and running a web application is different from that of traditional
stand-alone Java classes.

The process for creating, deploying, and executing a web application can be
summarized as follows:

1. Develop the web component code.
2. Develop the web application deployment descriptor, if necessary.

3. Compile the web application components and helper classes referenced by the
components.

4. Optionally, package the application into a deployable unit.

Deploy the application into a web container.
6. Access a URL that references the web application.
Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into

an HTML form (Figure 3-2) and then displays a greeting after the name is submitted
(Figure 3-3).

Chapter3 - Getting Started with Web Applications 51

Web Application Lifecycle

FIGURE3-2 Greeting Form for hellol Web Application

) Facelets Hello Greeting - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help
v c A O |:] http: fflocalhost:5080/hello1f ’1:'_'_'.‘ = '-.l')-':

|j Facelets Hello Greeting | =

Y-

Hello, my name is Duke. What's vours?
]

Done

FIGURE3-3 Response Page for hellol Web Application

) Facelets Hello Response - Mozilla Firefox

File Edit Miew History BEEldnEics Tools Help
> G X & |:] http: fflocalhost:5080/hello 1 f aces/inde::. xhtml L9 '-.l')-'i

|j Facelets Hello Response | =

Y-

Hello, Charlie!

Done

The Hello application contains two web components that generate the greeting and
the response. This chapter discusses the following simple applications:

= hellol, aJavaServer Faces technology-based application that uses two XHTML
pages and a backing bean

= hello2, aservlet-based web application in which the components are implemented
by two servlet classes

52 The Java EE 6 Tutorial: Basic Concepts

Web Modules: The hellol Example

The applications are used to illustrate tasks involved in packaging, deploying,
configuring, and running an application that contains web components. The source
code for the examples is in the tut-install/examples/web/hellol/ and
tut-install/examples/web/hello2/ directories.

Web Modules: The hellol Example

In the Java EE architecture, web components and static web content files, such as
images, are called web resources. A web module is the smallest deployable and usable
unit of web resources. A Java EE web module corresponds to a web application as
defined in the Java Servlet specification.

In addition to web components and web resources, a web module can contain other
files:

= Server-side utility classes, such as shopping carts
= Client-side classes, such as applets and utility classes

A web module has a specific structure. The top-level directory of a web module is the
document root of the application. The document root is where XHTML pages,
client-side classes and archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB- INF, which can contain the
following files and directories:

= classes: A directory that contains server-side classes: servlets, enterprise bean
class files, utility classes, and JavaBeans components

= tags: A directory that contains tag files, which are implementations of tag libraries

= lib: A directory that contains JAR files that contain enterprise beans, and JAR
archives of libraries called by server-side classes

= Deployment descriptors, such asweb . xml (the web application deployment
descriptor) and ejb-jar.xml (an EJB deployment descriptor)

A web module needs aweb . xml file if it uses JavaServer Faces technology, if it must
specify certain kinds of security information, or if you want to override information
specified by web component annotations.

You can also create application-specific subdirectories (that is, package directories) in
either the document root or the WEB- INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a
JAR file known as a Web Archive (WAR) file. Because the contents and use of WAR
files differ from those of JAR files, WAR file names use a .war extension. The web
module just described is portable; you can deploy it into any web container that
conforms to the Java Servlet specification.

Chapter3 - Getting Started with Web Applications 53

Web Modules: The hellol Example

To deploy a WAR on the GlassFish Server, the file must contain a runtime deployment
descriptor. The runtime DD is an XML file that contains such information as the
context root of the web application and the mapping of the portable names of an
application’s resources to the GlassFish Server’s resources. The GlassFish Server web
application runtime DD is named sun-web .xml and is located in the WEB- INF
directory. The structure of a web module that can be deployed on the GlassFish Server
is shown in Figure 3-4.

For example, the sun-web. xml file for the hello1l application specifies the following
context root:

<context-root>/hellol</context-root>
FIGURE3-4 Web Module Structure
Assembly Root
| I
‘ WEB-INF

ub_ classes Web pages

web.xml

sun-web.xml

(optional)
Library All server-side
archive files .class files for

this web module

Examining the hellol Web Module

The hellol application is a web module that uses JavaServer Faces technology to
display a greeting and response. You can use a text editor to view the application files,
or you can use NetBeans IDE.

54 The Java EE 6 Tutorial: Basic Concepts

Web Modules: The hellol Example

To View the hellol Web Module Using NetBeans IDE
In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hellol folder.
Select the Open as Main Project check box.

Expand the Web Pages node and double-click the index. xhtml file to view it in the
right-hand pane.

The index.html file is the default landing page for a Facelets application. For this
application, the page uses simple tag markup to display a form with a graphic image, a
header, a text field, and two command buttons:

<?xml version="1.0' encoding='UTF-8' 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello Greeting</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif"/>
<h2>Hello, my name is Duke. What'’s yours?</h2>
<h:inputText id="username"
value="#{hello.name}"
required="true"
requiredMessage="A name is required."
maxlength="25">
</h:inputText>
<p></p>
<h:commandButton id="submit" value="Submit" action="response">
</h:commandButton>
<h:commandButton id="reset" value="Reset" type="reset">
</h:commandButton>
</h:form>
</h:body>
</html>

The most complex element on the page is the inputText text field. The maxlength
attribute specifies the maximum length of the field. The required attribute specifies
that the field must be filled out; the requiredMessage attribute provides the error
message to be displayed if the field is left empty. Finally, the value attribute contains
an expression that will be provided by the Hello backing bean.

The Submit commandButton element specifies the action as response, meaning that
when the button is clicked, the response. xhtml page is displayed.

Chapter3 - Getting Started with Web Applications 55

Web Modules: The hellol Example

6 Double-clickthe response.xhtml file to view it.

The response page appears. Even simpler than the greeting page, the response page
contains a graphic image, a header that displays the expression provided by the
backing bean, and a single button whose action element transfers you back to the
index.xhtml page:

<?xml version="1.0' encoding='UTF-8' 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello Response</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="duke.waving.gif"/>
<h2>Hello, #{hello.name}!</h2>
<p></p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>
</html>

7 Expandthe Source Packages node, then the hellol node.

8 Double-clickthe Hello. java file to view it.

The Hello class, called a backing bean class, provides getter and setter methods for the
name property used in the Facelets page expressions. By default, the expression
language refers to the class name, with the first letter in lowercase (hello.name).

package hellol;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Hello {

private String name;

public Hello() {
}

public String getName() {
return name;
}

public void setName(String user name) {
this.name = user name;
}

}

9 Under the Web Pages node, expand the WEB- INF node and double-click the web . xml
fileto view it.

56 The Java EE 6 Tutorial: Basic Concepts

Web Modules: The hellol Example

The web.xml file contains several elements that are required for a Facelets application.
All these are created automatically when you use NetBeans IDE to create an
application:

= A context parameter specifying the project stage:

<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>

A context parameter provides configuration information needed by a web
application. An application can define its own context parameters. In addition,
JavaServer Faces technology and Java Servlet technology define context parameters
that an application can use.

= Aservlet elementandits serviet-mapping element specifying the
FacesServlet:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

= Awelcome-file-list element specifying the location of the landing page; note

that the location is faces/index.xhtml, not just index.xhtml:
<welcome-file-list>

<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>

Packaging a Web Module

A web module must be packaged into a WAR in certain deployment scenarios and
whenever you want to distribute the web module. You package a web module into a
WAR by executing the jar command in a directory laid out in the format of a web
module, by using the Ant utility, or by using the IDE tool of your choice. This tutorial
shows you how to use NetBeans IDE or Ant to build, package, and deploy the hellol
sample application.

To Set the Context Root

A context root identifies a web application in a Java EE server. A context root must start
with a forward slash (/) and end with a string.

In a packaged web module for deployment on the GlassFish Server, the context root is
stored in sun-web. xml.

Chapter3 - Getting Started with Web Applications 57

Web Modules: The hellol Example

58

To view or edit the context root, follow these steps.
Expand the Web Pages and WEB-INF nodes of the hello1 project.
Double-click sun-web . xml.

In the General tab, observe that the Context Root field is set to /hellol.

If you needed to edit this value, you could do so here. When you create a new
application, you type the context root here.

(Optional) Click the XML tab.

Observe that the context root value /hellol is enclosed by the context- root element.
You could also edit the value here.

To Build and Package the hello1 Web Module Using NetBeans IDE
Select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hellol folder.

Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the hello1 project and select Build.

To Build and Package the hellol Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hellol/

Type the following command:

ant

This command spawns any necessary compilations, copies files to the directory
tut-install/examples/web/hellol/build/, creates the WAR file, and copies it to the
directory tut-install/examples/web/hellol/dist/.

The Java EE 6 Tutorial: Basic Concepts

Web Modules: The hellol Example

Deploying a Web Module

You can deploy a WAR file to the GlassFish Server by

Using NetBeans IDE

Using the Ant utility

Using the asadmin command

Using the Administration Console

Copying the WAR file into the domain-dir/autodeploy/ directory

Throughout the tutorial, you will use NetBeans IDE or Ant for packaging and
deploying.

To Deploy the hellol Web Module Using NetBeans IDE

Right-click the hellol project and select Deploy.

To Deploy the hellol Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hellol/

Type the following command:
ant deploy

Running a Deployed Web Module

Now that the web module is deployed, you can view it by opening the application in a
web browser. By default, the application is deployed to host localhost on port 8080.
The context root of the web application is hellol.

To Run a Deployed Web Module
Open a web browser.

Type the following URL:
http://localhost:8080/hellol/

Type your name and click Submit.

The response page displays the name you submitted. Click the Back button to try
again.

Chapter3 - Getting Started with Web Applications 59

Web Modules: The hellol Example

Listing Deployed Web Modules

The GlassFish Server provides two ways to view the deployed web modules: the
Administration Console and the asadmin command.

V¥ To List Deployed Web Modules Using the Administration Console
1 OpentheURLhttp://localhost:4848/ inabrowser.
2 Select the Applications node.
The deployed web modules appear in the Deployed Applications table.
V¥ ToList Deployed Web Modules Using the asadmin Command

® Type the following command:

asadmin list-applications

Updating a Web Module

A typical iterative development cycle involves deploying a web module and then
making changes to the application components. To update a deployed web module,
follow these steps.

V¥ To Update a Deployed Web Module
1 Recompile any modified classes.
2 Redeploy the module.

3 Reloadthe URLintheclient.

DynamicReloading

If dynamic reloading is enabled, you do not have to redeploy an application or module
when you change its code or deployment descriptors. All you have to do is copy the
changed pages or class files into the deployment directory for the application or
module. The deployment directory for a web module named context-root is
domain-dir/applications/context-root. The server checks for changes periodically
and redeploys the application, automatically and dynamically, with the changes.

60 The Java EE 6 Tutorial: Basic Concepts

Web Modules: The hellol Example

This capability is useful in a development environment because it allows code changes
to be tested quickly. Dynamic reloading is not recommended for a production
environment, however, because it may degrade performance. In addition, whenever a
reload is done, the sessions at that time become invalid, and the client must restart the
session.

In the GlassFish Server, dynamic reloading is enabled by default.

To Disable or Modify Dynamic Reloading

If for some reason you do not want the default dynamic reloading behavior, follow
these steps in the Administration Console.

Openthe URL http://localhost:4848/ inabrowser.

Select the GlassFish Server node.

Select the Advanced tab.

To disable dynamic reloading, deselect the Reload Enabled check box.

To change the interval at which applications and modules are checked for code

changes and dynamically reloaded, type a number of seconds in the Reload Poll
Interval field.

The default value is 2 seconds.

Click the Save button.

Undeploying Web Modules

You can undeploy web modules and other types of enterprise applications by using
either NetBeans IDE or the Ant tool.

To Undeploy the hellol Web Module Using NetBeans IDE
Ensure that the GlassFish Server is running.

Inthe Services window, expand the Servers node, GlassFish Server instance, and the
Applications node.

Right-click the hellol module and choose Undeploy.

To delete the class files and other build artifacts, right-click the project and choose
Clean.

Chapter3 - Getting Started with Web Applications 61

Configuring Web Applications: The hello2 Example

To Undeploy the hellol Web Module Using Ant

In a terminal window, go to:
tut-install/examples/web/hellol/

Type the following command:
ant undeploy

To delete the class files and other build artifacts, type the following command:

ant clean

Configuring Web Applications: The hello2 Example

62

Web applications are configured by means of annotations or by elements contained in
the web application deployment descriptor.

The following sections give a brief introduction to the web application features you
will usually want to configure. Examples demonstrate procedures for configuring the
Hello, World application.

Mapping URLs to Web Components

When it receives a request, the web container must determine which web component
should handle the request. The web container does so by mapping the URL path
contained in the request to a web application and a web component. A URL path
contains the context root and, optionally, a URL pattern:

http://host: port/context-root[/url-pattern]

You set the URL pattern for a servlet by using the @WebServlet annotation in the
servlet source file. For example, the GreetingServlet. java file in the hello2
application contains the following annotation, specifying the URL pattern as
/greeting:

@webServlet("/greeting")
public class GreetingServlet extends HttpServlet {

This annotation indicates that the URL pattern /greeting follows the context root.
Therefore, when the servlet is deployed locally, it is accessed with the following URL:

http://localhost:8080/hello2/greeting

To access the servlet by using only the context root, specify "/" as the URL pattern.

The Java EE 6 Tutorial: Basic Concepts

Configuring Web Applications: The hello2 Example

Examining the hello2 Web Module

The hello2 application behaves almost identically to the hellol application, but it is
implemented using Java Servlet technology instead of JavaServer Faces technology.
You can use a text editor to view the application files, or you can use NetBeans IDE.

To View the hello2 Web Module Using NetBeans IDE
In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hello2 folder.
Select the Open as Main Project check box.
Expand the Source Packages node, then the servlets node.

Double-click the GreetingServlet. java file to viewit.

This servlet overrides the doGet method, implementing the GET method of HTTP. The
servlet displays a simple HTML greeting form whose Submit button, like that of
hellol, specifies a response page for its action. The following excerpt begins with the
@WebServlet annotation that specifies the URL pattern, relative to the context root:

@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

@Override

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the data of the response
out.println("<html>"
+ "<head><title>Servlet Hello</title></head>");

// then write the data of the response

out.println("<body bgcolor=\"#ffffff\">"
+ ""

"<h2>Hello, my name is Duke. What’s yours?</h2>"

"<form method=\"get\">"

"<input type=\"text\" name=\"username\" size=\"25\">"

||<p></p>||

"<input type=\"submit\" value=\"Submit\">"

"<input type=\"reset\" value=\"Reset\">

+ o+ o+ o+ o+ o+

Chapter3 - Getting Started with Web Applications 63

Configuring Web Applications: The hello2 Example

+ "</form>")

String username = request.getParameter("username")
if (username != null && username.length() > 0) {
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/response")

if (dispatcher != null) {
dispatcher.include(request, response);
}

}
out.println("</body></html>");
out.close();

7 Double-click the ResponseServlet. java file to viewit.
This servlet also overrides the doGet method, displaying only the response. The
following excerpt begins with the @WebServlet annotation, which specifies the URL
pattern, relative to the context root:

@WebServlet("/response")
public class ResponseServlet extends HttpServlet {

@Override
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();

// then write the data of the response

String username = request.getParameter("username")

if (username != null && username.length() > 0) {
out.println("<h2>Hello, " + username + "!</h2>");

}

8 Under the Web Pages node, expand the WEB-INF node and double-click the
sun-web . xml file to view it.

In the General tab, observe that the Context Root field is set to /hello2.

For this simple servlet application, aweb . xml file is not required.

Building, Packaging, Deploying, and Running the
hello2 Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the hello2
example.

64 The Java EE 6 Tutorial: Basic Concepts

Configuring Web Applications: The hello2 Example

To Build, Package, Deploy, and Run the hello2 Example Using
NetBeans IDE

Select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the hello2 folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the hello2 project and select Build.
Right-click the project and select Deploy.

In a web browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hello1 application shown in Figure 3-2. The
major difference is that after you click the Submit button, the response appears below
the greeting, not on a separate page.

To Build, Package, Deploy, and Run the hello2 Example Using Ant

In a terminal window, go to:
tut-install/examples/web/hello2/

Type the following command:

ant

This target builds the WAR file and copies it to the
tut-install/examples/web/hello2/dist/ directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

Inaweb browser, openthe URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

Chapter3 - Getting Started with Web Applications 65

Configuring Web Applications: The hello2 Example

66

The application looks much like the hello1l application shown in Figure 3-2. The
major difference is that after you click the Submit button, the response appears below
the greeting, not on a separate page.

Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the web container
will use for appending to a request for a URL (called a valid partial request) that is not
mapped to a web component. For example, suppose that you define a welcome file
welcome.html. When a client requests a URL such as host: port/ webapp/directory,
where directory is not mapped to a servlet or XHTML page, the file

host: port/webapp/directory/welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines the
welcome file list and appends to the partial request each welcome file in the order
specified and checks whether a static resource or servlet in the WAR is mapped to that
request URL. The web container then sends the request to the first resource that
matches in the WAR.

If no welcome file is specified, the GlassFish Server will use a file named index. html as
the default welcome file. If there is no welcome file and no file named index.html, the
GlassFish Server returns a directory listing.

By convention, you specify the welcome file for a JavaServer Faces application as
faces/file-name.xhtml.

Setting Context and Initialization Parameters

The web components in a web module share an object that represents their application
context. You can pass initialization parameters to the context or to a web component.

To Add a Context Parameter Using NetBeans IDE
Open the project if you haven't already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-clickweb. xml.

Click General at the top of the editor pane.

Expand the Context Parameters node.

The Java EE 6 Tutorial: Basic Concepts

Configuring Web Applications: The hello2 Example

10

Click Add.
An Add Context Parameter dialog opens.

In the Parameter Name field, type the name that specifies the context object.
In the Parameter Value field, type the parameter to pass to the context object.

Click OK.

To Add an Initialization Parameter Using NetBeans IDE

You can use the @WebServlet annotation to specify web component initialization
parameters by using the initParams attribute and the @webInitParamannotation. For
example:

@WebServlet (urlPatterns="/MyPattern", initParams=
{@WebInitParam(name="ccc", value="333")})

Alternatively, you can add an initialization parameter to the web. xml file. To do this
using NetBeans IDE, follow these steps.

Open the project if you haven't already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-click web . xm1.

Click Servlets at the top of the editor pane.

Click the Add button under the Initialization Parameters table.

An Add Initialization Parameter dialog opens.
In the Parameter Name field, type the name of the parameter.
In the Parameter Value Field, type the parameter’s value.

Click OK.

Mapping Errors to Error Screens

When an error occurs during execution of a web application, you can have the
application display a specific error screen according to the type of error. In particular,

Chapter3 - Getting Started with Web Applications 67

Configuring Web Applications: The hello2 Example

you can specify a mapping between the status code returned in an HTTP response or a
Java programming language exception returned by any web component and any type
of error screen.

You can have multiple error-page elements in your deployment descriptor. Each
element identifies a different error that causes an error page to open. This error page
can be the same for any number of error-page elements.

¥V To Set Up Error Mapping Using NetBeans IDE
1 Openthe project if you haven’t already.
2 Expandthe project’s node in the Projects pane.
3 Expandthe Web Pages node and then the WEB-INF node.
4 Double-clickweb.xml.
5 Click Pages at the top of the editor pane.
6 Expand the Error Pages node.

7 ClickAdd.
The Add Error Page dialog opens.

8 Click Browse to locate the page that you want to act as the error page.

9 IntheError Codefield, type the HTTP status code that will cause the error page to be
opened.

10 Inthe Exception Type field, type the exception that will cause the error page to load.

11 Click OK.

Declaring Resource References

If your web component uses such objects as enterprise beans, data sources, or web
services, you use Java EE annotations to inject these resources into your application.
Annotations eliminate a lot of the boilerplate lookup code and configuration elements
that previous versions of Java EE required.

Although resource injection using annotations can be more convenient for the
developer, there are some restrictions on using it in web applications. First, you can
inject resources only into container-managed objects, since a container must have

68 The Java EE 6 Tutorial: Basic Concepts

Configuring Web Applications: The hello2 Example

control over the creation of a component so that it can perform the injection into a
component. As a result, you cannot inject resources into such objects as simple
JavaBeans components. However, JavaServer Faces managed beans are managed by
the container; therefore, they can accept resource injections.

Components that can accept resource injections are listed in Table 3-1.

This section explains how to use a couple of the annotations supported by a servlet
container to inject resources. Chapter 20, “Running the Persistence Examples,”
explains how web applications use annotations supported by the Java Persistence APIL.
Chapter 24, “Getting Started Securing Web Applications,” explains how to use
annotations to specify information about securing web applications.

TABLE3-1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributelListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributelListener
javax.servlet.http.HttpSessionBindingListener

Taglib listeners Same as above

Taglib tag handlers javax.servlet.jsp.tagext.JspTag

Managed beans Plain Old Java Objects

Declaring a Reference to a Resource
The @Resource annotation is used to declare a reference to a resource, such as a data

source, an enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, a method, or a field. The container is
responsible for injecting references to resources declared by the @Resource annotation
and mapping it to the proper JNDI resources.

Chapter3 - Getting Started with Web Applications 69

Configuring Web Applications: The hello2 Example

70

In the following example, the @Resource annotation is used to inject a data source into
a component that needs to make a connection to the data source, as is done when
using JDBC technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {
// get a connection and execute the query
Connection conn = catalogDS.getConnection();

}

The container injects this data source prior to the component’s being made available to
the application. The data source JNDI mapping is inferred from the field name
catalogDS and the type, javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to
use the @Resources annotation to contain them, as shown by the following example:

@Resources ({
@Resource (name="myDB" type=java.sql.DataSource),
@Resource (name="myMQ" type=javax.jms.ConnectionFactory)
)

The web application examples in this tutorial use the Java Persistence API to access
relational databases. This API does not require you to explicitly create a connection to
a data source. Therefore, the examples do not use the @Resource annotation to inject a
data source. However, this API supports the @PersistenceUnit and
@PersistenceContext annotations for injecting EntityManagerFactory and
EntityManager instances, respectively. Chapter 20, “Running the Persistence
Examples,” describes these annotations and the use of the Java Persistence API in web
applications.

Declaring a Reference to a Web Service

The @WebServiceRef annotation provides a reference to a web service. The following
example shows uses the @WebServiceRef annotation to declare a reference to a web
service. WebServiceRef uses thewsdlLocation element to specify the URI of the
deployed service’s WSDL file:

import javax.xml.ws.WebServiceRef;

public class ResponseServlet extends HTTPServlet {
@WebServiceRef (wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

The Java EE 6 Tutorial: Basic Concepts

Further Information about Web Applications

Further Information about Web Applications

For more information on web applications, see

m JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314
= JavaServer Faces technology web site:

http://www.oracle.com/
technetwork/java/javaee/javaserverfaces-139869.html

= Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315
® Java Servlet web site:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

Chapter3 - Getting Started with Web Applications 71

http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

This page intentionally left blank

CHAPTER 4

JavaServer Faces Technology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:

= An API for representing components and managing their state; handling events,
server-side validation, and data conversion; defining page navigation; supporting
internationalization and accessibility; and providing extensibility for all these
features

= Taglibraries for adding components to web pages and for connecting components
to server-side objects

JavaServer Faces technology provides a well-defined programming model and various
tag libraries. These features significantly ease the burden of building and maintaining
web applications with server-side user interfaces (UIs). With minimal effort, you can
complete the following tasks.

Create a web page.

Drop components onto a web page by adding component tags.
Bind components on a page to server-side data.

= Wire component-generated events to server-side application code.
= Save and restore application state beyond the life of server requests.
= Reuse and extend components through customization.

This chapter provides an overview of JavaServer Faces technology. After explaining
what a JavaServer Faces application is and reviewing some of the primary benefits of
using JavaServer Faces technology, this chapter describes the process of creating a
simple JavaServer Faces application. This chapter also introduces the JavaServer Faces
lifecycle by describing the example JavaServer Faces application progressing through
the lifecycle stages.

73

What s a JavaServer Faces Application?

The following topics are addressed here:

“What Is a JavaServer Faces Application?” on page 74

“JavaServer Faces Technology Benefits” on page 75

“Creating a Simple JavaServer Faces Application” on page 77
“Further Information about JavaServer Faces Technology” on page 81

What Is a JavaServer Faces Application?

The functionality provided by a JavaServer Faces application is similar to that of any
other Java web application. A typical JavaServer Faces application includes the
following parts:

A set of web pages in which components are laid out
A set of tags to add components to the web page

A set of backing beans, which are JavaBeans components that define properties and
functions for components on a page

A web deployment descriptor (web . xml file)

Optionally, one or more application configuration resource files, such as a
faces-config.xml file, which can be used to define page navigation rules and
configure beans and other custom objects, such as custom components

Optionally, a set of custom objects, which can include custom components,
validators, converters, or listeners, created by the application developer

A set of custom tags for representing custom objects on the page

Figure 4-1 shows the interaction between client and server in a typical JavaServer
Faces application. In response to a client request, a web page is rendered by the web
container that implements JavaServer Faces technology.

FIGURE4-1 Responding to a Client Request for a JavaServer Faces Page

L

' Web Container

o Access page

HTTP Request > /?g, myfacelet.xhtml

Browser T/

Renders HTML
HTTP Response

my Ul

74 The Java EE 6 Tutorial: Basic Concepts

JavaServer Faces Technology Benefits

The web page, myfacelet.xhtml, is built using JavaServer Faces component tags.
Component tags are used to add components to the view (represented by myUI in the
diagram), which is the server-side representation of the page. In addition to
components, the web page can also reference objects, such as the following:

= Anyevent listeners, validators, and converters that are registered on the
components

= The JavaBeans components that capture the data and process the
application-specific functionality of the components

On request from the client, the view is rendered as a response. Rendering is the process
whereby, based on the server-side view, the web container generates output, such as
HTML or XHTML, that can be read by the client, such as a browser.

JavaServer Faces Technology Benefits

One of the greatest advantages of JavaServer Faces technology is that it offers a clean
separation between behavior and presentation for web applications. A JavaServer
Faces application can map HTTP requests to component-specific event handling and
manage components as stateful objects on the server. JavaServer Faces technology
allows you to build web applications that implement the finer-grained separation of
behavior and presentation that is traditionally offered by client-side Ul architectures.

The separation of logic from presentation also allows each member of a web
application development team to focus on a single piece of the development process
and provides a simple programming model to link the pieces. For example, page
authors with no programming expertise can use JavaServer Faces technology tagsin a
web page to link to server-side objects without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar
component and web-tier concepts without limiting you to a particular scripting
technology or markup language. JavaServer Faces technology APIs are layered directly
on top of the Servlet API, as shown in Figure 4-2.

Chapter4 - JavaServer Faces Technology 75

JavaServer Faces Technology Benefits

FIGURE4-2 Java Web Application Technologies

JavaServer Faces JavaServer Pages
Standard Tag Library

avaServer Pages

This layering of APIs enables several important application use cases, such as using
different presentation technologies, creating your own custom components directly
from the component classes, and generating output for various client devices.

Facelets technology, available as part of JavaServer Faces 2.0, is now the preferred
presentation technology for building JavaServer Faces technology-based web
applications. For more information on Facelets technology features, see Chapter 5,
“Introduction to Facelets”

Facelets technology offers several advantages.

= Code can be reused and extended for components through the templating and
composite component features.

= When you use the JavaServer Faces Annotations feature, you can automatically
register the backing bean as a resource available for JavaServer Faces applications.
In addition, implicit navigation rules allow developers to quickly configure page
navigation. These features reduce the manual configuration process for
applications.

= Most important, JavaServer Faces technology provides a rich architecture for
managing component state, processing component data, validating user input, and
handling events.

76 The Java EE 6 Tutorial: Basic Concepts

Creating a Simple JavaServer Faces Application

Creating a Simple JavaServer Faces Application

JavaServer Faces technology provides an easy and user-friendly process for creating
web applications. Developing a simple JavaServer Faces application typically requires
the following tasks:

= Developing backing beans

= Adding managed bean declarations

= Creating web pages using component tags
= Mapping the FacesServlet instance

This section describes those tasks through the process of creating a simple JavaServer
Faces Facelets application.

The example is a Hello application that includes a backing bean and a web page. When
accessed by a client, the web page prints out a Hello World message. The example
application is located in the directory tut-install/examples/web/hello. The tasks
involved in developing this application can be examined by looking at the application
components in detail.

Developing the Backing Bean

As mentioned earlier in this chapter, a backing bean, a type of managed bean, is a
JavaBeans component that is managed by JavaServer Faces technology. Components
in a page are associated with backing beans that provide application logic. The
example backing bean, Hello. java, contains the following code:

package hello;

import javax.faces.bean.ManagedBean;

@ManagedBean
public class Hello {

final String world = "Hello World!"

public String getworld() {
return world;
}
}

The example backing bean sets the value of the variable world with the string "Hello
World!". The @ManagedBean annotation registers the backing bean as a resource with
the JavaServer Faces implementation. For more information on managed beans and
annotations, see Chapter 9, “Developing with JavaServer Faces Technology”

Chapter4 - JavaServer Faces Technology 77

Creating a Simple JavaServer Faces Application

Creating the Web Page

In a typical Facelets application, web pages are created in XHTML. The example web
page, beanhello.xhtml, is a simple XHTML page. It has the following content:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Facelets Hello World</title>
</h:head>
<h:body>
#{hello.world}
</h:body>
</html>

A Facelets XHTML web page can also contain several other elements, which are
covered later in this tutorial.

The web page connects to the backing bean through the Expression Language (EL)
value expression #{hello.world}, which retrieves the value of the world property
from the backing bean Hello. Note the use of hello to reference the backing bean
Hello. If no name is specified in the @anagedBean annotation, the backing bean is
always accessed with the first letter of the class name in lowercase.

>

For more information on using EL expressions, see Chapter 6, “Expression Language’
For more information about Facelets technology, see Chapter 5, “Introduction to
Facelets” For more information about the JavaServer Faces programming model and
building web pages using JavaServer Faces technology, see Chapter 7, “Using
JavaServer Faces Technology in Web Pages”

Mapping the FacesServlet Instance

The final task requires mapping the FacesServlet, which is done through the web
deployment descriptor (web.xml). A typical mapping of FacesServlet is as follows:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The preceding file segment represents part of a typical JavaServer Faces web
deployment descriptor. The web deployment descriptor can also contain other
content relevant to a JavaServer Faces application configuration, but that information
is not covered here.

78 The Java EE 6 Tutorial: Basic Concepts

Creating a Simple JavaServer Faces Application

Mapping the FacesServlet is automatically done for you if you are using an IDE such
as NetBeans IDE.

The Lifecycle of the hello Application

Every web application has a lifecycle. Common tasks, such as handling incoming
requests, decoding parameters, modifying and saving state, and rendering web pages
to the browser, are all performed during a web application lifecycle. Some web
application frameworks hide the details of the lifecycle from you, whereas others
require you to manage them manually.

By default, JavaServer Faces automatically handles most of the lifecycle actions for you.
However, it also exposes the various stages of the request lifecycle, so that you can
modify or perform different actions if your application requirements warrant it.

It is not necessary for the beginning user to understand the lifecycle of a JavaServer
Faces application, but the information can be useful for creating more complex
applications.

The lifecycle of a JavaServer Faces application starts and ends with the following
activity: The client makes a request for the web page, and the server responds with the
page. The lifecycle consists of two main phases: execute and render.

During the execute phase, several actions can take place:

= The application view is built or restored.

= The request parameter values are applied.

= Conversions and validations are performed for component values.
= Backing beans are updated with component values.

= Application logic is invoked.

For a first (initial) request, only the view is built. For subsequent (postback) requests,
some or all of the other actions can take place.

In the render phase, the requested view is rendered as a response to the client.
Rendering is typically the process of generating output, such as HTML or XHTML,
that can be read by the client, usually a browser.

The following short description of the example JavaServer Faces application passing
through its lifecycle summarizes the activity that takes place behind the scenes.

Chapter4 - JavaServer Faces Technology 79

Creating a Simple JavaServer Faces Application

80

The hello example application goes through the following stages when it is deployed
on the GlassFish Server.

1.

S B

When the hello application is built and deployed on the GlassFish Server, the
application is in an uninitiated state.

When a client makes an initial request for the beanhello.xhtml web page, the
hello Facelets application is compiled.

The compiled Facelets application is executed, and a new component tree is
constructed for the hello application and is placed in a FacesContext.

The component tree is populated with the component and the backing bean
property associated with it, represented by the EL expression hello.world.

A new view is built, based on the component tree.
The view is rendered to the requesting client as a response.
The component tree is destroyed automatically.

On subsequent (postback) requests, the component tree is rebuilt, and the saved
state is applied.

For more detailed information on the JavaServer Faces lifecycle, see the JavaServer
Faces Specification, Version 2.0.

To Build, Package, Deploy, and Run the Applicationin
NetBeans IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog box, navigate to:

tut-install/examples/web

Select the hello folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the hello project and select Run.

This step compiles, assembles, and deploys the application and then brings up a web
browser window displaying the following URL:

http://localhost:8080/hello

The Java EE 6 Tutorial: Basic Concepts

Further Information about JavaServer Faces Technology

The output looks like this:

Hello World!

Further Information about JavaServer Faces Technology

For more information on JavaServer Faces technology, see

= JavaServer Faces 2.0 specification:
http://jcp.org/en/jsr/detail?id=314
= JavaServer Faces technology web site:

http://www.oracle.com/
technetwork/java/javaee/javaserverfaces-139869.html

= JavaServer Faces 2.0 technology download web site:
http://www.oracle.com/technetwork/java/javaee/download-139288.html
= Mojarra (JavaServer Faces 2.0) Release Notes:

https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html

Chapter4 - JavaServer Faces Technology 81

http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

This page intentionally left blank

L K R 4 CHAPTER 5

Introduction to Facelets

The term Facelets refers to the view declaration language for JavaServer Faces
technology. JavaServer Pages (JSP) technology, previously used as the presentation
technology for JavaServer Faces, does not support all the new features available in
JavaServer Faces 2.0. JSP technology is considered to be a deprecated presentation
technology for JavaServer Faces 2.0. Facelets is a part of the JavaServer Faces
specification and also the preferred presentation technology for building JavaServer
Faces technology-based applications.

The following topics are addressed here:

= “What Is Facelets?” on page 83

= “Developing a Simple Facelets Application” on page 85
= “Templating” on page 91

= “Composite Components” on page 94

= “Resources” on page 96

WhatIs Facelets?

Facelets is a powerful but lightweight page declaration language that is used to build
JavaServer Faces views using HTML style templates and to build component trees.
Facelets features include the following:

= Use of XHTML for creating web pages

= Support for Facelets tag libraries in addition to JavaServer Faces and JSTL tag
libraries

= Support for the Expression Language (EL)

= Templating for components and pages

83

What Is Facelets?

84

Advantages of Facelets for large-scale development projects include the following:

= Support for code reuse through templating and composite components

= Functional extensibility of components and other server-side objects through
customization

= Faster compilation time
= Compile-time EL validation
= High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on
development and deployment.

Facelets views are usually created as XHTML pages. JavaServer Faces implementations
support XHTML pages created in conformance with the XHTML Transitional
Document Type Definition (DTD), as listed at http: //www.w3.0rg/TR/xhtml1/
#a_dtd_XHTML-1.0-Transitional. By convention, web pages built with XHTML
have an . xhtml extension.

JavaServer Faces technology supports various tag libraries to add components to a web
page. To support the JavaServer Faces tag library mechanism, Facelets uses XML
namespace declarations. Table 5-1 lists the tag libraries supported by Facelets.

TABLE5-1 Tag Libraries Supported by Facelets

Tag Library URI Prefix Example Contents

JavaServer http://java.sun.com/jsf/facelets ui: ui:component Tags for

Faces . templating

Facelets Tag ui:insert

Library

JavaServer http://java.sun.com/jsf/html h: h:head JavaServer

Faces HTML Faces

Tag Library h:body component

h:outputText tags for all
UIComponents
h:inputText

JavaServer http://java.sun.com/jsf/core f: f:actionListener Tags for

Faces Core . JavaServer

Tag Library frattribute Faces
custom
actions
that are
independent
of any
particular
RenderKit

The Java EE 6 Tutorial: Basic Concepts

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

Developing a Simple Facelets Application

TABLE5-1 Tag Libraries Supported by Facelets (Continued)

Tag Library URI Prefix Example Contents
JSTL Core http://java.sun.com/jsp/jstl/core c: c:forEach JSTL 1.1
Tag Librar Core Tags

& Y c:catch 8
JSTL http://java.sun.com/jsp/jstl/ fn: fn:toUpperCase JSTL 1.1
Functions functions P L c Functions
Tag Library n:toLowerCase Tags

In addition, Facelets supports tags for composite components for which you can
declare custom prefixes. For more information on composite components, see
“Composite Components” on page 94.

Based on the JavaServer Faces support for Expression Language (EL) syntax defined by
JSP 2.1, Facelets uses EL expressions to reference properties and methods of backing
beans. EL expressions can be used to bind component objects or values to methods or
properties of managed beans. For more information on using EL expressions, see
“Using the EL to Reference Backing Beans” on page 161.

Developing a Simple Facelets Application

This section describes the general steps involved in developing a JavaServer Faces
application. The following tasks are usually required:

Developing the backing beans

Creating the pages using the component tags
Defining page navigation

Mapping the FacesServlet instance
Adding managed bean declarations

Creating a Facelets Application

The example used in this tutorial is the guessnumber application. The application
presents you with a page that asks you to guess a number between 0 and 10, validates
your input against a random number, and responds with another page that informs
you whether you guessed the number correctly or incorrectly.

Developing a Backing Bean

In a typical JavaServer Faces application, each page of the application connects to a
backing bean, a type of managed bean. The backing bean defines the methods and
properties that are associated with the components.

Chapter5 -« Introduction to Facelets 85

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/

Developing a Simple Facelets Application

86

The following managed bean class, UserNumberBean. java, generates a random
number from 0 to 10:

package guessNumber;

import java.util.Random;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean
@SessionScoped
public class UserNumberBean {

Integer randomInt = null;
Integer userNumber = null;
String response = null;
private long maximum=10;
private long minimum=0;

public UserNumberBean() {
Random randomGR = new Random();
randomInt = new Integer(randomGR.nextInt(10));
System.out.println("Duke’s number: " + randomInt);
}
public void setUserNumber(Integer user number) {
userNumber = user_number;

}

public Integer getUserNumber() {
return userNumber;

}
public String getResponse() {
if ((userNumber != null) && (userNumber.compareTo(randomInt) == 0)) {
return "Yay! You got it!"
} else {
return "Sorry, " + userNumber + " is incorrect.";

}
}

public long getMaximum() {
return (this.maximum);

}

public void setMaximum(long maximum) {
this.maximum = maximum;

}

public long getMinimum() {
return (this.minimum);

}

public void setMinimum(long minimum) {
this.minimum = minimum;

}

The Java EE 6 Tutorial: Basic Concepts

Developing a Simple Facelets Application

Note the use of the @anagedBean annotation, which registers the backing bean as a
resource with JavaServer Faces implementation. The @SessionScoped annotation
registers the bean scope as session.

Creating Facelets Views

Creating a page or view is the responsibility of a page author. This task involves adding
components on the pages, wiring the components to backing bean values and
properties, and registering converters, validators, or listeners onto the components.

For the example application, XHTML web pages serve as the front end. The first page
of the example application is a page called greeting.xhtml. A closer look at various
sections of this web page provides more information.

The first section of the web page declares the content type for the page, which is
XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The next section declares the XML namespace for the tag libraries that are used in the
web page:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The next section uses various tags to insert components into the web page:

h:head>
<title>Guess Number Facelets Application</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>
Hi, my name is Duke. I am thinking of a number from
#{userNumberBean.minimum} to #{userNumberBean.maximum}.
Can you guess it?
<p></p>
<h:inputText
id="userNo"
value="#{userNumberBean.userNumber}">
<f:validatelLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

<h:commandButton id="submit" value="Submit"
action="response.xhtml"/>
<h:message showSummary="true" showDetail="false"
style="color: red;

Chapter5 -« Introduction to Facelets 87

Developing a Simple Facelets Application

88

font-family: 'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline"
id="errors1"
for="userNo"/>
</h2>
</h:form>
</h:body>

Note the use of the following tags:

= Facelets HTML tags (those beginning with h:) to add components
= The Facelets core tag f: validateLongRange to validate the user input

An inputText component accepts user input and sets the value of the backing bean
property userNumber through the EL expression #{userNumberBean.userNumber}.
The input value is validated for value range by the JavaServer Faces standard validator
f:validatelLongRange.

The image file, wave.med.gif, is added to the page as a resource. For more details
about the resources facility, see “Resources” on page 96.

A commandButton component with the ID submit starts validation of the input data
when a user clicks the button. Using implicit navigation, the component redirects the
client to another page, response. xhtml, which shows the response to your input.

You can now create the second page, response.xhtml, with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>Guess Number Facelets Application</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>
<h:outputText id="result" value="#{userNumberBean.response}"/>
</h2>
<h:commandButton id="back" value="Back" action="greeting.xhtml"/>
</h:form>
</h:body>
</html>

Configuring the Application

Configuring a JavaServer Faces application involves mapping the Faces Servlet in the
web deployment descriptor file, such as a web . xm1 file, and possibly adding managed

The Java EE 6 Tutorial: Basic Concepts

Developing a Simple Facelets Application

bean declarations, navigation rules, and resource bundle declarations to the
application configuration resource file, faces-config.xml.

If you are using NetBeans IDE, a web deployment descriptor file is automatically
created for you. In such an IDE-created web . xml file, change the default greeting page,
which is index.xhtml, to greeting.xhtml. Here is an example web . xm1 file, showing
this change in bold.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-name>
<param-value>Development</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/greeting.xhtml</welcome-file>
</welcome-file-list>
</web-app>

Note the use of the context parameter PROJECT STAGE. This parameter identifies the
status of a JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if
the project stage is defined as Development, debugging information is automatically
generated for the user. If not defined by the user, the default project stage is
Production.

Building, Packaging, Deploying, and Running the
guessnumber Facelets Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the
guessnumber example. The source code for this example is available in the
tut-install/examples/web/guessnumber directory.

Chapter5 -« Introduction to Facelets 89

Developing a Simple Facelets Application

90

v

To Build, Package, and Deploy the guessnumber Example Using
NetBeans IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the guessnumber folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the guessnumber project and select Deploy.

This option builds and deploys the example application to your GlassFish Server
instance.

To Build, Package, and Deploy the guessnumber Example Using Ant

In a terminal window, go to:

tut-install/examples/web/guessnumber/

Type the following command:

ant

This command calls the default target, which builds and packages the application
intoa WAR file, guessnumber.war, that is located in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

To Run the guessnumber Example
Open a web browser.

Type the following URL in your web browser:
http://localhost:8080/guessnumber

The web page shown in Figure 5-1 appears.

The Java EE 6 Tutorial: Basic Concepts

Templating

FIGURE5-1 Running the guessnumber Application

) Guess Number Facelets Application - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help
r & Lt | http:flacalhost:B080/quessnumber; v < | |28~ coog 2l

C] Guess Number Facelets Application += | =

Hi, My name is Duke. I am thinking of a number
between 0 and 10. Can you guess it ?

| [submit |

Done

3 Inthetextfield, type a numberfrom 0to 10 and click Submit.

Another page appears, reporting whether your guess is correct or incorrect.

4 Ifyou guessed incorrectly, click the Back button to return to the main page.

You can continue to guess until you get the correct answer.

Templating

JavaServer Faces technology provides the tools to implement user interfaces that are
easy to extend and reuse. Templating is a useful Facelets feature that allows you to
create a page that will act as the base, or template, for the other pages in an application.
By using templates, you can reuse code and avoid recreating similarly constructed
pages. Templating also helps in maintaining a standard look and feel in an application
with a large number of pages.

Table 5-2 lists Facelets tags that are used for templating and their respective
functionality.

TABLE5-2 Facelets Templating Tags

Tag Function

ui:component Defines a component that is created and added to the component tree.

ui:composition Defines a page composition that optionally uses a template. Content outside
of this tag is ignored.

Chapter5 -« Introduction to Facelets 91

Templating

TABLE5-2 Facelets Templating Tags (Continued)
Tag Function
ui:debug Defines a debug component that is created and added to the component tree.
ui:decorate Similar to the composition tag but does not disregard content outside this
tag.
ui:define Defines content that is inserted into a page by a template.
ui:fragment Similar to the component tag but does not disregard content outside this tag.
ui:include Encapsulate and reuse content for multiple pages.
ui:insert Inserts content into a template.
ui:param Used to pass parameters to an included file.
ui:repeat Used as an alternative for loop tags, such as c: forEach or h:dataTable.
ui:remove Removes content from a page.

For more information on Facelets templating tags, see the documentation at
http://download.oracle.com/
docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

The Facelets tag library includes the main templating tag ui: insert. A template page
that is created with this tag allows you to define a default structure for a page. A
template page is used as a template for other pages, usually referred to as client pages.

Here is an example of a template saved as template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />
<link href="./resources/css/default.css"
rel="stylesheet" type="text/css" />
<link href="./resources/css/cssLayout.css"
rel="stylesheet" type="text/css" />
<title>Facelets Template</title>
</h:head>

<h:body>
<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>
</div>
<div>
<div id="left">
<ui:insert name="left"sLeft Section</ui:insert>

92 The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

Templating

</div>
<div id="content" class="left content">
<ui:insert name="content">Main Content</ui:insert>
</div>
</div>
</h:body>
</html>

The example page defines an XHTML page that is divided into three sections: a top
section, a left section, and a main section. The sections have style sheets associated
with them. The same structure can be reused for the other pages of the application.

The client page invokes the template by using the ui: composition tag. In the
following example, a client page named templateclient.xhtml invokes the template
page named template.xhtml from the preceding example. A client page allows
content to be inserted with the help of the ui:define tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:body>
<ui:composition template="./template.xhtml">
<ui:define name="top">
Welcome to Template Client Page
</ui:define>

<ui:define name="left">
<h:outputLabel value="You are in the Left Section"/>
</ui:define>

<ui:define name="content">
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h:outputText value="You are in the Main Content Section"/>
</ui:define>
</ui:composition>
</h:body>
</html>

You can use NetBeans IDE to create Facelets template and client pages. For more
information on creating these pages, see http://netbeans.org/kb/docs/web/
jsf20-intro.html.

Chapter5 -« Introduction to Facelets 93

http://netbeans.org/kb/docs/web/jsf20-intro.html
http://netbeans.org/kb/docs/web/jsf20-intro.html

Composite Components

Composite Components

JavaServer Faces technology offers the concept of composite components with
Facelets. A composite component is a special type of template that acts as a
component.

Any component is essentially a piece of reusable code that behaves in a particular way.
For example, an inputText component accepts user input. A component can also
have validators, converters, and listeners attached to it to perform certain defined
actions.

A composite component consists of a collection of markup tags and other existing
components. This reusable, user-created component has a customized, defined
functionality and can have validators, converters, and listeners attached to it like any
other component.

With Facelets, any XHTML page that contains markup tags and other components can
be converted into a composite component. Using the resources facility, the composite
component can be stored in a library that is available to the application from the
defined resources location.

Table 5-3 lists the most commonly used composite tags and their functions.

TABLE5-3 Composite Component Tags

Tag Function

composite:interface Declares the usage contract for a composite component. The
composite component can be used as a single component
whose feature set is the union of the features declared in the
usage contract.

composite:implementation Defines the implementation of the composite component. Ifa
composite:interface element appears, there must be a
corresponding composite:implementation.

composite:attribute Declares an attribute that may be given to an instance of the
composite component in which this tag is declared.

composite:insertChildren Any child components or template text within the composite
component tag in the using page will be reparented into the
composite component at the point indicated by this tag’s
placement within the composite:implementation section.

composite:valueHolder Declares that the composite component whose contract is
declared by the composite:interface in which this element
is nested exposes an implementation of ValueHolder suitable
for use as the target of attached objects in the using page.

94 The Java EE 6 Tutorial: Basic Concepts

Composite Components

TABLE5-3 Composite Component Tags (Continued)
Tag Function

composite:editableValueHolder Declares thatthe composite component whose contract is
declared by the composite:interface in which this element
is nested exposes an implementation of
EditableValueHolder suitable for use as the target of
attached objects in the using page.

composite:actionSource Declares that the composite component whose contract is
declared by the composite:interface in which this element
is nested exposes an implementation of ActionSource2
suitable for use as the target of attached objects in the using

page.

For more information and a complete list of Facelets composite tags, see the
documentation at http://download.oracle.com/
docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

The following example shows a composite component that accepts an email address as
input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:composite="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>This content will not be displayed</title>
</h:head>
<h:body>
<composite:interface>
<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>
<h:outputLabel value="Email id: "></h:outputLabel>
<h:inputText value="#{cc.attrs.value}"></h:inputText>
</composite:implementation>
</h:body>
</html>

Note the use of cc.attrs.value when defining the value of the inputText
component. The word cc in JavaServer Faces is a reserved word for composite
components. The #{cc.attrs.attribute-name} expression is used to access the
attributes defined for the composite component’s interface, which in this case happens
tobe value.

The preceding example content is stored as a file named email.xhtml in a folder
named resources/emcomp, under the application web root directory. This directory is

Chapter5 -« Introduction to Facelets 95

http://download.oracle.com/

Resources

Resources

96

considered a library by JavaServer Faces, and a component can be accessed from such a
library. For more information on resources, see “Resources” on page 96.

The web page that uses this composite component is generally called a using page. The
using page includes a reference to the composite component, in the xml namespace
declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:em="http://java.sun.com/jsf/composite/emcomp/">

<h:head>
<title>Using a sample composite component</title>
</h:head>

<body>
<h:form>
<em:email value="Enter your email id" />
</h:form>
</body>
</html>

The local composite component library is defined in the xml namespace with the
declaration xmlns:em="http://java.sun.com/jsf/composite/emcomp/". The
component itself is accessed through the use of em: email tag. The preceding example
content can be stored as a web page named emuserpage. xhtml under the web root
directory. When compiled and deployed on a server, it can be accessed with the
following URL:

http://localhost:8080/application-name/faces/emuserpage.xhtml

Web resources are any software artifacts that the web application requires for proper
rendering, including images, script files, and any user-created component libraries.
Resources must be collected in a standard location, which can be one of the following.

= A resource packaged in the web application root must be in a subdirectory of a
resources directory at the web application root: resources/resource-identifier.

= A resource packaged in the web application’s classpath must be in a subdirectory of
the META-INF/resources directory within a web application:
META-INF/resources/resource-identifier.

The JavaServer Faces runtime will look for the resources in the preceding listed
locations, in that order.

Resource identifiers are unique strings that conform to the following format:

The Java EE 6 Tutorial: Basic Concepts

Resources

Llocale-prefix/1[library-name/] [library-version/ 1resource-name[/ resource-version]

Elements of the resource identifier in brackets ([]) are optional, indicating that only a
resource-name, which is usually a file name, is a required element.

Resources can be considered as a library location. Any artifact, such as a composite
component or a template that is stored in the resources directory, becomes accessible
to the other application components, which can use it to create a resource instance.

Chapter5 -« Introduction to Facelets

97

This page intentionally left blank

L K R 4 CHAPTER 6

Expression Language

This chapter introduces the Expression Language (also referred to as the EL), which
provides an important mechanism for enabling the presentation layer (web pages) to
communicate with the application logic (backing beans). The EL is used by both
JavaServer Faces technology and JavaServer Pages (JSP) technology. The EL represents
aunion of the expression languages offered by JavaServer Faces technology and JSP
technology.

The following topics are addressed here:

= “Overview of the EL” on page 99

“Immediate and Deferred Evaluation Syntax” on page 100
“Value and Method Expressions” on page 102

“Defining a Tag Attribute Type” on page 108

= “Literal Expressions” on page 109

= “Operators” on page 111

= “Reserved Words” on page 111

“Examples of EL Expressions” on page 112

Overview of the EL

The EL allows page authors to use simple expressions to dynamically access data from
JavaBeans components. For example, the test attribute of the following conditional
tag is supplied with an EL expression that compares 0 with the number of items in the
session-scoped bean named cart.

<c:if test="${sessionScope.cart.numberOfItems > 0}">

</c:if>

99

Immediate and Deferred Evaluation Syntax

JavaServer Faces technology uses the EL for the following functions:

= Deferred and immediate evaluation of expressions
= The ability to set as well as get data
= The ability to invoke methods

See “Using the EL to Reference Backing Beans” on page 161 for more information on
how to use the EL in JavaServer Faces applications.

To summarize, the EL provides a way to use simple expressions to perform the
following tasks:

= Dynamically read application data stored in JavaBeans components, various data
structures, and implicit objects

= Dynamically write data, such as user input into forms, to JavaBeans components
= Invoke arbitrary static and public methods
= Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag
attribute will accept:

= Immediate evaluation expressions or deferred evaluation expressions. An
immediate evaluation expression is evaluated at once by the underlying
technology, such as JavaServer Faces. A deferred evaluation expression can be
evaluated later by the underlying technology using the EL.

= Value expression or method expression. A value expression references data,
whereas a method expression invokes a method.

= Rvalue expression or lvalue expression. An rvalue expression can only read a
value, whereas an lvalue expression can both read and write that value to an
external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers
that can handle expressions not already supported by the EL can be implemented.

Immediate and Deferred Evaluation Syntax

100

The EL supports both immediate and deferred evaluation of expressions. Immediate
evaluation means that the expression is evaluated and the result returned as soon as
the page is first rendered. Deferred evaluation means that the technology using the
expression language can use its own machinery to evaluate the expression sometime
later during the page’s lifecycle, whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions
whose evaluation is deferred use the #{} syntax.

The Java EE 6 Tutorial: Basic Concepts

Immediate and Deferred Evaluation Syntax

Because of its multiphase lifecycle, JavaServer Faces technology uses mostly deferred
evaluation expressions. During the lifecycle, component events are handled, data is
validated, and other tasks are performed in a particular order. Therefore, a JavaServer
Faces implementation must defer evaluation of expressions until the appropriate point
in the lifecycle.

Other technologies using the EL might have different reasons for using deferred
expressions.

Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can
be used only within template text or as the value of a tag attribute that can accept
runtime expressions.

The following example shows a tag whose value attribute references an immediate
evaluation expression that gets the total price from the session-scoped bean named
cart:

<fmt: formatNumber value="${sessionScope.cart.total}"/>

The JavaServer Faces implementation evaluates the expression
${sessionScope.cart.total}, convertsit, and passes the returned value to the tag
handler.

Immediate evaluation expressions are always read-only value expressions. The
preceding example expression cannot set the total price, but instead can only get the
total price from the cart bean.

Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other
phases of a page lifecycle as defined by whatever technology is using the expression. In
the case of JavaServer Faces technology, its controller can evaluate the expression at
different phases of the lifecycle, depending on how the expression is being used in the

page.

The following example shows a JavaServer Faces inputText tag, which represents a
text field component into which a user enters a value. The inputText tag’s value
attribute references a deferred evaluation expression that points to the name property
of the customer bean:

<h:inputText id="name" value="#{customer.name}" />

Chapter6 - Expression Language 101

Value and Method Expressions

For an initial request of the page containing this tag, the JavaServer Faces
implementation evaluates the #{customer.name} expression during the
render-response phase of the lifecycle. During this phase, the expression merely
accesses the value of name from the customer bean, as is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression
at different phases of the lifecycle, during which the value is retrieved from the request,
validated, and propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be

= Value expressions that can be used to both read and write data
= Method expressions

Value expressions (both immediate and deferred) and method expressions are
explained in the next section.

Value and Method Expressions

102

The EL defines two kinds of expressions: value expressions and method expressions.
Value expressions can either yield a value or set a value. Method expressions reference
methods that can be invoked and can return a value.

Value Expressions

Value expressions can be further categorized into rvalue and Ivalue expressions.
Rvalue expressions can read data but cannot write it. Lvalue expressions can both read
and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always
rvalue expressions. Expressions whose evaluation can be deferred use the #{}
delimiters and can act as both rvalue and lvalue expressions. Consider the following
two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred
evaluation syntax. The first expression accesses the name property, gets its value, adds
the value to the response, and gets rendered on the page. The same can happen with
the second expression. However, the tag handler can defer the evaluation of this
expression to a later time in the page lifecycle, if the technology using this tag allows.

The Java EE 6 Tutorial: Basic Concepts

Value and Method Expressions

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated
immediately during an initial request for the page. In this case, this expression acts as
an rvalue expression. During a postback request, this expression can be used to set the
value of the name property with user input. In this case, the expression acts as an lvalue
expression.

Referencing Objects Using Value Expressions

Both rvalue and Ivalue expressions can refer to the following objects and their
properties or attributes:

JavaBeans components
Collections

Java SE enumerated types
Implicit objects

To refer to these objects, you write an expression using a variable that is the name of
the object. The following expression references a backing bean (a JavaBeans
component) called customer:

${customer}

The web container evaluates the variable that appears in an expression by looking up
its value according to the behavior of PageContext . findAttribute(String), where
the String argument is the name of the variable. For example, when evaluating the
expression ${customer}, the container will look for customer in the page, request,
session, and application scopes and will return its value. If customer is not found, a
null value is returned.

You can use a custom EL resolver to alter the way variables are resolved. For instance,
you can provide an EL resolver that intercepts objects with the name customer, so that
${customer} returns a value in the EL resolver instead.

To reference an enum constant with an expression, use a String literal. For example,
consider this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant Suit.hearts with an expression, use the String literal
"hearts". Depending on the context, the String literal is converted to the enum
constant automatically. For example, in the following expression in which mySuit is an
instance of Suit, "hearts" is first converted to Suit . hearts before it is compared to
the instance:

${mySuit == "hearts"}

Chapter6 - Expression Language 103

Value and Method Expressions

104

Referring to Object Properties Using Value Expressions

To refer to properties of a bean or an enum instance, items of a collection, or attributes
of an implicit object, you use the . or [] notation.

To reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the
brackets is a String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the []
and . notations, as shown here:

${customer.address["street"]}

Properties of an enum constant can also be referenced in this way. However, as with
JavaBeans component properties, the properties of an Enum class must follow
JavaBeans component conventions. This means that a property must at least have an
accessor method called getProperty, where Property is the name of the property that
can be referenced by an expression.

For example, consider an Enum class that encapsulates the names of the planets of our
galaxy and includes a method to get the mass of a planet. You can use the following
expression to reference the method getMass of the Enum class Planet:

${myPlanet.mass}

If you are accessing an item in an array or list, you must use either a literal value that
can be converted to int or the [] notation with an int and without quotes. The
following examples could resolve to the same item in a list or array, assuming that
socks can be converted to int:

m ${customer.orders[1]}
® ${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is
required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the
result of arithmetic operations and literal values, as shown by these examples:

${"literal"}
${customer.age + 20}
${true}

${57}

The Java EE 6 Tutorial: Basic Concepts

Value and Method Expressions

The EL defines the following literals:

= Boolean: trueand false
= Integer:asin Java
= Floating-point: as in Java

= String: with single and double quotes; " is escaped as \", ’ is escaped as \ ’, and \ is
escaped as \\

= Null: null

You can also write expressions that perform operations on an enum constant. For
example, consider the following Enum class:

public enum Suit {club, diamond, heart, spade}

After declaring an enum constant called mySuit, you can write the following expression
to test whether mySuit is spade:

${mySuit == "spade"}

When it resolves this expression, the EL resolving mechanism will invoke the valueOf
method of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

Where Value Expressions Can Be Used

Value expressions using the ${} delimiters can be used in

= Static text
= Anystandard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current
output. Here is an example of an expression embedded in static text:

<some:tag>
some text ${expr} some text
</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if
the body is declared to be tagdependent.

Lvalue expressions can be used only in tag attributes that can accept lvalue expressions.

Chapter6 - Expression Language 105

Value and Method Expressions

106

A tag attribute value using either an rvalue or Ivalue expression can be set in the
following ways:

= With a single expression construct:

<some:tag value="${expr}"/>
<another:tag value="#{expr}"/>

These expressions are evaluated, and the result is converted to the attribute’s
expected type.

= With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expritext${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression, called composite expressions, are evaluated from left to
right. Each expression embedded in the composite expression is converted to a
String and then concatenated with any intervening text. The resulting String is
then converted to the attribute’s expected type.

= With text only:
<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s String
value is converted to the attribute’s expected type. Literal value expressions have
special syntax rules. See “Literal Expressions” on page 109 for more information.
When a tag attribute has an enum type, the expression that the attribute uses must
be a literal expression. For example, the tag attribute can use the expression
“hearts" to mean Suit.hearts. The literal is converted to Suit, and the attribute
gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected
type. If the result of the expression evaluation does not match the expected type
exactly, a type conversion will be performed. For example, the expression ${1.2E4}
provided as the value of an attribute of type float will result in the following
conversion:

Float.valueOf("1.2E4").floatValue()

See Section 1.18 of the JavaServer Pages 2.2 Expression Language specification
(available from http://jcp.org/aboutJava/communityprocess/final/jsr245/)
for the complete type conversion rules.

Method Expressions

Another feature of the EL is its support of deferred method expressions. A method
expression is used to invoke an arbitrary public method of a bean, which can return a
result.

The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/aboutJava/communityprocess/final/jsr245/

Value and Method Expressions

In JavaServer Faces technology, a component tag represents a component on a page.
The component tag uses method expressions to invoke methods that perform some
processing for the component. These methods are necessary for handling events that
the components generate and for validating component data, as shown in this
example:

<h:form>
<h:inputText
id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>
<h:commandButton

id="submit"
action="#{customer.submit}" />
</h:form>

The inputText tag displays as a text field. The validator attribute of this inputText
tag references a method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method
expressions must always use the deferred evaluation syntax.

Like lvalue expressions, method expressions can use the . and the [] operators. For
example, #{object.method} is equivalent to #{object["method"]}. The literal inside
the [] is converted to String and is used to find the name of the method that matches
it. Once the method is found, it is invoked, or information about the method is
returned.

Method expressions can be used only in tag attributes and only in the following ways:

= With a single expression construct, where bean refers to a JavaBeans component
and method refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag
handler. The method represented by the method expression can then be invoked
later.

= With text only:
<some:tag value="sometext"/>

Method expressions support literals primarily to support action attributes in
JavaServer Faces technology. When the method referenced by this method
expression is invoked, the method returns the String literal, which is then
converted to the expected return type, as defined in the tag’s tag library descriptor.

Parameterized Method Calls

The EL offers support for parameterized method calls. Method calls can use
parameters without having to use static EL functions.

Chapter6 - Expression Language 107

Defining a Tag Attribute Type

Both the . and [] operators can be used for invoking method calls with parameters, as
shown in the following expression syntax:

= expr-alexpr-b]l (parameters)
» expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The
expression expr-b is evaluated and cast to a string that represents a method in the bean
represented by expr-a. In the second expression syntax, expr-a is evaluated to
represent a bean object, and identifier-b is a string that represents a method in the bean
object. The parameters in parentheses are the arguments for the method invocation.
Parameters can be zero or more values or expressions, separated by commas.

Parameters are supported for both value expressions and method expressions. In the
following example, which is a modified tag from the guessnumber application, a
random number is provided as an argument rather than from user input to the
method call:

<h:inputText value="#{userNumberBean.userNumber(’5")}">

The preceding example uses a value expression.

Consider the following example of a JavaServer Faces component tag that uses a
method expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

The EL expression trader. buy calls the trader bean’s buy method. You can modify
the tag to pass on a parameter. Here is the revised tag where a parameter is passed:
<h:commandButton action="#{trader.buy(’SOMESTOCK’)}" value="buy"/>

In the preceding example, you are passing the string SOMESTOCK'’ (a stock symbol) as
a parameter to the buy method.

For more information on the updated EL, see https://uel.dev.java.net.

Defining aTag Attribute Type

108

As explained in the previous section, all kinds of expressions can be used in tag
attributes. Which kind of expression and how it is evaluated, whether immediately or
deferred, are determined by the type attribute of the tag’s definition in the Page
Description Language (PDL) that defines the tag.

If you plan to create custom tags, for each tag in the PDL, you need to specify what
kind of expression to accept. Table 6-1 shows the kinds of tag attributes that accept EL
expressions, gives examples of expressions they accept, and provides the type

The Java EE 6 Tutorial: Basic Concepts

https://uel.dev.java.net

Literal Expressions

definitions of the attributes that must be added to the PDL. You cannot use #{} syntax
for a dynamic attribute, meaning an attribute that accepts dynamically calculated
values at runtime. Similarly, you also cannot use the ${} syntax for a deferred
attribute.

TABLE6-1 Definitions of Tag Attributes That Accept EL Expressions

Attribute Type Example Expression Type Attribute Definition

Dynamic "literal" <rtexprvalue>true</rtexprvalue>
${literal} <rtexprvalue>true</rtexprvalue>

Deferred value "literal" <deferred-value>

<type>java.lang.String</type>
</deferred-value>

#{customer.age} <deferred-value>
<type>int</type>
</deferred-value>

Deferred method "literal" <deferred-method>
<method-signature>
java.lang.String submit()
</method-signature>
<deferred-method>

#{customer.calcTotal} <deferred-method>
<method-signature>
double calcTotal(int, double)
</method-signature>
</deferred-method>

In addition to the tag attribute types shown in Table 6-1, you can define an attribute to
accept both dynamic and deferred expressions. In this case, the tag attribute definition
contains both an rtexprvalue definition set to true and either a deferred-value or
deferred-method definition.

Literal Expressions

A literal expression is evaluated to the text of the expression, which is of type String. A
literal expression does not use the ${} or #{} delimiters.

Chapter6 - Expression Language 109

Literal Expressions

110

If you have a literal expression that includes the reserved ${} or #{} syntax, you need
to escape these characters as follows:

= By creating a composite expression as shown here:
${"${"yexprA}
#{'#{' }exprB}
The resulting values would then be the strings ${exprA} and #{exprB}.

= By using the escape characters \$ and \# to escape what would otherwise be treated
as an eval-expression:

\${exprA}
\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 6-2
shows examples of various literal expressions and their expected types and resulting
values.

TABLE6-2 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE
42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value or
method expressions. At what point a literal expression is evaluated depends on where
itis being used. If the tag attribute that uses the literal expression is defined to accepta
deferred value expression, when referencing a value, the literal expression is evaluated
ata point in the lifecycle that is determined by other factors, such as where the
expression is being used and to what it is referring.

In the case of a method expression, the method that is referenced is invoked and
returns the specified String literal. For example, the commandButton tag of the
guessnumber application uses a literal method expression as a logical outcome to tell
the JavaServer Faces navigation system which page to display next.

The Java EE 6 Tutorial: Basic Concepts

Reserved Words

Operators

In addition to the . and [] operators discussed in “Value and Method Expressions” on
page 102, the EL provides the following operators, which can be used in rvalue
expressions only:

= Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
= Logical: and, &%, or, | |, not, !

= Relational: ==, eq, =, ne, <, t, >, gt, <=, ge, >=, le. Comparisons can be made
against other values or against Boolean, string, integer, or floating-point literals.

= Empty: The empty operator is a prefix operation that can be used to determine
whether a value is null or empty.

= Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation
of A.

The precedence of operators highest to lowest, left to right is as follows:

[1.

() (used to change the precedence of operators)
- (unary) not ! empty

* / div % mod

+ - (binary)

<> <=>= 1t gt le ge

== l= eq ne

&& and

[l or

7

Reserved Words

The following words are reserved for the EL and should not be used as identifiers:

and or not eq
ne 1t gt le
ge true false null
instanceof empty div mod

Chapter6 - Expression Language m

Examples of EL Expressions

Examples of EL Expressions

112

Table 6-3 contains example EL expressions and the result of evaluating them.

TABLE6-3 Example Expressions

EL Expression Result
${1 > (4/2)} false
${4.0 >= 3} true
${100.0 == 100} true
${(10*10) ne 100} false
${'a’ < 'b"} true
${"hip’ gt "hit'} false
${4 > 3} true
${1.2E4 + 1.4} 12001.4
${3 div 4} 0.75
${10 mod 4} 2

${'!empty param.Add}

${pageContext.request.contextPath}

${sessionScope.cart.numberOfItems}

${param['mycom.productId’]}

${header["host"]1}

${departments[deptName]}

${requestScope[’javax.servlet.forward.

servlet path’]}

#{customer.Name}

#{customer.calcTotal}

False if the request parameter named Add is null
or an empty string.

The context path.

The value of the numberOfItems property of the
session-scoped attribute named cart.

The value of the request parameter named
mycom.productId.

The host.

The value of the entry named deptName in the
departments map.

The value of the request-scoped attribute named
javax.servlet.forward.servlet path.

Gets the value of the property IName from the
customer bean during an initial request. Sets the
value of IName during a postback.

The return value of the method calcTotal of the
customer bean.

The Java EE 6 Tutorial: Basic Concepts

CHAPTER 7

Using JavaServer Faces Technology in Web
Pages

Web pages represent the presentation layer for web applications. The process of
creating web pages of a JavaServer Faces application includes adding components to
the page and wiring them to backing beans, validators, converters, and other
server-side objects that are associated with the page.

This chapter explains how to create web pages using various types of component and
core tags. In the next chapter, you will learn about adding converters, validators, and
listeners to component tags to provide additional functionality to components.

The following topics are addressed here:

= “Setting Up a Page” on page 113
= “Adding Components to a Page Using HTML Tags” on page 114
= “Using Core Tags” on page 143

Setting Up a Page

A typical JavaServer Faces web page includes the following elements:

= A set of namespace declarations that declare the JavaServer Faces tag libraries
= Optionally, the new HTML head (h:head) and body (h: body) tags
= A form tag (h: form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the
page access to the two standard tag libraries: the JavaServer Faces HTML tag library
and the JavaServer Faces core tag library. The JavaServer Faces standard HTML tag
library defines tags that represent common HTML user interface components. This
library is linked to the HTML render kit at http: //download.oracle.com/
docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/renderkitdocs/. The
JavaServer Faces core tag library defines tags that perform core actions.

113

http://download.oracle.com/

Adding Components to a Page Using HTML Tags

For a complete list of JavaServer Faces Facelets tags and their attributes, refer to the
documentation at http://download.oracle.com/
docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

To use any of the JavaServer Faces tags, you need to include appropriate directives at
the top of each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag
library URI and the tag prefix.

For example, when creating a Facelets XHTML page, include namespace directives as
follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The XML namespace URI identifies the tag library location, and the prefix value is
used to distinguish the tags belonging to that specific tag library. You can also use
other prefixes instead of the standard h or f. However, when including the tag in the
page, you must use the prefix that you have chosen for the tag library. For example, in
the following web page, the form tag must be referenced using the h prefix because the
preceding tag library directive uses the h prefix to distinguish the tags defined in
HTML tag library:

<h:form ...>

The sections “Adding Components to a Page Using HTML Tags” on page 114 and
“Using Core Tags” on page 143 describe how to use the component tags from the
JavaServer Faces standard HTML tag library and the core tags from the JavaServer
Faces core tag library.

Adding Components to a Page Using HTML Tags

114

The tags defined by the JavaServer Faces standard HTML tag library represent HTML
form components and other basic HTML elements. These components display data or
accept data from the user. This data is collected as part of a form and is submitted to
the server, usually when the user clicks a button. This section explains how to use each
of the component tags shown in Table 7-1.

The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/

Adding Components to a Page Using HTML Tags

TABLE7-1 The Component Tags

Tag Functions Rendered as Appearance
column Represents a column of A columnofdatainan A columnina
data in a data component ~ HTML table table
commandButton Submits a form to the An HTML <input A button
application type=type> element,
where the type value
canbe submit, reset,
or image
commandLink Links to another pageor ~ An HTML <a href> A hyperlink
location on a page element
dataTable Represents a data wrapper An HTML <table> A table that can be
element updated
dynamically
form Represents an input form An HTML <form> No appearance
(inner tags of the form element
receive the data that will be
submitted with the form)
graphicImage Displays an image An HTML An image
element
inputHidden Allows a page author to An HTML <input No appearance
include a hidden variable ~ type=hidden> element
inapage
inputSecret Allows a user to input a An HTML <input A text field, which
string without the actual type=password> displays a row of
string appearing in the element characters instead
field of the actual string
entered
inputText Allows a user to input a An HTML <input A text field
string type=text> element
inputTextarea Allows a user to enter a An HTML A multi-row text
multiline string <textarea>element field
message Displays a localized AnHTML tag A textstring
message if styles are used
messages Displays localized A setof HTML A text string
messages tags if styles are used
outputFormat Displays a localized Plain text Plain text
message

Chapter7 - Using JavaServer Faces Technology in Web Pages

115

Adding Components to a Page Using HTML Tags

TABLE7-1 The Component Tags (Continued)
Tag Functions Rendered as Appearance
outputLabel Displays a nested An HTML <label> Plain text
componentasalabelfora element
specified input field
outputLink Links to another pageor ~ An HTML <a> A hyperlink

location on a page without element
generating an action event

outputText Displays a line of text Plain text Plain text

panelGrid Displays a table AnHTML <table> A table
element with <tr>and
<td> elements

panelGroup Groups a set of A HTML <div> or A row in a table
components under one element
parent

selectBooleanCheckbox Allows a user to change AnHTML <input A check box
the value of a Boolean type=checkbox>
choice element.

selectItem Represents oneitemina ~ AnHTML <option> Noappearance
list of items from which element
the user must select one

selectItems Representsalist of items A listof HTML No appearance
from which the user must <option> elements
select one

selectManyCheckbox Displays a set of check A set of HTML A set of check

boxes from which the user <input>elementsof boxes
can select multiple values type checkbox

selectManyListbox Allows a user to select An HTML <select> Alistbox
multiple items fromaset element
of items, all displayed at

once
selectManyMenu Allows a user to select AnHTML<select> A scrollable combo
multiple items fromaset element box
of items
selectOnelListbox Allows a user to selectone An HTML <select> Alistbox
item from a set of items, all element
displayed at once

116 The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

TABLE7-1 The Component Tags (Continued)

Tag Functions Rendered as Appearance
selectOneMenu Allows a user to select one An HTML <select> A scrollable combo
item from a set of items element box
selectOneRadio Allows a user to selectone An HTML <input A set of radio
item from a set of items type=radio>element buttons

The next section explains the important tag attributes that are common to most
component tags. For each of the components discussed in the following sections,
“Writing Bean Properties” on page 162 explains how to write a bean property bound to
a particular component or its value.

Common Component Tag Attributes

Most of the component tags support the attributes shown in Table 7-2.

TABLE7-2 Common Component Tag Attributes

Attribute Description

binding Identifies a bean property and binds the component instance to it.
id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and conversion

associated with the component should happen when request parameter
values are applied,

rendered Specifies a condition under which the component should be rendered. If
the condition is not satisfied, the component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.
styleClass Specifies a CSS class that contains definitions of the styles.
value Identifies an external data source and binds the component’s value to it.

All the tag attributes (except id) can accept expressions, as defined by the EL,
described in Chapter 6, “Expression Language.”

The id Attribute

The id attribute is not usually required for a component tag but is used when another
component or a server-side class must refer to the component. If you don’t include an
id attribute, the JavaServer Faces implementation automatically generates a
component ID. Unlike most other JavaServer Faces tag attributes, the id attribute

Chapter7 - Using JavaServer Faces Technology in Web Pages 17

Adding Components to a Page Using HTML Tags

118

takes expressions using only the evaluation syntax described in “The immediate
Attribute” on page 118, which uses the ${} delimiters. For more information on
expression syntax, see “Value Expressions” on page 102.

The immediate Attribute

Input components and command components (those that implement the
ActionSource interface, such as buttons and hyperlinks) can set the immediate
attribute to true to force events, validations, and conversions to be processed when
request parameter values are applied.

You need to carefully consider how the combination of an input component’s
immediate value and a command component’s immediate value determines what
happens when the command component is activated.

Assume that you have a page with a button and a field for entering the quantity of a
book in a shopping cart. If the immediate attributes of both the button and the field are
set to true, the new value entered in the field will be available for any processing
associated with the event that is generated when the button is clicked. The event
associated with the button as well as the event validation and conversion associated
with the field are all handled when request parameter values are applied.

If the button’s immediate attribute is set to true but the field’s immediate attribute is
set to false, the event associated with the button is processed without updating the
field’s local value to the model layer. The reason is that any events, conversion, or
validation associated with the field occurs after request parameter values are applied.

The rendered Attribute

A component tag uses a Boolean EL expression along with the rendered attribute to
determine whether the component will be rendered. For example, the commandLink
component in the following section of a page is not rendered if the cart contains no
items:

<h:commandLink id="check"

rendered="#{cart.numberOfItems > 0}">
<h:outputText
value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is
restricted to using rvalue expressions. As explained in “Value and Method
Expressions” on page 102, these rvalue expressions can only read data; they cannot
write the data back to the data source. Therefore, expressions used with rendered
attributes can use the arithmetic operators and literals that rvalue expressions can use
but lvalue expressions cannot use. For example, the expression in the preceding
example uses the > operator.

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

The styleand styleClass Attributes

The style and styleClass attributes allow you to specify CSS styles for the rendered
output of your tags. “Displaying Error Messages with the h:message and h:messages
Tags” on page 138 describes an example of using the style attribute to specify styles
directly in the attribute. A component tag can instead refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class
list-background:

<h:dataTable id="books"

styleClass="list-background"
value="#{bookDBAO.books}"
var="book">

The style sheet that defines this class is stylesheet. css, which will be included in the
application. For more information on defining styles, see Cascading Style Sheets
Specification athttp://www.w3.0rg/Style/CSS/.

The value and binding Attributes

A tag representing an output component uses the value and binding attributes to
bind its component’s value or instance, respectively, to an external data source.

Adding HTML Head and Body Tags

The HTML head (h:head) and body (h: body) tags add HTML page structure to
JavaServer Faces web pages.

= The h:head tag represents the head element of an HTML page
= The h:body tag represents the body element of an HTML page

The following is an example of an XHTML page using the usual head and body
markup tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Add a title</title>
</head>
<body>
Add Content
</body>

The following is an example of an XHTML page using h: head and h:body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"

Chapter7 - Using JavaServer Faces Technology in Web Pages 119

Adding Components to a Page Using HTML Tags

120

xmlns:h="http://java.sun.com/jsf/html">
<h:head>
Add a title
</h:head>
<h:body>
Add Content
</h:body>

Both of the preceding example code segments render the same HTML elements. The
head and body tags are useful mainly for resource relocation. For more information on
resource relocation, see “Resource Relocation Using h: output Tags” on page 141.

Adding a Form Component

An h: form tag represents an input form, which includes child components that can
contain data that is either presented to the user or submitted with the form.

Figure 7-1 shows a typical login form in which a user enters a user name and
password, then submits the form by clicking the Login button.

FIGURE7-1 A Typical Form

User Name: |Duke

Password: | Rt

The h: form tag represents the form on the page and encloses all the components that
display or collect data from the user, as shown here:

<h:form>
. other JavaServer Faces tags and other content...
</h:form>

The h: form tag can also include HTML markup to lay out the components on the
page. Note that the h: form tag itself does not perform any layout; its purpose is to
collect data and to declare attributes that can be used by other components in the
form.

A page can include multiple h: form tags, but only the values from the form submitted
by the user will be included in the postback request.

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

Using Text Components

Text components allow users to view and edit text in web applications. The basic types
of text components are as follows:

= Label, which displays read-only text

= Text field, which allows users to enter text, often to be submitted as part of a form

= Textarea, which is a type of text field that allows users to enter multiple lines of text
= Password field, which is a type of text field that displays a set of characters, such as

asterisks, instead of the password text that the user enters

Figure 7-2 shows examples of these text components.

FIGURE7-2 Example Text Components

Lakel User Name: IDuke Text Field
Password: I**ﬂ**ﬂ-* Pazsweord Figld
Comments: |& user can erter text across Text Area
multiple lines.

Text components can be categorized as either input or output. A JavaServer Faces
output component is rendered as read-only text. An example is a label. A JavaServer
Faces input component is rendered as editable text. An example is a text field.

The input and output components can each be rendered in various ways to display
more specialized text.

Table 7-3 lists the tags that represent the input components.

TABLE7-3 InputTags

Tag Function
h:inputHidden Allows a page author to include a hidden variable in a page
h:inputSecret The standard password field: accepts one line of text with no spaces and

displays it as a set of asterisks as it is typed
h:inputText The standard text field: accepts a one-line text string

h:inputTextarea The standard text area: accepts multiple lines of text

Chapter7 - Using JavaServer Faces Technology in Web Pages 121

Adding Components to a Page Using HTML Tags

The input tags support the tag attributes shown in Table 7-4 in addition to those
described in “Common Component Tag Attributes” on page 117. Note that this table
does not include all the attributes supported by the input tags but just those that are
used most often. For the complete list of attributes, refer to the documentation at
http://download.oracle.com/

docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

TABLE7-4 Input Tag Attributes

Attribute Description

converter Identifies a converter that will be used to convert the component’s
local data. See “Using the Standard Converters” on page 145 for
more information on how to use this attribute.

converterMessage Specifies an error message to display when the converter
registered on the component fails.

dir Specifies the direction of the text displayed by this component.
Acceptable values are LTR, meaning left-to-right, and RTL,
meaning right-to-left.

label Specifies a name that can be used to identify this component in
error messages.

lang Specifies the code for the language used in the rendered markup,
suchasen US.

required Takes a boolean value that indicates whether the user must enter
avalue in this component.

requiredMessage Specifies an error message to display when the user does not enter
avalue into the component.

validator Identifies a method expression pointing to a backing bean

f:validatorMessage

valueChangelListener

method that performs validation on the component’s data. See
“Referencing a Method That Performs Validation” on page 156
for an example of using the f:validator tag.

Specifies an error message to display when the validator
registered on the component fails to validate the component’s
local value.

Identifies a method expression that points to a backing bean
method that handles the event of entering a value in this
component. See “Referencing a Method That Handles a
Value-Change Event” on page 156 for an example of using
valueChangelListener.

Table 7-5 lists the tags that represent the output components.

122 The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/

Adding Components to a Page Using HTML Tags

TABLE7-5 Output Tags

Tag Function

h:outputFormat Displays a localized message

h:outputLabel The standard read-only label: displays a component as a label for a specified
input field

h:outputLink Displays an <a href> tag that links to another page without generating an
action event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in
“Common Component Tag Attributes” on page 117.

The rest of this section explains how to use some of the tags listed in Table 7-3 and
Table 7-5. The other tags are written in a similar way.

Rendering a Text Field with the h: inputText Tag

The h:inputText tagis used to display a text field. A similar tag, the h: outputText
tag, displays a read-only, single-line string. This section shows you how to use the
h:inputText tag. The h:outputText tagis written in a similar way.

Here is an example of an h: inputText tag:

<h:inputText id="name" label="Customer Name" size="50"
value="#{cashier.name}"
required="true"
requiredMessage="#{customMessages.CustomerName}">
<f:valueChangelListener
type="com.sun.bookstore6.listeners.NameChanged" />
</h:inputText>
The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of a backing bean named CashierBean.
This property holds the data for the name component. After the user submits the form,
the value of the name property in CashierBean will be set to the text entered in the field
corresponding to this tag.

The required attribute causes the page to reload, displaying errors, if the user does not
enter a value in the name text field. The JavaServer Faces implementation checks
whether the value of the component is null or is an empty string.

If your component must have a non-null value or a String value at least one character
in length, you should add a required attribute to your tag and set its value to true. If
your tag has a required attribute that is set to true and the valueis null or a

Chapter7 - Using JavaServer Faces Technology in Web Pages 123

Adding Components to a Page Using HTML Tags

124

zero-length string, no other validators that are registered on the tag are called. If your
tag does not have a required attribute set to true, other validators that are registered
on the tag are called, but those validators must handle the possibility of a null or
zero-length string. See “Validating Null and Empty Strings” on page 177 for more
information.

Rendering a Password Field with the h: inputSecret Tag

The h:inputSecret tag renders an <input type="password"> HTML tag. When the
user types a string into this field, a row of asterisks is displayed instead of the text typed
by the user. Here is an example:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password
from being displayed in a query string or in the source file of the resulting HTML page.

Rendering a Label with the h: outputLabel Tag

The h:outputLabel tagis used to attach a label to a specified input field for the
purpose of making it accessible. The following page uses an h:outputLabel tagto
render the label of a check box:

<h:selectBooleanCheckbox
id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The for attribute of the h: outputLabel tag maps to the id of the input field to which
the label is attached. The h: outputText tag nested inside the h:outputLabel tag
represents the label component. The value attribute on the h:outputText tag
indicates the text that is displayed next to the input field.

Instead of using an h: outputText tag for the text displayed as a label, you can simply
use the h:outputLabel tag’s value attribute. The following code snippet shows what
the previous code snippet would look like if it used the value attribute of the
h:outputLabel tag to specify the text of the label:

<h:selectBooleanCheckbox
id="fanClub"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

value="#{bundle.DukeFanClub}" />
</h:outputLabel>

Rendering a Hyperlink with the h: outputLink Tag

The h:outputLink tagis used to render a hyperlink that, when clicked, loads another
page but does not generate an action event. You should use this tag instead of the
h:commandLink tag if you always want the URL specified by the h: outputLink tag’s
value attribute to open and do not want any processing to be performed when the user
clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo
</h:outputLink>

The text in the body of the outputLink tagidentifies the text that the user clicks to get
to the next page.

Displaying a Formatted Message with the h: outputFormat Tag

The h:outputFormat tag allows display of concatenated messages as a MessageFormat
pattern, as described in the API documentation for java.text.MessageFormat. Here
is an example of an outputFormat tag:

<h:outputFormat value="Hello, {0}!'">
<f:param value="#{hello.name}"/>
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag specifies the
substitution parameters for the message. The value of the parameter replaces the {0}
in the sentence. If the value of "#{hello.name}" is “Bill”, the message displayed in the
page is as follows:

Hello, Bill!

