
ptg

ptg

The Java EE 6 Tutorial
Basic Concepts

Fourth Edition

ptg

This page intentionally left blank

ptg

The Java EE 6 Tutorial
Basic Concepts

Fourth Edition

Eric Jendrock, Ian Evans, Devika Gollapudi,
Kim Haase, Chinmayee Srivathsa

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim
any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document.
This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without our prior written permission.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

The Java EE 6 tutorial : basic concepts / Eric Jendrock ... [et al.]. --
4th ed.
 p. cm.
 Includes index.

ISBN 0-13-708185-5 (pbk. : alk. paper)
1. Java (Computer program language) 2. Application program interfaces
(Computer software) 3. Application software—Development. 4. Internet
programming. I. Jendrock, Eric.
 QA76.73.J38J3652 2010
 006.7'6--dc22
 2010025759

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
500 Oracle Parkway, Redwood Shores, CA 94065

Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-013-708185-1
ISBN-10: 0-137-08185-5

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, August, 2010

ptg

Contents

Preface ..xxi

Part I Introduction ... 1

1 Overview3
Java EE 6 PlatformHighlights ...4
Java EEApplicationModel ..5
DistributedMultitiered Applications ..6

Security ...7
Java EE Components ..8
Java EE Clients ...8
WebComponents ...10
Business Components ..11
Enterprise Information SystemTier ...12

Java EE Containers ...13
Container Services ..13
Container Types ..14

Web Services Support ..15
XML ..15
SOAPTransport Protocol ..16
WSDL Standard Format ...16

Java EEApplication Assembly andDeployment ..17
Packaging Applications ...17
Development Roles ..19

Java EE Product Provider ...20
Tool Provider ...20
Application Component Provider ..20

v

ptg

Application Assembler ...21
ApplicationDeployer and Administrator ..21

Java EE 6 APIs ...22
Enterprise JavaBeans Technology ...25
Java Servlet Technology ...26
JavaServer Faces Technology ...26
JavaServer Pages Technology ..27
JavaServer Pages Standard Tag Library ..27
Java Persistence API ..28
Java Transaction API ..28
Java API for RESTfulWeb Services ..28
Managed Beans ...28
Contexts andDependency Injection for the Java EE Platform (JSR 299)29
Dependency Injection for Java (JSR 330) ...29
BeanValidation ...29
JavaMessage Service API ...29
Java EE Connector Architecture ...29
JavaMail API ..30
Java Authorization Contract for Containers ...30
Java Authentication Service Provider Interface for Containers30

Java EE 6 APIs in the Java Platform, Standard Edition 6.0 ...31
Java Database Connectivity API ..31
Java Naming andDirectory Interface API ...31
JavaBeans Activation Framework ...32
Java API for XML Processing ..32
Java Architecture for XML Binding ..33
SOAPwith Attachments API for Java ...33
Java API for XMLWeb Services ..33
Java Authentication and Authorization Service ..33

GlassFish Server Tools ...34

2 Using theTutorial Examples .. 37
Required Software ..37

Java Platform, Standard Edition ..37
Java EE 6 Software Development Kit ..38

Contents

The Java EE 6Tutorial: Basic Conceptsvi

ptg

Java EE 6 Tutorial Component ..38
NetBeans IDE ..40
Apache Ant ..41

Starting and Stopping the GlassFish Server ...41
Starting the Administration Console ...42

▼ To Start the Administration Console in NetBeans IDE ...43
Starting and Stopping the Java DB Server ..43

▼ To Start the Database Server Using NetBeans IDE ...43
Building the Examples ...44
Tutorial Example Directory Structure ...44
Getting the Latest Updates to the Tutorial ..44

▼ ToUpdate the Tutorial Through the Update Center ...45
Debugging Java EEApplications ..45

Using the Server Log ...45
Using a Debugger ..46

Part II TheWebTier ... 47

3 Getting StartedwithWebApplications 49
WebApplications ...50
WebApplication Lifecycle ..51
WebModules: The hello1 Example ..53

Examining the hello1WebModule ..54
Packaging aWebModule ...57
Deploying aWebModule ..59
Running a DeployedWebModule ...59
Listing DeployedWebModules ..60
Updating aWebModule ..60
Dynamic Reloading ..60
UndeployingWebModules ...61

ConfiguringWebApplications: The hello2 Example ..62
Mapping URLs toWeb Components ...62
Examining the hello2WebModule ..63
Building, Packaging, Deploying, and Running the hello2 Example64
DeclaringWelcome Files ...66

Contents

vii

ptg

Setting Context and Initialization Parameters ..66
Mapping Errors to Error Screens ..67
Declaring Resource References ...68

Further Information aboutWebApplications ..71

4 JavaServer FacesTechnology73
What Is a JavaServer Faces Application? ..74
JavaServer Faces Technology Benefits ...75
Creating a Simple JavaServer Faces Application ...77

Developing the Backing Bean ..77
Creating theWeb Page ...78
Mapping the FacesServlet Instance ...78
The Lifecycle of the helloApplication ..79

▼ To Build, Package, Deploy, and Run the Application in NetBeans IDE80
Further Information about JavaServer Faces Technology ...81

5 Introduction to Facelets . ..83
What Is Facelets? ...83
Developing a Simple Facelets Application ..85

Creating a Facelets Application ...85
Configuring the Application ..88
Building, Packaging, Deploying, and Running the guessnumber Facelets
Example ..89

Templating ..91
Composite Components ...94
Resources ...96

6 Expression Language99
Overview of the EL ...99
Immediate andDeferred Evaluation Syntax ...100

Immediate Evaluation ..101
Deferred Evaluation . ..101

Value andMethod Expressions ..102
Value Expressions ...102
Method Expressions ...106

Contents

The Java EE 6Tutorial: Basic Conceptsviii

ptg

Defining a Tag Attribute Type ..108
Literal Expressions ...109
Operators ...111
ReservedWords . ..111
Examples of EL Expressions ..112

7 Using JavaServer FacesTechnology inWebPages .. 113
Setting Up a Page . ..113
Adding Components to a Page UsingHTMLTags ..114

CommonComponent Tag Attributes . ..117
AddingHTMLHead and Body Tags . ..119
Adding a FormComponent . ..120
Using Text Components . ..121
Using CommandComponent Tags for Performing Actions andNavigation126
Adding Graphics and Images with the h:graphicImage Tag127
LayingOut Components with the h:panelGrid and h:panelGroup Tags128
Displaying Components for Selecting One Value ..130
Displaying Components for SelectingMultiple Values ...132
Using the f:selectItem and f:selectItems Tags133
UsingData-Bound Table Components135
Displaying ErrorMessages with the h:message and h:messages Tags138
Creating Bookmarkable URLs with the h:button and h:link Tags139
Using View Parameters to Configure Bookmarkable URLs140
Resource RelocationUsing h:output Tags141

Using Core Tags ...143

8 UsingConverters, Listeners, andValidators 145
Using the Standard Converters ...145

Converting a Component’s Value146
Using DateTimeConverter . ..147
Using NumberConverter . ..149

Registering Listeners on Components151
Registering a Value-Change Listener on a Component151
Registering an Action Listener on a Component . ..152

Using the Standard Validators ..152

Contents

ix

ptg

Validating a Component’s Value . ..153
Using LongRangeValidator . ..154

Referencing a Backing BeanMethod154
Referencing aMethod That PerformsNavigation . ..155
Referencing aMethod That Handles an Action Event ...156
Referencing aMethod That Performs Validation156
Referencing aMethod That Handles a Value-Change Event156

9 Developingwith JavaServer FacesTechnology 159
Backing Beans ...159

Creating a Backing Bean ..160
Using the EL to Reference Backing Beans ..161

Writing Bean Properties ..162
Writing Properties Bound to Component Values ..163
Writing Properties Bound to Component Instances ..168
Writing Properties Bound to Converters, Listeners, or Validators170

Writing Backing BeanMethods ...170
Writing aMethod toHandle Navigation ...171
Writing aMethod toHandle an Action Event ...172
Writing aMethod to PerformValidation ..173
Writing aMethod toHandle a Value-Change Event ..173

Using Bean Validation ...174
Validating Null and Empty Strings ...177

10 Java ServletTechnology . ..179
What Is a Servlet? ..180
Servlet Lifecycle ..180

Handling Servlet Lifecycle Events ...180
Handling Servlet Errors . ..182

Sharing Information ..182
Using Scope Objects ...182
Controlling Concurrent Access to Shared Resources ..183

Creating and Initializing a Servlet ..183
Writing ServiceMethods184

Getting Information fromRequests ...185

Contents

The Java EE 6Tutorial: Basic Conceptsx

ptg

Constructing Responses ...186
Filtering Requests and Responses ...187

Programming Filters ...187
Programming Customized Requests and Responses ...188
Specifying FilterMappings ..189

Invoking OtherWeb Resources . ..191
Including Other Resources in the Response ..192
Transferring Control to AnotherWeb Component192

Accessing theWeb Context ...193
Maintaining Client State ..193

Accessing a Session ...193
Associating Objects with a Session ...193
SessionManagement ..194
Session Tracking195

Finalizing a Servlet . ..195
Tracking Service Requests ...196
NotifyingMethods to Shut Down ...196
Creating Polite Long-RunningMethods ..197

The mood Example Application198
Components of the mood Example Application ..198
Building, Packaging, Deploying, and Running the mood Example198

Further Information about Java Servlet Technology ...200

Part III WebServices201

11 Introduction toWebServices203
What AreWeb Services? ..203
Types ofWeb Services ..203

“Big”Web Services ..204
RESTfulWeb Services ..204

DecidingWhich Type ofWeb Service to Use ...206

12 BuildingWebServiceswith JAX-WS 207
Creating a SimpleWeb Service and Clients with JAX-WS ..208

Contents

xi

ptg

Requirements of a JAX-WS Endpoint ..209
Coding the Service Endpoint Implementation Class ...210
Building, Packaging, andDeploying the Service ...210
Testing theMethods of aWeb Service Endpoint ..211
A Simple JAX-WSApplication Client ..212
A Simple JAX-WSWebClient ..214

Types Supported by JAX-WS ..217
Web Services Interoperability and JAX-WS ...217
Further Information about JAX-WS ..217

13 BuildingRESTfulWebServiceswith JAX-RS ... 219
What Are RESTfulWeb Services? ..219
Creating a RESTful Root Resource Class ...220

Developing RESTfulWeb Services with JAX-RS ..221
Overview of a JAX-RS Application222
The @PathAnnotation andURI Path Templates . ..223
Responding toHTTPResources226
Using @Consumes and @Produces to Customize Requests and Responses229
Extracting Request Parameters ...231

Example Applications for JAX-RS ..235
A RESTfulWeb Service ..235
The rsvp Example Application ...237
Real-World Examples ..240

Further Information about JAX-RS240

Part IV Enterprise Beans243

14 Enterprise Beans ..245
What Is an Enterprise Bean? ...245

Benefits of Enterprise Beans ..246
When toUse Enterprise Beans ..246
Types of Enterprise Beans . ..246

What Is a Session Bean? ...247
Types of Session Beans ...247

Contents

The Java EE 6Tutorial: Basic Conceptsxii

ptg

When toUse Session Beans248
What Is aMessage-Driven Bean?249

WhatMakesMessage-Driven Beans Different from Session Beans?249
When toUseMessage-Driven Beans . ..251

Accessing Enterprise Beans ...251
Using Enterprise Beans in Clients ...252
Deciding on Remote or Local Access . ..253
Local Clients . ..254
Remote Clients . ..255
Web Service Clients . ..256
Method Parameters and Access257

The Contents of an Enterprise Bean . ..258
Packaging Enterprise Beans in EJB JARModules ...258
Packaging Enterprise Beans inWARModules259

Naming Conventions for Enterprise Beans . ..260
The Lifecycles of Enterprise Beans261

The Lifecycle of a Stateful Session Bean ...261
The Lifecycle of a Stateless Session Bean . ..262
The Lifecycle of a Singleton Session Bean ..262
The Lifecycle of aMessage-Driven Bean ..263

Further Information about Enterprise Beans264

15 Getting Startedwith Enterprise Beans . .. 265
Creating the Enterprise Bean . ..265

Coding the Enterprise Bean Class ...266
Creating the converterWebClient266
Building, Packaging, Deploying, and Running the converter Example267

Modifying the Java EEApplication . ..269
▼ ToModify a Class File ...269

16 Running the Enterprise BeanExamples . .. 271
The cart Example ..271

The Business Interface ..272
Session Bean Class ..273
The @RemoveMethod . ..276

Contents

xiii

ptg

Helper Classes ..276
Building, Packaging, Deploying, and Running the cart Example276

A Singleton Session Bean Example: counter . ..278
Creating a Singleton Session Bean . ..278
The Architecture of the counter Example ...283
Building, Packaging, Deploying, and Running the counter Example285

AWeb Service Example: helloservice . ..286
TheWeb Service Endpoint Implementation Class287
Stateless Session Bean Implementation Class287
Building, Packaging, Deploying, and Testing the helloservice Example288

Using the Timer Service ...290
Creating Calendar-Based Timer Expressions ...290
Programmatic Timers . ..293
Automatic Timers294
Canceling and Saving Timers . ..296
Getting Timer Information296
Transactions and Timers296
The timersession Example . ..297
Building, Packaging, Deploying, and Running the timersession Example299

Handling Exceptions ..300

PartV Contexts andDependency Injection for the Java EEPlatform303

17 Introduction toContexts andDependency Injection for the Java EEPlatform305
Overview of CDI ...306
About Beans ..307
AboutManaged Beans ...307
Beans as Injectable Objects ..308
UsingQualifiers ..309
Injecting Beans ..310
Using Scopes ...310
Giving Beans ELNames ...312
Adding Setter andGetterMethods ...312
Using aManaged Bean in a Facelets Page ..313
Injecting Objects by Using ProducerMethods ...314

Contents

The Java EE 6Tutorial: Basic Conceptsxiv

ptg

Configuring a CDI Application ..315
Further Information about CDI ...315

18 Running theBasic Contexts andDependency Injection Examples317
The simplegreeting CDI Example317

The simplegreeting Source Files . ..318
The Facelets Template and Page ..318
Configuration Files ...319
Building, Packaging, Deploying, and Running the simplegreetingCDI
Example ..320

The guessnumberCDI Example322
The guessnumber Source Files . ..322
The Facelets Page ..326
Building, Packaging, Deploying, and Running the guessnumberCDI
Example ..328

PartVI Persistence331

19 Introduction to the JavaPersistenceAPI . .. 333
Entities ...333

Requirements for Entity Classes334
Persistent Fields and Properties in Entity Classes ...334
Primary Keys in Entities339
Multiplicity in Entity Relationships . ..341
Direction in Entity Relationships . ..342
Embeddable Classes in Entities344

Entity Inheritance345
Abstract Entities ..345
Mapped Superclasses ..345
Non-Entity Superclasses ..346
Entity InheritanceMapping Strategies ...347

Managing Entities ...349
The EntityManager Interface349
Persistence Units ...353

Querying Entities ..355

Contents

xv

ptg

Further Information about Persistence355

20 Running thePersistence Examples357
The orderApplication357

Entity Relationships in the orderApplication ..358
Primary Keys in the orderApplication . ..360
EntityMapped toMore ThanOneDatabase Table ..363
Cascade Operations in the orderApplication ..363
BLOB and CLOBDatabase Types in the orderApplication364
Temporal Types in the orderApplication365
Managing the orderApplication’s Entities . ..365
Building, Packaging, Deploying, and Running the orderApplication368

The rosterApplication ...369
Relationships in the rosterApplication . ..369
Entity Inheritance in the rosterApplication ..370
Criteria Queries in the rosterApplication ...372
Automatic Table Generation in the rosterApplication374
Building, Packaging, Deploying, and Running the rosterApplication374

The address-bookApplication ..376
Bean Validation Constraints in address-book376
Specifying ErrorMessages for Constraints in address-book377
Validating Contact Input from a JavaServer Faces Application378
Building, Packaging, Deploying, and Running the address-bookApplication .379

21 The JavaPersistenceQuery Language .. 381
Query Language Terminology ..382
Creating Queries Using the Java Persistence Query Language382

Named Parameters in Queries ...383
Positional Parameters in Queries . ..383

SimplifiedQuery Language Syntax ..384
Select Statements ...384
Update andDelete Statements ..385

Example Queries ...385
Simple Queries ..385
Queries That Navigate to Related Entities ...386

Contents

The Java EE 6Tutorial: Basic Conceptsxvi

ptg

Queries with Other Conditional Expressions388
Bulk Updates andDeletes . ..389

Full Query Language Syntax ...390
BNF Symbols ...390
BNFGrammar of the Java Persistence Query Language ..391
FROMClause ..394
Path Expressions ...398
WHEREClause ..400
SELECTClause . ..410
ORDER BY Clause ..412
GROUP BY and HAVING Clauses ...412

22 Using theCriteriaAPI to CreateQueries .. 415
Overview of the Criteria andMetamodel APIs ...415
Using theMetamodel API toModel Entity Classes ..417

UsingMetamodel Classes . ..418
Using the Criteria API andMetamodel API to Create Basic Typesafe Queries418

Creating a Criteria Query418
Query Roots419
Querying Relationships Using Joins ...420
Path Navigation in Criteria Queries ...421
Restricting Criteria Query Results ..421
Managing Criteria Query Results ...424
Executing Queries ...425

PartVII Security . ..427

23 Introduction to Security in the Java EEPlatform ..429
Overview of Java EE Security ..430

A Simple Security Example . ..430
Features of a SecurityMechanism433
Characteristics of Application Security ..434

SecurityMechanisms ...435
Java SE SecurityMechanisms . ..435

Contents

xvii

ptg

Java EE SecurityMechanisms ..436
Securing Containers439

Using Annotations to Specify Security Information . ..439
Using Deployment Descriptors for Declarative Security439
Using Programmatic Security440

Securing the GlassFish Server ...440
Working with Realms, Users, Groups, and Roles ...441

What Are Realms, Users, Groups, and Roles?441
Managing Users andGroups on the GlassFish Server ..444
Setting Up Security Roles446
Mapping Roles to Users and Groups ..447

Establishing a Secure ConnectionUsing SSL . ..449
Verifying and Configuring SSL Support . ..450
Working with Digital Certificates450

Further Information about Security ...454

24 Getting Started SecuringWebApplications ... 455
Overview ofWebApplication Security455
SecuringWebApplications457

Specifying Security Constraints . ..457
Specifying AuthenticationMechanisms ..461
Declaring Security Roles . ..468

Using Programmatic Security withWebApplications . ..469
Authenticating Users Programmatically . ..469
Checking Caller Identity Programmatically ..471
Example Code for Programmatic Security ..472
Declaring and Linking Role References ...473

Examples: SecuringWebApplications . ..474
▼ To Set Up Your System for Running the Security Examples474

Example: Basic Authentication with a Servlet ...475
Example: Form-Based Authentication with a JavaServer Faces Application479

25 Getting Started Securing EnterpriseApplications . .. 485
Securing Enterprise Beans486

Securing an Enterprise BeanUsing Declarative Security489

Contents

The Java EE 6Tutorial: Basic Conceptsxviii

ptg

Securing an Enterprise Bean Programmatically493
Propagating a Security Identity (Run-As) . ..494
Deploying Secure Enterprise Beans . ..496

Examples: Securing Enterprise Beans . ..496
Example: Securing an Enterprise Bean with Declarative Security497
Example: Securing an Enterprise Bean with Programmatic Security501

Securing Application Clients . ..504
Using LoginModules ...505
Using Programmatic Login ...505

Securing Enterprise Information Systems Applications . ..506
Container-Managed Sign-On506
Component-Managed Sign-On ..506
Configuring Resource Adapter Security ..507

▼ ToMap an Application Principal to EIS Principals . ..508

PartVIII Java EE SupportingTechnologies ... 511

26 Introduction to Java EE SupportingTechnologies 513
Transactions . ..513
Resources514

The Java EE Connector Architecture and Resource Adapters514
JavaMessage Service514
Java Database Connectivity Software515

27 Transactions ...517
What Is a Transaction? ..517
Container-Managed Transactions ...518

Transaction Attributes ...519
Rolling Back a Container-Managed Transaction ...523
Synchronizing a Session Bean’s Instance Variables ..523
Methods Not Allowed in Container-Managed Transactions523

Bean-Managed Transactions . ..524
JTATransactions ..524
Returning without Committing ..525

Contents

xix

ptg

Methods Not Allowed in Bean-Managed Transactions525
Transaction Timeouts . ..525

▼ To Set a Transaction Timeout ...526
UpdatingMultiple Databases526
Transactions inWeb Components . ..528
Further Information about Transactions ..528

28 Resource Connections ..529
Resources and JNDINaming ..529
DataSourceObjects and Connection Pools . ..530
Resource Injection ..531

Field-Based Injection ..532
Method-Based Injection ...533
Class-Based Injection ...534

Resource Adapters and Contracts ..534
Management Contracts ..536
GenericWork Context Contract ..537
Outbound and Inbound Contracts ...537

Metadata Annotations ...538
CommonClient Interface ...540
Further Information about Resources ...541

Index ..543

Contents

The Java EE 6Tutorial: Basic Conceptsxx

ptg

Preface

This tutorial is a guide to developing enterprise applications for the Java Platform,
Enterprise Edition 6 (Java EE 6) using GlassFish Server Open Source Edition.

Oracle GlassFish Server, a Java EE compatible application server, is based onGlassFish
Server Open Source Edition, the leading open-source and open-community platform
for building and deploying next-generation applications and services. GlassFish Server
Open Source Edition, developed by the GlassFish project open-source community at
https://glassfish.dev.java.net/, is the first compatible implementation of the
Java EE 6 platform specification. This lightweight, flexible, and open-source
application server enables organizations not only to leverage the new capabilities
introduced within the Java EE 6 specification, but also to add to their existing
capabilities through a faster andmore streamlined development and deployment
cycle. Oracle GlassFish Server, the product version, andGlassFish Server Open Source
Edition, the open-source version, are hereafter referred to as GlassFish Server.

The following topics are addressed here:

■ “Before You Read This Book” on page xxi
■ “Oracle GlassFish Server Documentation Set” on page xxii
■ “Related Documentation” on page xxiv
■ “Symbol Conventions” on page xxiv
■ “Typographic Conventions” on page xxv
■ “Default Paths and File Names” on page xxv
■ “Documentation, Support, and Training” on page xxvi
■ “Searching Oracle Product Documentation” on page xxvii
■ “Third-PartyWeb Site References” on page xxvii

BeforeYouReadThis Book
Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through The Java
Tutorial, Fourth Edition, Sharon Zakhour et al. (Addison-Wesley, 2006).

xxi

https://glassfish.dev.java.net/

ptg

OracleGlassFish ServerDocumentation Set
TheGlassFish Server documentation set describes deployment planning and system
installation. The UniformResource Locator (URL) for GlassFish Server
documentation is http://docs.sun.com/coll/1343.13. For an introduction to
GlassFish Server, refer to the books in the order in which they are listed in the
following table.

TABLE P–1 Books in theGlassFish ServerDocumentation Set

BookTitle Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based summary
of the supported hardware, operating system, Java Development Kit
(JDK), and database drivers.

Quick Start Guide Explains how to get started with the GlassFish Server product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of GlassFish Server.
This guide also describes differences between adjacent product
releases and configuration options that can result in incompatibility
with the product specifications.

Administration Guide Explains how to configure, monitor, andmanage GlassFish Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Application Deployment
Guide

Explains how to assemble and deploy applications to the GlassFish
Server and provides information about deployment descriptors.

Your First Cup: An
Introduction to the Java EE
Platform

For beginning Java EE programmers, provides a short tutorial that
explains the entire process for developing a simple enterprise
application. The sample application is a web application that consists
of a component that is based on the Enterprise JavaBeans
specification, a JAX-RS web service, and a JavaServer Faces
component for the web front end.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Java EE platform) applications that are intended to run on
the GlassFish Server. These applications follow the open Java
standardsmodel for Java EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Preface

The Java EE 6Tutorial: Basic Conceptsxxii

http://docs.sun.com/coll/1343.13

ptg

TABLE P–1 Books in theGlassFish ServerDocumentation Set (Continued)
BookTitle Description

Add-On Component
Development Guide

Explains how to use published interfaces of GlassFish Server to
develop add-on components for GlassFish Server. This document
explains how to perform only those tasks that ensure that the add-on
component is suitable for GlassFish Server.

Embedded Server Guide Explains how to run applications in embeddedGlassFish Server and
to develop applications in which GlassFish Server is embedded.

Scripting Framework Guide Explains how to develop scripting applications in such languages as
Ruby on Rails andGroovy onGrails for deployment to GlassFish
Server.

Troubleshooting Guide Describes common problems that youmight encounter when using
GlassFish Server and explains how to solve them.

ErrorMessage Reference Describes errormessages that youmight encounter when using
GlassFish Server.

ReferenceManual Provides reference information inman page format for GlassFish
Server administration commands, utility commands, and related
concepts.

Domain File Format
Reference

Describes the format of the GlassFish Server configuration file,
domain.xml.

Java EE 6 Tutorial Explains how to use Java EE 6 platform technologies and APIs to
develop Java EE applications.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
GlassFishMessage Queue.

Message Queue
Administration Guide

Explains how to set up andmanage aMessage Queuemessaging
system.

Message Queue Developer’s
Guide for JMXClients

Describes the application programming interface inMessage Queue
for programmatically configuring andmonitoringMessage Queue
resources in conformance with the JavaManagement Extensions
(JMX).

Preface

xxiii

ptg

RelatedDocumentation
Javadoc tool reference documentation for packages that are provided with GlassFish
Server is available as follows.
■ The API specification for version 6 of Java EE is located at http://

download.oracle.com/docs/cd/E17410_01/javaee/6/api/.
■ The API specification for GlassFish Server 3.0.1, including Java EE 6 platform

packages and nonplatform packages that are specific to the GlassFish Server
product, is located at https://glassfish.dev.java.net/nonav/docs/v3/api/.

Additionally, the Java EE Specifications at http://www.oracle.com/technetwork/
java/javaee/tech/index.htmlmight be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/.

For information about the Java DB database for use with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html .

The GlassFish Samples project is a collection of sample applications that demonstrate
a broad range of Java EE technologies. The GlassFish Samples are bundled with the
Java EE Software Development Kit (SDK) and are also available from the GlassFish
Samples project page at https://glassfish-samples.dev.java.net/.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–2 SymbolConventions

Symbol Description Example Meaning

[] Contains optional
arguments and command
options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

Preface

The Java EE 6Tutorial: Basic Conceptsxxiv

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.netbeans.org/kb/
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/
https://glassfish.dev.java.net/nonav/docs/v3/api/
https://glassfish-samples.dev.java.net/

ptg

TABLE P–2 SymbolConventions (Continued)
Symbol Description Example Meaning

+ Joins consecutivemultiple
keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

→ Indicates menu item
selection in a graphical
user interface.

File→New→Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–3 TypographicConventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 Aplaceholder to be replaced with a
real name or value

The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to
be emphasized (note that some
emphasized items appear bold online)

Read Chapter 6 in theUser’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Default Paths andFileNames
The following table describes the default paths and file names that are used in this
book.

Preface

xxv

ptg

TABLE P–4 Default Paths and FileNames

Placeholder Description DefaultValue

as-install Represents the base
installation directory for the
GlassFish Server or the SDK
of which the GlassFish Server
is a part.

Installations on the Solaris operating system,
Linux operating system, andMac operating
system:

user’s-home-directory/glassfishv3/glassfish

Windows, all installations:

SystemDrive:\glassfishv3\glassfish

as-install-parent Represents the parent of the
base installation directory for
GlassFish Server.

Installations on the Solaris operating system,
Linux operating system, andMac operating
system:

user’s-home-directory/glassfishv3

Windows, all installations:

SystemDrive:\glassfishv3

tut-install Represents the base
installation directory for the
Java EE Tutorial after you
install the GlassFish Server or
the SDK and run the Update
Tool.

as-install/docs/javaee-tutorial

domain-root-dir Represents the directory in
which a domain is created by
default.

as-install/domains/

domain-dir Represents the directory in
which a domain’s
configuration is stored.

In configuration files,
domain-dir is represented as
follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, andTraining
TheOracle web site provides information about the following additional resources:

■ Documentation (http://docs.sun.com/)
■ Support (http://www.sun.com/support/)
■ Training (http://education.oracle.com/)

Preface

The Java EE 6Tutorial: Basic Conceptsxxvi

http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/

ptg

SearchingOracle ProductDocumentation
Besides searching Oracle product documentation from the http://docs.sun.com
web site, you can use a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

To include other Oracle web sites in your search (for example, the Java Developer site
on the Oracle Technology Network at http://www.oracle.com/technetwork/java/
index.html), use oracle.com in place of docs.sun.com in the search field.

Third-PartyWebSite References
Third-party URLs are referenced in this document and provide additional, related
information.

Note –Oracle is not responsible for the availability of third-party web sitesmentioned
in this document. Oracle does not endorse and is not responsible or liable for any
content, advertising, products, or othermaterials that are available on or through such
sites or resources. Oracle will not be responsible or liable for any actual or alleged
damage or loss caused or alleged to be caused by or in connection with use of or
reliance on any such content, goods, or services that are available on or through such
sites or resources.

Acknowledgments
The Java EE tutorial teamwould like to thank the Java EE specification leads: Roberto
Chinnici, Bill Shannon, Kenneth Saks, Linda DeMichiel, Ed Burns, Roger Kitain, Ron
Monzillo, Dhiru Pandey, Sankara Rao, Binod PG, Sivakumar Thyagarajan, Kin-Man
Chung, Jan Luehe, Jitendra Kotamraju,Marc Hadley, Paul Sandoz, Gavin King,
Emmanuel Bernard, Rod Johnson, Bob Lee, and RajivMordani.

Wewould also like to thank the Java EE 6 SDK team, especially Carla Carlson,
Snjezana Sevo-Zenzerovic, Adam Leftik, and John Clingan.

The JavaServer Faces technology and Facelets chapters benefited from the
documentation reviews and example code contributions of JimDriscoll and Ryan
Lubke.

Preface

xxvii

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://docs.sun.com

ptg

The EJB technology, Java Persistence API, and Criteria API chapters were written with
extensive input from the EJB and Persistence teams, includingMarina Vatkina and
MiteshMeswani.

We'd like to thank PeteMuir for his reviews of the CDI chapters and TimQuinn for
assistance with the application client container. Thanks also to the NetBeans
engineering and documentation teams, particularly Petr Jiricka, John
Jullion-Ceccarelli, and Troy Giunipero, for their help in enabling NetBeans IDE
support for the code examples.

Wewould like to thank ourmanager, Alan Sommerer, for his support and steadying
influence.

We also thankDwayneWolff for developing the illustrations and JordanDouglas for
updating them. Julie Bettis, our editor, contributed greatly to the readability and flow
of the book. Sheila Cepero helped smooth our path inmany ways. Steve Cogorno
provided invaluable help with our tools.

Finally, we would like to express our profound appreciation to Greg Doench, John
Fuller, Vicki Rowland, Evelyn Pyle, and the production team at Addison-Wesley for
graciously seeing our large, complicatedmanuscript to publication.

Preface

The Java EE 6Tutorial: Basic Conceptsxxviii

ptg

Introduction
Part I introduces the platform, the tutorial, and the examples. This part contains the
following chapters:
■ Chapter 1, “Overview”
■ Chapter 2, “Using the Tutorial Examples”

P A R T I

1

ptg

This page intentionally left blank

ptg

Overview

Developers today increasingly recognize the need for distributed, transactional, and
portable applications that leverage the speed, security, and reliability of server-side
technology. Enterprise applications provide the business logic for an enterprise. They
are centrally managed and often interact with other enterprise software. In the world
of information technology, enterprise applicationsmust be designed, built, and
produced for less money, with greater speed, and with fewer resources.

With the Java Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to
provide developers with a powerful set of APIs while shortening development time,
reducing application complexity, and improving application performance.

The Java EE platform is developed through the Java Community Process (the JCP),
which is responsible for all Java technologies. Expert groups, composed of interested
parties, have created Java Specification Requests (JSRs) to define the various Java EE
technologies. The work of the Java Community under the JCP program helps to
ensure Java technology’s standard of stability and cross-platform compatibility.

The Java EE platform uses a simplified programmingmodel. XML deployment
descriptors are optional. Instead, a developer can simply enter the information as an
annotation directly into a Java source file, and the Java EE server will configure the
component at deployment and runtime. These annotations are generally used to
embed in a program data that would otherwise be furnished in a deployment
descriptor.With annotations, you put the specification information in your code next
to the program element affected.

In the Java EE platform, dependency injection can be applied to all resources that a
component needs, effectively hiding the creation and lookup of resources from
application code. Dependency injection can be used in EJB containers, web containers,
and application clients. Dependency injection allows the Java EE container to
automatically insert references to other required components or resources, using
annotations.

1C H A P T E R 1

3

ptg

This tutorial uses examples to describe the features available in the Java EE platform
for developing enterprise applications.Whether you are a new or experienced
Enterprise developer, you should find the examples and accompanying text a valuable
and accessible knowledge base for creating your own solutions.

If you are new to Java EE enterprise application development, this chapter is a good
place to start. Here you will review development basics, learn about the Java EE
architecture and APIs, become acquainted with important terms and concepts, and
find out how to approach Java EE application programming, assembly, and
deployment.

The following topics are addressed here:
■ “Java EE 6 PlatformHighlights” on page 4
■ “Java EEApplicationModel” on page 5
■ “DistributedMultitiered Applications” on page 6
■ “Java EE Containers” on page 13
■ “Web Services Support” on page 15
■ “Java EEApplication Assembly andDeployment” on page 17
■ “Packaging Applications” on page 17
■ “Development Roles” on page 19
■ “Java EE 6 APIs” on page 22
■ “Java EE 6 APIs in the Java Platform, Standard Edition 6.0” on page 31
■ “GlassFish Server Tools” on page 34

Java EE 6PlatformHighlights
Themost important goal of the Java EE 6 platform is to simplify development by
providing a common foundation for the various kinds of components in the Java EE
platform. Developers benefit from productivity improvements withmore annotations
and less XML configuration, more Plain Old Java Objects (POJOs), and simplified
packaging. The Java EE 6 platform includes the following new features:
■ Profiles: configurations of the Java EE platform targeted at specific classes of

applications. Specifically, the Java EE 6 platform introduces a lightweightWeb
Profile targeted at next-generation web applications, as well as a Full Profile that
contains all Java EE technologies and provides the full power of the Java EE 6
platform for enterprise applications.

■ New technologies, including the following:
■ Java API for RESTfulWeb Services (JAX-RS)
■ Managed Beans
■ Contexts andDependency Injection for the Java EE Platform (JSR 299),

informally known as CDI

Java EE 6 PlatformHighlights

The Java EE 6Tutorial: Basic Concepts4

ptg

■ Dependency Injection for Java (JSR 330)
■ BeanValidation (JSR 303)
■ Java Authentication Service Provider Interface for Containers (JASPIC)

■ New features for Enterprise JavaBeans (EJB) components (see “Enterprise
JavaBeans Technology” on page 25 for details)

■ New features for servlets (see “Java Servlet Technology” on page 26 for details)
■ New features for JavaServer Faces components (see “JavaServer Faces Technology”

on page 26 for details)

Java EEApplicationModel
The Java EE applicationmodel begins with the Java programming language and the
Java virtual machine. The proven portability, security, and developer productivity they
provide forms the basis of the applicationmodel. Java EE is designed to support
applications that implement enterprise services for customers, employees, suppliers,
partners, and others whomake demands on or contributions to the enterprise. Such
applications are inherently complex, potentially accessing data from a variety of
sources and distributing applications to a variety of clients.

To better control andmanage these applications, the business functions to support
these various users are conducted in themiddle tier. Themiddle tier represents an
environment that is closely controlled by an enterprise’s information technology
department. Themiddle tier is typically run on dedicated server hardware and has
access to the full services of the enterprise.

The Java EE applicationmodel defines an architecture for implementing services as
multitier applications that deliver the scalability, accessibility, andmanageability
needed by enterprise-level applications. This model partitions the work needed to
implement amultitier service into the following parts:
■ The business and presentation logic to be implemented by the developer
■ The standard system services provided by the Java EE platform

The developer can rely on the platform to provide solutions for the hard systems-level
problems of developing amultitier service.

Java EE ApplicationModel

Chapter 1 • Overview 5

ptg

DistributedMultitieredApplications
The Java EE platform uses a distributedmultitiered applicationmodel for enterprise
applications. Application logic is divided into components according to function, and
the application components that make up a Java EE application are installed on
variousmachines, depending on the tier in themultitiered Java EE environment to
which the application component belongs.

Figure 1–1 shows twomultitiered Java EE applications divided into the tiers described
in the following list. The Java EE application parts shown in Figure 1–1 are presented
in “Java EE Components” on page 8.

■ Client-tier components run on the client machine.
■ Web-tier components run on the Java EE server.
■ Business-tier components run on the Java EE server.
■ Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of the three or four tiers shown in
Figure 1–1, Java EEmultitiered applications are generally considered to be three-tiered
applications because they are distributed over three locations: client machines, the Java
EE servermachine, and the database or legacymachines at the back end. Three-tiered
applications that run in this way extend the standard two-tiered client-and-server
model by placing amultithreaded application server between the client application
and back-end storage.

DistributedMultitiered Applications

The Java EE 6Tutorial: Basic Concepts6

ptg

Security
Although other enterprise applicationmodels require platform-specific security
measures in each application, the Java EE security environment enables security
constraints to be defined at deployment time. The Java EE platformmakes
applications portable to a wide variety of security implementations by shielding
application developers from the complexity of implementing security features.

The Java EE platform provides standard declarative access control rules that are
defined by the developer and interpreted when the application is deployed on the
server. Java EE also provides standard loginmechanisms so application developers do
not have to implement thesemechanisms in their applications. The same application
works in a variety of security environments without changing the source code.

FIGURE 1–1 MultitieredApplications

Java EE
Application 1

Java EE
Application 2

Client
Tier

Client
Machine

Java EE
Server

Database
Server

Web
Tier

Database

JavaServer
Faces
Pages

Business
Tier

EIS
Tier

Enterprise
Beans

Database

Web
Pages

Application
Client

Enterprise
Beans

DistributedMultitiered Applications

Chapter 1 • Overview 7

ptg

Java EEComponents
Java EE applications aremade up of components. A Java EE component is a
self-contained functional software unit that is assembled into a Java EE application
with its related classes and files and that communicates with other components.

The Java EE specification defines the following Java EE components.
■ Application clients and applets are components that run on the client.
■ Java Servlet, JavaServer Faces, and JavaServer Pages (JSP) technology components

are web components that run on the server.
■ Enterprise JavaBeans (EJB) components (enterprise beans) are business

components that run on the server.

Java EE components are written in the Java programming language and are compiled
in the sameway as any program in the language. The difference between Java EE
components and “standard” Java classes is that Java EE components are assembled
into a Java EE application, are verified to be well formed and in compliance with the
Java EE specification, and are deployed to production, where they are run and
managed by the Java EE server.

Java EEClients
A Java EE client is usually either a web client or an application client.

WebClients
Aweb client consists of two parts:
■ Dynamic web pages containing various types of markup language (HTML, XML,

and so on), which are generated by web components running in the web tier
■ Aweb browser, which renders the pages received from the server

Aweb client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications.When
you use a thin client, such heavyweight operations are off-loaded to enterprise beans
executing on the Java EE server, where they can leverage the security, speed, services,
and reliability of Java EE server-side technologies.

Application Clients
An application client runs on a client machine and provides a way for users to handle
tasks that require a richer user interface than can be provided by amarkup language.
An application client typically has a graphical user interface (GUI) created from the
Swing or the AbstractWindowToolkit (AWT) API, but a command-line interface is
certainly possible.

DistributedMultitiered Applications

The Java EE 6Tutorial: Basic Concepts8

ptg

Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open an
HTTP connection to establish communication with a servlet running in the web tier.
Application clients written in languages other than Java can interact with Java EE
servers, enabling the Java EE platform to interoperate with legacy systems, clients, and
non-Java languages.

Applets
Aweb page received from the web tier can include an embedded applet.Written in the
Java programming language, an applet is a small client application that executes in the
Java virtual machine installed in the web browser. However, client systems will likely
need the Java Plug-in and possibly a security policy file for the applet to successfully
execute in the web browser.

Web components are the preferred API for creating a web client program, because no
plug-ins or security policy files are needed on the client systems. Also, web
components enable cleaner andmoremodular application design because they
provide a way to separate applications programming fromweb page design. Personnel
involved in web page design thus do not need to understand Java programming
language syntax to do their jobs.

The JavaBeans ComponentArchitecture
The server and client tiers might also include components based on the JavaBeans
component architecture (JavaBeans components) tomanage the data flow between the
following:
■ An application client or applet and components running on the Java EE server
■ Server components and a database

JavaBeans components are not considered Java EE components by the Java EE
specification.

JavaBeans components have properties and have get and setmethods for accessing
the properties. JavaBeans components used in this way are typically simple in design
and implementation but should conform to the naming and design conventions
outlined in the JavaBeans component architecture.

Java EE Server Communications
Figure 1–2 shows the various elements that canmake up the client tier. The client
communicates with the business tier running on the Java EE server either directly or,
as in the case of a client running in a browser, by going through web pages or servlets
running in the web tier.

DistributedMultitiered Applications

Chapter 1 • Overview 9

ptg

WebComponents
Java EEweb components are either servlets or web pages created using JavaServer
Faces technology and/or JSP technology (JSP pages). Servlets are Java programming
language classes that dynamically process requests and construct responses. JSP pages
are text-based documents that execute as servlets but allow amore natural approach to
creating static content. JavaServer Faces technology builds on servlets and JSP
technology and provides a user interface component framework for web applications.

Static HTML pages and applets are bundled with web components during application
assembly but are not considered web components by the Java EE specification.
Server-side utility classes can also be bundled with web components and, like HTML
pages, are not considered web components.

As shown in Figure 1–3, the web tier, like the client tier, might include a JavaBeans
component tomanage the user input and send that input to enterprise beans running
in the business tier for processing.

FIGURE 1–2 ServerCommunication

Application Client and
Optional JavaBeans
Components

Web Browser, Web
Pages, Applets, and
Optional JavaBeans
Components

Client
Tier

Web Tier

Java EE
Server

Business Tier

DistributedMultitiered Applications

The Java EE 6Tutorial: Basic Concepts10

ptg

Business Components
Business code, which is logic that solves ormeets the needs of a particular business
domain, such as banking, retail, or finance, is handled by enterprise beans running in
either the business tier or the web tier. Figure 1–4 shows how an enterprise bean
receives data from client programs, processes it (if necessary), and sends it to the
enterprise information system tier for storage. An enterprise bean also retrieves data
from storage, processes it (if necessary), and sends it back to the client program.

FIGURE 1–3 WebTier and Java EEApplications

Application Client and
Optional JavaBeans
Components

JavaBeans
Components
(Optional)

Web Pages
Servlets

Web Browser, Web
Pages, Applets, and
Optional JavaBeans
Components

Client
Tier

Web
Tier

Java EE
Server

Business
Tier

DistributedMultitiered Applications

Chapter 1 • Overview 11

ptg

Enterprise Information SystemTier
The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems, such as enterprise resource planning (ERP), mainframe
transaction processing, database systems, and other legacy information systems. For
example, Java EE application componentsmight need access to enterprise information
systems for database connectivity.

FIGURE 1–4 Business andEISTiers

Application Client and
Optional JavaBeans
Components

JavaBeans
Components
(Optional)

Web Pages
Servlets

Web Browser, Web
Pages, Applets, and
Optional JavaBeans
Components

Client
Tier

Web
Tier

EIS
Tier

Database
and Legacy
Systems

Java EE
Server

Java Persistence Entities
Session Beans
Message-Driven Beans Business

Tier

DistributedMultitiered Applications

The Java EE 6Tutorial: Basic Concepts12

ptg

Java EEContainers
Normally, thin-client multitiered applications are hard to write because they involve
many lines of intricate code to handle transaction and statemanagement,
multithreading, resource pooling, and other complex low-level details. The
component-based and platform-independent Java EE architecturemakes Java EE
applications easy to write because business logic is organized into reusable
components. In addition, the Java EE server provides underlying services in the form
of a container for every component type. Because you do not have to develop these
services yourself, you are free to concentrate on solving the business problem at hand.

Container Services
Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before it can be executed, a web, enterprise
bean, or application client componentmust be assembled into a Java EEmodule and
deployed into its container.

The assembly process involves specifying container settings for each component in the
Java EE application and for the Java EE application itself. Container settings customize
the underlying support provided by the Java EE server, including such services as
security, transactionmanagement, Java Naming andDirectory Interface (JNDI) API
lookups, and remote connectivity. Here are some of the highlights.
■ The Java EE securitymodel lets you configure a web component or enterprise bean

so that system resources are accessed only by authorized users.
■ The Java EE transactionmodel lets you specify relationships amongmethods that

make up a single transaction so that all methods in one transaction are treated as a
single unit.

■ JNDI lookup services provide a unified interface tomultiple naming and directory
services in the enterprise so that application components can access these services.

■ The Java EE remote connectivitymodel manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a client
invokesmethods on it as if it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application
components within the same Java EE application can behave differently based on
where they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database data in one production environment
and another level of database access in another production environment.

The container alsomanages nonconfigurable services, such as enterprise bean and
servlet lifecycles, database connection resource pooling, data persistence, and access to
the Java EE platformAPIs (see “Java EE 6 APIs” on page 22).

Java EE Containers

Chapter 1 • Overview 13

ptg

ContainerTypes
The deployment process installs Java EE application components in the Java EE
containers as illustrated in Figure 1–5.

■ Java EE server: The runtime portion of a Java EE product. A Java EE server
provides EJB and web containers.

■ Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans
for Java EE applications. Enterprise beans and their container run on the Java EE
server.

FIGURE 1–5 Java EE Server andContainers

Application Client
Container

Client
Machine

Java EE
Server

Web
Container

Web PageServlet

EJB
Container

Enterprise
Bean

Database

Web
Browser

Application
Client

Enterprise
Bean

Java EE Containers

The Java EE 6Tutorial: Basic Concepts14

ptg

■ Web container: Manages the execution of web pages, servlets, and some EJB
components for Java EE applications.Web components and their container run on
the Java EE server.

■ Application client container: Manages the execution of application client
components. Application clients and their container run on the client.

■ Applet container: Manages the execution of applets. Consists of a web browser
and Java Plug-in running on the client together.

WebServices Support
Web services are web-based enterprise applications that use open, XML-based
standards and transport protocols to exchange data with calling clients. The Java EE
platform provides the XMLAPIs and tools you need to quickly design, develop, test,
and deploy web services and clients that fully interoperate with other web services and
clients running on Java-based or non-Java-based platforms.

To write web services and clients with the Java EE XMLAPIs, all you do is pass
parameter data to themethod calls and process the data returned; for
document-oriented web services, you send documents containing the service data
back and forth. No low-level programming is needed, because the XMLAPI
implementations do the work of translating the application data to and from an
XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following
sections.

The translation of data to a standardized XML-based data stream is whatmakes web
services and clients written with the Java EE XMLAPIs fully interoperable. This does
not necessarily mean that the data being transported includes XML tags, because the
transported data can itself be plain text, XML data, or any kind of binary data, such as
audio, video, maps, program files, computer-aided design (CAD) documents, and the
like. The next section introduces XML and explains how parties doing business can
use XML tags and schemas to exchange data in ameaningful way.

XML
ExtensibleMarkup Language (XML) is a cross-platform, extensible, text-based
standard for representing data. Parties that exchange XML data can create their own
tags to describe the data, set up schemas to specify which tags can be used in a
particular kind of XML document, and use XML style sheets tomanage the display
and handling of the data.

Web Services Support

Chapter 1 • Overview 15

ptg

For example, a web service can use XML and a schema to produce price lists, and
companies that receive the price lists and schema can have their own style sheets to
handle the data in a way that best suits their needs. Here are examples.
■ One companymight put XML pricing information through a program to translate

the XML toHTML so that it can post the price lists to its intranet.
■ Apartner companymight put the XML pricing information through a tool to

create amarketing presentation.
■ Another companymight read the XML pricing information into an application for

processing.

SOAPTransport Protocol
Client requests and web service responses are transmitted as Simple Object Access
Protocol (SOAP)messages over HTTP to enable a completely interoperable exchange
between clients and web services, all running on different platforms and at various
locations on the Internet. HTTP is a familiar request-and-response standard for
sendingmessages over the Internet, and SOAP is an XML-based protocol that follows
theHTTP request-and-responsemodel.

The SOAP portion of a transportedmessage does the following:
■ Defines an XML-based envelope to describe what is in themessage and explain

how to process themessage
■ Includes XML-based encoding rules to express instances of application-defined

data types within themessage
■ Defines an XML-based convention for representing the request to the remote

service and the resulting response

WSDLStandard Format
TheWeb Services Description Language (WSDL) is a standardized XML format for
describing network services. The description includes the name of the service, the
location of the service, and ways to communicate with the service.WSDL service
descriptions can be published on theWeb. GlassFish Server provides a tool for
generating theWSDL specification of a web service that uses remote procedure calls to
communicate with clients.

Web Services Support

The Java EE 6Tutorial: Basic Concepts16

ptg

Java EEApplicationAssembly andDeployment
A Java EE application is packaged into one ormore standard units for deployment to
any Java EE platform-compliant system. Each unit contains

■ A functional component or components, such as an enterprise bean, web page,
servlet, or applet

■ An optional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment
typically involves using a platform’s deployment tool to specify location-specific
information, such as a list of local users who can access it and the name of the local
database. Once deployed on a local platform, the application is ready to run.

PackagingApplications
A Java EE application is delivered in a Java Archive (JAR) file, aWebArchive (WAR)
file, or an Enterprise Archive (EAR) file. AWAR or EAR file is a standard JAR (.jar)
file with a .war or .ear extension. Using JAR,WAR, and EAR files andmodules makes
it possible to assemble a number of different Java EE applications using some of the
same components. No extra coding is needed; it is only amatter of assembling (or
packaging) various Java EEmodules into Java EE JAR,WAR, or EAR files.

An EAR file (see Figure 1–6) contains Java EEmodules and, optionally, deployment
descriptors. A deployment descriptor, an XML document with an .xml extension,
describes the deployment settings of an application, amodule, or a component.
Because deployment descriptor information is declarative, it can be changed without
the need tomodify the source code. At runtime, the Java EE server reads the
deployment descriptor and acts upon the application, module, or component
accordingly.

Packaging Applications

Chapter 1 • Overview 17

ptg

The two types of deployment descriptors are Java EE and runtime. A Java EE
deployment descriptor is defined by a Java EE specification and can be used to configure
deployment settings on any Java EE-compliant implementation. A runtime
deployment descriptor is used to configure Java EE implementation-specific
parameters. For example, the GlassFish Server runtime deployment descriptor
contains such information as the context root of a web application, as well as GlassFish
Server implementation-specific parameters, such as caching directives. The GlassFish
Server runtime deployment descriptors are named sun-moduleType.xml and are
located in the same META-INF directory as the Java EE deployment descriptor.

A Java EEmodule consists of one ormore Java EE components for the same container
type and, optionally, one component deployment descriptor of that type. An
enterprise beanmodule deployment descriptor, for example, declares transaction
attributes and security authorizations for an enterprise bean. A Java EEmodule can be
deployed as a stand-alonemodule.

FIGURE 1–6 EARFile Structure

Assembly Root

Web
Module

Application Client
Module

Resource Adapter
Module

EJB
Module

META-INF

application.xml
sun-application.xml
(optional)

Packaging Applications

The Java EE 6Tutorial: Basic Concepts18

ptg

Java EEmodules are of the following types:

■ EJBmodules, which contain class files for enterprise beans and an EJB deployment
descriptor. EJBmodules are packaged as JAR files with a .jar extension.

■ Webmodules, which contain servlet class files, web files, supporting class files, GIF
andHTML files, and a web application deployment descriptor.Webmodules are
packaged as JAR files with a .war (web archive) extension.

■ Application client modules, which contain class files and an application client
deployment descriptor. Application client modules are packaged as JAR files with a
.jar extension.

■ Resource adaptermodules, which contain all Java interfaces, classes, native
libraries, and other documentation, along with the resource adapter deployment
descriptor. Together, these implement the Connector architecture (see “Java EE
Connector Architecture” on page 29) for a particular EIS. Resource adapter
modules are packaged as JAR files with an .rar (resource adapter archive)
extension.

DevelopmentRoles
Reusablemodules make it possible to divide the application development and
deployment process into distinct roles so that different people or companies can
perform different parts of the process.

The first two roles, Java EE product provider and tool provider, involve purchasing
and installing the Java EE product and tools. After software is purchased and installed,
Java EE components can be developed by application component providers,
assembled by application assemblers, and deployed by application deployers. In a large
organization, each of these roles might be executed by different individuals or teams.
This division of labor works because each of the earlier roles outputs a portable file that
is the input for a subsequent role. For example, in the application component
development phase, an enterprise bean software developer delivers EJB JAR files. In
the application assembly role, another developermay combine these EJB JAR files into
a Java EE application and save it in an EAR file. In the application deployment role, a
system administrator at the customer site uses the EAR file to install the Java EE
application into a Java EE server.

The different roles are not always executed by different people. If you work for a small
company, for example, or if you are prototyping a sample application, youmight
perform the tasks in every phase.

Development Roles

Chapter 1 • Overview 19

ptg

Java EEProduct Provider
The Java EE product provider is the company that designs andmakes available for
purchase the Java EE platformAPIs and other features defined in the Java EE
specification. Product providers are typically application server vendors that
implement the Java EE platform according to the Java EE 6 Platform specification.

Tool Provider
The tool provider is the company or person who creates development, assembly, and
packaging tools used by component providers, assemblers, and deployers.

ApplicationComponent Provider
The application component provider is the company or person who creates web
components, enterprise beans, applets, or application clients for use in Java EE
applications.

Enterprise BeanDeveloper
An enterprise bean developer performs the following tasks to deliver an EJB JAR file
that contains one ormore enterprise beans:

■ Writes and compiles the source code
■ Specifies the deployment descriptor (optional)
■ Packages the .class files and deployment descriptor into the EJB JAR file

WebComponentDeveloper
Aweb component developer performs the following tasks to deliver aWAR file
containing one ormore web components:

■ Writes and compiles servlet source code
■ Writes JavaServer Faces, JSP, andHTML files
■ Specifies the deployment descriptor (optional)
■ Packages the .class, .jsp, and.html files and deployment descriptor into the

WAR file

Development Roles

The Java EE 6Tutorial: Basic Concepts20

ptg

Application ClientDeveloper
An application client developer performs the following tasks to deliver a JAR file
containing the application client:
■ Writes and compiles the source code
■ Specifies the deployment descriptor for the client (optional)
■ Packages the .class files and deployment descriptor into the JAR file

ApplicationAssembler
The application assembler is the company or person who receives applicationmodules
from component providers andmay assemble them into a Java EE application EAR
file. The assembler or deployer can edit the deployment descriptor directly or can use
tools that correctly add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing
the Java EE application:
■ Assembles EJB JAR andWAR files created in the previous phases into a Java EE

application (EAR) file
■ Specifies the deployment descriptor for the Java EE application (optional)
■ Verifies that the contents of the EAR file are well formed and comply with the Java

EE specification

ApplicationDeployer andAdministrator
The application deployer and administrator is the company or person who configures
and deploys the Java EE application, administers the computing and networking
infrastructure where Java EE applications run, and oversees the runtime environment.
Duties include setting transaction controls and security attributes and specifying
connections to databases.

During configuration, the deployer follows instructions supplied by the application
component provider to resolve external dependencies, specify security settings, and
assign transaction attributes. During installation, the deployermoves the application
components to the server and generates the container-specific classes and interfaces.

Development Roles

Chapter 1 • Overview 21

ptg

Adeployer or system administrator performs the following tasks to install and
configure a Java EE application:

■ Configures the Java EE application for the operational environment
■ Verifies that the contents of the EAR file are well formed and comply with the Java

EE specification
■ Deploys (installs) the Java EE application EAR file into the Java EE server

Java EE 6APIs
Figure 1–7 shows the relationships among the Java EE containers.

Figure 1–8 shows the availability of the Java EE 6 APIs in the web container.

FIGURE 1–7 Java EEContainers

HTTP
SSL

Applet
Container

Web Container EJB
Container

Application
Client

Container

Application
Client

EJB
JavaServer
Faces

Applet
Servlet

HTTP
SSL

Database

Java EE 6 APIs

The Java EE 6Tutorial: Basic Concepts22

ptg

Figure 1–9 shows the availability of the Java EE 6 APIs in the EJB container.

FIGURE 1–8 Java EEAPIs in theWebContainer

Web
Container

JavaServer
Faces

Servlet

New in Java EE 6

JSR 330

Interceptors

Managed Beans

JSR 299

Bean Validation

EJB Lite

EL

JavaMail

JSP

Connectors

Java Persistence

JMS

Management

WS Metadata

Web Services

JACC

JASPIC

JAX-RS

JAX-WS

JAX-RPC S
A

A
J

Java SE

Java EE 6 APIs

Chapter 1 • Overview 23

ptg

Figure 1–10 shows the availability of the Java EE 6 APIs in the application client
container.

FIGURE 1–9 Java EEAPIs in the EJBContainer

EJB
Container

EJB

New in Java EE 6

JSR 330

Interceptors

Managed Beans

JSR 299

Bean Validation

JavaMail

Java Persistence

JTA

Connectors

JMS

Management

WS Management

Web Services

JACC

JASPIC

JAXR

JAX-RS

JAX-WS

JAX-RPC S
A

A
J

Java SE

Java EE 6 APIs

The Java EE 6Tutorial: Basic Concepts24

ptg

The following sections give a brief summary of the technologies required by the Java
EE platform and the APIs used in Java EE applications.

Enterprise JavaBeansTechnology
An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code having
fields andmethods to implementmodules of business logic. You can think of an
enterprise bean as a building block that can be used alone or with other enterprise
beans to execute business logic on the Java EE server.

Enterprise beans are either session beans ormessage-driven beans.
■ A session bean represents a transient conversation with a client.When the client

finishes executing, the session bean and its data are gone.
■ Amessage-driven bean combines features of a session bean and amessage listener,

allowing a business component to receivemessages asynchronously. Commonly,
these are JavaMessage Service (JMS)messages.

FIGURE 1–10 Java EEAPIs in theApplicationClient Container

Application
Client
Container

Java SE

Application
Client

Java Persistence

Management

WS Metadata

Web Services

JSR 299

JMS

JAXR

JAX-WS

JAX-RPC S
A

A
J

New in Java EE 6

Java EE 6 APIs

Chapter 1 • Overview 25

ptg

In the Java EE 6 platform, new enterprise bean features include the following:
■ The ability to package local enterprise beans in aWAR file
■ Singleton session beans, which provide easy access to shared state
■ A lightweight subset of Enterprise JavaBeans functionality (EJB Lite) that can be

provided within Java EE Profiles, such as the Java EEWeb Profile.

The Interceptors specification, which is part of the EJB 3.1 specification, makesmore
generally available the interceptor facility originally defined as part of the EJB 3.0
specification.

Java ServletTechnology
Java Servlet technology lets you defineHTTP-specific servlet classes. A servlet class
extends the capabilities of servers that host applications accessed by way of a
request-response programmingmodel. Although servlets can respond to any type of
request, they are commonly used to extend the applications hosted by web servers.

In the Java EE 6 platform, new Java Servlet technology features include the following:
■ Annotation support
■ Asynchronous support
■ Ease of configuration
■ Enhancements to existing APIs
■ Pluggability

JavaServer FacesTechnology
JavaServer Faces technology is a user interface framework for building web
applications. Themain components of JavaServer Faces technology are as follows:
■ AGUI component framework.
■ Aflexible model for rendering components in different kinds of HTML or different

markup languages and technologies. A Renderer object generates themarkup to
render the component and converts the data stored in amodel object to types that
can be represented in a view.

■ A standard RenderKit for generatingHTML/4.01markup.

The following features support the GUI components:
■ Input validation
■ Event handling
■ Data conversion betweenmodel objects and components
■ Managedmodel object creation

Java EE 6 APIs

The Java EE 6Tutorial: Basic Concepts26

ptg

■ Page navigation configuration
■ Expression Language (EL)

All this functionality is available using standard Java APIs and XML-based
configuration files.

In the Java EE 6 platform, new features of JavaServer Faces include the following:

■ The ability to use annotations instead of a configuration file to specify managed
beans

■ Facelets, a display technology that replaces JavaServer Pages (JSP) technology
using XHTML files

■ Ajax support
■ Composite components
■ Implicit navigation

JavaServer PagesTechnology
JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a
text-based document. A JSP page is a text-based document that contains two types of
text:

■ Static data, which can be expressed in any text-based format such as HTML or
XML

■ JSP elements, which determine how the page constructs dynamic content

JavaServer Pages StandardTag Library
The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality
common tomany JSP applications. Instead ofmixing tags from numerous vendors in
your JSP applications, you use a single, standard set of tags. This standardization
allows you to deploy your applications on any JSP container that supports JSTL and
makes it more likely that the implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags formanipulating
XML documents, internationalization tags, tags for accessing databases using SQL,
and commonly used functions.

Java EE 6 APIs

Chapter 1 • Overview 27

ptg

JavaPersistenceAPI
The Java Persistence API is a Java standards-based solution for persistence. Persistence
uses an object/relational mapping approach to bridge the gap between an
object-orientedmodel and a relational database. The Java Persistence API can also be
used in Java SE applications, outside of the Java EE environment. Java Persistence
consists of the following areas:
■ The Java Persistence API
■ The query language
■ Object/relational mappingmetadata

JavaTransactionAPI
The Java Transaction API (JTA) provides a standard interface for demarcating
transactions. The Java EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commitmeans that any other applications
that are viewing data will see the updated data after each database read or write
operation. However, if your application performs two separate database access
operations that depend on each other, you will want to use the JTAAPI to demarcate
where the entire transaction, including both operations, begins, rolls back, and
commits.

JavaAPI for RESTfulWebServices
The Java API for RESTfulWeb Services (JAX-RS) defines APIs for the development of
web services built according to the Representational State Transfer (REST)
architectural style. A JAX-RS application is a web application that consists of classes
that are packaged as a servlet in aWAR file along with required libraries.

The JAX-RS API is new to the Java EE 6 platform.

ManagedBeans
Managed Beans, lightweight container-managed objects (POJOs) withminimal
requirements, support a small set of basic services, such as resource injection, lifecycle
callbacks, and interceptors. Managed Beans represent a generalization of themanaged
beans specified by JavaServer Faces technology and can be used anywhere in a Java EE
application, not just in webmodules.

TheManaged Beans specification is part of the Java EE 6 platform specification (JSR
316).

Managed Beans are new to the Java EE 6 platform.

Java EE 6 APIs

The Java EE 6Tutorial: Basic Concepts28

ptg

Contexts andDependency Injection for the Java EE
Platform (JSR299)
Contexts andDependency Injection (CDI) for the Java EE platform defines a set of
contextual services, provided by Java EE containers, that make it easy for developers to
use enterprise beans along with JavaServer Faces technology in web applications.
Designed for use with stateful objects, CDI also hasmany broader uses, allowing
developers a great deal of flexibility to integrate different kinds of components in a
loosely coupled but type-safe way.

CDI is new to the Java EE 6 platform.

Dependency Injection for Java (JSR330)
Dependency Injection for Java defines a standard set of annotations (and one
interface) for use on injectable classes.

In the Java EE platform, CDI provides support for Dependency Injection. Specifically,
you can use DI injection points only in a CDI-enabled application.

Dependency Injection for Java is new to the Java EE 6 platform.

BeanValidation
The BeanValidation specification defines ametadatamodel and API for validating
data in JavaBeans components. Instead of distributing validation of data over several
layers, such as the browser and the server side, you can define the validation
constraints in one place and share them across the different layers.

Bean Validation is new to the Java EE 6 platform.

JavaMessage ServiceAPI
The JavaMessage Service (JMS) API is amessaging standard that allows Java EE
application components to create, send, receive, and readmessages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

Java EEConnectorArchitecture
The Java EE Connector architecture is used by tools vendors and system integrators to
create resource adapters that support access to enterprise information systems that can
be plugged in to any Java EE product. A resource adapter is a software component that

Java EE 6 APIs

Chapter 1 • Overview 29

ptg

allows Java EE application components to access and interact with the underlying
resourcemanager of the EIS. Because a resource adapter is specific to its resource
manager, a different resource adapter typically exists for each type of database or
enterprise information system.

The Java EE Connector architecture also provides a performance-oriented, secure,
scalable, andmessage-based transactional integration of Java EE based web services
with existing EISs that can be either synchronous or asynchronous. Existing
applications and EISs integrated through the Java EE Connector architecture into the
Java EE platform can be exposed as XML-based web services by using JAX-WS and
Java EE componentmodels. Thus JAX-WS and the Java EE Connector architecture are
complementary technologies for enterprise application integration (EAI) and
end-to-end business integration.

JavaMail API
Java EE applications use the JavaMail API to send email notifications. The JavaMail
API has two parts:
■ An application-level interface used by the application components to sendmail
■ A service provider interface

The Java EE platform includes the JavaMail API with a service provider that allows
application components to send Internet mail.

JavaAuthorization Contract for Containers
The Java Authorization Contract for Containers (JACC) specification defines a
contract between a Java EE application server and an authorization policy provider.
All Java EE containers support this contract.

The JACC specification defines java.security.Permission classes that satisfy the
Java EE authorizationmodel. The specification defines the binding of container access
decisions to operations on instances of these permission classes. It defines the
semantics of policy providers that use the new permission classes to address the
authorization requirements of the Java EE platform, including the definition and use
of roles.

JavaAuthentication Service Provider Interface for
Containers
The Java Authentication Service Provider Interface for Containers (JASPIC)
specification defines a service provider interface (SPI) by which authentication
providers that implementmessage authenticationmechanismsmay be integrated in

Java EE 6 APIs

The Java EE 6Tutorial: Basic Concepts30

ptg

client or servermessage-processing containers or runtimes. Authentication providers
integrated through this interface operate on networkmessages provided to them by
their calling container. The authentication providers transform outgoingmessages so
that the source of themessage can be authenticated by the receiving container, and the
recipient of themessage can be authenticated by themessage sender. Authentication
providers authenticate incomingmessages and return to their calling container the
identity established as a result of themessage authentication.

JASPIC is new to the Java EE 6 platform.

Java EE 6APIs in the JavaPlatform, Standard Edition 6.0
Several APIs that are required by the Java EE 6 platform are included in the Java
Platform, Standard Edition 6.0 (Java SE 6) platform and are thus available to Java EE
applications.

JavaDatabase ConnectivityAPI
The Java Database Connectivity (JDBC) API lets you invoke SQL commands from
Java programming languagemethods. You use the JDBCAPI in an enterprise bean
when you have a session bean access the database. You can also use the JDBCAPI from
a servlet or a JSP page to access the database directly without going through an
enterprise bean.

The JDBCAPI has two parts:
■ An application-level interface used by the application components to access a

database
■ A service provider interface to attach a JDBC driver to the Java EE platform

JavaNamingandDirectory InterfaceAPI
The Java Naming andDirectory Interface (JNDI) API provides naming and directory
functionality, enabling applications to access multiple naming and directory services,
including existing naming and directory services, such as LDAP, NDS, DNS, andNIS.
The JNDI API provides applications withmethods for performing standard directory
operations, such as associating attributes with objects and searching for objects using
their attributes. Using JNDI, a Java EE application can store and retrieve any type of
named Java object, allowing Java EE applications to coexist withmany legacy
applications and systems.

Java EE naming services provide application clients, enterprise beans, and web
components with access to a JNDI naming environment. A naming environment

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

Chapter 1 • Overview 31

ptg

allows a component to be customized without the need to access or change the
component’s source code. A container implements the component’s environment and
provides it to the component as a JNDI naming context.

A Java EE component can locate its environment naming context by using JNDI
interfaces. A component can create a javax.naming.InitialContext object and look
up the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects, are
stored in the environment naming context java:comp/env. The Java EE platform
allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, andmessage connections. An object
should be namedwithin a subcontext of the naming environment according to the
type of the object. For example, enterprise beans are namedwithin the subcontext
java:comp/env/ejb, and JDBC DataSource references are namedwithin the
subcontext java:comp/env/jdbc.

JavaBeansActivation Framework
The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides
standard services to determine the type of an arbitrary piece of data, encapsulate access
to it, discover the operations available on it, and create the appropriate JavaBeans
component to perform those operations.

JavaAPI for XMLProcessing
The Java API for XML Processing (JAXP), part of the Java SE platform, supports the
processing of XML documents using Document ObjectModel (DOM), Simple API for
XML (SAX), and Extensible Stylesheet Language Transformations (XSLT). JAXP
enables applications to parse and transformXML documents independently of a
particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might
otherwise have naming conflicts. Designed to be flexible, JAXP lets you use any
XML-compliant parser or XSL processor fromwithin your application and supports
theWorldwideWeb Consortium (W3C) schema. You can find information on the
W3C schema at this URL: http://www.w3.org/XML/Schema.

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

The Java EE 6Tutorial: Basic Concepts32

http://www.w3.org/XML/Schema

ptg

JavaArchitecture for XMLBinding
The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an
XML schema to a representation in Java language programs. JAXB can be used
independently or in combination with JAX-WS, where it provides a standard data
binding for web servicemessages. All Java EE application client containers, web
containers, and EJB containers support the JAXBAPI.

SOAPwithAttachmentsAPI for Java
The SOAPwith Attachments API for Java (SAAJ) is a low-level API on which JAX-WS
depends. SAAJ enables the production and consumption ofmessages that conform to
the SOAP 1.1 and 1.2 specifications and SOAPwith Attachments note. Most
developers do not use the SAAJ API, instead using the higher-level JAX-WSAPI.

JavaAPI for XMLWebServices
The Java API for XMLWeb Services (JAX-WS) specification provides support for web
services that use the JAXBAPI for binding XML data to Java objects. The JAX-WS
specification defines client APIs for accessing web services as well as techniques for
implementing web service endpoints. The Implementing EnterpriseWeb Services
specification describes the deployment of JAX-WS-based services and clients. The EJB
and Java Servlet specifications also describe aspects of such deployment. It must be
possible to deploy JAX-WS-based applications using any of these deploymentmodels.

The JAX-WS specification describes the support formessage handlers that can process
message requests and responses. In general, thesemessage handlers execute in the
same container and with the same privileges and execution context as the JAX-WS
client or endpoint component with which they are associated. Thesemessage handlers
have access to the same JNDI java:comp/env namespace as their associated
component. Custom serializers and deserializers, if supported, are treated in the same
way asmessage handlers.

JavaAuthentication andAuthorization Service
The Java Authentication and Authorization Service (JAAS) provides a way for a Java
EE application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable
AuthenticationModule (PAM) framework, which extends the Java Platform security
architecture to support user-based authorization.

Java EE 6 APIs in the Java Platform, Standard Edition 6.0

Chapter 1 • Overview 33

ptg

GlassFish ServerTools
TheGlassFish Server is a compliant implementation of the Java EE 6 platform. In
addition to supporting all the APIs described in the previous sections, the GlassFish
Server includes a number of Java EE tools that are not part of the Java EE 6 platform
but are provided as a convenience to the developer.

This section briefly summarizes the tools that make up the GlassFish Server.
Instructions for starting and stopping the GlassFish Server, starting the
Administration Console, and starting and stopping the Java DB server are in
Chapter 2, “Using the Tutorial Examples.”

The GlassFish Server contains the tools listed in Table 1–1. Basic usage information for
many of the tools appears throughout the tutorial. For detailed information, see the
online help in the GUI tools.

TABLE 1–1 GlassFish ServerTools

Tool Description

Administration Console Aweb-based GUIGlassFish Server administration utility. Used to stop
the GlassFish Server andmanage users, resources, and applications.

asadmin A command-line GlassFish Server administration utility. Used to start
and stop the GlassFish Server andmanage users, resources, and
applications.

appclient A command-line tool that launches the application client container and
invokes the client application packaged in the application client JAR file.

capture-schema A command-line tool to extract schema information from a database,
producing a schema file that the GlassFish Server can use for
container-managed persistence.

package-appclient A command-line tool to package the application client container
libraries and JAR files.

Java DB database A copy of the Java DB server.

xjc A command-line tool to transform, or bind, a source XML schema to a
set of JAXB content classes in the Java programming language.

schemagen A command-line tool to create a schema file for each namespace
referenced in your Java classes.

GlassFish ServerTools

The Java EE 6Tutorial: Basic Concepts34

ptg

TABLE 1–1 GlassFish Server Tools (Continued)
Tool Description

wsimport A command-line tool to generate JAX-WS portable artifacts for a given
WSDL file. After generation, these artifacts can be packaged in aWAR
file with theWSDL and schema documents, along with the endpoint
implementation, and then deployed.

wsgen A command-line tool to read a web service endpoint class and generate
all the required JAX-WS portable artifacts for web service deployment
and invocation.

GlassFish ServerTools

Chapter 1 • Overview 35

ptg

This page intentionally left blank

ptg

Using theTutorial Examples

This chapter tells you everything you need to know to install, build, and run the
examples. The following topics are addressed here:
■ “Required Software” on page 37
■ “Starting and Stopping the GlassFish Server” on page 41
■ “Starting the Administration Console” on page 42
■ “Starting and Stopping the Java DB Server” on page 43
■ “Building the Examples” on page 44
■ “Tutorial Example Directory Structure” on page 44
■ “Getting the Latest Updates to the Tutorial” on page 44
■ “Debugging Java EEApplications” on page 45

Required Software
The following software is required to run the examples:
■ “Java Platform, Standard Edition” on page 37
■ “Java EE 6 Software Development Kit” on page 38
■ “Java EE 6 Tutorial Component” on page 38
■ “NetBeans IDE” on page 40
■ “Apache Ant” on page 41

JavaPlatform, Standard Edition
To build, deploy, and run the examples, you need a copy of the Java Platform, Standard
Edition 6.0 Development Kit (JDK 6). You can download the JDK 6 software from
http://www.oracle.com/technetwork/java/javase/downloads/index.html .

Download the current JDK update that does not include any other software, such as
NetBeans IDE or the Java EE SDK.

2C H A P T E R 2

37

http://www.oracle.com/technetwork/java/javase/downloads/index.html

ptg

Java EE 6 SoftwareDevelopmentKit
GlassFish Server Open Source Edition 3.0.1 is targeted as the build and runtime
environment for the tutorial examples. To build, deploy, and run the examples, you
need a copy of the GlassFish Server and, optionally, NetBeans IDE. To obtain the
GlassFish Server, youmust install the Java EE 6 Software Development Kit (SDK),
which you can download from http://www.oracle.com/technetwork/java/

javaee/downloads/index.html. Make sure you download the Java EE 6 SDK, not the
Java EE 6Web Profile SDK.

SDK InstallationTips
During the installation of the SDK, do the following.

■ Configure the GlassFish Server administration user name as admin, and specify no
password. This is the default setting.

■ Accept the default port values for the Admin Port (4848) and theHTTP Port
(8080).

■ Allow the installer to download and configure the Update Tool. If you access the
Internet through a firewall, provide the proxy host and port.

This tutorial refers to as-install-parent, the directory where you install the GlassFish
Server. For example, the default installation directory onMicrosoftWindows is
C:\glassfishv3, so as-install-parent is C:\glassfishv3. The GlassFish Server itself is
installed in as-install, the glassfish directory under as-install-parent. So onMicrosoft
Windows, as-install is C:\glassfishv3\glassfish.

After you install the GlassFish Server, add the following directories to your PATH to
avoid having to specify the full path when you use commands:

as-install-parent/bin

as-install/bin

Java EE 6Tutorial Component
The tutorial example source is contained in the tutorial component. To obtain the
tutorial component, use the Update Tool.

If you are behind a firewall that prevents you from using the Update Tool to obtain
components, you can obtain the tutorial from the java.netweb site.

Required Software

The Java EE 6Tutorial: Basic Concepts38

http://www.oracle.com/technetwork/java/javaee/downloads/index.html
http://www.oracle.com/technetwork/java/javaee/downloads/index.html

ptg

▼ ToObtain theTutorial ComponentUsing theUpdateTool

Start theUpdateTool.

■ From the command line, type the command updatetool.

■ OnaWindows system, select Start→All Programs→ Java EE 6 SDK→ Start Update
Tool.

Expand theGlassFish ServerOpen Source Edition node.

Select theAvailable Add-ons node.

From the list, select the Java EE 6Tutorial check box.

Click Install.

Accept the license agreement.
After installation, the Java EE 6 Tutorial appears in the list of installed components.
The tool is installed in the as-install/docs/javaee-tutorial directory. This directory
contains two subdirectories: docs and examples. The examples directory contains
subdirectories for each of the technologies discussed in the tutorial.

Updates to the Java EE 6 Tutorial are published periodically. For details on obtaining
these updates, see “Getting the Latest Updates to the Tutorial” on page 44.

▼ ToObtain theTutorial Component from the java.netWebSite
Follow these steps exactly. If you place the tutorial in the wrong location, the examples
will not work.

Open the followingURL in awebbrowser:
https://javaeetutorial.dev.java.net/

Click theDocuments & Files link in the left sidebar.

In the table on theDocuments & Files page, locate the latest stable version of the Java
EE 6Tutorial zip file.

Right-click the zip file nameand save it to your system.

Copy ormove the zip file into theGlassFish SDKdirectory.
By default, this directory is named glassfishv3.

1

2

3

4

5

6

Next Steps

1

2

3

4

5

Required Software

Chapter 2 • Using theTutorial Examples 39

https://javaeetutorial.dev.java.net/

ptg

Unzip the zip file.
The tutorial unzips into the directory glassfish/docs/javaee-tutorial.

NetBeans IDE
TheNetBeans integrated development environment (IDE) is a free, open-source IDE
for developing Java applications, including enterprise applications. NetBeans IDE
supports the Java EE platform. You can build, package, deploy, and run the tutorial
examples fromwithin NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can
downloadNetBeans IDE from http://www.netbeans.org/downloads/index.html.

▼ To Install NetBeans IDEwithoutGlassFish Server
When you install NetBeans IDE, do not install the version of GlassFish Server that
comes with NetBeans IDE. To skip the installation of GlassFish Server, follow these
steps.

Click Customize on the first page of theNetBeans IDE Installerwizard.

In the Customize Installation dialog, deselect the check box for GlassFish Server and
clickOK.

Continuewith the installation of NetBeans IDE.

▼ ToAddGlassFish Server as a Server inNetBeans IDE
To run the tutorial examples in NetBeans IDE, youmust add your GlassFish Server as
a server in NetBeans IDE. Follow these instructions to add the GlassFish Server to
NetBeans IDE.

SelectTools→ Servers to open the Servers dialog.

Click Add Server.

Under Choose Server, select GlassFish v3 and clickNext.

Under Server Location, browse the location of your GlassFish Server installation and
clickNext.

UnderDomain Location, select Register Local Domain.

Click Finish.

6

1

2

3

1

2

3

4

5

6

Required Software

The Java EE 6Tutorial: Basic Concepts40

http://www.netbeans.org/downloads/index.html

ptg

ApacheAnt
Ant is a Java technology-based build tool developed by the Apache Software
Foundation (http://ant.apache.org/) and is used to build, package, and deploy the
tutorial examples. To run the tutorial examples, you need Ant 1.7.1. If you do not
already have Ant 1.7.1, you can install it from the Update Tool that is part of the
GlassFish Server.

▼ ToObtainApacheAnt

Start theUpdateTool.

■ From the command line, type the command updatetool.

■ OnaWindows system, select Start→All Programs→ Java EE 6 SDK→ Start Update
Tool.

Expand theGlassFish ServerOpen Source Edition node.

Select theAvailable Add-ons node.

From the list, select theApacheAnt BuildTool check box.

Click Install.

Accept the license agreement.
After installation, Apache Ant appears in the list of installed components. The tool is
installed in the as-install-parent/ant directory.

To use the ant command, add as-install/ant/bin to your PATH environment variable.

Starting andStopping theGlassFish Server
To start the GlassFish Server, open a terminal window or command prompt and
execute the following:

asadmin start-domain --verbose

1

2

3

4

5

6

Next Steps

Starting and Stopping the GlassFish Server

Chapter 2 • Using theTutorial Examples 41

http://ant.apache.org/

ptg

A domain is a set of one ormore GlassFish Server instancesmanaged by one
administration server. Associated with a domain are the following:

■ TheGlassFish Server’s port number. The default is 8080.
■ The administration server’s port number. The default is 4848.
■ An administration user name and password.

You specify these values when you install the GlassFish Server. The examples in this
tutorial assume that you chose the default ports.

With no arguments, the start-domain command initiates the default domain, which
is domain1. The --verbose flag causes all logging and debugging output to appear on
the terminal window or command prompt. The output also goes into the server log,
which is located in domain-dir/logs/server.log.

Or, onWindows, choose Start→All Programs→ Java EE 6 SDK→ Start Application
Server.

After the server has completed its startup sequence, you will see the following output:

Domain domain1 started.

To stop the GlassFish Server, open a terminal window or command prompt and
execute:

asadmin stop-domain domain1

Or, onWindows, choose Start→All Programs→ Java EE 6 SDK→ Stop Application
Server.

When the server has stopped, you will see the following output:

Domain domain1 stopped.

Starting theAdministrationConsole
To administer the GlassFish Server andmanage users, resources, and Java EE
applications, use the Administration Console tool. The GlassFish Servermust be
running before you invoke the Administration Console. To start the Administration
Console, open a browser at http://localhost:4848/.

Or, onWindows, choose Start→All Programs→ Java EE 6 SDK→Administration
Console.

Starting the Administration Console

The Java EE 6Tutorial: Basic Concepts42

ptg

▼ ToStart theAdministrationConsole inNetBeans IDE

Click the Services tab.

Expand the Servers node.

Right-click theGlassFish Server instance and selectViewAdminConsole.

Note –NetBeans IDE uses your default web browser to open the Administration
Console.

Starting andStopping the JavaDBServer
TheGlassFish Server includes the Java DB database server.

To start the Java DB server, open a terminal window or command prompt and execute:

asadmin start-database

To stop the Java DB server, open a terminal window or command prompt and execute:

asadmin stop-database

For information about the Java DB included with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.html .

▼ ToStart theDatabase ServerUsingNetBeans IDE

Click the Services tab.

Expand theDatabases node.

Right-click JavaDB and choose Start Server.

To stop the database using NetBeans IDE, right-click Java DB and choose Stop Server.

1

2

3

1

2

3

Next Steps

Starting and Stopping the Java DB Server

Chapter 2 • Using theTutorial Examples 43

http://www.oracle.com/technetwork/java/javadb/overview/index.html

ptg

Building the Examples
The tutorial examples are distributed with a configuration file for either NetBeans IDE
or Ant. Directions for building the examples are provided in each chapter. Either
NetBeans IDE or Antmay be used to build, package, deploy, and run the examples.

Tutorial ExampleDirectory Structure
To facilitate iterative development and keep application source separate from
compiled files, the tutorial examples use the Java BluePrints application directory
structure.

Each applicationmodule has the following structure:
■ build.xml: Ant build file
■ src/java: Java source files for themodule
■ src/conf: configuration files for themodule, with the exception of web

applications
■ web: web pages, style sheets, tag files, and images (web applications only)
■ web/WEB-INF: configuration files for web applications (web applications only)
■ nbproject: NetBeans project files

Examples that havemultiple applicationmodules packaged into an EAR file have
submodule directories that use the following naming conventions:
■ example-name-app-client: application clients
■ example-name-ejb: enterprise bean JAR files
■ example-name-war: web applications

The Ant build files (build.xml) distributed with the examples contain targets to create
a build subdirectory and to copy and compile files into that directory; a dist
subdirectory, which holds the packagedmodule file; and a client-jar directory,
which holds the retrieved application client JAR.

Getting the LatestUpdates to theTutorial
Check for any updates to the tutorial by using the Update Center included with the
Java EE 6 SDK.

Building the Examples

The Java EE 6Tutorial: Basic Concepts44

ptg

▼ ToUpdate theTutorialThrough theUpdate Center

Open the Services tab inNetBeans IDE and expand Servers.

Right-click theGlassFish v3 instance and selectViewUpdate Center to display the
UpdateTool.

Select Available Updates in the tree to display a list of updatedpackages.

Look for updates to the Java EE 6Tutorial (javaee-tutorial) package.

If there is an updated version of theTutorial, select Java EE 6Tutorial (javaee-tutorial)
and click Install.

Debugging Java EEApplications
This section explains how to determine what is causing an error in your application
deployment or execution.

Using the Server Log
Oneway to debug applications is to look at the server log in
domain-dir/logs/server.log. The log contains output from the GlassFish Server and
your applications. You can logmessages from any Java class in your application with
System.out.println and the Java Logging APIs (documented at
http://download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/guides/logging/index.html)
and fromweb components with the ServletContext.logmethod.

If you start the GlassFish Server with the --verbose flag, all logging and debugging
output will appear on the terminal window or command prompt and the server log. If
you start the GlassFish Server in the background, debugging information is available
only in the log. You can view the server log with a text editor or with the
Administration Console log viewer.

▼ ToUse the LogViewer

Select theGlassFish Server node.

Click theView Log Files button.
The log viewer opens and displays the last 40 entries.

1

2

3

4

5

1

2

Debugging Java EE Applications

Chapter 2 • Using theTutorial Examples 45

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/logging/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/logging/index.html

ptg

Todisplay other entries, follow these steps.

a. Click theModify Search button.

b. Specify any constraints on the entries youwant to see.

c. Click the Search button at the top of the log viewer.

Using aDebugger
TheGlassFish Server supports the Java PlatformDebugger Architecture (JPDA).With
JPDA, you can configure the GlassFish Server to communicate debugging information
using a socket.

▼ ToDebuganApplicationUsing aDebugger

Enable debugging in theGlassFish Server using theAdministration Console:

a. Expand the Configuration node.

b. Select the JVMSettings node.The default debugoptions are set to:
-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port
not in use by the GlassFish Server or another service.

c. Select theDebug Enabled check box.

d. Click the Save button.

Stop theGlassFish Server and then restart it.

3

1

2

Debugging Java EE Applications

The Java EE 6Tutorial: Basic Concepts46

ptg

TheWebTier
Part II introduces the technologies in the web tier. This part contains the following
chapters:
■ Chapter 3, “Getting Started withWebApplications”
■ Chapter 4, “JavaServer Faces Technology”
■ Chapter 5, “Introduction to Facelets”
■ Chapter 6, “Expression Language”
■ Chapter 7, “Using JavaServer Faces Technology inWeb Pages”
■ Chapter 8, “Using Converters, Listeners, and Validators”
■ Chapter 9, “Developing with JavaServer Faces Technology”
■ Chapter 10, “Java Servlet Technology”

P A R T I I

47

ptg

This page intentionally left blank

ptg

Getting StartedwithWebApplications

Aweb application is a dynamic extension of a web or application server.Web
applications are of the following types:
■ Presentation-oriented: A presentation-oriented web application generates

interactive web pages containing various types of markup language (HTML,
XHTML, XML, and so on) and dynamic content in response to requests.
Development of presentation-oriented web applications is covered in Chapter 4,
“JavaServer Faces Technology,” through Chapter 9, “Developing with JavaServer
Faces Technology.”

■ Service-oriented: A service-oriented web application implements the endpoint of
a web service. Presentation-oriented applications are often clients of
service-oriented web applications. Development of service-oriented web
applications is covered in Chapter 12, “BuildingWeb Services with JAX-WS,” and
Chapter 13, “Building RESTfulWeb Services with JAX-RS,” in Part III, “Web
Services.”