An h:outputFormat tag can include more than one param tag for those messages that
have more than one parameter that must be concatenated into the message. If you
have more than one parameter for one message, make sure that you put the param tags
in the proper order so that the data is inserted in the correct place in the message. Here
is the preceding example modified with an additional parameter:

<h:outputFormat value="Hello, {@}'! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />

<f:param value="#{bean.numVisitor}"/>

</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL
expression, bean.numVisitor, where the property numvisitor of the backing bean

Chapter7 - Using JavaServer Faces Technology in Web Pages 125

Adding Components to a Page Using HTML Tags

126

bean keeps track of visitors to the page. This is an example of a
value-expression-enabled tag attribute accepting an EL expression. The message
displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

Using Command Component Tags for Performing
Actions and Navigation

In JavaServer Faces applications, the button and hyperlink component tags are used to
perform actions, such as submitting a form, and for navigating to another page. These
tags are called command component tags because they perform an action when
activated.

The h: commandButton tag is rendered as a button. The h: commandLink tag is rendered
as a hyperlink.

In addition to the tag attributes listed in “Common Component Tag Attributes” on
page 117, the h: commandButton and h: commandLink tags can use the following
attributes:

= action, which is either alogical outcome String or a method expression pointing
to a bean method that returns a logical outcome String. In either case, the logical
outcome String is used to determine what page to access when the command
component tag is activated.

= actionListener, which is a method expression pointing to a bean method that
processes an action event fired by the command component tag.

See “Referencing a Method That Performs Navigation” on page 155 for more
information on using the action attribute. See “Referencing a Method That Handles
an Action Event” on page 156 for details on using the actionListener attribute.

Rendering a Button with the h: commandButton Tag

If you are using a commandButton component tag, the data from the current page is
processed when a user clicks the button, and the next page is opened. Here is an
example of the h: commandButton tag:

<h:commandButton value="Submit"
action="#{cashier.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked
because the action attribute references this method. The submit method performs
some processing and returns a logical outcome.

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

The value attribute of the example commandButton tag references the button’s label.
For information on how to use the action attribute, see “Referencing a Method That
Performs Navigation” on page 155.

Rendering a Hyperlink with the h: commandLink Tag

The h: commandLink tag represents an HTML hyperlink and is rendered as an HTML
<a>element. This tag acts like a form’s Submit button and is used to submit an action
event to the application.

A h:commandLink tag must include a nested h: outputText tag, which represents the
text that the user clicks to generate the event. Here is an example:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooselLocaleFromLink}">
<h:outputText value="#{bundle.English}" />
</h:commandLink>

This tag will render the following HTML:

<a id="_id3:NAmerica" href="#"
onclick="document.forms[’ id3’][’' id3:NAmerica’].
value='_id3:NAmerica’;
document.forms[’ id3’].submit();
return false;">English

Note - The h: commandLink tag will render JavaScript programming language. If you
use this tag, make sure that your browser is enabled for JavaScript technology.

Adding Graphics and Images with the
h:graphicImage Tag

In a JavaServer Faces application, use the h: graphicImage tag to render an image ona
page:

<h:graphicImage id="mapImage" url="/template/world.jpg"/>

The url attribute specifies the path to the image. The URL of the example tag begins
with a /, which adds the relative context path of the web application to the beginning
of the path to the image.

Alternatively, you can use the facility described in “Resources” on page 96 to point to
the image location. Here is an example:

<h:graphicImage value="#{resource[’images:wave.med.gif’]1}"/>

Chapter7 - Using JavaServer Faces Technology in Web Pages 127

Adding Components to a Page Using HTML Tags

128

Laying Out Components with the h: panelGrid and
h:panelGroup Tags

In a JavaServer Faces application, you use a panel as a layout container for a set of other
components. A panel is rendered as an HTML table. Table 7-6 lists the tags used to
create panels.

TABLE7-6 Panel Component Tags

Tag Attributes Function

h:panelGrid columns, columnClasses, footerClass, Displays a table
headerClass, panelClass, rowClasses

h:panelGroup layout (}roupsasetofconnponentsunder
one parent

The h:panelGrid tagis used to represent an entire table. The h: panelGroup tag is used
to represent rows in a table. Other tags are used to represent individual cells in the
rows.

The columns attribute defines how to group the data in the table and therefore is
required if you want your table to have more than one column. The h: panelGrid tag
also has a set of optional attributes that specify CSS classes: columnClasses,
footerClass, headerClass, panelClass, and rowClasses.

If the headerClass attribute value is specified, the panelGrid must have a header as its
first child. Similarly, if a footerClass attribute value is specified, the panelGrid must
have a footer as its last child.

Here is an example:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">
<h:outputText value="#{bundle.Checkout}"/>
</f:facet>
<h:outputText value="#{bundle.Name}" />
<h:inputText id="name" size="50"
value="#{cashier.name}"
required="true">
<f:valueChangelListener
type="listeners.NameChanged" />
</h:inputText>
<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>
<h:inputText id="ccno" size="19"
converter="CreditCardConverter" required="true">

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

<bookstore:formatValidator
formatPatterns="9999999999999999 |
9999 9999 9999 9999|9999-9999-9999-9999"/>
</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>

</h:panelGrid>

The preceding h:panelGrid tagis rendered as a table that contains components in
which a customer inputs personal information. This h: panelGrid tag uses style sheet
classes to format the table. The following code shows the list-header definition:

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

}

Because the h: panelGrid tag specifies a headerClass, the panelGrid must contain a
header. The example panelGrid tag uses a facet tag for the header. Facets can have
only one child, so an h:panelGroup tag is needed if you want to group more than one
component within a facet. The example h:panelGrid tag has only one cell of data, so
an h:panelGroup tagis not needed.

The h:panelGroup tag has an attribute, layout, in addition to those listed in
“Common Component Tag Attributes” on page 117. If the layout attribute has the
value block, an HTML div element is rendered to enclose the row; otherwise, an
HTML span element is rendered to enclose the row. If you are specifying styles for the
h:panelGroup tag, you should set the layout attribute to block in order for the styles
to be applied to the components within the h: panelGroup tag. You should do this
because styles, such as those that set width and height, are not applied to inline
elements, which is how content enclosed by the span element is defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so
that the tree of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the
columns attribute of the h:panelGrid tag. The columns attribute in the example is set
to 3, and therefore the table will have three columns. The column in which each
component is displayed is determined by the order in which the component is listed
on the page modulo 3. So, if a component is the fifth one in the list of components, that
component will be in the 5 modulo 3 column, or column 2.

Chapter7 - Using JavaServer Faces Technology in Web Pages 129

Adding Components to a Page Using HTML Tags

Displaying Components for Selecting One Value

Another commonly used component is one that allows a user to select one value,
whether it is the only value available or one of a set of choices. The most common tags
for this kind of component are as follows:

= Anh:selectBooleanCheckbox tag, displayed as a check box, which represents a
Boolean state

= Anh:selectOneRadio tag, displayed as a set of radio buttons
= Anh:selectOneMenu tag, displayed as a drop-down menu, with a scrollable list

= Anh:selectOneListbox tag, displayed as a list box, with an unscrollable list

Figure 7-3 shows examples of these components.

FIGURE7-3 Example Components for Selecting One Item

Genre: O Fiction Language: [Ghinese |~ Format: [Hardcover
_— & Man-fiction Diutch Paperback
Buttons | () Reference English | _| Large-print

b | Cassette
) Biography French :
GErman | oD
i n Nustrated
Availability: [7] In print Spanish
swahili - [
Check Box Drop-Doven Menu List Box

Displaying a Check Box Using the h: selectBooleanCheckbox Tag

The h:selectBooleanCheckbox tagis the only tag that JavaServer Faces technology
provides for representing a Boolean state.

Here is an example that shows how to use the h: selectBooleanCheckbox tag:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />
<h:outputLabel
for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText
id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

130 The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

This example tag displays a check box to allow users to indicate whether they want to
join the Duke Fan Club. The label for the check box is rendered by the outputLabel
tag. The text is represented by the nested outputText tag.

Displaying a Menu Using the h: selectOneMenu Tag

A component that allows the user to select one value from a set of values can be
rendered as a list box, a set of radio buttons, or a menu. This section describes the
h:selectOneMenu tag. The h:selectOneRadio and h:selectOneListbox tags are used
in a similar way. The h: selectOneListbox tag is similar to the h: selectOneMenu tag
except that h: selectOneListbox defines a size attribute that determines how many
of the items are displayed at once.

The h:selectOneMenu tag represents a component that contains a list of items from
which a user can choose one item. This menu component is also commonly known as
a drop-down list or a combo box. The following code snippet shows how the
h:selectOneMenu tag is used to allow the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem
itemValue="2
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem
itemvalue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem
itemvalue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The value attribute of the h: selectOneMenu tag maps to the property that holds the
currently selected item’s value. You are not required to provide a value for the
currently selected item. If you don’t provide a value, the first item in the list is selected
by default.

Like the h: selectOneRadio tag, the selectOneMenu tag must contain either an

f:selectItems tagorasetof f:selectItemtags for representing the items in the list.
“Using the f:selectItemand f:selectItems Tags” on page 133 describes these tags.

Chapter7 - Using JavaServer Faces Technology in Web Pages 131

Adding Components to a Page Using HTML Tags

132

Displaying Components for Selecting Multiple Values

In some cases, you need to allow your users to select multiple values rather than just
one value from a list of choices. You can do this using one of the following component
tags:

= Anh:selectManyCheckbox tag, displayed as a set of check boxes
= Anh:selectManyMenu tag, displayed as a drop-down menu
= Anh:selectManyListbox tag, displayed as a list box

Figure 7-4 shows examples of these components.

FIGURE 7-4 Example Components for Selecting Multiple Values

Genre: [V]Fiction Language: |Chinese || Format: |Hardcover
Check Mon-fictian Dutch Paperback
Boxes | [Reference English | _| Large-print
L] Biography French g Cassette
German || CwD
Spanish llustrated
Swvahili (o |
Drop-Dowvn Menu Lizt B

These tags allow the user to select zero or more values from a set of values. This section
explains the h: selectManyCheckbox tag. The h:selectManyListbox and
h:selectManyMenu tags are used in a similar way.

Unlike a menu, a list box displays a subset of items in a box; a menu displays only one
item at a time when the user is not selecting the menu. The size attribute of the
h:selectManyListbox tag determines the number of items displayed at one time. The
list box includes a scroll bar for scrolling through any remaining items in the list.

The h:selectManyCheckbox tag renders a set of check boxes, with each check box
representing one value that can be selected:

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems
value="#{newsletters}"/>
</h:selectManyCheckbox>

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

The value attribute of the h: selectManyCheckbox tag identifies the newsletters
property of the Cashier backing bean. This property holds the values of the currently
selected items from the set of check boxes. You are not required to provide a value for
the currently selected items. If you don’t provide a value, the first item in the list is
selected by default.

The layout attribute indicates how the set of check boxes is arranged on the page.
Because layout is set to pageDirection, the check boxes are arranged vertically. The
default is lineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the
set of check boxes. To represent a set of items, you use the f:selectItems tag. To
represent each item individually, you use a f: selectItem tag. The following
subsection explains these tags in more detail.

Using the f:selectItemand f:selectItems Tags

The f:selectItemand f:selectItems tags represent components that can be nested
inside a component that allows you to select one or multiple items. An f:selectItem
tag contains the value, label, and description of a single item. An f:selectItems tag
contains the values, labels, and descriptions of the entire list of items.

You can use either a set of f:selectItem tags or asingle f:selectItems tag within
your component tag.
The advantages of using the f:selectItems tagare as follows.

= Jtems can be represented by using different data structures, including Array, Map,
and Collection. The value of the f:selectItems tag can represent even a generic
collection of POJOs.

= Different lists can be concatenated into a single component, and the lists can be
grouped within the component.

= Values can be generated dynamically at runtime.

The advantages of using f: selectItem are as follows:

= Jtems in the list can be defined from the page.
m Less code is needed in the bean for the selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem
tags.

Chapter7 - Using JavaServer Faces Technology in Web Pages 133

Adding Components to a Page Using HTML Tags

Using the f:selectItems Tag

The following example from “Displaying Components for Selecting Multiple Values”
on page 132 shows how to use the h: selectManyCheckbox tag:

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems
value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tagis bound to the backing bean
newsletters.

You can also create the list of items programmatically in the backing bean. See
“Writing Bean Properties” on page 162 for information on how to write a backing bean
property for one of these tags.

Using the f:selectItemTag

The f:selectItem tagrepresents a single item in a list of items. Here is the example
from “Displaying a Menu Using the h: selectOneMenu Tag” on page 131 once again:

<h:selectOneMenu
id="shippingOption" required="true"
value="#{cashier.shippingOption}">
<f:selectItem
itemvalue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem
itemvalue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem
itemvalue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The itemValue attribute represents the default value for the selectItemtag. The
itemLabel attribute represents the String that appears in the drop-down menu
component on the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that
they can use value-binding expressions to refer to values in external objects. These
attributes can also define literal values, as shown in the example h: selectOneMenu tag.

134 The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

Using Data-Bound Table Components

Data-bound table components display relational data in a tabular format. In a
JavaServer Faces application, the h:dataTable component tag supports binding to a
collection of data objects and displays the data as an HTML table. The h: column tag
represents a column of data within the table, iterating over each record in the data
source, which is displayed as a row. Here is an example:

<h:dataTable id="items"
captionClass="list-caption"
columnClasses="list-column-center, list-column-left,
list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background">
<h:column headerClass="list-header-left">
<f:facet name="header">
<h:outputText value=Quantity
</f:facet>
<h:inputText id="quantity" size="4"
value="#{item.quantity}" >

/>

</h:inputText>

</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Title"/>
</f:facet>
<h:commandLink>
<h:outputText value="#{item.title}"/>
</h:commandLink>
</h:column>

<f:facet name="footer"
<h:panelGroup>
<h:outputText value="Total}"/>
<h:outputText value="#{cart.totall}" />
<f:convertNumber type="currency" />
</h:outputText>
</h:panelGroup>
</f:facet>
</h:dataTable>

Figure 7-5 shows a data grid that this h: dataTable tag can display.

Chapter7 - Using JavaServer Faces Technology in Web Pages 135

Adding Components to a Page Using HTML Tags

136

FIGURE7-5 Table ona Web Page

Quantity Title Price
1 Web Servers for Fun and Profit $40.75 [Remove tem |
3 Web Components for Web Developers $27.75 Remove tem |
E;c;mug)a: to Java: The Revolution of a $10.75 Removetem |
2 My Early Years: Growing up on *7 $30.75 [Remove tem |
1 Java Intermediate Bytecodes $30.95 Remove tem |
3 Duke: A Biography of the Java Evangelist $45.00(Remove tem |

Subtotal:$362.20

Tpdate Cuantities

The example h:dataTable tag displays the books in the shopping cart, as well as the
quantity of each book in the shopping cart, the prices, and a set of buttons the user can
click to remove books from the shopping cart.

The h: column tags represent columns of data in a data component. While the data
component is iterating over the rows of data, it processes the column component
associated with each h: column tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of
books (cart.items) in the shopping cart and displays their titles, authors, and prices.
Each time the h:dataTable tag iterates through the list of books, it renders one cell in
each column.

The h:dataTable and h: column tags use facets to represent parts of the table that are
not repeated or updated. These parts include headers, footers, and captions.

In the preceding example, h: column tags include f: facet tags for representing
column headers or footers. The h: column tag allows you to control the styles of these
headers and footers by supporting the headerClass and footerClass attributes.
These attributes accept space-separated lists of CSS classes, which will be applied to the
header and footer cells of the corresponding column in the rendered table.

Facets can have only one child, so an h: panelGroup tag is needed if you want to group
more than one component within an f: facet. Because the facet tag representing the
footer includes more than one tag, the panelGroup is needed to group those tags.
Finally, this h:dataTable tagincludes an f: facet tag with its name attribute set to
caption, causing a table caption to be rendered below the table.

This table is a classic use case for a data component because the number of books
might not be known to the application developer or the page author when that
application is developed. The data component can dynamically adjust the number of
rows of the table to accommodate the underlying data.

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

The value attribute of an h: dataTable tag references the data to be included in the
table. This data can take the form of any of the following:

Alist of beans

An array of beans

A single bean

A javax.faces.model.DataModel object

A java.sql.ResultSet object

A javax.servlet.jsp.jstl.sql.Result object
A javax.sql.RowSet object

All data sources for data components have a DataModel wrapper. Unless you explicitly
construct a DataModel wrapper, the JavaServer Faces implementation will create one
around data of any of the other acceptable types. See “Writing Bean Properties” on
page 162 for more information on how to write properties for use with a data
component.

The var attribute specifies a name that is used by the components within the
h:dataTable tagasan alias to the data referenced in the value attribute of dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var
attribute points to a single book in that list. As the h:dataTable tagiterates through
the list, each reference to item points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying
data. This feature is not shown in the preceding example. To display a subset of the
data, you use the optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies
the number of rows, starting with the first row, to be displayed. For example, if you
wanted to display records 2 through 10 of the underlying data, you would set first to
2 and rows to 9. When you display a subset of the data in your pages, you might want
to consider including a link or button that causes subsequent rows to display when
clicked. By default, both first and rows are set to zero, and this causes all the rows of
the underlying data to display.

Table 7-7 shows the optional attributes for the h:dataTable tag.

TABLE7-7 Optional Attributes for the h:dataTable Tag

Attribute Defines Styles for
captionClass Table caption
columnClasses All the columns
footerClass Footer
headerClass Header

Chapter7 - Using JavaServer Faces Technology in Web Pages 137

Adding Components to a Page Using HTML Tags

138

TABLE7-7 Optional Attributes for the h:dataTable Tag (Continued)

Attribute Defines Styles for
rowClasses Rows
styleClass The entire table

Each of the attributes in Table 7-7 can specify more than one style. If columnClasses
or rowClasses specifies more than one style, the styles are applied to the columns or
rows in the order that the styles are listed in the attribute. For example, if
columnClasses specifies styles list-column-center and list-column-right and if
the table has two columns, the first column will have style list-column-center, and
the second column will have style list-column-right.

If the style attribute specifies more styles than there are columns or rows, the
remaining styles will be assigned to columns or rows starting from the first column or
row. Similarly, if the style attribute specifies fewer styles than there are columns or
rows, the remaining columns or rows will be assigned styles starting from the first
style.

Displaying Error Messages with the h:message and
h:messages Tags

The h:message and h:messages tags are used to display error messages when
conversion or validation fails. The h:message tag displays error messages related to a
specific input component, whereas the h:messages tag displays the error messages for
the entire page.

Here is an example h:message tag from the guessnumber application:

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />
<h:commandButton id="submit"
action="success" value="Submit" /><p>
<h:message
style="color: red;
font-family: ’'New Century Schoolbook’, serif;
font-style: oblique;
text-decoration: overline" id="errorsl" for="userNo"/>

The for attribute refers to the ID of the component that generated the error message.
The error message is displayed at the same location that the h:message tag appears in
the page. In this case, the error message will appear after the Submit button.

The style attribute allows you to specify the style of the text of the message. In the
example in this section, the text will be red, New Century Schoolbook, serif font
family, and oblique style, and a line will appear over the text. The message and

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

messages tags support many other attributes for defining styles. For more information
on these attributes, refer to the documentation at http://download.oracle.com/
docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

Another attribute supported by the h:messages tagis the layout attribute. Its default
value is 1ist, which indicates that the messages are displayed in a bullet list using the
HTML ul and 1i elements. If you set the attribute value to table, the messages will be
rendered in a table using the HTML table element.

The preceding example shows a standard validator that is registered on the input
component. The message tag displays the error message that is associated with this
validator when the validator cannot validate the input component’s value. In general,
when you register a converter or validator on a component, you are queueing the error
messages associated with the converter or validator on the component. The h:message
and h:messages tags display the appropriate error messages that are queued on the
component when the validators or converters registered on that component fail to
convert or validate the component’s value.

Standard error messages are provided with standard converters and standard
validators. An application architect can override these standard messages and supply
error messages for custom converters and validators by registering custom error
messages with the application.

Creating Bookmarkable URLs with the h: button and
h:1link Tags

The ability to create bookmarkable URLs refers to the ability to generate hyperlinks
based on a specified navigation outcome and on component parameters.

In HTTP, most browsers by default send GET requests for URL retrieval and POST
requests for data processing. The GET requests can have query parameters and can be
cached, which is not advised for POST requests, which send data to the external
servers. The other JavaServer Faces tags capable of generating hyperlinks use either
simple GET requests, as in the case of h: outputlink, or POST requests, as in the case
of h:commandLink or h:commandButton tags. GET requests with query parameters
provide finer granularity to URL strings. These URLs are created with one or more
name=value parameters appended to the simple URL after a ? character and separated
by either &; or & strings.

To create a bookmarkable URL, use an h: link or h:button tag. Both of these tags can
generate a hyperlink based on the outcome attribute of the component. For example:

<h:1link outcome="response" value="Message">
<f:param name="Result" value="#{sampleBean.result}"/>
</h:link>

Chapter7 - Using JavaServer Faces Technology in Web Pages 139

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

Adding Components to a Page Using HTML Tags

The h:link tag will generate a URL link that points to the response. xhtm1 file on the
same server, appended with the single query parameter created by the f: param tag.
When processed, the parameter Result is assigned the value of backing bean’s result
method #{sampleBean. result}. The following sample HTML is generated from the
preceding set of tags, assuming that the value of the parameter is success:

Response

140

This is a simple GET request. To create more complex GET requests and utilize the
complete functionality of the h: link tag, you can use view parameters.

Using View Parameters to Configure Bookmarkable
URLs

The core tags f:metadata and f:viewparamare used as a source of parameters for
configuring the URLs. View parameters are declared as part of f :metadata for a page,
as shown in the following example:

<h:body>
<f:metadata>
<f:viewParam id="name" name="Name" value="#{sampleBean.username}"/>
<f:viewParam id="ID" name="uid" value="#{sampleBean.useridentity}"/>
</f:metadata>
<h:link outcome="response" value="Message" includeViewParams="true">
</h:1link>
</h:body>

View parameters are declared with the f:viewparam tag and are placed inside the
f:metadata tag. If the includeViewParams attribute is set on the component, the view
parameters are added to the hyperlink.

The resulting URL will look like this:

http://localhost:8080/guessnumber/response.xhtml?Name=Duke&;uid=2001

Because the URL can be the result of various parameter values, the order of the URL
creation has been predefined. The order in which the various parameter values are
read is as follows:

1. Component
2. Navigation-case parameters
3. View parameters

The Java EE 6 Tutorial: Basic Concepts

Adding Components to a Page Using HTML Tags

Resource Relocation Using h: output Tags

Resource relocation refers to the ability of a JavaServer Faces application to specify the
location where a resource can be rendered. Resource relocation can be defined with
the following HTML tags:

® h:outputScript
® h:outputStylesheet

These tags have name and target attributes, which can be used to define the render
location. For a complete list of attributes for these tags, see the documentation at
http://download.oracle.com/

docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/.

For the h:outputScript tag, the name and target attributes define where the output of
aresource may appear. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

Since the target attribute is not defined in the tag, the style sheet hello.css is
rendered in the head, and the hello. js script is rendered in the body of the page as
defined by the h: head tag.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>
</head>
<body>
<form id="form" name="form" method="post" action="...
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>
</form>
</body>
</html>

enctype="...">

Chapter7 - Using JavaServer Faces Technology in Web Pages 141

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

Adding Components to a Page Using HTML Tags

142

The original page can be recreated by setting the target attribute for the
h:outputScript tag, which allows the incoming GET request to provide the location
parameter. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

In this case, if the incoming request does not provide a location parameter, the default
locations will still apply: The style sheet is rendered in the head, and the script is
rendered inline. However, if the incoming request provides the location parameter as
the head, both the style sheet and the script will be rendered in the head element.

The HTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>
</head>
<body>
<form id="form" name="form" method="post" action="..
</form>
</body>
</html>

enctype="...">

Similarly, if the incoming request provides the location parameter as the body, the
script will be rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can
add even more functionality for the components and pages. A page author does not
have to know the location of a resource or its placement.

By using a @ResourceDependency annotation for the components, component authors
can define the resources for the component, such as a style sheet and script. This allows
the page authors freedom from defining resource locations.

The Java EE 6 Tutorial: Basic Concepts

Using Core Tags

Using Core Tags

The tags included in the JavaServer Faces core tag library are used to perform core
actions that are not performed by HTML tags. Commonly used core tags, along with
the functions they perform, are listed in Table 7-8.

TABLE7-8 The Core Tags

Tag Categories Tags Functions
Eventhandling f:actionListener Adds an action listener to a parent component
f:phaseListener Adds aPhaselListener toa page

f:setPropertyActionListener Registers a special action listener whose sole
purpose is to push a value into a backing bean
when a form is submitted

f:valueChangelistener Adds a value-change listener to a parent
component
Attribute f:attribute Adds configurable attributes to a parent
configuration component
Data f:converter Adds an arbitrary converter to the parent
conversion component
f:convertDateTime Adds aDateTimeConverter instance to the

parent component

f:convertNumber Adds a NumberConverter instance to the
parent component
Facet f:facet Adds a nested component that has a special

relationship to its enclosing tag

f:metadata Registers a facet on a parent component
Localization f:loadBundle Specifies a ResourceBundle that is exposed as
aMap
Parameter f:param Substitutes parameters into a MessageFormat
substitution instance and adds query string name-value
pairstoa URL
Representing ~ f:selectItem Represents one item in a list of items
items in a list
fiselectItems Represents a set of items

Chapter7 - Using JavaServer Faces Technology in Web Pages 143

Using Core Tags

TABLE7-8 The Core Tags (Continued)

Tag Categories Tags Functions
Validator f:validateDoubleRange Adds aDoubleRangeValidatortoa
component
f:validateLength AddsaLengthvalidator to a component
f:validatelLongRange Adds a LongRangeValidator to a component
f:validator Adds a custom validator to a component
f:validateRegEx Adds aRegExValidator to acomponent
f:validateBean Delegates the validation of a local value to a
BeanValidator
f:validateRequired Enforces the presence of a value in a
component
Ajax f:ajax Associates an Ajax action with a single
component or a group of components based
on placement
Event f:event Allows installing a
ComponentSystemEventListener ona
component

These tags, which are used in conjunction with component tags, are explained in other
sections of this tutorial. Table 7-9 lists the sections that explain how to use specific
core tags.

TABLE7-9 Where the Core Tags Are Explained

Tags Where Explained

Eventhandlingtags “Registering Listeners on Components” on page 151

Data conversion tags “Using the Standard Converters” on page 145

facet “Using Data-Bound Table Components” on page 135 and “Laying Out
Components with the h:panelGrid and h:panelGroup Tags” on page 128
loadBundle “Displaying Components for Selecting Multiple Values” on page 132
param “Displaying a Formatted Message with the h:outputFormat Tag” on
page 125
selectItemand “Using the f:selectItemand f:selectItems Tags” on page 133
selectItems
Validator tags “Using the Standard Validators” on page 152

144 The Java EE 6 Tutorial: Basic Concepts

L K R 4 CHAPTER 8

Using Converters, Listeners, and Validators

The previous chapter described components and explained how to add them to a web
page. This chapter provides information on adding more functionality to the
components through converters, listeners, and validators.

Converters are used to convert data that is received from the input components.

Listeners are used to listen to the events happening in the page and perform actions
as defined.

Validators are used to validate the data that is received from the input components.

The following topics are addressed here:

“Using the Standard Converters” on page 145
“Registering Listeners on Components” on page 151
“Using the Standard Validators” on page 152
“Referencing a Backing Bean Method” on page 154

Using the Standard Converters

The JavaServer Faces implementation provides a set of Converter implementations
that you can use to convert component data. The standard Converter
implementations, located in the javax. faces.convert package, are as follows:

BigDecimalConverter
BigIntegerConverter
BooleanConverter
ByteConverter
CharacterConverter
DateTimeConverter
DoubleConverter
EnumConverter
FloatConverter

145

Using the Standard Converters

146

IntegerConverter
LongConverter
NumberConverter
ShortConverter

A standard error message is associated with each of these converters. If you have
registered one of these converters onto a component on your page, and the converter
is not able to convert the component’s value, the converter’s error message will display
on the page. For example, the following error message appears if
BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have
their own tags, which allow you to configure the format of the component data using
the tag attributes. For more information about using DateTimeConverter, see “Using
DateTimeConverter” on page 147. For more information about using
NumberConverter, see “Using NumberConverter” on page 149. The following section
explains how to convert a component’s value, including how to register other standard
converters with a component.

Converting a Component’s Value

To use a particular converter to convert a component’s value, you need to register the
converter onto the component. You can register any of the standard converters in one
of the following ways:

= Nestone of the standard converter tags inside the component’s tag. These tags are
convertDateTime and convertNumber, which are described in “Using
DateTimeConverter” on page 147 and “Using NumberConverter” on page 149,
respectively.

= Bind the value of the component to a backing bean property of the same type as the
converter.

= Refer to the converter from the component tag’s converter attribute.
= Nesta converter tag inside of the component tag, and use either the converter

tag’s converterId attribute or its binding attribute to refer to the converter.

As an example of the second method, if you want a component’s data to be converted
to an Integer, you can simply bind the component’s value to a backing bean property.
Here is an example:

The Java EE 6 Tutorial: Basic Concepts

Using the Standard Converters

Integer age = 0;

public Integer getAge(){ return age;}

public void setAge(Integer age) {this.age = age;}

If the component is not bound to a bean property, you can use the third method by
using the converter attribute directly on the component tag:

<h:inputText
converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully qualified class name
of the converter. The converter attribute can also take the ID of the component.

The data from the inputText tag in the this example will be converted to a
java.lang.Integer value. The Integer typeisa supported type of NumberConverter.
If you don’t need to specify any formatting instructions using the convertNumber tag
attributes, and if one of the standard converters will suffice, you can simply reference
that converter by using the component tag’s converter attribute.

Finally, you can nesta converter tag within the component tag and use either the
converter tag’s converterId attribute or its binding attribute to reference the
converter.

The converterId attribute must reference the converter’s ID. Here is an example:

<h:inputText value="#{LoginBean.Age}" />

<f:converter converterId="Integer" />
</h:inputText>
Instead of using the converterId attribute, the converter tag can use the binding
attribute. The binding attribute must resolve to a bean property that accepts and
returns an appropriate Converter instance.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the
convertDateTime tag inside the component tag. The convertDateTime tag has several
attributes that allow you to specify the format and type of the data. Table 8-1 lists the
attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText id= "shipDate" value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />
</h:outputText>

When binding the DateTimeConverter to a component, ensure that the backing bean
property to which the component is bound is of type java.util.Date. In the
preceding example, cashier.shipDate must be of type java.util.Date.

Chapter8 « Using Converters, Listeners, and Validators 147

Using the Standard Converters

148

The example tag can display the following output:

Saturday, September 25, 2010

You can also display the same date and time by using the following tag where the date
format is specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime
pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"
locale="Locale.SPAIN"
timeStyle="long" type="both" />
</h:inputText>

This tag would display the following output:

sabado 25 de septiembre de 2010

Refer to the “Customizing Formats” lesson of the Java Tutorial at
http://download.oracle.com/

docs/cd/E17409 01/javase/tutorial/il8n/format/simpleDateFormat.html for
more information on how to format the output using the pattern attribute of the
convertDateTime tag.

TABLE8-1 Attributes for the convertDateTime Tag

Attribute Type Description

binding DateTimeConverter Used to bind a converter to a backing bean property.

dateStyle String Defines the format, as specified by java.text.DateFormat, of
a date or the date part of a date string. Applied only if type is
date or both and if pattern is not defined. Valid values:
default, short, medium, long, and full. If no valueis
specified, default is used.

for String Used with composite components. Refers to one of the objects
within the composite component inside which this tag is
nested.

locale StringorLocale Locale whose predefined styles for dates and times are used

during formatting or parsing. If not specified, the Locale
returned by FacesContext.getLocale will be used.

The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/simpleDateFormat.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/simpleDateFormat.html

Using the Standard Converters

TABLE8-1 Attributes for the convertDateTime Tag (Continued)
Attribute Type Description
pattern String Custom formatting pattern that determines how the date/time

string should be formatted and parsed. If this attribute is
specified, dateStyle, timeStyle, and type attributes are
ignored.

timeStyle String Defines the format, as specified by java.text.DateFormat, of
a time or the time part of a date string. Applied only if type is
time and pattern is not defined. Valid values: default, short,
medium, long, and full. If no value is specified, default is
used.

timeZone StringorTimeZone Time zone in which to interpret any time information in the
date string.

type String Specifies whether the string value will contain a date, a time, or
both. Valid values are date, time, or both. If no value is
specified, date is used.

Using NumberConverter

You can convert a component’s data to a java. lang.Number by nesting the
convertNumber tag inside the component tag. The convertNumber tag has several
attributes that allow you to specify the format and type of the data. Table 8-2 lists the
attributes.

The following example uses a convertNumber tag to display the total prices of the
contents of a shopping cart:

<h:outputText value="#{cart.total}" >
<f:convertNumber type="currency"/>
</h:outputText>

When binding the NumberConverter to a component, ensure that the backing bean
property to which the component is bound is of a primitive type or has a type of
java.lang.Number. In the preceding example, cart. total is of type
java.lang.Number.

Here is an example of a number that this tag can display:

$934

This result can also be displayed by using the following tag, where the currency pattern
is specified:

<h:outputText id="cartTotal"
value="#{cart.Total}" >

Chapter8 « Using Converters, Listeners, and Validators 149

Using the Standard Converters

<f:convertNumber pattern="$####" />

</h:outputText>

See the “Customizing Formats” lesson of the Java Tutorial athttp://

download.oracle.com/

docs/cd/E17409 01/javase/tutorial/il8n/format/decimalFormat.html for
more information on how to format the output by using the pattern attribute of the

convertNumber tag.

TABLE8-2 Attributes for the convertNumber Tag

Attribute Type Description

binding NumberConverter Used to bind a converter to a backing bean property.

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting
currencies.

for String Used with composite components. Refers to one of the
objects within the composite component inside which
this tag is nested.

groupingUsed Boolean Specifies whether formatted output contains grouping
separators.

integerOnly Boolean Specifies whether only the integer part of the value will
be parsed.

locale Stringor Locale Locale whose number styles are used to format or

maxFractionDigits int

maxIntegerDigits int

minFractionDigits int

minIntegerDigits int

pattern String

type String

parse data.

Maximum number of digits formatted in the fractional
part of the output.

Maximum number of digits formatted in the integer
part of the output.

Minimum number of digits formatted in the fractional
part of the output.

Minimum number of digits formatted in the integer
part of the output.

Custom formatting pattern that determines how the
number string is formatted and parsed.

Specifies whether the string value is parsed and
formatted as a number, currency, or percentage. If not
specified, number is used.

150 The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/
http://download.oracle.com/

Registering Listeners on Components

Registering Listeners on Components

An application developer can implement listeners as classes or as backing bean
methods. If a listener is a backing bean method, the page author references the method
from either the component’s valueChangeListener attribute or its actionListener
attribute. If the listener is a class, the page author can reference the listener from either
avalueChangeListener tag or an actionListener tagand nest the tag inside the
component tag to register the listener on the component.

“Referencing a Method That Handles an Action Event” on page 156 and “Referencing a
Method That Handles a Value-Change Event” on page 156 explain how a page author
uses the valueChangeListener and actionListener attributes to reference backing
bean methods that handle events.

This section explains how to register the NameChanged value-change listener and a
hypothetical LocaleChange action listener implementation on components.

Registering aValue-Change Listener on a Component

A ValueChangeListener implementation can be registered on a component that
implements EditableValueHolder by nesting a valueChangeListener tag within the
component’s tag on the page. The valueChangeListener tag supports the attributes
shown in Table 8-3, one of which must be used.

TABLE8-3 Attributes for the valueChangelListener Tag

Attribute Description

type References the fully qualified class name of a ValueChangeListener
implementation. Can accept a literal or a value expression.

binding References an object that implements ValueChangeListener. Can accept only
avalue expression, which must point to a backing bean property that accepts
and returns a ValueChangeListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />
</h:inputText>
In the example, the core tag type attribute specifies the custom NameChanged listener
as the ValueChangeListener implementation registered on the name component.

After this component tag is processed and local values have been validated, its
corresponding component instance will queue the ValueChangeEvent associated with
the specified ValueChangeListener to the component.

Chapter8 « Using Converters, Listeners, and Validators 151

Using the Standard Validators

The binding attribute is used to bind a ValueChangeListener implementation to a
backing bean property. This attribute works in a similar way to the binding attribute
supported by the standard converter tags.

Registering an Action Listener on a Component

A page author can register an ActionListener implementation on a command
component by nesting an actionListener tag within the component’s tag on the page.
Similarly to the valueChangeListener tag, the actionListener tag supports both the
type and binding attributes. One of these attributes must be used to reference the
action listener.

Here is an example of a commandLink tag that references an ActionListener
implementation rather than a backing bean method:

<h:commandLink id="NAmerica" action="bookstore">
<f:actionListener type="listeners.LocaleChange" />
</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class name of
the ActionListener implementation. Similarly to the valueChangeListener tag, the
actionListener tagalso supports the binding attribute.

Using the Standard Validators

JavaServer Faces technology provides a set of standard classes and associated tags that
page authors and application developers can use to validate a component’s data.
Table 8-4 lists all the standard validator classes and the tags that allow you to use the
validators from the page.

TABLE8-4 The Validator Classes

Validator Class Tag Function

BeanValidator validateBean Registers a bean validator for the
component.

DoubleRangeValidator validateDoubleRange Checks whether the local value of a

component is within a certain range. The
value must be floating-point or
convertible to floating-point.

LengthValidator validatelLength Checks whether the length of a
component’s local value is within a
certain range. The value must be a
java.lang.String.

152 The Java EE 6 Tutorial: Basic Concepts

Using the Standard Validators

TABLE8-4 The Validator Classes (Continued)
Validator Class Tag Function

LongRangeValidator validatelLongRange Checks whether the local value of a
component is within a certain range. The
value must be any numeric type or
String that can be converted to a long.

RegexValidator validateRegEx Checks whether the local value of a
component is a match against a regular
expression from the java.util.regex
package.

RequiredValidator validateRequired Ensures that the local value is not empty
onan EditableValueHolder
component.

Similar to the standard converters, each of these validators has one or more standard
error messages associated with it. If you have registered one of these validators onto a
component on your page, and the validator is unable to validate the component’s
value, the validator’s error message will display on the page. For example, the error
message that displays when the component’s value exceeds the maximum value
allowed by LongRangeValidator is as follows:

{1}: validation Error: Value is greater than allowable maximum of "{@}"

In this case, the {1} substitution parameter is replaced by the component’s label or id,
and the {0} substitution parameter is replaced with the maximum value allowed by the
validator.

Instead of using the standard validators, you can use Bean Validation to validate data.
See “Using Bean Validation” on page 174 for more information.

Validating a Component’s Value

To validate a component’s value using a particular validator, you need to register that
validator on the component. You can do this in one of the following ways:

= Nest the validator’s corresponding tag (shown in Table 8-4) inside the
component’s tag. “Using LongRangeValidator” on page 154 explains how to use
the validateLongRange tag. You can use the other standard tags in the same way.

= Refer to amethod that performs the validation from the component tag’s
validator attribute.

= Nestavalidator taginside the component tag, and use either the validator tag’s
validatorId attribute or its binding attribute to refer to the validator.

Chapter8 « Using Converters, Listeners, and Validators 153

Referencing a Backing Bean Method

See “Referencing a Method That Performs Validation” on page 156 for more
information on using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the
converter tag, as described in “Converting a Component’s Value” on page 146.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder, because these components accept values that can be validated.

Using LongRangeValidator

The following example shows how to use the validateLongRange validator on an
input component named quantity:

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >
<f:validatelLongRange minimum="1"/>
</h:inputText>
<h:message for="quantity"/>

This tag requires the user to enter a number that is at least 1. The size attribute
specifies that the number can have no more than four digits. The validateLongRange
tag also has a maximum attribute, which sets a maximum value for the input.

The attributes of all the standard validator tags accept EL value expressions. This
means that the attributes can reference backing bean properties rather than specify
literal values. For example, the validateLongRange tag in the preceding example can
reference a backing bean property called minimum to get the minimum value acceptable
to the validator implementation, as shown here:

<f:validateLongRange minimum="#{ShowCartBean.minimum}" />

Referencing a Backing Bean Method

154

A component tag has a set of attributes for referencing backing bean methods that can
perform certain functions for the component associated with the tag. These attributes
are summarized in Table 8-5.

TABLE8-5 Component Tag Attributes That Reference Backing Bean Methods

Attribute Function

action Refers to a backing bean method that performs navigation processing for
the component and returns a logical outcome String

actionListener Refers to a backing bean method that handles action events

The Java EE 6 Tutorial: Basic Concepts

Referencing a Backing Bean Method

TABLE8-5 Component Tag Attributes That Reference Backing Bean Methods (Continued)
Attribute Function

validator Refers to a backing bean method that performs validation on the
component’s value

valueChangeListener Refers toabackingbean method that handles value-change events

Only components that implement ActionSource can use the action and
actionListener attributes. Only components that implement EditableValueHolder
can use the validator or valueChangelListener attributes.

The component tag refers to a backing bean method using a method expression as a
value of one of the attributes. The method referenced by an attribute must follow a
particular signature, which is defined by the tag attribute’s definition in the
documentation at http://download.oracle.com/

docs/cd/E17410 01/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/. For
example, the definition of the validator attribute of the inputText tagis the
following:

void validate(javax.faces.context.FacesContext,
javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the attributes.

Referencing a Method That Performs Navigation

If your page includes a component, such as a button or a hyperlink, that causes the
application to navigate to another page when the component is activated, the tag
corresponding to this component must include an action attribute. This attribute
does one of the following:

= Specifies alogical outcome String that tells the application which page to access
next

= References a backing bean method that performs some processing and returns a
logical outcome String

The following example shows how to reference a navigation method:

<h:commandButton
value="#{bundle.Submit}"
action="#{cashier.submit}" />

Chapter8 « Using Converters, Listeners, and Validators 155

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/

Referencing a Backing Bean Method

156

Referencing a Method That Handles an Action Event

If a component on your page generates an action event, and if that event is handled by
a backing bean method, you refer to the method by using the component’s
actionListener attribute.

The following example shows how the method is referenced:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">

The actionListener attribute of this component tag references the
chooseLocaleFromLink method using a method expression. The
chooseLocaleFromLink method handles the event when the user clicks the hyperlink
rendered by this component.

Referencing a Method That Performs Validation

If the input of one of the components on your page is validated by a backing bean
method, refer to the method from the component’s tag by using the validator
attribute.

The following example shows how to reference a method that performs validation on
email, an input component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

Referencing a Method That Handles a Value-Change
Event

If you want a component on your page to generate a value-change event and you want
that event to be handled by a backing bean method, you refer to the method by using
the component’s valueChangeListener attribute.

The following example shows how a component references a ValueChangeListener
implementation that handles the event when a user enters a name in the name input
field:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangelListener type="listeners.NameChanged" />
</h:inputText>

The Java EE 6 Tutorial: Basic Concepts

Referencing a Backing Bean Method

To refer to this backing bean method, the tag uses the valueChangeListener attribute:

<h:inputText
id="name"
size="50"
value="#{cashier.name}"
required="true"
valueChangelListener="#{cashier.processValueChange}" />
</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChange method of CashierBean by using a method expression. The
processValueChange method handles the event of a user entering a name in the input
field rendered by this component.

Chapter8 « Using Converters, Listeners, and Validators 157

This page intentionally left blank

CHAPTER 9

Developing with JavaServer Faces
Technology

Chapter 7, “Using JavaServer Faces Technology in Web Pages,” and Chapter 8, “Using
Converters, Listeners, and Validators,” show how to add components to a page and
connect them to server-side objects by using component tags and core tags, as well as
how to provide additional functionality to the components through converters,
listeners, and validators. Developing a JavaServer Faces application also involves the
task of programming the server-side objects: backing beans, converters, event
handlers, and validators.

This chapter provides an overview of backing beans and explains how to write
methods and properties of backing beans that are used by a JavaServer Faces
application. This chapter also introduces the Bean Validation feature.

The following topics are addressed here:

= “Backing Beans” on page 159

= “Writing Bean Properties” on page 162

= “Writing Backing Bean Methods” on page 170
= “Using Bean Validation” on page 174

Backing Beans

A typical JavaServer Faces application includes one or more backing beans, each of
which is a type of JavaServer Faces managed bean that can be associated with the
components used in a particular page. This section introduces the basic concepts of
creating, configuring, and using backing beans in an application.

159

Backing Beans

160

Creating a Backing Bean

A backing bean is created with a constructor with no arguments (like all JavaBeans
components) and a set of properties and a set of methods that perform functions for a
component. Each of the backing bean properties can be bound to one of the following:

A component value

A component instance
A converter instance
A listener instance

A validator instance

The most common functions that backing bean methods perform include the
following:

= Validating a component’s data
= Handling an event fired by a component

= Performing processing to determine the next page to which the application must
navigate

As with all JavaBeans components, a property consists of a private data field and a set
of accessor methods, as shown by this code:

Integer userNumber = null;

public void setUserNumber(Integer user number) {
userNumber = user number;

}
public Integer getUserNumber() {
return userNumber;

}
public String getResponse() {

}

When bound to a component’s value, a bean property can be any of the basic primitive
and numeric types or any Java object type for which the application has access to an
appropriate converter. For example, a property can be of type Date if the application
has access to a converter that can convert the Date type to a String and back again. See
“Writing Bean Properties” on page 162 for information on which types are accepted by
which component tags.

When a bean property is bound to a component instance, the property’s type must be
the same as the component object. For example, ifa

javax. faces.component.UISelectBoolean component is bound to the property, the
property must accept and return a UISelectBoolean object. Likewise, if the property
is bound to a converter, validator, or listener instance, the property must be of the
appropriate converter, validator, or listener type.

The Java EE 6 Tutorial: Basic Concepts

Backing Beans

For more information on writing beans and their properties, see “Writing Bean
Properties” on page 162.

Using the EL to Reference Backing Beans

To bind component values and objects to backing bean properties or to reference
backing bean methods from component tags, page authors use the Expression
Language syntax. As explained in “Overview of the EL” on page 99, the following are
some of the features that EL offers:

= Deferred evaluation of expressions
= The ability to use a value expression to both read and write data
= Method expressions

Deferred evaluation of expressions is important because the JavaServer Faces lifecycle
is split into several phases in which component event handling, data conversion and
validation, and data propagation to external objects are all performed in an orderly
fashion. The implementation must be able to delay the evaluation of expressions until
the proper phase of the lifecycle has been reached. Therefore, the implementation’s tag
attributes always use deferred-evaluation syntax, which is distinguished by the #{}
delimiter.

To store data in external objects, almost all JavaServer Faces tag attributes use Ivalue
expressions, which are expressions that allow both getting and setting data on external
objects.

Finally, some component tag attributes accept method expressions that reference
methods that handle component events or validate or convert component data.

To illustrate a JavaServer Faces tag using the EL, suppose that a tag of an application
referenced a method to perform the validation of user input:

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean . userNumber
backing bean property by using an Ivalue expression. The tag uses a method
expression to refer to the UserNumberBean.validate method, which performs
validation of the component’s local value. The local value is whatever the user enters
into the field corresponding to this tag. This method is invoked when the expression is
evaluated.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to
referencing bean properties, value expressions can reference lists, maps, arrays,
implicit objects, and resource bundles.

Chapter9 - Developing with JavaServer Faces Technology 161

Writing Bean Properties

Another use of value expressions is binding a component instance to a backing bean
property. A page author does this by referencing the property from the binding
attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

In addition to using expressions with the standard component tags, you can configure
your custom component properties to accept expressions by creating
javax.el.ValueExpression or javax.el.MethodExpression instances for them.

For information on the EL, see Chapter 6, “Expression Language.”

For information on referencing backing bean methods from component tags, see
“Referencing a Backing Bean Method” on page 154.

Writing Bean Properties

162

As explained in “Backing Beans” on page 159, a backing bean property can be bound
to one of the following items:

A component value

A component instance

A converter implementation
A listener implementation
A validator implementation

These properties follow the conventions of JavaBeans components (also called beans).
For more information on JavaBeans components, see the JavaBeans Tutorial at
http://download.oracle.com/

docs/cd/E17409 01/javase/tutorial/javabeans/index.html.

The component’s tag binds the component’s value to a backing bean property by using
its value attribute and binds the component’s instance to a backing bean property by
using its binding attribute. Likewise, all the converter, listener, and validator tags use
their binding attributes to bind their associated implementations to backing bean
properties.

To bind a component’s value to a backing bean property, the type of the property must
match the type of the component’s value to which it is bound. For example, if a backing
bean property is bound to a UISelectBoolean component’s value, the property should
accept and return a boolean value or a Boolean wrapper Object instance.

To bind a component instance to a backing bean property, the property must match
the type of component. For example, if a backing bean property is bound to a
UISelectBoolean instance, the property should accept and return a UISelectBoolean
value.

The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/javabeans/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/javabeans/index.html

Writing Bean Properties

Similarly, to bind a converter, listener, or validator implementation to a backing bean
property, the property must accept and return the same type of converter, listener, or
validator object. For example, if you are using the convertDateTime tag to bind a
DateTimeConverter to a property, that property must accept and return a
DateTimeConverter instance.

The rest of this section explains how to write properties that can be bound to
component values, to component instances for the component objects described in
“Adding Components to a Page Using HTML Tags” on page 114, and to converter,
listener, and validator implementations.

Writing Properties Bound to Component Values

To write a backing bean property that is bound to a component’s value, you must
match the property type to the component’s value.

Table 9-1 lists the javax. faces.component classes and the acceptable types of their
values.

TABLE9-1 Acceptable Types of Component Values

Component Class Acceptable Types of Component Values

UIInput,UIOutput, Any of the basic primitive and numeric types or any Java
UISelectItem,UISelectOne programminglanguage object type for which an appropriate
Converter implementation is available

UIData array of beans, List of beans, single bean, java.sql.ResultSet,
javax.servlet.jsp.jstl.sql.Result, javax.sql.RowSet

UISelectBoolean boolean or Boolean

UISelectItems java.lang.String, Collection, Array, Map

UISelectMany array or List, though elements of the array or List can be any of
the standard types

When they bind components to properties by using the value attributes of the
component tags, page authors need to ensure that the corresponding properties match
the types of the components’ values.

UIInputandUIOutput Properties

In the following example, an h: inputText tag binds the name component to the name
property of a backing bean called CashierBean.

<h:inputText id="name" size="50"
value="#{cashier.name}">
</h:inputText>

Chapter9 - Developing with JavaServer Faces Technology 163

Writing Bean Properties

164

The following code snippet from the backing bean CashierBean shows the bean
property type bound by the preceding component tag:

protected String name = null;

public void setName(String name) {
this.name = name;

}
public String getName() {
return this.name;

}

As described in “Using the Standard Converters” on page 145, to convert the value of
an input or output component, you can either apply a converter or create the bean
property bound to the component with the matching type. Here is the example tag,
from “Using DateTimeConverter” on page 147, that displays the date when items will
be shipped.

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />
</h:outputText>

The bean property represented by this tag must have a type of java.util.Date. The
following code snippet shows the shipDate property, from the backing bean
CashierBean, that is bound by the tag’s value in the preceding example:

protected Date shipDate;

public Date getShipDate() {
return this.shipDate;

}

public void setShipDate(Date shipDate) {
this.shipDate = shipDate;

}

UIDataProperties

Data components must be bound to one of the backing bean property types listed in
Table 9-1. Data components are discussed in “Using Data-Bound Table Components”
on page 135. Here is part of the start tag of dataTable from that section:

<h:dataTable id="items"

value="#{cart.items}"
var="item" >

The value expression points to the items property of a shopping cart bean named
cart. The cart bean maintains a map of ShoppingCartItembeans.

The getItems method from the cart bean populates a List with ShoppingCartItem
instances that are saved in the items map when the customer adds items to the cart, as
shown in the following code segment:

The Java EE 6 Tutorial: Basic Concepts

Writing Bean Properties

public synchronized List getItems() {
List results = new ArrayList();
results.addAll(this.items.values());
return results;

}

All the components contained in the data component are bound to the properties of
the cart bean that is bound to the entire data component. For example, here is the
h:outputText tag that displays the item name in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.name}"/>
</h:commandLink>

UISelectBoolean Properties

Backing bean properties that hold a UISelectBoolean component’s data must be of
boolean or Boolean type. The example selectBooleanCheckbox tag from the section
“Displaying Components for Selecting One Value” on page 130 binds a component to
a property. The following example shows a tag that binds a component value to a
boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by the
example tag:

protected boolean receiveEmails = false;

public void setReceiveEmails(boolean receiveEmails) {
this.receiveEmails = receiveEmails;

public boolean getReceiveEmails() {
return receiveEmails;

}

UISelectMany Properties

Because a UISelectMany component allows a user to select one or more items from a
list of items, this component must map to a bean property of type List or array. This
bean property represents the set of currently selected items from the list of available
items.

The following example of the selectManyCheckbox tag comes from“Displaying
Components for Selecting Multiple Values” on page 132:

<h:selectManyCheckbox
id="newsletters"
layout="pageDirection"

Chapter9 - Developing with JavaServer Faces Technology 165

Writing Bean Properties

166

value="#{cashier.newsletters}">
<f:selectItems value="#{newsletters}"/>
</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from
the preceding example:

protected String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {
this.newsletters = newsletters;

}

public String[] getNewsletters() {
return this.newsletters;

}

The UISelectItemand UISelectItems componentsare used to representall the
values in a UISelectMany component. See “UISelectItem Properties” on page 167 and
“UISelectItems Properties” on page 167 for information on writing the bean
properties for the UISelectItemand UISelectItems components.

UISelectOne Properties

UISelectOne properties accept the same types as ULInput and UIOutput properties,
because a UISelectOne component represents the single selected item from a set of
items. This item can be any of the primitive types and anything else for which you can
apply a converter.

Here is an example of the selectOneMenu tag from “Displaying a Menu Using the
h:selectOneMenu Tag” on page 131:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem
itemvalue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem
itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem
itemvalue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

Here is the bean property corresponding to this tag:

protected String shippingOption = "2";

public void setShippingOption(String shippingOption) {
this.shippingOption = shippingOption;

}
public String getShippingOption() {

The Java EE 6 Tutorial: Basic Concepts

Writing Bean Properties

return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items
in the UISelectOne component.

The UISelectItemand UISelectItems components are used to represent all the
values in a UISelectOne component. This is explained in the section “Displaying a
Menu Using the h:selectOneMenu Tag” on page 131.

For information on how to write the backing bean properties for the UISelectItem
and UISelectItems components, see “UISelectItem Properties” on page 167 and
“UISelectItems Properties” on page 167.

UISelectItem Properties

A UISelectItem component represents a single value in a set of valuesin a
UISelectMany oraUISelectOne component. A UISelectItem component must be
bound to a backing bean property of type javax. faces.model.SelectItem. A
SelectItemobjectis composed of an Object representing the value, along with two
Strings representing the label and description of the UISelectItem object.

The example selectOneMenu tag from “Displaying a Menu Using the
h:selectOneMenu Tag” on page 131 contains selectItem tags that set the values of the
list of items in the page. Here is an example of a bean property that can set the values
for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne(){
return itemOne;

}

void setItemOne(SelectItem item) {
itemOne = item;

}

UISelectItems Properties

UISelectItems components are children of UISelectMany and UISelectOne
components. Each UISelectItems component is composed of a set of either
javax.faces.model.SelectItem instances or any collection of objects, such as an
array, alist, or even POJOs.

This section explains how to write the properties for selectItems tags containing
SelectIteminstances.

Chapter9 - Developing with JavaServer Faces Technology 167

Writing Bean Properties

168

You can populate the UISelectItems with SelectIteminstances programmatically in
the backing bean.

1. Inyour backing bean, create a list that is bound to the SelectItem component.

2. Define a set of SelectItem objects, set their values, and populate the list with the
SelectItem objects.

The following example code snippet from a backing bean shows how to create a
SelectItems property:

import javax.faces.model.SelectItem;

protected ArrayList options = null;
protected SelectItem newsletterd =
new SelectItem("200", "Duke’s Quarterly", "");

//in constructor, populate the list
options.add(newslettero);
options.add(newsletterl);
options.add(newsletter2);

public SelectItem getNewsletterd(){
return newsletter0;

}

void setNewsletter@(SelectItem firstNL) {
newsletter® = firstNL;

}
// Other SelectItem properties

public Collection[] getOptions(){
return options;

}

public void setOptions(Collection[] options){
this.options = new ArraylList(options);

}

The code first initializes options as a list. Each newsletter property is defined with
values. Then each newsletter SelectItemis added to the list. Finally, the code includes
the obligatory setOptions and getOptions accessor methods.

Writing Properties Bound to Component Instances

A property bound to a component instance returns and accepts a component instance
rather than a component value. The following components bind a component
instance to a backing bean property:

<h:selectBooleanCheckbox
id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

The Java EE 6 Tutorial: Basic Concepts

Writing Bean Properties

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub
UISelectBoolean component to the specialOffer property of CashierBean. The
outputLabel tag binds the fanClubLabel component, which represents the check
box’s label, to the specialOfferText property of CashierBean. If the user orders more
than $100 worth of items and clicks the Submit button, the submit method of
CashierBean sets both components’ rendered properties to true, causing the check
box and label to display when the page is rerendered.

Because the components corresponding to the example tags are bound to the backing
bean properties, these properties must match the components’ types. This means that
the specialOfferText property must be of type UIOutput, and the specialOffer
property must be of type UISelectBoolean:

UIOutput specialOfferText = null;

public UIOutput getSpecialOfferText() {
return this.specialOfferText;

}
public void setSpecialOfferText(UIOutput specialOfferText) {
this.specialOfferText = specialOfferText;

}
UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {
return this.specialOffer;

}
public void setSpecialOffer(UISelectBoolean specialOffer) {
this.specialOffer = specialOffer;

}

For more general information on component binding, see “Backing Beans” on
page 159.

For information on how to reference a backing bean method that performs navigation
when a button is clicked, see “Referencing a Method That Performs Navigation” on
page 155.

For more information on writing backing bean methods that handle navigation, see
“Writing a Method to Handle Navigation” on page 171.

Chapter9 - Developing with JavaServer Faces Technology 169

Writing Backing Bean Methods

Writing Properties Bound to Converters, Listeners, or
Validators

All the standard converter, listener, and validator tags included with JavaServer Faces
technology support binding attributes that allow you to bind converter, listener, or
validator implementations to backing bean properties.

The following example shows a standard convertDateTime tag using a value
expression with its binding attribute to bind the DateTimeConverter instance to the
convertDate property of LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />
</h:inputText>

The convertDate property must therefore accept and return a DateTimeConverter
object, as shown here:

private DateTimeConverter convertDate;
public DateTimeConverter getConvertDate() {

return convertDate;

public void setConvertDate(DateTimeConverter convertDate) {
convertDate.setPattern("EEEEEEEE, MMM dd, yyyy")
this.convertDate = convertDate;

}

Because the converter is bound to a backing bean property, the backing bean property
can modify the attributes of the converter or add new functionality to it. In the case of
the preceding example, the property sets the date pattern that the converter uses to
parse the user’s input into a Date object.

The backing bean properties that are bound to validator or listener implementations
are written in the same way and have the same general purpose.

Writing Backing Bean Methods

170

Methods of a backing bean can perform several application-specific functions for
components on the page. These functions include

Performing processing associated with navigation
Handling action events

Performing validation on the component’s value
Handling value-change events

By using a backing bean to perform these functions, you eliminate the need to
implement the Validator interface to handle the validation or one of the listener

The Java EE 6 Tutorial: Basic Concepts

Writing Backing Bean Methods

interfaces to handle events. Also, by using a backing bean instead of a Validator
implementation to perform validation, you eliminate the need to create a custom tag
for the Validator implementation.

In general, it’s good practice to include these methods in the same backing bean that

defines the properties for the components referencing these methods. The reason for
doing so is that the methods might need to access the component’s data to determine
how to handle the event or to perform the validation associated with the component.

The following sections explain how to write various types of backing bean methods.

Writing a Method to Handle Navigation

An action method, a backing bean method that handles navigation processing, must
be a public method that takes no parameters and returns an Object, which is the
logical outcome that the navigation system uses to determine the page to display next.
This method is referenced using the component tag’s action attribute.

The following action method is from a backing bean named CashierBean, which is
invoked when a user clicks the Submit button on the page. If the user has ordered more
than $100 worth of items, this method sets the rendered properties of the fanClub and
specialOffer components to true, causing them to be displayed on the page the next
time that page is rendered.

After setting the components’ rendered properties to true, this method returns the
logical outcome null. This causes the JavaServer Faces implementation to rerender
the page without creating a new view of the page, retaining the customer’s input. If this
method were to return purchase, which is the logical outcome to use to advance to a
payment page, the page would rerender without retaining the customer’s input.

If the user does not purchase more than $100 worth of items, or if the thankYou
component has already been rendered, the method returns receipt. The JavaServer
Faces implementation loads the page after this method returns:

public String submit() {

if(cart().getTotal() > 100.00 &&
IspecialOffer.isRendered())
{

specialOfferText.setRendered(true);
specialOffer.setRendered(true);
return null;

} else if (specialOffer.isRendered() &&

IthankYou.isRendered()){

thankYou.setRendered(true);
return null;

} else {
clear();

Chapter9 - Developing with JavaServer Faces Technology 171

Writing Backing Bean Methods

172

return ("receipt");

}

Typically, an action method will return a String outcome, as shown in the previous
example. Alternatively, you can define an Enum class that encapsulates all possible
outcome strings and then make an action method return an enum constant, which
represents a particular String outcome defined by the Enum class.

The following example uses an Enum class to encapsulate all logical outcomes:

public enum Navigation {
main, accountHist, accountList, atm, atmAck, transferFunds,
transferAck, error

}

When it returns an outcome, an action method uses the dot notation to reference the
outcome from the Enum class:

public Object submit(){

return Navigation.accountHist;

}

The section “Referencing a Method That Performs Navigation” on page 155 explains
how a component tag references this method. The section “Writing Properties Bound
to Component Instances” on page 168 explains how to write the bean properties to
which the components are bound.

Writing a Method to Handle an Action Event

A backing bean method that handles an action event must be a public method that
accepts an action event and returns void. This method is referenced using the
component tag’s actionListener attribute. Only components that implement
javax.faces.component.ActionSource can refer to this method.

In the following example, a method from a backing bean named LocaleBean processes
the event of a user clicking one of the hyperlinks on the page:

public void chooseLocaleFromLink(ActionEvent event) {
String current = event.getComponent().getId();
FacesContext context = FacesContext.getCurrentInstance();
context.getViewRoot().setLocale((Locale)
locales.get(current));

}

This method gets the component that generated the event from the event object; then
it gets the component’s ID, which indicates a region of the world. The method matches
the ID against a HashMap object that contains the locales available for the application.
Finally, the method sets the locale by using the selected value from the HashMap object.

The Java EE 6 Tutorial: Basic Concepts

Writing Backing Bean Methods

“Referencing a Method That Handles an Action Event” on page 156 explains how a
component tag references this method.

Writing a Method to Perform Validation

Instead of implementing the Validator interface to perform validation for a
component, you can include a method in a backing bean to take care of validating
input for the component. A backing bean method that performs validation must
accept a FacesContext, the component whose data must be validated, and the data to
be validated, just as the validate method of the Validator interface does. A
component refers to the backing bean method by using its validator attribute. Only
values of UIInput components or values of components that extend UIInput can be
validated.

Here is an example of a backing bean method that validates user input:

public void validateEmail(FacesContext context,
UIComponent toValidate, Object value) {
String message = "";
String email = (String) value;
if (email.contains(’'@’)) {
((UIInput)toValidate).setValid(false);
message = CoffeeBreakBean.loadErrorMessage(context,
CoffeeBreakBean.CB RESOURCE BUNDLE NAME,
"EMailError");
context.addMessage(toValidate.getClientId(context),
new FacesMessage(message));

}
Take a closer look at the preceding code segment:

1. ThevalidateEmail method first gets the local value of the component.

2. The method then checks whether the @ character is contained in the value.

3. Ifnot, the method sets the component’s valid property to false.

4. The method thenloads the error message and queues it onto the FacesContext

instance, associating the message with the component ID.

See “Referencing a Method That Performs Validation” on page 156 for information on
how a component tag references this method.

Writing a Method to Handle a Value-Change Event

A backing bean that handles a value-change event must use a public method that
accepts a value-change event and returns void. This method is referenced using the

Chapter9 - Developing with JavaServer Faces Technology 173

Using Bean Validation

component’s valueChangeListener attribute. This section explains how to write a
backing bean method to replace the ValueChangeListener implementation.

The following example tag comes from “Registering a Value-Change Listener on a
Component” on page 151, where the h: inputText tag with the id of name has a
ValueChangelListener instance registered on it. This ValueChangeListener instance
handles the event of entering a value in the field corresponding to the component.
When the user enters a value, a value-change event is generated, and the
processValueChange(ValueChangeEvent) method of the ValueChangelListener
class is invoked:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangelListener type="listeners.NameChanged" />
</h:inputText>

Instead of implementing ValueChangeListener, you can write a backing bean method
to handle this event. To do this, you move the

processValueChange (ValueChangeEvent) method from the ValueChangelListener
class, called NameChanged, to your backing bean.

Here is the backing bean method that processes the event of entering a value in the
name field on the page:

public void processValueChange(ValueChangeEvent event)
throws AbortProcessingException {
if (null != event.getNewValue()) {
FacesContext.getCurrentInstance().
getExternalContext().getSessionMap() .
put("name", event.getNewValue());

}

To make this method handle the ValueChangeEvent generated by an input
component, reference this method from the component tag’s valueChangeListener
attribute. See “Referencing a Method That Handles a Value-Change Event” on

page 156 for more information.

Using Bean Validation

Validating input received from the user to maintain data integrity is an important part
of application logic. Validation of data can take place at different layers in even the
simplest of applications, as shown in the guessnumber example application from an
earlier chapter. The guessnumber example application validates the user input (in the
h:inputText tag) for numerical data at the presentation layer and for a valid range of
numbers at the business layer.

174 The Java EE 6 Tutorial: Basic Concepts

Using Bean Validation

JavaBeans Validation (Bean Validation) is a new validation model available as part of
Java EE 6 platform. The Bean Validation model is supported by constraints in the form
of annotations placed on a field, method, or class of a JavaBeans component, such as a
backing bean.

Constraints can be built in or user defined. User-defined constraints are called custom
constraints. Several built-in constraints are available in the
javax.validation.constraints package. Table 9-2 lists all the built-in constraints.

TABLE9-2 Built-In Bean Validation Constraints

Constraint Description Example
@AssertFalse The value of the field or @AssertFalse
property must be false. boolean isUnsupported;
@AssertTrue The value of the field or @AssertTrue
property must be true. boolean isActive;
@becimalMax The value of the field or @DecimalMax("30.00")
property must be a decimal BigDecimal discount;
value lower than or equal to
the number in the value
element.
@becimalMin The value of the field or @DecimalMin("5.00")

property must be a decimal BigDecimal discount;
value greater than or equal to

the number in the value

element.

@Digits The value of the field or @Digits(integer=6, fraction=2)
property must be a number BigDecimal price;
within a specified range. The
integer element specifies the
maximum integral digits for
the number, and the
fraction element specifies
the maximum fractional
digits for the number.

@Future The value of the field or @Future
property must be a dateinthe Date eventDate;
future.

@Max The value of the field or @Max(10)

property mustbe aninteger ~ int quantity;
value lower than or equal to

the number in the value

element.

Chapter9 - Developing with JavaServer Faces Technology 175

Using Bean Validation

176

TABLE9-2 Built-In Bean Validation Constraints (Continued)
Constraint Description Example
@Min The value of the field or @Min(5)

@NotNull

@Null

@Past

@Pattern

@Size

property must be an integer
value greater than or equal to
the number in the value
element.

The value of the field or
property must not be null.

The value of the field or
property must be null.

The value of the field or
property must be a date in the
past.

The value of the field or
property must match the
regular expression defined in
the regexp element.

The size of the field or
property is evaluated and
must match the specified
boundaries. If the field or
property isa String, the size
of the string is evaluated. If
the field or property isa
Collection, the size of the
Collection is evaluated. If
the field or property is a Map,
the size of the Map is
evaluated. If the field or
property is an array, the size
of the array is evaluated. Use
one of the optional max or min
elements to specify the
boundaries.

int quantity;

@NotNull
String username;

@Null
String unusedString;

@Past
Date birthday;

@Pattern(regexp="\\ (\\d{31\\)\\d{3}-\\d{4}")
String phoneNumber;

@Size(min=2, max=240)
String briefMessage;

In the following example, a constraint is placed on a field using the built-in @NotNul1l

constraint:

public class
@NotNull

Name {

private String firstname;

@NotNull

private String lastname;

The Java EE 6 Tutorial: Basic Concepts

Using Bean Validation

You can also place more than one constraint on a single JavaBeans component object.
For example, you can place an additional constraint for size of field on the firstname
and the lastname fields:

public class Name {
@NotNull
@Size(min=1, max=16)
private String firstname;

@NotNull
@Size(min=1, max=16)
private String lastname;

}

The following example shows a method with a user-defined constraint that checks for
a predefined email address pattern such as a corporate email account:

@ValidEmail
public String getEmailAddress() {
return emailAddress;

}
For a built-in constraint, a default implementation is available. A user-defined or

custom constraint needs a validation implementation. In the above example, the
@validEmail custom constraint needs an implementation class.

Any validation failures are gracefully handled and can be displayed by the h:messages
tag.

Any backing bean that contains Bean Validation annotations automatically gets
validation constraints placed on the fields on a JavaServer Faces application’s web

pages.

See “Validating Persistent Fields and Properties” on page 337 for more information on
using validation constraints.

Validating Null and Empty Strings

The Java programming language distinguishes between null and empty strings. An
empty string is a string instance of zero length, whereas a null string has no value at all.

An empty string is represented as "". It is a character array of zero characters. A null
string is represented by null. It can be described as the absence of a string instance.

Backing bean elements represented as a JavaServer Faces text component such as
inputText are initialized with the value of the empty string by the JavaServer Faces
implementation. Validating these strings can be an issue when user input for such
fields is not required. Consider the following example, where the string testString is
a bean variable that will be set using input typed by the user. In this case, the user input
for the field is not required.

Chapter9 - Developing with JavaServer Faces Technology 177

Using Bean Validation

178

if (testString.equals(null)) {
doSomething();

} else {
doAnotherThing();

}

By default, the doAnotherThing method is called even when the user enters no data,
because the testString element has been initialized with the value of an empty string.

In order for the Bean Validation model to work as intended, you must set the context
parameter javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to
true in the web deployment descriptor file, web . xm1:

<context-param>
<param-name>
javax.faces.INTERPRET EMPTY_ STRING SUBMITTED VALUES AS NULL
</param-name>
<param-value>true</param-value>
</context-param>

This parameter enables the JavaServer Faces implementation to treat empty strings as
null.

Suppose, on the other hand, that you have a @otNull constraint on an element,
meaning that input is required. In this case, an empty string will pass this validation
constraint. However, if you set the context parameter

javax.faces.INTERPRET EMPTY STRING SUBMITTED VALUES AS NULL to true, the
value of the backing bean attribute is passed to the Bean Validation runtime as a null
value, causing the @otNull constraint to fail.

The Java EE 6 Tutorial: Basic Concepts

CHAPTER 10

Java Servlet Technology

Shortly after the Web began to be used for delivering services, service providers
recognized the need for dynamic content. Applets, one of the earliest attempts toward
this goal, focused on using the client platform to deliver dynamic user experiences. At
the same time, developers also investigated using the server platform for the same
purpose. Initially, Common Gateway Interface (CGI) server-side scripts were the main
technology used to generate dynamic content. Although widely used, CGI scripting
technology had many shortcomings, including platform dependence and lack of
scalability. To address these limitations, Java Servlet technology was created as a
portable way to provide dynamic, user-oriented content.

The following topics are addressed here:

“What Is a Servlet?” on page 180

“Servlet Lifecycle” on page 180

“Sharing Information” on page 182

“Creating and Initializing a Servlet” on page 183
“Writing Service Methods” on page 184
“Filtering Requests and Responses” on page 187
“Invoking Other Web Resources” on page 191
“Accessing the Web Context” on page 193
“Maintaining Client State” on page 193
“Finalizing a Servlet” on page 195

“The mood Example Application” on page 198
“Further Information about Java Servlet Technology” on page 200

179

What s a Servlet?

Whatls a Servlet?

A servlet is a Java programming language class used to extend the capabilities of
servers that host applications accessed by means of a request-response programming
model. Although servlets can respond to any type of request, they are commonly used
to extend the applications hosted by web servers. For such applications, Java Servlet
technology defines HTTP-specific servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes
for writing servlets. All servlets must implement the Servlet interface, which defines
lifecycle methods. When implementing a generic service, you can use or extend the
GenericServlet class provided with the Java Servlet API. The HttpServlet class
provides methods, such as doGet and doPost, for handling HTTP-specific services.

Servlet Lifecycle

180

The lifecycle of a servlet is controlled by the container in which the servlet has been
deployed. When a request is mapped to a servlet, the container performs the following
steps.

1. Ifaninstance of the servlet does not exist, the web container
a. Loads the servlet class.
b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization is
covered in “Creating and Initializing a Servlet” on page 183.

2. Invokes the service method, passing request and response objects. Service
methods are discussed in “Writing Service Methods” on page 184.

If it needs to remove the servlet, the container finalizes the servlet by calling the
servlet’s destroy method. For more information, see “Finalizing a Servlet” on page 195.

Handling Servlet Lifecycle Events

You can monitor and react to events in a servlet’s lifecycle by defining listener objects
whose methods get invoked when lifecycle events occur. To use these listener objects,
you must define and specify the listener class.

Defining the Listener Class

You define a listener class as an implementation of a listener interface. Table 10-1 lists
the events that can be monitored and the corresponding interface that must be
implemented. When a listener method is invoked, it is passed an event that contains

The Java EE 6 Tutorial: Basic Concepts

Servlet Lifecycle

information appropriate to the event. For example, the methods in the
HttpSessionListener interface are passed an HttpSessionEvent, which contains an
HttpSession.

TABLE10-1 Servlet Lifecycle Events

Object

Event

Listener Interface and Event Class

Web context (see

Initialization and

javax.servlet.ServletContextListener and

“Accessing the Web destruction ServletContextEvent

Context” on

page 193) Attribute added, javax.servlet.ServletContextAttributelListener
removed, or and ServletContextAttributeEvent
replaced

Session (See Creation, javax.servlet.http.HttpSessionListener,

“Maintaining Client invalidation, javax.servlet.http.

State” on page 193) activation, HttpSessionActivationListener, and

passivation, and
timeout

HttpSessionEvent

Attribute added, javax.servlet.http.
removed, or HttpSessionAttributelListener and
replaced HttpSessionBindingEvent
Request A servlet request javax.servlet.ServletRequestListener and
has started being ServletRequestEvent
processed by web
components
Attribute added, javax.servlet.ServletRequestAttributeListener
removed, or and ServletRequestAttributeEvent
replaced

Use the @WebListener annotation to define a listener to get events for various
operations on the particular web application context. Classes annotated with
@WebListener mustimplement one of the following interfaces:

javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributelListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet..http.HttpSessionListener
javax.servlet..http.HttpSessionAttributelListener

For example, the following code snippet defines a listener that implements two of these
interfaces:

import javax.servlet.ServletContextAttributelListener;
import javax.servlet.ServletContextListener;
import javax.servlet.annotation.WebListener;

Chapter 10 « Java Servlet Technology 181

Sharing Information

@WebListener()
public class SimpleServletListener implements ServletContextListener,
ServletContextAttributeListener {

Handling Servlet Errors

Any number of exceptions can occur when a servlet executes. When an exception
occurs, the web container generates a default page containing the following message:

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a
given exception.

Sharing Information

182

Web components, like most objects, usually work with other objects to accomplish
their tasks. Web components can do so by

= Using private helper objects (for example, JavaBeans components).
= Sharing objects that are attributes of a public scope.
= Using a database.

= Invoking other web resources. The Java Servlet technology mechanisms that allow
a web component to invoke other web resources are described in “Invoking Other
Web Resources” on page 191.

Using Scope Objects

Collaborating web components share information by means of objects that are
maintained as attributes of four scope objects. You access these attributes by using the
getAttribute and setAttribute methods of the class representing the scope.

Table 10-2 lists the scope objects.

TABLE10-2 Scope Objects

Scope Object Class Accessible from
Web context javax.servlet. Web components within a web context. See
ServletContext “Accessing the Web Context” on page 193.
Session javax.servlet. Web components handling a request that belongs to
http.HttpSession the session. See “Maintaining Client State” on
page 193.

The Java EE 6 Tutorial: Basic Concepts

Creating and Initializing a Servlet

TABLE10-2 Scope Objects (Continued)
Scope Object Class Accessible from
Request Subtype of javax.servlet. Web components handling the request.
ServletRequest
Page javax.servlet. The JSP page that creates the object.

jsp.JspContext

Controlling Concurrent Access to Shared Resources

In a multithreaded server, shared resources can be accessed concurrently. In addition
to scope object attributes, shared resources include in-memory data, such as instance
or class variables, and external objects, such as files, database connections, and
network connections.

Concurrent access can arise in several situations:

= Multiple web components accessing objects stored in the web context.
= Multiple web components accessing objects stored in a session.

= Multiple threads within a web component accessing instance variables. A web
container will typically create a thread to handle each request. To ensure thata
servlet instance handles only one request at a time, a servlet can implement the
SingleThreadModel interface. If a servlet implements this interface, no two
threads will execute concurrently in the servlet’s service method. A web container
can implement this guarantee by synchronizing access to a single instance of the
servlet or by maintaining a pool of web component instances and dispatching each
new request to a free instance. This interface does not prevent synchronization
problems that result from web components’ accessing shared resources, such as
static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsistent
fashion. You prevent this by controlling the access using the synchronization
techniques described in the Threads lesson at http://download.oracle.com/
docs/cd/E17409 01/javase/tutorial/essential/concurrency/index.html in
The Java Tutorial, Fourth Edition, by Sharon Zakhour et al. (Addison-Wesley, 2006).

Creating and Initializing a Servlet

Use the @WebServlet annotation to define a servlet component in a web application.
This annotation is specified on a class and contains metadata about the servlet being
declared. The annotated servlet must specify at least one URL pattern. This is done by
using the urlPatterns or value attribute on the annotation. All other attributes are

Chapter 10 « Java Servlet Technology 183

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/essential/concurrency/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/essential/concurrency/index.html

Writing Service Methods

optional, with default settings. Use the value attribute when the only attribute on the
annotation is the URL pattern; otherwise use the urlPatterns attribute when other
attributes are also used.

Classes annotated with @WwebServlet must extend the
javax.servlet.http.HttpServlet class. For example, the following code snippet
defines a servlet with the URL pattern /report:

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

The web container initializes a servlet after loading and instantiating the servlet class
and before delivering requests from clients. To customize this process to allow the
servlet to read persistent configuration data, initialize resources, and perform any
other one-time activities, you can either override the init method of the Servlet
interface or specify the initParams attribute of the @WebServlet annotation. The
initParanms attribute contains a @WebInitParamannotation. If it cannot complete its
initialization process, a servlet throws an UnavailableException.

Writing Service Methods

184

The service provided by a servlet is implemented in the service method of a
GenericServlet, in the doMethod methods (where Method can take the value Get,
Delete,Options, Post, Put, or Trace) of an HttpServlet object, or in any other
protocol-specific methods defined by a class that implements the Servlet interface.
The term service method is used for any method in a servlet class that provides a service
to aclient.

The general pattern for a service method is to extract information from the request,
access external resources, and then populate the response, based on that information.
For HTTP servlets, the correct procedure for populating the response is to do the
following:

1. Retrieve an output stream from the response.
2. Fillin the response headers.
3. Write any body content to the output stream.

Response headers must always be set before the response has been committed. The
web container will ignore any attempt to set or add headers after the response has been
committed. The next two sections describe how to get information from requests and
generate responses.

The Java EE 6 Tutorial: Basic Concepts

Writing Service Methods

Getting Information from Requests

A request contains data passed between a client and the servlet. All requests
implement the ServletRequest interface. This interface defines methods for
accessing the following information:

= Parameters, which are typically used to convey information between clients and
servlets

= Object-valued attributes, which are typically used to pass information between the
servlet container and a servlet or between collaborating servlets

= Information about the protocol used to communicate the request and about the
client and server involved in the request

= Information relevant to localization

You can also retrieve an input stream from the request and manually parse the data.
To read character data, use the Buf feredReader object returned by the request’s
getReader method. To read binary data, use the ServletInputStream returned by
getInputStream.

HTTP servlets are passed an HT'TP request object, HttpServletRequest, which
contains the request URL, HTTP headers, query string, and so on. An HTTP request
URL contains the following parts:

http://[host]: [port] [request-path]? [query-string]
The request path is further composed of the following elements:

= Context path: A concatenation of a forward slash (/) with the context root of the
servlet’s web application.

= Servlet path: The path section that corresponds to the component alias that
activated this request. This path starts with a forward slash (/).

= Path info: The part of the request path that is not part of the context path or the
servlet path.

You can use the getContextPath, getServletPath, and getPathInfo methods of the
HttpServletRequest interface to access this information. Except for URL encoding
differences between the request URI and the path parts, the request URI is always
comprised of the context path plus the servlet path plus the path info.

Chapter 10 « Java Servlet Technology 185

Writing Service Methods

186

Query strings are composed of a set of parameters and values. Individual parameters
are retrieved from a request by using the getParameter method. There are two ways to
generate query strings.

= A query string can explicitly appear in a web page.

= A query string is appended to a URL when a form with a GET HTTP method is
submitted.

Constructing Responses

A response contains data passed between a server and the client. All responses
implement the ServletResponse interface. This interface defines methods that allow
you to

= Retrieve an output stream to use to send data to the client. To send character data,
use the PrintWriter returned by the response’s getWriter method. To send
binary data in a Multipurpose Internet Mail Extensions (MIME) body response,
use the ServletOutputStream returned by getOutputStream. To mix binary and
text data, as in a multipart response, use a ServletOutputStream and manage the
character sections manually.

= Indicate the content type (for example, text/html) being returned by the response
with the setContentType (String) method. This method must be called before the
response is committed. A registry of content type names is kept by the Internet
Assigned Numbers Authority (IANA) at http://www.iana.org/assignments/
media-types/.

= Indicate whether to buffer output with the setBufferSize(int) method. By
default, any content written to the output stream is immediately sent to the client.
Buffering allows content to be written before anything is sent back to the client,
thus providing the servlet with more time to set appropriate status codes and
headers or forward to another web resource. The method must be called before any
content is written or before the response is committed.

= Setlocalization information, such as locale and character encoding.

HTTP response objects, javax.servlet.http.HttpServietResponse, have fields
representing HTTP headers, such as the following:

= Status codes, which are used to indicate the reason a request is not satisfied or that a
request has been redirected.

= Cookies, which are used to store application-specific information at the client.
Sometimes, cookies are used to maintain an identifier for tracking a user’s session
(see “Session Tracking” on page 195).

The Java EE 6 Tutorial: Basic Concepts

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Filtering Requests and Responses

Filtering Requests and Responses

A filter is an object that can transform the header and content (or both) of a request or
response. Filters differ from web components in that filters usually do not themselves
create a response. Instead, a filter provides functionality that can be “attached” to any
kind of web resource. Consequently, a filter should not have any dependencies on a
web resource for which it is acting as a filter; this way, it can be composed with more
than one type of web resource.

The main tasks that a filter can perform are as follows:

= Query the request and act accordingly.
= Block the request-and-response pair from passing any further.

= Modify the request headers and data. You do this by providing a customized
version of the request.

= Modify the response headers and data. You do this by providing a customized
version of the response.

m Interact with external resources.

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filters
in a specific order. This chain is specified when the web application containing the
component is deployed and is instantiated when a web container loads the
component.

Programming Filters

The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces
in the javax.servlet package. You define a filter by implementing the Filter
interface.

Use the @WebFilter annotation to define a filter in a web application. This annotation
is specified on a class and contains metadata about the filter being declared. The
annotated filter must specify at least one URL pattern. This is done by using the
urlPatterns or value attribute on the annotation. All other attributes are optional,
with default settings. Use the value attribute when the only attribute on the
annotation is the URL pattern; use the urlPatterns attribute when other attributes
are also used.

Classes annotated with the @WebFilter annotation must implement the
javax.servlet.Filter interface.

Chapter 10 « Java Servlet Technology 187

Filtering Requests and Responses

188

To add configuration data to the filter, specify the initParams attribute of the
@WebFilter annotation. The initParams attribute contains a @WebInitParam
annotation. The following code snippet defines a filter, specifying an initialization
parameter:

import javax.servlet.Filter;
import javax.servlet.annotation.WebFilter;
import javax.servlet.annotation.WebInitParam;

@WebFilter(filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

The most important method in the Filter interface is doFilter, which is passed
request, response, and filter chain objects. This method can perform the following
actions:

= Examine the request headers.
= Customize the request object if the filter wishes to modify request headers or data.

= Customize the response object if the filter wishes to modify response headers or
data.

= Invoke the next entity in the filter chain. If the current filter is the last filter in the
chain that ends with the target web component or static resource, the next entity is
the resource at the end of the chain; otherwise, it is the next filter that was
configured in the WAR. The filter invokes the next entity by calling the doFilter
method on the chain object, passing in the request and response it was called with
or the wrapped versions it may have created. Alternatively, the filter can choose to
block the request by not making the call to invoke the next entity. In the latter case,
the filter is responsible for filling out the response.

= Examine response headers after invoking the next filter in the chain.

= Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods. The
init method is called by the container when the filter is instantiated. If you wish to

pass initialization parameters to the filter, you retrieve them from the FilterConfig
object passed to init.

Programming Customized Requests and Responses

There are many ways for a filter to modify a request or a response. For example, a filter
can add an attribute to the request or can insert data in the response.

The Java EE 6 Tutorial: Basic Concepts

Filtering Requests and Responses

A filter that modifies a response must usually capture the response before it is returned
to the client. To do this, you pass a stand-in stream to the servlet that generates the
response. The stand-in stream prevents the servlet from closing the original response
stream when it completes and allows the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that
overrides the getWriter or getOutputStream method to return this stand-in stream.
The wrapper is passed to the doFilter method of the filter chain. Wrapper methods
default to calling through to the wrapped request or response object.

To override request methods, you wrap the request in an object that extends either
ServletRequestWrapper or HttpServletRequestWrapper. To override response
methods, you wrap the response in an object that extends either
ServletResponseWrapper or HttpServletResponseWrapper.

Specifying Filter Mappings

A web container uses filter mappings to decide how to apply filters to web resources. A
filter mapping matches a filter to a web component by name or to web resources by
URL pattern. The filters are invoked in the order in which filter mappings appear in
the filter mapping list of a WAR. You specify a filter mapping list for a WAR in its
deployment descriptor by either using NetBeans IDE or coding the list by hand with
XML.

If you want to log every request to a web application, you map the hit counter filter to
the URL pattern /*.

You can map a filter to one or more web resources, and you can map more than one
filter to a web resource. This is illustrated in Figure 10-1, where filter F1 is mapped to
servlets S1, S2, and S3; filter F2 is mapped to servlet S2; and filter F3 is mapped to
servlets S1 and S2.

Chapter 10 « Java Servlet Technology 189

Filtering Requests and Responses

190

FIGURE 10-1 Filter-to-Servlet Mapping

H N _,@
\ (&
. =

Recall that a filter chain is one of the objects passed to the doFilter method of a filter.
This chain is formed indirectly by means of filter mappings. The order of the filters in
the chain is the same as the order in which filter mappings appear in the web
application deployment descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter method
of F1. The doFilter method of each filter in S1’s filter chain is invoked by the
preceding filter in the chain by means of the chain.doFilter method. Because SI’s
filter chain contains filters F1 and F3, F1’s call to chain.doFilter invokes the
doFilter method of filter F3. When F3’s doFilter method completes, control returns
to F1’'s doFilter method.

To Specify Filter Mappings Using NetBeans IDE

Expand the application’s project node in the Project pane.

Expand the Web Pages and WEB-INF nodes under the project node.

Double-click web. xm1.

Click Filters at the top of the editor pane.

Expand the Servlet Filters node in the editor pane.

Click Add Filter Element to map the filter to a web resource by name or by URL pattern.

In the Add Servlet Filter dialog, enter the name of the filter in the Filter Name field.

The Java EE 6 Tutorial: Basic Concepts

Invoking Other Web Resources

8 Click Browse to locate the servlet class to which the filter applies.

You can include wildcard characters so that you can apply the filter to more than one
servlet.

9 Click OK.
10 To constrain how thefilter is applied to requests, follow these steps.
a. Expand theFilter Mappings node.
b. Select the filter from the list of filters.
c. ClickAdd.

d. Inthe Add Filter Mapping dialog, select one of the following dispatcher types:

= REQUEST: Only when the request comes directly from the client
= ASYNC: Only when the asynchronous request comes from the client

= FORWARD: Only when the request has been forwarded to a component (see
“Transferring Control to Another Web Component” on page 192)

= INCLUDE: Only when the request is being processed by a component that has
been included (see “Including Other Resources in the Response” on page 192)

= ERROR: Only when the request is being processed with the error page
mechanism (see “Handling Servlet Errors” on page 182)

You can direct the filter to be applied to any combination of the preceding
situations by selecting multiple dispatcher types. If no types are specified, the
default option is REQUEST.

Invoking Other Web Resources

Web components can invoke other web resources both indirectly and directly. A web
component indirectly invokes another web resource by embedding a URL that points
to another web component in content returned to a client. While it is executing, a web
component directly invokes another resource by either including the content of
another resource or forwarding a request to another resource.

To invoke a resource available on the server that is running a web component, you
must first obtain a RequestDispatcher object by using the
getRequestDispatcher("URL") method. You can get a RequestDispatcher object
from either a request or the web context; however, the two methods have slightly
different behavior. The method takes the path to the requested resource as an
argument. A request can take a relative path (that is, one that does not begin with a /),

Chapter 10 « Java Servlet Technology 191

Invoking Other Web Resources

but the web context requires an absolute path. If the resource is not available or if the
server has not implemented a RequestDispatcher object for that type of resource,
getRequestDispatcher will return null. Your servlet should be prepared to deal with
this condition.

Including Other Resources in the Response

It is often useful to include another web resource, such as banner content or copyright
information) in the response returned from a web component. To include another
resource, invoke the include method of a RequestDispatcher object:

include(request, response);

If the resource is static, the include method enables programmatic server-side
includes. If the resource is a web component, the effect of the method is to send the
request to the included web component, execute the web component, and then include
the result of the execution in the response from the containing servlet. An included
web component has access to the request object but is limited in what it can do with
the response object.

= [t can write to the body of the response and commit a response.

= [tcannot set headers or call any method, such as setCookie, that affects the
headers of the response.

Transferring Control to Another Web Component

In some applications, you might want to have one web component do preliminary
processing of a request and have another component generate the response. For
example, you might want to partially process a request and then transfer to another
component, depending on the nature of the request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path

of the forwarded page. The original URI and its constituent parts are saved as request
attributes

javax.servlet.forward. [request-uri| context-path|servlet-path| path-info | query-string].

The forward method should be used to give another resource responsibility for
replying to the user. If you have already accessed a ServletOutputStreamor
PrintWriter object within the servlet, you cannot use this method; doing so throws an
IllegalStateException.

192 The Java EE 6 Tutorial: Basic Concepts

Maintaining Client State

Accessing the Web Context

The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context by using the
getServletContext method. The web context provides methods for accessing

= Initialization parameters

= Resources associated with the web context
= Object-valued attributes

= Logging capabilities

The counter’s access methods are synchronized to prevent incompatible operations by
servlets that are running concurrently. A filter retrieves the counter object by using the
context’s getAttribute method. The incremented value of the counter is recorded in
the log.

Maintaining Client State

Many applications require that a series of requests from a client be associated with one
another. For example, a web application can save the state of a user’s shopping cart
across requests. Web-based applications are responsible for maintaining such state,
called a session, because HT'TP is stateless. To support applications that need to
maintain state, Java Servlet technology provides an API for managing sessions and
allows several mechanisms for implementing sessions.

Accessing a Session

Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session
associated with this request; or, if the request does not have a session, this method
creates one.

Associating Objects with a Session

You can associate object-valued attributes with a session by name. Such attributes are
accessible by any web component that belongs to the same web context and is
handling a request that is part of the same session.

Chapter 10 « Java Servlet Technology 193

Maintaining Client State

194

Recall that your application can notify web context and session listener objects of
servlet lifecycle events (“Handling Servlet Lifecycle Events” on page 180). You can also
notify objects of certain events related to their association with a session such as the
following:

= When the object is added to or removed from a session. To receive this
notification, your object must implement the
javax.servlet.http.HttpSessionBindinglListener interface.

= When the session to which the object is attached will be passivated or activated. A
session will be passivated or activated when it is moved between virtual machines
or saved to and restored from persistent storage. To receive this notification, your
object must implement the
javax.servlet.http.HttpSessionActivationListener interface.

Session Management

Because an HTTP client has no way to signal that it no longer needs a session, each
session has an associated timeout so that its resources can be reclaimed. The timeout
period can be accessed by using a session’s getMaxInactiveInterval and
setMaxInactiveInterval methods.

= To ensure that an active session is not timed out, you should periodically access the
session by using service methods because this resets the session’s time-to-live
counter.

= When a particular client interaction is finished, you use the session’s invalidate
method to invalidate a session on the server side and remove any session data.

To Set the Timeout Period Using NetBeans IDE

To set the timeout period in the deployment descriptor using NetBeans IDE, follow
these steps.

Open the project if you haven't already.

Expand the project’s node in the Projects pane.

Expand the Web Pages node and then the WEB-INF node.
Double-clickweb. xml.

Click General at the top of the editor.

The Java EE 6 Tutorial: Basic Concepts

Finalizing a Servlet

6 Inthe Session Timeout field, type an integer value.

The integer value represents the number of minutes of inactivity that must pass before
the session times out.

Session Tracking

To associate a session with a user, a web container can use several methods, all of
which involve passing an identifier between the client and the server. The identifier
can be maintained on the client as a cookie, or the web component can include the
identifier in every URL that is returned to the client.

If your application uses session objects, you must ensure that session tracking is
enabled by having the application rewrite URLs whenever the client turns off cookies.
You do this by calling the response’s encodeURL (URL) method on all URLSs returned by
a servlet. This method includes the session ID in the URL only if cookies are disabled;
otherwise, the method returns the URL unchanged.

Finalizing a Servlet

A servlet container may determine that a servlet should be removed from service (for
example, when a container wants to reclaim memory resources or when it is being shut
down). In such a case, the container calls the destroy method of the Servlet interface.
In this method, you release any resources the servlet is using and save any persistent
state. The destroy method releases the database object created in the init method.

A servlet’s service methods should all be complete when a servlet is removed. The
server tries to ensure this by calling the destroy method only after all service requests
have returned or after a server-specific grace period, whichever comes first. If your
servlet has operations that may run longer than the server’s grace period, the
operations could still be running when destroy is called. You must make sure that any
threads still handling client requests complete.

The remainder of this section explains how to do the following:

= Keep track of how many threads are currently running the service method.

= Provide a clean shutdown by having the dest roy method notify long-running
threads of the shutdown and wait for them to complete.

= Have the long-running methods poll periodically to check for shutdown and, if
necessary, stop working, clean up, and return.

Chapter 10 « Java Servlet Technology 195

Finalizing a Servlet

196

Tracking Service Requests

To track service requests, include in your servlet class a field that counts the number of
service methods that are running. The field should have synchronized access methods
to increment, decrement, and return its value:

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

// Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {
serviceCounter++;

protected synchronized void leavingServiceMethod() {
serviceCounter--;

}

protected synchronized int numServices() {
return serviceCounter;
}
}

The service method should increment the service counter each time the method is
entered and should decrement the counter each time the method returns. This is one
of the few times that your HttpServlet subclass should override the service method.
The new method should call super.service to preserve the functionality of the
original service method:

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {
enteringServiceMethod();

try {
super.service(req, resp);
} finally {
leavingServiceMethod();
}

Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not release any shared
resources until all the service requests have completed. One part of doing this is to
check the service counter. Another part is to notify the long-running methods that it is
time to shut down. For this notification, another field is required. The field should
have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;

//Access methods for shuttingDown
protected synchronized void setShuttingDown(boolean flag) {

The Java EE 6 Tutorial: Basic Concepts

Finalizing a Servlet

shuttingDown = flag;
}
protected synchronized boolean isShuttingDown() {
return shuttingDown;
b
}

Here is an example of the destroy method using these fields to provide a clean
shutdown:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {
setShuttingDown(true);
}

/* Wait for the service methods to stop. */
while(numServices() > 0) {
try {
Thread.sleep(interval);
} catch (InterruptedException e) {
}

Creating Polite Long-Running Methods

The final step in providing a clean shutdown is to make any long-running methods
behave politely. Methods that might run for a long time should check the value of the
field that notifies them of shutdowns and should interrupt their work, if necessary:

public void doPost(...) {
for(i = 0; ((i < lotsOfStuffToDo) &&
lisShuttingDown()); i++) {
try {

partOfLongRunningOperation(i);
} catch (InterruptedException e) {

}

Chapter 10 « Java Servlet Technology 197

The mood Example Application

The mood Example Application

The mood example application, located in tut-install/examples/web/mood, is a simple
example that displays Duke’s moods at different times during the day. The example
shows how to develop a simple application by using the @webServlet, @webFilter,
and @WebListener annotations to create a servlet, a listener, and a filter.

Components of the mood Example Application

The mood example application is comprised of three components:
mood.web.MoodServlet, mood.web.TimeOfDayFilter, and
mood.web.SimpleServletListener.

MoodServlet, the presentation layer of the application, displays Duke’s mood in a
graphic, based on the time of day. The @webServlet annotation specifies the URL
pattern:

@wWebServlet("/report")
public class MoodServlet extends HttpServlet {

TimeOfDayFilter sets an initialization parameter indicating that Duke is awake:

@WebFilter(filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

The filter calls the doFilter method, which contains a switch statement that sets
Duke’s mood based on the current time.

SimpleServletListener logs changes in the servlet’s lifecycle. The log entries appear
in the server log.

Building, Packaging, Deploying, and Running the
mood Example

You can use either NetBeans IDE or Ant to build, package, deploy, and run the mood
example.

198 The Java EE 6 Tutorial: Basic Concepts

The mood Example Application

To Build, Package, Deploy, and Run the mood Example Using
NetBeans IDE

Select File—O0pen Project.

In the Open Project dialog, navigate to:

tut-install/examples/web/

Select the mood folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the mood project and select Build.
Right-click the project and select Deploy.

Inaweb browser, openthe URL http://localhost:8080/mood/report.

The URL specifies the context root, followed by the URL pattern specified for the
servlet.

A web page appears with the title “Servlet MoodServlet at /mood” a text string
describing Duke’s mood, and an illustrative graphic.

To Build, Package, Deploy, and Run the mood Example Using Ant

In a terminal window, go to:

tut-install/examples/web/mood/

Type the following command:

ant

This target builds the WAR file and copies it to the
tut-install/examples/web/mood/dist/ directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

Inaweb browser, openthe URL http://localhost:8080/mood/report.
The URL specifies the context root, followed by the URL pattern.

A web page appears with the title “Servlet MoodServlet at /mood” a text string
describing Duke’s mood, and an illustrative graphic.

Chapter 10 « Java Servlet Technology 199

Further Information about Java Servlet Technology

Further Information about Java Servlet Technology

For more information on Java Servlet technology, see

= Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

m Java Servlet web site:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

200 The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html

PART 111

Web Services

Part IIT introduces web services. This part contains the following chapters:

= Chapter 11, “Introduction to Web Services”
= Chapter 12, “Building Web Services with JAX-WS”
= Chapter 13, “Building RESTful Web Services with JAX-RS”

201

This page intentionally left blank

L K 2 4 CHAPTER 11

Introduction to Web Services

Part III of the tutorial discusses Java EE 6 web services technologies. For this book,
these technologies include Java API for XML Web Services (JAX-WS) and Java API for
RESTful Web Services (JAX-RS).

The following topics are addressed here:

= “What Are Web Services?” on page 203
= “Types of Web Services” on page 203
= “Deciding Which Type of Web Service to Use” on page 206

What Are Web Services?

Web services are client and server applications that communicate over the World Wide
Web’s (WWW) HyperText Transfer Protocol (HTTP). As described by the World
Wide Web Consortium (W3C), web services provide a standard means of
interoperating between software applications running on a variety of platforms and
frameworks. Web services are characterized by their great interoperability and
extensibility, as well as their machine-processable descriptions, thanks to the use of
XML. Web services can be combined in a loosely coupled way to achieve complex
operations. Programs providing simple services can interact with each other to deliver
sophisticated added-value services.

Types of Web Services

On the conceptual level, a service is a software component provided through a
network-accessible endpoint. The service consumer and provider use messages to
exchange invocation request and response information in the form of self-containing
documents that make very few assumptions about the technological capabilities of the
receiver.

203

Types of Web Services

204

On a technical level, web services can be implemented in various ways. The two types
of web services discussed in this section can be distinguished as “big” web services and
“RESTful” web services.

“Big”Web Services

In Java EE 6, JAX-WS provides the functionality for “big” web services, which are
described in Chapter 12, “Building Web Services with JAX-WS? Big web services use
XML messages that follow the Simple Object Access Protocol (SOAP) standard, an
XML language defining a message architecture and message formats. Such systems
often contain a machine-readable description of the operations offered by the service,
written in the Web Services Description Language (WSDL), an XML language for
defining interfaces syntactically.

The SOAP message format and the WSDL interface definition language have gained
widespread adoption. Many development tools, such as NetBeans IDE, can reduce the
complexity of developing web service applications.

A SOAP-based design must include the following elements.

= A formal contract must be established to describe the interface that the web service
offers. WSDL can be used to describe the details of the contract, which may include
messages, operations, bindings, and the location of the web service. You may also
process SOAP messages in a JAX-WS service without publishinga WSDL.

= The architecture must address complex nonfunctional requirements. Many web
service specifications address such requirements and establish a common
vocabulary for them. Examples include transactions, security, addressing, trust,
coordination, and so on.

= The architecture needs to handle asynchronous processing and invocation. In such
cases, the infrastructure provided by standards, such as Web Services Reliable
Messaging (WSRM), and APIs, such as JAX-WS, with their client-side
asynchronous invocation support, can be leveraged out of the box.

RESTful Web Services

In Java EE 6, JAX-RS provides the functionality for Representational State Transfer
(RESTful) web services. REST is well suited for basic, ad hoc integration scenarios.
RESTful web services, often better integrated with HT'TP than SOAP-based services
are, do not require XML messages or WSDL service-API definitions.

Project Jersey is the production-ready reference implementation for the JAX-RS
specification. Jersey implements support for the annotations defined in the JAX-RS
specification, making it easy for developers to build RESTful web services with Java
and the Java Virtual Machine (JVM).

The Java EE 6 Tutorial: Basic Concepts

Types of Web Services

Because RESTful web services use existing well-known W3C and Internet Engineering
Task Force (IETF) standards (HTTP, XML, URI, MIME) and have a lightweight
infrastructure that allows services to be built with minimal tooling, developing
RESTful web services is inexpensive and thus has a very low barrier for adoption. You
can use a development tool such as NetBeans IDE to further reduce the complexity of
developing RESTful web services.

A RESTful design may be appropriate when the following conditions are met.

= The web services are completely stateless. A good test is to consider whether the
interaction can survive a restart of the server.

= A caching infrastructure can be leveraged for performance. If the data that the web
service returns is not dynamically generated and can be cached, the caching
infrastructure that web servers and other intermediaries inherently provide can be
leveraged to improve performance. However, the developer must take care because
such caches are limited to the HTTP GET method for most servers.

= The service producer and service consumer have a mutual understanding of the
context and content being passed along. Because there is no formal way to describe
the web services interface, both parties must agree out of band on the schemas that
describe the data being exchanged and on ways to process it meaningfully. In the
real world, most commercial applications that expose services as RESTful
implementations also distribute so-called value-added toolkits that describe the
interfaces to developers in popular programming languages.

= Bandwidth is particularly important and needs to be limited. REST is particularly
useful for limited-profile devices, such as PDAs and mobile phones, for which the
overhead of headers and additional layers of SOAP elements on the XML payload
must be restricted.

= Web service delivery or aggregation into existing web sites can be enabled easily
with a RESTful style. Developers can use such technologies as JAX-RS and
Asynchronous JavaScript with XML (AJAX) and such toolkits as Direct Web
Remoting (DWR) to consume the services in their web applications. Rather than
starting from scratch, services can be exposed with XML and consumed by HTML
pages without significantly refactoring the existing web site architecture. Existing
developers will be more productive because they are adding to something they are
already familiar with rather than having to start from scratch with new technology.

RESTful web services are discussed in Chapter 13, “Building RESTful Web Services
with JAX-RS?” This chapter contains information about generating the skeleton of a
RESTful web service using both NetBeans IDE and the Maven project management
tool.

Chapter 11 « Introduction to Web Services 205

Deciding Which Type of Web Service to Use

Deciding Which Type of Web Service to Use

Basically, you would want to use RESTful web services for integration over the web
and use big web services in enterprise application integration scenarios that have
advanced quality of service (QoS) requirements.

206

JAX-WS: addresses advanced QoS requirements commonly occurring in
enterprise computing. When compared to JAX-RS, JAX-WS makes it easier to
support the WS-* set of protocols, which provide standards for security and
reliability, among other things, and interoperate with other WS-* conforming
clients and servers.

JAX-RS: makes it easier to write web applications that apply some or all of the
constraints of the REST style to induce desirable properties in the application, such
as loose coupling (evolving the server is easier without breaking existing clients),
scalability (start small and grow), and architectural simplicity (use off-the-shelf
components, such as proxies or HT'TP routers). You would choose to use JAX-RS
for your web application because it is easier for many types of clients to consume
RESTful web services while enabling the server side to evolve and scale. Clients can
choose to consume some or all aspects of the service and mash it up with other
web-based services.

Note - For an article that provides more in-depth analysis of this issue, see “RESTful
Web Services vs. “Big” Web Services: Making the Right Architectural Decision,” by
Cesare Pautasso, Olaf Zimmermann, and Frank Leymann from WWW 08:
Proceedings of the 17th International Conference on the World Wide Web (2008), pp.
805-814 (http://www2008.0rg/papers/pdf/p805-pautassoA.pdf).

The Java EE 6 Tutorial: Basic Concepts

http://www.oracle.com/technetwork/java/index-jsp-135475.html

CHAPTER 12

Building Web Services with JAX-WS

Java API for XML Web Services (JAX-WS) is a technology for building web services
and clients that communicate using XML. JAX-WS allows developers to write
message-oriented as well as Remote Procedure Call-oriented (RPC-oriented) web
services.

In JAX-WS, a web service operation invocation is represented by an XML-based
protocol, such as SOAP. The SOAP specification defines the envelope structure,
encoding rules, and conventions for representing web service invocations and
responses. These calls and responses are transmitted as SOAP messages (XML files)
over HTTP.

Although SOAP messages are complex, the JAX-WS API hides this complexity from
the application developer. On the server side, the developer specifies the web service
operations by defining methods in an interface written in the Java programming
language. The developer also codes one or more classes that implement those
methods. Client programs are also easy to code. A client creates a proxy (a local object
representing the service) and then simply invokes methods on the proxy. With
JAX-WS, the developer does not generate or parse SOAP messages. It is the JAX-WS
runtime system that converts the API calls and responses to and from SOAP messages.

With JAX-WS, clients and web services have a big advantage: the platform
independence of the Java programming language. In addition, JAX-WS is not
restrictive: A JAX-WS client can access a web service that is not running on the Java
platform, and vice versa. This flexibility is possible because JAX-WS uses technologies
defined by the W3C: HTTP, SOAP, and WSDL. WSDL specifies an XML format for
describing a service as a set of endpoints operating on messages.

Note — Several files in the JAX-WS examples depend on the port that you specified
when you installed the GlassFish Server. These tutorial examples assume that the
server runs on the default port, 8080. They do not run with a nondefault port setting.

207

Creating a Simple Web Service and Clients with JAX-WS

The following topics are addressed here:

“Creating a Simple Web Service and Clients with JAX-WS” on page 208
“Types Supported by JAX-WS” on page 217

“Web Services Interoperability and JAX-WS” on page 217

“Further Information about JAX-WS” on page 217

Creating a Simple Web Service and Clients with JAX-WS

208

This section shows how to build and deploy a simple web service and two clients: an
application client and a web client. The source code for the service is in the directory
tut-install/examples/jaxws/helloservice/, and the clients are in the directories
tut-install/examples/jaxws/appclient/ and
tut-install/examples/jaxws/webclient/.

Figure 12-1 illustrates how JAX-WS technology manages communication between a

web service and a client.

FIGURE 12-1 Communication between a JAX-WS Web Service and a Client

Client SOAP Web Service

JAX-WS Runtime = | Message ~ | | JAX-WS Runtime

The starting point for developing a JAX-WS web service is a Java class annotated with
the javax. jws.WebService annotation. The @WebService annotation defines the class
as a web service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface
or class, respectively, that declares the methods that a client can invoke on the service.
An interface is not required when building a JAX-WS endpoint. The web service
implementation class implicitly defines an SEI.

You may specify an explicit interface by adding the endpointInterface element to
the @WebService annotation in the implementation class. You must then provide an
interface that defines the public methods made available in the endpoint
implementation class.

The basic steps for creating a web service and client are as follows:

1. Code the implementation class.

2. Compile the implementation class.

The Java EE 6 Tutorial: Basic Concepts

Creating a Simple Web Service and Clients with JAX-WS

8.

Package the files into a WAR file.

Deploy the WAR file. The web service artifacts, which are used to communicate
with clients, are generated by the GlassFish Server during deployment.

Code the client class.

Useawsimport Ant task to generate and compile the web service artifacts needed
to connect to the service.

Compile the client class.

Run the client.

If you use NetBeans IDE to create a service and client, the IDE performs the wsimport
task for you.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WS Endpoint

JAX-WS endpoints must follow these requirements.

The implementing class must be annotated with either the javax. jws.WebService
or the javax. jws.WebServiceProvider annotation.

The implementing class may explicitly reference an SEI through the
endpointInterface element of the @WebService annotation but is not required to
doso.If no endpointInterface is specified in @ebService, an SEI is implicitly
defined for the implementing class.

The business methods of the implementing class must be public and must not be
declared static or final.

Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

Business methods that are exposed to web service clients must have
JAXB-compatible parameters and return types. See the list of JAXB default data
type bindings at http://download.oracle.com/

docs/cd/E17477 01/javaee/5/tutorial/doc/bnazq.html#bnazs.

The implementing class must not be declared final and must not be abstract.
The implementing class must have a default public constructor.
The implementing class must not define the finalize method.

The implementing class may use the javax.annotation.PostConstruct or the
javax.annotation.PreDestroy annotations on its methods for lifecycle event
callbacks.

The @PostConstruct method is called by the container before the implementing
class begins responding to web service clients.

Chapter 12 « Building Web Services with JAX-WS 209

http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs
http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs

Creating a Simple Web Service and Clients with JAX-WS

The @PreDestroy method is called by the container before the endpoint is
removed from operation.

Coding the Service Endpoint Implementation Class

In this example, the implementation class, Hello, is annotated as a web service
endpoint using the @WebService annotation. Hello declares a single method named
sayHello, annotated with the @WebMethod annotation, which exposes the annotated
method to web service clients. The sayHello method returns a greeting to the client,
using the name passed to it to compose the greeting. The implementation class also
must define a default, public, no-argument constructor.

package helloservice.endpoint;

import javax.jws.WebService;
import javax.jws.webMethod;

@WebService
public class Hello {
private String message = new String("Hello, ");

public void Hello() {
}

@webMethod
public String sayHello(String name) {

return message + name + .°;

}

Building, Packaging, and Deploying the Service

You can build, package, and deploy the helloservice application by using either
NetBeans IDE or Ant.

V¥ To Build, Package, and Deploy the Service Using NetBeans IDE
1 InNetBeans IDE, select File—Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/jaxws/

3 Selectthe helloservice folder.
4 Select the Open as Main Project check box.

5 Click Open Project.

210 The Java EE 6 Tutorial: Basic Concepts

Creating a Simple Web Service and Clients with JAX-WS

Next Steps

Next Steps

In the Projects tab, right-click the helloservice project and select Deploy.

This command builds and packages the application into helloservice.war, located
in tut-install/examples/jaxws/helloservice/dist/, and deploys this WAR file to
the GlassFish Server.

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now
you are ready to create a client that accesses this service.

To Build, Package, and Deploy the Service Using Ant

In a terminal window, go to:

tut-install/examples/jaxws/helloservice/

Type the following command:

ant

This command calls the default target, which builds and packages the application
intoa WAR file, helloservice.war,located in the dist directory.

Make sure that the GlassFish Server is started.

Type the following:
ant deploy

You can view the WSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now
you are ready to create a client that accesses this service.

Testing the Methods of a Web Service Endpoint

GlassFish Server allows you to test the methods of a web service endpoint.

To Test the Service without a Client
To test the sayHello method of HelloService, follow these steps.

Open the web service test interface by typing the following URL in a web browser:
http://localhost:8080/helloservice/HelloService?Tester

Under Methods, type a name as the parameter to the sayHello method.

Chapter 12 « Building Web Services with JAX-WS 211

Creating a Simple Web Service and Clients with JAX-WS

212

3

Click the sayHello button.
This takes you to the sayHello Method invocation page.

Under Method returned, you'll see the response from the endpoint.

A Simple JAX-WS Application Client

The HelloAppClient class is a stand-alone application client that accesses the
sayHello method of HelloService. This call is made through a port, a local object
that acts as a proxy for the remote service. The port is created at development time by
the wsimport task, which generates JAX-WS portable artifacts based on a WSDL file.

Coding the Application Client

When invoking the remote methods on the port, the client performs these steps:

1.

Uses the generated helloservice.endpoint.HelloService class, which
represents the service at the URI of the deployed service’s WSDL file:

import helloservice.endpoint.HelloService;
import javax.xml.ws.WebServiceRef;

public class HelloAppClient {
@WebServiceRef (wsdlLocation =
"META-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")
private static HelloService service;

Retrieves a proxy to the service, also known as a port, by invoking getHelloPort
on the service:

helloservice.endpoint.Hello port = service.getHelloPort();
The port implements the SEI defined by the service.
Invokes the port’s sayHello method, passing a string to the service:

return port.sayHello(arg0);

Here is the full source of HelloAppClient, which is located in the following directory:

tut-install/examples/jaxws/appclient/src/appclient/

package appclient;

import helloservice.endpoint.HelloService;
import javax.xml.ws.WebServiceRef;

public class HelloAppClient {

@WebServiceRef (wsdlLocation =
"META-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")
private static HelloService service;

/**

The Java EE 6 Tutorial: Basic Concepts

Creating a Simple Web Service and Clients with JAX-WS

* @param args the command line arguments
*/
public static void main(String[] args) {
System.out.println(sayHello("world"));
}

private static String sayHello(java.lang.String arg0Q) {
helloservice.endpoint.Hello port = service.getHelloPort();
return port.sayHello(argQ);

Building, Packaging, Deploying, and Running the Application
Client

You can build, package, deploy, and run the appclient application by using either
NetBeans IDE or Ant. To build the client, you must first have deployed helloservice,
as described in “Building, Packaging, and Deploying the Service” on page 210.

To Build, Package, Deploy, and Run the Application Client Using
NetBeans IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/jaxws/

Select the appclient folder.

Select the Open as Main Project check box.

Click Open Project.

In the Projects tab, right-click the appclient project and select Run.

You will see the output of the application client in the Output pane.

To Build, Package, Deploy, and Run the Application Client Using
Ant

In a terminal window, go to:

tut-install/examples/jaxws/appclient/

Type the following command:

ant

Chapter 12 « Building Web Services with JAX-WS 213

Creating a Simple Web Service and Clients with JAX-WS

This command calls the default target, which runs the wsimport task and builds and
packages the application into a JAR file, appclient. jar,located in the dist directory.

3 Torunthe client, type the following command:

ant run

A Simple JAX-WS Web Client

HelloServlet isa servlet that, like the Java client, calls the sayHello method of the
web service. Like the application client, it makes this call through a port.

Coding the Servlet

To invoke the method on the port, the client performs these steps:
1. Importsthe HelloService endpoint and the WebServiceRef annotation:
import helloservice.endpoint.HelloService;

import javax.xml.ws.WebServiceRef;

2. Defines a reference to the web service by specifying the WSDL location:

@WebServiceRef(wsdlLocation =
"WEB-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")

3. Declares the web service, then defines a private method that calls the sayHello
method on the port:

private HelloService service;

private String sayHello(java.lang.String arg0) {
helloservice.endpoint.Hello port = service.getHelloPort();
return port.sayHello(argQ);

}

4. Inthe servlet, calls this private method:

out.println("<p>" + sayHello("world") + "</p>");

The significant parts of the HelloServlet code follow. The code is located in the
tut-install/examples/jaxws/src/java/webclient directory.

package webclient;

import helloservice.endpoint.HelloService;
import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.WebServiceRef;

214 The Java EE 6 Tutorial: Basic Concepts

Creating a Simple Web Service and Clients with JAX-WS

@WebServlet(name="HelloServlet", urlPatterns={"/HelloServlet"})
public class HelloServlet extends HttpServlet {
@WebServiceRef (wsdlLocation =
"WEB-INF/wsdl/localhost 8080/helloservice/HelloService.wsdl")
private HelloService service;

/**
*
*
*
*
*
*

*/

Processes requests for both HTTP <code>GET</code>
and <code>P0ST</code> methods.
@param request servlet request
@param response servlet response
@throws ServletException if a servlet-specific error occurs
@throws IOException if an I/0 error occurs

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8")
PrintWriter out = response.getWriter();

try {

out.
out.
.println("<title>Servlet HelloServlet</title>");
.println("</head>")
.println("<body>")
out.

out
out
out

out.
out.
out.

println("<html>")
println("<head>")

println("<hl>Servlet HelloServlet at " +
request.getContextPath () + "</h1>");
println("<p>" + sayHello('world") + "</p>");
println("</body>")

println("</html>")

} finally {

out.

}
}

close();

// doGet and doPost methods, which call processRequest, and
// getServletInfo method

private String sayHello(java.lang.String arg0) {
helloservice.endpoint.Hello port = service.getHelloPort();
return port.sayHello(argQ);

Building, Packaging, Deploying, and Running the Web Client

You can build, package, deploy, and run the webclient application by using either
NetBeans IDE or Ant. To build the client, you must first have deployed helloservice,
as described in “Building, Packaging, and Deploying the Service” on page 210.

Chapter 12 « Building Web Services with JAX-WS 215

Creating a Simple Web Service and Clients with JAX-WS

216

v

To Build, Package, Deploy, and Run the Web Client Using NetBeans
IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/jaxws/

Select the webclient folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the webclient project and select Deploy.

This task runs the wsimport tasks, builds and packages the application into a WAR file,
webclient.war,located in the dist directory, and deploys it to the server.

In a web browser, navigate to the following URL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHello method appears in the window.

To Build, Package, Deploy, and Run the Web Client Using Ant

In a terminal window, go to:

tut-install/examples/jaxws/webclient/

Type the following command:

ant

This command calls the default target, which runs the wsimport tasks, then builds
and packages the application into a WAR file, webclient.war, located in the dist
directory.

Type the following command:
ant deploy
This task deploys the WAR file to the server.

In a web browser, navigate to the following URL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHello method appears in the window.

The Java EE 6 Tutorial: Basic Concepts

Further Information about JAX-WS

Types Supported by JAX-WS

JAX-WS delegates the mapping of Java programming language types to and from
XML definitions to JAXB. Application developers don’t need to know the details of
these mappings but should be aware that not every class in the Java language can be
used as a method parameter or return type in JAX-WS. For information on which
types are supported by JAXB, see the list of JAXB default data type bindings at
http://download.oracle.com/

docs/cd/E17477 01/javaee/5/tutorial/doc/bnazq.html#bnazs.

Web Services Interoperability and JAX-WS

JAX-WS supports the Web Services Interoperability (WS-I) Basic Profile Version 1.1.
The WS-I Basic Profile is a document that clarifies the SOAP 1.1 and WSDL 1.1
specifications to promote SOAP interoperability. For links related to WS-, see
“Further Information about JAX-WS” on page 217.

To support WS-1 Basic Profile Version 1.1, the JAX-WS runtime supports doc/literal
and rpc/literal encodings for services, static ports, dynamic proxies, and the Dynamic
Invocation Interface (DII).

Further Information about JAX-WS

For more information about JAX-WS and related technologies, see

= Java API for XML Web Services 2.2 specification:
https://jax-ws.dev.java.net/spec-download.html

= JAX-WShome:
https://jax-ws.dev.java.net/

= Simple Object Access Protocol (SOAP) 1.2 W3C Note:
http://www.w3.0rg/TR/soap/

= Web Services Description Language (WSDL) 1.1 W3C Note:
http://www.w3.0rg/TR/wsdl

= WS-IBasic Profile 1.1:
http://www.ws-i.org

Chapter 12 « Building Web Services with JAX-WS 217

https://jax-ws.dev.java.net/spec-download.html
https://jax-ws.dev.java.net/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

This page intentionally left blank

L K R 4 CHAPTER 13

Building RESTful Web Services with JAX-RS

This chapter describes the REST architecture, RESTful web services, and the Java API
for RESTful Web Services (JAX-RS, defined in JSR 311).

Jersey, the reference implementation of JAX-RS, implements support for the
annotations defined in JSR 311, making it easy for developers to build RESTful web
services by using the Java programming language.

If you are developing with GlassFish Server, you can install the Jersey samples and
documentation by using the Update Tool. Instructions for using the Update Tool can
be found in “Java EE 6 Tutorial Component” on page 38. The Jersey samples and
documentation are provided in the Available Add-ons area of the Update Tool.

The following topics are addressed here:

= “What Are RESTful Web Services?” on page 219

= “Creating a RESTful Root Resource Class” on page 220
= “Example Applications for JAX-RS” on page 235

= “Further Information about JAX-RS” on page 240

What Are RESTful Web Services?

RESTful web services are built to work best on the Web. Representational State
Transfer (REST) is an architectural style that specifies constraints, such as the uniform
interface, that if applied to a web service induce desirable properties, such as
performance, scalability, and modifiability, that enable services to work best on the
Web. In the REST architectural style, data and functionality are considered resources
and are accessed using Uniform Resource Identifiers (URIs), typically links on the Web.
The resources are acted upon by using a set of simple, well-defined operations. The
REST architectural style constrains an architecture to a client/server architecture and

219

Creating a RESTful Root Resource Class

is designed to use a stateless communication protocol, typically HTTP. In the REST
architecture style, clients and servers exchange representations of resources by using a
standardized interface and protocol.

The following principles encourage RESTful applications to be simple, lightweight,
and fast:

Resource identification through URI: A RESTful web service exposes a set of
resources that identify the targets of the interaction with its clients. Resources are
identified by URIs, which provide a global addressing space for resource and
service discovery. See “The @Path Annotation and URI Path Templates” on

page 223 for more information.

Uniform interface: Resources are manipulated using a fixed set of four create,
read, update, delete operations: PUT, GET, POST, and DELETE. PUT creates a new
resource, which can be then deleted by using DELETE. GET retrieves the current state
of a resource in some representation. POST transfers a new state onto a resource.
See “Responding to HTTP Resources” on page 226 for more information.

Self-descriptive messages: Resources are decoupled from their representation so
that their content can be accessed in a variety of formats, such as HTML, XML,
plain text, PDE, JPEG, JSON, and others. Metadata about the resource is available
and used, for example, to control caching, detect transmission errors, negotiate the
appropriate representation format, and perform authentication or access control.
See “Responding to HTTP Resources” on page 226 and “Using Entity Providers to
Map HTTP Response and Request Entity Bodies” on page 227 for more
information.

Stateful interactions through hyperlinks: Every interaction with a resource is
stateless; that is, request messages are self-contained. Stateful interactions are
based on the concept of explicit state transfer. Several techniques exist to exchange
state, such as URI rewriting, cookies, and hidden form fields. State can be
embedded in response messages to point to valid future states of the interaction.
See “Using Entity Providers to Map HTTP Response and Request Entity Bodies”
on page 227 and “Building URIs” in the JAX-RS Overview document for more
information.

Creating a RESTful Root Resource Class

220

Root resource classes are POJOs that are either annotated with @Path or have at least

one method annotated with @Path or a request method designator, such as @GET, @PUT,

@POST, or @ELETE. Resource methods are methods of a resource class annotated with a

request method designator. This section explains how to use JAX-RS to annotate Java
classes to create RESTful web services.

The Java EE 6 Tutorial: Basic Concepts

Creating a RESTful Root Resource Class

Developing RESTful Web Services with JAX-RS

JAX-RS is a Java programming language API designed to make it easy to develop
applications that use the REST architecture.

The JAX-RS API uses Java programming language annotations to simplify the
development of RESTful web services. Developers decorate Java programming
language class files with JAX-RS annotations to define resources and the actions that
can be performed on those resources. JAX-RS annotations are runtime annotations;
therefore, runtime reflection will generate the helper classes and artifacts for the
resource. A Java EE application archive containing JAX-RS resource classes will have
the resources configured, the helper classes and artifacts generated, and the resource
exposed to clients by deploying the archive to a Java EE server.

Table 13-1 lists some of the Java programming annotations that are defined by
JAX-RS, with a brief description of how each is used. Further information on the
JAX-RS APIs can be viewed at http://download.oracle.com/docs/cd/E17410 01/
javaee/6/api/.

TABLE 13-1 Summary of JAX-RS Annotations

Annotation Description

@Path The @Path annotation’s value is a relative URI path indicating where the Java
class will be hosted: for example, /helloworld. You can also embed variables
in the URIs to make a URI path template. For example, you could ask for the
name of a user and pass it to the application as a variable in the URL:
/helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request
method designator will process HTTP GET requests. The behavior of a
resource is determined by the HTTP method to which the resource is
responding.

@POST The @POST annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request
method designator will process HTTP POST requests. The behavior of a
resource is determined by the HTTP method to which the resource is
responding.

@PUT The @PUT annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request
method designator will process HTTP PUT requests. The behavior of a
resource is determined by the HTTP method to which the resource is
responding.

Chapter 13 - Building RESTful Web Services with JAX-RS 221

Creating a RESTful Root Resource Class

222

TABLE 13-1 Summary of JAX-RS Annotations (Continued)

Annotation

Description

@DELETE

@HEAD

@PathParam

@QueryParam

@Consumes

@Produces

@Provider

The @DELETE annotation is a request method designator and corresponds to
the similarly named HTTP method. The Java method annotated with this
request method designator will process HTTP DELETE requests. The
behavior of a resource is determined by the HTTP method to which the
resource is responding.

The @HEAD annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request
method designator will process HTTP HEAD requests. The behavior of a
resource is determined by the HTTP method to which the resource is
responding.

The @PathParam annotation is a type of parameter that you can extract for use
in your resource class. URI path parameters are extracted from the request
URI, and the parameter names correspond to the URI path template variable
names specified in the @Path class-level annotation.

The @QueryParam annotation is a type of parameter that you can extract for
use in your resource class. Query parameters are extracted from the request
URI query parameters.

The @Consumes annotation is used to specify the MIME media types of
representations a resource can consume that were sent by the client.

The @Produces annotation is used to specify the MIME media types of
representations a resource can produce and send back to the client: for
example, "text/plain”.

The @Provider annotation is used for anything that is of interest to the
JAX-RS runtime, such as MessageBodyReader and MessageBodyWriter. For
HTTP requests, the MessageBodyReader is used to map an HTTP request
entity body to method parameters. On the response side, a return value is
mapped to an HTTP response entity body by using a MessageBodywWriter. If
the application needs to supply additional metadata, such as HTTP headers or
a different status code, a method can return a Response that wraps the entity
and that can be built using Response.ResponseBuilder.

Overview of a JAX-RS Application

The following code sample is a very simple example of a root resource class that uses
JAX-RS annotations:

package com.sun.jersey.samples.helloworld.resources;

import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;

The Java EE 6 Tutorial: Basic Concepts

Creating a RESTful Root Resource Class

// The Java class will be hosted at the URI path "/helloworld"
@Path("/helloworld")
public class HelloWorldResource {

// The Java method will process HTTP GET requests
@GET
// The Java method will produce content identified by the MIME Media
// type "text/plain”
@Produces ("text/plain")
public String getClichedMessage() {
// Return some cliched textual content
return "Hello World";

}
The following sections describe the annotations used in this example.

= The@Path annotation’s value is a relative URI path. In the preceding example, the
Java class will be hosted at the URI path /helloworld. This is an extremely simple
use of the @Path annotation, with a static URI path. Variables can be embedded in
the URIs. URI path templates are URIs with variables embedded within the URI
syntax.

= The @GET annotation is a request method designator, along with @POST, @PUT,
@DELETE, and @HEAD, defined by JAX-RS and corresponding to the similarly named
HTTP methods. In the example, the annotated Java method will process HTTP GET
requests. The behavior of a resource is determined by the HTTP method to which
the resource is responding.

= The@Produces annotation is used to specify the MIME media types a resource can
produce and send back to the client. In this example, the Java method will produce
representations identified by the MIME media type "text/plain”.

= The@Consumes annotation is used to specify the MIME media types a resource can
consume that were sent by the client. The example could be modified to set the
message returned by the getClichedMessage method, as shown in this code
example:

@POST

@Consumes ("text/plain")

public void postClichedMessage(String message) {
// Store the message

}

The @Path Annotation and URI Path Templates

The @Path annotation identifies the URI path template to which the resource responds
and is specified at the class or method level of a resource. The @Path annotation’s value
is a partial URI path template relative to the base URI of the server on which the
resource is deployed, the context root of the application, and the URL pattern to which
the JAX-RS runtime responds.

Chapter 13 - Building RESTful Web Services with JAX-RS 223

Creating a RESTful Root Resource Class

224

URI path templates are URIs with variables embedded within the URI syntax. These
variables are substituted at runtime in order for a resource to respond to a request
based on the substituted URI. Variables are denoted by braces ({ and }). For example,
look at the following @Path annotation:

@Path("/users/{username}")

In this kind of example, a user is prompted to type his or her name, and then a JAX-RS
web service configured to respond to requests to this URI path template responds. For
example, if the user types the user name “Galileo,” the web service responds to the
following URL:

http://example.com/users/Galileo

To obtain the value of the user name, the @PathParam annotation may be used on the
method parameter of a request method, as shown in the following code example:

@Path("/users/{username}")
public class UserResource {

@GET
@Produces ("text/xml")
public String getUser(@PathParam("username") String userName) {

}
}

By default, the URI variable must match the regular expression "[~/]+?". This variable
may be customized by specifying a different regular expression after the variable name.
For example, if a user name must consist only of lowercase and uppercase
alphanumeric characters, override the default regular expression in the variable
definition:

@Path("users/{username: [a-zA-Z][a-zA-Z 0-91}")

In this example the username variable will match only user names that begin with one
uppercase or lowercase letter and zero or more alphanumeric characters and the
underscore character. If a user name does not match that template, a 404 (Not Found)
response will be sent to the client.

A @Path value isn’t required to have leading or trailing slashes (/). The JAX-RS runtime
parses URI path templates the same whether or not they have leading or trailing
spaces.

A URI path template has one or more variables, with each variable name surrounded
by braces: { to begin the variable name and } to end it. In the preceding example,
username is the variable name. At runtime, a resource configured to respond to the
preceding URI path template will attempt to process the URI data that corresponds to
the location of {username} in the URI as the variable data for username.

The Java EE 6 Tutorial: Basic Concepts

Creating a RESTful Root Resource Class

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/resources/{namel}/{name2}/, you must
deploy the application to a Java EE server that responds to requests to the
http://example.com/myContextRoot URI and then decorate your resource with the
following @Path annotation:

@Path("/{namel}/{name2}/")
public class SomeResource {

}

In this example, the URL pattern for the JAX-RS helper servlet, specified in web . xm1, is
the default:

<servlet-mapping>
<servlet-name>My JAX-RS Resource</servlet-name>
<url-pattern>/resources/*</url-pattern>
</servlet-mapping>

A variable name can be used more than once in the URI path template.

If a character in the value of a variable would conflict with the reserved characters of a
URL, the conflicting character should be substituted with percent encoding. For
example, spaces in the value of a variable should be substituted with %20.

When defining URI path templates, be careful that the resulting URI after substitution
is valid.

Table 13-2 lists some examples of URI path template variables and how the URIs are
resolved after substitution. The following variable names and values are used in the
examples:

namel: james

name2:gatz

name3:
location:Main%20Street
question:why

Note — The value of the name3 variable is an empty string.

TABLE 13-2 Examples of URI Path Templates

URI Path Template URI After Substitution
http://example.com/{namel}/{name2}/ http://example.com/james/gatz/
http://example.com/{question}/ http://example.com/why/why/why/

{question}/{question}/

Chapter 13 - Building RESTful Web Services with JAX-RS 225

Creating a RESTful Root Resource Class

226

TABLE 13-2 Examples of URI Path Templates (Continued)

URI Path Template URI After Substitution
http://example.com/maps/{location} http://example.com/maps/Main%20Street
http://example.com/{name3}/home/ http://example.com//home/

Responding to HTTP Resources

The behavior of a resource is determined by the HT'TP methods (typically, GET, POST,
PUT, DELETE) to which the resource is responding.

The Request Method Designator Annotations

Request method designator annotations are runtime annotations, defined by JAX-RS,
that correspond to the similarly named HTTP methods. Within a resource class file,
HTTP methods are mapped to Java programming language methods by using the
request method designator annotations. The behavior of a resource is determined by
which HTTP method the resource is responding to. JAX-RS defines a set of request
method designators for the common HTTP methods @GET, @POST, @PUT, @DELETE, and
@HEAD; you can also create your own custom request method designators. Creating
custom request method designators is outside the scope of this document.

The following example, an extract from the storage service sample, shows the use of
the PUT method to create or update a storage container:

@PUT
public Response putContainer() {
System.out.println("PUT CONTAINER " + container);

URI uri = wuriInfo.getAbsolutePath();
Container c¢ = new Container(container, uri.toString());

Response r;
if (!MemoryStore.MS.hasContainer(c)) {
r = Response.created(uri).build();
} else {
r = Response.noContent().build();

}

MemoryStore.MS.createContainer(c);
return r;

}

By default, the JAX-RS runtime will automatically support the methods HEAD and
OPTIONS if not explicitly implemented. For HEAD, the runtime will invoke the
implemented GET method, if present, and ignore the response entity, if set. For
OPTIONS, the Allow response header will be set to the set of HTTP methods supported
by the resource. In addition, the JAX-RS runtime will return a Web Application

The Java EE 6 Tutorial: Basic Concepts

Creating a RESTful Root Resource Class

Definition Language (WADL) document describing the resource; see
https://wadl.dev.java.net/ for more information.

Methods decorated with request method designators must return void, a Java
programming language type, or a javax.ws. rs.core.Response object. Multiple
parameters may be extracted from the URI by using the PathParam or QueryParam
annotations as described in “Extracting Request Parameters” on page 231. Conversion
between Java types and an entity body is the responsibility of an entity provider, such
asMessageBodyReader or MessageBodyWriter. Methods that need to provide
additional metadata with a response should return an instance of the Response class.
The ResponseBuilder class provides a convenient way to create a Response instance
using a builder pattern. The HT'TP PUT and POST methods expect an HT'TP request
body, so you should use a MessageBodyReader for methods that respond to PUT and
POST requests.

Both @PUT and @POST can be used to create or update a resource. POST can mean
anything, so when using POST, it is up to the application to define the semantics. PUT
has well-defined semantics. When using PUT for creation, the client declares the URI
for the newly created resource.

PUT has very clear semantics for creating and updating a resource. The representation
the client sends must be the same representation that is received using a GET, given the
same media type. PUT does not allow a resource to be partially updated, a common
mistake when attempting to use the PUT method. A common application pattern is to
use POST to create a resource and return a 201 response with a location header whose
value is the URI to the newly created resource. In this pattern, the web service declares
the URI for the newly created resource.

Using Entity Providers to Map HTTP Response and Request Entity
Bodies

Entity providers supply mapping services between representations and their associated
Java types. The two types of entity providers are MessageBodyReader and
MessageBodyWriter. For HT'TP requests, the MessageBodyReader is used to map an
HTTP request entity body to method parameters. On the response side, a return value
is mapped to an HTTP response entity body by using a MessageBodyWriter. If the
application needs to supply additional metadata, such as HI'TP headers or a different
status code, a method can return a Response that wraps the entity and that can be built
by using Response .ResponseBuilder.

Table 13-3 shows the standard types that are supported automatically for entities. You
need to write an entity provider only if you are not choosing one of these standard

types.

Chapter 13 - Building RESTful Web Services with JAX-RS 227

Creating a RESTful Root Resource Class

TABLE 13-3 Types Supported for Entities

JavaType Supported Media Types

byte[] All media types (*/*)

java.lang.String All text media types (text/*)
java.io.InputStream All media types (*/*)

java.io.Reader All media types (*/*)

java.io.File All media types (*/*)
javax.activation.DataSource All media types (*/*)
javax.xml.transform.Source XML media types (text/xml, application/xml

and application/*+xml)

javax.xml.bind.JAXBElement and XML media types (text/xml, application/xml
application-supplied JAXB classes and application/*+xml)
MultivaluedMap<String, String> Form content

(application/x-www-form-urlencoded)

StreamingOutput All media types (*/*), MessageBodyWriter only

The following example shows how to use MessageBodyReader with the @onsumes and
@Provider annotations:

@Consumes ("application/x-www-form-urlencoded")
@Provider
public class FormReader implements MessageBodyReader<NameValuePair> {

The following example shows how to use MessageBodyWriter with the @roduces and
@Provider annotations:

@Produces ("text/html")

@Provider

public class FormWriter implements
MessageBodyWriter<Hashtable<String, String>> {

The following example shows how to use ResponseBuilder:

@GET
public Response getItem() {
System.out.println("GET ITEM " + container +

+ item);

Item i = MemoryStore.MS.getItem(container, item);
if (i == null)
throw new NotFoundException("Item not found");
Date lastModified = i.getLastModified().getTime();
EntityTag et = new EntityTag(i.getDigest());
ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);

228 The Java EE 6 Tutorial: Basic Concepts

Creating a RESTful Root Resource Class

if (rb != null)
return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);
return Response.ok(b, i.getMimeType()).
lastModified(lastModified).tag(et).build();

Using @Consumes and @Produces to Customize
Requests and Responses

The information sent to a resource and then passed back to the client is specified as a
MIME media type in the headers of an HTTP request or response. You can specify
which MIME media types of representations a resource can respond to or produce by
using the following annotations:

B javax.ws.rs.Consumes

® javax.ws.rs.Produces

By default, a resource class can respond to and produce all MIME media types of
representations specified in the HTTP request and response headers.

The @Produces Annotation

The @Produces annotation is used to specify the MIME media types or representations
aresource can produce and send back to the client. If @Produces is applied at the class
level, all the methods in a resource can produce the specified MIME types by default. If
applied at the method level, the annotation overrides any @Produces annotations
applied at the class level.

If no methods in a resource are able to produce the MIME type in a client request, the
JAX-RS runtime sends back an HTTP “406 Not Acceptable” error.

The value of @roduces is an array of String of MIME types. For example:

@Produces ({"image/jpeg,image/png"})
The following example shows how to apply @Produces at both the class and method

levels:

@Path("/myResource")
@Produces ("text/plain")
public class SomeResource {
@GET
public String doGetAsPlainText() {

}

@GET

Chapter 13 - Building RESTful Web Services with JAX-RS 229

Creating a RESTful Root Resource Class

230

@Produces ("text/html")
public String doGetAsHtml() {

}
}

The doGetAsPlainText method defaults to the MIME media type of the @Produces
annotation at the class level. The doGetAsHtml method’s @Produces annotation
overrides the class-level @roduces setting and specifies that the method can produce
HTML rather than plain text.

If a resource class is capable of producing more than one MIME media type, the
resource method chosen will correspond to the most acceptable media type as declared
by the client. More specifically, the Accept header of the HTTP request declares what
is most acceptable. For example, if the Accept header is Accept: text/plain, the
doGetAsPlainText method will be invoked. Alternatively, if the Accept header is
Accept: text/plain;q=0.9, text/html, which declares that the client can accept
media types of text/plain and text/html but prefers the latter, the doGetAsHtml
method will be invoked.

More than one media type may be declared in the same @Produces declaration. The
following code example shows how this is done:

@Produces ({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

}

The doGetAsxm10rJson method will get invoked if either of the media types
application/xml and application/json isacceptable. If both are equally acceptable,
the former will be chosen because it occurs first. The preceding examples refer
explicitly to MIME media types for clarity. It is possible to refer to constant values,
which may reduce typographical errors. For more information, see the constant field
values of MediaType athttps://jsr311.dev.java.net/
nonav/releases/1.0/javax/ws/rs/core/MediaType.html.

The @Consumes Annotation

The @Consumes annotation is used to specify which MIME media types of
representations a resource can accept, or consume, from the client. If @Consumes is
applied at the class level, all the response methods accept the specified MIME types by
default. If applied at the method level, @onsumes overrides any @Consumes
annotations applied at the class level.

If a resource is unable to consume the MIME type of a client request, the JAX-RS
runtime sends back an HTTP 415 (“Unsupported Media Type”) error.

The value of @Consumes is an array of String of acceptable MIME types. For example:

The Java EE 6 Tutorial: Basic Concepts

Creating a RESTful Root Resource Class

@Consumes ({"text/plain,text/html"})

The following example shows how to apply @Consumes at both the class and method
levels:

@Path("/myResource")
@Consumes ("multipart/related")
public class SomeResource {
@POST
public String doPost(MimeMultipart mimeMultipartData) {

}

@POST
@Consumes ("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

}
}

The doPost method defaults to the MIME media type of the @Consumes annotation at
the class level. The doPost2 method overrides the class level @onsumes annotation to
specify that it can accept URL-encoded form data.

If no resource methods can respond to the requested MIME type, an HTTP 415
(“Unsupported Media Type”) error is returned to the client.

The HelloWorld example discussed previously in this section can be modified to set
the message by using @Consumes, as shown in the following code example:

@POST

@Consumes ("text/plain")

public void postClichedMessage(String message) {
// Store the message

}

In this example, the Java method will consume representations identified by the MIME
media type text/plain. Note that the resource method returns void. This means that
no representation is returned and that a response with a status code of HTTP 204 (“No
Content”) will be returned.

Extracting Request Parameters

Parameters of a resource method may be annotated with parameter-based annotations
to extract information from a request. A previous example presented the use of the
@PathParam parameter to extract a path parameter from the path component of the
request URL that matched the path declared in @Path.

Chapter 13 - Building RESTful Web Services with JAX-RS 231

Creating a RESTful Root Resource Class

You can extract the following types of parameters for use in your resource class:

Query
URI path
Form
Cookie
Header
Matrix

Query parameters are extracted from the request URI query parameters and are
specified by using the javax.ws. rs.QueryParam annotation in the method parameter
arguments. The following example, from the sparklines sample application,
demonstrates using @QueryParam to extract query parameters from the Query
component of the request URL:

@Path("smooth")

@GET

public Response smooth(
@DefaultValue("2") @QueryParam("step") int step,
@DefaultValue("true") @QueryParam("min-m") boolean hasMin,
@efaultValue("true") @QueryParam("max-m") boolean hasMax,
@DefaultValue("true") @QueryParam("last-m") boolean haslast,
@efaultValue("blue") @QueryParam("min-color") ColorParam minColor,
@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,
@DefaultValue("red") @QueryParam("last-color") ColorParam lastColor
) { ...}

If the query parameter step exists in the query component of the request URI, the
value of step will be extracted and parsed as a 32-bit signed integer and assigned to the
step method parameter. If step does not exist, a default value of 2, as declared in the
@efaultValue annotation, will be assigned to the step method parameter. If the step
value cannot be parsed as a 32-bit signed integer, an HTTP 400 (“Client Error”)
response is returned.

User-defined Java programming language types may be used as query parameters. The
following code example shows the ColorParam class used in the preceding query
parameter example:

public class ColorParam extends Color {
public ColorParam(String s) {
super(getRGB(s));

}
private static int getRGB(String s) {
if (s.charAt(0) == "#") {
try {

Color ¢ = Color.decode("0x" + s.substring(1));
return c.getRGB();

} catch (NumberFormatException e) {
throw new WebApplicationException(400);

}

232 The Java EE 6 Tutorial: Basic Concepts

Creating a RESTful Root Resource Class

} else {
try {
Field f = Color.class.getField(s);
return ((Color)f.get(null)).getRGB();
} catch (Exception e) {
throw new WebApplicationException(400);

}

}

The constructor for ColorParam takes a single String parameter.

Both @QueryParam and @PathParam can be used only on the following Java types:

= All primitive types except char
= All wrapper classes of primitive types except Character
= Any class with a constructor that accepts a single String argument

= Any class with the static method named valueOf (String) that accepts a single
Stringargument

= Any class with a constructor that takes a single String as a parameter

® List<T>, Set<T>, or SortedSet<T>, where T matches the already listed criteria.
Sometimes, parameters may contain more than one value for the same name. If
this is the case, these types may be used to obtain all values

If @defaultValue is not used in conjunction with @QueryParam, and the query
parameter is not present in the request, the value will be an empty collection for List,
Set, or SortedSet; null for other object types; and the default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names
correspond to the URI path template variable names specified in the @Path class-level
annotation. URI parameters are specified using the javax.ws.rs.PathParam
annotation in the method parameter arguments. The following example shows how to
use @Path variables and the @PathParam annotation in a method:

@Path("/{username}")
public class MyResourceBean {

@GET
public String printUsername(@PathParam("username") String userId) {

}
}

In the preceding snippet, the URI path template variable name username is specified as
a parameter to the printUsername method. The @PathParam annotation is set to the
variable name username. At runtime, before printUsername is called, the value of
usernanme is extracted from the URI and cast to a String. The resulting String is then
available to the method as the userId variable.

Chapter 13 - Building RESTful Web Services with JAX-RS 233

Creating a RESTful Root Resource Class

234

If the URI path template variable cannot be cast to the specified type, the JAX-RS
runtime returns an HTTP 400 (“Bad Request”) error to the client. If the @athParam
annotation cannot be cast to the specified type, the JAX-RS runtime returns an HTTP
404 (“Not Found”) error to the client.

The @PathParam parameter and the other parameter-based annotations
(@MatrixParam, @HeaderParam, @CookieParam, and @FormParam) obey the same rules
as @QueryParam.

Cookie parameters, indicated by decorating the parameter with
javax.ws.rs.CookieParam, extract information from the cookies declared in
cookie-related HTTP headers. Header parameters, indicated by decorating the
parameter with javax.ws.rs.HeaderParam, extract information from the HTTP
headers. Matrix parameters, indicated by decorating the parameter with
javax.ws.rs.MatrixParam, extract information from URL path segments.

Form parameters, indicated by decorating the parameter with
javax.ws.rs.FormParam, extract information from a request representation that is of
the MIME media type application/x-www-form-urlencoded and conforms to the
encoding specified by HTML forms, as described in http://www.w3.0rg/TR/
html401/interact/forms.html#h-17.13.4.1. This parameter is very useful for
extracting information sent by POST in HTML forms.

The following example extracts the name form parameter from the POST form data:

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(@FormParam("name") String name) {
// Store the message

}

To obtain a general map of parameter names and values for query and path
parameters, use the following code:

@GET

public String get(@Context UriInfo ui) {
MultivaluedMap<String, String> queryParams = ui.getQueryParameters();
MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

The following method extracts header and cookie parameter names and values into a
map:

@GET

public String get(@Context HttpHeaders hh) {
MultivaluedMap<String, String> headerParams = ui.getRequestHeaders();
Map<String, Cookie> pathParams = ui.getCookies();

}

In general, @Context can be used to obtain contextual Java types related to the request
or response.

The Java EE 6 Tutorial: Basic Concepts

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

Example Applications for JAX-RS

For form parameters, it is possible to do the following:

@POST

@Consumes ("application/x-www-form-urlencoded")

public void post(MultivaluedMap<String, String> formParams) {
// Store the message

}

Example Applications for JAX-RS

This section provides an introduction to creating, deploying, and running your own
JAX-RS applications. This section demonstrates the steps that are needed to create,
build, deploy, and test a very simple web application that uses JAX-RS annotations.

A RESTful Web Service

This section explains how to use NetBeans IDE to create a RESTful web service.
NetBeans IDE generates a skeleton for the application, and you simply need to
implement the appropriate methods. If you do not use an IDE, try using one of the
example applications that ship with Jersey as a template to modify.

V¥ To Create a RESTful Web Service Using NetBeans IDE

1 InNetBeans IDE, create a simple web application. This example creates a very simple
“Hello, World” web application.

a. InNetBeans IDE, select File — New Project.

b. From Categories, select Java Web. From Projects, select Web Application. Click Next.

Note - For this step, you could also create a RESTful web service in a Maven web
project by selecting Maven as the category and Maven Web Project as the project.
The remaining steps would be the same.

¢. Typea project name, HelloWorldApplication, and click Next.
d. Make sure that the Server is GlassFish Server (or similar wording.)

e. ClickFinish.

The project is created. The file index. jsp appears in the Source pane.

Chapter 13 - Building RESTful Web Services with JAX-RS 235

Example Applications for JAX-RS

2 Right-click the project and select New; then select RESTful Web Services from Patterns.

b

Select Simple Root Resource and click Next.
b. TypeaResource Package name, such as helloWorld.

¢. Typehelloworld in the Path field. Type HelloWorld in the Class Name field. For
MIME Type, select text/html.

d. Click Finish.
The REST Resources Configuration page appears.

e. ClickOK.

A new resource, HelloWorld. java, is added to the project and appears in the
Source pane. This file provides a template for creating a RESTful web service.

3 InHelloWorld.java, find the getHtml() method. Replace the //T0DO comment and
the exception with the following text, so that the finished product resembles the
following method.

Note - Because the MIME type produced is HTML, you can use HTML tags in your
return statement.

/**
* Retrieves representation of an instance of helloWorld.HelloWorld
* @return an instance of java.lang.String
*/
@GET
@Produces ("text/html")
public String getHtml() {
return "<html><body><hl>Hello, World!!</body></hl></html>";

}

4 Testthe web service.To do this, right-click the project node and click Test RESTful Web
Services.

This step deploys the application and brings up a test client in the browser.

5 Whenthetest client appears, select the helloworld resource in the left pane, and click
the Test button in the right pane.

The words Hello, World! ! appear in the Response window below.
6 Setthe Run Properties:

a. Right-click the project node and select Properties.

236 The Java EE 6 Tutorial: Basic Concepts

Example Applications for JAX-RS

SeeAlso

b. Inthedialog, select the Run category.

c. Setthe Relative URL to the location of the RESTful web service relative to the
Context Path, which for this example is resources/helloworld.

Tip - You can find the value for the Relative URL in the Test RESTful Web Services
browser window. In the top of the right pane, after Resource, is the URL for the
RESTful web service being tested. The part following the Context Path
(http://localhost:8080/HelloWorldApp) is the Relative URL that needs to be
entered here.

If you don’t set this property, the file index. jsp will appear by default when the
application is run. As this file also contains Hello World as its default value, you might
not notice that your RESTful web service isn’t running, so just be aware of this default
and the need to set this property, or update index. jsp to provide a link to the RESTful
web service.

Right-click the project and select Deploy.

Right-click the project and select Run.

A browser window opens and displays the return value of Hello, World!!

For other sample applications that demonstrate deploying and running JAX-RS
applications using NetBeans IDE, see “The rsvp Example Application” on page 237
and Your First Cup: An Introduction to the Java EE Platform at
http://download.oracle.com/docs/cd/E17410 01/javaee/6/firstcup/doc/.
You may also look at the tutorials on the NetBeans IDE tutorial site, such as the one
titled “Getting Started with RESTful Web Services” at http://www.netbeans.org/
kb/docs/websvc/rest.html. This tutorial includes a section on creatinga CRUD
application from a database. Create, read, update, and delete (CRUD) are the four
basic functions of persistent storage and relational databases.

The rsvp Example Application

The rsvp example application, located in tut-install/examples/jaxrs/rsvp, allows
invitees to an event to indicate whether they will attend. The events, people invited to
the event, and the responses to the invite are stored in a Java DB database using the
Java Persistence APL. The JAX-RS resources in rsvp are exposed in a stateless session
enterprise bean.

Chapter 13 - Building RESTful Web Services with JAX-RS 237

http://www.netbeans.org/kb/docs/websvc/rest.html
http://www.netbeans.org/kb/docs/websvc/rest.html

Example Applications for JAX-RS

238

Components of the rsvp Example Application

The three enterprise beans in the rsvp example application are
rsvp.ejb.ConfigBean, rsvp.ejb.StatusBean,and rsvp.ejb.ResponseBean.

ConfigBean is a singleton session bean that initializes the data in the database.

StatusBean exposes a JAX-RS resource for displaying the current status of all invitees
to an event. The URI path template is declared as follows:

@Path("/status/{eventId}/"}

The URI path variable eventId is a @PathParam variable in the getResponse method,
which responds to HT'TP GET requests and has been annotated with @GET. The
eventId variable is used to look up all the current responses in the database for that
particular event.

ResponseBean exposes a JAX-RS resource for setting an invitee's response to a
particular event. The URI path template for ResponseBean is declared as follows:

@Path("/{eventId}/{inviteId}

Two URI path variables are declared in the path template: eventId and inviteId. As
in StatusBean, eventId is the unique ID for a particular event. Each invitee to that
event has a unique ID for the invitation, and that is the inviteId. Both of these path
variables are used in two JAX-RS methods in ResponseBean: getResponse and
putResponse. The getResponse method responds to HT'TP GET requests and displays
the invitee's current response and a form to change the response.

An invitee who wants to change his or her response selects the new response and
submits the form data, which is processed as an HTTP PUT request by the putResponse
method. One of the parameters to the putResponse method, the userResponse string,
is annotated with @FormParam("attendeeResponse"). The HTML form created by
getResponse stores the changed response in the select list with an ID of
attendeeResponse. The annotation @FormParam("attendeeResponse") indicates that
the value of the select response is extracted from the HTTP PUT request and stored as
the userResponse string. The putResponse method uses userResponse, eventId, and
inviteId to update the invitee's response in the database.

The events, people, and responses in rsvp are encapsulated in Java Persistence API
entities. The rsvp.entity.Event, rsvp.entity.Person,and rsvp.entity.Response
entities respectively represent events, invitees, and responses to an event.

The rsvp.util.ResponseEnum class declares an enumerated type that represents all
the possible response statuses an invitee may have.

The Java EE 6 Tutorial: Basic Concepts

Example Applications for JAX-RS

Running the rsvp Example Application

Both NetBeans IDE and Ant can be used to deploy and run the rsvp example
application.

V¥ ToRun the rsvp Example Application in NetBeans IDE
1 InNetBeansIDE, select File—Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/jaxrs/

3 Selectthe rsvpfolder.
4 Select the Open as Main Project check box.
5 Click Open Project.

6 Right-click the rsvp projectin the left pane and select Run.

The project will be compiled, assembled, and deployed to GlassFish Server. A web
browser window will open to http://localhost:8080/rsvp.

7 Inthe web browser window, click the Event Status link for the Duke’s Birthday event.

You'll see the current invitees and their responses.

8 Click on the name of one of the invitees, select a response, and click Submit response;
then click Back to event page.

The invitee’s new status should now be displayed in the table of invitees and their
response statuses.

V¥ ToRun the rsvp Example Application Using Ant

BeforeYouBegin You must have started the Java DB database before running rsvp.

1 Inaterminal window, go to:

tut-install/examples/jaxrs/rsvp

2 Typethefollowing command:
ant all

This command builds, assembles, and deploys rsvp to GlassFish Server.

3 Openaweb browser windowtohttp://localhost:8080/rsvp.

Chapter 13 - Building RESTful Web Services with JAX-RS 239

Further Information about JAX-RS

In the web browser window, click the Event Status link for the Duke’s Birthday event.

You'll see the current invitees and their responses.

Click on the name of one of the invitees, select a response, and click Submit response,
then click Back to event page.

The invitee’s new status should now be displayed in the table of invitees and their
response statuses.

Real-World Examples

Most blog sites use RESTful web services. These sites involve downloading XML files,
in RSS or Atom format, that contain lists of links to other resources. Other web sites
and web applications that use REST-like developer interfaces to data include Twitter
and Amazon S3 (Simple Storage Service). With Amazon S3, buckets and objects can be
created, listed, and retrieved using either a REST-style HTTP interface or a SOAP
interface. The examples that ship with Jersey include a storage service example with a
RESTful interface. The tutorial at http://netbeans.org/kb/docs/websvc/
twitter-swing.html uses NetBeans IDE to create a simple, graphical, REST-based
client that displays Twitter public timeline messages and lets you view and update your
Twitter status.

Further Information about JAX-RS

240

For more information about RESTful web services and JAX-RS, see

= “RESTful Web Services vs. 'Big' Web Services: Making the Right Architectural
Decision”:
http://www2008.0rg/papers/pdf/p805-pautassoA.pdf

= The Community Wiki for Project Jersey, the JAX-RS reference implementation:
http://wikis.sun.com/display/Jersey/Main

= “Fielding Dissertation: Chapter 5: Representational State Transfer (REST)”:

http://www.ics.uci.edu/
~fielding/pubs/dissertation/rest arch style.htm

= RESTful Web Services, by Leonard Richardson and Sam Ruby, available from
O'Reilly Mediaat http://oreilly.com/catalog/9780596529260/

® JSR 311:JAX-RS: The Java API for RESTful Web Services:
http://jcp.org/en/jsr/detail?id=311

= JAX-RS project:
https://jsr3ll.dev.java.net/

The Java EE 6 Tutorial: Basic Concepts

http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://wikis.sun.com/display/Jersey/Main
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://oreilly.com/catalog/9780596529260/
http://jcp.org/en/jsr/detail?id=311
https://jsr311.dev.java.net/

Further Information about JAX-RS

= Jersey project:
https://jersey.dev.java.net/
= JAX-RS Overview document:

http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features

Chapter 13 - Building RESTful Web Services with JAX-RS 241

This page intentionally left blank

PART 1V

Enterprise Beans

Part IV introduces Enterprise JavaBeans components. This part contains the following
chapters:

= Chapter 14, “Enterprise Beans”
= Chapter 15, “Getting Started with Enterprise Beans”
= Chapter 16, “Running the Enterprise Bean Examples”

243

This page intentionally left blank

L K R 4 CHAPTER 14

Enterprise Beans

Enterprise beans are Java EE components that implement Enterprise JavaBeans (E]B)
technology. Enterprise beans run in the EJB container, a runtime environment within
the GlassFish Server (see “Container Types” on page 14). Although transparent to the
application developer, the EJB container provides system-level services, such as
transactions and security, to its enterprise beans. These services enable you to quickly
build and deploy enterprise beans, which form the core of transactional Java EE
applications.

The following topics are addressed here:

“What Is an Enterprise Bean?” on page 245

= “What Is a Session Bean?” on page 247

= “What Is a Message-Driven Bean?” on page 249

= “Accessing Enterprise Beans” on page 251

“The Contents of an Enterprise Bean” on page 258
“Naming Conventions for Enterprise Beans” on page 260
“The Lifecycles of Enterprise Beans” on page 261

“Further Information about Enterprise Beans” on page 264

What Is an Enterprise Bean?

Written in the Java programming language, an enterprise bean is a server-side
component that encapsulates the business logic of an application. The business logic is
the code that fulfills the purpose of the application. In an inventory control
application, for example, the enterprise beans might implement the business logic in
methods called checkInventoryLevel and orderProduct. By invoking these 32-bit
methods, clients can access the inventory services provided by the application.

245

What Is an Enterprise Bean?

Benefits of Enterprise Beans

For several reasons, enterprise beans simplify the development of large, distributed
applications. First, because the EJB container provides system-level services to
enterprise beans, the bean developer can concentrate on solving business problems.
The EJB container, rather than the bean developer, is responsible for system-level
services, such as transaction management and security authorization.

Second, because the beans rather than the clients contain the application’s business
logic, the client developer can focus on the presentation of the client. The client
developer does not have to code the routines that implement business rules or access
databases. As a result, the clients are thinner, a benefit that is particularly important for
clients that run on small devices.

Third, because enterprise beans are portable components, the application assembler
can build new applications from existing beans. Provided that they use the standard
APIs, these applications can run on any compliant Java EE server.

When to Use Enterprise Beans

You should consider using enterprise beans if your application has any of the
following requirements.

= The application must be scalable. To accommodate a growing number of users,
you may need to distribute an application’s components across multiple machines.
Not only can the enterprise beans of an application run on different machines, but
also their location will remain transparent to the clients.

= Transactions must ensure data integrity. Enterprise beans support transactions,
the mechanisms that manage the concurrent access of shared objects.

= The application will have a variety of clients. With only a few lines of code, remote
clients can easily locate enterprise beans. These clients can be thin, various, and
numerous.

Types of Enterprise Beans

Table 14-1 summarizes the two types of enterprise beans. The following sections
discuss each type in more detail.

246 The Java EE 6 Tutorial: Basic Concepts

What Is a Session Bean?

TABLE 14-1 Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client; optionally, may implement a web service

Message-driven Acts as a listener for a particular messaging type, such as the Java
Message Service API

What Is a Session Bean?

A session bean encapsulates business logic that can be invoked programmatically by a
client over local, remote, or web service client views. To access an application that is
deployed on the server, the client invokes the session bean’s methods. The session bean
performs work for its client, shielding it from complexity by executing business tasks
inside the server.

A session bean is not persistent. (That is, its data is not saved to a database.)

For code samples, see Chapter 16, “Running the Enterprise Bean Examples”

Types of Session Beans

Session beans are of three types: stateful, stateless, and singleton.

Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful session
bean, the instance variables represent the state of a unique client/bean session. Because
the client interacts (“talks”) with its bean, this state is often called the conversational
state.

As its name suggests, a session bean is similar to an interactive session. A session bean
is not shared; it can have only one client, in the same way that an interactive session
can have only one user. When the client terminates, its session bean appears to
terminate and is no longer associated with the client.

The state is retained for the duration of the client/bean session. If the client removes
the bean, the session ends and the state disappears. This transient nature of the state is
not a problem, however, because when the conversation between the client and the
bean ends, there is no need to retain the state.

Stateless Session Beans

A stateless session bean does not maintain a conversational state with the client. When
a client invokes the methods of a stateless bean, the bean’s instance variables may
contain a state specific to that client but only for the duration of the invocation. When

Chapter 14 « Enterprise Beans 247

What s a Session Bean?

248

the method is finished, the client-specific state should not be retained. Clients may,
however, change the state of instance variables in pooled stateless beans, and this state
is held over to the next invocation of the pooled stateless bean. Except during method
invocation, all instances of a stateless bean are equivalent, allowing the EJB container
to assign an instance to any client. That is, the state of a stateless session bean should
apply across all clients.

Because they can support multiple clients, stateless session beans can offer better
scalability for applications that require large numbers of clients. Typically, an
application requires fewer stateless session beans than stateful session beans to support
the same number of clients.

A stateless session bean can implement a web service, but a stateful session bean
cannot.

Singleton Session Beans

A singleton session bean is instantiated once per application and exists for the lifecycle
of the application. Singleton session beans are designed for circumstances in which a
single enterprise bean instance is shared across and concurrently accessed by clients.

Singleton session beans offer similar functionality to stateless session beans but differ
from them in that there is only one singleton session bean per application, as opposed
to a pool of stateless session beans, any of which may respond to a client request. Like
stateless session beans, singleton session beans can implement web service endpoints.

Singleton session beans maintain their state between client invocations but are not
required to maintain their state across server crashes or shutdowns.

Applications that use a singleton session bean may specify that the singleton should be
instantiated upon application startup, which allows the singleton to perform
initialization tasks for the application. The singleton may perform cleanup tasks on
application shutdown as well, because the singleton will operate throughout the
lifecycle of the application.

When to Use Session Beans

Stateful session beans are appropriate if any of the following conditions are true.
= Thebean’s state represents the interaction between the bean and a specific client.
= The bean needs to hold information about the client across method invocations.

= The bean mediates between the client and the other components of the application,
presenting a simplified view to the client.

= Behind the scenes, the bean manages the work flow of several enterprise beans.

The Java EE 6 Tutorial: Basic Concepts

What Is a Message-Driven Bean?

To improve performance, you might choose a stateless session bean if it has any of
these traits.

= Thebean’s state has no data for a specific client.

= Inasingle method invocation, the bean performs a generic task for all clients. For
example, you might use a stateless session bean to send an email that confirms an
online order.

= The bean implements a web service.

Singleton session beans are appropriate in the following circumstances.

= State needs to be shared across the application.
= A single enterprise bean needs to be accessed by multiple threads concurrently.

= Theapplication needs an enterprise bean to perform tasks upon application
startup and shutdown.

= The bean implements a web service.

What Is a Message-Driven Bean?

A message-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. This type of bean normally acts as a JMS message listener,
which is similar to an event listener but receives JMS messages instead of events. The
messages can be sent by any Java EE component (an application client, another
enterprise bean, or a web component) or by a JMS application or system that does not
use Java EE technology. Message-driven beans can process JMS messages or other
kinds of messages.

What Makes Message-Driven Beans Different from
Session Beans?

The most visible difference between message-driven beans and session beans is that
clients do not access message-driven beans through interfaces. Interfaces are described
in the section “Accessing Enterprise Beans” on page 251. Unlike a session bean, a
message-driven bean has only a bean class.

Chapter 14 « Enterprise Beans 249

What Is a Message-Driven Bean?

250

In several respects, a message-driven bean resembles a stateless session bean.

= A message-driven bean’s instances retain no data or conversational state for a
specific client.

= Allinstances of a message-driven bean are equivalent, allowing the EJB container
to assign a message to any message-driven bean instance. The container can pool
these instances to allow streams of messages to be processed concurrently.

= A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state
across the handling of client messages, such as a JMS API connection, an open
database connection, or an object reference to an enterprise bean object.

Client components do not locate message-driven beans and invoke methods directly
on them. Instead, a client accesses a message-driven bean through, for example, JMS
by sending messages to the message destination for which the message-driven bean
class is the MessageListener. You assign a message-driven bean’s destination during
deployment by using GlassFish Server resources.

Message-driven beans have the following characteristics.

= They execute upon receipt of a single client message.
= Theyare invoked asynchronously.
= They are relatively short-lived.

= They do not represent directly shared data in the database, but they can access and
update this data.

= They can be transaction-aware.

= They are stateless.

When a message arrives, the container calls the message-driven bean’s onMessage
method to process the message. The onMessage method normally casts the message to
one of the five JMS message types and handles it in accordance with the application’s
business logic. The onMessage method can call helper methods or can invoke a session
bean to process the information in the message or to store it in a database.

A message can be delivered to a message-driven bean within a transaction context, so
all operations within the onMessage method are part of a single transaction. If message
processing is rolled back, the message will be redelivered. For more information, see
Chapter 27, “Transactions”

The Java EE 6 Tutorial: Basic Concepts

Accessing Enterprise Beans

When to Use Message-Driven Beans

Session beans allow you to send JMS messages and to receive them synchronously but
not asynchronously. To avoid tying up server resources, do not to use blocking
synchronous receives in a server-side component; in general, JMS messages should
not be sent or received synchronously. To receive messages asynchronously, use a
message-driven bean.

Accessing Enterprise Beans

Note - The material in this section applies only to session beans and not to
message-driven beans. Because they have a different programming model,
message-driven beans do not have interfaces or no-interface views that define client
access.

Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the
enterprise bean implementation class to clients. Clients using the no-interface view of
an enterprise bean may invoke any public methods in the enterprise bean
implementation class or any superclasses of the implementation class. A business
interface is a standard Java programming language interface that contains the business
methods of the enterprise bean.

A client can access a session bean only through the methods defined in the bean’s
business interface or through the public methods of an enterprise bean that has a
no-interface view. The business interface or no-interface view defines the client’s view
of an enterprise bean. All other aspects of the enterprise bean (method
implementations and deployment settings) are hidden from the client.

Well-designed interfaces and no-interface views simplify the development and
maintenance of Java EE applications. Not only do clean interfaces and no-interface
views shield the clients from any complexities in the EJB tier, but they also allow the
enterprise beans to change internally without affecting the clients. For example, if you
change the implementation of a session bean business method, you won’t have to alter
the client code. But if you were to change the method definitions in the interfaces, you
might have to modify the client code as well. Therefore, it is important that you design
the interfaces and no-interface views carefully to isolate your clients from possible
changes in the enterprise beans.

Session beans can have more than one business interface. Session beans should, but are
not required to, implement their business interface or interfaces.

Chapter 14 « Enterprise Beans 251

Accessing Enterprise Beans

252

Using Enterprise Beans in Clients

The client of an enterprise bean obtains a reference to an instance of an enterprise
bean through either dependency injection, using Java programming language
annotations, or JNDI lookup, using the Java Naming and Directory Interface syntax to
find the enterprise bean instance.

Dependency injection is the simplest way of obtaining an enterprise bean reference.
Clients that run within a Java EE server-managed environment, JavaServer Faces web
applications, JAX-RS web services, other enterprise beans, or Java EE application
clients, support dependency injection using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for
identifying Java EE components to simplify this explicit lookup.

Portable JNDI Syntax

Three JNDI namespaces are used for portable JNDI lookups: java:global,
java:module, and java:app.

= The java:global JNDI namespace is the portable way of finding remote
enterprise beans using JNDI lookups. JNDI addresses are of the following form:

java:global[/application namel/module name/enterprise bean name| /interface name)

Application name and module name default to the name of the application and
module minus the file extension. Application names are required only if the
application is packaged within an EAR. The interface name is required only if the
enterprise bean implements more than one business interface.

= The java:module namespace is used to look up local enterprise beans within the
same module. JNDI addresses using the java:module namespace are of the
following form:

java:module/enterprise bean name/[interface name]

The interface name is required only if the enterprise bean implements more than
one business interface.

= The java:app namespace is used to look up local enterprise beans packaged within
the same application. That is, the enterprise bean is packaged within an EAR file
containing multiple Java EE modules. JNDI addresses using the java:app
namespace are of the following form:

java:appl[/module name] /enterprise bean namel /interface name]

The module name is optional. The interface name is required only if the enterprise
bean implements more than one business interface.

The Java EE 6 Tutorial: Basic Concepts

Accessing Enterprise Beans

For example, if an enterprise bean, MyBean, is packaged within the web application
archive myApp.war, the module name is myApp. The portable JNDI name is
java:module/MyBean An equivalent JNDI name using the java:global namespace is
java:global/myApp/MyBean.

Deciding on Remote or Local Access

When you design a Java EE application, one of the first decisions you make is the type
of client access allowed by the enterprise beans: remote, local, or web service.

Whether to allow local or remote access depends on the following factors.

= Tight orloose coupling of related beans: Tightly coupled beans depend on one
another. For example, if a session bean that processes sales orders calls a session
bean that emails a confirmation message to the customer, these beans are tightly
coupled. Tightly coupled beans are good candidates for local access. Because they
fit together as a logical unit, they typically call each other often and would benefit
from the increased performance that is possible with local access.

= Type of client: If an enterprise bean is accessed by application clients, it should
allow remote access. In a production environment, these clients almost always run
on machines other than those on which the GlassFish Server is running. If an
enterprise bean’s clients are web components or other enterprise beans, the type of
access depends on how you want to distribute your components.

= Component distribution: Java EE applications are scalable because their
server-side components can be distributed across multiple machines. In a
distributed application, for example, the server that the web components run on
may not be the one on which the enterprise beans they access are deployed. In this
distributed scenario, the enterprise beans should allow remote access.

= Performance: Owing to such factors as network latency, remote calls may be
slower than local calls. On the other hand, if you distribute components among
different servers, you may improve the application’s overall performance. Both of
these statements are generalizations; performance can vary in different operational
environments. Nevertheless, you should keep in mind how your application design
might affect performance.