The following topics are addressed here:
■ “WebApplications” on page 50
■ “WebApplication Lifecycle” on page 51
■ “WebModules: The hello1 Example” on page 53
■ “ConfiguringWebApplications: The hello2 Example” on page 62
■ “Further Information aboutWebApplications” on page 71

3C H A P T E R 3

49

ptg

WebApplications
In the Java EE platform,web components provide the dynamic extension capabilities
for a web server.Web components can be Java servlets, web pages implemented with
JavaServer Faces technology, web service endpoints, or JSP pages. Figure 3–1
illustrates the interaction between a web client and a web application that uses a
servlet. The client sends anHTTP request to the web server. A web server that
implements Java Servlet and JavaServer Pages technology converts the request into an
HTTPServletRequest object. This object is delivered to a web component, which can
interact with JavaBeans components or a database to generate dynamic content. The
web component can then generate an HTTPServletResponse or can pass the request to
another web component. A web component eventually generates a
HTTPServletResponse object. The web server converts this object to anHTTP
response and returns it to the client.

Servlets are Java programming language classes that dynamically process requests and
construct responses. Java technologies, such as JavaServer Faces and Facelets, are used
for building interactive web applications. (Frameworks can also be used for this
purpose.) Although servlets and Java Server Faces and Facelets pages can be used to
accomplish similar things, each has its own strengths. Servlets are best suited for
service-oriented applications (web service endpoints can be implemented as servlets)
and the control functions of a presentation-oriented application, such as dispatching
requests and handling nontextual data. Java Server Faces and Facelets pages aremore
appropriate for generating text-basedmarkup, such as XHTML, and are generally
used for presentation–oriented applications.

FIGURE 3–1 JavaWebApplicationRequestHandling

HTTP
Request

HTTP
Response

Database

Database

Web
Client

HttpServlet
Request

HttpServlet
Response

WWWeeebbb
sssCCC
WWWeeebbb
sss

WWWeeebbb
CCCCCCCCC
WWWWWWeee

sssooo mmmpppooonnn nnntttssseee
WWWWWW bbb
CCC s
bbb
CCCooommmpppooonnneeennnttt

e
CCC ompooon entsooommmpppooonnneeennntttooo mmmpppooonnneeennntttWeb

Components

WWWeeebbb
sssCCC
WWWeeebbb
sss

WWWeeebbb
CCCCCCCCC
WWWWWWeee

sssooo mmmpppooonnn eeennntttsss
WWWWWW bbb
CCC eeennntttsss
bbb e
CCCooommmpppooonnneeennntttCompooonooommmpppooonnneeennntttooo mmmpppooonnneeennntttJ avaBeans
Components

1
4

4

2

5 3

6

WebApplications

The Java EE 6Tutorial: Basic Concepts50

ptg

Web components are supported by the services of a runtime platform called aweb
container. A web container provides such services as request dispatching, security,
concurrency, and lifecycle management. A web container also gives web components
access to such APIs as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is
installed, or deployed, to the web container. The configuration information can be
specified using Java EE annotations or can bemaintained in a text file in XML format
called aweb application deployment descriptor (DD). A web applicationDDmust
conform to the schema described in the Java Servlet specification.

This chapter gives a brief overview of the activities involved in developing web
applications. First, it summarizes the web application lifecycle and explains how to
package and deploy very simple web applications on the GlassFish Server. The chapter
moves on to configuring web applications and discusses how to specify themost
commonly used configuration parameters.

WebApplication Lifecycle
Aweb application consists of web components; static resource files, such as images;
and helper classes and libraries. The web container providesmany supporting services
that enhance the capabilities of web components andmake them easier to develop.
However, because a web applicationmust take these services into account, the process
for creating and running a web application is different from that of traditional
stand-alone Java classes.

The process for creating, deploying, and executing a web application can be
summarized as follows:

1. Develop the web component code.
2. Develop the web application deployment descriptor, if necessary.
3. Compile the web application components and helper classes referenced by the

components.
4. Optionally, package the application into a deployable unit.
5. Deploy the application into a web container.
6. Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello,World-style
presentation-oriented application. This application allows a user to enter a name into
anHTML form (Figure 3–2) and then displays a greeting after the name is submitted
(Figure 3–3).

WebApplication Lifecycle

Chapter 3 • Getting StartedwithWebApplications 51

ptg

TheHello application contains two web components that generate the greeting and
the response. This chapter discusses the following simple applications:

■ hello1, a JavaServer Faces technology-based application that uses two XHTML
pages and a backing bean

■ hello2, a servlet-based web application in which the components are implemented
by two servlet classes

FIGURE 3–2 Greeting Form for hello1WebApplication

FIGURE 3–3 Response Page for hello1WebApplication

WebApplication Lifecycle

The Java EE 6Tutorial: Basic Concepts52

ptg

The applications are used to illustrate tasks involved in packaging, deploying,
configuring, and running an application that contains web components. The source
code for the examples is in the tut-install/examples/web/hello1/ and
tut-install/examples/web/hello2/ directories.

WebModules:The hello1 Example
In the Java EE architecture, web components and static web content files, such as
images, are calledweb resources. Awebmodule is the smallest deployable and usable
unit of web resources. A Java EEwebmodule corresponds to a web application as
defined in the Java Servlet specification.

In addition to web components and web resources, a webmodule can contain other
files:
■ Server-side utility classes, such as shopping carts
■ Client-side classes, such as applets and utility classes

Awebmodule has a specific structure. The top-level directory of a webmodule is the
document root of the application. The document root is where XHTML pages,
client-side classes and archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB-INF, which can contain the
following files and directories:
■ classes: A directory that contains server-side classes: servlets, enterprise bean

class files, utility classes, and JavaBeans components
■ tags: A directory that contains tag files, which are implementations of tag libraries
■ lib: A directory that contains JAR files that contain enterprise beans, and JAR

archives of libraries called by server-side classes
■ Deployment descriptors, such as web.xml (the web application deployment

descriptor) and ejb-jar.xml (an EJB deployment descriptor)

Awebmodule needs a web.xml file if it uses JavaServer Faces technology, if it must
specify certain kinds of security information, or if you want to override information
specified by web component annotations.

You can also create application-specific subdirectories (that is, package directories) in
either the document root or the WEB-INF/classes/ directory.

A webmodule can be deployed as an unpacked file structure or can be packaged in a
JAR file known as aWebArchive (WAR) file. Because the contents and use ofWAR
files differ from those of JAR files,WAR file names use a .war extension. The web
module just described is portable; you can deploy it into any web container that
conforms to the Java Servlet specification.

WebModules: The hello1 Example

Chapter 3 • Getting StartedwithWebApplications 53

ptg

To deploy aWAR on the GlassFish Server, the filemust contain a runtime deployment
descriptor. The runtimeDD is an XML file that contains such information as the
context root of the web application and themapping of the portable names of an
application’s resources to the GlassFish Server’s resources. The GlassFish Server web
application runtimeDD is named sun-web.xml and is located in the WEB-INF
directory. The structure of a webmodule that can be deployed on the GlassFish Server
is shown in Figure 3–4.

For example, the sun-web.xml file for the hello1 application specifies the following
context root:

<context-root>/hello1</context-root>

Examining the hello1WebModule
The hello1 application is a webmodule that uses JavaServer Faces technology to
display a greeting and response. You can use a text editor to view the application files,
or you can use NetBeans IDE.

FIGURE 3–4 WebModule Structure

Assembly Root

WEB-INF

lib classes

web.xml
sun-web.xml
(optional)

Library
archive files

All server-side
.class files for
this web module

Web pages

WebModules: The hello1 Example

The Java EE 6Tutorial: Basic Concepts54

ptg

▼ ToView the hello1WebModuleUsingNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/web/

Select the hello1 folder.

Select theOpen asMain Project check box.

Expand theWebPages node anddouble-click the index.xhtml file to view it in the
right-handpane.
The index.html file is the default landing page for a Facelets application. For this
application, the page uses simple tagmarkup to display a formwith a graphic image, a
header, a text field, and two command buttons:
<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Facelets Hello Greeting</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage url="duke.waving.gif"/>
<h2>Hello, my name is Duke. What’s yours?</h2>

<h:inputText id="username"
value="#{hello.name}"
required="true"
requiredMessage="A name is required."
maxlength="25">

</h:inputText>

<p></p>

<h:commandButton id="submit" value="Submit" action="response">
</h:commandButton>

<h:commandButton id="reset" value="Reset" type="reset">
</h:commandButton>

</h:form>

</h:body>

</html>

Themost complex element on the page is the inputText text field. The maxlength
attribute specifies themaximum length of the field. The required attribute specifies
that the fieldmust be filled out; the requiredMessage attribute provides the error
message to be displayed if the field is left empty. Finally, the value attribute contains
an expression that will be provided by the Hello backing bean.

The Submit commandButton element specifies the action as response, meaning that
when the button is clicked, the response.xhtml page is displayed.

1

2

3

4

5

WebModules: The hello1 Example

Chapter 3 • Getting StartedwithWebApplications 55

ptg

Double-click the response.xhtml file to view it.
The response page appears. Even simpler than the greeting page, the response page
contains a graphic image, a header that displays the expression provided by the
backing bean, and a single button whose action element transfers you back to the
index.xhtml page:
<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Facelets Hello Response</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage url="duke.waving.gif"/>
<h2>Hello, #{hello.name}!</h2>

<p></p>

<h:commandButton id="back" value="Back" action="index" />
</h:form>

</h:body>

</html>

Expand the Source Packages node, then the hello1 node.

Double-click the Hello.java file to view it.
The Hello class, called a backing bean class, provides getter and setter methods for the
name property used in the Facelets page expressions. By default, the expression
language refers to the class name, with the first letter in lowercase (hello.name).
package hello1;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.RequestScoped;

@ManagedBean

@RequestScoped

public class Hello {

private String name;

public Hello() {

}

public String getName() {

return name;

}

public void setName(String user_name) {

this.name = user_name;

}

}

Under theWebPages node, expand the WEB-INF node anddouble-click the web.xml
file to view it.

6

7

8

9

WebModules: The hello1 Example

The Java EE 6Tutorial: Basic Concepts56

ptg

The web.xml file contains several elements that are required for a Facelets application.
All these are created automatically when you use NetBeans IDE to create an
application:
■ A context parameter specifying the project stage:

<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>Development</param-value>

</context-param>

A context parameter provides configuration information needed by a web
application. An application can define its own context parameters. In addition,
JavaServer Faces technology and Java Servlet technology define context parameters
that an application can use.

■ A servlet element and its servlet-mapping element specifying the
FacesServlet:

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

■ A welcome-file-list element specifying the location of the landing page; note
that the location is faces/index.xhtml, not just index.xhtml:

<welcome-file-list>

<welcome-file>faces/index.xhtml</welcome-file>

</welcome-file-list>

Packaging aWebModule
Awebmodulemust be packaged into aWAR in certain deployment scenarios and
whenever you want to distribute the webmodule. You package a webmodule into a
WAR by executing the jar command in a directory laid out in the format of a web
module, by using the Ant utility, or by using the IDE tool of your choice. This tutorial
shows you how to use NetBeans IDE or Ant to build, package, and deploy the hello1
sample application.

▼ ToSet theContext Root
A context root identifies a web application in a Java EE server. A context rootmust start
with a forward slash (/) and end with a string.

In a packaged webmodule for deployment on the GlassFish Server, the context root is
stored in sun-web.xml.

WebModules: The hello1 Example

Chapter 3 • Getting StartedwithWebApplications 57

ptg

To view or edit the context root, follow these steps.

Expand theWebPages andWEB-INF nodes of the hello1project.

Double-click sun-web.xml.

In theGeneral tab, observe that the Context Root field is set to /hello1.

If you needed to edit this value, you could do so here.When you create a new
application, you type the context root here.

(Optional) Click the XML tab.

Observe that the context root value /hello1 is enclosed by the context-root element.
You could also edit the value here.

▼ ToBuild andPackage the hello1WebModuleUsingNetBeans IDE

Select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/web/

Select the hello1 folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the hello1project and select Build.

▼ ToBuild andPackage the hello1WebModuleUsingAnt

In a terminalwindow, go to:
tut-install/examples/web/hello1/

Type the following command:
ant

This command spawns any necessary compilations, copies files to the directory
tut-install/examples/web/hello1/build/, creates theWAR file, and copies it to the
directory tut-install/examples/web/hello1/dist/.

1

2

3

4

1

2

3

4

5

6

1

2

WebModules: The hello1 Example

The Java EE 6Tutorial: Basic Concepts58

ptg

Deploying aWebModule
You can deploy aWAR file to the GlassFish Server by
■ UsingNetBeans IDE
■ Using the Ant utility
■ Using the asadmin command
■ Using the Administration Console
■ Copying theWAR file into the domain-dir/autodeploy/ directory

Throughout the tutorial, you will use NetBeans IDE or Ant for packaging and
deploying.

▼ ToDeploy the hello1WebModuleUsingNetBeans IDE

Right-click the hello1project and select Deploy.

▼ ToDeploy the hello1WebModuleUsingAnt

In a terminalwindow, go to:
tut-install/examples/web/hello1/

Type the following command:
ant deploy

Running aDeployedWebModule
Now that the webmodule is deployed, you can view it by opening the application in a
web browser. By default, the application is deployed to host localhost on port 8080.
The context root of the web application is hello1.

▼ ToRunaDeployedWebModule

Open awebbrowser.

Type the followingURL:
http://localhost:8080/hello1/

Type your nameand click Submit.
The response page displays the name you submitted. Click the Back button to try
again.

●

1

2

1

2

3

WebModules: The hello1 Example

Chapter 3 • Getting StartedwithWebApplications 59

ptg

ListingDeployedWebModules
TheGlassFish Server provides two ways to view the deployed webmodules: the
Administration Console and the asadmin command.

▼ To List DeployedWebModulesUsing theAdministrationConsole

Open theURL http://localhost:4848/ in a browser.

Select theApplications node.
The deployed webmodules appear in the Deployed Applications table.

▼ To List DeployedWebModulesUsing the asadminCommand

Type the following command:
asadmin list-applications

Updating aWebModule
A typical iterative development cycle involves deploying a webmodule and then
making changes to the application components. To update a deployed webmodule,
follow these steps.

▼ ToUpdate aDeployedWebModule

Recompile anymodified classes.

Redeploy themodule.

Reload theURL in the client.

Dynamic Reloading
If dynamic reloading is enabled, you do not have to redeploy an application ormodule
when you change its code or deployment descriptors. All you have to do is copy the
changed pages or class files into the deployment directory for the application or
module. The deployment directory for a webmodule named context-root is
domain-dir/applications/context-root. The server checks for changes periodically
and redeploys the application, automatically and dynamically, with the changes.

1

2

●

1

2

3

WebModules: The hello1 Example

The Java EE 6Tutorial: Basic Concepts60

ptg

This capability is useful in a development environment because it allows code changes
to be tested quickly. Dynamic reloading is not recommended for a production
environment, however, because it may degrade performance. In addition, whenever a
reload is done, the sessions at that time become invalid, and the client must restart the
session.

In the GlassFish Server, dynamic reloading is enabled by default.

▼ ToDisable orModifyDynamic Reloading
If for some reason you do not want the default dynamic reloading behavior, follow
these steps in the Administration Console.

Open theURL http://localhost:4848/ in a browser.

Select theGlassFish Server node.

Select theAdvanced tab.

To disable dynamic reloading, deselect the Reload Enabled check box.

To change the interval atwhich applications andmodules are checked for code
changes anddynamically reloaded, type a number of seconds in the Reload Poll
Interval field.
The default value is 2 seconds.

Click the Save button.

UndeployingWebModules
You can undeploy webmodules and other types of enterprise applications by using
either NetBeans IDE or the Ant tool.

▼ ToUndeploy the hello1WebModuleUsingNetBeans IDE

Ensure that theGlassFish Server is running.

In the Serviceswindow, expand the Servers node, GlassFish Server instance, and the
Applications node.

Right-click the hello1module and chooseUndeploy.

To delete the class files andother build artifacts, right-click the project and choose
Clean.

1

2

3

4

5

6

1

2

3

4

WebModules: The hello1 Example

Chapter 3 • Getting StartedwithWebApplications 61

ptg

▼ ToUndeploy the hello1WebModuleUsingAnt

In a terminalwindow, go to:
tut-install/examples/web/hello1/

Type the following command:
ant undeploy

Todelete the class files andother build artifacts, type the following command:
ant clean

ConfiguringWebApplications:The hello2 Example
Web applications are configured bymeans of annotations or by elements contained in
the web application deployment descriptor.

The following sections give a brief introduction to the web application features you
will usually want to configure. Examples demonstrate procedures for configuring the
Hello,World application.

MappingURLs toWebComponents
When it receives a request, the web containermust determine which web component
should handle the request. The web container does so bymapping the URL path
contained in the request to a web application and a web component. AURL path
contains the context root and, optionally, a URL pattern:

http://host:port/context-root[/url-pattern]

You set the URL pattern for a servlet by using the @WebServlet annotation in the
servlet source file. For example, the GreetingServlet.java file in the hello2
application contains the following annotation, specifying the URL pattern as
/greeting:

@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

...

This annotation indicates that the URL pattern /greeting follows the context root.
Therefore, when the servlet is deployed locally, it is accessed with the followingURL:

http://localhost:8080/hello2/greeting

To access the servlet by using only the context root, specify "/" as the URL pattern.

1

2

3

ConfiguringWebApplications: The hello2 Example

The Java EE 6Tutorial: Basic Concepts62

ptg

Examining the hello2WebModule
The hello2 application behaves almost identically to the hello1 application, but it is
implemented using Java Servlet technology instead of JavaServer Faces technology.
You can use a text editor to view the application files, or you can use NetBeans IDE.

▼ ToView the hello2WebModuleUsingNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/web/

Select the hello2 folder.

Select theOpen asMain Project check box.

Expand the Source Packages node, then the servlets node.

Double-click the GreetingServlet.java file to view it.
This servlet overrides the doGetmethod, implementing the GETmethod of HTTP. The
servlet displays a simple HTML greeting formwhose Submit button, like that of
hello1, specifies a response page for its action. The following excerpt begins with the
@WebServlet annotation that specifies the URL pattern, relative to the context root:
@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

@Override

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");
response.setBufferSize(8192);

PrintWriter out = response.getWriter();

// then write the data of the response

out.println("<html>"
+ "<head><title>Servlet Hello</title></head>");

// then write the data of the response

out.println("<body bgcolor=\"#ffffff\">"
+ ""
+ "<h2>Hello, my name is Duke. What’s yours?</h2>"
+ "<form method=\"get\">"
+ "<input type=\"text\" name=\"username\" size=\"25\">"
+ "<p></p>"
+ "<input type=\"submit\" value=\"Submit\">"
+ "<input type=\"reset\" value=\"Reset\">"

1

2

3

4

5

6

ConfiguringWebApplications: The hello2 Example

Chapter 3 • Getting StartedwithWebApplications 63

ptg

+ "</form>");

String username = request.getParameter("username");
if (username != null && username.length() > 0) {

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/response");

if (dispatcher != null) {

dispatcher.include(request, response);

}

}

out.println("</body></html>");
out.close();

}

...

Double-click the ResponseServlet.java file to view it.

This servlet also overrides the doGetmethod, displaying only the response. The
following excerpt begins with the @WebServlet annotation, which specifies the URL
pattern, relative to the context root:
@WebServlet("/response")
public class ResponseServlet extends HttpServlet {

@Override

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();

// then write the data of the response

String username = request.getParameter("username");
if (username != null && username.length() > 0) {

out.println("<h2>Hello, " + username + "!</h2>");
}

}

...

Under theWebPages node, expand the WEB-INF node anddouble-click the
sun-web.xml file to view it.

In the General tab, observe that the Context Root field is set to /hello2.

For this simple servlet application, a web.xml file is not required.

Building, Packaging,Deploying, andRunning the
hello2 Example
You can use either NetBeans IDE or Ant to build, package, deploy, and run the hello2
example.

7

8

ConfiguringWebApplications: The hello2 Example

The Java EE 6Tutorial: Basic Concepts64

ptg

▼ ToBuild, Package,Deploy, andRun the hello2 ExampleUsing
NetBeans IDE

Select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/web/

Select the hello2 folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the hello2project and select Build.

Right-click the project and select Deploy.

In awebbrowser, open theURL http://localhost:8080/hello2/greeting.

TheURL specifies the context root, followed by the URL pattern.

The application looksmuch like the hello1 application shown in Figure 3–2. The
major difference is that after you click the Submit button, the response appears below
the greeting, not on a separate page.

▼ ToBuild, Package,Deploy, andRun the hello2 ExampleUsingAnt

In a terminalwindow, go to:
tut-install/examples/web/hello2/

Type the following command:
ant

This target builds theWAR file and copies it to the
tut-install/examples/web/hello2/dist/ directory.

Type ant deploy.

Ignore the URL shown in the deploy target output.

In awebbrowser, open theURL http://localhost:8080/hello2/greeting.

TheURL specifies the context root, followed by the URL pattern.

1

2

3

4

5

6

7

8

1

2

3

4

ConfiguringWebApplications: The hello2 Example

Chapter 3 • Getting StartedwithWebApplications 65

ptg

The application looksmuch like the hello1 application shown in Figure 3–2. The
major difference is that after you click the Submit button, the response appears below
the greeting, not on a separate page.

DeclaringWelcomeFiles
Thewelcome filesmechanism allows you to specify a list of files that the web container
will use for appending to a request for a URL (called a valid partial request) that is not
mapped to a web component. For example, suppose that you define a welcome file
welcome.html. When a client requests a URL such as host:port/webapp/directory,
where directory is notmapped to a servlet or XHTML page, the file
host:port/webapp/directory/welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines the
welcome file list and appends to the partial request each welcome file in the order
specified and checks whether a static resource or servlet in theWAR ismapped to that
request URL. The web container then sends the request to the first resource that
matches in theWAR.

If no welcome file is specified, the GlassFish Server will use a file named index.html as
the default welcome file. If there is no welcome file and no file named index.html, the
GlassFish Server returns a directory listing.

By convention, you specify the welcome file for a JavaServer Faces application as
faces/file-name.xhtml.

SettingContext and InitializationParameters
The web components in a webmodule share an object that represents their application
context. You can pass initialization parameters to the context or to a web component.

▼ ToAddaContext ParameterUsingNetBeans IDE

Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand theWebPages node and then theWEB-INF node.

Double-click web.xml.

Click General at the top of the editor pane.

Expand the Context Parameters node.

1

2

3

4

5

6

ConfiguringWebApplications: The hello2 Example

The Java EE 6Tutorial: Basic Concepts66

ptg

Click Add.
AnAddContext Parameter dialog opens.

In the Parameter Namefield, type the name that specifies the context object.

In the ParameterValue field, type the parameter to pass to the context object.

ClickOK.

▼ ToAddan InitializationParameterUsingNetBeans IDE
You can use the @WebServlet annotation to specify web component initialization
parameters by using the initParams attribute and the @WebInitParam annotation. For
example:

@WebServlet(urlPatterns="/MyPattern", initParams=

{@WebInitParam(name="ccc", value="333")})

Alternatively, you can add an initialization parameter to the web.xml file. To do this
using NetBeans IDE, follow these steps.

Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand theWebPages node and then theWEB-INF node.

Double-click web.xml.

Click Servlets at the top of the editor pane.

Click theAddbutton under the Initialization Parameters table.
AnAdd Initialization Parameter dialog opens.

In the Parameter Namefield, type the nameof the parameter.

In the ParameterValue Field, type the parameter’s value.

ClickOK.

Mapping Errors to Error Screens
When an error occurs during execution of a web application, you can have the
application display a specific error screen according to the type of error. In particular,

7

8

9

10

1

2

3

4

5

6

7

8

9

ConfiguringWebApplications: The hello2 Example

Chapter 3 • Getting StartedwithWebApplications 67

ptg

you can specify amapping between the status code returned in anHTTP response or a
Java programming language exception returned by any web component and any type
of error screen.

You can havemultiple error-page elements in your deployment descriptor. Each
element identifies a different error that causes an error page to open. This error page
can be the same for any number of error-page elements.

▼ ToSetUpErrorMappingUsingNetBeans IDE

Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand theWebPages node and then theWEB-INF node.

Double-click web.xml.

Click Pages at the top of the editor pane.

Expand the Error Pages node.

Click Add.
The Add Error Page dialog opens.

Click Browse to locate the page that youwant to act as the error page.

In the Error Codefield, type theHTTP status code thatwill cause the error page to be
opened.

In the ExceptionType field, type the exception thatwill cause the error page to load.

ClickOK.

DeclaringResourceReferences
If your web component uses such objects as enterprise beans, data sources, or web
services, you use Java EE annotations to inject these resources into your application.
Annotations eliminate a lot of the boilerplate lookup code and configuration elements
that previous versions of Java EE required.

Although resource injection using annotations can bemore convenient for the
developer, there are some restrictions on using it in web applications. First, you can
inject resources only into container-managed objects, since a containermust have

1

2

3

4

5

6

7

8

9

10

11

ConfiguringWebApplications: The hello2 Example

The Java EE 6Tutorial: Basic Concepts68

ptg

control over the creation of a component so that it can perform the injection into a
component. As a result, you cannot inject resources into such objects as simple
JavaBeans components. However, JavaServer Facesmanaged beans aremanaged by
the container; therefore, they can accept resource injections.

Components that can accept resource injections are listed in Table 3–1.

This section explains how to use a couple of the annotations supported by a servlet
container to inject resources. Chapter 20, “Running the Persistence Examples,”
explains howweb applications use annotations supported by the Java Persistence API.
Chapter 24, “Getting Started SecuringWebApplications,” explains how to use
annotations to specify information about securing web applications.

TABLE 3–1 WebComponents That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener

javax.servlet.ServletRequestListener

javax.servlet.ServletRequestAttributeListener

javax.servlet.http.HttpSessionListener

javax.servlet.http.HttpSessionAttributeListener

javax.servlet.http.HttpSessionBindingListener

Taglib listeners Same as above

Taglib tag handlers javax.servlet.jsp.tagext.JspTag

Managed beans Plain Old Java Objects

Declaring aReference to aResource
The @Resource annotation is used to declare a reference to a resource, such as a data
source, an enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, a method, or a field. The container is
responsible for injecting references to resources declared by the @Resource annotation
andmapping it to the proper JNDI resources.

ConfiguringWebApplications: The hello2 Example

Chapter 3 • Getting StartedwithWebApplications 69

ptg

In the following example, the @Resource annotation is used to inject a data source into
a component that needs tomake a connection to the data source, as is done when
using JDBC technology to access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {

// get a connection and execute the query

Connection conn = catalogDS.getConnection();

..

}

The container injects this data source prior to the component’s beingmade available to
the application. The data source JNDImapping is inferred from the field name
catalogDS and the type, javax.sql.DataSource.

If you havemultiple resources that you need to inject into one component, you need to
use the @Resources annotation to contain them, as shown by the following example:

@Resources ({

@Resource (name="myDB" type=java.sql.DataSource),
@Resource(name="myMQ" type=javax.jms.ConnectionFactory)

})

The web application examples in this tutorial use the Java Persistence API to access
relational databases. This API does not require you to explicitly create a connection to
a data source. Therefore, the examples do not use the @Resource annotation to inject a
data source. However, this API supports the @PersistenceUnit and
@PersistenceContext annotations for injecting EntityManagerFactory and
EntityManager instances, respectively. Chapter 20, “Running the Persistence
Examples,” describes these annotations and the use of the Java Persistence API in web
applications.

Declaring aReference to aWebService
The @WebServiceRef annotation provides a reference to a web service. The following
example shows uses the @WebServiceRef annotation to declare a reference to a web
service. WebServiceRef uses the wsdlLocation element to specify the URI of the
deployed service’sWSDL file:

...

import javax.xml.ws.WebServiceRef;

...

public class ResponseServlet extends HTTPServlet {

@WebServiceRef(wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

ConfiguringWebApplications: The hello2 Example

The Java EE 6Tutorial: Basic Concepts70

ptg

Further Information aboutWebApplications
Formore information onweb applications, see
■ JavaServer Faces 2.0 specification:

http://jcp.org/en/jsr/detail?id=314

■ JavaServer Faces technology web site:
http://www.oracle.com/

technetwork/java/javaee/javaserverfaces-139869.html

■ Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

■ Java Servlet web site:
http://www.oracle.com/technetwork/java/index-jsp-135475.html

Further Information aboutWebApplications

Chapter 3 • Getting StartedwithWebApplications 71

http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

ptg

This page intentionally left blank

ptg

JavaServer FacesTechnology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:

■ AnAPI for representing components andmanaging their state; handling events,
server-side validation, and data conversion; defining page navigation; supporting
internationalization and accessibility; and providing extensibility for all these
features

■ Tag libraries for adding components to web pages and for connecting components
to server-side objects

JavaServer Faces technology provides a well-defined programmingmodel and various
tag libraries. These features significantly ease the burden of building andmaintaining
web applications with server-side user interfaces (UIs).Withminimal effort, you can
complete the following tasks.

■ Create a web page.
■ Drop components onto a web page by adding component tags.
■ Bind components on a page to server-side data.
■ Wire component-generated events to server-side application code.
■ Save and restore application state beyond the life of server requests.
■ Reuse and extend components through customization.

This chapter provides an overview of JavaServer Faces technology. After explaining
what a JavaServer Faces application is and reviewing some of the primary benefits of
using JavaServer Faces technology, this chapter describes the process of creating a
simple JavaServer Faces application. This chapter also introduces the JavaServer Faces
lifecycle by describing the example JavaServer Faces application progressing through
the lifecycle stages.

4C H A P T E R 4

73

ptg

The following topics are addressed here:
■ “What Is a JavaServer Faces Application?” on page 74
■ “JavaServer Faces Technology Benefits” on page 75
■ “Creating a Simple JavaServer Faces Application” on page 77
■ “Further Information about JavaServer Faces Technology” on page 81

What Is a JavaServer FacesApplication?
The functionality provided by a JavaServer Faces application is similar to that of any
other Java web application. A typical JavaServer Faces application includes the
following parts:
■ A set of web pages in which components are laid out
■ A set of tags to add components to the web page
■ A set of backing beans, which are JavaBeans components that define properties and

functions for components on a page
■ Aweb deployment descriptor (web.xml file)
■ Optionally, one ormore application configuration resource files, such as a

faces-config.xml file, which can be used to define page navigation rules and
configure beans and other custom objects, such as custom components

■ Optionally, a set of custom objects, which can include custom components,
validators, converters, or listeners, created by the application developer

■ A set of custom tags for representing custom objects on the page

Figure 4–1 shows the interaction between client and server in a typical JavaServer
Faces application. In response to a client request, a web page is rendered by the web
container that implements JavaServer Faces technology.

FIGURE 4–1 Responding to a Client Request for a JavaServer Faces Page

Web Container

myfacelet.xhtml

myUI

Browser

Renders HTML
HTTP Response

Access page
HTTP Request

What Is a JavaServer Faces Application?

The Java EE 6Tutorial: Basic Concepts74

ptg

The web page, myfacelet.xhtml, is built using JavaServer Faces component tags.
Component tags are used to add components to the view (represented by myUI in the
diagram), which is the server-side representation of the page. In addition to
components, the web page can also reference objects, such as the following:

■ Any event listeners, validators, and converters that are registered on the
components

■ The JavaBeans components that capture the data and process the
application-specific functionality of the components

On request from the client, the view is rendered as a response. Rendering is the process
whereby, based on the server-side view, the web container generates output, such as
HTML or XHTML, that can be read by the client, such as a browser.

JavaServer FacesTechnologyBenefits
One of the greatest advantages of JavaServer Faces technology is that it offers a clean
separation between behavior and presentation for web applications. A JavaServer
Faces application canmapHTTP requests to component-specific event handling and
manage components as stateful objects on the server. JavaServer Faces technology
allows you to build web applications that implement the finer-grained separation of
behavior and presentation that is traditionally offered by client-side UI architectures.

The separation of logic from presentation also allows eachmember of a web
application development team to focus on a single piece of the development process
and provides a simple programmingmodel to link the pieces. For example, page
authors with no programming expertise can use JavaServer Faces technology tags in a
web page to link to server-side objects without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar
component and web-tier concepts without limiting you to a particular scripting
technology ormarkup language. JavaServer Faces technology APIs are layered directly
on top of the Servlet API, as shown in Figure 4–2.

JavaServer FacesTechnology Benefits

Chapter 4 • JavaServer FacesTechnology 75

ptg

This layering of APIs enables several important application use cases, such as using
different presentation technologies, creating your own custom components directly
from the component classes, and generating output for various client devices.

Facelets technology, available as part of JavaServer Faces 2.0, is now the preferred
presentation technology for building JavaServer Faces technology-based web
applications. Formore information on Facelets technology features, see Chapter 5,
“Introduction to Facelets.”

Facelets technology offers several advantages.
■ Code can be reused and extended for components through the templating and

composite component features.
■ When you use the JavaServer Faces Annotations feature, you can automatically

register the backing bean as a resource available for JavaServer Faces applications.
In addition, implicit navigation rules allow developers to quickly configure page
navigation. These features reduce themanual configuration process for
applications.

■ Most important, JavaServer Faces technology provides a rich architecture for
managing component state, processing component data, validating user input, and
handling events.

FIGURE 4–2 JavaWebApplicationTechnologies

JavaServer Faces JavaServer Pages
Standard Tag Library

JavaServer Pages

Java Servlet

JavaServer FacesTechnology Benefits

The Java EE 6Tutorial: Basic Concepts76

ptg

Creating a Simple JavaServer FacesApplication
JavaServer Faces technology provides an easy and user-friendly process for creating
web applications. Developing a simple JavaServer Faces application typically requires
the following tasks:

■ Developing backing beans
■ Addingmanaged bean declarations
■ Creating web pages using component tags
■ Mapping the FacesServlet instance

This section describes those tasks through the process of creating a simple JavaServer
Faces Facelets application.

The example is a Hello application that includes a backing bean and a web page.When
accessed by a client, the web page prints out a Hello Worldmessage. The example
application is located in the directory tut-install/examples/web/hello. The tasks
involved in developing this application can be examined by looking at the application
components in detail.

Developing theBackingBean
Asmentioned earlier in this chapter, a backing bean, a type of managed bean, is a
JavaBeans component that is managed by JavaServer Faces technology. Components
in a page are associated with backing beans that provide application logic. The
example backing bean, Hello.java, contains the following code:

package hello;

import javax.faces.bean.ManagedBean;

@ManagedBean

public class Hello {

final String world = "Hello World!";

public String getworld() {

return world;

}

}

The example backing bean sets the value of the variable worldwith the string "Hello
World!". The @ManagedBean annotation registers the backing bean as a resource with
the JavaServer Faces implementation. Formore information onmanaged beans and
annotations, see Chapter 9, “Developing with JavaServer Faces Technology.”

Creating a Simple JavaServer Faces Application

Chapter 4 • JavaServer FacesTechnology 77

ptg

Creating theWebPage
In a typical Facelets application, web pages are created in XHTML. The example web
page, beanhello.xhtml, is a simple XHTML page. It has the following content:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Facelets Hello World</title>

</h:head>

<h:body>

#{hello.world}

</h:body>

</html>

AFacelets XHTMLweb page can also contain several other elements, which are
covered later in this tutorial.

The web page connects to the backing bean through the Expression Language (EL)
value expression #{hello.world}, which retrieves the value of the world property
from the backing bean Hello. Note the use of hello to reference the backing bean
Hello. If no name is specified in the @ManagedBean annotation, the backing bean is
always accessed with the first letter of the class name in lowercase.

Formore information on using EL expressions, see Chapter 6, “Expression Language.”
Formore information about Facelets technology, see Chapter 5, “Introduction to
Facelets.” Formore information about the JavaServer Faces programmingmodel and
building web pages using JavaServer Faces technology, see Chapter 7, “Using
JavaServer Faces Technology inWeb Pages.”

Mapping the FacesServlet Instance
The final task requires mapping the FacesServlet, which is done through the web
deployment descriptor (web.xml). A typical mapping of FacesServlet is as follows:

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

The preceding file segment represents part of a typical JavaServer Faces web
deployment descriptor. The web deployment descriptor can also contain other
content relevant to a JavaServer Faces application configuration, but that information
is not covered here.

Creating a Simple JavaServer Faces Application

The Java EE 6Tutorial: Basic Concepts78

ptg

Mapping the FacesServlet is automatically done for you if you are using an IDE such
as NetBeans IDE.

The Lifecycle of the helloApplication
Every web application has a lifecycle. Common tasks, such as handling incoming
requests, decoding parameters, modifying and saving state, and rendering web pages
to the browser, are all performed during a web application lifecycle. Someweb
application frameworks hide the details of the lifecycle from you, whereas others
require you tomanage themmanually.

By default, JavaServer Faces automatically handles most of the lifecycle actions for you.
However, it also exposes the various stages of the request lifecycle, so that you can
modify or perform different actions if your application requirements warrant it.

It is not necessary for the beginning user to understand the lifecycle of a JavaServer
Faces application, but the information can be useful for creatingmore complex
applications.

The lifecycle of a JavaServer Faces application starts and ends with the following
activity: The client makes a request for the web page, and the server responds with the
page. The lifecycle consists of twomain phases: execute and render.

During the execute phase, several actions can take place:

■ The application view is built or restored.
■ The request parameter values are applied.
■ Conversions and validations are performed for component values.
■ Backing beans are updated with component values.
■ Application logic is invoked.

For a first (initial) request, only the view is built. For subsequent (postback) requests,
some or all of the other actions can take place.

In the render phase, the requested view is rendered as a response to the client.
Rendering is typically the process of generating output, such as HTML or XHTML,
that can be read by the client, usually a browser.

The following short description of the example JavaServer Faces application passing
through its lifecycle summarizes the activity that takes place behind the scenes.

Creating a Simple JavaServer Faces Application

Chapter 4 • JavaServer FacesTechnology 79

ptg

The hello example application goes through the following stages when it is deployed
on the GlassFish Server.

1. When the hello application is built and deployed on the GlassFish Server, the
application is in an uninitiated state.

2. When a client makes an initial request for the beanhello.xhtmlweb page, the
hello Facelets application is compiled.

3. The compiled Facelets application is executed, and a new component tree is
constructed for the hello application and is placed in a FacesContext.

4. The component tree is populated with the component and the backing bean
property associated with it, represented by the EL expression hello.world.

5. A new view is built, based on the component tree.
6. The view is rendered to the requesting client as a response.
7. The component tree is destroyed automatically.
8. On subsequent (postback) requests, the component tree is rebuilt, and the saved

state is applied.

Formore detailed information on the JavaServer Faces lifecycle, see the JavaServer
Faces Specification, Version 2.0.

▼ ToBuild, Package,Deploy, andRun theApplication in
NetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialogbox, navigate to:
tut-install/examples/web

Select the hello folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the helloproject and select Run.

This step compiles, assembles, and deploys the application and then brings up a web
browser window displaying the followingURL:
http://localhost:8080/hello

1

2

3

4

5

6

Creating a Simple JavaServer Faces Application

The Java EE 6Tutorial: Basic Concepts80

ptg

The output looks like this:

Hello World!

Further Information about JavaServer FacesTechnology
Formore information on JavaServer Faces technology, see
■ JavaServer Faces 2.0 specification:

http://jcp.org/en/jsr/detail?id=314

■ JavaServer Faces technology web site:
http://www.oracle.com/

technetwork/java/javaee/javaserverfaces-139869.html

■ JavaServer Faces 2.0 technology download web site:
http://www.oracle.com/technetwork/java/javaee/download-139288.html

■ Mojarra (JavaServer Faces 2.0) Release Notes:
https://javaserverfaces.dev.java.net/nonav/rlnotes/2.0.0/index.html

Further Information about JavaServer FacesTechnology

Chapter 4 • JavaServer FacesTechnology 81

http://jcp.org/en/jsr/detail?id=314
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

ptg

This page intentionally left blank

ptg

Introduction to Facelets

The term Facelets refers to the view declaration language for JavaServer Faces
technology. JavaServer Pages (JSP) technology, previously used as the presentation
technology for JavaServer Faces, does not support all the new features available in
JavaServer Faces 2.0. JSP technology is considered to be a deprecated presentation
technology for JavaServer Faces 2.0. Facelets is a part of the JavaServer Faces
specification and also the preferred presentation technology for building JavaServer
Faces technology-based applications.

The following topics are addressed here:

■ “What Is Facelets?” on page 83
■ “Developing a Simple Facelets Application” on page 85
■ “Templating” on page 91
■ “Composite Components” on page 94
■ “Resources” on page 96

What Is Facelets?
Facelets is a powerful but lightweight page declaration language that is used to build
JavaServer Faces views usingHTML style templates and to build component trees.
Facelets features include the following:

■ Use of XHTML for creating web pages
■ Support for Facelets tag libraries in addition to JavaServer Faces and JSTL tag

libraries
■ Support for the Expression Language (EL)
■ Templating for components and pages

5C H A P T E R 5

83

ptg

Advantages of Facelets for large-scale development projects include the following:
■ Support for code reuse through templating and composite components
■ Functional extensibility of components and other server-side objects through

customization
■ Faster compilation time
■ Compile-time EL validation
■ High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on
development and deployment.

Facelets views are usually created as XHTML pages. JavaServer Faces implementations
support XHTML pages created in conformance with the XHTMLTransitional
Document Type Definition (DTD), as listed at http://www.w3.org/TR/xhtml1/
#a_dtd_XHTML-1.0-Transitional. By convention, web pages built with XHTML
have an .xhtml extension.

JavaServer Faces technology supports various tag libraries to add components to a web
page. To support the JavaServer Faces tag librarymechanism, Facelets uses XML
namespace declarations. Table 5–1 lists the tag libraries supported by Facelets.

TABLE 5–1 Tag Libraries Supported by Facelets

Tag Library URI Prefix Example Contents

JavaServer
Faces
Facelets Tag
Library

http://java.sun.com/jsf/facelets ui: ui:component

ui:insert

Tags for
templating

JavaServer
Faces HTML
Tag Library

http://java.sun.com/jsf/html h: h:head

h:body

h:outputText

h:inputText

JavaServer
Faces
component
tags for all
UIComponents

JavaServer
Faces Core
Tag Library

http://java.sun.com/jsf/core f: f:actionListener

f:attribute

Tags for
JavaServer
Faces
custom
actions
that are
independent
of any
particular
RenderKit

What Is Facelets?

The Java EE 6Tutorial: Basic Concepts84

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://java.sun.com/jsf/facelets
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

ptg

TABLE 5–1 Tag Libraries Supported by Facelets (Continued)
Tag Library URI Prefix Example Contents

JSTL Core
Tag Library

http://java.sun.com/jsp/jstl/core c: c:forEach

c:catch

JSTL 1.1
Core Tags

JSTL
Functions
Tag Library

http://java.sun.com/jsp/jstl/

functions

fn: fn:toUpperCase

fn:toLowerCase

JSTL 1.1
Functions
Tags

In addition, Facelets supports tags for composite components for which you can
declare custom prefixes. Formore information on composite components, see
“Composite Components” on page 94.

Based on the JavaServer Faces support for Expression Language (EL) syntax defined by
JSP 2.1, Facelets uses EL expressions to reference properties andmethods of backing
beans. EL expressions can be used to bind component objects or values tomethods or
properties of managed beans. Formore information on using EL expressions, see
“Using the EL to Reference Backing Beans” on page 161.

Developing a Simple Facelets Application
This section describes the general steps involved in developing a JavaServer Faces
application. The following tasks are usually required:
■ Developing the backing beans
■ Creating the pages using the component tags
■ Defining page navigation
■ Mapping the FacesServlet instance
■ Addingmanaged bean declarations

Creating a Facelets Application
The example used in this tutorial is the guessnumber application. The application
presents you with a page that asks you to guess a number between 0 and 10, validates
your input against a randomnumber, and responds with another page that informs
you whether you guessed the number correctly or incorrectly.

DevelopingaBackingBean
In a typical JavaServer Faces application, each page of the application connects to a
backing bean, a type of managed bean. The backing bean defines themethods and
properties that are associated with the components.

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 85

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/

ptg

The followingmanaged bean class, UserNumberBean.java, generates a random
number from 0 to 10:

package guessNumber;

import java.util.Random;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean

@SessionScoped

public class UserNumberBean {

Integer randomInt = null;

Integer userNumber = null;

String response = null;

private long maximum=10;

private long minimum=0;

public UserNumberBean() {

Random randomGR = new Random();

randomInt = new Integer(randomGR.nextInt(10));

System.out.println("Duke’s number: " + randomInt);

}

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public String getResponse() {

if ((userNumber != null) && (userNumber.compareTo(randomInt) == 0)) {

return "Yay! You got it!";
} else {

return "Sorry, " + userNumber + " is incorrect.";
}

}

public long getMaximum() {

return (this.maximum);

}

public void setMaximum(long maximum) {

this.maximum = maximum;

}

public long getMinimum() {

return (this.minimum);

}

public void setMinimum(long minimum) {

this.minimum = minimum;

}

}

Developing a Simple Facelets Application

The Java EE 6Tutorial: Basic Concepts86

ptg

Note the use of the @ManagedBean annotation, which registers the backing bean as a
resource with JavaServer Faces implementation. The @SessionScoped annotation
registers the bean scope as session.

Creating FaceletsViews
Creating a page or view is the responsibility of a page author. This task involves adding
components on the pages, wiring the components to backing bean values and
properties, and registering converters, validators, or listeners onto the components.

For the example application, XHTMLweb pages serve as the front end. The first page
of the example application is a page called greeting.xhtml. A closer look at various
sections of this web page providesmore information.

The first section of the web page declares the content type for the page, which is
XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The next section declares the XML namespace for the tag libraries that are used in the
web page:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The next section uses various tags to insert components into the web page:

h:head>

<title>Guess Number Facelets Application</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>

Hi, my name is Duke. I am thinking of a number from

#{userNumberBean.minimum} to #{userNumberBean.maximum}.

Can you guess it?

<p></p>

<h:inputText

id="userNo"
value="#{userNumberBean.userNumber}">
<f:validateLongRange

minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>

</h:inputText>

<h:commandButton id="submit" value="Submit"
action="response.xhtml"/>

<h:message showSummary="true" showDetail="false"
style="color: red;

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 87

ptg

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline"
id="errors1"
for="userNo"/>

</h2>

</h:form>

</h:body>

Note the use of the following tags:
■ Facelets HTML tags (those beginning with h:) to add components
■ The Facelets core tag f:validateLongRange to validate the user input

An inputText component accepts user input and sets the value of the backing bean
property userNumber through the EL expression #{userNumberBean.userNumber}.
The input value is validated for value range by the JavaServer Faces standard validator
f:validateLongRange.

The image file, wave.med.gif, is added to the page as a resource. Formore details
about the resources facility, see “Resources” on page 96.

A commandButton component with the ID submit starts validation of the input data
when a user clicks the button. Using implicit navigation, the component redirects the
client to another page, response.xhtml, which shows the response to your input.

You can now create the second page, response.xhtml, with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Guess Number Facelets Application</title>

</h:head>

<h:body>

<h:form>

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h2>

<h:outputText id="result" value="#{userNumberBean.response}"/>
</h2>

<h:commandButton id="back" value="Back" action="greeting.xhtml"/>
</h:form>

</h:body>

</html>

Configuring theApplication
Configuring a JavaServer Faces application involvesmapping the Faces Servlet in the
web deployment descriptor file, such as a web.xml file, and possibly addingmanaged

Developing a Simple Facelets Application

The Java EE 6Tutorial: Basic Concepts88

ptg

bean declarations, navigation rules, and resource bundle declarations to the
application configuration resource file, faces-config.xml.

If you are using NetBeans IDE, a web deployment descriptor file is automatically
created for you. In such an IDE-created web.xml file, change the default greeting page,
which is index.xhtml, to greeting.xhtml. Here is an example web.xml file, showing
this change in bold.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>Development</param-value>

</context-param>

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>

30

</session-timeout>

</session-config>

<welcome-file-list>

<welcome-file>faces/greeting.xhtml</welcome-file>

</welcome-file-list>

</web-app>

Note the use of the context parameter PROJECT_STAGE. This parameter identifies the
status of a JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if
the project stage is defined as Development, debugging information is automatically
generated for the user. If not defined by the user, the default project stage is
Production.

Building, Packaging,Deploying, andRunning the
guessnumber Facelets Example
You can use either NetBeans IDE or Ant to build, package, deploy, and run the
guessnumber example. The source code for this example is available in the
tut-install/examples/web/guessnumber directory.

Developing a Simple Facelets Application

Chapter 5 • Introduction to Facelets 89

ptg

▼ ToBuild, Package, andDeploy the guessnumber ExampleUsing
NetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/web/

Select the guessnumber folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the guessnumber project and select Deploy.
This option builds and deploys the example application to your GlassFish Server
instance.

▼ ToBuild, Package, andDeploy the guessnumber ExampleUsingAnt

In a terminalwindow, go to:
tut-install/examples/web/guessnumber/

Type the following command:
ant

This command calls the default target, which builds and packages the application
into aWAR file, guessnumber.war, that is located in the dist directory.

Make sure that theGlassFish Server is started.

To deploy the application, type the following command:
ant deploy

▼ ToRun the guessnumber Example

Open awebbrowser.

Type the followingURL in yourwebbrowser:
http://localhost:8080/guessnumber

The web page shown in Figure 5–1 appears.

1

2

3

4

5

6

1

2

3

4

1

2

Developing a Simple Facelets Application

The Java EE 6Tutorial: Basic Concepts90

ptg
In the text field, type a number from0 to 10 and click Submit.
Another page appears, reporting whether your guess is correct or incorrect.

If you guessed incorrectly, click the Back button to return to themain page.
You can continue to guess until you get the correct answer.

Templating
JavaServer Faces technology provides the tools to implement user interfaces that are
easy to extend and reuse. Templating is a useful Facelets feature that allows you to
create a page that will act as the base, or template, for the other pages in an application.
By using templates, you can reuse code and avoid recreating similarly constructed
pages. Templating also helps inmaintaining a standard look and feel in an application
with a large number of pages.

Table 5–2 lists Facelets tags that are used for templating and their respective
functionality.

TABLE 5–2 Facelets TemplatingTags

Tag Function

ui:component Defines a component that is created and added to the component tree.

ui:composition Defines a page composition that optionally uses a template. Content outside
of this tag is ignored.

FIGURE 5–1 Running the guessnumberApplication

3

4

Templating

Chapter 5 • Introduction to Facelets 91

ptg

TABLE 5–2 Facelets TemplatingTags (Continued)
Tag Function

ui:debug Defines a debug component that is created and added to the component tree.

ui:decorate Similar to the composition tag but does not disregard content outside this
tag.

ui:define Defines content that is inserted into a page by a template.

ui:fragment Similar to the component tag but does not disregard content outside this tag.

ui:include Encapsulate and reuse content formultiple pages.

ui:insert Inserts content into a template.

ui:param Used to pass parameters to an included file.

ui:repeat Used as an alternative for loop tags, such as c:forEach or h:dataTable.

ui:remove Removes content from a page.

Formore information on Facelets templating tags, see the documentation at
http://download.oracle.com/

docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/ .

The Facelets tag library includes themain templating tag ui:insert. A template page
that is created with this tag allows you to define a default structure for a page. A
template page is used as a template for other pages, usually referred to as client pages.

Here is an example of a template saved as template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />

<link href="./resources/css/default.css"
rel="stylesheet" type="text/css" />

<link href="./resources/css/cssLayout.css"
rel="stylesheet" type="text/css" />

<title>Facelets Template</title>

</h:head>

<h:body>

<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>

</div>

<div>

<div id="left">
<ui:insert name="left">Left Section</ui:insert>

Templating

The Java EE 6Tutorial: Basic Concepts92

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

ptg

</div>

<div id="content" class="left_content">
<ui:insert name="content">Main Content</ui:insert>

</div>

</div>

</h:body>

</html>

The example page defines an XHTML page that is divided into three sections: a top
section, a left section, and amain section. The sections have style sheets associated
with them. The same structure can be reused for the other pages of the application.

The client page invokes the template by using the ui:composition tag. In the
following example, a client page named templateclient.xhtml invokes the template
page named template.xhtml from the preceding example. A client page allows
content to be inserted with the help of the ui:define tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<h:body>

<ui:composition template="./template.xhtml">
<ui:define name="top">

Welcome to Template Client Page

</ui:define>

<ui:define name="left">
<h:outputLabel value="You are in the Left Section"/>

</ui:define>

<ui:define name="content">
<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>
<h:outputText value="You are in the Main Content Section"/>

</ui:define>

</ui:composition>

</h:body>

</html>

You can use NetBeans IDE to create Facelets template and client pages. Formore
information on creating these pages, see http://netbeans.org/kb/docs/web/
jsf20-intro.html.

Templating

Chapter 5 • Introduction to Facelets 93

http://netbeans.org/kb/docs/web/jsf20-intro.html
http://netbeans.org/kb/docs/web/jsf20-intro.html

ptg

Composite Components
JavaServer Faces technology offers the concept of composite components with
Facelets. A composite component is a special type of template that acts as a
component.

Any component is essentially a piece of reusable code that behaves in a particular way.
For example, an inputText component accepts user input. A component can also
have validators, converters, and listeners attached to it to perform certain defined
actions.

A composite component consists of a collection ofmarkup tags and other existing
components. This reusable, user-created component has a customized, defined
functionality and can have validators, converters, and listeners attached to it like any
other component.

With Facelets, any XHTML page that containsmarkup tags and other components can
be converted into a composite component. Using the resources facility, the composite
component can be stored in a library that is available to the application from the
defined resources location.

Table 5–3 lists themost commonly used composite tags and their functions.

TABLE 5–3 CompositeComponentTags

Tag Function

composite:interface Declares the usage contract for a composite component. The
composite component can be used as a single component
whose feature set is the union of the features declared in the
usage contract.

composite:implementation Defines the implementation of the composite component. If a
composite:interface element appears, theremust be a
corresponding composite:implementation.

composite:attribute Declares an attribute that may be given to an instance of the
composite component in which this tag is declared.

composite:insertChildren Any child components or template text within the composite
component tag in the using page will be reparented into the
composite component at the point indicated by this tag’s
placement within the composite:implementation section.

composite:valueHolder Declares that the composite component whose contract is
declared by the composite:interface in which this element
is nested exposes an implementation of ValueHolder suitable
for use as the target of attached objects in the using page.

Composite Components

The Java EE 6Tutorial: Basic Concepts94

ptg

TABLE 5–3 CompositeComponent Tags (Continued)
Tag Function

composite:editableValueHolder Declares that the composite component whose contract is
declared by the composite:interface in which this element
is nested exposes an implementation of
EditableValueHolder suitable for use as the target of
attached objects in the using page.

composite:actionSource Declares that the composite component whose contract is
declared by the composite:interface in which this element
is nested exposes an implementation of ActionSource2
suitable for use as the target of attached objects in the using
page.

Formore information and a complete list of Facelets composite tags, see the
documentation at http://download.oracle.com/
docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/ .

The following example shows a composite component that accepts an email address as
input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:composite="http://java.sun.com/jsf/composite"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>This content will not be displayed</title>

</h:head>

<h:body>

<composite:interface>

<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>

<h:outputLabel value="Email id: "></h:outputLabel>
<h:inputText value="#{cc.attrs.value}"></h:inputText>

</composite:implementation>

</h:body>

</html>

Note the use of cc.attrs.valuewhen defining the value of the inputText
component. The word cc in JavaServer Faces is a reserved word for composite
components. The #{cc.attrs.attribute-name} expression is used to access the
attributes defined for the composite component’s interface, which in this case happens
to be value.

The preceding example content is stored as a file named email.xhtml in a folder
named resources/emcomp, under the application web root directory. This directory is

Composite Components

Chapter 5 • Introduction to Facelets 95

http://download.oracle.com/

ptg

considered a library by JavaServer Faces, and a component can be accessed from such a
library. Formore information on resources, see “Resources” on page 96.

The web page that uses this composite component is generally called a using page. The
using page includes a reference to the composite component, in the xml namespace
declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:em="http://java.sun.com/jsf/composite/emcomp/">

<h:head>

<title>Using a sample composite component</title>

</h:head>

<body>

<h:form>

<em:email value="Enter your email id" />
</h:form>

</body>

</html>

The local composite component library is defined in the xml namespace with the
declaration xmlns:em="http://java.sun.com/jsf/composite/emcomp/". The
component itself is accessed through the use of em:email tag. The preceding example
content can be stored as a web page named emuserpage.xhtml under the web root
directory.When compiled and deployed on a server, it can be accessed with the
followingURL:

http://localhost:8080/application-name/faces/emuserpage.xhtml

Resources
Web resources are any software artifacts that the web application requires for proper
rendering, including images, script files, and any user-created component libraries.
Resourcesmust be collected in a standard location, which can be one of the following.
■ A resource packaged in the web application rootmust be in a subdirectory of a

resources directory at the web application root: resources/resource-identifier.
■ A resource packaged in the web application’s classpathmust be in a subdirectory of

the META-INF/resources directory within a web application:
META-INF/resources/resource-identifier.

The JavaServer Faces runtime will look for the resources in the preceding listed
locations, in that order.

Resource identifiers are unique strings that conform to the following format:

Resources

The Java EE 6Tutorial: Basic Concepts96

ptg

[locale-prefix/][library-name/][library-version/]resource-name[/resource-version]

Elements of the resource identifier in brackets ([]) are optional, indicating that only a
resource-name, which is usually a file name, is a required element.

Resources can be considered as a library location. Any artifact, such as a composite
component or a template that is stored in the resources directory, becomes accessible
to the other application components, which can use it to create a resource instance.

Resources

Chapter 5 • Introduction to Facelets 97

ptg

This page intentionally left blank

ptg

Expression Language

This chapter introduces the Expression Language (also referred to as the EL), which
provides an importantmechanism for enabling the presentation layer (web pages) to
communicate with the application logic (backing beans). The EL is used by both
JavaServer Faces technology and JavaServer Pages (JSP) technology. The EL represents
a union of the expression languages offered by JavaServer Faces technology and JSP
technology.

The following topics are addressed here:

■ “Overview of the EL” on page 99
■ “Immediate andDeferred Evaluation Syntax” on page 100
■ “Value andMethod Expressions” on page 102
■ “Defining a Tag Attribute Type” on page 108
■ “Literal Expressions” on page 109
■ “Operators” on page 111
■ “ReservedWords” on page 111
■ “Examples of EL Expressions” on page 112

Overviewof the EL
The EL allows page authors to use simple expressions to dynamically access data from
JavaBeans components. For example, the test attribute of the following conditional
tag is supplied with an EL expression that compares 0 with the number of items in the
session-scoped bean named cart.

<c:if test="${sessionScope.cart.numberOfItems > 0}">
...

</c:if>

6C H A P T E R 6

99

ptg

JavaServer Faces technology uses the EL for the following functions:
■ Deferred and immediate evaluation of expressions
■ The ability to set as well as get data
■ The ability to invokemethods

See “Using the EL to Reference Backing Beans” on page 161 formore information on
how to use the EL in JavaServer Faces applications.

To summarize, the EL provides a way to use simple expressions to perform the
following tasks:
■ Dynamically read application data stored in JavaBeans components, various data

structures, and implicit objects
■ Dynamically write data, such as user input into forms, to JavaBeans components
■ Invoke arbitrary static and public methods
■ Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag
attribute will accept:
■ Immediate evaluation expressions or deferred evaluation expressions. An

immediate evaluation expression is evaluated at once by the underlying
technology, such as JavaServer Faces. A deferred evaluation expression can be
evaluated later by the underlying technology using the EL.

■ Value expression ormethod expression. A value expression references data,
whereas amethod expression invokes amethod.

■ Rvalue expression or lvalue expression. An rvalue expression can only read a
value, whereas an lvalue expression can both read and write that value to an
external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers
that can handle expressions not already supported by the EL can be implemented.

Immediate andDeferred Evaluation Syntax
The EL supports both immediate and deferred evaluation of expressions. Immediate
evaluationmeans that the expression is evaluated and the result returned as soon as
the page is first rendered. Deferred evaluationmeans that the technology using the
expression language can use its ownmachinery to evaluate the expression sometime
later during the page’s lifecycle, whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions
whose evaluation is deferred use the #{} syntax.

Immediate andDeferred Evaluation Syntax

The Java EE 6Tutorial: Basic Concepts100

ptg

Because of its multiphase lifecycle, JavaServer Faces technology usesmostly deferred
evaluation expressions. During the lifecycle, component events are handled, data is
validated, and other tasks are performed in a particular order. Therefore, a JavaServer
Faces implementationmust defer evaluation of expressions until the appropriate point
in the lifecycle.

Other technologies using the ELmight have different reasons for using deferred
expressions.

Immediate Evaluation
All expressions using the ${} syntax are evaluated immediately. These expressions can
be used only within template text or as the value of a tag attribute that can accept
runtime expressions.

The following example shows a tag whose value attribute references an immediate
evaluation expression that gets the total price from the session-scoped bean named
cart:

<fmt:formatNumber value="${sessionScope.cart.total}"/>

The JavaServer Faces implementation evaluates the expression
${sessionScope.cart.total}, converts it, and passes the returned value to the tag
handler.

Immediate evaluation expressions are always read-only value expressions. The
preceding example expression cannot set the total price, but instead can only get the
total price from the cart bean.

Deferred Evaluation
Deferred evaluation expressions take the form #{expr} and can be evaluated at other
phases of a page lifecycle as defined by whatever technology is using the expression. In
the case of JavaServer Faces technology, its controller can evaluate the expression at
different phases of the lifecycle, depending on how the expression is being used in the
page.

The following example shows a JavaServer Faces inputText tag, which represents a
text field component into which a user enters a value. The inputText tag’s value
attribute references a deferred evaluation expression that points to the name property
of the customer bean:

<h:inputText id="name" value="#{customer.name}" />

Immediate andDeferred Evaluation Syntax

Chapter 6 • Expression Language 101

ptg

For an initial request of the page containing this tag, the JavaServer Faces
implementation evaluates the #{customer.name} expression during the
render-response phase of the lifecycle. During this phase, the expressionmerely
accesses the value of name from the customer bean, as is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression
at different phases of the lifecycle, during which the value is retrieved from the request,
validated, and propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be
■ Value expressions that can be used to both read and write data
■ Method expressions

Value expressions (both immediate and deferred) andmethod expressions are
explained in the next section.

Value andMethodExpressions
The EL defines two kinds of expressions: value expressions andmethod expressions.
Value expressions can either yield a value or set a value. Method expressions reference
methods that can be invoked and can return a value.

Value Expressions
Value expressions can be further categorized into rvalue and lvalue expressions.
Rvalue expressions can read data but cannot write it. Lvalue expressions can both read
and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always
rvalue expressions. Expressions whose evaluation can be deferred use the #{}
delimiters and can act as both rvalue and lvalue expressions. Consider the following
two value expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred
evaluation syntax. The first expression accesses the name property, gets its value, adds
the value to the response, and gets rendered on the page. The same can happen with
the second expression. However, the tag handler can defer the evaluation of this
expression to a later time in the page lifecycle, if the technology using this tag allows.

Value andMethod Expressions

The Java EE 6Tutorial: Basic Concepts102

ptg

In the case of JavaServer Faces technology, the latter tag’s expression is evaluated
immediately during an initial request for the page. In this case, this expression acts as
an rvalue expression. During a postback request, this expression can be used to set the
value of the name property with user input. In this case, the expression acts as an lvalue
expression.

ReferencingObjectsUsingValue Expressions
Both rvalue and lvalue expressions can refer to the following objects and their
properties or attributes:
■ JavaBeans components
■ Collections
■ Java SE enumerated types
■ Implicit objects

To refer to these objects, you write an expression using a variable that is the name of
the object. The following expression references a backing bean (a JavaBeans
component) called customer:

${customer}

The web container evaluates the variable that appears in an expression by looking up
its value according to the behavior of PageContext.findAttribute(String), where
the String argument is the name of the variable. For example, when evaluating the
expression ${customer}, the container will look for customer in the page, request,
session, and application scopes and will return its value. If customer is not found, a
null value is returned.

You can use a custom EL resolver to alter the way variables are resolved. For instance,
you can provide an EL resolver that intercepts objects with the name customer, so that
${customer} returns a value in the EL resolver instead.

To reference an enum constant with an expression, use a String literal. For example,
consider this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant Suit.heartswith an expression, use the String literal
"hearts". Depending on the context, the String literal is converted to the enum
constant automatically. For example, in the following expression in which mySuit is an
instance of Suit, "hearts" is first converted to Suit.hearts before it is compared to
the instance:

${mySuit == "hearts"}

Value andMethod Expressions

Chapter 6 • Expression Language 103

ptg

Referring toObject PropertiesUsingValue Expressions
To refer to properties of a bean or an enum instance, items of a collection, or attributes
of an implicit object, you use the . or [] notation.

To reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the
brackets is a String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the []
and . notations, as shown here:

${customer.address["street"]}

Properties of an enum constant can also be referenced in this way. However, as with
JavaBeans component properties, the properties of an Enum class must follow
JavaBeans component conventions. This means that a propertymust at least have an
accessormethod called getProperty, where Property is the name of the property that
can be referenced by an expression.

For example, consider an Enum class that encapsulates the names of the planets of our
galaxy and includes amethod to get themass of a planet. You can use the following
expression to reference themethod getMass of the Enum class Planet:

${myPlanet.mass}

If you are accessing an item in an array or list, youmust use either a literal value that
can be converted to int or the [] notation with an int and without quotes. The
following examples could resolve to the same item in a list or array, assuming that
socks can be converted to int:

■ ${customer.orders[1]}

■ ${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is
required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the
result of arithmetic operations and literal values, as shown by these examples:

■ ${"literal"}
■ ${customer.age + 20}

■ ${true}

■ ${57}

Value andMethod Expressions

The Java EE 6Tutorial: Basic Concepts104

ptg

The EL defines the following literals:
■ Boolean: true and false
■ Integer: as in Java
■ Floating-point: as in Java
■ String: with single and double quotes; " is escaped as \", ’ is escaped as \’, and \ is

escaped as \\
■ Null: null

You can also write expressions that perform operations on an enum constant. For
example, consider the following Enum class:

public enum Suit {club, diamond, heart, spade}

After declaring an enum constant called mySuit, you can write the following expression
to test whether mySuit is spade:

${mySuit == "spade"}

When it resolves this expression, the EL resolvingmechanismwill invoke the valueOf
method of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf(Suit.class, "spade"}

WhereValue Expressions CanBeUsed
Value expressions using the ${} delimiters can be used in
■ Static text
■ Any standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current
output. Here is an example of an expression embedded in static text:

<some:tag>

some text ${expr} some text

</some:tag>

If the static text appears in a tag body, note that an expressionwill not be evaluated if
the body is declared to be tagdependent.

Lvalue expressions can be used only in tag attributes that can accept lvalue expressions.

Value andMethod Expressions

Chapter 6 • Expression Language 105

ptg

A tag attribute value using either an rvalue or lvalue expression can be set in the
following ways:
■ With a single expression construct:

<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated, and the result is converted to the attribute’s
expected type.

■ With one ormore expressions separated or surrounded by text:

<some:tag value="some${expr}${expr}text${expr}"/>

<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression, called composite expressions, are evaluated from left to
right. Each expression embedded in the composite expression is converted to a
String and then concatenated with any intervening text. The resulting String is
then converted to the attribute’s expected type.

■ With text only:

<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute’s String
value is converted to the attribute’s expected type. Literal value expressions have
special syntax rules. See “Literal Expressions” on page 109 formore information.
When a tag attribute has an enum type, the expression that the attribute usesmust
be a literal expression. For example, the tag attribute can use the expression
"hearts" tomean Suit.hearts. The literal is converted to Suit, and the attribute
gets the value Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected
type. If the result of the expression evaluation does notmatch the expected type
exactly, a type conversion will be performed. For example, the expression ${1.2E4}

provided as the value of an attribute of type floatwill result in the following
conversion:

Float.valueOf("1.2E4").floatValue()

See Section 1.18 of the JavaServer Pages 2.2 Expression Language specification
(available from http://jcp.org/aboutJava/communityprocess/final/jsr245/)
for the complete type conversion rules.

MethodExpressions
Another feature of the EL is its support of deferredmethod expressions. Amethod
expression is used to invoke an arbitrary public method of a bean, which can return a
result.

Value andMethod Expressions

The Java EE 6Tutorial: Basic Concepts106

http://jcp.org/aboutJava/communityprocess/final/jsr245/

ptg

In JavaServer Faces technology, a component tag represents a component on a page.
The component tag usesmethod expressions to invokemethods that perform some
processing for the component. Thesemethods are necessary for handling events that
the components generate and for validating component data, as shown in this
example:

<h:form>

<h:inputText

id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>

<h:commandButton

id="submit"
action="#{customer.submit}" />

</h:form>

The inputText tag displays as a text field. The validator attribute of this inputText
tag references amethod, called validateName, in the bean, called customer.

Because amethod can be invoked during different phases of the lifecycle, method
expressionsmust always use the deferred evaluation syntax.

Like lvalue expressions, method expressions can use the . and the [] operators. For
example, #{object.method} is equivalent to #{object["method"]}. The literal inside
the [] is converted to String and is used to find the name of themethod that matches
it. Once themethod is found, it is invoked, or information about themethod is
returned.

Method expressions can be used only in tag attributes and only in the following ways:
■ With a single expression construct, where bean refers to a JavaBeans component

andmethod refers to amethod of the JavaBeans component:

<some:tag value="#{bean.method}"/>

The expression is evaluated to amethod expression, which is passed to the tag
handler. Themethod represented by themethod expression can then be invoked
later.

■ With text only:

<some:tag value="sometext"/>

Method expressions support literals primarily to support action attributes in
JavaServer Faces technology.When themethod referenced by this method
expression is invoked, themethod returns the String literal, which is then
converted to the expected return type, as defined in the tag’s tag library descriptor.

ParameterizedMethodCalls
The EL offers support for parameterizedmethod calls. Method calls can use
parameters without having to use static EL functions.

Value andMethod Expressions

Chapter 6 • Expression Language 107

ptg

Both the . and [] operators can be used for invokingmethod calls with parameters, as
shown in the following expression syntax:
■ expr-a[expr-b](parameters)
■ expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The
expression expr-b is evaluated and cast to a string that represents amethod in the bean
represented by expr-a. In the second expression syntax, expr-a is evaluated to
represent a bean object, and identifier-b is a string that represents amethod in the bean
object. The parameters in parentheses are the arguments for themethod invocation.
Parameters can be zero ormore values or expressions, separated by commas.

Parameters are supported for both value expressions andmethod expressions. In the
following example, which is amodified tag from the guessnumber application, a
random number is provided as an argument rather than from user input to the
method call:

<h:inputText value="#{userNumberBean.userNumber(’5’)}">

The preceding example uses a value expression.

Consider the following example of a JavaServer Faces component tag that uses a
method expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

The EL expression trader.buy calls the trader bean’s buymethod. You canmodify
the tag to pass on a parameter. Here is the revised tag where a parameter is passed:

<h:commandButton action="#{trader.buy(’SOMESTOCK’)}" value="buy"/>

In the preceding example, you are passing the string ’SOMESTOCK’ (a stock symbol) as
a parameter to the buymethod.

Formore information on the updated EL, see https://uel.dev.java.net.

Defining aTagAttributeType
As explained in the previous section, all kinds of expressions can be used in tag
attributes.Which kind of expression and how it is evaluated, whether immediately or
deferred, are determined by the type attribute of the tag’s definition in the Page
Description Language (PDL) that defines the tag.

If you plan to create custom tags, for each tag in the PDL, you need to specify what
kind of expression to accept. Table 6–1 shows the kinds of tag attributes that accept EL
expressions, gives examples of expressions they accept, and provides the type

Defining aTag AttributeType

The Java EE 6Tutorial: Basic Concepts108

https://uel.dev.java.net

ptg

definitions of the attributes that must be added to the PDL. You cannot use #{} syntax
for a dynamic attribute, meaning an attribute that accepts dynamically calculated
values at runtime. Similarly, you also cannot use the ${} syntax for a deferred
attribute.

TABLE 6–1 Definitions of TagAttributes That Accept EL Expressions

AttributeType Example Expression TypeAttributeDefinition

Dynamic "literal" <rtexprvalue>true</rtexprvalue>

${literal} <rtexprvalue>true</rtexprvalue>

Deferred value "literal" <deferred-value>

<type>java.lang.String</type>

</deferred-value>

#{customer.age} <deferred-value>

<type>int</type>

</deferred-value>

Deferredmethod "literal" <deferred-method>

<method-signature>

java.lang.String submit()

</method-signature>

<deferred-method>

#{customer.calcTotal} <deferred-method>

<method-signature>

double calcTotal(int, double)

</method-signature>

</deferred-method>

In addition to the tag attribute types shown in Table 6–1, you can define an attribute to
accept both dynamic and deferred expressions. In this case, the tag attribute definition
contains both an rtexprvalue definition set to true and either a deferred-value or
deferred-method definition.

Literal Expressions
A literal expression is evaluated to the text of the expression, which is of type String. A
literal expression does not use the ${} or #{} delimiters.

Literal Expressions

Chapter 6 • Expression Language 109

ptg

If you have a literal expression that includes the reserved ${} or #{} syntax, you need
to escape these characters as follows:
■ By creating a composite expression as shown here:

${’${’}exprA}

#{’#{’}exprB}

The resulting values would then be the strings ${exprA} and #{exprB}.
■ By using the escape characters \$ and \# to escape what would otherwise be treated

as an eval-expression:

\${exprA}

\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 6–2
shows examples of various literal expressions and their expected types and resulting
values.

TABLE 6–2 Literal Expressions

Expression ExpectedType Result

Hi String Hi

true Boolean Boolean.TRUE

42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value or
method expressions. At what point a literal expression is evaluated depends on where
it is being used. If the tag attribute that uses the literal expression is defined to accept a
deferred value expression, when referencing a value, the literal expression is evaluated
at a point in the lifecycle that is determined by other factors, such as where the
expression is being used and to what it is referring.

In the case of amethod expression, themethod that is referenced is invoked and
returns the specified String literal. For example, the commandButton tag of the
guessnumber application uses a literal method expression as a logical outcome to tell
the JavaServer Faces navigation systemwhich page to display next.

Literal Expressions

The Java EE 6Tutorial: Basic Concepts110

ptg

Operators
In addition to the . and [] operators discussed in “Value andMethod Expressions” on
page 102, the EL provides the following operators, which can be used in rvalue
expressions only:
■ Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
■ Logical: and, &&, or, ||, not, !
■ Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can bemade

against other values or against Boolean, string, integer, or floating-point literals.
■ Empty: The empty operator is a prefix operation that can be used to determine

whether a value is null or empty.
■ Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation

of A.

The precedence of operators highest to lowest, left to right is as follows:
■ [] .

■ () (used to change the precedence of operators)
■ - (unary) not ! empty

■ * / div % mod

■ + - (binary)
■ < > <= >= lt gt le ge

■ == != eq ne

■ && and

■ || or

■ ? :

ReservedWords
The following words are reserved for the EL and should not be used as identifiers:

and or not eq

ne lt gt le

ge true false null

instanceof empty div mod

ReservedWords

Chapter 6 • Expression Language 111

ptg

Examples of EL Expressions
Table 6–3 contains example EL expressions and the result of evaluating them.

TABLE 6–3 ExampleExpressions

EL Expression Result

${1 > (4/2)} false

${4.0 >= 3} true

${100.0 == 100} true

${(10*10) ne 100} false

${’a’ < ’b’} true

${’hip’ gt ’hit’} false

${4 > 3} true

${1.2E4 + 1.4} 12001.4

${3 div 4} 0.75

${10 mod 4} 2

${!empty param.Add} False if the request parameter named Add is null
or an empty string.

${pageContext.request.contextPath} The context path.

${sessionScope.cart.numberOfItems} The value of the numberOfItems property of the
session-scoped attribute named cart.

${param[’mycom.productId’]} The value of the request parameter named
mycom.productId.

${header["host"]} The host.

${departments[deptName]} The value of the entry named deptName in the
departmentsmap.

${requestScope[’javax.servlet.forward.

servlet_path’]}

The value of the request-scoped attribute named
javax.servlet.forward.servlet_path.

#{customer.lName} Gets the value of the property lName from the
customer bean during an initial request. Sets the
value of lName during a postback.

#{customer.calcTotal} The return value of themethod calcTotal of the
customer bean.

Examples of EL Expressions

The Java EE 6Tutorial: Basic Concepts112

ptg

Using JavaServer FacesTechnology inWeb
Pages

Web pages represent the presentation layer for web applications. The process of
creating web pages of a JavaServer Faces application includes adding components to
the page and wiring them to backing beans, validators, converters, and other
server-side objects that are associated with the page.

This chapter explains how to create web pages using various types of component and
core tags. In the next chapter, you will learn about adding converters, validators, and
listeners to component tags to provide additional functionality to components.

The following topics are addressed here:
■ “Setting Up a Page” on page 113
■ “Adding Components to a Page UsingHTMLTags” on page 114
■ “Using Core Tags” on page 143

SettingUpaPage
A typical JavaServer Faces web page includes the following elements:
■ A set of namespace declarations that declare the JavaServer Faces tag libraries
■ Optionally, the newHTML head (h:head) and body (h:body) tags
■ A form tag (h:form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the
page access to the two standard tag libraries: the JavaServer Faces HTML tag library
and the JavaServer Faces core tag library. The JavaServer Faces standardHTML tag
library defines tags that represent commonHTML user interface components. This
library is linked to theHTML render kit at http://download.oracle.com/
docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/renderkitdocs/ . The
JavaServer Faces core tag library defines tags that perform core actions.

7C H A P T E R 7

113

http://download.oracle.com/

ptg

For a complete list of JavaServer Faces Facelets tags and their attributes, refer to the
documentation at http://download.oracle.com/
docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/ .

To use any of the JavaServer Faces tags, you need to include appropriate directives at
the top of each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag
library URI and the tag prefix.

For example, when creating a Facelets XHTML page, include namespace directives as
follows:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

The XML namespace URI identifies the tag library location, and the prefix value is
used to distinguish the tags belonging to that specific tag library. You can also use
other prefixes instead of the standard h or f. However, when including the tag in the
page, youmust use the prefix that you have chosen for the tag library. For example, in
the following web page, the form tagmust be referenced using the h prefix because the
preceding tag library directive uses the h prefix to distinguish the tags defined in
HTML tag library:

<h:form ...>

The sections “Adding Components to a Page UsingHTMLTags” on page 114 and
“Using Core Tags” on page 143 describe how to use the component tags from the
JavaServer Faces standardHTML tag library and the core tags from the JavaServer
Faces core tag library.

AddingComponents to aPageUsingHTMLTags
The tags defined by the JavaServer Faces standardHTML tag library represent HTML
form components and other basic HTML elements. These components display data or
accept data from the user. This data is collected as part of a form and is submitted to
the server, usually when the user clicks a button. This section explains how to use each
of the component tags shown in Table 7–1.

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts114

http://download.oracle.com/

ptg

TABLE 7–1 TheComponentTags

Tag Functions Rendered as Appearance

column Represents a column of
data in a data component

A column of data in an
HTML table

A column in a
table

commandButton Submits a form to the
application

AnHTML <input
type=type> element,
where the type value
can be submit, reset,
or image

A button

commandLink Links to another page or
location on a page

An HTML <a href>

element
A hyperlink

dataTable Represents a data wrapper AnHTML <table>
element

A table that can be
updated
dynamically

form Represents an input form
(inner tags of the form
receive the data that will be
submitted with the form)

AnHTML <form>
element

No appearance

graphicImage Displays an image AnHTML
element

An image

inputHidden Allows a page author to
include a hidden variable
in a page

AnHTML <input
type=hidden> element

No appearance

inputSecret Allows a user to input a
string without the actual
string appearing in the
field

AnHTML <input
type=password>

element

A text field, which
displays a row of
characters instead
of the actual string
entered

inputText Allows a user to input a
string

AnHTML <input
type=text> element

A text field

inputTextarea Allows a user to enter a
multiline string

AnHTML
<textarea> element

Amulti-row text
field

message Displays a localized
message

AnHTML tag
if styles are used

A text string

messages Displays localized
messages

A set of HTML
tags if styles are used

A text string

outputFormat Displays a localized
message

Plain text Plain text

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 115

ptg

TABLE 7–1 TheComponent Tags (Continued)
Tag Functions Rendered as Appearance

outputLabel Displays a nested
component as a label for a
specified input field

AnHTML <label>
element

Plain text

outputLink Links to another page or
location on a page without
generating an action event

AnHTML <a>
element

A hyperlink

outputText Displays a line of text Plain text Plain text

panelGrid Displays a table AnHTML <table>
element with <tr> and
<td> elements

A table

panelGroup Groups a set of
components under one
parent

AHTML <div> or
 element

A row in a table

selectBooleanCheckbox Allows a user to change
the value of a Boolean
choice

AnHTML <input
type=checkbox>

element.

A check box

selectItem Represents one item in a
list of items fromwhich
the usermust select one

AnHTML <option>
element

No appearance

selectItems Represents a list of items
fromwhich the usermust
select one

A list of HTML
<option> elements

No appearance

selectManyCheckbox Displays a set of check
boxes fromwhich the user
can select multiple values

A set of HTML
<input> elements of
type checkbox

A set of check
boxes

selectManyListbox Allows a user to select
multiple items from a set
of items, all displayed at
once

AnHTML <select>
element

A list box

selectManyMenu Allows a user to select
multiple items from a set
of items

AnHTML <select>
element

A scrollable combo
box

selectOneListbox Allows a user to select one
item from a set of items, all
displayed at once

AnHTML <select>
element

A list box

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts116

ptg

TABLE 7–1 TheComponent Tags (Continued)
Tag Functions Rendered as Appearance

selectOneMenu Allows a user to select one
item from a set of items

AnHTML <select>
element

A scrollable combo
box

selectOneRadio Allows a user to select one
item from a set of items

AnHTML <input
type=radio> element

A set of radio
buttons

The next section explains the important tag attributes that are common tomost
component tags. For each of the components discussed in the following sections,
“Writing Bean Properties” on page 162 explains how to write a bean property bound to
a particular component or its value.

CommonComponentTagAttributes
Most of the component tags support the attributes shown in Table 7–2.

TABLE 7–2 CommonComponent TagAttributes

Attribute Description

binding Identifies a bean property and binds the component instance to it.

id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and conversion
associated with the component should happen when request parameter
values are applied,

rendered Specifies a condition under which the component should be rendered. If
the condition is not satisfied, the component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.

styleClass Specifies a CSS class that contains definitions of the styles.

value Identifies an external data source and binds the component’s value to it.

All the tag attributes (except id) can accept expressions, as defined by the EL,
described in Chapter 6, “Expression Language.”

The idAttribute
The id attribute is not usually required for a component tag but is used when another
component or a server-side class must refer to the component. If you don’t include an
id attribute, the JavaServer Faces implementation automatically generates a
component ID. Unlikemost other JavaServer Faces tag attributes, the id attribute

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 117

ptg

takes expressions using only the evaluation syntax described in “The immediate
Attribute” on page 118, which uses the ${} delimiters. Formore information on
expression syntax, see “Value Expressions” on page 102.

The immediateAttribute
Input components and command components (those that implement the
ActionSource interface, such as buttons and hyperlinks) can set the immediate
attribute to true to force events, validations, and conversions to be processed when
request parameter values are applied.

You need to carefully consider how the combination of an input component’s
immediate value and a command component’s immediate value determines what
happens when the command component is activated.

Assume that you have a page with a button and a field for entering the quantity of a
book in a shopping cart. If the immediate attributes of both the button and the field are
set to true, the new value entered in the field will be available for any processing
associated with the event that is generated when the button is clicked. The event
associated with the button as well as the event validation and conversion associated
with the field are all handled when request parameter values are applied.

If the button’s immediate attribute is set to true but the field’s immediate attribute is
set to false, the event associated with the button is processed without updating the
field’s local value to themodel layer. The reason is that any events, conversion, or
validation associated with the field occurs after request parameter values are applied.

The renderedAttribute
A component tag uses a Boolean EL expression along with the rendered attribute to
determine whether the component will be rendered. For example, the commandLink
component in the following section of a page is not rendered if the cart contains no
items:

<h:commandLink id="check"
...

rendered="#{cart.numberOfItems > 0}">
<h:outputText

value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is
restricted to using rvalue expressions. As explained in “Value andMethod
Expressions” on page 102, these rvalue expressions can only read data; they cannot
write the data back to the data source. Therefore, expressions used with rendered
attributes can use the arithmetic operators and literals that rvalue expressions can use
but lvalue expressions cannot use. For example, the expression in the preceding
example uses the > operator.

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts118

ptg

The style and styleClassAttributes
The style and styleClass attributes allow you to specify CSS styles for the rendered
output of your tags. “Displaying ErrorMessages with the h:message and h:messages
Tags” on page 138 describes an example of using the style attribute to specify styles
directly in the attribute. A component tag can instead refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class
list-background:

<h:dataTable id="books"
...

styleClass="list-background"
value="#{bookDBAO.books}"
var="book">

The style sheet that defines this class is stylesheet.css, which will be included in the
application. Formore information on defining styles, seeCascading Style Sheets
Specification at http://www.w3.org/Style/CSS/.

The value and bindingAttributes
A tag representing an output component uses the value and binding attributes to
bind its component’s value or instance, respectively, to an external data source.

AddingHTMLHeadandBodyTags
TheHTML head (h:head) and body (h:body) tags addHTML page structure to
JavaServer Faces web pages.
■ The h:head tag represents the head element of anHTML page
■ The h:body tag represents the body element of anHTML page

The following is an example of an XHTML page using the usual head and body
markup tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Add a title</title>

</head>

<body>

Add Content

</body>

The following is an example of an XHTML page using h:head and h:body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 119

ptg

xmlns:h="http://java.sun.com/jsf/html">
<h:head>

Add a title

</h:head>

<h:body>

Add Content

</h:body>

Both of the preceding example code segments render the sameHTML elements. The
head and body tags are useful mainly for resource relocation. Formore information on
resource relocation, see “Resource RelocationUsing h:output Tags” on page 141.

Addinga FormComponent
An h:form tag represents an input form, which includes child components that can
contain data that is either presented to the user or submitted with the form.

Figure 7–1 shows a typical login form in which a user enters a user name and
password, then submits the form by clicking the Login button.

The h:form tag represents the form on the page and encloses all the components that
display or collect data from the user, as shown here:

<h:form>

... other JavaServer Faces tags and other content...

</h:form>

The h:form tag can also includeHTMLmarkup to lay out the components on the
page. Note that the h:form tag itself does not perform any layout; its purpose is to
collect data and to declare attributes that can be used by other components in the
form.

A page can includemultiple h:form tags, but only the values from the form submitted
by the user will be included in the postback request.

FIGURE 7–1 ATypical Form

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts120

ptg

UsingText Components
Text components allow users to view and edit text in web applications. The basic types
of text components are as follows:

■ Label, which displays read-only text
■ Text field, which allows users to enter text, often to be submitted as part of a form
■ Text area, which is a type of text field that allows users to enter multiple lines of text
■ Password field, which is a type of text field that displays a set of characters, such as

asterisks, instead of the password text that the user enters

Figure 7–2 shows examples of these text components.