If you aren’t sure which type of access an enterprise bean should have, choose remote
access. This decision gives you more flexibility. In the future, you can distribute your
components to accommodate the growing demands on your application.

Although it is uncommon, it is possible for an enterprise bean to allow both remote
and local access. If this is the case, either the business interface of the bean must be
explicitly designated as a business interface by being decorated with the @Remote or
@Local annotations, or the bean class must explicitly designate the business interfaces

Chapter 14 « Enterprise Beans 253

Accessing Enterprise Beans

254

by using the @Remote and @Local annotations. The same business interface cannot be
both alocal and a remote business interface.

Local Clients

A local client has these characteristics.

= [t must run in the same application as the enterprise bean it accesses.
= [tcan be a web component or another enterprise bean.

= Tothelocal client, the location of the enterprise bean it accesses is not transparent.

The no-interface view of an enterprise bean is a local view. The public methods of the
enterprise bean implementation class are exposed to local clients that access the
no-interface view of the enterprise bean. Enterprise beans that use the no-interface
view do not implement a business interface.

The local business interface defines the bean’s business and lifecycle methods. If the
bean’s business interface is not decorated with @Local or @Remote, and if the bean class
does not specify the interface using @Local or @Remote, the business interface is by
default a local interface.

To build an enterprise bean that allows only local access, you may, but are not required
to, do one of the following:

= Create an enterprise bean implementation class that does not implement a
business interface, indicating that the bean exposes a no-interface view to clients.
For example:

@Session
public class MyBean { ... }

= Annotate the business interface of the enterprise bean as a @Local interface. For
example:

@Local
public interface InterfaceName { ... }

= Specify the interface by decorating the bean class with @Local and specify the
interface name. For example:

@Local (InterfaceName.class)
public class BeanName implements InterfaceName { ... }

The Java EE 6 Tutorial: Basic Concepts

Accessing Enterprise Beans

Accessing Local Enterprise Beans Using the No-Interface View
Client access to an enterprise bean that exposes a local, no-interface view is

accomplished through either dependency injection or JNDI lookup.

= To obtain a reference to the no-interface view of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the
enterprise bean’s implementation class:

@QEJB
ExampleBean exampleBean;

= To obtain a reference to the no-interface view of an enterprise bean through JNDI
lookup, use the javax.naming.InitialContext interface’s lookup method:

ExampleBean exampleBean = (ExampleBean)
InitialContext.lookup("java:module/ExampleBean");

Clients do not use the new operator to obtain a new instance of an enterprise bean that
uses a no-interface view.

Accessing Local Enterprise Beans That Implement Business
Interfaces

Client access to enterprise beans that implement local business interfaces is
accomplished through either dependency injection or JNDI lookup.

= To obtain a reference to the local business interface of an enterprise bean through
dependency injection, use the javax.ejb.EJB annotation and specify the
enterprise bean’s local business interface name:

@EJB
Example example;

= To obtain a reference to alocal business interface of an enterprise bean through
JNDI lookup, use the javax.naming.InitialContext interface’s Lookup method:

ExampleLocal example = (ExamplelLocal)
InitialContext.lookup("java:module/ExampleLocal");

Remote Clients

A remote client of an enterprise bean has the following traits.

= Jtcanrun on adifferent machine and a different JVM from the enterprise bean it
accesses. (It is not required to run on a different JVM.)

= [t can be a web component, an application client, or another enterprise bean.
= Toaremote client, the location of the enterprise bean is transparent.

= The enterprise bean must implement a business interface. That is, remote clients
may not access an enterprise bean through a no-interface view.

Chapter 14 « Enterprise Beans 255

Accessing Enterprise Beans

256

To create an enterprise bean that allows remote access, you must either

= Decorate the business interface of the enterprise bean with the @Remote
annotation:

@Remote
public interface InterfaceName { ... }

= Decorate the bean class with @Remote, specifying the business interface or
interfaces:

@Remote(InterfaceName.class)
public class BeanName implements InterfaceName { ... }

The remote interface defines the business and lifecycle methods that are specific to the
bean. For example, the remote interface of a bean named BankAccountBean might
have business methods named deposit and credit. Figure 14-1 shows how the
interface controls the client’s view of an enterprise bean.

FIGURE 14-1 Interfaces for an Enterprise Bean with Remote Access

Remote Client Remote Interface BankAccountBean

¢ — deposit () —

credit () .
>
$ ‘

Client access to an enterprise bean that implements a remote business interface is
accomplished through either dependency injection or JNDI lookup.

= To obtain a reference to the remote business interface of an enterprise bean
through dependency injection, use the javax.ejb.EJB annotation and specify the
enterprise bean’s remote business interface name:
@EJB
Example example;

= To obtain a reference to a remote business interface of an enterprise bean through
JNDI lookup, use the javax.naming.InitialContext interface’s lookup method:

ExampleRemote example = (ExampleRemote)
InitialContext.lookup("java:global/myApp/ExampleRemote");

Web Service Clients

A web service client can access a Java EE application in two ways. First, the client can
access a web service created with JAX-WS. (For more information on JAX-WS, see

The Java EE 6 Tutorial: Basic Concepts

Accessing Enterprise Beans

Chapter 12, “Building Web Services with JAX-WS.”) Second, a web service client can
invoke the business methods of a stateless session bean. Message beans cannot be
accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP, WSDL), any web service
client can access a stateless session bean, whether or not the client is written in the Java
programming language. The client doesn’t even “know” what technology implements
the service: stateless session bean, JAX-WS, or some other technology. In addition,
enterprise beans and web components can be clients of web services. This flexibility
enables you to integrate Java EE applications with web services.

A web service client accesses a stateless session bean through the bean’s web service
endpoint implementation class. By default, all public methods in the bean class are
accessible to web service clients. The @webMethod annotation may be used to
customize the behavior of web service methods. If the @WebMethod annotation is used
to decorate the bean class’s methods, only those methods decorated with @WebMethod
are exposed to web service clients.

For a code sample, see “A Web Service Example: helloservice” on page 286.

Method Parameters and Access

The type of access affects the parameters of the bean methods that are called by clients.
The following sections apply not only to method parameters but also to method return
values.

Isolation

The parameters of remote calls are more isolated than those of local calls. With remote
calls, the client and the bean operate on different copies of a parameter object. If the
client changes the value of the object, the value of the copy in the bean does not
change. This layer of isolation can help protect the bean if the client accidentally
modifies the data.

In alocal call, both the client and the bean can modify the same parameter object. In
general, you should not rely on this side effect of local calls. Perhaps someday you will
want to distribute your components, replacing the local calls with remote ones.

As with remote clients, web service clients operate on different copies of parameters
than does the bean that implements the web service.

Granularity of Accessed Data

Because remote calls are likely to be slower than local calls, the parameters in remote
methods should be relatively coarse-grained. A coarse-grained object contains more

Chapter 14 « Enterprise Beans 257

The Contents of an Enterprise Bean

data than a fine-grained one, so fewer access calls are required. For the same reason,
the parameters of the methods called by web service clients should also be
coarse-grained.

The Contents of an Enterprise Bean

258

To develop an enterprise bean, you must provide the following files:

= Enterprise bean class: Implements the business methods of the enterprise bean
and any lifecycle callback methods.

= Business interfaces: Define the business methods implemented by the enterprise
bean class. A business interface is not required if the enterprise bean exposes a
local, no-interface view.

= Helper classes: Other classes needed by the enterprise bean class, such as exception
and utility classes.

Package the programming artifacts in the preceding list either into an EJB JAR file (a
stand-alone module that stores the enterprise bean) or within a web application
archive (WAR) module.

Packaging Enterprise Beansin EJB JAR Modules
An EJB JAR file is portable and can be used for various applications.

To assemble a Java EE application, package one or more modules, such as EJB JAR
files, into an EAR file, the archive file that holds the application. When deploying the
EAR file that contains the enterprise bean’s EJB JAR file, you also deploy the enterprise
bean to the GlassFish Server. You can also deploy an EJB JAR that is not contained in
an EAR file. Figure 14-2 shows the contents of an EJB JAR file.

The Java EE 6 Tutorial: Basic Concepts

The Contents of an Enterprise Bean

FIGURE 14-2 Structure of an Enterprise Bean JAR

‘ Assembly Root

‘ META-INF
I

All .class files
for this module

ejb-jar.xml MANIFEST.MF
sun-ejb-jar.xml
(optional)

Packaging Enterprise Beansin WAR Modules

Enterprise beans often provide the business logic of a web application. In these cases,
packaging the enterprise bean within the web application’s WAR module simplifies
deployment and application organization. Enterprise beans may be packaged within a
WAR module as Java programming language class files or within a JAR file that is
bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the
WEB-INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to
the WEB-INF/1ib directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb- jar.xml
deployment descriptor. If the application uses ejb- jar.xml, it must be located in the
WAR module’s WEB- INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not
considered EJB JAR files, even if the bundled JAR file conforms to the format of an EJB
JAR file. The enterprise beans contained within the JAR file are semantically equivalent
to enterprise beans located in the WAR module’s WEB- INF/classes directory, and the
environment namespace of all the enterprise beans are scoped to the WAR module.

Chapter 14 « Enterprise Beans 259

Naming Conventions for Enterprise Beans

For example, suppose that a web application consists of a shopping cart enterprise
bean, a credit card processing enterprise bean, and a Java servlet front end. The
shopping cart bean exposes a local, no-interface view and is defined as follows:

package com.example.cart;

@Stateless
public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file, cc. jar, exposes a
local, no-interface view, and is defined as follows:

package com.example.cc;

@Stateless
public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet, handles the web front end and uses
both CartBean and CreditCardBean. The WAR module layout for this application
looks as follows:

WEB-INF/classes/com/example/cart/CartBean.class
WEB-INF/classes/com/example/web/StoreServlet
WEB-INF/lib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

Naming Conventions for Enterprise Beans

Because enterprise beans are composed of multiple parts, it’s useful to follow a naming
convention for your applications. Table 14-2 summarizes the conventions for the
example beans in this tutorial.

TABLE 14-2 Naming Conventions for Enterprise Beans

Item Syntax Example
Enterprise bean name nameBean AccountBean
Enterprise bean class nameBean AccountBean
Business interface name Account

260 The Java EE 6 Tutorial: Basic Concepts

The Lifecycles of Enterprise Beans

The Lifecycles of Enterprise Beans

An enterprise bean goes through various stages during its lifetime, or lifecycle. Each
type of enterprise bean (stateful session, stateless session, singleton session, or
message-driven) has a different lifecycle.

The descriptions that follow refer to methods that are explained along with the code
examples in the next two chapters. If you are new to enterprise beans, you should skip
this section and run the code examples first.

The Lifecycle of a Stateful Session Bean

Figure 14-3 illustrates the stages that a session bean passes through during its lifetime.
The client initiates the lifecycle by obtaining a reference to a stateful session bean. The
container performs any dependency injection and then invokes the method annotated
with @PostConstruct, if any. The bean is now ready to have its business methods
invoked by the client.

FIGURE 14-3 Lifecycle of a Stateful Session Bean

(@ Create

(@ Dependency injection, if any

@ PostConstruct callback, if any

@ Init method, or ejbCreate<METHOD>, if any

PrePassivate
callback, if any
Does Not Exist — > | Ready — ~ | Passive

PostActivate
callback, if any

@ Remove
@ PreDestroy callback, if any

While in the ready stage, the EJB container may decide to deactivate, or passivate, the
bean by moving it from memory to secondary storage. (Typically, the EJB container
uses a least-recently-used algorithm to select a bean for passivation.) The EJB
container invokes the method annotated @PrePassivate, if any, immediately before
passivating it. If a client invokes a business method on the bean while it is in the passive
stage, the EJB container activates the bean, calls the method annotated
@PostActivate, ifany, and then moves it to the ready stage.

Chapter 14 « Enterprise Beans 261

The Lifecycles of Enterprise Beans

262

At the end of the lifecycle, the client invokes a method annotated @Remove, and the EJB
container calls the method annotated @PreDestroy, if any. The bean’s instance is then
ready for garbage collection.

Your code controls the invocation of only one lifecycle method: the method annotated
@Remove. All other methods in Figure 14-3 are invoked by the EJB container. See
Chapter 28, “Resource Connections,” for more information.

The Lifecycle of a Stateless Session Bean

Because a stateless session bean is never passivated, its lifecycle has only two stages:
nonexistent and ready for the invocation of business methods. Figure 144 illustrates
the stages of a stateless session bean.

FIGURE 14-4 Lifecycle of a Stateless Session Bean

(O Dependency injection, if any
(2 PostConstruct callback, if any

>

Does Not Exist

Ready

PreDestroy callback, if any

The EJB container typically creates and maintains a pool of stateless session beans,
beginning the stateless session bean’s lifecycle. The container performs any
dependency injection and then invokes the method annotated @PostConstruct, if it
exists. The bean is now ready to have its business methods invoked by a client.

At the end of the lifecycle, the EJB container calls the method annotated @PreDestroy,
ifit exists. The bean’s instance is then ready for garbage collection.

The Lifecycle of a Singleton Session Bean

Like a stateless session bean, a singleton session bean is never passivated and has only
two stages, nonexistent and ready for the invocation of business methods, as shown in
Figure 14-5.

The Java EE 6 Tutorial: Basic Concepts

The Lifecycles of Enterprise Beans

FIGURE 14-5 Lifecycle of a Singleton Session Bean

() Dependency injection, if any
(@ PostConstruct callback, if any

Does Not Exist Ready

PreDestroy callback, if any

The EJB container initiates the singleton session bean lifecycle by creating the
singleton instance. This occurs upon application deployment if the singleton is
annotated with the @tartup annotation The container performs any dependency
injection and then invokes the method annotated @PostConstruct, if it exists. The
singleton session bean is now ready to have its business methods invoked by the client.

At the end of the lifecycle, the E]JB container calls the method annotated @PreDestroy,
if it exists. The singleton session bean is now ready for garbage collection.

The Lifecycle of a Message-Driven Bean

Figure 14-6 illustrates the stages in the lifecycle of a message-driven bean.

FIGURE 14-6 Lifecycle of a Message-Driven Bean

() Dependency injection, if any
(@ PostConstruct callback, if any

Does Not Exist onMessage Ready

PreDestroy callback, if any

The EJB container usually creates a pool of message-driven bean instances. For each
instance, the EJB container performs these tasks.

1. Ifthe message-driven bean uses dependency injection, the container injects these
references before instantiating the instance.

2. The container calls the method annotated @PostConstruct, if any.

Chapter 14 « Enterprise Beans 263

Further Information about Enterprise Beans

Like a stateless session bean, a message-driven bean is never passivated and has only
two states: nonexistent and ready to receive messages.

At the end of the lifecycle, the container calls the method annotated @PreDestroy, if
any. The bean’s instance is then ready for garbage collection.

Further Information about Enterprise Beans

For more information on Enterprise JavaBeans technology, see

= Enterprise JavaBeans 3.1 specification:
http://jcp.org/en/jsr/summary?id=318

= Enterprise JavaBeans web site:

http://www.oracle.com/technetwork/java/ejb-141389.html

264 The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/en/jsr/summary?id=318
http://www.oracle.com/technetwork/java/ejb-141389.html

L K R 4 CHAPTER 15

Getting Started with Enterprise Beans

This chapter shows how to develop, deploy, and run a simple Java EE application
named converter. The purpose of converter is to calculate currency conversions
between Japanese yen and Eurodollars. The converter application consists of an
enterprise bean, which performs the calculations, and two types of clients: an
application client and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

Create the enterprise bean: ConverterBean.
Create the web client.

Deploy converter onto the server.

Using a browser, run the web client.

L e

Before proceeding, make sure that you've done the following:

= Read Chapter 1, “Overview”
= Become familiar with enterprise beans (see Chapter 14, “Enterprise Beans”)
= Started the server (see “Starting and Stopping the GlassFish Server” on page 41)

The following topics are addressed here:

= “Creating the Enterprise Bean” on page 265
= “Modifying the Java EE Application” on page 269

Creating the Enterprise Bean

The enterprise bean in our example is a stateless session bean called ConverterBean.
The source code for ConverterBean is in the
tut-install/examples/ejb/converter/src/java/ directory.

265

Creating the Enterprise Bean

266

Creating ConverterBean requires these steps:

1. Coding the bean’s implementation class (the source code is provided)
2. Compiling the source code

Coding the Enterprise Bean Class

The enterprise bean class for this example is called ConverterBean. This class
implements two business methods: dollarToYen and yenToEuro. Because the
enterprise bean class doesn’t implement a business interface, the enterprise bean
exposes a local, no-interface view. The public methods in the enterprise bean class are
available to clients that obtain a reference to ConverterBean. The source code for the
ConverterBean class is as follows:

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;

import javax.ejb.*;

@Stateless

public class ConverterBean {
private BigDecimal yenRate = new BigDecimal("115.3100");
private BigDecimal euroRate = new BigDecimal("0.0071")
public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND UP);
}

public BigDecimal yenToEuro(BigDecimal yen) {
BigDecimal result = yen.multiply(euroRate);
return result.setScale(2, BigDecimal.ROUND UP);
}

Note the @Stateless annotation decorating the enterprise bean class. This annotation
lets the container know that ConverterBean is a stateless session bean.

Creating the converter Web Client

The web client is contained in the following servlet class:

tut-install/examples/ejb/converter/src/java/converter/web/ConverterServlet.java

ATJava servlet is a web component that responds to HTTP requests.

The ConverterServlet class uses dependency injection to obtain a reference to
ConverterBean. The javax.ejb.EJB annotation is added to the declaration of the

The Java EE 6 Tutorial: Basic Concepts

Creating the Enterprise Bean

private member variable converterBean, which is of type ConverterBean.
ConverterBean exposes a local, no-interface view, so the enterprise bean
implementation class is the variable type:

@webServlet

public class ConverterServlet extends HttpServlet {
@EJB
ConverterBean converterBean;

) e

When the user enters an amount to be converted to yen and euro, the amount is
retrieved from the request parameters; then the ConverterBean.dollarToYen and the
ConverterBean.yenToEuro methods are called:

try {

String amount = request.getParameter("“amount");

if (amount != null && amount.length() > 0) {
// convert the amount to a BigDecimal from the request parameter
BigDecimal d = new BigDecimal(amount);
// call the ConverterBean.dollarToYen() method to get the amount
// in Yen
BigDecimal yenAmount = converter.dollarToYen(d);

// call the ConverterBean.yenToEuro() method to get the amount

// in Euros
BigDecimal euroAmount = converter.yenToEuro(yenAmount);

}

The results are displayed to the user.

Building, Packaging, Deploying, and Running the
converter Example

Now you are ready to compile the enterprise bean class (ConverterBean.java) and
the servlet class (ConverterServlet. java) and to package the compiled classes into a
WAR file.

To Build, Package, and Deploy the converter Examplein
NetBeans IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Chapter 15 « Getting Started with Enterprise Beans 267

Creating the Enterprise Bean

268

Select the converter folder.
Select the Open as Main Project and Open Required Projects check boxes.
Click Open Project.

In the Projects tab, right-click the converter project and select Deploy.
A web browser window opens the URL http://localhost:8080/converter.

To Build, Package, and Deploy the converter Example Using Ant

In a terminal window, go to:

tut-install/examples/ejb/converter/

Type the following command:
ant all

This command calls the default task, which compiles the source files for the
enterprise bean and the servlet, placing the class files in the build subdirectory (not
the src directory) of the project. The default task packages the project intoa WAR
module: converter.war. For more information about the Ant tool, see “Building the
Examples” on page 44.

Note - When compiling the code, the ant task includes the Java EE APIJAR files in the
classpath. These JARs reside in the modules directory of your GlassFish Server
installation. If you plan to use other tools to compile the source code for Java EE
components, make sure that the classpath includes the Java EE API JAR files.

To Run the converter Example

Open a web browser to the following URL:
http://localhost:8080/converter

The screen shown in Figure 15-1 appears.

The Java EE 6 Tutorial: Basic Concepts

Modifying the Java EE Application

FIGURE 15-1 The converter Web Client

) Servlet ConverterServiet - Mozilla Firefox

File Edit Wiew History BEEldneie® Tools Help
> G Laf |:] http:/flocalhost: 8080 converter 9 - .‘l.)-':

|:] Servlet ConverterServlet &

Servlet ConverterServlet at /converter

Enter a dollar amount to convert:

8

Done

2 Type100in theinputfield and click Submit.

A second page appears, showing the converted values.

Modifying the Java EE Application

The GlassFish Server supports iterative development. Whenever you make a change to
aJava EE application, you must redeploy the application.

¥ To Modify a Class File

To modify a class file in an enterprise bean, you change the source code, recompile it,
and redeploy the application. For example, if you want to change the exchange rate in
the dollarToYen business method of the ConverterBean class, you would follow these
steps.

To modify ConverterServlet, the procedure is the same.
1 EditConverterBean. javaand save thefile.

2 Recompile the source file.

= Torecompile ConverterBean. java in NetBeans IDE, right-click the converter
project and select Run.

This recompiles the ConverterBean. java file, replaces the old class file in the build
directory, and redeploys the application to GlassFish Server.

Chapter 15 « Getting Started with Enterprise Beans 269

Modifying the Java EE Application

= Recompile ConverterBean. java using Ant:

a. Inaterminal window, go to the tut-install/examples/ejb/converter/
subdirectory.

b. Type the following command:
ant all

This command repackages, deploys, and runs the application.

270 The Java EE 6 Tutorial: Basic Concepts

L K R 4 CHAPTER 16

Running the Enterprise Bean Examples

Session beans provide a simple but powerful way to encapsulate business logic within
an application. They can be accessed from remote Java clients, web service clients, and
components running in the same server.

In Chapter 15, “Getting Started with Enterprise Beans,” you built a stateless session
bean named ConverterBean. This chapter examines the source code of four more
session beans:

= CartBean:astateful session bean that is accessed by a remote client

= CounterBean: asingleton session bean

= HelloServiceBean: a stateless session bean that implements a web service
= TimerSessionBean: a stateless session bean that sets a timer

The following topics are addressed here:

= “The cart Example” on page 271

= “A Singleton Session Bean Example: counter” on page 278
= “A Web Service Example: helloservice” on page 286

= “Using the Timer Service” on page 290

“Handling Exceptions” on page 300

The cart Example

The cart example represents a shopping cart in an online bookstore and uses a stateful
session bean to manage the operations of the shopping cart. The bean’s client can add a
book to the cart, remove a book, or retrieve the cart’s contents. To assemble cart, you
need the following code:

= Session bean class (CartBean)
®= Remote business interface (Cart)

271

The cart Example

272

All session beans require a session bean class. All enterprise beans that permit remote
access must have a remote business interface. To meet the needs of a specific
application, an enterprise bean may also need some helper classes. The CartBean
session bean uses two helper classes, BookException and IdVerifier, which are
discussed in the section “Helper Classes” on page 276.

The source code for this example is in the tut-install/examples/ejb/cart/ directory.

The Business Interface

The Cart business interface is a plain Java interface that defines all the business
methods implemented in the bean class. If the bean class implements a single interface,
that interface is assumed to the business interface. The business interface is a local
interface unless it is annotated with the javax.ejb.Remote annotation; the
javax.ejb.Local annotation is optional in this case.

The bean class may implement more than one interface. In that case, the business
interfaces must either be explicitly annotated @Local or @Remote or be specified by
decorating the bean class with @Local or @Remote. However, the following interfaces
are excluded when determining whether the bean class implements more than one
interface:

B java.io.Serializable
® java.io.Externalizable
= Any of the interfaces defined by the javax.ejb package

The source code for the Cart business interface follows:

package com.sun.tutorial.javaee.ejb;

import java.util.List;
import javax.ejb.Remote;

@Remote
public interface Cart {
public void initialize(String person) throws BookException;
public void initialize(String person, String id)
throws BookException;
public void addBook(String title);
public void removeBook(String title) throws BookException;
public List<String> getContents();
public void remove();

The Java EE 6 Tutorial: Basic Concepts

The cart Example

Session Bean Class

The session bean class for this example is called CartBean. Like any stateful session
bean, the CartBean class must meet the following requirements.

= Theclassis annotated @Stateful.
= The class implements the business methods defined in the business interface.

Stateful session beans also may

= Implement the business interface, a plain Java interface. It is good practice to
implement the bean’s business interface.

= Implement any optional lifecycle callback methods, annotated @PostConstruct,
@PreDestroy, @PostActivate, and @PrePassivate.

= Implement any optional business methods annotated @emove.

The source code for the CartBean class follows:

package com.sun.tutorial.javaee.ejb;

import java.util.ArraylList;
import java.util.List;
import javax.ejb.Remove;
import javax.ejb.Stateful;

@Stateful

public class CartBean implements Cart {
String customerName;
String customerlId;
List<String> contents;

public void initialize(String person) throws BookException {
if (person == null) {
throw new BookException("Null person not allowed.");
} else {
customerName = person;
)
customerId = "0"
contents = new ArrayList<String>();

}
public void initialize(String person, String id)
throws BookException {
if (person == null) {
throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

Chapter 16 « Running the Enterprise Bean Examples 273

The cart Example

274

customerld = id;
} else {
throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

public void addBook(String title) {
contents.add(title);
}

public void removeBook(String title) throws BookException {
boolean result = contents.remove(title);
if (result == false) {
throw new BookException(title +

not in cart.");

}
}

public List<String> getContents() {
return contents;

}

@Remove
public void remove() {
contents = null;

}

Lifecycle Callback Methods

A method in the bean class may be declared as a lifecycle callback method by
annotating the method with the following annotations:

® javax.annotation.PostConstruct: Methods annotated with @PostConstruct
are invoked by the container on newly constructed bean instances after all
dependency injection has completed and before the first business method is
invoked on the enterprise bean.

® javax.annotation.PreDestroy: Methods annotated with @PreDestroy are
invoked after any method annotated @Remove has completed and before the
container removes the enterprise bean instance.

® javax.ejb.PostActivate: Methods annotated with @PostActivate are invoked
by the container after the container moves the bean from secondary storage to
active status.

® javax.ejb.PrePassivate: Methods annotated with @PrePassivate are invoked
by the container before it passivates the enterprise bean, meaning that the
container temporarily removes the bean from the environment and saves it to
secondary storage.

Lifecycle callback methods must return void and have no parameters.

The Java EE 6 Tutorial: Basic Concepts

The cart Example

Business Methods

The primary purpose of a session bean is to run business tasks for the client. The client
invokes business methods on the object reference it gets from dependency injection or
JNDI lookup. From the client’s perspective, the business methods appear to run
locally, although they run remotely in the session bean. The following code snippet
shows how the CartClient program invokes the business methods:

cart.create("Duke DeEarl", "123");
cart.addBook("Bel Canto")
List<String> bookList = cart.getContents();

cart.removeBook("Gravity’s Rainbow")

The CartBean class implements the business methods in the following code:

public void addBook(String title) {
contents.addElement(title);
}

public void removeBook(String title) throws BookException {
boolean result = contents.remove(title);
if (result == false) {
throw new BookException(title + "not in cart.");
}
}

public List<String> getContents() {
return contents;

}
The signature of a business method must conform to these rules.

= The method name must not begin with ejb, to avoid conflicts with callback
methods defined by the EJB architecture. For example, you cannot call a business
method ejbCreate or ejbActivate.

® The access control modifier must be public.

= Ifthe bean allows remote access through a remote business interface, the
arguments and return types must be legal types for the Java Remote Method
Invocation (RMI) API.

= Ifthebean is a web service endpoint, the arguments and return types for the
methods annotated @WebMethod must be legal types for JAX-WS.

® The modifier must not be static or final.

The throws clause can include exceptions that you define for your application. The
removeBook method, for example, throws a BookException if the book is not in the
cart.

Chapter 16 « Running the Enterprise Bean Examples 275

The cart Example

276

To indicate a system-level problem, such as the inability to connect to a database, a
business method should throw a javax.ejb.EJBException. The container will not
wrap application exceptions, such as BookException. Because EJBExceptionisa
subclass of RuntimeException, you do not need to include it in the throws clause of
the business method.

The @Remove Method

Business methods annotated with javax.ejb.Remove in the stateful session bean class
can be invoked by enterprise bean clients to remove the bean instance. The container
will remove the enterprise bean after a @emove method completes, either normally or
abnormally.

In CartBean, the remove method is a @Remove method:

@Remove
public void remove() {
contents = null;

}

Helper Classes

The CartBean session bean has two helper classes: BookException and IdVerifier.
The BookException is thrown by the removeBook method, and the Idverifier
validates the customerId in one of the create methods. Helper classes may reside in
an EJB JAR file that contains the enterprise bean class, a WAR file if the enterprise bean
is packaged within a WAR, or in an EAR that contains an EJB JAR or a WAR file that
contains an enterprise bean.

Building, Packaging, Deploying, and Running the
cart Example

Now you are ready to compile the remote interface (Cart. java), the home interface
(CartHome. java), the enterprise bean class (CartBean. java), the client class

(CartClient.java), and the helper classes (BookException.javaand
Idverifier.java). Follow these steps.

You can build, package, deploy, and run the cart application using either NetBeans
IDE or the Ant tool.

The Java EE 6 Tutorial: Basic Concepts

The cart Example

To Build, Package, Deploy, and Run the cart Example Using
NetBeans IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the cart folder.
Select the Open as Main Project and Open Required Projects check boxes.
Click Open Project.

In the Projects tab, right-click the cart project and select Deploy.

This builds and packages the application into cart.ear, located in
tut-install/examples/ejb/cart/dist/, and deploys this EAR file to your GlassFish
Server instance.

To run the cart application client, select Run—Run Main Project.

You will see the output of the application client in the Output pane:

Retrieving book title from cart: Infinite Jest
Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore
Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.
Java Result: 1

run-cart-app-client:

run-nb:

BUILD SUCCESSFUL (total time: 14 seconds)

To Build, Package, Deploy, and Run the cart Example Using Ant

In a terminal window, go to:

tut-install/examples/ejb/cart/

Type the following command:
ant

This command calls the default target, which builds and packages the application
into an EAR file, cart.ear, located in the dist directory.

Chapter 16 « Running the Enterprise Bean Examples 277

A Singleton Session Bean Example: counter

Type the following command:
ant deploy

The cart.ear file is deployed to the GlassFish Server.

Type the following command:

ant run

This task retrieves the application client JAR, cartClient. jar, and runs the
application client. The client JAR, cartClient. jar, contains the application client
class, the helper class BookException, and the Cart business interface.

This task is equivalent to running the following command:

appclient -client cartClient.jar

When you run the client, the application client container injects any component
references declared in the application client class, in this case the reference to the Cart
enterprise bean.

The all Task

As a convenience, the all task will build, package, deploy, and run the application. To
do this, enter the following command:

ant all

A Singleton Session Bean Example: counter

278

The counter example demonstrates how to create a singleton session bean.

Creating a Singleton Session Bean

The javax.ejb.Singleton annotation is used to specify that the enterprise bean
implementation class is a singleton session bean:

@Singleton
public class SingletonBean { ... }

Initializing Singleton Session Beans

The EJB container is responsible for determining when to initialize a singleton session
bean instance unless the singleton session bean implementation class is annotated
with the javax.ejb.Startup annotation. In this case, sometimes called eager
initialization, the EJB container must initialize the singleton session bean upon
application startup. The singleton session bean is initialized before the EJB container

The Java EE 6 Tutorial: Basic Concepts

A Singleton Session Bean Example: counter

delivers client requests to any enterprise beans in the application. This allows the
singleton session bean to perform, for example, application startup tasks.

The following singleton session bean stores the status of an application and is eagerly
initialized:

@Startup

@Singleton

public class StatusBean {
private String status;

@PostConstruct
void init {
status = "Ready";

}
L

Sometimes multiple singleton session beans are used to initialize data for an
application and therefore must be initialized in a specific order. In these cases, use the
javax.ejb.DependsOn annotation to declare the startup dependencies of the singleton
session bean. The @ependsOn annotation’s value attribute is one or more strings that
specify the name of the target singleton session bean. If more than one dependent
singleton bean is specified in @ependsOn, the order in which they are listed is not
necessarily the order in which the EJB container will initialize the target singleton
session beans.

The following singleton session bean, PrimaryBean, should be started up first:

@Singleton
public class PrimaryBean { ... }

SecondaryBean depends on PrimaryBean:

@Singleton
@DependsOn("PrimaryBean")
public class SecondaryBean { ... }

This guarantees that the EJB container will initialize PrimaryBean before
SecondaryBean.

The following singleton session bean, TertiaryBean, depends on PrimaryBean and
SecondaryBean:

@Singleton
@DependsOn("PrimaryBean", "SecondaryBean")
public class TertiaryBean { ... }

SecondaryBean explicitly requires PrimaryBean to be initialized before it is initialized,
through its own @DependsOn annotation. In this case, the EJB container will first
initialize PrimaryBean, then SecondaryBean, and finally TertiaryBean.

Chapter 16 « Running the Enterprise Bean Examples 279

A Singleton Session Bean Example: counter

280

If, however, SecondaryBean did not explicitly depend on PrimaryBean, the EJB
container may initialize either PrimaryBean or SecondaryBean first. That is, the EJB
container could initialize the singletons in the following order: SecondaryBean,
PrimaryBean, TertiaryBean.

Managing Concurrent Access in a Singleton Session Bean

Singleton session beans are designed for concurrent access, situations in which many
clients need to access a single instance of a session bean at the same time. A singleton’s
client needs only a reference to a singleton in order to invoke any business methods
exposed by the singleton and doesn’t need to worry about any other clients that may be
simultaneously invoking business methods on the same singleton.

When creating a singleton session bean, concurrent access to the singleton’s business
methods can be controlled in two ways: container-managed concurrency and
bean-managed concurrency.

The javax.ejb.ConcurrencyManagement annotation is used to specify
container-managed or bean-managed concurrency for the singleton. With
@ConcurrencyManagement, a type attribute must be set to either
javax.ejb.ConcurrencyManagementType.CONTAINER or
javax.ejb.ConcurrencyManagementType.BEAN. If no @ConcurrencyManagement
annotation is present on the singleton implementation class, the EJB container default
of container-managed concurrency is used.

Container-Managed Concurrency

If a singleton uses container-managed concurrency, the EJB container controls client
access to the business methods of the singleton. The javax.ejb.Lock annotation and
a javax.ejb.LockType type are used to specify the access level of the singleton’s
business methods or @Timeout methods.

Annotate a singleton’s business or timeout method with @Lock (READ) if the method
can be concurrently accessed, or shared, with many clients. Annotate the business or
timeout method with @Lock (WRITE) if the singleton session bean should be locked to
other clients while a client is calling that method. Typically, the @Lock (WRITE)
annotation is used when clients are modifying the state of the singleton.

Annotating a singleton class with @Lock specifies that all the business methods and any
timeout methods of the singleton will use the specified lock type unless they explicitly
set the lock type with a method-level @Lock annotation. If no @Lock annotation is
present on the singleton class, the default lock type, @Lock (WRITE), is applied to all
business and timeout methods.

The following example shows how to use the @ConcurrencyManagement,
@Lock (READ), and @Lock (WRITE) annotations for a singleton that uses
container-managed concurrency.

The Java EE 6 Tutorial: Basic Concepts

A Singleton Session Bean Example: counter

Although by default, singletons use container-managed concurrency, the
@ConcurrencyManagement (CONTAINER) annotation may be added at the class level of
the singleton to explicitly set the concurrency management type:

@ConcurrencyManagement (CONTAINER)

@Singleton

public class ExampleSingletonBean {
private String state;

@Lock (READ)
public String getState() {
return state;

}

@Lock (WRITE)
public void setState(String newState) {
state = newState;
}
}

The getState method can be accessed by many clients at the same time because it is
annotated with @Lock (READ). When the setState method is called, however, all the
methods in ExampleSingletonBean will be locked to other clients because setState is
annotated with @Lock (WRITE). This prevents two clients from attempting to
simultaneously change the state variable of ExampleSingletonBean.

The getData and getStatus methods in the following singleton are of type READ, and
the setStatus method is of type WRITE:

@Singleton

@Lock (READ)

public class SharedSingletonBean {
private String data;
private String status;

public String getData() {
return data;

}

public String getStatus() {
return status;

}

@Lock (WRITE)
public void setStatus(String newStatus) {
status = newStatus;
}
b

If a method is of locking type WRITE, client access to all the singleton’s methods is
blocked until the current client finishes its method call or an access timeout occurs.
When an access timeout occurs, the EJB container throws a
javax.ejb.ConcurrentAccessTimeoutException. The javax.ejb.AccessTimeout
annotation is used to specify the number of milliseconds before an access timeout

Chapter 16 « Running the Enterprise Bean Examples 281

A Singleton Session Bean Example: counter

282

occurs. If added at the class level of a singleton, @AccessTimeout specifies the access
timeout value for all methods in the singleton unless a method explicitly overrides the
default with its own @AccessTimeout annotation.

The @AccessTimeout annotation can be applied to both @Lock (READ) and

@Lock (WRITE) methods. The @AccessTimeout annotation has one required element,
value, and one optional element, unit. By default, the value is specified in
milliseconds. To change the value unit, set unit to one of the
java.util.concurrent.TimeUnit constants: NANOSECONDS, MICROSECONDS,
MILLISECONDS, or SECONDS.

The following singleton has a default access timeout value of 120,000 milliseconds, or
2 minutes. The doTediousOperation method overrides the default access timeout and
sets the value to 360,000 milliseconds, or 6 minutes.

@Singleton

@AccessTimeout (value=120000)

public class StatusSingletonBean {
private String status;

@Lock (WRITE)
public void setStatus(String new Status) {
status = newStatus;

}

@Lock (WRITE)
@AccessTimeout (value=360000)
public void doTediousOperation {

L
}

The following singleton has a default access timeout value of 60 seconds, specified
using the TimeUnit.SECONDS constant:

@Singleton
@AccessTimeout(value=60, timeUnit=SECONDS)
public class StatusSingletonBean { ... }

Bean-Managed Concurrency

Singletons that use bean-managed concurrency allow full concurrent access to all the
business and timeout methods in the singleton. The developer of the singleton is
responsible for ensuring that the state of the singleton is synchronized across all
clients. Developers who create singletons with bean-managed concurrency are
allowed to use the Java programming language synchronization primitives, such as
synchronization and volatile,to prevent errors during concurrent access.

Add a@ConcurrencyManagement annotation at the class level of the singleton to
specify bean-managed concurrency:

The Java EE 6 Tutorial: Basic Concepts

A Singleton Session Bean Example: counter

@ConcurrencyManagement (BEAN)
@Singleton
public class AnotherSingletonBean { ... }

Handling Errors in a Singleton Session Bean

If a singleton session bean encounters an error when initialized by the EJB container,
that singleton instance will be destroyed.

Unlike other enterprise beans, once a singleton session bean instance is initialized, it is
not destroyed if the singleton’s business or lifecycle methods cause system exceptions.
This ensures that the same singleton instance is used throughout the application
lifecycle.

The Architecture of the counter Example

The counter example consists of a singleton session bean, CounterBean, and a
JavaServer Faces Facelets web front end.

CounterBean is a simple singleton with one method, getHits, that returns an integer
representing the number of times a web page has been accessed. Here is the code of
CounterBean:

package counter.ejb;
import javax.ejb.Singleton;

/**
* CounterBean is a simple singleton session bean that records the number
* of hits to a web page.
*/
@Singleton
public class CounterBean {
private int hits = 1;

// Increment and return the number of hits
public int getHits() {

return hits++;
}

}

The @Singleton annotation marks CounterBean as a singleton session bean.
CounterBean uses a local, no-interface view.

CounterBean uses the EJB container’s default metadata values for singletons to
simplify the coding of the singleton implementation class. There is no
@ConcurrencyManagement annotation on the class, so the default of
container-managed concurrency access is applied. There is no @Lock annotation on
the class or business method, so the default of @Lock (WRITE) is applied to the only
business method, getHits.

Chapter 16 « Running the Enterprise Bean Examples 283

A Singleton Session Bean Example: counter

284

The following version of CounterBean is functionally equivalent to the preceding
version:

package counter.ejb;

import javax.ejb.Singleton;

import javax.ejb.ConcurrencyManagement;

import static javax.ejb.ConcurrencyManagementType.CONTAINER;
import javax.ejb.Lock;

import javax.ejb.LockType.WRITE;

/**
* CounterBean is a simple singleton session bean that records the number
* of hits to a web page.
*/
@Singleton
@ConcurrencyManagement (CONTAINER)
public class CounterBean {
private int hits = 1;

// Increment and return the number of hits
@Lock (WRITE)
public int getHits() {
return hits++;
}
}

The web front end of counter consists of a JavaServer Faces managed bean,

Count. java, that is used by the Facelets XHTML files template.xhtml and
template-client.xhtml. The Count JavaServer Faces managed bean obtains a
reference to CounterBean through dependency injection. Count definesa hitCount
JavaBeans property. When the getHitCount getter method is called from the XHTML
files, CounterBean's getHits method is called to return the current number of page
hits.

Here’s the Count managed bean class:

@ManagedBean
@SessionScoped
public class Count {
@EJB
private CounterBean counterBean;

private int hitCount;

public Count() {
this.hitCount = 0;
}

public int getHitCount() {

hitCount = counterBean.getHits();
return hitCount;

The Java EE 6 Tutorial: Basic Concepts

A Singleton Session Bean Example: counter

public void setHitCount(int newHits) {
this.hitCount = newHits;
}
}

The template.xhtml and template-client.xhtml files are used to render a Facelets
view that displays the number of hits to that view. The template-client.xhtml file
uses an expression language statement, #{count.hitCount}, to access the hitCount
property of the Count managed bean. Here is the content of template-client.xhtml:

<?xml version="1.0" encoding="UTF-8' 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">
<body>
This text above will not be displayed.
<ui:composition template="/template.xhtml">
This text will not be displayed.
<ui:define name="title">
This page has been accessed #{count.hitCount} time(s).
</ui:define>
This text will also not be displayed.
<ui:define name="body">
Hooray!
</ui:define>
This text will not be displayed.
</ui:composition>

This text below will also not be displayed.

</body>
</html>

Building, Packaging, Deploying, and Running the
counter Example

The counter example application can be built, deployed, and run using NetBeans IDE
or Ant.

Chapter 16 « Running the Enterprise Bean Examples 285

AWeb Service Example: helloservice

V¥ ToBuild, Package, Deploy, and Run the counter Example Using
NetBeans IDE

1 InNetBeansIDE, select File—Open Project.

2 Inthe Open Project dialog, navigate to:
tut-install/examples/ejb/

3 Selectthe counter folder.
4 Select the Open as Main Project check box.
5 Click Open Project.

6 Inthe Projects tab, right-click the counter project and select Run.

A web browser will open the URL http://localhost:8080/counter, which displays
the number of hits.

7 Clickthe browser’s Refresh button to see the hit countincrement.

¥ ToBuild, Package, Deploy, and Run the counter Example Using Ant

1 Inaterminal window, go to:

tut-install/examples/ejb/counter

2 Typethefollowing command:
ant all

This will build and deploy counter to your GlassFish Server instance.

3 Inaweb browser, type the following URL:
http://localhost:8080/counter

4 Click the browser’s Refresh button to see the hit count increment.

A Web Service Example: helloservice

This example demonstrates a simple web service that generates a response based on
information received from the client. HelloServiceBean is a stateless session bean
that implements a single method: sayHello. This method matches the sayHello
method invoked by the client described in “A Simple JAX-WS Application Client” on
page 212.

286 The Java EE 6 Tutorial: Basic Concepts

AWeb Service Example: helloservice

The Web Service Endpoint Implementation Class

HelloServiceBean is the endpoint implementation class, typically the primary
programming artifact for enterprise bean web service endpoints. The web service
endpoint implementation class has the following requirements.

® The class must be annotated with either the javax. jws .WebService or the
javax.jws.WebServiceProvider annotation.

= Theimplementing class may explicitly reference an SEI through the
endpointInterface element of the @WebService annotation but is not required to
do so. If no endpointInterface is specified in @WebService, an SEI is implicitly
defined for the implementing class.

= The business methods of the implementing class must be public and must not be
declared static or final.

= Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

= Business methods that are exposed to web service clients must have
JAXB-compatible parameters and return types. See the list of JAXB default data
type bindings at http://download.oracle. com/
docs/cd/E17477 01/javaee/5/tutorial/doc/bnazq.html#bnazs.

= Theimplementing class must not be declared final and must not be abstract.
= The implementing class must have a default public constructor.

= The endpoint class must be annotated @Stateless.

= Theimplementing class must not define the finalize method.

= Theimplementing class may use the javax.annotation.PostConstruct or
javax.annotation.PreDestroy annotations on its methods for lifecycle event
callbacks.

The @PostConstruct method is called by the container before the implementing
class begins responding to web service clients.

The @PreDestroy method is called by the container before the endpoint is
removed from operation.

Stateless Session Bean Implementation Class

The HelloServiceBean class implements the sayHello method, which is annotated
@webMethod. The source code for the HelloServiceBean class follows:

package com.sun.tutorial.javaee.ejb;

import javax.ejb.Stateless;
import javax.jws.WebMethod;

Chapter 16 « Running the Enterprise Bean Examples 287

http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs
http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs

AWeb Service Example: helloservice

288

import javax.jws.WebService;

@Stateless

@webService

public class HelloServiceBean {
private String message = "Hello, ";

public void HelloServiceBean() {}

@webMethod
public String sayHello(String name) {

return message + name + . ;

}

Building, Packaging, Deploying, and Testing the
helloservice Example

You can build, package, and deploy the helloservice example using either NetBeans
IDE or Ant. You can then use the Administration Console to test the web service
endpoint methods.

To Build, Package, and Deploy the helloservice Example Using
NetBeans IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the helloservice folder.
Select the Open as Main Project and Open Required Projects check boxes.
Click Open Project.

In the Projects tab, right-click the helloservice project and select Deploy.

This builds and packages the application into helloservice.ear, located in
tut-install/examples/ejb/helloservice/dist, and deploys this EAR file to the
GlassFish Server.

The Java EE 6 Tutorial: Basic Concepts

AWeb Service Example: helloservice

To Build, Package, and Deploy the helloservice Example Using
Ant

In a terminal window, go to:

tut-install/examples/ejb/helloservice/

Type the following command:

ant

This runs the default task, which compiles the source files and packages the
application into a JAR file located at
tut-install/examples/ejb/helloservice/dist/helloservice.jar.

To deploy helloservice, type the following command:
ant deploy

Upon deployment, the GlassFish Server generates additional artifacts required for web
service invocation, including the WSDL file.

To Test the Service without a Client

The GlassFish Server Administration Console allows you to test the methods of a web
service endpoint. To test the sayHello method of HelloServiceBean, follow these
steps.

Open the Administration Console by opening the following URL in a web browser:
http://localhost:4848/

In the left pane of the Administration Console, select the Applications node.
In the Applications table, click helloservice.
In the Modules and Components table, click View Endpoint.

On the Web Service Endpoint Information page, click the Tester link:

/HelloServiceBeanService/HelloServiceBean?Tester

The tester page opens in a browser window or tab.
Under Methods, type a name as the parameter to the sayHello method.

Click the sayHello button.

The sayHello Method invocation page opens. Under Method returned, you'll see the
response from the endpoint.

Chapter 16 « Running the Enterprise Bean Examples 289

Using the Timer Service

Using the Timer Service

Applications that model business work flows often rely on timed notifications. The
timer service of the enterprise bean container enables you to schedule timed
notifications for all types of enterprise beans except for stateful session beans. You can
schedule a timed notification to occur according to a calendar schedule, at a specific
time, after a duration of time, or at timed intervals. For example, you could set timers
to go off at 10:30 a.m. on May 23, in 30 days, or every 12 hours.

Enterprise bean timers are either programmatic timers or automatic timers.
Programmatic timers are set by explicitly calling one of the timer creation methods of
the TimerService interface. Automatic timers are created upon the successful
deployment of an enterprise bean that contains a method annotated with the

java.ejb.Schedule or java.ejb.Schedules annotations.

Creating Calendar-Based Timer Expressions

Timers can be set according to a calendar-based schedule, expressed using a syntax
similar to the UNIX cron utility. Both programmatic and automatic timers can use
calendar-based timer expressions. Table 16-1 shows the calendar-based timer

attributes.

TABLE 16-1 Calendar-Based Timer Attributes

Attribute Description Allowable Values

Default
Value

Examples

second One or more 0to59
seconds within a
minute

minute One or more 0to59
minutes within
an hour

hour One or more 0to23
hours within a
day

dayOfWeek One or more 0 to 7 (both 0 and 7 refer to Sunday)
days within a

Sun, Mon, Tue, Wed, Thu, Fri, Sat
week

0

second="30"

minute="15"

hour="13"

dayOfWeek="3"

dayOfWeek="Mon"

290 The Java EE 6 Tutorial: Basic Concepts

Using the Timer Service

TABLE 16-1 Calendar-Based Timer Attributes (Continued)
Default
Attribute Description Allowable Values Value Examples
dayOfMonth One or more 1to31 * dayOfMonth="15"
days within a . W
-7 to-1 (a negative number means dayOofMonth="-3
month
the nth day or days before the end of davOfionth"Last"
the month) ayOrtlonth="Las
_n
Last day?fMonth— 2nd
Fri
[1st,2nd, 3rd, 4th, 5th, Last] [Sun,
Mon, Tue, Wed, Thu, Fri, Sat]
month One or more 1to 12 * month="7"
months within a " "
year Jan, Feb,Mar, Apr, May, Jun, Jul, month="July
Aug, Sep, Oct, Nov, Dec
year A particular A four-digit calendar year * year="2010"
calendar year

Specifying Multiple Values in Calendar Expressions

You can specify multiple values in calendar expressions, as described in the following
sections.

Using Wildcards in Calendar Expressions

Setting an attribute to an asterisk symbol (*) represents all allowable values for the
attribute.

The following expression represents every minute:

minute="*"

The following expression represents every day of the week:
dayOfWeek="*"

Specifying a List of Values

To specify two or more values for an attribute, use a comma (,) to separate the values.
A range of values is allowed as part of a list. Wildcards and intervals, however, are not
allowed.

Duplicates within a list are ignored.

The following expression sets the day of the week to Tuesday and Thursday:

dayOfWeek="Tue, Thu"

Chapter 16 « Running the Enterprise Bean Examples 291

Using the Timer Service

292

The following expression represents 4:00 a.m., every hour from 9:00 a.m. to 5:00 p.m.
using a range, and 10:00 p.m.:

hour="4,9-17,22"

Specifying a Range of Values

Use a dash character (=) to specify an inclusive range of values for an attribute.
Members of a range cannot be wildcards, lists, or intervals. A range of the form x—x, is
equivalent to the single-valued expression x. A range of the form x—y where x is greater
than y is equivalent to the expression x—maximum value, minimum value—y. That is,
the expression begins at x, rolls over to the beginning of the allowable values, and
continuesup toy.

The following expression represents 9:00 a.m. to 5:00 p.m.:
hour="9-17"
The following expression represents Friday through Monday:

dayOfWeek="5-1"

The following expression represents the twenty-fifth day of the month to the end of the
month, and the beginning of the month to the fifth day of the month:

dayOfMonth="25-5"

It is equivalent to the following expression:
dayOfMonth="25-Last,1-5"

Specifying Intervals

The forward slash (/) constrains an attribute to a starting point and an interval and is
used to specify every N seconds, minutes, or hours within the minute, hour, or day. For
an expression of the form x/y, x represents the starting point and y represents the
interval. The wildcard character may be used in the x position of an interval and is
equivalent to setting x to 0.

Intervals may be set only for second, minute, and hour attributes.

The following expression represents every 10 minutes within the hour:

minute="*/10"

It is equivalent to:

minute="0,10,20,30,40,50"

The Java EE 6 Tutorial: Basic Concepts

Using the Timer Service

The following expression represents every 2 hours starting at noon:

hour="12/2"

Programmatic Timers

When a programmatic timer expires (goes off), the container calls the method
annotated @Timeout in the bean’s implementation class. The @Timeout method
contains the business logic that handles the timed event.

The @Timeout Method

Methods annotated @Timeout in the enterprise bean class must return void and
optionally take a javax.ejb.Timer object as the only parameter. They may not throw
application exceptions.

@Timeout
public void timeout(Timer timer) {
System.out.println("TimerBean: timeout occurred")

}

Creating Programmatic Timers

To create a timer, the bean invokes one of the create methods of the TimerService
interface. These methods allow single-action, interval, or calendar-based timers to be
created.

For single-action or interval timers, the expiration of the timer can be expressed as
either a duration or an absolute time. The duration is expressed as a the number of
milliseconds before a timeout event is triggered. To specify an absolute time, create a
java.util.Date objectand pass it to the TimerService.createSingleActionTimer
orthe TimerService.createTimer method.

The following code sets a programmatic timer that will expire in 1 minute (6,000
milliseconds):

long duration = 6000;
Timer timer =
timerService.createSingleActionTimer(duration, new TimerConfig());

The following code sets a programmatic timer that will expire at 12:05 p.m. on May 1,
2010, specified asa java.util.Date:

SimpleDateFormatter formatter =
new SimpleDateFormatter("MM/dd/yyyy ’'at’ HH:mm");
Date date = formatter.parse("05/01/2010 at 12:05");
Timer timer = timerService.createSingleActionTimer(date, new TimerConfig());

Chapter 16 « Running the Enterprise Bean Examples 293

Using the Timer Service

294

For calendar-based timers, the expiration of the timer is expressed as a
javax.ejb.ScheduleExpression object, passed as a parameter to the
TimerService.createCalendarTimer method. The ScheduleExpression class
represents calendar-based timer expressions and has methods that correspond to the
attributes described in “Creating Calendar-Based Timer Expressions” on page 290.

The following code creates a programmatic timer using the ScheduleExpression
helper class:

ScheduleExpression schedule = new ScheduleExpression();
schedule.dayOfWeek ("Mon")

schedule.hour("12-17, 23");

Timer timer = timerService.createCalendarTimer(schedule);

For details on the method signatures, see the TimerService API documentation at
http://download.oracle.com/
docs/cd/E17410 01/javaee/6/api/javax/ejb/TimerService.html.

The bean described in “The timersession Example” on page 297 creates a timer as
follows:

Timer timer = timerService.createTimer(intervalDuration,
"Created new programmatic timer");

In the timersession example, createTimer is invoked in a business method, which is
called by a client.

Timers are persistent by default. If the server is shut down or crashes, persistent timers
are saved and will become active again when the server is restarted. If a persistent timer
expires while the server is down, the container will call the @imeout method when the
server is restarted.

Nonpersistent programmatic timers are created by calling
TimerConfig.setPersistent(false) and passing the TimerConfig object to one of
the timer-creation methods.

The Date and long parameters of the createTimer methods represent time with the
resolution of milliseconds. However, because the timer service is not intended for
real-time applications, a callback to the @imeout method might not occur with
millisecond precision. The timer service is for business applications, which typically
measure time in hours, days, or longer durations.

AutomaticTimers

Automatic timers are created by the EJB container when an enterprise bean that
contains methods annotated with the @Schedule or @chedules annotations is

The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/javax/ejb/TimerService.html
http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/javax/ejb/TimerService.html

Using the Timer Service

deployed. An enterprise bean can have multiple automatic timeout methods, unlike a
programmatic timer, which allows only one method annotated with the @Timeout
annotation in the enterprise bean class.

Automatic timers can be configured through annotations or through the ejb-jar.xml
deployment descriptor.

Adding a @Schedule annotation on an enterprise bean marks that method as a timeout
method according to the calendar schedule specified in the attributes of @Schedule.

The @Schedule annotation has elements that correspond to the calendar expressions
detailed in “Creating Calendar-Based Timer Expressions” on page 290 and the
persistent, info, and timezone elements.

The optional persistent element takes a Boolean value and is used to specify whether
the automatic timer should survive a server restart or crash. By default, all automatic
timers are persistent.

The optional timezone element is used to specify that the automatic timer is associated
with a particular time zone. If set, this element will evaluate all timer expressions in
relation to the specified time zone, regardless of the time zone in which the EJB
container is running. By default, all automatic timers set are in relation to the default
time zone of the server.

The optional info element is used to set an informational description of the timer. A
timer’s information can be retrieved later by using Timer.getInfo.

The following timeout method uses @Schedule to set a timer that will expire every
Sunday at midnight:

@Schedule(dayOfWeek="Sun", hour="0")
public void cleanupWeekData() { ... }

The @Schedules annotation is used to specify multiple calendar-based timer
expressions for a given timeout method.

The following timeout method uses the @chedules annotation to set multiple
calendar-based timer expressions. The first expression sets a timer to expire on the last
day of every month. The second expression sets a timer to expire every Friday at 11:00
p.m.

@Schedules ({
@Schedule(dayOfMonth="Last"),
@Schedule (dayOfWeek="Fri", hour="23")

1)

public void doPeriodicCleanup() { ... }

Chapter 16 « Running the Enterprise Bean Examples 295

Using the Timer Service

Canceling and Saving Timers

Timers can be canceled by the following events.

= When a single-event timer expires, the EJB container calls the associated timeout
method and then cancels the timer.

m When the bean invokes the cancel method of the Timer interface, the container
cancels the timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandle method and store the
TimerHandle object in a database. (A TimerHandle object is serializable.) To
reinstantiate the Timer object, retrieve the handle from the database and invoke
getTimer on the handle. A TimerHandle object cannot be passed as an argument of a
method defined in a remote or web service interface. In other words, remote clients
and web service clients cannot access a bean’s TimerHandle object. Local clients,
however, do not have this restriction.

Getting Timer Information

In addition to defining the cancel and getHandle methods, the Timer interface
defines methods for obtaining information about timers:

public long getTimeRemaining();
public java.util.Date getNextTimeout();
public java.io.Serializable getInfo();

The getInfo method returns the object that was the last parameter of the
createTimer invocation. For example, in the createTimer code snippet of the
preceding section, this information parameter is a String object with the value
created timer.

To retrieve all of a bean’s active timers, call the getTimers method of the
TimerService interface. The getTimers method returns a collection of Timer objects.

Transactions and Timers

An enterprise bean usually creates a timer within a transaction. If this transaction is
rolled back, the timer creation also is rolled back. Similarly, if a bean cancels a timer
within a transaction that gets rolled back, the timer cancellation is rolled back. In this
case, the timer’s duration is reset as if the cancellation had never occurred.

296 The Java EE 6 Tutorial: Basic Concepts

Using the Timer Service

In beans that use container-managed transactions, the @Timeout method usually has
the Required or RequiresNew transaction attribute to preserve transaction integrity.
With these attributes, the EJB container begins the new transaction before calling the
@Timeout method. If the transaction is rolled back, the container will call the @Timeout
method at least one more time.

The timersession Example

The source code for this example is in the
tut-install/examples/ejb/timersession/src/java/ directory.

TimerSessionBean is a singleton session bean that shows how to set both an automatic
timer and a programmatic timer. In the source code listing of TimerSessionBean that
follows, the setTimer and @Timeout methods are used to set a programmatic timer. A
TimerService instance is injected by the container when the bean is created. Because
it’s a business method, setTimer is exposed to the local, no-interface view of
TimerSessionBean and can be invoked by the client. In this example, the client
invokes setTimer with an interval duration of 30,000 milliseconds. The setTimer
method creates a new timer by invoking the createTimer method of TimerService.
Now that the timer is set, the EJB container will invoke the programmaticTimeout
method of TimerSessionBean when the timer expires, in about 30 seconds.

public void setTimer(long intervalDuration) {
logger.info("Setting a programmatic timeout for " +
intervalDuration + " milliseconds from now.");
Timer timer = timerService.createTimer(intervalDuration,
"Created new programmatic timer");

}

@Timeout

public void programmaticTimeout(Timer timer) {
this.setLastProgrammaticTimeout(new Date());
logger.info("Programmatic timeout occurred.");

TimerSessionBean also has an automatic timer and timeout method,
automaticTimeout. The automatic timer is set to expire every 3 minutes and is set by
using a calendar-based timer expression in the @ chedule annotation:

@Schedule(minute="*/3", hour="*")

public void automaticTimeout() {
this.setlLastAutomaticTimeout(new Date());
logger.info("Automatic timeout occured");

Chapter 16 « Running the Enterprise Bean Examples 297

Using the Timer Service

298

TimerSessionBean also has two business methods: getLastProgrammaticTimeout
and getLastAutomaticTimeout. Clients call these methods to get the date and time of
the last timeout for the programmatic timer and automatic timer, respectively.

Here’s the source code for the TimerSessionBean class:

package timersession.ejb;

import
import
import
import
import
import
import
import

java.util.Date;
java.util.logging.Logger;
javax.annotation.Resource;
javax.ejb.Schedule;
javax.ejb.Stateless;
javax.ejb.Timeout;
javax.ejb.Timer;
javax.ejb.TimerService;

@Singleton

public

class TimerSessionBean {

@Resource
TimerService timerService;

private Date lastProgrammaticTimeout;
private Date lastAutomaticTimeout;

private Logger logger = Logger.getLogger(

"com.sun.tutorial.javaee.ejb.timersession.TimerSessionBean");

public void setTimer(long intervalDuration) {

}

logger.info("Setting a programmatic timeout for
+ intervalDuration + " milliseconds from now.");

Timer timer = timerService.createTimer(intervalDuration,
"Created new programmatic timer");

@Timeout
public void programmaticTimeout(Timer timer) {

this.setlLastProgrammaticTimeout(new Date());
logger.info("Programmatic timeout occurred.");

@Schedule(minute="*/3", hour="*")
public void automaticTimeout() {

}

this.setlLastAutomaticTimeout(new Date());
logger.info("Automatic timeout occured");

public String getLastProgrammaticTimeout() {

}

if (lastProgrammaticTimeout != null) {
return lastProgrammaticTimeout.toString();
} else {

return "never";

}

public void setLastProgrammaticTimeout(Date lastTimeout) {

The Java EE 6 Tutorial: Basic Concepts

Using the Timer Service

this.lastProgrammaticTimeout = lastTimeout;

}

public String getlLastAutomaticTimeout() {
if (lastAutomaticTimeout != null) {
return lastAutomaticTimeout.toString();
} else {
return "never"
}
}

public void setLastAutomaticTimeout(Date lastAutomaticTimeout) {
this.lastAutomaticTimeout = lastAutomaticTimeout;

}

Note - GlassFish Server has a default minimum timeout value of 1,000 milliseconds, or
1 second. If you need to set the timeout value lower than 1,000 milliseconds, change
the value of the minimum-delivery-interval-in-millis elementin
domain-dir/config/domain.xml. The lowest practical value for
minimum-delivery-interval-in-millis isaround 10 milliseconds, owing to virtual
machine constraints.

Building, Packaging, Deploying, and Running the
timersession Example

You can build, package, deploy, and run the timersession example by using either
NetBeans IDE or Ant.

To Build, Package, Deploy, and Run the timersession Example
Using NetBeans IDE

In NetBeans IDE, select File—Open Project.

Inthe Open Project dialog, navigate to:
tut-install/examples/ejb/

Select the timersession folder.
Select the Open as Main Project check box.

Click Open Project.

Chapter 16 « Running the Enterprise Bean Examples 299

Handling Exceptions

Select Run—Run Main Project.

This builds and packages the application into timersession.war,located in
tut-install/examples/ejb/timersession/dist/, deploys this WAR file to your
GlassFish Server instance, and then runs the web client.

To Build, Package, and Deploy the timersession Example Using
Ant

In a terminal window, go to:

tut-install/examples/ejb/timersession/

Type the following command:
ant build

This runs the default task, which compiles the source files and packages the
application into a WAR file located at
tut-install/examples/ejb/timersession/dist/timersession.war.

To deploy the application, type the following command:
ant deploy

To Run the Web Client
Open aweb browserto http://localhost:8080/timersession.
Click the Set Timer button to set a programmatic timer.

Wait for a while and click the browser’s Refresh button.
You will see the date and time of the last programmatic and automatic timeouts.

To see the messages that are logged when a timeout occurs, open the server. log file
located in domain-dir/server/logs/.

Handling Exceptions

300

The exceptions thrown by enterprise beans fall into two categories: system and
application.

A system exception indicates a problem with the services that support an application.
For example, a connection to an external resource cannot be obtained, or an injected
resource cannot be found. If it encounters a system-level problem, your enterprise
bean should throw a javax.ejb.EJBException. Because the EJBExceptionisa
subclass of the RuntimeException, you do not have to specify it in the throws clause of

The Java EE 6 Tutorial: Basic Concepts

Handling Exceptions

the method declaration. If a system exception is thrown, the EJB container might
destroy the bean instance. Therefore, a system exception cannot be handled by the
bean’s client program, but instead requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise bean.
Application exceptions are typically exceptions that you've coded yourself, such as the
BookException thrown by the business methods of the CartBean example. When an
enterprise bean throws an application exception, the container does not wrap it in
another exception. The client should be able to handle any application exception it
receives.

If a system exception occurs within a transaction, the EJB container rolls back the
transaction. However, if an application exception is thrown within a transaction, the
container does not roll back the transaction.

Chapter 16 « Running the Enterprise Bean Examples 301

This page intentionally left blank

PART V

Contexts and Dependency Injection
for the Java EE Platform

Part V introduces Contexts and Dependency Injection for the Java EE Platform. This
part contains the following chapters:

= Chapter 17, “Introduction to Contexts and Dependency Injection for the Java EE
Platform”
= Chapter 18, “Running the Basic Contexts and Dependency Injection Examples”

303

This page intentionally left blank

CHAPTER 17

Introduction to Contexts and Dependency
Injection for the Java EE Platform

Contexts and Dependency Injection (CDI) for the Java EE platform is one of several
Java EE 6 features that help to knit together the web tier and the transactional tier of
the Java EE platform. CDI is a set of services that, used together, make it easy for
developers to use enterprise beans along with JavaServer Faces technology in web
applications. Designed for use with stateful objects, CDI also has many broader uses,
allowing developers a great deal of flexibility to integrate various kinds of components
in aloosely coupled but typesafe way.

CDI is specified by JSR 299, formerly known as Web Beans. Related specifications that
CDI uses include the following:

= JSR 330, Dependency Injection for Java

= The Managed Beans specification, which is an offshoot of the Java EE 6 platform
specification (JSR 316)

The following topics are addressed here:

“Overview of CDI” on page 306

“About Beans” on page 307

“About Managed Beans” on page 307

“Beans as Injectable Objects” on page 308

“Using Qualifiers” on page 309

“Injecting Beans” on page 310

“Using Scopes” on page 310

“Giving Beans EL Names” on page 312

“Adding Setter and Getter Methods” on page 312
“Using a Managed Bean in a Facelets Page” on page 313
“Injecting Objects by Using Producer Methods” on page 314
“Configuring a CDI Application” on page 315

“Further Information about CDI” on page 315

305

Overview of CDI

Overview of CDI

306

The most fundamental services provided by CDI are as follows:

Contexts: The ability to bind the lifecycle and interactions of stateful components
to well-defined but extensible lifecycle contexts

Dependency injection: The ability to inject components into an application in a
typesafe way, including the ability to choose at deployment time which
implementation of a particular interface to inject

In addition, CDI provides the following services:

Integration with the Expression Language (EL), which allows any component to be
used directly within a JavaServer Faces page or a JavaServer Pages page

The ability to decorate injected components

The ability to associate interceptors with components using typesafe interceptor
bindings

An event-notification model

A web conversation scope in addition to the three standard scopes (request,
session, and application) defined by the Java Servlet specification

A complete Service Provider Interface (SPI) that allows third-party frameworks to
integrate cleanly in the Java EE 6 environment

A major theme of CDI is loose coupling. CDI does the following:

Decouples the server and the client by means of well-defined types and qualifiers,
so that the server implementation may vary

Decouples the lifecycles of collaborating components by doing the following:
= Making components contextual, with automatic lifecycle management

= Allowing stateful components to interact like services, purely by message
passing

Completely decouples message producers from consumers, by means of events

Decouples orthogonal concerns by means of Java EE interceptors

Along with loose coupling, CDI provides strong typing by

Eliminating lookup using string-based names for wiring and correlations, so that
the compiler will detect typing errors

Allowing the use of declarative Java annotations to specify everything, largely
eliminating the need for XML deployment descriptors, and making it easy to
provide tools that introspect the code and understand the dependency structure at
development time

The Java EE 6 Tutorial: Basic Concepts

About Managed Beans

About Beans

CDI redefines the concept of a bean beyond its use in other Java technologies, such as
the JavaBeans and Enterprise JavaBeans (EJB) technologies. In CDI, a bean is a source
of contextual objects that define application state and/or logic. A Java EE component is
a bean if the lifecycle of its instances may be managed by the container according to the
lifecycle context model defined in the CDI specification.

More specifically, a bean has the following attributes:

A (nonempty) set of bean types

A (nonempty) set of qualifiers (see “Using Qualifiers” on page 309)

A scope (see “Using Scopes” on page 310)

Optionally, a bean EL name (see “Giving Beans EL Names” on page 312)
A set of interceptor bindings

A bean implementation

A bean type defines a client-visible type of the bean. Almost any Java type may be a
bean type of a bean.

= A bean type may be an interface, a concrete class, or an abstract class and may be
declared final or have final methods.

= A bean type may be a parameterized type with type parameters and type variables.

= A bean type may be an array type. Two array types are considered identical only if
the element type is identical.

= A bean type may be a primitive type. Primitive types are considered to be identical
to their corresponding wrapper types in java. lang.

= Abean type may be a raw type.

About Managed Beans

A managed bean is implemented by a Java class, which is called its bean class. A
top-level Java class is a managed bean if it is defined to be a managed bean by any other
Java EE technology specification, such as the JavaServer Faces technology
specification, or if it meets all the following conditions:

® Jtisnotanonstatic inner class.
m Jtisaconcrete class or is annotated @Decorator.

= Jtisnotannotated with an EJB component-defining annotation or declared as an
EJBbean classin ejb-jar.xml.

Chapter 17 - Introduction to Contexts and Dependency Injection for the Java EE Platform 307

Beans as Injectable Objects

= Ithasanappropriate constructor. That is, one of the following is the case:

m The class has a constructor with no parameters.
m The class declares a constructor annotated @Inject.

No special declaration, such as an annotation, is required to define a managed bean.

Beans as Injectable Objects

308

The concept of injection has been part of Java technology for some time. Since the Java
EE 5 platform was introduced, annotations have made it possible to inject resources
and some other kinds of objects into container-managed objects. CDI makes it
possible to inject more kinds of objects and to inject them into objects that are not
container-managed.

The following kinds of objects can be injected:

= (Almost) any Java class
m Session beans

= Java EE resources: data sources, Java Message Service topics, queues, connection
factories, and the like

= Persistence contexts (JPA EntityManager objects)
= Producer fields

= Objects returned by producer methods

= Web service references

= Remote enterprise bean references

For example, suppose that you create a simple Java class with a method that returns a
string:

package greetings;

public class Greeting {
public String greet(String name) {

return "Hello, " + name + ".";
}
}

This class becomes a bean that you can then inject into another class. This bean is not
exposed to the EL in this form. “Giving Beans EL Names” on page 312 explains how
you can make a bean accessible to the EL.

The Java EE 6 Tutorial: Basic Concepts

Using Qualifiers

Using Qualifiers

You can use qualifiers to provide various implementations of a particular bean type. A
qualifier is an annotation that you apply to a bean. A qualifier type is a Java annotation
defined as @Target ({METHOD, FIELD, PARAMETER, TYPE}) and
@Retention(RUNTIME).

For example, you could declare an @Informal qualifier type and apply it to another
class that extends the Greeting class. To declare this qualifier type, you would use the
following code:

package greetings;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

@Retention (RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETER})
public @interface Informal {}

You can then define a bean class that extends the Greeting class and uses this qualifier:

package greetings;
@Informal

public class InformalGreeting extends Greeting {
public String greet(String name) {

" o,
}

return "Hi, " + name +
}

Both implementations of the bean can now be used in the application.

If you define a bean with no qualifier, the bean automatically has the qualifier
@efault. The unannotated Greeting class could be declared as follows:
package greetings;

import javax.enterprise.inject.Default;

@Default

public class Greeting {

public String greet(String name) {

}

return "Hello, " + name + ".";

Chapter 17 - Introduction to Contexts and Dependency Injection for the Java EE Platform 309

Injecting Beans

Injecting Beans

In order to use the beans you create, you inject them into yet another bean that can
then be used by an application, such as a JavaServer Faces application. For example,
you might create a bean called Printer into which you would inject one of the
Greeting beans:

import javax.inject.Inject;

public class Printer {

@Inject Greeting greeting;

This code injects the @Default Greeting implementation into the bean. The following
code injects the @ nformal implementation:

import javax.inject.Inject;

public class Printer {

@Inject @Informal Greeting greeting;

More is needed for the complete picture of this bean. Its use of scope needs to be
understood. In addition, for a JavaServer Faces application, the bean needs to be
accessible through the EL.

Using Scopes

310

For a web application to use a bean that injects another bean class, the bean needs to be
able to hold state over the duration of the user’s interaction with the application. The
way to define this state is to give the bean a scope. You can give an object any of the
scopes described in Table 17-1, depending on how you are using it.

TABLE17-1 Scopes

Scope Annotation Duration

Request @RequestScoped A user’s interaction with a web application in a
single HTTP request.

Session @SessionScoped A user’s interaction with a web application across
multiple HTTP requests.

Application @ApplicationScoped Shared state across all users’ interactions with a

web application.

The Java EE 6 Tutorial: Basic Concepts

Using Scopes

TABLE17-1 Scopes (Continued)
Scope Annotation Duration
Dependent @ependent The default scope if none is specified; it means
that an object exists to serve exactly one client
(bean) and has the same lifecycle as that client
(bean).
Conversation @ConversationScoped A user’s interaction with a JavaServer Faces

application, within explicit developer-controlled
boundaries that extend the scope across multiple
invocations of the JavaServer Faces lifecycle. All
long-running conversations are scoped to a
particular HTTP servlet session and may not
cross session boundaries.

The first three scopes are defined by both JSR 299 and the JavaServer Faces API. The
last two are defined by JSR 299.

You can also define and implement custom scopes, but that is an advanced topic.
Custom scopes are likely to be used by those who implement and extend the CDI
specification.

A scope gives an object a well-defined lifecycle context. A scoped object can be
automatically created when it is needed and automatically destroyed when the context
in which it was created ends. Moreover, its state is automatically shared by any clients
that execute in the same context.

Java EE components, such as servlets and enterprise beans, and JavaBeans components
do not by definition have a well-defined scope. These components are one of the
following:

= Singletons, such as Enterprise JavaBeans singleton beans, whose state is shared
among all clients

= Stateless objects, such as servlets and stateless session beans, which do not contain
client-visible state

= Objects that must be explicitly created and destroyed by their client, such as
JavaBeans components and stateful session beans, whose state is shared by explicit
reference passing between clients

If, however, you create a Java EE component that is a managed bean, it becomes a
scoped object, which exists in a well-defined lifecycle context.

Chapter 17 - Introduction to Contexts and Dependency Injection for the Java EE Platform 311

Giving Beans EL Names

The web application for the Printer bean will use a simple request and response
mechanism, so the managed bean can be annotated as follows:

import javax.inject.Inject;
import javax.enterprise.context.RequestScoped;

@RequestScoped
public class Printer {

@Inject @Informal Greeting greeting;

Beans that use session, application, or conversation scope must be serializable, but
beans that use request scope do not have to be serializable.

Giving Beans EL Names

To make a bean accessible through the EL, use the @Named built-in qualifier:

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

The @Named qualifier allows you to access the bean by using the bean name, with the
first letter in lowercase. For example, a Facelets page would refer to the bean as
printer.

You can specify an argument to the @Vamed qualifier to use a nondefault name:

@Named ("MyPrinter")

With this annotation, the Facelets page would refer to the bean asMyPrinter.

Adding Setter and Getter Methods

312

To make the state of the managed bean accessible, you need to add setter and getter
methods for that state. The createSalutation method calls the bean’s greet method,
and the getSalutation method retrieves the result.

The Java EE 6 Tutorial: Basic Concepts

Using a Managed Bean in a Facelets Page

Once the setter and getter methods have been added, the bean is complete. The final
code looks like this:

package greetings;

import javax.inject.Inject;
import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class Printer {

@Inject @Informal Greeting greeting;

private String name;
private String salutation;

public void createSalutation() {
this.salutation = greeting.greet(name);

}

public String getSalutation() {
return salutation;
}
public String setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

Using a Managed Bean in a Facelets Page

To use the managed bean in a Facelets page, you typically create a form that uses user
interface elements to call its methods and display their results. This example provides a
button that asks the user to type a name, retrieves the salutation, and then displays the
text in a paragraph below the button:

<h:form id="greetme">
<p><h:outputLabel value="Enter your name: " for="name"/>
<h:inputText id="name" value="#{printer.name}"/></p>
<p><h:commandButton value="Say Hello"
action="#{printer.createSalutation}"/></p>
<p><h:outputText value="#{printer.salutation}"/></p>
</h:form>

Chapter 17 - Introduction to Contexts and Dependency Injection for the Java EE Platform 313

Injecting Objects by Using Producer Methods

Injecting Objects by Using Producer Methods

Producer methods provide a way to inject objects that are not beans, objects whose
values may vary at runtime, and objects that require custom initialization. For
example, if you want to initialize a numeric value defined by a qualifier named
@MaxNumber, you can define the value in a managed bean and then define a producer
method, getMaxNumber, for it:

private int maxNumber = 100;
@Produces @MaxNumber int getMaxNumber() {
return maxNumber;
}
When you inject the object in another managed bean, the container automatically
invokes the producer method, initializing the value to 100:

@Inject @MaxNumber private int maxNumber;

If the value can vary at runtime, the process is slightly different. For example, the
following code defines a producer method that generates a random number defined by
a qualifier called @Random:

private java.util.Random random =
new java.util.Random(System.currentTimeMillis());

java.util.Random getRandom() {
return random;

}
@Produces @Random int next() {

return getRandom().nextInt(maxNumber);
}
When you inject this object in another managed bean, you declare a contextual
instance of the object:

@Inject @Random Instance<Integer> randomInt;

You then call the get method of the Instance:

this.number = randomInt.get();

314 The Java EE 6 Tutorial: Basic Concepts

Further Information about CDI

Configuring a CDI Application

An application that uses CDI must have a file named beans . xml. The file can be
completely empty (it has content only in certain limited situations), but it must be
present. For a web application, the beans . xml file can be in either the WEB- INF
directory or the WEB- INF/classes/META- INF directory. For EJB modules or JAR files,
the beans. xml file must be in the META- INF directory.

Further Information about CDI

For more information about CDI for the Java EE platform, see

= Contexts and Dependency Injection for the Java EE platform specification:
http://jcp.org/en/jsr/detail?id=299

= Anintroduction to Contexts and Dependency Injection for the Java EE platform:
http://docs.jboss.org/weld/reference/latest/en-US/html/

= Dependency Injection for Java specification:

http://jcp.org/en/jsr/detail?id=330

Chapter 17 - Introduction to Contexts and Dependency Injection for the Java EE Platform 315

http://jcp.org/en/jsr/detail?id=299
http://docs.jboss.org/weld/reference/latest/en-US/html/
http://jcp.org/en/jsr/detail?id=330

This page intentionally left blank

L K R 4 CHAPTER 18

Running the Basic Contexts and
Dependency Injection Examples

This chapter describes in detail how to build and run simple examples that use CDI.
The examples are in the following directory:

tut-install/examples/cdi/

To build and run the examples, you will do the following:

1. Use NetBeans IDE or the Ant tool to compile and package the example.
2. Use NetBeans IDE or the Ant tool to deploy the example.
3. Run the example in a web browser.

Each example has a build.xml file that refers to files in the following directory:
tut-install/examples/bp-project/

See Chapter 2, “Using the Tutorial Examples,” for basic information on installing,
building, and running the examples.

The following topics are addressed here:

= “The simplegreeting CDI Example” on page 317
= “The guessnumber CDI Example” on page 322

The simplegreeting CDI Example

The simplegreeting example illustrates some of the most basic features of CDI:
scopes, qualifiers, bean injection, and accessing a managed bean in a JavaServer Faces
application. When you run the example, you click a button that presents either a
formal or an informal greeting, depending on how you edited one of the classes. The
example includes four source files, a Facelets page and template, and configuration
files.

317

The simplegreeting CDI Example

The simplegreeting Source Files

The four source files for the simplegreeting example are

= The default Greeting class, shown in “Beans as Injectable Objects” on page 308

= The@Informal qualifier interface definition and the InformalGreeting class that
implements the interface, both shown in “Using Qualifiers” on page 309

= ThePrinter managed bean class, which injects one of the two interfaces, shown in
full in “Adding Setter and Getter Methods” on page 312

The source files are located in the following directory:

tut-install/examples/cdi/simplegreeting/src/java/greetings

The Facelets Template and Page

To use the managed bean in a simple Facelets application, you can use a very simple
template file and index.xhtml page. The template page, template.xhtml, looks like
this:

<?xml version="1.0' encoding='UTF-8' 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets">
<h:head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>
<link href="resources/css/default.css"
rel="stylesheet" type="text/css"/>
<title>
<ui:insert name="title">Default Title</ui:insert>
</title>
</h:head>

<body>
<div id="container">
<div id="header"s
<h2><ui:insert name="head">Head</ui:insert></h2>
</div>

<div id="space">
<p></p>
</div>

<div id="content">
<ui:insert name="content"/>
</div>
</div>
</body>
</html>

318 The Java EE 6 Tutorial: Basic Concepts

The simplegreeting CDI Example

To create the Facelets page, you can redefine the title and head, then add a small form
to the content:

<?xml version="1.0' encoding='UTF-8’ 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

<ui:define name="title">Simple Greeting</ui:define>
<ui:define name="head">Simple Greeting</ui:define>
<ui:define name="content">
<h:form id="greetme">
<p><h:outputLabel value="Enter your name: " for="name"/>
<h:inputText id="name" value="#{printer.name}"/></p>
<p><h:commandButton value="Say Hello"
action="#{printer.createSalutation}"/></p>
<p><h:outputText value="#{printer.salutation}"/> </p>
</h:form>
</ui:define>

</ui:composition>
</html>

The form asks the user to type a name. The button is labeled Say Hello, and the action
defined for it is to call the createSalutation method of the Printer managed bean.
This method in turn calls the greet method of the defined Greeting class.

The output text for the form is the value of the greeting returned by the setter method.
Depending on whether the default or the @ nformal version of the greeting is injected,
this is one of the following, where name is the name typed by the user:

Hello, name.

Hi, name!

The Facelets page and template are located in the following directory:
tut-install/examples/cdi/simplegreeting/web

The simple CSS file that is used by the Facelets page is in the following location:

tut-install/examples/cdi/simplegreeting/web/resources/css/default.css

Configuration Files

You must create an empty beans . xml file to indicate to GlassFish Server that your
application is a CDI application. This file can have content in some situations, but not
in simple applications like this one.

Chapter 18 « Running the Basic Contexts and Dependency Injection Examples 319

The simplegreeting CDI Example

Your application also needs the basic web application deployment descriptors
web.xml and sun-web.xml. These configuration files are located in the following
directory:

tut-install/examples/cdi/simplegreeting/web/WEB- INF

Building, Packaging, Deploying, and Running the
simplegreeting CDI Example

You can build, package, deploy, and run the simplegreeting application by using
either NetBeans IDE or the Ant tool.

¥ ToBuild, Package, and Deploy the simplegreeting Example Using
NetBeans IDE

This procedure builds the application into the following directory:
tut-install/examples/cdi/simplegreeting/build/web

The contents of this directory are deployed to the GlassFish Server.
1 InNetBeans IDE, select File—Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/cdi/
3 Selectthe simplegreetingfolder.
4 Select the Open as Main Project check box.
5 Click Open Project.
6 (Optional) To modify the Printer. java file, perform these steps:
a. Expand the Source Packages node.
b. Expandthe greetings node.
¢. Double-clickthe Printer. javafile.
d. Inthe edit pane, comment out the @Informal annotation:
//@Informal

@Inject
Greeting greeting;

320 The Java EE 6 Tutorial: Basic Concepts

The simplegreeting CDI Example

e. Savethefile.

In the Projects tab, right-click the simplegreeting project and select Deploy.

To Build, Package, and Deploy the simplegreeting Example Using
Ant

In a terminal window, go to:

tut-install/examples/cdi/simplegreeting/

Type the following command:

ant

This command calls the default target, which builds and packages the application
intoa WAR file, simplegreeting.war, located in the dist directory.

Type the following command:
ant deploy

Typing this command deploys simplegreeting.war to the GlassFish Server.

To Run the simplegreeting Example

In a web browser, type the following URL:
http://localhost:8080/simplegreeting
The Simple Greeting page opens.

Type a name in the text field.
For example, suppose that you type Duke.

Click the Say Hello button.

If you did not modify the Printer. java file, the following text string appears below
the button:

Hi, Duke!

If you commented out the @ nformal annotation in the Printer. java file, the
following text string appears below the button:

Hello, Duke.

Figure 18-1 shows what the application looks like if you did not modify the
Printer.java file.

Chapter 18 « Running the Basic Contexts and Dependency Injection Examples 321

The guessnumber CDI Example

FIGURE18-1 Simple Greeting Application

) Simple Greeting - Mozilla Firefox IL“E”E'
File Edit Miew History Bookmarks Tools Help

- e i | |:] hitp:fflocalhost: 2080 simplegrestingFaces/indes. xhtml;jsess 57 = -.l')- |
C] Simple Greeting &+ | =

Simple Greeting

Enter your name: !world

Hi, world!

Done

The guessnumber CDI Example

322

The guessnumber example, somewhat more complex than the simplegreeting
example, illustrates the use of producer methods and of session and application scope.
The example is a game in which you try to guess a number in fewer than ten attempts.
It is similar to the guessnumber example described in Chapter 5, “Introduction to
Facelets,” except that you can keep guessing until you get the right answer or until you

use up your ten attempts.

The example includes four source files, a Facelets page and template, and

configuration files. The configuration files and the template are the same as those used

for the simplegreeting example.

The guessnumber Source Files

The four source files for the guessnumber example are

The @MaxNumber qualifier interface

The @Random qualifier interface

The Generator managed bean, which defines producer methods
The UserNumberBean managed bean

The source files are located in the following directory:

tut-install/examples/cdi/guessnumber/src/java/guessnumber

The @MaxNumber and @Random Qualifier Interfaces

The @MaxNumber qualifier interface is defined as follows:

The Java EE 6 Tutorial: Basic Concepts

The guessnumber CDI Example

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention (RUNTIME)

@ocumented

@Qualifier

public @interface MaxNumber {

}

The @Random qualifier interface is defined as follows:

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention (RUNTIME)

@Documented

@Qualifier
public @interface Random {

}

The Generator Managed Bean

The Generator managed bean contains the two producer methods for the application.
The bean has the @ApplicationScoped annotation to specify that its context extends
for the duration of the user’s interaction with the application:

package guessnumber;

import java.io.Serializable;

Chapter 18 « Running the Basic Contexts and Dependency Injection Examples 323

The guessnumber CDI Example

324

import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.inject.Produces;

@ApplicationScoped
public class Generator implements Serializable {

private static final long serialVersionUID = -7213673465118041882L;

private java.util.Random random =
new java.util.Random(System.currentTimeMillis());

private int maxNumber = 100;

java.util.Random getRandom() {
return random;
}

@Produces @Random int next() {
return getRandom().nextInt(maxNumber);
}

@Produces @MaxNumber int getMaxNumber() {
return maxNumber;
}

The UserNumberBean Managed Bean

The UserNumberBean managed bean, the backing bean for the JavaServer Faces
application, provides the basic logic for the game. This bean does the following:

= Implements setter and getter methods for the bean fields
= Injects the two qualifier objects

= Providesa reset method that allows you to begin a new game after you complete
one

= Provides a check method that determines whether the user has guessed the
number

= ProvidesavalidateNumberRange method that determines whether the user’s input
is correct

The bean is defined as follows:

package guessnumber;
import java.io.Serializable;

import javax.annotation.PostConstruct;

import javax.enterprise.context.SessionScoped;
import javax.enterprise.inject.Instance;
import javax.inject.Inject;

import javax.inject.Named;

import javax.faces.application.FacesMessage;

The Java EE 6 Tutorial: Basic Concepts

The guessnumber CDI Example

import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;

@Named
@SessionScoped
public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 1L;
private int number;

private Integer userNumber;

private int minimum;

private int remainingGuesses;

@MaxNumber
@Inject
private int maxNumber;

private int maximum;

@Random
@Inject
Instance<Integer> randomInt;

public UserNumberBean() {

}

public int getNumber() {
return number;

}

public void setUserNumber(Integer user number) {
userNumber = user number;

}

public Integer getUserNumber() {
return userNumber;

}

public int getMaximum() {
return (this.maximum);

}

public void setMaximum(int maximum) {
this.maximum = maximum;

}

public int getMinimum() {
return (this.minimum);

}

public void setMinimum(int minimum) {
this.minimum = minimum;

}

public int getRemainingGuesses() {
return remainingGuesses;

}

Chapter 18 « Running the Basic Contexts and Dependency Injection Examples

325

The guessnumber CDI Example

public String check() throws InterruptedException {
if (userNumber > number) {
maximum = userNumber - 1;
}
if (userNumber < number) {
minimum = userNumber + 1;

}
if (userNumber == number) {
FacesContext.getCurrentInstance().addMessage(null,
new FacesMessage("Correct!"));
}

remainingGuesses--;
return null;

}

@PostConstruct

public void reset() {
this.minimum = 0;
this.userNumber = 0;
this.remainingGuesses = 10;
this.maximum = maxNumber;
this.number = randomInt.get();

}

public void validateNumberRange(FacesContext context,
UIComponent toValidate,
Object value) {
if (remainingGuesses <= 0) {
FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientId(context), message);
((UIInput) toValidate).setValid(false);
return;
}

int input = (Integer) value;

if (input < minimum || input > maximum) {
((UIInput) toValidate).setValid(false);

FacesMessage message = new FacesMessage("Invalid guess")
context.addMessage(toValidate.getClientId(context), message);

The Facelets Page

This example uses the same template that the simplegreeting example uses. The
index.xhtml file, however, is more complex.

326 The Java EE 6 Tutorial: Basic Concepts

The guessnumber CDI Example

<?xml version="1.0" encoding='UTF-8' 7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

<ui:define name="title">Guess My Number</ui:define>
<ui:define name="head">Guess My Number</ui:define>
<ui:define name="content">
<h:form id="GuessMain">
<div style="color: black; font-size: 24px;">
<p>I'm thinking of a number between
#{userNumberBean.minimum} and
#{userNumberBean.maximum}. You have
#{userNumberBean.remainingGuesses}
guesses.</p>
</div>
<h:panelGrid border="0" columns="5" style="font-size: 18px;">
Number:
<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"
validator="#{userNumberBean.validateNumberRange}">
</h:inputText>
<h:commandButton id="GuessButton" value="Guess"
action="#{userNumberBean.check}"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"/>
<h:commandButton id="RestartButton" value="Reset"
action="#{userNumberBean.reset}"
immediate="true" />
<h:outputText id="Higher" value="Higher!"
rendered="#{userNumberBean.number gt userNumberBean.userNumber and userNumberBean.userNumber ne 0}"
style="color: red"/>
<h:outputText id="Lower" value="Lower!"
rendered="#{userNumberBean.number 1t userNumberBean.userNumber and userNumberBean.userNumber ne 0}"
style="color: red"/>
</h:panelGrid>
<div style="color: red; font-size: 1l4px;">
<h:messages id="messages" globalOnly="false"/>
</div>
</h:form>
</ui:define>

</ui:composition>
</html>

The Facelets page presents the user with the minimum and maximum values and the
number of guesses remaining. The user’s interaction with the game takes place within
the panelGrid table, which contains an input field, Guess and Reset buttons, and a text
field that appears if the guess is higher or lower than the correct number. Every time
the user clicks the Guess button, the userNumberBean. check method is called to reset
the maximum or minimum value or, if the guess is correct, to generate a
FacesMessage to that effect. The method that determines whether each guess is valid is
userNumberBean.validateNumberRange.

Chapter 18 « Running the Basic Contexts and Dependency Injection Examples 327

The guessnumber CDI Example

328

Building, Packaging, Deploying, and Running the
guessnumber CDI Example

You can build, package, deploy, and run the guessnumber application by using either
NetBeans IDE or the Ant tool.

To Build, Package, and Deploy the guessnumber Example Using
NetBeans IDE

This procedure builds the application into the following directory:

tut-install/examples/cdi/guessnumber/build/web

The contents of this directory are deployed to the GlassFish Server.
In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/cdi/

Select the guessnumber folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the guessnumber project and select Deploy.

To Build, Package, and Deploy the guessnumber Example Using Ant

In a terminal window, go to:

tut-install/examples/cdi/guessnumber/

Type the following command:

ant

This command calls the default target, which builds and packages the application
intoa WAR file, guessnumber.war, located in the dist directory.

The Java EE 6 Tutorial: Basic Concepts

The guessnumber CDI Example

3 Type the following command:
ant deploy

The guessnumber.war file will be deployed to the GlassFish Server.

¥ ToRun the guessnumber Example

1 Inaweb browser, type the following URL:
http://localhost:8080/guessnumber

The Guess My Number page opens, as shown in Figure 18-2.

FIGURE 18-2 Guess My Number Example

) Guess My Number. - Mozilla Firefox

File Edit Wiew History Bookmarks (OGRS Help
T e v 0t | |:] hitp:fflocalhost: 8080/ guessnumber/faces index. xhtml 5.7 = '.lv Google)- |
C] Guess My Number -+ |

Guess My Number

['m thinking of a number between 0 and 100. You
have 10 guesses.

|Number: o ||[Guess]|[Feset]‘

Done

Type a number in the Number text field and click Guess.

The minimum and maximum values are modified, along with the remaining number
of guesses.

Keep guessing numbers until you get the right answer or run out of guesses.

If you get the right answer, the input field and Guess button are grayed out, as shown
in Figure 18-3.

Chapter 18 « Running the Basic Contexts and Dependency Injection Examples 329

The guessnumber CDI Example

FIGURE 18-3 Guess My Number at End of Game

) Guess My Number. - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help
- e s Tt |:] hittp:fflocalhost: 8080/ guessnumber/faces index. xhtml 5.7 = ‘.l'

|j Guess My Number | +
Guess My Number

['m thinking of a number between 39 and 40. You
have 4 guesses.

|Number:|§2'- i| | Reset ‘

e Correct!

Done

4 Click the Reset button to play the game again with a new random number.

330 The Java EE 6 Tutorial: Basic Concepts

PART VI

Persistence

Part VIintroduces the Java Persistence API. This part contains the following chapters:

Chapter 19, “Introduction to the Java Persistence API”
Chapter 20, “Running the Persistence Examples”
Chapter 21, “The Java Persistence Query Language”
Chapter 22, “Using the Criteria API to Create Queries”

331

This page intentionally left blank

Entities

CHAPTER 19

Introduction to the Java Persistence API

The Java Persistence API provides Java developers with an object/relational mapping
facility for managing relational data in Java applications. Java Persistence consists of
four areas:

® The Java Persistence API

= The query language

m The Java Persistence Criteria API

= Object/relational mapping metadata

The following topics are addressed here:

= “Entities” on page 333

= “Entity Inheritance” on page 345

= “Managing Entities” on page 349

= “Querying Entities” on page 355

= “Further Information about Persistence” on page 355

An entity is a lightweight persistence domain object. Typically, an entity represents a
table in a relational database, and each entity instance corresponds to a row in that
table. The primary programming artifact of an entity is the entity class, although
entities can use helper classes.

The persistent state of an entity is represented through either persistent fields or
persistent properties. These fields or properties use object/relational mapping
annotations to map the entities and entity relationships to the relational data in the
underlying data store.

333

Entities

Requirements for Entity Classes

An entity class must follow these requirements.

The class must be annotated with the javax.persistence.Entity annotation.

The class must have a public or protected, no-argument constructor. The class may
have other constructors.

The class must not be declared final. No methods or persistent instance variables
must be declared final.

If an entity instance is passed by value as a detached object, such as through a
session bean’s remote business interface, the class must implement the
Serializable interface.

Entities may extend both entity and non-entity classes, and non-entity classes may
extend entity classes.

Persistent instance variables must be declared private, protected, or
package-private and can be accessed directly only by the entity class’s methods.
Clients must access the entity’s state through accessor or business methods.

Persistent Fields and Properties in Entity Classes

The persistent state of an entity can be accessed through either the entity’s instance
variables or properties. The fields or properties must be of the following Java language

types:

Java primitive types
java.lang.String
Other serializable types, including:

Wrappers of Java primitive types
java.math.BigInteger
java.math.BigDecimal
java.util.Date
java.util.Calendar
java.sql.Date
java.sql.Time
java.sql.TimeStamp
User-defined serializable types
byte[]

Bytel]

char[]

Character(]

Enumerated types

334 The Java EE 6 Tutorial: Basic Concepts

Entities

= Other entities and/or collections of entities

= Embeddable classes

Entities may use persistent fields, persistent properties, or a combination of both. If the
mapping annotations are applied to the entity’s instance variables, the entity uses
persistent fields. If the mapping annotations are applied to the entity’s getter methods
for JavaBeans-style properties, the entity uses persistent properties.

Persistent Fields

If the entity class uses persistent fields, the Persistence runtime accesses entity-class
instance variables directly. All fields not annotated javax.persistence.Transient or
not marked as Java transient will be persisted to the data store. The object/relational
mapping annotations must be applied to the instance variables.

Persistent Properties

If the entity uses persistent properties, the entity must follow the method conventions
of JavaBeans components. JavaBeans-style properties use getter and setter methods
that are typically named after the entity class’s instance variable names. For every
persistent property property of type Type of the entity, there is a getter method
getProperty and setter method setProperty. If the property is a Boolean, you may use
isProperty instead of getProperty. For example, if a Customer entity uses persistent
properties and has a private instance variable called firstName, the class defines a
getFirstName and setFirstName method for retrieving and setting the state of the
firstName instance variable.

The method signature for single-valued persistent properties are as follows:

Type getProperty()
void setProperty(Type type)

The object/relational mapping annotations for persistent properties must be applied
to the getter methods. Mapping annotations cannot be applied to fields or properties
annotated @Transient or marked transient.

Using Collections in Entity Fields and Properties

Collection-valued persistent fields and properties must use the supported Java
collection interfaces regardless of whether the entity uses persistent fields or
properties. The following collection interfaces may be used:

java.util.Collection
B java.util.Set

Chapter 19 « Introduction to the Java Persistence API 335

Entities

336

® java.util.List
® java.util.Map

If the entity class uses persistent fields, the type in the preceding method signatures
must be one of these collection types. Generic variants of these collection types may
also be used. For example, if it has a persistent property that contains a set of phone
numbers, the Customer entity would have the following methods:

Set<PhoneNumber> getPhoneNumbers() { ... }
void setPhoneNumbers(Set<PhoneNumber>) { ... }

If a field or property of an entity consists of a collection of basic types or embeddable
classes, use the javax.persistence.ElementCollection annotation on the field or

property.

The two attributes of @ElementCollection are targetClass and fetch. The
targetClass attribute specifies the class name of the basic or embeddable class and is
optional if the field or property is defined using Java programming language generics.
The optional fetch attribute is used to specify whether the collection should be
retrieved lazily or eagerly, using the javax.persistence.FetchType constants of
either LAZY or EAGER, respectively. By default, the collection will be fetched lazily.

The following entity, Person, has a persistent field, nicknames, which is a collection of
String classes that will be fetched eagerly. The targetClass element is not required,
because it uses generics to define the field.

@Entity
public class Person {

@ElementCollection(fetch=EAGER)
protected Set<String> nickname = new HashSet();

}

Collections of entity elements and relationships may be represented by
java.util.Map collections. A Map consists of a key and a value.

When using Map elements or relationships, the following rules apply.

= TheMap key or value may be a basic Java programming language type, an
embeddable class, or an entity.

= When the Map value is an embeddable class or basic type, use the
@ElementCollection annotation.

= When the Map value is an entity, use the @neToMany or @anyToMany annotation.

= Use the Map type on only one side of a bidirectional relationship.

If the key type of a Map is a Java programming language basic type, use the annotation
javax.persistence.MapKeyColumn to set the column mapping for the key. By default,

The Java EE 6 Tutorial: Basic Concepts

Entities

the name attribute of @apKeyColumn is of the form
RELATIONSHIP-FIELD/PROPERTY-NAME_KEY. For example, if the referencing
relationship field name is image, the default name attribute is IMAGE_KEY.

If the key type of a Map is an entity, use the javax.persistence.MapKeyJoinColumn
annotation. If the multiple columns are needed to set the mapping, use the annotation
javax.persistence.MapKeyJoinColumns to include multiple @apKeyJoinColumn
annotations. If no @apKeyJoinColumn is present, the mapping column name is by
default set to RELATIONSHIP-FIELD/PROPERTY-NAME_KEY. For example, if the
relationship field name is employee, the default name attribute is EMPLOYEE_KEY.

If Java programming language generic types are not used in the relationship field or
property, the key class must be explicitly set using the
javax.persistence.MapKeyClass annotation.

If the Map key is the primary key or a persistent field or property of the entity that is the
Map value, use the javax.persistence.MapKey annotation. The @MapKeyClass and
@MapKey annotations cannot be used on the same field or property.

If the Map value is a Java programming language basic type or an embeddable class, it
will be mapped as a collection table in the underlying database. If generic types are not
used, the @ElementCollection annotation’s targetClass attribute must be set to the
type of the Map value.

If the Map value is an entity and part of a many-to-many or one-to-many unidirectional
relationship, it will be mapped as a join table in the underlying database. A
unidirectional one-to-many relationship that uses a Map may also be mapped using the
@JoinColumn annotation.

If the entity is part of a one-to-many/many-to-one bidirectional relationship, it will be
mapped in the table of the entity that represents the value of the Map. If generic types
are not used, the targetEntity attribute of the @neToMany and @ManyToMany
annotations must be set to the type of the Map value.

Validating Persistent Fields and Properties

The Java API for JavaBeans Validation (Bean Validation) provides a mechanism for
validating application data. Bean Validation is integrated into the Java EE containers,
allowing the same validation logic to be used in any of the tiers of an enterprise
application.

Bean Validation constraints may be applied to persistent entity classes, embeddable
classes, and mapped superclasses. By default, the Persistence provider will
automatically perform validation on entities with persistent fields or properties
annotated with Bean Validation constraints immediately after the PrePersist,
PreUpdate, and PreRemove lifecycle events.

Chapter 19 « Introduction to the Java Persistence API 337

Entities

@Entity

Bean Validation constraints are annotations applied to the fields or properties of Java
programming language classes. Bean Validation provides a set of constraints as well as
an API for defining custom constraints. Custom constraints can be specific
combinations of the default constraints, or new constraints that don’t use the default
constraints. Each constraint is associated with at least one validator class that validates
the value of the constrained field or property. Custom constraint developers must also
provide a validator class for the constraint.

Bean Validation constraints are applied to the persistent fields or properties of
persistent classes. When adding Bean Validation constraints, use the same access
strategy as the persistent class. That is, if the persistent class uses field access, apply the
Bean Validation constraint annotations on the class’s fields. If the class uses property
access, apply the constraints on the getter methods.

Table 9-2 lists Bean Validation’s built-in constraints, defined in the
javax.validation.constraints package.

All the built-in constraints listed in Table 9-2 have a corresponding annotation,
ConstraintName.List, for grouping multiple constraints of the same type on the same
field or property. For example, the following persistent field has two @Pattern
constraints:

@Pattern.List({
@Pattern(regexp="..."),
@Pattern(regexp="...")

1)

The following entity class, Contact, has Bean Validation constraints applied to its
persistent fields.

public class Contact implements Serializable {
private static final long serialVersionUID = 1L;

@Id

@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

@NotNull

protected String firstName;

@NotNull

protected String lastName;
@Pattern(regexp="[a-z0-9!#$%&" *+/=2" ‘{|}~-1+(?:\\."

+"'[a-20-91#$%&" *+/=2" {|}~-1+)*@"
+"(?:[a-20-9]1(?:[a-20-9-1*[a-2z0-9])?\\.)+[a-2z0-9](?:[a-2z0-9-1*[a-2z0-9])?"
message="{invalid.email}")

protected String email;
@Pattern(regexp=""\\(?(\\d{3})\\)?[- 12(\\d{3})[- 1?(\\d{4})$",

message="{invalid.phonenumber}")

protected String mobilePhone;
@Pattern(regexp=""\\(?(\\d{3})\\)?[- 12(\\d{3}) [- 12(\\d{4})$",

message="{invalid.phonenumber}")

protected String homePhone;

338

The Java EE 6 Tutorial: Basic Concepts

Entities

@Temporal(javax.persistence.TemporalType.DATE)
@Past
protected Date birthday;

The @NotNull annotation on the firstName and lastName fields specifies that those
fields are now required. If a new Contact instance is created where firstName or
lastName have not been initialized, Bean Validation will throw a validation error.
Similarly, if a previously created instance of Contact has been modified so that
firstName or lastName are null, a validation error will be thrown.

The email field has a @Pattern constraint applied to it, with a complicated regular
expression that matches most valid email addresses. If the value of email doesn’t
match this regular expression, a validation error will be thrown.

The homePhone and mobilePhone fields have the same @Pattern constraints. The
regular expression matches 10 digit telephone numbers in the United States and
Canada of the form (xxx) xxx—xxxx.

The birthday field is annotated with the @Past constraint, which ensures that the
value of birthday must be in the past.

Primary Keys in Entities

Each entity has a unique object identifier. A customer entity, for example, might be
identified by a customer number. The unique identifier, or primary key, enables clients
to locate a particular entity instance. Every entity must have a primary key. An entity
may have either a simple or a composite primary key.

Simple primary keys use the javax.persistence.Id annotation to denote the
primary key property or field.

Composite primary keys are used when a primary key consists of more than one
attribute, which corresponds to a set of single persistent properties or fields.
Composite primary keys must be defined in a primary key class. Composite primary
keys are denoted using the javax.persistence.EmbeddedId and
javax.persistence.IdClass annotations.

The primary key, or the property or field of a composite primary key, must be one of
the following Java language types:

Java primitive types

Java primitive wrapper types

java.lang.String

java.util.Date (the temporal type should be DATE)
java.sql.Date

Chapter 19 « Introduction to the Java Persistence API 339

Entities

340

java.math.BigDecimal
java.math.BigInteger

Floating-point types should never be used in primary keys. If you use a generated
primary key, only integral types will be portable.

A primary key class must meet these requirements.

The access control modifier of the class must be public.

The properties of the primary key class must be public or protected if
property-based access is used.

The class must have a public default constructor.
The class must implement the hashCode () and equals (Object other) methods.
The class must be serializable.

A composite primary key must be represented and mapped to multiple fields or
properties of the entity class or must be represented and mapped as an embeddable
class.

If the class is mapped to multiple fields or properties of the entity class, the names
and types of the primary key fields or properties in the primary key class must
match those of the entity class.

The following primary key class is a composite key, and the orderId and itemId fields
together uniquely identify an entity:

public final class LineItemKey implements Serializable {

public Integer orderld;
public int itemId;

public LineItemKey() {}

public LineItemKey(Integer orderId, int itemId) {
this.orderId = orderld;
this.itemId = itemId;

}

public boolean equals(Object otherOb) {
if (this == otherOb) {
return true;

}

if (!(otherOb instanceof LineItemKey)) {
return false;

}

LineItemKey other = (LineItemKey) otherOb;
return (
(orderId==null?other.orderId==null:orderId.equals
(other.orderId)
)
&&
(itemId == other.itemId)

The Java EE 6 Tutorial: Basic Concepts

Entities

}

public int hashCode() {
return (
(orderId==null?0:orderId.hashCode())

((int) itemId)
);
}

public String toString() {
return " + orderId + "-" + itemId;

}

Multiplicity in Entity Relationships

Multiplicities are of the following types: one-to-one, one-to-many, many-to-one, and
many-to-many:

One-to-one: Each entity instance is related to a single instance of another entity.
For example, to model a physical warehouse in which each storage bin contains a
single widget, StorageBin and Widget would have a one-to-one relationship.
One-to-one relationships use the javax.persistence.0OneToOne annotation on
the corresponding persistent property or field.

One-to-many: An entity instance can be related to multiple instances of the other
entities. A sales order, for example, can have multiple line items. In the order
application, Order would have a one-to-many relationship with LineItem.
One—to—many relationships use the javax.persistence.OneToMany annotation
on the corresponding persistent property or field.

Many-to-one: Multiple instances of an entity can be related to a single instance of
the other entity. This multiplicity is the opposite of a one-to-many relationship. In
the example just mentioned, the relationship to Order from the perspective of
LineItem is many-to-one. Many-to-one relationships use the
javax.persistence.ManyToOne annotation on the corresponding persistent
property or field.

Many-to-many: The entity instances can be related to multiple instances of each
other. For example, each college course has many students, and every student may
take several courses. Therefore, in an enrollment application, Course and Student
would have a many-to-many relationship. Many-to-many relationships use the
javax.persistence.ManyToMany annotation on the corresponding persistent
property or field.

Chapter 19 « Introduction to the Java Persistence API 341

Entities

342

Direction in Entity Relationships

The direction of a relationship can be either bidirectional or unidirectional. A
bidirectional relationship has both an owning side and an inverse side. A
unidirectional relationship has only an owning side. The owning side of a relationship
determines how the Persistence runtime makes updates to the relationship in the
database.

Bidirectional Relationships

In a bidirectional relationship, each entity has a relationship field or property that
refers to the other entity. Through the relationship field or property, an entity class’s
code can access its related object. If an entity has a related field, the entity is said to
“know” about its related object. For example, if Order knows what LineIteminstances
ithasand if LineItem knows what Order it belongs to, they have a bidirectional
relationship.

Bidirectional relationships must follow these rules.

= Theinverse side of a bidirectional relationship must refer to its owning side by
using the mappedBy element of the @neToOne, @neToMany, or @anyToMany
annotation. The mappedBy element designates the property or field in the entity
that is the owner of the relationship.

= The many side of many-to-one bidirectional relationships must not define the
mappedBy element. The many side is always the owning side of the relationship.

= For one-to-one bidirectional relationships, the owning side corresponds to the side
that contains the corresponding foreign key.

= For many-to-many bidirectional relationships, either side may be the owning side.

Unidirectional Relationships

In a unidirectional relationship, only one entity has a relationship field or property that
refers to the other. For example, LineItem would have a relationship field that
identifies Product, but Product would not have a relationship field or property for
LineItem.In other words, LineItemknowsabout Product, but Product doesn’t know
which LineIteminstances refer to it.

Queries and Relationship Direction

Java Persistence query language and Criteria API queries often navigate across
relationships. The direction of a relationship determines whether a query can navigate
from one entity to another. For example, a query can navigate from LineItem to
Product but cannot navigate in the opposite direction. For Order and LineItem,a
query could navigate in both directions because these two entities have a bidirectional
relationship.

The Java EE 6 Tutorial: Basic Concepts

Entities

Cascade Operations and Relationships

Entities that use relationships often have dependencies on the existence of the other
entity in the relationship. For example, a line item is part of an order; if the order is
deleted, the line item also should be deleted. This is called a cascade delete relationship.

The javax.persistence.CascadeType enumerated type defines the cascade
operations that are applied in the cascade element of the relationship annotations.
Table 19-1 lists the cascade operations for entities.

TABLE 19-1 Cascade Operations for Entities

Cascade Operation Description

ALL All cascade operations will be applied to the parent entity’s related entity.
A1l is equivalent to specifying cascade={DETACH, MERGE, PERSIST,
REFRESH, REMOVE}

DETACH If the parent entity is detached from the persistence context, the related
entity will also be detached.

MERGE If the parent entity is merged into the persistence context, the related
entity will also be merged.

PERSIST If the parent entity is persisted into the persistence context, the related
entity will also be persisted.

REFRESH If the parent entity is refreshed in the current persistence context, the
related entity will also be refreshed.

REMOVE If the parent entity is removed from the current persistence context, the
related entity will also be removed.

Cascade delete relationships are specified using the cascade=REMOVE element
specification for @neToOne and @0OneToMany relationships. For example:

@0OneToMany (cascade=REMOVE, mappedBy="customer")
public Set<Order> getOrders() { return orders; }

Orphan Removal in Relationships

When a target entity in one-to-one or one-to-many relationship is removed from the
relationship, it is often desirable to cascade the remove operation to the target entity.
Such target entities are considered “orphans,” and the orphanRemoval attribute can be
used to specify that orphaned entities should be removed. For example, if an order has
many line items and one of them is removed from the order, the removed line item is
considered an orphan. If orphanRemoval is set to true, the line item entity will be
deleted when the line item is removed from the order.

Chapter 19 « Introduction to the Java Persistence API 343

Entities

344

The orphanRemoval attribute in @neToMany and @oneToOne takes a Boolean value and
is by default false.

The following example will cascade the remove operation to the orphaned customer
entity when it is removed from the relationship:

@0OneToMany (mappedBy="customer", orphanRemoval="true")
public List<Order> getOrders() { ... }

Embeddable Classes in Entities

Embeddable classes are used to represent the state of an entity but don’t have a
persistent identity of their own, unlike entity classes. Instances of an embeddable class
share the identity of the entity that owns it. Embeddable classes exist only as the state
of another entity. An entity may have single-valued or collection-valued embeddable
class attributes.

Embeddable classes have the same rules as entity classes but are annotated with the
javax.persistence.Embeddable annotation instead of @Entity.

The following embeddable class, ZipCode, has the fields zip and plusFour:

@Embeddable

public class ZipCode {
String zip;
String plusFour;

i..

This embeddable class is used by the Address entity:

@Entity

public class Address {
@Id
protected long id
String streetl;
String street2;
String city;
String province;
@Embedded
ZipCode zipCode;
String country;

ill

Entities that own embeddable classes as part of their persistent state may annotate the
field or property with the javax.persistence.Embedded annotation but are not
required to do so.

The Java EE 6 Tutorial: Basic Concepts

Entity Inheritance

Embeddable classes may themselves use other embeddable classes to represent their
state. They may also contain collections of basic Java programming language types or
other embeddable classes. Embeddable classes may also contain relationships to other
entities or collections of entities. If the embeddable class has such a relationship, the
relationship is from the target entity or collection of entities to the entity that owns the
embeddable class.

Entity Inheritance

Entities support class inheritance, polymorphic associations, and polymorphic
queries. Entity classes can extend non-entity classes, and non-entity classes can extend
entity classes. Entity classes can be both abstract and concrete.

The roster example application demonstrates entity inheritance, as described in
“Entity Inheritance in the roster Application” on page 370.

Abstract Entities

An abstract class may be declared an entity by decorating the class with @Entity.
Abstract entities are like concrete entities but cannot be instantiated.

Abstract entities can be queried just like concrete entities. If an abstract entity is the
target of a query, the query operates on all the concrete subclasses of the abstract
entity:

@Entity

public abstract class Employee {
@Id
protected Integer employeeld;

}

@Entity

public class FullTimeEmployee extends Employee {
protected Integer salary;

}

@Entity

public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

}

Mapped Superclasses

Entities may inherit from superclasses that contain persistent state and mapping
information but are not entities. That is, the superclass is not decorated with the

Chapter 19 « Introduction to the Java Persistence API 345

Entity Inheritance

346

@Entity annotation and is not mapped as an entity by the Java Persistence provider.
These superclasses are most often used when you have state and mapping information
common to multiple entity classes.

Mapped superclasses are specified by decorating the class with the annotation
javax.persistence.MappedSuperclass:

@MappedSuperclass
public class Employee {
@Id
protected Integer employeeld;

}

@Entity

public class FullTimeEmployee extends Employee {
protected Integer salary;

}

@Entity

public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

}

Mapped superclasses cannot be queried and can’t be used in EntityManager or Query
operations. You must use entity subclasses of the mapped superclass in
EntityManager or Query operations. Mapped superclasses can’t be targets of entity
relationships. Mapped superclasses can be abstract or concrete.

Mapped superclasses do not have any corresponding tables in the underlying
datastore. Entities that inherit from the mapped superclass define the table mappings.
For instance, in the preceding code sample, the underlying tables would be
FULLTIMEEMPLOYEE and PARTTIMEEMPLOYEE, but there is no EMPLOYEE table.

Non-Entity Superclasses

Entities may have non-entity superclasses, and these superclasses can be either
abstract or concrete. The state of non-entity superclasses is nonpersistent, and any
state inherited from the non-entity superclass by an entity class is nonpersistent.
Non-entity superclasses may not be used in EntityManager or Query operations. Any
mapping or relationship annotations in non-entity superclasses are ignored.

The Java EE 6 Tutorial: Basic Concepts

Entity Inheritance

Entity Inheritance Mapping Strategies

You can configure how the Java Persistence provider maps inherited entities to the
underlying datastore by decorating the root class of the hierarchy with the annotation
javax.persistence.Inheritance. The following mapping strategies are used to map
the entity data to the underlying database:

= Asingle table per class hierarchy
= A table per concrete entity class

= A “join” strategy, whereby fields or properties that are specific to a subclass are
mapped to a different table than the fields or properties that are common to the
parent class

The strategy is configured by setting the strategy element of @ nheritance to one of
the options defined in the javax.persistence.InheritanceType enumerated type:

public enum InheritanceType {
SINGLE TABLE,
JOINED,
TABLE PER CLASS

}

The default strategy, InheritanceType.SINGLE_TABLE, is used if the @Inheritance
annotation is not specified on the root class of the entity hierarchy.

The Single Table per Class Hierarchy Strategy

With this strategy, which corresponds to the default
InheritanceType.SINGLE_TABLE, all classes in the hierarchy are mapped to a single
table in the database. This table has a discriminator column containing a value that
identifies the subclass to which the instance represented by the row belongs.

The discriminator column, whose elements are shown in Table 19-2, can be specified
by using the javax.persistence.DiscriminatorColumn annotation on the root of
the entity class hierarchy.

TABLE19-2 @DiscriminatorColumn Elements

Type Name Description

String name The name of the column to be used as the
discriminator column. The default is DTYPE. This
element is optional.

DiscriminatorType discriminatorType The type of the column to be used as a discriminator
column. The defaultisDiscriminatorType.STRING.
This element is optional.

Chapter 19 « Introduction to the Java Persistence API 347

Entity Inheritance

TABLE19-2 @DiscriminatorColumn Elements (Continued)
Type Name Description
String columnDefinition The SQL fragment to use when creating the

discriminator column. The default is generated by the
Persistence provider and is implementation-specific.
This element is optional.

String length The column length for String-based discriminator
types. This element is ignored for non-String
discriminator types. The default is 31. This element is
optional.

The javax.persistence.DiscriminatorType enumerated type is used to set the type
of the discriminator column in the database by setting the discriminatorType

element of @iscriminatorColumn to one of the defined types. DiscriminatorType is
defined as:

public enum DiscriminatorType {
STRING,
CHAR,
INTEGER

b

If@iscriminatorColumn is not specified on the root of the entity hierarchy and a

discriminator column is required, the Persistence provider assumes a default column
name of DTYPE and column type of DiscriminatorType.STRING.

The javax.persistence.DiscriminatorValue annotation may be used to set the
value entered into the discriminator column for each entity in a class hierarchy. You
may decorate only concrete entity classes with @discriminatorvalue.

If@discriminatorValue is not specified on an entity in a class hierarchy that uses a
discriminator column, the Persistence provider will provide a default,
implementation-specific value. If the discriminatorType element of
@iscriminatorColumnisDiscriminatorType.STRING, the default value is the name
of the entity.

This strategy provides good support for polymorphic relationships between entities
and queries that cover the entire entity class hierarchy. However, this strategy requires
the columns that contain the state of subclasses to be nullable.

TheTable per Concrete Class Strategy

In this strategy, which corresponds to InheritanceType.TABLE_PER_CLASS, each
concrete class is mapped to a separate table in the database. All fields or properties in
the class, including inherited fields or properties, are mapped to columns in the class’s
table in the database.

348 The Java EE 6 Tutorial: Basic Concepts

Managing Entities

This strategy provides poor support for polymorphic relationships and usually
requires either SQL UNION queries or separate SQL queries for each subclass for queries
that cover the entire entity class hierarchy.

Support for this strategy is optional and may not be supported by all Java Persistence
API providers. The default Java Persistence API provider in the GlassFish Server does
not support this strategy.

The Joined Subclass Strategy

In this strategy, which corresponds to InheritanceType.JOINED, the root of the class
hierarchy is represented by a single table, and each subclass has a separate table that
contains only those fields specific to that subclass. That is, the subclass table does not
contain columns for inherited fields or properties. The subclass table also has a column
or columns that represent its primary key, which is a foreign key to the primary key of
the superclass table.

This strategy provides good support for polymorphic relationships but requires one or
more join operations to be performed when instantiating entity subclasses. This may
result in poor performance for extensive class hierarchies. Similarly, queries that cover
the entire class hierarchy require join operations between the subclass tables, resulting
in decreased performance.

Some Java Persistence API providers, including the default provider in the GlassFish
Server, require a discriminator column that corresponds to the root entity when using
the joined subclass strategy. If you are not using automatic table creation in your
application, make sure that the database table is set up correctly for the discriminator
column defaults, or use the @iscriminatorColumn annotation to match your
database schema. For information on discriminator columns, see “The Single Table
per Class Hierarchy Strategy” on page 347.

Managing Entities

Entities are managed by the entity manager, which is represented by
javax.persistence.EntityManager instances. Each EntityManager instance is
associated with a persistence context: a set of managed entity instances that existin a
particular data store. A persistence context defines the scope under which particular
entity instances are created, persisted, and removed. The EntityManager interface
defines the methods that are used to interact with the persistence context.

The EntityManager Interface

The EntityManager API creates and removes persistent entity instances, finds entities
by the entity’s primary key, and allows queries to be run on entities.

Chapter 19 « Introduction to the Java Persistence API 349

Managing Entities

350

Container-Managed Entity Managers

With a container-managed entity manager, an EntityManager instance’s persistence
context is automatically propagated by the container to all application components
that use the EntityManager instance within a single Java Transaction API (JTA)
transaction.

JTA transactions usually involve calls across application components. To complete a
JTA transaction, these components usually need access to a single persistence context.
This occurs when an EntityManager is injected into the application components by
means of the javax.persistence.PersistenceContext annotation. The persistence
context is automatically propagated with the current JTA transaction, and
EntityManager references that are mapped to the same persistence unit provide access
to the persistence context within that transaction. By automatically propagating the
persistence context, application components don’t need to pass references to
EntityManager instances to each other in order to make changes within a single
transaction. The Java EE container manages the lifecycle of container-managed entity
managers.

To obtain an EntityManager instance, inject the entity manager into the application
component:

@PersistenceContext
EntityManager em;

Application-Managed Entity Managers

With an application-managed entity manager, on the other hand, the persistence
context is not propagated to application components, and the lifecycle of
EntityManager instances is managed by the application.

Application-managed entity managers are used when applications need to access a
persistence context that is not propagated with the JTA transaction across
EntityManager instances in a particular persistence unit. In this case, each
EntityManager creates a new, isolated persistence context. The EntityManager and its
associated persistence context are created and destroyed explicitly by the application.
They are also used when directly injecting EntityManager instances can’t be done
because EntityManager instances are not thread-safe. EntityManagerFactory
instances are thread-safe.

Applications create EntityManager instances in this case by using the
createEntityManager method of javax.persistence.EntityManagerFactory.

To obtain an EntityManager instance, you first must obtain an
EntityManagerFactory instance by injecting it into the application component by
means of the javax.persistence.PersistenceUnit annotation:

The Java EE 6 Tutorial: Basic Concepts

Managing Entities

@PersistenceUnit
EntityManagerFactory emf;

Then obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

Application-managed entity managers don’t automatically propagate the JTA
transaction context. Such applications need to manually gain access to the JTA
transaction manager and add transaction demarcation information when performing
entity operations. The javax.transaction.UserTransaction interface defines
methods to begin, commit, and roll back transactions. Inject an instance of
UserTransaction by creating an instance variable annotated with @Resource:

@Resource
UserTransaction utx;

To begin a transaction, call the UserTransaction.begin method. When all the entity
operations are complete, call the UserTransaction. commit method to commit the
transaction. The UserTransaction. rollback method is used to roll back the current
transaction.

The following example shows how to manage transactions in an application that uses
an application-managed entity manager:

@PersistenceContext
EntityManagerFactory emf;
EntityManager em;
@Resource
UserTransaction utx;

em = emf.createEntityManager();

try {
utx.begin();
em.persist(SomeEntity);
em.merge (AnotherEntity);
em.remove(ThirdEntity);
utx.commit();

} catch (Exception e) {
utx.rollback();

Finding Entities Using the EntityManager

The EntityManager. find method is used to look up entities in the data store by the
entity’s primary key:

@PersistenceContext

EntityManager em;

public void enterOrder(int custID, Order newOrder) {
Customer cust = em.find(Customer.class, custID);
cust.getOrders().add(newOrder);

Chapter 19 « Introduction to the Java Persistence API 351

Managing Entities

352

newOrder.setCustomer(cust);

}

Managing an Entity Instance’s Lifecycle

You manage entity instances by invoking operations on the entity by means of an
EntityManager instance. Entity instances are in one of four states: new, managed,
detached, or removed.

= New entity instances have no persistent identity and are not yet associated with a
persistence context.

= Managed entity instances have a persistent identity and are associated with a
persistence context.

= Detached entity instances have a persistent identity and are not currently
associated with a persistence context.

= Removed entity instances have a persistent identity, are associated with a persistent
context, and are scheduled for removal from the data store.

Persisting Entity Instances

New entity instances become managed and persistent either by invoking the persist
method or by a cascading persist operation invoked from related entities that have
the cascade=PERSIST or cascade=ALL elements set in the relationship annotation.
This means that the entity’s data is stored to the database when the transaction
associated with the persist operation is completed. If the entity is already managed,
the persist operation is ignored, although the persist operation will cascade to
related entities that have the cascade element set to PERSIST or ALL in the relationship
annotation. If persist is called on a removed entity instance, the entity becomes
managed. If the entity is detached, either persist will throw an
IllegalArgumentException, or the transaction commit will fail.

@PersistenceContext
EntityManager em;

public LineItem createLineItem(Order order, Product product,
int quantity) {
LineItem 1i = new LineItem(order, product, quantity);
order.getLineItems().add(li);
em.persist(li);
return 1i;

}

The persist operation is propagated to all entities related to the calling entity that
have the cascade element set to ALL or PERSIST in the relationship annotation:

@0oneToMany (cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {
return lineltems;

}

The Java EE 6 Tutorial: Basic Concepts

Managing Entities

Removing Entity Instances

Managed entity instances are removed by invoking the remove method or by a
cascading remove operation invoked from related entities that have the
cascade=REMOVE or cascade=ALL elements set in the relationship annotation. If the
remove method is invoked on a new entity, the remove operation is ignored, although
remove will cascade to related entities that have the cascade element set to REMOVE or
ALL in the relationship annotation. If remove is invoked on a detached entity, either
remove will throw an I1legalArgumentException, or the transaction commit will fail.
If invoked on an already removed entity, remove will be ignored. The entity’s data will
be removed from the data store when the transaction is completed or as a result of the
flush operation.

public void removeOrder(Integer orderId) {
try {
Order order = em.find(Order.class, orderId);
em.remove(order);
}.o..
In this example, all LineItem entities associated with the order are also removed, as
Order.getLineItems has cascade=ALL set in the relationship annotation.

Synchronizing Entity Data to the Database

The state of persistent entities is synchronized to the database when the transaction
with which the entity is associated commits. If a managed entity is in a bidirectional
relationship with another managed entity, the data will be persisted, based on the
owning side of the relationship.

To force synchronization of the managed entity to the data store, invoke the flush
method of the EntityManager instance. If the entity is related to another entity and the
relationship annotation has the cascade element set to PERSIST or ALL, the related
entity’s data will be synchronized with the data store when flush is called.

If the entity is removed, calling flush will remove the entity data from the data store.

Persistence Units

A persistence unit defines a set of all entity classes that are managed by EntityManager
instances in an application. This set of entity classes represents the data contained
within a single data store.

Persistence units are defined by the persistence.xml configuration file. The
following is an example persistence.xml file:

<persistence>
<persistence-unit name="OrderManagement">
<description>This unit manages orders and customers.

Chapter 19 « Introduction to the Java Persistence API 353

Managing Entities

354

It does not rely on any vendor-specific features and can
therefore be deployed to any persistence provider.
</description>
<jta-data-source>jdbc/MyOrderDB</jta-data-source>
<jar-file>MyOrderApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>
</persistence-unit>
</persistence>

This file defines a persistence unit named OrderManagement, which uses a JTA-aware
data source: jdbc/MyOrderDB. The jar-file and class elements specify managed
persistence classes: entity classes, embeddable classes, and mapped superclasses. The
jar-file element specifies JAR files that are visible to the packaged persistence unit
that contain managed persistence classes, whereas the class element explicitly names
managed persistence classes.

The jta-data-source (for JTA-aware data sources) and non-jta-data-source (for
non-JTA-aware data sources) elements specify the global JNDI name of the data
source to be used by the container.

The JAR file or directory whose META- INF directory contains persistence.xml is
called the root of the persistence unit. The scope of the persistence unit is determined
by the persistence unit’s root. Each persistence unit must be identified with a name that
is unique to the persistence unit’s scope.

Persistent units can be packaged as part of a WAR or EJB JAR file or can be packaged
as a JAR file that can then be included in an WAR or EAR file.

= Ifyou package the persistent unit as a set of classes in an EJB JAR file,
persistence.xml should be putin the EJB JAR’s META- INF directory.

= Ifyou package the persistence unit as a set of classes in a WAR file,
persistence.xml should be located in the WAR file’s
WEB-INF/classes/META-INF directory.

= Ifyou package the persistence unit in a JAR file that will be included ina WAR or
EAR file, the JAR file should be located in either

= TheWEB-INF/lib directory ofa WAR
= The EAR file’s library directory

Note - In the Java Persistence API 1.0, JAR files could be located at the root of an
EAR file as the root of the persistence unit. This is no longer supported.
Portable applications should use the EAR file’s library directory as the root of
the persistence unit.

The Java EE 6 Tutorial: Basic Concepts

Further Information about Persistence

Querying Entities
The Java Persistence API provides the following methods for querying entities.

= The Java Persistence query language (JPQL) is a simple, string-based language
similar to SQL used to query entities and their relationships. See Chapter 21, “The
Java Persistence Query Language,” for more information.

® The Criteria APIis used to create typesafe queries using Java programming
language APIs to query for entities and their relationships. See Chapter 22, “Using
the Criteria API to Create Queries,” for more information.

Both JPQL and the Criteria API have advantages and disadvantages.

Just a few lines long, JPQL queries are typically more concise and more readable than
Criteria queries. Developers familiar with SQL will find it easy to learn the syntax of
JPQL. JPQL named queries can be defined in the entity class using a Java programming
language annotation or in the application’s deployment descriptor. JPQL queries are
not typesafe, however, and require a cast when retrieving the query result from the
entity manager. This means that type-casting errors may not be caught at compile
time. JPQL queries don’t support open-ended parameters.

Criteria queries allow you to define the query in the business tier of the application.
Although this is also possible using JPQL dynamic queries, Criteria queries provide
better performance because JPQL dynamic queries must be parsed each time they are
called. Criteria queries are typesafe and therefore don’t require casting, as JPQL
queries do. The Criteria API is just another Java programming language API and
doesn’t require developers to learn the syntax of another query language. Criteria
queries are typically more verbose than JPQL queries and require the developer to
create several objects and perform operations on those objects before submitting the
query to the entity manager.

Further Information about Persistence

For more information about the Java Persistence API, see

= Java Persistence 2.0 API specification:
http://jcp.org/en/jsr/detail?id=317

= EclipseLink, the Java Persistence API implementation in the GlassFish Server:

http://www.eclipse.org/eclipselink/jpa.php

Chapter 19 « Introduction to the Java Persistence API 355

http://jcp.org/en/jsr/detail?id=317
http://www.eclipse.org/eclipselink/jpa.php

Further Information about Persistence

= EclipseLink team blog:
http://eclipselink.blogspot.com/
= EclipseLink wiki documentation:

http://wiki.eclipse.org/EclipselLink

356 The Java EE 6 Tutorial: Basic Concepts

http://eclipselink.blogspot.com/
http://wiki.eclipse.org/EclipseLink

L K R 4 CHAPTER 20

Running the Persistence Examples

This chapter explains how to use the Java Persistence API. The material here focuses
on the source code and settings of three examples. The first example, order, is an
application that uses a stateful session bean to manage entities related to an ordering
system. The second example, roster, is an application that manages a community
sports system. The third example, address -book, is a web application that stores
contact data. This chapter assumes that you are familiar with the concepts detailed in
Chapter 19, “Introduction to the Java Persistence API”

The following topics are addressed here:

= “The order Application” on page 357
= “The roster Application” on page 369
= “Theaddress-book Application” on page 376

The order Application

The order application is a simple inventory and ordering application for maintaining
a catalog of parts and placing an itemized order of those parts. The application has
entities that represent parts, vendors, orders, and line items. These entities are
accessed using a stateful session bean that holds the business logic of the application. A
simple singleton session bean creates the initial entities on application deployment. A
Facelets web application manipulates the data and displays data from the catalog.

The information contained in an order can be divided into elements. What is the order
number? What parts are included in the order? What parts make up that part? Who
makes the part? What are the specifications for the part? Are there any schematics for
the part? The order application is a simplified version of an ordering system that has
all these elements.

The order application consists of a single WAR module that includes the enterprise
bean classes, the entities, the support classes, and the Facelets XHTML and class files.

357

The order Application

358

Entity Relationshipsin the order Application

The order application demonstrates several types of entity relationships:
self-referential, one-to-one, one-to-many, many-to-one, and unidirectional
relationships.

Self-Referential Relationships

A self-referential relationship occurs between relationship fields in the same entity.
Part has a field, bomPart, which has a one-to-many relationship with the field parts,
which is also in Part. That is, a part can be made up of many parts, and each of those
parts has exactly one bill-of-material part.

The primary key for Part is a compound primary key, a combination of the
partNumber and revision fields. This key is mapped to the PARTNUMBER and REVISION
columns in the EJB_ORDER PART table:

@ManyToOne
@JoinColumns ({
@JoinColumn (name="BOMPARTNUMBER"
referencedColumnName="PARTNUMBER") ,
@JoinColumn(name="BOMREVISION"
referencedColumnName="REVISION")
1)
public Part getBomPart() {
return bomPart;

}

@0OneToMany (mappedBy="bomPart")
public Collection<Part> getParts() {
return parts;

}

One-to-One Relationships
Part hasafield, vendorPart, that has a one-to-one relationship with VendorPart’s

part field. That is, each part has exactly one vendor part, and vice versa.

Here is the relationship mapping in Part:

@0OneToOne (mappedBy="part")
public VendorPart getVendorPart() {
return vendorPart;

}

Here is the relationship mapping in VendorPart:

@OneToOne
@JoinColumns ({
@JoinColumn(name="PARTNUMBER",

The Java EE 6 Tutorial: Basic Concepts

The order Application

referencedColumnName="PARTNUMBER"),
@JoinColumn(name="PARTREVISION"
referencedColumnName="REVISION")

})
public Part getPart() {
return part;

}

Note that, because Part uses a compound primary key, the @ oinColumns annotation
is used to map the columns in the PERSISTENCE_ORDER_VENDOR_PART table to the
columns in PERSISTENCE_ORDER_PART. The PERSISTENCE_ORDER_VENDOR_PART table’s
PARTREVISION column refers to PERSISTENCE ORDER_PART’s REVISION column.

One-to-Many Relationship Mapped to Overlapping Primary and
Foreign Keys

Order has a field, lineItems, that has a one-to-many relationship with LineItem’s field
order. That is, each order has one or more line item.

LineItem usesa compound primary key that is made up of the orderIdand itemId
fields. This compound primary key maps to the ORDERID and ITEMID columns in the
PERSISTENCE_ORDER_LINEITEM table. ORDERID is a foreign key to the ORDERID column
in the PERSISTENCE_ORDER_ORDER table. This means that the ORDERID column is
mapped twice: once as a primary key field, orderId; and again as a relationship field,
order.

Here’s the relationship mapping in Order:

@OneToMany (cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {
return lineltems;

}

Here is the relationship mapping in LineItem:

@ManyToOne
public Order getOrder() {
return order;

Unidirectional Relationships
LineItem hasafield, vendorPart, that has a unidirectional many-to-one relationship

with VendorPart. That is, there is no field in the target entity in this relationship:

@ManyToOne
public VendorPart getVendorPart() {
return vendorPart;

Chapter20 « Running the Persistence Examples 359

The order Application

360

Primary Keys in the order Application

The order application uses several types of primary keys: single-valued primary keys,
compound primary keys, and generated primary keys.

Generated Primary Keys

VendorPart uses a generated primary key value. That is, the application does not
assign primary key values for the entities but instead relies on the persistence provider
to generate the primary key values. The @GeneratedValue annotation is used to
specify that an entity will use a generated primary key.

In VendorPart, the following code specifies the settings for generating primary key
values:

@TableGenerator (
name="vendorPartGen"
table="PERSISTENCE ORDER SEQUENCE GENERATOR",
pkColumnName="GEN KEY"
valueColumnName="GEN VALUE"
pkColumnValue="VENDOR PART ID"
allocationSize=10)

@Id

@GeneratedValue(strategy=GenerationType.TABLE,
generator="vendorPartGen")

public Long getVendorPartNumber() {
return vendorPartNumber;

}

The @TableGenerator annotation is used in conjunction with @Generatedvalue’s
strategy=TABLE element. That is, the strategy used to generate the primary keys is to
use a table in the database. The @TableGenerator annotation is used to configure the
settings for the generator table. The name element sets the name of the generator,
which is vendorPartGen in VendorPart.

The EJB_ORDER SEQUENCE GENERATOR table, whose two columns are GEN_KEY and
GEN_VALUE, will store the generated primary key values. This table could be used to
generate other entity’s primary keys, so the pkColumnValue element is set to
VENDOR_PART_1ID to distinguish this entity’s generated primary keys from other entity’s
generated primary keys. The allocationSize element specifies the amount to
increment when allocating primary key values. In this case, each VendorPart’s primary
key will increment by 10.

The primary key field vendorPartNumber is of type Long, as the generated primary
key’s field must be an integral type.

The Java EE 6 Tutorial: Basic Concepts

The order Application

Compound Primary Keys

A compound primary key is made up of multiple fields and follows the requirements
described in “Primary Keys in Entities” on page 339. To use a compound primary key,
you must create a wrapper class.

In order, two entities use compound primary keys: Part and LineItem.

= Part uses the PartKey wrapper class. Part’s primary key is a combination of the
part number and the revision number. PartKey encapsulates this primary key.

= LineItemusestheLineItemKey class. LineItem’s primary key isa combination of
the order number and the item number. LineItemKey encapsulates this primary
key.

This is the LineItemKey compound primary key wrapper class:

package order.entity;

public final class LineItemKey implements
java.io.Serializable {

private Integer orderld;
private int itemId;

public int hashCode() {
return ((this.getOrderId()==null
?0:this.getOrderId().hashCode())
~ ((int) this.getItemId()));
}

public boolean equals(Object otherOb) {
if (this == other0Ob) {
return true;

if (!(otherOb instanceof LineItemKey)) {
return false;
}
LineItemKey other = (LineItemKey) otherOb;
return ((this.getOrderId()==null
?other.orderId==null:this.getOrderId().equals
(other.orderId)) && (this.getItemId ==
other.itemld));
b

public String toString() {

return " + orderId + "-" + itemId;

}
}

The @IdClass annotation is used to specify the primary key class in the entity class. In
LineItem,@IdClass is used as follows:

@IdClass(order.entity.LineItemKey.class)
@Entity

Chapter20 « Running the Persistence Examples 361

The order Application

362

public class LineItem {

j"

The two fields in LineItem are tagged with the @Id annotation to mark those fields as
part of the compound primary key:

@Id
public int getItemId() {
return itemld;
}
@Id
@Column (name="ORDERID", nullable=false,
insertable=false, updatable=false)
public Integer getOrderId() {
return orderld;

b

For orderId, you also use the @olumn annotation to specify the column name in the
table and that this column should not be inserted or updated, as it is an overlapping
foreign key pointing at the PERSISTENCE_ORDER_ORDER table’s ORDERID column (see
“One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys” on
page 359). Thatis, orderId will be set by the Order entity.

In LineItem’s constructor, the line item number (LineItem.itemId)is set usingthe
Order.getNextId method:

public LineItem(Order order, int quantity, VendorPart
vendorPart) {
this.order = order;
this.itemId = order.getNextId();
this.orderId = order.getOrderId();
this.quantity = quantity;
this.vendorPart = vendorPart;

}
Order.getNextId counts the number of current line items, adds 1, and returns that

number:

public int getNextId() {
return this.lineltems.size() + 1;

}

Part doesn’t require the @olumn annotation on the two fields that comprise Part’s
compound primary key, because Part’s compound primary key is not an overlapping
primary key/foreign key:

@IdClass(order.entity.PartKey.class)
@Entity

public class Part {

The Java EE 6 Tutorial: Basic Concepts

The order Application

@Id
public String getPartNumber() {
return partNumber;

}

@Id
public int getRevision() {
return revision;

}

Entity Mapped to More Than One Database Table

Part’s fields map to more than one database table: PERSISTENCE_ORDER_PART and
PERSISTENCE ORDER PART DETAIL.The PERSISTENCE ORDER PART DETAIL table
holds the specification and schematics for the part. The @econdaryTable annotation
is used to specify the secondary table.

@Entity
@Table(name="PERSISTENCE70RDER7PART")
@SecondaryTable(name="PERSISTENCE ORDER PART DETAIL", pkJoinColumns={
@PrimaryKeyJoinColumn (name="PARTNUMBER",
referencedColumnName="PARTNUMBER") ,
@PrimaryKeyJoinColumn(name="REVISION"
referencedColumnName="REVISION")

})
public class Part {

}

PERSISTENCE ORDER PART DETAIL and PERSISTENCE ORDER PART share the same
primary key values. The pkJoinColumns element of @SecondaryTable is used to
specify that PERSISTENCE_ORDER_PART_DETAIL’s primary key columns are foreign keys
to PERSISTENCE_ORDER PART. The @PrimaryKeyJoinColumn annotation sets the
primary key column names and specifies which column in the primary table the
column refers to. In this case, the primary key column names for both

PERSISTENCE70RDER7PARTﬁDETAILandPERSISTENCEioRDERipARTarethesanw:
PARTNUMBER and REVISION, respectively.

Cascade Operationsin the order Application

Entities that have relationships to other entities often have dependencies on the
existence of the other entity in the relationship. For example, a line item is part of an
order; if the order is deleted, then the line item also should be deleted. This is called a
cascade delete relationship.

Chapter20 « Running the Persistence Examples 363

The order Application

364

In order, there are two cascade delete dependencies in the entity relationships. If the
Order to which a LineItem is related is deleted, the LineItem also should be deleted. If
the Vendor to which a VendorPart is related is deleted, the VendorPart also should be
deleted.

You specify the cascade operations for entity relationships by setting the cascade
element in the inverse (nonowning) side of the relationship. The cascade element is set
to ALL in the case of Order. lineItems. This means that all persistence operations
(deletes, updates, and so on) are cascaded from orders to line items.

Here is the relationship mapping in Order:

@0OneToMany (cascade=ALL, mappedBy="order")

public Collection<LineItem> getLineItems() {
return lineItems;

}

Here is the relationship mapping in LineItem:

@ManyToOne
public Order getOrder() {
return order;

BLOB and CLOB Database Typesin the order
Application

The PARTDETAIL table in the database has a column, DRAWING, of type BLOB. BLOB
stands for binary large objects, which are used for storing binary data, such as an
image. The DRAWING column is mapped to the field Part. drawing of type
java.io.Serializable. The @Lob annotation is used to denote that the field is large
object.

@Column(table="PERSISTENCE ORDER PART DETAIL")
@Lob
public Serializable getDrawing() {

return drawing;

}

PERSISTENCE_ORDER_PART_DETAIL also has a column, SPECIFICATION, of type CLOB
CLOB stands for character large objects, which are used to store string data too large to
be stored in a VARCHAR column. SPECIFICATION is mapped to the field
Part.specification of type java.lang.String. The @Lob annotation is also used
here to denote that the field is a large object.

@Column(table="PERSISTENCE ORDER PART DETAIL")
@Lob
public String getSpecification() {

The Java EE 6 Tutorial: Basic Concepts

The order Application

return specification;
}
Both of these fields use the @Column annotation and set the table element to the
secondary table.

Temporal Typesin the order Application

The Order.lastUpdate persistent property, which is of type java.util.Date, is
mapped to the PERSISTENCE_ORDER_ORDER.LASTUPDATE database field, which is of the
SQL type TIMESTAMP. To ensure the proper mapping between these types, you must
use the @Temporal annotation with the proper temporal type specified in @Temporal’s
element. @emporal’s elements are of type javax.persistence.TemporalType. The
possible values are

= DATE, which maps to java.sql.Date
® TIME, which mapsto java.sql.Time
= TIMESTAMP, which mapsto java.sql.Timestamp

Here is the relevant section of Order:

@Temporal (TIMESTAMP)

public Date getLastUpdate() {
return lastUpdate;

}

Managing the order Application’s Entities

The RequestBean stateful session bean contains the business logic and manages the
entities of order. RequestBean uses the @PersistenceContext annotation to retrieve
an entity manager instance, which is used to manage order’s entities in RequestBean’s
business methods:

@PersistenceContext
private EntityManager em;

This EntityManager instance is a container-managed entity manager, so the container
takes care of all the transactions involved in the managing order’s entities.

Creating Entities

The RequestBean. createPart business method creates a new Part entity. The
EntityManager.persist method is used to persist the newly created entity to the
database.

Part part = new Part(partNumber,
revision,
description,

Chapter20 « Running the Persistence Examples 365

The order Application

366

revisionDate,

specification,

drawing);
em.persist(part);

The ConfigBean singleton session bean is used to initialize the data in order.
ConfigBean is annotated with @Startup, which indicates that the EJB container
should create ConfigBean when order is deployed. The createData method is
annotated with @ostConstruct and creates the initial entities used by order by
calling RequestsBean's business methods.

Finding Entities
The RequestBean.getOrderPrice business method returns the price of a given order,

based on the orderId. The EntityManager.find method is used to retrieve the entity
from the database.

Order order = em.find(Order.class, orderId);

The first argument of EntityManager. find is the entity class, and the second is the
primary key.

Setting Entity Relationships

The RequestBean. createVendorPart business method creates a VendorPart
associated with a particular Vendor. The EntityManager.persist method is used to
persist the newly created VendorPart entity to the database, and the
VendorPart.setVendor and Vendor.setVendorPart methods are used to associate
the VendorPart with the Vendor.

PartKey pkey = new PartKey();
pkey.partNumber = partNumber;
pkey.revision = revision;

Part part = em.find(Part.class, pkey);

VendorPart vendorPart = new VendorPart(description, price,
part);

em.persist(vendorPart);

Vendor vendor = em.find(Vendor.class, vendorId);

vendor.addVendorPart(vendorPart);
vendorPart.setVendor(vendor);

Using Queries

The RequestBean.adjustOrderDiscount business method updates the discount
applied to all orders. This method uses the findAl110rders named query, defined in
Order:

The Java EE 6 Tutorial: Basic Concepts

The order Application

@NamedQuery (
name="findAll0rders"
query="SELECT o FROM Order o"
)

The EntityManager.createNamedQuery method is used to run the query. Because the
query returns a List of all the orders, the Query.getResultList method is used.

List orders = em.createNamedQuery(
"findAll0rders")
.getResultList();

The RequestBean.getTotalPricePerVendor business method returns the total price
of all the parts for a particular vendor. This method uses a named parameter, id,
defined in the named query findTotalVendorPartPricePerVendor defined in
VendorPart.

@NamedQuery (
name="findTotalVendorPartPricePerVendor",
query="SELECT SUM(vp.price) " +
"FROM VendorPart vp " +
"WHERE vp.vendor.vendorId = :id"

)

When running the query, the Query. setParameter method is used to set the named
parameter id to the value of vendorId, the parameter to
RequestBean.getTotalPricePerVendor:

return (Double) em.createNamedQuery (
"findTotalVendorPartPricePerVendor")
.setParameter("id", vendorId)
.getSingleResult();

The Query.getSingleResult method is used for this query because the query returns
a single value.

Removing Entities

The RequestBean. removeOrder business method deletes a given order from the
database. This method uses the EntityManager. remove method to delete the entity
from the database.

Order order = em.find(Order.class, orderId);
em.remove(order) ;

Chapter20 « Running the Persistence Examples 367

The order Application

368

Building, Packaging, Deploying, and Running the
order Application

This section explains how to build, package, deploy, and run the order application. To
do this, you will create the database tables in the Java DB server, then build, deploy,
and run the example.

To Build, Package, Deploy, and Run order UsingNetBeans IDE
In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/persistence/

Select the order folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the order project and select Run.
NetBeans IDE opens a web browser to http://localhost:8080/order/.

To Build, Package, Deploy, and Run order Using Ant

In a terminal window, go to:

tut-install/examples/persistence/order/

Type the following command:

ant

This runs the default task, which compiles the source files and packages the
application into a WAR file located at
tut-install/examples/persistence/order/dist/order.war.

To deploy the WAR, make sure that the GlassFish Server is started, then type the
following command:

ant deploy

Open aweb browserto http://localhost:8080/order/ to create and update the
order data.

The Java EE 6 Tutorial: Basic Concepts

http://localhost:8080/order/
http://localhost:8080/order/

The roster Application

The a1l Task

Asa convenience, the all task will build, package, deploy, and run the application. To
do this, type the following command:

ant all

The roster Application

The roster application maintains the team rosters for players in recreational sports
leagues. The application has four components: Java Persistence API entities (Player,
Team, and League), a stateful session bean (RequestBean), an application client
(RosterClient), and three helper classes (PlayerDetails, TeamDetails, and
LeagueDetails).

Functionally, roster is similar to the order application, with three new features that
order does not have: many-to-many relationships, entity inheritance, and automatic
table creation at deployment time.

Relationshipsin the roster Application

A recreational sports system has the following relationships:

A player can be on many teams.
A team can have many players.
A team is in exactly one league.
A league has many teams.

In roster this system is reflected by the following relationships between the Player,
Team, and League entities.

= There is a many-to-many relationship between Player and Team.
= There isa many-to-one relationship between Teamand League.

The Many-To-Many Relationship in roster

The many-to-many relationship between Player and Team is specified by using the
@anyToMany annotation. In Team. java, the @ManyToMany annotation decorates the
getPlayers method:

@anyToMany
@JoinTable(
name="EJB_ROSTER TEAM_PLAYER",
joinColumns=
@JoinColumn(name="TEAM ID", referencedColumnName="ID"),
inverseJoinColumns=

Chapter20 « Running the Persistence Examples 369

The roster Application

370

@JoinColumn(name="PLAYER ID", referencedColumnName="ID")
)
public Collection<Player> getPlayers() {
return players;

}

The @JoinTable annotation is used to specify a database table that will associate player
IDs with team IDs. The entity that specifies the @ oinTable is the owner of the
relationship, so the Team entity is the owner of the relationship with the Player entity.
Because roster uses automatic table creation at deployment time, the container will
create a join table named EJB_ROSTER_TEAM_PLAYER.

Player is the inverse, or nonowning, side of the relationship with Team. As one-to-one
and many-to-one relationships, the nonowning side is marked by the mappedBy
element in the relationship annotation. Because the relationship between Player and
Team is bidirectional, the choice of which entity is the owner of the relationship is
arbitrary.

In Player. java, the @anyToMany annotation decorates the getTeams method:

@VanyToMany (mappedBy="players")
public Collection<Team> getTeams() {
return teams;

}

Entity Inheritance in the roster Application

The roster application shows how to use entity inheritance, as described in “Entity
Inheritance” on page 345.

The League entity in roster is an abstract entity with two concrete subclasses:
SummerlLeague and WinterLeague. Because League is an abstract class, it cannot be
instantiated:

@Entity
@Table(name = "EJB ROSTER LEAGUE")
public abstract class League implements java.io.Serializable {

Instead, when creating a league, clients use SummerLeague or WinterLeague.
SummerlLeague and WinterLeague inherit the persistent properties defined in League
and add only a constructor that verifies that the sport parameter matches the type of
sport allowed in that seasonal league. For example, here is the SummerLeague entity:

The Java EE 6 Tutorial: Basic Concepts

The roster Application

@Entity
public class SummerLeague extends League
implements java.io.Serializable {

/** Creates a new instance of SummerlLeague */
public SummerLeague() {

}

public SummerLeague(String id, String name,
String sport) throws IncorrectSportException {
this.id = id;
this.name = name;
if (sport.equalsIgnoreCase("swimming") ||
sport.equalsIgnoreCase("soccer") ||
sport.equalsIgnoreCase("basketball") ||
sport.equalsIgnoreCase("baseball")) {
this.sport = sport;
} else {
throw new IncorrectSportException(
"Sport is not a summer sport.");

}

The roster application uses the default mapping strategy of
InheritanceType.SINGLE_TABLE, so the @Inheritance annotation is not required. If
you want to use a different mapping strategy, decorate League with @Inheritance and
specify the mapping strategy in the strategy element:

@Entity

@Inheritance(strategy=JOINED)

@Table(name="EJB ROSTER LEAGUE")

public abstract class League implements java.io.Serializable {

}

The roster application uses the default discriminator column name, so the
@iscriminatorColumn annotation is not required. Because you are using automatic
table generation in roster, the Persistence provider will create a discriminator column
called DTYPE in the EJB_ROSTER LEAGUE table, which will store the name of the
inherited entity used to create the league. If you want to use a different name for the
discriminator column, decorate League with @iscriminatorColumn and set the name
element:

@Entity

@biscriminatorColumn(name="DISCRIMINATOR")
@Table(name="EJB ROSTER LEAGUE")

public abstract class League implements java.io.Serializable {

}

Chapter20 « Running the Persistence Examples 371

The roster Application

372

Criteria Queries in the roster Application

The roster application uses Criteria API queries, as opposed to the JPQL queries used
in order. Criteria queries are Java programming language, typesafe queries defined in
the business tier of roster, in the RequestBean stateless session bean.

Metamodel Classes in the roster Application

Metamodel classes model an entity’s attributes and are used by Criteria queries to
navigate to an entity’s attributes. Each entity class in roster has a corresponding
metamodel class, generated at compile time, with the same package name as the entity
and appended with an underscore character (_). For example, the
roster.entity.Person entity has a corresponding metamodel class,
roster.entity.Person .

Each persistent field or property in the entity class has a corresponding attribute in the
entity’s metamodel class. For the Person entity, the corresponding metamodel class is:

@StaticMetamodel (Person.class)

public class Person_ {
public static volatile SingularAttribute<Player, String> id;
public static volatile SingularAttribute<Player, String> name;
public static volatile SingularAttribute<Player, String> position;
public static volatile SingularAttribute<Player, Double> salary;
public static volatile CollectionAttribute<Player, Team> teams;

Obtaining a CriteriaBuilder Instance in RequestBean

The CrtiteriaBuilder interface defines methods to create criteria query objects and
create expressions for modifying those query objects. RequestBean creates an instance
of CriteriaBuilder by using a@PostConstruct method, init:

@PersistenceContext
private EntityManager em;
private CriteriaBuilder cb;

@PostConstruct
private void init() {
cb = em.getCriteriaBuilder();

}

The EntityManager instance is injected at runtime, and then that EntityManager
object is used to create the CriteriaBuilder instance by calling
getCriteriaBuilder.The CriteriaBuilder instance is created in a @PostConstruct
method to ensure that the EntityManager instance has been injected by the enterprise
bean container.

The Java EE 6 Tutorial: Basic Concepts

The roster Application

Creating Criteria Queries in RequestBean's Business Methods

Many of the business methods in RequestBean define Criteria queries. One business
method, getPlayersByPosition, returns a list of players who play a particular
position on a team:

public List<PlayerDetails> getPlayersByPosition(String position) {
logger.info("getPlayersByPosition");
List<Player> players = null;

try {
CriteriaQuery<Player> cq = cb.createQuery(Player.class);
if (cq !'= null) {
Root<Player> player = cq.from(Player.class);

// set the where clause
cq.where(cb.equal(player.get(Player .position), position));
cq.select(player);
TypedQuery<Player> q = em.createQuery(cq);
players = g.getResultList();

b

return copyPlayersToDetails(players);
} catch (Exception ex) {
throw new EJBException(ex);
}
}

A query object is created by calling the CriteriaBuilder object’s createQuery
method, with the type set to Player because the query will return a list of players.

The query root, the base entity from which the query will navigate to find the entity’s
attributes and related entities, is created by calling the from method of the query
object. This sets the FROM clause of the query.

The WHERE clause, set by calling the where method on the query object, restricts the
results of the query according to the conditions of an expression. The
CriteriaBuilder.equal method compares the two expressions. In
getPlayersByPosition, the position attribute of the Player metamodel class,
accessed by calling the get method of the query root, is compared to the position
parameter passed to getPlayersByPosition.

The SELECT clause of the query is set by calling the select method of the query
object. The query will return Player entities, so the query root object is passed as a
parameter to select.

The query object is prepared for execution by calling EntityManager. createQuery,
which returns a TypedQuery<T> object with the type of the query, in this case Player.
This typed query object is used to execute the query, which occurs when the
getResultList methodis called, and a List<Player> collection is returned.

Chapter20 « Running the Persistence Examples 373

The roster Application

Automatic Table Generationin the roster
Application

At deployment time, the GlassFish Server will automatically drop and create the
database tables used by roster. This is done by setting the
eclipselink.ddl-generation property todrop-and-create-tablesin
persistence.xml:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence 2 0.xsd">
<persistence-unit name="em" transaction-type="JTA">
<jta-data-source>jdbc/ default</jta-data-source>
<properties>
<property name="eclipselink.ddl-generation"
value="drop-and-create-tables"/>
</properties>
</persistence-unit>
</persistence>

This feature is specific to the Java Persistence API provider used by the GlassFish
Server and is nonportable across Java EE servers. Automatic table creation is useful for
development purposes, however, and the eclipselink.ddl-generation property
may be removed from persistence.xml when preparing the application for
production use or when deploying to other Java EE servers.

Building, Packaging, Deploying, and Running the
roster Application

This section explains how to build, package, deploy, and run the roster application.
You can do this using either NetBeans IDE or Ant.

V¥ To Build, Package, Deploy, and Run roster Using NetBeans IDE
1 InNetBeans IDE, select File—Open Project.

2 Inthe Open Project dialog, navigate to:

tut-install/examples/persistence/

3 Selectthe roster folder.
4 Select the Open as Main Project and Open Required Projects check boxes.

5 Click Open Project.

374 The Java EE 6 Tutorial: Basic Concepts

The roster Application

In the Projects tab, right-click the roster project and select Run.
You will see the following partial output from the application client in the Output tab:

List all players in team T2:

P6 Ian Carlyle goalkeeper 555.0

P7 Rebecca Struthers midfielder 777.0
P8 Anne Anderson forward 65.0

P9 Jan Wesley defender 100.0

P10 Terry Smithson midfielder 100.0

List all teams in league L1:
T1 Honey Bees Visalia

T2 Gophers Manteca

T5 Crows Orland

List all defenders:

P2 Alice Smith defender 505.0

P5 Barney Bold defender 100.0

P9 Jan Wesley defender 100.0

P22 Janice Walker defender 857.0
P25 Frank Fletcher defender 399.0

To Build, Package, Deploy, and Run roster Using Ant

In a terminal window, go to:

tut-install/examples/persistence/roster/

Type the following command:
ant

This runs the default task, which compiles the source files and packages the
application into an EAR file located at
tut-install/examples/persistence/roster/dist/roster.ear.

To deploy the EAR, make sure that the GlassFish Server is started; then type the
following command:

ant deploy

The build system will check whether the Java DB database server is running and start it
ifit is not running, then deploy roster.ear. The GlassFish Server will then drop and
create the database tables during deployment, as specified in persistence.xml.

After roster.ear is deployed, a client JAR, rosterClient. jar, is retrieved. This
contains the application client.

To run the application client, type the following command:

ant run

Chapter20 « Running the Persistence Examples 375

The address-book Application

You will see the output, which begins:

[echo] running application client container.
[exec] List all players in team T2:

[exec] P6 Ian Carlyle goalkeeper 555.0
[exec] P7 Rebecca Struthers midfielder 777.0
[exec] P8 Anne Anderson forward 65.0

[exec] P9 Jan Wesley defender 100.0

[exec] P10 Terry Smithson midfielder 100.0

[exec] List all teams in league L1:
[exec] T1 Honey Bees Visalia

[exec] T2 Gophers Manteca

[exec] T5 Crows Orland

[exec] List all defenders:

[exec] P2 Alice Smith defender 505.0
[exec] P5 Barney Bold defender 100.0
[exec] P9 Jan Wesley defender 100.0
[exec] P22 Janice Walker defender 857.0
[exec] P25 Frank Fletcher defender 399.0

The a1l Task

Asa convenience, the all task will build, package, deploy, and run the application. To
do this, type the following command:

ant all

The address-book Application

376

The address-book example application is a simple web application that stores contact
data. It uses a single entity class, Contact, that uses the Java API for JavaBeans
Validation (Bean Validation) to validate the data stored in the persistent attributes of
the entity, as described in “Validating Persistent Fields and Properties” on page 337.

Bean Validation Constraints in address-book

The Contact entity uses the @otNull, @Pattern, and @Past constraints on the
persistent attributes.

The @NotNull constraint marks the attribute as a required field. The attribute must be
set to a non-null value before the entity can be persisted or modified. Bean Validation
will throw a validation error if the attribute is null when the entity is persisted or
modified.

The @Pattern constraint defines a regular expression that the value of the attribute
must match before the entity can be persisted or modified. This constraint has two
different uses in address-book.

The Java EE 6 Tutorial: Basic Concepts

The address-book Application

= The regular expression declared in the @Pattern annotation on the email field
matches email addresses of the form name@domain name. top level domain,
allowing only valid characters for email addresses. For example,
username@example. com will pass validation, as will
firstname.lastname@mail.example.com. However,
firstname, lastname@example.com, which contains an illegal comma character in
the local name, will fail validation.

m ThemobilePhone and homePhone fields are annotated with a @Pattern constraint
that defines a regular expression to match phone numbers of the form (xxx)
XXX—XXXX.

The @Past constraint is applied to the birthday field, which mustbe a java.util.Date
in the past.

Here are the relevant parts of the Contact entity class:

@Entity
public class Contact implements Serializable {

private static final long serialVersionUID = 1L;

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private Long id;

@NotNull

protected String firstName;

@NotNull

protected String lastName;

@Pattern(regexp="[a-z0-9!#$%&" *+/=2" ‘{|}~-1+(?:\\."

+"'[a-20-9!1#$%&" *+/=2"~ {|}~-1+)*"
+"@(?:[a-2z0-9]1(?:[a-20-9-1*[a-20-9])?\\.)+[a-2z0-9](?:[a-2z0-9-]*[a-20-9])?",

message="{invalid.email}")

protected String email;

@Pattern(regexp=""\\(?(\\d{3}1)\\)?[- 12(\\d{3}) [- 1?(\\d{4})s",
message="{invalid.phonenumber}")

protected String mobilePhone;

@Pattern(regexp=""\\(?(\\d{3}1)\\)?[- 12(\\d{3})[- 17(\\d{4})s",
message="{invalid.phonenumber}")

protected String homePhone;

@Temporal(javax.persistence.TemporalType.DATE)

@Past

protected Date birthday;

Specifying Error Messages for Constraints in
address-book

Some of the constraints in the Contact entity specify an optional message:

@Pattern(regexp=""\\(?(\\d{3})\\)?[- 12(\\d{3})[- 1?(\\d{4})s$",
message="{invalid.phonenumber}")
protected String homePhone;

Chapter20 « Running the Persistence Examples 377

The address-book Application

The optional message element in the @Pattern constraint overrides the default
validation message. The message can be specified directly:

@Pattern(regexp=""\\(?(\\d{3}1)\\)?[- 12(\\d{3})[- 12(\\d{4})$"
message="Invalid phone number!")
protected String homePhone;

The constraints in Contact, however, are strings in the resource bundle
tut-install/examples/persistence/address-book/src/java/
ValidationMessages.properties. Thisallows the validation messages to be located
in one single properties file and the messages to be easily localized. Overridden Bean
Validation messages must be placed in a resource bundle properties file named
ValidationMessages.properties in the default package, with localized resource
bundles taking the form ValidationMessages_locale-prefix.properties. For
example, ValidationMessages es.properties is the resource bundle used in
Spanish speaking locales.

Validating Contact Input from a JavaServer Faces
Application

The address -book application uses a JavaServer Faces web front end to allow users to
enter contacts. While JavaServer Faces has a form input validation mechanism using
tags in Facelets XHTML files, address-book doesn’t use these validation tags. Bean
Validation constraints in JavaServer Faces backing beans, in this case in the Contact
entity, automatically trigger validation when the forms are submitted.

The following code snippet from the Create.xhtml Facelets file shows some of the
input form for creating new Contact instances:

<h:form>
<h:panelGrid columns="3">
<h:outputLabel value="#{bundle.CreateContactlLabel firstName}"
for="firstName" />
<h:inputText id="firstName"
value="#{contactController.selected.firstName}"
title="#{bundle.CreateContactTitle firstName}" />
<h:message for="firstName"
errorStyle="color: red"
infoStyle="color: green" />
<h:outputLabel value="#{bundle.CreateContactLabel lastName}"
for="lastName" />
<h:inputText id="lastName"
value="#{contactController.selected.lastName}"
title="#{bundle.CreateContactTitle lastName}" />
<h:message for="lastName"
errorStyle="color: red"
infoStyle="color: green" />

</h:panelGrid>
</h:form>

378 The Java EE 6 Tutorial: Basic Concepts

The address-book Application

The <h:inputText>tags firstName and lastName are bound to the attributes in the
Contact entity instance selected in the ContactController stateless session bean.
Each <h:inputText> tag has an associated <h:message> tag that will display
validation error messages. The form doesn’t require any JavaServer Faces validation
tags, however.

Building, Packaging, Deploying, and Running the
address-book Application
This section describes how to build, package, deploy, and run the address-book

application. You can do this using either NetBeans IDE or Ant.

Building, Packaging, Deploying, and Running the address-book
Application in NetBeans IDE

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/persistence/

Select the address-book folder.
Select the Open as Main Project and Open Required Projects check boxes.
Click Open Project.

In the Projects tab, right-click the address-book project and select Run.

After the application has been deployed, a web browser window appears at the
following URL:

http://localhost:8080/address-book/

Click Show All Contact Items, then Create New Contact. Type values in the form fields;
then click Save.

If any of the values entered violate the constraints in Contact, an error message will
appear in red beside the form field with the incorrect values.

Building, Packaging, Deploying, and Running the address -book
Application Using Ant

In a terminal window, go to:

tut-install/examples/persistence/address-book

Chapter20 « Running the Persistence Examples 379

http://localhost:8080/address-book/

The address-book Application

380

Type the following command:

ant

This will compile and assemble the address-book application.

Type the following command:
ant deploy

This will deploy the application to GlassFish Server.

Open a web browser window and type the following URL:
http://localhost:8080/address-book/

Tip - As a convenience, the all task will build, package, deploy, and run the
application. To do this, type the following command:

ant all

Click Show All Contact Items, then Create New Contact. Type values in the form fields;
then click Save.

If any of the values entered violate the constraints in Contact, an error message will
appear in red beside the form field with the incorrect values.

The Java EE 6 Tutorial: Basic Concepts

http://localhost:8080/address-book/

CHAPTER 21

The Java Persistence Query Language

The Java Persistence query language defines queries for entities and their persistent
state. The query language allows you to write portable queries that work regardless of
the underlying data store.

The query language uses the abstract persistence schemas of entities, including their
relationships, for its data model and defines operators and expressions based on this
data model. The scope of a query spans the abstract schemas of related entities that are
packaged in the same persistence unit. The query language uses an SQL-like syntax to
select objects or values based on entity abstract schema types and relationships among
them.

This chapter relies on the material presented in earlier chapters. For conceptual
information, see Chapter 19, “Introduction to the Java Persistence API” For code
examples, see Chapter 20, “Running the Persistence Examples”

The following topics are addressed here:

= “Query Language Terminology” on page 382

= “Creating Queries Using the Java Persistence Query Language” on page 382
= “Simplified Query Language Syntax” on page 384

= “Example Queries” on page 385

= “Full Query Language Syntax” on page 390

381

Query Language Terminology

Query Language Terminology

The following list defines some of the terms referred to in this chapter:

= Abstract schema: The persistent schema abstraction (persistent entities, their
state, and their relationships) over which queries operate. The query language
translates queries over this persistent schema abstraction into queries that are
executed over the database schema to which entities are mapped.

= Abstract schema type: The type to which the persistent property of an entity
evaluates in the abstract schema. That is, each persistent field or property in an
entity has a corresponding state field of the same type in the abstract schema. The
abstract schema type of an entity is derived from the entity class and the metadata
information provided by Java language annotations.

= Backus-Naur Form (BNF): A notation that describes the syntax of high-level
languages. The syntax diagrams in this chapter are in BNF notation.

= Navigation: The traversal of relationships in a query language expression. The
navigation operator is a period.

= Path expression: An expression that navigates to a entity’s state or relationship
field.

= State field: A persistent field of an entity.

= Relationship field: A persistent relationship field of an entity whose type is the
abstract schema type of the related entity.

Creating Queries Using the Java Persistence
Query Language

382

The EntityManager.createQuery and EntityManager.createNamedQuery methods
are used to query the datastore by using Java Persistence query language queries.

The createQuery method is used to create dynamic queries, which are queries defined
directly within an application’s business logic:

public List findWithName(String name) {
return em.createQuery(
"SELECT ¢ FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)
.setMaxResults(10)
.getResultList();
}

The createNamedQuery method is used to create static queries, or queries that are
defined in metadata by using the javax.persistence.NamedQuery annotation. The
name element of @NamedQuery specifies the name of the query that will be used with the
createNamedQuery method. The query element of @NamedQuery is the query:

The Java EE 6 Tutorial: Basic Concepts

Creating Queries Using the Java Persistence Query Language

@NamedQuery (

name="findAl1CustomersWithName",

query="SELECT ¢ FROM Customer c WHERE c.name LIKE :custName"
)

Here’s an example of createNamedQuery, which uses the @NamedQuery:

@PersistenceContext
public EntityManager em;

customers = em.createNamedQuery("findAll1CustomersWithName")
.setParameter("custName", "Smith")
.getResultList();

Named Parameters in Queries

Named parameters are query parameters that are prefixed with a colon (:). Named
parameters in a query are bound to an argument by the following method:

javax.persistence.Query.setParameter(String name, Object value)

In the following example, the name argument to the findwithName business method is
bound to the : custName named parameter in the query by calling
Query.setParameter:

public List findWithName(String name) {
return em.createQuery(
"SELECT ¢ FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)
.getResultList();
}

Named parameters are case-sensitive and may be used by both dynamic and static
queries.

Positional Parameters in Queries

You may use positional parameters instead of named parameters in queries. Positional
parameters are prefixed with a question mark (?) followed the numeric position of the
parameter in the query. The Query.setParameter(integer position, Object
value) method is used to set the parameter values.

In the following example, the findwithName business method is rewritten to use input
parameters:

public List findWithName(String name) {
return em.createQuery(
“SELECT c FROM Customer c WHERE c.name LIKE ?1")

Chapter21 « The Java Persistence Query Language 383

Simplified Query Language Syntax

.setParameter(1l, name)
.getResultList();
}

Input parameters are numbered starting from 1. Input parameters are case-sensitive,
and may be used by both dynamic and static queries.

Simplified Query Language Syntax

384

This section briefly describes the syntax of the query language so that you can quickly
move on to “Example Queries” on page 385. When you are ready to learn about the
syntax in more detail, see “Full Query Language Syntax” on page 390.