Text components can be categorized as either input or output. A JavaServer Faces
output component is rendered as read-only text. An example is a label. A JavaServer
Faces input component is rendered as editable text. An example is a text field.

The input and output components can each be rendered in various ways to display
more specialized text.

Table 7–3 lists the tags that represent the input components.

TABLE 7–3 InputTags

Tag Function

h:inputHidden Allows a page author to include a hidden variable in a page

h:inputSecret The standard password field: accepts one line of text with no spaces and
displays it as a set of asterisks as it is typed

h:inputText The standard text field: accepts a one-line text string

h:inputTextarea The standard text area: accepts multiple lines of text

FIGURE 7–2 ExampleTextComponents

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 121

ptg

The input tags support the tag attributes shown in Table 7–4 in addition to those
described in “CommonComponent Tag Attributes” on page 117. Note that this table
does not include all the attributes supported by the input tags but just those that are
usedmost often. For the complete list of attributes, refer to the documentation at
http://download.oracle.com/

docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/ .

TABLE 7–4 InputTagAttributes

Attribute Description

converter Identifies a converter that will be used to convert the component’s
local data. See “Using the Standard Converters” on page 145 for
more information on how to use this attribute.

converterMessage Specifies an errormessage to display when the converter
registered on the component fails.

dir Specifies the direction of the text displayed by this component.
Acceptable values are LTR, meaning left-to-right, and RTL,
meaning right-to-left.

label Specifies a name that can be used to identify this component in
errormessages.

lang Specifies the code for the language used in the renderedmarkup,
such as en_US.

required Takes a boolean value that indicates whether the usermust enter
a value in this component.

requiredMessage Specifies an errormessage to display when the user does not enter
a value into the component.

validator Identifies amethod expression pointing to a backing bean
method that performs validation on the component’s data. See
“Referencing aMethod That Performs Validation” on page 156
for an example of using the f:validator tag.

f:validatorMessage Specifies an errormessage to display when the validator
registered on the component fails to validate the component’s
local value.

valueChangeListener Identifies amethod expression that points to a backing bean
method that handles the event of entering a value in this
component. See “Referencing aMethod That Handles a
Value-Change Event” on page 156 for an example of using
valueChangeListener.

Table 7–5 lists the tags that represent the output components.

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts122

http://download.oracle.com/

ptg

TABLE 7–5 OutputTags

Tag Function

h:outputFormat Displays a localizedmessage

h:outputLabel The standard read-only label: displays a component as a label for a specified
input field

h:outputLink Displays an <a href> tag that links to another page without generating an
action event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in
“CommonComponent Tag Attributes” on page 117.

The rest of this section explains how to use some of the tags listed in Table 7–3 and
Table 7–5. The other tags are written in a similar way.

Rendering aText Fieldwith the h:inputText Tag
The h:inputText tag is used to display a text field. A similar tag, the h:outputText
tag, displays a read-only, single-line string. This section shows you how to use the
h:inputText tag. The h:outputText tag is written in a similar way.

Here is an example of an h:inputText tag:

<h:inputText id="name" label="Customer Name" size="50"
value="#{cashier.name}"
required="true"
requiredMessage="#{customMessages.CustomerName}">
<f:valueChangeListener

type="com.sun.bookstore6.listeners.NameChanged" />
</h:inputText>

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of errormessages displayed for this component.

The value attribute refers to the name property of a backing bean named CashierBean.
This property holds the data for the name component. After the user submits the form,
the value of the name property in CashierBeanwill be set to the text entered in the field
corresponding to this tag.

The required attribute causes the page to reload, displaying errors, if the user does not
enter a value in the name text field. The JavaServer Faces implementation checks
whether the value of the component is null or is an empty string.

If your componentmust have a non-null value or a String value at least one character
in length, you should add a required attribute to your tag and set its value to true. If
your tag has a required attribute that is set to true and the value is null or a

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 123

ptg

zero-length string, no other validators that are registered on the tag are called. If your
tag does not have a required attribute set to true, other validators that are registered
on the tag are called, but those validators must handle the possibility of a null or
zero-length string. See “Validating Null and Empty Strings” on page 177 formore
information.

Rendering aPassword Fieldwith the h:inputSecret Tag
The h:inputSecret tag renders an <input type="password">HTML tag. When the
user types a string into this field, a row of asterisks is displayed instead of the text typed
by the user. Here is an example:

<h:inputSecret redisplay="false"
value="#{LoginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password
from being displayed in a query string or in the source file of the resulting HTML page.

Rendering a Labelwith the h:outputLabel Tag
The h:outputLabel tag is used to attach a label to a specified input field for the
purpose of making it accessible. The following page uses an h:outputLabel tag to
render the label of a check box:

<h:selectBooleanCheckbox

id="fanClub"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

...

The for attribute of the h:outputLabel tagmaps to the id of the input field to which
the label is attached. The h:outputText tag nested inside the h:outputLabel tag
represents the label component. The value attribute on the h:outputText tag
indicates the text that is displayed next to the input field.

Instead of using an h:outputText tag for the text displayed as a label, you can simply
use the h:outputLabel tag’s value attribute. The following code snippet shows what
the previous code snippet would look like if it used the value attribute of the
h:outputLabel tag to specify the text of the label:

<h:selectBooleanCheckbox

id="fanClub"
binding="#{cashier.specialOffer}" />

<h:outputLabel for="fanClub"
binding="#{cashier.specialOfferText}"

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts124

ptg

value="#{bundle.DukeFanClub}" />
</h:outputLabel>

...

Rendering aHyperlinkwith the h:outputLink Tag
The h:outputLink tag is used to render a hyperlink that, when clicked, loads another
page but does not generate an action event. You should use this tag instead of the
h:commandLink tag if you always want the URL specified by the h:outputLink tag’s
value attribute to open and do not want any processing to be performedwhen the user
clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo

</h:outputLink>

The text in the body of the outputLink tag identifies the text that the user clicks to get
to the next page.

Displaying a FormattedMessagewith the h:outputFormat Tag
The h:outputFormat tag allows display of concatenatedmessages as a MessageFormat
pattern, as described in the API documentation for java.text.MessageFormat. Here
is an example of an outputFormat tag:

<h:outputFormat value="Hello, {0}!">
<f:param value="#{hello.name}"/>

</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The param tag specifies the
substitution parameters for themessage. The value of the parameter replaces the {0}
in the sentence. If the value of "#{hello.name}" is “Bill”, themessage displayed in the
page is as follows:

Hello, Bill!

An h:outputFormat tag can includemore than one param tag for thosemessages that
havemore than one parameter that must be concatenated into themessage. If you
havemore than one parameter for onemessage, make sure that you put the param tags
in the proper order so that the data is inserted in the correct place in themessage. Here
is the preceding examplemodified with an additional parameter:

<h:outputFormat value="Hello, {0}! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />
<f:param value="#{bean.numVisitor}"/>
</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL
expression, bean.numVisitor, where the property numVisitor of the backing bean

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 125

ptg

bean keeps track of visitors to the page. This is an example of a
value-expression-enabled tag attribute accepting an EL expression. Themessage
displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

UsingCommandComponentTags for Performing
Actions andNavigation
In JavaServer Faces applications, the button and hyperlink component tags are used to
perform actions, such as submitting a form, and for navigating to another page. These
tags are called command component tags because they perform an action when
activated.

The h:commandButton tag is rendered as a button. The h:commandLink tag is rendered
as a hyperlink.

In addition to the tag attributes listed in “CommonComponent Tag Attributes” on
page 117, the h:commandButton and h:commandLink tags can use the following
attributes:
■ action, which is either a logical outcome String or amethod expression pointing

to a beanmethod that returns a logical outcome String. In either case, the logical
outcome String is used to determine what page to access when the command
component tag is activated.

■ actionListener, which is amethod expression pointing to a beanmethod that
processes an action event fired by the command component tag.

See “Referencing aMethod That PerformsNavigation” on page 155 formore
information on using the action attribute. See “Referencing aMethod That Handles
an Action Event” on page 156 for details on using the actionListener attribute.

Rendering aButtonwith the h:commandButton Tag
If you are using a commandButton component tag, the data from the current page is
processed when a user clicks the button, and the next page is opened. Here is an
example of the h:commandButton tag:

<h:commandButton value="Submit"
action="#{cashier.submit}"/>

Clicking the button will cause the submitmethod of CashierBean to be invoked
because the action attribute references this method. The submitmethod performs
some processing and returns a logical outcome.

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts126

ptg

The value attribute of the example commandButton tag references the button’s label.
For information on how to use the action attribute, see “Referencing aMethod That
PerformsNavigation” on page 155.

Rendering aHyperlinkwith the h:commandLink Tag
The h:commandLink tag represents anHTML hyperlink and is rendered as anHTML
<a> element. This tag acts like a form’s Submit button and is used to submit an action
event to the application.

A h:commandLink tagmust include a nested h:outputText tag, which represents the
text that the user clicks to generate the event. Here is an example:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">
<h:outputText value="#{bundle.English}" />

</h:commandLink>

This tag will render the followingHTML:

<a id="_id3:NAmerica" href="#"
onclick="document.forms[’_id3’][’_id3:NAmerica’].
value=’_id3:NAmerica’;

document.forms[’_id3’].submit();

return false;">English

Note –The h:commandLink tag will render JavaScript programming language. If you
use this tag, make sure that your browser is enabled for JavaScript technology.

AddingGraphics and Imageswith the
h:graphicImage Tag
In a JavaServer Faces application, use the h:graphicImage tag to render an image on a
page:

<h:graphicImage id="mapImage" url="/template/world.jpg"/>

The url attribute specifies the path to the image. The URL of the example tag begins
with a /, which adds the relative context path of the web application to the beginning
of the path to the image.

Alternatively, you can use the facility described in “Resources” on page 96 to point to
the image location. Here is an example:

<h:graphicImage value="#{resource[’images:wave.med.gif’]}"/>

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 127

ptg

LayingOut Componentswith the h:panelGrid and
h:panelGroup Tags
In a JavaServer Faces application, you use a panel as a layout container for a set of other
components. A panel is rendered as anHTML table. Table 7–6 lists the tags used to
create panels.

TABLE 7–6 PanelComponentTags

Tag Attributes Function

h:panelGrid columns,columnClasses, footerClass,
headerClass, panelClass, rowClasses

Displays a table

h:panelGroup layout Groups a set of components under
one parent

The h:panelGrid tag is used to represent an entire table. The h:panelGroup tag is used
to represent rows in a table. Other tags are used to represent individual cells in the
rows.

The columns attribute defines how to group the data in the table and therefore is
required if you want your table to havemore than one column. The h:panelGrid tag
also has a set of optional attributes that specify CSS classes: columnClasses,
footerClass, headerClass, panelClass, and rowClasses.

If the headerClass attribute value is specified, the panelGridmust have a header as its
first child. Similarly, if a footerClass attribute value is specified, the panelGridmust
have a footer as its last child.

Here is an example:

<h:panelGrid columns="3" headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background"
title="#{bundle.Checkout}">
<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputText value="#{bundle.Name}" />
<h:inputText id="name" size="50"

value="#{cashier.name}"
required="true">
<f:valueChangeListener

type="listeners.NameChanged" />
</h:inputText>

<h:message styleClass="validationMessage" for="name"/>
<h:outputText value="#{bundle.CCNumber}"/>
<h:inputText id="ccno" size="19"

converter="CreditCardConverter" required="true">

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts128

ptg

<bookstore:formatValidator

formatPatterns="9999999999999999|
9999 9999 9999 9999|9999-9999-9999-9999"/>

</h:inputText>

<h:message styleClass="validationMessage" for="ccno"/>
...

</h:panelGrid>

The preceding h:panelGrid tag is rendered as a table that contains components in
which a customer inputs personal information. This h:panelGrid tag uses style sheet
classes to format the table. The following code shows the list-header definition:

.list-header {

background-color: #ffffff;

color: #000000;

text-align: center;

}

Because the h:panelGrid tag specifies a headerClass, the panelGridmust contain a
header. The example panelGrid tag uses a facet tag for the header. Facets can have
only one child, so an h:panelGroup tag is needed if you want to groupmore than one
component within a facet. The example h:panelGrid tag has only one cell of data, so
an h:panelGroup tag is not needed.

The h:panelGroup tag has an attribute, layout, in addition to those listed in
“CommonComponent Tag Attributes” on page 117. If the layout attribute has the
value block, an HTML div element is rendered to enclose the row; otherwise, an
HTML span element is rendered to enclose the row. If you are specifying styles for the
h:panelGroup tag, you should set the layout attribute to block in order for the styles
to be applied to the components within the h:panelGroup tag. You should do this
because styles, such as those that set width and height, are not applied to inline
elements, which is how content enclosed by the span element is defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so
that the tree of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the
columns attribute of the h:panelGrid tag. The columns attribute in the example is set
to 3, and therefore the table will have three columns. The column in which each
component is displayed is determined by the order in which the component is listed
on the pagemodulo 3. So, if a component is the fifth one in the list of components, that
component will be in the 5modulo 3 column, or column 2.

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 129

ptg

DisplayingComponents for SelectingOneValue
Another commonly used component is one that allows a user to select one value,
whether it is the only value available or one of a set of choices. Themost common tags
for this kind of component are as follows:
■ An h:selectBooleanCheckbox tag, displayed as a check box, which represents a

Boolean state
■ An h:selectOneRadio tag, displayed as a set of radio buttons
■ An h:selectOneMenu tag, displayed as a drop-downmenu, with a scrollable list
■ An h:selectOneListbox tag, displayed as a list box, with an unscrollable list

Figure 7–3 shows examples of these components.

DisplayingaCheckBoxUsing the h:selectBooleanCheckbox Tag
The h:selectBooleanCheckbox tag is the only tag that JavaServer Faces technology
provides for representing a Boolean state.

Here is an example that shows how to use the h:selectBooleanCheckbox tag:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

<h:outputLabel

for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText

id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

FIGURE 7–3 Example Components for SelectingOne Item

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts130

ptg

This example tag displays a check box to allow users to indicate whether they want to
join the Duke Fan Club. The label for the check box is rendered by the outputLabel
tag. The text is represented by the nested outputText tag.

Displaying aMenuUsing the h:selectOneMenu Tag
A component that allows the user to select one value from a set of values can be
rendered as a list box, a set of radio buttons, or amenu. This section describes the
h:selectOneMenu tag. The h:selectOneRadio and h:selectOneListbox tags are used
in a similar way. The h:selectOneListbox tag is similar to the h:selectOneMenu tag
except that h:selectOneListbox defines a size attribute that determines howmany
of the items are displayed at once.

The h:selectOneMenu tag represents a component that contains a list of items from
which a user can choose one item. This menu component is also commonly known as
a drop-down list or a combo box. The following code snippet shows how the
h:selectOneMenu tag is used to allow the user to select a shippingmethod:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The value attribute of the h:selectOneMenu tagmaps to the property that holds the
currently selected item’s value. You are not required to provide a value for the
currently selected item. If you don’t provide a value, the first item in the list is selected
by default.

Like the h:selectOneRadio tag, the selectOneMenu tagmust contain either an
f:selectItems tag or a set of f:selectItem tags for representing the items in the list.
“Using the f:selectItem and f:selectItems Tags” on page 133 describes these tags.

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 131

ptg

DisplayingComponents for SelectingMultipleValues
In some cases, you need to allow your users to select multiple values rather than just
one value from a list of choices. You can do this using one of the following component
tags:

■ An h:selectManyCheckbox tag, displayed as a set of check boxes
■ An h:selectManyMenu tag, displayed as a drop-downmenu
■ An h:selectManyListbox tag, displayed as a list box

Figure 7–4 shows examples of these components.

These tags allow the user to select zero ormore values from a set of values. This section
explains the h:selectManyCheckbox tag. The h:selectManyListbox and
h:selectManyMenu tags are used in a similar way.

Unlike amenu, a list box displays a subset of items in a box; amenu displays only one
item at a time when the user is not selecting themenu. The size attribute of the
h:selectManyListbox tag determines the number of items displayed at one time. The
list box includes a scroll bar for scrolling through any remaining items in the list.

The h:selectManyCheckbox tag renders a set of check boxes, with each check box
representing one value that can be selected:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

FIGURE 7–4 Example Components for SelectingMultiple Values

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts132

ptg

The value attribute of the h:selectManyCheckbox tag identifies the newsletters
property of the Cashier backing bean. This property holds the values of the currently
selected items from the set of check boxes. You are not required to provide a value for
the currently selected items. If you don’t provide a value, the first item in the list is
selected by default.

The layout attribute indicates how the set of check boxes is arranged on the page.
Because layout is set to pageDirection, the check boxes are arranged vertically. The
default is lineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tagmust also contain a tag or set of tags representing the
set of check boxes. To represent a set of items, you use the f:selectItems tag. To
represent each item individually, you use a f:selectItem tag. The following
subsection explains these tags inmore detail.

Using the f:selectItem and f:selectItems Tags
The f:selectItem and f:selectItems tags represent components that can be nested
inside a component that allows you to select one ormultiple items. An f:selectItem

tag contains the value, label, and description of a single item. An f:selectItems tag
contains the values, labels, and descriptions of the entire list of items.

You can use either a set of f:selectItem tags or a single f:selectItems tag within
your component tag.

The advantages of using the f:selectItems tag are as follows.
■ Items can be represented by using different data structures, including Array, Map,

and Collection. The value of the f:selectItems tag can represent even a generic
collection of POJOs.

■ Different lists can be concatenated into a single component, and the lists can be
grouped within the component.

■ Values can be generated dynamically at runtime.

The advantages of using f:selectItem are as follows:
■ Items in the list can be defined from the page.
■ Less code is needed in the bean for the selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem
tags.

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 133

ptg

Using the f:selectItems Tag
The following example from “Displaying Components for SelectingMultiple Values”
on page 132 shows how to use the h:selectManyCheckbox tag:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems

value="#{newsletters}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tag is bound to the backing bean
newsletters.

You can also create the list of items programmatically in the backing bean. See
“Writing Bean Properties” on page 162 for information on how to write a backing bean
property for one of these tags.

Using the f:selectItem Tag
The f:selectItem tag represents a single item in a list of items. Here is the example
from “Displaying aMenuUsing the h:selectOneMenu Tag” on page 131 once again:

<h:selectOneMenu

id="shippingOption" required="true"
value="#{cashier.shippingOption}">

<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

The itemValue attribute represents the default value for the selectItem tag. The
itemLabel attribute represents the String that appears in the drop-downmenu
component on the page.

The itemValue and itemLabel attributes are value-binding-enabled, meaning that
they can use value-binding expressions to refer to values in external objects. These
attributes can also define literal values, as shown in the example h:selectOneMenu tag.

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts134

ptg

UsingData-BoundTable Components
Data-bound table components display relational data in a tabular format. In a
JavaServer Faces application, the h:dataTable component tag supports binding to a
collection of data objects and displays the data as anHTML table. The h:column tag
represents a column of data within the table, iterating over each record in the data
source, which is displayed as a row. Here is an example:

<h:dataTable id="items"
captionClass="list-caption"
columnClasses="list-column-center, list-column-left,

list-column-right, list-column-center"
footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="list-background">
<h:column headerClass="list-header-left">

<f:facet name="header">
<h:outputText value=Quantity"" />

</f:facet>

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >
...

</h:inputText>

...

</h:column>

<h:column>

<f:facet name="header">
<h:outputText value="Title"/>

</f:facet>

<h:commandLink>

<h:outputText value="#{item.title}"/>
</h:commandLink>

</h:column>

...

<f:facet name="footer"
<h:panelGroup>

<h:outputText value="Total}"/>
<h:outputText value="#{cart.total}" />

<f:convertNumber type="currency" />
</h:outputText>

</h:panelGroup>

</f:facet>

</h:dataTable>

Figure 7–5 shows a data grid that this h:dataTable tag can display.

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 135

ptg

The example h:dataTable tag displays the books in the shopping cart, as well as the
quantity of each book in the shopping cart, the prices, and a set of buttons the user can
click to remove books from the shopping cart.

The h:column tags represent columns of data in a data component.While the data
component is iterating over the rows of data, it processes the column component
associated with each h:column tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of
books (cart.items) in the shopping cart and displays their titles, authors, and prices.
Each time the h:dataTable tag iterates through the list of books, it renders one cell in
each column.

The h:dataTable and h:column tags use facets to represent parts of the table that are
not repeated or updated. These parts include headers, footers, and captions.

In the preceding example, h:column tags include f:facet tags for representing
column headers or footers. The h:column tag allows you to control the styles of these
headers and footers by supporting the headerClass and footerClass attributes.
These attributes accept space-separated lists of CSS classes, which will be applied to the
header and footer cells of the corresponding column in the rendered table.

Facets can have only one child, so an h:panelGroup tag is needed if you want to group
more than one component within an f:facet. Because the facet tag representing the
footer includesmore than one tag, the panelGroup is needed to group those tags.
Finally, this h:dataTable tag includes an f:facet tag with its name attribute set to
caption, causing a table caption to be rendered below the table.

This table is a classic use case for a data component because the number of books
might not be known to the application developer or the page author when that
application is developed. The data component can dynamically adjust the number of
rows of the table to accommodate the underlying data.

FIGURE 7–5 Table on aWebPage

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts136

ptg

The value attribute of an h:dataTable tag references the data to be included in the
table. This data can take the form of any of the following:
■ A list of beans
■ An array of beans
■ A single bean
■ A javax.faces.model.DataModel object
■ A java.sql.ResultSet object
■ A javax.servlet.jsp.jstl.sql.Result object
■ A javax.sql.RowSet object

All data sources for data components have a DataModelwrapper. Unless you explicitly
construct a DataModelwrapper, the JavaServer Faces implementation will create one
around data of any of the other acceptable types. See “Writing Bean Properties” on
page 162 formore information on how to write properties for use with a data
component.

The var attribute specifies a name that is used by the components within the
h:dataTable tag as an alias to the data referenced in the value attribute of dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var
attribute points to a single book in that list. As the h:dataTable tag iterates through
the list, each reference to item points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying
data. This feature is not shown in the preceding example. To display a subset of the
data, you use the optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies
the number of rows, starting with the first row, to be displayed. For example, if you
wanted to display records 2 through 10 of the underlying data, you would set first to
2 and rows to 9.When you display a subset of the data in your pages, youmight want
to consider including a link or button that causes subsequent rows to display when
clicked. By default, both first and rows are set to zero, and this causes all the rows of
the underlying data to display.

Table 7–7 shows the optional attributes for the h:dataTable tag.

TABLE 7–7 Optional Attributes for the h:dataTableTag

Attribute Defines Styles for

captionClass Table caption

columnClasses All the columns

footerClass Footer

headerClass Header

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 137

ptg

TABLE 7–7 Optional Attributes for the h:dataTableTag (Continued)
Attribute Defines Styles for

rowClasses Rows

styleClass The entire table

Each of the attributes in Table 7–7 can specifymore than one style. If columnClasses
or rowClasses specifiesmore than one style, the styles are applied to the columns or
rows in the order that the styles are listed in the attribute. For example, if
columnClasses specifies styles list-column-center and list-column-right and if
the table has two columns, the first columnwill have style list-column-center, and
the second columnwill have style list-column-right.

If the style attribute specifiesmore styles than there are columns or rows, the
remaining styles will be assigned to columns or rows starting from the first column or
row. Similarly, if the style attribute specifies fewer styles than there are columns or
rows, the remaining columns or rows will be assigned styles starting from the first
style.

Displaying ErrorMessageswith the h:message and
h:messages Tags
The h:message and h:messages tags are used to display errormessages when
conversion or validation fails. The h:message tag displays errormessages related to a
specific input component, whereas the h:messages tag displays the errormessages for
the entire page.

Here is an example h:message tag from the guessnumber application:

<h:inputText id="userNo" value="#{UserNumberBean.userNumber}">
<f:validateLongRange minimum="0" maximum="10" />

<h:commandButton id="submit"
action="success" value="Submit" /><p>

<h:message

style="color: red;

font-family: ’New Century Schoolbook’, serif;

font-style: oblique;

text-decoration: overline" id="errors1" for="userNo"/>

The for attribute refers to the ID of the component that generated the errormessage.
The errormessage is displayed at the same location that the h:message tag appears in
the page. In this case, the errormessage will appear after the Submit button.

The style attribute allows you to specify the style of the text of themessage. In the
example in this section, the text will be red, NewCentury Schoolbook, serif font
family, and oblique style, and a line will appear over the text. Themessage and

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts138

ptg

messages tags support many other attributes for defining styles. Formore information
on these attributes, refer to the documentation at http://download.oracle.com/
docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/ .

Another attribute supported by the h:messages tag is the layout attribute. Its default
value is list, which indicates that themessages are displayed in a bullet list using the
HTML ul and li elements. If you set the attribute value to table, themessages will be
rendered in a table using theHTML table element.

The preceding example shows a standard validator that is registered on the input
component. Themessage tag displays the errormessage that is associated with this
validator when the validator cannot validate the input component’s value. In general,
when you register a converter or validator on a component, you are queueing the error
messages associated with the converter or validator on the component. The h:message
and h:messages tags display the appropriate errormessages that are queued on the
component when the validators or converters registered on that component fail to
convert or validate the component’s value.

Standard errormessages are provided with standard converters and standard
validators. An application architect can override these standardmessages and supply
errormessages for custom converters and validators by registering custom error
messages with the application.

CreatingBookmarkableURLswith the h:button and
h:link Tags
The ability to create bookmarkable URLs refers to the ability to generate hyperlinks
based on a specified navigation outcome and on component parameters.

In HTTP,most browsers by default sendGET requests for URL retrieval and POST
requests for data processing. The GET requests can have query parameters and can be
cached, which is not advised for POST requests, which send data to the external
servers. The other JavaServer Faces tags capable of generating hyperlinks use either
simple GET requests, as in the case of h:outputlink, or POST requests, as in the case
of h:commandLink or h:commandButton tags. GET requests with query parameters
provide finer granularity to URL strings. These URLs are created with one ormore
name=value parameters appended to the simple URL after a ? character and separated
by either &; or & strings.

To create a bookmarkable URL, use an h:link or h:button tag. Both of these tags can
generate a hyperlink based on the outcome attribute of the component. For example:

<h:link outcome="response" value="Message">
<f:param name="Result" value="#{sampleBean.result}"/>

</h:link>

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 139

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

ptg

The h:link tag will generate a URL link that points to the response.xhtml file on the
same server, appended with the single query parameter created by the f:param tag.
When processed, the parameter Result is assigned the value of backing bean’s result
method #{sampleBean.result}. The following sample HTML is generated from the
preceding set of tags, assuming that the value of the parameter is success:

Response

This is a simple GET request. To createmore complex GET requests and utilize the
complete functionality of the h:link tag, you can use view parameters.

UsingViewParameters to ConfigureBookmarkable
URLs
The core tags f:metadata and f:viewparam are used as a source of parameters for
configuring the URLs. View parameters are declared as part of f:metadata for a page,
as shown in the following example:

<h:body>

<f:metadata>

<f:viewParam id="name" name="Name" value="#{sampleBean.username}"/>
<f:viewParam id="ID" name="uid" value="#{sampleBean.useridentity}"/>

</f:metadata>

<h:link outcome="response" value="Message" includeViewParams="true">
</h:link>

</h:body>

View parameters are declared with the f:viewparam tag and are placed inside the
f:metadata tag. If the includeViewParams attribute is set on the component, the view
parameters are added to the hyperlink.

The resulting URLwill look like this:

http://localhost:8080/guessnumber/response.xhtml?Name=Duke&;uid=2001

Because the URL can be the result of various parameter values, the order of the URL
creation has been predefined. The order in which the various parameter values are
read is as follows:

1. Component
2. Navigation-case parameters
3. View parameters

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts140

ptg

ResourceRelocationUsing h:output Tags
Resource relocation refers to the ability of a JavaServer Faces application to specify the
location where a resource can be rendered. Resource relocation can be defined with
the followingHTML tags:
■ h:outputScript

■ h:outputStylesheet

These tags have name and target attributes, which can be used to define the render
location. For a complete list of attributes for these tags, see the documentation at
http://download.oracle.com/

docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/ .

For the h:outputScript tag, the name and target attributes define where the output of
a resourcemay appear. Here is an example:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head id="head">
<title>Resource Relocation</title>

</h:head>

<h:body id="body">
<h:form id="form">

<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>

</h:form>

</h:body>

</html>

Since the target attribute is not defined in the tag, the style sheet hello.css is
rendered in the head, and the hello.js script is rendered in the body of the page as
defined by the h:head tag.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Resource Relocation</title>

<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>

</head>

<body>

<form id="form" name="form" method="post" action="..." enctype="...">
<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>

</form>

</body>

</html>

Adding Components to a PageUsingHTMLTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 141

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

ptg

The original page can be recreated by setting the target attribute for the
h:outputScript tag, which allows the incoming GET request to provide the location
parameter. Here is an example:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head id="head">
<title>Resource Relocation</title>

</h:head>

<h:body id="body">
<h:form id="form">

<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>

</h:form>

</h:body>

</html>

In this case, if the incoming request does not provide a location parameter, the default
locations will still apply: The style sheet is rendered in the head, and the script is
rendered inline. However, if the incoming request provides the location parameter as
the head, both the style sheet and the script will be rendered in the head element.

TheHTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Resource Relocation</title>

<link type="text/css" rel="stylesheet"
href="/ctx/faces/javax.faces.resource/hello.css"/>

<script type="text/javascript"
src="/ctx/faces/javax.faces.resource/hello.js">
</script>

</head>

<body>

<form id="form" name="form" method="post" action="..." enctype="...">
</form>

</body>

</html>

Similarly, if the incoming request provides the location parameter as the body, the
script will be rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can
add evenmore functionality for the components and pages. A page author does not
have to know the location of a resource or its placement.

By using a @ResourceDependency annotation for the components, component authors
can define the resources for the component, such as a style sheet and script. This allows
the page authors freedom from defining resource locations.

Adding Components to a PageUsingHTMLTags

The Java EE 6Tutorial: Basic Concepts142

ptg

UsingCoreTags
The tags included in the JavaServer Faces core tag library are used to perform core
actions that are not performed byHTML tags. Commonly used core tags, along with
the functions they perform, are listed in Table 7–8.

TABLE 7–8 TheCoreTags

TagCategories Tags Functions

Event handling f:actionListener Adds an action listener to a parent component

f:phaseListener Adds a PhaseListener to a page

f:setPropertyActionListener Registers a special action listener whose sole
purpose is to push a value into a backing bean
when a form is submitted

f:valueChangeListener Adds a value-change listener to a parent
component

Attribute
configuration

f:attribute Adds configurable attributes to a parent
component

Data
conversion

f:converter Adds an arbitrary converter to the parent
component

f:convertDateTime Adds a DateTimeConverter instance to the
parent component

f:convertNumber Adds a NumberConverter instance to the
parent component

Facet f:facet Adds a nested component that has a special
relationship to its enclosing tag

f:metadata Registers a facet on a parent component

Localization f:loadBundle Specifies a ResourceBundle that is exposed as
a Map

Parameter
substitution

f:param Substitutes parameters into a MessageFormat
instance and adds query string name-value
pairs to a URL

Representing
items in a list

f:selectItem Represents one item in a list of items

f:selectItems Represents a set of items

Using CoreTags

Chapter 7 • Using JavaServer FacesTechnology inWeb Pages 143

ptg

TABLE 7–8 TheCoreTags (Continued)
TagCategories Tags Functions

Validator f:validateDoubleRange Adds a DoubleRangeValidator to a
component

f:validateLength Adds a LengthValidator to a component

f:validateLongRange Adds a LongRangeValidator to a component

f:validator Adds a custom validator to a component

f:validateRegEx Adds a RegExValidator to a component

f:validateBean Delegates the validation of a local value to a
BeanValidator

f:validateRequired Enforces the presence of a value in a
component

Ajax f:ajax Associates an Ajax action with a single
component or a group of components based
on placement

Event f:event Allows installing a
ComponentSystemEventListener on a
component

These tags, which are used in conjunction with component tags, are explained in other
sections of this tutorial. Table 7–9 lists the sections that explain how to use specific
core tags.

TABLE 7–9 Where theCore TagsAre Explained

Tags Where Explained

Event handling tags “Registering Listeners on Components” on page 151

Data conversion tags “Using the Standard Converters” on page 145

facet “Using Data-Bound Table Components” on page 135 and “LayingOut
Components with the h:panelGrid and h:panelGroup Tags” on page 128

loadBundle “Displaying Components for SelectingMultiple Values” on page 132

param “Displaying a FormattedMessage with the h:outputFormat Tag” on
page 125

selectItem and
selectItems

“Using the f:selectItem and f:selectItems Tags” on page 133

Validator tags “Using the Standard Validators” on page 152

Using CoreTags

The Java EE 6Tutorial: Basic Concepts144

ptg

Using Converters, Listeners, andValidators

The previous chapter described components and explained how to add them to a web
page. This chapter provides information on addingmore functionality to the
components through converters, listeners, and validators.
■ Converters are used to convert data that is received from the input components.
■ Listeners are used to listen to the events happening in the page and perform actions

as defined.
■ Validators are used to validate the data that is received from the input components.

The following topics are addressed here:
■ “Using the Standard Converters” on page 145
■ “Registering Listeners on Components” on page 151
■ “Using the Standard Validators” on page 152
■ “Referencing a Backing BeanMethod” on page 154

Using the StandardConverters
The JavaServer Faces implementation provides a set of Converter implementations
that you can use to convert component data. The standard Converter
implementations, located in the javax.faces.convert package, are as follows:
■ BigDecimalConverter

■ BigIntegerConverter

■ BooleanConverter

■ ByteConverter

■ CharacterConverter

■ DateTimeConverter

■ DoubleConverter

■ EnumConverter

■ FloatConverter

8C H A P T E R 8

145

ptg

■ IntegerConverter

■ LongConverter

■ NumberConverter

■ ShortConverter

A standard errormessage is associated with each of these converters. If you have
registered one of these converters onto a component on your page, and the converter
is not able to convert the component’s value, the converter’s errormessage will display
on the page. For example, the following errormessage appears if
BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have
their own tags, which allow you to configure the format of the component data using
the tag attributes. Formore information about using DateTimeConverter, see “Using
DateTimeConverter” on page 147. Formore information about using
NumberConverter, see “Using NumberConverter” on page 149. The following section
explains how to convert a component’s value, including how to register other standard
converters with a component.

Converting aComponent’sValue
To use a particular converter to convert a component’s value, you need to register the
converter onto the component. You can register any of the standard converters in one
of the following ways:
■ Nest one of the standard converter tags inside the component’s tag. These tags are

convertDateTime and convertNumber, which are described in “Using
DateTimeConverter” on page 147 and “Using NumberConverter” on page 149,
respectively.

■ Bind the value of the component to a backing bean property of the same type as the
converter.

■ Refer to the converter from the component tag’s converter attribute.
■ Nest a converter tag inside of the component tag, and use either the converter

tag’s converterId attribute or its binding attribute to refer to the converter.

As an example of the secondmethod, if you want a component’s data to be converted
to an Integer, you can simply bind the component’s value to a backing bean property.
Here is an example:

Using the Standard Converters

The Java EE 6Tutorial: Basic Concepts146

ptg

Integer age = 0;

public Integer getAge(){ return age;}

public void setAge(Integer age) {this.age = age;}

If the component is not bound to a bean property, you can use the thirdmethod by
using the converter attribute directly on the component tag:

<h:inputText

converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully qualified class name
of the converter. The converter attribute can also take the ID of the component.

The data from the inputText tag in the this example will be converted to a
java.lang.Integer value. The Integer type is a supported type of NumberConverter.
If you don’t need to specify any formatting instructions using the convertNumber tag
attributes, and if one of the standard converters will suffice, you can simply reference
that converter by using the component tag’s converter attribute.

Finally, you can nest a converter tag within the component tag and use either the
converter tag’s converterId attribute or its binding attribute to reference the
converter.

The converterId attributemust reference the converter’s ID. Here is an example:

<h:inputText value="#{LoginBean.Age}" />
<f:converter converterId="Integer" />

</h:inputText>

Instead of using the converterId attribute, the converter tag can use the binding
attribute. The binding attributemust resolve to a bean property that accepts and
returns an appropriate Converter instance.

Using DateTimeConverter
You can convert a component’s data to a java.util.Date by nesting the
convertDateTime tag inside the component tag. The convertDateTime tag has several
attributes that allow you to specify the format and type of the data. Table 8–1 lists the
attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText id= "shipDate" value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

When binding the DateTimeConverter to a component, ensure that the backing bean
property to which the component is bound is of type java.util.Date. In the
preceding example, cashier.shipDatemust be of type java.util.Date.

Using the Standard Converters

Chapter 8 • Using Converters, Listeners, andValidators 147

ptg

The example tag can display the following output:

Saturday, September 25, 2010

You can also display the same date and time by using the following tag where the date
format is specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime

pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:inputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"

locale="Locale.SPAIN"
timeStyle="long" type="both" />

</h:inputText>

This tag would display the following output:

sabado 25 de septiembre de 2010

Refer to the “Customizing Formats” lesson of the Java Tutorial at
http://download.oracle.com/

docs/cd/E17409_01/javase/tutorial/i18n/format/simpleDateFormat.html for
more information on how to format the output using the pattern attribute of the
convertDateTime tag.

TABLE 8–1 Attributes for the convertDateTimeTag

Attribute Type Description

binding DateTimeConverter Used to bind a converter to a backing bean property.

dateStyle String Defines the format, as specified by java.text.DateFormat, of
a date or the date part of a date string. Applied only if type is
date or both and if pattern is not defined. Valid values:
default, short, medium, long, and full. If no value is
specified, default is used.

for String Used with composite components. Refers to one of the objects
within the composite component inside which this tag is
nested.

locale String or Locale Localewhose predefined styles for dates and times are used
during formatting or parsing. If not specified, the Locale
returned by FacesContext.getLocale will be used.

Using the Standard Converters

The Java EE 6Tutorial: Basic Concepts148

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/simpleDateFormat.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/i18n/format/simpleDateFormat.html

ptg

TABLE 8–1 Attributes for the convertDateTimeTag (Continued)
Attribute Type Description

pattern String Custom formatting pattern that determines how the date/time
string should be formatted and parsed. If this attribute is
specified, dateStyle, timeStyle, and type attributes are
ignored.

timeStyle String Defines the format, as specified by java.text.DateFormat, of
a time or the time part of a date string. Applied only if type is
time and pattern is not defined. Valid values: default, short,
medium, long, and full. If no value is specified, default is
used.

timeZone String or TimeZone Time zone in which to interpret any time information in the
date string.

type String Specifies whether the string value will contain a date, a time, or
both. Valid values are date, time, or both. If no value is
specified, date is used.

Using NumberConverter
You can convert a component’s data to a java.lang.Number by nesting the
convertNumber tag inside the component tag. The convertNumber tag has several
attributes that allow you to specify the format and type of the data. Table 8–2 lists the
attributes.

The following example uses a convertNumber tag to display the total prices of the
contents of a shopping cart:

<h:outputText value="#{cart.total}" >
<f:convertNumber type="currency"/>

</h:outputText>

When binding the NumberConverter to a component, ensure that the backing bean
property to which the component is bound is of a primitive type or has a type of
java.lang.Number. In the preceding example, cart.total is of type
java.lang.Number.

Here is an example of a number that this tag can display:

$934

This result can also be displayed by using the following tag, where the currency pattern
is specified:

<h:outputText id="cartTotal"
value="#{cart.Total}" >

Using the Standard Converters

Chapter 8 • Using Converters, Listeners, andValidators 149

ptg

<f:convertNumber pattern="$####" />
</h:outputText>

See the “Customizing Formats” lesson of the Java Tutorial at http://
download.oracle.com/

docs/cd/E17409_01/javase/tutorial/i18n/format/decimalFormat.html for
more information on how to format the output by using the pattern attribute of the
convertNumber tag.

TABLE 8–2 Attributes for the convertNumberTag

Attribute Type Description

binding NumberConverter Used to bind a converter to a backing bean property.

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting
currencies.

for String Used with composite components. Refers to one of the
objects within the composite component inside which
this tag is nested.

groupingUsed Boolean Specifies whether formatted output contains grouping
separators.

integerOnly Boolean Specifies whether only the integer part of the value will
be parsed.

locale String or Locale Localewhose number styles are used to format or
parse data.

maxFractionDigits int Maximumnumber of digits formatted in the fractional
part of the output.

maxIntegerDigits int Maximumnumber of digits formatted in the integer
part of the output.

minFractionDigits int Minimumnumber of digits formatted in the fractional
part of the output.

minIntegerDigits int Minimumnumber of digits formatted in the integer
part of the output.

pattern String Custom formatting pattern that determines how the
number string is formatted and parsed.

type String Specifies whether the string value is parsed and
formatted as a number, currency, or percentage. If not
specified, number is used.

Using the Standard Converters

The Java EE 6Tutorial: Basic Concepts150

http://download.oracle.com/
http://download.oracle.com/

ptg

Registering Listeners onComponents
An application developer can implement listeners as classes or as backing bean
methods. If a listener is a backing beanmethod, the page author references themethod
from either the component’s valueChangeListener attribute or its actionListener
attribute. If the listener is a class, the page author can reference the listener from either
a valueChangeListener tag or an actionListener tag and nest the tag inside the
component tag to register the listener on the component.

“Referencing aMethod That Handles an Action Event” on page 156 and “Referencing a
Method That Handles a Value-Change Event” on page 156 explain how a page author
uses the valueChangeListener and actionListener attributes to reference backing
beanmethods that handle events.

This section explains how to register the NameChanged value-change listener and a
hypothetical LocaleChange action listener implementation on components.

Registering aValue-Change Listener onaComponent
A ValueChangeListener implementation can be registered on a component that
implements EditableValueHolder by nesting a valueChangeListener tag within the
component’s tag on the page. The valueChangeListener tag supports the attributes
shown in Table 8–3, one of whichmust be used.

TABLE 8–3 Attributes for the valueChangeListenerTag

Attribute Description

type References the fully qualified class name of a ValueChangeListener
implementation. Can accept a literal or a value expression.

binding References an object that implements ValueChangeListener. Can accept only
a value expression, whichmust point to a backing bean property that accepts
and returns a ValueChangeListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener
as the ValueChangeListener implementation registered on the name component.

After this component tag is processed and local values have been validated, its
corresponding component instance will queue the ValueChangeEvent associated with
the specified ValueChangeListener to the component.

Registering Listeners on Components

Chapter 8 • Using Converters, Listeners, andValidators 151

ptg

The binding attribute is used to bind a ValueChangeListener implementation to a
backing bean property. This attribute works in a similar way to the binding attribute
supported by the standard converter tags.

Registering anAction Listener onaComponent
Apage author can register an ActionListener implementation on a command
component by nesting an actionListener tag within the component’s tag on the page.
Similarly to the valueChangeListener tag, the actionListener tag supports both the
type and binding attributes. One of these attributes must be used to reference the
action listener.

Here is an example of a commandLink tag that references an ActionListener

implementation rather than a backing beanmethod:

<h:commandLink id="NAmerica" action="bookstore">
<f:actionListener type="listeners.LocaleChange" />

</h:commandLink>

The type attribute of the actionListener tag specifies the fully qualified class name of
the ActionListener implementation. Similarly to the valueChangeListener tag, the
actionListener tag also supports the binding attribute.

Using the StandardValidators
JavaServer Faces technology provides a set of standard classes and associated tags that
page authors and application developers can use to validate a component’s data.
Table 8–4 lists all the standard validator classes and the tags that allow you to use the
validators from the page.

TABLE 8–4 TheValidatorClasses

Validator Class Tag Function

BeanValidator validateBean Registers a bean validator for the
component.

DoubleRangeValidator validateDoubleRange Checks whether the local value of a
component is within a certain range. The
valuemust be floating-point or
convertible to floating-point.

LengthValidator validateLength Checks whether the length of a
component’s local value is within a
certain range. The valuemust be a
java.lang.String.

Using the StandardValidators

The Java EE 6Tutorial: Basic Concepts152

ptg

TABLE 8–4 TheValidatorClasses (Continued)
Validator Class Tag Function

LongRangeValidator validateLongRange Checks whether the local value of a
component is within a certain range. The
valuemust be any numeric type or
String that can be converted to a long.

RegexValidator validateRegEx Checks whether the local value of a
component is amatch against a regular
expression from the java.util.regex
package.

RequiredValidator validateRequired Ensures that the local value is not empty
on an EditableValueHolder

component.

Similar to the standard converters, each of these validators has one ormore standard
errormessages associated with it. If you have registered one of these validators onto a
component on your page, and the validator is unable to validate the component’s
value, the validator’s errormessage will display on the page. For example, the error
message that displays when the component’s value exceeds themaximum value
allowed by LongRangeValidator is as follows:

{1}: Validation Error: Value is greater than allowable maximum of "{0}"

In this case, the {1} substitution parameter is replaced by the component’s label or id,
and the {0} substitution parameter is replaced with themaximum value allowed by the
validator.

Instead of using the standard validators, you can use Bean Validation to validate data.
See “Using Bean Validation” on page 174 formore information.

Validating aComponent’sValue
To validate a component’s value using a particular validator, you need to register that
validator on the component. You can do this in one of the following ways:
■ Nest the validator’s corresponding tag (shown in Table 8–4) inside the

component’s tag. “Using LongRangeValidator” on page 154 explains how to use
the validateLongRange tag. You can use the other standard tags in the same way.

■ Refer to amethod that performs the validation from the component tag’s
validator attribute.

■ Nest a validator tag inside the component tag, and use either the validator tag’s
validatorId attribute or its binding attribute to refer to the validator.

Using the StandardValidators

Chapter 8 • Using Converters, Listeners, andValidators 153

ptg

See “Referencing aMethod That Performs Validation” on page 156 formore
information on using the validator attribute.

The validatorId attribute works similarly to the converterId attribute of the
converter tag, as described in “Converting a Component’s Value” on page 146.

Keep inmind that validation can be performed only on components that implement
EditableValueHolder, because these components accept values that can be validated.

Using LongRangeValidator
The following example shows how to use the validateLongRange validator on an
input component named quantity:

<h:inputText id="quantity" size="4"
value="#{item.quantity}" >

<f:validateLongRange minimum="1"/>
</h:inputText>

<h:message for="quantity"/>

This tag requires the user to enter a number that is at least 1. The size attribute
specifies that the number can have nomore than four digits. The validateLongRange
tag also has a maximum attribute, which sets amaximum value for the input.

The attributes of all the standard validator tags accept EL value expressions. This
means that the attributes can reference backing bean properties rather than specify
literal values. For example, the validateLongRange tag in the preceding example can
reference a backing bean property called minimum to get theminimum value acceptable
to the validator implementation, as shown here:

<f:validateLongRange minimum="#{ShowCartBean.minimum}" />

Referencing aBackingBeanMethod
A component tag has a set of attributes for referencing backing beanmethods that can
perform certain functions for the component associated with the tag. These attributes
are summarized in Table 8–5.

TABLE 8–5 Component TagAttributes That Reference Backing BeanMethods

Attribute Function

action Refers to a backing beanmethod that performs navigation processing for
the component and returns a logical outcome String

actionListener Refers to a backing beanmethod that handles action events

Referencing a Backing BeanMethod

The Java EE 6Tutorial: Basic Concepts154

ptg

TABLE 8–5 Component TagAttributes That Reference Backing BeanMethods (Continued)
Attribute Function

validator Refers to a backing beanmethod that performs validation on the
component’s value

valueChangeListener Refers to a backing beanmethod that handles value-change events

Only components that implement ActionSource can use the action and
actionListener attributes. Only components that implement EditableValueHolder
can use the validator or valueChangeListener attributes.

The component tag refers to a backing beanmethod using amethod expression as a
value of one of the attributes. Themethod referenced by an attributemust follow a
particular signature, which is defined by the tag attribute’s definition in the
documentation at http://download.oracle.com/
docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/ . For
example, the definition of the validator attribute of the inputText tag is the
following:

void validate(javax.faces.context.FacesContext,

javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the attributes.

Referencing aMethodThat PerformsNavigation
If your page includes a component, such as a button or a hyperlink, that causes the
application to navigate to another page when the component is activated, the tag
corresponding to this componentmust include an action attribute. This attribute
does one of the following:

■ Specifies a logical outcome String that tells the application which page to access
next

■ References a backing beanmethod that performs some processing and returns a
logical outcome String

The following example shows how to reference a navigationmethod:

<h:commandButton

value="#{bundle.Submit}"
action="#{cashier.submit}" />

Referencing a Backing BeanMethod

Chapter 8 • Using Converters, Listeners, andValidators 155

http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/
http://download.oracle.com/docs/cd/E17410_01/javaee/6/javaserverfaces/2.0/docs/pdldocs/jsp/

ptg

Referencing aMethodThatHandles anAction Event
If a component on your page generates an action event, and if that event is handled by
a backing beanmethod, you refer to themethod by using the component’s
actionListener attribute.

The following example shows how themethod is referenced:

<h:commandLink id="NAmerica" action="bookstore"
actionListener="#{localeBean.chooseLocaleFromLink}">

The actionListener attribute of this component tag references the
chooseLocaleFromLinkmethod using amethod expression. The
chooseLocaleFromLinkmethod handles the event when the user clicks the hyperlink
rendered by this component.

Referencing aMethodThat PerformsValidation
If the input of one of the components on your page is validated by a backing bean
method, refer to themethod from the component’s tag by using the validator
attribute.

The following example shows how to reference amethod that performs validation on
email, an input component:

<h:inputText id="email" value="#{checkoutFormBean.email}"
size="25" maxlength="125"
validator="#{checkoutFormBean.validateEmail}"/>

Referencing aMethodThatHandles aValue-Change
Event
If you want a component on your page to generate a value-change event and you want
that event to be handled by a backing beanmethod, you refer to themethod by using
the component’s valueChangeListener attribute.

The following example shows how a component references a ValueChangeListener
implementation that handles the event when a user enters a name in the name input
field:

<h:inputText

id="name"
size="50"
value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

Referencing a Backing BeanMethod

The Java EE 6Tutorial: Basic Concepts156

ptg

To refer to this backing beanmethod, the tag uses the valueChangeListener attribute:

<h:inputText

id="name"
size="50"
value="#{cashier.name}"
required="true"
valueChangeListener="#{cashier.processValueChange}" />

</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChangemethod of CashierBean by using amethod expression. The
processValueChangemethod handles the event of a user entering a name in the input
field rendered by this component.

Referencing a Backing BeanMethod

Chapter 8 • Using Converters, Listeners, andValidators 157

ptg

This page intentionally left blank

ptg

Developingwith JavaServer Faces
Technology

Chapter 7, “Using JavaServer Faces Technology inWeb Pages,” and Chapter 8, “Using
Converters, Listeners, and Validators,” show how to add components to a page and
connect them to server-side objects by using component tags and core tags, as well as
how to provide additional functionality to the components through converters,
listeners, and validators. Developing a JavaServer Faces application also involves the
task of programming the server-side objects: backing beans, converters, event
handlers, and validators.

This chapter provides an overview of backing beans and explains how to write
methods and properties of backing beans that are used by a JavaServer Faces
application. This chapter also introduces the Bean Validation feature.

The following topics are addressed here:

■ “Backing Beans” on page 159
■ “Writing Bean Properties” on page 162
■ “Writing Backing BeanMethods” on page 170
■ “Using Bean Validation” on page 174

BackingBeans
A typical JavaServer Faces application includes one ormore backing beans, each of
which is a type of JavaServer Facesmanaged bean that can be associated with the
components used in a particular page. This section introduces the basic concepts of
creating, configuring, and using backing beans in an application.

9C H A P T E R 9

159

ptg

Creating aBackingBean
A backing bean is created with a constructor with no arguments (like all JavaBeans
components) and a set of properties and a set of methods that perform functions for a
component. Each of the backing bean properties can be bound to one of the following:
■ A component value
■ A component instance
■ A converter instance
■ A listener instance
■ A validator instance

Themost common functions that backing beanmethods perform include the
following:
■ Validating a component’s data
■ Handling an event fired by a component
■ Performing processing to determine the next page to which the applicationmust

navigate

As with all JavaBeans components, a property consists of a private data field and a set
of accessormethods, as shown by this code:

Integer userNumber = null;

...

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public String getResponse() {

...

}

When bound to a component’s value, a bean property can be any of the basic primitive
and numeric types or any Java object type for which the application has access to an
appropriate converter. For example, a property can be of type Date if the application
has access to a converter that can convert the Date type to a String and back again. See
“Writing Bean Properties” on page 162 for information onwhich types are accepted by
which component tags.

When a bean property is bound to a component instance, the property’s typemust be
the same as the component object. For example, if a
javax.faces.component.UISelectBoolean component is bound to the property, the
propertymust accept and return a UISelectBoolean object. Likewise, if the property
is bound to a converter, validator, or listener instance, the propertymust be of the
appropriate converter, validator, or listener type.

Backing Beans

The Java EE 6Tutorial: Basic Concepts160

ptg

Formore information onwriting beans and their properties, see “Writing Bean
Properties” on page 162.

Using the EL toReferenceBackingBeans
To bind component values and objects to backing bean properties or to reference
backing beanmethods from component tags, page authors use the Expression
Language syntax. As explained in “Overview of the EL” on page 99, the following are
some of the features that EL offers:
■ Deferred evaluation of expressions
■ The ability to use a value expression to both read and write data
■ Method expressions

Deferred evaluation of expressions is important because the JavaServer Faces lifecycle
is split into several phases in which component event handling, data conversion and
validation, and data propagation to external objects are all performed in an orderly
fashion. The implementationmust be able to delay the evaluation of expressions until
the proper phase of the lifecycle has been reached. Therefore, the implementation’s tag
attributes always use deferred-evaluation syntax, which is distinguished by the #{}
delimiter.

To store data in external objects, almost all JavaServer Faces tag attributes use lvalue
expressions, which are expressions that allow both getting and setting data on external
objects.

Finally, some component tag attributes acceptmethod expressions that reference
methods that handle component events or validate or convert component data.

To illustrate a JavaServer Faces tag using the EL, suppose that a tag of an application
referenced amethod to perform the validation of user input:

<h:inputText id="userNo"
value="#{UserNumberBean.userNumber}"
validator="#{UserNumberBean.validate}" />

This tag binds the userNo component’s value to the UserNumberBean.userNumber
backing bean property by using an lvalue expression. The tag uses amethod
expression to refer to the UserNumberBean.validatemethod, which performs
validation of the component’s local value. The local value is whatever the user enters
into the field corresponding to this tag. This method is invoked when the expression is
evaluated.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to
referencing bean properties, value expressions can reference lists, maps, arrays,
implicit objects, and resource bundles.

Backing Beans

Chapter 9 • Developingwith JavaServer FacesTechnology 161

ptg

Another use of value expressions is binding a component instance to a backing bean
property. A page author does this by referencing the property from the binding
attribute:

<inputText binding="#{UserNumberBean.userNoComponent}" />

In addition to using expressions with the standard component tags, you can configure
your custom component properties to accept expressions by creating
javax.el.ValueExpression or javax.el.MethodExpression instances for them.

For information on the EL, see Chapter 6, “Expression Language.”

For information on referencing backing beanmethods from component tags, see
“Referencing a Backing BeanMethod” on page 154.

WritingBeanProperties
As explained in “Backing Beans” on page 159, a backing bean property can be bound
to one of the following items:
■ A component value
■ A component instance
■ A converter implementation
■ A listener implementation
■ A validator implementation

These properties follow the conventions of JavaBeans components (also called beans).
Formore information on JavaBeans components, see the JavaBeans Tutorial at
http://download.oracle.com/

docs/cd/E17409_01/javase/tutorial/javabeans/index.html .

The component’s tag binds the component’s value to a backing bean property by using
its value attribute and binds the component’s instance to a backing bean property by
using its binding attribute. Likewise, all the converter, listener, and validator tags use
their binding attributes to bind their associated implementations to backing bean
properties.

To bind a component’s value to a backing bean property, the type of the propertymust
match the type of the component’s value to which it is bound. For example, if a backing
bean property is bound to a UISelectBoolean component’s value, the property should
accept and return a boolean value or a Booleanwrapper Object instance.

To bind a component instance to a backing bean property, the propertymust match
the type of component. For example, if a backing bean property is bound to a
UISelectBoolean instance, the property should accept and return a UISelectBoolean
value.

Writing Bean Properties

The Java EE 6Tutorial: Basic Concepts162

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/javabeans/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/javabeans/index.html

ptg

Similarly, to bind a converter, listener, or validator implementation to a backing bean
property, the propertymust accept and return the same type of converter, listener, or
validator object. For example, if you are using the convertDateTime tag to bind a
DateTimeConverter to a property, that propertymust accept and return a
DateTimeConverter instance.

The rest of this section explains how to write properties that can be bound to
component values, to component instances for the component objects described in
“Adding Components to a Page UsingHTMLTags” on page 114, and to converter,
listener, and validator implementations.

WritingProperties Bound toComponentValues
Towrite a backing bean property that is bound to a component’s value, youmust
match the property type to the component’s value.

Table 9–1 lists the javax.faces.component classes and the acceptable types of their
values.

TABLE 9–1 Acceptable Types of ComponentValues

Component Class AcceptableTypes of ComponentValues

UIInput, UIOutput,
UISelectItem, UISelectOne

Any of the basic primitive and numeric types or any Java
programming language object type for which an appropriate
Converter implementation is available

UIData array of beans, List of beans, single bean, java.sql.ResultSet,
javax.servlet.jsp.jstl.sql.Result, javax.sql.RowSet

UISelectBoolean boolean or Boolean

UISelectItems java.lang.String, Collection, Array, Map

UISelectMany array or List, though elements of the array or List can be any of
the standard types

When they bind components to properties by using the value attributes of the
component tags, page authors need to ensure that the corresponding properties match
the types of the components’ values.

UIInput and UIOutputProperties
In the following example, an h:inputText tag binds the name component to the name
property of a backing bean called CashierBean.

<h:inputText id="name" size="50"
value="#{cashier.name}">

</h:inputText>

Writing Bean Properties

Chapter 9 • Developingwith JavaServer FacesTechnology 163

ptg

The following code snippet from the backing bean CashierBean shows the bean
property type bound by the preceding component tag:

protected String name = null;

public void setName(String name) {

this.name = name;

}

public String getName() {

return this.name;

}

As described in “Using the Standard Converters” on page 145, to convert the value of
an input or output component, you can either apply a converter or create the bean
property bound to the component with thematching type. Here is the example tag,
from “Using DateTimeConverter” on page 147, that displays the date when items will
be shipped.

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full" />

</h:outputText>

The bean property represented by this tagmust have a type of java.util.Date. The
following code snippet shows the shipDate property, from the backing bean
CashierBean, that is bound by the tag’s value in the preceding example:

protected Date shipDate;

public Date getShipDate() {

return this.shipDate;

}

public void setShipDate(Date shipDate) {

this.shipDate = shipDate;

}

UIDataProperties
Data componentsmust be bound to one of the backing bean property types listed in
Table 9–1. Data components are discussed in “Using Data-Bound Table Components”
on page 135. Here is part of the start tag of dataTable from that section:

<h:dataTable id="items"
...

value="#{cart.items}"
var="item" >

The value expression points to the items property of a shopping cart bean named
cart. The cart beanmaintains amap of ShoppingCartItem beans.

The getItemsmethod from the cart bean populates a Listwith ShoppingCartItem
instances that are saved in the itemsmapwhen the customer adds items to the cart, as
shown in the following code segment:

Writing Bean Properties

The Java EE 6Tutorial: Basic Concepts164

ptg

public synchronized List getItems() {

List results = new ArrayList();

results.addAll(this.items.values());

return results;

}

All the components contained in the data component are bound to the properties of
the cart bean that is bound to the entire data component. For example, here is the
h:outputText tag that displays the item name in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.name}"/>

</h:commandLink>

UISelectBoolean Properties
Backing bean properties that hold a UISelectBoolean component’s datamust be of
boolean or Boolean type. The example selectBooleanCheckbox tag from the section
“Displaying Components for Selecting One Value” on page 130 binds a component to
a property. The following example shows a tag that binds a component value to a
boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}" >

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by the
example tag:

protected boolean receiveEmails = false;

...

public void setReceiveEmails(boolean receiveEmails) {

this.receiveEmails = receiveEmails;

}

public boolean getReceiveEmails() {

return receiveEmails;

}

UISelectMany Properties
Because a UISelectMany component allows a user to select one ormore items from a
list of items, this componentmust map to a bean property of type List or array. This
bean property represents the set of currently selected items from the list of available
items.

The following example of the selectManyCheckbox tag comes from“Displaying
Components for SelectingMultiple Values” on page 132:

<h:selectManyCheckbox

id="newsletters"
layout="pageDirection"

Writing Bean Properties

Chapter 9 • Developingwith JavaServer FacesTechnology 165

ptg

value="#{cashier.newsletters}">
<f:selectItems value="#{newsletters}"/>

</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from
the preceding example:

protected String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {

this.newsletters = newsletters;

}

public String[] getNewsletters() {

return this.newsletters;

}

The UISelectItem and UISelectItems components are used to represent all the
values in a UISelectMany component. See “UISelectItem Properties” on page 167 and
“UISelectItems Properties” on page 167 for information onwriting the bean
properties for the UISelectItem and UISelectItems components.

UISelectOneProperties
UISelectOne properties accept the same types as UIInput and UIOutput properties,
because a UISelectOne component represents the single selected item from a set of
items. This item can be any of the primitive types and anything else for which you can
apply a converter.

Here is an example of the selectOneMenu tag from “Displaying aMenuUsing the
h:selectOneMenu Tag” on page 131:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashier.shippingOption}">
<f:selectItem

itemValue="2"
itemLabel="#{bundle.QuickShip}"/>

<f:selectItem

itemValue="5"
itemLabel="#{bundle.NormalShip}"/>

<f:selectItem

itemValue="7"
itemLabel="#{bundle.SaverShip}"/>

</h:selectOneMenu>

Here is the bean property corresponding to this tag:

protected String shippingOption = "2";

public void setShippingOption(String shippingOption) {

this.shippingOption = shippingOption;

}

public String getShippingOption() {

Writing Bean Properties

The Java EE 6Tutorial: Basic Concepts166

ptg

return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items
in the UISelectOne component.

The UISelectItem and UISelectItems components are used to represent all the
values in a UISelectOne component. This is explained in the section “Displaying a
MenuUsing the h:selectOneMenu Tag” on page 131.

For information on how to write the backing bean properties for the UISelectItem
and UISelectItems components, see “UISelectItem Properties” on page 167 and
“UISelectItems Properties” on page 167.

UISelectItem Properties
A UISelectItem component represents a single value in a set of values in a
UISelectMany or a UISelectOne component. A UISelectItem componentmust be
bound to a backing bean property of type javax.faces.model.SelectItem. A
SelectItem object is composed of an Object representing the value, along with two
Strings representing the label and description of the UISelectItem object.

The example selectOneMenu tag from “Displaying aMenuUsing the
h:selectOneMenu Tag” on page 131 contains selectItem tags that set the values of the
list of items in the page. Here is an example of a bean property that can set the values
for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne(){

return itemOne;

}

void setItemOne(SelectItem item) {

itemOne = item;

}

UISelectItems Properties
UISelectItems components are children of UISelectMany and UISelectOne
components. Each UISelectItems component is composed of a set of either
javax.faces.model.SelectItem instances or any collection of objects, such as an
array, a list, or even POJOs.

This section explains how to write the properties for selectItems tags containing
SelectItem instances.

Writing Bean Properties

Chapter 9 • Developingwith JavaServer FacesTechnology 167

ptg

You can populate the UISelectItemswith SelectItem instances programmatically in
the backing bean.

1. In your backing bean, create a list that is bound to the SelectItem component.
2. Define a set of SelectItem objects, set their values, and populate the list with the

SelectItem objects.

The following example code snippet from a backing bean shows how to create a
SelectItems property:

import javax.faces.model.SelectItem;

...

protected ArrayList options = null;

protected SelectItem newsletter0 =

new SelectItem("200", "Duke’s Quarterly", "");
...

//in constructor, populate the list

options.add(newsletter0);

options.add(newsletter1);

options.add(newsletter2);

...

public SelectItem getNewsletter0(){

return newsletter0;

}

void setNewsletter0(SelectItem firstNL) {

newsletter0 = firstNL;

}

// Other SelectItem properties

public Collection[] getOptions(){

return options;

}

public void setOptions(Collection[] options){

this.options = new ArrayList(options);

}

The code first initializes options as a list. Each newsletter property is defined with
values. Then each newsletter SelectItem is added to the list. Finally, the code includes
the obligatory setOptions and getOptions accessormethods.

WritingProperties Bound toComponent Instances
Aproperty bound to a component instance returns and accepts a component instance
rather than a component value. The following components bind a component
instance to a backing bean property:

<h:selectBooleanCheckbox

id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />

Writing Bean Properties

The Java EE 6Tutorial: Basic Concepts168

ptg

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}" >

<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub
UISelectBoolean component to the specialOffer property of CashierBean. The
outputLabel tag binds the fanClubLabel component, which represents the check
box’s label, to the specialOfferText property of CashierBean. If the user ordersmore
than $100 worth of items and clicks the Submit button, the submitmethod of
CashierBean sets both components’ rendered properties to true, causing the check
box and label to display when the page is rerendered.

Because the components corresponding to the example tags are bound to the backing
bean properties, these properties must match the components’ types. This means that
the specialOfferText propertymust be of type UIOutput, and the specialOffer
propertymust be of type UISelectBoolean:

UIOutput specialOfferText = null;

public UIOutput getSpecialOfferText() {

return this.specialOfferText;

}

public void setSpecialOfferText(UIOutput specialOfferText) {

this.specialOfferText = specialOfferText;

}

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {

return this.specialOffer;

}

public void setSpecialOffer(UISelectBoolean specialOffer) {

this.specialOffer = specialOffer;

}

Formore general information on component binding, see “Backing Beans” on
page 159.

For information on how to reference a backing beanmethod that performs navigation
when a button is clicked, see “Referencing aMethod That PerformsNavigation” on
page 155.

Formore information onwriting backing beanmethods that handle navigation, see
“Writing aMethod toHandle Navigation” on page 171.

Writing Bean Properties

Chapter 9 • Developingwith JavaServer FacesTechnology 169

ptg

WritingProperties Bound toConverters, Listeners, or
Validators
All the standard converter, listener, and validator tags included with JavaServer Faces
technology support binding attributes that allow you to bind converter, listener, or
validator implementations to backing bean properties.

The following example shows a standard convertDateTime tag using a value
expression with its binding attribute to bind the DateTimeConverter instance to the
convertDate property of LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />

</h:inputText>

The convertDate propertymust therefore accept and return a DateTimeConverter
object, as shown here:

private DateTimeConverter convertDate;

public DateTimeConverter getConvertDate() {

...

return convertDate;

{

public void setConvertDate(DateTimeConverter convertDate) {

convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

Because the converter is bound to a backing bean property, the backing bean property
canmodify the attributes of the converter or add new functionality to it. In the case of
the preceding example, the property sets the date pattern that the converter uses to
parse the user’s input into a Date object.

The backing bean properties that are bound to validator or listener implementations
are written in the sameway and have the same general purpose.

WritingBackingBeanMethods
Methods of a backing bean can perform several application-specific functions for
components on the page. These functions include
■ Performing processing associated with navigation
■ Handling action events
■ Performing validation on the component’s value
■ Handling value-change events

By using a backing bean to perform these functions, you eliminate the need to
implement the Validator interface to handle the validation or one of the listener

Writing Backing BeanMethods

The Java EE 6Tutorial: Basic Concepts170

ptg

interfaces to handle events. Also, by using a backing bean instead of a Validator
implementation to perform validation, you eliminate the need to create a custom tag
for the Validator implementation.

In general, it’s good practice to include thesemethods in the same backing bean that
defines the properties for the components referencing thesemethods. The reason for
doing so is that themethodsmight need to access the component’s data to determine
how to handle the event or to perform the validation associated with the component.

The following sections explain how to write various types of backing beanmethods.

Writing aMethod toHandleNavigation
An actionmethod, a backing beanmethod that handles navigation processing, must
be a public method that takes no parameters and returns an Object, which is the
logical outcome that the navigation system uses to determine the page to display next.
This method is referenced using the component tag’s action attribute.

The following actionmethod is from a backing bean named CashierBean, which is
invoked when a user clicks the Submit button on the page. If the user has orderedmore
than $100 worth of items, this method sets the rendered properties of the fanClub and
specialOffer components to true, causing them to be displayed on the page the next
time that page is rendered.

After setting the components’ rendered properties to true, this method returns the
logical outcome null. This causes the JavaServer Faces implementation to rerender
the page without creating a new view of the page, retaining the customer’s input. If this
method were to return purchase, which is the logical outcome to use to advance to a
payment page, the page would rerender without retaining the customer’s input.

If the user does not purchasemore than $100 worth of items, or if the thankYou
component has already been rendered, themethod returns receipt. The JavaServer
Faces implementation loads the page after this method returns:

public String submit() {

...

if(cart().getTotal() > 100.00 &&

!specialOffer.isRendered())

{

specialOfferText.setRendered(true);

specialOffer.setRendered(true);

return null;

} else if (specialOffer.isRendered() &&

!thankYou.isRendered()){

thankYou.setRendered(true);

return null;

} else {

clear();

Writing Backing BeanMethods

Chapter 9 • Developingwith JavaServer FacesTechnology 171

ptg

return ("receipt");
}

}

Typically, an actionmethod will return a String outcome, as shown in the previous
example. Alternatively, you can define an Enum class that encapsulates all possible
outcome strings and thenmake an actionmethod return an enum constant, which
represents a particular String outcome defined by the Enum class.

The following example uses an Enum class to encapsulate all logical outcomes:

public enum Navigation {

main, accountHist, accountList, atm, atmAck, transferFunds,

transferAck, error

}

When it returns an outcome, an actionmethod uses the dot notation to reference the
outcome from the Enum class:

public Object submit(){

...

return Navigation.accountHist;

}

The section “Referencing aMethod That PerformsNavigation” on page 155 explains
how a component tag references this method. The section “Writing Properties Bound
to Component Instances” on page 168 explains how to write the bean properties to
which the components are bound.

Writing aMethod toHandle anAction Event
A backing beanmethod that handles an action eventmust be a public method that
accepts an action event and returns void. This method is referenced using the
component tag’s actionListener attribute. Only components that implement
javax.faces.component.ActionSource can refer to this method.

In the following example, a method from a backing bean named LocaleBean processes
the event of a user clicking one of the hyperlinks on the page:

public void chooseLocaleFromLink(ActionEvent event) {

String current = event.getComponent().getId();

FacesContext context = FacesContext.getCurrentInstance();

context.getViewRoot().setLocale((Locale)

locales.get(current));

}

Thismethod gets the component that generated the event from the event object; then
it gets the component’s ID, which indicates a region of the world. Themethodmatches
the ID against a HashMap object that contains the locales available for the application.
Finally, themethod sets the locale by using the selected value from the HashMap object.

Writing Backing BeanMethods

The Java EE 6Tutorial: Basic Concepts172

ptg

“Referencing aMethod That Handles an Action Event” on page 156 explains how a
component tag references this method.

Writing aMethod toPerformValidation
Instead of implementing the Validator interface to perform validation for a
component, you can include amethod in a backing bean to take care of validating
input for the component. A backing beanmethod that performs validationmust
accept a FacesContext, the component whose datamust be validated, and the data to
be validated, just as the validatemethod of the Validator interface does. A
component refers to the backing beanmethod by using its validator attribute. Only
values of UIInput components or values of components that extend UIInput can be
validated.

Here is an example of a backing beanmethod that validates user input:

public void validateEmail(FacesContext context,

UIComponent toValidate, Object value) {

String message = "";
String email = (String) value;

if (email.contains(’@’)) {

((UIInput)toValidate).setValid(false);

message = CoffeeBreakBean.loadErrorMessage(context,

CoffeeBreakBean.CB_RESOURCE_BUNDLE_NAME,

"EMailError");
context.addMessage(toValidate.getClientId(context),

new FacesMessage(message));

}

}

Take a closer look at the preceding code segment:

1. The validateEmailmethod first gets the local value of the component.
2. Themethod then checks whether the @ character is contained in the value.
3. If not, themethod sets the component’s valid property to false.
4. Themethod then loads the errormessage and queues it onto the FacesContext

instance, associating themessage with the component ID.

See “Referencing aMethod That Performs Validation” on page 156 for information on
how a component tag references this method.

Writing aMethod toHandle aValue-Change Event
A backing bean that handles a value-change eventmust use a public method that
accepts a value-change event and returns void. This method is referenced using the

Writing Backing BeanMethods

Chapter 9 • Developingwith JavaServer FacesTechnology 173

ptg

component’s valueChangeListener attribute. This section explains how to write a
backing beanmethod to replace the ValueChangeListener implementation.

The following example tag comes from “Registering a Value-Change Listener on a
Component” on page 151, where the h:inputText tag with the id of name has a
ValueChangeListener instance registered on it. This ValueChangeListener instance
handles the event of entering a value in the field corresponding to the component.
When the user enters a value, a value-change event is generated, and the
processValueChange(ValueChangeEvent)method of the ValueChangeListener
class is invoked:

<h:inputText id="name" size="50" value="#{cashier.name}"
required="true">
<f:valueChangeListener type="listeners.NameChanged" />

</h:inputText>

Instead of implementing ValueChangeListener, you can write a backing beanmethod
to handle this event. To do this, youmove the
processValueChange(ValueChangeEvent)method from the ValueChangeListener
class, called NameChanged, to your backing bean.

Here is the backing beanmethod that processes the event of entering a value in the
name field on the page:

public void processValueChange(ValueChangeEvent event)

throws AbortProcessingException {

if (null != event.getNewValue()) {

FacesContext.getCurrentInstance().

getExternalContext().getSessionMap().

put("name", event.getNewValue());

}

}

Tomake this method handle the ValueChangeEvent generated by an input
component, reference this method from the component tag’s valueChangeListener
attribute. See “Referencing aMethod That Handles a Value-Change Event” on
page 156 formore information.

UsingBeanValidation
Validating input received from the user tomaintain data integrity is an important part
of application logic. Validation of data can take place at different layers in even the
simplest of applications, as shown in the guessnumber example application from an
earlier chapter. The guessnumber example application validates the user input (in the
h:inputText tag) for numerical data at the presentation layer and for a valid range of
numbers at the business layer.

Using BeanValidation

The Java EE 6Tutorial: Basic Concepts174

ptg

JavaBeans Validation (Bean Validation) is a new validationmodel available as part of
Java EE 6 platform. The Bean Validationmodel is supported by constraints in the form
of annotations placed on a field, method, or class of a JavaBeans component, such as a
backing bean.

Constraints can be built in or user defined. User-defined constraints are called custom
constraints. Several built-in constraints are available in the
javax.validation.constraints package. Table 9–2 lists all the built-in constraints.

TABLE 9–2 Built-In BeanValidationConstraints

Constraint Description Example

@AssertFalse The value of the field or
propertymust be false.

@AssertFalse

boolean isUnsupported;

@AssertTrue The value of the field or
propertymust be true.

@AssertTrue

boolean isActive;

@DecimalMax The value of the field or
propertymust be a decimal
value lower than or equal to
the number in the value
element.

@DecimalMax("30.00")
BigDecimal discount;

@DecimalMin The value of the field or
propertymust be a decimal
value greater than or equal to
the number in the value
element.

@DecimalMin("5.00")
BigDecimal discount;

@Digits The value of the field or
propertymust be a number
within a specified range. The
integer element specifies the
maximum integral digits for
the number, and the
fraction element specifies
themaximum fractional
digits for the number.

@Digits(integer=6, fraction=2)

BigDecimal price;

@Future The value of the field or
propertymust be a date in the
future.

@Future

Date eventDate;

@Max The value of the field or
propertymust be an integer
value lower than or equal to
the number in the value
element.

@Max(10)

int quantity;

Using BeanValidation

Chapter 9 • Developingwith JavaServer FacesTechnology 175

ptg

TABLE 9–2 Built-In BeanValidationConstraints (Continued)
Constraint Description Example

@Min The value of the field or
propertymust be an integer
value greater than or equal to
the number in the value
element.

@Min(5)

int quantity;

@NotNull The value of the field or
propertymust not be null.

@NotNull

String username;

@Null The value of the field or
propertymust be null.

@Null

String unusedString;

@Past The value of the field or
propertymust be a date in the
past.

@Past

Date birthday;

@Pattern The value of the field or
propertymust match the
regular expression defined in
the regexp element.

@Pattern(regexp="\\(\\d{3}\\)\\d{3}-\\d{4}")
String phoneNumber;

@Size The size of the field or
property is evaluated and
must match the specified
boundaries. If the field or
property is a String, the size
of the string is evaluated. If
the field or property is a
Collection, the size of the
Collection is evaluated. If
the field or property is a Map,
the size of the Map is
evaluated. If the field or
property is an array, the size
of the array is evaluated. Use
one of the optional max or min
elements to specify the
boundaries.

@Size(min=2, max=240)

String briefMessage;

In the following example, a constraint is placed on a field using the built-in @NotNull

constraint:

public class Name {

@NotNull

private String firstname;

@NotNull

private String lastname;

}

Using BeanValidation

The Java EE 6Tutorial: Basic Concepts176

ptg

You can also placemore than one constraint on a single JavaBeans component object.
For example, you can place an additional constraint for size of field on the firstname
and the lastname fields:

public class Name {

@NotNull

@Size(min=1, max=16)

private String firstname;

@NotNull

@Size(min=1, max=16)

private String lastname;

}

The following example shows amethod with a user-defined constraint that checks for
a predefined email address pattern such as a corporate email account:

@ValidEmail

public String getEmailAddress() {

return emailAddress;

}

For a built-in constraint, a default implementation is available. A user-defined or
custom constraint needs a validation implementation. In the above example, the
@ValidEmail custom constraint needs an implementation class.

Any validation failures are gracefully handled and can be displayed by the h:messages
tag.

Any backing bean that contains Bean Validation annotations automatically gets
validation constraints placed on the fields on a JavaServer Faces application’s web
pages.

See “Validating Persistent Fields and Properties” on page 337 formore information on
using validation constraints.

ValidatingNull andEmpty Strings
The Java programming language distinguishes between null and empty strings. An
empty string is a string instance of zero length, whereas a null string has no value at all.

An empty string is represented as "". It is a character array of zero characters. A null
string is represented by null. It can be described as the absence of a string instance.

Backing bean elements represented as a JavaServer Faces text component such as
inputText are initialized with the value of the empty string by the JavaServer Faces
implementation. Validating these strings can be an issue when user input for such
fields is not required. Consider the following example, where the string testString is
a bean variable that will be set using input typed by the user. In this case, the user input
for the field is not required.

Using BeanValidation

Chapter 9 • Developingwith JavaServer FacesTechnology 177

ptg

if (testString.equals(null)) {

doSomething();

} else {

doAnotherThing();

}

By default, the doAnotherThingmethod is called even when the user enters no data,
because the testString element has been initialized with the value of an empty string.

In order for the Bean Validationmodel to work as intended, youmust set the context
parameter javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to
true in the web deployment descriptor file, web.xml:

<context-param>

<param-name>

javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL

</param-name>

<param-value>true</param-value>

</context-param>

This parameter enables the JavaServer Faces implementation to treat empty strings as
null.

Suppose, on the other hand, that you have a @NotNull constraint on an element,
meaning that input is required. In this case, an empty string will pass this validation
constraint. However, if you set the context parameter
javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to true, the
value of the backing bean attribute is passed to the Bean Validation runtime as a null
value, causing the @NotNull constraint to fail.

Using BeanValidation

The Java EE 6Tutorial: Basic Concepts178

ptg

Java ServletTechnology

Shortly after theWeb began to be used for delivering services, service providers
recognized the need for dynamic content. Applets, one of the earliest attempts toward
this goal, focused on using the client platform to deliver dynamic user experiences. At
the same time, developers also investigated using the server platform for the same
purpose. Initially, CommonGateway Interface (CGI) server-side scripts were themain
technology used to generate dynamic content. Although widely used, CGI scripting
technology hadmany shortcomings, including platform dependence and lack of
scalability. To address these limitations, Java Servlet technology was created as a
portable way to provide dynamic, user-oriented content.

The following topics are addressed here:
■ “What Is a Servlet?” on page 180
■ “Servlet Lifecycle” on page 180
■ “Sharing Information” on page 182
■ “Creating and Initializing a Servlet” on page 183
■ “Writing ServiceMethods” on page 184
■ “Filtering Requests and Responses” on page 187
■ “Invoking OtherWeb Resources” on page 191
■ “Accessing theWeb Context” on page 193
■ “Maintaining Client State” on page 193
■ “Finalizing a Servlet” on page 195
■ “The mood Example Application” on page 198
■ “Further Information about Java Servlet Technology” on page 200

10C H A P T E R 1 0

179

ptg

What Is a Servlet?
A servlet is a Java programming language class used to extend the capabilities of
servers that host applications accessed bymeans of a request-response programming
model. Although servlets can respond to any type of request, they are commonly used
to extend the applications hosted by web servers. For such applications, Java Servlet
technology defines HTTP-specific servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes
for writing servlets. All servlets must implement the Servlet interface, which defines
lifecycle methods.When implementing a generic service, you can use or extend the
GenericServlet class provided with the Java Servlet API. The HttpServlet class
providesmethods, such as doGet and doPost, for handlingHTTP-specific services.

Servlet Lifecycle
The lifecycle of a servlet is controlled by the container in which the servlet has been
deployed.When a request is mapped to a servlet, the container performs the following
steps.

1. If an instance of the servlet does not exist, the web container
a. Loads the servlet class.
b. Creates an instance of the servlet class.
c. Initializes the servlet instance by calling the initmethod. Initialization is

covered in “Creating and Initializing a Servlet” on page 183.
2. Invokes the servicemethod, passing request and response objects. Service

methods are discussed in “Writing ServiceMethods” on page 184.

If it needs to remove the servlet, the container finalizes the servlet by calling the
servlet’s destroymethod. Formore information, see “Finalizing a Servlet” on page 195.

Handling Servlet Lifecycle Events
You canmonitor and react to events in a servlet’s lifecycle by defining listener objects
whosemethods get invoked when lifecycle events occur. To use these listener objects,
youmust define and specify the listener class.

Defining the Listener Class
You define a listener class as an implementation of a listener interface. Table 10–1 lists
the events that can bemonitored and the corresponding interface that must be
implemented.When a listenermethod is invoked, it is passed an event that contains

What Is a Servlet?

The Java EE 6Tutorial: Basic Concepts180

ptg

information appropriate to the event. For example, themethods in the
HttpSessionListener interface are passed an HttpSessionEvent, which contains an
HttpSession.

TABLE 10–1 Servlet Lifecycle Events

Object Event Listener Interface and Event Class

Web context (see
“Accessing theWeb
Context” on
page 193)

Initialization and
destruction

javax.servlet.ServletContextListener and
ServletContextEvent

Attribute added,
removed, or
replaced

javax.servlet.ServletContextAttributeListener

and ServletContextAttributeEvent

Session (See
“Maintaining Client
State” on page 193)

Creation,
invalidation,
activation,
passivation, and
timeout

javax.servlet.http.HttpSessionListener,
javax.servlet.http.

HttpSessionActivationListener, and
HttpSessionEvent

Attribute added,
removed, or
replaced

javax.servlet.http.

HttpSessionAttributeListener and
HttpSessionBindingEvent

Request A servlet request
has started being
processed by web
components

javax.servlet.ServletRequestListener and
ServletRequestEvent

Attribute added,
removed, or
replaced

javax.servlet.ServletRequestAttributeListener

and ServletRequestAttributeEvent

Use the @WebListener annotation to define a listener to get events for various
operations on the particular web application context. Classes annotated with
@WebListenermust implement one of the following interfaces:

javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener

javax.servlet.ServletRequestListener

javax.servlet.ServletRequestAttributeListener

javax.servlet..http.HttpSessionListener

javax.servlet..http.HttpSessionAttributeListener

For example, the following code snippet defines a listener that implements two of these
interfaces:

import javax.servlet.ServletContextAttributeListener;

import javax.servlet.ServletContextListener;

import javax.servlet.annotation.WebListener;

Servlet Lifecycle

Chapter 10 • Java ServletTechnology 181

ptg

@WebListener()

public class SimpleServletListener implements ServletContextListener,

ServletContextAttributeListener {

...

Handling Servlet Errors
Any number of exceptions can occur when a servlet executes.When an exception
occurs, the web container generates a default page containing the followingmessage:

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a
given exception.

Sharing Information
Web components, likemost objects, usually work with other objects to accomplish
their tasks.Web components can do so by
■ Using private helper objects (for example, JavaBeans components).
■ Sharing objects that are attributes of a public scope.
■ Using a database.
■ Invoking other web resources. The Java Servlet technologymechanisms that allow

a web component to invoke other web resources are described in “InvokingOther
Web Resources” on page 191.

Using ScopeObjects
Collaborating web components share information bymeans of objects that are
maintained as attributes of four scope objects. You access these attributes by using the
getAttribute and setAttributemethods of the class representing the scope.
Table 10–2 lists the scope objects.

TABLE 10–2 ScopeObjects

ScopeObject Class Accessible from

Web context javax.servlet.

ServletContext

Web components within a web context. See
“Accessing theWeb Context” on page 193.

Session javax.servlet.

http.HttpSession

Web components handling a request that belongs to
the session. See “Maintaining Client State” on
page 193.

Sharing Information

The Java EE 6Tutorial: Basic Concepts182

ptg

TABLE 10–2 ScopeObjects (Continued)
ScopeObject Class Accessible from

Request Subtype of javax.servlet.
ServletRequest

Web components handling the request.

Page javax.servlet.

jsp.JspContext

The JSP page that creates the object.

ControllingConcurrentAccess to SharedResources
In amultithreaded server, shared resources can be accessed concurrently. In addition
to scope object attributes, shared resources include in-memory data, such as instance
or class variables, and external objects, such as files, database connections, and
network connections.

Concurrent access can arise in several situations:
■ Multiple web components accessing objects stored in the web context.
■ Multiple web components accessing objects stored in a session.
■ Multiple threads within a web component accessing instance variables. A web

container will typically create a thread to handle each request. To ensure that a
servlet instance handles only one request at a time, a servlet can implement the
SingleThreadModel interface. If a servlet implements this interface, no two
threads will execute concurrently in the servlet’s servicemethod. Aweb container
can implement this guarantee by synchronizing access to a single instance of the
servlet or bymaintaining a pool of web component instances and dispatching each
new request to a free instance. This interface does not prevent synchronization
problems that result fromweb components’ accessing shared resources, such as
static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsistent
fashion. You prevent this by controlling the access using the synchronization
techniques described in the Threads lesson at http://download.oracle.com/
docs/cd/E17409_01/javase/tutorial/essential/concurrency/index.html in
The Java Tutorial, Fourth Edition, by Sharon Zakhour et al. (Addison-Wesley, 2006).

Creating and Initializing a Servlet
Use the @WebServlet annotation to define a servlet component in a web application.
This annotation is specified on a class and containsmetadata about the servlet being
declared. The annotated servlet must specify at least one URL pattern. This is done by
using the urlPatterns or value attribute on the annotation. All other attributes are

Creating and Initializing a Servlet

Chapter 10 • Java ServletTechnology 183

http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/essential/concurrency/index.html
http://download.oracle.com/docs/cd/E17409_01/javase/tutorial/essential/concurrency/index.html

ptg

optional, with default settings. Use the value attribute when the only attribute on the
annotation is the URL pattern; otherwise use the urlPatterns attribute when other
attributes are also used.