Select Statements

A select query has six clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY.
The SELECT and FROM clauses are required, but the WHERE, GROUP BY, HAVING, and ORDER
BY clauses are optional. Here is the high-level BNF syntax of a query language select

query:
QL statement ::= select clause from clause
[where clause][groupby clause][having clause][orderby clause]
= The SELECT clause defines the types of the objects or values returned by the query.

= The FROM clause defines the scope of the query by declaring one or more
identification variables, which can be referenced in the SELECT and WHERE clauses.
An identification variable represents one of the following elements:

= The abstract schema name of an entity

= Anelement of a collection relationship

= Anelement of a single-valued relationship

= A member of a collection that is the multiple side of a one-to-many relationship

= TheWHERE clause is a conditional expression that restricts the objects or values
retrieved by the query. Although the clause is optional, most queries have a WHERE
clause.

= The GROUP BY clause groups query results according to a set of properties.

= The HAVING clause is used with the GROUP BY clause to further restrict the query
results according to a conditional expression.

= The ORDER BY clause sorts the objects or values returned by the query into a
specified order.

The Java EE 6 Tutorial: Basic Concepts

Example Queries

Update and Delete Statements

Update and delete statements provide bulk operations over sets of entities. These
statements have the following syntax:

update statement ::
delete statement ::

update clause [where clause]
delete clause [where clause]

The update and delete clauses determine the type of the entities to be updated or
deleted. The WHERE clause may be used to restrict the scope of the update or delete
operation.

Example Queries

The following queries are from the Player entity of the roster application, which is
documented in “The roster Application” on page 369.

Simple Queries

If you are unfamiliar with the query language, these simple queries are a good place to
start.

A Basic Select Query

SELECT p
FROM Player p

= Dataretrieved: All players.

= Description: The FROM clause declares an identification variable named p, omitting
the optional keyword AS. If the AS keyword were included, the clause would be
written as follows:

FROM Player AS
p

The Player element is the abstract schema name of the Player entity.

= See also: “Identification Variables” on page 396.

Eliminating Duplicate Values
SELECT DISTINCT

p
FROM Player p
WHERE p.position = ?1

Chapter21 « The Java Persistence Query Language 385

Example Queries

386

= Data retrieved: The players with the position specified by the query’s parameter.
= Description: The DISTINCT keyword eliminates duplicate values.

The WHERE clause restricts the players retrieved by checking their position,a
persistent field of the Player entity. The 71 element denotes the input parameter of
the query.

= Seealso: “Input Parameters” on page 401 and “The DISTINCT Keyword” on
page 411.

Using Named Parameters

SELECT DISTINCT p
FROM Player p
WHERE p.position = :position AND p.name = :name

= Data retrieved: The players having the specified positions and names.

= Description: The position and name elements are persistent fields of the Player
entity. The WHERE clause compares the values of these fields with the named
parameters of the query, set using the Query. setNamedParameter method. The
query language denotes a named input parameter using a colon (:) followed by an
identifier. The first input parameter is : position, the second is : name.

Queries That Navigate to Related Entities

In the query language, an expression can traverse, or navigate, to related entities. These
expressions are the primary difference between the Java Persistence query language
and SQL. Queries navigates to related entities, whereas SQL joins tables.

A Simple Query with Relationships

SELECT DISTINCT p
FROM Player p, IN(p.teams) t

= Dataretrieved: All players who belong to a team.

= Description: The FROM clause declares two identification variables: p and t. The p
variable represents the Player entity, and the t variable represents the related Team
entity. The declaration for t references the previously declared p variable. The IN
keyword signifies that teams is a collection of related entities. The p. teams
expression navigates from a Player to its related Team. The period in the p. teams
expression is the navigation operator.

You may also use the JOIN statement to write the same query:

SELECT DISTINCT p
FROM Player p JOIN p.teams t

The Java EE 6 Tutorial: Basic Concepts

Example Queries

This query could also be rewritten as:

SELECT DISTINCT p
FROM Player p
WHERE p.team IS NOT EMPTY

Navigating to Single-Valued Relationship Fields

Use the JOIN clause statement to navigate to a single-valued relationship field:

SELECT t
FROM Team t JOIN t.league 1
WHERE 1.sport = ’soccer’ OR l.sport ='football’

In this example, the query will return all teams that are in either soccer or football
leagues.

Traversing Relationships with an Input Parameter

SELECT DISTINCT p
FROM Player p, IN (p.teams) AS t
WHERE t.city = :city

= Data retrieved: The players whose teams belong to the specified city.

= Description: This query is similar to the previous example but adds an input
parameter. The AS keyword in the FROM clause is optional. In the WHERE clause, the
period preceding the persistent variable city is a delimiter, not a navigation
operator. Strictly speaking, expressions can navigate to relationship fields (related
entities) but not to persistent fields. To access a persistent field, an expression uses
the period as a delimiter.

Expressions cannot navigate beyond (or further qualify) relationship fields that are
collections. In the syntax of an expression, a collection-valued field is a terminal
symbol. Because the teams field is a collection, the WHERE clause cannot specify
p.teams.city (anillegal expression).

= See also: “Path Expressions” on page 398.

Traversing Multiple Relationships

SELECT DISTINCT p
FROM Player p, IN (p.teams) t
WHERE t.league = :league

= Data retrieved: The players who belong to the specified league.

= Description: The expressions in this query navigate over two relationships. The
p.teams expression navigates the Player-Team relationship, and the t. league
expression navigates the Team-League relationship.

In the other examples, the input parameters are String objects; in this example, the
parameter is an object whose type is a League. This type matches the league
relationship field in the comparison expression of the WHERE clause.

Chapter21 « The Java Persistence Query Language 387

Example Queries

388

Navigating According to Related Fields

SELECT DISTINCT p
FROM Player p, IN (p.teams) t
WHERE t.league.sport = :sport

= Data retrieved: The players who participate in the specified sport.

= Description: The sport persistent field belongs to the League entity. To reach the
sport field, the query must first navigate from the Player entity to Team (p . teams)
and then from Team to the League entity (t.league). Because it is not a collection,
the league relationship field can be followed by the sport persistent field.

Queries with Other Conditional Expressions

Every WHERE clause must specify a conditional expression, of which there are several
kinds. In the previous examples, the conditional expressions are comparison
expressions that test for equality. The following examples demonstrate some of the
other kinds of conditional expressions. For descriptions of all conditional expressions,
see “WHERE Clause” on page 400.

The LIKE Expression

SELECT p
FROM Player p
WHERE p.name LIKE 'Mich%’

= Data retrieved: All players whose names begin with “Mich.

= Description: The LIKE expression uses wildcard characters to search for strings
that match the wildcard pattern. In this case, the query uses the LIKE expression
and the % wildcard to find all players whose names begin with the string “Mich.” For
example, “Michael” and “Michelle” both match the wildcard pattern.

= Seealso: “LIKE Expressions” on page 403.

The IS NULL Expression

SELECT t
FROM Team t
WHERE t.league IS NULL

= Data retrieved: All teams not associated with a league.

= Description: The IS NULL expression can be used to check whether a relationship
has been set between two entities. In this case, the query checks whether the teams
are associated with any leagues and returns the teams that do not have a league.

= Seealso: “NULL Comparison Expressions” on page 403 and “NULL Values” on
page 408.

The Java EE 6 Tutorial: Basic Concepts

Example Queries

The IS EMPTY Expression

SELECT p
FROM Player p
WHERE p.teams IS EMPTY

= Data retrieved: All players who do not belong to a team.
= Description: The teams relationship field of the Player entity is a collection. Ifa

player does not belong to a team, the teams collection is empty, and the conditional
expression is TRUE.

= Seealso: “Empty Collection Comparison Expressions” on page 404.

The BETWEEN Expression

SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

= Data retrieved: The players whose salaries fall within the range of the specified
salaries.

= Description: This BETWEEN expression has three arithmetic expressions: a
persistent field (p. salary) and the two input parameters (: LowerSalary and
:higherSalary). The following expression is equivalent to the BETWEEN
expression:

p.salary >= :lowerSalary AND p.salary <= :higherSalary
= Seealso: “BETWEEN Expressions” on page 402.

Comparison Operators

SELECT DISTINCT pl

FROM Player pl, Player p2

WHERE pl.salary > p2.salary AND p2.name = :name

= Data retrieved: All players whose salaries are higher than the salary of the player
with the specified name.

= Description: The FROM clause declares two identification variables (p1 and p2) of
the same type (Player). Two identification variables are needed because the WHERE
clause compares the salary of one player (p2) with that of the other players (p1).

= Seealso: “Identification Variables” on page 396.

Bulk Updates and Deletes

The following examples show how to use the UPDATE and DELETE expressions in
queries. UPDATE and DELETE operate on multiple entities according to the condition or
conditions set in the WHERE clause. The WHERE clause in UPDATE and DELETE queries
follows the same rules as SELECT queries.

Chapter21 « The Java Persistence Query Language 389

Full Query Language Syntax

Update Queries

UPDATE Player p
SET p.status = ’inactive’
WHERE p.lastPlayed < :inactiveThresholdDate

= Description: This query sets the status of a set of players to inactive if the player’s
last game was longer than the date specified in inactiveThresholdDate.

Delete Queries

DELETE

FROM Player p

WHERE p.status = ’inactive’
AND p.teams IS EMPTY

= Description: This query deletes all inactive players who are not on a team.

Full Query Language Syntax

This section discusses the query language syntax, as defined in the Java Persistence API
2.0 specification available at http://jcp.org/en/jsr/detail?id=317. Much of the
following material paraphrases or directly quotes the specification.

BNF Symbols

Table 21-1 describes the BNF symbols used in this chapter.

TABLE21-1 BNF Symbol Summary

Symbol Description

ti= The element to the left of the symbol is defined by the constructs on the right.

* The preceding construct may occur zero or more times.

{...} The constructs within the braces are grouped together.

[...1] The constructs within the brackets are optional.

| An exclusive OR.

BOLDFACE A keyword; although capitalized in the BNF diagram, keywords are not

case-sensitive.

White space A whitespace character can be a space, a horizontal tab, or a line feed.

390 The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/en/jsr/detail?id=317

Full Query Language Syntax

BNF Grammar of the Java Persistence
Query Language

Here is the entire BNF diagram for the query language:

QL_statement ::= select statement | update statement | delete statement
select statement ::= select clause from clause [where clause] [groupby clause]
[having clause] [orderby clause]
update statement ::= update clause [where clause]
delete statement ::= delete clause [where clause]
from clause ::=
FROM identification_variable declaration
{, {identification variable declaration |
collection member declaration}}*
identification variable declaration ::=
range _variable declaration { join | fetch join }*
range variable declaration ::= abstract schema name [AS]
identification variable
join ::= join spec join association path expression [AS]
identification_variable
fetch join ::= join specFETCH join association path expression
association_path_expression ::=
collection valued path expression |
single valued association path expression
join spec::= [LEFT [OUTER] |INNER] JOIN
join association path expression ::=
join collection valued path expression |
join single valued association path expression
join_collection valued path_expression::=
identification variable.collection valued association field
join single valued association path expression::=
identification variable.single valued association field
collection member declaration ::=
IN (collection valued path expression) [AS]
identification variable
single valued path expression ::=
state field path _expression |
single valued association path expression
state field path_expression ::=
{identification_variable |
single valued association path expression}.state field
single valued association path expression ::=
identification variable.{single valued association field.}*
single valued association field
collection valued path expression ::=
identification variable.{single valued association field.}*
collection valued association field
state field ::=
{embedded class state field.}*simple state field
update clause ::=UPDATE abstract schema name [[AS]
identification variable] SET update item {, update item}*

update item ::= [identification variable.]{state field |
single valued association field} = new_value
new value ::=

simple arithmetic expression |
string primary |
datetime primary |

Chapter21 « The Java Persistence Query Language 391

Full Query Language Syntax

boolean primary |
enum primary simple entity expression |

NULL

delete clause ::= DELETE FROM abstract schema name [[AS]
identification variable]

select clause ::= SELECT [DISTINCT] select expression {,

select expression}*
select expression ::=
single valued path expression |
aggregate expression |
identification variable |
OBJECT (identification variable) |
constructor expression
constructor expression ::=
NEW constructor name(constructor item {,
constructor item}*)
constructor_item ::= single valued path_expression |
aggregate expression
aggregate expression ::=
{AVG |MAX |MIN |SUM} ([DISTINCT]
state field path expression) |
COUNT ([DISTINCT] identification variable |
state field path expression |
single valued association path expression)

where clause ::= WHERE conditional expression

groupby clause ::= GROUP BY groupby item {, groupby item}*
groupby item ::= single valued path expression

having clause ::= HAVING conditional expression

orderby clause ::= ORDER BY orderby item {, orderby item}*
orderby item ::= state field path _expression [ASC |DESC]
subquery ::= simple select clause subquery from clause

[where clause] [groupby clause] [having clause]
subquery from clause ::=
FROM subselect identification variable declaration
{, subselect identification variable declaration}*
subselect identification variable declaration ::=
identification_variable declaration |
association_path_expression [AS] identification_variable |
collection_member_declaration
simple select clause ::= SELECT [DISTINCT]
simple select _expression
simple select expression::=
single valued path_expression |
aggregate expression |
identification variable
conditional expression ::= conditional term |
conditional expression OR conditional term
conditional term ::= conditional factor | conditional term AND
conditional factor
conditional factor ::= [NOT] conditional primary
conditional primary ::= simple cond expression |(
conditional expression)
simple cond expression ::=
comparison_expression |
between expression |
like expression |
in_expression |
null _comparison_expression |
empty collection comparison_expression

392 The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

collection_member_expression |
exists expression
between expression ::=
arithmetic expression [NOT] BETWEEN
arithmetic_expressionAND arithmetic expression |
string expression [NOT] BETWEEN string expression AND
string expression |
datetime expression [NOT] BETWEEN
datetime_expression AND datetime expression
in _expression ::=
state _field path_expression [NOT] IN (in_item {, in_item}*
| subquery)
in item ::= literal | input parameter
like expression ::=
string expression [NOT] LIKE pattern value [ESCAPE
escape character]
null comparison_expression ::=
{single valued path expression | input parameter} IS [NOT]
NULL
empty collection comparison expression ::=
collection valued path expression IS [NOT] EMPTY
collection _member expression ::= entity expression
[NOT] MEMBER [OF] collection valued path expression
exists expression::= [NOT] EXISTS (subquery)
all or any expression ::= {ALL |ANY |SOME} (subquery)
comparison_expression ::=
string expression comparison operator {string expression
all or any expression} |
boolean expression {= |<> } {boolean expression |
all or any expression} |
enum_expression {= |<> } {enum expression |
all or any expression} |
datetime expression comparison operator
{datetime expression | all or any expression} |
entity expression {= |<> } {entity expression |
all or any expression} |
arithmetic_expression comparison_operator
{arithmetic_expression | all or_any expression}

comparison_operator ::= = |> |>= |< |<= |<>

arithmetic_expression ::= simple_arithmetic_expression |
(subquery)

simple arithmetic_expression ::=
arithmetic_term | simple_arithmetic_expression {+ |- }

arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ }
arithmetic factor

arithmetic_factor ::= [{+ |- }] arithmetic_primary

arithmetic primary ::=
state field path_expression |
numeric_literal |
(simple_arithmetic expression) |
input_parameter |
functions returning numerics |
aggregate_expression
string expression ::= string primary | (subquery)
string primary ::=
state field path_expression |
string literal |
input_parameter |

Chapter21 « The Java Persistence Query Language 393

Full Query Language Syntax

394

functions returning strings |
aggregate expression
datetime expression ::= datetime primary | (subquery)
datetime primary ::=
state field path expression |
input_parameter |
functions returning datetime |
aggregate expression
boolean expression ::= boolean primary | (subquery)
boolean primary ::=
state field path expression |
boolean literal |
input parameter
enum_expression ::= enum primary | (subquery)
enum_primary ::=
state field path expression |
enum_literal |
input parameter
entity expression ::=
single valued association path_expression
simple entity expression
simple entity expression ::=
identification variable |
input parameter
functions_returning numerics::=
LENGTH(string primary) |
LOCATE(string primary, string primary[,
simple_arithmetic_expression]) |
ABS (simple arithmetic expression) |
SQRT (simple arithmetic expression) |
MOD (simple arithmetic_expression,
simple arithmetic expression) |
SIZE(collection valued path_expression)
functions returning datetime ::=
CURRENT DATE |
CURRENT_TIME |
CURRENT TIMESTAMP
functions_returning strings ::=
CONCAT(string primary, string primary) |
SUBSTRING(string primary,
simple arithmetic expression,
simple arithmetic expression) |
TRIM([[trim specification] [trim character] FROM]
string primary) |
LOWER(string primary) |
UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

FROM Clause
The FROM clause defines the domain of the query by declaring identification variables.
Identifiers

An identifier is a sequence of one or more characters. The first character must be a
valid first character (letter, $,) in an identifier of the Java programming language,

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

hereafter in this chapter called simply “Java”. Each subsequent character in the
sequence must be a valid nonfirst character (letter, digit, $,) in a Java identifier. (For
details, see the Java SE API documentation of the isJavaIdentifierStart and
isJavaldentifierPart methods of the Character class.) The question mark (?) isa
reserved character in the query language and cannot be used in an identifier.

A query language identifier is case-sensitive, with two exceptions:

= Keywords
m Jdentification variables

An identifier cannot be the same as a query language keyword. Here is a list of query
language keywords:

ABS ALL AND ANY AS

ASC AVG BETWEEN BIT_LENGTH BOTH

BY CASE CHAR_LENGTH CHARACTER_LENGTH CLASS
COALESCE CONCAT COUNT CURRENT_DATE CURRENT_TIMESTAMP
DELETE DESC DISTINCT ELSE EMPTY
END ENTRY ESCAPE EXISTS FALSE
FETCH FROM GROUP HAVING IN

INDEX INNER IS JOIN KEY
LEADING LEFT LENGTH LIKE LOCATE
LOWER MAX MEMBER MIN MOD

NEW NOT NULL NULLIF OBJECT
OF OR ORDER OUTER POSITION
SELECT SET SIZE SOME SQRT
SUBSTRING SUM THEN TRAILING TRIM
TRUE TYPE UNKNOWN UPDATE UPPER
VALUE WHEN WHERE

It is not recommended that you use an SQL keyword as an identifier, because the list of
keywords may expand to include other reserved SQL words in the future.

Chapter21 « The Java Persistence Query Language 395

Full Query Language Syntax

396

Identification Variables

An identification variable is an identifier declared in the FROM clause. Although they
can reference identification variables, the SELECT and WHERE clauses cannot declare
them. All identification variables must be declared in the FROM clause.

Because it is an identifier, an identification variable has the same naming conventions
and restrictions as an identifier, with the exception that an identification variables is
case-insensitive. For example, an identification variable cannot be the same as a query
language keyword. (See the preceding section for more naming rules.) Also, within a
given persistence unit, an identification variable name must not match the name of
any entity or abstract schema.

The FROM clause can contain multiple declarations, separated by commas. A
declaration can reference another identification variable that has been previously
declared (to the left). In the following FROM clause, the variable t references the
previously declared variable p:

FROM Player p, IN (p.teams) AS t

Even if it is not used in the WHERE clause, an identification variable's declaration can
affect the results of the query. For example, compare the next two queries. The
following query returns all players, whether or not they belong to a team:

SELECT p

FROM Player p

In contrast, because it declares the t identification variable, the next query fetches all
players who belong to a team:

SELECT p
FROM Player p, IN (p.teams) AS t

The following query returns the same results as the preceding query, but the WHERE
clause makes it easier to read:

SELECT p
FROM Player p
WHERE p.teams IS NOT EMPTY

An identification variable always designates a reference to a single value whose type is
that of the expression used in the declaration. There are two kinds of declarations:
range variable and collection member.

Range Variable Declarations

To declare an identification variable as an abstract schema type, you specify a range
variable declaration. In other words, an identification variable can range over the
abstract schema type of an entity. In the following example, an identification variable
named p represents the abstract schema named Player:

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

FROM Player p

A range variable declaration can include the optional AS operator:

FROM Player AS p

To obtain objects, a query usually uses path expressions to navigate through the
relationships. But for those objects that cannot be obtained by navigation, you can use
arange variable declaration to designate a starting point, or root.

If the query compares multiple values of the same abstract schema type, the FROM
clause must declare multiple identification variables for the abstract schema:

FROM Player pl, Player p2

For an example of such a query, see “Comparison Operators” on page 389.

Collection Member Declarations

In a one-to-many relationship, the multiple side consists of a collection of entities. An
identification variable can represent a member of this collection. To access a collection
member, the path expression in the variable’s declaration navigates through the
relationships in the abstract schema. (For more information on path expressions, see
“Path Expressions” on page 398.) Because a path expression can be based on another
path expression, the navigation can traverse several relationships. See “Traversing
Multiple Relationships” on page 387.

A collection member declaration must include the IN operator but can omit the
optional AS operator.

In the following example, the entity represented by the abstract schema named Player
has a relationship field called teams. The identification variable called t represents a
single member of the teams collection.

FROM Player p, IN (p.tea

ms) t

Joins

The JOIN operator is used to traverse over relationships between entities and is

functionally similar to the IN operator.

In the following example, the query joins over the relationship between customers and
orders:

SELECT ¢
FROM Customer c¢ JOIN c.orders o
WHERE c.status = 1 AND o.totalPrice > 10000

Chapter21 « The Java Persistence Query Language 397

Full Query Language Syntax

398

The INNER keyword is optional:

SELECT ¢
FROM Customer c INNER JOIN c.orders o
WHERE c.status = 1 AND o.totalPrice > 10000

These examples are equivalent to the following query, which uses the IN operator:

SELECT ¢
FROM Customer c, IN(c.orders) o
WHERE c.status = 1 AND o.totalPrice > 10000

You can also join a single-valued relationship:

SELECT t
FROM Team t JOIN t.league 1
WHERE 1.sport = :sport

A LEFT JOIN or LEFT OUTER JOIN retrieves a set of entities where matching values in
the join condition may be absent. The OUTER keyword is optional.

SELECT c.name, o.totalPrice
FROM Order o LEFT JOIN o.customer c

A FETCH JOIN is a join operation that returns associated entities as a side effect of
running the query. In the following example, the query returns a set of departments
and, as a side effect, the associated employees of the departments, even though the
employees were not explicitly retrieved by the SELECT clause.

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno =1

Path Expressions

Path expressions are important constructs in the syntax of the query language, for
several reasons. First, path expressions define navigation paths through the
relationships in the abstract schema. These path definitions affect both the scope and
the results of a query. Second, path expressions can appear in any of the main clauses
of a query (SELECT, DELETE, HAVING, UPDATE, WHERE, FROM, GROUP BY, ORDER BY).
Finally, although much of the query language is a subset of SQL, path expressions are
extensions not found in SQL.

Examples of Path Expressions

Here, the WHERE clause containsa single valued path expression;the pisan
identification variable, and salary is a persistent field of Player:

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

SELECT DISTINCT p
FROM Player p
WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

Here, the WHERE clause also containsa single valued path expression;tisan
identification variable, league is a single-valued relationship field, and sport isa
persistent field of league:

SELECT DISTINCT p
FROM Player p, IN (p.teams) t
WHERE t.league.sport = :sport

Here, the WHERE clause containsa collection valued path expression;pisan
identification variable, and teams designates a collection-valued relationship field:

SELECT DISTINCT p
FROM Player p
WHERE p.teams IS EMPTY

Expression Types

The type of a path expression is the type of the object represented by the ending
element, which can be one of the following:

= Persistent field
= Single-valued relationship field
= Collection-valued relationship field

For example, the type of the expression p. salary is double because the terminating
persistent field (salary) isa double.

In the expression p. teams, the terminating element is a collection-valued relationship
field (teams). This expression’s type is a collection of the abstract schema type named
Team. Because Team is the abstract schema name for the Team entity, this type maps to
the entity. For more information on the type mapping of abstract schemas, see “Return
Types” on page 410.

Navigation

A path expression enables the query to navigate to related entities. The terminating
elements of an expression determine whether navigation is allowed. If an expression
contains a single-valued relationship field, the navigation can continue to an object
that is related to the field. However, an expression cannot navigate beyond a persistent
field or a collection-valued relationship field. For example, the expression
p.teams.league.sport isillegal because teams is a collection-valued relationship
field. To reach the sport field, the FROM clause could define an identification variable
named t for the teams field:

FROM Player AS p, IN (p.teams) t
WHERE t.league.sport = 'soccer

Chapter21 « The Java Persistence Query Language 399

Full Query Language Syntax

400

WHERE Clause

The WHERE clause specifies a conditional expression that limits the values returned by
the query. The query returns all corresponding values in the data store for which the
conditional expression is TRUE. Although usually specified, the WHERE clause is
optional. If the WHERE clause is omitted, the query returns all values. The high-level
syntax for the WHERE clause follows:

where clause ::= WHERE conditional expression

Literals

There are four kinds of literals: string, numeric, Boolean, and enum.

= String literals: A string literal is enclosed in single quotes:
"Duke’
If a string literal contains a single quote, you indicate the quote by using two single
quotes:
"Duke’’s’
Like a Java String, a string literal in the query language uses the Unicode character
encoding.

= Numeric literals: There are two types of numeric literals: exact and approximate.

An exact numeric literal is a numeric value without a decimal point, such as 65,
-233,and +12. Using the Java integer syntax, exact numeric literals support
numbers in the range of a Java long.

An approximate numeric literal is a numeric value in scientific notation, such as
57.,-85.7,and +2.1. Using the syntax of the Java floating-point literal, approximate
numeric literals support numbers in the range of a Java double.

= Boolean literals: A Boolean literal is either TRUE or FALSE. These keywords are not
case-sensitive.

= Enum literals: The Java Persistence query language supports the use of enum
literals using the Java enum literal syntax. The enum class name must be specified
as a fully qualified class name:

SELECT e
FROM Employee e
WHERE e.status = com.xyz.EmployeeStatus.FULL TIME

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

Input Parameters
An input parameter can be either a named parameter or a positional parameter.

= A named input parameter is designated by a colon (:) followed by a string; for
example, : name.

= A positional input parameter is designated by a question mark (?) followed by an
integer. For example, the first input parameter is ?1, the second is 72, and so forth.

The following rules apply to input parameters.

They can be used only in a WHERE or HAVING clause.

Positional parameters must be numbered, starting with the integer 1.

Named parameters and positional parameters may not be mixed in a single query.
Named parameters are case-sensitive.

Conditional Expressions

A WHERE clause consists of a conditional expression, which is evaluated from left to
right within a precedence level. You can change the order of evaluation by using
parentheses.

Operators and Their Precedence

Table 21-2 lists the query language operators in order of decreasing precedence.

TABLE21-2 Query Language Order Precedence

Type Precedence Order
Navigation . (aperiod)
Arithmetic + — (unary)

* / (multiplication and division)

+ — (addition and subtraction)

Chapter21 « The Java Persistence Query Language 401

Full Query Language Syntax

402

TABLE 21-2 Query Language Order Precedence (Continued)
Type Precedence Order
Comparison =

<> (not equal)
[NOT] BETWEEN
[NOT] LIKE
[NOT] IN

IS [NOT] NULL
IS [NOT] EMPTY

[NOT] MEMBER OF

Logical NOT

AND

OR
BETWEEN Expressions

A BETWEEN expression determines whether an arithmetic expression falls within a
range of values.

These two expressions are equivalent:

p.age BETWEEN 15 AND 19
p.age >= 15 AND p.age <= 19

The following two expressions also are equivalent:

p.age NOT BETWEEN 15 AND 19
p.age < 15 OR p.age > 19

If an arithmetic expression has a NULL value, the value of the BETWEEN expression is
unknown.

IN Expressions

An IN expression determines whether a string belongs to a set of string literals or
whether a number belongs to a set of number values.

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

The path expression must have a string or numeric value. If the path expression has a
NULL value, the value of the IN expression is unknown.

In the following example, the expression is TRUE if the country is UK, but FALSE if the
country is Peru.

o.country IN ('UK’, 'US’, 'France’)

You may also use input parameters:

o.country IN ('UK’, 'US’, 'France’, :country)

LIKE Expressions

A LIKE expression determines whether a wildcard pattern matches a string.

The path expression must have a string or numeric value. If this value is NULL, the value
of the LIKE expression is unknown. The pattern value is a string literal that can contain
wildcard characters. The underscore (_) wildcard character represents any single
character. The percent (%) wildcard character represents zero or more characters. The
ESCAPE clause specifies an escape character for the wildcard characters in the pattern
value. Table 21-3 shows some sample LIKE expressions.

TABLE21-3 LIKE Expression Examples

Expression TRUE FALSE
address.phone LIKE '12%3’ '123’ '1234°
'12993"
asentence.word LIKE ’'1 se’ 'lose’ "loose’
aword.underscored LIKE '\ %’ ESCAPE "\’ ' foo’ "bar’
address.phone NOT LIKE '12%3’ '1234’ '123"
'12993"

NULL Comparison Expressions

A NULL comparison expression tests whether a single-valued path expression or an
input parameter has a NULL value. Usually, the NULL comparison expression is used to
test whether a single-valued relationship has been set:

SELECT t
FROM Team t
WHERE t.league IS NULL

Chapter21 « The Java Persistence Query Language 403

Full Query Language Syntax

404

This query selects all teams where the league relationship is not set. Note that the
following query is not equivalent:

SELECT t
FROM Team t
WHERE t.league = NULL

The comparison with NULL using the equals operator (=) always returns an unknown
value, even if the relationship is not set. The second query will always return an empty
result.

Empty Collection Comparison Expressions

The IS [NOT] EMPTY comparison expression tests whether a collection-valued path
expression has no elements. In other words, it tests whether a collection-valued
relationship has been set.

If the collection-valued path expression is NULL, the empty collection comparison
expression has a NULL value.

Here is an example that finds all orders that do not have any line items:

SELECT o

FROM Order o

WHERE o.lineItems IS EMPTY
Collection Member Expressions

The [NOT] MEMBER [OF] collection member expression determines whether a value is a
member of a collection. The value and the collection members must have the same

type.

If either the collection-valued or single-valued path expression is unknown, the
collection member expression is unknown. If the collection-valued path expression
designates an empty collection, the collection member expression is FALSE.

The OF keyword is optional.

The following example tests whether a line item is part of an order:

SELECT o
FROM Order o
WHERE :lineItem MEMBER OF o.lineItems

Subqueries

Subqueries may be used in the WHERE or HAVING clause of a query. Subqueries must be
surrounded by parentheses.

The following example finds all customers who have placed more than ten orders:

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

SELECT c
FROM Customer c
WHERE (SELECT COUNT(o) FROM c.orders o) > 10

Subqueries may contain EXISTS, ALL, and ANY expressions.

EXISTS expressions: The [NOT] EXISTS expression is used with a subquery and is
true only if the result of the subquery consists of one or more values and is false
otherwise.

The following example finds all employees whose spouses are also employees:

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)
ALL and ANY expressions: The ALL expression is used with a subquery and is true if

all the values returned by the subquery are true or if the subquery is empty.

The ANY expression is used with a subquery and is true if some of the values
returned by the subquery are true. An ANY expression is false if the subquery result
is empty or if all the values returned are false. The SOME keyword is synonymous
with ANY.

The ALL and ANY expressions are used with the =, <, <=, >, >=, and <> comparison
operators.

The following example finds all employees whose salaries are higher than the
salaries of the managers in the employee’s department:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

Functional Expressions

The query language includes several string, arithmetic, and date/time functions that
may be used in the SELECT, WHERE, or HAVING clause of a query. The functions are listed
in Table 21-4, Table 21-5, and Table 21-6.

In Table 21-4, the start and length arguments are of type int and designate
positions in the String argument. The first position in a string is designated by 1.

Chapter21 « The Java Persistence Query Language 405

Full Query Language Syntax

406

TABLE21-4 String Expressions

Function Syntax Return Type
CONCAT(String, String) String
LENGTH(String) int
LOCATE(String, String [, start]) int
SUBSTRING(String, start, length) String
TRIM([[LEADING|TRAILING|BOTH] char) FROM] (String) String
LOWER(String) String
UPPER(String) String

The CONCAT function concatenates two strings into one string.
The LENGTH function returns the length of a string in characters as an integer.

The LOCATE function returns the position of a given string within a string. This
function returns the first position at which the string was found as an integer. The first
argument is the string to be located. The second argument is the string to be searched.
The optional third argument is an integer that represents the starting string position.
By default, LOCATE starts at the beginning of the string. The starting position of a string
is 1. If the string cannot be located, LOCATE returns 0.

The SUBSTRING function returns a string that is a substring of the first argument based
on the starting position and length.

The TRIM function trims the specified character from the beginning and/or end of a
string. If no character is specified, TRIM removes spaces or blanks from the string. If the
optional LEADING specification is used, TRIM removes only the leading characters from
the string. If the optional TRAILING specification is used, TRIM removes only the
trailing characters from the string. The default is BOTH, which removes the leading and
trailing characters from the string.

The LOWER and UPPER functions convert a string to lowercase or uppercase,
respectively.

In Table 21-5, the number argument can be an int, a float, or adouble.

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

TABLE21-5 Arithmetic Expressions

Function Syntax ReturnType

ABS (number) int, float, or double
MOD(int, int) int

SQRT(double) double
SIZE(Collection) int

The ABS function takes a numeric expression and returns a number of the same type as
the argument.

The MOD function returns the remainder of the first argument divided by the second.
The SQRT function returns the square root of a number.

The SIZE function returns an integer of the number of elements in the given
collection.

In Table 21-6, the date/time functions return the date, time, or timestamp on the
database server.

TABLE21-6 Date/Time Expressions

Function Syntax Return Type
CURRENT_DATE java.sql.Date
CURRENT TIME java.sql.Time
CURRENT_TIMESTAMP java.sql.Timestamp
Case Expressions

Case expressions change based on a condition, similar to the case keyword of the Java
programming language. The CASE keyword indicates the start of a case expression, and
the expression is terminated by the END keyword. The WHEN and THEN keywords define
individual conditions, and the ELSE keyword defines the default condition should
none of the other conditions be satisfied.

The following query selects the name of a person and a conditional string, depending
on the subtype of the Person entity. If the subtype is Student, the string kid is
returned . If the subtype is Guardian or Staff, the string adult is returned. If the entity
is some other subtype of Person, the string unknown is returned.

SELECT p.name
CASE TYPE(p)
WHEN Student THEN ’'kid’

Chapter21 « The Java Persistence Query Language 407

Full Query Language Syntax

WHEN Guardian THEN ’'adult’
WHEN Staff THEN ’'adult’
ELSE ’"unknown’

END

FROM Person p

The following query sets a discount for various types of customers. Gold-level
customers geta 20% discount, silver-level customers get a 15% discount, bronze-level
customers get a 10% discount, and everyone else gets a 5% discount.

UPDATE Customer c
SET c.discount =
CASE c.level
WHEN ’Gold’ THEN 20
WHEN ’SILVER’ THEN 15
WHEN ’Bronze’ THEN 10
ELSE 5
END

NULL Values

If the target of a reference is not in the persistent store, the target is NULL. For
conditional expressions containing NULL, the query language uses the semantics
defined by SQL92. Briefly, these semantics are as follows.

= Ifacomparison or arithmetic operation has an unknown value, it yields a NULL
value.

= Two NULL values are not equal. Comparing two NULL values yields an unknown
value.

= The ISNULL test converts a NULL persistent field or a single-valued relationship
field to TRUE. The IS NOT NULL test converts them to FALSE.

= Boolean operators and conditional tests use the three-valued logic defined by
Table 21-7 and Table 21-8. (In these tables, T stands for TRUE, F for FALSE, and U
for unknown.)

TABLE21-7 AND Operator Logic

AND T F U
T T F U
F F F F
U U F U

408 The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

TABLE21-8 OR Operator Logic

OR T F U
T T T T
F T F U
U T U U
Equality Semantics

In the query language, only values of the same type can be compared. However, this
rule has one exception: Exact and approximate numeric values can be compared. In
such a comparison, the required type conversion adheres to the rules of Java numeric
promotion.

The query language treats compared values as if they were Java types and not as if they
represented types in the underlying data store. For example, a persistent field that
could be either an integer or a NULL must be designated as an Integer object and not as
an int primitive. This designation is required because a Java object can be NULL, but a
primitive cannot.

Two strings are equal only if they contain the same sequence of characters. Trailing
blanks are significant; for example, the strings 'abc’ and "abc ’ are not equal.

Two entities of the same abstract schema type are equal only if their primary keys have

the same value. Table 21-9 shows the operator logic of a negation, and Table 21-10
shows the truth values of conditional tests.

TABLE21-9 NOT Operator Logic

NOT Value Value
T F

F

U U

TABLE21-10 Conditional Test

Conditional Test T F u
Expression IS TRUE T F F
Expression IS FALSE F T F
Expression is unknown F F T

Chapter21 « The Java Persistence Query Language 409

Full Query Language Syntax

SELECT Clause

The SELECT clause defines the types of the objects or values returned by the query.

Return Types

The return type of the SELECT clause is defined by the result types of the select
expressions contained within it. If multiple expressions are used, the result of the
queryisan Object[], and the elements in the array correspond to the order of the
expressions in the SELECT clause and in type to the result types of each expression.

A SELECT clause cannot specify a collection-valued expression. For example, the
SELECT clause p. teams is invalid because teams is a collection. However, the clause in
the following query is valid because the t is a single element of the teams collection:

SELECT t
FROM Player p, IN (p.teams) t

The following query is an example of a query with multiple expressions in the SELECT
clause:

SELECT c.name, c.country.name
FROM customer c
WHERE c.lastname = "Coss’ AND c.firstname = ’'Roxane’

This query returns a list of Object[] elements; the first array element is a string
denoting the customer name, and the second array element is a string denoting the
name of the customer’s country.

The result of a query may be the result of an aggregate function, listed in Table 21-11.

TABLE 21-11 Aggregate Functions in Select Statements

Name Return Type Description

AVG Double Returns the mean average of the
fields

COUNT Long Returns the total number of results

MAX The type of the field Returns the highest value in the
result set

MIN The type of the field Returns the lowest value in the
result set

410 The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

TABLE 21-11 Aggregate Functions in Select Statements (Continued)
Name Return Type Description
SUM Long (for integral fields) Returns the sum of all the values in
the result set

Double (for floating-point fields)
BigInteger (for BigInteger fields)

BigDecimal (for BigDecimal fields)

For select method queries with an aggregate function (AVG, COUNT, MAX, MIN, or SUM) in
the SELECT clause, the following rules apply:

= The AVG, MAX, MIN, and SUM functions return null if there are no values to which the
function can be applied.

®= The COUNT function returns 0 if there are no values to which the function can be
applied.

The following example returns the average order quantity:
SELECT AVG(o.quantity)
FROM Order o

The following example returns the total cost of the items ordered by Roxane Coss:
SELECT SUM(1l.price)

FROM Order o JOIN o.linelItems 1 JOIN o.customer c

WHERE c.lastname = "Coss’ AND c.firstname = ’Roxane’

The following example returns the total number of orders:

SELECT COUNT (o)

FROM Order o

The following example returns the total number of items that have prices in Hal
Incandenza’s order:

SELECT COUNT(1l.price)
FROM Order o JOIN o.lineItems 1 JOIN o.customer c
WHERE c.lastname = 'Incandenza’ AND c.firstname = 'Hal’

The DISTINCT Keyword

The DISTINCT keyword eliminates duplicate return values. If a query returns a
java.util.Collection, which allows duplicates, you must specify the DISTINCT
keyword to eliminate duplicates.

Constructor Expressions

Constructor expressions allow you to return Java instances that store a query result
element instead of an Object[].

Chapter21 « The Java Persistence Query Language 411

Full Query Language Syntax

412

The following query creates a CustomerDetail instance per Customer matching the
WHERE clause. A CustomerDetail stores the customer name and customer’s country
name. So the query returnsa List of CustomerDetail instances:

SELECT NEW com.xyz.CustomerDetail(c.name, c.country.name)
FROM customer c
WHERE c.lastname = "Coss’ AND c.firstname = ’'Roxane’

ORDER BY Clause

As its name suggests, the ORDER BY clause orders the values or objects returned by the
query.

If the ORDER BY clause contains multiple elements, the left-to-right sequence of the
elements determines the high-to-low precedence.

The ASC keyword specifies ascending order, the default, and the DESC keyword
indicates descending order.

When using the ORDER BY clause, the SELECT clause must return an orderable set of
objects or values. You cannot order the values or objects for values or objects not
returned by the SELECT clause. For example, the following query is valid because the
ORDER BY clause uses the objects returned by the SELECT clause:

SELECT o

FROM Customer c JOIN c.orders o JOIN c.address a

WHERE a.state = 'CA’

ORDER BY o.quantity, o.totalcost

The following example is not valid, because the ORDER BY clause uses a value not
returned by the SELECT clause:

SELECT p.product name

FROM Order o, IN(o.lineItems) 1 JOIN o.customer c
WHERE c.lastname = 'Faehmel’ AND c.firstname = 'Robert’
ORDER BY o.quantity

GROUP BY and HAVING Clauses
The GROUP BY clause allows you to group values according to a set of properties.

The following query groups the customers by their country and returns the number of
customers per country:

SELECT c.country, COUNT(c)
FROM Customer c GROUP BY c.country

The HAVING clause is used with the GROUP BY clause to further restrict the returned
result of a query.

The Java EE 6 Tutorial: Basic Concepts

Full Query Language Syntax

The following query groups orders by the status of their customer and returns the
customer status plus the average totalPrice for all orders where the corresponding
customers has the same status. In addition, it considers only customers with status 1, 2,
or 3, so orders of other customers are not taken into account:

SELECT c.status, AVG(o.totalPrice)
FROM Order o JOIN o.customer c
GROUP BY c.status HAVING c.status IN (1, 2, 3)

Chapter21 « The Java Persistence Query Language 413

This page intentionally left blank

L K 2 4 CHAPTER 22

Using the Criteria API to Create Queries

The Criteria API is used to define queries for entities and their persistent state by
creating query-defining objects. Criteria queries are written using Java programming
language APIs, are typesafe, and are portable. Such queries work regardless of the
underlying data store.

The following topics are addressed here:

= “Overview of the Criteria and Metamodel APIs” on page 415

= “Using the Metamodel API to Model Entity Classes” on page 417

= “Using the Criteria API and Metamodel API to Create Basic Typesafe Queries” on
page 418

Overview of the Criteria and Metamodel APIs

Similar to JPQL, the Criteria API is based on the abstract schema of persistent entities,
their relationships, and embedded objects. The Criteria API operates on this abstract
schema to allow developers to find, modify, and delete persistent entities by invoking
Java Persistence API entity operations. The Metamodel API works in concert with the
Criteria API to model persistent entity classes for Criteria queries.

The Criteria APT and JPQL are closely related and are designed to allow similar
operations in their queries. Developers familiar with JPQL syntax will find equivalent
object-level operations in the Criteria APL.

The following simple Criteria query returns all instances of the Pet entity in the data
source:

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
cq.select(pet);

415

Overview of the Criteria and Metamodel APIs

416

TypedQuery<Pet> g = em.createQuery(cq);
List<Pet> allPets = q.getResultList();

The equivalent JPQL query is:

SELECT p

FROM Pet p

This query demonstrates the basic steps to create a Criteria query:

1. UseanEntityManager instance to create a CriteriaBuilder object.

2. Create a query object by creating an instance of the CriteriaQuery interface. This
query object's attributes will be modified with the details of the query.

Set the query root by calling the from method on the CriteriaQuery object.

4. Specify what the type of the query result will be by calling the select method of the
CriteriaQuery object.

5. Prepare the query for execution by creating a TypedQuery<T> instance, specifying
the type of the query result.

6. Execute the query by calling the getResultList method on the TypedQuery<T>
object. Because this query returns a collection of entities, the result is stored in a
List.

The tasks associated with each step are discussed in detail in this chapter.

To createa CriteriaBuilder instance, call the getCriteriaBuilder method on the
EntityManager instance:
CriteriaBuilder cb = em.getCriteriaBuilder();

The query object is created by using the CriteriaBuilder instance:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The query will return instances of the Pet entity, so the type of the query is specified
when the CriteriaQuery object is created to create a typesafe query.

The FROM clause of the query is set, and the root of the query specified, by calling the
from method of the query object:

Root<Pet> pet = cq.from(Pet.class);

The SELECT clause of the query is set by calling the select method of the query object
and passing in the query root:

cq.select(pet);

The query object is now used to create a TypedQuery<T> object that can be executed
against the data source. The modifications to the query object are captured to create a
ready-to-execute query:

The Java EE 6 Tutorial: Basic Concepts

Using the Metamodel APl to Model Entity Classes

TypedQuery<Pet> q = em.createQuery(cq);

This typed query object is executed by calling its getResultList method, because this
query will return multiple entity instances. The results are stored in a List<Pet>
collection-valued object.

List<Pet> allPets = q.getResultlList();

Using the Metamodel APl to Model Entity Classes

The Metamodel API is used to create a metamodel of the managed entities in a
particular persistence unit. For each entity class in a particular package, a metamodel
class is created with a trailing underscore and with attributes that correspond to the
persistent fields or properties of the entity class.

The following entity class, com.example.Pet, has four persistent fields: id, name,
color, and owners:

package com.example;

@Entity

public class Pet {
@Id
protected Long id;
protected String name;
protected String color;
@ManyToOne
protected Set<Person> owners;

) o

The corresponding Metamodel class is:

package com.example;

@Static Metamodel(Pet.class)
public class Pet {

public static volatile SingularAttribute<Pet, Long> id;
public static volatile SingularAttribute<Pet, String> name;
public static volatile SingularAttribute<Pet, String> color;
public static volatile SetAttribute<Pet, Person> owners;

}

The metamodel class and its attributes are used in Criteria queries to refer to the
managed entity classes and their persistent state and relationships.

Chapter22 - Using the Criteria APl to Create Queries 417

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

Using Metamodel Classes

Metamodel classes that correspond to entity classes are of the following type:

javax.persistence.metamodel.EntityType<T>

Metamodel classes are typically generated by annotation processors either at
development time or at runtime. Developers of applications that use Criteria queries
may generate static metamodel classes by using the persistence provider’s annotation
processor or may obtain the metamodel class by either calling the getModel method
on the query root object or first obtaining an instance of the Metamodel interface and
then passing the entity type to the instance’s entity method.

The following code snippet shows how to obtain the Pet entity’s metamodel class by
calling Root<T>. getModel:

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
EntityType<Pet> Pet = pet.getModel();

The following code snippet shows how to obtain the Pet entity’s metamodel class by
first obtaining a metamodel instance by using EntityManager.getMetamodel and
then calling entity on the metamodel instance:

EntityManager em = ...;
Metamodel m = em.getMetamodel();
EntityType<Pet> Pet = m.entity(Pet.class);

Using the Criteria APl and Metamodel API to Create Basic
Typesafe Queries

418

The basic semantics of a Criteria query consists of a SELECT clause, a FROM clause, and
an optional WHERE clause, similar to a JPQL query. Criteria queries set these clauses by
using Java programming language objects, so the query can be created in a typesafe
manner.

Creating a Criteria Query

The javax.persistence.criteria.CriteriaBuilder interface is used to construct

= Criteria queries
= Selections
= Expressions

The Java EE 6 Tutorial: Basic Concepts

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

® Predicates
= Ordering

To obtain an instance of the CriteriaBuilder interface, call the getCriteriaBuilder
method on either an EntityManager or an EntityManagerFactory instance.

The following code shows how to obtain a CriteriaBuilder instance by using the
EntityManager.getCriteriaBuilder method.

EntityManager em = .
CriteriaBuilder cb = em.getCriteriaBuilder();

Criteria queries are constructed by obtaining an instance of the following interface:

javax.persistence.criteria.CriteriaQuery

CriteriaQuery objects define a particular query that will navigate over one or more
entities. Obtain CriteriaQuery instances by calling one of the
CriteriaBuilder.createQuery methods. For creating typesafe queries, call the
CriteriaBuilder.createQuery method as follows:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The CriteriaQuery object’s type should be set to the expected result type of the query.
In the preceding code, the object’s type is set to CriteriaQuery<Pet> for a query that
will find instances of the Pet entity.

In the following code snippet, a CriteriaQuery object is created for a query that
returnsa String:

CriteriaQuery<String> cq = cb.createQuery(String.class);

Query Roots

For a particular CriteriaQueryobject, the root entity of the query, from which all
navigation originates, is called the query root. It is similar to the FROM clause in a JPQL

query.

Create the query root by calling the from method on the CriteriaQuery instance. The
argument to the from method is either the entity class or an EntityType<T> instance
for the entity.

The following code sets the query root to the Pet entity:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Root<Pet> pet = cq.from(Pet.class);

Chapter22 - Using the Criteria APl to Create Queries 419

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

The following code sets the query root to the Pet class by using an EntityType<T>
instance:

EntityManager em = ...;

Metamodel m = em.getMetamodel();
EntityType<Pet> Pet = m.entity(Pet.class);
Root<Pet> pet = cq.from(Pet);

Criteria queries may have more than one query root. This usually occurs when the
query navigates from several entities.

The following code has two Root instances:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Root<Pet> petl = cq.from(Pet.class);
Root<Pet> pet2 = cq.from(Pet.class);

Querying Relationships Using Joins

For queries that navigate to related entity classes, the query must define a join to the
related entity by calling one of the From. join methods on the query root object or
another join object. The join methods are similar to the JOIN keyword in JPQL.

The target of the join uses the Metamodel class of type EntityType<T> to specify the
persistent field or property of the joined entity.

The join methods return an object of type Join<X, Y>, where X is the source entity
and Y is the target of the join. In the following code snippet, Pet is the source entity,
and Owner is the target:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Metamodel m = em.getMetamodel();
EntityType<Pet> Pet = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);
Join<Pet, Owner> owner = pet.join(Pet .owners);

Joins can be chained together to navigate to related entities of the target entity without
having to create a Join<X, Y> instance for each join:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);
EntityType<Owner> Owner = m.entity(Owner.class);

Root<Pet> pet = cq.from(Pet.class);
Join<Owner, Address> address = cq.join(Pet_.owners).join(Owner_ .addresses);

420 The Java EE 6 Tutorial: Basic Concepts

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

Path Navigation in Criteria Queries

Path objects are used in the SELECT and WHERE clauses of a Criteria query and can be
query root entities, join entities, or other Path objects. The Path.get method is used to
navigate to attributes of the entities of a query.

The argument to the get method is the corresponding attribute of the entity’s
Metamodel class. The attribute can either be a single-valued attribute, specified by
@SingularAttribute in the Metamodel class, or a collection-valued attribute,
specified by one of @CollectionAttribute, @SetAttribute, @ListAttribute, or
@MapAttribute.

The following query returns the names of all the pets in the data store. The get method
is called on the query root, pet, with the name attribute of the Pet entity’s Metamodel
class, Pet_ as the argument:

CriteriaQuery<String> cq = cb.createQuery(String.class);
Metamodel m = em.getMetamodel();
EntityType<Pet> Pet = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);
cq.select(pet.get(Pet_.name));

Restricting Criteria Query Results

The results of a query can be restricted on the CriteriaQuery object according to
conditions set by calling the CriteriaQuery.where method. Calling the where
method is analogous to setting the WHERE clause in a JPQL query.

The where method evaluates instances of the Expression interface to restrict the
results according to the conditions of the expressions. Expression instances are
created by using methods defined in the Expression and CriteriaBuilder interfaces.

The Expression Interface Methods

An Expression object is used in a query's SELECT, WHERE, or HAVING clause. Table 221
shows conditional methods you can use with Expression objects.

TABLE 22-1 Conditional Methods in the Expression Interface

Method Description

isNull Tests whether an expression is null

isNotNull Tests whether an expression is not null

in Tests whether an expression is within a list of values

Chapter22 - Using the Criteria APl to Create Queries 421

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

The following query uses the Expression. isNull method to find all pets where the
color attribute is null:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
cq.where(pet.get(Pet_.color).isNull());

The following query uses the Expression . in method to find all brown and black pets:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
cq.where(pet.get(Pet .color).in("brown", "black");

The in method also can check whether an attribute is a member of a collection.

Expression Methods in the CriteriaBuilder Interface

The CriteriaBuilder interface defines additional methods for creating expressions.
These methods correspond to the arithmetic, string, date, time, and case operators and
functions of JPQL. Table 22-2 shows conditional methods you can use with
CriteriaBuilder objects.

TABLE 22-2 Conditional Methods in the CriteriaBuilder Interface

Conditional Method Description

equal Tests whether two expressions are equal

notEqual Tests whether two expressions are not equal

gt Tests whether the first numeric expression is greater than the second numeric
expression

ge Tests whether the first numeric expression is greater than or equal to the

second numeric expression

1t Tests whether the first numeric expression is less than the second numeric
expression

le Tests whether the first numeric expression is less than or equal to the second
numeric expression

between Tests whether the first expression is between the second and third expression
in value

like Tests whether the expression matches a given pattern

The following code uses the CriteriaBuilder.equal method:

422 The Java EE 6 Tutorial: Basic Concepts

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
cq.where(cb.equal(pet.get(Pet .name)), "Fido")

The following code uses the CriteriaBuilder.gt method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);
Root<Pet> pet = cq.from(Pet.class);

Date someDate = new Date(...);
cq.where(cb.gt(pet.get(Pet .birthday)), date);

The following code uses the CriteriaBuilder.between method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Date firstDate = new Date(...);

Date secondDate = new Date(...);

cq.where(cb.between(pet.get(Pet .birthday)), firstDate, secondDate);

The following code uses the CriteriaBuilder.like method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
cq.where(cb.like(pet.get(Pet .name)), "*do")

Multiple conditional predicates can be specified by using the compound predicate

methods of the CriteriaBuilder interface, as shown in Table 22-3.

TABLE22-3 Compound Predicate Methods in the CriteriaBuilder Interface

Method Description

and Alogical conjunction of two Boolean expressions
or Alogical disjunction of two Boolean expressions
not Alogical negation of the given Boolean expression

The following code shows the use of compound predicates in queries:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.equal(pet.get(Pet .name), "Fido")
.and(cb.equal(pet.get(Pet .color), "brown");

Chapter22 - Using the Criteria APl to Create Queries

423

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

424

Managing Criteria Query Results

For queries that return more than one result, it’s often helpful to organize those results.
The CriteriaQuery interface defines the orderBy method to order query results
according to attributes of an entity. The CriteriaQuery interface also defines the
groupBy method to group the results of a query together according to attributes of an
entity, and the having method to restrict those groups according to a condition.

Ordering Results

The order of the results of a query can be set by calling the CriteriaQuery.orderBy
method and passing in an Order object. Order objects are created by calling either the
CriteriaBuilder.ascortheCriteriaBuilder.desc method. The asc method is
used to order the results by ascending value of the passed expression parameter. The
desc method is used to order the results by descending value of the passed expression
parameter. The following query shows the use of the desc method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
cq.select(pet);

cq.orderBy(cb.desc(pet.get(Pet .birthday));

In this query, the results will be ordered by the pet’s birthday from highest to lowest.
That is, pets born in December will appear before pets born in May.

The following query shows the use of the asc method:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Owner, Address> address = cq.join(Pet .owners).join(Owner .address);
cq.select(pet);

cq.orderBy(cb.asc(address.get(Address .postalCode));

In this query, the results will be ordered by the pet owner’s postal code from lowest to
highest. That is, pets whose owner lives in the 10001 zip code will appear before pets

whose owner lives in the 91000 zip code.

If more than one Order object is passed to orderBy, the precedence is determined by
the order in which they appear in the argument list of orderBy. The first Order object
has precedence.

The following code orders results by multiple criteria:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Pet, Owner> owner = cq.join(Pet .owners);

cq.select(pet);

cq.orderBy(cb.asc(owner.get(Owner .lastName), owner.get(Owner .firstName));

The results of this query will be ordered alphabetically by the pet owner’s last name,
then first name.

The Java EE 6 Tutorial: Basic Concepts

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

Grouping Results

The CriteriaQuery.groupBy method partitions the query results into groups. These
groups are set by passing an expression to groupBy:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);
Root<Pet> pet = cq.from(Pet.class);
cq.groupBy(pet.get(Pet .color));

This query returns all Pet entities and groups the results by the pet’s color.

The CriteriaQuery.having method is used in conjunction with groupBy to filter over
the groups. The having method takes a conditional expression as a parameter. By
calling the having method, the query result is restricted according to the conditional
expression:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.groupBy(pet.get(Pet .color));

cq.having(cb.in(pet.get(Pet .color)).value("brown").value("blonde")

In this example, the query groups the returned Pet entities by color, as in the
preceding example. However, the only returned groups will be Pet entities where the
color attribute is set to brown or blonde. That is, no gray-colored pets will be returned
in this query.

Executing Queries

To prepare a query for execution, create a TypedQuery<T> object with the type of the
query result by passing the CriteriaQuery object to EntityManager.createQuery.

Queries are executed by calling either getSingleResult or getResultList on the

TypedQuery<T> object.

Single-Valued Query Results

The TypedQuery<T>.getSingleResult method is used for executing queries that
return a single result:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

TypedQuery<Pet> q = em.createQuery(cq);
Pet result = q.getSingleResult();

Chapter22 - Using the Criteria APl to Create Queries 425

Using the Criteria APl and Metamodel API to Create Basic Typesafe Queries

Collection-Valued Query Results

The TypedQuery<T>.getResultList method is used for executing queries that return
a collection of objects:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

TypedQuery<Pet> q = em.createQuery(cq);
List<Pet> results = g.getResultList();

426 The Java EE 6 Tutorial: Basic Concepts

PART VII

Security

Part VII introduces basic security concepts and examples. This part contains the
following chapters:

= Chapter 23, “Introduction to Security in the Java EE Platform”
= Chapter 24, “Getting Started Securing Web Applications”
= Chapter 25, “Getting Started Securing Enterprise Applications”

427

This page intentionally left blank

CHAPTER 23

Introduction to Security in the Java EE
Platform

The chapters in Part VII discuss security requirements in web tier and enterprise tier
applications. Every enterprise that has either sensitive resources that can be accessed
by many users or resources that traverse unprotected, open, networks, such as the
Internet, needs to be protected.

This chapter introduces basic security concepts and security mechanisms. More
information on these concepts and mechanisms can be found in the chapter on
security in the Java EE 6 specification. This document is available for download online
athttp://www.jcp.org/en/jsr/detail?id=316.

In this tutorial, security requirements are also addressed in the following chapters.

= Chapter 24, “Getting Started Securing Web Applications,” explains how to add
security to web components, such as servlets.

= Chapter 25, “Getting Started Securing Enterprise Applications,” explains how to
add security to Java EE components, such as enterprise beans and application
clients.

Some of the material in this chapter assumes that you understand basic security
concepts. To learn more about these concepts before you begin this chapter, you
should explore the Java SE security web site at http://download.oracle. com/
docs/cd/E17409 01/javase/6/docs/technotes/guides/security/.

The following topics are addressed here:

“Overview of Java EE Security” on page 430

“Security Mechanisms” on page 435

“Securing Containers” on page 439

“Securing the GlassFish Server” on page 440

“Working with Realms, Users, Groups, and Roles” on page 441
“Establishing a Secure Connection Using SSL” on page 449
“Further Information about Security” on page 454

429

http://www.jcp.org/en/jsr/detail?id=316
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

Overview of Java EE Security

Overview of Java EE Security

430

Enterprise tier and web tier applications are made up of components that are deployed
into various containers. These components are combined to build a multitier
enterprise application. Security for components is provided by their containers. A
container provides two kinds of security: declarative and programmatic.

Declarative security expresses an application component’s security requirements
by using either deployment descriptors or annotations.

A deployment descriptor is an XML file that is external to the application and that
expresses an application’s security structure, including security roles, access
control, and authentication requirements. For more information about
deployment descriptors, read “Using Deployment Descriptors for Declarative
Security” on page 439.

Annotations, also called metadata, are used to specify information about security
within a class file. When the application is deployed, this information can be either
used by or overridden by the application deployment descriptor. Annotations save
you from having to write declarative information inside XML descriptors. Instead,
you simply put annotations on the code, and the required information gets
generated. For this tutorial, annotations are used for securing applications
wherever possible. For more information about annotations, see “Using
Annotations to Specify Security Information” on page 439.

Programmatic security is embedded in an application and is used to make security
decisions. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of an application. For more information
about programmatic security, read “Using Programmatic Security” on page 440.

A Simple Security Example

The security behavior of a Java EE environment may be better understood by
examining what happens in a simple application with a web client, a user interface, and
enterprise bean business logic.

In the following example, which is taken from the Java EE 6 Specification, the web
client relies on the web server to act as its authentication proxy by collecting user
authentication data from the client and using it to establish an authenticated session.

Step 1:Initial Request

In the first step of this example, the web client requests the main application URL. This
action is shown in Figure 23-1.

The Java EE 6 Tutorial: Basic Concepts

Overview of Java EE Security

FIGURE23-1 Initial Request

Request access to
protected resource

Web Client > | Web Server

Since the client has not yet authenticated itself to the application environment, the
server responsible for delivering the web portion of the application, hereafter referred
to as the web server, detects this and invokes the appropriate authentication
mechanism for this resource. For more information on these mechanisms, see
“Security Mechanisms” on page 435.

Step 2: Initial Authentication

The web server returns a form that the web client uses to collect authentication data,
such as user name and password, from the user. The web client forwards the
authentication data to the web server, where it is validated by the web server, as shown
in Figure 23-2. The validation mechanism may be local to a server or may leverage the
underlying security services. On the basis of the validation, the web server sets a
credential for the user.

FIGURE23-2 Initial Authentication

Web Server
Form _
Web Client ~ Credential
Authentication -
data

Step 3: URL Authorization

The credential is used for future determinations of whether the user is authorized to
access restricted resources it may request. The web server consults the security policy
associated with the web resource to determine the security roles that are permitted
access to the resource. The security policy is derived from annotations or from the
deployment descriptor. The web container then tests the user’s credential against each
role to determine whether it can map the user to the role. Figure 23-3 shows this
process.

Chapter 23 -« Introduction to Security in the Java EE Platform 431

Overview of Java EE Security

432

FIGURE 23-3 URL Authorization

Web Server
Web Client Credential | 2 | Web
Requested ~— | = | Component
access to S
protected Session Ez_
resource Context o

The web server’s evaluation stops with an “is authorized” outcome when the web
server is able to map the user to a role. A “not authorized” outcome is reached if the
web server is unable to map the user to any of the permitted roles.

Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URL request,
as shown in Figure 23-4.

FIGURE 23-4 Fulfilling the Original Request

Web Server
Result of request

Web Client | Credential | Web
Post to Component

business logic | Se€ssion
Context

In our example, the response URL of a web page is returned, enabling the user to post
form data that needs to be handled by the business-logic component of the
application. See Chapter 24, “Getting Started Securing Web Applications,” for more
information on protecting web applications.

Step 5:Invoking Enterprise Bean Business Methods

The web page performs the remote method call to the enterprise bean, using the user’s
credential to establish a secure association between the web page and the enterprise
bean, as shown in Figure 23-5. The association is implemented as two related security
contexts: one in the web server and one in the E]B container.

The Java EE 6 Tutorial: Basic Concepts

Overview of Java EE Security

FIGURE 23-5 Invoking an Enterprise Bean Business Method

Credential
Web Server used to EJB
establish Container
Web Client «4 Credential security
association || 2
Web f
Component %, EJB
Remote 8
Session Security call S
Context Context
Security
Context

The EJB container is responsible for enforcing access control on the enterprise bean
method. The container consults the security policy associated with the enterprise bean
to determine the security roles that are permitted access to the method. The security
policy is derived from annotations or from the deployment descriptor. For each role,
the EJB container determines whether it can map the caller to the role by using the
security context associated with the call.

The container’s evaluation stops with an “is authorized” outcome when the container
is able to map the caller’s credential to a role. A “not authorized” outcome is reached if
the container is unable to map the caller to any of the permitted roles. A “not
authorized” result causes an exception to be thrown by the container and propagated
back to the calling web page.

If the call is authorized, the container dispatches control to the enterprise bean
method. The result of the bean’s execution of the call is returned to the web page and
ultimately to the user by the web server and the web client.

Features of a Security Mechanism

A properly implemented security mechanism will provide the following functionality:

= Prevent unauthorized access to application functions and business or personal data
(authentication)
= Hold system users accountable for operations they perform (non-repudiation)

= Protecta system from service interruptions and other breaches that affect quality of
service

Chapter 23 -« Introduction to Security in the Java EE Platform 433

Overview of Java EE Security

434

Ideally, properly implemented security mechanisms will also be

= Easyto administer
= Transparent to system users
= Interoperable across application and enterprise boundaries

Characteristics of Application Security

Java EE applications consist of components that can contain both protected and
unprotected resources. Often, you need to protect resources to ensure that only
authorized users have access. Authorization provides controlled access to protected
resources. Authorization is based on identification and authentication. Identification is
a process that enables recognition of an entity by a system, and authentication is a
process that verifies the identity of a user, device, or other entity in a computer system,
usually as a prerequisite to allowing access to resources in a system.

Authorization and authentication are not required for an entity to access unprotected
resources. Accessing a resource without authentication is referred to as
unauthenticated, or anonymous, access.

The characteristics of application security that, when properly addressed, help to
minimize the security threats faced by an enterprise include the following:

= Authentication: The means by which communicating entities, such as client and
server, prove to each other that they are acting on behalf of specific identities that
are authorized for access. This ensures that users are who they say they are.

= Authorization, or access control: The means by which interactions with resources
are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints. This ensures that users have
permission to perform operations or access data.

= Data integrity: The means used to prove that information has not been modified
by a third party, an entity other than the source of the information. For example, a
recipient of data sent over an open network must be able to detect and discard
messages that were modified after they were sent. This ensures that only authorized
users can modify data.

= Confidentiality, or data privacy: The means used to ensure that information is
made available only to users who are authorized to access it. This ensures that only
authorized users can view sensitive data.

= Non-repudiation: The means used to prove that a user who performed some
action cannot reasonably deny having done so. This ensures that transactions can
be proved to have happened.

The Java EE 6 Tutorial: Basic Concepts

Security Mechanisms

Quality of Service: The means used to provide better service to selected network
traffic over various technologies.

Auditing: The means used to capture a tamper-resistant record of security-related
events for the purpose of being able to evaluate the effectiveness of security policies
and mechanisms. To enable this, the system maintains a record of transactions and
security information.

Security Mechanisms

The characteristics of an application should be considered when deciding the layer and
type of security to be provided for applications. The following sections discuss the
characteristics of the common mechanisms that can be used to secure Java EE
applications. Each of these mechanisms can be used individually or with others to
provide protection layers based on the specific needs of your implementation.

Java SE Security Mechanisms

Java SE provides support for a variety of security features and mechanisms:

Java Authentication and Authorization Service (JAAS): JAAS is a set of APIs that
enable services to authenticate and enforce access controls upon users. JAAS
provides a pluggable and extensible framework for programmatic user
authentication and authorization. JAAS is a core Java SE API and is an underlying
technology for Java EE security mechanisms.

Java Generic Security Services (Java GSS-API): Java GSS-API is a token-based
API used to securely exchange messages between communicating applications.
The GSS-API offers application programmers uniform access to security services
atop a variety of underlying security mechanisms, including Kerberos.

Java Cryptography Extension (JCE): JCE provides a framework and
implementations for encryption, key generation and key agreement, and Message
Authentication Code (MAC) algorithms. Support for encryption includes
symmetric, asymmetric, block, and stream ciphers. Block ciphers operate on
groups of bytes; stream ciphers operate on one byte at a time. The software also
supports secure streams and sealed objects.

Java Secure Sockets Extension (JSSE): JSSE provides a framework and an
implementation for a Java version of the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) protocols and includes functionality for data encryption,
server authentication, message integrity, and optional client authentication to
enable secure Internet communications.

Simple Authentication and Security Layer (SASL): SASL is an Internet standard
(RFC 2222) that specifies a protocol for authentication and optional establishment
of a security layer between client and server applications. SASL defines how

Chapter 23 -« Introduction to Security in the Java EE Platform 435

Security Mechanisms

436

authentication data is to be exchanged but does not itself specify the contents of
that data. SASL is a framework into which specific authentication mechanisms that
specify the contents and semantics of the authentication data can fit.

Java SE also provides a set of tools for managing keystores, certificates, and policy files;
generating and verifying JAR signatures; and obtaining, listing, and managing
Kerberos tickets.

For more information on Java SE security, visit http://download.oracle. com/
docs/cd/E17409 01/javase/6/docs/technotes/guides/security/.

Java EE Security Mechanisms

Java EE security services are provided by the component container and can be
implemented by using declarative or programmatic techniques (see “Securing
Containers” on page 439). Java EE security services provide a robust and easily
configured security mechanism for authenticating users and authorizing access to
application functions and associated data at many different layers. Java EE security
services are separate from the security mechanisms of the operating system.

Application-Layer Security

In Java EE, component containers are responsible for providing application-layer
security, security services for a specific application type tailored to the needs of the
application. At the application layer, application firewalls can be used to enhance
application protection by protecting the communication stream and all associated
application resources from attacks.

Java EE security is easy to implement and configure and can offer fine-grained access
control to application functions and data. However, as is inherent to security applied
at the application layer, security properties are not transferable to applications
running in other environments and protect data only while it is residing in the
application environment. In the context of a traditional enterprise application, this is
not necessarily a problem, but when applied to a web services application, in which
data often travels across several intermediaries, you would need to use the Java EE
security mechanisms along with transport-layer security and message-layer security
for a complete security solution.

The advantages of using application-layer security include the following.

= Security is uniquely suited to the needs of the application.
= Security is fine grained, with application-specific settings.

The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

Security Mechanisms

The disadvantages of using application-layer security include the following.

= Theapplication is dependent on security attributes that are not transferable
between application types.

= Support for multiple protocols makes this type of security vulnerable.

= Datais close to or contained within the point of vulnerability.

For more information on providing security at the application layer, see “Securing
Containers” on page 439.

Transport-Layer Security

Transport-layer security is provided by the transport mechanisms used to transmit
information over the wire between clients and providers; thus, transport-layer security
relies on secure HTTP transport (HTTPS) using Secure Sockets Layer (SSL).
Transport security is a point-to-point security mechanism that can be used for
authentication, message integrity, and confidentiality. When running over an
SSL-protected session, the server and client can authenticate each other and negotiate
an encryption algorithm and cryptographic keys before the application protocol
transmits or receives its first byte of data. Security is active from the time the data
leaves the client until it arrives at its destination, or vice versa, even across
intermediaries. The problem is that the data is not protected once it gets to the
destination. One solution is to encrypt the message before sending.

Transport-layer security is performed in a series of phases, as follows.

= The client and server agree on an appropriate algorithm.

= A keyis exchanged using public-key encryption and certificate-based
authentication.

= A symmetric cipher is used during the information exchange.

Digital certificates are necessary when running HTTPS using SSL. The HT'TPS service
of most web servers will not run unless a digital certificate has been installed. Digital
certificates have already been created for the GlassFish Server.

The advantages of using transport-layer security include the following.

= Ttisrelatively simple, well-understood, standard technology.

= Itapplies to both a message body and its attachments.

The disadvantages of using transport-layer security include the following.

= Jtistightly coupled with the transport-layer protocol.

= Jtrepresentsan all-or-nothing approach to security. This implies that the security
mechanism is unaware of message contents, so that you cannot selectively apply
security to portions of the message as you can with message-layer security.

Chapter 23 -« Introduction to Security in the Java EE Platform 437

Security Mechanisms

438

= Protection is transient. The message is protected only while in transit. Protection is
removed automatically by the endpoint when it receives the message.

= Jtisnotan end-to-end solution, simply point-to-point.

For more information on transport-layer security, see “Establishing a Secure
Connection Using SSL” on page 449.

Message-Layer Security

In message-layer security, security information is contained within the SOAP message
and/or SOAP message attachment, which allows security information to travel along
with the message or attachment. For example, a portion of the message may be signed
by a sender and encrypted for a particular receiver. When sent from the initial sender,
the message may pass through intermediate nodes before reaching its intended
receiver. In this scenario, the encrypted portions continue to be opaque to any
intermediate nodes and can be decrypted only by the intended receiver. For this
reason, message-layer security is also sometimes referred to as end-to-end security.

The advantages of message-layer security include the following.

= Security stays with the message over all hops and after the message arrives at its
destination.

= Security can be selectively applied to different portions of a message and, if using
XML Web Services Security, to attachments.

= Message security can be used with intermediaries over multiple hops.

= Message security is independent of the application environment or transport
protocol.

The disadvantage of using message-layer security is that it is relatively complex and
adds some overhead to processing.

The GlassFish Server supports message security using Metro, a web services stack that
uses Web Services Security (WSS) to secure messages. Because this message security is
specific to Metro and is not a part of the Java EE platform, this tutorial does not discuss
using WSS to secure messages. See the Metro User’s Guide at https://
metro.dev.java.net/guide/.

The Java EE 6 Tutorial: Basic Concepts

https://metro.dev.java.net/guide/
https://metro.dev.java.net/guide/

Securing Containers

Securing Containers

In Java EE, the component containers are responsible for providing application
security. A container provides two types of security: declarative and programmatic.

Using Annotations to Specify Security Information

Annotations enable a declarative style of programming and so encompass both the
declarative and programmatic security concepts. Users can specify information about
security within a class file by using annotations. The GlassFish Server uses this
information when the application is deployed. Not all security information can be
specified by using annotations, however. Some information must be specified in the
application deployment descriptors.

Specific annotations that can be used to specify security information within an
enterprise bean class file are described in “Securing an Enterprise Bean Using
Declarative Security” on page 489. Chapter 24, “Getting Started Securing Web
Applications,” describes how to use annotations to secure web applications where
possible. Deployment descriptors are described only where necessary.

For more information on annotations, see “Further Information about Security” on
page 454.

Using Deployment Descriptors for Declarative
Security

Declarative security can express an application component’s security requirements by
using deployment descriptors. Because deployment descriptor information is
declarative, it can be changed without the need to modify the source code. At runtime,
the Java EE server reads the deployment descriptor and acts upon the corresponding
application, module, or component accordingly. Deployment descriptors must
provide certain structural information for each component if this information has not
been provided in annotations or is not to be defaulted.

This part of the tutorial does not document how to create deployment descriptors; it
describes only the elements of the deployment descriptor relevant to security.
NetBeans IDE provides tools for creating and modifying deployment descriptors.

Chapter 23 -« Introduction to Security in the Java EE Platform 439

Securing the GlassFish Server

Different types of components use different formats, or schemas, for their deployment
descriptors. The security elements of deployment descriptors discussed in this tutorial
include the following.

= Web components may use a web application deployment descriptor named
web . xml.

The schema for web component deployment descriptors is provided in Chapter 14
of the Java Servlet 3.0 specification (JSR 315), which can be downloaded from
http://jcp.org/en/jsr/detail?id=315.

= Enterprise JavaBeans components may use an EJB deployment descriptor named
META-INF/ejb-jar.xml, contained in the EJB JAR file.

The schema for enterprise bean deployment descriptors is provided in Chapter 19
of the EJB 3.1 specification (JSR 318), which can be downloaded from
http://jcp.org/en/jsr/detail?id=318.

Using Programmatic Security

Programmatic security is embedded in an application and is used to make security
decisions. Programmatic security is useful when declarative security alone is not
sufficient to express the security model of an application. The API for programmatic
security consists of methods of the EJBContext interface and the
HttpServletRequest interface. These methods allow components to make
business-logic decisions based on the security role of the caller or remote user.

Programmatic security is discussed in more detail in the following sections:

= “Using Programmatic Security with Web Applications” on page 469
= “Securing an Enterprise Bean Programmatically” on page 493

Securing the GlassFish Server

This tutorial describes deployment to the GlassFish Server, which provides highly
secure, interoperable, and distributed component computing based on the Java EE
security model. GlassFish Server supports the Java EE 6 security model. You can
configure GlassFish Server for the following purposes:

= Adding, deleting, or modifying authorized users. For more information on this
topic, see “Working with Realms, Users, Groups, and Roles” on page 441.

= Configuring secure HTTP and Internet Inter-Orb Protocol (IIOP) listeners.
= Configuring secure Java Management Extensions (JMX) connectors.

= Adding, deleting, or modifying existing or custom realms.

440 The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=318

Working with Realms, Users, Groups, and Roles

= Defining an interface for pluggable authorization providers using Java
Authorization Contract for Containers (JACC). JACC defines security contracts
between the GlassFish Server and authorization policy modules. These contracts
specify how the authorization providers are installed, configured, and used in
access decisions.

= Using pluggable audit modules.

= Customizing authentication mechanisms. All implementations of Java EE 6
compatible Servlet containers are required to support the Servlet Profile of JSR 196,
which offers an avenue for customizing the authentication mechanism applied by
the web container on behalf of one or more applications.

= Setting and changing policy permissions for an application.

Working with Realms, Users, Groups, and Roles

You often need to protect resources to ensure that only authorized users have access.
See “Characteristics of Application Security” on page 434 for an introduction to the
concepts of authentication, identification, and authorization.

This section discusses setting up users so that they can be correctly identified and
either given access to protected resources or denied access if they are not authorized to
access the protected resources. To authenticate a user, you need to follow these basic
steps.

1. Theapplication developer writes code to prompt for a user name and password.
The various methods of authentication are discussed in “Specifying an
Authentication Mechanism in the Deployment Descriptor” on page 467.

2. Theapplication developer communicates how to set up security for the deployed
application by use of a metadata annotation or deployment descriptor. This step is
discussed in “Setting Up Security Roles” on page 446.

3. The server administrator sets up authorized users and groups on the GlassFish
Server. This is discussed in “Managing Users and Groups on the GlassFish Server”
on page 444.

4. The application deployer maps the application’s security roles to users, groups, and
principals defined on the GlassFish Server. This topic is discussed in “Mapping
Roles to Users and Groups” on page 447.

What Are Realms, Users, Groups, and Roles?

A realm is a security policy domain defined for a web or application server. A realm
contains a collection of users, who may or may not be assigned to a group. Managing
users on the GlassFish Server is discussed in “Managing Users and Groups on the
GlassFish Server” on page 444.

Chapter 23 -« Introduction to Security in the Java EE Platform 441

Working with Realms, Users, Groups, and Roles

An application will often prompt for a user name and password before allowing access
to a protected resource. After the user name and password have been entered, that
information is passed to the server, which either authenticates the user and sends the
protected resource or does not authenticate the user, in which case access to the
protected resource is denied. This type of user authentication is discussed in
“Specifying an Authentication Mechanism in the Deployment Descriptor” on

page 467.

In some applications, authorized users are assigned to roles. In this situation, the role
assigned to the user in the application must be mapped to a principal or group defined
on the application server. Figure 23-6 shows this. More information on mapping roles
to users and groups can be found in “Setting Up Security Roles” on page 446.

The following sections provide more information on realms, users, groups, and roles.

FIGURE 23-6 Mapping Roles to Users and Groups

Create users Define roles Map roles to users
and/or groups in application and/or groups
Application Application
’] ¢
‘U Jeir r Qk - User 1
~ User2 ,
“ U 3 Role 1 Role 1 ‘(B
L vser ¢ ¢ (User3
Group 1 Role 2 Role 2 Group 1
(¢ ¢ ¢
‘(/ User 1 L L Q User 1
‘(/ User 2 ‘(User 2
L User 3 — b User 3

The Java EE 6 Tutorial: Basic Concepts

Working with Realms, Users, Groups, and Roles

WhatlIs a Realm?

A realm is a security policy domain defined for a web or application server. The
protected resources on a server can be partitioned into a set of protection spaces, each
with its own authentication scheme and/or authorization database containing a
collection of users and groups. For a web application, a realm is a complete database of
users and groups identified as valid users of a web application or a set of web
applications and controlled by the same authentication policy.

The Java EE server authentication service can govern users in multiple realms. The
file, admin-realm, and certificate realms come preconfigured for the GlassFish
Server.

In the file realm, the server stores user credentials locally in a file named keyfile.
You can use the Administration Console to manage users in the file realm. When
using the file realm, the server authentication service verifies user identity by
checking the file realm. This realm is used for the authentication of all clients except
for web browser clients that use HTTPS and certificates.

In the certificate realm, the server stores user credentials in a certificate database.
When using the certificate realm, the server uses certificates with HTTPS to
authenticate web clients. To verify the identity of a user in the certificate realm, the
authentication service verifies an X.509 certificate. For step-by-step instructions for
creating this type of certificate, see “Working with Digital Certificates” on page 450.
The common name field of the X.509 certificate is used as the principal name.

The admin- realmis also a file realm and stores administrator user credentials locally
in a file named admin-keyfile. You can use the Administration Console to manage
users in this realm in the same way you manage users in the file realm. For more
information, see “Managing Users and Groups on the GlassFish Server” on page 444.

Whatls a User?

A user is an individual or application program identity that has been defined in the
GlassFish Server. In a web application, a user can have associated with that identify a
set of roles that entitle the user to access all resources protected by those roles. Users
can be associated with a group.

A Java EE user is similar to an operating system user. Typically, both types of users
represent people. However, these two types of users are not the same. The Java EE
server authentication service has no knowledge of the user name and password you
provide when you log in to the operating system. The Java EE server authentication
service is not connected to the security mechanism of the operating system. The two
security services manage users that belong to different realms.

Chapter 23 -« Introduction to Security in the Java EE Platform 443

Working with Realms, Users, Groups, and Roles

444

What Is a Group?

A group is a set of authenticated users, classified by common traits, defined in the
GlassFish Server. A Java EE user of the file realm can belong to a group on the
GlassFish Server. (A user in the certificate realm cannot.) A group on the GlassFish
Server is a category of users classified by common traits, such as job title or customer
profile. For example, most customers of an e-commerce application might belong to
the CUSTOMER group, but the big spenders would belong to the PREFERRED group.
Categorizing users into groups makes it easier to control the access of large numbers of
users.

A group on the GlassFish Server has a different scope from a role. A group is
designated for the entire GlassFish Server, whereas a role is associated only with a
specific application in the GlassFish Server.

WhatIs a Role?

A roleis an abstract name for the permission to access a particular set of resources in
an application. A role can be compared to a key that can open a lock. Many people
might have a copy of the key. The lock doesn’t care who you are, only that you have the
right key.

Some Other Terminology

The following terminology is also used to describe the security requirements of the
Java EE platform:

= Principal: An entity that can be authenticated by an authentication protocol in a
security service that is deployed in an enterprise. A principal is identified by using a
principal name and authenticated by using authentication data.

= Security policy domain, also known as security domain or realm: A scope over
which a common security policy is defined and enforced by the security
administrator of the security service.

= Security attributes: A set of attributes associated with every principal. The security
attributes have many uses: for example, access to protected resources and auditing
of users. Security attributes can be associated with a principal by an authentication
protocol.

= Credential: An object that contains or references security attributes used to
authenticate a principal for Java EE services. A principal acquires a credential upon
authentication or from another principal that allows its credential to be used.

Managing Users and Groups on the GlassFish Server

Follow these steps for managing users before you run the tutorial examples.

The Java EE 6 Tutorial: Basic Concepts

Working with Realms, Users, Groups, and Roles

To Add Users to the GlassFish Server

Start the GlassFish Server, if you haven’t already done so.

Information on starting the GlassFish Server is available in “Starting and Stopping the
GlassFish Server” on page 41.

Start the Administration Console, if you haven’t already done so.

To start the Administration Console, open a web browser and specify the URL
http://localhost:4848/.If you changed the default Admin port during installation,
type the correct port number in place of 4848.

In the navigation tree, expand the Configuration node.
Expand the Security node.

Expand the Realms node.

Select the realm to which you are adding users.

= Selectthe file realm to add users you want to access applications running in this
realm.

For the example security applications, select the file realm.

The Edit Realm page opens.

= Select the admin-realmto add users you want to enable as system administrators
of the GlassFish Server.

The Edit Realm page opens.

You cannot add users to the certificate realm by using the Administration Console.
In the certificate realm, you can add only certificates. For information on adding
(importing) certificates to the certificate realm, see “Adding Users to the Certificate
Realm” on page 446.

On the Edit Realm page, click the Manage Users button.
The File Users or Admin Users page opens.

On the File Users or Admin Users page, click New to add a new user to the realm.
The New File Realm User page opens.

Chapter 23 -« Introduction to Security in the Java EE Platform 445

http://localhost:4848/

Working with Realms, Users, Groups, and Roles

446

10

Type values in the User ID, Group List, New Password, and Confirm New Password
fields.

For the Admin Realm, the Group List field is read-only, and the group name is
asadmin. Restart the GlassFish Server and Administration Console after you add a user
to the Admin Realm.

For more information on these properties, see “Working with Realms, Users, Groups,
and Roles” on page 441.

For the example security applications, specify a user with any name and password you
like, but make sure that the user is assigned to the group TutorialUser. The user name
and password are case-sensitive. Keep a record of the user name and password for
working with the examples later in this tutorial.

Click OK to add this user to the realm, or click Cancel to quit without saving.

Adding Users to the Certificate Realm

In the certificate realm, user identity is set up in the GlassFish Server security
context and populated with user data obtained from cryptographically verified client
certificates. For step-by-step instructions for creating this type of certificate, see
“Working with Digital Certificates” on page 450.

Setting Up Security Roles

When you design an enterprise bean or web component, you should always think
about the kinds of users who will access the component. For example, a web
application for a human resources department might have a different request URL for
someone who has been assigned the role of DEPT_ADMIN than for someone who has
been assigned the role of DIRECTOR. The DEPT_ADMIN role may let you view employee
data, but the DIRECTOR role enables you to modify employee data, including salary
data. Each of these security roles is an abstract logical grouping of users that is defined
by the person who assembles the application. When an application is deployed, the
deployer will map the roles to security identities in the operational environment, as
shown in Figure 23-6.

For Java EE components, you define security roles using the @declareRoles and
@RolesAllowed metadata annotations.

The following is an example of an application in which the role of DEPT-ADMIN is
authorized for methods that review employee payroll data, and the role of DIRECTOR is
authorized for methods that change employee payroll data.

The enterprise bean would be annotated as shown in the following code:

The Java EE 6 Tutorial: Basic Concepts

Working with Realms, Users, Groups, and Roles

import javax.annotation.security.DeclareRoles;
import javax.annotation.security.RolesAllowed;

@DeclareRoles ({"DEPT-ADMIN", "DIRECTOR"})
@Stateless public class PayrollBean implements Payroll {
@Resource SessionContext ctx;

@RolesAllowed ("DEPT-ADMIN")
public void reviewEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

/...
}

@RolesAllowed ("DIRECTOR")
public void updateEmployeeInfo(EmplInfo info) {

newInfo = ... update database;

// ...

}

For a servlet, you can use the @HttpConstraint annotation within the
@ServletSecurity annotation to specify the roles that are allowed to access the
servlet. For example, a servlet might be annotated as follows:

@WebServlet(name = "PayrollServlet", urlPatterns = {"/payroll"})

@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,
rolesAllowed = {"DEPT-ADMIN", "DIRECTOR"}))

public class GreetingServlet extends HttpServlet {

These annotations are discussed in more detail in “Specifying Security for Basic
Authentication Using Annotations” on page 476 and “Securing an Enterprise Bean
Using Declarative Security” on page 489.

After users have provided their login information and the application has declared
what roles are authorized to access protected parts of an application, the next step is to
map the security role to the name of a user, or principal.

Mapping Roles to Users and Groups

When you are developing a Java EE application, you don’t need to know what
categories of users have been defined for the realm in which the application will be run.
In the Java EE platform, the security architecture provides a mechanism for mapping
the roles defined in the application to the users or groups defined in the runtime realm.

Chapter 23 -« Introduction to Security in the Java EE Platform 447

Working with Realms, Users, Groups, and Roles

448

The role names used in the application are often the same as the group names defined
on the GlassFish Server. Under these circumstances, you can enable a default
principal-to-role mapping on the GlassFish Server by using the Administration
Console. The task “T'o Set Up Your System for Running the Security Examples” on
page 474 explains how to do this. All the tutorial security examples use default
principal-to-role mapping.

If the role names used in an application are not the same as the group names defined
on the server, use the runtime deployment descriptor to specify the mapping. The
following example demonstrates how to do this mapping in the sun-web. xml file,
which is the file used for web applications:

<sun-web-app>

<security-role-mapping>
<role-name>Mascot</role-name>
<principal-name>Duke</principal-name>

</security-role-mapping>

<security-role-mapping>
<role-name>Admin</role-name>
<group-name>Director</group-name>

</security-role-mapping>

</sun-web-app>

A role can be mapped to specific principals, specific groups, or both. The principal or
group names must be valid principals or groups in the current default realm or in the
realm specified in the login-config element. In this example, the role of Mascot used
in the application is mapped to a principal, named Duke, that exists on the application
server. Mapping a role to a specific principal is useful when the person occupying that
role may change. For this application, you would need to modify only the runtime
deployment descriptor rather than search and replace throughout the application for
references to this principal.

Also in this example, the role of Admin is mapped to a group of users assigned the
group name of Director. This is useful because the group of people authorized to
access director-level administrative data has to be maintained only on the GlassFish
Server. The application developer does not need to know who these people are, but
only needs to define the group of people who will be given access to the information.

The role-name must match the role-name in the security-role element of the
corresponding deployment descriptor or the role name defined in a @eclareRoles
annotation.

The Java EE 6 Tutorial: Basic Concepts

Establishing a Secure Connection Using SSL

Establishing a Secure Connection Using SSL

Secure Socket Layer (SSL) technology is security that is implemented at the transport
layer (see “Transport-Layer Security” on page 437 for more information about
transport-layer security). SSL allows web browsers and web servers to communicate
over a secure connection. In this secure connection, the data is encrypted before being
sent and then is decrypted upon receipt and before processing. Both the browser and
the server encrypt all traffic before sending any data.

SSL addresses the following important security considerations:

= Authentication: During your initial attempt to communicate with a web server
over a secure connection, that server will present your web browser with a set of
credentials in the form of a server certificate. The purpose of the certificate is to
verify that the site is who and what it claims to be. In some cases, the server may
request a certificate proving that the client is who and what it claims to be; this
mechanism is known as client authentication.

= Confidentiality: When data is being passed between the client and the server on a
network, third parties can view and intercept this data. SSL responses are
encrypted so that the data cannot be deciphered by the third party and the data

remains confidential.

= Integrity: When data is being passed between the client and the server on a
network, third parties can view and intercept this data. SSL helps guarantee that the
data will not be modified in transit by that third party.

The SSL protocol is designed to be as efficient as securely possible. However,
encryption and decryption are computationally expensive processes from a
performance standpoint. It is not strictly necessary to run an entire web application
over SSL, and it is customary for a developer to decide which pages require a secure
connection and which do not. Pages that might require a secure connection include
those for login, personal information, shopping cart checkouts, or credit card
information transmittal. Any page within an application can be requested over a
secure socket by simply prefixing the address with https: instead of http:. Any pages
that absolutely require a secure connection should check the protocol type associated
with the page request and take the appropriate action if https: is not specified.

Using name-based virtual hosts on a secured connection can be problematic. Thisis a
design limitation of the SSL protocol itself. The SSL handshake, whereby the client
browser accepts the server certificate, must occur before the HTTP request is accessed.
As aresult, the request information containing the virtual host name cannot be
determined before authentication, and it is therefore not possible to assign multiple
certificates to a single IP address. If all virtual hosts on a single IP address need to
authenticate against the same certificate, the addition of multiple virtual hosts should
not interfere with normal SSL operations on the server. Be aware, however, that most
client browsers will compare the server’s domain name against the domain name listed

Chapter 23 -« Introduction to Security in the Java EE Platform 449

Establishing a Secure Connection Using SSL

450

in the certificate, if any; this is applicable primarily to official certificates signed by a
certificate authority (CA). If the domain names do not match, these browsers will
display a warning to the client. In general, only address-based virtual hosts are
commonly used with SSL in a production environment.

Verifying and Configuring SSL Support

As a general rule, you must address the following issues to enable SSL for a server:

= There must bea Connector element for an SSL connector in the server deployment
descriptor.

= There must be valid keystore and certificate files.

= Thelocation of the keystore file and its password must be specified in the server
deployment descriptor.

An SSL HTTPS connector is already enabled in the GlassFish Server.

For testing purposes and to verify that SSL support has been correctly installed, load
the default introduction page with a URL that connects to the port defined in the
server deployment descriptor:

https://localhost:8181/

The https in this URL indicates that the browser should be using the SSL protocol.
The localhost in this example assumes that you are running the example on your
local machine as part of the development process. The 8181 in this example is the
secure port that was specified where the SSL connector was created. If you are using a
different server or port, modify this value accordingly.

The first time that you load this application, the New Site Certificate or Security Alert
dialog box appears. Select Next to move through the series of dialog boxes, and select
Finish when you reach the last dialog box. The certificates will display only the first
time. When you accept the certificates, subsequent hits to this site assume that you still
trust the content.

Working with Digital Certificates

Digital certificates for the GlassFish Server have already been generated and can be
found in the directory as-install/domain-dir/config/. These digital certificates are
self-signed and are intended for use in a development environment; they are not
intended for production purposes. For production purposes, generate your own
certificates and have them signed by a CA.

The Java EE 6 Tutorial: Basic Concepts

https://localhost:8181/

Establishing a Secure Connection Using SSL

To use SSL, an application or web server must have an associated certificate for each
external interface, or IP address, that accepts secure connections. The theory behind
this design is that a server should provide some kind of reasonable assurance that its
owner is who you think it is, particularly before receiving any sensitive information. It
may be useful to think of a certificate as a “digital driver’s license” for an Internet
address. The certificate states with which company the site is associated, along with
some basic contact information about the site owner or administrator.

The digital certificate is cryptographically signed by its owner and is difficult for
anyone else to forge. For sites involved in e-commerce or in any other business
transaction in which authentication of identity is important, a certificate can be
purchased from a well-known CA such as VeriSign or Thawte. If your server certificate
is self-signed, you must install it in the GlassFish Server keystore file (keystore. jks).
If your client certificate is self-signed, you should install it in the GlassFish Server
truststore file (cacerts. jks).

Sometimes, authentication is not really a concern. For example, an administrator
might simply want to ensure that data being transmitted and received by the server is
private and cannot be snooped by anyone eavesdropping on the connection. In such
cases, you can save the time and expense involved in obtaining a CA certificate and
simply use a self-signed certificate.

SSL uses public-key cryptography, which is based on key pairs. Key pairs contain one
public key and one private key. Data encrypted with one key can be decrypted only
with the other key of the pair. This property is fundamental to establishing trust and
privacy in transactions. For example, using SSL, the server computes a value and
encrypts it by using its private key. The encrypted value is called a digital signature.
The client decrypts the encrypted value by using the server’s public key and compares
the value to its own computed value. If the two values match, the client can trust that
the signature is authentic, because only the private key could have been used to
produce such a signature.

Digital certificates are used with HTTPS to authenticate web clients. The HTTPS
service of most web servers will not run unless a digital certificate has been installed.
Use the procedure outlined in the next section, “Creating a Server Certificate” on
page 452, to set up a digital certificate that can be used by your application or web
server to enable SSL.

One tool that can be used to set up a digital certificate is keytool, a key and certificate
management utility that ships with the JDK. This tool enables users to administer their
own public/private key pairs and associated certificates for use in self-authentication,
whereby the user authenticates himself or herself to other users or services, or data
integrity and authentication services, using digital signatures. The tool also allows
users to cache the public keys, in the form of certificates, of their communicating
peers. For a better understanding of keytool and public-key cryptography, see the

Chapter 23 -« Introduction to Security in the Java EE Platform 451

Establishing a Secure Connection Using SSL

452

keytool documentation at http://download.oracle.com/
docs/cd/E17409 01/javase/6/docs/technotes/tools/solaris/keytool.html.

Creating a Server Certificate

A server certificate has already been created for the GlassFish Server and can be found
in the domain-dir/config/ directory. The server certificate is in keystore. jks. The
cacerts. jks file contains all the trusted certificates, including client certificates.

If necessary, you can use keytool to generate certificates. The keytool utility stores
the keys and certificates in a file termed a keystore, a repository of certificates used for
identifying a client or a server. Typically, a keystore is a file that contains one client’s or
one server’s identity. The keystore protects private keys by using a password.

If you don’t specify a directory when specifying the keystore file name, the keystores
are created in the directory from which the keytool command is run. This can be the
directory where the application resides, or it can be a directory common to many
applications.

The general steps for creating a server certificate are as follows.

1. Create the keystore.

2. Export the certificate from the keystore.
3. Sign the certificate.
4

Import the certificate into a truststore: a repository of certificates used for verifying
the certificates. A truststore typically contains more than one certificate.

“To Use keytool to Create a Server Certificate” on page 452 provides specific
information on using the keytool utility to perform these steps.

To Use keytool to Create a Server Certificate

Run keytool to generate a new key pair in the default development keystore file,
keystore. jks. This example uses the alias server-alias to generate a new
public/private key pair and wrap the public key into a self-signed certificate inside
keystore. jks. The key pair is generated by using an algorithm of type RSA, with a
default password of changeit. For more information and other examples of creating
and managing keystore files, read the keytool online help at http://
download.oracle.com/

docs/cd/E17409 01/javase/6/docs/technotes/tools/solaris/keytool.html.

Note - RSA is public-key encryption technology developed by RSA Data Security, Inc.

From the directory in which you want to create the key pair, run keytool as shown in
the following steps.

The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html

Establishing a Secure Connection Using SSL

Generate the server certificate.
Type the keytool command all on one line:

java-home/bin/keytool -genkey -alias server-alias -keyalg RSA -keypass changeit
-storepass changeit -keystore keystore.jks

When you press Enter, keytool prompts you to enter the server name, organizational
unit, organization, locality, state, and country code.

You must type the server name in response to keytooUs first prompt, in which it asks
for first and last names. For testing purposes, this can be localhost.

When you run the example applications, the host (server name) specified in the
keystore must match the host identified in the javaee.server.name property
specified in the file tut-install/examples/bp-project/build.properties.

Export the generated server certificate in keystore. jks into the file server.cer.
Type the keytool command all on one line:
java-home/bin/keytool -export -alias server-alias -storepass changeit

-file server.cer -keystore keystore.jks

If you want to have the certificate signed by a CA, read the example at
http://download.oracle.com/
docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html.

To add the server certificate to the truststore file, cacerts. jks, run keytool from the
directory where you created the keystore and server certificate.

Use the following parameters:

java-home/bin/keytool -import -v -trustcacerts -alias server-alias
-file server.cer -keystore cacerts.jks -keypass changeit -storepass changeit

Information on the certificate, such as that shown next, will appear:

Owner: CN=localhost, OU=Sun Micro, 0O=Docs, L=Santa Clara, ST=CA,
C=USIssuer: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,
C=USSerial number: 3e932169Valid from: Tue Apr 08Certificate
fingerprints:MD5: 52:9F:49:68:ED:78:6F:39:87:F3:98:B3:6A:6B:0F:90 SHAL:
EE:2E:2A:A6:9E:03:9A:3A:1C:17:4A:28:5E:97:20:78:3F:

Trust this certificate? [no]:

Type yes, then press the Enter or Return key.
The following information appears:

Certificate was added to keystore[Saving cacerts.jks]

Chapter 23 -« Introduction to Security in the Java EE Platform 453

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html

Further Information about Security

Further Information about Security

454

For more information about security in Java EE applications, see

Java EE 6 specification:
http://jcp.org/en/jsr/detail?id=316

The Oracle GlassFish Server 3.0.1 Application Development Guide, which includes
security information for application developers, such as information on security
settings in the deployment descriptors specific to the GlassFish Server

The Oracle GlassFish Server 3.0.1 Administration Guide, which includes
information on setting security settings for the GlassFish Server

Enterprise JavaBeans 3.1 specification:
http://jcp.org/en/jsr/detail?id=318
Implementing Enterprise Web Services 1.3 specification:
http://jcp.org/en/jsr/detail?id=109

Java SE security information:

http://download.oracle.com/
docs/cd/E17409 01/javase/6/docs/technotes/guides/security/

Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

Java Authorization Contract for Containers 1.3 specification:
http://jcp.org/en/jsr/detail?id=115

Java Authentication and Authorization Service (JAAS) Reference Guide:

http://download.oracle.com/
docs/cd/E17409 01/javase/6/docs/technotes/guides/security/jaas/
JAASRefGuide.html

Java Authentication and Authorization Service (JAAS): LoginModule Developer’s
Guide:

http://download.oracle.com/
docs/cd/E17409 01/javase/6/docs/technotes/guides/security/jaas/
JAASLMDevGuide.html

The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=109
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=115
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

L K R 4 CHAPTER 24

Getting Started Securing Web Applications

A web application is accessed using a web browser over a network, such as the Internet
or a company’s intranet. As discussed in “Distributed Multitiered Applications” on
page 6, the Java EE platform uses a distributed multitiered application model, and web
applications run in the web tier.

Web applications contain resources that can be accessed by many users. These
resources often traverse unprotected, open networks, such as the Internet. In such an
environment, a substantial number of web applications will require some type of
security. The ways to implement security for Java EE web applications are discussed in
a general way in “Securing Containers” on page 439. This chapter provides more detail
and a few examples that explore these security services as they relate to web
components.

Securing applications and their clients in the business tier and the EIS tier is discussed
in Chapter 25, “Getting Started Securing Enterprise Applications”

The following topics are addressed here:

“Overview of Web Application Security” on page 455

“Securing Web Applications” on page 457

“Using Programmatic Security with Web Applications” on page 469
“Examples: Securing Web Applications” on page 474

Overview of Web Application Security

In the Java EE platform, web components provide the dynamic extension capabilities
for a web server. Web components can be Java servlets or JavaServer Faces pages. The
interaction between a web client and a web application is illustrated in Figure 24-1.

455

Overview of Web Application Security

456

FIGURE 24-1 Java Web Application Request Handling

Web @ .| HttpServilet (2 @
Client HTTP Request ~— Web il
Request |L—— i Components
® l@ Database
® HttpServlet
THTTP Response JavaBeans
Response | U Components

@

Database

Certain aspects of web application security can be configured when the application is
installed, or deployed, to the web container. Annotations and/or deployment
descriptors are used to relay information to the deployer about security and other
aspects of the application. Specifying this information in annotations or in the
deployment descriptor helps the deployer set up the appropriate security policy for the
web application. Any values explicitly specified in the deployment descriptor override
any values specified in annotations.

Security for Java EE web applications can be implemented in the following ways.

= Declarative security: Can be implemented using either metadata annotations or
an application’s deployment descriptor. See “Overview of Java EE Security” on
page 430 for more information.

Declarative security for web applications is described in “Securing Web
Applications” on page 457.

= Programmatic security: Is embedded in an application and can be used to make
security decisions when declarative security alone is not sufficient to express the
security model of an application. Declarative security alone may not be sufficient
when conditional login in a particular work flow, instead of for all cases, is required
in the middle of an application. See “Overview of Java EE Security” on page 430 for
more information.

Servlet 3.0 provides the authenticate, login, and logout methods of the
HttpServletRequest interface. With the addition of the authenticate, login,
and logout methods to the Servlet specification, an application deployment
descriptor is no longer required for web applications but may still be used to
further specify security requirements beyond the basic default values.

The Java EE 6 Tutorial: Basic Concepts

Securing Web Applications

Programmatic security is discussed in “Using Programmatic Security with Web
Applications” on page 469

= Message Security: Works with web services and incorporates security features,
such as digital signatures and encryption, into the header of a SOAP message,
working in the application layer, ensuring end-to-end security. Message security is
not a component of Java EE 6 and is mentioned here for informational purposes
only.

Some of the material in this chapter builds on material presented earlier in this
tutorial. In particular, this chapter assumes that you are familiar with the information
in the following chapters:

Chapter 3, “Getting Started with Web Applications”

Chapter 4, “JavaServer Faces Technology”

Chapter 10, “Java Servlet Technology”

Chapter 23, “Introduction to Security in the Java EE Platform”

Securing Web Applications

Web applications are created by application developers who give, sell, or otherwise
transfer the application to an application deployer for installation into a runtime
environment. Application developers communicate how to set up security for the
deployed application by using annotations or deployment descriptors. This
information is passed on to the deployer, who uses it to define method permissions for
security roles, set up user authentication, and set up the appropriate transport
mechanism. If the application developer doesn’t define security requirements, the
deployer will have to determine the security requirements independently.

Some elements necessary for security in a web application cannot be specified as
annotations for all types of web applications. This chapter explains how to secure web
applications using annotations wherever possible. It explains how to use deployment
descriptors where annotations cannot be used.

Specifying Security Constraints

A security constraint is used to define the access privileges to a collection of resources
using their URL mapping.

If your web application uses a servlet, you can express the security constraint
information by using annotations. Specifically, you use the @HttpConstraint and,
optionally, the @HttpMethodConstraint annotations within the @ServletSecurity
annotation to specify a security constraint.

Chapter24 - Getting Started Securing Web Applications 457

Securing Web Applications

458

If your web application does not use a servlet, however, you must specify a
security-constraint element in the deployment descriptor file. The authentication
mechanism cannot be expressed using annotations, so if you use any authentication
method other than BASIC (the default), a deployment descriptor is required.

The following subelements can be part of a security-constraint:

Web resource collection (web-resource-collection): A list of URL patterns (the
part of a URL after the host name and port you want to constrain) and HTTP
operations (the methods within the files that match the URL pattern you want to
constrain) that describe a set of resources to be protected. Web resource collections
are discussed in “Specifying a Web Resource Collection” on page 458.

Authorization constraint (auth-constraint): Specifies whether authentication is
to be used and names the roles authorized to perform the constrained requests. For
more information about authorization constraints, see “Specifying an
Authentication Mechanism in the Deployment Descriptor” on page 467.

User data constraint (user-data-constraint): Specifies how data is protected
when transported between a client and a server. User data constraints are discussed
in “Specifying a Secure Connection” on page 459.

Specifying a Web Resource Collection

A web resource collection consists of the following subelements:

web- resource-name is the name you use for this resource. Its use is optional.

url-patternis used to list the request URI to be protected. Many applications
have both unprotected and protected resources. To provide unrestricted access to a
resource, do not configure a security constraint for that particular request URI.

The request URI is the part of a URL after the host name and port. For example,
let’s say that you have an e-commerce site with a catalog that you would want
anyone to be able to access and browse, and a shopping cart area for customers
only. You could set up the paths for your web application so that the pattern
/cart/* is protected but nothing else is protected. Assuming that the application is
installed at context path /myapp, the following are true:

® http://localhost:8080/myapp/index.xhtml is not protected.
® http://localhost:8080/myapp/cart/index.xhtml is protected.

A user will be prompted to log in the first time he or she accesses a resource in the
cart/ subdirectory.

http-method or http-method-omission is used to specify which methods should
be protected or which methods should be omitted from protection. An HTTP
method is protected by aweb- resource-collection under any of the following
circumstances:

The Java EE 6 Tutorial: Basic Concepts

http://localhost:8080/myapp/index.xhtml
http://localhost:8080/myapp/cart/index.xhtml

Securing Web Applications

= Ifno HTTP methods are named in the collection (which means that all are
protected)

= Ifthe collection specifically names the HT'TP method in an http-method
subelement

= Ifthe collection contains one or more http-method-omission elements, none
of which names the HTTP method

Specifying an Authorization Constraint

An authorization constraint (auth-constraint) contains the role-name element.
You can use as many role-name elements as needed here.

An authorization constraint establishes a requirement for authentication and names
the roles authorized to access the URL patterns and HTTP methods declared by this
security constraint. If there is no authorization constraint, the container must accept
the request without requiring user authentication. If there is an authorization
constraint but no roles are specified within it, the container will not allow access to
constrained requests under any circumstances. Each role name specified here must
either correspond to the role name of one of the security- role elements defined for
this web application or be the specially reserved role name *, which indicates all roles
in the web application. Role names are case sensitive. The roles defined for the
application must be mapped to users and groups defined on the server, except when
default principal-to-role mapping is used.

For more information about security roles, see “Declaring Security Roles” on page 468.
For information on mapping security roles, see “Mapping Roles to Users and Groups”
on page 447.

For a servlet, the @HttpConstraint and @HttpMethodConstraint annotations accepta
rolesAllowed element that specifies the authorized roles.

Specifying a Secure Connection

A user data constraint (user-data-constraint in the deployment descriptor)
contains the transport-guarantee subelement. A user data constraint can be used to
require that a protected transport-layer connection, such as HT'TPS, be used for all
constrained URL patterns and HTTP methods specified in the security constraint. The
choices for transport guarantee are CONFIDENTIAL, INTEGRAL, or NONE. If you specify
CONFIDENTIAL or INTEGRAL as a security constraint, it generally means that the use of
SSL is required and applies to all requests that match the URL patterns in the web
resource collection, not just to the login dialog box.

Chapter24 - Getting Started Securing Web Applications 459

Securing Web Applications

460

The strength of the required protection is defined by the value of the transport
guarantee.

= Specify CONFIDENTIAL when the application requires that data be transmitted so as
to prevent other entities from observing the contents of the transmission.

= Specify INTEGRAL when the application requires that the data be sent between client
and server in such a way that it cannot be changed in transit.

= Specify NONE to indicate that the container must accept the constrained requests on
any connection, including an unprotected one.

Note - In practice, Java EE servers treat the CONFIDENTIAL and INTEGRAL transport
guarantee values identically.

The user data constraint is handy to use in conjunction with basic and form-based user
authentication. When the login authentication method is set to BASIC or FORM,
passwords are not protected, meaning that passwords sent between a clientand a
server on an unprotected session can be viewed and intercepted by third parties. Using
a user data constraint with the user authentication mechanism can alleviate this
concern. Configuring a user authentication mechanism is described in “Specifying an
Authentication Mechanism in the Deployment Descriptor” on page 467.

To guarantee that data is transported over a secure connection, ensure that SSL
support is configured for your server. SSL support is already configured for the
GlassFish Server.

Note — After you switch to SSL for a session, you should never accept any non-SSL
requests for the rest of that session. For example, a shopping site might not use SSL
until the checkout page, and then it might switch to using SSL to accept your card
number. After switching to SSL, you should stop listening to non-SSL requests for this
session. The reason for this practice is that the session ID itself was not encrypted on
the earlier communications. This is not so bad when you’re only doing your shopping,
but after the credit card information is stored in the session, you don’t want anyone to
use that information to fake the purchase transaction against your credit card. This
practice could be easily implemented by using a filter.

Specifying Separate Security Constraints for Various Resources

You can create a separate security constraint for various resources within your
application. For example, you could allow users with the role of PARTNER access to the
GET and POST methods of all resources with the URL pattern /acme/wholesale/* and
allow users with the role of CLIENT access to the GET and POST methods of all resources
with the URL pattern /acme/retail/*. An example of a deployment descriptor that
would demonstrate this functionality is the following:

The Java EE 6 Tutorial: Basic Concepts

Securing Web Applications

<!-- SECURITY CONSTRAINT #1 -->
<security-constraint>
<web-resource-collection>
<web-resource-name>wholesale</web-resource-name>
<url-pattern>/acme/wholesale/*</url-pattern>
<http-method>GET</http-method>
<http-method>P0OST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>PARTNER</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>

<!-- SECURITY CONSTRAINT #2 -->
<security-constraint>
<web-resource-collection>
<web-resource-name>retail</web-resource-name>
<url-pattern>/acme/retail/*</url-pattern>
<http-method>GET</http-method>
<http-method>P0ST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>CLIENT</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>

When the same url-patternand http-method occur in multiple security constraints,
the constraints on the pattern and method are defined by combining the individual
constraints, which could result in unintentional denial of access.

Specifying Authentication Mechanisms

A user authentication mechanism specifies

= The way a user gains access to web content
= With basic authentication, the realm in which the user will be authenticated
» With form-based authentication, additional attributes

When an authentication mechanism is specified, the user must be authenticated
before access is granted to any resource that is constrained by a security constraint.
There can be multiple security constraints applying to multiple resources, but the
same authentication method will apply to all constrained resources in an application.

Before you can authenticate a user, you must have a database of user names,
passwords, and roles configured on your web or application server. For information
on setting up the user database, see “Managing Users and Groups on the GlassFish
Server” on page 444.

Chapter24 - Getting Started Securing Web Applications 461

Securing Web Applications

462

HTTP basic authentication and form-based authentication are not very secure
authentication mechanisms. Basic authentication sends user names and passwords
over the Internet as Base64-encoded text; form-based authentication sends this data as
plain text. In both cases, the target server is not authenticated. Therefore, these forms
of authentication leave user data exposed and vulnerable. If someone can intercept the
transmission, the user name and password information can easily be decoded.
However, when a secure transport mechanism, such as SSL, or security at the network
level, such as the Internet Protocol Security (IPsec) protocol or virtual private network
(VPN) strategies, is used in conjunction with basic or form-based authentication,
some of these concerns can be alleviated. To specify a secure transport mechanism, use
the elements described in “Specifying a Secure Connection” on page 459.

HTTP Basic Authentication

Specifying HTTP basic authentication requires that the server request a user name and
password from the web client and verify that the user name and password are valid by
comparing them against a database of authorized users in the specified or default
realm.

Basic authentication is the default when you do not specify an authentication
mechanism.

When basic authentication is used, the following actions occur:

1. A client requests access to a protected resource.

2. The web server returns a dialog box that requests the user name and password.

3. The client submits the user name and password to the server.

4. The server authenticates the user in the specified realm and, if successful, returns

the requested resource.

Figure 24-2 shows what happens when you specify HTTP basic authentication.

The Java EE 6 Tutorial: Basic Concepts

Securing Web Applications

FIGURE24-2 HTTP Basic Authentication

@

Requests a protected resource

\ ® |

Client _ Requests username:password Server

3

©)
‘/ Sends username:password

@

Returns requested resource

Form-Based Authentication

Form-based authentication allows the developer to control the look and feel of the
login authentication screens by customizing the login screen and error pages that an
HTTP browser presents to the end user. When form-based authentication is declared,
the following actions occur.

1. A client requests access to a protected resource.

2. Ifthe clientis unauthenticated, the server redirects the client to a login page.
3. The client submits the login form to the server.

4. The server attempts to authenticate the user.

a. Ifauthentication succeeds, the authenticated user’s principal is checked to
ensure that it is in a role that is authorized to access the resource. If the user is
authorized, the server redirects the client to the resource by using the stored
URL path.

b. Ifauthentication fails, the client is forwarded or redirected to an error page.

Figure 24-3 shows what happens when you specify form-based authentication.

Chapter24 - Getting Started Securing Web Applications 463

Securing Web Applications

464

FIGURE 24-3 Form-Based Authentication

@

Requests protected resource

o l
Redirected to
login page

®

Form submitted

Server

Client Login <
Page

j_security_check

< @ J

Redirected to source Success

< \\<§//

I
Faillure

Error Error page returned
Page

The section “Example: Form-Based Authentication with a JavaServer Faces
Application” on page 479 is an example application that uses form-based
authentication.

When you create a form-based login, be sure to maintain sessions using cookies or SSL
session information.

For authentication to proceed appropriately, the action of the login form must always
be j_security_check. This restriction is made so that the login form will work no
matter which resource it is for and to avoid requiring the server to specify the action
field of the outbound form. The following code snippet shows how the form should be
coded into the HTML page:

<form method="POST" action="j security check">
<input type="text" name="j username"s

<input type="password" name="j password">
</form>

Digest Authentication

Like basic authentication, digest authentication authenticates a user based on a user
name and a password. However, unlike basic authentication, digest authentication
does not send user passwords over the network. Instead, the client sends a one-way
cryptographic hash of the password and additional data. Although passwords are not

The Java EE 6 Tutorial: Basic Concepts

Securing Web Applications

sent on the wire, digest authentication requires that clear-text password equivalents be
available to the authenticating container so that it can validate received authenticators
by calculating the expected digest.

Client Authentication

With client authentication, the web server authenticates the client by using the client’s
public key certificate. Client authentication is a more secure method of authentication
than either basic or form-based authentication. It uses HTTP over SSL (HTTPS), in
which the server authenticates the client using the client’s public key certificate. SSL
technology provides data encryption, server authentication, message integrity, and
optional client authentication for a TCP/IP connection. You can think of a public key
certificate as the digital equivalent of a passport. The certificate is issued by a trusted
organization, a certificate authority (CA), and provides identification for the bearer.

Before using client authentication, make sure the client has a valid public key
certificate. For more information on creating and using public key certificates, read
“Working with Digital Certificates” on page 450.

Mutual Authentication

With mutual authentication, the server and the client authenticate each other. Mutual
authentication is of two types:

= Certificate-based (see Figure 24-4)
= User name/password-based (see Figure 24-5)

When using certificate-based mutual authentication, the following actions occur.
A client requests access to a protected resource.

The web server presents its certificate to the client.

The client verifies the server’s certificate.

If successful, the client sends its certificate to the server.

The server verifies the client’s credentials.

A e

If successful, the server grants access to the protected resource requested by the
client.

Figure 24-4 shows what occurs during certificate-based mutual authentication.

Chapter24 - Getting Started Securing Web Applications 465

Securing Web Applications

466

FIGURE 24-4 Certificate-Based Mutual Authentication

trustStore ® Verifies
; certificate
Verifies client.cert
@ certificate
> || server.cert

@

Requests protected resource

Client Server
@

Presents certificate <

¢ @

. Presents certificate

®

Accesses protected resource

| T

client.keystore server.keystore

client.cert | server.cert

In user name/password-based mutual authentication, the following actions occur.

. A client requests access to a protected resource.
. The web server presents its certificate to the client.

1
2
3.
4

The client verifies the server’s certificate.

. If successful, the client sends its user name and password to the server, which

verifies the client’s credentials.

If the verification is successful, the server grants access to the protected resource
requested by the client.

Figure 24-5 shows what occurs during user name/password-based mutual
authentication.

The Java EE 6 Tutorial: Basic Concepts

Securing Web Applications

FIGURE 24-5 User Name/Password-Based Mutual Authentication

trustStore server.keystore
server.cert server.cert

Verifies
certificate

@

Requests protected resource
Client quests p s

&)

Presents certificate

@

Sends username:password

®

Accesses protected resource

Specifying an Authentication Mechanism in the Deployment
Descriptor

To specify an authentication mechanism, use the login-config element. It can
contain the following subelements.

= Theauth-method subelement configures the authentication mechanism for the
web application. The element content must be either NONE, BASIC, DIGEST, FORM, or
CLIENT-CERT.

= The realm-name subelement indicates the realm name to use when the basic
authentication scheme is chosen for the web application.

= The form-login-config subelement specifies the login and error pages that
should be used when form-based login is specified.

Note - Another way to specify form-based authentication is to use the authenticate,
login, and logout methods of HttpServletRequest, as discussed in “Authenticating
Users Programmatically” on page 469.

When you try to access a web resource that is constrained by a security-constraint
element, the web container activates the authentication mechanism that has been
configured for that resource. The authentication mechanism specifies how the user
will be prompted to log in. If the Login-config element is present and the

Chapter24 - Getting Started Securing Web Applications 467

Securing Web Applications

468

auth-method element contains a value other than NONE, the user must be authenticated
to access the resource. If you do not specify an authentication mechanism,
authentication of the user is not required.

The following example shows how to declare form-based authentication in your
deployment descriptor:

<login-config>
<auth-method>FORM</auth-method>
<realm-name>file</realm-name>
<form-login-config>
<form-login-page>/login.xhtml</form-login-page>
<form-error-page>/error.xhtml</form-error-page>
</form-login-config>
</login-config>

The login and error page locations are specified relative to the location of the
deployment descriptor. Examples of login and error pages are shown in “Creating the
Login Form and the Error Page” on page 480.

The following example shows how to declare digest authentication in your
deployment descriptor:

<login-config>
<auth-method>DIGEST</auth-method>
</login-config>

The following example shows how to declare client authentication in your deployment
descriptor:

<login-config>
<auth-method>CLIENT-CERT</auth-method>
</login-config>

Declaring Security Roles

You can declare security role names used in web applications by using the
security-role element of the deployment descriptor. Use this element to list all the
security roles that you have referenced in your application.

The following snippet of a deployment descriptor declares the roles that will be used in
an application using the security- role element and specifies which of these roles is
authorized to access protected resources using the auth-constraint element:

<security-constraint>
<web-resource-collection>
<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/security/protected/*</url-pattern>
<http-method>PUT</http-method>

The Java EE 6 Tutorial: Basic Concepts

Using Programmatic Security with Web Applications

<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>P0OST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
</security-constraint>

<!-- Security roles used by this web application -->
<security-role>
<role-name>manager</role-name>
</security-role>
<security-role>
<role-name>employee</role-name>
</security-role>

In this example, the security- role element lists all the security roles used in the
application: manager and employee. This enables the deployer to map all the roles
defined in the application to users and groups defined on the GlassFish Server.

The auth-constraint element specifies the role, manager, that can access the HTTP
methods PUT, DELETE, GET, POST located in the directory specified by the url-pattern
element (/jsp/security/protected/*).

The @ServletSecurity annotation cannot be used in this situation because its
constraints apply to all URL patterns specified by the @WebServlet annotation.

Using Programmatic Security with Web Applications

Programmatic security is used by security-aware applications when declarative
security alone is not sufficient to express the security model of the application.

Authenticating Users Programmatically

Servlet 3.0 specifies the following methods of the HttpServletRequest interface that
enable you to authenticate users for a web application programmatically:

= authenticate, which allows an application to instigate authentication of the
request caller by the container from within an unconstrained request context. A
login dialog box displays and collects the user name and password for
authentication purposes.

= login, which allows an application to collect username and password information
as an alternative to specifying form-based authentication in an application
deployment descriptor.

= logout, which allows an application to reset the caller identity of a request.

Chapter24 - Getting Started Securing Web Applications 469

Using Programmatic Security with Web Applications

The following example code shows how to use the login and logout methods:

package test;

import java.io.IOException;

import java.io.PrintWriter;

import java.math.BigDecimal;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet (name="TutorialServlet", urlPatterns={"/TutorialServlet"})
public class TutorialServlet extends HttpServlet {

@EJB

private ConverterBean converterBean;

/**
* Processes requests for both HTTP <code>GET</code>
* and <code>P0ST</code> methods.
* @param request servlet request
* @param response servlet response
* @throws ServletException if a servlet-specific error occurs
* @throws IOException if an I/0 error occurs
*/
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {

out.println("<html>")
out.println("<head>")
out.println("<title>Servlet TutorialServlet</title>");
out.println("</head>")
out.println("<body>")
request.login("TutorialUser", "TutorialUser")
BigDecimal result =
converterBean.dollarToYen(new BigDecimal("1.0"));
out.println("<h1>Servlet TutorialServlet result of dollarToYen=
+ result + "</h1>")
out.println("</body>")
out.println("</html>")
} catch (Exception e) {
throw new ServletException(e);
} finally {
request.logout();
out.close();

}

The following example code shows how to use the authenticate method:

470 The Java EE 6 Tutorial: Basic Concepts

Using Programmatic Security with Web Applications

package com.sam.test;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
request.authenticate(response);
out.println("Authenticate Successful")
} finally {
out.close();

}

Checking Caller Identity Programmatically

In general, security management should be enforced by the container in a manner that
is transparent to the web component. The security API described in this section should
be used only in the less frequent situations in which the web component methods need
to access the security context information.

Servlet 3.0 specifies the following methods that enable you to access security
information about the component’s caller:

m getRemoteUser, which determines the user name with which the client
authenticated. The getRemoteUser method returns the name of the remote user
(the caller) associated by the container with the request. If no user has been
authenticated, this method returns null.

= isUserInRole, which determines whether a remote user is in a specific security
role. If no user has been authenticated, this method returns false. This method
expectsa String user role-name parameter.

The security-role-ref element should be declared in the deployment descriptor
with a role-name subelement containing the role name to be passed to the method.
Using security role references is discussed in “Declaring and Linking Role
References” on page 473.

m getUserPrincipal, which determines the principal name of the current user and
returns a java.security.Principal object. If no user has been authenticated, this
method returns null. Calling the getName method on the Principal returned by
getUserPrincipal returns the name of the remote user.

Your application can make business-logic decisions based on the information
obtained using these APIs.

Chapter24 - Getting Started Securing Web Applications 471

Using Programmatic Security with Web Applications

Example Code for Programmatic Security

The following code demonstrates the use of programmatic security for the purposes of
programmatic login. This servlet does the following:

1. Itdisplays information about the current user.
It prompts the user to log in.
It prints out the information again to demonstrate the effect of the Login method.

It logs the user out.

vk wN

It prints out the information again to demonstrate the effect of the logout method.

package enterprise.programmatic login;

import java.io.*;

import java.net.*;

import javax.annotation.security.DeclareRoles;
import javax.servlet.*;

import javax.servlet.http.*;

@DeclareRoles ("javaee6user")
public class LoginServlet extends HttpServlet {

/**
* Processes requests for both HTTP GET and POST methods.
* @param request servlet request
* @param response servlet response
*/
protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();
try {
String userName = request.getParameter("txtUserName");
String password = request.getParameter("txtPassword");

out.println("Before Login" + "

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
")
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"

");

try {

request.login(userName, password);
} catch(ServletException ex) {

out.println("Login Failed with a ServletException.."

+ ex.getMessage());

return;
}
out.println("After Login..."+"

")
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
")

472 The Java EE 6 Tutorial: Basic Concepts

Using Programmatic Security with Web Applications

" + request.getRemoteUser()+"
")

out.println("getRemoteUser?..

out.println("getUserPrincipal?..
+ request.getUserPrincipal()+"
")

out.println("getAuthType?.." + request.getAuthType()+"

")

request.logout();
out.println("After Logout..."+"

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
")
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
")
out.println("getAuthType?.." + request.getAuthType()+"
")

} finally {
out.close();
}

Declaring and Linking Role References

A security role reference defines a mapping between the name of a role that is called
from a web component using isUserInRole(String role) and the name of a security
role that has been defined for the application. If no security-role-ref elementis
declared in a deployment descriptor and the isUserInRole method is called, the
container defaults to checking the provided role name against the list of all security
roles defined for the web application. Using the default method instead of using the
security-role-ref elementlimits your flexibility to change role names in an
application without also recompiling the servlet making the call.

The security-role-ref element is used when an application uses the
HttpServletRequest.isUserInRole(String role). The value passed to the
isUserInRole method isa String representing the role name of the user. The value of
the role-name element must be the String used as the parameter to the
HttpServletRequest.isUserInRole(String role). The role-link must contain
the name of one of the security roles defined in the security- role elements. The
container uses the mapping of security-role-ref to security-role when
determining the return value of the call.

For example, to map the security role reference cust to the security role with role
name bankCustomer, the syntax would be:
<servlet>
<security-role-ref>
<role-name>cust</role-name>
<role-link>bankCustomer</role-link>

</security-role-ref>

</servliet>

Chapter24 - Getting Started Securing Web Applications 473

Examples: Securing Web Applications

If the servlet method is called by a user in the bankCustomer security role,
isUserInRole("cust") returns true.

The role-link element in the security-role-ref element must match a role-name
defined in the security- role element of the same web. xml deployment descriptor, as
shown here:

<security-role>
<role-name>bankCustomer</role-name>
</security-role>

A security role reference, including the name defined by the reference, is scoped to the
component whose deployment descriptor contains the security-role-ref
deployment descriptor element.

Examples: Securing Web Applications

Some basic setup is required before any of the example applications will run correctly.
The examples use annotations, programmatic security, and/or declarative security to
demonstrate adding security to existing web applications.

Here are some other locations where you will find examples of securing various types
of applications:

= “Example: Securing an Enterprise Bean with Declarative Security” on page 497
= “Example: Securing an Enterprise Bean with Programmatic Security” on page 501
m GlassFish samples: https://glassfish-samples.dev.java.net/

V¥ To Set Up Your System for Running the Security
Examples

To set up your system for running the security examples, you need to configure a user
database that the application can use for authenticating users. Before continuing,
follow these steps.

1 Add an authorized user to the GlassFish Server. For the examples in this chapterand in
Chapter 25, “Getting Started Securing Enterprise Applications,”add a user to the file
realm of the GlassFish Server, and assign the user to the group TutorialUser:

a. From the Administration Console, expand the Configuration node.

b. Expand the Security node.

¢. Expand the Realms node.

474 The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Web Applications

d. SelecttheFile node.

e. OntheEdit Realm page, click Manage Users.

f. OntheFile Users page, click New.

g. IntheUserIDfield, type a User ID.

h. Inthe Group List field, type TutorialUser.

i. Inthe New Password and Confirm New Password fields, type a password.

j. Click OK.

Be sure to write down the user name and password for the user you create so that you
can use it for testing the example applications. Authentication is case sensitive for both
the user name and password, so write down the user name and password exactly. This
topic is discussed more in “Managing Users and Groups on the GlassFish Server” on
page 444.

Set up Default Principal to Role Mapping on the GlassFish Server:

b

From the Administration Console, expand the Configuration node.

b. Selectthe Security node.

o

Select the Default Principal to Role Mapping Enabled check box.

d. ClickSave.

Example: Basic Authentication with a Servlet

This example explains how to use basic authentication with a servlet. With basic
authentication of a servlet, the web browser presents a standard login dialog that is not
customizable. When a user submits his or her name and password, the server
determines whether the user name and password are those of an authorized user and
sends the requested web resource if the user is authorized to view it.

Chapter24 - Getting Started Securing Web Applications 475

Examples: Securing Web Applications

476

In general, the following steps are necessary for adding basic authentication to an
unsecured servlet, such as the ones described in Chapter 3, “Getting Started with Web
Applications” In the example application included with this tutorial, many of these
steps have been completed for you and are listed here simply to show what needs to be
done should you wish to create a similar application. The completed version of this
example application can be found in the directory
tut-install/examples/security/hello2 basicauth/.

1. Follow the steps in “To Set Up Your System for Running the Security Examples” on
page 474.

2. Create a web module as described in Chapter 3, “Getting Started with Web
Applications,” for the servlet example, hello2.

3. Add the appropriate security annotations to the servlet. The security annotations
are described in “Specifying Security for Basic Authentication Using Annotations”
on page 476.

4. Build, package, and deploy the web application by following the steps in “T'o Build,
Package, and Deploy the Servlet Basic Authentication Example Using NetBeans
IDE” on page 477 or “To Build, Package, and Deploy the Servlet Basic
Authentication Example Using Ant” on page 478.

5. Run the web application by following the steps described in “T'o Run the Basic
Authentication Servlet” on page 478.

Specifying Security for Basic Authentication Using Annotations

The default authentication mechanism used by the GlassFish Server is basic
authentication. With basic authentication, the GlassFish Server spawns a standard
login dialog to collect user name and password data for a protected resource. Once the
user is authenticated, access to the protected resource is permitted.

To specify security for a servlet, use the @ServletSecurity annotation. This
annotation allows you to specify both specific constraints on HTTP methods and more
general constraints that apply to all HTTP methods for which no specific constraint is
specified. Within the @ServletSecurity annotation, you can specify the following
annotations:

= The@HttpMethodConstraint annotation, which applies to a specific HTTP
method

= The more general @HttpConstraint annotation, which applies to all HTTP
methods for which there is no corresponding @HttpMethodConstraint annotation

The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Web Applications

Both the @HttpMethodConstraint and @HttpConstraint annotations within the
@ServletSecurity annotation can specify the following:

= A transportGuarantee element that specifies the data protection requirements
(that is, whether or not SSL/TLS is required) that must be satisfied by the
connections on which requests arrive. Valid values for this element are NONE and
CONFIDENTIAL.

= A rolesAllowed element that specifies the names of the authorized roles.

For the hello2_basicauth application, the GreetingServlet has the following
annotations:

@WebServlet(name = "GreetingServlet", urlPatterns = {"/greeting"})

@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,
rolesAllowed = {"TutorialUser"}))

These annotations specify that the request URI /greeting can be accessed only by
users who have been authorized to access this URL because they have been verified to
be in the role TutorialUser. The data will be sent over a protected transport in order
to keep the user name and password data from being read in transit.

To Build, Package, and Deploy the Servlet Basic Authentication
Example Using NetBeans IDE

Follow the steps in “To Set Up Your System for Running the Security Examples” on
page 474.

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/security

Select the hello2_basicauth folder.
Select the Open as Main Project check box.
Click Open Project.

Right-click hello2_basicauth in the Projects pane and select Deploy.

This option builds and deploys the example application to your GlassFish Server
instance.

Chapter24 - Getting Started Securing Web Applications 477

Examples: Securing Web Applications

478

v

To Build, Package, and Deploy the Servlet Basic Authentication
Example Using Ant

Follow the stepsin “To Set Up Your System for Running the Security Examples”on
page 474.

In a terminal window, go to:

tut-install/examples/security/hello2 basicauth/

Type the following command:

ant

This command calls the default target, which builds and packages the application
intoa WAR file, hello2_basicauth.war, thatislocated in the dist directory.

Make sure that the GlassFish Server is started.

To deploy the application, type the following command:
ant deploy

To Run the Basic Authentication Servlet

In a web browser, navigate to the following URL:
https://localhost:8181/hello2 basicauth/greeting

You may be prompted to accept the security certificate for the server. If so, accept the
security certificate. If the browser warns that the certificate is invalid because it is
self-signed, add a security exception for the application.

An Authentication Required dialog box appears. Its appearance varies, depending on
the browser you use. Figure 24-6 shows an example.

FIGURE24-6 Sample Basic Authentication Dialog Box

Authentication Required

e Enter username and password For https:fflocalhost:S181

User Mame: | |

Password: | |

The Java EE 6 Tutorial: Basic Concepts

https://localhost:8181/hello2_basicauth/greeting

Examples: Securing Web Applications

2

Next Steps

Type a user name and password combination that corresponds to a user who has
already been created in the file realm of the GlassFish Server and has been assigned
to the group of TutorialUser; then click OK.

Basic authentication is case sensitive for both the user name and password, so type the
user name and password exactly as defined for the GlassFish Server.

The server returns the requested resource if all the following conditions are met.

= A user with the user name you entered is defined for the GlassFish Server.
= The user with the user name you entered has the password you entered.

= The user name and password combination you entered is assigned to the group
TutorialUser on the GlassFish Server.

= Therole of TutorialUser, as defined for the application, is mapped to the group
TutorialUser, as defined for the GlassFish Server.

When these conditions are met and the server has authenticated the user, the
application will appear as shown in Figure 3-2 but with a different URL.

Type a name in the text field and click the Submit button.

Because you have already been authorized, the name you enter in this step does not
have any limitations. You have unlimited access to the application now.

The application responds by saying “Hello” to you, as shown in Figure 3-3 but with a
different URL.

For repetitive testing of this example, you may need to close and reopen your browser.
You should also run the ant undeploy and ant clean targets or the NetBeans IDE
Clean and Build option to get a fresh start.

Example: Form-Based Authentication witha
JavaServer Faces Application

This example explains how to use form-based authentication with a JavaServer Faces
application. With form-based authentication, you can customize the login screen and
error pages that are presented to the web client for authentication of the user name and
password. When a user submits his or her name and password, the server determines
whether the user name and password are those of an authorized user and, if
authorized, sends the requested web resource.

This example, hellol_formauth, adds security to the basic JavaServer Faces
application shown in “Web Modules: The hellol Example” on page 53.

In general, the steps necessary for adding form-based authentication to an unsecured
JavaServer Faces application are similar to those described in “Example: Basic
Authentication with a Servlet” on page 475. The major difference is that you must use a

Chapter24 - Getting Started Securing Web Applications 479

Examples: Securing Web Applications

480

deployment descriptor to specify the use of form-based authentication, as described in
“Specifying Security for the Form-Based Authentication Example” on page 481. In
addition, you must create a login form page and a login error page, as described in
“Creating the Login Form and the Error Page” on page 480.

The completed version of this example application can be found in the directory
tut-install/examples/security/hellol formauth/.

Creating the Login Form and the Error Page

When using form-based login mechanisms, you must specify a page that contains the
form you want to use to obtain the user name and password, as well as a page to display
iflogin authentication fails. This section discusses the login form and the error page
used in this example. “Specifying Security for the Form-Based Authentication
Example” on page 481 shows how you specify these pages in the deployment
descriptor.

The login page can be an HTML page, a JavaServer Faces or JSP page, or a servlet, and
it must return an HTML page containing a form that conforms to specific naming
conventions (see the Java Servlet 3.0 specification for more information on these
requirements). To do this, include the elements that accept user name and password
information between <form></form> tags in your login page. The content of an
HTML page, JavaServer Faces or JSP page, or servlet for a login page should be coded
as follows:

<form method=post action="j security check">
<input type="text" name="j username">
<input type="password" name= "j password">
</form>

The full code for the login page used in this example can be found at
tut-install/examples/security/hellol formauth/web/login.xhtml. An example of
the running login form page is shown later, in Figure 24-7. Here is the code for this

page:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Login Form</title>
</h:head>
<h:body>
<h2>Hello, please log in:</h2>
<form name="loginForm" method="POST" action="j_security_check">
<p>Please type your user name:
<input type="text" name="j_username" size="25"></p>
<p>Please type your password:
<input type="password" size="15" name="j_password"></p>
<p>
<input type="submit" value="Submit"/>
<input type="reset" value="Reset"/></p>

The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Web Applications

</form>
</h:body>
</html>

The login error page is displayed if the user enters a user name and password
combination that is not authorized to access the protected URI. For this example, the
login error page can be found at tut-install/examples/security/hellol_formauth/
web/error.xhtml. For this example, the login error page explains the reason for
receiving the error page and provides a link that will allow the user to try again. Here is
the code for this page:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Login Error</title>
</h:head>
<h:body>
<h2>Invalid user name or password.</h2>

<p>Please enter a user name or password that is authorized to access this
application. For this application, this means a user that has been
created in the <code>file</code> realm and has been assigned to the
group of <code>TutorialUser</code>.</p>

<h:link outcome="login">Return to login page</h:link>

</h:body>
</html>

Specifying Security for the Form-Based Authentication Example

This example takes a very simple servlet-based web application and adds form-based
security. To specify form-based instead of basic authentication for a JavaServer Faces
example, you must use the deployment descriptor.

The following sample code shows the security elements added to the deployment
descriptor for this example, which can be found in tut-install/examples/security/
hellol formauth/web/WEB-INF/web.xml.

<security-constraint>
<display-name>Constraintl</display-name>
<web-resource-collection>
<web-resource-name>wrcoll</web-resource-name>
<description/>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<description/>
<role-name>TutorialUser</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>FORM</auth-method>

Chapter24 - Getting Started Securing Web Applications 481

Examples: Securing Web Applications

482

<realm-name>file</realm-name>
<form-login-config>
<form-login-page>/login.xhtml</form-login-page>
<form-error-page>/error.xhtml</form-error-page>
</form-login-config>
</login-config>
<security-role>
<description/>
<role-name>TutorialUser</role-name>
</security-role>

To Build, Package, and Deploy the Form-Based Authentication
Example Using NetBeans IDE

Follow the stepsin “To Set Up Your System for Running the Security Examples”on
page 474.

Open the project in NetBeans IDE by selecting File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/security

Selectthe hellol_formauth folder.
Select the Open as Main Project check box.
Click Open Project.

Right-click hellol_formauth in the Projects pane and select Deploy.

To Build, Package, and Deploy the Form-Based Authentication
Example Using Ant

Follow the steps in “To Set Up Your System for Running the Security Examples”on
page 474.

In a terminal window, go to:
tut-install/examples/security/hello2 formauth/

Type the following command at the terminal window or command prompt:

ant

The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Web Applications

This target will spawn any necessary compilations, copy files to the
tut-install/examples/security/hello2_formauth/build/ directory, create the WAR
file, and copy it to the tut-install/examples/security/hello2_formauth/dist/
directory.

To deploy hello2_formauth.war to the GlassFish Server, type the following
command:

ant deploy

To Run the Form-Based Authentication Example

To run the web client for hellol formauth, follow these steps.

Open aweb browser to the following URL:
https://localhost:8181/hellol formauth/

The login form displays in the browser, as shown in Figure 24-7.

FIGURE24-7 Form-Based Login Page

) Login Form - Mozilla Firefox

File Edit Miew History Bookmarks Tools Help
- g fif |_1'] http:fflocalhost:a080/hellal_formauthf 77 ~ .'-.l’)T'

|_1‘] Login Form L >

Hello, please log in:

Eease type your user name: | |

ease type your password: |

Done

Type a user name and password combination that corresponds to a user who has
already been created in the file realm of the GlassFish Server and has been assigned
to the group of TutorialUser.

Form-based authentication is case sensitive for both the user name and password, so
type the user name and password exactly as defined for the GlassFish Server.

Click the Submit button.

Chapter24 - Getting Started Securing Web Applications 483

https://localhost:8181/hello1_formauth/

Examples: Securing Web Applications

484

Next Steps

If you entered My _Name as the name and My_Pwd for the password, the server returns
the requested resource if all the following conditions are met.
= A user with the user name My Name is defined for the GlassFish Server.

= The user with the user name My_Name has a password My_Pwd defined for the
GlassFish Server.

= The user My_Name with the password My_Pwd is assigned to the group
TutorialUser on the GlassFish Server.

= Therole TutorialUser, as defined for the application, is mapped to the group
TutorialUser, as defined for the GlassFish Server.

When these conditions are met and the server has authenticated the user, the
application appears.

Type your name and click the Submit button.
Because you have already been authorized, the name you enter in this step does not
have any limitations. You have unlimited access to the application now.

The application responds by saying “Hello” to you.

For additional testing and to see the login error page generated, close and reopen your
browser, type the application URL, and type a user name and password that are not
authorized.

Note - For repetitive testing of this example, you may need to close and reopen your
browser. You should also run the ant clean and ant undeploy commands to ensure a
fresh build if using the Ant tool, or select Clean and Build then Deploy if using
NetBeans IDE.

The Java EE 6 Tutorial: Basic Concepts

CHAPTER 25

Getting Started Securing Enterprise
Applications

The following parties are responsible for administering security for enterprise
applications:

System administrator: Responsible for setting up a database of users and assigning
them to the proper group. The system administrator is also responsible for setting
GlassFish Serverproperties that enable the applications to run properly. Some
security-related examples set up a default principal-to-role mapping, anonymous
users, default users, and propagated identities. When needed for this tutorial, the
steps for performing specific tasks are provided.

Application developer/bean provider: Responsible for annotating the classes and
methods of the enterprise application in order to provide information to the
deployer about which methods need to have restricted access. This tutorial
describes the steps necessary to complete this task.

Deployer: Responsible for taking the security view provided by the application
developer and implementing that security upon deployment. This document
provides the information needed to accomplish this task for the tutorial example
applications.

The following topics are addressed here:

“Securing Enterprise Beans” on page 486

“Examples: Securing Enterprise Beans” on page 496

“Securing Application Clients” on page 504

“Securing Enterprise Information Systems Applications” on page 506

485

Securing Enterprise Beans

Securing Enterprise Beans

Enterprise beans are Java EE components that implement EJB technology. Enterprise
beans run in the EJB container, a runtime environment within the GlassFish Server.
Although transparent to the application developer, the EJB container provides
system-level services, such as transactions and security to its enterprise beans, which
form the core of transactional Java EE applications.

486

Enterprise bean methods can be secured in either of the following ways:

Declarative security (preferred): Expresses an application component’s security
requirements using either deployment descriptors or annotations. The presence of
an annotation in the business method of an enterprise bean class that specifies
method permissions is all that is needed for method protection and authentication
in some situations. This section discusses this simple and efficient method of
securing enterprise beans.

Because of some limitations to the simplified method of securing enterprise beans,
you would want to continue to use the deployment descriptor to specify security
information in some instances. An authentication mechanism must be configured
on the server for the simple solution to work. Basic authentication is the GlassFish
Server’s default authentication method.

This tutorial explains how to invoke user name/password authentication of
authorized users by decorating the enterprise application’s business methods with
annotations that specify method permissions.

To make the deployer’s task easier, the application developer can define security
roles. A security role is a grouping of permissions that a given type of application
users must have in order to successfully use the application. For example, in a
payroll application, some users will want to view their own payroll information
(employee), some will need to view others’ payroll information (manager), and
some will need to be able to change others’ payroll information (payrollDept). The
application developer would determine the potential users of the application and
which methods would be accessible to which users. The application developer
would then decorate classes or methods of the enterprise bean with annotations
that specify the types of users authorized to access those methods. Using
annotations to specify authorized users is described in “Specifying Authorized
Users by Declaring Security Roles” on page 490.

When one of the annotations is used to define method permissions, the
deployment system will automatically require user name/password authentication.
In this type of authentication, a user is prompted to enter a user name and
password, which will be compared against a database of known users. If the user is
found and the password matches, the roles that the user is assigned will be
compared against the roles that are authorized to access the method. If the user is
authenticated and found to have a role that is authorized to access that method, the
data will be returned to the user.

The Java EE 6 Tutorial: Basic Concepts

Securing Enterprise Beans

Using declarative security is discussed in “Securing an Enterprise Bean Using
Declarative Security” on page 489.

= Programmatic security: For an enterprise bean, code embedded in a business
method that is used to access a caller’s identity programmatically and that uses this
information to make security decisions. Programmatic security is useful when
declarative security alone is not sufficient to express the security model of an
application.

In general, security management should be enforced by the container in a manner
that is transparent to the enterprise beans’ business methods. The programmatic
security APIs described in this chapter should be used only in the less frequent
situations in which the enterprise bean business methods need to access the
security-context information, such as when you want to grant access based on the
time of day or other nontrivial condition checks for a particular role.

Programmatic security is discussed in “Securing an Enterprise Bean
Programmatically” on page 493.

Some of the material in this chapter assumes that you have already read Chapter 14,
“Enterprise Beans,” Chapter 15, “Getting Started with Enterprise Beans,” and
Chapter 23, “Introduction to Security in the Java EE Platform?”

As mentioned earlier, enterprise beans run in the EJB container, a runtime
environment within the GlassFish Server, as shown in Figure 25-1.

Chapter 25 « Getting Started Securing Enterprise Applications 487

Securing Enterprise Beans

488

FIGURE 25-1 Java EE Server and Containers

Application Client
Container
Client
Application Machine
Client
|
Servlet Web Page
v \ Web
\ v Container
— ‘ Java EE
Server
Enterprise Enterprise l
Bean . Bean - EJB
Container

Database

This section discusses securing a Java EE application where one or more modules, such
as EJB JAR files, are packaged into an EAR file, the archive file that holds the
application. Security annotations will be used in the Java programming class files to
specify authorized users and basic, or user name/password, authentication.

Enterprise beans often provide the business logic of a web application. In these cases,
packaging the enterprise bean within the web application’s WAR module simplifies
deployment and application organization. Enterprise beans may be packaged within a
WAR module as Java class files or within a JAR file that is bundled within the WAR
module. When a servlet or JavaServer Faces page handles the web front end and the
application is packaged into a WAR module as a Java class file, security for the
application can be handled in the application’s web . xm1 file. The EJB in the WAR file

The Java EE 6 Tutorial: Basic Concepts

Securing Enterprise Beans

can have its own deployment descriptor, ejb-jar.xml, if required. Securing web
applications using web . xml is discussed in Chapter 24, “Getting Started Securing Web
Applications.”

The following sections describe declarative and programmatic security mechanisms
that can be used to protect enterprise bean resources. The protected resources include
enterprise bean methods that are called from application clients, web components, or
other enterprise beans.

For more information on this topic, read the Enterprise JavaBeans 3.1 specification.
This document can be downloaded from http://jcp.org/en/jsr/detail?id=318.
Chapter 17 of this specification, “Security Management,” discusses security
management for enterprise beans.

Securing an Enterprise Bean Using Declarative
Security

Declarative security enables the application developer to specify which users are
authorized to access which methods of the enterprise beans and to authenticate these
users with basic, or username-password, authentication. Frequently, the person who is
developing an enterprise application is not the same person who is responsible for
deploying the application. An application developer who uses declarative security to
define method permissions and authentications mechanisms is passing along to the
deployer a security view of the enterprise beans contained in the EJB JAR. When a
security view is passed on to the deployer, he or she uses this information to define
method permissions for security roles. If you don’t define a security view, the deployer
will have to determine what each business method does to determine which users are
authorized to call each method.

A security view consists of a set of security roles, a semantic grouping of permissions
that a given type of users of an application must have to successfully access the
application. Security roles are meant to be logical roles, representing a type of user.
You can define method permissions for each security role. A method permission is a
permission to invoke a specified group of methods of an enterprise bean’s business
interface, home interface, component interface, and/or web service endpoints. After
method permissions are defined, user name/password authentication will be used to
verify the identity of the user.

It is important to keep in mind that security roles are used to define the logical security
view of an application. They should not be confused with the user groups, users,
principals, and other concepts that exist in the GlassFish Server. An additional step is
required to map the roles defined in the application to users, groups, and principals
that are the components of the user database in the file realm of the GlassFish Server.
These steps are outlined in “Mapping Roles to Users and Groups” on page 447.

Chapter 25 « Getting Started Securing Enterprise Applications 489

http://jcp.org/en/jsr/detail?id=318

Securing Enterprise Beans

490

The following sections show how an application developer uses declarative security to
either secure an application or to create a security view to pass along to the deployer.

Specifying Authorized Users by Declaring Security Roles

This section discusses how to use annotations to specify the method permissions for
the methods of a bean class. For more information on these annotations, refer to the
Common Annotations for the Java Platform specification at http://jcp.org/en/
jsr/detail?id=250.

Method permissions can be specified on the class, the business methods of the class, or
both. Method permissions can be specified on a method of the bean class to override
the method permissions value specified on the entire bean class. The following
annotations are used to specify method permissions:

= @DeclareRoles: Specifies all the roles that the application will use, including roles
not specifically named in a @RolesAllowed annotation. The set of security roles the
application uses is the total of the security roles defined in the @eclareRoles and
@RolesAllowed annotations.

The @eclareRoles annotation is specified on a bean class, where it serves to
declare roles that can be tested (for example, by calling isCallerInRole) from
within the methods of the annotated class. When declaring the name of a role used
as a parameter to the isCallerInRole(String roleName) method, the declared
name must be the same as the parameter value.

The following example code demonstrates the use of the @eclareRoles
annotation:

@DeclareRoles("BusinessAdmin")
public class Calculator {

}

The syntax for declaring more than one role is as shown in the following example:

@DeclareRoles ({"Administrator", "Manager", "Employee"})

= @RolesAllowed ("list-of-roles"): Specifies the security roles permitted to access
methods in an application. This annotation can be specified on a class or on one or
more methods. When specified at the class level, the annotation applies to all
methods in the class. When specified on a method, the annotation applies to that
method only and overrides any values specified at the class level.

To specify that no roles are authorized to access methods in an application, use the
@enyAll annotation. To specify that a user in any role is authorized to access the
application, use the @PermitAll annotation.

When used in conjunction with the @eclareRoles annotation, the combined set
of security roles is used by the application.

The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250

Securing Enterprise Beans

The following example code demonstrates the use of the @RolesAllowed
annotation:

@eclareRoles({"Administrator", "Manager", "Employee"})
public class Calculator {

@RolesAllowed ("Administrator")
public void setNewRate(int rate) {

}
}

= @PermitAll: Specifies that all security roles are permitted to execute the specified
method or methods. The user is not checked against a database to ensure that he or
she is authorized to access this application.

This annotation can be specified on a class or on one or more methods. Specifying
this annotation on the class means that it applies to all methods of the class.
Specifying it at the method level means that it applies to only that method.

The following example code demonstrates the use of the @ermitAll annotation:

import javax.annotation.security.*;
@RolesAllowed("RestrictedUsers")
public class Calculator {

@RolesAllowed ("Administrator")

public void setNewRate(int rate) {
/] ..

}

@PermitAll

public long convertCurrency(long amount) {
/] ..

b

}

= @DenyAll: Specifies that no security roles are permitted to execute the specified
method or methods. This means that these methods are excluded from execution
in the Java EE container.

The following example code demonstrates the use of the @denyAl1l annotation:

import javax.annotation.security.*;
@RolesAllowed("Users")
public class Calculator {
@RolesAllowed ("Administrator")
public void setNewRate(int rate) {
/...
b
@DenyAll
public long convertCurrency(long amount) {
//. ..
}

Chapter 25 « Getting Started Securing Enterprise Applications 491

Securing Enterprise Beans

492

The following code snippet demonstrates the use of the @eclareRoles annotation
with the isCallerInRole method. In this example, the @eclareRoles annotation
declares a role that the enterprise bean Payrol1Bean uses to make the security check
by using isCallerInRole("payroll”) to verify that the caller is authorized to change
salary data:

@eclareRoles ("payroll”)
@Stateless public class PayrollBean implements Payroll {
@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {
oldInfo = ... read from database;
// The salary field can be changed only by callers
// who have the security role "payroll"
Principal callerPrincipal = ctx.getCallerPrincipal();
if (info.salary != oldInfo.salary && !ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);
}

}

The following example code illustrates the use of the @RolesAllowed annotation:

@RolesAllowed ("admin")

public class SomeClass {
public void aMethod () {...}
public void bMethod () {...}

}
@Stateless public class MyBean extends SomeClass implements A {

@RolesAllowed ("HR")
public void aMethod () {...}

public void cMethod () {...}
}

In this example, assuming that aMethod, bMethod, and cMethod are methods of
business interface A, the method permissions values of methods aMethod and bMethod
are @RolesAllowed ("HR") and @RolesAllowed ("admin"), respectively. The method
permissions for method cMethod have not been specified.

To clarify, the annotations are not inherited by the subclass itself. Instead, the
annotations apply to methods of the superclass that are inherited by the subclass.

The Java EE 6 Tutorial: Basic Concepts

Securing Enterprise Beans

Specifying an Authentication Mechanism and Secure Connection

When method permissions are specified, basic user name/password authentication
will be invoked by the GlassFish Server.

To use a different type of authentication or to require a secure connection using SSL,
specity this information in an application deployment descriptor.

Securing an Enterprise Bean Programmatically

Programmatic security, code that is embedded in a business method, is used to access a
caller’s identity programmatically and uses this information to make security decisions
within the method itself.

Accessing an Enterprise Bean Caller’s Security Context

In general, security management should be enforced by the container in a manner that
is transparent to the enterprise bean’s business methods. The security API described in
this section should be used only in the less frequent situations in which the enterprise
bean business methods need to access the security context information, such as when
you want to restrict access to a particular time of day.

The javax.ejb.EJBContext interface provides two methods that allow the bean
provider to access security information about the enterprise bean’s caller:

® getCallerPrincipal, which allows the enterprise bean methods to obtain the
current caller principal’s name. The methods might, for example, use the name as a
key to information in a database.

The following code sample illustrates the use of the getCallerPrincipal method:

@Stateless public class EmployeeServiceBean implements EmployeeService {
@Resource SessionContext ctx;
@PersistenceContext EntityManager em;

public void changePhoneNumber(...) {

// obtain the caller principal.
callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.
callerKey = callerPrincipal.getName();

// use callerKey as primary key to find EmployeeRecord
EmployeeRecord myEmployeeRecord =
em. find (EmployeeRecord.class, callerKey);

// update phone number
myEmployeeRecord.setPhoneNumber(...);

Chapter 25 « Getting Started Securing Enterprise Applications 493

Securing Enterprise Beans

In this example, the enterprise bean obtains the principal name of the current caller
and uses it as the primary key to locate an EmployeeRecord entity. This example
assumes that application has been deployed such that the current caller principal
contains the primary key used for the identification of employees (for example,
employee number).

isCallerInRole, which the enterprise bean code can use to allow the bean
provider/application developer to code the security checks that cannot be easily
defined using method permissions. Such a check might impose a role-based limit
on arequest, or it might depend on information stored in the database.

The enterprise bean code can use the isCallerInRole method to test whether the
current caller has been assigned to a given security role. Security roles are defined
by the bean provider or the application assembler and are assigned by the deployer
to principals or principal groups that exist in the operational environment.

The following code sample illustrates the use of the isCallerInRole method:

@Stateless public class PayrollBean implements Payroll {
@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {
oldInfo = ... read from database;
// The salary field can be changed only by callers
// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

Ictx.isCallerInRole("payroll")) {
throw new SecurityException(...);

}

You would use programmatic security in this way to dynamically control access to a
method, for example, when you want to deny access except during a particular time of
day. An example application that uses the getCallerPrincipal and isCallerInRole
methods is described in “Example: Securing an Enterprise Bean with Programmatic
Security” on page 501.

Propagating a Security Identity (Run-As)

You can specify whether a caller’s security identity should be used for the execution of
specified methods of an enterprise bean or whether a specific run-as identity should be

494

used. Figure 25-2 illustrates this concept.

The Java EE 6 Tutorial: Basic Concepts

Securing Enterprise Beans

FIGURE 25-2 Security Identity Propagation

Application Client EJB or Web EJB
or Web Client Container Container
Initiating Client —————| Intermediate ——— | Target
Java EE Propagated
Security Security ldentity
Identity (Java EE)

In this illustration, an application client is making a call to an enterprise bean method
in one EJB container. This enterprise bean method, in turn, makes a call to an
enterprise bean method in another container. The security identity during the first call
is the identity of the caller. The security identity during the second call can be any of
the following options.

= By default, the identity of the caller of the intermediate component is propagated to
the target enterprise bean. This technique is used when the target container trusts
the intermediate container.

= A specificidentity is propagated to the target enterprise bean. This technique is
used when the target container expects access using a specific identity.

To propagate an identity to the target enterprise bean, configure a run-as identity
for the bean, as described in “Configuring a Component’s Propagated Security
Identity” on page 495. Establishing a run-as identity for an enterprise bean does not
affect the identities of its callers, which are the identities tested for permission to
access the methods of the enterprise bean. The run-as identity establishes the
identity that the enterprise bean will use when it makes calls.

The run-as identity applies to the enterprise bean as a whole, including all the
methods of the enterprise bean’s business interface, local and remote interfaces,
component interface, and web service endpoint interfaces, the message listener
methods of a message-driven bean, the timeout method of an enterprise bean, and
all internal methods of the bean that might be called in turn.

Configuring a Component’s Propagated Security Identity

You can configure an enterprise bean’s run-as, or propagated, security identity by
using the @RunAs annotation, which defines the role of the application during
execution in a Java EE container. The annotation can be specified on a class, allowing
developers to execute an application under a particular role. The role must map to the
user/group information in the container’s security realm. The @RunAs annotation
specifies the name of a security role as its parameter.

Here is some example code that demonstrates the use of the @unAs annotation.

Chapter 25 « Getting Started Securing Enterprise Applications 495

Examples: Securing Enterprise Beans

@RunAs ("Admin")

public class Calculator {
Y/

}

You will have to map the run-as role name to a given principal defined on the
GlassFish Server if the given roles are associated with more than one user principal.

Trust between Containers

When an enterprise bean is designed so that either the original caller identity or a
designated identity is used to call a target bean, the target bean will receive the
propagated identity only. The target bean will not receive any authentication data.

There is no way for the target container to authenticate the propagated security
identity. However, because the security identity is used in authorization checks (for
example, method permissions or with the isCallerInRole method), it is vitally
important that the security identity be authentic. Because no authentication data is
available to authenticate the propagated identity, the target must trust that the calling
container has propagated an authenticated security identity.

By default, the GlassFish Server is configured to trust identities that are propagated
from different containers. Therefore, you do not need to take any special steps to set up
atrust relationship.

Deploying Secure Enterprise Beans

The deployer is responsible for ensuring that an assembled application is secure after it
has been deployed in the target operational environment. If a security view has been
provided to the deployer through the use of security annotations and/or a deployment
descriptor, the security view is mapped to the mechanisms and policies used by the
security domain in the target operational environment, which in this case is the
GlassFish Server. If no security view is provided, the deployer must set up the
appropriate security policy for the enterprise bean application.

Deployment information is specific to a web or application server.

Examples: Securing Enterprise Beans

496

The following examples show how to secure enterprise beans using declarative and
programmatic security.

The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Enterprise Beans

Example: Securing an Enterprise Bean with
Declarative Security

This section discusses how to configure an enterprise bean for basic user
name/password authentication. When a bean that is constrained in this way is
requested, the server requests a user name and password from the client and verifies
that the user name and password are valid by comparing them against a database of
authorized users on the GlassFish Server.

If the topic of authentication is new to you, see “Specifying an Authentication
Mechanism in the Deployment Descriptor” on page 467.

This example demonstrates security by starting with the unsecured enterprise bean
application, cart, which is found in the directory tut-install/examples/ejb/cart/
and is discussed in “The cart Example” on page 271.

In general, the following steps are necessary to add user name/password
authentication to an existing application that contains an enterprise bean. In the
example application included with this tutorial, these steps have been completed for
you and are listed here simply to show what needs to be done should you wish to create
a similar application.

1. Create an application like the one in “The cart Example” on page 271. The
example in this tutorial starts with this example and demonstrates adding basic
authentication of the client to this application. The example application discussed
in this section can be found at tut-install/examples/security/cart-secure/.

2. Ifyouhave not already done so, complete the steps in “To Set Up Your System for
Running the Security Examples” on page 474 to configure your system for running
the tutorial applications.

3. Modify the source code for the enterprise bean, CartBean. java, to specify which
roles are authorized to access which protected methods. This step is discussed in
“Annotating the Bean” on page 497.

4. Build, package, and deploy the enterprise bean; then build and run the client
application by following the steps in “To Build, Package, Deploy, and Run the
Secure Cart Example Using NetBeans IDE” on page 499 or “T'o Build, Package,
Deploy, and Run the Secure Cart Example Using Ant” on page 500.

Annotating the Bean

The source code for the original cart application was modified as shown in the
following code snippet (modifications in bold). The resulting file can be found in the
following location:

tut-install/examples/security/cart-secure/cart-secure-ejb/src/java/cart/
ejb/CartBean.java

Chapter 25 « Getting Started Securing Enterprise Applications 497

Examples: Securing Enterprise Beans

The code snippet is as follows:

package cart.ejb;

import cart.util.BookException;

import cart.util.IdVerifier;

import java.util.Arraylist;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

import javax.annotation.security.DeclareRoles;
import javax.annotation.security.RolesAllowed;

@Stateful

@DeclareRoles("TutorialUser")

public class CartBean implements Cart {
List<String> contents;
String customerld;
String customerName;

public void initialize(String person) throws BookException {
if (person == null) {
throw new BookException("Null person not allowed.");
} else {
customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(
String person,
String id) throws BookException {
if (person == null) {
throw new BookException("Null person not allowed.");
} else {
customerName = person;

}
IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {
customerId = id;
} else {
throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

@RolesAllowed("TutorialUser")

public void addBook(String title) {
contents.add(title);

}

@RolesAllowed("TutorialUser")
public void removeBook(String title) throws BookException {

498 The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Enterprise Beans

boolean result = contents.remove(title);

if (result == false) {
throw new BookException("\

+ title + "\" not in cart.");

}
}

@RolesAllowed ("TutorialUser")
public List<String> getContents() {
return contents;

}

@Remove()
@RolesAllowed ("TutorialUser")
public void remove() {
contents = null;
)
}

The @RolesAllowed annotation is specified on methods for which you want to restrict
access. In this example, only users in the role of TutorialUser will be allowed to add
and remove books from the cart and to list the contents of the cart. A @RolesAllowed
annotation implicitly declares a role that will be referenced in the application;
therefore, no @eclareRoles annotation is required. The presence of the
@RolesAllowed annotation also implicitly declares that authentication will be required
for a user to access these methods. If no authentication method is specified in the
deployment descriptor, the type of authentication will be user name/password
authentication.

To Build, Package, Deploy, and Run the Secure Cart Example Using
NetBeans IDE

Follow the stepsin “To Set Up Your System for Running the Security Examples”on
page 474.

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/security/

Select the cart-secure folder.
Select the Open as Main Project and Open Required Projects check boxes.
Click Open Project.

In the Projects tab, right-click the cart-secure project and select Build.

Chapter 25 « Getting Started Securing Enterprise Applications 499

Examples: Securing Enterprise Beans

500

8

10

In the Projects tab, right-click the cart-secure project and select Deploy.

This step builds and packages the application into cart-secure.ear,located in the
directory tut-install/examples/security/cart-secure/dist/, and deploys this EAR
file to your GlassFish Server instance.

To run the application client, right-click the cart-secure project and select Run.

A Login for user: dialog box appears.

In the dialog box, type the user name and password of a file realm user created on the
GlassFish Server and assigned to the group TutorialUser;then click OK.

If the user name and password you enter are authenticated, the output of the
application client appears in the Output pane:

Retrieving book title from cart: Infinite Jest
Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore
Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.
Java Result: 1

If the user name and password are not authenticated, the dialog box reappears until
you type correct values.

To Build, Package, Deploy, and Run the Secure Cart Example Using
Ant

Follow the stepsin “To Set Up Your System for Running the Security Examples”on
page 474.

In a terminal window, go to:

tut-install/examples/security/cart-secure/

To build the application and package it into an EAR file, type the following command at
the terminal window or command prompt:

ant

To deploy the application to the GlassFish Server, type the following command:
ant deploy

To run the application client, type the following command:
ant run

This task retrieves the application client JAR and runs the application client.

A Login for user: dialog box appears.

The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Enterprise Beans

In the dialog box, type the user name and password of a file realm user created on the
GlassFish Server and assigned to the group TutorialUser; then click OK.

If the user name and password are authenticated, the client displays the following
output:

[echo] running application client container.

[exec] Retrieving book title from cart: Infinite Jest

[exec] Retrieving book title from cart: Bel Canto

[exec] Retrieving book title from cart: Kafka on the Shore

[exec] Removing "Gravity’s Rainbow" from cart.

[exec] Caught a BookException: "Gravity’s Rainbow" not in cart.

[exec] Result: 1

If the username and password are not authenticated, the dialog box reappears until

you type correct values.

Example: Securing an Enterprise Bean with
Programmatic Security

This example demonstrates how to use the getCallerPrincipal and
isCallerInRole methods with an enterprise bean. This example starts with a very
simple EJB application, converter, and modifies the methods of the ConverterBean
so that currency conversion will occur only when the requester is in the role of
TutorialUser.

The completed version of this example can be found in the directory tut-install/
examples/security/converter-secure. This example is based on the unsecured
enterprise bean application, converter, which is discussed in Chapter 15, “Getting
Started with Enterprise Beans,” and is found in the directory
tut-install/examples/ejb/converter/. This section builds on the example by adding
the necessary elements to secure the application by using the getCallerPrincipal
and isCallerInRole methods, which are discussed in more detail in “Accessing an
Enterprise Bean Caller’s Security Context” on page 493.

In general, the following steps are necessary when using the getCallerPrincipal and
isCallerInRole methods with an enterprise bean. In the example application
included with this tutorial, many of these steps have been completed for you and are
listed here simply to show what needs to be done should you wish to create a similar
application.

1. Create a simple enterprise bean application.

2. Setup a user on the GlassFish Server in the file realm, in the group TutorialUser,
and set up default principal to role mapping. To do this, follow the steps in “To Set
Up Your System for Running the Security Examples” on page 474.

3. Modify the bean to add the getCallerPrincipal and isCallerInRole methods.

Chapter 25 « Getting Started Securing Enterprise Applications 501

Examples: Securing Enterprise Beans

4. Ifthe application contains a web client that is a servlet, specify security for the
servlet, as described in “Specifying Security for Basic Authentication Using
Annotations” on page 476.

5. Build, package, deploy, and run the application.

Modifying ConverterBean

The source code for the original ConverterBean class was modified to add the
if..else clause that tests whether the caller is in the role of TutorialUser.. If the user
is in the correct role, the currency conversion is computed and displayed. If the user is
not in the correct role, the computation is not performed, and the application displays
the result as 0. The code example can be found in the following file:

tut-install/examples/ejb/converter-secure/converter-secure-ejb/src/java/
converter/ejb/ConverterBean. java

The code snippet (with modifications shown in bold) is as follows:

package converter.ejb;

import java.math.BigDecimal;

import javax.ejb.Stateless;

import java.security.Principal;

import javax.annotation.Resource;

import javax.ejb.SessionContext;

import javax.annotation.security.DeclareRoles;
import javax.annotation.security.RolesAllowed;

@Stateless()
@DeclareRoles("TutorialUser")
public class ConverterBean{

@Resource SessionContext ctx;
private BigDecimal yenRate = new BigDecimal("89.5094");
private BigDecimal euroRate = new BigDecimal("0.0081");

@RolesAllowed ("TutorialUser")
public BigDecimal dollarToYen(BigDecimal dollars) {
BigDecimal result = new BigDecimal("0.0");
Principal callerPrincipal = ctx.getCallerPrincipal();
if (ctx.isCallerInRole("TutorialUser™)) {
result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND UP);
} else {
return result.setScale(2, BigDecimal.ROUND_UP);
}

}

@RolesAllowed("TutorialUser")
public BigDecimal yenToEuro(BigDecimal yen) {
BigDecimal result = new BigDecimal("0.0");
Principal callerPrincipal = ctx.getCallerPrincipal();
if (ctx.isCallerInRole("TutorialUser")) {
result = yen.multiply(euroRate);

502 The Java EE 6 Tutorial: Basic Concepts

Examples: Securing Enterprise Beans

return result.setScale(2, BigDecimal.ROUND UP);
} else {

return result.setScale(2, BigDecimal.ROUND_UP);
}

}

Modifying ConverterServlet

The following annotations specify security for the converter web client,
ConverterServlet:

@WebServlet(name = "ConverterServlet", urlPatterns = {"/"})

@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,
rolesAllowed = {"TutorialUser"}))

To Build, Package, and Deploy the Secure Converter Example Using
NetBeans IDE

Follow the stepsin “To Set Up Your System for Running the Security Examples”on
page 474.

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to:

tut-install/examples/security/

Select the converter-secure folder.

Select the Open as Main Project check box.

Click Open Project.

Right-click the converter-secure projectand select Build.

Right-click the converter-secure project and select Deploy.

To Build, Package, and Deploy the Secure Converter Example
Using Ant

Follow the stepsin “To Set Up Your System for Running the Security Examples”on
page 474.

In a terminal window, go to:

tut-install/examples/security/converter-secure/

Chapter 25 « Getting Started Securing Enterprise Applications 503

Securing Application Clients

Type the following command:
ant all

This command both builds and deploys the example.

To Run the Secure Converter Example

Open a web browser to the following URL:
http://localhost:8080/converter

An Authentication Required dialog box appears.

Type a user name and password combination that corresponds to a user who has
already been created in the file realm of the GlassFish Server and has been assigned
to the group of TutorialUser; then click OK.

The screen shown in Figure 15-1 appears.

Type 100 in the input field and click Submit.

A second page appears, showing the converted values.

Securing Application Clients

504

The Java EE authentication requirements for application clients are the same as for
other Java EE components, and the same authentication techniques can be used as for
other Java EE application components. No authentication is necessary when accessing
unprotected web resources.

When accessing protected web resources, the usual varieties of authentication can be
used: HTTP basic authentication, SSL client authentication, or HTTP login-form
authentication. These authentication methods are discussed in “Specifying an
Authentication Mechanism in the Deployment Descriptor” on page 467.

Authentication is required when accessing protected enterprise beans. The
authentication mechanisms for enterprise beans are discussed in “Securing Enterprise
Beans” on page 486.

An application client makes use of an authentication service provided by the
application client container for authenticating its users. The container’s service can be
integrated with the native platform’s authentication system, so that a single sign-on
capability is used. The container can authenticate the user either when the application
is started or when a protected resource is accessed.

An application client can provide a class, called a login module, to gather
authentication data. If so, the javax.security.auth.callback.CallbackHandler

The Java EE 6 Tutorial: Basic Concepts

http://localhost:8080/converter

Securing Application Clients

interface must be implemented, and the class name must be specified in its
deployment descriptor. The application’s callback handler must fully support
Callback objects specified in the javax.security.auth.callback package.

Using Login Modules

An application client can use the Java Authentication and Authorization Service
(JAAS) to create login modules for authentication. A JAAS-based application
implements the javax.security.auth.callback.CallbackHandler interface so that
it can interact with users to enter specific authentication data, such as user names or
passwords, or to display error and warning messages.

Applications implement the CallbackHandler interface and pass it to the login
context, which forwards it directly to the underlying login modules. A login module
uses the callback handler both to gather input, such as a password or smart card PIN,
from users and to supply information, such as status information, to users. Because the
application specifies the callback handler, an underlying login module can remain
independent of the various ways that applications interact with users.