Classes annotated with @WebServletmust extend the
javax.servlet.http.HttpServlet class. For example, the following code snippet
defines a servlet with the URL pattern /report:

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

...

The web container initializes a servlet after loading and instantiating the servlet class
and before delivering requests from clients. To customize this process to allow the
servlet to read persistent configuration data, initialize resources, and perform any
other one-time activities, you can either override the initmethod of the Servlet
interface or specify the initParams attribute of the @WebServlet annotation. The
initParams attribute contains a @WebInitParam annotation. If it cannot complete its
initialization process, a servlet throws an UnavailableException.

Writing ServiceMethods
The service provided by a servlet is implemented in the servicemethod of a
GenericServlet, in the doMethodmethods (whereMethod can take the value Get,
Delete, Options, Post, Put, or Trace) of an HttpServlet object, or in any other
protocol-specificmethods defined by a class that implements the Servlet interface.
The term service method is used for anymethod in a servlet class that provides a service
to a client.

The general pattern for a servicemethod is to extract information from the request,
access external resources, and then populate the response, based on that information.
For HTTP servlets, the correct procedure for populating the response is to do the
following:

1. Retrieve an output stream from the response.
2. Fill in the response headers.
3. Write any body content to the output stream.

Response headersmust always be set before the response has been committed. The
web container will ignore any attempt to set or add headers after the response has been
committed. The next two sections describe how to get information from requests and
generate responses.

Writing ServiceMethods

The Java EE 6Tutorial: Basic Concepts184

ptg

Getting Information fromRequests
A request contains data passed between a client and the servlet. All requests
implement the ServletRequest interface. This interface definesmethods for
accessing the following information:

■ Parameters, which are typically used to convey information between clients and
servlets

■ Object-valued attributes, which are typically used to pass information between the
servlet container and a servlet or between collaborating servlets

■ Information about the protocol used to communicate the request and about the
client and server involved in the request

■ Information relevant to localization

You can also retrieve an input stream from the request andmanually parse the data.
To read character data, use the BufferedReader object returned by the request’s
getReadermethod. To read binary data, use the ServletInputStream returned by
getInputStream.

HTTP servlets are passed anHTTP request object, HttpServletRequest, which
contains the request URL, HTTP headers, query string, and so on. AnHTTP request
URL contains the following parts:

http://[host]:[port][request-path]?[query-string]

The request path is further composed of the following elements:

■ Context path: A concatenation of a forward slash (/) with the context root of the
servlet’s web application.

■ Servlet path: The path section that corresponds to the component alias that
activated this request. This path starts with a forward slash (/).

■ Path info: The part of the request path that is not part of the context path or the
servlet path.

You can use the getContextPath, getServletPath, and getPathInfomethods of the
HttpServletRequest interface to access this information. Except for URL encoding
differences between the request URI and the path parts, the request URI is always
comprised of the context path plus the servlet path plus the path info.

Writing ServiceMethods

Chapter 10 • Java ServletTechnology 185

ptg

Query strings are composed of a set of parameters and values. Individual parameters
are retrieved from a request by using the getParametermethod. There are two ways to
generate query strings.

■ A query string can explicitly appear in a web page.
■ A query string is appended to a URLwhen a formwith a GETHTTPmethod is

submitted.

ConstructingResponses
A response contains data passed between a server and the client. All responses
implement the ServletResponse interface. This interface definesmethods that allow
you to

■ Retrieve an output stream to use to send data to the client. To send character data,
use the PrintWriter returned by the response’s getWritermethod. To send
binary data in aMultipurpose InternetMail Extensions (MIME) body response,
use the ServletOutputStream returned by getOutputStream. Tomix binary and
text data, as in amultipart response, use a ServletOutputStream andmanage the
character sectionsmanually.

■ Indicate the content type (for example, text/html) being returned by the response
with the setContentType(String)method. This methodmust be called before the
response is committed. A registry of content type names is kept by the Internet
AssignedNumbers Authority (IANA) at http://www.iana.org/assignments/
media-types/.

■ Indicate whether to buffer output with the setBufferSize(int)method. By
default, any content written to the output stream is immediately sent to the client.
Buffering allows content to be written before anything is sent back to the client,
thus providing the servlet withmore time to set appropriate status codes and
headers or forward to another web resource. Themethodmust be called before any
content is written or before the response is committed.

■ Set localization information, such as locale and character encoding.

HTTP response objects, javax.servlet.http.HttpServletResponse, have fields
representingHTTP headers, such as the following:

■ Status codes, which are used to indicate the reason a request is not satisfied or that a
request has been redirected.

■ Cookies, which are used to store application-specific information at the client.
Sometimes, cookies are used tomaintain an identifier for tracking a user’s session
(see “Session Tracking” on page 195).

Writing ServiceMethods

The Java EE 6Tutorial: Basic Concepts186

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

ptg

FilteringRequests andResponses
A filter is an object that can transform the header and content (or both) of a request or
response. Filters differ fromweb components in that filters usually do not themselves
create a response. Instead, a filter provides functionality that can be “attached” to any
kind of web resource. Consequently, a filter should not have any dependencies on a
web resource for which it is acting as a filter; this way, it can be composed withmore
than one type of web resource.

Themain tasks that a filter can perform are as follows:
■ Query the request and act accordingly.
■ Block the request-and-response pair from passing any further.
■ Modify the request headers and data. You do this by providing a customized

version of the request.
■ Modify the response headers and data. You do this by providing a customized

version of the response.
■ Interact with external resources.

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, ormore filters
in a specific order. This chain is specified when the web application containing the
component is deployed and is instantiated when a web container loads the
component.

ProgrammingFilters
The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces
in the javax.servlet package. You define a filter by implementing the Filter
interface.

Use the @WebFilter annotation to define a filter in a web application. This annotation
is specified on a class and containsmetadata about the filter being declared. The
annotated filter must specify at least one URL pattern. This is done by using the
urlPatterns or value attribute on the annotation. All other attributes are optional,
with default settings. Use the value attribute when the only attribute on the
annotation is the URL pattern; use the urlPatterns attribute when other attributes
are also used.

Classes annotated with the @WebFilter annotationmust implement the
javax.servlet.Filter interface.

Filtering Requests and Responses

Chapter 10 • Java ServletTechnology 187

ptg

To add configuration data to the filter, specify the initParams attribute of the
@WebFilter annotation. The initParams attribute contains a @WebInitParam
annotation. The following code snippet defines a filter, specifying an initialization
parameter:

import javax.servlet.Filter;

import javax.servlet.annotation.WebFilter;

import javax.servlet.annotation.WebInitParam;

@WebFilter(filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

...

Themost importantmethod in the Filter interface is doFilter, which is passed
request, response, and filter chain objects. This method can perform the following
actions:
■ Examine the request headers.
■ Customize the request object if the filter wishes tomodify request headers or data.
■ Customize the response object if the filter wishes tomodify response headers or

data.
■ Invoke the next entity in the filter chain. If the current filter is the last filter in the

chain that ends with the target web component or static resource, the next entity is
the resource at the end of the chain; otherwise, it is the next filter that was
configured in theWAR. The filter invokes the next entity by calling the doFilter
method on the chain object, passing in the request and response it was called with
or the wrapped versions it may have created. Alternatively, the filter can choose to
block the request by notmaking the call to invoke the next entity. In the latter case,
the filter is responsible for filling out the response.

■ Examine response headers after invoking the next filter in the chain.
■ Throw an exception to indicate an error in processing.

In addition to doFilter, youmust implement the init and destroymethods. The
initmethod is called by the container when the filter is instantiated. If you wish to
pass initialization parameters to the filter, you retrieve them from the FilterConfig
object passed to init.

ProgrammingCustomizedRequests andResponses
There aremany ways for a filter tomodify a request or a response. For example, a filter
can add an attribute to the request or can insert data in the response.

Filtering Requests and Responses

The Java EE 6Tutorial: Basic Concepts188

ptg

Afilter that modifies a responsemust usually capture the response before it is returned
to the client. To do this, you pass a stand-in stream to the servlet that generates the
response. The stand-in stream prevents the servlet from closing the original response
streamwhen it completes and allows the filter tomodify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that
overrides the getWriter or getOutputStreammethod to return this stand-in stream.
The wrapper is passed to the doFiltermethod of the filter chain.Wrappermethods
default to calling through to the wrapped request or response object.

To override request methods, you wrap the request in an object that extends either
ServletRequestWrapper or HttpServletRequestWrapper. To override response
methods, you wrap the response in an object that extends either
ServletResponseWrapper or HttpServletResponseWrapper.

Specifying FilterMappings
Aweb container uses filter mappings to decide how to apply filters to web resources. A
filter mappingmatches a filter to a web component by name or to web resources by
URL pattern. The filters are invoked in the order in which filter mappings appear in
the filter mapping list of aWAR. You specify a filter mapping list for aWAR in its
deployment descriptor by either using NetBeans IDE or coding the list by hand with
XML.

If you want to log every request to a web application, youmap the hit counter filter to
the URL pattern /*.

You canmap a filter to one ormore web resources, and you canmapmore than one
filter to a web resource. This is illustrated in Figure 10–1, where filter F1 is mapped to
servlets S1, S2, and S3; filter F2 is mapped to servlet S2; and filter F3 is mapped to
servlets S1 and S2.

Filtering Requests and Responses

Chapter 10 • Java ServletTechnology 189

ptg

Recall that a filter chain is one of the objects passed to the doFiltermethod of a filter.
This chain is formed indirectly bymeans of filter mappings. The order of the filters in
the chain is the same as the order in which filter mappings appear in the web
application deployment descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFiltermethod
of F1. The doFiltermethod of each filter in S1’s filter chain is invoked by the
preceding filter in the chain bymeans of the chain.doFiltermethod. Because S1’s
filter chain contains filters F1 and F3, F1’s call to chain.doFilter invokes the
doFiltermethod of filter F3.When F3’s doFiltermethod completes, control returns
to F1’s doFiltermethod.

▼ ToSpecify FilterMappingsUsingNetBeans IDE

Expand the application’s project node in the Project pane.

Expand theWebPages andWEB-INF nodes under the project node.

Double-click web.xml.

Click Filters at the top of the editor pane.

Expand the Servlet Filters node in the editor pane.

Click Add Filter Element tomap the filter to aweb resource by nameor byURLpattern.

In theAdd Servlet Filter dialog, enter the nameof the filter in the Filter Namefield.

FIGURE 10–1 Filter-to-ServletMapping

F1

F2

F3 S1

S2

S3

1

2

3

4

5

6

7

Filtering Requests and Responses

The Java EE 6Tutorial: Basic Concepts190

ptg

Click Browse to locate the servlet class towhich the filter applies.
You can include wildcard characters so that you can apply the filter tomore than one
servlet.

ClickOK.

To constrain how the filter is applied to requests, follow these steps.

a. Expand the FilterMappings node.

b. Select the filter from the list of filters.

c. Click Add.

d. In theAdd FilterMappingdialog, select one of the followingdispatcher types:

■ REQUEST: Only when the request comes directly from the client
■ ASYNC: Only when the asynchronous request comes from the client
■ FORWARD: Only when the request has been forwarded to a component (see

“Transferring Control to AnotherWeb Component” on page 192)
■ INCLUDE: Only when the request is being processed by a component that has

been included (see “Including Other Resources in the Response” on page 192)
■ ERROR: Only when the request is being processed with the error page

mechanism (see “Handling Servlet Errors” on page 182)

You can direct the filter to be applied to any combination of the preceding
situations by selectingmultiple dispatcher types. If no types are specified, the
default option is REQUEST.

InvokingOtherWebResources
Web components can invoke other web resources both indirectly and directly. A web
component indirectly invokes another web resource by embedding a URL that points
to another web component in content returned to a client.While it is executing, a web
component directly invokes another resource by either including the content of
another resource or forwarding a request to another resource.

To invoke a resource available on the server that is running a web component, you
must first obtain a RequestDispatcher object by using the
getRequestDispatcher("URL")method. You can get a RequestDispatcher object
from either a request or the web context; however, the twomethods have slightly
different behavior. Themethod takes the path to the requested resource as an
argument. A request can take a relative path (that is, one that does not begin with a /),

8

9

10

InvokingOtherWeb Resources

Chapter 10 • Java ServletTechnology 191

ptg

but the web context requires an absolute path. If the resource is not available or if the
server has not implemented a RequestDispatcher object for that type of resource,
getRequestDispatcher will return null. Your servlet should be prepared to deal with
this condition.

IncludingOther Resources in theResponse
It is often useful to include another web resource, such as banner content or copyright
information) in the response returned from aweb component. To include another
resource, invoke the includemethod of a RequestDispatcher object:

include(request, response);

If the resource is static, the includemethod enables programmatic server-side
includes. If the resource is a web component, the effect of themethod is to send the
request to the included web component, execute the web component, and then include
the result of the execution in the response from the containing servlet. An included
web component has access to the request object but is limited in what it can do with
the response object.
■ It can write to the body of the response and commit a response.
■ It cannot set headers or call anymethod, such as setCookie, that affects the

headers of the response.

TransferringControl toAnotherWebComponent
In some applications, youmight want to have one web component do preliminary
processing of a request and have another component generate the response. For
example, youmight want to partially process a request and then transfer to another
component, depending on the nature of the request.

To transfer control to another web component, you invoke the forwardmethod of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path
of the forwarded page. The original URI and its constituent parts are saved as request
attributes
javax.servlet.forward.[request-uri|context-path|servlet-path|path-info|query-string].

The forwardmethod should be used to give another resource responsibility for
replying to the user. If you have already accessed a ServletOutputStream or
PrintWriter object within the servlet, you cannot use this method; doing so throws an
IllegalStateException.

InvokingOtherWeb Resources

The Java EE 6Tutorial: Basic Concepts192

ptg

Accessing theWebContext
The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context by using the
getServletContextmethod. The web context providesmethods for accessing

■ Initialization parameters
■ Resources associated with the web context
■ Object-valued attributes
■ Logging capabilities

The counter’s access methods are synchronized to prevent incompatible operations by
servlets that are running concurrently. A filter retrieves the counter object by using the
context’s getAttributemethod. The incremented value of the counter is recorded in
the log.

MaintainingClient State
Many applications require that a series of requests from a client be associated with one
another. For example, a web application can save the state of a user’s shopping cart
across requests.Web-based applications are responsible formaintaining such state,
called a session, because HTTP is stateless. To support applications that need to
maintain state, Java Servlet technology provides an API formanaging sessions and
allows several mechanisms for implementing sessions.

Accessing a Session
Sessions are represented by an HttpSession object. You access a session by calling the
getSessionmethod of a request object. This method returns the current session
associated with this request; or, if the request does not have a session, this method
creates one.

AssociatingObjectswith a Session
You can associate object-valued attributes with a session by name. Such attributes are
accessible by any web component that belongs to the sameweb context and is
handling a request that is part of the same session.

Maintaining Client State

Chapter 10 • Java ServletTechnology 193

ptg

Recall that your application can notify web context and session listener objects of
servlet lifecycle events (“Handling Servlet Lifecycle Events” on page 180). You can also
notify objects of certain events related to their association with a session such as the
following:

■ When the object is added to or removed from a session. To receive this
notification, your object must implement the
javax.servlet.http.HttpSessionBindingListener interface.

■ When the session to which the object is attached will be passivated or activated. A
session will be passivated or activated when it is moved between virtual machines
or saved to and restored from persistent storage. To receive this notification, your
object must implement the
javax.servlet.http.HttpSessionActivationListener interface.

SessionManagement
Because anHTTP client has no way to signal that it no longer needs a session, each
session has an associated timeout so that its resources can be reclaimed. The timeout
period can be accessed by using a session’s getMaxInactiveInterval and
setMaxInactiveIntervalmethods.

■ To ensure that an active session is not timed out, you should periodically access the
session by using servicemethods because this resets the session’s time-to-live
counter.

■ When a particular client interaction is finished, you use the session’s invalidate
method to invalidate a session on the server side and remove any session data.

▼ ToSet theTimeout PeriodUsingNetBeans IDE
To set the timeout period in the deployment descriptor using NetBeans IDE, follow
these steps.

Open the project if you haven’t already.

Expand the project’s node in the Projects pane.

Expand theWebPages node and then theWEB-INF node.

Double-click web.xml.

Click General at the top of the editor.

1

2

3

4

5

Maintaining Client State

The Java EE 6Tutorial: Basic Concepts194

ptg

In the SessionTimeout field, type an integer value.

The integer value represents the number of minutes of inactivity that must pass before
the session times out.

SessionTracking
To associate a session with a user, a web container can use several methods, all of
which involve passing an identifier between the client and the server. The identifier
can bemaintained on the client as a cookie, or the web component can include the
identifier in every URL that is returned to the client.

If your application uses session objects, youmust ensure that session tracking is
enabled by having the application rewrite URLs whenever the client turns off cookies.
You do this by calling the response’s encodeURL(URL)method on all URLs returned by
a servlet. This method includes the session ID in the URL only if cookies are disabled;
otherwise, themethod returns the URL unchanged.

Finalizing a Servlet
A servlet containermay determine that a servlet should be removed from service (for
example, when a container wants to reclaimmemory resources or when it is being shut
down). In such a case, the container calls the destroymethod of the Servlet interface.
In this method, you release any resources the servlet is using and save any persistent
state. The destroymethod releases the database object created in the initmethod .

A servlet’s servicemethods should all be complete when a servlet is removed. The
server tries to ensure this by calling the destroymethod only after all service requests
have returned or after a server-specific grace period, whichever comes first. If your
servlet has operations that may run longer than the server’s grace period, the
operations could still be running when destroy is called. Youmustmake sure that any
threads still handling client requests complete.

The remainder of this section explains how to do the following:

■ Keep track of howmany threads are currently running the servicemethod.
■ Provide a clean shutdown by having the destroymethod notify long-running

threads of the shutdown andwait for them to complete.
■ Have the long-runningmethods poll periodically to check for shutdown and, if

necessary, stop working, clean up, and return.

6

Finalizing a Servlet

Chapter 10 • Java ServletTechnology 195

ptg

Tracking Service Requests
To track service requests, include in your servlet class a field that counts the number of
servicemethods that are running. The field should have synchronized access methods
to increment, decrement, and return its value:

public class ShutdownExample extends HttpServlet {

private int serviceCounter = 0;

...

// Access methods for serviceCounter

protected synchronized void enteringServiceMethod() {

serviceCounter++;

}

protected synchronized void leavingServiceMethod() {

serviceCounter--;

}

protected synchronized int numServices() {

return serviceCounter;

}

}

The servicemethod should increment the service counter each time themethod is
entered and should decrement the counter each time themethod returns. This is one
of the few times that your HttpServlet subclass should override the servicemethod.
The newmethod should call super.service to preserve the functionality of the
original servicemethod:

protected void service(HttpServletRequest req,

HttpServletResponse resp)

throws ServletException,IOException {

enteringServiceMethod();

try {

super.service(req, resp);

} finally {

leavingServiceMethod();

}

}

NotifyingMethods to ShutDown
To ensure a clean shutdown, your destroymethod should not release any shared
resources until all the service requests have completed. One part of doing this is to
check the service counter. Another part is to notify the long-runningmethods that it is
time to shut down. For this notification, another field is required. The field should
have the usual access methods:

public class ShutdownExample extends HttpServlet {

private boolean shuttingDown;

...

//Access methods for shuttingDown

protected synchronized void setShuttingDown(boolean flag) {

Finalizing a Servlet

The Java EE 6Tutorial: Basic Concepts196

ptg

shuttingDown = flag;

}

protected synchronized boolean isShuttingDown() {

return shuttingDown;

}

}

Here is an example of the destroymethod using these fields to provide a clean
shutdown:

public void destroy() {

/* Check to see whether there are still service methods /*

/* running, and if there are, tell them to stop. */

if (numServices() > 0) {

setShuttingDown(true);

}

/* Wait for the service methods to stop. */

while(numServices() > 0) {

try {

Thread.sleep(interval);

} catch (InterruptedException e) {

}

}

}

CreatingPolite Long-RunningMethods
The final step in providing a clean shutdown is tomake any long-runningmethods
behave politely. Methods that might run for a long time should check the value of the
field that notifies them of shutdowns and should interrupt their work, if necessary:

public void doPost(...) {

...

for(i = 0; ((i < lotsOfStuffToDo) &&

!isShuttingDown()); i++) {

try {

partOfLongRunningOperation(i);

} catch (InterruptedException e) {

...

}

}

}

Finalizing a Servlet

Chapter 10 • Java ServletTechnology 197

ptg

The mood ExampleApplication
The mood example application, located in tut-install/examples/web/mood, is a simple
example that displays Duke’s moods at different times during the day. The example
shows how to develop a simple application by using the @WebServlet, @WebFilter,
and @WebListener annotations to create a servlet, a listener, and a filter.

Components of the mood ExampleApplication
The mood example application is comprised of three components:
mood.web.MoodServlet, mood.web.TimeOfDayFilter, and
mood.web.SimpleServletListener.

MoodServlet, the presentation layer of the application, displays Duke’s mood in a
graphic, based on the time of day. The @WebServlet annotation specifies the URL
pattern:

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

...

TimeOfDayFilter sets an initialization parameter indicating that Duke is awake:

@WebFilter(filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

...

The filter calls the doFiltermethod, which contains a switch statement that sets
Duke’s mood based on the current time.

SimpleServletListener logs changes in the servlet’s lifecycle. The log entries appear
in the server log.

Building, Packaging,Deploying, andRunning the
mood Example
You can use either NetBeans IDE or Ant to build, package, deploy, and run the mood
example.

The mood Example Application

The Java EE 6Tutorial: Basic Concepts198

ptg

▼ ToBuild, Package,Deploy, andRun the mood ExampleUsing
NetBeans IDE

Select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/web/

Select the mood folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the moodproject and select Build.

Right-click the project and select Deploy.

In awebbrowser, open theURL http://localhost:8080/mood/report.
TheURL specifies the context root, followed by the URL pattern specified for the
servlet.

A web page appears with the title “ServletMoodServlet at /mood” a text string
describing Duke’s mood, and an illustrative graphic.

▼ ToBuild, Package,Deploy, andRun the mood ExampleUsingAnt

In a terminalwindow, go to:
tut-install/examples/web/mood/

Type the following command:
ant

This target builds theWAR file and copies it to the
tut-install/examples/web/mood/dist/ directory.

Type ant deploy.
Ignore the URL shown in the deploy target output.

In awebbrowser, open theURL http://localhost:8080/mood/report.
TheURL specifies the context root, followed by the URL pattern.

A web page appears with the title “ServletMoodServlet at /mood” a text string
describing Duke’s mood, and an illustrative graphic.

1

2

3

4

5

6

7

8

1

2

3

4

The mood Example Application

Chapter 10 • Java ServletTechnology 199

ptg

Further Information about Java ServletTechnology
Formore information on Java Servlet technology, see
■ Java Servlet 3.0 specification:

http://jcp.org/en/jsr/detail?id=315

■ Java Servlet web site:
http://www.oracle.com/technetwork/java/index-jsp-135475.html

Further Information about Java ServletTechnology

The Java EE 6Tutorial: Basic Concepts200

http://jcp.org/en/jsr/detail?id=315
http://www.oracle.com/technetwork/java/index-jsp-135475.html

ptg

Web Services
Part III introduces web services. This part contains the following chapters:
■ Chapter 11, “Introduction toWeb Services”
■ Chapter 12, “BuildingWeb Services with JAX-WS”
■ Chapter 13, “Building RESTfulWeb Services with JAX-RS”

P A R T I I I

201

ptg

This page intentionally left blank

ptg

Introduction toWeb Services

Part III of the tutorial discusses Java EE 6 web services technologies. For this book,
these technologies include Java API for XMLWeb Services (JAX-WS) and Java API for
RESTfulWeb Services (JAX-RS).

The following topics are addressed here:
■ “What AreWeb Services?” on page 203
■ “Types ofWeb Services” on page 203
■ “DecidingWhich Type ofWeb Service to Use” on page 206

WhatAreWebServices?
Web services are client and server applications that communicate over theWorldWide
Web’s (WWW)HyperText Transfer Protocol (HTTP). As described by theWorld
WideWeb Consortium (W3C), web services provide a standardmeans of
interoperating between software applications running on a variety of platforms and
frameworks.Web services are characterized by their great interoperability and
extensibility, as well as their machine-processable descriptions, thanks to the use of
XML.Web services can be combined in a loosely coupled way to achieve complex
operations. Programs providing simple services can interact with each other to deliver
sophisticated added-value services.

Types ofWebServices
On the conceptual level, a service is a software component provided through a
network-accessible endpoint. The service consumer and provider usemessages to
exchange invocation request and response information in the form of self-containing
documents that make very few assumptions about the technological capabilities of the
receiver.

11C H A P T E R 1 1

203

ptg

On a technical level, web services can be implemented in various ways. The two types
of web services discussed in this section can be distinguished as “big” web services and
“RESTful” web services.

“Big”WebServices
In Java EE 6, JAX-WS provides the functionality for “big” web services, which are
described in Chapter 12, “BuildingWeb Services with JAX-WS.” Big web services use
XMLmessages that follow the Simple Object Access Protocol (SOAP) standard, an
XML language defining amessage architecture andmessage formats. Such systems
often contain amachine-readable description of the operations offered by the service,
written in theWeb Services Description Language (WSDL), an XML language for
defining interfaces syntactically.

The SOAPmessage format and theWSDL interface definition language have gained
widespread adoption.Many development tools, such as NetBeans IDE, can reduce the
complexity of developing web service applications.

A SOAP-based designmust include the following elements.
■ A formal contract must be established to describe the interface that the web service

offers.WSDL can be used to describe the details of the contract, whichmay include
messages, operations, bindings, and the location of the web service. Youmay also
process SOAPmessages in a JAX-WS service without publishing aWSDL.

■ The architecturemust address complex nonfunctional requirements. Many web
service specifications address such requirements and establish a common
vocabulary for them. Examples include transactions, security, addressing, trust,
coordination, and so on.

■ The architecture needs to handle asynchronous processing and invocation. In such
cases, the infrastructure provided by standards, such asWeb Services Reliable
Messaging (WSRM), and APIs, such as JAX-WS, with their client-side
asynchronous invocation support, can be leveraged out of the box.

RESTfulWebServices
In Java EE 6, JAX-RS provides the functionality for Representational State Transfer
(RESTful) web services. REST is well suited for basic, ad hoc integration scenarios.
RESTful web services, often better integrated withHTTP than SOAP-based services
are, do not require XMLmessages orWSDL service–API definitions.

Project Jersey is the production-ready reference implementation for the JAX-RS
specification. Jersey implements support for the annotations defined in the JAX-RS
specification, making it easy for developers to build RESTful web services with Java
and the Java VirtualMachine (JVM).

Types ofWeb Services

The Java EE 6Tutorial: Basic Concepts204

ptg

Because RESTful web services use existing well-knownW3C and Internet Engineering
Task Force (IETF) standards (HTTP, XML, URI,MIME) and have a lightweight
infrastructure that allows services to be built withminimal tooling, developing
RESTful web services is inexpensive and thus has a very low barrier for adoption. You
can use a development tool such as NetBeans IDE to further reduce the complexity of
developing RESTful web services.

A RESTful designmay be appropriate when the following conditions aremet.
■ The web services are completely stateless. A good test is to consider whether the

interaction can survive a restart of the server.
■ A caching infrastructure can be leveraged for performance. If the data that the web

service returns is not dynamically generated and can be cached, the caching
infrastructure that web servers and other intermediaries inherently provide can be
leveraged to improve performance. However, the developermust take care because
such caches are limited to the HTTP GETmethod formost servers.

■ The service producer and service consumer have amutual understanding of the
context and content being passed along. Because there is no formal way to describe
the web services interface, both parties must agree out of band on the schemas that
describe the data being exchanged and onways to process it meaningfully. In the
real world, most commercial applications that expose services as RESTful
implementations also distribute so-called value-added toolkits that describe the
interfaces to developers in popular programming languages.

■ Bandwidth is particularly important and needs to be limited. REST is particularly
useful for limited-profile devices, such as PDAs andmobile phones, for which the
overhead of headers and additional layers of SOAP elements on the XML payload
must be restricted.

■ Web service delivery or aggregation into existing web sites can be enabled easily
with a RESTful style. Developers can use such technologies as JAX-RS and
Asynchronous JavaScript with XML (AJAX) and such toolkits as DirectWeb
Remoting (DWR) to consume the services in their web applications. Rather than
starting from scratch, services can be exposed with XML and consumed byHTML
pages without significantly refactoring the existing web site architecture. Existing
developers will bemore productive because they are adding to something they are
already familiar with rather than having to start from scratch with new technology.

RESTful web services are discussed in Chapter 13, “Building RESTfulWeb Services
with JAX-RS.” This chapter contains information about generating the skeleton of a
RESTful web service using both NetBeans IDE and theMaven project management
tool.

Types ofWeb Services

Chapter 11 • Introduction toWeb Services 205

ptg

DecidingWhichTypeofWebService toUse
Basically, you would want to use RESTful web services for integration over the web
and use big web services in enterprise application integration scenarios that have
advanced quality of service (QoS) requirements.
■ JAX-WS: addresses advancedQoS requirements commonly occurring in

enterprise computing.When compared to JAX-RS, JAX-WSmakes it easier to
support theWS-* set of protocols, which provide standards for security and
reliability, among other things, and interoperate with otherWS-* conforming
clients and servers.

■ JAX-RS: makes it easier to write web applications that apply some or all of the
constraints of the REST style to induce desirable properties in the application, such
as loose coupling (evolving the server is easier without breaking existing clients),
scalability (start small and grow), and architectural simplicity (use off-the-shelf
components, such as proxies or HTTP routers). You would choose to use JAX-RS
for your web application because it is easier formany types of clients to consume
RESTful web services while enabling the server side to evolve and scale. Clients can
choose to consume some or all aspects of the service andmash it up with other
web-based services.

Note – For an article that providesmore in-depth analysis of this issue, see “RESTful
Web Services vs. “Big”Web Services: Making the Right Architectural Decision,” by
Cesare Pautasso, Olaf Zimmermann, and Frank Leymann fromWWW '08:
Proceedings of the 17th International Conference on theWorldWideWeb (2008), pp.
805–814 (http://www2008.org/papers/pdf/p805-pautassoA.pdf).

DecidingWhichType ofWeb Service to Use

The Java EE 6Tutorial: Basic Concepts206

http://www.oracle.com/technetwork/java/index-jsp-135475.html

ptg

BuildingWeb Serviceswith JAX-WS

Java API for XMLWeb Services (JAX-WS) is a technology for building web services
and clients that communicate using XML. JAX-WS allows developers to write
message-oriented as well as Remote Procedure Call-oriented (RPC-oriented) web
services.

In JAX-WS, a web service operation invocation is represented by an XML-based
protocol, such as SOAP. The SOAP specification defines the envelope structure,
encoding rules, and conventions for representing web service invocations and
responses. These calls and responses are transmitted as SOAPmessages (XML files)
over HTTP.

Although SOAPmessages are complex, the JAX-WSAPI hides this complexity from
the application developer. On the server side, the developer specifies the web service
operations by definingmethods in an interface written in the Java programming
language. The developer also codes one ormore classes that implement those
methods. Client programs are also easy to code. A client creates a proxy (a local object
representing the service) and then simply invokesmethods on the proxy.With
JAX-WS, the developer does not generate or parse SOAPmessages. It is the JAX-WS
runtime system that converts the API calls and responses to and from SOAPmessages.

With JAX-WS, clients and web services have a big advantage: the platform
independence of the Java programming language. In addition, JAX-WS is not
restrictive: A JAX-WS client can access a web service that is not running on the Java
platform, and vice versa. This flexibility is possible because JAX-WS uses technologies
defined by theW3C: HTTP, SOAP, andWSDL.WSDL specifies an XML format for
describing a service as a set of endpoints operating onmessages.

Note – Several files in the JAX-WS examples depend on the port that you specified
when you installed the GlassFish Server. These tutorial examples assume that the
server runs on the default port, 8080. They do not run with a nondefault port setting.

12C H A P T E R 1 2

207

ptg

The following topics are addressed here:
■ “Creating a SimpleWeb Service and Clients with JAX-WS” on page 208
■ “Types Supported by JAX-WS” on page 217
■ “Web Services Interoperability and JAX-WS” on page 217
■ “Further Information about JAX-WS” on page 217

Creating a SimpleWebService andClientswith JAX-WS
This section shows how to build and deploy a simple web service and two clients: an
application client and a web client. The source code for the service is in the directory
tut-install/examples/jaxws/helloservice/, and the clients are in the directories
tut-install/examples/jaxws/appclient/ and
tut-install/examples/jaxws/webclient/.

Figure 12–1 illustrates how JAX-WS technologymanages communication between a
web service and a client.

The starting point for developing a JAX-WSweb service is a Java class annotated with
the javax.jws.WebService annotation. The @WebService annotation defines the class
as a web service endpoint.

A service endpoint interface or service endpoint implementation (SEI) is a Java interface
or class, respectively, that declares themethods that a client can invoke on the service.
An interface is not required when building a JAX-WS endpoint. The web service
implementation class implicitly defines an SEI.

Youmay specify an explicit interface by adding the endpointInterface element to
the @WebService annotation in the implementation class. Youmust then provide an
interface that defines the public methodsmade available in the endpoint
implementation class.

The basic steps for creating a web service and client are as follows:

1. Code the implementation class.
2. Compile the implementation class.

FIGURE 12–1 Communication between a JAX-WSWeb Service and aClient

SOAP
Message

Client

JAX-WS Runtime

Web Service

JAX-WS Runtime

Creating a SimpleWeb Service and Clientswith JAX-WS

The Java EE 6Tutorial: Basic Concepts208

ptg

3. Package the files into aWAR file.
4. Deploy theWAR file. The web service artifacts, which are used to communicate

with clients, are generated by the GlassFish Server during deployment.
5. Code the client class.
6. Use a wsimportAnt task to generate and compile the web service artifacts needed

to connect to the service.
7. Compile the client class.
8. Run the client.

If you use NetBeans IDE to create a service and client, the IDE performs the wsimport
task for you.

The sections that follow cover these steps in greater detail.

Requirements of a JAX-WSEndpoint
JAX-WS endpoints must follow these requirements.
■ The implementing class must be annotated with either the javax.jws.WebService

or the javax.jws.WebServiceProvider annotation.
■ The implementing class may explicitly reference an SEI through the

endpointInterface element of the @WebService annotation but is not required to
do so. If no endpointInterface is specified in @WebService, an SEI is implicitly
defined for the implementing class.

■ The business methods of the implementing class must be public andmust not be
declared static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

■ Business methods that are exposed to web service clients must have
JAXB-compatible parameters and return types. See the list of JAXB default data
type bindings at http://download.oracle.com/
docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs .

■ The implementing class must not be declared final andmust not be abstract.
■ The implementing class must have a default public constructor.
■ The implementing class must not define the finalizemethod.
■ The implementing class may use the javax.annotation.PostConstruct or the

javax.annotation.PreDestroy annotations on its methods for lifecycle event
callbacks.
The @PostConstructmethod is called by the container before the implementing
class begins responding to web service clients.

Creating a SimpleWeb Service and Clientswith JAX-WS

Chapter 12 • BuildingWeb Serviceswith JAX-WS 209

http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs
http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs

ptg

The @PreDestroymethod is called by the container before the endpoint is
removed from operation.

Coding the Service Endpoint ImplementationClass
In this example, the implementation class, Hello, is annotated as a web service
endpoint using the @WebService annotation. Hello declares a singlemethod named
sayHello, annotated with the @WebMethod annotation, which exposes the annotated
method to web service clients. The sayHellomethod returns a greeting to the client,
using the name passed to it to compose the greeting. The implementation class also
must define a default, public, no-argument constructor.

package helloservice.endpoint;

import javax.jws.WebService;

import javax.jws.webMethod;

@WebService

public class Hello {

private String message = new String("Hello, ");

public void Hello() {

}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging, andDeploying the Service
You can build, package, and deploy the helloservice application by using either
NetBeans IDE or Ant.

▼ ToBuild, Package, andDeploy the ServiceUsingNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/jaxws/

Select the helloservice folder.

Select theOpen asMain Project check box.

ClickOpenProject.

1

2

3

4

5

Creating a SimpleWeb Service and Clientswith JAX-WS

The Java EE 6Tutorial: Basic Concepts210

ptg

In the Projects tab, right-click the helloservice project and select Deploy.
This command builds and packages the application into helloservice.war, located
in tut-install/examples/jaxws/helloservice/dist/, and deploys thisWAR file to
the GlassFish Server.

You can view theWSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now
you are ready to create a client that accesses this service.

▼ ToBuild, Package, andDeploy the ServiceUsingAnt

In a terminalwindow, go to:
tut-install/examples/jaxws/helloservice/

Type the following command:
ant

This command calls the default target, which builds and packages the application
into aWAR file, helloservice.war, located in the dist directory.

Make sure that theGlassFish Server is started.

Type the following:
ant deploy

You can view theWSDL file of the deployed service by requesting the URL
http://localhost:8080/helloservice/HelloService?wsdl in a web browser. Now
you are ready to create a client that accesses this service.

Testing theMethods of aWebService Endpoint
GlassFish Server allows you to test themethods of a web service endpoint.

▼ ToTest the Servicewithout a Client
To test the sayHellomethod of HelloService, follow these steps.

Open theweb service test interface by typing the followingURL in awebbrowser:
http://localhost:8080/helloservice/HelloService?Tester

UnderMethods, type a nameas the parameter to the sayHellomethod.

6

Next Steps

1

2

3

4

Next Steps

1

2

Creating a SimpleWeb Service and Clientswith JAX-WS

Chapter 12 • BuildingWeb Serviceswith JAX-WS 211

ptg

Click the sayHello button.
This takes you to the sayHelloMethod invocation page.

UnderMethod returned, you’ll see the response from the endpoint.

ASimple JAX-WSApplicationClient
The HelloAppClient class is a stand-alone application client that accesses the
sayHellomethod of HelloService. This call is made through a port, a local object
that acts as a proxy for the remote service. The port is created at development time by
the wsimport task, which generates JAX-WS portable artifacts based on aWSDL file.

Coding theApplicationClient
When invoking the remotemethods on the port, the client performs these steps:

1. Uses the generated helloservice.endpoint.HelloService class, which
represents the service at the URI of the deployed service’sWSDL file:

import helloservice.endpoint.HelloService;

import javax.xml.ws.WebServiceRef;

public class HelloAppClient {

@WebServiceRef(wsdlLocation =

"META-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")
private static HelloService service;

2. Retrieves a proxy to the service, also known as a port, by invoking getHelloPort
on the service:

helloservice.endpoint.Hello port = service.getHelloPort();

The port implements the SEI defined by the service.
3. Invokes the port’s sayHellomethod, passing a string to the service:

return port.sayHello(arg0);

Here is the full source of HelloAppClient, which is located in the following directory:

tut-install/examples/jaxws/appclient/src/appclient/

package appclient;

import helloservice.endpoint.HelloService;

import javax.xml.ws.WebServiceRef;

public class HelloAppClient {

@WebServiceRef(wsdlLocation =

"META-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")
private static HelloService service;

/**

3

Creating a SimpleWeb Service and Clientswith JAX-WS

The Java EE 6Tutorial: Basic Concepts212

ptg

* @param args the command line arguments

*/

public static void main(String[] args) {

System.out.println(sayHello("world"));
}

private static String sayHello(java.lang.String arg0) {

helloservice.endpoint.Hello port = service.getHelloPort();

return port.sayHello(arg0);

}

}

Building, Packaging,Deploying, andRunning theApplication
Client
You can build, package, deploy, and run the appclient application by using either
NetBeans IDE or Ant. To build the client, youmust first have deployed helloservice,
as described in “Building, Packaging, andDeploying the Service” on page 210.

▼ ToBuild, Package,Deploy, andRun theApplicationClientUsing
NetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/jaxws/

Select the appclient folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the appclient project and select Run.
Youwill see the output of the application client in the Output pane.

▼ ToBuild, Package,Deploy, andRun theApplicationClientUsing
Ant

In a terminalwindow, go to:
tut-install/examples/jaxws/appclient/

Type the following command:
ant

1

2

3

4

5

6

1

2

Creating a SimpleWeb Service and Clientswith JAX-WS

Chapter 12 • BuildingWeb Serviceswith JAX-WS 213

ptg

This command calls the default target, which runs the wsimport task and builds and
packages the application into a JAR file, appclient.jar, located in the dist directory.

To run the client, type the following command:
ant run

ASimple JAX-WSWebClient
HelloServlet is a servlet that, like the Java client, calls the sayHellomethod of the
web service. Like the application client, it makes this call through a port.

Coding the Servlet
To invoke themethod on the port, the client performs these steps:

1. Imports the HelloService endpoint and the WebServiceRef annotation:

import helloservice.endpoint.HelloService;

...

import javax.xml.ws.WebServiceRef;

2. Defines a reference to the web service by specifying theWSDL location:

@WebServiceRef(wsdlLocation =

"WEB-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")

3. Declares the web service, then defines a privatemethod that calls the sayHello
method on the port:

private HelloService service;

...

private String sayHello(java.lang.String arg0) {

helloservice.endpoint.Hello port = service.getHelloPort();

return port.sayHello(arg0);

}

4. In the servlet, calls this privatemethod:

out.println("<p>" + sayHello("world") + "</p>");

The significant parts of the HelloServlet code follow. The code is located in the
tut-install/examples/jaxws/src/java/webclient directory.

package webclient;

import helloservice.endpoint.HelloService;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.xml.ws.WebServiceRef;

3

Creating a SimpleWeb Service and Clientswith JAX-WS

The Java EE 6Tutorial: Basic Concepts214

ptg

@WebServlet(name="HelloServlet", urlPatterns={"/HelloServlet"})
public class HelloServlet extends HttpServlet {

@WebServiceRef(wsdlLocation =

"WEB-INF/wsdl/localhost_8080/helloservice/HelloService.wsdl")
private HelloService service;

/**

* Processes requests for both HTTP <code>GET</code>

* and <code>POST</code> methods.

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs

* @throws IOException if an I/O error occurs

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet HelloServlet</title>");
out.println("</head>");
out.println("<body>");
out.println("<h1>Servlet HelloServlet at " +

request.getContextPath () + "</h1>");
out.println("<p>" + sayHello("world") + "</p>");
out.println("</body>");
out.println("</html>");

} finally {

out.close();

}

}

// doGet and doPost methods, which call processRequest, and

// getServletInfo method

private String sayHello(java.lang.String arg0) {

helloservice.endpoint.Hello port = service.getHelloPort();

return port.sayHello(arg0);

}

}

Building, Packaging,Deploying, andRunning theWebClient
You can build, package, deploy, and run the webclient application by using either
NetBeans IDE or Ant. To build the client, youmust first have deployed helloservice,
as described in “Building, Packaging, andDeploying the Service” on page 210.

Creating a SimpleWeb Service and Clientswith JAX-WS

Chapter 12 • BuildingWeb Serviceswith JAX-WS 215

ptg

▼ ToBuild, Package,Deploy, andRun theWebClientUsingNetBeans
IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/jaxws/

Select the webclient folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the webclient project and select Deploy.
This task runs the wsimport tasks, builds and packages the application into aWAR file,
webclient.war, located in the dist directory, and deploys it to the server.

In awebbrowser, navigate to the followingURL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHellomethod appears in the window.

▼ ToBuild, Package, Deploy, andRun theWebClientUsingAnt

In a terminalwindow, go to:
tut-install/examples/jaxws/webclient/

Type the following command:
ant

This command calls the default target, which runs the wsimport tasks, then builds
and packages the application into aWAR file, webclient.war, located in the dist
directory.

Type the following command:
ant deploy

This task deploys theWAR file to the server.

In awebbrowser, navigate to the followingURL:
http://localhost:8080/webclient/HelloServlet

The output of the sayHellomethod appears in the window.

1

2

3

4

5

6

7

1

2

3

4

Creating a SimpleWeb Service and Clientswith JAX-WS

The Java EE 6Tutorial: Basic Concepts216

ptg

Types Supportedby JAX-WS
JAX-WS delegates themapping of Java programming language types to and from
XML definitions to JAXB. Application developers don’t need to know the details of
thesemappings but should be aware that not every class in the Java language can be
used as amethod parameter or return type in JAX-WS. For information on which
types are supported by JAXB, see the list of JAXB default data type bindings at
http://download.oracle.com/

docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs .

WebServices Interoperability and JAX-WS
JAX-WS supports theWeb Services Interoperability (WS-I) Basic Profile Version 1.1.
TheWS-I Basic Profile is a document that clarifies the SOAP 1.1 andWSDL 1.1
specifications to promote SOAP interoperability. For links related toWS-I, see
“Further Information about JAX-WS” on page 217.

To supportWS-I Basic Profile Version 1.1, the JAX-WS runtime supports doc/literal
and rpc/literal encodings for services, static ports, dynamic proxies, and the Dynamic
Invocation Interface (DII).

Further Information about JAX-WS
Formore information about JAX-WS and related technologies, see
■ Java API for XMLWeb Services 2.2 specification:

https://jax-ws.dev.java.net/spec-download.html

■ JAX-WS home:
https://jax-ws.dev.java.net/

■ Simple Object Access Protocol (SOAP) 1.2W3CNote:
http://www.w3.org/TR/soap/

■ Web Services Description Language (WSDL) 1.1W3CNote:
http://www.w3.org/TR/wsdl

■ WS-I Basic Profile 1.1:
http://www.ws-i.org

Further Information about JAX-WS

Chapter 12 • BuildingWeb Serviceswith JAX-WS 217

https://jax-ws.dev.java.net/spec-download.html
https://jax-ws.dev.java.net/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://www.ws-i.org

ptg

This page intentionally left blank

ptg

Building RESTfulWeb Serviceswith JAX-RS

This chapter describes the REST architecture, RESTful web services, and the Java API
for RESTfulWeb Services (JAX-RS, defined in JSR 311).

Jersey, the reference implementation of JAX-RS, implements support for the
annotations defined in JSR 311, making it easy for developers to build RESTful web
services by using the Java programming language.

If you are developing with GlassFish Server, you can install the Jersey samples and
documentation by using the Update Tool. Instructions for using the Update Tool can
be found in “Java EE 6 Tutorial Component” on page 38. The Jersey samples and
documentation are provided in the Available Add-ons area of the Update Tool.

The following topics are addressed here:
■ “What Are RESTfulWeb Services?” on page 219
■ “Creating a RESTful Root Resource Class” on page 220
■ “Example Applications for JAX-RS” on page 235
■ “Further Information about JAX-RS” on page 240

WhatAreRESTfulWebServices?
RESTful web services are built to work best on theWeb. Representational State
Transfer (REST) is an architectural style that specifies constraints, such as the uniform
interface, that if applied to a web service induce desirable properties, such as
performance, scalability, andmodifiability, that enable services to work best on the
Web. In the REST architectural style, data and functionality are considered resources
and are accessed usingUniform Resource Identifiers (URIs), typically links on theWeb.
The resources are acted upon by using a set of simple, well-defined operations. The
REST architectural style constrains an architecture to a client/server architecture and

13C H A P T E R 1 3

219

ptg

is designed to use a stateless communication protocol, typically HTTP. In the REST
architecture style, clients and servers exchange representations of resources by using a
standardized interface and protocol.

The following principles encourage RESTful applications to be simple, lightweight,
and fast:
■ Resource identification throughURI: A RESTful web service exposes a set of

resources that identify the targets of the interaction with its clients. Resources are
identified byURIs, which provide a global addressing space for resource and
service discovery. See “The @PathAnnotation andURI Path Templates” on
page 223 formore information.

■ Uniform interface: Resources aremanipulated using a fixed set of four create,
read, update, delete operations: PUT, GET, POST, and DELETE. PUT creates a new
resource, which can be then deleted by using DELETE. GET retrieves the current state
of a resource in some representation. POST transfers a new state onto a resource.
See “Responding toHTTP Resources” on page 226 formore information.

■ Self-descriptivemessages: Resources are decoupled from their representation so
that their content can be accessed in a variety of formats, such as HTML, XML,
plain text, PDF, JPEG, JSON, and others. Metadata about the resource is available
and used, for example, to control caching, detect transmission errors, negotiate the
appropriate representation format, and perform authentication or access control.
See “Responding toHTTP Resources” on page 226 and “Using Entity Providers to
MapHTTPResponse and Request Entity Bodies” on page 227 formore
information.

■ Stateful interactions through hyperlinks: Every interaction with a resource is
stateless; that is, request messages are self-contained. Stateful interactions are
based on the concept of explicit state transfer. Several techniques exist to exchange
state, such as URI rewriting, cookies, and hidden form fields. State can be
embedded in responsemessages to point to valid future states of the interaction.
See “Using Entity Providers toMapHTTPResponse and Request Entity Bodies”
on page 227 and “Building URIs” in the JAX-RSOverview document formore
information.

Creating aRESTful Root Resource Class
Root resource classes are POJOs that are either annotated with @Path or have at least
onemethod annotated with @Path or a request method designator, such as @GET, @PUT,
@POST, or @DELETE. Resource methods aremethods of a resource class annotated with a
request method designator. This section explains how to use JAX-RS to annotate Java
classes to create RESTful web services.

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts220

ptg

DevelopingRESTfulWebServiceswith JAX-RS
JAX-RS is a Java programming language API designed tomake it easy to develop
applications that use the REST architecture.

The JAX-RS API uses Java programming language annotations to simplify the
development of RESTful web services. Developers decorate Java programming
language class files with JAX-RS annotations to define resources and the actions that
can be performed on those resources. JAX-RS annotations are runtime annotations;
therefore, runtime reflection will generate the helper classes and artifacts for the
resource. A Java EE application archive containing JAX-RS resource classes will have
the resources configured, the helper classes and artifacts generated, and the resource
exposed to clients by deploying the archive to a Java EE server.

Table 13–1 lists some of the Java programming annotations that are defined by
JAX-RS, with a brief description of how each is used. Further information on the
JAX-RS APIs can be viewed at http://download.oracle.com/docs/cd/E17410_01/
javaee/6/api/.

TABLE 13–1 Summary of JAX-RSAnnotations

Annotation Description

@Path The @Path annotation’s value is a relative URI path indicating where the Java
class will be hosted: for example, /helloworld. You can also embed variables
in the URIs tomake a URI path template. For example, you could ask for the
name of a user and pass it to the application as a variable in the URI:
/helloworld/{username}.

@GET The @GET annotation is a request method designator and corresponds to the
similarly namedHTTPmethod. The Javamethod annotated with this request
method designator will process HTTPGET requests. The behavior of a
resource is determined by the HTTPmethod to which the resource is
responding.

@POST The @POST annotation is a request method designator and corresponds to the
similarly namedHTTPmethod. The Javamethod annotated with this request
method designator will process HTTP POST requests. The behavior of a
resource is determined by the HTTPmethod to which the resource is
responding.

@PUT The @PUT annotation is a request method designator and corresponds to the
similarly namedHTTPmethod. The Javamethod annotated with this request
method designator will process HTTP PUT requests. The behavior of a
resource is determined by the HTTPmethod to which the resource is
responding.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 221

ptg

TABLE 13–1 Summary of JAX-RSAnnotations (Continued)
Annotation Description

@DELETE The @DELETE annotation is a request method designator and corresponds to
the similarly namedHTTPmethod. The Javamethod annotated with this
request method designator will process HTTPDELETE requests. The
behavior of a resource is determined by the HTTPmethod to which the
resource is responding.

@HEAD The @HEAD annotation is a request method designator and corresponds to the
similarly namedHTTPmethod. The Javamethod annotated with this request
method designator will process HTTPHEAD requests. The behavior of a
resource is determined by the HTTPmethod to which the resource is
responding.

@PathParam The @PathParam annotation is a type of parameter that you can extract for use
in your resource class. URI path parameters are extracted from the request
URI, and the parameter names correspond to the URI path template variable
names specified in the @Path class-level annotation.

@QueryParam The @QueryParam annotation is a type of parameter that you can extract for
use in your resource class. Query parameters are extracted from the request
URI query parameters.

@Consumes The @Consumes annotation is used to specify theMIMEmedia types of
representations a resource can consume that were sent by the client.

@Produces The @Produces annotation is used to specify theMIMEmedia types of
representations a resource can produce and send back to the client: for
example, "text/plain".

@Provider The @Provider annotation is used for anything that is of interest to the
JAX-RS runtime, such as MessageBodyReader and MessageBodyWriter. For
HTTP requests, the MessageBodyReader is used tomap anHTTP request
entity body tomethod parameters. On the response side, a return value is
mapped to anHTTP response entity body by using a MessageBodyWriter. If
the application needs to supply additional metadata, such as HTTP headers or
a different status code, amethod can return a Response that wraps the entity
and that can be built using Response.ResponseBuilder.

Overviewof a JAX-RSApplication
The following code sample is a very simple example of a root resource class that uses
JAX-RS annotations:

package com.sun.jersey.samples.helloworld.resources;

import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts222

ptg

// The Java class will be hosted at the URI path "/helloworld"
@Path("/helloworld")
public class HelloWorldResource {

// The Java method will process HTTP GET requests

@GET

// The Java method will produce content identified by the MIME Media

// type "text/plain"
@Produces("text/plain")
public String getClichedMessage() {

// Return some cliched textual content

return "Hello World";
}

}

The following sections describe the annotations used in this example.
■ The @Path annotation’s value is a relative URI path. In the preceding example, the

Java class will be hosted at the URI path /helloworld. This is an extremely simple
use of the @Path annotation, with a static URI path. Variables can be embedded in
the URIs.URI path templates are URIs with variables embedded within the URI
syntax.

■ The @GET annotation is a request method designator, along with @POST, @PUT,
@DELETE, and @HEAD, defined by JAX-RS and corresponding to the similarly named
HTTPmethods. In the example, the annotated Javamethod will process HTTP GET

requests. The behavior of a resource is determined by theHTTPmethod to which
the resource is responding.

■ The @Produces annotation is used to specify theMIMEmedia types a resource can
produce and send back to the client. In this example, the Javamethod will produce
representations identified by theMIMEmedia type "text/plain".

■ The @Consumes annotation is used to specify theMIMEmedia types a resource can
consume that were sent by the client. The example could bemodified to set the
message returned by the getClichedMessagemethod, as shown in this code
example:

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

The @PathAnnotation andURI PathTemplates
The @Path annotation identifies the URI path template to which the resource responds
and is specified at the class ormethod level of a resource. The @Path annotation’s value
is a partial URI path template relative to the base URI of the server on which the
resource is deployed, the context root of the application, and the URL pattern to which
the JAX-RS runtime responds.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 223

ptg

URI path templates are URIs with variables embedded within the URI syntax. These
variables are substituted at runtime in order for a resource to respond to a request
based on the substituted URI. Variables are denoted by braces ({ and }). For example,
look at the following @Path annotation:

@Path("/users/{username}")

In this kind of example, a user is prompted to type his or her name, and then a JAX-RS
web service configured to respond to requests to this URI path template responds. For
example, if the user types the user name “Galileo,” the web service responds to the
followingURL:

http://example.com/users/Galileo

To obtain the value of the user name, the @PathParam annotationmay be used on the
method parameter of a request method, as shown in the following code example:

@Path("/users/{username}")
public class UserResource {

@GET

@Produces("text/xml")
public String getUser(@PathParam("username") String userName) {

...

}

}

By default, the URI variablemust match the regular expression "[^/]+?". This variable
may be customized by specifying a different regular expression after the variable name.
For example, if a user namemust consist only of lowercase and uppercase
alphanumeric characters, override the default regular expression in the variable
definition:

@Path("users/{username: [a-zA-Z][a-zA-Z_0-9]}")

In this example the username variable will match only user names that begin with one
uppercase or lowercase letter and zero ormore alphanumeric characters and the
underscore character. If a user name does notmatch that template, a 404 (Not Found)
response will be sent to the client.

A @Path value isn’t required to have leading or trailing slashes (/). The JAX-RS runtime
parses URI path templates the samewhether or not they have leading or trailing
spaces.

AURI path template has one ormore variables, with each variable name surrounded
by braces: { to begin the variable name and } to end it. In the preceding example,
username is the variable name. At runtime, a resource configured to respond to the
preceding URI path template will attempt to process the URI data that corresponds to
the location of {username} in the URI as the variable data for username.

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts224

ptg

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/resources/{name1}/{name2}/ , youmust
deploy the application to a Java EE server that responds to requests to the
http://example.com/myContextRoot URI and then decorate your resource with the
following @Path annotation:

@Path("/{name1}/{name2}/")
public class SomeResource {

...

}

In this example, the URL pattern for the JAX-RS helper servlet, specified in web.xml, is
the default:

<servlet-mapping>

<servlet-name>My JAX-RS Resource</servlet-name>

<url-pattern>/resources/*</url-pattern>

</servlet-mapping>

A variable name can be usedmore than once in the URI path template.

If a character in the value of a variable would conflict with the reserved characters of a
URI, the conflicting character should be substituted with percent encoding. For
example, spaces in the value of a variable should be substituted with %20.

When defining URI path templates, be careful that the resulting URI after substitution
is valid.

Table 13–2 lists some examples of URI path template variables and how the URIs are
resolved after substitution. The following variable names and values are used in the
examples:
■ name1: james
■ name2: gatz
■ name3:
■ location: Main%20Street
■ question: why

Note –The value of the name3 variable is an empty string.

TABLE 13–2 Examples ofURI PathTemplates

URI PathTemplate URI After Substitution

http://example.com/{name1}/{name2}/ http://example.com/james/gatz/

http://example.com/{question}/

{question}/{question}/

http://example.com/why/why/why/

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 225

ptg

TABLE 13–2 Examples ofURI Path Templates (Continued)
URI PathTemplate URI After Substitution

http://example.com/maps/{location} http://example.com/maps/Main%20Street

http://example.com/{name3}/home/ http://example.com//home/

Responding toHTTPResources
The behavior of a resource is determined by theHTTPmethods (typically, GET, POST,
PUT, DELETE) to which the resource is responding.

TheRequestMethodDesignatorAnnotations
Request method designator annotations are runtime annotations, defined by JAX-RS,
that correspond to the similarly namedHTTPmethods.Within a resource class file,
HTTPmethods aremapped to Java programming languagemethods by using the
request method designator annotations. The behavior of a resource is determined by
whichHTTPmethod the resource is responding to. JAX-RS defines a set of request
method designators for the commonHTTPmethods @GET, @POST, @PUT, @DELETE, and
@HEAD; you can also create your own custom request method designators. Creating
custom request method designators is outside the scope of this document.

The following example, an extract from the storage service sample, shows the use of
the PUTmethod to create or update a storage container:

@PUT

public Response putContainer() {

System.out.println("PUT CONTAINER " + container);

URI uri = uriInfo.getAbsolutePath();

Container c = new Container(container, uri.toString());

Response r;

if (!MemoryStore.MS.hasContainer(c)) {

r = Response.created(uri).build();

} else {

r = Response.noContent().build();

}

MemoryStore.MS.createContainer(c);

return r;

}

By default, the JAX-RS runtime will automatically support themethods HEAD and
OPTIONS if not explicitly implemented. For HEAD, the runtime will invoke the
implemented GETmethod, if present, and ignore the response entity, if set. For
OPTIONS, the Allow response header will be set to the set of HTTPmethods supported
by the resource. In addition, the JAX-RS runtime will return aWebApplication

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts226

ptg

Definition Language (WADL) document describing the resource; see
https://wadl.dev.java.net/ for more information.

Methods decorated with request method designatorsmust return void, a Java
programming language type, or a javax.ws.rs.core.Response object. Multiple
parameters may be extracted from the URI by using the PathParam or QueryParam
annotations as described in “Extracting Request Parameters” on page 231. Conversion
between Java types and an entity body is the responsibility of an entity provider, such
as MessageBodyReader or MessageBodyWriter. Methods that need to provide
additional metadata with a response should return an instance of the Response class.
The ResponseBuilder class provides a convenient way to create a Response instance
using a builder pattern. TheHTTP PUT and POSTmethods expect anHTTP request
body, so you should use a MessageBodyReader for methods that respond to PUT and
POST requests.

Both @PUT and @POST can be used to create or update a resource. POST canmean
anything, so when using POST, it is up to the application to define the semantics. PUT
has well-defined semantics.When using PUT for creation, the client declares the URI
for the newly created resource.

PUT has very clear semantics for creating and updating a resource. The representation
the client sendsmust be the same representation that is received using a GET, given the
samemedia type. PUT does not allow a resource to be partially updated, a common
mistake when attempting to use the PUTmethod. A common application pattern is to
use POST to create a resource and return a 201 response with a location header whose
value is the URI to the newly created resource. In this pattern, the web service declares
the URI for the newly created resource.

Using Entity Providers toMapHTTPResponse andRequest Entity
Bodies
Entity providers supplymapping services between representations and their associated
Java types. The two types of entity providers are MessageBodyReader and
MessageBodyWriter. For HTTP requests, the MessageBodyReader is used tomap an
HTTP request entity body tomethod parameters. On the response side, a return value
is mapped to anHTTP response entity body by using a MessageBodyWriter. If the
application needs to supply additional metadata, such as HTTP headers or a different
status code, amethod can return a Response that wraps the entity and that can be built
by using Response.ResponseBuilder.

Table 13–3 shows the standard types that are supported automatically for entities. You
need to write an entity provider only if you are not choosing one of these standard
types.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 227

ptg

TABLE 13–3 Types Supported for Entities

JavaType SupportedMediaTypes

byte[] All media types (*/*)

java.lang.String All text media types (text/*)

java.io.InputStream All media types (*/*)

java.io.Reader All media types (*/*)

java.io.File All media types (*/*)

javax.activation.DataSource All media types (*/*)

javax.xml.transform.Source XMLmedia types (text/xml, application/xml,
and application/*+xml)

javax.xml.bind.JAXBElement and
application-supplied JAXB classes

XMLmedia types (text/xml, application/xml,
and application/*+xml)

MultivaluedMap<String, String> Form content
(application/x-www-form-urlencoded)

StreamingOutput All media types (*/*), MessageBodyWriter only

The following example shows how to use MessageBodyReaderwith the @Consumes and
@Provider annotations:

@Consumes("application/x-www-form-urlencoded")
@Provider

public class FormReader implements MessageBodyReader<NameValuePair> {

The following example shows how to use MessageBodyWriterwith the @Produces and
@Provider annotations:

@Produces("text/html")
@Provider

public class FormWriter implements

MessageBodyWriter<Hashtable<String, String>> {

The following example shows how to use ResponseBuilder:

@GET

public Response getItem() {

System.out.println("GET ITEM " + container + " " + item);

Item i = MemoryStore.MS.getItem(container, item);

if (i == null)

throw new NotFoundException("Item not found");
Date lastModified = i.getLastModified().getTime();

EntityTag et = new EntityTag(i.getDigest());

ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts228

ptg

if (rb != null)

return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);

return Response.ok(b, i.getMimeType()).

lastModified(lastModified).tag(et).build();

}

Using @Consumes and @Produces to Customize
Requests andResponses
The information sent to a resource and then passed back to the client is specified as a
MIMEmedia type in the headers of anHTTP request or response. You can specify
whichMIMEmedia types of representations a resource can respond to or produce by
using the following annotations:
■ javax.ws.rs.Consumes

■ javax.ws.rs.Produces

By default, a resource class can respond to and produce all MIMEmedia types of
representations specified in the HTTP request and response headers.

The @ProducesAnnotation
The @Produces annotation is used to specify theMIMEmedia types or representations
a resource can produce and send back to the client. If @Produces is applied at the class
level, all themethods in a resource can produce the specifiedMIME types by default. If
applied at themethod level, the annotation overrides any @Produces annotations
applied at the class level.

If nomethods in a resource are able to produce theMIME type in a client request, the
JAX-RS runtime sends back anHTTP “406 Not Acceptable” error.

The value of @Produces is an array of String ofMIME types. For example:

@Produces({"image/jpeg,image/png"})

The following example shows how to apply @Produces at both the class andmethod
levels:

@Path("/myResource")
@Produces("text/plain")
public class SomeResource {

@GET

public String doGetAsPlainText() {

...

}

@GET

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 229

ptg

@Produces("text/html")
public String doGetAsHtml() {

...

}

}

The doGetAsPlainTextmethod defaults to theMIMEmedia type of the @Produces
annotation at the class level. The doGetAsHtmlmethod’s @Produces annotation
overrides the class-level @Produces setting and specifies that themethod can produce
HTML rather than plain text.

If a resource class is capable of producingmore than oneMIMEmedia type, the
resourcemethod chosen will correspond to themost acceptablemedia type as declared
by the client. More specifically, the Accept header of the HTTP request declares what
is most acceptable. For example, if the Accept header is Accept: text/plain, the
doGetAsPlainTextmethod will be invoked. Alternatively, if the Accept header is
Accept: text/plain;q=0.9, text/html, which declares that the client can accept
media types of text/plain and text/html but prefers the latter, the doGetAsHtml
method will be invoked.

More than onemedia typemay be declared in the same @Produces declaration. The
following code example shows how this is done:

@Produces({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

...

}

The doGetAsXmlOrJsonmethod will get invoked if either of themedia types
application/xml and application/json is acceptable. If both are equally acceptable,
the former will be chosen because it occurs first. The preceding examples refer
explicitly toMIMEmedia types for clarity. It is possible to refer to constant values,
whichmay reduce typographical errors. Formore information, see the constant field
values of MediaType at https://jsr311.dev.java.net/
nonav/releases/1.0/javax/ws/rs/core/MediaType.html.

The @ConsumesAnnotation
The @Consumes annotation is used to specify whichMIMEmedia types of
representations a resource can accept, or consume, from the client. If @Consumes is
applied at the class level, all the responsemethods accept the specifiedMIME types by
default. If applied at themethod level, @Consumes overrides any @Consumes
annotations applied at the class level.

If a resource is unable to consume theMIME type of a client request, the JAX-RS
runtime sends back anHTTP 415 (“UnsupportedMedia Type”) error.

The value of @Consumes is an array of String of acceptableMIME types. For example:

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts230

ptg

@Consumes({"text/plain,text/html"})

The following example shows how to apply @Consumes at both the class andmethod
levels:

@Path("/myResource")
@Consumes("multipart/related")
public class SomeResource {

@POST

public String doPost(MimeMultipart mimeMultipartData) {

...

}

@POST

@Consumes("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

...

}

}

The doPostmethod defaults to theMIMEmedia type of the @Consumes annotation at
the class level. The doPost2method overrides the class level @Consumes annotation to
specify that it can accept URL-encoded form data.

If no resourcemethods can respond to the requestedMIME type, anHTTP 415
(“UnsupportedMedia Type”) error is returned to the client.

The HelloWorld example discussed previously in this section can bemodified to set
themessage by using @Consumes, as shown in the following code example:

@POST

@Consumes("text/plain")
public void postClichedMessage(String message) {

// Store the message

}

In this example, the Javamethod will consume representations identified by theMIME
media type text/plain. Note that the resourcemethod returns void. This means that
no representation is returned and that a response with a status code of HTTP 204 (“No
Content”) will be returned.

ExtractingRequest Parameters
Parameters of a resourcemethodmay be annotated with parameter-based annotations
to extract information from a request. A previous example presented the use of the
@PathParam parameter to extract a path parameter from the path component of the
request URL that matched the path declared in @Path.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 231

ptg

You can extract the following types of parameters for use in your resource class:
■ Query
■ URI path
■ Form
■ Cookie
■ Header
■ Matrix

Query parameters are extracted from the request URI query parameters and are
specified by using the javax.ws.rs.QueryParam annotation in themethod parameter
arguments. The following example, from the sparklines sample application,
demonstrates using @QueryParam to extract query parameters from the Query
component of the request URL:

@Path("smooth")
@GET

public Response smooth(

@DefaultValue("2") @QueryParam("step") int step,

@DefaultValue("true") @QueryParam("min-m") boolean hasMin,

@DefaultValue("true") @QueryParam("max-m") boolean hasMax,

@DefaultValue("true") @QueryParam("last-m") boolean hasLast,

@DefaultValue("blue") @QueryParam("min-color") ColorParam minColor,

@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,

@DefaultValue("red") @QueryParam("last-color") ColorParam lastColor

) { ... }

If the query parameter step exists in the query component of the request URI, the
value of stepwill be extracted and parsed as a 32-bit signed integer and assigned to the
stepmethod parameter. If step does not exist, a default value of 2, as declared in the
@DefaultValue annotation, will be assigned to the stepmethod parameter. If the step
value cannot be parsed as a 32-bit signed integer, anHTTP 400 (“Client Error”)
response is returned.

User-defined Java programming language typesmay be used as query parameters. The
following code example shows the ColorParam class used in the preceding query
parameter example:

public class ColorParam extends Color {

public ColorParam(String s) {

super(getRGB(s));

}

private static int getRGB(String s) {

if (s.charAt(0) == ’#’) {

try {

Color c = Color.decode("0x" + s.substring(1));

return c.getRGB();

} catch (NumberFormatException e) {

throw new WebApplicationException(400);

}

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts232

ptg

} else {

try {

Field f = Color.class.getField(s);

return ((Color)f.get(null)).getRGB();

} catch (Exception e) {

throw new WebApplicationException(400);

}

}

}

}

The constructor for ColorParam takes a single String parameter.

Both @QueryParam and @PathParam can be used only on the following Java types:
■ All primitive types except char
■ All wrapper classes of primitive types except Character
■ Any class with a constructor that accepts a single String argument
■ Any class with the static method named valueOf(String) that accepts a single

String argument
■ Any class with a constructor that takes a single String as a parameter
■ List<T>, Set<T>, or SortedSet<T>, where Tmatches the already listed criteria.

Sometimes, parameters may containmore than one value for the same name. If
this is the case, these typesmay be used to obtain all values

If @DefaultValue is not used in conjunction with @QueryParam, and the query
parameter is not present in the request, the value will be an empty collection for List,
Set, or SortedSet; null for other object types; and the default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names
correspond to the URI path template variable names specified in the @Path class-level
annotation. URI parameters are specified using the javax.ws.rs.PathParam
annotation in themethod parameter arguments. The following example shows how to
use @Path variables and the @PathParam annotation in amethod:

@Path("/{username}")
public class MyResourceBean {

...

@GET

public String printUsername(@PathParam("username") String userId) {

...

}

}

In the preceding snippet, the URI path template variable name username is specified as
a parameter to the printUsernamemethod. The @PathParam annotation is set to the
variable name username. At runtime, before printUsername is called, the value of
username is extracted from the URI and cast to a String. The resulting String is then
available to themethod as the userId variable.

Creating a RESTful Root Resource Class

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 233

ptg

If the URI path template variable cannot be cast to the specified type, the JAX-RS
runtime returns anHTTP 400 (“Bad Request”) error to the client. If the @PathParam
annotation cannot be cast to the specified type, the JAX-RS runtime returns anHTTP
404 (“Not Found”) error to the client.

The @PathParam parameter and the other parameter-based annotations
(@MatrixParam, @HeaderParam, @CookieParam, and @FormParam) obey the same rules
as @QueryParam.

Cookie parameters, indicated by decorating the parameter with
javax.ws.rs.CookieParam, extract information from the cookies declared in
cookie-relatedHTTP headers.Header parameters, indicated by decorating the
parameter with javax.ws.rs.HeaderParam, extract information from theHTTP
headers.Matrix parameters, indicated by decorating the parameter with
javax.ws.rs.MatrixParam, extract information fromURL path segments.

Form parameters, indicated by decorating the parameter with
javax.ws.rs.FormParam, extract information from a request representation that is of
theMIMEmedia type application/x-www-form-urlencoded and conforms to the
encoding specified byHTML forms, as described in http://www.w3.org/TR/

html401/interact/forms.html#h-17.13.4.1. This parameter is very useful for
extracting information sent by POST in HTML forms.

The following example extracts the name form parameter from the POST form data:

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(@FormParam("name") String name) {

// Store the message

}

To obtain a general map of parameter names and values for query and path
parameters, use the following code:

@GET

public String get(@Context UriInfo ui) {

MultivaluedMap<String, String> queryParams = ui.getQueryParameters();

MultivaluedMap<String, String> pathParams = ui.getPathParameters();

}

The followingmethod extracts header and cookie parameter names and values into a
map:

@GET

public String get(@Context HttpHeaders hh) {

MultivaluedMap<String, String> headerParams = ui.getRequestHeaders();

Map<String, Cookie> pathParams = ui.getCookies();

}

In general, @Context can be used to obtain contextual Java types related to the request
or response.

Creating a RESTful Root Resource Class

The Java EE 6Tutorial: Basic Concepts234

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

ptg

For form parameters, it is possible to do the following:

@POST

@Consumes("application/x-www-form-urlencoded")
public void post(MultivaluedMap<String, String> formParams) {

// Store the message

}

ExampleApplications for JAX-RS
This section provides an introduction to creating, deploying, and running your own
JAX-RS applications. This section demonstrates the steps that are needed to create,
build, deploy, and test a very simple web application that uses JAX-RS annotations.

ARESTfulWebService
This section explains how to use NetBeans IDE to create a RESTful web service.
NetBeans IDE generates a skeleton for the application, and you simply need to
implement the appropriate methods. If you do not use an IDE, try using one of the
example applications that ship with Jersey as a template tomodify.

▼ ToCreate aRESTfulWebServiceUsingNetBeans IDE

In NetBeans IDE, create a simpleweb application.This example creates a very simple
“Hello,World”web application.

a. InNetBeans IDE, select File→NewProject.

b. FromCategories, select JavaWeb. FromProjects, selectWebApplication. ClickNext.

Note – For this step, you could also create a RESTful web service in aMavenweb
project by selectingMaven as the category andMavenWeb Project as the project.
The remaining steps would be the same.

c. Type a project name, HelloWorldApplication, and click Next.

d. Make sure that the Server is GlassFish Server (or similarwording.)

e. Click Finish.

The project is created. The file index.jsp appears in the Source pane.

1

Example Applications for JAX-RS

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 235

ptg

Right-click the project and select New; then select RESTfulWeb Services fromPatterns.

a. Select Simple Root Resource and clickNext.

b. Type a Resource Package name, such as helloWorld.

c. Type helloworld in the Path field.Type HelloWorld in the Class Namefield. For
MIMEType, select text/html.

d. Click Finish.
The REST Resources Configuration page appears.

e. ClickOK.
Anew resource, HelloWorld.java, is added to the project and appears in the
Source pane. This file provides a template for creating a RESTful web service.

In HelloWorld.java, find the getHtml()method. Replace the //TODO comment and
the exceptionwith the following text, so that the finishedproduct resembles the
followingmethod.

Note – Because theMIME type produced is HTML, you can useHTML tags in your
return statement.

/**

* Retrieves representation of an instance of helloWorld.HelloWorld

* @return an instance of java.lang.String

*/

@GET

@Produces("text/html")
public String getHtml() {

return "<html><body><h1>Hello, World!!</body></h1></html>";
}

Test theweb service.To do this, right-click the project node and clickTest RESTfulWeb
Services.
This step deploys the application and brings up a test client in the browser.

When the test client appears, select the helloworld resource in the left pane, and click
theTest button in the right pane.
The words Hello, World!! appear in the Response window below.

Set the RunProperties:

a. Right-click the project node and select Properties.

2

3

4

5

6

Example Applications for JAX-RS

The Java EE 6Tutorial: Basic Concepts236

ptg

b. In the dialog, select the Run category.

c. Set the RelativeURL to the location of the RESTfulweb service relative to the
Context Path,which for this example is resources/helloworld.

Tip –You can find the value for the Relative URL in the Test RESTfulWeb Services
browser window. In the top of the right pane, after Resource, is the URL for the
RESTful web service being tested. The part following the Context Path
(http://localhost:8080/HelloWorldApp) is the Relative URL that needs to be
entered here.

If you don’t set this property, the file index.jspwill appear by default when the
application is run. As this file also contains Hello World as its default value, youmight
not notice that your RESTful web service isn’t running, so just be aware of this default
and the need to set this property, or update index.jsp to provide a link to the RESTful
web service.

Right-click the project and select Deploy.

Right-click the project and select Run.

A browser window opens and displays the return value of Hello, World!!

For other sample applications that demonstrate deploying and running JAX-RS
applications using NetBeans IDE, see “The rsvp Example Application” on page 237
andYour First Cup: An Introduction to the Java EE Platform at
http://download.oracle.com/docs/cd/E17410_01/javaee/6/firstcup/doc/ .
Youmay also look at the tutorials on the NetBeans IDE tutorial site, such as the one
titled “Getting Started with RESTfulWeb Services” at http://www.netbeans.org/
kb/docs/websvc/rest.html. This tutorial includes a section on creating a CRUD
application from a database. Create, read, update, and delete (CRUD) are the four
basic functions of persistent storage and relational databases.

The rsvp ExampleApplication
The rsvp example application, located in tut-install/examples/jaxrs/rsvp, allows
invitees to an event to indicate whether they will attend. The events, people invited to
the event, and the responses to the invite are stored in a Java DB database using the
Java Persistence API. The JAX-RS resources in rsvp are exposed in a stateless session
enterprise bean.

7

8

SeeAlso

Example Applications for JAX-RS

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 237

http://www.netbeans.org/kb/docs/websvc/rest.html
http://www.netbeans.org/kb/docs/websvc/rest.html

ptg

Components of the rsvp ExampleApplication
The three enterprise beans in the rsvp example application are
rsvp.ejb.ConfigBean, rsvp.ejb.StatusBean, and rsvp.ejb.ResponseBean.

ConfigBean is a singleton session bean that initializes the data in the database.

StatusBean exposes a JAX-RS resource for displaying the current status of all invitees
to an event. The URI path template is declared as follows:

@Path("/status/{eventId}/"}

TheURI path variable eventId is a @PathParam variable in the getResponsemethod,
which responds toHTTP GET requests and has been annotated with @GET. The
eventId variable is used to look up all the current responses in the database for that
particular event.

ResponseBean exposes a JAX-RS resource for setting an invitee's response to a
particular event. The URI path template for ResponseBean is declared as follows:

@Path("/{eventId}/{inviteId}

TwoURI path variables are declared in the path template: eventId and inviteId. As
in StatusBean, eventId is the unique ID for a particular event. Each invitee to that
event has a unique ID for the invitation, and that is the inviteId. Both of these path
variables are used in two JAX-RSmethods in ResponseBean: getResponse and
putResponse. The getResponsemethod responds toHTTP GET requests and displays
the invitee's current response and a form to change the response.

An invitee whowants to change his or her response selects the new response and
submits the form data, which is processed as anHTTP PUT request by the putResponse
method. One of the parameters to the putResponsemethod, the userResponse string,
is annotated with @FormParam("attendeeResponse"). TheHTML form created by
getResponse stores the changed response in the select list with an ID of
attendeeResponse. The annotation @FormParam("attendeeResponse") indicates that
the value of the select response is extracted from theHTTP PUT request and stored as
the userResponse string. The putResponsemethod uses userResponse, eventId, and
inviteId to update the invitee's response in the database.

The events, people, and responses in rsvp are encapsulated in Java Persistence API
entities. The rsvp.entity.Event, rsvp.entity.Person, and rsvp.entity.Response
entities respectively represent events, invitees, and responses to an event.

The rsvp.util.ResponseEnum class declares an enumerated type that represents all
the possible response statuses an inviteemay have.

Example Applications for JAX-RS

The Java EE 6Tutorial: Basic Concepts238

ptg

Running the rsvp ExampleApplication
BothNetBeans IDE andAnt can be used to deploy and run the rsvp example
application.

▼ ToRun the rsvp ExampleApplication inNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/jaxrs/

Select the rsvp folder.

Select theOpen asMain Project check box.

ClickOpenProject.

Right-click the rsvpproject in the left pane and select Run.
The project will be compiled, assembled, and deployed to GlassFish Server. A web
browser windowwill open to http://localhost:8080/rsvp.

In thewebbrowserwindow, click the Event Status link for theDuke’s Birthday event.
You’ll see the current invitees and their responses.

Click on the nameof one of the invitees, select a response, and click Submit response;
then click Back to event page.
The invitee’s new status should now be displayed in the table of invitees and their
response statuses.

▼ ToRun the rsvp ExampleApplicationUsingAnt
Youmust have started the Java DB database before running rsvp.

In a terminalwindow, go to:
tut-install/examples/jaxrs/rsvp

Type the following command:
ant all

This command builds, assembles, and deploys rsvp to GlassFish Server.

Open awebbrowserwindow to http://localhost:8080/rsvp.

1

2

3

4

5

6

7

8

BeforeYouBegin

1

2

3

Example Applications for JAX-RS

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 239

ptg

In thewebbrowserwindow, click the Event Status link for theDuke’s Birthday event.
You’ll see the current invitees and their responses.

Click on the nameof one of the invitees, select a response, and click Submit response,
then click Back to event page.
The invitee’s new status should now be displayed in the table of invitees and their
response statuses.

Real-World Examples
Most blog sites use RESTful web services. These sites involve downloading XML files,
in RSS or Atom format, that contain lists of links to other resources. Other web sites
and web applications that use REST-like developer interfaces to data include Twitter
and Amazon S3 (Simple Storage Service).With Amazon S3, buckets and objects can be
created, listed, and retrieved using either a REST-style HTTP interface or a SOAP
interface. The examples that ship with Jersey include a storage service example with a
RESTful interface. The tutorial at http://netbeans.org/kb/docs/websvc/
twitter-swing.html uses NetBeans IDE to create a simple, graphical, REST-based
client that displays Twitter public timelinemessages and lets you view and update your
Twitter status.

Further Information about JAX-RS
Formore information about RESTful web services and JAX-RS, see
■ “RESTfulWeb Services vs. 'Big'Web Services: Making the Right Architectural

Decision”:
http://www2008.org/papers/pdf/p805-pautassoA.pdf

■ The CommunityWiki for Project Jersey, the JAX-RS reference implementation:
http://wikis.sun.com/display/Jersey/Main

■ “Fielding Dissertation: Chapter 5: Representational State Transfer (REST)”:
http://www.ics.uci.edu/

~fielding/pubs/dissertation/rest_arch_style.htm

■ RESTfulWeb Services, by Leonard Richardson and SamRuby, available from
O’ReillyMedia at http://oreilly.com/catalog/9780596529260/

■ JSR 311: JAX-RS: The Java API for RESTfulWeb Services:
http://jcp.org/en/jsr/detail?id=311

■ JAX-RS project:
https://jsr311.dev.java.net/

4

5

Further Information about JAX-RS

The Java EE 6Tutorial: Basic Concepts240

http://www2008.org/papers/pdf/p805-pautassoA.pdf
http://wikis.sun.com/display/Jersey/Main
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://oreilly.com/catalog/9780596529260/
http://jcp.org/en/jsr/detail?id=311
https://jsr311.dev.java.net/

ptg

■ Jersey project:
https://jersey.dev.java.net/

■ JAX-RSOverview document:
http://wikis.sun.com/display/Jersey/Overview+of+JAX-RS+1.0+Features

Further Information about JAX-RS

Chapter 13 • Building RESTfulWeb Serviceswith JAX-RS 241

ptg

This page intentionally left blank

ptg

Enterprise Beans
Part IV introduces Enterprise JavaBeans components. This part contains the following
chapters:
■ Chapter 14, “Enterprise Beans”
■ Chapter 15, “Getting Started with Enterprise Beans”
■ Chapter 16, “Running the Enterprise Bean Examples”

P A R T I V

243

ptg

This page intentionally left blank

ptg

Enterprise Beans

Enterprise beans are Java EE components that implement Enterprise JavaBeans (EJB)
technology. Enterprise beans run in the EJB container, a runtime environment within
the GlassFish Server (see “Container Types” on page 14). Although transparent to the
application developer, the EJB container provides system-level services, such as
transactions and security, to its enterprise beans. These services enable you to quickly
build and deploy enterprise beans, which form the core of transactional Java EE
applications.

The following topics are addressed here:

■ “What Is an Enterprise Bean?” on page 245
■ “What Is a Session Bean?” on page 247
■ “What Is aMessage-Driven Bean?” on page 249
■ “Accessing Enterprise Beans” on page 251
■ “The Contents of an Enterprise Bean” on page 258
■ “Naming Conventions for Enterprise Beans” on page 260
■ “The Lifecycles of Enterprise Beans” on page 261
■ “Further Information about Enterprise Beans” on page 264

What Is an Enterprise Bean?
Written in the Java programming language, an enterprise bean is a server-side
component that encapsulates the business logic of an application. The business logic is
the code that fulfills the purpose of the application. In an inventory control
application, for example, the enterprise beansmight implement the business logic in
methods called checkInventoryLevel and orderProduct. By invoking these 32–bit
methods, clients can access the inventory services provided by the application.

14C H A P T E R 1 4

245

ptg

Benefits of Enterprise Beans
For several reasons, enterprise beans simplify the development of large, distributed
applications. First, because the EJB container provides system-level services to
enterprise beans, the bean developer can concentrate on solving business problems.
The EJB container, rather than the bean developer, is responsible for system-level
services, such as transactionmanagement and security authorization.

Second, because the beans rather than the clients contain the application’s business
logic, the client developer can focus on the presentation of the client. The client
developer does not have to code the routines that implement business rules or access
databases. As a result, the clients are thinner, a benefit that is particularly important for
clients that run on small devices.

Third, because enterprise beans are portable components, the application assembler
can build new applications from existing beans. Provided that they use the standard
APIs, these applications can run on any compliant Java EE server.

When toUse Enterprise Beans
You should consider using enterprise beans if your application has any of the
following requirements.
■ The applicationmust be scalable. To accommodate a growing number of users,

youmay need to distribute an application’s components across multiple machines.
Not only can the enterprise beans of an application run on differentmachines, but
also their location will remain transparent to the clients.

■ Transactionsmust ensure data integrity. Enterprise beans support transactions,
themechanisms that manage the concurrent access of shared objects.

■ The application will have a variety of clients.With only a few lines of code, remote
clients can easily locate enterprise beans. These clients can be thin, various, and
numerous.

Types of Enterprise Beans
Table 14–1 summarizes the two types of enterprise beans. The following sections
discuss each type inmore detail.

What Is an Enterprise Bean?

The Java EE 6Tutorial: Basic Concepts246

ptg

TABLE 14–1 Enterprise BeanTypes

Enterprise BeanType Purpose

Session Performs a task for a client; optionally, may implement a web service

Message-driven Acts as a listener for a particular messaging type, such as the Java
Message Service API

What Is a SessionBean?
A session bean encapsulates business logic that can be invoked programmatically by a
client over local, remote, or web service client views. To access an application that is
deployed on the server, the client invokes the session bean’s methods. The session bean
performs work for its client, shielding it from complexity by executing business tasks
inside the server.

A session bean is not persistent. (That is, its data is not saved to a database.)

For code samples, see Chapter 16, “Running the Enterprise Bean Examples.”

Types of SessionBeans
Session beans are of three types: stateful, stateless, and singleton.

Stateful SessionBeans
The state of an object consists of the values of its instance variables. In a stateful session
bean, the instance variables represent the state of a unique client/bean session. Because
the client interacts (“talks”) with its bean, this state is often called the conversational
state.

As its name suggests, a session bean is similar to an interactive session. A session bean
is not shared; it can have only one client, in the sameway that an interactive session
can have only one user.When the client terminates, its session bean appears to
terminate and is no longer associated with the client.

The state is retained for the duration of the client/bean session. If the client removes
the bean, the session ends and the state disappears. This transient nature of the state is
not a problem, however, because when the conversation between the client and the
bean ends, there is no need to retain the state.