For example, the implementation of a callback handler for a GUI application might
display a window to solicit user input. Or the implementation of a callback handler for
a command-line tool might simply prompt the user for input directly from the
command line.

The login module passes an array of appropriate callbacks to the callback handler’s
handle method, such as a NameCallback for the user name and a PasswordCallback
for the password; the callback handler performs the requested user interaction and sets
appropriate values in the callbacks. For example, to process a NameCallback, the
CallbackHandler might prompt for a name, retrieve the value from the user, and call
the setName method of the NameCallback to store the name.

For more information on using JAAS for login modules for authentication, refer to the
following sources (see “Further Information about Security” on page 454 for the
URLs):

® Java Authentication and Authorization Service (JAAS) Reference Guide

® Java Authentication and Authorization Service (JAAS): LoginModule Developer’s
Guide

Using Programmatic Login

Programmatic login enables the client code to supply user credentials. If you are using
an EJB client, you can use the com. sun.appserv.security.ProgrammaticLogin class
with its convenient login and logout methods. Programmatic login is specific to a
server.

Chapter 25 « Getting Started Securing Enterprise Applications 505

Securing Enterprise Information Systems Applications

Securing Enterprise Information Systems Applications

506

In EIS applications, components request a connection to an EIS resource. As part of
this connection, the EIS can require a sign-on for the requester to access the resource.
The application component provider has two choices for the design of the EIS sign-on:

= Container-managed sign-on: The application component lets the container take
the responsibility of configuring and managing the EIS sign-on. The container
determines the user name and password for establishing a connection to an EIS
instance. For more information, see “Container-Managed Sign-On” on page 506.

= Component-managed sign-on: The application component code manages EIS
sign-on by including code that performs the sign-on process to an EIS. For more
information, see “Component-Managed Sign-On” on page 506.

You can also configure security for resource adapters. See “Configuring Resource
Adapter Security” on page 507 for more information.

Container-Managed Sign-On

In container-managed sign-on, an application component does not have to pass any
sign-on security information to the getConnection() method. The security
information is supplied by the container, as shown in the following example:

// Business method in an application component

Context initctx = new InitialContext();

// Perform JINDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =
(javax.resource.cci.ConnectionFactory)initctx. lookup(
"java:comp/env/eis/MainframeCxFactory");

// Invoke factory to obtain a connection. The security

// information is not passed in the getConnection method

javax.resource.cci.Connection cx = cxf.getConnection();

Component-Managed Sign-On

In component-managed sign-on, an application component is responsible for passing
the needed sign-on security information to the resource to the getConnection
method. For example, security information might be a user name and password, as
shown here:

// Method in an application component
Context initctx = new InitialContext();

// Perform INDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =

The Java EE 6 Tutorial: Basic Concepts

Securing Enterprise Information Systems Applications

(javax.resource.cci.ConnectionFactory)initctx. lookup(
"java:comp/env/eis/MainframeCxFactory");

// Get a new ConnectionSpec
com.myeis.ConnectionSpecImpl properties = //..

// Invoke factory to obtain a connection
properties.setUserName("..."
properties.setPassword("...
javax.resource.cci.Connection cx =
cxf.getConnection(properties);

);
);

Configuring Resource Adapter Security

A resource adapter is a system-level software component that typically implements
network connectivity to an external resource manager. A resource adapter can extend
the functionality of the Java EE platform either by implementing one of the Java EE
standard service APIs, such as a JDBC driver, or by defining and implementing a
resource adapter for a connector to an external application system. Resource adapters
can also provide services that are entirely local, perhaps interacting with native
resources. Resource adapters interface with the Java EE platform through the Java EE
service provider interfaces (Java EE SPI). A resource adapter that uses the Java EE SPIs
to attach to the Java EE platform will be able to work with all Java EE products.

To configure the security settings for a resource adapter, you need to edit the resource
adapter descriptor file, ra.xml. Here is an example of the part of an ra.xml file that
configures the following security properties for a resource adapter:

<authentication-mechanism>
<authentication-mechanism-type>
BasicPassword
</authentication-mechanism-type>
<credential-interface>
javax.resource.spi.security.PasswordCredential
</credential-interface>
</authentication-mechanism>
<reauthentication-support>false</reauthentication-support>

You can find out more about the options for configuring resource adapter security by
reviewing as-install/1ib/dtds/connector_1_0.dtd. You can configure the following
elements in the resource adapter deployment descriptor file:

= Authentication mechanisms: Use the authentication-mechanismelement to
specify an authentication mechanism supported by the resource adapter. This
support is for the resource adapter, not for the underlying EIS instance.

There are two supported mechanism types:
= BasicPassword, which supports the following interface:

javax.resource.spi.security.PasswordCredential

Chapter 25 « Getting Started Securing Enterprise Applications 507

Securing Enterprise Information Systems Applications

508

= Kerbv5, which supports the following interface:

javax.resource.spi.security.GenericCredential

The GlassFish Server does not currently support this mechanism type.

= Reauthentication support: Use the reauthentication-support element to
specify whether the resource adapter implementation supports reauthentication of
existing Managed-Connection instances. Options are true or false.

= Security permissions: Use the security-permission element to specify a security
permission that is required by the resource adapter code. Support for security
permissions is optional and is not supported in the current release of the GlassFish
Server. You can, however, manually update the server.policy file to add the
relevant permissions for the resource adapter.

The security permissions listed in the deployment descriptor are different from
those required by the default permission set as specified in the connector
specification.

For more information on the implementation of the security permission
specification, visithttp://download.oracle. com/

docs/cd/E17409 01/javase/6/docs/technotes/guides/security/
PolicyFiles.html#FileSyntax.

In addition to specifying resource adapter security in the ra.xml file, you can create a
security map for a connector connection pool to map an application principal or a user
group to a back-end EIS principal. The security map is usually used if one or more EIS
back-end principals are used to execute operations (on the EIS) initiated by various
principals or user groups in the application.

To Map an Application Principal to EIS Principals

When using the GlassFish Server, you can use security maps to map the caller identity
of the application (principal or user group) to a suitable EIS principal in
container-managed transaction-based scenarios. When an application principal
initiates a request to an EIS, the GlassFish Server first checks for an exact principal by
using the security map defined for the connector connection pool to determine the
mapped back-end EIS principal. If there is no exact match, the GlassFish Server uses
the wildcard character specification, if any, to determine the mapped back-end EIS
principal. Security maps are used when an application user needs to execute EIS
operations that require to be executed as a specific identity in the EIS.

To work with security maps, use the Administration Console. From the
Administration Console, follow these steps to get to the security maps page.

In the navigation tree, expand the Resources node.

The Java EE 6 Tutorial: Basic Concepts

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

Securing Enterprise Information Systems Applications

Expand the Connectors node.
Select the Connector Connection Pools node.

On the Connector Connection Pools page, click the name of the connection pool for
which you want to create a security map.

Click the Security Maps tab.
Click New to create a new security map for the connection pool.

Type a name by which you will refer to the security map, as well as the other required
information.

Click the Help button for more information on the individual options.

Chapter 25 « Getting Started Securing Enterprise Applications

509

This page intentionally left blank

PART VIII

Java EE Supporting Technologies

Part VIII introduces several technologies that support the Java EE platform. This part
contains the following chapters:

= Chapter 26, “Introduction to Java EE Supporting Technologies”
= Chapter 27, “Transactions”
= Chapter 28, “Resource Connections”

511

This page intentionally left blank

L K R 4 CHAPTER 26

Introduction to Java EE Supporting
Technologies

The Java EE platform includes several technologies and APIs that extend its
functionality. These technologies allow applications to access a wide range of services
in a uniform manner. These technologies are explained in greater in Chapter 27,
“Transactions,” and Chapter 28, “Resource Connections”

The following topics are addressed here:

= “Transactions” on page 513
= “Resources” on page 514

Transactions

In a Java EE application, a transaction is a series of actions that must all complete
successfully, or else all the changes in each action are backed out. Transactions end in
either a commit or a rollback.

The Java Transaction API (JTA) allows applications to access transactions in a manner
that is independent of specific implementations. JTA specifies standard Java interfaces
between a transaction manager and the parties involved in a distributed transaction
system: the transactional application, the Java EE server, and the manager that controls
access to the shared resources affected by the transactions.

The JTA defines the UserTransaction interface that applications use to start, commit,
or abort transactions. Application components get a UserTransaction object through
a JNDI lookup by using the name java: comp/UserTransaction or by requesting
injection of aUserTransaction object. An application server uses a number of
JTA-defined interfaces to communicate with a transaction manager; a transaction
manager uses JTA-defined interfaces to interact with a resource manager.

See Chapter 27, “Transactions,” for a more detailed explanation. The JTA 1.1
specification is available at http://www.oracle.com/technetwork/java/javaee/
tech/jta-138684.html.

513

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

Resources

Resources

514

A resource is a program object that provides connections to such systems as database
servers and messaging systems.

The Java EE Connector Architecture and Resource
Adapters

The Java EE Connector Architecture enables Java EE components to interact with
enterprise information systems (EISs) and EISs to interact with Java EE components.
EIS software includes such kinds of systems as enterprise resource planning (ERP),
mainframe transaction processing, and nonrelational databases. Connector
architecture simplifies the integration of diverse EISs. Each EIS requires only one
implementation of the Connector architecture. Because it adheres to the Connector
specification, an implementation is portable across all compliant Java EE servers.

The specification defines the contracts for an application server as well as for resource
adapters, which are system-level software drivers for specific EIS resources. These
standard contracts provide pluggability between application servers and EISs. The Java
EE Connector Architecture 1.6 specification defines new system contracts such as
Generic Work Context and Security Inflow. The Java EE Connector Architecture 1.6
specification is available at http://jcp.org/en/jsr/detail?id=322.

A resource adapter is a Java EE component that implements the Connector
architecture for a specific EIS. A resource adapter can choose to support the following
levels of transactions:

= NoTransaction: No transaction support is provided.
= LocalTransaction: Resource manager local transactions are supported.
= XATransaction: The resource adapter supports the XA distributed transaction

processing model and the JTA XATransaction interface.

See Chapter 28, “Resource Connections,” for a more detailed explanation of resource
adapters.

Java Message Service

Messaging is a method of communication between software components or
applications. A messaging system is a peer-to-peer facility: A messaging client can
send messages to, and receive messages from, any other client. Each client connects to
a messaging agent that provides facilities for creating, sending, receiving, and reading
messages.

The Java EE 6 Tutorial: Basic Concepts

http://jcp.org/en/jsr/detail?id=322

Resources

The Java Message Service (JMS) API allows applications to create, send, receive, and
read messages. It defines a common set of interfaces and associated semantics that
allow programs written in the Java programming language to communicate with other
messaging implementations.

The JMS API minimizes the set of concepts a programmer must learn in order to use
messaging products but provides enough features to support sophisticated messaging
applications. It also strives to maximize the portability of JMS applications across JMS
providers in the same messaging domain.

Java Database Connectivity Software

To store, organize, and retrieve data, most applications use relational databases. Java
EE applications access relational databases through the JDBC APL

A JDBC resource, or data source, provides applications with a means of connecting to
a database. Typically, a JDBC resource is created for each database accessed by the
applications deployed in a domain. Transactional access to JDBC resources is available
from servlets, JavaServer Faces pages, and enterprise beans. The connection pooling
and distributed transaction features are intended for use by JDBC drivers to
coordinate with an application server. For more information, see “DataSource Objects
and Connection Pools” on page 530.

Chapter 26 « Introduction to Java EE Supporting Technologies 515

This page intentionally left blank

L K 2 4 CHAPTER 27

Transactions

A typical enterprise application accesses and stores information in one or more
databases. Because this information is critical for business operations, it must be
accurate, current, and reliable. Data integrity would be lost if multiple programs were
allowed to update the same information simultaneously or if a system that failed while
processing a business transaction were to leave the affected data only partially updated.
By preventing both of these scenarios, software transactions ensure data integrity.
Transactions control the concurrent access of data by multiple programs. In the event
of a system failure, transactions make sure that after recovery, the data willbein a
consistent state.

The following topics are addressed here:

“What Is a Transaction?” on page 517
“Container-Managed Transactions” on page 518
“Bean-Managed Transactions” on page 524
“Transaction Timeouts” on page 525

“Updating Multiple Databases” on page 526
“Transactions in Web Components” on page 528
“Further Information about Transactions” on page 528

What Is a Transaction?

To emulate a business transaction, a program may need to perform several steps. A
financial program, for example, might transfer funds from a checking account to a
savings account by using the steps listed in the following pseudocode:

begin transaction
debit checking account
credit savings account
update history log
commit transaction

517

Container-Managed Transactions

Either all or none of the three steps must complete. Otherwise, data integrity is lost.
Because the steps within a transaction are a unified whole, a transaction is often
defined as an indivisible unit of work.

A transaction can end in two ways: with a commit or with a rollback. When a
transaction commits, the data modifications made by its statements are saved. If a
statement within a transaction fails, the transaction rolls back, undoing the effects of
all statements in the transaction. In the pseudocode, for example, if a disk drive were to
crash during the credit step, the transaction would roll back and undo the data
modifications made by the debit statement. Although the transaction fails, data
integrity would be intact because the accounts still balance.

In the preceding pseudocode, the begin and commit statements mark the boundaries
of the transaction. When designing an enterprise bean, you determine how the
boundaries are set by specifying either container-managed or bean-managed
transactions.

Container-Managed Transactions

518

In an enterprise bean with container-managed transaction demarcation, the EJB
container sets the boundaries of the transactions. You can use container-managed
transactions with any type of enterprise bean: session or message-driven.
Container-managed transactions simplify development because the enterprise bean
code does not explicitly mark the transaction’s boundaries. The code does not include
statements that begin and end the transaction. By default, if no transaction
demarcation is specified, enterprise beans use container-managed transaction
demarcation.

Typically, the container begins a transaction immediately before an enterprise bean
method starts and commits the transaction just before the method exits. Each method
can be associated with a single transaction. Nested or multiple transactions are not
allowed within a method.

Container-managed transactions do not require all methods to be associated with
transactions. When developing a bean, you can set the transaction attributes to specify
which of the bean’s methods are associated with transactions.

Enterprise beans that use container-managed transaction demarcation must not use
any transaction-management methods that interfere with the container’s transaction
demarcation boundaries. Examples of such methods are the commit, setAutoCommit,
and rollback methods of java.sql.Connection or the commit and rollback
methods of javax. jms.Session. If you require control over the transaction
demarcation, you must use application-managed transaction demarcation.

Enterprise beans that use container-managed transaction demarcation also must not
use the javax.transaction.UserTransaction interface.

The Java EE 6 Tutorial: Basic Concepts

Container-Managed Transactions

Transaction Attributes

A transaction attribute controls the scope of a transaction. Figure 27-1 illustrates why
controlling the scope is important. In the diagram, method-A begins a transaction and
then invokes method-B of Bean-2. When method-B executes, does it run within the
scope of the transaction started by method-A, or does it execute with a new
transaction? The answer depends on the transaction attribute of method-B.

FIGURE27-1 Transaction Scope

TX1<<

Bean-1
(Tmethod-A () {

bean-2 .method-B ()
}

N

Bean-2

method-B () {

- TX?

}

A transaction attribute can have one of the following values:

® Required

m RequiresNew

® Mandatory

m NotSupported

® Supports

= Never

Required Attribute

If the client is running within a transaction and invokes the enterprise bean’s method,
the method executes within the client’s transaction. If the client is not associated with a
transaction, the container starts a new transaction before running the method.

The Required attribute is the implicit transaction attribute for all enterprise bean
methods running with container-managed transaction demarcation. You typically do
not set the Required attribute unless you need to override another transaction
attribute. Because transaction attributes are declarative, you can easily change them

later.

Chapter27 - Transactions

519

Container-Managed Transactions

520

RequiresNew Attribute

If the client is running within a transaction and invokes the enterprise bean’s method,
the container takes the following steps:

Suspends the client’s transaction

Starts a new transaction

Delegates the call to the method

Resumes the client’s transaction after the method completes

L e

If the client is not associated with a transaction, the container starts a new transaction
before running the method.

You should use the RequiresNew attribute when you want to ensure that the method
always runs within a new transaction.

Mandatory Attribute

If the client is running within a transaction and invokes the enterprise bean’s method,
the method executes within the client’s transaction. If the client is not associated with a
transaction, the container throws a TransactionRequiredException.

Use the Mandatory attribute if the enterprise bean’s method must use the transaction
of the client.

NotSupported Attribute

If the client is running within a transaction and invokes the enterprise bean’s method,
the container suspends the client’s transaction before invoking the method. After the
method has completed, the container resumes the client’s transaction.

If the client is not associated with a transaction, the container does not start a new
transaction before running the method.

Use the NotSupported attribute for methods that don’t need transactions. Because
transactions involve overhead, this attribute may improve performance.

Supports Attribute

If the client is running within a transaction and invokes the enterprise bean’s method,
the method executes within the client’s transaction. If the client is not associated with a
transaction, the container does not start a new transaction before running the method.

Because the transactional behavior of the method may vary, you should use the
Supports attribute with caution.

The Java EE 6 Tutorial: Basic Concepts

Container-Managed Transactions

Never Attribute

If the client is running within a transaction and invokes the enterprise bean’s method,
the container throws a RemoteException. If the client is not associated with a
transaction, the container does not start a new transaction before running the method.

Summary of Transaction Attributes

Table 27-1 summarizes the effects of the transaction attributes. Both the T1 and the T2
transactions are controlled by the container. A T1 transaction is associated with the
client that calls a method in the enterprise bean. In most cases, the client is another
enterprise bean. A T2 transaction is started by the container just before the method
executes.

In the last column of Table 27-1, the word “None” means that the business method
does not execute within a transaction controlled by the container. However, the
database calls in such a business method might be controlled by the transaction
manager of the database management system.

TABLE27-1 Transaction Attributes and Scope

Transaction Attribute Client’s Transaction Business Method’s Transaction
Required None T2
T1 T1
RequiresNew None T2
T1 T2
Mandatory None Error
T1 T1
NotSupported None None
T1 None
Supports None None
T1 T1
Never None None
T1 Error

Setting Transaction Attributes

Transaction attributes are specified by decorating the enterprise bean class or method
with a javax.ejb.TransactionAttribute annotation and setting it to one of the
javax.ejb.TransactionAttributeType constants.

Chapter27 - Transactions 521

Container-Managed Transactions

If you decorate the enterprise bean class with @ ransactionAttribute, the specified
TransactionAttributeType is applied to all the business methods in the class.
Decorating a business method with @TransactionAttribute applies the
TransactionAttributeType only to that method. Ifa @TransactionAttribute
annotation decorates both the class and the method, the method
TransactionAttributeType overrides the class TransactionAttributeType.

The TransactionAttributeType constants shown in Table 27-2 encapsulate the
transaction attributes described earlier in this section.

TABLE27-2 TransactionAttributeType Constants

Transaction Attribute TransactionAttributeType Constant

Required TransactionAttributeType.REQUIRED
RequiresNew TransactionAttributeType.REQUIRES NEW
Mandatory TransactionAttributeType.MANDATORY
NotSupported TransactionAttributeType.NOT SUPPORTED
Supports TransactionAttributeType.SUPPORTS
Never TransactionAttributeType.NEVER

The following code snippet demonstrates how to use the @TransactionAttribute
annotation:

@TransactionAttribute (NOT SUPPORTED)
@Stateful
public class TransactionBean implements Transaction {

@TransactionAttribute (REQUIRES NEW)
public void firstMethod() {...}

@TransactionAttribute (REQUIRED)
public void secondMethod() {...}

public void thirdMethod() {...}

public void fourthMethod() {...}
}

In this example, the TransactionBean class’s transaction attribute has been set to
NotSupported, firstMethod has been set to RequiresNew, and secondMethod has
been set to Required. Because a @TransactionAttribute set on a method overrides
the class @TransactionAttribute, calls to firstMethod will create a new transaction,
and calls to secondMethod will either run in the current transaction or start a new
transaction. Calls to thirdMethod or fourthMethod do not take place within a
transaction.

522 The Java EE 6 Tutorial: Basic Concepts

Container-Managed Transactions

Rolling Back a Container-Managed Transaction

There are two ways to roll back a container-managed transaction. First, if a system
exception is thrown, the container will automatically roll back the transaction. Second,
by invoking the setRollbackOnly method of the EJBContext interface, the bean
method instructs the container to roll back the transaction. If the bean throws an
application exception, the rollback is not automatic but can be initiated by a call to
setRollbackOnly.

Synchronizing a Session Bean'’s Instance Variables

The SessionSynchronization interface, which is optional, allows stateful session
bean instances to receive transaction synchronization notifications. For example, you
could synchronize the instance variables of an enterprise bean with their
corresponding values in the database. The container invokes the
SessionSynchronization methods (afterBegin, beforeCompletion, and
afterCompletion) at each of the main stages of a transaction.

The afterBegin method informs the instance that a new transaction has begun. The
container invokes afterBegin immediately before it invokes the business method.

The container invokes the beforeCompletion method after the business method has
finished but just before the transaction commits. The beforeCompletion method is
the last opportunity for the session bean to roll back the transaction (by calling
setRollbackOnly).

The afterCompletion method indicates that the transaction has completed. This
method has a single boolean parameter whose value is t rue if the transaction was
committed and false if it was rolled back.

Methods Not Allowed in Container-Managed
Transactions

You should not invoke any method that might interfere with the transaction
boundaries set by the container. The list of prohibited methods follows:

® The commit, setAutoCommit, and rollback methods of java.sql.Connection
®» The getUserTransaction method of javax.ejb.EJBContext
= Anymethod of javax.transaction.UserTransaction

You can, however, use these methods to set boundaries in application-managed
transactions.

Chapter27 - Transactions 523

Bean-Managed Transactions

Bean-Managed Transactions

524

In bean-managed transaction demarcation, the code in the session or message-driven
bean explicitly marks the boundaries of the transaction. Although beans with
container-managed transactions require less coding, they have one limitation: When a
method is executing, it can be associated with either a single transaction or no
transaction at all. If this limitation will make coding your bean difficult, you should
consider using bean-managed transactions.

The following pseudocode illustrates the kind of fine-grained control you can obtain
with application-managed transactions. By checking various conditions, the
pseudocode decides whether to start or stop certain transactions within the business
method:

begin transaction
update table-a

if (condition-x)
commit transaction
else if (condition-y)
update table-b

commit transaction
else

rollback transaction
begin transaction
update table-c

commit transaction

When coding an application-managed transaction for session or message-driven
beans, you must decide whether to use Java Database Connectivity or JTA
transactions. The sections that follow discuss both types of transactions.

JTA Transactions

JTA, or the Java Transaction API, allows you to demarcate transactions in a manner
that is independent of the transaction manager implementation. GlassFish Server
implements the transaction manager with the Java Transaction Service (JTS).
However, your code doesn’t call the JTS methods directly but instead invokes the JTA
methods, which then call the lower-level JTS routines.

A JTA transaction is controlled by the Java EE transaction manager. You may want to
use a JTA transaction because it can span updates to multiple databases from different
vendors. A particular DBMS’s transaction manager may not work with heterogeneous
databases. However, the Java EE transaction manager does have one limitation: It does
not support nested transactions. In other words, it cannot start a transaction for an
instance until the preceding transaction has ended.

The Java EE 6 Tutorial: Basic Concepts

Transaction Timeouts

To demarcate a JTA transaction, you invoke the begin, commit, and rollback
methods of the javax.transaction.UserTransaction interface.

Returning without Committing

In a stateless session bean with bean-managed transactions, a business method must
commit or roll back a transaction before returning. However, a stateful session bean
does not have this restriction.

In a stateful session bean with a JTA transaction, the association between the bean
instance and the transaction is retained across multiple client calls. Even if each
business method called by the client opens and closes the database connection, the
association is retained until the instance completes the transaction.

In a stateful session bean with a JDBC transaction, the JDBC connection retains the
association between the bean instance and the transaction across multiple calls. If the
connection is closed, the association is not retained.

Methods Not Allowed in Bean-Managed Transactions

Do not invoke the getRollbackOnly and setRollbackOnly methods of the
EJBContext interface in bean-managed transactions. These methods should be used
only in container-managed transactions. For bean-managed transactions, invoke the
getStatus and rollback methods of the UserTransaction interface.

Transaction Timeouts

For container-managed transactions, you can use the Administration Console to
configure the transaction timeout interval. See “Starting the Administration Console”
on page 42.

For enterprise beans with bean-managed JTA transactions, you invoke the
setTransactionTimeout method of the UserTransaction interface.

Chapter27 - Transactions 525

Updating Multiple Databases

¥ To Set aTransaction Timeout

1

3

In the Administration Console, expand the Configuration node and select Transaction
Service.

On the Transaction Service page, set the value of the Transaction Timeout field to the
value of your choice (for example, 5).

With this setting, if the transaction has not completed within 5 seconds, the EJB
container rolls it back.

The default value is 0, meaning that the transaction will not time out.

Click Save.

Updating Multiple Databases

526

The Java EE transaction manager controls all enterprise bean transactions except for
bean-managed JDBC transactions. The Java EE transaction manager allows an
enterprise bean to update multiple databases within a transaction. Figure 27-2 and
Figure 27-3 show two scenarios for updating multiple databases in a single
transaction.

In Figure 27-2, the client invokes a business method in Bean-A. The business method
begins a transaction, updates Database X, updates Database Y, and invokes a business
method in Bean-B. The second business method updates Database Z and returns
control to the business method in Bean-A, which commits the transaction. All three
database updates occur in the same transaction.

In Figure 27-3, the client calls a business method in Bean- A, which begins a
transaction and updates Database X. Then Bean-A invokes a method in Bean-B, which
resides in a remote Java EE server. The method in Bean-B updates Database Y. The
transaction managers of the Java EE servers ensure that both databases are updated in
the same transaction.

The Java EE 6 Tutorial: Basic Concepts

Updating Multiple Databases

FIGURE27-2 Updating Multiple Databases

\9/

Client

Java EE
Server

Bean-B ‘

{V A
Databases E:l Ei
X Y

FIGURE 27-3 Updating Multiple Databases across Java EE Servers

Java EE
Server

Java EE
Server

Bean-A Q

Bean-B Q

Databases

Chapter27 - Transactions

527

Transactions in Web Components

Transactions in Web Components

You can demarcate a transaction in a web component by using either the
java.sql.Connection or the javax.transaction.UserTransaction interface. These
are the same interfaces that a session bean with bean-managed transactions can use.
Transactions demarcated with the UserTransaction interface are discussed in “JTA
Transactions” on page 524.

Further Information about Transactions

For more information about transactions, see
= Java Transaction API 1.1 specification:

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

528 The Java EE 6 Tutorial: Basic Concepts

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

L K R 4 CHAPTER 238

Resource Connections

Java EE components can access a wide variety of resources, including databases, mail
sessions, Java Message Service objects, and URLs. The Java EE 6 platform provides
mechanisms that allow you to access all these resources in a similar manner. This
chapter explains how to get connections to several types of resources.

The following topics are addressed here:

“Resources and JNDI Naming” on page 529

“DataSource Objects and Connection Pools” on page 530
“Resource Injection” on page 531

“Resource Adapters and Contracts” on page 534
“Metadata Annotations” on page 538

“Common Client Interface” on page 540

“Further Information about Resources” on page 541

Resources and JNDI Naming

In a distributed application, components need to access other components and
resources, such as databases. For example, a servlet might invoke remote methods on
an enterprise bean that retrieves information from a database. In the Java EE platform,
the Java Naming and Directory Interface (JNDI) naming service enables components
to locate other components and resources.

A resource is a program object that provides connections to systems, such as database
servers and messaging systems. (A Java Database Connectivity resource is sometimes
referred to as a data source.) Each resource object is identified by a unique,
people-friendly name, called the JNDI name. For example, the JNDI name of the JDBC
resource for the Java DB database that is shipped with the GlassFish Server is

jdbc/ default.

529

DataSource Objects and Connection Pools

An administrator creates resources in a JNDI namespace. In the GlassFish Server, you
can use either the Administration Console or the asadmin command to create
resources. Applications then use annotations to inject the resources. If an application
uses resource injection, the GlassFish Server invokes the JNDI API, and the
application is not required to do so. However, it is also possible for an application to
locate resources by making direct calls to the INDI APL

A resource object and its JNDI name are bound together by the naming and directory
service. To create a new resource, a new name/object binding is entered into the JNDI
namespace. You inject resources by using the @Resource annotation in an application.

You can use a deployment descriptor to override the resource mapping that you
specify in an annotation. Using a deployment descriptor allows you to change an
application by repackaging it rather than by both recompiling the source files and
repackaging. However, for most applications, a deployment descriptor is not
necessary.

DataSource Objects and Connection Pools

530

To store, organize, and retrieve data, most applications use a relational database. Java
EE 6 components may access relational databases through the JDBC API. For
information on this API, see http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136101.html.

In the JDBC API, databases are accessed by using DataSource objects. A DataSource
has a set of properties that identify and describe the real-world data source that it
represents. These properties include such information as the location of the database
server, the name of the database, the network protocol to use to communicate with the
server, and so on. In the GlassFish Server, a data source is called a JDBC resource.

Applications access a data source by using a connection, and a DataSource object can
be thought of as a factory for connections to the particular data source that the
DataSource instance represents. In a basic DataSource implementation, a call to the
getConnection method returns a connection object that is a physical connection to
the data source.

A DataSource object may be registered with a JNDI naming service. If so, an
application can use the JNDI API to access that DataSource object, which can then be
used to connect to the data source it represents.

DataSource objects that implement connection pooling also produce a connection to
the particular data source that the DataSource class represents. The connection object
that the getConnection method returns is a handle to a PooledConnection object
rather than being a physical connection. An application uses the connection object in
the same way that it uses a connection. Connection pooling has no effect on

The Java EE 6 Tutorial: Basic Concepts

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

Resource Injection

application code except that a pooled connection, like all connections, should always
be explicitly closed. When an application closes a connection that is pooled, the
connection is returned to a pool of reusable connections. The next time
getConnection is called, a handle to one of these pooled connections will be returned
if one is available. Because connection pooling avoids creating a new physical
connection every time one is requested, applications can run significantly faster.

A JDBC connection pool is a group of reusable connections for a particular database.
Because creating each new physical connection is time consuming, the server
maintains a pool of available connections to increase performance. When it requests a
connection, an application obtains one from the pool. When an application closes a
connection, the connection is returned to the pool.

Applications that use the Persistence API specify the DataSource object they are using
in the jta-data-source element of the persistence.xml file:

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The
application code does not refer to any JDBC objects.

Resource Injection

The javax.annotation.Resource annotation is used to declare a reference to a
resource; @Resource can decorate a class, a field, or a method. The container will inject
the resource referred to by @esource into the component either at runtime or when
the component is initialized, depending on whether field/method injection or class
injection is used. With field-based and method-based injection, the container will
inject the resource when the application is initialized. For class-based injection, the
resource is looked up by the application at runtime.

The @Resource annotation has the following elements:

= name: The JNDI name of the resource

= type: The Java language type of the resource

= authenticationType: The authentication type to use for the resource
® shareable: Indicates whether the resource can be shared

= mappedName: A nonportable, implementation-specific name to which the resource
should be mapped

= description: The description of the resource

The name element is the JNDI name of the resource and is optional for field-based and
method-based injection. For field-based injection, the default name is the field name

Chapter 28 - Resource Connections 531

Resource Injection

532

qualified by the class name. For method-based injection, the default name is the
JavaBeans property name, based on the method qualified by the class name. The name
element must be specified for class-based injection.

The type of resource is determined by one of the following:

= The type of the field the @Resource annotation is decorating for field-based
injection

= The type of the JavaBeans property the @Resource annotation is decorating for
method-based injection

®m The type element of @Resource
For class-based injection, the type element is required.

The authenticationType element is used only for connection factory resources, such
as the resources of a connector, also called the resource adapter, or data source. This
element can be set to one of the javax.annotation.Resource.AuthenticationType
enumerated type values: CONTAINER, the default, and APPLICATION.

The shareable element is used only for Object Resource Broker (ORB) instance
resources or connection factory resource. This element indicates whether the resource
can be shared between this component and other components and may be set to true,
the default, or false.

The mappedName element is a nonportable, implementation-specific name to which the
resource should be mapped. Because the name element, when specified or defaulted, is
local only to the application, many Java EE servers provide a way of referring to
resources across the application server. This is done by setting the mappedName
element. Use of the mappedName element is nonportable across Java EE server
implementations.

The description element is the description of the resource, typically in the default
language of the system on which the application is deployed. This element is used to
help identify resources and to help application developers choose the correct resource.

Field-Based Injection

To use field-based resource injection, declare a field and decorate it with the
@Resource annotation. The container will infer the name and type of the resource if
the name and type elements are not specified. If you do specify the type element, it
must match the field’s type declaration.

In the following code, the container infers the name of the resource, based on the class
name and the field name: com. example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class:

The Java EE 6 Tutorial: Basic Concepts

Resource Injection

package com.example;
public class SomeClass {
@Resource
private javax.sql.DataSource myDB;
}
In the following code, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class:
package com.example;
public class SomeClass {

@Resource (name="customerDB")
private javax.sql.DataSource myDB;

Method-Based Injection

To use method-based injection, declare a setter method and decorate it with the
@Resource annotation. The container will infer the name and type of the resource if
the name and type elements are not specified. The setter method must follow the
JavaBeans conventions for property names: The method name must begin with set,
have a void return type, and only one parameter. If you do specify the type element, it
must match the field’s type declaration.

In the following code, the container infers the name of the resource based on the class
name and the field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class:
package com.example;
public class SomeClass {

private javax.sql.DataSource myDB;

@Resource

private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}
}
In the following code, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

Chapter 28 - Resource Connections 533

Resource Adapters and Contracts

private javax.sql.DataSource myDB;

@Resource(name="customerDB")

private void setMyDB(javax.sql.DataSource ds) {
myDB = ds;

}

Class-Based Injection

To use class-based injection, decorate the class with a @esource annotation, and set
the required name and type elements:

@Resource (name="myMessageQueue"
type="javax.jms.ConnectionFactory")
public class SomeMessageBean {

The @Resources annotation is used to group together multiple @Resource
declarations for class-based injection. The following code shows the @Resources
annotation containing two @Resource declarations. One is a Java Message Service
message queue, and the other is a JavaMail session:

@Resources ({
@Resource (name="myMessageQueue"
type="javax.jms.ConnectionFactory"),
@Resource (name="myMailSession"
type="javax.mail.Session")
1)
public class SomeMessageBean {

i..

Resource Adapters and Contracts

534

A resource adapter is a Java EE component that implements the Java EE Connector
Architecture for a specific EIS. Examples of EISs include enterprise resource planning,
mainframe transaction processing, and database systems. As illustrated in

Figure 28-1, the resource adapter facilitates communication between a Java EE
application and an EIS.

The Java EE 6 Tutorial: Basic Concepts

Resource Adapters and Contracts

FIGURE28-1 Resource Adapters

Java EE Server

Enterprise Bean

Application
Contract

Managers

Resource
> Adapter ~—— EIS

«

_ System

Transaction <
Contracts

Connection
Security

Application
Contract
Web Component

Stored in a Resource Adapter Archive (RAR) file, a resource adapter can be deployed
on any Java EE server, much like a Java EE application. A RAR file may be contained in
an Enterprise Archive (EAR) file, or it may exist as a separate file.

A resource adapter is analogous to a JDBC driver. Both provide a standard API
through which an application can access a resource that is outside the Java EE server.
For a resource adapter, the target system is an EIS; for a JDBC driver, it isa DBMS.
Resource adapters and JDBC drivers are rarely created by application developers. In
most cases, both types of software are built by vendors that sell tools, servers, or
integration software.

The resource adapter mediates communication between the Java EE server and the EIS
by means of contracts. The application contract defines the API through which a Java
EE component, such as an enterprise bean, accesses the EIS. This API is the only view
that the component has of the EIS. The system contracts link the resource adapter to
important services that are managed by the Java EE server. The resource adapter itself
and its system contracts are transparent to the Java EE component.

Chapter 28 - Resource Connections 535

Resource Adapters and Contracts

Management Contracts

The Java EE Connector Architecture defines system contracts that enable resource
adapter lifecycle and thread management.

Lifecycle Management

The Connector Architecture specifies a lifecycle management contract that allows an
application server to manage the lifecycle of a resource adapter. This contract provides
amechanism for the application server to bootstrap a resource adapter instance during
the deployment or application server startup. This contract also provides a means for
the application server to notify the resource adapter instance when it is undeployed or
when an orderly shutdown of the application server takes place.

Work Management Contract

The Connector Architecture work management contract ensures that resource
adapters use threads in the proper, reccommended manner. This contract also enables
an application server to manage threads for resource adapters.

Resource adapters that improperly use threads can jeopardize the entire application
server environment. For example, a resource adapter might create too many threads or
might not properly release threads it has created. Poor thread handling inhibits
application server shutdown and impacts the application server’s performance because
creating and destroying threads are expensive operations.

The work management contract establishes a means for the application server to pool
and reuse threads, similar to pooling and reusing connections. By adhering to this
contract, the resource adapter does not have to manage threads itself. Instead, the
resource adapter has the application server create and provide needed threads. When
itis finished with a given thread, the resource adapter returns the thread to the
application server. The application server manages the thread, either returningittoa
pool for later reuse or destroying it. Handling threads in this manner results in
increased application server performance and more efficient use of resources.

In addition to moving thread management to the application server, the Connector
Architecture provides a flexible model for a resource adapter that uses threads.

= The requesting thread can choose to block (stop its own execution) until the work
thread completes.

= The requesting thread can block while it waits to get the work thread. When the
application server provides a work thread, the requesting thread and the work
thread execute in parallel.

536 The Java EE 6 Tutorial: Basic Concepts

Resource Adapters and Contracts

= The resource adapter can opt to submit the work for the thread to a queue. The
thread executes the work from the queue at some later point. The resource adapter
continues its own execution from the point it submitted the work to the queue, no
matter when the thread executes it.

With the latter two approaches, the submitting thread and the work thread may
execute simultaneously or independently. For these approaches, the contract specifies
a listener mechanism to notify the resource adapter that the thread has completed its
operation. The resource adapter can also specify the execution context for the thread,
and the work management contract controls the context in which the thread executes.

Generic Work Context Contract

The work management contract between the application server and a resource adapter
enables a resource adapter to do a task, such as communicating with the EIS or
delivering messages, by delivering Work instances for execution.

A generic work context contract enables a resource adapter to control the contexts in
which the Work instances that it submits are executed by the application server’s
WorkManager. A generic work context mechanism also enables an application server to
support new message inflow and delivery schemes. It also provides a richer contextual
Work execution environment to the resource adapter while still maintaining control
over concurrent behavior in a managed environment.

The generic work context contract standardizes the transaction context and the
security context.

Outbound and Inbound Contracts

The Connector Architecture defines the following outbound contracts, system-level
contracts between an application server and an EIS that enable outbound connectivity
toan EIS.

= The connection management contract supports connection pooling, a technique
that enhances application performance and scalability. Connection pooling is
transparent to the application, which simply obtains a connection to the EIS.

= The transaction management contract extends the connection management
contract and provides support for management of both local and XA transactions.

A local transaction is limited in scope to a single EIS system, and the EIS resource
manager itself manages such transaction. An XA transaction or global transaction
can span multiple resource managers. This form of transaction requires
transaction coordination by an external transaction manager, typically bundled
with an application server. A transaction manager uses a two-phase commit

Chapter 28 - Resource Connections 537

Metadata Annotations

protocol to manage a transaction that spans multiple resource managers or EISs,
and uses one-phase commit optimization if only one resource manager is
participating in an XA transaction.

= The security management contract provides mechanisms for authentication,
authorization, and secure communication between a Java EE server and an EIS to
protect the information in the EIS.

A work security map matches EIS identities to the application server domain’s
identities.

Inbound contracts are system contracts between a Java EE server and an EIS that
enable inbound connectivity from the EIS: pluggability contracts for message
providers and contracts for importing transactions.

Metadata Annotations

538

Java EE Connector Architecture 1.6 introduces a set of annotations to minimize the
need for deployment descriptors.

= The@Connector annotation can be used by the resource adapter developer to
specify that the JavaBeans component is a resource adapter JavaBeans component.
This annotation is used for providing metadata about the capabilities of the
resource adapter. Optionally, you can provide a JavaBeans component
implementing the ResourceAdapter interface, as in the following example:

@Connector(
description = "Sample adapter using the JavaMail API"
displayName = "InboundResourceAdapter"
vendorName = "My Company, Inc."
eisType = "MAIL"
version = "1.0"
)
public class ResourceAdapterImpl
implements ResourceAdapter, java.io.Serializable {

}
m The@ConnectionDefinition annotation defines a set of connection interfaces and
classes pertaining to a particular connection type, as in the following example:

@ConnectionDefinition(

connectionFactory =
samples.mailra..api.JavaMailConnectionFactory.class,

connectionFactoryImpl =
samples.mailra.ra.outbound.JavaMailConnectionFactoryImpl.class,

connection =
samples.connectors.mailconnector.api.JavaMailConnection.class,

connectionImpl =
samples.mailra..ra.outbound.JavaMailConnectionImpl.class

The Java EE 6 Tutorial: Basic Concepts

Metadata Annotations

public class ManagedConnectionFactoryImpl implements
ManagedConnectionFactory, Serializable {

@ConfigProperty(defaultValue = "UnknownHostName")
public void setServerName(String serverName) {

}
}

= The@AdministeredObject annotation designates a JavaBeans component as an
administered object.

= The@Activation annotation contains configuration information pertaining to
inbound connectivity from an EIS instance, as in the following example:

@Activation(

messagelListeners = {
samples.mailra.api.JavaMailMessagelListener.class

}

)

public class ActivationSpecImpl
implements javax.resource.spi.ActivationSpec,

java.io.Serializable {

@ConfigProperty()
// serverName property value
private String serverName = new String("");

@ConfigProperty()
// userName property value
private String userName = new String("");

@ConfigProperty()
// password property value
private String password = new String("");

@ConfigProperty()
// folderName property value
private String folderName = new String("Inbox");

// protocol property value
// Normally imap or pop3
@ConfigProperty(
description = "Normally imap or pop3"
)
private String protocol = new String("imap")

}

» The@ConfigProperty annotation can be used on JavaBeans components to
provide additional configuration information that may be used by the deployer
and resource adapter provider. The preceding example code shows several
@ConfigProperty annotations.

The specification allows a resource adapter to be developed in mixed-mode form, that
is the ability for a resource adapter developer to use both metadata annotations and

Chapter 28 - Resource Connections 539

Common Client Interface

deployment descriptors in applications. An application assembler or deployer may use
the deployment descriptor to override the metadata annotations specified by the
resource adapter developer.

The deployment descriptor for a resource adapter is named ra.xml. The
metadata-complete attribute defines whether the deployment descriptor for the
resource adapter module is complete or whether the class files available to the module
and packaged with the resource adapter need to be examined for annotations that
specify deployment information.

For the complete list of annotations and JavaBeans components introduced in the Java
EE 6 platform, see the Java EE Connector Architecture 1.6 specification.

Common Client Interface

540

This section explains how components use the Connector Architecture Common
Client Interface (CCI) API and a resource adapter to access data from an EIS. The CCI
API defines a set of interfaces and classes whose methods allow a client to perform
typical data access operations. The CCl interfaces and classes are as follows:

= ConnectionFactory: Provides an application component with a Connection
instance to an EIS.

= Connection: Represents the connection to the underlying EIS.

= ConnectionSpec: Provides a means for an application component to pass
connection-request-specific properties to the ConnectionFactory when making a
connection request.

= Interaction: Providesa means for an application component to execute EIS
functions, such as database stored procedures.

= InteractionSpec: Holds properties pertaining to an application component’s
interaction with an EIS.

= Record: The superinterface for the various kinds of record instances. Record
instances can be MappedRecord, IndexedRecord, or ResultSet instances, all of
which inherit from the Record interface.

= RecordFactory: Provides an application component with a Record instance.

= IndexedRecord: Representsan ordered collection of Record instances based on the
java.util.List interface.

A client or application component that uses the CCI to interact with an underlying EIS
does so in a prescribed manner. The component must establish a connection to the
EIS’s resource manager, and it does so using the ConnectionFactory. The Connection
object represents the connection to the EIS and is used for subsequent interactions
with the EIS.

The Java EE 6 Tutorial: Basic Concepts

Further Information about Resources

The component performs its interactions with the EIS, such as accessing data from a
specific table, using an Interaction object. The application component defines the
Interaction object by using an InteractionSpec object. When it reads data from the
EIS, such as from database tables, or writes to those tables, the application component
does so by using a particular type of Record instance: a MappedRecord, an
IndexedRecord, or aResultSet instance.

Note, too, that a client application that relies on a CCI resource adapter is very much
like any other Java EE client that uses enterprise bean methods.

Further Information about Resources

For more information about resources and annotations, see

= Java EE 6 Platform Specification (JSR 316):
http://jcp.org/en/jsr/detail?id=316

= Java EE Connector Architecture 1.6 specification:
http://jcp.org/en/jsr/detail?id=322

= EJB 3.1 specification:
http://jcp.org/en/jsr/detail?id=318

= Common Annotations for the Java Platform:

http://www.jcp.org/en/jsr/detail?id=250

Chapter 28 - Resource Connections 541

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=318
http://www.jcp.org/en/jsr/detail?id=250

This page intentionally left blank

Index

Numbers and Symbols
@AccessTimeout annotation, 281
@ApplicationScoped annotation, 310-312
@ConcurrencyManagement annotation, 280
@Consumes annotation, 229-231
@ConversationScoped annotation, 310-312
@DeclareRoles annotation, 490-492
@DELETE annotation, 220-235
@DenyAll annotation, 491
@Dependent annotation, 310-312
@DependsOn annotation, 279
@DiscriminatorColumn annotation, 347-348
@iscriminatorValue annotation, 347-348
@Embeddable annotation, 344-345
@EmbeddedId annotation, 339
@Entity annotation, 334
@GET annotation, 220-235
@HttpConstraint

annotation, 457,476
@HttpMethodConstraint annotation, 457,476
@Id annotation, 339
@IdClass annotation, 339
@Inject annotation, 310
@Local annotation, 253,272
@Lock annotation, 280-282
@ManagedBean annotation, 77,85-87
@ManyToMany annotation, 341, 342
@ManyToOne annotation, 341
@Named annotation, 312
@NamedQuery annotation, 382
@0OneToMany annotation, 341, 342, 343
@0OneToOne annotation, 341, 342,343

@Path annotation, 220-235
@PathParamannotation, 231-235
@PermitAll annotation, 491
@PersistenceContext annotation, 350
@PersistenceUnit annotation, 350
@POST annotation, 220-235
@PostActivate annotation, 273,274
@PostConstruct annotation, 261-264,273,274
@PreDestroy annotation, 261-264, 273,274
@PrePassivate annotation, 273,274
@Produces annotation, 229-231,314
@PUT annotation, 220-235

@Qualifier annotation, 309
@QueryParam annotation, 231-235
@Remote annotation, 253,272

@Remove annotation, 261,273,276
@RequestScoped annotation, 310-312
@Resource annotation, 531-534
@RolesAllowed annotation, 490

@RunAs annotation, 494-496
@Schedule and @Schedules annotations, 294-295
@ServletSecurity annotation, 457,476
@SessionScoped annotation, 310-312
@Singleton annotation, 278

@Startup annotation, 278

@Stateful annotation, 273

@Timeout annotation, 293

@Timeout method, 296

@Transient annotation, 335
@WebFilter annotation, 187
@WebInitParamannotation, 184,188
@WebListener annotation, 181

543

Index

@WebMethod annotation, 275
@WebService annotation, 208
@WebServiceRef annotation, 70
@WebServlet annotation, 62,183-184

A

abstract schemas, 382

access control, 434

action events, 127
actionListener attribute, 126,154, 156
ActionListener interface, 152
actionlListener tag, 143,152
referencing methods that handle action

events, 156,172
writing a backing-bean method to handle action
events, 172-173

Administration Console, 34
starting, 42-43
afterBegin method, 523
afterCompletion method, 523
annotations, 3
JAX-RS, 220-235
security, 439,476-477,486,490-492
Anttool, 41
appclient tool, 34
applet containers, 15
applets, 9,10
application client containers, 15
application clients, 8-9
securing, 504-505
applications
JavaServer Faces, 74
security, 436-437
undeploying, 61-62
asadmin tool, 34
attributes referencing backing bean methods, 154
action attribute, 154,155
actionListener attribute, 154,156
validator attribute, 155,156
valueChangelListener attribute, 155,156
audit modules, pluggable, 441
auditing, 435
auth-constraint element, 459

544 The Java EE 6 Tutorial: Basic Concepts

authenticate method, 469-471
authenticating users, 461-468
authentication, 434-435,449

basic, 462

certificate-based mutual, 465

client, 465

digest, 464-465

form-based, 463-464,479-484

mutual, 465-466

user name/password-based mutual, 466
authentication mechanism, EJB, 493
authorization, 434-435
authorization constraints, 458,459
authorization providers, pluggable, 441
auto commit, 28

backing bean methods
See attributes referencing backing bean methods
See referencing backing bean methods
See writing backing bean methods

backing bean properties, 146,160-161, 162
bound to component instances, 168-169
properties for UISelectItems composed of

SelectIteminstances, 168

UIData properties, 164-165
UIInputand UIOutput properties, 163
UISelectBoolean properties, 165
UISelectItem properties, 167
UISelectItems properties, 167-168
UISelectMany properties, 165-166
UISelectOne properties, 166-167
writing, 162-170

backing beans, 74, 159-162
developing, 77,85-87
method binding, 122
properties

See backing bean properties

basic authentication, 462
EJB, 493
example, 475-479

bean-managed transactions, See transactions,
bean-managed

Index

bean validation, 29
Bean Validation
constraints, 376-377
examples, 376-380
Java Persistence API, 337-339
JavaServer Faces applications, 174-178,
378-379
beans, defined for CDI, 307
beans.xml file, 315
beforeCompletion method, 523
BLOBEs, See persistence, BLOBs
bookmarkable URLs, component tags, 139-140
BufferedReader class, 185
build artifacts, removing, 61-62
business logic, 246
business methods, 256
client calls, 275
exceptions, 276
locating, 266
requirements, 275
transactions, 521, 523,525,526

C
CallbackHandler interface, 504
capture-schema tool, 34
certificate authorities, 451
certificates, 436

digital, 437,450-453

managing, 451
server
generating, 452-453

using for authentication, 446
class files, removing, 61-62
clients

authenticating, 465

securing, 504-505
CLOBs, See persistence, CLOBs
collections

persistence, 335-337,426
commit method, 523
commits, See transactions, commits
Common Client Interface, Connector

Architecture, 540-541

component binding, 162

binding attribute, 162
component classes

UIData class, 164-165

UIInput and UIOutput classes, 163

UISelectBoolean class, 165

UISelectItemclass, 167

UISelectItems class, 167

UISelectMany class, 165-166

UISelectOne class, 166-167
component-managed sign-on, 506
component properties, See backing bean properties
component tag attributes

action attribute, 171

actionListener attribute, 126,154,172

binding attribute, 117,119, 162

columns attribute, 129

converter attribute, 122, 146-147

for attribute, 124,138

id attribute, 117

immediate attribute, 117,118

redisplay attribute, 124

rendered attribute, 117,118

style attribute, 117,119,138

styleClass attribute, 117,119

validator attribute, 122,173

value attribute, 117,119, 162

valueChangeListener attribute, 122,156,173
component tags, 162

attributes

See component tag attributes

body tag, 119-120

bookmarkable URLs, 139-140

buttontag, 139-140

column tag, 115

commandButton tag, 115,126-127

commandLink tag, 115,127

dataTable tag, 115,135-138, 164

formtag, 115,120

graphicImage tag, 115,127

head tag, 119-120

inputHiddentag, 115,121

inputSecret tag, 115,121,124

inputText tag, 115,121,123-124

545

Index

component tags (Continued)
inputTextareatag, 115,121
link tag, 139-140
message tag, 115,138-139
messages tag, 115,138-139
output tag, 141-142
outputFormat tag, 115,125
outputLabel tag, 116,123,124-125
outputLinktag, 116,123,125
outputMessage tag, 123
outputText tag, 116,123,127,165
panelGrid tag, 116,128-129
panelGroup tag, 116,128-129
resource relocation, 141-142
selectBooleanCheckbox tag, 116,130,165
selectItems tag, 167
selectManyCheckbox tag, 116,132-133,165
selectManyListbox tag, 116,132
selectManyMenu tag, 116,132
selectOnelListbox tag, 116,131
selectOneMenu tag, 117,131,166, 167
selectOneRadio tag, 117,131
components
buttons, 115
check boxes, 116
combo boxes, 116,117
data grids, 115
hidden fields, 115
hyperlinks, 115
labels, 116
list boxes, 116
password fields, 115
radio buttons, 117
table columns, 115
tables, 116
textareas, 115
text fields, 115
composite components, Facelets, 94-96
concurrent access, 517
confidentiality, 449
Connection interface, 523,528
connection pooling, 530
connections, securing, 449-453
connectors, See Java EE Connector architecture

546 The Java EE 6 Tutorial: Basic Concepts

container-managed sign-on, 506
container-managed transactions, See transactions,

container-managed

containers, 13-15

See also applet containers

See also application client containers
See also EJB containers

See also web containers

configurable services, 13
nonconfigurable services, 13
securing, 439-440

security, 430-435

services, 13

trust between, 496

context parameters, 57

specifying, 66-67

context roots, 57-58
Contexts and Dependency Injection (CDI) for the

Java EE platform, 29,305-315
beans, 307

configuring applications, 315
EL, 312

examples, 317-330

Facelets pages, 313

injectable objects, 308
injecting beans, 310

managed beans, 307-308
overview, 306

producer methods, 314
qualifiers, 309

scopes, 310-312

setter and getter methods, 312-313

conversational state, 247
conversion model

See also converter tags

converter attribute, 122, 146-147
Converter implementations, 145-151
converterId attribute, 146
javax.faces.convert package, 145

Converter implementation classes

BigDecimalConverter class, 145
BigIntegerConverter class, 145
BooleanConverter class, 145
ByteConverter class, 145

Index

CharacterConverter class, 145
DateTimeConverter class, 145,146, 147
DoubleConverter class, 145
EnumConverter class, 145
FloatConverter class, 145
IntegerConverter class, 146
LongConverter class, 146
NumberConverter class, 146, 147,149-151
ShortConverter class, 146
converter tags
convertDateTime tag, 147
convertDateTime tagattributes, 148-149
converter tag, 147
convertNumber tag, 147, 149-151
convertNumber tag attributes, 150-151
cookie parameters, 234
createTimer method, 293
credential, 444
Criteria API, 415-426
creating queries, 418-419
examples, 372-373
expressions, 421-422,422-423
path navigation, 421
query execution, 425-426
query results, 421-423,424-425
cryptography, public-key, 451
custom validators
validate method, 173
Validator implementation
backing bean methods, 170

D

data encryption, 465

data integrity, 434,517,518

data sources, 530

databases
See also transactions
clients, 246
connections, 276,525
data recovery, 517
EIS tier, 6
message-driven beans and, 250
multiple, 524,526-527

DataSource interface, 530
debugging, Java EE applications, 45-46
declarative security, 430,456,486
Dependency Injection for Java (JSR 330), 29, 305
deployer roles, 21
deployment, 267-269
deployment descriptors, 17,430, 439-440, 456
enterprise bean, 440
enterprise beans, 259, 486, 488
Java EE, 18
runtime, 18
security-role-mapping element, 447-448
security-role-ref element, 473-474
web application, 53,440
runtime, 54
web applications, 51
destroy method, 195
development roles, 19-22
application assemblers, 21
application client developers, 21
application component providers, 20-21
application deployers and administrators, 21
enterprise bean developers, 20
Java EE product providers, 20
tool providers, 20
web component developers, 20
digest authentication, 464-465
digital signatures, 451
DNS, 31
document roots, 53
doFilter method, 187,188,190
doGet method, 184
domains, 42
doPost method, 184
downloading, GlassFish Server, 38

E
EARfiles, 17
EIS tier, 12

security, 506-509
EJB, security, 486-496
EJB containers, 14
container-managed transactions, 518

547

Index

EJB containers (Continued)
services, 245,246,486-496
EJBJAR files, 258
ejb-jar.xml file, 259,440, 488
EJBContext interface, 523,525
EL, 78,99-112
backing beans, 161-162
composite expressions, 106
deferred evaluation expressions, 100
expression examples, 112
immediate evaluation expressions, 100
literal expressions, 106, 109
literals, 105
lvalue expressions, 100, 102
managed beans, 312
method expressions, 100, 106
operators, 111
overview, 99-100
parameterized method calls, 107-108
reserved words, 111
rvalue expressions, 100, 102
tag attribute type, 108-109
type conversion during expression
evaluation, 106
value expressions, 100, 102
embeddable classes, See persistence: embeddable
classes
end-to-end security, 438
enterprise applications, 3
enterprise beans, 11,25-26
See also business methods
See also Java EE components
See also message-driven beans
See also session beans
accessing, 251
classes, 258
compiling, 267-269
contents, 258-260
defined, 245
dependency injection, 252
deployment, 258
distribution, 253
exceptions, 300-301
getCallerPrincipal method, 493-494

548 The Java EE 6 Tutorial: Basic Concepts

implementor of business logic, 11

interfaces, 251-258,258

isCallerInRole method, 493-494

JAX-RS resources, 237-240

JNDIlookup, 252

lifecycles, 261-264

local access, 254-255

local interfaces, 254

packaging, 258,267-269

performance, 253

programmatic security, 493-494

remote access, 255-256

remote interfaces, 256

securing, 486-496

singletons, 238

timer service, 290-300

types, 246

web services, 247,256-257,286-289

Enterprise Information Systems, See EIS tier
entities

abstract, 345

abstract schema names, 384

application-managed entity
managers, 350-351

cascading operations, 343
orphans, 343-344

collections, 397

container-managed entity managers, 350

creating, 365-366

discriminator columns, 347

entity manager, 349-353

finding, 351-352,366

inheritance, 345-349,370-371

inheritance mapping, 347-349

lifecycle, 352

managing, 349-355,365-367

mapping to multiple tables, 363

non-entity superclasses, 346

overview, 333-345

persistent fields, 334-339

persistent properties, 334-339

persisting, 352

primary keys, 339-341

querying, 355

Index

relationships, 366
removing, 353,367
requirements, 334
superclasses, 345-346
synchronizing, 353
validating, 337-339

entity providers, 227-229

entity relationships
bidirectional, 342
many-to-many, 341,369-370
many-to-one, 341
multiplicity, 341
one-to-many, 341
one-to-one, 341
query language, 342
unidirectional, 342

equals method, 340

event and listener model
See also value-change events
listener class, 170
ValueChangeEvent class, 156

examples, 37-46
basic authentication, 475-479
Bean Validation, 376-380
building, 44
CDI, 317-330
classpath, 268
Criteria API, 372-373
directory structure, 44
JAX-RS, 235-240
JAX-WS, 208-216
persistence, 357-380
primary keys, 340
query language, 366-367,385-390
required software, 37-41
security, 430-433

form-based authentication, 479-484

servlet, 198-199
servlets, 62-70,266
session beans, 266,271-278
singleton session beans, 278-286
timer service, 297-299
web clients, 266
web services, 286-289

exceptions
business methods, 276
enterprise beans, 300-301
mapping to error screens, 67-68
rolling back transactions, 301,523
transactions, 520,521
Expression Language
See EL
expressions
lvalue expressions, 161
tag attribute type, 108-109

F
Facelets, 83-97
See also EL
composite components, 94-96
configuring applications, 88-89
features, 83-85
resources, 96-97
templating, 91-93
XHTML pages, 87-88
Facelets applications, developing, 85-91
FacesServlet, mapping, 78-79
filter chains, 187,190
Filterinterface, 187
filters, 187
defining, 187
mapping to web components, 189
mapping to web resources, 189
overriding request methods, 189
overriding response methods, 189
response wrappers, 189
foreign keys, 359
form-based authentication, 463-464
form parameters, 234
forward method, 192

G

garbage collection, 264
GenericServlet interface, 180
getCallerPrincipal method, 493-494

549

Index

getConnection method, 530
getRemoteUser method, 471
getRequestDispatcher method, 191
getRollbackOnly method, 525
getServletContext method, 193
getSession method, 193
getStatus method, 525
getUserPrincipal method, 471
GlassFish Server

adding users to, 445-446

downloading, 38

enabling debugging, 46

installation tips, 38

securing, 440-441

server log, 45-46

SSL connectors, 450

starting, 41

stopping, 42

tools, 34-35
groups, 444

managing, 444-446

H
hashCode method, 340
header parameters, 234
helper classes, 258
session bean example, 276
HTTP, 207
basic authentication, 462
over SSL, 465
HTTP methods, 226-229
HTTP request URLs, 185
query strings, 186
request paths, 185
HTTP requests, 185
See also requests
HTTP responses, 186
See also responses
status codes, 67-68
HTTPS, 437,450,451, 459-460
HttpServlet interface, 180
HttpServletRequest interface, 185,471
HttpServletResponse interface, 186

550 The Java EE 6 Tutorial: Basic Concepts

HttpSession interface, 193

|
identification, 434-435
implicit navigation, 76
include method, 192
init method, 184
InitialContext interface, 32
initParams attribute, 184
injectable objects, 308
integrity, 449
of data, 434
internationalizing JavaServer Faces applications,
FacesContext.getlLocale method, 148
invalidate method, 194
isCallerInRole method, 493-494
isUserInRole method, 471

J
JAAS, 33,435,505
login modules, 505

JACC, 30,441
JAE, 32
JAR files, 17

query language, 396

JAR signatures, 436

JASPIC, 30-31

Java API for JavaBeans Validation, See Bean
Validation

Java API for XML Binding, 33

Java API for XML Processing, 32

Java API for XML Web Services, See JAX-WS

Java Authentication and Authorization
Service, 435
See also JAAS

Java Authentication Service Provider Interface for
Containers, 30-31

Java Authorization Contract for Containers, 30
See also JACC

Java BluePrints, 44

Java Cryptography Extension (JCE), 435

Index

Java Database Connectivity API, See JDBC API
JavaDB, 34
starting, 43
stopping, 43
Java EE 6 platform, APIs, 22-31
Java EE applications, 6-12
debugging, 45-46
deploying, 267-269
iterative development, 269
tiers, 6-12
Java EE clients, 8-9
application clients, 8-9
See also application clients
web clients, 49-71
See also web clients
Java EE components, 8
Java EE Connector Architecture, 514
Java EE Connector architecture, 29-30
Java EE modules, 17,18
See also web modules
application client modules, 19
EJB modules, 19,258
resource adapter modules, 19
Java EE platform, 6-12
Java EE security model, 13
Java EE servers, 14
Java EE transaction model, 13
Java Generic Security Services, 435
Java GSS-API, 435
Java Message Service (JMS) API, 29,514-515
See also message-driven beans
Java Naming and Directory Interface API, 31-32
See also INDI
Java Persistence API, 28
Java Persistence API query language, See query
language
Java Persistence Criteria API, See Criteria API
Java Secure Sockets Extension, 435
Java Servlet technology, 26,179-200
See also servlets
Java Transaction API, See JTA
JavaBeans Activation Framework, 32
JavaBeans components, 9
JavaMail API, 30

JavaServer Faces application development, 77-81

backing beans, 159-162
bean property, 164

Bean Validation, 174-178
web pages, 113-144

JavaServer Faces applications

HTML tags, 114-142
lifecycle, 79-80
queueing messages, 173

JavaServer Faces core taglibrary, 113,143

See also validator tags

actionattribute, 126
actionlListener tag, 143,152
attribute tag, 143

convertDateTime tag, 143,147
convertDateTime tag attributes, 148-149
converter tag, 143,147

converterId attribute, 146
convertNumber tag, 143, 147,149-151
convertNumber tag attributes, 150-151
facet tag, 129,143

loadBundle tag, 143

metadata tag, 140

paramtag, 125,143

selectItemtag, 116,131,133,134,143
selectItemstag, 116,131,133,134,143
type attribute, 151
validateDoubleRange tag, 144,152
validatelLength tag, 144,152
validatelLongRange tag, 144,153,154
validatortag, 144
valueChangelistener tag, 143,151-152
viewparamtag, 140

JavaServer Faces HTML tag library, See component

tags

JavaServer Faces tag libraries, 84

JavaServer Faces core tag library, 113,143
JavaServer Faces HTML tag library, 113
namespace directives, 114

JavaServer Faces technology, 10,26-27,73-81

See also component tags
See also Facelets
advantages, 75-76

551

Index

JavaServer Faces technology (Continued)
FacesContext class
Validator interface, 173
features, 74-75
JavaServer Pages Standard Tag Library, See JSTL
javax.servlet.http package, 180
javax.servlet package, 180
JAX-RS, 28,219-241
introduction, 204-205
other information sources, 240-241
reference implementation, 219
JAX-WS, 33
defined, 207
examples, 208-216
introduction, 204
service endpoint interfaces, 208
specification, 217
JAXB, 33
JAXP, 32
JCE, 435
JDBC API, 31,515,530
JNDI, 31-32,529
data source naming subcontexts, 32
enterprise bean lookup, 252
enterprise bean naming subcontexts, 32
environment naming contexts, 32
naming contexts, 31
naming environments, 31
naming subcontexts, 32
JSR 299, See Contexts and Dependency Injection
(CDI) for the Java EE platform
JSR 311, See JAX-RS
JSSE, 435
JSTL, 27
JTA, 28
See also transactions, JTA
JTS API, 524

K

Kerberos, 435,436

key pairs, 451

keystores, 436,450-453
managing, 451

552 The Java EE 6 Tutorial: Basic Concepts

keytool utility, 451

L
LDAP, 31
lifecycle, JavaServer Faces, 79-80
listener classes, 180
defining, 180
listener interfaces, 180

listeners
HTTP, 440
IIOP, 440

local interfaces, defined, 254
log, server, 45-46
login

configuring, 461-468
login configuration, 467-468
login method, 469-471
login modules, 505
logout method, 469-471

M
managed beans, defined for CDI, 307-308
Managed Beans specification, 28,305
matrix parameters, 234
message-driven beans, 25,249-251
accessing, 249
defined, 249
garbage collection, 264
onMessage method, 250
transactions, 518,524
message listeners, JMS, 249
message security, 457
MessageBodyReader interface, 227-229
MessageBodyWriter interface, 227-229
messages
integrity, 465
MessageFormat pattern, 125,143
outputFormat tag, 125
paramtag, 125,143
parameter substitution tags, 143
queueing messages, 173

Index

securing, 438
metadata annotations
resource adapters, 538-540
security, 439
Metamodel API, 415-417
using, 372,417-418
method expressions, 155
method permissions, 489
annotations, 490-492
mutual authentication, 465-466

naming contexts, 31
naming environments, 31
navigation model
action attribute, 126,154,155
action methods, 171
ActionEvent class, 156
logical outcome, 171
referencing methods that perform
navigation, 155,171
writing a backing bean method to perform
navigation processing, 171-172
NDS, 31
NetBeans IDE, 40
NIS, 31
non-repudiation, 434

o

onMessage method, message-driven beans, 250

P

package-appclient tool, 34
parameters, extracting, 231-235
path parameters, 233
path templates, 223-226
permissions, security policy, 441
persistence

BLOBs, 364-365

cascade operations, 363-364
CLOBs, 364-365
collections, 335-337
configuration, 353
context, 349-355
embeddable classes, 344-345
entities, 333-345
examples, 357-380
many-to-many, 369-370
maps, 336
one-to-many, 359
one-to-one, 358-359
overview, 333-356
persistence units, 353-355
persistent fields, 335
primary keys, 339-341
compound, 361-363
generated, 360
properties, 335
queries, 333-356,366-367, 382-384
See also query language
creating, 418-419
Criteria, 415-426
dynamic, 382
executing, 425-426
expressions, 421-422,422-423
joins, 420
parameters, 383
path navigation, 421
results, 421-423,424-425
static, 382
typesafe, 415-426
query language, 342
relationships, 358-359
scope, 353-355
self-referential relationships, 358
temporal types, 365

persistence units

query language, 381,396

pluggable audit modules, 441
pluggable authorization providers, 441
POJOs, 4

policy files, 436

primary keys, 359

553

Index

primary keys (Continued)
compound, 361-363
defined, 339-341
examples, 340
generated, 360
principal, 444
PrintWriter class, 186
producer methods, 314
programmatic security, 430,440, 456, 487
proxies, 207
public key certificates, 465
public-key cryptography, 451

Q

qualifiers, using, 309

Quality of Service, 435

query language
ABS function, 407
abstract schemas, 382,384,396
ALL expression, 405
ANY expression, 405
arithmetic functions, 405-407
ASC keyword, 412
AVG function, 410
BETWEEN expression, 389,402
Boolean literals, 400
Boolean logic, 408
case expressions, 407-408
collection member expressions, 397, 404
collections, 397,404
compared to SQL, 386,395,398
comparison operators, 389,402
CONCAT function, 406
conditional expressions, 388,400,401, 409
constructors, 411-412
COUNT function, 410
DELETE expression, 389,390
DELETE statement, 385
DESC keyword, 412
DISTINCT keyword, 386
domain of query, 381,394,396
duplicate values, 386
enum literals, 400

554 The Java EE 6 Tutorial: Basic Concepts

equality, 409-410

ESCAPE clause, 403

examples, 366-367,385-390
EXISTS expression, 405

FETCH JOIN operator, 398
FROM clause, 384,394-398
grammar, 390-413

GROUP BY clause, 384, 412-413
HAVING clause, 384,412-413
identification variables, 384,394,396
identifiers, 394-395

IN operator, 398,402-403
INNER JOIN operator, 398
input parameters, 387,401

IS EMPTY expression, 389

IS FALSE operator, 409

IS NULL expression, 388

IS TRUE operator, 409

JOIN statement, 386, 387,397-398
LEFT JOIN operator, 398

LEFT OUTER JOIN operator, 398
LENGTH function, 406

LIKE expression, 388,403
literals, 400

LOCATE function, 406

LOWER function, 406

MAX function, 410

MEMBER expression, 404

MIN function, 410

MOD function, 407

multiple declarations, 396
multiple relationships, 387
named parameters, 386,401
navigation, 386-388, 388,397, 399
negation, 409

NOT operator, 409

null values, 403-404, 408-409
numeric comparisons, 409
numeric literals, 400

operator precedence, 401-402
operators, 401-402

ORDER BY clause, 384, 412
parameters, 386

parentheses, 401

Index

path expressions, 382,398-399
positional parameters, 401
range variables, 396-397
relationship fields, 382
relationships, 382,386,387
return types, 410
root, 397
scope, 381
SELECT clause, 384,410-412
setNamedParameter method, 386
SIZE function, 407
SQRT function, 407
state fields, 382
string comparison, 409
string functions, 405-407
string literals, 400
subqueries, 404-405
SUBSTRING function, 406
SUM function, 411
syntax, 384-385,390-413
TRIM function, 406
types, 399,409
UPDATE expression, 385,389, 390
UPPER function, 406
WHERE clause, 384,400-410
wildcards, 403

query parameters, 232

query roots, 419-420

R
realms, 441,443
admin-realm, 443
certificate, 443
adding users, 446
configuring, 440
file, 443
referencing backing bean methods, 154-157
for handling action events, 156,172
for handling value-change events, 156-157
for performing navigation, 155,171
for performing validation, 156,173
relationship fields, query language, 382

relationships
direction, 342-344
unidirectional, 359
remote interfaces, defined, 256
request method designator, 226-229
request method designators, 220-235
request parameters, extracting, 231-235
RequestDispatcher interface, 191
requests, 185
See also HTTP requests
customizing, 188
getting information from, 185
resource adapters, 29-30, 514, 534-538
metadata annotations, 538-540
security, 507-508
resource classes, 220-235
resource injection, 531-534
resource methods, 220-235
resources, 514-515,529-541
See also data sources
ResponseBuilder class, 227-229
responses, 186
See also HTTP responses
buffering output, 186
customizing, 188
setting headers, 184
RESTful web services, 28,219-241
defined, 219-220
roles, 444
application, 447-448
declaring, 468-469
mapping to groups, 447-448
mapping to users, 447-448
referencing, 490-492
security, 446-447,468-469, 489, 490-492
rollback method, 523,525
rollbacks, See transactions, rollbacks
root resource classes, 220
run-as identity, 494-496

S
SAAJ, 33
SASL, 435

555

Index

schema, deployment descriptors, 439-440
schemagen tool, 34

scopes, using, 310-312

secure connections, 449-453

Secure Socket Layer (SSL), 449-453
security

556

annotations, 439,476-477,486
web applications, 456
application, 436-437
characteristics of, 434-435
application client tier
callback handlers, 505
application clients, 504-505
callback handlers, 504,505
constraints, 457-461
container trust, 496
containers, 430-435,439-440
context
enterprise beans, 493-494
declarative, 430,439-440, 456, 486
deploying enterprise beans, 496
EIS applications, 506-509
component-managed sign-on, 506-507
container-managed sign-on, 506
end-to-end, 438
enterprise beans, 486-496
example, 430-433
groups, 444
introduction, 429-454
JAASlogin modules, 505
Java SE, 435-436
login forms, 504
login modules, 505
mechanism features, 433-434
mechanisms, 435-438
message, 457
message-layer, 438
method permissions, 489
annotations, 490-492
policy domain, 444
programmatic, 430, 440, 456, 469-474, 487
propagating identity, 494-496
realms, 443
resource adapters, 507-508

The Java EE 6 Tutorial: Basic Concepts

role names, 468-469, 490-492

roles, 444,446-447,468-469, 489

run-as identity, 494-496

transport-layer, 437-438,449-453

users, 443

web applications, 455-484

overview, 455

web components, 455-484
security constraints, 457-461

multiple, 460-461
security domain, 444
security identity

propagating, 494-496

specific identity, 495
security-role-mapping element, 447-448
security-role-ref element, 473-474
security role references, 473-474
security roles, 446-447,489
server, authentication, 465
server log, 45-46
servers, certificates, 450-453
service methods, servlets, 184
Servlet interface, 180
ServletContext interface, 193
ServletInputStreamclass, 185
ServletOutputStreamclass, 186
ServletRequest interface, 185
ServletResponse interface, 186
servlets, 10,180

binary data, 185,186

character data, 185,186

compiling, 267-269

creating, 183-184

examples, 62-70,198-199, 266

finalizing, 195

initializing, 184

lifecycle, 180-182

lifecycle events, 180

packaging, 267-269

service methods, 184,196,197

tracking service requests, 196
session beans, 25,247-249

activation, 261

bean-managed concurrency, 280,282-283

Index

business interfaces, 251
clients, 247
concurrent access, 280-283
container-managed concurrency, 280
databases, 523
eager initialization, 278
examples, 266,271-278,278-286,286-289
handling errors, 283
no-interface views, 251
passivation, 261
requirements, 273
singleton, 248,278-286
stateful, 247,248
stateless, 247-248,249
transactions, 518,523,524
web services, 257,287-288
sessions, 193-195
associating attributes, 193-194
associating with user, 195
invalidating, 194
notifying objects associated with, 194
SessionSynchronization interface, 523
setRollbackOnly method, 523,525
sign-on
component-managed, 506
container-managed, 506
Simple Authentication and Security Layer, 435
SingleThreadModel interface, 183
SOAP, 203-205,207,217
SOAP messages, 16,33
securing, 438
SOAP with Attachments API for Java, See SAAJ
SQL, 31, 386,395,398
SQL92, 408
SSL, 437,449-453,459-460, 465
connectors
GlassFish Server, 450
handshake, 449
verifying support, 450
standard converters
converter tags, 143,147
NumberConverter class, 146
using, 145-151

standard validators
See also validator tags
using, 152-154

state fields, query language, 382

substitution parameters, defining, See messages,
paramtag

T

templating, Facelets, 91-93
timer service, 290-300
automatic timers, 290, 294-295
calendar-based timer expressions, 290-293
cancelling timers, 296
creating timers, 293-294
examples, 297-299
exceptions, 296
getInfo method, 296
getNextTimeout method, 296
getTimeRemaining method, 296
getting information, 296
programmatic timers, 290, 293-294
saving timers, 296
transactions, 296-297
transactions, 513,517-528
application-managed, 350-351
attributes, 519-522
bean-managed, 524-525, 525
boundaries, 518,523,524
business methods
See business methods, transactions
commits, 518,523
container-managed, 518-523
container-managed transaction
demarcation, 518
defined, 518
exceptions
See exceptions, transactions
JDBC, 526
JTA, 524
managers, 521,524, 526-527
message-driven beans, 250
See also message-driven beans, transactions
nested, 518,524

557

Index

transactions (Continued)

rollbacks, 518,523,525

scope, 519

session beans

See session beans, transactions

timeouts, 525-526

timer service, 296-297

web components, 528
transport-guarantee element, 459-460
transport guarantees, 459-460
transport-layer security, 437-438,449-453
truststores, 450-453

managing, 451

U
UnavailableException class, 184
undeploying, modules and applications, 61-62
unified expression language, See EL
Uniform Resource Identifiers (URIs), 219
URI path parameters, 233
URI path templates, 223
user-data-constraint element, 459-460
user data constraints, 458,459-460
users, 443
adding to GlassFish Server, 445-446
managing, 444-446
UserTransaction interface, 523,525,528
using pages, 96
utility classes, 258

Vv
validation, entities, 337-339
validation model
referencing a method that performs
validation, 156
validator attribute, 122, 155,156,173
Validator interface, 170,173
writing a backing bean method to perform
validation, 173
Validator implementation classes, 152-153
DoubleRangeValidator class, 144,152

558 The Java EE 6 Tutorial: Basic Concepts

LengthValidator class, 144,152
LongRangeValidator class, 144,153,154
validator tags, 144
validateDoubleRange tag, 152
validatelength tag, 152
validatelongRange tag, 153,154
validators
custom validators, 144
registering, 153-154
value binding
acceptable types of component values, 163
properties, 163-168
value attribute, 162
value expressions, 164
value-change events
processValueChangeEvent method, 174
referencing methods that handle value-change
events, 156-157
type attribute, 151
ValueChangeEvent class, 151
valueChangelListener attribute, 122,155,173
ValueChangelListener class, 151-152,174
valueChangelistener tag, 143,151-152
writing a backing bean method to handle
value-change events, 173-174
value expressions, 161
ValueExpression class, 162

w
W3C, 32,207,217
WARfiles, 17

web applications, 53
configuring, 51,62
deployment descriptors, 51
document roots, 53
maintaining state across requests, 193-195
presentation-oriented, 49
securing, 455-484
security
overview, 455
service-oriented, 49
specifying context parameters, 66-67
specifying initialization parameters, 67

Index

specifying welcome files, 66
web beans, See Contexts and Dependency Injection
(CDI) for the Java EE platform
web clients, 8,49-71
examples, 266
web components, 10, 50-51
See also Java EE components
applets bundled with, 10
concurrent access to shared resources, 183
forwarding to other web components, 192
including other web resources, 192
invoking other web resources, 191
mapping exceptions to error screens, 67-68
mapping filters to, 189
scope objects, 182
securing, 455-484
sharing information, 182
transactions, 528
types, 10
utility classes bundled with, 10
web context, 193
web containers, 15,51
loading and initializing servlets, 180
mapping URLs to web components, 62
web modules, 19,53
deploying, 59
dynamic reloading, 60
undeploying, 61-62
updating, 60
viewing deployed, 60
web pages
XHTML, 78,84
web-resource-collection element, 458-459
web resource collections, 458
web resources, 53
Facelets, 96-97
mapping filters to, 189
unprotected, 458
web services, 15-16
See also enterprise beans, web services
declaring references to, 70
endpoint implementation classes, 287
examples, 208-216,286-289
introduction, 203

JAX-RS compared to JAX-WS, 203-205
web.xml file, 53,440,488
welcome files, specifying, 66
work flows, 248
writing backing bean methods, 170-174
for handling action events, 172-173
for handling value-change events, 173-174
for performing navigation, 171-172
for performing validation, 173
writing backing bean properties
converters, 170
listeners, 170
validators, 170
WSDL, 16,203-205,207,217
wsgen tool, 35
wsimport tool, 35

X
xjctool, 34
XML, 15-16,207

559

	Contents
	Preface
	Part I: Introduction
	1 Overview
	Java EE 6 PlatformHighlights
	Java EE ApplicationModel
	DistributedMultitiered Applications
	Java EE Containers
	Web Services Support
	Java EE Application Assembly and Deployment
	Packaging Applications
	Development Roles
	Java EE 6 APIs
	Java EE 6 APIs in the Java Platform, Standard Edition 6.0
	GlassFish Server Tools

	2 Using the Tutorial Examples
	Required Software
	Starting and Stopping the GlassFish Server
	Starting the Administration Console
	Starting and Stopping the Java DB Server
	Building the Examples
	Tutorial Example Directory Structure
	Getting the Latest Updates to the Tutorial
	Debugging Java EE Applications

	Part II: The WebTier
	3 Getting Started withWeb Applications
	Web Applications
	Web Application Lifecycle
	WebModules: The hello1 Example
	Configuring Web Applications: The hello2 Example
	Further Information about Web Applications

	4 JavaServer FacesTechnology
	What Is a JavaServer Faces Application?
	JavaServer Faces Technology Benefits
	Creating a Simple JavaServer Faces Application
	Further Information about JavaServer Faces Technology

	5 Introduction to Facelets
	What Is Facelets?
	Developing a Simple Facelets Application
	Templating
	Composite Components
	Resources

	6 Expression Language
	Overview of the EL
	Immediate and Deferred Evaluation Syntax
	Value and Method Expressions

	7 Using JavaServer FacesTechnology in Web Pages
	Setting Up a Page
	Adding Components to a Page Using HTML Tags
	Using Core Tags

	8 Using Converters, Listeners, and Validators
	Using the Standard Converters
	Registering Listeners on Components
	Using the Standard Validators
	Referencing a Backing Bean Method

	9 Developing with JavaServer FacesTechnology
	Backing Beans
	Writing Bean Properties
	Writing Backing Bean Methods
	Using Bean Validation

	10 Java Servlet Technology
	What Is a Servlet?
	Servlet Lifecycle
	Sharing Information
	Creating and Initializing a Servlet
	Writing Service Methods
	Filtering Requests and Responses
	Invoking Other Web Resources
	Accessing the Web Context
	Maintaining Client State
	Finalizing a Servlet
	The mood Example Application
	Further Information about Java Servlet Technology

	Part III: Web Services
	11 Introduction to Web Services
	What Are Web Services?
	Types of Web Services
	Deciding Which Type of Web Service to Use

	12 Building Web Services with JAX-WS
	Creating a Simple Web Service and Clients with JAX-WS
	Types Supported by JAX-WS
	Web Services Interoperability and JAX-WS
	Further Information about JAX-WS

	13 Building RESTful Web Services with JAX-RS
	What Are RESTful Web Services?
	Creating a RESTful Root Resource Class
	Example Applications for JAX-RS
	Further Information about JAX-RS

	Part IV: Enterprise Beans
	14 Enterprise Beans
	What Is an Enterprise Bean?
	What Is a Session Bean?
	What Is a Message-Driven Bean?
	Accessing Enterprise Beans
	The Contents of an Enterprise Bean
	Naming Conventions for Enterprise Beans
	The Lifecycles of Enterprise Beans
	Further Information about Enterprise Beans

	15 Getting Started with Enterprise Beans
	Creating the Enterprise Bean
	Modifying the Java EE Application

	16 Running the Enterprise Bean Examples
	The cart Example
	A Singleton Session Bean Example: counter
	A Web Service Example: helloservice
	Using the Timer Service
	Handling Exceptions

	Part V: Contexts and Dependency Injection for the Java EE Platform
	17 Introduction to Contexts and Dependency Injection for the Java EE Platform
	Overview of CDI
	About Beans
	About Managed Beans
	Beans as Injectable Objects
	Using Qualifiers
	Injecting Beans
	Using Scopes
	Giving Beans EL Names
	Adding Setter and Getter Methods
	Using a Managed Bean in a Facelets Page
	Injecting Objects by Using ProducerMethods
	Configuring a CDI Application
	Further Information about CDI

	18 Running the Basic Contexts and Dependency Injection Examples
	The simplegreeting CDI Example
	The guessnumber CDI Example

	Part VI: Persistence
	19 Introduction to the Java Persistence API
	Entities
	Entity Inheritance
	Managing Entities
	Querying Entities
	Further Information about Persistence

	20 Running the Persistence Examples
	The order Application
	The roster Application
	The address-book Application

	21 The Java Persistence Query Language
	Query Language Terminology
	Creating Queries Using the Java Persistence Query Language
	Simplified Query Language Syntax
	Example Queries
	Full Query Language Syntax

	22 Using the Criteria API to Create Queries
	Overview of the Criteria and Metamodel APIs
	Using the Metamodel API to Model Entity Classes
	Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

	Part VII: Security
	23 Introduction to Security in the Java EE Platform
	Overview of Java EE Security
	SecurityMechanisms
	Securing Containers
	Securing the GlassFish Server
	Working with Realms, Users, Groups, and Roles
	Establishing a Secure Connection Using SSL
	Further Information about Security

	24 Getting Started SecuringWeb Applications
	Overview of Web Application Security
	Securing Web Applications
	Using Programmatic Security with Web Applications
	Examples: Securing Web Applications

	25 Getting Started Securing Enterprise Applications
	Securing Enterprise Beans
	Examples: Securing Enterprise Beans
	Securing Application Clients
	Securing Enterprise Information Systems Applications

	Part VIII: Java EE SupportingTechnologies
	26 Introduction to Java EE SupportingTechnologies
	Transactions
	Resources

	27 Transactions
	What Is a Transaction?
	Container-Managed Transactions
	Bean-Managed Transactions
	Transaction Timeouts
	UpdatingMultipleDatabases
	Transactions in Web Components
	Further Information about Transactions

	28 Resource Connections
	Resources and JNDINaming
	DataSource Objects and Connection Pools
	Resource Injection
	Resource Adapters and Contracts
	Metadata Annotations
	Common Client Interface
	Further Information about Resources

	Index
	Numbers and Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