Stateless SessionBeans
A stateless session bean does notmaintain a conversational state with the client.When
a client invokes themethods of a stateless bean, the bean’s instance variables may
contain a state specific to that client but only for the duration of the invocation.When

What Is a Session Bean?

Chapter 14 • Enterprise Beans 247

ptg

themethod is finished, the client-specific state should not be retained. Clients may,
however, change the state of instance variables in pooled stateless beans, and this state
is held over to the next invocation of the pooled stateless bean. Except duringmethod
invocation, all instances of a stateless bean are equivalent, allowing the EJB container
to assign an instance to any client. That is, the state of a stateless session bean should
apply across all clients.

Because they can support multiple clients, stateless session beans can offer better
scalability for applications that require large numbers of clients. Typically, an
application requires fewer stateless session beans than stateful session beans to support
the same number of clients.

A stateless session bean can implement a web service, but a stateful session bean
cannot.

Singleton SessionBeans
A singleton session bean is instantiated once per application and exists for the lifecycle
of the application. Singleton session beans are designed for circumstances in which a
single enterprise bean instance is shared across and concurrently accessed by clients.

Singleton session beans offer similar functionality to stateless session beans but differ
from them in that there is only one singleton session bean per application, as opposed
to a pool of stateless session beans, any of whichmay respond to a client request. Like
stateless session beans, singleton session beans can implement web service endpoints.

Singleton session beansmaintain their state between client invocations but are not
required tomaintain their state across server crashes or shutdowns.

Applications that use a singleton session beanmay specify that the singleton should be
instantiated upon application startup, which allows the singleton to perform
initialization tasks for the application. The singletonmay perform cleanup tasks on
application shutdown as well, because the singleton will operate throughout the
lifecycle of the application.

When toUse SessionBeans
Stateful session beans are appropriate if any of the following conditions are true.
■ The bean’s state represents the interaction between the bean and a specific client.
■ The bean needs to hold information about the client acrossmethod invocations.
■ The beanmediates between the client and the other components of the application,

presenting a simplified view to the client.
■ Behind the scenes, the beanmanages the work flow of several enterprise beans.

What Is a Session Bean?

The Java EE 6Tutorial: Basic Concepts248

ptg

To improve performance, youmight choose a stateless session bean if it has any of
these traits.
■ The bean’s state has no data for a specific client.
■ In a singlemethod invocation, the bean performs a generic task for all clients. For

example, youmight use a stateless session bean to send an email that confirms an
online order.

■ The bean implements a web service.

Singleton session beans are appropriate in the following circumstances.
■ State needs to be shared across the application.
■ A single enterprise bean needs to be accessed bymultiple threads concurrently.
■ The application needs an enterprise bean to perform tasks upon application

startup and shutdown.
■ The bean implements a web service.

What Is aMessage-DrivenBean?
Amessage-driven bean is an enterprise bean that allows Java EE applications to process
messages asynchronously. This type of bean normally acts as a JMSmessage listener,
which is similar to an event listener but receives JMSmessages instead of events. The
messages can be sent by any Java EE component (an application client, another
enterprise bean, or a web component) or by a JMS application or system that does not
use Java EE technology.Message-driven beans can process JMSmessages or other
kinds of messages.

WhatMakesMessage-DrivenBeansDifferent from
SessionBeans?
Themost visible difference betweenmessage-driven beans and session beans is that
clients do not access message-driven beans through interfaces. Interfaces are described
in the section “Accessing Enterprise Beans” on page 251. Unlike a session bean, a
message-driven bean has only a bean class.

What Is aMessage-Driven Bean?

Chapter 14 • Enterprise Beans 249

ptg

In several respects, a message-driven bean resembles a stateless session bean.

■ Amessage-driven bean’s instances retain no data or conversational state for a
specific client.

■ All instances of amessage-driven bean are equivalent, allowing the EJB container
to assign amessage to anymessage-driven bean instance. The container can pool
these instances to allow streams ofmessages to be processed concurrently.

■ A singlemessage-driven bean can process messages frommultiple clients.

The instance variables of themessage-driven bean instance can contain some state
across the handling of client messages, such as a JMSAPI connection, an open
database connection, or an object reference to an enterprise bean object.

Client components do not locatemessage-driven beans and invokemethods directly
on them. Instead, a client accesses amessage-driven bean through, for example, JMS
by sendingmessages to themessage destination for which themessage-driven bean
class is the MessageListener. You assign amessage-driven bean’s destination during
deployment by using GlassFish Server resources.

Message-driven beans have the following characteristics.

■ They execute upon receipt of a single client message.
■ They are invoked asynchronously.
■ They are relatively short-lived.
■ They do not represent directly shared data in the database, but they can access and

update this data.
■ They can be transaction-aware.
■ They are stateless.

When amessage arrives, the container calls themessage-driven bean’s onMessage
method to process themessage. The onMessagemethod normally casts themessage to
one of the five JMSmessage types and handles it in accordance with the application’s
business logic. The onMessagemethod can call helpermethods or can invoke a session
bean to process the information in themessage or to store it in a database.

Amessage can be delivered to amessage-driven bean within a transaction context, so
all operations within the onMessagemethod are part of a single transaction. If message
processing is rolled back, themessage will be redelivered. Formore information, see
Chapter 27, “Transactions.”

What Is aMessage-Driven Bean?

The Java EE 6Tutorial: Basic Concepts250

ptg

When toUseMessage-DrivenBeans
Session beans allow you to send JMSmessages and to receive them synchronously but
not asynchronously. To avoid tying up server resources, do not to use blocking
synchronous receives in a server-side component; in general, JMSmessages should
not be sent or received synchronously. To receivemessages asynchronously, use a
message-driven bean.

Accessing Enterprise Beans

Note –Thematerial in this section applies only to session beans and not to
message-driven beans. Because they have a different programmingmodel,
message-driven beans do not have interfaces or no-interface views that define client
access.

Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the
enterprise bean implementation class to clients. Clients using the no-interface view of
an enterprise beanmay invoke any public methods in the enterprise bean
implementation class or any superclasses of the implementation class. A business
interface is a standard Java programming language interface that contains the business
methods of the enterprise bean.

A client can access a session bean only through themethods defined in the bean’s
business interface or through the public methods of an enterprise bean that has a
no-interface view. The business interface or no-interface view defines the client’s view
of an enterprise bean. All other aspects of the enterprise bean (method
implementations and deployment settings) are hidden from the client.

Well-designed interfaces and no-interface views simplify the development and
maintenance of Java EE applications. Not only do clean interfaces and no-interface
views shield the clients from any complexities in the EJB tier, but they also allow the
enterprise beans to change internally without affecting the clients. For example, if you
change the implementation of a session bean business method, you won’t have to alter
the client code. But if you were to change themethod definitions in the interfaces, you
might have tomodify the client code as well. Therefore, it is important that you design
the interfaces and no-interface views carefully to isolate your clients from possible
changes in the enterprise beans.

Session beans can havemore than one business interface. Session beans should, but are
not required to, implement their business interface or interfaces.

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 251

ptg

Using Enterprise Beans in Clients
The client of an enterprise bean obtains a reference to an instance of an enterprise
bean through either dependency injection, using Java programming language
annotations, or JNDI lookup, using the Java Naming andDirectory Interface syntax to
find the enterprise bean instance.

Dependency injection is the simplest way of obtaining an enterprise bean reference.
Clients that run within a Java EE server-managed environment, JavaServer Faces web
applications, JAX-RS web services, other enterprise beans, or Java EE application
clients, support dependency injection using the javax.ejb.EJB annotation.

Applications that run outside a Java EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for
identifying Java EE components to simplify this explicit lookup.

Portable JNDI Syntax
Three JNDI namespaces are used for portable JNDI lookups: java:global,
java:module, and java:app.
■ The java:global JNDI namespace is the portable way of finding remote

enterprise beans using JNDI lookups. JNDI addresses are of the following form:

java:global[/application name]/module name/enterprise bean name[/interface name]

Application name andmodule name default to the name of the application and
moduleminus the file extension. Application names are required only if the
application is packaged within an EAR. The interface name is required only if the
enterprise bean implementsmore than one business interface.

■ The java:module namespace is used to look up local enterprise beans within the
samemodule. JNDI addresses using the java:module namespace are of the
following form:

java:module/enterprise bean name/[interface name]

The interface name is required only if the enterprise bean implementsmore than
one business interface.

■ The java:app namespace is used to look up local enterprise beans packaged within
the same application. That is, the enterprise bean is packaged within an EAR file
containingmultiple Java EEmodules. JNDI addresses using the java:app
namespace are of the following form:

java:app[/module name]/enterprise bean name[/interface name]

Themodule name is optional. The interface name is required only if the enterprise
bean implements more than one business interface.

Accessing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts252

ptg

For example, if an enterprise bean, MyBean, is packaged within the web application
archive myApp.war, themodule name is myApp. The portable JNDI name is
java:module/MyBeanAn equivalent JNDI name using the java:global namespace is
java:global/myApp/MyBean.

DecidingonRemoteor Local Access
When you design a Java EE application, one of the first decisions youmake is the type
of client access allowed by the enterprise beans: remote, local, or web service.

Whether to allow local or remote access depends on the following factors.
■ Tight or loose coupling of related beans: Tightly coupled beans depend on one

another. For example, if a session bean that processes sales orders calls a session
bean that emails a confirmationmessage to the customer, these beans are tightly
coupled. Tightly coupled beans are good candidates for local access. Because they
fit together as a logical unit, they typically call each other often and would benefit
from the increased performance that is possible with local access.

■ Type of client: If an enterprise bean is accessed by application clients, it should
allow remote access. In a production environment, these clients almost always run
onmachines other than those on which the GlassFish Server is running. If an
enterprise bean’s clients are web components or other enterprise beans, the type of
access depends on how youwant to distribute your components.

■ Component distribution: Java EE applications are scalable because their
server-side components can be distributed acrossmultiple machines. In a
distributed application, for example, the server that the web components run on
may not be the one on which the enterprise beans they access are deployed. In this
distributed scenario, the enterprise beans should allow remote access.

■ Performance: Owing to such factors as network latency, remote calls may be
slower than local calls. On the other hand, if you distribute components among
different servers, youmay improve the application’s overall performance. Both of
these statements are generalizations; performance can vary in different operational
environments. Nevertheless, you should keep inmind how your application design
might affect performance.

If you aren’t sure which type of access an enterprise bean should have, choose remote
access. This decision gives youmore flexibility. In the future, you can distribute your
components to accommodate the growing demands on your application.

Although it is uncommon, it is possible for an enterprise bean to allow both remote
and local access. If this is the case, either the business interface of the beanmust be
explicitly designated as a business interface by being decorated with the @Remote or
@Local annotations, or the bean class must explicitly designate the business interfaces

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 253

ptg

by using the @Remote and @Local annotations. The same business interface cannot be
both a local and a remote business interface.

Local Clients
A local client has these characteristics.

■ It must run in the same application as the enterprise bean it accesses.
■ It can be a web component or another enterprise bean.
■ To the local client, the location of the enterprise bean it accesses is not transparent.

The no-interface view of an enterprise bean is a local view. The public methods of the
enterprise bean implementation class are exposed to local clients that access the
no-interface view of the enterprise bean. Enterprise beans that use the no-interface
view do not implement a business interface.

The local business interface defines the bean’s business and lifecycle methods. If the
bean’s business interface is not decorated with @Local or @Remote, and if the bean class
does not specify the interface using @Local or @Remote, the business interface is by
default a local interface.

To build an enterprise bean that allows only local access, youmay, but are not required
to, do one of the following:

■ Create an enterprise bean implementation class that does not implement a
business interface, indicating that the bean exposes a no-interface view to clients.
For example:

@Session

public class MyBean { ... }

■ Annotate the business interface of the enterprise bean as a @Local interface. For
example:

@Local

public interface InterfaceName { ... }

■ Specify the interface by decorating the bean class with @Local and specify the
interface name. For example:

@Local(InterfaceName.class)
public class BeanName implements InterfaceName { ... }

Accessing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts254

ptg

Accessing Local Enterprise BeansUsing theNo-InterfaceView
Client access to an enterprise bean that exposes a local, no-interface view is
accomplished through either dependency injection or JNDI lookup.
■ To obtain a reference to the no-interface view of an enterprise bean through

dependency injection, use the javax.ejb.EJB annotation and specify the
enterprise bean’s implementation class:

@EJB

ExampleBean exampleBean;

■ To obtain a reference to the no-interface view of an enterprise bean through JNDI
lookup, use the javax.naming.InitialContext interface’s lookupmethod:

ExampleBean exampleBean = (ExampleBean)

InitialContext.lookup("java:module/ExampleBean");

Clients do not use the new operator to obtain a new instance of an enterprise bean that
uses a no-interface view.

Accessing Local Enterprise BeansThat ImplementBusiness
Interfaces
Client access to enterprise beans that implement local business interfaces is
accomplished through either dependency injection or JNDI lookup.
■ To obtain a reference to the local business interface of an enterprise bean through

dependency injection, use the javax.ejb.EJB annotation and specify the
enterprise bean’s local business interface name:

@EJB

Example example;

■ To obtain a reference to a local business interface of an enterprise bean through
JNDI lookup, use the javax.naming.InitialContext interface’s lookupmethod:

ExampleLocal example = (ExampleLocal)

InitialContext.lookup("java:module/ExampleLocal");

RemoteClients
A remote client of an enterprise bean has the following traits.
■ It can run on a differentmachine and a different JVM from the enterprise bean it

accesses. (It is not required to run on a different JVM.)
■ It can be a web component, an application client, or another enterprise bean.
■ To a remote client, the location of the enterprise bean is transparent.
■ The enterprise beanmust implement a business interface. That is, remote clients

may not access an enterprise bean through a no-interface view.

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 255

ptg

To create an enterprise bean that allows remote access, youmust either
■ Decorate the business interface of the enterprise bean with the @Remote

annotation:

@Remote

public interface InterfaceName { ... }

■ Decorate the bean class with @Remote, specifying the business interface or
interfaces:

@Remote(InterfaceName.class)

public class BeanName implements InterfaceName { ... }

The remote interface defines the business and lifecycle methods that are specific to the
bean. For example, the remote interface of a bean named BankAccountBeanmight
have business methods named deposit and credit. Figure 14–1 shows how the
interface controls the client’s view of an enterprise bean.

Client access to an enterprise bean that implements a remote business interface is
accomplished through either dependency injection or JNDI lookup.
■ To obtain a reference to the remote business interface of an enterprise bean

through dependency injection, use the javax.ejb.EJB annotation and specify the
enterprise bean’s remote business interface name:

@EJB

Example example;

■ To obtain a reference to a remote business interface of an enterprise bean through
JNDI lookup, use the javax.naming.InitialContext interface’s lookupmethod:

ExampleRemote example = (ExampleRemote)

InitialContext.lookup("java:global/myApp/ExampleRemote");

WebService Clients
Aweb service client can access a Java EE application in twoways. First, the client can
access a web service created with JAX-WS. (Formore information on JAX-WS, see

FIGURE 14–1 Interfaces for an Enterprise Beanwith RemoteAccess

Remote Client Remote Interface BankAccountBean

deposit()
credit()

Accessing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts256

ptg

Chapter 12, “BuildingWeb Services with JAX-WS.”) Second, a web service client can
invoke the business methods of a stateless session bean.Message beans cannot be
accessed by web service clients.

Provided that it uses the correct protocols (SOAP, HTTP,WSDL), any web service
client can access a stateless session bean, whether or not the client is written in the Java
programming language. The client doesn’t even “know” what technology implements
the service: stateless session bean, JAX-WS, or some other technology. In addition,
enterprise beans and web components can be clients of web services. This flexibility
enables you to integrate Java EE applications with web services.

A web service client accesses a stateless session bean through the bean’s web service
endpoint implementation class. By default, all public methods in the bean class are
accessible to web service clients. The @WebMethod annotationmay be used to
customize the behavior of web servicemethods. If the @WebMethod annotation is used
to decorate the bean class’s methods, only thosemethods decorated with @WebMethod
are exposed to web service clients.

For a code sample, see “AWeb Service Example: helloservice” on page 286.

MethodParameters andAccess
The type of access affects the parameters of the beanmethods that are called by clients.
The following sections apply not only tomethod parameters but also tomethod return
values.

Isolation
The parameters of remote calls aremore isolated than those of local calls.With remote
calls, the client and the bean operate on different copies of a parameter object. If the
client changes the value of the object, the value of the copy in the bean does not
change. This layer of isolation can help protect the bean if the client accidentally
modifies the data.

In a local call, both the client and the bean canmodify the same parameter object. In
general, you should not rely on this side effect of local calls. Perhaps someday you will
want to distribute your components, replacing the local calls with remote ones.

As with remote clients, web service clients operate on different copies of parameters
than does the bean that implements the web service.

Granularity of AccessedData
Because remote calls are likely to be slower than local calls, the parameters in remote
methods should be relatively coarse-grained. A coarse-grained object containsmore

Accessing Enterprise Beans

Chapter 14 • Enterprise Beans 257

ptg

data than a fine-grained one, so fewer access calls are required. For the same reason,
the parameters of themethods called by web service clients should also be
coarse-grained.

TheContents of an Enterprise Bean
To develop an enterprise bean, youmust provide the following files:

■ Enterprise bean class: Implements the businessmethods of the enterprise bean
and any lifecycle callbackmethods.

■ Business interfaces: Define the businessmethods implemented by the enterprise
bean class. A business interface is not required if the enterprise bean exposes a
local, no-interface view.

■ Helper classes: Other classes needed by the enterprise bean class, such as exception
and utility classes.

Package the programming artifacts in the preceding list either into an EJB JAR file (a
stand-alonemodule that stores the enterprise bean) or within a web application
archive (WAR)module.

Packaging Enterprise Beans in EJB JARModules
An EJB JAR file is portable and can be used for various applications.

To assemble a Java EE application, package one ormoremodules, such as EJB JAR
files, into an EAR file, the archive file that holds the application.When deploying the
EAR file that contains the enterprise bean’s EJB JAR file, you also deploy the enterprise
bean to the GlassFish Server. You can also deploy an EJB JAR that is not contained in
an EAR file. Figure 14–2 shows the contents of an EJB JAR file.

The Contents of an Enterprise Bean

The Java EE 6Tutorial: Basic Concepts258

ptg

Packaging Enterprise Beans inWARModules
Enterprise beans often provide the business logic of a web application. In these cases,
packaging the enterprise bean within the web application’sWARmodule simplifies
deployment and application organization. Enterprise beansmay be packaged within a
WARmodule as Java programming language class files or within a JAR file that is
bundled within theWARmodule.

To include enterprise bean class files in aWARmodule, the class files should be in the
WEB-INF/classes directory.

To include a JAR file that contains enterprise beans in aWARmodule, add the JAR to
the WEB-INF/lib directory of theWARmodule.

WARmodules that contain enterprise beans do not require an ejb-jar.xml

deployment descriptor. If the application uses ejb-jar.xml, it must be located in the
WARmodule’s WEB-INF directory.

JAR files that contain enterprise bean classes packaged within aWARmodule are not
considered EJB JAR files, even if the bundled JAR file conforms to the format of an EJB
JAR file. The enterprise beans contained within the JAR file are semantically equivalent
to enterprise beans located in theWARmodule’s WEB-INF/classes directory, and the
environment namespace of all the enterprise beans are scoped to theWARmodule.

FIGURE 14–2 Structure of an Enterprise Bean JAR

Assembly Root

META-INF

ejb-jar.xml
sun-ejb-jar.xml
(optional)

MANIFEST.MF

All .class files
for this module

The Contents of an Enterprise Bean

Chapter 14 • Enterprise Beans 259

ptg

For example, suppose that a web application consists of a shopping cart enterprise
bean, a credit card processing enterprise bean, and a Java servlet front end. The
shopping cart bean exposes a local, no-interface view and is defined as follows:

package com.example.cart;

@Stateless

public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file, cc.jar, exposes a
local, no-interface view, and is defined as follows:

package com.example.cc;

@Stateless

public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet, handles the web front end and uses
both CartBean and CreditCardBean. TheWARmodule layout for this application
looks as follows:

WEB-INF/classes/com/example/cart/CartBean.class

WEB-INF/classes/com/example/web/StoreServlet

WEB-INF/lib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

NamingConventions for Enterprise Beans
Because enterprise beans are composed ofmultiple parts, it’s useful to follow a naming
convention for your applications. Table 14–2 summarizes the conventions for the
example beans in this tutorial.

TABLE 14–2 NamingConventions for Enterprise Beans

Item Syntax Example

Enterprise bean name nameBean AccountBean

Enterprise bean class nameBean AccountBean

Business interface name Account

Naming Conventions for Enterprise Beans

The Java EE 6Tutorial: Basic Concepts260

ptg

The Lifecycles of Enterprise Beans
An enterprise bean goes through various stages during its lifetime, or lifecycle. Each
type of enterprise bean (stateful session, stateless session, singleton session, or
message-driven) has a different lifecycle.

The descriptions that follow refer tomethods that are explained along with the code
examples in the next two chapters. If you are new to enterprise beans, you should skip
this section and run the code examples first.

The Lifecycle of a Stateful SessionBean
Figure 14–3 illustrates the stages that a session bean passes through during its lifetime.
The client initiates the lifecycle by obtaining a reference to a stateful session bean. The
container performs any dependency injection and then invokes themethod annotated
with @PostConstruct, if any. The bean is now ready to have its business methods
invoked by the client.

While in the ready stage, the EJB containermay decide to deactivate, or passivate, the
bean bymoving it frommemory to secondary storage. (Typically, the EJB container
uses a least-recently-used algorithm to select a bean for passivation.) The EJB
container invokes themethod annotated @PrePassivate, if any, immediately before
passivating it. If a client invokes a business method on the bean while it is in the passive
stage, the EJB container activates the bean, calls themethod annotated
@PostActivate, if any, and thenmoves it to the ready stage.

FIGURE 14–3 Lifecycle of a Stateful Session Bean

Does Not Exist Ready Passive

PrePassivate
callback, if any

PostActivate
callback, if any

Create
Dependency injection, if any
PostConstruct callback, if any
Init method, or ejbCreate<METHOD>, if any

1

2

Remove
PreDestroy callback, if any

1

2

3

4

The Lifecycles of Enterprise Beans

Chapter 14 • Enterprise Beans 261

ptg

At the end of the lifecycle, the client invokes amethod annotated @Remove, and the EJB
container calls themethod annotated @PreDestroy, if any. The bean’s instance is then
ready for garbage collection.

Your code controls the invocation of only one lifecycle method: themethod annotated
@Remove. All othermethods in Figure 14–3 are invoked by the EJB container. See
Chapter 28, “Resource Connections,” formore information.

The Lifecycle of a Stateless SessionBean
Because a stateless session bean is never passivated, its lifecycle has only two stages:
nonexistent and ready for the invocation of business methods. Figure 14–4 illustrates
the stages of a stateless session bean.

The EJB container typically creates andmaintains a pool of stateless session beans,
beginning the stateless session bean’s lifecycle. The container performs any
dependency injection and then invokes themethod annotated @PostConstruct, if it
exists. The bean is now ready to have its business methods invoked by a client.

At the end of the lifecycle, the EJB container calls themethod annotated @PreDestroy,
if it exists. The bean’s instance is then ready for garbage collection.

The Lifecycle of a Singleton SessionBean
Like a stateless session bean, a singleton session bean is never passivated and has only
two stages, nonexistent and ready for the invocation of business methods, as shown in
Figure 14–5.

FIGURE 14–4 Lifecycle of a Stateless Session Bean

Does Not Exist Ready

Dependency injection, if any
PostConstruct callback, if any

1

2

PreDestroy callback, if any

The Lifecycles of Enterprise Beans

The Java EE 6Tutorial: Basic Concepts262

ptg

The EJB container initiates the singleton session bean lifecycle by creating the
singleton instance. This occurs upon application deployment if the singleton is
annotated with the @Startup annotation The container performs any dependency
injection and then invokes themethod annotated @PostConstruct, if it exists. The
singleton session bean is now ready to have its business methods invoked by the client.

At the end of the lifecycle, the EJB container calls themethod annotated @PreDestroy,
if it exists. The singleton session bean is now ready for garbage collection.

The Lifecycle of aMessage-DrivenBean
Figure 14–6 illustrates the stages in the lifecycle of amessage-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For each
instance, the EJB container performs these tasks.

1. If themessage-driven bean uses dependency injection, the container injects these
references before instantiating the instance.

2. The container calls themethod annotated @PostConstruct, if any.

FIGURE 14–5 Lifecycle of a Singleton Session Bean

Does Not Exist Ready

Dependency injection, if any
PostConstruct callback, if any

1

2

PreDestroy callback, if any

FIGURE 14–6 Lifecycle of aMessage-Driven Bean

Does Not Exist Ready

PreDestroy callback, if any

onMessage

Dependency injection, if any
PostConstruct callback, if any

1

2

The Lifecycles of Enterprise Beans

Chapter 14 • Enterprise Beans 263

ptg

Like a stateless session bean, amessage-driven bean is never passivated and has only
two states: nonexistent and ready to receivemessages.

At the end of the lifecycle, the container calls themethod annotated @PreDestroy, if
any. The bean’s instance is then ready for garbage collection.

Further Information about Enterprise Beans
Formore information on Enterprise JavaBeans technology, see
■ Enterprise JavaBeans 3.1 specification:

http://jcp.org/en/jsr/summary?id=318

■ Enterprise JavaBeans web site:
http://www.oracle.com/technetwork/java/ejb-141389.html

Further Information about Enterprise Beans

The Java EE 6Tutorial: Basic Concepts264

http://jcp.org/en/jsr/summary?id=318
http://www.oracle.com/technetwork/java/ejb-141389.html

ptg

Getting Startedwith Enterprise Beans

This chapter shows how to develop, deploy, and run a simple Java EE application
named converter. The purpose of converter is to calculate currency conversions
between Japanese yen and Eurodollars. The converter application consists of an
enterprise bean, which performs the calculations, and two types of clients: an
application client and a web client.

Here’s an overview of the steps you’ll follow in this chapter:

1. Create the enterprise bean: ConverterBean.
2. Create the web client.
3. Deploy converter onto the server.
4. Using a browser, run the web client.

Before proceeding, make sure that you’ve done the following:

■ Read Chapter 1, “Overview”
■ Become familiar with enterprise beans (see Chapter 14, “Enterprise Beans”)
■ Started the server (see “Starting and Stopping the GlassFish Server” on page 41)

The following topics are addressed here:

■ “Creating the Enterprise Bean” on page 265
■ “Modifying the Java EEApplication” on page 269

Creating the Enterprise Bean
The enterprise bean in our example is a stateless session bean called ConverterBean.
The source code for ConverterBean is in the
tut-install/examples/ejb/converter/src/java/ directory.

15C H A P T E R 1 5

265

ptg

Creating ConverterBean requires these steps:

1. Coding the bean’s implementation class (the source code is provided)
2. Compiling the source code

Coding the Enterprise BeanClass
The enterprise bean class for this example is called ConverterBean. This class
implements two business methods: dollarToYen and yenToEuro. Because the
enterprise bean class doesn’t implement a business interface, the enterprise bean
exposes a local, no-interface view. The public methods in the enterprise bean class are
available to clients that obtain a reference to ConverterBean. The source code for the
ConverterBean class is as follows:

package com.sun.tutorial.javaee.ejb;

import java.math.BigDecimal;

import javax.ejb.*;

@Stateless

public class ConverterBean {

private BigDecimal yenRate = new BigDecimal("115.3100");
private BigDecimal euroRate = new BigDecimal("0.0071");

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

Note the @Stateless annotation decorating the enterprise bean class. This annotation
lets the container know that ConverterBean is a stateless session bean.

Creating the converterWebClient
The web client is contained in the following servlet class:

tut-install/examples/ejb/converter/src/java/converter/web/ConverterServlet.java

A Java servlet is a web component that responds toHTTP requests.

The ConverterServlet class uses dependency injection to obtain a reference to
ConverterBean. The javax.ejb.EJB annotation is added to the declaration of the

Creating the Enterprise Bean

The Java EE 6Tutorial: Basic Concepts266

ptg

privatemember variable converterBean, which is of type ConverterBean.
ConverterBean exposes a local, no-interface view, so the enterprise bean
implementation class is the variable type:

@WebServlet

public class ConverterServlet extends HttpServlet {

@EJB

ConverterBean converterBean;

...

}

When the user enters an amount to be converted to yen and euro, the amount is
retrieved from the request parameters; then the ConverterBean.dollarToYen and the
ConverterBean.yenToEuromethods are called:

...

try {

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

// convert the amount to a BigDecimal from the request parameter

BigDecimal d = new BigDecimal(amount);

// call the ConverterBean.dollarToYen() method to get the amount

// in Yen

BigDecimal yenAmount = converter.dollarToYen(d);

// call the ConverterBean.yenToEuro() method to get the amount

// in Euros

BigDecimal euroAmount = converter.yenToEuro(yenAmount);

...

}

...

}

The results are displayed to the user.

Building, Packaging,Deploying, andRunning the
converter Example
Now you are ready to compile the enterprise bean class (ConverterBean.java) and
the servlet class (ConverterServlet.java) and to package the compiled classes into a
WAR file.

▼ ToBuild, Package, andDeploy the converter Example in
NetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/ejb/

1

2

Creating the Enterprise Bean

Chapter 15 • Getting Startedwith Enterprise Beans 267

ptg

Select the converter folder.

Select theOpen asMain Project andOpenRequired Projects check boxes.

ClickOpenProject.

In the Projects tab, right-click the converter project and select Deploy.

Aweb browser window opens the URL http://localhost:8080/converter.

▼ ToBuild, Package, andDeploy the converter ExampleUsingAnt

In a terminalwindow, go to:
tut-install/examples/ejb/converter/

Type the following command:
ant all

This command calls the default task, which compiles the source files for the
enterprise bean and the servlet, placing the class files in the build subdirectory (not
the src directory) of the project. The default task packages the project into aWAR
module: converter.war. Formore information about the Ant tool, see “Building the
Examples” on page 44.

Note –When compiling the code, the ant task includes the Java EEAPI JAR files in the
classpath. These JARs reside in the modules directory of your GlassFish Server
installation. If you plan to use other tools to compile the source code for Java EE
components, make sure that the classpath includes the Java EEAPI JAR files.

▼ ToRun the converter Example

Open awebbrowser to the followingURL:
http://localhost:8080/converter

The screen shown in Figure 15–1 appears.

3

4

5

6

1

2

1

Creating the Enterprise Bean

The Java EE 6Tutorial: Basic Concepts268

ptg

Type 100 in the input field and click Submit.
A second page appears, showing the converted values.

Modifying the Java EEApplication
TheGlassFish Server supports iterative development.Whenever youmake a change to
a Java EE application, youmust redeploy the application.

▼ ToModify a Class File
Tomodify a class file in an enterprise bean, you change the source code, recompile it,
and redeploy the application. For example, if you want to change the exchange rate in
the dollarToYen business method of the ConverterBean class, you would follow these
steps.

Tomodify ConverterServlet, the procedure is the same.

Edit ConverterBean.java and save the file.

Recompile the source file.

■ To recompile ConverterBean.java in NetBeans IDE, right-click the converter
project and select Run.
This recompiles the ConverterBean.java file, replaces the old class file in the build
directory, and redeploys the application to GlassFish Server.

FIGURE 15–1 The converterWebClient

2

1

2

Modifying the Java EE Application

Chapter 15 • Getting Startedwith Enterprise Beans 269

ptg

■ Recompile ConverterBean.java usingAnt:

a. In a terminalwindow, go to the tut-install/examples/ejb/converter/
subdirectory.

b. Type the following command:
ant all

This command repackages, deploys, and runs the application.

Modifying the Java EE Application

The Java EE 6Tutorial: Basic Concepts270

ptg

Running the Enterprise Bean Examples

Session beans provide a simple but powerful way to encapsulate business logic within
an application. They can be accessed from remote Java clients, web service clients, and
components running in the same server.

In Chapter 15, “Getting Started with Enterprise Beans,” you built a stateless session
bean named ConverterBean. This chapter examines the source code of fourmore
session beans:
■ CartBean: a stateful session bean that is accessed by a remote client
■ CounterBean: a singleton session bean
■ HelloServiceBean: a stateless session bean that implements a web service
■ TimerSessionBean: a stateless session bean that sets a timer

The following topics are addressed here:
■ “The cart Example” on page 271
■ “A Singleton Session Bean Example: counter” on page 278
■ “AWeb Service Example: helloservice” on page 286
■ “Using the Timer Service” on page 290
■ “Handling Exceptions” on page 300

The cart Example
The cart example represents a shopping cart in an online bookstore and uses a stateful
session bean tomanage the operations of the shopping cart. The bean’s client can add a
book to the cart, remove a book, or retrieve the cart’s contents. To assemble cart, you
need the following code:
■ Session bean class (CartBean)
■ Remote business interface (Cart)

16C H A P T E R 1 6

271

ptg

All session beans require a session bean class. All enterprise beans that permit remote
access must have a remote business interface. Tomeet the needs of a specific
application, an enterprise beanmay also need some helper classes. The CartBean
session bean uses two helper classes, BookException and IdVerifier, which are
discussed in the section “Helper Classes” on page 276.

The source code for this example is in the tut-install/examples/ejb/cart/ directory.

TheBusiness Interface
The Cart business interface is a plain Java interface that defines all the business
methods implemented in the bean class. If the bean class implements a single interface,
that interface is assumed to the business interface. The business interface is a local
interface unless it is annotated with the javax.ejb.Remote annotation; the
javax.ejb.Local annotation is optional in this case.

The bean class may implementmore than one interface. In that case, the business
interfacesmust either be explicitly annotated @Local or @Remote or be specified by
decorating the bean class with @Local or @Remote. However, the following interfaces
are excluded when determining whether the bean class implementsmore than one
interface:

■ java.io.Serializable

■ java.io.Externalizable

■ Any of the interfaces defined by the javax.ejb package

The source code for the Cart business interface follows:

package com.sun.tutorial.javaee.ejb;

import java.util.List;

import javax.ejb.Remote;

@Remote

public interface Cart {

public void initialize(String person) throws BookException;

public void initialize(String person, String id)

throws BookException;

public void addBook(String title);

public void removeBook(String title) throws BookException;

public List<String> getContents();

public void remove();

}

The cart Example

The Java EE 6Tutorial: Basic Concepts272

ptg

SessionBeanClass
The session bean class for this example is called CartBean. Like any stateful session
bean, the CartBean class must meet the following requirements.
■ The class is annotated @Stateful.
■ The class implements the business methods defined in the business interface.

Stateful session beans alsomay
■ Implement the business interface, a plain Java interface. It is good practice to

implement the bean’s business interface.
■ Implement any optional lifecycle callbackmethods, annotated @PostConstruct,

@PreDestroy, @PostActivate, and @PrePassivate.
■ Implement any optional business methods annotated @Remove.

The source code for the CartBean class follows:

package com.sun.tutorial.javaee.ejb;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

@Stateful

public class CartBean implements Cart {

String customerName;

String customerId;

List<String> contents;

public void initialize(String person) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(String person, String id)

throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 273

ptg

customerId = id;

} else {

throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

public void addBook(String title) {

contents.add(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + " not in cart.");
}

}

public List<String> getContents() {

return contents;

}

@Remove

public void remove() {

contents = null;

}

}

Lifecycle CallbackMethods
Amethod in the bean class may be declared as a lifecycle callbackmethod by
annotating themethod with the following annotations:
■ javax.annotation.PostConstruct: Methods annotated with @PostConstruct

are invoked by the container on newly constructed bean instances after all
dependency injection has completed and before the first business method is
invoked on the enterprise bean.

■ javax.annotation.PreDestroy: Methods annotated with @PreDestroy are
invoked after anymethod annotated @Remove has completed and before the
container removes the enterprise bean instance.

■ javax.ejb.PostActivate: Methods annotated with @PostActivate are invoked
by the container after the containermoves the bean from secondary storage to
active status.

■ javax.ejb.PrePassivate: Methods annotated with @PrePassivate are invoked
by the container before it passivates the enterprise bean, meaning that the
container temporarily removes the bean from the environment and saves it to
secondary storage.

Lifecycle callbackmethodsmust return void and have no parameters.

The cart Example

The Java EE 6Tutorial: Basic Concepts274

ptg

BusinessMethods
The primary purpose of a session bean is to run business tasks for the client. The client
invokes business methods on the object reference it gets from dependency injection or
JNDI lookup. From the client’s perspective, the business methods appear to run
locally, although they run remotely in the session bean. The following code snippet
shows how the CartClient program invokes the business methods:

cart.create("Duke DeEarl", "123");
...

cart.addBook("Bel Canto");
...

List<String> bookList = cart.getContents();

...

cart.removeBook("Gravity’s Rainbow");

The CartBean class implements the business methods in the following code:

public void addBook(String title) {

contents.addElement(title);

}

public void removeBook(String title) throws BookException {

boolean result = contents.remove(title);

if (result == false) {

throw new BookException(title + "not in cart.");
}

}

public List<String> getContents() {

return contents;

}

The signature of a business methodmust conform to these rules.
■ Themethod namemust not begin with ejb, to avoid conflicts with callback

methods defined by the EJB architecture. For example, you cannot call a business
method ejbCreate or ejbActivate.

■ The access control modifiermust be public.
■ If the bean allows remote access through a remote business interface, the

arguments and return typesmust be legal types for the Java RemoteMethod
Invocation (RMI) API.

■ If the bean is a web service endpoint, the arguments and return types for the
methods annotated @WebMethodmust be legal types for JAX-WS.

■ Themodifiermust not be static or final.

The throws clause can include exceptions that you define for your application. The
removeBookmethod, for example, throws a BookException if the book is not in the
cart.

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 275

ptg

To indicate a system-level problem, such as the inability to connect to a database, a
business method should throw a javax.ejb.EJBException. The container will not
wrap application exceptions, such as BookException. Because EJBException is a
subclass of RuntimeException, you do not need to include it in the throws clause of
the business method.

The @RemoveMethod
Business methods annotated with javax.ejb.Remove in the stateful session bean class
can be invoked by enterprise bean clients to remove the bean instance. The container
will remove the enterprise bean after a @Removemethod completes, either normally or
abnormally.

In CartBean, the removemethod is a @Removemethod:

@Remove

public void remove() {

contents = null;

}

Helper Classes
The CartBean session bean has two helper classes: BookException and IdVerifier.
The BookException is thrown by the removeBookmethod, and the IdVerifier
validates the customerId in one of the createmethods. Helper classes may reside in
an EJB JAR file that contains the enterprise bean class, aWAR file if the enterprise bean
is packaged within aWAR, or in an EAR that contains an EJB JAR or aWAR file that
contains an enterprise bean.

Building, Packaging,Deploying, andRunning the
cart Example
Now you are ready to compile the remote interface (Cart.java), the home interface
(CartHome.java), the enterprise bean class (CartBean.java), the client class
(CartClient.java), and the helper classes (BookException.java and
IdVerifier.java). Follow these steps.

You can build, package, deploy, and run the cart application using either NetBeans
IDE or the Ant tool.

The cart Example

The Java EE 6Tutorial: Basic Concepts276

ptg

▼ ToBuild, Package,Deploy, andRun the cart ExampleUsing
NetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/ejb/

Select the cart folder.

Select theOpen asMain Project andOpenRequired Projects check boxes.

ClickOpenProject.

In the Projects tab, right-click the cartproject and select Deploy.
This builds and packages the application into cart.ear, located in
tut-install/examples/ejb/cart/dist/, and deploys this EAR file to your GlassFish
Server instance.

To run the cart application client, select Run→RunMain Project.
Youwill see the output of the application client in the Output pane:
...

Retrieving book title from cart: Infinite Jest

Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore

Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.

Java Result: 1

run-cart-app-client:

run-nb:

BUILD SUCCESSFUL (total time: 14 seconds)

▼ ToBuild, Package,Deploy, andRun the cart ExampleUsingAnt

In a terminalwindow, go to:
tut-install/examples/ejb/cart/

Type the following command:
ant

This command calls the default target, which builds and packages the application
into an EAR file, cart.ear, located in the dist directory.

1

2

3

4

5

6

7

1

2

The cart Example

Chapter 16 • Running the Enterprise Bean Examples 277

ptg

Type the following command:
ant deploy

The cart.ear file is deployed to the GlassFish Server.

Type the following command:
ant run

This task retrieves the application client JAR, cartClient.jar, and runs the
application client. The client JAR, cartClient.jar, contains the application client
class, the helper class BookException, and the Cart business interface.

This task is equivalent to running the following command:

appclient -client cartClient.jar

When you run the client, the application client container injects any component
references declared in the application client class, in this case the reference to the Cart
enterprise bean.

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To
do this, enter the following command:

ant all

ASingleton SessionBeanExample: counter
The counter example demonstrates how to create a singleton session bean.

Creating a Singleton SessionBean
The javax.ejb.Singleton annotation is used to specify that the enterprise bean
implementation class is a singleton session bean:

@Singleton

public class SingletonBean { ... }

Initializing Singleton SessionBeans
The EJB container is responsible for determining when to initialize a singleton session
bean instance unless the singleton session bean implementation class is annotated
with the javax.ejb.Startup annotation. In this case, sometimes called eager
initialization, the EJB containermust initialize the singleton session bean upon
application startup. The singleton session bean is initialized before the EJB container

3

4

A Singleton Session Bean Example: counter

The Java EE 6Tutorial: Basic Concepts278

ptg

delivers client requests to any enterprise beans in the application. This allows the
singleton session bean to perform, for example, application startup tasks.

The following singleton session bean stores the status of an application and is eagerly
initialized:

@Startup

@Singleton

public class StatusBean {

private String status;

@PostConstruct

void init {

status = "Ready";
}

...

}

Sometimesmultiple singleton session beans are used to initialize data for an
application and thereforemust be initialized in a specific order. In these cases, use the
javax.ejb.DependsOn annotation to declare the startup dependencies of the singleton
session bean. The @DependsOn annotation’s value attribute is one ormore strings that
specify the name of the target singleton session bean. If more than one dependent
singleton bean is specified in @DependsOn, the order in which they are listed is not
necessarily the order in which the EJB container will initialize the target singleton
session beans.

The following singleton session bean, PrimaryBean, should be started up first:

@Singleton

public class PrimaryBean { ... }

SecondaryBean depends on PrimaryBean:

@Singleton

@DependsOn("PrimaryBean")
public class SecondaryBean { ... }

This guarantees that the EJB container will initialize PrimaryBean before
SecondaryBean.

The following singleton session bean, TertiaryBean, depends on PrimaryBean and
SecondaryBean:

@Singleton

@DependsOn("PrimaryBean", "SecondaryBean")
public class TertiaryBean { ... }

SecondaryBean explicitly requires PrimaryBean to be initialized before it is initialized,
through its own @DependsOn annotation. In this case, the EJB container will first
initialize PrimaryBean, then SecondaryBean, and finally TertiaryBean.

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 279

ptg

If, however, SecondaryBean did not explicitly depend on PrimaryBean, the EJB
containermay initialize either PrimaryBean or SecondaryBean first. That is, the EJB
container could initialize the singletons in the following order: SecondaryBean,
PrimaryBean, TertiaryBean.

ManagingConcurrentAccess in a Singleton SessionBean
Singleton session beans are designed for concurrent access, situations in whichmany
clients need to access a single instance of a session bean at the same time. A singleton’s
client needs only a reference to a singleton in order to invoke any business methods
exposed by the singleton and doesn’t need to worry about any other clients that may be
simultaneously invoking business methods on the same singleton.

When creating a singleton session bean, concurrent access to the singleton’s business
methods can be controlled in two ways: container-managed concurrency and
bean-managed concurrency.

The javax.ejb.ConcurrencyManagement annotation is used to specify
container-managed or bean-managed concurrency for the singleton.With
@ConcurrencyManagement, a type attributemust be set to either
javax.ejb.ConcurrencyManagementType.CONTAINER or
javax.ejb.ConcurrencyManagementType.BEAN. If no @ConcurrencyManagement
annotation is present on the singleton implementation class, the EJB container default
of container-managed concurrency is used.

Container-ManagedConcurrency
If a singleton uses container-managed concurrency, the EJB container controls client
access to the business methods of the singleton. The javax.ejb.Lock annotation and
a javax.ejb.LockType type are used to specify the access level of the singleton’s
business methods or @Timeoutmethods.

Annotate a singleton’s business or timeoutmethod with @Lock(READ) if themethod
can be concurrently accessed, or shared, withmany clients. Annotate the business or
timeoutmethod with @Lock(WRITE) if the singleton session bean should be locked to
other clients while a client is calling that method. Typically, the @Lock(WRITE)
annotation is used when clients aremodifying the state of the singleton.

Annotating a singleton class with @Lock specifies that all the business methods and any
timeoutmethods of the singleton will use the specified lock type unless they explicitly
set the lock type with amethod-level @Lock annotation. If no @Lock annotation is
present on the singleton class, the default lock type, @Lock(WRITE), is applied to all
business and timeoutmethods.

The following example shows how to use the @ConcurrencyManagement,
@Lock(READ), and @Lock(WRITE) annotations for a singleton that uses
container-managed concurrency.

A Singleton Session Bean Example: counter

The Java EE 6Tutorial: Basic Concepts280

ptg

Although by default, singletons use container-managed concurrency, the
@ConcurrencyManagement(CONTAINER) annotationmay be added at the class level of
the singleton to explicitly set the concurrencymanagement type:

@ConcurrencyManagement(CONTAINER)

@Singleton

public class ExampleSingletonBean {

private String state;

@Lock(READ)

public String getState() {

return state;

}

@Lock(WRITE)

public void setState(String newState) {

state = newState;

}

}

The getStatemethod can be accessed bymany clients at the same time because it is
annotated with @Lock(READ). When the setStatemethod is called, however, all the
methods in ExampleSingletonBean will be locked to other clients because setState is
annotated with @Lock(WRITE). This prevents two clients from attempting to
simultaneously change the state variable of ExampleSingletonBean.

The getData and getStatusmethods in the following singleton are of type READ, and
the setStatusmethod is of type WRITE:

@Singleton

@Lock(READ)

public class SharedSingletonBean {

private String data;

private String status;

public String getData() {

return data;

}

public String getStatus() {

return status;

}

@Lock(WRITE)

public void setStatus(String newStatus) {

status = newStatus;

}

}

If a method is of locking type WRITE, client access to all the singleton’s methods is
blocked until the current client finishes its method call or an access timeout occurs.
When an access timeout occurs, the EJB container throws a
javax.ejb.ConcurrentAccessTimeoutException. The javax.ejb.AccessTimeout
annotation is used to specify the number of milliseconds before an access timeout

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 281

ptg

occurs. If added at the class level of a singleton, @AccessTimeout specifies the access
timeout value for all methods in the singleton unless amethod explicitly overrides the
default with its own @AccessTimeout annotation.

The @AccessTimeout annotation can be applied to both @Lock(READ) and
@Lock(WRITE)methods. The @AccessTimeout annotation has one required element,
value, and one optional element, unit. By default, the value is specified in
milliseconds. To change the value unit, set unit to one of the
java.util.concurrent.TimeUnit constants: NANOSECONDS, MICROSECONDS,
MILLISECONDS, or SECONDS.

The following singleton has a default access timeout value of 120,000milliseconds, or
2minutes. The doTediousOperationmethod overrides the default access timeout and
sets the value to 360,000milliseconds, or 6minutes.

@Singleton

@AccessTimeout(value=120000)

public class StatusSingletonBean {

private String status;

@Lock(WRITE)

public void setStatus(String new Status) {

status = newStatus;

}

@Lock(WRITE)

@AccessTimeout(value=360000)

public void doTediousOperation {

...

}

}

The following singleton has a default access timeout value of 60 seconds, specified
using the TimeUnit.SECONDS constant:

@Singleton

@AccessTimeout(value=60, timeUnit=SECONDS)

public class StatusSingletonBean { ... }

Bean-ManagedConcurrency

Singletons that use bean-managed concurrency allow full concurrent access to all the
business and timeoutmethods in the singleton. The developer of the singleton is
responsible for ensuring that the state of the singleton is synchronized across all
clients. Developers who create singletons with bean-managed concurrency are
allowed to use the Java programming language synchronization primitives, such as
synchronization and volatile, to prevent errors during concurrent access.

Add a @ConcurrencyManagement annotation at the class level of the singleton to
specify bean-managed concurrency:

A Singleton Session Bean Example: counter

The Java EE 6Tutorial: Basic Concepts282

ptg

@ConcurrencyManagement(BEAN)

@Singleton

public class AnotherSingletonBean { ... }

Handling Errors in a Singleton SessionBean
If a singleton session bean encounters an error when initialized by the EJB container,
that singleton instance will be destroyed.

Unlike other enterprise beans, once a singleton session bean instance is initialized, it is
not destroyed if the singleton’s business or lifecycle methods cause system exceptions.
This ensures that the same singleton instance is used throughout the application
lifecycle.

TheArchitecture of the counter Example
The counter example consists of a singleton session bean, CounterBean, and a
JavaServer Faces Facelets web front end.

CounterBean is a simple singleton with onemethod, getHits, that returns an integer
representing the number of times a web page has been accessed. Here is the code of
CounterBean:

package counter.ejb;

import javax.ejb.Singleton;

/**

* CounterBean is a simple singleton session bean that records the number

* of hits to a web page.

*/

@Singleton

public class CounterBean {

private int hits = 1;

// Increment and return the number of hits

public int getHits() {

return hits++;

}

}

The @Singleton annotationmarks CounterBean as a singleton session bean.
CounterBean uses a local, no-interface view.

CounterBean uses the EJB container’s default metadata values for singletons to
simplify the coding of the singleton implementation class. There is no
@ConcurrencyManagement annotation on the class, so the default of
container-managed concurrency access is applied. There is no @Lock annotation on
the class or business method, so the default of @Lock(WRITE) is applied to the only
business method, getHits.

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 283

ptg

The following version of CounterBean is functionally equivalent to the preceding
version:

package counter.ejb;

import javax.ejb.Singleton;

import javax.ejb.ConcurrencyManagement;

import static javax.ejb.ConcurrencyManagementType.CONTAINER;

import javax.ejb.Lock;

import javax.ejb.LockType.WRITE;

/**

* CounterBean is a simple singleton session bean that records the number

* of hits to a web page.

*/

@Singleton

@ConcurrencyManagement(CONTAINER)

public class CounterBean {

private int hits = 1;

// Increment and return the number of hits

@Lock(WRITE)

public int getHits() {

return hits++;

}

}

The web front end of counter consists of a JavaServer Facesmanaged bean,
Count.java, that is used by the Facelets XHTML files template.xhtml and
template-client.xhtml. The Count JavaServer Facesmanaged bean obtains a
reference to CounterBean through dependency injection. Count defines a hitCount
JavaBeans property.When the getHitCount getter method is called from the XHTML
files, CounterBean's getHitsmethod is called to return the current number of page
hits.

Here’s the Countmanaged bean class:

@ManagedBean

@SessionScoped

public class Count {

@EJB

private CounterBean counterBean;

private int hitCount;

public Count() {

this.hitCount = 0;

}

public int getHitCount() {

hitCount = counterBean.getHits();

return hitCount;

}

A Singleton Session Bean Example: counter

The Java EE 6Tutorial: Basic Concepts284

ptg

public void setHitCount(int newHits) {

this.hitCount = newHits;

}

}

The template.xhtml and template-client.xhtml files are used to render a Facelets
view that displays the number of hits to that view. The template-client.xhtml file
uses an expression language statement, #{count.hitCount}, to access the hitCount
property of the Countmanaged bean. Here is the content of template-client.xhtml:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<body>

This text above will not be displayed.

<ui:composition template="/template.xhtml">

This text will not be displayed.

<ui:define name="title">
This page has been accessed #{count.hitCount} time(s).

</ui:define>

This text will also not be displayed.

<ui:define name="body">
Hooray!

</ui:define>

This text will not be displayed.

</ui:composition>

This text below will also not be displayed.

</body>

</html>

Building, Packaging,Deploying, andRunning the
counter Example
The counter example application can be built, deployed, and run using NetBeans IDE
or Ant.

A Singleton Session Bean Example: counter

Chapter 16 • Running the Enterprise Bean Examples 285

ptg

▼ ToBuild, Package,Deploy, andRun the counter ExampleUsing
NetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/ejb/

Select the counter folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the counterproject and select Run.
Aweb browser will open the URL http://localhost:8080/counter, which displays
the number of hits.

Click the browser’s Refresh button to see the hit count increment.

▼ ToBuild, Package,Deploy, andRun the counter ExampleUsingAnt

In a terminalwindow, go to:
tut-install/examples/ejb/counter

Type the following command:
ant all

This will build and deploy counter to your GlassFish Server instance.

In awebbrowser, type the followingURL:
http://localhost:8080/counter

Click the browser’s Refresh button to see the hit count increment.

AWebService Example: helloservice
This example demonstrates a simple web service that generates a response based on
information received from the client. HelloServiceBean is a stateless session bean
that implements a singlemethod: sayHello. This methodmatches the sayHello
method invoked by the client described in “A Simple JAX-WSApplication Client” on
page 212.

1

2

3

4

5

6

7

1

2

3

4

AWeb Service Example: helloservice

The Java EE 6Tutorial: Basic Concepts286

ptg

TheWebService Endpoint ImplementationClass
HelloServiceBean is the endpoint implementation class, typically the primary
programming artifact for enterprise bean web service endpoints. The web service
endpoint implementation class has the following requirements.
■ The class must be annotated with either the javax.jws.WebService or the

javax.jws.WebServiceProvider annotation.
■ The implementing class may explicitly reference an SEI through the

endpointInterface element of the @WebService annotation but is not required to
do so. If no endpointInterface is specified in @WebService, an SEI is implicitly
defined for the implementing class.

■ The business methods of the implementing class must be public andmust not be
declared static or final.

■ Business methods that are exposed to web service clients must be annotated with
javax.jws.WebMethod.

■ Business methods that are exposed to web service clients must have
JAXB-compatible parameters and return types. See the list of JAXB default data
type bindings at http://download.oracle.com/
docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs .

■ The implementing class must not be declared final andmust not be abstract.
■ The implementing class must have a default public constructor.
■ The endpoint class must be annotated @Stateless.
■ The implementing class must not define the finalizemethod.
■ The implementing class may use the javax.annotation.PostConstruct or

javax.annotation.PreDestroy annotations on its methods for lifecycle event
callbacks.
The @PostConstructmethod is called by the container before the implementing
class begins responding to web service clients.
The @PreDestroymethod is called by the container before the endpoint is
removed from operation.

Stateless SessionBean ImplementationClass
The HelloServiceBean class implements the sayHellomethod, which is annotated
@WebMethod. The source code for the HelloServiceBean class follows:

package com.sun.tutorial.javaee.ejb;

import javax.ejb.Stateless;

import javax.jws.WebMethod;

AWeb Service Example: helloservice

Chapter 16 • Running the Enterprise Bean Examples 287

http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs
http://download.oracle.com/docs/cd/E17477_01/javaee/5/tutorial/doc/bnazq.html#bnazs

ptg

import javax.jws.WebService;

@Stateless

@WebService

public class HelloServiceBean {

private String message = "Hello, ";

public void HelloServiceBean() {}

@WebMethod

public String sayHello(String name) {

return message + name + ".";
}

}

Building, Packaging,Deploying, andTesting the
helloservice Example
You can build, package, and deploy the helloservice example using either NetBeans
IDE or Ant. You can then use the Administration Console to test the web service
endpoint methods.

▼ ToBuild, Package, andDeploy the helloservice ExampleUsing
NetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/ejb/

Select the helloservice folder.

Select theOpen asMain Project andOpenRequired Projects check boxes.

ClickOpenProject.

In the Projects tab, right-click the helloservice project and select Deploy.

This builds and packages the application into helloservice.ear, located in
tut-install/examples/ejb/helloservice/dist, and deploys this EAR file to the
GlassFish Server.

1

2

3

4

5

6

AWeb Service Example: helloservice

The Java EE 6Tutorial: Basic Concepts288

ptg

▼ ToBuild, Package, andDeploy the helloservice ExampleUsing
Ant

In a terminalwindow, go to:
tut-install/examples/ejb/helloservice/

Type the following command:
ant

This runs the default task, which compiles the source files and packages the
application into a JAR file located at
tut-install/examples/ejb/helloservice/dist/helloservice.jar.

Todeploy helloservice, type the following command:
ant deploy

Upon deployment, the GlassFish Server generates additional artifacts required for web
service invocation, including theWSDL file.

▼ ToTest the Servicewithout a Client
TheGlassFish Server Administration Console allows you to test themethods of a web
service endpoint. To test the sayHellomethod of HelloServiceBean, follow these
steps.

Open theAdministration Console by opening the followingURL in awebbrowser:
http://localhost:4848/

In the left pane of theAdministration Console, select theApplications node.

In theApplications table, click helloservice.

In theModules andComponents table, clickViewEndpoint.

On theWebService Endpoint Information page, click theTester link:
/HelloServiceBeanService/HelloServiceBean?Tester

The tester page opens in a browser window or tab.

UnderMethods, type a nameas the parameter to the sayHellomethod.

Click the sayHello button.
The sayHelloMethod invocation page opens. UnderMethod returned, you’ll see the
response from the endpoint.

1

2

3

1

2

3

4

5

6

7

AWeb Service Example: helloservice

Chapter 16 • Running the Enterprise Bean Examples 289

ptg

Using theTimer Service
Applications that model business work flows often rely on timed notifications. The
timer service of the enterprise bean container enables you to schedule timed
notifications for all types of enterprise beans except for stateful session beans. You can
schedule a timed notification to occur according to a calendar schedule, at a specific
time, after a duration of time, or at timed intervals. For example, you could set timers
to go off at 10:30 a.m. onMay 23, in 30 days, or every 12 hours.

Enterprise bean timers are either programmatic timers or automatic timers.
Programmatic timers are set by explicitly calling one of the timer creationmethods of
the TimerService interface. Automatic timers are created upon the successful
deployment of an enterprise bean that contains amethod annotated with the
java.ejb.Schedule or java.ejb.Schedules annotations.

CreatingCalendar-BasedTimer Expressions
Timers can be set according to a calendar-based schedule, expressed using a syntax
similar to the UNIX cron utility. Both programmatic and automatic timers can use
calendar-based timer expressions. Table 16–1 shows the calendar-based timer
attributes.

TABLE 16–1 Calendar-BasedTimerAttributes

Attribute Description AllowableValues
Default
Value Examples

second One ormore
seconds within a
minute

0 to 59 0 second="30"

minute One ormore
minutes within
an hour

0 to 59 0 minute="15"

hour One ormore
hours within a
day

0 to 23 0 hour="13"

dayOfWeek One ormore
days within a
week

0 to 7 (both 0 and 7 refer to Sunday)

Sun, Mon, Tue, Wed, Thu, Fri, Sat

* dayOfWeek="3"

dayOfWeek="Mon"

Using theTimer Service

The Java EE 6Tutorial: Basic Concepts290

ptg

TABLE 16–1 Calendar-BasedTimerAttributes (Continued)

Attribute Description AllowableValues
Default
Value Examples

dayOfMonth One ormore
days within a
month

1 to 31

–7 to –1 (a negative numbermeans
the nth day or days before the end of
themonth)

Last

[1st, 2nd, 3rd, 4th, 5th, Last] [Sun,
Mon, Tue, Wed, Thu, Fri, Sat]

* dayOfMonth="15"

dayOfMonth="–3"

dayOfMonth="Last"

dayOfMonth="2nd
Fri"

month One ormore
months within a
year

1 to 12

Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec

* month="7"

month="July"

year Aparticular
calendar year

A four–digit calendar year * year="2010"

SpecifyingMultipleValues in Calendar Expressions
You can specifymultiple values in calendar expressions, as described in the following
sections.

UsingWildcards in Calendar Expressions

Setting an attribute to an asterisk symbol (*) represents all allowable values for the
attribute.

The following expression represents everyminute:

minute="*"

The following expression represents every day of the week:

dayOfWeek="*"

Specifying a List ofValues

To specify two ormore values for an attribute, use a comma (,) to separate the values.
A range of values is allowed as part of a list.Wildcards and intervals, however, are not
allowed.

Duplicates within a list are ignored.

The following expression sets the day of the week to Tuesday and Thursday:

dayOfWeek="Tue, Thu"

Using theTimer Service

Chapter 16 • Running the Enterprise Bean Examples 291

ptg

The following expression represents 4:00 a.m., every hour from 9:00 a.m. to 5:00 p.m.
using a range, and 10:00 p.m.:

hour="4,9–17,22"

Specifying a Range ofValues

Use a dash character (–) to specify an inclusive range of values for an attribute.
Members of a range cannot be wildcards, lists, or intervals. A range of the form x–x, is
equivalent to the single-valued expression x. A range of the form x–ywhere x is greater
than y is equivalent to the expression x–maximum value,minimum value–y. That is,
the expression begins at x, rolls over to the beginning of the allowable values, and
continues up to y.

The following expression represents 9:00 a.m. to 5:00 p.m.:

hour="9–17"

The following expression represents Friday throughMonday:

dayOfWeek="5–1"

The following expression represents the twenty-fifth day of themonth to the end of the
month, and the beginning of themonth to the fifth day of themonth:

dayOfMonth="25–5"

It is equivalent to the following expression:

dayOfMonth="25–Last,1–5"

Specifying Intervals

The forward slash (/) constrains an attribute to a starting point and an interval and is
used to specify every N seconds, minutes, or hours within theminute, hour, or day. For
an expression of the form x/y, x represents the starting point and y represents the
interval. The wildcard character may be used in the x position of an interval and is
equivalent to setting x to 0.

Intervals may be set only for second, minute, and hour attributes.

The following expression represents every 10minutes within the hour:

minute="*/10"

It is equivalent to:

minute="0,10,20,30,40,50"

Using theTimer Service

The Java EE 6Tutorial: Basic Concepts292

ptg

The following expression represents every 2 hours starting at noon:

hour="12/2"

ProgrammaticTimers
When a programmatic timer expires (goes off), the container calls themethod
annotated @Timeout in the bean’s implementation class. The @Timeoutmethod
contains the business logic that handles the timed event.

The @TimeoutMethod
Methods annotated @Timeout in the enterprise bean class must return void and
optionally take a javax.ejb.Timer object as the only parameter. Theymay not throw
application exceptions.

@Timeout

public void timeout(Timer timer) {

System.out.println("TimerBean: timeout occurred");
}

CreatingProgrammaticTimers
To create a timer, the bean invokes one of the createmethods of the TimerService
interface. Thesemethods allow single-action, interval, or calendar-based timers to be
created.

For single-action or interval timers, the expiration of the timer can be expressed as
either a duration or an absolute time. The duration is expressed as a the number of
milliseconds before a timeout event is triggered. To specify an absolute time, create a
java.util.Date object and pass it to the TimerService.createSingleActionTimer
or the TimerService.createTimermethod.

The following code sets a programmatic timer that will expire in 1minute (6,000
milliseconds):

long duration = 6000;

Timer timer =

timerService.createSingleActionTimer(duration, new TimerConfig());

The following code sets a programmatic timer that will expire at 12:05 p.m. onMay 1,
2010, specified as a java.util.Date:

SimpleDateFormatter formatter =

new SimpleDateFormatter("MM/dd/yyyy ’at’ HH:mm");
Date date = formatter.parse("05/01/2010 at 12:05");
Timer timer = timerService.createSingleActionTimer(date, new TimerConfig());

Using theTimer Service

Chapter 16 • Running the Enterprise Bean Examples 293

ptg

For calendar-based timers, the expiration of the timer is expressed as a
javax.ejb.ScheduleExpression object, passed as a parameter to the
TimerService.createCalendarTimermethod. The ScheduleExpression class
represents calendar-based timer expressions and hasmethods that correspond to the
attributes described in “Creating Calendar-Based Timer Expressions” on page 290.

The following code creates a programmatic timer using the ScheduleExpression
helper class:

ScheduleExpression schedule = new ScheduleExpression();

schedule.dayOfWeek("Mon");
schedule.hour("12-17, 23");
Timer timer = timerService.createCalendarTimer(schedule);

For details on themethod signatures, see the TimerServiceAPI documentation at
http://download.oracle.com/

docs/cd/E17410_01/javaee/6/api/javax/ejb/TimerService.html .

The bean described in “The timersession Example” on page 297 creates a timer as
follows:

Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");

In the timersession example, createTimer is invoked in a business method, which is
called by a client.

Timers are persistent by default. If the server is shut down or crashes, persistent timers
are saved and will become active again when the server is restarted. If a persistent timer
expires while the server is down, the container will call the @Timeoutmethod when the
server is restarted.

Nonpersistent programmatic timers are created by calling
TimerConfig.setPersistent(false) and passing the TimerConfig object to one of
the timer-creationmethods.

The Date and long parameters of the createTimermethods represent time with the
resolution ofmilliseconds. However, because the timer service is not intended for
real-time applications, a callback to the @Timeoutmethodmight not occur with
millisecond precision. The timer service is for business applications, which typically
measure time in hours, days, or longer durations.

AutomaticTimers
Automatic timers are created by the EJB container when an enterprise bean that
containsmethods annotated with the @Schedule or @Schedules annotations is

Using theTimer Service

The Java EE 6Tutorial: Basic Concepts294

http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/javax/ejb/TimerService.html
http://download.oracle.com/docs/cd/E17410_01/javaee/6/api/javax/ejb/TimerService.html

ptg

deployed. An enterprise bean can havemultiple automatic timeoutmethods, unlike a
programmatic timer, which allows only onemethod annotated with the @Timeout
annotation in the enterprise bean class.

Automatic timers can be configured through annotations or through the ejb-jar.xml
deployment descriptor.

Adding a @Schedule annotation on an enterprise beanmarks that method as a timeout
method according to the calendar schedule specified in the attributes of @Schedule.

The @Schedule annotation has elements that correspond to the calendar expressions
detailed in “Creating Calendar-Based Timer Expressions” on page 290 and the
persistent, info, and timezone elements.

The optional persistent element takes a Boolean value and is used to specify whether
the automatic timer should survive a server restart or crash. By default, all automatic
timers are persistent.

The optional timezone element is used to specify that the automatic timer is associated
with a particular time zone. If set, this element will evaluate all timer expressions in
relation to the specified time zone, regardless of the time zone in which the EJB
container is running. By default, all automatic timers set are in relation to the default
time zone of the server.

The optional info element is used to set an informational description of the timer. A
timer’s information can be retrieved later by using Timer.getInfo.

The following timeoutmethod uses @Schedule to set a timer that will expire every
Sunday at midnight:

@Schedule(dayOfWeek="Sun", hour="0")
public void cleanupWeekData() { ... }

The @Schedules annotation is used to specifymultiple calendar-based timer
expressions for a given timeoutmethod.

The following timeoutmethod uses the @Schedules annotation to set multiple
calendar-based timer expressions. The first expression sets a timer to expire on the last
day of everymonth. The second expression sets a timer to expire every Friday at 11:00
p.m.

@Schedules ({

@Schedule(dayOfMonth="Last"),
@Schedule(dayOfWeek="Fri", hour="23")

})

public void doPeriodicCleanup() { ... }

Using theTimer Service

Chapter 16 • Running the Enterprise Bean Examples 295

ptg

Canceling andSavingTimers
Timers can be canceled by the following events.
■ When a single-event timer expires, the EJB container calls the associated timeout

method and then cancels the timer.
■ When the bean invokes the cancelmethod of the Timer interface, the container

cancels the timer.

If a method is invoked on a canceled timer, the container throws the
javax.ejb.NoSuchObjectLocalException.

To save a Timer object for future reference, invoke its getHandlemethod and store the
TimerHandle object in a database. (A TimerHandle object is serializable.) To
reinstantiate the Timer object, retrieve the handle from the database and invoke
getTimer on the handle. A TimerHandle object cannot be passed as an argument of a
method defined in a remote or web service interface. In other words, remote clients
and web service clients cannot access a bean’s TimerHandle object. Local clients,
however, do not have this restriction.

GettingTimer Information
In addition to defining the cancel and getHandlemethods, the Timer interface
definesmethods for obtaining information about timers:

public long getTimeRemaining();

public java.util.Date getNextTimeout();

public java.io.Serializable getInfo();

The getInfomethod returns the object that was the last parameter of the
createTimer invocation. For example, in the createTimer code snippet of the
preceding section, this information parameter is a String object with the value
created timer.

To retrieve all of a bean’s active timers, call the getTimersmethod of the
TimerService interface. The getTimersmethod returns a collection of Timer objects.

Transactions andTimers
An enterprise bean usually creates a timer within a transaction. If this transaction is
rolled back, the timer creation also is rolled back. Similarly, if a bean cancels a timer
within a transaction that gets rolled back, the timer cancellation is rolled back. In this
case, the timer’s duration is reset as if the cancellation had never occurred.

Using theTimer Service

The Java EE 6Tutorial: Basic Concepts296

ptg

In beans that use container-managed transactions, the @Timeoutmethod usually has
the Required or RequiresNew transaction attribute to preserve transaction integrity.
With these attributes, the EJB container begins the new transaction before calling the
@Timeoutmethod. If the transaction is rolled back, the container will call the @Timeout
method at least onemore time.

The timersession Example
The source code for this example is in the
tut-install/examples/ejb/timersession/src/java/ directory.

TimerSessionBean is a singleton session bean that shows how to set both an automatic
timer and a programmatic timer. In the source code listing of TimerSessionBean that
follows, the setTimer and @Timeoutmethods are used to set a programmatic timer. A
TimerService instance is injected by the container when the bean is created. Because
it’s a business method, setTimer is exposed to the local, no-interface view of
TimerSessionBean and can be invoked by the client. In this example, the client
invokes setTimerwith an interval duration of 30,000milliseconds. The setTimer
method creates a new timer by invoking the createTimermethod of TimerService.
Now that the timer is set, the EJB container will invoke the programmaticTimeout
method of TimerSessionBeanwhen the timer expires, in about 30 seconds.

...

public void setTimer(long intervalDuration) {

logger.info("Setting a programmatic timeout for " +
intervalDuration + " milliseconds from now.");

Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");
}

@Timeout

public void programmaticTimeout(Timer timer) {

this.setLastProgrammaticTimeout(new Date());

logger.info("Programmatic timeout occurred.");
}

...

TimerSessionBean also has an automatic timer and timeoutmethod,
automaticTimeout. The automatic timer is set to expire every 3minutes and is set by
using a calendar-based timer expression in the @Schedule annotation:

...

@Schedule(minute="*/3", hour="*")
public void automaticTimeout() {

this.setLastAutomaticTimeout(new Date());

logger.info("Automatic timeout occured");
}

...

Using theTimer Service

Chapter 16 • Running the Enterprise Bean Examples 297

ptg

TimerSessionBean also has two business methods: getLastProgrammaticTimeout
and getLastAutomaticTimeout. Clients call thesemethods to get the date and time of
the last timeout for the programmatic timer and automatic timer, respectively.

Here’s the source code for the TimerSessionBean class:

package timersession.ejb;

import java.util.Date;

import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.ejb.Schedule;

import javax.ejb.Stateless;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerService;

@Singleton

public class TimerSessionBean {

@Resource

TimerService timerService;

private Date lastProgrammaticTimeout;

private Date lastAutomaticTimeout;

private Logger logger = Logger.getLogger(

"com.sun.tutorial.javaee.ejb.timersession.TimerSessionBean");

public void setTimer(long intervalDuration) {

logger.info("Setting a programmatic timeout for "
+ intervalDuration + " milliseconds from now.");

Timer timer = timerService.createTimer(intervalDuration,

"Created new programmatic timer");
}

@Timeout

public void programmaticTimeout(Timer timer) {

this.setLastProgrammaticTimeout(new Date());

logger.info("Programmatic timeout occurred.");
}

@Schedule(minute="*/3", hour="*")
public void automaticTimeout() {

this.setLastAutomaticTimeout(new Date());

logger.info("Automatic timeout occured");
}

public String getLastProgrammaticTimeout() {

if (lastProgrammaticTimeout != null) {

return lastProgrammaticTimeout.toString();

} else {

return "never";
}

}

public void setLastProgrammaticTimeout(Date lastTimeout) {

Using theTimer Service

The Java EE 6Tutorial: Basic Concepts298

ptg

this.lastProgrammaticTimeout = lastTimeout;

}

public String getLastAutomaticTimeout() {

if (lastAutomaticTimeout != null) {

return lastAutomaticTimeout.toString();

} else {

return "never";
}

}

public void setLastAutomaticTimeout(Date lastAutomaticTimeout) {

this.lastAutomaticTimeout = lastAutomaticTimeout;

}

}

Note –GlassFish Server has a default minimum timeout value of 1,000milliseconds, or
1 second. If you need to set the timeout value lower than 1,000milliseconds, change
the value of the minimum-delivery-interval-in-millis element in
domain-dir/config/domain.xml. The lowest practical value for
minimum-delivery-interval-in-millis is around 10milliseconds, owing to virtual
machine constraints.

Building, Packaging,Deploying, andRunning the
timersession Example
You can build, package, deploy, and run the timersession example by using either
NetBeans IDE or Ant.

▼ ToBuild, Package,Deploy, andRun the timersession Example
UsingNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/ejb/

Select the timersession folder.

Select theOpen asMain Project check box.

ClickOpenProject.

1

2

3

4

5

Using theTimer Service

Chapter 16 • Running the Enterprise Bean Examples 299

ptg

Select Run→RunMain Project.
This builds and packages the application into timersession.war, located in
tut-install/examples/ejb/timersession/dist/, deploys thisWAR file to your
GlassFish Server instance, and then runs the web client.

▼ ToBuild, Package, andDeploy the timersession ExampleUsing
Ant

In a terminalwindow, go to:
tut-install/examples/ejb/timersession/

Type the following command:
ant build

This runs the default task, which compiles the source files and packages the
application into aWAR file located at
tut-install/examples/ejb/timersession/dist/timersession.war.

Todeploy the application, type the following command:
ant deploy

▼ ToRun theWebClient

Open awebbrowser to http://localhost:8080/timersession.

Click the SetTimer button to set a programmatic timer.

Wait for awhile and click the browser’s Refresh button.
Youwill see the date and time of the last programmatic and automatic timeouts.

To see themessages that are logged when a timeout occurs, open the server.log file
located in domain-dir/server/logs/.

Handling Exceptions
The exceptions thrown by enterprise beans fall into two categories: system and
application.

A system exception indicates a problemwith the services that support an application.
For example, a connection to an external resource cannot be obtained, or an injected
resource cannot be found. If it encounters a system-level problem, your enterprise
bean should throw a javax.ejb.EJBException. Because the EJBException is a
subclass of the RuntimeException, you do not have to specify it in the throws clause of

6

1

2

3

1

2

3

Handling Exceptions

The Java EE 6Tutorial: Basic Concepts300

ptg

themethod declaration. If a system exception is thrown, the EJB containermight
destroy the bean instance. Therefore, a system exception cannot be handled by the
bean’s client program, but instead requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise bean.
Application exceptions are typically exceptions that you’ve coded yourself, such as the
BookException thrown by the business methods of the CartBean example.When an
enterprise bean throws an application exception, the container does not wrap it in
another exception. The client should be able to handle any application exception it
receives.

If a system exception occurs within a transaction, the EJB container rolls back the
transaction. However, if an application exception is thrownwithin a transaction, the
container does not roll back the transaction.

Handling Exceptions

Chapter 16 • Running the Enterprise Bean Examples 301

ptg

This page intentionally left blank

ptg

Contexts andDependency Injection
for the Java EE Platform
Part V introduces Contexts andDependency Injection for the Java EE Platform. This
part contains the following chapters:
■ Chapter 17, “Introduction to Contexts andDependency Injection for the Java EE

Platform”
■ Chapter 18, “Running the Basic Contexts andDependency Injection Examples”

P A R T V

303

ptg

This page intentionally left blank

ptg

Introduction to Contexts andDependency
Injection for the Java EE Platform

Contexts andDependency Injection (CDI) for the Java EE platform is one of several
Java EE 6 features that help to knit together the web tier and the transactional tier of
the Java EE platform. CDI is a set of services that, used together, make it easy for
developers to use enterprise beans along with JavaServer Faces technology in web
applications. Designed for use with stateful objects, CDI also hasmany broader uses,
allowing developers a great deal of flexibility to integrate various kinds of components
in a loosely coupled but typesafe way.

CDI is specified by JSR 299, formerly known asWeb Beans. Related specifications that
CDI uses include the following:

■ JSR 330, Dependency Injection for Java
■ TheManaged Beans specification, which is an offshoot of the Java EE 6 platform

specification (JSR 316)

The following topics are addressed here:

■ “Overview of CDI” on page 306
■ “About Beans” on page 307
■ “AboutManaged Beans” on page 307
■ “Beans as Injectable Objects” on page 308
■ “UsingQualifiers” on page 309
■ “Injecting Beans” on page 310
■ “Using Scopes” on page 310
■ “Giving Beans ELNames” on page 312
■ “Adding Setter andGetterMethods” on page 312
■ “Using aManaged Bean in a Facelets Page” on page 313
■ “Injecting Objects by Using ProducerMethods” on page 314
■ “Configuring a CDI Application” on page 315
■ “Further Information about CDI” on page 315

17C H A P T E R 1 7

305

ptg

Overviewof CDI
Themost fundamental services provided by CDI are as follows:
■ Contexts: The ability to bind the lifecycle and interactions of stateful components

to well-defined but extensible lifecycle contexts
■ Dependency injection: The ability to inject components into an application in a

typesafe way, including the ability to choose at deployment time which
implementation of a particular interface to inject

In addition, CDI provides the following services:
■ Integration with the Expression Language (EL), which allows any component to be

used directly within a JavaServer Faces page or a JavaServer Pages page
■ The ability to decorate injected components
■ The ability to associate interceptors with components using typesafe interceptor

bindings
■ An event-notificationmodel
■ Aweb conversation scope in addition to the three standard scopes (request,

session, and application) defined by the Java Servlet specification
■ A complete Service Provider Interface (SPI) that allows third-party frameworks to

integrate cleanly in the Java EE 6 environment

Amajor theme of CDI is loose coupling. CDI does the following:
■ Decouples the server and the client bymeans of well-defined types and qualifiers,

so that the server implementationmay vary
■ Decouples the lifecycles of collaborating components by doing the following:

■ Making components contextual, with automatic lifecycle management
■ Allowing stateful components to interact like services, purely bymessage

passing
■ Completely decouples message producers from consumers, bymeans of events
■ Decouples orthogonal concerns bymeans of Java EE interceptors

Along with loose coupling, CDI provides strong typing by
■ Eliminating lookup using string-based names for wiring and correlations, so that

the compiler will detect typing errors
■ Allowing the use of declarative Java annotations to specify everything, largely

eliminating the need for XML deployment descriptors, andmaking it easy to
provide tools that introspect the code and understand the dependency structure at
development time

Overviewof CDI

The Java EE 6Tutorial: Basic Concepts306

ptg

AboutBeans
CDI redefines the concept of a bean beyond its use in other Java technologies, such as
the JavaBeans and Enterprise JavaBeans (EJB) technologies. In CDI, a bean is a source
of contextual objects that define application state and/or logic. A Java EE component is
a bean if the lifecycle of its instancesmay bemanaged by the container according to the
lifecycle context model defined in the CDI specification.

More specifically, a bean has the following attributes:
■ A (nonempty) set of bean types
■ A (nonempty) set of qualifiers (see “UsingQualifiers” on page 309)
■ A scope (see “Using Scopes” on page 310)
■ Optionally, a bean EL name (see “Giving Beans ELNames” on page 312)
■ A set of interceptor bindings
■ A bean implementation

A bean type defines a client-visible type of the bean. Almost any Java typemay be a
bean type of a bean.
■ A bean typemay be an interface, a concrete class, or an abstract class andmay be

declared final or have final methods.
■ A bean typemay be a parameterized type with type parameters and type variables.
■ A bean typemay be an array type. Two array types are considered identical only if

the element type is identical.
■ A bean typemay be a primitive type. Primitive types are considered to be identical

to their corresponding wrapper types in java.lang.
■ A bean typemay be a raw type.

AboutManagedBeans
Amanaged bean is implemented by a Java class, which is called its bean class. A
top-level Java class is amanaged bean if it is defined to be amanaged bean by any other
Java EE technology specification, such as the JavaServer Faces technology
specification, or if it meets all the following conditions:
■ It is not a nonstatic inner class.
■ It is a concrete class or is annotated @Decorator.
■ It is not annotated with an EJB component-defining annotation or declared as an

EJB bean class in ejb-jar.xml.

AboutManaged Beans

Chapter 17 • Introduction to Contexts andDependency Injection for the Java EE Platform 307

ptg

■ It has an appropriate constructor. That is, one of the following is the case:
■ The class has a constructor with no parameters.
■ The class declares a constructor annotated @Inject.

No special declaration, such as an annotation, is required to define amanaged bean.

Beans as InjectableObjects
The concept of injection has been part of Java technology for some time. Since the Java
EE 5 platformwas introduced, annotations havemade it possible to inject resources
and some other kinds of objects into container-managed objects. CDImakes it
possible to inject more kinds of objects and to inject them into objects that are not
container-managed.

The following kinds of objects can be injected:

■ (Almost) any Java class
■ Session beans
■ Java EE resources: data sources, JavaMessage Service topics, queues, connection

factories, and the like
■ Persistence contexts (JPA EntityManager objects)
■ Producer fields
■ Objects returned by producermethods
■ Web service references
■ Remote enterprise bean references

For example, suppose that you create a simple Java class with amethod that returns a
string:

package greetings;

public class Greeting {

public String greet(String name) {

return "Hello, " + name + ".";
}

}

This class becomes a bean that you can then inject into another class. This bean is not
exposed to the EL in this form. “Giving Beans ELNames” on page 312 explains how
you canmake a bean accessible to the EL.

Beans as Injectable Objects

The Java EE 6Tutorial: Basic Concepts308

ptg

UsingQualifiers
You can use qualifiers to provide various implementations of a particular bean type. A
qualifier is an annotation that you apply to a bean. A qualifier type is a Java annotation
defined as @Target({METHOD, FIELD, PARAMETER, TYPE}) and
@Retention(RUNTIME).

For example, you could declare an @Informal qualifier type and apply it to another
class that extends the Greeting class. To declare this qualifier type, you would use the
following code:

package greetings;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Informal {}

You can then define a bean class that extends the Greeting class and uses this qualifier:

package greetings;

@Informal

public class InformalGreeting extends Greeting {

public String greet(String name) {

return "Hi, " + name + "!";
}

}

Both implementations of the bean can now be used in the application.

If you define a bean with no qualifier, the bean automatically has the qualifier
@Default. The unannotated Greeting class could be declared as follows:

package greetings;

import javax.enterprise.inject.Default;

@Default

public class Greeting {

public String greet(String name) {

return "Hello, " + name + ".";
}

}

UsingQualifiers

Chapter 17 • Introduction to Contexts andDependency Injection for the Java EE Platform 309

ptg

InjectingBeans
In order to use the beans you create, you inject them into yet another bean that can
then be used by an application, such as a JavaServer Faces application. For example,
youmight create a bean called Printer into which you would inject one of the
Greeting beans:

import javax.inject.Inject;

public class Printer {

@Inject Greeting greeting;

...

This code injects the @Default Greeting implementation into the bean. The following
code injects the @Informal implementation:

import javax.inject.Inject;

public class Printer {

@Inject @Informal Greeting greeting;

...

More is needed for the complete picture of this bean. Its use of scope needs to be
understood. In addition, for a JavaServer Faces application, the bean needs to be
accessible through the EL.

Using Scopes
For a web application to use a bean that injects another bean class, the bean needs to be
able to hold state over the duration of the user’s interaction with the application. The
way to define this state is to give the bean a scope. You can give an object any of the
scopes described in Table 17–1, depending on how you are using it.

TABLE 17–1 Scopes

Scope Annotation Duration

Request @RequestScoped Auser’s interaction with a web application in a
single HTTP request.

Session @SessionScoped Auser’s interaction with a web application across
multiple HTTP requests.

Application @ApplicationScoped Shared state across all users’ interactions with a
web application.

Injecting Beans

The Java EE 6Tutorial: Basic Concepts310

ptg

TABLE 17–1 Scopes (Continued)
Scope Annotation Duration

Dependent @Dependent The default scope if none is specified; it means
that an object exists to serve exactly one client
(bean) and has the same lifecycle as that client
(bean).

Conversation @ConversationScoped Auser’s interaction with a JavaServer Faces
application, within explicit developer-controlled
boundaries that extend the scope across multiple
invocations of the JavaServer Faces lifecycle. All
long-running conversations are scoped to a
particular HTTP servlet session andmay not
cross session boundaries.

The first three scopes are defined by both JSR 299 and the JavaServer Faces API. The
last two are defined by JSR 299.

You can also define and implement custom scopes, but that is an advanced topic.
Custom scopes are likely to be used by those who implement and extend the CDI
specification.

A scope gives an object a well-defined lifecycle context. A scoped object can be
automatically created when it is needed and automatically destroyed when the context
in which it was created ends. Moreover, its state is automatically shared by any clients
that execute in the same context.

Java EE components, such as servlets and enterprise beans, and JavaBeans components
do not by definition have a well-defined scope. These components are one of the
following:
■ Singletons, such as Enterprise JavaBeans singleton beans, whose state is shared

among all clients
■ Stateless objects, such as servlets and stateless session beans, which do not contain

client-visible state
■ Objects that must be explicitly created and destroyed by their client, such as

JavaBeans components and stateful session beans, whose state is shared by explicit
reference passing between clients

If, however, you create a Java EE component that is a managed bean, it becomes a
scoped object, which exists in a well-defined lifecycle context.

Using Scopes

Chapter 17 • Introduction to Contexts andDependency Injection for the Java EE Platform 311

ptg

The web application for the Printer bean will use a simple request and response
mechanism, so themanaged bean can be annotated as follows:

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

...

Beans that use session, application, or conversation scopemust be serializable, but
beans that use request scope do not have to be serializable.

GivingBeans ELNames
Tomake a bean accessible through the EL, use the @Named built-in qualifier:

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

...

The @Named qualifier allows you to access the bean by using the bean name, with the
first letter in lowercase. For example, a Facelets page would refer to the bean as
printer.

You can specify an argument to the @Named qualifier to use a nondefault name:

@Named("MyPrinter")

With this annotation, the Facelets page would refer to the bean as MyPrinter.

AddingSetter andGetterMethods
Tomake the state of themanaged bean accessible, you need to add setter and getter
methods for that state. The createSalutationmethod calls the bean’s greetmethod,
and the getSalutationmethod retrieves the result.

Giving Beans EL Names

The Java EE 6Tutorial: Basic Concepts312

ptg

Once the setter and getter methods have been added, the bean is complete. The final
code looks like this:

package greetings;

import javax.inject.Inject;

import javax.enterprise.context.RequestScoped;

import javax.inject.Named;

@Named

@RequestScoped

public class Printer {

@Inject @Informal Greeting greeting;

private String name;

private String salutation;

public void createSalutation() {

this.salutation = greeting.greet(name);

}

public String getSalutation() {

return salutation;

}

public String setName(String name) {

this.name = name;

}

public String getName() {

return name;

}

}

Using aManagedBean in a Facelets Page
To use themanaged bean in a Facelets page, you typically create a form that uses user
interface elements to call its methods and display their results. This example provides a
button that asks the user to type a name, retrieves the salutation, and then displays the
text in a paragraph below the button:

<h:form id="greetme">
<p><h:outputLabel value="Enter your name: " for="name"/>

<h:inputText id="name" value="#{printer.name}"/></p>
<p><h:commandButton value="Say Hello"

action="#{printer.createSalutation}"/></p>
<p><h:outputText value="#{printer.salutation}"/></p>

</h:form>

Using aManaged Bean in a Facelets Page

Chapter 17 • Introduction to Contexts andDependency Injection for the Java EE Platform 313

ptg

InjectingObjects byUsingProducerMethods
Producermethods provide a way to inject objects that are not beans, objects whose
valuesmay vary at runtime, and objects that require custom initialization. For
example, if you want to initialize a numeric value defined by a qualifier named
@MaxNumber, you can define the value in amanaged bean and then define a producer
method, getMaxNumber, for it:

private int maxNumber = 100;

...

@Produces @MaxNumber int getMaxNumber() {

return maxNumber;

}

When you inject the object in anothermanaged bean, the container automatically
invokes the producermethod, initializing the value to 100:

@Inject @MaxNumber private int maxNumber;

If the value can vary at runtime, the process is slightly different. For example, the
following code defines a producermethod that generates a randomnumber defined by
a qualifier called @Random:

private java.util.Random random =

new java.util.Random(System.currentTimeMillis());

java.util.Random getRandom() {

return random;

}

@Produces @Random int next() {

return getRandom().nextInt(maxNumber);

}

When you inject this object in anothermanaged bean, you declare a contextual
instance of the object:

@Inject @Random Instance<Integer> randomInt;

You then call the getmethod of the Instance:

this.number = randomInt.get();

InjectingObjects by Using ProducerMethods

The Java EE 6Tutorial: Basic Concepts314

ptg

Configuring aCDIApplication
An application that uses CDImust have a file named beans.xml. The file can be
completely empty (it has content only in certain limited situations), but it must be
present. For a web application, the beans.xml file can be in either the WEB-INF
directory or the WEB-INF/classes/META-INF directory. For EJBmodules or JAR files,
the beans.xml filemust be in the META-INF directory.

Further Information about CDI
Formore information about CDI for the Java EE platform, see
■ Contexts andDependency Injection for the Java EE platform specification:

http://jcp.org/en/jsr/detail?id=299

■ An introduction to Contexts andDependency Injection for the Java EE platform:
http://docs.jboss.org/weld/reference/latest/en-US/html/

■ Dependency Injection for Java specification:
http://jcp.org/en/jsr/detail?id=330

Further Information about CDI

Chapter 17 • Introduction to Contexts andDependency Injection for the Java EE Platform 315

http://jcp.org/en/jsr/detail?id=299
http://docs.jboss.org/weld/reference/latest/en-US/html/
http://jcp.org/en/jsr/detail?id=330

ptg

This page intentionally left blank

ptg

Running the Basic Contexts and
Dependency Injection Examples

This chapter describes in detail how to build and run simple examples that use CDI.
The examples are in the following directory:

tut-install/examples/cdi/

To build and run the examples, you will do the following:

1. Use NetBeans IDE or the Ant tool to compile and package the example.
2. Use NetBeans IDE or the Ant tool to deploy the example.
3. Run the example in a web browser.

Each example has a build.xml file that refers to files in the following directory:

tut-install/examples/bp-project/

See Chapter 2, “Using the Tutorial Examples,” for basic information on installing,
building, and running the examples.

The following topics are addressed here:
■ “The simplegreeting CDI Example” on page 317
■ “The guessnumberCDI Example” on page 322

The simplegreeting CDI Example
The simplegreeting example illustrates some of themost basic features of CDI:
scopes, qualifiers, bean injection, and accessing amanaged bean in a JavaServer Faces
application.When you run the example, you click a button that presents either a
formal or an informal greeting, depending on how you edited one of the classes. The
example includes four source files, a Facelets page and template, and configuration
files.

18C H A P T E R 1 8

317

ptg

The simplegreeting Source Files
The four source files for the simplegreeting example are
■ The default Greeting class, shown in “Beans as Injectable Objects” on page 308
■ The @Informal qualifier interface definition and the InformalGreeting class that

implements the interface, both shown in “UsingQualifiers” on page 309
■ The Printermanaged bean class, which injects one of the two interfaces, shown in

full in “Adding Setter and GetterMethods” on page 312

The source files are located in the following directory:

tut-install/examples/cdi/simplegreeting/src/java/greetings

The FaceletsTemplate andPage
To use themanaged bean in a simple Facelets application, you can use a very simple
template file and index.xhtml page. The template page, template.xhtml, looks like
this:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets">

<h:head>

<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>

<link href="resources/css/default.css"
rel="stylesheet" type="text/css"/>

<title>

<ui:insert name="title">Default Title</ui:insert>

</title>

</h:head>

<body>

<div id="container">
<div id="header">

<h2><ui:insert name="head">Head</ui:insert></h2>
</div>

<div id="space">
<p></p>

</div>

<div id="content">
<ui:insert name="content"/>

</div>

</div>

</body>

</html>

The simplegreeting CDI Example

The Java EE 6Tutorial: Basic Concepts318

ptg

To create the Facelets page, you can redefine the title and head, then add a small form
to the content:

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

<ui:define name="title">Simple Greeting</ui:define>

<ui:define name="head">Simple Greeting</ui:define>

<ui:define name="content">
<h:form id="greetme">

<p><h:outputLabel value="Enter your name: " for="name"/>
<h:inputText id="name" value="#{printer.name}"/></p>

<p><h:commandButton value="Say Hello"
action="#{printer.createSalutation}"/></p>

<p><h:outputText value="#{printer.salutation}"/> </p>

</h:form>

</ui:define>

</ui:composition>

</html>

The form asks the user to type a name. The button is labeled Say Hello, and the action
defined for it is to call the createSalutationmethod of the Printermanaged bean.
This method in turn calls the greetmethod of the defined Greeting class.

The output text for the form is the value of the greeting returned by the setter method.
Depending on whether the default or the @Informal version of the greeting is injected,
this is one of the following, where name is the name typed by the user:

Hello, name.

Hi, name!

The Facelets page and template are located in the following directory:

tut-install/examples/cdi/simplegreeting/web

The simple CSS file that is used by the Facelets page is in the following location:

tut-install/examples/cdi/simplegreeting/web/resources/css/default.css

Configuration Files
Youmust create an empty beans.xml file to indicate to GlassFish Server that your
application is a CDI application. This file can have content in some situations, but not
in simple applications like this one.

The simplegreeting CDI Example

Chapter 18 • Running the Basic Contexts andDependency Injection Examples 319

ptg

Your application also needs the basic web application deployment descriptors
web.xml and sun-web.xml. These configuration files are located in the following
directory:

tut-install/examples/cdi/simplegreeting/web/WEB-INF

Building, Packaging,Deploying, andRunning the
simplegreeting CDI Example
You can build, package, deploy, and run the simplegreeting application by using
either NetBeans IDE or the Ant tool.

▼ ToBuild, Package, andDeploy the simplegreeting ExampleUsing
NetBeans IDE
This procedure builds the application into the following directory:

tut-install/examples/cdi/simplegreeting/build/web

The contents of this directory are deployed to the GlassFish Server.

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/cdi/

Select the simplegreeting folder.

Select theOpen asMain Project check box.

ClickOpenProject.

(Optional)Tomodify the Printer.java file, perform these steps:

a. Expand the Source Packages node.

b. Expand the greetings node.

c. Double-click the Printer.java file.

d. In the edit pane, comment out the @Informal annotation:
//@Informal

@Inject

Greeting greeting;

1

2

3

4

5

6

The simplegreeting CDI Example

The Java EE 6Tutorial: Basic Concepts320

ptg

e. Save the file.

In the Projects tab, right-click the simplegreeting project and select Deploy.

▼ ToBuild, Package, andDeploy the simplegreeting ExampleUsing
Ant

In a terminalwindow, go to:
tut-install/examples/cdi/simplegreeting/

Type the following command:
ant

This command calls the default target, which builds and packages the application
into aWAR file, simplegreeting.war, located in the dist directory.

Type the following command:
ant deploy

Typing this command deploys simplegreeting.war to the GlassFish Server.

▼ ToRun the simplegreeting Example

In awebbrowser, type the followingURL:
http://localhost:8080/simplegreeting

The Simple Greeting page opens.

Type a name in the text field.
For example, suppose that you type Duke.

Click the SayHello button.
If you did notmodify the Printer.java file, the following text string appears below
the button:
Hi, Duke!

If you commented out the @Informal annotation in the Printer.java file, the
following text string appears below the button:

Hello, Duke.

Figure 18–1 shows what the application looks like if you did notmodify the
Printer.java file.

7

1

2

3

1

2

3

The simplegreeting CDI Example

Chapter 18 • Running the Basic Contexts andDependency Injection Examples 321

ptg

The guessnumber CDI Example
The guessnumber example, somewhatmore complex than the simplegreeting
example, illustrates the use of producermethods and of session and application scope.
The example is a game in which you try to guess a number in fewer than ten attempts.
It is similar to the guessnumber example described in Chapter 5, “Introduction to
Facelets,” except that you can keep guessing until you get the right answer or until you
use up your ten attempts.

The example includes four source files, a Facelets page and template, and
configuration files. The configuration files and the template are the same as those used
for the simplegreeting example.

The guessnumber Source Files
The four source files for the guessnumber example are
■ The @MaxNumber qualifier interface
■ The @Random qualifier interface
■ The Generatormanaged bean, which defines producermethods
■ The UserNumberBeanmanaged bean

The source files are located in the following directory:

tut-install/examples/cdi/guessnumber/src/java/guessnumber

The @MaxNumber and @RandomQualifier Interfaces
The @MaxNumber qualifier interface is defined as follows:

FIGURE 18–1 SimpleGreetingApplication

The guessnumber CDI Example

The Java EE 6Tutorial: Basic Concepts322

ptg

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@Qualifier

public @interface MaxNumber {

}

The @Random qualifier interface is defined as follows:

package guessnumber;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

@Target({ TYPE, METHOD, PARAMETER, FIELD })

@Retention(RUNTIME)

@Documented

@Qualifier

public @interface Random {

}

The GeneratorManagedBean
The Generatormanaged bean contains the two producermethods for the application.
The bean has the @ApplicationScoped annotation to specify that its context extends
for the duration of the user’s interaction with the application:

package guessnumber;

import java.io.Serializable;

The guessnumber CDI Example

Chapter 18 • Running the Basic Contexts andDependency Injection Examples 323

ptg

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

@ApplicationScoped

public class Generator implements Serializable {

private static final long serialVersionUID = -7213673465118041882L;

private java.util.Random random =

new java.util.Random(System.currentTimeMillis());

private int maxNumber = 100;

java.util.Random getRandom() {

return random;

}

@Produces @Random int next() {

return getRandom().nextInt(maxNumber);

}

@Produces @MaxNumber int getMaxNumber() {

return maxNumber;

}

}

The UserNumberBeanManagedBean
The UserNumberBeanmanaged bean, the backing bean for the JavaServer Faces
application, provides the basic logic for the game. This bean does the following:
■ Implements setter and getter methods for the bean fields
■ Injects the two qualifier objects
■ Provides a resetmethod that allows you to begin a new game after you complete

one
■ Provides a checkmethod that determines whether the user has guessed the

number
■ Provides a validateNumberRangemethod that determines whether the user’s input

is correct

The bean is defined as follows:

package guessnumber;

import java.io.Serializable;

import javax.annotation.PostConstruct;

import javax.enterprise.context.SessionScoped;

import javax.enterprise.inject.Instance;

import javax.inject.Inject;

import javax.inject.Named;

import javax.faces.application.FacesMessage;

The guessnumber CDI Example

The Java EE 6Tutorial: Basic Concepts324

ptg

import javax.faces.component.UIComponent;

import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;

@Named

@SessionScoped

public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 1L;

private int number;

private Integer userNumber;

private int minimum;

private int remainingGuesses;

@MaxNumber

@Inject

private int maxNumber;

private int maximum;

@Random

@Inject

Instance<Integer> randomInt;

public UserNumberBean() {

}

public int getNumber() {

return number;

}

public void setUserNumber(Integer user_number) {

userNumber = user_number;

}

public Integer getUserNumber() {

return userNumber;

}

public int getMaximum() {

return (this.maximum);

}

public void setMaximum(int maximum) {

this.maximum = maximum;

}

public int getMinimum() {

return (this.minimum);

}

public void setMinimum(int minimum) {

this.minimum = minimum;

}

public int getRemainingGuesses() {

return remainingGuesses;

}

The guessnumber CDI Example

Chapter 18 • Running the Basic Contexts andDependency Injection Examples 325

ptg

public String check() throws InterruptedException {

if (userNumber > number) {

maximum = userNumber - 1;

}

if (userNumber < number) {

minimum = userNumber + 1;

}

if (userNumber == number) {

FacesContext.getCurrentInstance().addMessage(null,

new FacesMessage("Correct!"));
}

remainingGuesses--;

return null;

}

@PostConstruct

public void reset() {

this.minimum = 0;

this.userNumber = 0;

this.remainingGuesses = 10;

this.maximum = maxNumber;

this.number = randomInt.get();

}

public void validateNumberRange(FacesContext context,

UIComponent toValidate,

Object value) {

if (remainingGuesses <= 0) {

FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientId(context), message);

((UIInput) toValidate).setValid(false);

return;

}

int input = (Integer) value;

if (input < minimum || input > maximum) {

((UIInput) toValidate).setValid(false);

FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage(toValidate.getClientId(context), message);

}

}

}

The Facelets Page
This example uses the same template that the simplegreeting example uses. The
index.xhtml file, however, is more complex.

The guessnumber CDI Example

The Java EE 6Tutorial: Basic Concepts326

ptg

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:composition template="/template.xhtml">

<ui:define name="title">Guess My Number</ui:define>

<ui:define name="head">Guess My Number</ui:define>

<ui:define name="content">
<h:form id="GuessMain">

<div style="color: black; font-size: 24px;">
<p>I’m thinking of a number between

#{userNumberBean.minimum} and

#{userNumberBean.maximum}. You have

#{userNumberBean.remainingGuesses}
guesses.</p>

</div>

<h:panelGrid border="0" columns="5" style="font-size: 18px;">
Number:

<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"
validator="#{userNumberBean.validateNumberRange}">

</h:inputText>

<h:commandButton id="GuessButton" value="Guess"
action="#{userNumberBean.check}"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"/>

<h:commandButton id="RestartButton" value="Reset"
action="#{userNumberBean.reset}"
immediate="true" />

<h:outputText id="Higher" value="Higher!"
rendered="#{userNumberBean.number gt userNumberBean.userNumber and userNumberBean.userNumber ne 0}"

style="color: red"/>
<h:outputText id="Lower" value="Lower!"

rendered="#{userNumberBean.number lt userNumberBean.userNumber and userNumberBean.userNumber ne 0}"
style="color: red"/>

</h:panelGrid>

<div style="color: red; font-size: 14px;">
<h:messages id="messages" globalOnly="false"/>

</div>

</h:form>

</ui:define>

</ui:composition>

</html>

The Facelets page presents the user with theminimum andmaximum values and the
number of guesses remaining. The user’s interaction with the game takes place within
the panelGrid table, which contains an input field, Guess and Reset buttons, and a text
field that appears if the guess is higher or lower than the correct number. Every time
the user clicks the Guess button, the userNumberBean.checkmethod is called to reset
themaximum orminimum value or, if the guess is correct, to generate a
FacesMessage to that effect. Themethod that determines whether each guess is valid is
userNumberBean.validateNumberRange.

The guessnumber CDI Example

Chapter 18 • Running the Basic Contexts andDependency Injection Examples 327

ptg

Building, Packaging,Deploying, andRunning the
guessnumber CDI Example
You can build, package, deploy, and run the guessnumber application by using either
NetBeans IDE or the Ant tool.

▼ ToBuild, Package, andDeploy the guessnumber ExampleUsing
NetBeans IDE
This procedure builds the application into the following directory:

tut-install/examples/cdi/guessnumber/build/web

The contents of this directory are deployed to the GlassFish Server.

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/cdi/

Select the guessnumber folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the guessnumber project and select Deploy.

▼ ToBuild, Package, andDeploy the guessnumber ExampleUsingAnt

In a terminalwindow, go to:
tut-install/examples/cdi/guessnumber/

Type the following command:
ant

This command calls the default target, which builds and packages the application
into aWAR file, guessnumber.war, located in the dist directory.

1

2

3

4

5

6

1

2

The guessnumber CDI Example

The Java EE 6Tutorial: Basic Concepts328

ptg

Type the following command:
ant deploy

The guessnumber.war file will be deployed to the GlassFish Server.

▼ ToRun the guessnumber Example

In awebbrowser, type the followingURL:
http://localhost:8080/guessnumber

TheGuessMyNumber page opens, as shown in Figure 18–2.

Type a number in theNumber text field and click Guess.

Theminimum andmaximum values aremodified, along with the remaining number
of guesses.

Keepguessing numbers until you get the right answer or run out of guesses.

If you get the right answer, the input field and Guess button are grayed out, as shown
in Figure 18–3.

FIGURE 18–2 GuessMyNumber Example

3

1

2

3

The guessnumber CDI Example

Chapter 18 • Running the Basic Contexts andDependency Injection Examples 329

ptg
Click the Reset button to play the gameagainwith a new randomnumber.

FIGURE 18–3 GuessMyNumber at End ofGame

4

The guessnumber CDI Example

The Java EE 6Tutorial: Basic Concepts330

ptg

Persistence
Part VI introduces the Java Persistence API. This part contains the following chapters:
■ Chapter 19, “Introduction to the Java Persistence API”
■ Chapter 20, “Running the Persistence Examples”
■ Chapter 21, “The Java Persistence Query Language”
■ Chapter 22, “Using the Criteria API to Create Queries”

P A R T V I

331

ptg

This page intentionally left blank

ptg

Introduction to the Java Persistence API

The Java Persistence API provides Java developers with an object/relational mapping
facility formanaging relational data in Java applications. Java Persistence consists of
four areas:

■ The Java Persistence API
■ The query language
■ The Java Persistence Criteria API
■ Object/relational mappingmetadata

The following topics are addressed here:

■ “Entities” on page 333
■ “Entity Inheritance” on page 345
■ “Managing Entities” on page 349
■ “Querying Entities” on page 355
■ “Further Information about Persistence” on page 355

Entities
An entity is a lightweight persistence domain object. Typically, an entity represents a
table in a relational database, and each entity instance corresponds to a row in that
table. The primary programming artifact of an entity is the entity class, although
entities can use helper classes.

The persistent state of an entity is represented through either persistent fields or
persistent properties. These fields or properties use object/relational mapping
annotations tomap the entities and entity relationships to the relational data in the
underlying data store.

19C H A P T E R 1 9

333

ptg

Requirements for Entity Classes
An entity class must follow these requirements.
■ The class must be annotated with the javax.persistence.Entity annotation.
■ The class must have a public or protected, no-argument constructor. The class may

have other constructors.
■ The class must not be declared final. Nomethods or persistent instance variables

must be declared final.
■ If an entity instance is passed by value as a detached object, such as through a

session bean’s remote business interface, the class must implement the
Serializable interface.

■ Entities may extend both entity and non-entity classes, and non-entity classes may
extend entity classes.

■ Persistent instance variables must be declared private, protected, or
package-private and can be accessed directly only by the entity class’s methods.
Clients must access the entity’s state through accessor or business methods.

Persistent Fields andProperties in Entity Classes
The persistent state of an entity can be accessed through either the entity’s instance
variables or properties. The fields or properties must be of the following Java language
types:
■ Java primitive types
■ java.lang.String

■ Other serializable types, including:
■ Wrappers of Java primitive types
■ java.math.BigInteger

■ java.math.BigDecimal

■ java.util.Date

■ java.util.Calendar

■ java.sql.Date

■ java.sql.Time

■ java.sql.TimeStamp

■ User-defined serializable types
■ byte[]

■ Byte[]

■ char[]

■ Character[]

■ Enumerated types

Entities

The Java EE 6Tutorial: Basic Concepts334

ptg

■ Other entities and/or collections of entities
■ Embeddable classes

Entities may use persistent fields, persistent properties, or a combination of both. If the
mapping annotations are applied to the entity’s instance variables, the entity uses
persistent fields. If themapping annotations are applied to the entity’s getter methods
for JavaBeans-style properties, the entity uses persistent properties.

Persistent Fields
If the entity class uses persistent fields, the Persistence runtime accesses entity-class
instance variables directly. All fields not annotated javax.persistence.Transient or
notmarked as Java transientwill be persisted to the data store. The object/relational
mapping annotationsmust be applied to the instance variables.

Persistent Properties
If the entity uses persistent properties, the entitymust follow themethod conventions
of JavaBeans components. JavaBeans-style properties use getter and setter methods
that are typically named after the entity class’s instance variable names. For every
persistent property property of type Type of the entity, there is a getter method
getProperty and setter method setProperty. If the property is a Boolean, youmay use
isProperty instead of getProperty. For example, if a Customer entity uses persistent
properties and has a private instance variable called firstName, the class defines a
getFirstName and setFirstNamemethod for retrieving and setting the state of the
firstName instance variable.

Themethod signature for single-valued persistent properties are as follows:

Type getProperty()

void setProperty(Type type)

The object/relational mapping annotations for persistent properties must be applied
to the getter methods.Mapping annotations cannot be applied to fields or properties
annotated @Transient ormarked transient.

UsingCollections in Entity Fields andProperties
Collection-valued persistent fields and properties must use the supported Java
collection interfaces regardless of whether the entity uses persistent fields or
properties. The following collection interfacesmay be used:
■ java.util.Collection

■ java.util.Set

Entities

Chapter 19 • Introduction to the Java Persistence API 335

ptg

■ java.util.List

■ java.util.Map

If the entity class uses persistent fields, the type in the precedingmethod signatures
must be one of these collection types. Generic variants of these collection typesmay
also be used. For example, if it has a persistent property that contains a set of phone
numbers, the Customer entity would have the followingmethods:

Set<PhoneNumber> getPhoneNumbers() { ... }

void setPhoneNumbers(Set<PhoneNumber>) { ... }

If a field or property of an entity consists of a collection of basic types or embeddable
classes, use the javax.persistence.ElementCollection annotation on the field or
property.

The two attributes of @ElementCollection are targetClass and fetch. The
targetClass attribute specifies the class name of the basic or embeddable class and is
optional if the field or property is defined using Java programming language generics.
The optional fetch attribute is used to specify whether the collection should be
retrieved lazily or eagerly, using the javax.persistence.FetchType constants of
either LAZY or EAGER, respectively. By default, the collection will be fetched lazily.

The following entity, Person, has a persistent field, nicknames, which is a collection of
String classes that will be fetched eagerly. The targetClass element is not required,
because it uses generics to define the field.

@Entity

public class Person {

...

@ElementCollection(fetch=EAGER)

protected Set<String> nickname = new HashSet();

...

}

Collections of entity elements and relationshipsmay be represented by
java.util.Map collections. A Map consists of a key and a value.

When using Map elements or relationships, the following rules apply.
■ The Map key or valuemay be a basic Java programming language type, an

embeddable class, or an entity.
■ When the Map value is an embeddable class or basic type, use the

@ElementCollection annotation.
■ When the Map value is an entity, use the @OneToMany or @ManyToMany annotation.
■ Use the Map type on only one side of a bidirectional relationship.

If the key type of a Map is a Java programming language basic type, use the annotation
javax.persistence.MapKeyColumn to set the columnmapping for the key. By default,

Entities

The Java EE 6Tutorial: Basic Concepts336

ptg

the name attribute of @MapKeyColumn is of the form
RELATIONSHIP-FIELD/PROPERTY-NAME_KEY. For example, if the referencing
relationship field name is image, the default name attribute is IMAGE_KEY.

If the key type of a Map is an entity, use the javax.persistence.MapKeyJoinColumn
annotation. If themultiple columns are needed to set themapping, use the annotation
javax.persistence.MapKeyJoinColumns to includemultiple @MapKeyJoinColumn
annotations. If no @MapKeyJoinColumn is present, themapping column name is by
default set to RELATIONSHIP-FIELD/PROPERTY-NAME_KEY. For example, if the
relationship field name is employee, the default name attribute is EMPLOYEE_KEY.

If Java programming language generic types are not used in the relationship field or
property, the key class must be explicitly set using the
javax.persistence.MapKeyClass annotation.

If the Map key is the primary key or a persistent field or property of the entity that is the
Map value, use the javax.persistence.MapKey annotation. The @MapKeyClass and
@MapKey annotations cannot be used on the same field or property.

If the Map value is a Java programming language basic type or an embeddable class, it
will bemapped as a collection table in the underlying database. If generic types are not
used, the @ElementCollection annotation’s targetClass attributemust be set to the
type of the Map value.

If the Map value is an entity and part of amany-to-many or one-to-many unidirectional
relationship, it will bemapped as a join table in the underlying database. A
unidirectional one-to-many relationship that uses a Mapmay also bemapped using the
@JoinColumn annotation.

If the entity is part of a one-to-many/many-to-one bidirectional relationship, it will be
mapped in the table of the entity that represents the value of the Map. If generic types
are not used, the targetEntity attribute of the @OneToMany and @ManyToMany
annotationsmust be set to the type of the Map value.

ValidatingPersistent Fields andProperties
The Java API for JavaBeans Validation (Bean Validation) provides amechanism for
validating application data. Bean Validation is integrated into the Java EE containers,
allowing the same validation logic to be used in any of the tiers of an enterprise
application.

Bean Validation constraints may be applied to persistent entity classes, embeddable
classes, andmapped superclasses. By default, the Persistence provider will
automatically perform validation on entities with persistent fields or properties
annotated with Bean Validation constraints immediately after the PrePersist,
PreUpdate, and PreRemove lifecycle events.

Entities

Chapter 19 • Introduction to the Java Persistence API 337

ptg

BeanValidation constraints are annotations applied to the fields or properties of Java
programming language classes. Bean Validation provides a set of constraints as well as
an API for defining custom constraints. Custom constraints can be specific
combinations of the default constraints, or new constraints that don’t use the default
constraints. Each constraint is associated with at least one validator class that validates
the value of the constrained field or property. Custom constraint developersmust also
provide a validator class for the constraint.

Bean Validation constraints are applied to the persistent fields or properties of
persistent classes.When adding Bean Validation constraints, use the same access
strategy as the persistent class. That is, if the persistent class uses field access, apply the
Bean Validation constraint annotations on the class’s fields. If the class uses property
access, apply the constraints on the getter methods.

Table 9–2 lists Bean Validation’s built-in constraints, defined in the
javax.validation.constraints package.

All the built-in constraints listed in Table 9–2 have a corresponding annotation,
ConstraintName.List, for groupingmultiple constraints of the same type on the same
field or property. For example, the following persistent field has two @Pattern
constraints:

@Pattern.List({

@Pattern(regexp="..."),
@Pattern(regexp="...")

})

The following entity class, Contact, has Bean Validation constraints applied to its
persistent fields.

@Entity

public class Contact implements Serializable {

private static final long serialVersionUID = 1L;

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private Long id;

@NotNull

protected String firstName;

@NotNull

protected String lastName;

@Pattern(regexp="[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\\."
+"[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*@"
+"(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?",

message="{invalid.email}")
protected String email;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String mobilePhone;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String homePhone;

Entities

The Java EE 6Tutorial: Basic Concepts338

ptg

@Temporal(javax.persistence.TemporalType.DATE)

@Past

protected Date birthday;

...

}

The @NotNull annotation on the firstName and lastName fields specifies that those
fields are now required. If a new Contact instance is created where firstName or
lastName have not been initialized, Bean Validation will throw a validation error.
Similarly, if a previously created instance of Contact has beenmodified so that
firstName or lastName are null, a validation error will be thrown.

The email field has a @Pattern constraint applied to it, with a complicated regular
expression that matchesmost valid email addresses. If the value of email doesn’t
match this regular expression, a validation error will be thrown.

The homePhone and mobilePhone fields have the same @Pattern constraints. The
regular expressionmatches 10 digit telephone numbers in the United States and
Canada of the form (xxx) xxx–xxxx.

The birthday field is annotated with the @Past constraint, which ensures that the
value of birthdaymust be in the past.

PrimaryKeys in Entities
Each entity has a unique object identifier. A customer entity, for example, might be
identified by a customer number. The unique identifier, or primary key, enables clients
to locate a particular entity instance. Every entitymust have a primary key. An entity
may have either a simple or a composite primary key.

Simple primary keys use the javax.persistence.Id annotation to denote the
primary key property or field.

Composite primary keys are used when a primary key consists of more than one
attribute, which corresponds to a set of single persistent properties or fields.
Composite primary keysmust be defined in a primary key class. Composite primary
keys are denoted using the javax.persistence.EmbeddedId and
javax.persistence.IdClass annotations.

The primary key, or the property or field of a composite primary key, must be one of
the following Java language types:
■ Java primitive types
■ Java primitive wrapper types
■ java.lang.String

■ java.util.Date (the temporal type should be DATE)
■ java.sql.Date

Entities

Chapter 19 • Introduction to the Java Persistence API 339

ptg

■ java.math.BigDecimal

■ java.math.BigInteger

Floating-point types should never be used in primary keys. If you use a generated
primary key, only integral types will be portable.

A primary key class must meet these requirements.
■ The access control modifier of the class must be public.
■ The properties of the primary key class must be public or protected if

property-based access is used.
■ The class must have a public default constructor.
■ The class must implement the hashCode() and equals(Object other)methods.
■ The class must be serializable.
■ A composite primary keymust be represented andmapped tomultiple fields or

properties of the entity class ormust be represented andmapped as an embeddable
class.

■ If the class is mapped tomultiple fields or properties of the entity class, the names
and types of the primary key fields or properties in the primary key class must
match those of the entity class.

The following primary key class is a composite key, and the orderId and itemId fields
together uniquely identify an entity:

public final class LineItemKey implements Serializable {

public Integer orderId;

public int itemId;

public LineItemKey() {}

public LineItemKey(Integer orderId, int itemId) {

this.orderId = orderId;

this.itemId = itemId;

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return (

(orderId==null?other.orderId==null:orderId.equals

(other.orderId)

)

&&

(itemId == other.itemId)

);

Entities

The Java EE 6Tutorial: Basic Concepts340

ptg

}

public int hashCode() {

return (

(orderId==null?0:orderId.hashCode())

^

((int) itemId)

);

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

Multiplicity in Entity Relationships
Multiplicities are of the following types: one-to-one, one-to-many, many-to-one, and
many-to-many:

■ One-to-one: Each entity instance is related to a single instance of another entity.
For example, tomodel a physical warehouse in which each storage bin contains a
single widget, StorageBin and Widgetwould have a one-to-one relationship.
One-to-one relationships use the javax.persistence.OneToOne annotation on
the corresponding persistent property or field.

■ One-to-many: An entity instance can be related tomultiple instances of the other
entities. A sales order, for example, can havemultiple line items. In the order
application, Orderwould have a one-to-many relationship with LineItem.
One-to-many relationships use the javax.persistence.OneToMany annotation
on the corresponding persistent property or field.

■ Many-to-one: Multiple instances of an entity can be related to a single instance of
the other entity. This multiplicity is the opposite of a one-to-many relationship. In
the example just mentioned, the relationship to Order from the perspective of
LineItem is many-to-one.Many-to-one relationships use the
javax.persistence.ManyToOne annotation on the corresponding persistent
property or field.

■ Many-to-many: The entity instances can be related tomultiple instances of each
other. For example, each college course hasmany students, and every studentmay
take several courses. Therefore, in an enrollment application, Course and Student
would have amany-to-many relationship.Many-to-many relationships use the
javax.persistence.ManyToMany annotation on the corresponding persistent
property or field.

Entities

Chapter 19 • Introduction to the Java Persistence API 341

ptg

Direction in Entity Relationships
The direction of a relationship can be either bidirectional or unidirectional. A
bidirectional relationship has both an owning side and an inverse side. A
unidirectional relationship has only an owning side. The owning side of a relationship
determines how the Persistence runtimemakes updates to the relationship in the
database.

Bidirectional Relationships
In a bidirectional relationship, each entity has a relationship field or property that
refers to the other entity. Through the relationship field or property, an entity class’s
code can access its related object. If an entity has a related field, the entity is said to
“know” about its related object. For example, if Order knows what LineItem instances
it has and if LineItem knows what Order it belongs to, they have a bidirectional
relationship.

Bidirectional relationshipsmust follow these rules.
■ The inverse side of a bidirectional relationshipmust refer to its owning side by

using the mappedBy element of the @OneToOne, @OneToMany, or @ManyToMany
annotation. The mappedBy element designates the property or field in the entity
that is the owner of the relationship.

■ Themany side of many-to-one bidirectional relationshipsmust not define the
mappedBy element. Themany side is always the owning side of the relationship.

■ For one-to-one bidirectional relationships, the owning side corresponds to the side
that contains the corresponding foreign key.

■ Formany-to-many bidirectional relationships, either sidemay be the owning side.

Unidirectional Relationships
In a unidirectional relationship, only one entity has a relationship field or property that
refers to the other. For example, LineItemwould have a relationship field that
identifies Product, but Productwould not have a relationship field or property for
LineItem. In other words, LineItem knows about Product, but Product doesn’t know
which LineItem instances refer to it.

Queries andRelationshipDirection
Java Persistence query language and Criteria API queries often navigate across
relationships. The direction of a relationship determines whether a query can navigate
from one entity to another. For example, a query can navigate from LineItem to
Product but cannot navigate in the opposite direction. For Order and LineItem, a
query could navigate in both directions because these two entities have a bidirectional
relationship.

Entities

The Java EE 6Tutorial: Basic Concepts342

ptg

CascadeOperations andRelationships
Entities that use relationships often have dependencies on the existence of the other
entity in the relationship. For example, a line item is part of an order; if the order is
deleted, the line item also should be deleted. This is called a cascade delete relationship.

The javax.persistence.CascadeType enumerated type defines the cascade
operations that are applied in the cascade element of the relationship annotations.
Table 19–1 lists the cascade operations for entities.

TABLE 19–1 CascadeOperations for Entities

CascadeOperation Description

ALL All cascade operations will be applied to the parent entity’s related entity.
All is equivalent to specifying cascade={DETACH, MERGE, PERSIST,

REFRESH, REMOVE}

DETACH If the parent entity is detached from the persistence context, the related
entity will also be detached.

MERGE If the parent entity is merged into the persistence context, the related
entity will also bemerged.

PERSIST If the parent entity is persisted into the persistence context, the related
entity will also be persisted.

REFRESH If the parent entity is refreshed in the current persistence context, the
related entity will also be refreshed.

REMOVE If the parent entity is removed from the current persistence context, the
related entity will also be removed.

Cascade delete relationships are specified using the cascade=REMOVE element
specification for @OneToOne and @OneToMany relationships. For example:

@OneToMany(cascade=REMOVE, mappedBy="customer")
public Set<Order> getOrders() { return orders; }

OrphanRemoval in Relationships
When a target entity in one-to-one or one-to-many relationship is removed from the
relationship, it is often desirable to cascade the remove operation to the target entity.
Such target entities are considered “orphans,” and the orphanRemoval attribute can be
used to specify that orphaned entities should be removed. For example, if an order has
many line items and one of them is removed from the order, the removed line item is
considered an orphan. If orphanRemoval is set to true, the line item entity will be
deleted when the line item is removed from the order.

Entities

Chapter 19 • Introduction to the Java Persistence API 343

ptg

The orphanRemoval attribute in @OneToMany and @oneToOne takes a Boolean value and
is by default false.

The following example will cascade the remove operation to the orphaned customer
entity when it is removed from the relationship:

@OneToMany(mappedBy="customer", orphanRemoval="true")
public List<Order> getOrders() { ... }

Embeddable Classes in Entities
Embeddable classes are used to represent the state of an entity but don’t have a
persistent identity of their own, unlike entity classes. Instances of an embeddable class
share the identity of the entity that owns it. Embeddable classes exist only as the state
of another entity. An entitymay have single-valued or collection-valued embeddable
class attributes.

Embeddable classes have the same rules as entity classes but are annotated with the
javax.persistence.Embeddable annotation instead of @Entity.

The following embeddable class, ZipCode, has the fields zip and plusFour:

@Embeddable

public class ZipCode {

String zip;

String plusFour;

...

}

This embeddable class is used by the Address entity:

@Entity

public class Address {

@Id

protected long id

String street1;

String street2;

String city;

String province;

@Embedded

ZipCode zipCode;

String country;

...

}

Entities that own embeddable classes as part of their persistent state may annotate the
field or property with the javax.persistence.Embedded annotation but are not
required to do so.

Entities

The Java EE 6Tutorial: Basic Concepts344

ptg

Embeddable classes may themselves use other embeddable classes to represent their
state. Theymay also contain collections of basic Java programming language types or
other embeddable classes. Embeddable classes may also contain relationships to other
entities or collections of entities. If the embeddable class has such a relationship, the
relationship is from the target entity or collection of entities to the entity that owns the
embeddable class.

Entity Inheritance
Entities support class inheritance, polymorphic associations, and polymorphic
queries. Entity classes can extend non-entity classes, and non-entity classes can extend
entity classes. Entity classes can be both abstract and concrete.

The roster example application demonstrates entity inheritance, as described in
“Entity Inheritance in the rosterApplication” on page 370.

Abstract Entities
An abstract class may be declared an entity by decorating the class with @Entity.
Abstract entities are like concrete entities but cannot be instantiated.

Abstract entities can be queried just like concrete entities. If an abstract entity is the
target of a query, the query operates on all the concrete subclasses of the abstract
entity:

@Entity

public abstract class Employee {

@Id

protected Integer employeeId;

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

}

MappedSuperclasses
Entities may inherit from superclasses that contain persistent state andmapping
information but are not entities. That is, the superclass is not decorated with the

Entity Inheritance

Chapter 19 • Introduction to the Java Persistence API 345

ptg

@Entity annotation and is notmapped as an entity by the Java Persistence provider.
These superclasses aremost often used when you have state andmapping information
common tomultiple entity classes.

Mapped superclasses are specified by decorating the class with the annotation
javax.persistence.MappedSuperclass:

@MappedSuperclass

public class Employee {

@Id

protected Integer employeeId;

...

}

@Entity

public class FullTimeEmployee extends Employee {

protected Integer salary;

...

}

@Entity

public class PartTimeEmployee extends Employee {

protected Float hourlyWage;

...

}

Mapped superclasses cannot be queried and can’t be used in EntityManager or Query
operations. Youmust use entity subclasses of themapped superclass in
EntityManager or Query operations.Mapped superclasses can’t be targets of entity
relationships.Mapped superclasses can be abstract or concrete.

Mapped superclasses do not have any corresponding tables in the underlying
datastore. Entities that inherit from themapped superclass define the tablemappings.
For instance, in the preceding code sample, the underlying tables would be
FULLTIMEEMPLOYEE and PARTTIMEEMPLOYEE, but there is no EMPLOYEE table.

Non-Entity Superclasses
Entities may have non-entity superclasses, and these superclasses can be either
abstract or concrete. The state of non-entity superclasses is nonpersistent, and any
state inherited from the non-entity superclass by an entity class is nonpersistent.
Non-entity superclasses may not be used in EntityManager or Query operations. Any
mapping or relationship annotations in non-entity superclasses are ignored.

Entity Inheritance

The Java EE 6Tutorial: Basic Concepts346

ptg

Entity InheritanceMapping Strategies
You can configure how the Java Persistence providermaps inherited entities to the
underlying datastore by decorating the root class of the hierarchy with the annotation
javax.persistence.Inheritance. The followingmapping strategies are used tomap
the entity data to the underlying database:
■ A single table per class hierarchy
■ A table per concrete entity class
■ A “join” strategy, whereby fields or properties that are specific to a subclass are

mapped to a different table than the fields or properties that are common to the
parent class

The strategy is configured by setting the strategy element of @Inheritance to one of
the options defined in the javax.persistence.InheritanceType enumerated type:

public enum InheritanceType {

SINGLE_TABLE,

JOINED,

TABLE_PER_CLASS

};

The default strategy, InheritanceType.SINGLE_TABLE, is used if the @Inheritance
annotation is not specified on the root class of the entity hierarchy.

The SingleTable per ClassHierarchy Strategy
With this strategy, which corresponds to the default
InheritanceType.SINGLE_TABLE, all classes in the hierarchy aremapped to a single
table in the database. This table has a discriminator column containing a value that
identifies the subclass to which the instance represented by the row belongs.

The discriminator column, whose elements are shown in Table 19–2, can be specified
by using the javax.persistence.DiscriminatorColumn annotation on the root of
the entity class hierarchy.

TABLE 19–2 @DiscriminatorColumnElements

Type Name Description

String name The name of the column to be used as the
discriminator column. The default is DTYPE. This
element is optional.

DiscriminatorType discriminatorType The type of the column to be used as a discriminator
column. The default is DiscriminatorType.STRING.
This element is optional.

Entity Inheritance

Chapter 19 • Introduction to the Java Persistence API 347

ptg

TABLE 19–2 @DiscriminatorColumn Elements (Continued)
Type Name Description

String columnDefinition The SQL fragment to use when creating the
discriminator column. The default is generated by the
Persistence provider and is implementation-specific.
This element is optional.

String length The column length for String-based discriminator
types. This element is ignored for non-String
discriminator types. The default is 31. This element is
optional.

The javax.persistence.DiscriminatorType enumerated type is used to set the type
of the discriminator column in the database by setting the discriminatorType
element of @DiscriminatorColumn to one of the defined types. DiscriminatorType is
defined as:

public enum DiscriminatorType {

STRING,

CHAR,

INTEGER

};

If @DiscriminatorColumn is not specified on the root of the entity hierarchy and a
discriminator column is required, the Persistence provider assumes a default column
name of DTYPE and column type of DiscriminatorType.STRING.

The javax.persistence.DiscriminatorValue annotationmay be used to set the
value entered into the discriminator column for each entity in a class hierarchy. You
may decorate only concrete entity classes with @DiscriminatorValue.

If @DiscriminatorValue is not specified on an entity in a class hierarchy that uses a
discriminator column, the Persistence provider will provide a default,
implementation-specific value. If the discriminatorType element of
@DiscriminatorColumn is DiscriminatorType.STRING, the default value is the name
of the entity.

This strategy provides good support for polymorphic relationships between entities
and queries that cover the entire entity class hierarchy. However, this strategy requires
the columns that contain the state of subclasses to be nullable.

TheTable per Concrete Class Strategy
In this strategy, which corresponds to InheritanceType.TABLE_PER_CLASS, each
concrete class is mapped to a separate table in the database. All fields or properties in
the class, including inherited fields or properties, aremapped to columns in the class’s
table in the database.

Entity Inheritance

The Java EE 6Tutorial: Basic Concepts348

ptg

This strategy provides poor support for polymorphic relationships and usually
requires either SQL UNION queries or separate SQL queries for each subclass for queries
that cover the entire entity class hierarchy.

Support for this strategy is optional andmay not be supported by all Java Persistence
API providers. The default Java Persistence API provider in the GlassFish Server does
not support this strategy.

The JoinedSubclass Strategy
In this strategy, which corresponds to InheritanceType.JOINED, the root of the class
hierarchy is represented by a single table, and each subclass has a separate table that
contains only those fields specific to that subclass. That is, the subclass table does not
contain columns for inherited fields or properties. The subclass table also has a column
or columns that represent its primary key, which is a foreign key to the primary key of
the superclass table.

This strategy provides good support for polymorphic relationships but requires one or
more join operations to be performedwhen instantiating entity subclasses. This may
result in poor performance for extensive class hierarchies. Similarly, queries that cover
the entire class hierarchy require join operations between the subclass tables, resulting
in decreased performance.

Some Java Persistence API providers, including the default provider in the GlassFish
Server, require a discriminator column that corresponds to the root entity when using
the joined subclass strategy. If you are not using automatic table creation in your
application, make sure that the database table is set up correctly for the discriminator
column defaults, or use the @DiscriminatorColumn annotation tomatch your
database schema. For information on discriminator columns, see “The Single Table
per Class Hierarchy Strategy” on page 347.

Managing Entities
Entities aremanaged by the entitymanager, which is represented by
javax.persistence.EntityManager instances. Each EntityManager instance is
associated with a persistence context: a set of managed entity instances that exist in a
particular data store. A persistence context defines the scope under which particular
entity instances are created, persisted, and removed. The EntityManager interface
defines themethods that are used to interact with the persistence context.

The EntityManager Interface
The EntityManagerAPI creates and removes persistent entity instances, finds entities
by the entity’s primary key, and allows queries to be run on entities.

Managing Entities

Chapter 19 • Introduction to the Java Persistence API 349

ptg

Container-ManagedEntityManagers
With a container-managed entity manager, an EntityManager instance’s persistence
context is automatically propagated by the container to all application components
that use the EntityManager instance within a single Java Transaction API (JTA)
transaction.

JTA transactions usually involve calls across application components. To complete a
JTA transaction, these components usually need access to a single persistence context.
This occurs when an EntityManager is injected into the application components by
means of the javax.persistence.PersistenceContext annotation. The persistence
context is automatically propagated with the current JTA transaction, and
EntityManager references that aremapped to the same persistence unit provide access
to the persistence context within that transaction. By automatically propagating the
persistence context, application components don’t need to pass references to
EntityManager instances to each other in order tomake changes within a single
transaction. The Java EE containermanages the lifecycle of container-managed entity
managers.

To obtain an EntityManager instance, inject the entity manager into the application
component:

@PersistenceContext

EntityManager em;

Application-ManagedEntityManagers
With an application-managed entity manager, on the other hand, the persistence
context is not propagated to application components, and the lifecycle of
EntityManager instances is managed by the application.

Application-managed entitymanagers are used when applications need to access a
persistence context that is not propagated with the JTA transaction across
EntityManager instances in a particular persistence unit. In this case, each
EntityManager creates a new, isolated persistence context. The EntityManager and its
associated persistence context are created and destroyed explicitly by the application.
They are also used when directly injecting EntityManager instances can’t be done
because EntityManager instances are not thread-safe. EntityManagerFactory
instances are thread-safe.

Applications create EntityManager instances in this case by using the
createEntityManagermethod of javax.persistence.EntityManagerFactory.

To obtain an EntityManager instance, you first must obtain an
EntityManagerFactory instance by injecting it into the application component by
means of the javax.persistence.PersistenceUnit annotation:

Managing Entities

The Java EE 6Tutorial: Basic Concepts350

ptg

@PersistenceUnit

EntityManagerFactory emf;

Then obtain an EntityManager from the EntityManagerFactory instance:

EntityManager em = emf.createEntityManager();

Application-managed entitymanagers don’t automatically propagate the JTA
transaction context. Such applications need tomanually gain access to the JTA
transactionmanager and add transaction demarcation information when performing
entity operations. The javax.transaction.UserTransaction interface defines
methods to begin, commit, and roll back transactions. Inject an instance of
UserTransaction by creating an instance variable annotated with @Resource:

@Resource

UserTransaction utx;

To begin a transaction, call the UserTransaction.beginmethod.When all the entity
operations are complete, call the UserTransaction.commitmethod to commit the
transaction. The UserTransaction.rollbackmethod is used to roll back the current
transaction.

The following example shows how tomanage transactions in an application that uses
an application-managed entitymanager:

@PersistenceContext

EntityManagerFactory emf;

EntityManager em;

@Resource

UserTransaction utx;

...

em = emf.createEntityManager();

try {

utx.begin();

em.persist(SomeEntity);

em.merge(AnotherEntity);

em.remove(ThirdEntity);

utx.commit();

} catch (Exception e) {

utx.rollback();

}

Finding EntitiesUsing the EntityManager
The EntityManager.findmethod is used to look up entities in the data store by the
entity’s primary key:

@PersistenceContext

EntityManager em;

public void enterOrder(int custID, Order newOrder) {

Customer cust = em.find(Customer.class, custID);

cust.getOrders().add(newOrder);

Managing Entities

Chapter 19 • Introduction to the Java Persistence API 351

ptg

newOrder.setCustomer(cust);

}

Managing anEntity Instance’s Lifecycle
Youmanage entity instances by invoking operations on the entity bymeans of an
EntityManager instance. Entity instances are in one of four states: new,managed,
detached, or removed.
■ New entity instances have no persistent identity and are not yet associated with a

persistence context.
■ Managed entity instances have a persistent identity and are associated with a

persistence context.
■ Detached entity instances have a persistent identity and are not currently

associated with a persistence context.
■ Removed entity instances have a persistent identity, are associated with a persistent

context, and are scheduled for removal from the data store.

Persisting Entity Instances
New entity instances becomemanaged and persistent either by invoking the persist
method or by a cascading persist operation invoked from related entities that have
the cascade=PERSIST or cascade=ALL elements set in the relationship annotation.
This means that the entity’s data is stored to the database when the transaction
associated with the persist operation is completed. If the entity is alreadymanaged,
the persist operation is ignored, although the persist operation will cascade to
related entities that have the cascade element set to PERSIST or ALL in the relationship
annotation. If persist is called on a removed entity instance, the entity becomes
managed. If the entity is detached, either persistwill throw an
IllegalArgumentException, or the transaction commit will fail.

@PersistenceContext

EntityManager em;

...

public LineItem createLineItem(Order order, Product product,

int quantity) {

LineItem li = new LineItem(order, product, quantity);

order.getLineItems().add(li);

em.persist(li);

return li;

}

The persist operation is propagated to all entities related to the calling entity that
have the cascade element set to ALL or PERSIST in the relationship annotation:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Managing Entities

The Java EE 6Tutorial: Basic Concepts352

ptg

Removing Entity Instances
Managed entity instances are removed by invoking the removemethod or by a
cascading remove operation invoked from related entities that have the
cascade=REMOVE or cascade=ALL elements set in the relationship annotation. If the
removemethod is invoked on a new entity, the remove operation is ignored, although
removewill cascade to related entities that have the cascade element set to REMOVE or
ALL in the relationship annotation. If remove is invoked on a detached entity, either
removewill throw an IllegalArgumentException, or the transaction commit will fail.
If invoked on an already removed entity, removewill be ignored. The entity’s data will
be removed from the data store when the transaction is completed or as a result of the
flush operation.

public void removeOrder(Integer orderId) {

try {

Order order = em.find(Order.class, orderId);

em.remove(order);

}...

In this example, all LineItem entities associated with the order are also removed, as
Order.getLineItems has cascade=ALL set in the relationship annotation.

Synchronizing EntityData to theDatabase
The state of persistent entities is synchronized to the database when the transaction
with which the entity is associated commits. If a managed entity is in a bidirectional
relationship with anothermanaged entity, the data will be persisted, based on the
owning side of the relationship.

To force synchronization of themanaged entity to the data store, invoke the flush
method of the EntityManager instance. If the entity is related to another entity and the
relationship annotation has the cascade element set to PERSIST or ALL, the related
entity’s data will be synchronized with the data store when flush is called.

If the entity is removed, calling flushwill remove the entity data from the data store.

PersistenceUnits
Apersistence unit defines a set of all entity classes that aremanaged by EntityManager
instances in an application. This set of entity classes represents the data contained
within a single data store.

Persistence units are defined by the persistence.xml configuration file. The
following is an example persistence.xml file:

<persistence>

<persistence-unit name="OrderManagement">
<description>This unit manages orders and customers.

Managing Entities

Chapter 19 • Introduction to the Java Persistence API 353

ptg

It does not rely on any vendor-specific features and can

therefore be deployed to any persistence provider.

</description>

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

<jar-file>MyOrderApp.jar</jar-file>

<class>com.widgets.Order</class>

<class>com.widgets.Customer</class>

</persistence-unit>

</persistence>

This file defines a persistence unit named OrderManagement, which uses a JTA-aware
data source: jdbc/MyOrderDB. The jar-file and class elements specifymanaged
persistence classes: entity classes, embeddable classes, andmapped superclasses. The
jar-file element specifies JAR files that are visible to the packaged persistence unit
that containmanaged persistence classes, whereas the class element explicitly names
managed persistence classes.

The jta-data-source (for JTA-aware data sources) and non-jta-data-source (for
non-JTA-aware data sources) elements specify the global JNDI name of the data
source to be used by the container.

The JAR file or directory whose META-INF directory contains persistence.xml is
called the root of the persistence unit. The scope of the persistence unit is determined
by the persistence unit’s root. Each persistence unit must be identified with a name that
is unique to the persistence unit’s scope.

Persistent units can be packaged as part of aWAR or EJB JAR file or can be packaged
as a JAR file that can then be included in anWAR or EAR file.

■ If you package the persistent unit as a set of classes in an EJB JAR file,
persistence.xml should be put in the EJB JAR’s META-INF directory.

■ If you package the persistence unit as a set of classes in aWAR file,
persistence.xml should be located in theWAR file’s
WEB-INF/classes/META-INF directory.

■ If you package the persistence unit in a JAR file that will be included in aWAR or
EAR file, the JAR file should be located in either
■ The WEB-INF/lib directory of aWAR
■ The EAR file’s library directory

Note – In the Java Persistence API 1.0, JAR files could be located at the root of an
EAR file as the root of the persistence unit. This is no longer supported.
Portable applications should use the EAR file’s library directory as the root of
the persistence unit.

Managing Entities

The Java EE 6Tutorial: Basic Concepts354

ptg

Querying Entities
The Java Persistence API provides the followingmethods for querying entities.
■ The Java Persistence query language (JPQL) is a simple, string-based language

similar to SQL used to query entities and their relationships. See Chapter 21, “The
Java Persistence Query Language,” formore information.

■ The Criteria API is used to create typesafe queries using Java programming
language APIs to query for entities and their relationships. See Chapter 22, “Using
the Criteria API to Create Queries,” formore information.

Both JPQL and the Criteria API have advantages and disadvantages.

Just a few lines long, JPQL queries are typically more concise andmore readable than
Criteria queries. Developers familiar with SQLwill find it easy to learn the syntax of
JPQL. JPQL named queries can be defined in the entity class using a Java programming
language annotation or in the application’s deployment descriptor. JPQL queries are
not typesafe, however, and require a cast when retrieving the query result from the
entitymanager. This means that type-casting errorsmay not be caught at compile
time. JPQL queries don’t support open-ended parameters.

Criteria queries allow you to define the query in the business tier of the application.
Although this is also possible using JPQL dynamic queries, Criteria queries provide
better performance because JPQL dynamic queries must be parsed each time they are
called. Criteria queries are typesafe and therefore don’t require casting, as JPQL
queries do. The Criteria API is just another Java programming language API and
doesn’t require developers to learn the syntax of another query language. Criteria
queries are typically more verbose than JPQL queries and require the developer to
create several objects and perform operations on those objects before submitting the
query to the entitymanager.

Further Information about Persistence
Formore information about the Java Persistence API, see
■ Java Persistence 2.0 API specification:

http://jcp.org/en/jsr/detail?id=317

■ EclipseLink, the Java Persistence API implementation in the GlassFish Server:
http://www.eclipse.org/eclipselink/jpa.php

Further Information about Persistence

Chapter 19 • Introduction to the Java Persistence API 355

http://jcp.org/en/jsr/detail?id=317
http://www.eclipse.org/eclipselink/jpa.php

ptg

■ EclipseLink team blog:
http://eclipselink.blogspot.com/

■ EclipseLink wiki documentation:
http://wiki.eclipse.org/EclipseLink

Further Information about Persistence

The Java EE 6Tutorial: Basic Concepts356

http://eclipselink.blogspot.com/
http://wiki.eclipse.org/EclipseLink

ptg

Running the Persistence Examples

This chapter explains how to use the Java Persistence API. Thematerial here focuses
on the source code and settings of three examples. The first example, order, is an
application that uses a stateful session bean tomanage entities related to an ordering
system. The second example, roster, is an application that manages a community
sports system. The third example, address-book, is a web application that stores
contact data. This chapter assumes that you are familiar with the concepts detailed in
Chapter 19, “Introduction to the Java Persistence API.”

The following topics are addressed here:
■ “The orderApplication” on page 357
■ “The rosterApplication” on page 369
■ “The address-bookApplication” on page 376

The orderApplication
The order application is a simple inventory and ordering application formaintaining
a catalog of parts and placing an itemized order of those parts. The application has
entities that represent parts, vendors, orders, and line items. These entities are
accessed using a stateful session bean that holds the business logic of the application. A
simple singleton session bean creates the initial entities on application deployment. A
Facelets web applicationmanipulates the data and displays data from the catalog.

The information contained in an order can be divided into elements.What is the order
number?What parts are included in the order?What parts make up that part?Who
makes the part?What are the specifications for the part? Are there any schematics for
the part? The order application is a simplified version of an ordering system that has
all these elements.

The order application consists of a singleWARmodule that includes the enterprise
bean classes, the entities, the support classes, and the Facelets XHTML and class files.

20C H A P T E R 2 0

357

ptg

Entity Relationships in the orderApplication
The order application demonstrates several types of entity relationships:
self-referential, one-to-one, one-to-many, many-to-one, and unidirectional
relationships.

Self-Referential Relationships
A self-referential relationship occurs between relationship fields in the same entity.
Part has a field, bomPart, which has a one-to-many relationship with the field parts,
which is also in Part. That is, a part can bemade up ofmany parts, and each of those
parts has exactly one bill-of-material part.

The primary key for Part is a compound primary key, a combination of the
partNumber and revision fields. This key is mapped to the PARTNUMBER and REVISION
columns in the EJB_ORDER_PART table:

...

@ManyToOne

@JoinColumns({

@JoinColumn(name="BOMPARTNUMBER",
referencedColumnName="PARTNUMBER"),

@JoinColumn(name="BOMREVISION",
referencedColumnName="REVISION")

})

public Part getBomPart() {

return bomPart;

}

...

@OneToMany(mappedBy="bomPart")
public Collection<Part> getParts() {

return parts;

}

...

One-to-OneRelationships
Part has a field, vendorPart, that has a one-to-one relationship with VendorPart’s
part field. That is, each part has exactly one vendor part, and vice versa.

Here is the relationshipmapping in Part:

@OneToOne(mappedBy="part")
public VendorPart getVendorPart() {

return vendorPart;

}

Here is the relationshipmapping in VendorPart:

@OneToOne

@JoinColumns({

@JoinColumn(name="PARTNUMBER",

The orderApplication

The Java EE 6Tutorial: Basic Concepts358

ptg

referencedColumnName="PARTNUMBER"),
@JoinColumn(name="PARTREVISION",

referencedColumnName="REVISION")
})

public Part getPart() {

return part;

}

Note that, because Part uses a compound primary key, the @JoinColumns annotation
is used tomap the columns in the PERSISTENCE_ORDER_VENDOR_PART table to the
columns in PERSISTENCE_ORDER_PART. The PERSISTENCE_ORDER_VENDOR_PART table’s
PARTREVISION column refers to PERSISTENCE_ORDER_PART’s REVISION column.

One-to-ManyRelationshipMapped toOverlappingPrimary and
ForeignKeys
Order has a field, lineItems, that has a one-to-many relationship with LineItem’s field
order. That is, each order has one ormore line item.

LineItem uses a compound primary key that is made up of the orderId and itemId
fields. This compound primary keymaps to the ORDERID and ITEMID columns in the
PERSISTENCE_ORDER_LINEITEM table. ORDERID is a foreign key to the ORDERID column
in the PERSISTENCE_ORDER_ORDER table. This means that the ORDERID column is
mapped twice: once as a primary key field, orderId; and again as a relationship field,
order.

Here’s the relationshipmapping in Order:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationshipmapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

Unidirectional Relationships
LineItem has a field, vendorPart, that has a unidirectional many-to-one relationship
with VendorPart. That is, there is no field in the target entity in this relationship:

@ManyToOne

public VendorPart getVendorPart() {

return vendorPart;

}

The orderApplication

Chapter 20 • Running the Persistence Examples 359

ptg

PrimaryKeys in the orderApplication
The order application uses several types of primary keys: single-valued primary keys,
compound primary keys, and generated primary keys.

GeneratedPrimaryKeys
VendorPart uses a generated primary key value. That is, the application does not
assign primary key values for the entities but instead relies on the persistence provider
to generate the primary key values. The @GeneratedValue annotation is used to
specify that an entity will use a generated primary key.

In VendorPart, the following code specifies the settings for generating primary key
values:

@TableGenerator(

name="vendorPartGen",
table="PERSISTENCE_ORDER_SEQUENCE_GENERATOR",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="VENDOR_PART_ID",
allocationSize=10)

@Id

@GeneratedValue(strategy=GenerationType.TABLE,

generator="vendorPartGen")
public Long getVendorPartNumber() {

return vendorPartNumber;

}

The @TableGenerator annotation is used in conjunction with @GeneratedValue’s
strategy=TABLE element. That is, the strategy used to generate the primary keys is to
use a table in the database. The @TableGenerator annotation is used to configure the
settings for the generator table. The name element sets the name of the generator,
which is vendorPartGen in VendorPart.

The EJB_ORDER_SEQUENCE_GENERATOR table, whose two columns are GEN_KEY and
GEN_VALUE, will store the generated primary key values. This table could be used to
generate other entity’s primary keys, so the pkColumnValue element is set to
VENDOR_PART_ID to distinguish this entity’s generated primary keys from other entity’s
generated primary keys. The allocationSize element specifies the amount to
increment when allocating primary key values. In this case, each VendorPart’s primary
key will increment by 10.

The primary key field vendorPartNumber is of type Long, as the generated primary
key’s fieldmust be an integral type.

The orderApplication

The Java EE 6Tutorial: Basic Concepts360

ptg

CompoundPrimaryKeys
A compound primary key is made up ofmultiple fields and follows the requirements
described in “Primary Keys in Entities” on page 339. To use a compound primary key,
youmust create a wrapper class.

In order, two entities use compound primary keys: Part and LineItem.
■ Part uses the PartKeywrapper class. Part’s primary key is a combination of the

part number and the revision number. PartKey encapsulates this primary key.
■ LineItem uses the LineItemKey class. LineItem’s primary key is a combination of

the order number and the item number. LineItemKey encapsulates this primary
key.

This is the LineItemKey compound primary key wrapper class:

package order.entity;

public final class LineItemKey implements

java.io.Serializable {

private Integer orderId;

private int itemId;

public int hashCode() {

return ((this.getOrderId()==null

?0:this.getOrderId().hashCode())

^ ((int) this.getItemId()));

}

public boolean equals(Object otherOb) {

if (this == otherOb) {

return true;

}

if (!(otherOb instanceof LineItemKey)) {

return false;

}

LineItemKey other = (LineItemKey) otherOb;

return ((this.getOrderId()==null

?other.orderId==null:this.getOrderId().equals

(other.orderId)) && (this.getItemId ==

other.itemId));

}

public String toString() {

return "" + orderId + "-" + itemId;

}

}

The @IdClass annotation is used to specify the primary key class in the entity class. In
LineItem, @IdClass is used as follows:

@IdClass(order.entity.LineItemKey.class)

@Entity

...

The orderApplication

Chapter 20 • Running the Persistence Examples 361

ptg

public class LineItem {

...

}

The two fields in LineItem are tagged with the @Id annotation tomark those fields as
part of the compound primary key:

@Id

public int getItemId() {

return itemId;

}

...

@Id

@Column(name="ORDERID", nullable=false,

insertable=false, updatable=false)

public Integer getOrderId() {

return orderId;

}

For orderId, you also use the @Column annotation to specify the column name in the
table and that this column should not be inserted or updated, as it is an overlapping
foreign key pointing at the PERSISTENCE_ORDER_ORDER table’s ORDERID column (see
“One-to-Many RelationshipMapped to Overlapping Primary and Foreign Keys” on
page 359). That is, orderIdwill be set by the Order entity.

In LineItem’s constructor, the line item number (LineItem.itemId) is set using the
Order.getNextIdmethod:

public LineItem(Order order, int quantity, VendorPart

vendorPart) {

this.order = order;

this.itemId = order.getNextId();

this.orderId = order.getOrderId();

this.quantity = quantity;

this.vendorPart = vendorPart;

}

Order.getNextId counts the number of current line items, adds 1, and returns that
number:

public int getNextId() {

return this.lineItems.size() + 1;

}

Part doesn’t require the @Column annotation on the two fields that comprise Part’s
compound primary key, because Part’s compound primary key is not an overlapping
primary key/foreign key:

@IdClass(order.entity.PartKey.class)

@Entity

...

public class Part {

...

The orderApplication

The Java EE 6Tutorial: Basic Concepts362

ptg

@Id

public String getPartNumber() {

return partNumber;

}

...

@Id

public int getRevision() {

return revision;

}

...

}

EntityMapped toMoreThanOneDatabaseTable
Part’s fieldsmap tomore than one database table: PERSISTENCE_ORDER_PART and
PERSISTENCE_ORDER_PART_DETAIL. The PERSISTENCE_ORDER_PART_DETAIL table
holds the specification and schematics for the part. The @SecondaryTable annotation
is used to specify the secondary table.

...

@Entity

@Table(name="PERSISTENCE_ORDER_PART")
@SecondaryTable(name="PERSISTENCE_ORDER_PART_DETAIL", pkJoinColumns={

@PrimaryKeyJoinColumn(name="PARTNUMBER",
referencedColumnName="PARTNUMBER"),

@PrimaryKeyJoinColumn(name="REVISION",
referencedColumnName="REVISION")

})

public class Part {

...

}

PERSISTENCE_ORDER_PART_DETAIL and PERSISTENCE_ORDER_PART share the same
primary key values. The pkJoinColumns element of @SecondaryTable is used to
specify that PERSISTENCE_ORDER_PART_DETAIL’s primary key columns are foreign keys
to PERSISTENCE_ORDER_PART. The @PrimaryKeyJoinColumn annotation sets the
primary key column names and specifies which column in the primary table the
column refers to. In this case, the primary key column names for both
PERSISTENCE_ORDER_PART_DETAIL and PERSISTENCE_ORDER_PART are the same:
PARTNUMBER and REVISION, respectively.

CascadeOperations in the orderApplication
Entities that have relationships to other entities often have dependencies on the
existence of the other entity in the relationship. For example, a line item is part of an
order; if the order is deleted, then the line item also should be deleted. This is called a
cascade delete relationship.

The orderApplication

Chapter 20 • Running the Persistence Examples 363

ptg

In order, there are two cascade delete dependencies in the entity relationships. If the
Order to which a LineItem is related is deleted, the LineItem also should be deleted. If
the Vendor to which a VendorPart is related is deleted, the VendorPart also should be
deleted.

You specify the cascade operations for entity relationships by setting the cascade
element in the inverse (nonowning) side of the relationship. The cascade element is set
to ALL in the case of Order.lineItems. This means that all persistence operations
(deletes, updates, and so on) are cascaded from orders to line items.

Here is the relationshipmapping in Order:

@OneToMany(cascade=ALL, mappedBy="order")
public Collection<LineItem> getLineItems() {

return lineItems;

}

Here is the relationshipmapping in LineItem:

@ManyToOne

public Order getOrder() {

return order;

}

BLOBandCLOBDatabaseTypes in the order
Application
The PARTDETAIL table in the database has a column, DRAWING, of type BLOB. BLOB
stands for binary large objects, which are used for storing binary data, such as an
image. The DRAWING column ismapped to the field Part. drawing of type
java.io.Serializable. The @Lob annotation is used to denote that the field is large
object.

@Column(table="PERSISTENCE_ORDER_PART_DETAIL")
@Lob

public Serializable getDrawing() {

return drawing;

}

PERSISTENCE_ORDER_PART_DETAIL also has a column, SPECIFICATION, of type CLOB.
CLOB stands for character large objects, which are used to store string data too large to
be stored in a VARCHAR column. SPECIFICATION is mapped to the field
Part.specification of type java.lang.String. The @Lob annotation is also used
here to denote that the field is a large object.

@Column(table="PERSISTENCE_ORDER_PART_DETAIL")
@Lob

public String getSpecification() {

The orderApplication

The Java EE 6Tutorial: Basic Concepts364

ptg

return specification;

}

Both of these fields use the @Column annotation and set the table element to the
secondary table.

TemporalTypes in the orderApplication
The Order.lastUpdate persistent property, which is of type java.util.Date, is
mapped to the PERSISTENCE_ORDER_ORDER.LASTUPDATE database field, which is of the
SQL type TIMESTAMP. To ensure the propermapping between these types, youmust
use the @Temporal annotation with the proper temporal type specified in @Temporal’s
element. @Temporal’s elements are of type javax.persistence.TemporalType. The
possible values are
■ DATE, whichmaps to java.sql.Date
■ TIME, whichmaps to java.sql.Time
■ TIMESTAMP, whichmaps to java.sql.Timestamp

Here is the relevant section of Order:

@Temporal(TIMESTAMP)

public Date getLastUpdate() {

return lastUpdate;

}

Managing the orderApplication’s Entities
The RequestBean stateful session bean contains the business logic andmanages the
entities of order. RequestBean uses the @PersistenceContext annotation to retrieve
an entitymanager instance, which is used tomanage order’s entities in RequestBean’s
business methods:

@PersistenceContext

private EntityManager em;

This EntityManager instance is a container-managed entitymanager, so the container
takes care of all the transactions involved in themanaging order’s entities.

Creating Entities
The RequestBean.createPart business method creates a new Part entity. The
EntityManager.persistmethod is used to persist the newly created entity to the
database.

Part part = new Part(partNumber,

revision,

description,

The orderApplication

Chapter 20 • Running the Persistence Examples 365

ptg

revisionDate,

specification,

drawing);

em.persist(part);

The ConfigBean singleton session bean is used to initialize the data in order.
ConfigBean is annotated with @Startup, which indicates that the EJB container
should create ConfigBeanwhen order is deployed. The createDatamethod is
annotated with @PostConstruct and creates the initial entities used by order by
calling RequestsBean's business methods.

Finding Entities
The RequestBean.getOrderPrice business method returns the price of a given order,
based on the orderId. The EntityManager.findmethod is used to retrieve the entity
from the database.

Order order = em.find(Order.class, orderId);

The first argument of EntityManager.find is the entity class, and the second is the
primary key.

Setting Entity Relationships
The RequestBean.createVendorPart business method creates a VendorPart
associated with a particular Vendor. The EntityManager.persistmethod is used to
persist the newly created VendorPart entity to the database, and the
VendorPart.setVendor and Vendor.setVendorPartmethods are used to associate
the VendorPartwith the Vendor.

PartKey pkey = new PartKey();

pkey.partNumber = partNumber;

pkey.revision = revision;

Part part = em.find(Part.class, pkey);

VendorPart vendorPart = new VendorPart(description, price,

part);

em.persist(vendorPart);

Vendor vendor = em.find(Vendor.class, vendorId);

vendor.addVendorPart(vendorPart);

vendorPart.setVendor(vendor);

UsingQueries
The RequestBean.adjustOrderDiscount business method updates the discount
applied to all orders. This method uses the findAllOrders named query, defined in
Order:

The orderApplication

The Java EE 6Tutorial: Basic Concepts366

ptg

@NamedQuery(

name="findAllOrders",
query="SELECT o FROM Order o"

)

The EntityManager.createNamedQuerymethod is used to run the query. Because the
query returns a List of all the orders, the Query.getResultListmethod is used.

List orders = em.createNamedQuery(

"findAllOrders")
.getResultList();

The RequestBean.getTotalPricePerVendor business method returns the total price
of all the parts for a particular vendor. This method uses a named parameter, id,
defined in the named query findTotalVendorPartPricePerVendor defined in
VendorPart.

@NamedQuery(

name="findTotalVendorPartPricePerVendor",
query="SELECT SUM(vp.price) " +
"FROM VendorPart vp " +
"WHERE vp.vendor.vendorId = :id"

)

When running the query, the Query.setParametermethod is used to set the named
parameter id to the value of vendorId, the parameter to
RequestBean.getTotalPricePerVendor:

return (Double) em.createNamedQuery(

"findTotalVendorPartPricePerVendor")
.setParameter("id", vendorId)

.getSingleResult();

The Query.getSingleResultmethod is used for this query because the query returns
a single value.

Removing Entities
The RequestBean.removeOrder business method deletes a given order from the
database. This method uses the EntityManager.removemethod to delete the entity
from the database.

Order order = em.find(Order.class, orderId);

em.remove(order);

The orderApplication

Chapter 20 • Running the Persistence Examples 367

ptg

Building, Packaging,Deploying, andRunning the
orderApplication
This section explains how to build, package, deploy, and run the order application. To
do this, you will create the database tables in the Java DB server, then build, deploy,
and run the example.

▼ ToBuild, Package,Deploy, andRun orderUsingNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/persistence/

Select the order folder.

Select theOpen asMain Project check box.

ClickOpenProject.

In the Projects tab, right-click the orderproject and select Run.
NetBeans IDE opens a web browser to http://localhost:8080/order/.

▼ ToBuild, Package,Deploy, andRun orderUsingAnt

In a terminalwindow, go to:
tut-install/examples/persistence/order/

Type the following command:
ant

This runs the default task, which compiles the source files and packages the
application into aWAR file located at
tut-install/examples/persistence/order/dist/order.war.

Todeploy theWAR,make sure that theGlassFish Server is started, then type the
following command:
ant deploy

Open awebbrowser to http://localhost:8080/order/ to create andupdate the
order data.

1

2

3

4

5

6

1

2

3

4

The orderApplication

The Java EE 6Tutorial: Basic Concepts368

http://localhost:8080/order/
http://localhost:8080/order/

ptg

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To
do this, type the following command:

ant all

The rosterApplication
The roster applicationmaintains the team rosters for players in recreational sports
leagues. The application has four components: Java Persistence API entities (Player,
Team, and League), a stateful session bean (RequestBean), an application client
(RosterClient), and three helper classes (PlayerDetails, TeamDetails, and
LeagueDetails).

Functionally, roster is similar to the order application, with three new features that
order does not have: many-to-many relationships, entity inheritance, and automatic
table creation at deployment time.

Relationships in the rosterApplication
A recreational sports system has the following relationships:
■ Aplayer can be onmany teams.
■ A team can havemany players.
■ A team is in exactly one league.
■ A league hasmany teams.

In roster this system is reflected by the following relationships between the Player,
Team, and League entities.
■ There is amany-to-many relationship between Player and Team.
■ There is amany-to-one relationship between Team and League.

TheMany-To-ManyRelationship in roster
Themany-to-many relationship between Player and Team is specified by using the
@ManyToMany annotation. In Team.java, the @ManyToMany annotation decorates the
getPlayersmethod:

@ManyToMany

@JoinTable(

name="EJB_ROSTER_TEAM_PLAYER",
joinColumns=

@JoinColumn(name="TEAM_ID", referencedColumnName="ID"),
inverseJoinColumns=

The rosterApplication

Chapter 20 • Running the Persistence Examples 369

ptg

@JoinColumn(name="PLAYER_ID", referencedColumnName="ID")
)

public Collection<Player> getPlayers() {

return players;

}

The @JoinTable annotation is used to specify a database table that will associate player
IDs with team IDs. The entity that specifies the @JoinTable is the owner of the
relationship, so the Team entity is the owner of the relationship with the Player entity.
Because roster uses automatic table creation at deployment time, the container will
create a join table named EJB_ROSTER_TEAM_PLAYER.

Player is the inverse, or nonowning, side of the relationship with Team. As one-to-one
andmany-to-one relationships, the nonowning side is marked by the mappedBy
element in the relationship annotation. Because the relationship between Player and
Team is bidirectional, the choice of which entity is the owner of the relationship is
arbitrary.

In Player.java, the @ManyToMany annotation decorates the getTeamsmethod:

@ManyToMany(mappedBy="players")
public Collection<Team> getTeams() {

return teams;

}

Entity Inheritance in the rosterApplication
The roster application shows how to use entity inheritance, as described in “Entity
Inheritance” on page 345.

The League entity in roster is an abstract entity with two concrete subclasses:
SummerLeague and WinterLeague. Because League is an abstract class, it cannot be
instantiated:

...

@Entity

@Table(name = "EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

Instead, when creating a league, clients use SummerLeague or WinterLeague.
SummerLeague and WinterLeague inherit the persistent properties defined in League

and add only a constructor that verifies that the sport parametermatches the type of
sport allowed in that seasonal league. For example, here is the SummerLeague entity:

The rosterApplication

The Java EE 6Tutorial: Basic Concepts370

ptg

...

@Entity

public class SummerLeague extends League

implements java.io.Serializable {

/** Creates a new instance of SummerLeague */

public SummerLeague() {

}

public SummerLeague(String id, String name,

String sport) throws IncorrectSportException {

this.id = id;

this.name = name;

if (sport.equalsIgnoreCase("swimming") ||

sport.equalsIgnoreCase("soccer") ||

sport.equalsIgnoreCase("basketball") ||

sport.equalsIgnoreCase("baseball")) {

this.sport = sport;

} else {

throw new IncorrectSportException(

"Sport is not a summer sport.");
}

}

}

The roster application uses the default mapping strategy of
InheritanceType.SINGLE_TABLE, so the @Inheritance annotation is not required. If
you want to use a differentmapping strategy, decorate Leaguewith @Inheritance and
specify themapping strategy in the strategy element:

@Entity

@Inheritance(strategy=JOINED)

@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

The roster application uses the default discriminator column name, so the
@DiscriminatorColumn annotation is not required. Because you are using automatic
table generation in roster, the Persistence provider will create a discriminator column
called DTYPE in the EJB_ROSTER_LEAGUE table, which will store the name of the
inherited entity used to create the league. If you want to use a different name for the
discriminator column, decorate Leaguewith @DiscriminatorColumn and set the name
element:

@Entity

@DiscriminatorColumn(name="DISCRIMINATOR")
@Table(name="EJB_ROSTER_LEAGUE")
public abstract class League implements java.io.Serializable {

...

}

The rosterApplication

Chapter 20 • Running the Persistence Examples 371

ptg

CriteriaQueries in the rosterApplication
The roster application uses Criteria API queries, as opposed to the JPQL queries used
in order. Criteria queries are Java programming language, typesafe queries defined in
the business tier of roster, in the RequestBean stateless session bean.

Metamodel Classes in the rosterApplication
Metamodel classes model an entity’s attributes and are used by Criteria queries to
navigate to an entity’s attributes. Each entity class in roster has a corresponding
metamodel class, generated at compile time, with the same package name as the entity
and appended with an underscore character (_). For example, the
roster.entity.Person entity has a correspondingmetamodel class,
roster.entity.Person_.

Each persistent field or property in the entity class has a corresponding attribute in the
entity’s metamodel class. For the Person entity, the correspondingmetamodel class is:

@StaticMetamodel(Person.class)

public class Person_ {

public static volatile SingularAttribute<Player, String> id;

public static volatile SingularAttribute<Player, String> name;

public static volatile SingularAttribute<Player, String> position;

public static volatile SingularAttribute<Player, Double> salary;

public static volatile CollectionAttribute<Player, Team> teams;

}

Obtaining a CriteriaBuilder Instance in RequestBean
The CrtiteriaBuilder interface definesmethods to create criteria query objects and
create expressions formodifying those query objects. RequestBean creates an instance
of CriteriaBuilder by using a @PostConstructmethod, init:

@PersistenceContext

private EntityManager em;

private CriteriaBuilder cb;

@PostConstruct

private void init() {

cb = em.getCriteriaBuilder();

}

The EntityManager instance is injected at runtime, and then that EntityManager
object is used to create the CriteriaBuilder instance by calling
getCriteriaBuilder. The CriteriaBuilder instance is created in a @PostConstruct
method to ensure that the EntityManager instance has been injected by the enterprise
bean container.

The rosterApplication

The Java EE 6Tutorial: Basic Concepts372

ptg

CreatingCriteriaQueries in RequestBean's BusinessMethods
Many of the business methods in RequestBean define Criteria queries. One business
method, getPlayersByPosition, returns a list of players who play a particular
position on a team:

public List<PlayerDetails> getPlayersByPosition(String position) {

logger.info("getPlayersByPosition");
List<Player> players = null;

try {

CriteriaQuery<Player> cq = cb.createQuery(Player.class);

if (cq != null) {

Root<Player> player = cq.from(Player.class);

// set the where clause

cq.where(cb.equal(player.get(Player_.position), position));

cq.select(player);

TypedQuery<Player> q = em.createQuery(cq);

players = q.getResultList();

}

return copyPlayersToDetails(players);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

A query object is created by calling the CriteriaBuilder object’s createQuery
method, with the type set to Player because the query will return a list of players.

The query root, the base entity fromwhich the query will navigate to find the entity’s
attributes and related entities, is created by calling the frommethod of the query
object. This sets the FROM clause of the query.

TheWHERE clause, set by calling the wheremethod on the query object, restricts the
results of the query according to the conditions of an expression. The
CriteriaBuilder.equalmethod compares the two expressions. In
getPlayersByPosition, the position attribute of the Player_metamodel class,
accessed by calling the getmethod of the query root, is compared to the position
parameter passed to getPlayersByPosition.

The SELECT clause of the query is set by calling the selectmethod of the query
object. The query will return Player entities, so the query root object is passed as a
parameter to select.

The query object is prepared for execution by calling EntityManager.createQuery,
which returns a TypedQuery<T> object with the type of the query, in this case Player.
This typed query object is used to execute the query, which occurs when the
getResultListmethod is called, and a List<Player> collection is returned.

The rosterApplication

Chapter 20 • Running the Persistence Examples 373

ptg

AutomaticTableGeneration in the roster
Application
At deployment time, the GlassFish Server will automatically drop and create the
database tables used by roster. This is done by setting the
eclipselink.ddl-generation property to drop-and-create-tables in
persistence.xml:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"

xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
<persistence-unit name="em" transaction-type="JTA">

<jta-data-source>jdbc/__default</jta-data-source>

<properties>

<property name="eclipselink.ddl-generation"
value="drop-and-create-tables"/>

</properties>

</persistence-unit>

</persistence>

This feature is specific to the Java Persistence API provider used by the GlassFish
Server and is nonportable across Java EE servers. Automatic table creation is useful for
development purposes, however, and the eclipselink.ddl-generation property
may be removed from persistence.xmlwhen preparing the application for
production use or when deploying to other Java EE servers.

Building, Packaging,Deploying, andRunning the
rosterApplication
This section explains how to build, package, deploy, and run the roster application.
You can do this using either NetBeans IDE or Ant.

▼ ToBuild, Package,Deploy, andRun rosterUsingNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/persistence/

Select the roster folder.

Select theOpen asMain Project andOpenRequired Projects check boxes.

ClickOpenProject.

1

2

3

4

5

The rosterApplication

The Java EE 6Tutorial: Basic Concepts374

ptg

In the Projects tab, right-click the rosterproject and select Run.

Youwill see the following partial output from the application client in the Output tab:
List all players in team T2:

P6 Ian Carlyle goalkeeper 555.0

P7 Rebecca Struthers midfielder 777.0

P8 Anne Anderson forward 65.0

P9 Jan Wesley defender 100.0

P10 Terry Smithson midfielder 100.0

List all teams in league L1:

T1 Honey Bees Visalia

T2 Gophers Manteca

T5 Crows Orland

List all defenders:

P2 Alice Smith defender 505.0

P5 Barney Bold defender 100.0

P9 Jan Wesley defender 100.0

P22 Janice Walker defender 857.0

P25 Frank Fletcher defender 399.0

...

▼ ToBuild, Package,Deploy, andRun rosterUsingAnt

In a terminalwindow, go to:
tut-install/examples/persistence/roster/

Type the following command:
ant

This runs the default task, which compiles the source files and packages the
application into an EAR file located at
tut-install/examples/persistence/roster/dist/roster.ear.

Todeploy the EAR,make sure that theGlassFish Server is started; then type the
following command:
ant deploy

The build systemwill check whether the Java DB database server is running and start it
if it is not running, then deploy roster.ear. The GlassFish Server will then drop and
create the database tables during deployment, as specified in persistence.xml.

After roster.ear is deployed, a client JAR, rosterClient.jar, is retrieved. This
contains the application client.

To run the application client, type the following command:
ant run

6

1

2

3

4

The rosterApplication

Chapter 20 • Running the Persistence Examples 375

ptg

Youwill see the output, which begins:

[echo] running application client container.

[exec] List all players in team T2:

[exec] P6 Ian Carlyle goalkeeper 555.0

[exec] P7 Rebecca Struthers midfielder 777.0

[exec] P8 Anne Anderson forward 65.0

[exec] P9 Jan Wesley defender 100.0

[exec] P10 Terry Smithson midfielder 100.0

[exec] List all teams in league L1:

[exec] T1 Honey Bees Visalia

[exec] T2 Gophers Manteca

[exec] T5 Crows Orland

[exec] List all defenders:

[exec] P2 Alice Smith defender 505.0

[exec] P5 Barney Bold defender 100.0

[exec] P9 Jan Wesley defender 100.0

[exec] P22 Janice Walker defender 857.0

[exec] P25 Frank Fletcher defender 399.0

...

The all Task
As a convenience, the all task will build, package, deploy, and run the application. To
do this, type the following command:

ant all

The address-bookApplication
The address-book example application is a simple web application that stores contact
data. It uses a single entity class, Contact, that uses the Java API for JavaBeans
Validation (Bean Validation) to validate the data stored in the persistent attributes of
the entity, as described in “Validating Persistent Fields and Properties” on page 337.

BeanValidationConstraints in address-book
The Contact entity uses the @NotNull, @Pattern, and @Past constraints on the
persistent attributes.

The @NotNull constraint marks the attribute as a required field. The attributemust be
set to a non-null value before the entity can be persisted ormodified. Bean Validation
will throw a validation error if the attribute is null when the entity is persisted or
modified.

The @Pattern constraint defines a regular expression that the value of the attribute
must match before the entity can be persisted ormodified. This constraint has two
different uses in address-book.

The address-bookApplication

The Java EE 6Tutorial: Basic Concepts376

ptg

■ The regular expression declared in the @Pattern annotation on the email field
matches email addresses of the form name@domain name.top level domain,
allowing only valid characters for email addresses. For example,
username@example.comwill pass validation, as will
firstname.lastname@mail.example.com. However,
firstname,lastname@example.com, which contains an illegal comma character in
the local name, will fail validation.

■ The mobilePhone and homePhone fields are annotated with a @Pattern constraint
that defines a regular expression tomatch phone numbers of the form (xxx)
xxx–xxxx.

The @Past constraint is applied to the birthday field, whichmust be a java.util.Date
in the past.

Here are the relevant parts of the Contact entity class:

@Entity

public class Contact implements Serializable {

private static final long serialVersionUID = 1L;

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private Long id;

@NotNull

protected String firstName;

@NotNull

protected String lastName;

@Pattern(regexp="[a-z0-9!#$%&’*+/=?^_‘{|}~-]+(?:\\."
+"[a-z0-9!#$%&’*+/=?^_‘{|}~-]+)*"
+"@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?",

message="{invalid.email}")
protected String email;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String mobilePhone;

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String homePhone;

@Temporal(javax.persistence.TemporalType.DATE)

@Past

protected Date birthday;

...

}

Specifying ErrorMessages for Constraints in
address-book

Some of the constraints in the Contact entity specify an optional message:

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="{invalid.phonenumber}")

protected String homePhone;

The address-bookApplication

Chapter 20 • Running the Persistence Examples 377

ptg

The optional message element in the @Pattern constraint overrides the default
validationmessage. Themessage can be specified directly:

@Pattern(regexp="^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
message="Invalid phone number!")

protected String homePhone;

The constraints in Contact, however, are strings in the resource bundle
tut-install/examples/persistence/address-book/src/java/
ValidationMessages.properties. This allows the validationmessages to be located
in one single properties file and themessages to be easily localized. Overridden Bean
Validationmessagesmust be placed in a resource bundle properties file named
ValidationMessages.properties in the default package, with localized resource
bundles taking the form ValidationMessages_locale-prefix.properties. For
example, ValidationMessages_es.properties is the resource bundle used in
Spanish speaking locales.

Validating Contact Input froma JavaServer Faces
Application
The address-book application uses a JavaServer Faces web front end to allow users to
enter contacts.While JavaServer Faces has a form input validationmechanism using
tags in Facelets XHTML files, address-book doesn’t use these validation tags. Bean
Validation constraints in JavaServer Faces backing beans, in this case in the Contact
entity, automatically trigger validation when the forms are submitted.

The following code snippet from the Create.xhtml Facelets file shows some of the
input form for creating new Contact instances:

<h:form>

<h:panelGrid columns="3">
<h:outputLabel value="#{bundle.CreateContactLabel_firstName}"

for="firstName" />

<h:inputText id="firstName"
value="#{contactController.selected.firstName}"
title="#{bundle.CreateContactTitle_firstName}" />

<h:message for="firstName"
errorStyle="color: red"
infoStyle="color: green" />

<h:outputLabel value="#{bundle.CreateContactLabel_lastName}"
for="lastName" />

<h:inputText id="lastName"
value="#{contactController.selected.lastName}"
title="#{bundle.CreateContactTitle_lastName}" />

<h:message for="lastName"
errorStyle="color: red"
infoStyle="color: green" />

...

</h:panelGrid>

</h:form>

The address-bookApplication

The Java EE 6Tutorial: Basic Concepts378

ptg

The <h:inputText> tags firstName and lastName are bound to the attributes in the
Contact entity instance selected in the ContactController stateless session bean.
Each <h:inputText> tag has an associated <h:message> tag that will display
validation errormessages. The form doesn’t require any JavaServer Faces validation
tags, however.

Building, Packaging,Deploying, andRunning the
address-bookApplication
This section describes how to build, package, deploy, and run the address-book
application. You can do this using either NetBeans IDE or Ant.

▼ Building, Packaging,Deploying, andRunning the address-book
Application inNetBeans IDE

In NetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/persistence/

Select the address-book folder.

Select theOpen asMain Project andOpenRequired Projects check boxes.

ClickOpenProject.

In the Projects tab, right-click the address-book project and select Run.
After the application has been deployed, a web browser window appears at the
followingURL:
http://localhost:8080/address-book/

Click ShowAll Contact Items, then CreateNewContact. Type values in the formfields;
then click Save.
If any of the values entered violate the constraints in Contact, an errormessage will
appear in red beside the form field with the incorrect values.

▼ Building, Packaging,Deploying, andRunning the address-book
ApplicationUsingAnt

In a terminalwindow, go to:
tut-install/examples/persistence/address-book

1

2

3

4

5

6

7

1

The address-bookApplication

Chapter 20 • Running the Persistence Examples 379

http://localhost:8080/address-book/

ptg

Type the following command:
ant

This will compile and assemble the address-book application.

Type the following command:
ant deploy

This will deploy the application to GlassFish Server.

Open awebbrowserwindowand type the followingURL:
http://localhost:8080/address-book/

Tip –As a convenience, the all task will build, package, deploy, and run the
application. To do this, type the following command:

ant all

Click ShowAll Contact Items, then CreateNewContact. Type values in the formfields;
then click Save.
If any of the values entered violate the constraints in Contact, an errormessage will
appear in red beside the form field with the incorrect values.

2

3

4

5

The address-bookApplication

The Java EE 6Tutorial: Basic Concepts380

http://localhost:8080/address-book/

ptg

The Java PersistenceQuery Language

The Java Persistence query language defines queries for entities and their persistent
state. The query language allows you to write portable queries that work regardless of
the underlying data store.

The query language uses the abstract persistence schemas of entities, including their
relationships, for its datamodel and defines operators and expressions based on this
datamodel. The scope of a query spans the abstract schemas of related entities that are
packaged in the same persistence unit. The query language uses an SQL-like syntax to
select objects or values based on entity abstract schema types and relationships among
them.

This chapter relies on thematerial presented in earlier chapters. For conceptual
information, see Chapter 19, “Introduction to the Java Persistence API.” For code
examples, see Chapter 20, “Running the Persistence Examples.”

The following topics are addressed here:

■ “Query Language Terminology” on page 382
■ “Creating Queries Using the Java Persistence Query Language” on page 382
■ “SimplifiedQuery Language Syntax” on page 384
■ “Example Queries” on page 385
■ “Full Query Language Syntax” on page 390

21C H A P T E R 2 1

381

ptg

Query LanguageTerminology
The following list defines some of the terms referred to in this chapter:
■ Abstract schema: The persistent schema abstraction (persistent entities, their

state, and their relationships) over which queries operate. The query language
translates queries over this persistent schema abstraction into queries that are
executed over the database schema to which entities aremapped.

■ Abstract schema type: The type to which the persistent property of an entity
evaluates in the abstract schema. That is, each persistent field or property in an
entity has a corresponding state field of the same type in the abstract schema. The
abstract schema type of an entity is derived from the entity class and themetadata
information provided by Java language annotations.

■ Backus-Naur Form (BNF): A notation that describes the syntax of high-level
languages. The syntax diagrams in this chapter are in BNF notation.

■ Navigation: The traversal of relationships in a query language expression. The
navigation operator is a period.

■ Path expression: An expression that navigates to a entity’s state or relationship
field.

■ State field: A persistent field of an entity.
■ Relationship field: A persistent relationship field of an entity whose type is the

abstract schema type of the related entity.

CreatingQueriesUsing the JavaPersistence
Query Language

The EntityManager.createQuery and EntityManager.createNamedQuerymethods
are used to query the datastore by using Java Persistence query language queries.

The createQuerymethod is used to create dynamic queries, which are queries defined
directly within an application’s business logic:

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.setMaxResults(10)

.getResultList();

}

The createNamedQuerymethod is used to create static queries, or queries that are
defined inmetadata by using the javax.persistence.NamedQuery annotation. The
name element of @NamedQuery specifies the name of the query that will be used with the
createNamedQuerymethod. The query element of @NamedQuery is the query:

Query LanguageTerminology

The Java EE 6Tutorial: Basic Concepts382

ptg

@NamedQuery(

name="findAllCustomersWithName",
query="SELECT c FROM Customer c WHERE c.name LIKE :custName"

)

Here’s an example of createNamedQuery, which uses the @NamedQuery:

@PersistenceContext

public EntityManager em;

...

customers = em.createNamedQuery("findAllCustomersWithName")
.setParameter("custName", "Smith")
.getResultList();

NamedParameters inQueries
Named parameters are query parameters that are prefixed with a colon (:). Named
parameters in a query are bound to an argument by the followingmethod:

javax.persistence.Query.setParameter(String name, Object value)

In the following example, the name argument to the findWithName business method is
bound to the :custName named parameter in the query by calling
Query.setParameter:

public List findWithName(String name) {

return em.createQuery(

"SELECT c FROM Customer c WHERE c.name LIKE :custName")
.setParameter("custName", name)

.getResultList();

}

Named parameters are case-sensitive andmay be used by both dynamic and static
queries.

Positional Parameters inQueries
Youmay use positional parameters instead of named parameters in queries. Positional
parameters are prefixed with a questionmark (?) followed the numeric position of the
parameter in the query. The Query.setParameter(integer position, Object
value)method is used to set the parameter values.

In the following example, the findWithName business method is rewritten to use input
parameters:

public List findWithName(String name) {

return em.createQuery(

“SELECT c FROM Customer c WHERE c.name LIKE ?1”)

CreatingQueries Using the Java PersistenceQuery Language

Chapter 21 • The Java PersistenceQuery Language 383

ptg

.setParameter(1, name)

.getResultList();

}

Input parameters are numbered starting from 1. Input parameters are case-sensitive,
andmay be used by both dynamic and static queries.

SimplifiedQuery LanguageSyntax
This section briefly describes the syntax of the query language so that you can quickly
move on to “Example Queries” on page 385.When you are ready to learn about the
syntax inmore detail, see “Full Query Language Syntax” on page 390.

Select Statements
A select query has six clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY.
The SELECT and FROM clauses are required, but the WHERE, GROUP BY, HAVING, and ORDER
BY clauses are optional. Here is the high-level BNF syntax of a query language select
query:

QL_statement ::= select_clause from_clause

[where_clause][groupby_clause][having_clause][orderby_clause]

■ The SELECT clause defines the types of the objects or values returned by the query.
■ The FROM clause defines the scope of the query by declaring one ormore

identification variables, which can be referenced in the SELECT and WHERE clauses.
An identification variable represents one of the following elements:
■ The abstract schema name of an entity
■ An element of a collection relationship
■ An element of a single-valued relationship
■ Amember of a collection that is themultiple side of a one-to-many relationship

■ The WHERE clause is a conditional expression that restricts the objects or values
retrieved by the query. Although the clause is optional, most queries have a WHERE
clause.

■ The GROUP BY clause groups query results according to a set of properties.
■ The HAVING clause is used with the GROUP BY clause to further restrict the query

results according to a conditional expression.
■ The ORDER BY clause sorts the objects or values returned by the query into a

specified order.

SimplifiedQuery Language Syntax

The Java EE 6Tutorial: Basic Concepts384

ptg

Update andDelete Statements
Update and delete statements provide bulk operations over sets of entities. These
statements have the following syntax:

update_statement :: = update_clause [where_clause]

delete_statement :: = delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or
deleted. The WHERE clausemay be used to restrict the scope of the update or delete
operation.

ExampleQueries
The following queries are from the Player entity of the roster application, which is
documented in “The rosterApplication” on page 369.

SimpleQueries
If you are unfamiliar with the query language, these simple queries are a good place to
start.

ABasic SelectQuery
SELECT p

FROM Player p

■ Data retrieved: All players.
■ Description: The FROM clause declares an identification variable named p, omitting

the optional keyword AS. If the AS keyword were included, the clause would be
written as follows:

FROM Player AS

p

The Player element is the abstract schema name of the Player entity.
■ See also: “Identification Variables” on page 396.

EliminatingDuplicateValues
SELECT DISTINCT

p

FROM Player p

WHERE p.position = ?1

ExampleQueries

Chapter 21 • The Java PersistenceQuery Language 385

ptg

■ Data retrieved: The players with the position specified by the query’s parameter.
■ Description: The DISTINCT keyword eliminates duplicate values.

The WHERE clause restricts the players retrieved by checking their position, a
persistent field of the Player entity. The ?1 element denotes the input parameter of
the query.

■ See also: “Input Parameters” on page 401 and “The DISTINCTKeyword” on
page 411.

UsingNamedParameters
SELECT DISTINCT p

FROM Player p

WHERE p.position = :position AND p.name = :name

■ Data retrieved: The players having the specified positions and names.
■ Description: The position and name elements are persistent fields of the Player

entity. The WHERE clause compares the values of these fields with the named
parameters of the query, set using the Query.setNamedParametermethod. The
query language denotes a named input parameter using a colon (:) followed by an
identifier. The first input parameter is :position, the second is :name.

QueriesThatNavigate toRelated Entities
In the query language, an expression can traverse, or navigate, to related entities. These
expressions are the primary difference between the Java Persistence query language
and SQL. Queries navigates to related entities, whereas SQL joins tables.

ASimpleQuerywithRelationships
SELECT DISTINCT p

FROM Player p, IN(p.teams) t

■ Data retrieved: All players who belong to a team.
■ Description: The FROM clause declares two identification variables: p and t. The p

variable represents the Player entity, and the t variable represents the related Team
entity. The declaration for t references the previously declared p variable. The IN
keyword signifies that teams is a collection of related entities. The p.teams
expression navigates from a Player to its related Team. The period in the p.teams
expression is the navigation operator.
Youmay also use the JOIN statement to write the same query:

SELECT DISTINCT p

FROM Player p JOIN p.teams t

ExampleQueries

The Java EE 6Tutorial: Basic Concepts386

ptg

This query could also be rewritten as:

SELECT DISTINCT p

FROM Player p

WHERE p.team IS NOT EMPTY

Navigating to Single-ValuedRelationship Fields
Use the JOIN clause statement to navigate to a single-valued relationship field:

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = ’soccer’ OR l.sport =’football’

In this example, the query will return all teams that are in either soccer or football
leagues.

TraversingRelationshipswith an Input Parameter
SELECT DISTINCT p

FROM Player p, IN (p.teams) AS t

WHERE t.city = :city

■ Data retrieved: The players whose teams belong to the specified city.
■ Description: This query is similar to the previous example but adds an input

parameter. The AS keyword in the FROM clause is optional. In the WHERE clause, the
period preceding the persistent variable city is a delimiter, not a navigation
operator. Strictly speaking, expressions can navigate to relationship fields (related
entities) but not to persistent fields. To access a persistent field, an expression uses
the period as a delimiter.
Expressions cannot navigate beyond (or further qualify) relationship fields that are
collections. In the syntax of an expression, a collection-valued field is a terminal
symbol. Because the teams field is a collection, the WHERE clause cannot specify
p.teams.city (an illegal expression).

■ See also: “Path Expressions” on page 398.

TraversingMultiple Relationships
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league = :league

■ Data retrieved: The players who belong to the specified league.
■ Description: The expressions in this query navigate over two relationships. The

p.teams expression navigates the Player-Team relationship, and the t.league
expression navigates the Team-League relationship.

In the other examples, the input parameters are String objects; in this example, the
parameter is an object whose type is a League. This typematches the league
relationship field in the comparison expression of the WHERE clause.

ExampleQueries

Chapter 21 • The Java PersistenceQuery Language 387

ptg

NavigatingAccording toRelated Fields
SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

■ Data retrieved: The players who participate in the specified sport.
■ Description: The sport persistent field belongs to the League entity. To reach the

sport field, the querymust first navigate from the Player entity to Team (p.teams)
and then from Team to the League entity (t.league). Because it is not a collection,
the league relationship field can be followed by the sport persistent field.

QuerieswithOther Conditional Expressions
Every WHERE clausemust specify a conditional expression, of which there are several
kinds. In the previous examples, the conditional expressions are comparison
expressions that test for equality. The following examples demonstrate some of the
other kinds of conditional expressions. For descriptions of all conditional expressions,
see “WHEREClause” on page 400.

The LIKE Expression
SELECT p

FROM Player p

WHERE p.name LIKE ’Mich%’

■ Data retrieved: All players whose names begin with “Mich.”
■ Description: The LIKE expression uses wildcard characters to search for strings

that match the wildcard pattern. In this case, the query uses the LIKE expression
and the %wildcard to find all players whose names begin with the string “Mich.” For
example, “Michael” and “Michelle” bothmatch the wildcard pattern.

■ See also: “LIKE Expressions” on page 403.

The IS NULL Expression
SELECT t

FROM Team t

WHERE t.league IS NULL

■ Data retrieved: All teams not associated with a league.
■ Description: The IS NULL expression can be used to check whether a relationship

has been set between two entities. In this case, the query checks whether the teams
are associated with any leagues and returns the teams that do not have a league.

■ See also: “NULLComparison Expressions” on page 403 and “NULLValues” on
page 408.

ExampleQueries

The Java EE 6Tutorial: Basic Concepts388

ptg

The IS EMPTY Expression
SELECT p

FROM Player p

WHERE p.teams IS EMPTY

■ Data retrieved: All players who do not belong to a team.
■ Description: The teams relationship field of the Player entity is a collection. If a

player does not belong to a team, the teams collection is empty, and the conditional
expression is TRUE.

■ See also: “Empty Collection Comparison Expressions” on page 404.

The BETWEEN Expression
SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

■ Data retrieved: The players whose salaries fall within the range of the specified
salaries.

■ Description: This BETWEEN expression has three arithmetic expressions: a
persistent field (p.salary) and the two input parameters (:lowerSalary and
:higherSalary). The following expression is equivalent to the BETWEEN
expression:

p.salary >= :lowerSalary AND p.salary <= :higherSalary

■ See also: “BETWEEN Expressions” on page 402.

ComparisonOperators
SELECT DISTINCT p1

FROM Player p1, Player p2

WHERE p1.salary > p2.salary AND p2.name = :name

■ Data retrieved: All players whose salaries are higher than the salary of the player
with the specified name.

■ Description: The FROM clause declares two identification variables (p1 and p2) of
the same type (Player). Two identification variables are needed because the WHERE
clause compares the salary of one player (p2) with that of the other players (p1).

■ See also: “Identification Variables” on page 396.

BulkUpdates andDeletes
The following examples show how to use the UPDATE and DELETE expressions in
queries. UPDATE and DELETE operate onmultiple entities according to the condition or
conditions set in the WHERE clause. The WHERE clause in UPDATE and DELETE queries
follows the same rules as SELECT queries.

ExampleQueries

Chapter 21 • The Java PersistenceQuery Language 389

ptg

UpdateQueries
UPDATE Player p

SET p.status = ’inactive’

WHERE p.lastPlayed < :inactiveThresholdDate

■ Description: This query sets the status of a set of players to inactive if the player’s
last gamewas longer than the date specified in inactiveThresholdDate.

DeleteQueries
DELETE

FROM Player p

WHERE p.status = ’inactive’

AND p.teams IS EMPTY

■ Description: This query deletes all inactive players who are not on a team.

Full Query LanguageSyntax
This section discusses the query language syntax, as defined in the Java Persistence API
2.0 specification available at http://jcp.org/en/jsr/detail?id=317. Much of the
followingmaterial paraphrases or directly quotes the specification.

BNFSymbols
Table 21–1 describes the BNF symbols used in this chapter.

TABLE 21–1 BNFSymbol Summary

Symbol Description

::= The element to the left of the symbol is defined by the constructs on the right.

* The preceding construct may occur zero ormore times.

{...} The constructs within the braces are grouped together.

[...] The constructs within the brackets are optional.

| An exclusive OR.

BOLDFACE A keyword; although capitalized in the BNF diagram, keywords are not
case-sensitive.

White space Awhitespace character can be a space, a horizontal tab, or a line feed.

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts390

http://jcp.org/en/jsr/detail?id=317

ptg

BNFGrammarof the JavaPersistence
Query Language
Here is the entire BNF diagram for the query language:

QL_statement ::= select_statement | update_statement | delete_statement

select_statement ::= select_clause from_clause [where_clause] [groupby_clause]

[having_clause] [orderby_clause]

update_statement ::= update_clause [where_clause]

delete_statement ::= delete_clause [where_clause]

from_clause ::=

FROM identification_variable_declaration

{, {identification_variable_declaration |

collection_member_declaration}}*

identification_variable_declaration ::=

range_variable_declaration { join | fetch_join }*

range_variable_declaration ::= abstract_schema_name [AS]

identification_variable

join ::= join_spec join_association_path_expression [AS]

identification_variable

fetch_join ::= join_specFETCH join_association_path_expression

association_path_expression ::=

collection_valued_path_expression |

single_valued_association_path_expression

join_spec::= [LEFT [OUTER] |INNER] JOIN

join_association_path_expression ::=

join_collection_valued_path_expression |

join_single_valued_association_path_expression

join_collection_valued_path_expression::=

identification_variable.collection_valued_association_field

join_single_valued_association_path_expression::=

identification_variable.single_valued_association_field

collection_member_declaration ::=

IN (collection_valued_path_expression) [AS]

identification_variable

single_valued_path_expression ::=

state_field_path_expression |

single_valued_association_path_expression

state_field_path_expression ::=

{identification_variable |

single_valued_association_path_expression}.state_field

single_valued_association_path_expression ::=

identification_variable.{single_valued_association_field.}*

single_valued_association_field

collection_valued_path_expression ::=

identification_variable.{single_valued_association_field.}*

collection_valued_association_field

state_field ::=

{embedded_class_state_field.}*simple_state_field

update_clause ::=UPDATE abstract_schema_name [[AS]

identification_variable] SET update_item {, update_item}*

update_item ::= [identification_variable.]{state_field |

single_valued_association_field} = new_value

new_value ::=

simple_arithmetic_expression |

string_primary |

datetime_primary |

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 391

ptg

boolean_primary |

enum_primary simple_entity_expression |

NULL

delete_clause ::= DELETE FROM abstract_schema_name [[AS]

identification_variable]

select_clause ::= SELECT [DISTINCT] select_expression {,

select_expression}*

select_expression ::=

single_valued_path_expression |

aggregate_expression |

identification_variable |

OBJECT(identification_variable) |

constructor_expression

constructor_expression ::=

NEW constructor_name(constructor_item {,

constructor_item}*)

constructor_item ::= single_valued_path_expression |

aggregate_expression

aggregate_expression ::=

{AVG |MAX |MIN |SUM} ([DISTINCT]

state_field_path_expression) |

COUNT ([DISTINCT] identification_variable |

state_field_path_expression |

single_valued_association_path_expression)

where_clause ::= WHERE conditional_expression

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*

groupby_item ::= single_valued_path_expression

having_clause ::= HAVING conditional_expression

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*

orderby_item ::= state_field_path_expression [ASC |DESC]

subquery ::= simple_select_clause subquery_from_clause

[where_clause] [groupby_clause] [having_clause]

subquery_from_clause ::=

FROM subselect_identification_variable_declaration

{, subselect_identification_variable_declaration}*

subselect_identification_variable_declaration ::=

identification_variable_declaration |

association_path_expression [AS] identification_variable |

collection_member_declaration

simple_select_clause ::= SELECT [DISTINCT]

simple_select_expression

simple_select_expression::=

single_valued_path_expression |

aggregate_expression |

identification_variable

conditional_expression ::= conditional_term |

conditional_expression OR conditional_term

conditional_term ::= conditional_factor | conditional_term AND

conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary ::= simple_cond_expression |(

conditional_expression)

simple_cond_expression ::=

comparison_expression |

between_expression |

like_expression |

in_expression |

null_comparison_expression |

empty_collection_comparison_expression |

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts392

ptg

collection_member_expression |

exists_expression

between_expression ::=

arithmetic_expression [NOT] BETWEEN

arithmetic_expressionAND arithmetic_expression |

string_expression [NOT] BETWEEN string_expression AND

string_expression |

datetime_expression [NOT] BETWEEN

datetime_expression AND datetime_expression

in_expression ::=

state_field_path_expression [NOT] IN (in_item {, in_item}*

| subquery)

in_item ::= literal | input_parameter

like_expression ::=

string_expression [NOT] LIKE pattern_value [ESCAPE

escape_character]

null_comparison_expression ::=

{single_valued_path_expression | input_parameter} IS [NOT]

NULL

empty_collection_comparison_expression ::=

collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::= entity_expression

[NOT] MEMBER [OF] collection_valued_path_expression

exists_expression::= [NOT] EXISTS (subquery)

all_or_any_expression ::= {ALL |ANY |SOME} (subquery)

comparison_expression ::=

string_expression comparison_operator {string_expression |

all_or_any_expression} |

boolean_expression {= |<> } {boolean_expression |

all_or_any_expression} |

enum_expression {= |<> } {enum_expression |

all_or_any_expression} |

datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |

entity_expression {= |<> } {entity_expression |

all_or_any_expression} |

arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression}

comparison_operator ::= = |> |>= |< |<= |<>

arithmetic_expression ::= simple_arithmetic_expression |

(subquery)

simple_arithmetic_expression ::=

arithmetic_term | simple_arithmetic_expression {+ |- }

arithmetic_term

arithmetic_term ::= arithmetic_factor | arithmetic_term {* |/ }

arithmetic_factor

arithmetic_factor ::= [{+ |- }] arithmetic_primary

arithmetic_primary ::=

state_field_path_expression |

numeric_literal |

(simple_arithmetic_expression) |

input_parameter |

functions_returning_numerics |

aggregate_expression

string_expression ::= string_primary | (subquery)

string_primary ::=

state_field_path_expression |

string_literal |

input_parameter |

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 393

ptg

functions_returning_strings |

aggregate_expression

datetime_expression ::= datetime_primary | (subquery)

datetime_primary ::=

state_field_path_expression |

input_parameter |

functions_returning_datetime |

aggregate_expression

boolean_expression ::= boolean_primary | (subquery)

boolean_primary ::=

state_field_path_expression |

boolean_literal |

input_parameter

enum_expression ::= enum_primary | (subquery)

enum_primary ::=

state_field_path_expression |

enum_literal |

input_parameter

entity_expression ::=

single_valued_association_path_expression |

simple_entity_expression

simple_entity_expression ::=

identification_variable |

input_parameter

functions_returning_numerics::=

LENGTH(string_primary) |

LOCATE(string_primary, string_primary[,

simple_arithmetic_expression]) |

ABS(simple_arithmetic_expression) |

SQRT(simple_arithmetic_expression) |

MOD(simple_arithmetic_expression,

simple_arithmetic_expression) |

SIZE(collection_valued_path_expression)

functions_returning_datetime ::=

CURRENT_DATE |

CURRENT_TIME |

CURRENT_TIMESTAMP

functions_returning_strings ::=

CONCAT(string_primary, string_primary) |

SUBSTRING(string_primary,

simple_arithmetic_expression,

simple_arithmetic_expression)|

TRIM([[trim_specification] [trim_character] FROM]

string_primary) |

LOWER(string_primary) |

UPPER(string_primary)

trim_specification ::= LEADING | TRAILING | BOTH

FROMClause
The FROM clause defines the domain of the query by declaring identification variables.

Identifiers
An identifier is a sequence of one ormore characters. The first character must be a
valid first character (letter, $, _) in an identifier of the Java programming language,

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts394

ptg

hereafter in this chapter called simply “Java”. Each subsequent character in the
sequencemust be a valid nonfirst character (letter, digit, $, _) in a Java identifier. (For
details, see the Java SE API documentation of the isJavaIdentifierStart and
isJavaIdentifierPartmethods of the Character class.) The questionmark (?) is a
reserved character in the query language and cannot be used in an identifier.

A query language identifier is case-sensitive, with two exceptions:

■ Keywords
■ Identification variables

An identifier cannot be the same as a query language keyword. Here is a list of query
language keywords:

ABS ALL AND ANY AS

ASC AVG BETWEEN BIT_LENGTH BOTH

BY CASE CHAR_LENGTH CHARACTER_LENGTH CLASS

COALESCE CONCAT COUNT CURRENT_DATE CURRENT_TIMESTAMP

DELETE DESC DISTINCT ELSE EMPTY

END ENTRY ESCAPE EXISTS FALSE

FETCH FROM GROUP HAVING IN

INDEX INNER IS JOIN KEY

LEADING LEFT LENGTH LIKE LOCATE

LOWER MAX MEMBER MIN MOD

NEW NOT NULL NULLIF OBJECT

OF OR ORDER OUTER POSITION

SELECT SET SIZE SOME SQRT

SUBSTRING SUM THEN TRAILING TRIM

TRUE TYPE UNKNOWN UPDATE UPPER

VALUE WHEN WHERE

It is not recommended that you use an SQL keyword as an identifier, because the list of
keywordsmay expand to include other reserved SQLwords in the future.

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 395

ptg

IdentificationVariables
An identification variable is an identifier declared in the FROM clause. Although they
can reference identification variables, the SELECT and WHERE clauses cannot declare
them. All identification variables must be declared in the FROM clause.

Because it is an identifier, an identification variable has the same naming conventions
and restrictions as an identifier, with the exception that an identification variables is
case-insensitive. For example, an identification variable cannot be the same as a query
language keyword. (See the preceding section formore naming rules.) Also, within a
given persistence unit, an identification variable namemust notmatch the name of
any entity or abstract schema.

The FROM clause can containmultiple declarations, separated by commas. A
declaration can reference another identification variable that has been previously
declared (to the left). In the following FROM clause, the variable t references the
previously declared variable p:

FROM Player p, IN (p.teams) AS t

Even if it is not used in the WHERE clause, an identification variable's declaration can
affect the results of the query. For example, compare the next two queries. The
following query returns all players, whether or not they belong to a team:

SELECT p

FROM Player p

In contrast, because it declares the t identification variable, the next query fetches all
players who belong to a team:

SELECT p

FROM Player p, IN (p.teams) AS t

The following query returns the same results as the preceding query, but the WHERE
clausemakes it easier to read:

SELECT p

FROM Player p

WHERE p.teams IS NOT EMPTY

An identification variable always designates a reference to a single value whose type is
that of the expression used in the declaration. There are two kinds of declarations:
range variable and collectionmember.

RangeVariableDeclarations
To declare an identification variable as an abstract schema type, you specify a range
variable declaration. In other words, an identification variable can range over the
abstract schema type of an entity. In the following example, an identification variable
named p represents the abstract schema named Player:

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts396

ptg

FROM Player p

A range variable declaration can include the optional AS operator:

FROM Player AS p

To obtain objects, a query usually uses path expressions to navigate through the
relationships. But for those objects that cannot be obtained by navigation, you can use
a range variable declaration to designate a starting point, or root.

If the query comparesmultiple values of the same abstract schema type, the FROM
clausemust declaremultiple identification variables for the abstract schema:

FROM Player p1, Player p2

For an example of such a query, see “ComparisonOperators” on page 389.

CollectionMemberDeclarations
In a one-to-many relationship, themultiple side consists of a collection of entities. An
identification variable can represent amember of this collection. To access a collection
member, the path expression in the variable’s declaration navigates through the
relationships in the abstract schema. (Formore information on path expressions, see
“Path Expressions” on page 398.) Because a path expression can be based on another
path expression, the navigation can traverse several relationships. See “Traversing
Multiple Relationships” on page 387.

A collectionmember declarationmust include the IN operator but can omit the
optional AS operator.

In the following example, the entity represented by the abstract schema named Player
has a relationship field called teams. The identification variable called t represents a
singlemember of the teams collection.

FROM Player p, IN (p.tea

ms) t

Joins
The JOIN operator is used to traverse over relationships between entities and is
functionally similar to the IN operator.

In the following example, the query joins over the relationship between customers and
orders:

SELECT c

FROM Customer c JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 397

ptg

The INNER keyword is optional:

SELECT c

FROM Customer c INNER JOIN c.orders o

WHERE c.status = 1 AND o.totalPrice > 10000

These examples are equivalent to the following query, which uses the IN operator:

SELECT c

FROM Customer c, IN(c.orders) o

WHERE c.status = 1 AND o.totalPrice > 10000

You can also join a single-valued relationship:

SELECT t

FROM Team t JOIN t.league l

WHERE l.sport = :sport

A LEFT JOIN or LEFT OUTER JOIN retrieves a set of entities where matching values in
the join conditionmay be absent. The OUTER keyword is optional.

SELECT c.name, o.totalPrice

FROM Order o LEFT JOIN o.customer c

A FETCH JOIN is a join operation that returns associated entities as a side effect of
running the query. In the following example, the query returns a set of departments
and, as a side effect, the associated employees of the departments, even though the
employees were not explicitly retrieved by the SELECT clause.

SELECT d

FROM Department d LEFT JOIN FETCH d.employees

WHERE d.deptno = 1

Path Expressions
Path expressions are important constructs in the syntax of the query language, for
several reasons. First, path expressions define navigation paths through the
relationships in the abstract schema. These path definitions affect both the scope and
the results of a query. Second, path expressions can appear in any of themain clauses
of a query (SELECT, DELETE, HAVING, UPDATE, WHERE, FROM, GROUP BY, ORDER BY).
Finally, althoughmuch of the query language is a subset of SQL, path expressions are
extensions not found in SQL.

Examples of Path Expressions
Here, the WHERE clause contains a single_valued_path_expression; the p is an
identification variable, and salary is a persistent field of Player:

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts398

ptg

SELECT DISTINCT p

FROM Player p

WHERE p.salary BETWEEN :lowerSalary AND :higherSalary

Here, the WHERE clause also contains a single_valued_path_expression; t is an
identification variable, league is a single-valued relationship field, and sport is a
persistent field of league:

SELECT DISTINCT p

FROM Player p, IN (p.teams) t

WHERE t.league.sport = :sport

Here, the WHERE clause contains a collection_valued_path_expression; p is an
identification variable, and teams designates a collection-valued relationship field:

SELECT DISTINCT p

FROM Player p

WHERE p.teams IS EMPTY

ExpressionTypes
The type of a path expression is the type of the object represented by the ending
element, which can be one of the following:
■ Persistent field
■ Single-valued relationship field
■ Collection-valued relationship field

For example, the type of the expression p.salary is double because the terminating
persistent field (salary) is a double.

In the expression p.teams, the terminating element is a collection-valued relationship
field (teams). This expression’s type is a collection of the abstract schema type named
Team. Because Team is the abstract schema name for the Team entity, this typemaps to
the entity. Formore information on the typemapping of abstract schemas, see “Return
Types” on page 410.

Navigation
Apath expression enables the query to navigate to related entities. The terminating
elements of an expression determine whether navigation is allowed. If an expression
contains a single-valued relationship field, the navigation can continue to an object
that is related to the field. However, an expression cannot navigate beyond a persistent
field or a collection-valued relationship field. For example, the expression
p.teams.league.sport is illegal because teams is a collection-valued relationship
field. To reach the sport field, the FROM clause could define an identification variable
named t for the teams field:

FROM Player AS p, IN (p.teams) t

WHERE t.league.sport = ’soccer’

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 399

ptg

WHEREClause
The WHERE clause specifies a conditional expression that limits the values returned by
the query. The query returns all corresponding values in the data store for which the
conditional expression is TRUE. Although usually specified, the WHERE clause is
optional. If the WHERE clause is omitted, the query returns all values. The high-level
syntax for the WHERE clause follows:

where_clause ::= WHERE conditional_expression

Literals
There are four kinds of literals: string, numeric, Boolean, and enum.

■ String literals: A string literal is enclosed in single quotes:

’Duke’

If a string literal contains a single quote, you indicate the quote by using two single
quotes:

’Duke’’s’

Like a Java String, a string literal in the query language uses the Unicode character
encoding.

■ Numeric literals: There are two types of numeric literals: exact and approximate.
An exact numeric literal is a numeric value without a decimal point, such as 65,
–233, and +12. Using the Java integer syntax, exact numeric literals support
numbers in the range of a Java long.
An approximate numeric literal is a numeric value in scientific notation, such as
57., –85.7, and +2.1. Using the syntax of the Java floating-point literal, approximate
numeric literals support numbers in the range of a Java double.

■ Boolean literals: A Boolean literal is either TRUE or FALSE. These keywords are not
case-sensitive.

■ Enum literals: The Java Persistence query language supports the use of enum
literals using the Java enum literal syntax. The enum class namemust be specified
as a fully qualified class name:

SELECT e

FROM Employee e

WHERE e.status = com.xyz.EmployeeStatus.FULL_TIME

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts400

ptg

Input Parameters
An input parameter can be either a named parameter or a positional parameter.

■ Anamed input parameter is designated by a colon (:) followed by a string; for
example, :name.

■ Apositional input parameter is designated by a questionmark (?) followed by an
integer. For example, the first input parameter is ?1, the second is ?2, and so forth.

The following rules apply to input parameters.

■ They can be used only in a WHERE or HAVING clause.
■ Positional parameters must be numbered, starting with the integer 1.
■ Named parameters and positional parameters may not bemixed in a single query.
■ Named parameters are case-sensitive.

Conditional Expressions
A WHERE clause consists of a conditional expression, which is evaluated from left to
right within a precedence level. You can change the order of evaluation by using
parentheses.

Operators andTheir Precedence
Table 21–2 lists the query language operators in order of decreasing precedence.

TABLE 21–2 Query LanguageOrder Precedence

Type PrecedenceOrder

Navigation . (a period)

Arithmetic + – (unary)

* / (multiplication and division)

+ – (addition and subtraction)

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 401

ptg

TABLE 21–2 Query LanguageOrder Precedence (Continued)
Type PrecedenceOrder

Comparison =

>

>=

<

<=

<> (not equal)

[NOT] BETWEEN

[NOT] LIKE

[NOT] IN

IS [NOT] NULL

IS [NOT] EMPTY

[NOT] MEMBER OF

Logical NOT

AND

OR

BETWEEN Expressions
A BETWEEN expression determines whether an arithmetic expression falls within a
range of values.

These two expressions are equivalent:

p.age BETWEEN 15 AND 19

p.age >= 15 AND p.age <= 19

The following two expressions also are equivalent:

p.age NOT BETWEEN 15 AND 19

p.age < 15 OR p.age > 19

If an arithmetic expression has a NULL value, the value of the BETWEEN expression is
unknown.

IN Expressions
An IN expression determines whether a string belongs to a set of string literals or
whether a number belongs to a set of number values.

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts402

ptg

The path expressionmust have a string or numeric value. If the path expression has a
NULL value, the value of the IN expression is unknown.

In the following example, the expression is TRUE if the country is UK , but FALSE if the
country is Peru.

o.country IN (’UK’, ’US’, ’France’)

Youmay also use input parameters:

o.country IN (’UK’, ’US’, ’France’, :country)

LIKE Expressions
A LIKE expression determines whether a wildcard patternmatches a string.

The path expressionmust have a string or numeric value. If this value is NULL, the value
of the LIKE expression is unknown. The pattern value is a string literal that can contain
wildcard characters. The underscore (_) wildcard character represents any single
character. The percent (%) wildcard character represents zero ormore characters. The
ESCAPE clause specifies an escape character for the wildcard characters in the pattern
value. Table 21–3 shows some sample LIKE expressions.

TABLE 21–3 LIKEExpressionExamples

Expression TRUE FALSE

address.phone LIKE ’12%3’ ’123’

’12993’

’1234’

asentence.word LIKE ’l_se’ ’lose’ ’loose’

aword.underscored LIKE ’_%’ ESCAPE ’\’ ’_foo’ ’bar’

address.phone NOT LIKE ’12%3’ ’1234’ ’123’

’12993’

NULLComparison Expressions
A NULL comparison expression tests whether a single-valued path expression or an
input parameter has a NULL value. Usually, the NULL comparison expression is used to
test whether a single-valued relationship has been set:

SELECT t

FROM Team t

WHERE t.league IS NULL

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 403

ptg

This query selects all teams where the league relationship is not set. Note that the
following query is not equivalent:

SELECT t

FROM Team t

WHERE t.league = NULL

The comparison with NULL using the equals operator (=) always returns an unknown
value, even if the relationship is not set. The second query will always return an empty
result.

EmptyCollectionComparison Expressions
The IS [NOT] EMPTY comparison expression tests whether a collection-valued path
expression has no elements. In other words, it tests whether a collection-valued
relationship has been set.

If the collection-valued path expression is NULL, the empty collection comparison
expression has a NULL value.

Here is an example that finds all orders that do not have any line items:

SELECT o

FROM Order o

WHERE o.lineItems IS EMPTY

CollectionMember Expressions
The [NOT] MEMBER [OF] collection member expression determines whether a value is a
member of a collection. The value and the collectionmembersmust have the same
type.

If either the collection-valued or single-valued path expression is unknown, the
collectionmember expression is unknown. If the collection-valued path expression
designates an empty collection, the collectionmember expression is FALSE.

The OF keyword is optional.

The following example tests whether a line item is part of an order:

SELECT o

FROM Order o

WHERE :lineItem MEMBER OF o.lineItems

Subqueries
Subqueries may be used in the WHERE or HAVING clause of a query. Subqueries must be
surrounded by parentheses.

The following example finds all customers who have placedmore than ten orders:

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts404

ptg

SELECT c

FROM Customer c

WHERE (SELECT COUNT(o) FROM c.orders o) > 10

Subqueries may contain EXISTS, ALL, and ANY expressions.
■ EXISTS expressions: The [NOT] EXISTS expression is used with a subquery and is

true only if the result of the subquery consists of one ormore values and is false
otherwise.
The following example finds all employees whose spouses are also employees:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (

SELECT spouseEmp

FROM Employee spouseEmp

WHERE spouseEmp = emp.spouse)

■ ALL and ANY expressions: The ALL expression is used with a subquery and is true if
all the values returned by the subquery are true or if the subquery is empty.
The ANY expression is used with a subquery and is true if some of the values
returned by the subquery are true. An ANY expression is false if the subquery result
is empty or if all the values returned are false. The SOME keyword is synonymous
with ANY.
The ALL and ANY expressions are used with the =, <, <=, >, >=, and <> comparison
operators.
The following example finds all employees whose salaries are higher than the
salaries of themanagers in the employee’s department:

SELECT emp

FROM Employee emp

WHERE emp.salary > ALL (

SELECT m.salary

FROM Manager m

WHERE m.department = emp.department)

Functional Expressions
The query language includes several string, arithmetic, and date/time functions that
may be used in the SELECT, WHERE, or HAVING clause of a query. The functions are listed
in Table 21–4, Table 21–5, and Table 21–6.

In Table 21–4, the start and length arguments are of type int and designate
positions in the String argument. The first position in a string is designated by 1.

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 405

ptg

TABLE 21–4 StringExpressions

Function Syntax ReturnType

CONCAT(String, String) String

LENGTH(String) int

LOCATE(String, String [, start]) int

SUBSTRING(String, start, length) String

TRIM([[LEADING|TRAILING|BOTH] char) FROM] (String) String

LOWER(String) String

UPPER(String) String

The CONCAT function concatenates two strings into one string.

The LENGTH function returns the length of a string in characters as an integer.

The LOCATE function returns the position of a given string within a string. This
function returns the first position at which the string was found as an integer. The first
argument is the string to be located. The second argument is the string to be searched.
The optional third argument is an integer that represents the starting string position.
By default, LOCATE starts at the beginning of the string. The starting position of a string
is 1. If the string cannot be located, LOCATE returns 0.

The SUBSTRING function returns a string that is a substring of the first argument based
on the starting position and length.

The TRIM function trims the specified character from the beginning and/or end of a
string. If no character is specified, TRIM removes spaces or blanks from the string. If the
optional LEADING specification is used, TRIM removes only the leading characters from
the string. If the optional TRAILING specification is used, TRIM removes only the
trailing characters from the string. The default is BOTH, which removes the leading and
trailing characters from the string.

The LOWER and UPPER functions convert a string to lowercase or uppercase,
respectively.

In Table 21–5, the number argument can be an int, a float, or a double.

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts406

ptg

TABLE 21–5 ArithmeticExpressions

Function Syntax ReturnType

ABS(number) int, float, or double

MOD(int, int) int

SQRT(double) double

SIZE(Collection) int

The ABS function takes a numeric expression and returns a number of the same type as
the argument.

The MOD function returns the remainder of the first argument divided by the second.

The SQRT function returns the square root of a number.

The SIZE function returns an integer of the number of elements in the given
collection.

In Table 21–6, the date/time functions return the date, time, or timestamp on the
database server.

TABLE 21–6 Date/TimeExpressions

Function Syntax ReturnType

CURRENT_DATE java.sql.Date

CURRENT_TIME java.sql.Time

CURRENT_TIMESTAMP java.sql.Timestamp

Case Expressions
Case expressions change based on a condition, similar to the case keyword of the Java
programming language. The CASE keyword indicates the start of a case expression, and
the expression is terminated by the END keyword. The WHEN and THEN keywords define
individual conditions, and the ELSE keyword defines the default condition should
none of the other conditions be satisfied.

The following query selects the name of a person and a conditional string, depending
on the subtype of the Person entity. If the subtype is Student, the string kid is
returned . If the subtype is Guardian or Staff, the string adult is returned. If the entity
is some other subtype of Person, the string unknown is returned.

SELECT p.name

CASE TYPE(p)

WHEN Student THEN ’kid’

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 407

ptg

WHEN Guardian THEN ’adult’

WHEN Staff THEN ’adult’

ELSE ’unknown’

END

FROM Person p

The following query sets a discount for various types of customers. Gold-level
customers get a 20% discount, silver-level customers get a 15% discount, bronze-level
customers get a 10% discount, and everyone else gets a 5% discount.

UPDATE Customer c

SET c.discount =

CASE c.level

WHEN ’Gold’ THEN 20

WHEN ’SILVER’ THEN 15

WHEN ’Bronze’ THEN 10

ELSE 5

END

NULLValues
If the target of a reference is not in the persistent store, the target is NULL. For
conditional expressions containing NULL, the query language uses the semantics
defined by SQL92. Briefly, these semantics are as follows.
■ If a comparison or arithmetic operation has an unknown value, it yields a NULL

value.
■ Two NULL values are not equal. Comparing two NULL values yields an unknown

value.
■ The IS NULL test converts a NULL persistent field or a single-valued relationship

field to TRUE. The IS NOT NULL test converts them to FALSE.
■ Boolean operators and conditional tests use the three-valued logic defined by

Table 21–7 and Table 21–8. (In these tables, T stands for TRUE, F for FALSE, andU
for unknown.)

TABLE 21–7 ANDOperator Logic

AND T F U

T T F U

F F F F

U U F U

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts408

ptg

TABLE 21–8 OROperator Logic

OR T F U

T T T T

F T F U

U T U U

Equality Semantics
In the query language, only values of the same type can be compared. However, this
rule has one exception: Exact and approximate numeric values can be compared. In
such a comparison, the required type conversion adheres to the rules of Java numeric
promotion.

The query language treats compared values as if they were Java types and not as if they
represented types in the underlying data store. For example, a persistent field that
could be either an integer or a NULLmust be designated as an Integer object and not as
an int primitive. This designation is required because a Java object can be NULL, but a
primitive cannot.

Two strings are equal only if they contain the same sequence of characters. Trailing
blanks are significant; for example, the strings ’abc’ and ’abc ’ are not equal.

Two entities of the same abstract schema type are equal only if their primary keys have
the same value. Table 21–9 shows the operator logic of a negation, and Table 21–10
shows the truth values of conditional tests.

TABLE 21–9 NOTOperator Logic

NOTValue Value

T F

F T

U U

TABLE 21–10 ConditionalTest

ConditionalTest T F U

Expression IS TRUE T F F

Expression IS FALSE F T F

Expression is unknown F F T

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 409

ptg

SELECTClause
The SELECT clause defines the types of the objects or values returned by the query.

ReturnTypes
The return type of the SELECT clause is defined by the result types of the select
expressions contained within it. If multiple expressions are used, the result of the
query is an Object[], and the elements in the array correspond to the order of the
expressions in the SELECT clause and in type to the result types of each expression.

A SELECT clause cannot specify a collection-valued expression. For example, the
SELECT clause p.teams is invalid because teams is a collection. However, the clause in
the following query is valid because the t is a single element of the teams collection:

SELECT t

FROM Player p, IN (p.teams) t

The following query is an example of a query withmultiple expressions in the SELECT
clause:

SELECT c.name, c.country.name

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

This query returns a list of Object[] elements; the first array element is a string
denoting the customer name, and the second array element is a string denoting the
name of the customer’s country.

The result of a querymay be the result of an aggregate function, listed in Table 21–11.

TABLE 21–11 Aggregate Functions in Select Statements

Name ReturnType Description

AVG Double Returns themean average of the
fields

COUNT Long Returns the total number of results

MAX The type of the field Returns the highest value in the
result set

MIN The type of the field Returns the lowest value in the
result set

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts410

ptg

TABLE 21–11 Aggregate Functions in Select Statements (Continued)
Name ReturnType Description

SUM Long (for integral fields)

Double (for floating-point fields)

BigInteger (for BigInteger fields)

BigDecimal (for BigDecimal fields)

Returns the sum of all the values in
the result set

For select method queries with an aggregate function (AVG, COUNT, MAX, MIN, or SUM) in
the SELECT clause, the following rules apply:
■ The AVG, MAX, MIN, and SUM functions return null if there are no values to which the

function can be applied.
■ The COUNT function returns 0 if there are no values to which the function can be

applied.

The following example returns the average order quantity:

SELECT AVG(o.quantity)

FROM Order o

The following example returns the total cost of the items ordered by Roxane Coss:

SELECT SUM(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

The following example returns the total number of orders:

SELECT COUNT(o)

FROM Order o

The following example returns the total number of items that have prices in Hal
Incandenza’s order:

SELECT COUNT(l.price)

FROM Order o JOIN o.lineItems l JOIN o.customer c

WHERE c.lastname = ’Incandenza’ AND c.firstname = ’Hal’

The DISTINCTKeyword
The DISTINCT keyword eliminates duplicate return values. If a query returns a
java.util.Collection, which allows duplicates, youmust specify the DISTINCT
keyword to eliminate duplicates.

Constructor Expressions
Constructor expressions allow you to return Java instances that store a query result
element instead of an Object[].

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 411

ptg

The following query creates a CustomerDetail instance per Customermatching the
WHERE clause. A CustomerDetail stores the customer name and customer’s country
name. So the query returns a List of CustomerDetail instances:

SELECT NEW com.xyz.CustomerDetail(c.name, c.country.name)

FROM customer c

WHERE c.lastname = ’Coss’ AND c.firstname = ’Roxane’

ORDER BY Clause
As its name suggests, the ORDER BY clause orders the values or objects returned by the
query.

If the ORDER BY clause contains multiple elements, the left-to-right sequence of the
elements determines the high-to-low precedence.

The ASC keyword specifies ascending order, the default, and the DESC keyword
indicates descending order.

When using the ORDER BY clause, the SELECT clause must return an orderable set of
objects or values. You cannot order the values or objects for values or objects not
returned by the SELECT clause. For example, the following query is valid because the
ORDER BY clause uses the objects returned by the SELECT clause:

SELECT o

FROM Customer c JOIN c.orders o JOIN c.address a

WHERE a.state = ’CA’

ORDER BY o.quantity, o.totalcost

The following example is not valid, because the ORDER BY clause uses a value not
returned by the SELECT clause:

SELECT p.product_name

FROM Order o, IN(o.lineItems) l JOIN o.customer c

WHERE c.lastname = ’Faehmel’ AND c.firstname = ’Robert’

ORDER BY o.quantity

GROUP BY and HAVING Clauses
The GROUP BY clause allows you to group values according to a set of properties.

The following query groups the customers by their country and returns the number of
customers per country:

SELECT c.country, COUNT(c)

FROM Customer c GROUP BY c.country

The HAVING clause is used with the GROUP BY clause to further restrict the returned
result of a query.

Full Query Language Syntax

The Java EE 6Tutorial: Basic Concepts412

ptg

The following query groups orders by the status of their customer and returns the
customer status plus the average totalPrice for all orders where the corresponding
customers has the same status. In addition, it considers only customers with status 1, 2,
or 3, so orders of other customers are not taken into account:

SELECT c.status, AVG(o.totalPrice)

FROM Order o JOIN o.customer c

GROUP BY c.status HAVING c.status IN (1, 2, 3)

Full Query Language Syntax

Chapter 21 • The Java PersistenceQuery Language 413

ptg

This page intentionally left blank

ptg

Using the Criteria API to Create Queries

The Criteria API is used to define queries for entities and their persistent state by
creating query-defining objects. Criteria queries are written using Java programming
language APIs, are typesafe, and are portable. Such queries work regardless of the
underlying data store.

The following topics are addressed here:
■ “Overview of the Criteria andMetamodel APIs” on page 415
■ “Using theMetamodel API toModel Entity Classes” on page 417
■ “Using the Criteria API andMetamodel API to Create Basic Typesafe Queries” on

page 418

Overviewof theCriteria andMetamodel APIs
Similar to JPQL, the Criteria API is based on the abstract schema of persistent entities,
their relationships, and embedded objects. The Criteria API operates on this abstract
schema to allow developers to find, modify, and delete persistent entities by invoking
Java Persistence API entity operations. TheMetamodel API works in concert with the
Criteria API tomodel persistent entity classes for Criteria queries.

The Criteria API and JPQL are closely related and are designed to allow similar
operations in their queries. Developers familiar with JPQL syntax will find equivalent
object-level operations in the Criteria API.

The following simple Criteria query returns all instances of the Pet entity in the data
source:

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet);

22C H A P T E R 2 2

415

ptg

TypedQuery<Pet> q = em.createQuery(cq);

List<Pet> allPets = q.getResultList();

The equivalent JPQL query is:

SELECT p

FROM Pet p

This query demonstrates the basic steps to create a Criteria query:

1. Use an EntityManager instance to create a CriteriaBuilder object.
2. Create a query object by creating an instance of the CriteriaQuery interface. This

query object's attributes will bemodified with the details of the query.
3. Set the query root by calling the frommethod on the CriteriaQuery object.
4. Specify what the type of the query result will be by calling the selectmethod of the

CriteriaQuery object.
5. Prepare the query for execution by creating a TypedQuery<T> instance, specifying

the type of the query result.
6. Execute the query by calling the getResultListmethod on the TypedQuery<T>

object. Because this query returns a collection of entities, the result is stored in a
List.

The tasks associated with each step are discussed in detail in this chapter.

To create a CriteriaBuilder instance, call the getCriteriaBuildermethod on the
EntityManager instance:

CriteriaBuilder cb = em.getCriteriaBuilder();

The query object is created by using the CriteriaBuilder instance:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The query will return instances of the Pet entity, so the type of the query is specified
when the CriteriaQuery object is created to create a typesafe query.

The FROM clause of the query is set, and the root of the query specified, by calling the
frommethod of the query object:

Root<Pet> pet = cq.from(Pet.class);

The SELECT clause of the query is set by calling the selectmethod of the query object
and passing in the query root:

cq.select(pet);

The query object is now used to create a TypedQuery<T> object that can be executed
against the data source. Themodifications to the query object are captured to create a
ready-to-execute query:

Overview of the Criteria andMetamodel APIs

The Java EE 6Tutorial: Basic Concepts416

ptg

TypedQuery<Pet> q = em.createQuery(cq);

This typed query object is executed by calling its getResultListmethod, because this
query will returnmultiple entity instances. The results are stored in a List<Pet>
collection-valued object.

List<Pet> allPets = q.getResultList();

Using theMetamodel API toModel Entity Classes
TheMetamodel API is used to create ametamodel of themanaged entities in a
particular persistence unit. For each entity class in a particular package, a metamodel
class is created with a trailing underscore and with attributes that correspond to the
persistent fields or properties of the entity class.

The following entity class, com.example.Pet, has four persistent fields: id, name,
color, and owners:

package com.example;

...

@Entity

public class Pet {

@Id

protected Long id;

protected String name;

protected String color;

@ManyToOne

protected Set<Person> owners;

...

}

The correspondingMetamodel class is:

package com.example;

...

@Static Metamodel(Pet.class)

public class Pet_ {

public static volatile SingularAttribute<Pet, Long> id;

public static volatile SingularAttribute<Pet, String> name;

public static volatile SingularAttribute<Pet, String> color;

public static volatile SetAttribute<Pet, Person> owners;

}

Themetamodel class and its attributes are used in Criteria queries to refer to the
managed entity classes and their persistent state and relationships.

Using theMetamodel API toModel Entity Classes

Chapter 22 • Using the Criteria API to Create Queries 417

ptg

UsingMetamodel Classes
Metamodel classes that correspond to entity classes are of the following type:

javax.persistence.metamodel.EntityType<T>

Metamodel classes are typically generated by annotation processors either at
development time or at runtime. Developers of applications that use Criteria queries
may generate static metamodel classes by using the persistence provider’s annotation
processor ormay obtain themetamodel class by either calling the getModelmethod
on the query root object or first obtaining an instance of the Metamodel interface and
then passing the entity type to the instance’s entitymethod.

The following code snippet shows how to obtain the Pet entity’s metamodel class by
calling Root<T>.getModel:

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

EntityType<Pet> Pet_ = pet.getModel();

The following code snippet shows how to obtain the Pet entity’s metamodel class by
first obtaining ametamodel instance by using EntityManager.getMetamodel and
then calling entity on themetamodel instance:

EntityManager em = ...;

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Using theCriteriaAPI andMetamodel API to CreateBasic
TypesafeQueries

The basic semantics of a Criteria query consists of a SELECT clause, a FROM clause, and
an optional WHERE clause, similar to a JPQL query. Criteria queries set these clauses by
using Java programming language objects, so the query can be created in a typesafe
manner.

Creating aCriteriaQuery
The javax.persistence.criteria.CriteriaBuilder interface is used to construct
■ Criteria queries
■ Selections
■ Expressions

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

The Java EE 6Tutorial: Basic Concepts418

ptg

■ Predicates
■ Ordering

To obtain an instance of the CriteriaBuilder interface, call the getCriteriaBuilder
method on either an EntityManager or an EntityManagerFactory instance.

The following code shows how to obtain a CriteriaBuilder instance by using the
EntityManager.getCriteriaBuildermethod.

EntityManager em = ...;

CriteriaBuilder cb = em.getCriteriaBuilder();

Criteria queries are constructed by obtaining an instance of the following interface:

javax.persistence.criteria.CriteriaQuery

CriteriaQuery objects define a particular query that will navigate over one ormore
entities. Obtain CriteriaQuery instances by calling one of the
CriteriaBuilder.createQuerymethods. For creating typesafe queries, call the
CriteriaBuilder.createQuerymethod as follows:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

The CriteriaQuery object’s type should be set to the expected result type of the query.
In the preceding code, the object’s type is set to CriteriaQuery<Pet> for a query that
will find instances of the Pet entity.

In the following code snippet, a CriteriaQuery object is created for a query that
returns a String:

CriteriaQuery<String> cq = cb.createQuery(String.class);

QueryRoots
For a particular CriteriaQueryobject, the root entity of the query, fromwhich all
navigation originates, is called the query root. It is similar to the FROM clause in a JPQL
query.

Create the query root by calling the frommethod on the CriteriaQuery instance. The
argument to the frommethod is either the entity class or an EntityType<T> instance
for the entity.

The following code sets the query root to the Pet entity:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

Chapter 22 • Using the Criteria API to Create Queries 419

ptg

The following code sets the query root to the Pet class by using an EntityType<T>

instance:

EntityManager em = ...;

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet_);

Criteria queries may havemore than one query root. This usually occurs when the
query navigates from several entities.

The following code has two Root instances:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet1 = cq.from(Pet.class);

Root<Pet> pet2 = cq.from(Pet.class);

QueryingRelationshipsUsing Joins
For queries that navigate to related entity classes, the querymust define a join to the
related entity by calling one of the From.joinmethods on the query root object or
another join object. The joinmethods are similar to the JOIN keyword in JPQL.

The target of the join uses theMetamodel class of type EntityType<T> to specify the
persistent field or property of the joined entity.

The joinmethods return an object of type Join<X, Y>, where X is the source entity
and Y is the target of the join. In the following code snippet, Pet is the source entity,
and Owner is the target:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Pet, Owner> owner = pet.join(Pet_.owners);

Joins can be chained together to navigate to related entities of the target entity without
having to create a Join<X, Y> instance for each join:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

EntityType<Owner> Owner_ = m.entity(Owner.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Owner, Address> address = cq.join(Pet_.owners).join(Owner_.addresses);

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

The Java EE 6Tutorial: Basic Concepts420

ptg

PathNavigation in CriteriaQueries
Path objects are used in the SELECT and WHERE clauses of a Criteria query and can be
query root entities, join entities, or other Path objects. The Path.getmethod is used to
navigate to attributes of the entities of a query.

The argument to the getmethod is the corresponding attribute of the entity’s
Metamodel class. The attribute can either be a single-valued attribute, specified by
@SingularAttribute in theMetamodel class, or a collection-valued attribute,
specified by one of @CollectionAttribute, @SetAttribute, @ListAttribute, or
@MapAttribute.

The following query returns the names of all the pets in the data store. The getmethod
is called on the query root, pet, with the name attribute of the Pet entity’sMetamodel
class, Pet_ as the argument:

CriteriaQuery<String> cq = cb.createQuery(String.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet.get(Pet_.name));

RestrictingCriteriaQueryResults
The results of a query can be restricted on the CriteriaQuery object according to
conditions set by calling the CriteriaQuery.wheremethod. Calling the where
method is analogous to setting the WHERE clause in a JPQL query.

The wheremethod evaluates instances of the Expression interface to restrict the
results according to the conditions of the expressions. Expression instances are
created by usingmethods defined in the Expression and CriteriaBuilder interfaces.

The Expression InterfaceMethods
An Expression object is used in a query's SELECT, WHERE, or HAVING clause. Table 22–1
shows conditional methods you can use with Expression objects.

TABLE 22–1 ConditionalMethods in the Expression Interface

Method Description

isNull Tests whether an expression is null

isNotNull Tests whether an expression is not null

in Tests whether an expression is within a list of values

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

Chapter 22 • Using the Criteria API to Create Queries 421

ptg

The following query uses the Expression.isNullmethod to find all pets where the
color attribute is null:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(pet.get(Pet_.color).isNull());

The following query uses the Expression.inmethod to find all brown and black pets:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(pet.get(Pet_.color).in("brown", "black");

The inmethod also can check whether an attribute is amember of a collection.

ExpressionMethods in the CriteriaBuilder Interface
The CriteriaBuilder interface defines additional methods for creating expressions.
Thesemethods correspond to the arithmetic, string, date, time, and case operators and
functions of JPQL. Table 22–2 shows conditional methods you can use with
CriteriaBuilder objects.

TABLE 22–2 ConditionalMethods in the CriteriaBuilder Interface

ConditionalMethod Description

equal Tests whether two expressions are equal

notEqual Tests whether two expressions are not equal

gt Tests whether the first numeric expression is greater than the second numeric
expression

ge Tests whether the first numeric expression is greater than or equal to the
second numeric expression

lt Tests whether the first numeric expression is less than the second numeric
expression

le Tests whether the first numeric expression is less than or equal to the second
numeric expression

between Tests whether the first expression is between the second and third expression
in value

like Tests whether the expressionmatches a given pattern

The following code uses the CriteriaBuilder.equalmethod:

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

The Java EE 6Tutorial: Basic Concepts422

ptg

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.equal(pet.get(Pet_.name)), "Fido");
...

The following code uses the CriteriaBuilder.gtmethod:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Date someDate = new Date(...);

cq.where(cb.gt(pet.get(Pet_.birthday)), date);

The following code uses the CriteriaBuilder.betweenmethod:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Date firstDate = new Date(...);

Date secondDate = new Date(...);

cq.where(cb.between(pet.get(Pet_.birthday)), firstDate, secondDate);

The following code uses the CriteriaBuilder.likemethod:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.like(pet.get(Pet_.name)), "*do");

Multiple conditional predicates can be specified by using the compound predicate
methods of the CriteriaBuilder interface, as shown in Table 22–3.

TABLE 22–3 Compound PredicateMethods in the CriteriaBuilder Interface

Method Description

and A logical conjunction of two Boolean expressions

or A logical disjunction of two Boolean expressions

not A logical negation of the given Boolean expression

The following code shows the use of compound predicates in queries:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Metamodel m = em.getMetamodel();

EntityType<Pet> Pet_ = m.entity(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.where(cb.equal(pet.get(Pet_.name), "Fido")
.and(cb.equal(pet.get(Pet_.color), "brown");

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

Chapter 22 • Using the Criteria API to Create Queries 423

ptg

ManagingCriteriaQueryResults
For queries that returnmore than one result, it’s often helpful to organize those results.
The CriteriaQuery interface defines the orderBymethod to order query results
according to attributes of an entity. The CriteriaQuery interface also defines the
groupBymethod to group the results of a query together according to attributes of an
entity, and the havingmethod to restrict those groups according to a condition.

OrderingResults
The order of the results of a query can be set by calling the CriteriaQuery.orderBy
method and passing in an Order object. Order objects are created by calling either the
CriteriaBuilder.asc or the CriteriaBuilder.descmethod. The ascmethod is
used to order the results by ascending value of the passed expression parameter. The
descmethod is used to order the results by descending value of the passed expression
parameter. The following query shows the use of the descmethod:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.select(pet);

cq.orderBy(cb.desc(pet.get(Pet_.birthday));

In this query, the results will be ordered by the pet’s birthday from highest to lowest.
That is, pets born in December will appear before pets born inMay.

The following query shows the use of the ascmethod:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Owner, Address> address = cq.join(Pet_.owners).join(Owner_.address);

cq.select(pet);

cq.orderBy(cb.asc(address.get(Address_.postalCode));

In this query, the results will be ordered by the pet owner’s postal code from lowest to
highest. That is, pets whose owner lives in the 10001 zip code will appear before pets
whose owner lives in the 91000 zip code.

If more than one Order object is passed to orderBy, the precedence is determined by
the order in which they appear in the argument list of orderBy. The first Order object
has precedence.

The following code orders results bymultiple criteria:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

Join<Pet, Owner> owner = cq.join(Pet_.owners);

cq.select(pet);

cq.orderBy(cb.asc(owner.get(Owner_.lastName), owner.get(Owner_.firstName));

The results of this query will be ordered alphabetically by the pet owner’s last name,
then first name.

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

The Java EE 6Tutorial: Basic Concepts424

ptg

GroupingResults
The CriteriaQuery.groupBymethod partitions the query results into groups. These
groups are set by passing an expression to groupBy:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.groupBy(pet.get(Pet_.color));

This query returns all Pet entities and groups the results by the pet’s color.

The CriteriaQuery.havingmethod is used in conjunction with groupBy to filter over
the groups. The havingmethod takes a conditional expression as a parameter. By
calling the havingmethod, the query result is restricted according to the conditional
expression:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

Root<Pet> pet = cq.from(Pet.class);

cq.groupBy(pet.get(Pet_.color));

cq.having(cb.in(pet.get(Pet_.color)).value("brown").value("blonde");

In this example, the query groups the returned Pet entities by color, as in the
preceding example. However, the only returned groups will be Pet entities where the
color attribute is set to brown or blonde. That is, no gray-colored pets will be returned
in this query.

ExecutingQueries
To prepare a query for execution, create a TypedQuery<T> object with the type of the
query result by passing the CriteriaQuery object to EntityManager.createQuery.

Queries are executed by calling either getSingleResult or getResultList on the
TypedQuery<T> object.

Single-ValuedQueryResults
The TypedQuery<T>.getSingleResultmethod is used for executing queries that
return a single result:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

...

TypedQuery<Pet> q = em.createQuery(cq);

Pet result = q.getSingleResult();

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

Chapter 22 • Using the Criteria API to Create Queries 425

ptg

Collection-ValuedQueryResults
The TypedQuery<T>.getResultListmethod is used for executing queries that return
a collection of objects:

CriteriaQuery<Pet> cq = cb.createQuery(Pet.class);

...

TypedQuery<Pet> q = em.createQuery(cq);

List<Pet> results = q.getResultList();

Using the Criteria API andMetamodel API to Create BasicTypesafe Queries

The Java EE 6Tutorial: Basic Concepts426

ptg

Security
Part VII introduces basic security concepts and examples. This part contains the
following chapters:
■ Chapter 23, “Introduction to Security in the Java EE Platform”
■ Chapter 24, “Getting Started SecuringWebApplications”
■ Chapter 25, “Getting Started Securing Enterprise Applications”

P A R T V I I

427

ptg

This page intentionally left blank

ptg

Introduction to Security in the Java EE
Platform

The chapters in Part VII discuss security requirements in web tier and enterprise tier
applications. Every enterprise that has either sensitive resources that can be accessed
bymany users or resources that traverse unprotected, open, networks, such as the
Internet, needs to be protected.

This chapter introduces basic security concepts and securitymechanisms.More
information on these concepts andmechanisms can be found in the chapter on
security in the Java EE 6 specification. This document is available for download online
at http://www.jcp.org/en/jsr/detail?id=316.

In this tutorial, security requirements are also addressed in the following chapters.
■ Chapter 24, “Getting Started SecuringWebApplications,” explains how to add

security to web components, such as servlets.
■ Chapter 25, “Getting Started Securing Enterprise Applications,” explains how to

add security to Java EE components, such as enterprise beans and application
clients.

Some of thematerial in this chapter assumes that you understand basic security
concepts. To learnmore about these concepts before you begin this chapter, you
should explore the Java SE security web site at http://download.oracle.com/
docs/cd/E17409_01/javase/6/docs/technotes/guides/security/.

The following topics are addressed here:
■ “Overview of Java EE Security” on page 430
■ “SecurityMechanisms” on page 435
■ “Securing Containers” on page 439
■ “Securing the GlassFish Server” on page 440
■ “Working with Realms, Users, Groups, and Roles” on page 441
■ “Establishing a Secure ConnectionUsing SSL” on page 449
■ “Further Information about Security” on page 454

23C H A P T E R 2 3

429

http://www.jcp.org/en/jsr/detail?id=316
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

ptg

Overviewof Java EE Security
Enterprise tier and web tier applications aremade up of components that are deployed
into various containers. These components are combined to build amultitier
enterprise application. Security for components is provided by their containers. A
container provides two kinds of security: declarative and programmatic.
■ Declarative security expresses an application component’s security requirements

by using either deployment descriptors or annotations.
A deployment descriptor is an XML file that is external to the application and that
expresses an application’s security structure, including security roles, access
control, and authentication requirements. Formore information about
deployment descriptors, read “Using Deployment Descriptors for Declarative
Security” on page 439.
Annotations, also calledmetadata, are used to specify information about security
within a class file.When the application is deployed, this information can be either
used by or overridden by the application deployment descriptor. Annotations save
you from having to write declarative information inside XML descriptors. Instead,
you simply put annotations on the code, and the required information gets
generated. For this tutorial, annotations are used for securing applications
wherever possible. Formore information about annotations, see “Using
Annotations to Specify Security Information” on page 439.

■ Programmatic security is embedded in an application and is used tomake security
decisions. Programmatic security is useful when declarative security alone is not
sufficient to express the securitymodel of an application. Formore information
about programmatic security, read “Using Programmatic Security” on page 440.

ASimple Security Example
The security behavior of a Java EE environmentmay be better understood by
examining what happens in a simple application with a web client, a user interface, and
enterprise bean business logic.

In the following example, which is taken from the Java EE 6 Specification, the web
client relies on the web server to act as its authentication proxy by collecting user
authentication data from the client and using it to establish an authenticated session.

Step1: Initial Request
In the first step of this example, the web client requests themain applicationURL. This
action is shown in Figure 23–1.

Overview of Java EE Security

The Java EE 6Tutorial: Basic Concepts430

ptg

Since the client has not yet authenticated itself to the application environment, the
server responsible for delivering the web portion of the application, hereafter referred
to as theweb server, detects this and invokes the appropriate authentication
mechanism for this resource. Formore information on thesemechanisms, see
“SecurityMechanisms” on page 435.

Step2: Initial Authentication
The web server returns a form that the web client uses to collect authentication data,
such as user name and password, from the user. The web client forwards the
authentication data to the web server, where it is validated by the web server, as shown
in Figure 23–2. The validationmechanismmay be local to a server ormay leverage the
underlying security services. On the basis of the validation, the web server sets a
credential for the user.

Step3:URLAuthorization
The credential is used for future determinations of whether the user is authorized to
access restricted resources it may request. The web server consults the security policy
associated with the web resource to determine the security roles that are permitted
access to the resource. The security policy is derived from annotations or from the
deployment descriptor. The web container then tests the user’s credential against each
role to determine whether it canmap the user to the role. Figure 23–3 shows this
process.

FIGURE 23–1 Initial Request

Request access to
protected resource

Web Client Web Server

FIGURE 23–2 InitialAuthentication

Web Server

Web Client
Form

Authentication
data

Credential

Overview of Java EE Security

Chapter 23 • Introduction to Security in the Java EE Platform 431

ptg

The web server’s evaluation stops with an “is authorized” outcomewhen the web
server is able tomap the user to a role. A “not authorized” outcome is reached if the
web server is unable tomap the user to any of the permitted roles.

Step4: Fulfilling theOriginal Request
If the user is authorized, the web server returns the result of the original URL request,
as shown in Figure 23–4.

In our example, the response URL of a web page is returned, enabling the user to post
form data that needs to be handled by the business-logic component of the
application. See Chapter 24, “Getting Started SecuringWebApplications,” formore
information on protecting web applications.

Step5: Invoking Enterprise BeanBusinessMethods
The web page performs the remotemethod call to the enterprise bean, using the user’s
credential to establish a secure association between the web page and the enterprise
bean, as shown in Figure 23–5. The association is implemented as two related security
contexts: one in the web server and one in the EJB container.

FIGURE 23–3 URLAuthorization

Web Server

Requested
access to
protected
resource

Session
Context

Credential Web
Component

A
uthorization

Web Client

FIGURE 23–4 Fulfilling theOriginal Request

Web Server

Session
Context

Web
Component

Web Client
Result of request

Post to
business logic

Credential

Overview of Java EE Security

The Java EE 6Tutorial: Basic Concepts432

ptg

The EJB container is responsible for enforcing access control on the enterprise bean
method. The container consults the security policy associated with the enterprise bean
to determine the security roles that are permitted access to themethod. The security
policy is derived from annotations or from the deployment descriptor. For each role,
the EJB container determines whether it canmap the caller to the role by using the
security context associated with the call.

The container’s evaluation stops with an “is authorized” outcomewhen the container
is able tomap the caller’s credential to a role. A “not authorized” outcome is reached if
the container is unable tomap the caller to any of the permitted roles. A “not
authorized” result causes an exception to be thrown by the container and propagated
back to the calling web page.

If the call is authorized, the container dispatches control to the enterprise bean
method. The result of the bean’s execution of the call is returned to the web page and
ultimately to the user by the web server and the web client.

Features of a SecurityMechanism
Aproperly implemented securitymechanismwill provide the following functionality:
■ Prevent unauthorized access to application functions and business or personal data

(authentication)
■ Hold system users accountable for operations they perform (non-repudiation)
■ Protect a system from service interruptions and other breaches that affect quality of

service

FIGURE 23–5 Invoking an Enterprise Bean BusinessMethod

Web Client

Web Server EJB
Container

Credential
used to

establish
security

association

Remote
callSession

Context
Security
Context

Security
Context

Credential

Web
Component

A
uthorization

EJB

Overview of Java EE Security

Chapter 23 • Introduction to Security in the Java EE Platform 433

ptg

Ideally, properly implemented securitymechanisms will also be
■ Easy to administer
■ Transparent to system users
■ Interoperable across application and enterprise boundaries

Characteristics of Application Security
Java EE applications consist of components that can contain both protected and
unprotected resources. Often, you need to protect resources to ensure that only
authorized users have access.Authorization provides controlled access to protected
resources. Authorization is based on identification and authentication. Identification is
a process that enables recognition of an entity by a system, and authentication is a
process that verifies the identity of a user, device, or other entity in a computer system,
usually as a prerequisite to allowing access to resources in a system.

Authorization and authentication are not required for an entity to access unprotected
resources. Accessing a resource without authentication is referred to as
unauthenticated, or anonymous, access.

The characteristics of application security that, when properly addressed, help to
minimize the security threats faced by an enterprise include the following:
■ Authentication: Themeans by which communicating entities, such as client and

server, prove to each other that they are acting on behalf of specific identities that
are authorized for access. This ensures that users are who they say they are.

■ Authorization, or access control: Themeans by which interactions with resources
are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints. This ensures that users have
permission to perform operations or access data.

■ Data integrity: Themeans used to prove that information has not beenmodified
by a third party, an entity other than the source of the information. For example, a
recipient of data sent over an open networkmust be able to detect and discard
messages that weremodified after they were sent. This ensures that only authorized
users canmodify data.

■ Confidentiality, or data privacy: Themeans used to ensure that information is
made available only to users who are authorized to access it. This ensures that only
authorized users can view sensitive data.

■ Non-repudiation: Themeans used to prove that a user who performed some
action cannot reasonably deny having done so. This ensures that transactions can
be proved to have happened.

Overview of Java EE Security

The Java EE 6Tutorial: Basic Concepts434

ptg

■ Quality of Service: Themeans used to provide better service to selected network
traffic over various technologies.

■ Auditing: Themeans used to capture a tamper-resistant record of security-related
events for the purpose of being able to evaluate the effectiveness of security policies
andmechanisms. To enable this, the systemmaintains a record of transactions and
security information.

SecurityMechanisms
The characteristics of an application should be considered when deciding the layer and
type of security to be provided for applications. The following sections discuss the
characteristics of the commonmechanisms that can be used to secure Java EE
applications. Each of thesemechanisms can be used individually or with others to
provide protection layers based on the specific needs of your implementation.

Java SE SecurityMechanisms
Java SE provides support for a variety of security features andmechanisms:
■ Java Authentication andAuthorization Service (JAAS): JAAS is a set of APIs that

enable services to authenticate and enforce access controls upon users. JAAS
provides a pluggable and extensible framework for programmatic user
authentication and authorization. JAAS is a core Java SE API and is an underlying
technology for Java EE securitymechanisms.

■ JavaGeneric Security Services (JavaGSS-API): Java GSS-API is a token-based
API used to securely exchangemessages between communicating applications.
The GSS-API offers application programmers uniform access to security services
atop a variety of underlying securitymechanisms, including Kerberos.

■ Java Cryptography Extension (JCE): JCE provides a framework and
implementations for encryption, key generation and key agreement, andMessage
Authentication Code (MAC) algorithms. Support for encryption includes
symmetric, asymmetric, block, and stream ciphers. Block ciphers operate on
groups of bytes; stream ciphers operate on one byte at a time. The software also
supports secure streams and sealed objects.

■ Java Secure Sockets Extension (JSSE): JSSE provides a framework and an
implementation for a Java version of the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) protocols and includes functionality for data encryption,
server authentication, message integrity, and optional client authentication to
enable secure Internet communications.

■ Simple Authentication and Security Layer (SASL): SASL is an Internet standard
(RFC 2222) that specifies a protocol for authentication and optional establishment
of a security layer between client and server applications. SASL defines how

SecurityMechanisms

Chapter 23 • Introduction to Security in the Java EE Platform 435

ptg

authentication data is to be exchanged but does not itself specify the contents of
that data. SASL is a framework into which specific authenticationmechanisms that
specify the contents and semantics of the authentication data can fit.

Java SE also provides a set of tools formanaging keystores, certificates, and policy files;
generating and verifying JAR signatures; and obtaining, listing, andmanaging
Kerberos tickets.

Formore information on Java SE security, visit http://download.oracle.com/
docs/cd/E17409_01/javase/6/docs/technotes/guides/security/.

Java EE SecurityMechanisms
Java EE security services are provided by the component container and can be
implemented by using declarative or programmatic techniques (see “Securing
Containers” on page 439). Java EE security services provide a robust and easily
configured securitymechanism for authenticating users and authorizing access to
application functions and associated data at many different layers. Java EE security
services are separate from the securitymechanisms of the operating system.

Application-Layer Security
In Java EE, component containers are responsible for providing application-layer
security, security services for a specific application type tailored to the needs of the
application. At the application layer, application firewalls can be used to enhance
application protection by protecting the communication stream and all associated
application resources from attacks.

Java EE security is easy to implement and configure and can offer fine-grained access
control to application functions and data. However, as is inherent to security applied
at the application layer, security properties are not transferable to applications
running in other environments and protect data only while it is residing in the
application environment. In the context of a traditional enterprise application, this is
not necessarily a problem, but when applied to a web services application, in which
data often travels across several intermediaries, you would need to use the Java EE
securitymechanisms along with transport-layer security andmessage-layer security
for a complete security solution.

The advantages of using application-layer security include the following.

■ Security is uniquely suited to the needs of the application.
■ Security is fine grained, with application-specific settings.

SecurityMechanisms

The Java EE 6Tutorial: Basic Concepts436

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

ptg

The disadvantages of using application-layer security include the following.
■ The application is dependent on security attributes that are not transferable

between application types.
■ Support formultiple protocols makes this type of security vulnerable.
■ Data is close to or contained within the point of vulnerability.

Formore information on providing security at the application layer, see “Securing
Containers” on page 439.

Transport-Layer Security
Transport-layer security is provided by the transport mechanisms used to transmit
information over the wire between clients and providers; thus, transport-layer security
relies on secure HTTP transport (HTTPS) using Secure Sockets Layer (SSL).
Transport security is a point-to-point securitymechanism that can be used for
authentication, message integrity, and confidentiality.When running over an
SSL-protected session, the server and client can authenticate each other and negotiate
an encryption algorithm and cryptographic keys before the application protocol
transmits or receives its first byte of data. Security is active from the time the data
leaves the client until it arrives at its destination, or vice versa, even across
intermediaries. The problem is that the data is not protected once it gets to the
destination. One solution is to encrypt themessage before sending.

Transport-layer security is performed in a series of phases, as follows.
■ The client and server agree on an appropriate algorithm.
■ A key is exchanged using public-key encryption and certificate-based

authentication.
■ A symmetric cipher is used during the information exchange.

Digital certificates are necessary when runningHTTPS using SSL. TheHTTPS service
of most web servers will not run unless a digital certificate has been installed. Digital
certificates have already been created for the GlassFish Server.

The advantages of using transport-layer security include the following.
■ It is relatively simple, well-understood, standard technology.
■ It applies to both amessage body and its attachments.

The disadvantages of using transport-layer security include the following.
■ It is tightly coupled with the transport-layer protocol.
■ It represents an all-or-nothing approach to security. This implies that the security

mechanism is unaware of message contents, so that you cannot selectively apply
security to portions of themessage as you can withmessage-layer security.

SecurityMechanisms

Chapter 23 • Introduction to Security in the Java EE Platform 437

ptg

■ Protection is transient. Themessage is protected only while in transit. Protection is
removed automatically by the endpoint when it receives themessage.

■ It is not an end-to-end solution, simply point-to-point.

Formore information on transport-layer security, see “Establishing a Secure
ConnectionUsing SSL” on page 449.

Message-Layer Security
Inmessage-layer security, security information is contained within the SOAPmessage
and/or SOAPmessage attachment, which allows security information to travel along
with themessage or attachment. For example, a portion of themessagemay be signed
by a sender and encrypted for a particular receiver.When sent from the initial sender,
themessagemay pass through intermediate nodes before reaching its intended
receiver. In this scenario, the encrypted portions continue to be opaque to any
intermediate nodes and can be decrypted only by the intended receiver. For this
reason, message-layer security is also sometimes referred to as end-to-end security.

The advantages of message-layer security include the following.
■ Security stays with themessage over all hops and after themessage arrives at its

destination.
■ Security can be selectively applied to different portions of amessage and, if using

XMLWeb Services Security, to attachments.
■ Message security can be used with intermediaries overmultiple hops.
■ Message security is independent of the application environment or transport

protocol.

The disadvantage of usingmessage-layer security is that it is relatively complex and
adds some overhead to processing.

The GlassFish Server supports message security usingMetro, a web services stack that
usesWeb Services Security (WSS) to securemessages. Because this message security is
specific toMetro and is not a part of the Java EE platform, this tutorial does not discuss
usingWSS to securemessages. See theMetro User’s Guide at https://
metro.dev.java.net/guide/.

SecurityMechanisms

The Java EE 6Tutorial: Basic Concepts438

https://metro.dev.java.net/guide/
https://metro.dev.java.net/guide/

ptg

SecuringContainers
In Java EE, the component containers are responsible for providing application
security. A container provides two types of security: declarative and programmatic.

UsingAnnotations to Specify Security Information
Annotations enable a declarative style of programming and so encompass both the
declarative and programmatic security concepts. Users can specify information about
security within a class file by using annotations. The GlassFish Server uses this
information when the application is deployed. Not all security information can be
specified by using annotations, however. Some informationmust be specified in the
application deployment descriptors.

Specific annotations that can be used to specify security information within an
enterprise bean class file are described in “Securing an Enterprise BeanUsing
Declarative Security” on page 489. Chapter 24, “Getting Started SecuringWeb
Applications,” describes how to use annotations to secure web applications where
possible. Deployment descriptors are described only where necessary.

Formore information on annotations, see “Further Information about Security” on
page 454.

UsingDeploymentDescriptors forDeclarative
Security
Declarative security can express an application component’s security requirements by
using deployment descriptors. Because deployment descriptor information is
declarative, it can be changed without the need tomodify the source code. At runtime,
the Java EE server reads the deployment descriptor and acts upon the corresponding
application, module, or component accordingly. Deployment descriptors must
provide certain structural information for each component if this information has not
been provided in annotations or is not to be defaulted.

This part of the tutorial does not document how to create deployment descriptors; it
describes only the elements of the deployment descriptor relevant to security.
NetBeans IDE provides tools for creating andmodifying deployment descriptors.

Securing Containers

Chapter 23 • Introduction to Security in the Java EE Platform 439

ptg

Different types of components use different formats, or schemas, for their deployment
descriptors. The security elements of deployment descriptors discussed in this tutorial
include the following.
■ Web componentsmay use a web application deployment descriptor named

web.xml.
The schema for web component deployment descriptors is provided in Chapter 14
of the Java Servlet 3.0 specification (JSR 315), which can be downloaded from
http://jcp.org/en/jsr/detail?id=315.

■ Enterprise JavaBeans componentsmay use an EJB deployment descriptor named
META-INF/ejb-jar.xml, contained in the EJB JAR file.
The schema for enterprise bean deployment descriptors is provided in Chapter 19
of the EJB 3.1 specification (JSR 318), which can be downloaded from
http://jcp.org/en/jsr/detail?id=318.

UsingProgrammatic Security
Programmatic security is embedded in an application and is used tomake security
decisions. Programmatic security is useful when declarative security alone is not
sufficient to express the securitymodel of an application. The API for programmatic
security consists of methods of the EJBContext interface and the
HttpServletRequest interface. Thesemethods allow components tomake
business-logic decisions based on the security role of the caller or remote user.

Programmatic security is discussed inmore detail in the following sections:
■ “Using Programmatic Security withWebApplications” on page 469
■ “Securing an Enterprise Bean Programmatically” on page 493

Securing theGlassFish Server
This tutorial describes deployment to the GlassFish Server, which provides highly
secure, interoperable, and distributed component computing based on the Java EE
securitymodel. GlassFish Server supports the Java EE 6 securitymodel. You can
configure GlassFish Server for the following purposes:
■ Adding, deleting, ormodifying authorized users. Formore information on this

topic, see “Working with Realms, Users, Groups, and Roles” on page 441.
■ Configuring secure HTTP and Internet Inter-Orb Protocol (IIOP) listeners.
■ Configuring secure JavaManagement Extensions (JMX) connectors.
■ Adding, deleting, ormodifying existing or custom realms.

Securing the GlassFish Server

The Java EE 6Tutorial: Basic Concepts440

http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=318

ptg

■ Defining an interface for pluggable authorization providers using Java
Authorization Contract for Containers (JACC). JACC defines security contracts
between the GlassFish Server and authorization policymodules. These contracts
specify how the authorization providers are installed, configured, and used in
access decisions.

■ Using pluggable audit modules.
■ Customizing authenticationmechanisms. All implementations of Java EE 6

compatible Servlet containers are required to support the Servlet Profile of JSR 196,
which offers an avenue for customizing the authenticationmechanism applied by
the web container on behalf of one ormore applications.

■ Setting and changing policy permissions for an application.

WorkingwithRealms, Users, Groups, andRoles
You often need to protect resources to ensure that only authorized users have access.
See “Characteristics of Application Security” on page 434 for an introduction to the
concepts of authentication, identification, and authorization.

This section discusses setting up users so that they can be correctly identified and
either given access to protected resources or denied access if they are not authorized to
access the protected resources. To authenticate a user, you need to follow these basic
steps.

1. The application developer writes code to prompt for a user name and password.
The variousmethods of authentication are discussed in “Specifying an
AuthenticationMechanism in the Deployment Descriptor” on page 467.

2. The application developer communicates how to set up security for the deployed
application by use of ametadata annotation or deployment descriptor. This step is
discussed in “Setting Up Security Roles” on page 446.

3. The server administrator sets up authorized users and groups on the GlassFish
Server. This is discussed in “Managing Users andGroups on the GlassFish Server”
on page 444.

4. The application deployermaps the application’s security roles to users, groups, and
principals defined on the GlassFish Server. This topic is discussed in “Mapping
Roles to Users andGroups” on page 447.

WhatAreRealms, Users, Groups, andRoles?
A realm is a security policy domain defined for a web or application server. A realm
contains a collection of users, whomay ormay not be assigned to a group.Managing
users on the GlassFish Server is discussed in “Managing Users andGroups on the
GlassFish Server” on page 444.

Workingwith Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 441

ptg

An application will often prompt for a user name and password before allowing access
to a protected resource. After the user name and password have been entered, that
information is passed to the server, which either authenticates the user and sends the
protected resource or does not authenticate the user, in which case access to the
protected resource is denied. This type of user authentication is discussed in
“Specifying an AuthenticationMechanism in the Deployment Descriptor” on
page 467.

In some applications, authorized users are assigned to roles. In this situation, the role
assigned to the user in the applicationmust bemapped to a principal or group defined
on the application server. Figure 23–6 shows this. More information onmapping roles
to users and groups can be found in “Setting Up Security Roles” on page 446.

The following sections providemore information on realms, users, groups, and roles.

FIGURE 23–6 MappingRoles toUsers andGroups

Role 1

Role 2

Role 1

Role 2

Create users
and/or groups

Define roles
in application

Map roles to users
and/or groups

Application

Group 1

User 1

User 2

User 3

Group 1

User 1

User 2

User 3

User 1

User 2

User 3

User 1

User 2

User 3

Application

Workingwith Realms, Users, Groups, and Roles

The Java EE 6Tutorial: Basic Concepts442

ptg

What Is a Realm?
A realm is a security policy domain defined for a web or application server. The
protected resources on a server can be partitioned into a set of protection spaces, each
with its own authentication scheme and/or authorization database containing a
collection of users and groups. For a web application, a realm is a complete database of
users and groups identified as valid users of a web application or a set of web
applications and controlled by the same authentication policy.

The Java EE server authentication service can govern users inmultiple realms. The
file, admin-realm, and certificate realms come preconfigured for the GlassFish
Server.

In the file realm, the server stores user credentials locally in a file named keyfile.
You can use the Administration Console tomanage users in the file realm.When
using the file realm, the server authentication service verifies user identity by
checking the file realm. This realm is used for the authentication of all clients except
for web browser clients that use HTTPS and certificates.

In the certificate realm, the server stores user credentials in a certificate database.
When using the certificate realm, the server uses certificates withHTTPS to
authenticate web clients. To verify the identity of a user in the certificate realm, the
authentication service verifies an X.509 certificate. For step-by-step instructions for
creating this type of certificate, see “Working with Digital Certificates” on page 450.
The common name field of the X.509 certificate is used as the principal name.

The admin-realm is also a file realm and stores administrator user credentials locally
in a file named admin-keyfile. You can use the Administration Console tomanage
users in this realm in the sameway youmanage users in the file realm. Formore
information, see “Managing Users andGroups on the GlassFish Server” on page 444.

What Is aUser?
A user is an individual or application program identity that has been defined in the
GlassFish Server. In a web application, a user can have associated with that identify a
set of roles that entitle the user to access all resources protected by those roles. Users
can be associated with a group.

A Java EE user is similar to an operating system user. Typically, both types of users
represent people. However, these two types of users are not the same. The Java EE
server authentication service has no knowledge of the user name and password you
provide when you log in to the operating system. The Java EE server authentication
service is not connected to the securitymechanism of the operating system. The two
security services manage users that belong to different realms.

Workingwith Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 443

ptg

What Is aGroup?
A group is a set of authenticated users, classified by common traits, defined in the
GlassFish Server. A Java EE user of the file realm can belong to a group on the
GlassFish Server. (A user in the certificate realm cannot.) A group on the GlassFish
Server is a category of users classified by common traits, such as job title or customer
profile. For example, most customers of an e-commerce applicationmight belong to
the CUSTOMER group, but the big spenders would belong to the PREFERRED group.
Categorizing users into groupsmakes it easier to control the access of large numbers of
users.

A group on the GlassFish Server has a different scope from a role. A group is
designated for the entire GlassFish Server, whereas a role is associated only with a
specific application in the GlassFish Server.

What Is a Role?
A role is an abstract name for the permission to access a particular set of resources in
an application. A role can be compared to a key that can open a lock.Many people
might have a copy of the key. The lock doesn’t care who you are, only that you have the
right key.

SomeOtherTerminology
The following terminology is also used to describe the security requirements of the
Java EE platform:
■ Principal: An entity that can be authenticated by an authentication protocol in a

security service that is deployed in an enterprise. A principal is identified by using a
principal name and authenticated by using authentication data.

■ Security policy domain, also known as security domain or realm: A scope over
which a common security policy is defined and enforced by the security
administrator of the security service.

■ Security attributes: A set of attributes associated with every principal. The security
attributes havemany uses: for example, access to protected resources and auditing
of users. Security attributes can be associated with a principal by an authentication
protocol.

■ Credential: An object that contains or references security attributes used to
authenticate a principal for Java EE services. A principal acquires a credential upon
authentication or from another principal that allows its credential to be used.

ManagingUsers andGroups on theGlassFish Server
Follow these steps formanaging users before you run the tutorial examples.

Workingwith Realms, Users, Groups, and Roles

The Java EE 6Tutorial: Basic Concepts444

ptg

▼ ToAddUsers to theGlassFish Server

Start theGlassFish Server, if you haven’t already done so.

Information on starting the GlassFish Server is available in “Starting and Stopping the
GlassFish Server” on page 41.

Start theAdministration Console, if you haven’t already done so.

To start the Administration Console, open a web browser and specify the URL
http://localhost:4848/. If you changed the default Admin port during installation,
type the correct port number in place of 4848.

In the navigation tree, expand the Configuration node.

Expand the Security node.

Expand the Realms node.

Select the realm towhich you are adding users.

■ Select the file realm to addusers youwant to access applications running in this
realm.

For the example security applications, select the file realm.

The Edit Realm page opens.

■ Select the admin-realm to addusers youwant to enable as systemadministrators
of theGlassFish Server.

The Edit Realm page opens.

You cannot add users to the certificate realm by using the Administration Console.
In the certificate realm, you can add only certificates. For information on adding
(importing) certificates to the certificate realm, see “AddingUsers to the Certificate
Realm” on page 446.

On the Edit Realmpage, click theManageUsers button.

The File Users or AdminUsers page opens.

On the File Users or AdminUsers page, clickNew to add anewuser to the realm.

TheNew File RealmUser page opens.

1

2

3

4

5

6

7

8

Workingwith Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 445

http://localhost:4848/

ptg

Type values in theUser ID, Group List, NewPassword, andConfirmNewPassword
fields.
For the Admin Realm, the Group List field is read-only, and the group name is
asadmin. Restart the GlassFish Server and Administration Console after you add a user
to the Admin Realm.

Formore information on these properties, see “Working with Realms, Users, Groups,
and Roles” on page 441.

For the example security applications, specify a user with any name and password you
like, butmake sure that the user is assigned to the group TutorialUser. The user name
and password are case-sensitive. Keep a record of the user name and password for
working with the examples later in this tutorial.

ClickOK to add this user to the realm, or click Cancel to quitwithout saving.

AddingUsers to theCertificate Realm
In the certificate realm, user identity is set up in the GlassFish Server security
context and populated with user data obtained from cryptographically verified client
certificates. For step-by-step instructions for creating this type of certificate, see
“Working with Digital Certificates” on page 450.

SettingUpSecurity Roles
When you design an enterprise bean or web component, you should always think
about the kinds of users whowill access the component. For example, a web
application for a human resources departmentmight have a different request URL for
someone who has been assigned the role of DEPT_ADMIN than for someone who has
been assigned the role of DIRECTOR. The DEPT_ADMIN role may let you view employee
data, but the DIRECTOR role enables you tomodify employee data, including salary
data. Each of these security roles is an abstract logical grouping of users that is defined
by the person who assembles the application.When an application is deployed, the
deployer will map the roles to security identities in the operational environment, as
shown in Figure 23–6.

For Java EE components, you define security roles using the @DeclareRoles and
@RolesAllowedmetadata annotations.

The following is an example of an application in which the role of DEPT-ADMIN is
authorized formethods that review employee payroll data, and the role of DIRECTOR is
authorized formethods that change employee payroll data.

The enterprise bean would be annotated as shown in the following code:

9

10

Workingwith Realms, Users, Groups, and Roles

The Java EE 6Tutorial: Basic Concepts446

ptg

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

...

@DeclareRoles({"DEPT-ADMIN", "DIRECTOR"})
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

@RolesAllowed("DEPT-ADMIN")
public void reviewEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// ...

}

@RolesAllowed("DIRECTOR")
public void updateEmployeeInfo(EmplInfo info) {

newInfo = ... update database;

// ...

}

...

}

For a servlet, you can use the @HttpConstraint annotation within the
@ServletSecurity annotation to specify the roles that are allowed to access the
servlet. For example, a servlet might be annotated as follows:

@WebServlet(name = "PayrollServlet", urlPatterns = {"/payroll"})
@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,

rolesAllowed = {"DEPT-ADMIN", "DIRECTOR"}))
public class GreetingServlet extends HttpServlet {

These annotations are discussed inmore detail in “Specifying Security for Basic
AuthenticationUsing Annotations” on page 476 and “Securing an Enterprise Bean
Using Declarative Security” on page 489.

After users have provided their login information and the application has declared
what roles are authorized to access protected parts of an application, the next step is to
map the security role to the name of a user, or principal.

MappingRoles toUsers andGroups
When you are developing a Java EE application, you don’t need to knowwhat
categories of users have been defined for the realm in which the application will be run.
In the Java EE platform, the security architecture provides amechanism formapping
the roles defined in the application to the users or groups defined in the runtime realm.

Workingwith Realms, Users, Groups, and Roles

Chapter 23 • Introduction to Security in the Java EE Platform 447

ptg

The role names used in the application are often the same as the group names defined
on the GlassFish Server. Under these circumstances, you can enable a default
principal-to-role mapping on the GlassFish Server by using the Administration
Console. The task “To Set Up Your System for Running the Security Examples” on
page 474 explains how to do this. All the tutorial security examples use default
principal-to-role mapping.

If the role names used in an application are not the same as the group names defined
on the server, use the runtime deployment descriptor to specify themapping. The
following example demonstrates how to do this mapping in the sun-web.xml file,
which is the file used for web applications:

<sun-web-app>

...

<security-role-mapping>

<role-name>Mascot</role-name>

<principal-name>Duke</principal-name>

</security-role-mapping>

<security-role-mapping>

<role-name>Admin</role-name>

<group-name>Director</group-name>

</security-role-mapping>

...

</sun-web-app>

A role can bemapped to specific principals, specific groups, or both. The principal or
group namesmust be valid principals or groups in the current default realm or in the
realm specified in the login-config element. In this example, the role of Mascot used
in the application is mapped to a principal, named Duke, that exists on the application
server. Mapping a role to a specific principal is useful when the person occupying that
role may change. For this application, you would need tomodify only the runtime
deployment descriptor rather than search and replace throughout the application for
references to this principal.

Also in this example, the role of Admin is mapped to a group of users assigned the
group name of Director. This is useful because the group of people authorized to
access director-level administrative data has to bemaintained only on the GlassFish
Server. The application developer does not need to knowwho these people are, but
only needs to define the group of people whowill be given access to the information.

The role-namemustmatch the role-name in the security-role element of the
corresponding deployment descriptor or the role name defined in a @DeclareRoles
annotation.

Workingwith Realms, Users, Groups, and Roles

The Java EE 6Tutorial: Basic Concepts448

ptg

Establishing a Secure ConnectionUsing SSL
Secure Socket Layer (SSL) technology is security that is implemented at the transport
layer (see “Transport-Layer Security” on page 437 formore information about
transport-layer security). SSL allows web browsers and web servers to communicate
over a secure connection. In this secure connection, the data is encrypted before being
sent and then is decrypted upon receipt and before processing. Both the browser and
the server encrypt all traffic before sending any data.

SSL addresses the following important security considerations:
■ Authentication: During your initial attempt to communicate with a web server

over a secure connection, that server will present your web browser with a set of
credentials in the form of a server certificate. The purpose of the certificate is to
verify that the site is who and what it claims to be. In some cases, the servermay
request a certificate proving that the client is who and what it claims to be; this
mechanism is known as client authentication.

■ Confidentiality: When data is being passed between the client and the server on a
network, third parties can view and intercept this data. SSL responses are
encrypted so that the data cannot be deciphered by the third party and the data
remains confidential.

■ Integrity: When data is being passed between the client and the server on a
network, third parties can view and intercept this data. SSL helps guarantee that the
data will not bemodified in transit by that third party.

The SSL protocol is designed to be as efficient as securely possible. However,
encryption and decryption are computationally expensive processes from a
performance standpoint. It is not strictly necessary to run an entire web application
over SSL, and it is customary for a developer to decide which pages require a secure
connection and which do not. Pages that might require a secure connection include
those for login, personal information, shopping cart checkouts, or credit card
information transmittal. Any page within an application can be requested over a
secure socket by simply prefixing the address with https: instead of http:. Any pages
that absolutely require a secure connection should check the protocol type associated
with the page request and take the appropriate action if https: is not specified.

Using name-based virtual hosts on a secured connection can be problematic. This is a
design limitation of the SSL protocol itself. The SSL handshake, whereby the client
browser accepts the server certificate, must occur before the HTTP request is accessed.
As a result, the request information containing the virtual host name cannot be
determined before authentication, and it is therefore not possible to assignmultiple
certificates to a single IP address. If all virtual hosts on a single IP address need to
authenticate against the same certificate, the addition ofmultiple virtual hosts should
not interfere with normal SSL operations on the server. Be aware, however, that most
client browsers will compare the server’s domain name against the domain name listed

Establishing a Secure Connection Using SSL

Chapter 23 • Introduction to Security in the Java EE Platform 449

ptg

in the certificate, if any; this is applicable primarily to official certificates signed by a
certificate authority (CA). If the domain names do notmatch, these browsers will
display a warning to the client. In general, only address-based virtual hosts are
commonly used with SSL in a production environment.

Verifying andConfiguring SSL Support
As a general rule, youmust address the following issues to enable SSL for a server:
■ Theremust be a Connector element for an SSL connector in the server deployment

descriptor.
■ Theremust be valid keystore and certificate files.
■ The location of the keystore file and its passwordmust be specified in the server

deployment descriptor.

An SSLHTTPS connector is already enabled in the GlassFish Server.

For testing purposes and to verify that SSL support has been correctly installed, load
the default introduction page with a URL that connects to the port defined in the
server deployment descriptor:

https://localhost:8181/

The https in this URL indicates that the browser should be using the SSL protocol.
The localhost in this example assumes that you are running the example on your
local machine as part of the development process. The 8181 in this example is the
secure port that was specified where the SSL connector was created. If you are using a
different server or port, modify this value accordingly.

The first time that you load this application, the New Site Certificate or Security Alert
dialog box appears. Select Next tomove through the series of dialog boxes, and select
Finish when you reach the last dialog box. The certificates will display only the first
time.When you accept the certificates, subsequent hits to this site assume that you still
trust the content.

WorkingwithDigital Certificates
Digital certificates for the GlassFish Server have already been generated and can be
found in the directory as-install/domain-dir/config/. These digital certificates are
self-signed and are intended for use in a development environment; they are not
intended for production purposes. For production purposes, generate your own
certificates and have them signed by a CA.

Establishing a Secure Connection Using SSL

The Java EE 6Tutorial: Basic Concepts450

https://localhost:8181/

ptg

To use SSL, an application or web servermust have an associated certificate for each
external interface, or IP address, that accepts secure connections. The theory behind
this design is that a server should provide some kind of reasonable assurance that its
owner is who you think it is, particularly before receiving any sensitive information. It
may be useful to think of a certificate as a “digital driver’s license” for an Internet
address. The certificate states with which company the site is associated, along with
some basic contact information about the site owner or administrator.

The digital certificate is cryptographically signed by its owner and is difficult for
anyone else to forge. For sites involved in e-commerce or in any other business
transaction in which authentication of identity is important, a certificate can be
purchased from awell-knownCA such as VeriSign or Thawte. If your server certificate
is self-signed, youmust install it in the GlassFish Server keystore file (keystore.jks).
If your client certificate is self-signed, you should install it in the GlassFish Server
truststore file (cacerts.jks).

Sometimes, authentication is not really a concern. For example, an administrator
might simply want to ensure that data being transmitted and received by the server is
private and cannot be snooped by anyone eavesdropping on the connection. In such
cases, you can save the time and expense involved in obtaining a CA certificate and
simply use a self-signed certificate.

SSL uses public-key cryptography, which is based on key pairs. Key pairs contain one
public key and one private key. Data encrypted with one key can be decrypted only
with the other key of the pair. This property is fundamental to establishing trust and
privacy in transactions. For example, using SSL, the server computes a value and
encrypts it by using its private key. The encrypted value is called a digital signature.
The client decrypts the encrypted value by using the server’s public key and compares
the value to its own computed value. If the two valuesmatch, the client can trust that
the signature is authentic, because only the private key could have been used to
produce such a signature.

Digital certificates are used withHTTPS to authenticate web clients. TheHTTPS
service of most web servers will not run unless a digital certificate has been installed.
Use the procedure outlined in the next section, “Creating a Server Certificate” on
page 452, to set up a digital certificate that can be used by your application or web
server to enable SSL.

One tool that can be used to set up a digital certificate is keytool, a key and certificate
management utility that ships with the JDK. This tool enables users to administer their
own public/private key pairs and associated certificates for use in self-authentication,
whereby the user authenticates himself or herself to other users or services, or data
integrity and authentication services, using digital signatures. The tool also allows
users to cache the public keys, in the form of certificates, of their communicating
peers. For a better understanding of keytool and public-key cryptography, see the

Establishing a Secure Connection Using SSL

Chapter 23 • Introduction to Security in the Java EE Platform 451

ptg

keytool documentation at http://download.oracle.com/
docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html.

Creating a Server Certificate
A server certificate has already been created for the GlassFish Server and can be found
in the domain-dir/config/ directory. The server certificate is in keystore.jks. The
cacerts.jks file contains all the trusted certificates, including client certificates.

If necessary, you can use keytool to generate certificates. The keytool utility stores
the keys and certificates in a file termed a keystore, a repository of certificates used for
identifying a client or a server. Typically, a keystore is a file that contains one client’s or
one server’s identity. The keystore protects private keys by using a password.

If you don’t specify a directory when specifying the keystore file name, the keystores
are created in the directory fromwhich the keytool command is run. This can be the
directory where the application resides, or it can be a directory common tomany
applications.

The general steps for creating a server certificate are as follows.

1. Create the keystore.
2. Export the certificate from the keystore.
3. Sign the certificate.
4. Import the certificate into a truststore: a repository of certificates used for verifying

the certificates. A truststore typically containsmore than one certificate.

“ToUse keytool to Create a Server Certificate” on page 452 provides specific
information on using the keytool utility to perform these steps.

▼ ToUse keytool to Create a Server Certificate
Run keytool to generate a new key pair in the default development keystore file,
keystore.jks. This example uses the alias server-alias to generate a new
public/private key pair and wrap the public key into a self-signed certificate inside
keystore.jks. The key pair is generated by using an algorithm of type RSA, with a
default password of changeit. Formore information and other examples of creating
andmanaging keystore files, read the keytool online help at http://
download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html.

Note –RSA is public-key encryption technology developed by RSAData Security, Inc.

From the directory in which you want to create the key pair, run keytool as shown in
the following steps.

Establishing a Secure Connection Using SSL

The Java EE 6Tutorial: Basic Concepts452

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html

ptg

Generate the server certificate.
Type the keytool command all on one line:
java-home/bin/keytool -genkey -alias server-alias -keyalg RSA -keypass changeit

-storepass changeit -keystore keystore.jks

When you press Enter, keytool prompts you to enter the server name, organizational
unit, organization, locality, state, and country code.

Youmust type the server name in response to keytool’s first prompt, in which it asks
for first and last names. For testing purposes, this can be localhost.

When you run the example applications, the host (server name) specified in the
keystoremustmatch the host identified in the javaee.server.name property
specified in the file tut-install/examples/bp-project/build.properties.

Export the generated server certificate in keystore.jks into the file server.cer.
Type the keytool command all on one line:
java-home/bin/keytool -export -alias server-alias -storepass changeit

-file server.cer -keystore keystore.jks

If youwant to have the certificate signedby a CA, read the example at
http://download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html.

To add the server certificate to the truststore file, cacerts.jks, run keytool from the
directorywhere you created the keystore and server certificate.
Use the following parameters:
java-home/bin/keytool -import -v -trustcacerts -alias server-alias

-file server.cer -keystore cacerts.jks -keypass changeit -storepass changeit

Information on the certificate, such as that shown next, will appear:

Owner: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USIssuer: CN=localhost, OU=Sun Micro, O=Docs, L=Santa Clara, ST=CA,

C=USSerial number: 3e932169Valid from: Tue Apr 08Certificate

fingerprints:MD5: 52:9F:49:68:ED:78:6F:39:87:F3:98:B3:6A:6B:0F:90 SHA1:

EE:2E:2A:A6:9E:03:9A:3A:1C:17:4A:28:5E:97:20:78:3F:

Trust this certificate? [no]:

Type yes, thenpress the Enter or Return key.
The following information appears:
Certificate was added to keystore[Saving cacerts.jks]

1

2

3

4

5

Establishing a Secure Connection Using SSL

Chapter 23 • Introduction to Security in the Java EE Platform 453

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html

ptg

Further Information about Security
Formore information about security in Java EE applications, see
■ Java EE 6 specification:

http://jcp.org/en/jsr/detail?id=316

■ TheOracle GlassFish Server 3.0.1 Application Development Guide, which includes
security information for application developers, such as information on security
settings in the deployment descriptors specific to the GlassFish Server

■ TheOracle GlassFish Server 3.0.1 Administration Guide, which includes
information on setting security settings for the GlassFish Server

■ Enterprise JavaBeans 3.1 specification:
http://jcp.org/en/jsr/detail?id=318

■ Implementing EnterpriseWeb Services 1.3 specification:
http://jcp.org/en/jsr/detail?id=109

■ Java SE security information:
http://download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

■ Java Servlet 3.0 specification:
http://jcp.org/en/jsr/detail?id=315

■ Java Authorization Contract for Containers 1.3 specification:
http://jcp.org/en/jsr/detail?id=115

■ Java Authentication and Authorization Service (JAAS) Reference Guide:
http://download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/

JAASRefGuide.html

■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s
Guide:
http://download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/

JAASLMDevGuide.html

Further Information about Security

The Java EE 6Tutorial: Basic Concepts454

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=109
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=115
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

ptg

Getting Started SecuringWebApplications

Aweb application is accessed using a web browser over a network, such as the Internet
or a company’s intranet. As discussed in “DistributedMultitiered Applications” on
page 6, the Java EE platform uses a distributedmultitiered applicationmodel, and web
applications run in the web tier.

Web applications contain resources that can be accessed bymany users. These
resources often traverse unprotected, open networks, such as the Internet. In such an
environment, a substantial number of web applications will require some type of
security. The ways to implement security for Java EEweb applications are discussed in
a general way in “Securing Containers” on page 439. This chapter providesmore detail
and a few examples that explore these security services as they relate to web
components.

Securing applications and their clients in the business tier and the EIS tier is discussed
in Chapter 25, “Getting Started Securing Enterprise Applications.”

The following topics are addressed here:
■ “Overview ofWebApplication Security” on page 455
■ “SecuringWebApplications” on page 457
■ “Using Programmatic Security withWebApplications” on page 469
■ “Examples: SecuringWebApplications” on page 474

OverviewofWebApplication Security
In the Java EE platform, web components provide the dynamic extension capabilities
for a web server.Web components can be Java servlets or JavaServer Faces pages. The
interaction between a web client and a web application is illustrated in Figure 24–1.

24C H A P T E R 2 4

455

ptg
Certain aspects of web application security can be configured when the application is
installed, or deployed, to the web container. Annotations and/or deployment
descriptors are used to relay information to the deployer about security and other
aspects of the application. Specifying this information in annotations or in the
deployment descriptor helps the deployer set up the appropriate security policy for the
web application. Any values explicitly specified in the deployment descriptor override
any values specified in annotations.

Security for Java EEweb applications can be implemented in the following ways.
■ Declarative security: Can be implemented using eithermetadata annotations or

an application’s deployment descriptor. See “Overview of Java EE Security” on
page 430 formore information.
Declarative security for web applications is described in “SecuringWeb
Applications” on page 457.

■ Programmatic security: Is embedded in an application and can be used tomake
security decisions when declarative security alone is not sufficient to express the
securitymodel of an application. Declarative security alonemay not be sufficient
when conditional login in a particular work flow, instead of for all cases, is required
in themiddle of an application. See “Overview of Java EE Security” on page 430 for
more information.
Servlet 3.0 provides the authenticate, login, and logoutmethods of the
HttpServletRequest interface.With the addition of the authenticate, login,
and logoutmethods to the Servlet specification, an application deployment
descriptor is no longer required for web applications butmay still be used to
further specify security requirements beyond the basic default values.

FIGURE 24–1 JavaWebApplicationRequestHandling

HTTP
Request

HTTP
Response

Database

Database

Web
Client

HttpServlet
Request

HttpServlet
Response

Web
Components
Web
C
Web
Components

Web
CC
Web WebWeb
CCCC

WW
C
W bWeb

ComponentsCCompoonentso tne
WW bWebWeb
CC sCCompoonentsCCompoonentsoooneC
Web

C
WebWebWebWebWebWeb

sComponentsp ssCoC mpoonentsComponentsoCCCCompoonentsompoonentsComponentsomponentsooooooooooCoCoC
WW bWWebWWeb
CCC

Web
Components

Web
Components
Web
C
Web
Components

Web
CC
Web WebWeb
CCCC

WW
C
W bWeb

ComponentsCCompoonents
WW bWebWeb
C entsCCompoonentsCCompoonents
Web

C
WebWebWebWebWebWeb

sComponentsssCCompoonentsComponentsCompoonentsompoonentsComponentsComponentsC
WW bWWebWWeb
CCC

JavaBeans
Components

1
4

4

2

5 3

6

Overview ofWebApplication Security

The Java EE 6Tutorial: Basic Concepts456

ptg

Programmatic security is discussed in “Using Programmatic Security withWeb
Applications” on page 469

■ Message Security: Works with web services and incorporates security features,
such as digital signatures and encryption, into the header of a SOAPmessage,
working in the application layer, ensuring end-to-end security. Message security is
not a component of Java EE 6 and is mentioned here for informational purposes
only.

Some of thematerial in this chapter builds onmaterial presented earlier in this
tutorial. In particular, this chapter assumes that you are familiar with the information
in the following chapters:
■ Chapter 3, “Getting Started withWebApplications”
■ Chapter 4, “JavaServer Faces Technology”
■ Chapter 10, “Java Servlet Technology”
■ Chapter 23, “Introduction to Security in the Java EE Platform”

SecuringWebApplications
Web applications are created by application developers who give, sell, or otherwise
transfer the application to an application deployer for installation into a runtime
environment. Application developers communicate how to set up security for the
deployed application by using annotations or deployment descriptors. This
information is passed on to the deployer, who uses it to definemethod permissions for
security roles, set up user authentication, and set up the appropriate transport
mechanism. If the application developer doesn’t define security requirements, the
deployer will have to determine the security requirements independently.

Some elements necessary for security in a web application cannot be specified as
annotations for all types of web applications. This chapter explains how to secure web
applications using annotations wherever possible. It explains how to use deployment
descriptors where annotations cannot be used.

Specifying Security Constraints
A security constraint is used to define the access privileges to a collection of resources
using their URLmapping.

If your web application uses a servlet, you can express the security constraint
information by using annotations. Specifically, you use the @HttpConstraint and,
optionally, the @HttpMethodConstraint annotations within the @ServletSecurity
annotation to specify a security constraint.

SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 457

ptg

If your web application does not use a servlet, however, youmust specify a
security-constraint element in the deployment descriptor file. The authentication
mechanism cannot be expressed using annotations, so if you use any authentication
method other than BASIC (the default), a deployment descriptor is required.

The following subelements can be part of a security-constraint:
■ Web resource collection (web-resource-collection): A list of URL patterns (the

part of a URL after the host name and port you want to constrain) andHTTP
operations (themethods within the files that match the URL pattern you want to
constrain) that describe a set of resources to be protected.Web resource collections
are discussed in “Specifying aWeb Resource Collection” on page 458.

■ Authorization constraint (auth-constraint): Specifies whether authentication is
to be used and names the roles authorized to perform the constrained requests. For
more information about authorization constraints, see “Specifying an
AuthenticationMechanism in the Deployment Descriptor” on page 467.

■ User data constraint (user-data-constraint): Specifies how data is protected
when transported between a client and a server. User data constraints are discussed
in “Specifying a Secure Connection” on page 459.

Specifying aWebResource Collection
Aweb resource collection consists of the following subelements:
■ web-resource-name is the name you use for this resource. Its use is optional.
■ url-pattern is used to list the request URI to be protected.Many applications

have both unprotected and protected resources. To provide unrestricted access to a
resource, do not configure a security constraint for that particular request URI.

The request URI is the part of a URL after the host name and port. For example,
let’s say that you have an e-commerce site with a catalog that you would want
anyone to be able to access and browse, and a shopping cart area for customers
only. You could set up the paths for your web application so that the pattern
/cart/* is protected but nothing else is protected. Assuming that the application is
installed at context path /myapp, the following are true:
■ http://localhost:8080/myapp/index.xhtml is not protected.
■ http://localhost:8080/myapp/cart/index.xhtml is protected.

A user will be prompted to log in the first time he or she accesses a resource in the
cart/ subdirectory.

■ http-method or http-method-omission is used to specify whichmethods should
be protected or whichmethods should be omitted from protection. AnHTTP
method is protected by a web-resource-collection under any of the following
circumstances:

SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts458

http://localhost:8080/myapp/index.xhtml
http://localhost:8080/myapp/cart/index.xhtml

ptg

■ If noHTTPmethods are named in the collection (whichmeans that all are
protected)

■ If the collection specifically names the HTTPmethod in an http-method

subelement
■ If the collection contains one ormore http-method-omission elements, none

of which names the HTTPmethod

Specifying anAuthorizationConstraint
An authorization constraint (auth-constraint) contains the role-name element.
You can use asmany role-name elements as needed here.

An authorization constraint establishes a requirement for authentication and names
the roles authorized to access the URL patterns andHTTPmethods declared by this
security constraint. If there is no authorization constraint, the containermust accept
the request without requiring user authentication. If there is an authorization
constraint but no roles are specified within it, the container will not allow access to
constrained requests under any circumstances. Each role name specified heremust
either correspond to the role name of one of the security-role elements defined for
this web application or be the specially reserved role name *, which indicates all roles
in the web application. Role names are case sensitive. The roles defined for the
applicationmust bemapped to users and groups defined on the server, except when
default principal-to-role mapping is used.

Formore information about security roles, see “Declaring Security Roles” on page 468.
For information onmapping security roles, see “Mapping Roles to Users andGroups”
on page 447.

For a servlet, the @HttpConstraint and @HttpMethodConstraint annotations accept a
rolesAllowed element that specifies the authorized roles.

Specifying a Secure Connection
Auser data constraint (user-data-constraint in the deployment descriptor)
contains the transport-guarantee subelement. A user data constraint can be used to
require that a protected transport-layer connection, such as HTTPS, be used for all
constrainedURL patterns andHTTPmethods specified in the security constraint. The
choices for transport guarantee are CONFIDENTIAL, INTEGRAL, or NONE. If you specify
CONFIDENTIAL or INTEGRAL as a security constraint, it generally means that the use of
SSL is required and applies to all requests that match the URL patterns in the web
resource collection, not just to the login dialog box.

SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 459

ptg

The strength of the required protection is defined by the value of the transport
guarantee.
■ Specify CONFIDENTIALwhen the application requires that data be transmitted so as

to prevent other entities from observing the contents of the transmission.
■ Specify INTEGRALwhen the application requires that the data be sent between client

and server in such a way that it cannot be changed in transit.
■ Specify NONE to indicate that the containermust accept the constrained requests on

any connection, including an unprotected one.

Note – In practice, Java EE servers treat the CONFIDENTIAL and INTEGRAL transport
guarantee values identically.

The user data constraint is handy to use in conjunction with basic and form-based user
authentication.When the login authenticationmethod is set to BASIC or FORM,
passwords are not protected, meaning that passwords sent between a client and a
server on an unprotected session can be viewed and intercepted by third parties. Using
a user data constraint with the user authenticationmechanism can alleviate this
concern. Configuring a user authenticationmechanism is described in “Specifying an
AuthenticationMechanism in the Deployment Descriptor” on page 467.

To guarantee that data is transported over a secure connection, ensure that SSL
support is configured for your server. SSL support is already configured for the
GlassFish Server.

Note –After you switch to SSL for a session, you should never accept any non-SSL
requests for the rest of that session. For example, a shopping site might not use SSL
until the checkout page, and then it might switch to using SSL to accept your card
number. After switching to SSL, you should stop listening to non-SSL requests for this
session. The reason for this practice is that the session ID itself was not encrypted on
the earlier communications. This is not so bad when you’re only doing your shopping,
but after the credit card information is stored in the session, you don’t want anyone to
use that information to fake the purchase transaction against your credit card. This
practice could be easily implemented by using a filter.

Specifying Separate Security Constraints forVarious Resources
You can create a separate security constraint for various resources within your
application. For example, you could allow users with the role of PARTNER access to the
GET and POSTmethods of all resources with the URL pattern /acme/wholesale/* and
allow users with the role of CLIENT access to the GET and POSTmethods of all resources
with the URL pattern /acme/retail/*. An example of a deployment descriptor that
would demonstrate this functionality is the following:

SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts460

ptg

<!-- SECURITY CONSTRAINT #1 -->

<security-constraint>

<web-resource-collection>

<web-resource-name>wholesale</web-resource-name>

<url-pattern>/acme/wholesale/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>PARTNER</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- SECURITY CONSTRAINT #2 -->

<security-constraint>

<web-resource-collection>

<web-resource-name>retail</web-resource-name>

<url-pattern>/acme/retail/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>CLIENT</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

When the same url-pattern and http-method occur inmultiple security constraints,
the constraints on the pattern andmethod are defined by combining the individual
constraints, which could result in unintentional denial of access.

SpecifyingAuthenticationMechanisms
Auser authenticationmechanism specifies
■ The way a user gains access to web content
■ With basic authentication, the realm in which the user will be authenticated
■ With form-based authentication, additional attributes

When an authenticationmechanism is specified, the usermust be authenticated
before access is granted to any resource that is constrained by a security constraint.
There can bemultiple security constraints applying tomultiple resources, but the
same authenticationmethod will apply to all constrained resources in an application.

Before you can authenticate a user, youmust have a database of user names,
passwords, and roles configured on your web or application server. For information
on setting up the user database, see “Managing Users andGroups on the GlassFish
Server” on page 444.

SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 461

ptg

HTTP basic authentication and form-based authentication are not very secure
authenticationmechanisms. Basic authentication sends user names and passwords
over the Internet as Base64-encoded text; form-based authentication sends this data as
plain text. In both cases, the target server is not authenticated. Therefore, these forms
of authentication leave user data exposed and vulnerable. If someone can intercept the
transmission, the user name and password information can easily be decoded.
However, when a secure transport mechanism, such as SSL, or security at the network
level, such as the Internet Protocol Security (IPsec) protocol or virtual private network
(VPN) strategies, is used in conjunction with basic or form-based authentication,
some of these concerns can be alleviated. To specify a secure transport mechanism, use
the elements described in “Specifying a Secure Connection” on page 459.

HTTPBasic Authentication
SpecifyingHTTP basic authentication requires that the server request a user name and
password from the web client and verify that the user name and password are valid by
comparing them against a database of authorized users in the specified or default
realm.

Basic authentication is the default when you do not specify an authentication
mechanism.

When basic authentication is used, the following actions occur:

1. A client requests access to a protected resource.
2. The web server returns a dialog box that requests the user name and password.
3. The client submits the user name and password to the server.
4. The server authenticates the user in the specified realm and, if successful, returns

the requested resource.

Figure 24–2 shows what happens when you specify HTTP basic authentication.

SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts462

ptg

Form-BasedAuthentication
Form-based authentication allows the developer to control the look and feel of the
login authentication screens by customizing the login screen and error pages that an
HTTP browser presents to the end user.When form-based authentication is declared,
the following actions occur.

1. A client requests access to a protected resource.
2. If the client is unauthenticated, the server redirects the client to a login page.
3. The client submits the login form to the server.
4. The server attempts to authenticate the user.

a. If authentication succeeds, the authenticated user’s principal is checked to
ensure that it is in a role that is authorized to access the resource. If the user is
authorized, the server redirects the client to the resource by using the stored
URL path.

b. If authentication fails, the client is forwarded or redirected to an error page.

Figure 24–3 shows what happens when you specify form-based authentication.

FIGURE 24–2 HTTPBasicAuthentication

Server

1

2

Requests a protected resource

Requests username:password

3

Sends username:password

4

Returns requested resource

Client

SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 463

ptg

The section “Example: Form-Based Authentication with a JavaServer Faces
Application” on page 479 is an example application that uses form-based
authentication.

When you create a form-based login, be sure tomaintain sessions using cookies or SSL
session information.

For authentication to proceed appropriately, the action of the login formmust always
be j_security_check. This restriction is made so that the login formwill work no
matter which resource it is for and to avoid requiring the server to specify the action
field of the outbound form. The following code snippet shows how the form should be
coded into the HTML page:

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">
</form>

Digest Authentication
Like basic authentication, digest authentication authenticates a user based on a user
name and a password. However, unlike basic authentication, digest authentication
does not send user passwords over the network. Instead, the client sends a one-way
cryptographic hash of the password and additional data. Although passwords are not

FIGURE 24–3 Form-BasedAuthentication

ServerLogin
Page

Error
Page

1

2

Requests protected resource

Redirected to
login page

3

Form submitted

4

Redirected to source

Error page returned

Success

Failure

j_security_check

Client

?

SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts464

ptg

sent on the wire, digest authentication requires that clear-text password equivalents be
available to the authenticating container so that it can validate received authenticators
by calculating the expected digest.

ClientAuthentication
With client authentication, the web server authenticates the client by using the client’s
public key certificate. Client authentication is amore securemethod of authentication
than either basic or form-based authentication. It uses HTTP over SSL (HTTPS), in
which the server authenticates the client using the client’s public key certificate. SSL
technology provides data encryption, server authentication, message integrity, and
optional client authentication for a TCP/IP connection. You can think of a public key
certificate as the digital equivalent of a passport. The certificate is issued by a trusted
organization, a certificate authority (CA), and provides identification for the bearer.

Before using client authentication, make sure the client has a valid public key
certificate. Formore information on creating and using public key certificates, read
“Working with Digital Certificates” on page 450.

Mutual Authentication
Withmutual authentication, the server and the client authenticate each other.Mutual
authentication is of two types:

■ Certificate-based (see Figure 24–4)
■ User name/password-based (see Figure 24–5)

When using certificate-basedmutual authentication, the following actions occur.

1. A client requests access to a protected resource.
2. The web server presents its certificate to the client.
3. The client verifies the server’s certificate.
4. If successful, the client sends its certificate to the server.
5. The server verifies the client’s credentials.
6. If successful, the server grants access to the protected resource requested by the

client.

Figure 24–4 shows what occurs during certificate-basedmutual authentication.

SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 465

ptg

In user name/password-basedmutual authentication, the following actions occur.

1. A client requests access to a protected resource.
2. The web server presents its certificate to the client.
3. The client verifies the server’s certificate.
4. If successful, the client sends its user name and password to the server, which

verifies the client’s credentials.
5. If the verification is successful, the server grants access to the protected resource

requested by the client.

Figure 24–5 shows what occurs during user name/password-basedmutual
authentication.

FIGURE 24–4 Certificate-BasedMutualAuthentication

Server

1

2

Requests protected resource

Verifies
certificate

Verifies
certificate

Presents certificate

4

3

5

Presents certificate

6

Accesses protected resource

Client

server.keystoreclient.keystore

trustStore

client.cert

client.cert

server.cert

server.cert

SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts466

ptg

Specifying anAuthenticationMechanism in theDeployment
Descriptor
To specify an authenticationmechanism, use the login-config element. It can
contain the following subelements.
■ The auth-method subelement configures the authenticationmechanism for the

web application. The element contentmust be either NONE, BASIC, DIGEST, FORM, or
CLIENT-CERT.

■ The realm-name subelement indicates the realm name to use when the basic
authentication scheme is chosen for the web application.

■ The form-login-config subelement specifies the login and error pages that
should be used when form-based login is specified.

Note –Another way to specify form-based authentication is to use the authenticate,
login, and logoutmethods of HttpServletRequest, as discussed in “Authenticating
Users Programmatically” on page 469.

When you try to access a web resource that is constrained by a security-constraint
element, the web container activates the authenticationmechanism that has been
configured for that resource. The authenticationmechanism specifies how the user
will be prompted to log in. If the login-config element is present and the

FIGURE 24–5 UserName/Password-BasedMutualAuthentication

Server

1

2

Requests protected resource

Verifies
certificate

Presents certificate

4

3

Sends username:password

5

Accesses protected resource

Client

server.keystore

server.cert

trustStore

server.cert

SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 467

ptg

auth-method element contains a value other than NONE, the usermust be authenticated
to access the resource. If you do not specify an authenticationmechanism,
authentication of the user is not required.

The following example shows how to declare form-based authentication in your
deployment descriptor:

<login-config>

<auth-method>FORM</auth-method>

<realm-name>file</realm-name>

<form-login-config>

<form-login-page>/login.xhtml</form-login-page>

<form-error-page>/error.xhtml</form-error-page>

</form-login-config>

</login-config>

The login and error page locations are specified relative to the location of the
deployment descriptor. Examples of login and error pages are shown in “Creating the
Login Form and the Error Page” on page 480.

The following example shows how to declare digest authentication in your
deployment descriptor:

<login-config>

<auth-method>DIGEST</auth-method>

</login-config>

The following example shows how to declare client authentication in your deployment
descriptor:

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

Declaring Security Roles
You can declare security role names used in web applications by using the
security-role element of the deployment descriptor. Use this element to list all the
security roles that you have referenced in your application.

The following snippet of a deployment descriptor declares the roles that will be used in
an application using the security-role element and specifies which of these roles is
authorized to access protected resources using the auth-constraint element:

<security-constraint>

<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>

<url-pattern>/security/protected/*</url-pattern>

<http-method>PUT</http-method>

SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts468

ptg

<http-method>DELETE</http-method>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>manager</role-name>

</auth-constraint>

</security-constraint>

<!-- Security roles used by this web application -->

<security-role>

<role-name>manager</role-name>

</security-role>

<security-role>

<role-name>employee</role-name>

</security-role>

In this example, the security-role element lists all the security roles used in the
application: manager and employee. This enables the deployer tomap all the roles
defined in the application to users and groups defined on the GlassFish Server.

The auth-constraint element specifies the role, manager, that can access the HTTP
methods PUT, DELETE, GET, POST located in the directory specified by the url-pattern
element (/jsp/security/protected/*).

The @ServletSecurity annotation cannot be used in this situation because its
constraints apply to all URL patterns specified by the @WebServlet annotation.

UsingProgrammatic SecuritywithWebApplications
Programmatic security is used by security-aware applications when declarative
security alone is not sufficient to express the securitymodel of the application.

AuthenticatingUsers Programmatically
Servlet 3.0 specifies the followingmethods of the HttpServletRequest interface that
enable you to authenticate users for a web application programmatically:
■ authenticate, which allows an application to instigate authentication of the

request caller by the container fromwithin an unconstrained request context. A
login dialog box displays and collects the user name and password for
authentication purposes.

■ login, which allows an application to collect username and password information
as an alternative to specifying form-based authentication in an application
deployment descriptor.

■ logout, which allows an application to reset the caller identity of a request.

Using Programmatic SecuritywithWebApplications

Chapter 24 • Getting Started SecuringWebApplications 469

ptg

The following example code shows how to use the login and logoutmethods:

package test;

import java.io.IOException;

import java.io.PrintWriter;

import java.math.BigDecimal;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name="TutorialServlet", urlPatterns={"/TutorialServlet"})
public class TutorialServlet extends HttpServlet {

@EJB

private ConverterBean converterBean;

/**

* Processes requests for both HTTP <code>GET</code>

* and <code>POST</code> methods.

* @param request servlet request

* @param response servlet response

* @throws ServletException if a servlet-specific error occurs

* @throws IOException if an I/O error occurs

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

out.println("<html>");
out.println("<head>");
out.println("<title>Servlet TutorialServlet</title>");
out.println("</head>");
out.println("<body>");
request.login("TutorialUser", "TutorialUser");
BigDecimal result =

converterBean.dollarToYen(new BigDecimal("1.0"));
out.println("<h1>Servlet TutorialServlet result of dollarToYen= "

+ result + "</h1>");
out.println("</body>");
out.println("</html>");

} catch (Exception e) {

throw new ServletException(e);

} finally {

request.logout();

out.close();

}

}

}

The following example code shows how to use the authenticatemethod:

Using Programmatic SecuritywithWebApplications

The Java EE 6Tutorial: Basic Concepts470

ptg

package com.sam.test;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class TestServlet extends HttpServlet {

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

request.authenticate(response);

out.println("Authenticate Successful");
} finally {

out.close();

}

}

CheckingCaller Identity Programmatically
In general, securitymanagement should be enforced by the container in amanner that
is transparent to the web component. The security API described in this section should
be used only in the less frequent situations in which the web componentmethods need
to access the security context information.

Servlet 3.0 specifies the followingmethods that enable you to access security
information about the component’s caller:
■ getRemoteUser, which determines the user namewith which the client

authenticated. The getRemoteUsermethod returns the name of the remote user
(the caller) associated by the container with the request. If no user has been
authenticated, this method returns null.

■ isUserInRole, which determines whether a remote user is in a specific security
role. If no user has been authenticated, this method returns false. This method
expects a String user role-name parameter.
The security-role-ref element should be declared in the deployment descriptor
with a role-name subelement containing the role name to be passed to themethod.
Using security role references is discussed in “Declaring and Linking Role
References” on page 473.

■ getUserPrincipal, which determines the principal name of the current user and
returns a java.security.Principal object. If no user has been authenticated, this
method returns null. Calling the getNamemethod on the Principal returned by
getUserPrincipal returns the name of the remote user.

Your application canmake business-logic decisions based on the information
obtained using these APIs.

Using Programmatic SecuritywithWebApplications

Chapter 24 • Getting Started SecuringWebApplications 471

ptg

Example Code for Programmatic Security
The following code demonstrates the use of programmatic security for the purposes of
programmatic login. This servlet does the following:

1. It displays information about the current user.
2. It prompts the user to log in.
3. It prints out the information again to demonstrate the effect of the loginmethod.
4. It logs the user out.
5. It prints out the information again to demonstrate the effect of the logoutmethod.

package enterprise.programmatic_login;

import java.io.*;

import java.net.*;

import javax.annotation.security.DeclareRoles;

import javax.servlet.*;

import javax.servlet.http.*;

@DeclareRoles("javaee6user")
public class LoginServlet extends HttpServlet {

/**

* Processes requests for both HTTP GET and POST methods.

* @param request servlet request

* @param response servlet response

*/

protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");
PrintWriter out = response.getWriter();

try {

String userName = request.getParameter("txtUserName");
String password = request.getParameter("txtPassword");

out.println("Before Login" + "

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"

");

try {

request.login(userName, password);

} catch(ServletException ex) {

out.println("Login Failed with a ServletException.."
+ ex.getMessage());

return;

}

out.println("After Login..."+"

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
");

Using Programmatic SecuritywithWebApplications

The Java EE 6Tutorial: Basic Concepts472

ptg

out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"

");

request.logout();

out.println("After Logout..."+"

");
out.println("IsUserInRole?.."

+ request.isUserInRole("javaee6user")+"
");
out.println("getRemoteUser?.." + request.getRemoteUser()+"
");
out.println("getUserPrincipal?.."

+ request.getUserPrincipal()+"
");
out.println("getAuthType?.." + request.getAuthType()+"
");

} finally {

out.close();

}

}

...

}

Declaring and LinkingRole References
A security role reference defines amapping between the name of a role that is called
from a web component using isUserInRole(String role) and the name of a security
role that has been defined for the application. If no security-role-ref element is
declared in a deployment descriptor and the isUserInRolemethod is called, the
container defaults to checking the provided role name against the list of all security
roles defined for the web application. Using the default method instead of using the
security-role-ref element limits your flexibility to change role names in an
application without also recompiling the servlet making the call.

The security-role-ref element is used when an application uses the
HttpServletRequest.isUserInRole(String role). The value passed to the
isUserInRolemethod is a String representing the role name of the user. The value of
the role-name elementmust be the String used as the parameter to the
HttpServletRequest.isUserInRole(String role). The role-linkmust contain
the name of one of the security roles defined in the security-role elements. The
container uses themapping of security-role-ref to security-rolewhen
determining the return value of the call.

For example, tomap the security role reference cust to the security role with role
name bankCustomer, the syntax would be:

<servlet>

...

<security-role-ref>

<role-name>cust</role-name>

<role-link>bankCustomer</role-link>

</security-role-ref>

...

</servlet>

Using Programmatic SecuritywithWebApplications

Chapter 24 • Getting Started SecuringWebApplications 473

ptg

If the servlet method is called by a user in the bankCustomer security role,
isUserInRole("cust") returns true.

The role-link element in the security-role-ref elementmustmatch a role-name
defined in the security-role element of the same web.xml deployment descriptor, as
shown here:

<security-role>

<role-name>bankCustomer</role-name>

</security-role>

A security role reference, including the name defined by the reference, is scoped to the
component whose deployment descriptor contains the security-role-ref
deployment descriptor element.

Examples: SecuringWebApplications
Some basic setup is required before any of the example applications will run correctly.
The examples use annotations, programmatic security, and/or declarative security to
demonstrate adding security to existing web applications.

Here are some other locations where you will find examples of securing various types
of applications:
■ “Example: Securing an Enterprise Bean with Declarative Security” on page 497
■ “Example: Securing an Enterprise Bean with Programmatic Security” on page 501
■ GlassFish samples: https://glassfish-samples.dev.java.net/

▼ ToSetUpYour System for Running the Security
Examples
To set up your system for running the security examples, you need to configure a user
database that the application can use for authenticating users. Before continuing,
follow these steps.

Addan authorized user to theGlassFish Server. For the examples in this chapter and in
Chapter 25,“Getting Started Securing Enterprise Applications,”add a user to the file
realmof theGlassFish Server, and assign the user to the group TutorialUser:

a. From theAdministration Console, expand the Configuration node.

b. Expand the Security node.

c. Expand the Realms node.

1

Examples: SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts474

ptg

d. Select the File node.

e. On the Edit Realmpage, clickManageUsers.

f. On the File Users page, clickNew.

g. In theUser ID field, type aUser ID.

h. In theGroup List field, type TutorialUser.

i. In theNewPassword andConfirmNewPassword fields, type a password.

j. ClickOK.

Be sure to write down the user name and password for the user you create so that you
can use it for testing the example applications. Authentication is case sensitive for both
the user name and password, so write down the user name and password exactly. This
topic is discussedmore in “Managing Users andGroups on the GlassFish Server” on
page 444.

Set upDefault Principal to RoleMapping on theGlassFish Server:

a. From theAdministration Console, expand the Configuration node.

b. Select the Security node.

c. Select theDefault Principal to RoleMapping Enabled check box.

d. Click Save.

Example: Basic Authenticationwith a Servlet
This example explains how to use basic authentication with a servlet.With basic
authentication of a servlet, the web browser presents a standard login dialog that is not
customizable.When a user submits his or her name and password, the server
determines whether the user name and password are those of an authorized user and
sends the requested web resource if the user is authorized to view it.

2

Examples: SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 475

ptg

In general, the following steps are necessary for adding basic authentication to an
unsecured servlet, such as the ones described in Chapter 3, “Getting Started withWeb
Applications.” In the example application included with this tutorial, many of these
steps have been completed for you and are listed here simply to showwhat needs to be
done should you wish to create a similar application. The completed version of this
example application can be found in the directory
tut-install/examples/security/hello2_basicauth/.

1. Follow the steps in “To Set Up Your System for Running the Security Examples” on
page 474.

2. Create a webmodule as described in Chapter 3, “Getting Started withWeb
Applications,” for the servlet example, hello2.

3. Add the appropriate security annotations to the servlet. The security annotations
are described in “Specifying Security for Basic AuthenticationUsing Annotations”
on page 476.

4. Build, package, and deploy the web application by following the steps in “To Build,
Package, andDeploy the Servlet Basic Authentication Example Using NetBeans
IDE” on page 477 or “To Build, Package, andDeploy the Servlet Basic
Authentication Example Using Ant” on page 478.

5. Run the web application by following the steps described in “To Run the Basic
Authentication Servlet” on page 478.

Specifying Security for Basic AuthenticationUsingAnnotations
The default authenticationmechanism used by the GlassFish Server is basic
authentication.With basic authentication, the GlassFish Server spawns a standard
login dialog to collect user name and password data for a protected resource. Once the
user is authenticated, access to the protected resource is permitted.

To specify security for a servlet, use the @ServletSecurity annotation. This
annotation allows you to specify both specific constraints onHTTPmethods andmore
general constraints that apply to all HTTPmethods for which no specific constraint is
specified.Within the @ServletSecurity annotation, you can specify the following
annotations:

■ The @HttpMethodConstraint annotation, which applies to a specific HTTP
method

■ Themore general @HttpConstraint annotation, which applies to all HTTP
methods for which there is no corresponding @HttpMethodConstraint annotation

Examples: SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts476

ptg

Both the @HttpMethodConstraint and @HttpConstraint annotations within the
@ServletSecurity annotation can specify the following:

■ A transportGuarantee element that specifies the data protection requirements
(that is, whether or not SSL/TLS is required) that must be satisfied by the
connections on which requests arrive. Valid values for this element are NONE and
CONFIDENTIAL.

■ A rolesAllowed element that specifies the names of the authorized roles.

For the hello2_basicauth application, the GreetingServlet has the following
annotations:

@WebServlet(name = "GreetingServlet", urlPatterns = {"/greeting"})
@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,

rolesAllowed = {"TutorialUser"}))

These annotations specify that the request URI /greeting can be accessed only by
users who have been authorized to access this URL because they have been verified to
be in the role TutorialUser. The data will be sent over a protected transport in order
to keep the user name and password data from being read in transit.

▼ ToBuild, Package, andDeploy the Servlet Basic Authentication
ExampleUsingNetBeans IDE

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

InNetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/security

Select the hello2_basicauth folder.

Select theOpen asMain Project check box.

ClickOpenProject.

Right-click hello2_basicauth in the Projects pane and select Deploy.

This option builds and deploys the example application to your GlassFish Server
instance.

1

2

3

4

5

6

7

Examples: SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 477

ptg

▼ ToBuild, Package, andDeploy the Servlet Basic Authentication
ExampleUsingAnt

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

In a terminalwindow, go to:
tut-install/examples/security/hello2_basicauth/

Type the following command:
ant

This command calls the default target, which builds and packages the application
into aWAR file, hello2_basicauth.war, that is located in the dist directory.

Make sure that theGlassFish Server is started.

To deploy the application, type the following command:
ant deploy

▼ ToRun theBasic Authentication Servlet

In awebbrowser, navigate to the followingURL:
https://localhost:8181/hello2_basicauth/greeting

Youmay be prompted to accept the security certificate for the server. If so, accept the
security certificate. If the browser warns that the certificate is invalid because it is
self-signed, add a security exception for the application.

AnAuthentication Required dialog box appears. Its appearance varies, depending on
the browser you use. Figure 24–6 shows an example.

FIGURE 24–6 Sample BasicAuthenticationDialog Box

1

2

3

4

5

1

Examples: SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts478

https://localhost:8181/hello2_basicauth/greeting

ptg

Type a user nameandpassword combination that corresponds to a userwhohas
already been created in the file realmof theGlassFish Server andhas been assigned
to the groupof TutorialUser; then clickOK.
Basic authentication is case sensitive for both the user name and password, so type the
user name and password exactly as defined for the GlassFish Server.
The server returns the requested resource if all the following conditions aremet.
■ Auser with the user name you entered is defined for the GlassFish Server.
■ The user with the user name you entered has the password you entered.
■ The user name and password combination you entered is assigned to the group

TutorialUser on the GlassFish Server.
■ The role of TutorialUser, as defined for the application, is mapped to the group

TutorialUser, as defined for the GlassFish Server.

When these conditions aremet and the server has authenticated the user, the
application will appear as shown in Figure 3–2 but with a different URL.

Type a name in the text field and click the Submit button.
Because you have already been authorized, the name you enter in this step does not
have any limitations. You have unlimited access to the application now.

The application responds by saying “Hello” to you, as shown in Figure 3–3 but with a
different URL.

For repetitive testing of this example, youmay need to close and reopen your browser.
You should also run the ant undeploy and ant clean targets or the NetBeans IDE
Clean and Build option to get a fresh start.

Example: Form-BasedAuthenticationwith a
JavaServer FacesApplication
This example explains how to use form-based authentication with a JavaServer Faces
application.With form-based authentication, you can customize the login screen and
error pages that are presented to the web client for authentication of the user name and
password.When a user submits his or her name and password, the server determines
whether the user name and password are those of an authorized user and, if
authorized, sends the requested web resource.

This example, hello1_formauth, adds security to the basic JavaServer Faces
application shown in “WebModules: The hello1 Example” on page 53.

In general, the steps necessary for adding form-based authentication to an unsecured
JavaServer Faces application are similar to those described in “Example: Basic
Authentication with a Servlet” on page 475. Themajor difference is that youmust use a

2

3

Next Steps

Examples: SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 479

ptg

deployment descriptor to specify the use of form-based authentication, as described in
“Specifying Security for the Form-Based Authentication Example” on page 481. In
addition, youmust create a login form page and a login error page, as described in
“Creating the Login Form and the Error Page” on page 480.

The completed version of this example application can be found in the directory
tut-install/examples/security/hello1_formauth/.

Creating the Login Formand the Error Page
When using form-based loginmechanisms, youmust specify a page that contains the
form youwant to use to obtain the user name and password, as well as a page to display
if login authentication fails. This section discusses the login form and the error page
used in this example. “Specifying Security for the Form-Based Authentication
Example” on page 481 shows how you specify these pages in the deployment
descriptor.

The login page can be anHTML page, a JavaServer Faces or JSP page, or a servlet, and
it must return anHTML page containing a form that conforms to specific naming
conventions (see the Java Servlet 3.0 specification formore information on these
requirements). To do this, include the elements that accept user name and password
information between <form></form> tags in your login page. The content of an
HTML page, JavaServer Faces or JSP page, or servlet for a login page should be coded
as follows:

<form method=post action="j_security_check">
<input type="text" name="j_username">
<input type="password" name= "j_password">

</form>

The full code for the login page used in this example can be found at
tut-install/examples/security/hello1_formauth/web/login.xhtml. An example of
the running login form page is shown later, in Figure 24–7. Here is the code for this
page:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Login Form</title>

</h:head>

<h:body>

<h2>Hello, please log in:</h2>

<form name="loginForm" method="POST" action="j_security_check">

<p>Please type your user name:

<input type="text" name="j_username" size="25"></p>

<p>Please type your password:

<input type="password" size="15" name="j_password"></p>

<p>

<input type="submit" value="Submit"/>
<input type="reset" value="Reset"/></p>

Examples: SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts480

ptg

</form>

</h:body>

</html>

The login error page is displayed if the user enters a user name and password
combination that is not authorized to access the protected URI. For this example, the
login error page can be found at tut-install/examples/security/hello1_formauth/
web/error.xhtml. For this example, the login error page explains the reason for
receiving the error page and provides a link that will allow the user to try again. Here is
the code for this page:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>

<title>Login Error</title>

</h:head>

<h:body>

<h2>Invalid user name or password.</h2>

<p>Please enter a user name or password that is authorized to access this

application. For this application, this means a user that has been

created in the <code>file</code> realm and has been assigned to the

group of <code>TutorialUser</code>.</p>

<h:link outcome="login">Return to login page</h:link>

</h:body>

</html>

Specifying Security for the Form-BasedAuthentication Example
This example takes a very simple servlet-based web application and adds form-based
security. To specify form-based instead of basic authentication for a JavaServer Faces
example, youmust use the deployment descriptor.

The following sample code shows the security elements added to the deployment
descriptor for this example, which can be found in tut-install/examples/security/
hello1_formauth/web/WEB-INF/web.xml.

<security-constraint>

<display-name>Constraint1</display-name>

<web-resource-collection>

<web-resource-name>wrcoll</web-resource-name>

<description/>

<url-pattern>/*</url-pattern>

</web-resource-collection>

<auth-constraint>

<description/>

<role-name>TutorialUser</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>FORM</auth-method>

Examples: SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 481

ptg

<realm-name>file</realm-name>

<form-login-config>

<form-login-page>/login.xhtml</form-login-page>

<form-error-page>/error.xhtml</form-error-page>

</form-login-config>

</login-config>

<security-role>

<description/>

<role-name>TutorialUser</role-name>

</security-role>

▼ ToBuild, Package, andDeploy the Form-BasedAuthentication
ExampleUsingNetBeans IDE

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

Open the project inNetBeans IDE by selecting File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/security

Select the hello1_formauth folder.

Select theOpen asMain Project check box.

ClickOpenProject.

Right-click hello1_formauth in the Projects pane and select Deploy.

▼ ToBuild, Package, andDeploy the Form-BasedAuthentication
ExampleUsingAnt

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

In a terminalwindow, go to:
tut-install/examples/security/hello2_formauth/

Type the following commandat the terminalwindowor commandprompt:
ant

1

2

3

4

5

6

7

1

2

3

Examples: SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts482

ptg

This target will spawn any necessary compilations, copy files to the
tut-install/examples/security/hello2_formauth/build/ directory, create theWAR
file, and copy it to the tut-install/examples/security/hello2_formauth/dist/
directory.

Todeploy hello2_formauth.war to theGlassFish Server, type the following
command:
ant deploy

▼ ToRun the Form-BasedAuthentication Example
To run the web client for hello1_formauth, follow these steps.

Open awebbrowser to the followingURL:
https://localhost:8181/hello1_formauth/

The login form displays in the browser, as shown in Figure 24–7.

Type a user nameandpassword combination that corresponds to a userwhohas
already been created in the file realmof theGlassFish Server andhas been assigned
to the groupof TutorialUser.

Form-based authentication is case sensitive for both the user name and password, so
type the user name and password exactly as defined for the GlassFish Server.

Click the Submit button.

FIGURE 24–7 Form-BasedLoginPage

4

1

2

3

Examples: SecuringWebApplications

Chapter 24 • Getting Started SecuringWebApplications 483

https://localhost:8181/hello1_formauth/

ptg

If you entered My_Name as the name and My_Pwd for the password, the server returns
the requested resource if all the following conditions aremet.
■ Auser with the user name My_Name is defined for the GlassFish Server.
■ The user with the user name My_Name has a password My_Pwd defined for the

GlassFish Server.
■ The user My_Namewith the password My_Pwd is assigned to the group

TutorialUser on the GlassFish Server.
■ The role TutorialUser, as defined for the application, is mapped to the group

TutorialUser, as defined for the GlassFish Server.
When these conditions aremet and the server has authenticated the user, the
application appears.

Type your nameand click the Submit button.
Because you have already been authorized, the name you enter in this step does not
have any limitations. You have unlimited access to the application now.

The application responds by saying “Hello” to you.

For additional testing and to see the login error page generated, close and reopen your
browser, type the applicationURL, and type a user name and password that are not
authorized.

Note – For repetitive testing of this example, youmay need to close and reopen your
browser. You should also run the ant clean and ant undeploy commands to ensure a
fresh build if using the Ant tool, or select Clean and Build thenDeploy if using
NetBeans IDE.

4

Next Steps

Examples: SecuringWebApplications

The Java EE 6Tutorial: Basic Concepts484

ptg

Getting Started Securing Enterprise
Applications

The following parties are responsible for administering security for enterprise
applications:
■ System administrator: Responsible for setting up a database of users and assigning

them to the proper group. The system administrator is also responsible for setting
GlassFish Serverproperties that enable the applications to run properly. Some
security-related examples set up a default principal-to-role mapping, anonymous
users, default users, and propagated identities.When needed for this tutorial, the
steps for performing specific tasks are provided.

■ Application developer/bean provider: Responsible for annotating the classes and
methods of the enterprise application in order to provide information to the
deployer about whichmethods need to have restricted access. This tutorial
describes the steps necessary to complete this task.

■ Deployer: Responsible for taking the security view provided by the application
developer and implementing that security upon deployment. This document
provides the information needed to accomplish this task for the tutorial example
applications.

The following topics are addressed here:
■ “Securing Enterprise Beans” on page 486
■ “Examples: Securing Enterprise Beans” on page 496
■ “Securing Application Clients” on page 504
■ “Securing Enterprise Information Systems Applications” on page 506

25C H A P T E R 2 5

485

ptg

Securing Enterprise Beans
Enterprise beans are Java EE components that implement EJB technology. Enterprise
beans run in the EJB container, a runtime environment within the GlassFish Server.
Although transparent to the application developer, the EJB container provides
system-level services, such as transactions and security to its enterprise beans, which
form the core of transactional Java EE applications.

Enterprise beanmethods can be secured in either of the following ways:
■ Declarative security (preferred): Expresses an application component’s security

requirements using either deployment descriptors or annotations. The presence of
an annotation in the business method of an enterprise bean class that specifies
method permissions is all that is needed formethod protection and authentication
in some situations. This section discusses this simple and efficientmethod of
securing enterprise beans.
Because of some limitations to the simplifiedmethod of securing enterprise beans,
you would want to continue to use the deployment descriptor to specify security
information in some instances. An authenticationmechanismmust be configured
on the server for the simple solution to work. Basic authentication is the GlassFish
Server’s default authenticationmethod.
This tutorial explains how to invoke user name/password authentication of
authorized users by decorating the enterprise application’s business methods with
annotations that specifymethod permissions.
Tomake the deployer’s task easier, the application developer can define security
roles. A security role is a grouping of permissions that a given type of application
users must have in order to successfully use the application. For example, in a
payroll application, some users will want to view their own payroll information
(employee), somewill need to view others’ payroll information (manager), and
somewill need to be able to change others’ payroll information (payrollDept). The
application developer would determine the potential users of the application and
whichmethods would be accessible to which users. The application developer
would then decorate classes ormethods of the enterprise bean with annotations
that specify the types of users authorized to access thosemethods. Using
annotations to specify authorized users is described in “Specifying Authorized
Users by Declaring Security Roles” on page 490.
When one of the annotations is used to definemethod permissions, the
deployment systemwill automatically require user name/password authentication.
In this type of authentication, a user is prompted to enter a user name and
password, which will be compared against a database of known users. If the user is
found and the passwordmatches, the roles that the user is assigned will be
compared against the roles that are authorized to access themethod. If the user is
authenticated and found to have a role that is authorized to access that method, the
data will be returned to the user.

Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts486

ptg

Using declarative security is discussed in “Securing an Enterprise BeanUsing
Declarative Security” on page 489.

■ Programmatic security: For an enterprise bean, code embedded in a business
method that is used to access a caller’s identity programmatically and that uses this
information tomake security decisions. Programmatic security is useful when
declarative security alone is not sufficient to express the securitymodel of an
application.
In general, securitymanagement should be enforced by the container in amanner
that is transparent to the enterprise beans’ business methods. The programmatic
security APIs described in this chapter should be used only in the less frequent
situations in which the enterprise bean business methods need to access the
security-context information, such as when you want to grant access based on the
time of day or other nontrivial condition checks for a particular role.
Programmatic security is discussed in “Securing an Enterprise Bean
Programmatically” on page 493.

Some of thematerial in this chapter assumes that you have already read Chapter 14,
“Enterprise Beans,” Chapter 15, “Getting Started with Enterprise Beans,” and
Chapter 23, “Introduction to Security in the Java EE Platform.”

Asmentioned earlier, enterprise beans run in the EJB container, a runtime
environment within the GlassFish Server, as shown in Figure 25–1.

Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 487

ptg

This section discusses securing a Java EE application where one ormoremodules, such
as EJB JAR files, are packaged into an EAR file, the archive file that holds the
application. Security annotations will be used in the Java programming class files to
specify authorized users and basic, or user name/password, authentication.

Enterprise beans often provide the business logic of a web application. In these cases,
packaging the enterprise bean within the web application’sWARmodule simplifies
deployment and application organization. Enterprise beansmay be packaged within a
WARmodule as Java class files or within a JAR file that is bundled within theWAR
module.When a servlet or JavaServer Faces page handles the web front end and the
application is packaged into aWARmodule as a Java class file, security for the
application can be handled in the application’s web.xml file. The EJB in theWAR file

FIGURE 25–1 Java EE Server andContainers

Application Client
Container

Client
Machine

Java EE
Server

Web
Container

Web PageServlet

EJB
Container

Enterprise
Bean

Database

Web
Browser

Application
Client

Enterprise
Bean

Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts488

ptg

can have its own deployment descriptor, ejb-jar.xml, if required. Securing web
applications using web.xml is discussed in Chapter 24, “Getting Started SecuringWeb
Applications.”

The following sections describe declarative and programmatic securitymechanisms
that can be used to protect enterprise bean resources. The protected resources include
enterprise beanmethods that are called from application clients, web components, or
other enterprise beans.

Formore information on this topic, read the Enterprise JavaBeans 3.1 specification.
This document can be downloaded from http://jcp.org/en/jsr/detail?id=318.
Chapter 17 of this specification, “SecurityManagement,” discusses security
management for enterprise beans.

Securing anEnterprise BeanUsingDeclarative
Security
Declarative security enables the application developer to specify which users are
authorized to access whichmethods of the enterprise beans and to authenticate these
users with basic, or username-password, authentication. Frequently, the person who is
developing an enterprise application is not the same person who is responsible for
deploying the application. An application developer who uses declarative security to
definemethod permissions and authenticationsmechanisms is passing along to the
deployer a security view of the enterprise beans contained in the EJB JAR.When a
security view is passed on to the deployer, he or she uses this information to define
method permissions for security roles. If you don’t define a security view, the deployer
will have to determine what each business method does to determine which users are
authorized to call eachmethod.

A security view consists of a set of security roles, a semantic grouping of permissions
that a given type of users of an applicationmust have to successfully access the
application. Security roles aremeant to be logical roles, representing a type of user.
You can definemethod permissions for each security role. Amethod permission is a
permission to invoke a specified group ofmethods of an enterprise bean’s business
interface, home interface, component interface, and/or web service endpoints. After
method permissions are defined, user name/password authentication will be used to
verify the identity of the user.

It is important to keep inmind that security roles are used to define the logical security
view of an application. They should not be confused with the user groups, users,
principals, and other concepts that exist in the GlassFish Server. An additional step is
required tomap the roles defined in the application to users, groups, and principals
that are the components of the user database in the file realm of the GlassFish Server.
These steps are outlined in “Mapping Roles to Users andGroups” on page 447.

Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 489

http://jcp.org/en/jsr/detail?id=318

ptg

The following sections show how an application developer uses declarative security to
either secure an application or to create a security view to pass along to the deployer.

SpecifyingAuthorizedUsers byDeclaring Security Roles
This section discusses how to use annotations to specify themethod permissions for
themethods of a bean class. Formore information on these annotations, refer to the
CommonAnnotations for the Java Platform specification at http://jcp.org/en/
jsr/detail?id=250.

Method permissions can be specified on the class, the business methods of the class, or
both.Method permissions can be specified on amethod of the bean class to override
themethod permissions value specified on the entire bean class. The following
annotations are used to specifymethod permissions:
■ @DeclareRoles: Specifies all the roles that the application will use, including roles

not specifically named in a @RolesAllowed annotation. The set of security roles the
application uses is the total of the security roles defined in the @DeclareRoles and
@RolesAllowed annotations.
The @DeclareRoles annotation is specified on a bean class, where it serves to
declare roles that can be tested (for example, by calling isCallerInRole) from
within themethods of the annotated class.When declaring the name of a role used
as a parameter to the isCallerInRole(String roleName)method, the declared
namemust be the same as the parameter value.
The following example code demonstrates the use of the @DeclareRoles
annotation:

@DeclareRoles("BusinessAdmin")
public class Calculator {

...

}

The syntax for declaringmore than one role is as shown in the following example:

@DeclareRoles({"Administrator", "Manager", "Employee"})
■ @RolesAllowed("list-of-roles"): Specifies the security roles permitted to access

methods in an application. This annotation can be specified on a class or on one or
moremethods.When specified at the class level, the annotation applies to all
methods in the class.When specified on amethod, the annotation applies to that
method only and overrides any values specified at the class level.
To specify that no roles are authorized to access methods in an application, use the
@DenyAll annotation. To specify that a user in any role is authorized to access the
application, use the @PermitAll annotation.
When used in conjunction with the @DeclareRoles annotation, the combined set
of security roles is used by the application.

Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts490

http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250

ptg

The following example code demonstrates the use of the @RolesAllowed
annotation:

@DeclareRoles({"Administrator", "Manager", "Employee"})
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

...

}

}

■ @PermitAll: Specifies that all security roles are permitted to execute the specified
method ormethods. The user is not checked against a database to ensure that he or
she is authorized to access this application.
This annotation can be specified on a class or on one ormoremethods. Specifying
this annotation on the class means that it applies to all methods of the class.
Specifying it at themethod level means that it applies to only that method.
The following example code demonstrates the use of the @PermitAll annotation:

import javax.annotation.security.*;

@RolesAllowed("RestrictedUsers")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

//...

}

@PermitAll

public long convertCurrency(long amount) {

//...

}

}

■ @DenyAll: Specifies that no security roles are permitted to execute the specified
method ormethods. This means that thesemethods are excluded from execution
in the Java EE container.
The following example code demonstrates the use of the @DenyAll annotation:

import javax.annotation.security.*;

@RolesAllowed("Users")
public class Calculator {

@RolesAllowed("Administrator")
public void setNewRate(int rate) {

//...

}

@DenyAll

public long convertCurrency(long amount) {

//...

}

}

Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 491

ptg

The following code snippet demonstrates the use of the @DeclareRoles annotation
with the isCallerInRolemethod. In this example, the @DeclareRoles annotation
declares a role that the enterprise bean PayrollBean uses tomake the security check
by using isCallerInRole("payroll") to verify that the caller is authorized to change
salary data:

@DeclareRoles("payroll")
@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
Principal callerPrincipal = ctx.getCallerPrincipal();

if (info.salary != oldInfo.salary && !ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

The following example code illustrates the use of the @RolesAllowed annotation:

@RolesAllowed("admin")
public class SomeClass {

public void aMethod () {...}

public void bMethod () {...}

...

}

@Stateless public class MyBean extends SomeClass implements A {

@RolesAllowed("HR")
public void aMethod () {...}

public void cMethod () {...}

...

}

In this example, assuming that aMethod, bMethod, and cMethod aremethods of
business interface A, themethod permissions values of methods aMethod and bMethod
are @RolesAllowed("HR") and @RolesAllowed("admin"), respectively. Themethod
permissions formethod cMethod have not been specified.

To clarify, the annotations are not inherited by the subclass itself. Instead, the
annotations apply tomethods of the superclass that are inherited by the subclass.

Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts492

ptg

Specifying anAuthenticationMechanismandSecure Connection
Whenmethod permissions are specified, basic user name/password authentication
will be invoked by the GlassFish Server.

To use a different type of authentication or to require a secure connection using SSL,
specify this information in an application deployment descriptor.

Securing anEnterprise BeanProgrammatically
Programmatic security, code that is embedded in a business method, is used to access a
caller’s identity programmatically and uses this information tomake security decisions
within themethod itself.

Accessing anEnterprise BeanCaller’s Security Context
In general, securitymanagement should be enforced by the container in amanner that
is transparent to the enterprise bean’s business methods. The security API described in
this section should be used only in the less frequent situations in which the enterprise
bean business methods need to access the security context information, such as when
you want to restrict access to a particular time of day.

The javax.ejb.EJBContext interface provides twomethods that allow the bean
provider to access security information about the enterprise bean’s caller:
■ getCallerPrincipal, which allows the enterprise beanmethods to obtain the

current caller principal’s name. Themethodsmight, for example, use the name as a
key to information in a database.
The following code sample illustrates the use of the getCallerPrincipalmethod:

@Stateless public class EmployeeServiceBean implements EmployeeService {

@Resource SessionContext ctx;

@PersistenceContext EntityManager em;

public void changePhoneNumber(...) {

...

// obtain the caller principal.

callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.

callerKey = callerPrincipal.getName();

// use callerKey as primary key to find EmployeeRecord

EmployeeRecord myEmployeeRecord =

em.find(EmployeeRecord.class, callerKey);

// update phone number

myEmployeeRecord.setPhoneNumber(...);

...

}

}

Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 493

ptg

In this example, the enterprise bean obtains the principal name of the current caller
and uses it as the primary key to locate an EmployeeRecord entity. This example
assumes that application has been deployed such that the current caller principal
contains the primary key used for the identification of employees (for example,
employee number).

■ isCallerInRole, which the enterprise bean code can use to allow the bean
provider/application developer to code the security checks that cannot be easily
defined usingmethod permissions. Such a checkmight impose a role-based limit
on a request, or it might depend on information stored in the database.
The enterprise bean code can use the isCallerInRolemethod to test whether the
current caller has been assigned to a given security role. Security roles are defined
by the bean provider or the application assembler and are assigned by the deployer
to principals or principal groups that exist in the operational environment.
The following code sample illustrates the use of the isCallerInRolemethod:

@Stateless public class PayrollBean implements Payroll {

@Resource SessionContext ctx;

public void updateEmployeeInfo(EmplInfo info) {

oldInfo = ... read from database;

// The salary field can be changed only by callers

// who have the security role "payroll"
if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) {

throw new SecurityException(...);

}

...

}

...

}

Youwould use programmatic security in this way to dynamically control access to a
method, for example, when you want to deny access except during a particular time of
day. An example application that uses the getCallerPrincipal and isCallerInRole
methods is described in “Example: Securing an Enterprise Bean with Programmatic
Security” on page 501.

Propagating a Security Identity (Run-As)
You can specify whether a caller’s security identity should be used for the execution of
specifiedmethods of an enterprise bean or whether a specific run-as identity should be
used. Figure 25–2 illustrates this concept.

Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts494

ptg

In this illustration, an application client is making a call to an enterprise beanmethod
in one EJB container. This enterprise beanmethod, in turn, makes a call to an
enterprise beanmethod in another container. The security identity during the first call
is the identity of the caller. The security identity during the second call can be any of
the following options.
■ By default, the identity of the caller of the intermediate component is propagated to

the target enterprise bean. This technique is used when the target container trusts
the intermediate container.

■ A specific identity is propagated to the target enterprise bean. This technique is
used when the target container expects access using a specific identity.
To propagate an identity to the target enterprise bean, configure a run-as identity
for the bean, as described in “Configuring a Component’s Propagated Security
Identity” on page 495. Establishing a run-as identity for an enterprise bean does not
affect the identities of its callers, which are the identities tested for permission to
access themethods of the enterprise bean. The run-as identity establishes the
identity that the enterprise bean will use when it makes calls.
The run-as identity applies to the enterprise bean as a whole, including all the
methods of the enterprise bean’s business interface, local and remote interfaces,
component interface, and web service endpoint interfaces, themessage listener
methods of amessage-driven bean, the timeoutmethod of an enterprise bean, and
all internal methods of the bean that might be called in turn.

Configuring aComponent’s Propagated Security Identity
You can configure an enterprise bean’s run-as, or propagated, security identity by
using the @RunAs annotation, which defines the role of the application during
execution in a Java EE container. The annotation can be specified on a class, allowing
developers to execute an application under a particular role. The rolemust map to the
user/group information in the container’s security realm. The @RunAs annotation
specifies the name of a security role as its parameter.

Here is some example code that demonstrates the use of the @RunAs annotation.

FIGURE 25–2 Security Identity Propagation

Initiating Client Intermediate Target

Application Client
or Web Client

Java EE
Security
Identity

Propagated
Security Identity

(Java EE)

EJB or Web
Container

EJB
Container

Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 495

ptg

@RunAs("Admin")
public class Calculator {

//....

}

Youwill have tomap the run-as role name to a given principal defined on the
GlassFish Server if the given roles are associated withmore than one user principal.

Trust betweenContainers
When an enterprise bean is designed so that either the original caller identity or a
designated identity is used to call a target bean, the target bean will receive the
propagated identity only. The target bean will not receive any authentication data.

There is no way for the target container to authenticate the propagated security
identity. However, because the security identity is used in authorization checks (for
example, method permissions or with the isCallerInRolemethod), it is vitally
important that the security identity be authentic. Because no authentication data is
available to authenticate the propagated identity, the target must trust that the calling
container has propagated an authenticated security identity.

By default, the GlassFish Server is configured to trust identities that are propagated
from different containers. Therefore, you do not need to take any special steps to set up
a trust relationship.

Deploying Secure Enterprise Beans
The deployer is responsible for ensuring that an assembled application is secure after it
has been deployed in the target operational environment. If a security view has been
provided to the deployer through the use of security annotations and/or a deployment
descriptor, the security view is mapped to themechanisms and policies used by the
security domain in the target operational environment, which in this case is the
GlassFish Server. If no security view is provided, the deployermust set up the
appropriate security policy for the enterprise bean application.

Deployment information is specific to a web or application server.

Examples: Securing Enterprise Beans
The following examples show how to secure enterprise beans using declarative and
programmatic security.

Examples: Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts496

ptg

Example: Securing anEnterprise Beanwith
Declarative Security
This section discusses how to configure an enterprise bean for basic user
name/password authentication.When a bean that is constrained in this way is
requested, the server requests a user name and password from the client and verifies
that the user name and password are valid by comparing them against a database of
authorized users on the GlassFish Server.

If the topic of authentication is new to you, see “Specifying an Authentication
Mechanism in the Deployment Descriptor” on page 467.

This example demonstrates security by starting with the unsecured enterprise bean
application, cart, which is found in the directory tut-install/examples/ejb/cart/
and is discussed in “The cart Example” on page 271.

In general, the following steps are necessary to add user name/password
authentication to an existing application that contains an enterprise bean. In the
example application included with this tutorial, these steps have been completed for
you and are listed here simply to showwhat needs to be done should you wish to create
a similar application.

1. Create an application like the one in “The cart Example” on page 271. The
example in this tutorial starts with this example and demonstrates adding basic
authentication of the client to this application. The example application discussed
in this section can be found at tut-install/examples/security/cart-secure/.

2. If you have not already done so, complete the steps in “To Set Up Your System for
Running the Security Examples” on page 474 to configure your system for running
the tutorial applications.

3. Modify the source code for the enterprise bean, CartBean.java, to specify which
roles are authorized to access which protectedmethods. This step is discussed in
“Annotating the Bean” on page 497.

4. Build, package, and deploy the enterprise bean; then build and run the client
application by following the steps in “To Build, Package, Deploy, and Run the
Secure Cart Example Using NetBeans IDE” on page 499 or “To Build, Package,
Deploy, and Run the Secure Cart Example Using Ant” on page 500.

Annotating theBean
The source code for the original cart application wasmodified as shown in the
following code snippet (modifications in bold). The resulting file can be found in the
following location:

tut-install/examples/security/cart-secure/cart-secure-ejb/src/java/cart/
ejb/CartBean.java

Examples: Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 497

ptg

The code snippet is as follows:

package cart.ejb;

import cart.util.BookException;

import cart.util.IdVerifier;

import java.util.ArrayList;

import java.util.List;

import javax.ejb.Remove;

import javax.ejb.Stateful;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

@Stateful

@DeclareRoles("TutorialUser")

public class CartBean implements Cart {

List<String> contents;

String customerId;

String customerName;

public void initialize(String person) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

customerId = "0";
contents = new ArrayList<String>();

}

public void initialize(

String person,

String id) throws BookException {

if (person == null) {

throw new BookException("Null person not allowed.");
} else {

customerName = person;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(id)) {

customerId = id;

} else {

throw new BookException("Invalid id: " + id);

}

contents = new ArrayList<String>();

}

@RolesAllowed("TutorialUser")

public void addBook(String title) {

contents.add(title);

}

@RolesAllowed("TutorialUser")

public void removeBook(String title) throws BookException {

Examples: Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts498

ptg

boolean result = contents.remove(title);

if (result == false) {

throw new BookException("\"" + title + "\" not in cart.");
}

}

@RolesAllowed("TutorialUser")

public List<String> getContents() {

return contents;

}

@Remove()

@RolesAllowed("TutorialUser")

public void remove() {

contents = null;

}

}

The @RolesAllowed annotation is specified onmethods for which you want to restrict
access. In this example, only users in the role of TutorialUserwill be allowed to add
and remove books from the cart and to list the contents of the cart. A @RolesAllowed

annotation implicitly declares a role that will be referenced in the application;
therefore, no @DeclareRoles annotation is required. The presence of the
@RolesAllowed annotation also implicitly declares that authentication will be required
for a user to access thesemethods. If no authenticationmethod is specified in the
deployment descriptor, the type of authentication will be user name/password
authentication.

▼ ToBuild, Package,Deploy, andRun the Secure Cart ExampleUsing
NetBeans IDE

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

InNetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/security/

Select the cart-secure folder.

Select theOpen asMain Project andOpenRequired Projects check boxes.

ClickOpenProject.

In the Projects tab, right-click the cart-secure project and select Build.

1

2

3

4

5

6

7

Examples: Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 499

ptg

In the Projects tab, right-click the cart-secure project and select Deploy.
This step builds and packages the application into cart-secure.ear, located in the
directory tut-install/examples/security/cart-secure/dist/, and deploys this EAR
file to your GlassFish Server instance.

To run the application client, right-click the cart-secure project and select Run.
A Login for user: dialog box appears.

In the dialog box, type the user nameandpassword of a file realmuser created on the
GlassFish Server and assigned to the group TutorialUser; then clickOK.
If the user name and password you enter are authenticated, the output of the
application client appears in the Output pane:
...

Retrieving book title from cart: Infinite Jest

Retrieving book title from cart: Bel Canto

Retrieving book title from cart: Kafka on the Shore

Removing "Gravity’s Rainbow" from cart.

Caught a BookException: "Gravity’s Rainbow" not in cart.

Java Result: 1

...

If the user name and password are not authenticated, the dialog box reappears until
you type correct values.

▼ ToBuild, Package,Deploy, andRun the Secure Cart ExampleUsing
Ant

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

In a terminalwindow, go to:
tut-install/examples/security/cart-secure/

Tobuild the application andpackage it into an EARfile, type the following commandat
the terminalwindowor commandprompt:
ant

Todeploy the application to theGlassFish Server, type the following command:
ant deploy

To run the application client, type the following command:
ant run

This task retrieves the application client JAR and runs the application client.

A Login for user: dialog box appears.

8

9

10

1

2

3

4

5

Examples: Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts500

ptg

In the dialog box, type the user nameandpassword of a file realmuser created on the
GlassFish Server and assigned to the group TutorialUser; then clickOK.
If the user name and password are authenticated, the client displays the following
output:
[echo] running application client container.

[exec] Retrieving book title from cart: Infinite Jest

[exec] Retrieving book title from cart: Bel Canto

[exec] Retrieving book title from cart: Kafka on the Shore

[exec] Removing "Gravity’s Rainbow" from cart.

[exec] Caught a BookException: "Gravity’s Rainbow" not in cart.

[exec] Result: 1

If the username and password are not authenticated, the dialog box reappears until
you type correct values.

Example: Securing anEnterprise Beanwith
Programmatic Security
This example demonstrates how to use the getCallerPrincipal and
isCallerInRolemethods with an enterprise bean. This example starts with a very
simple EJB application, converter, andmodifies themethods of the ConverterBean
so that currency conversion will occur only when the requester is in the role of
TutorialUser.

The completed version of this example can be found in the directory tut-install/
examples/security/converter-secure. This example is based on the unsecured
enterprise bean application, converter, which is discussed in Chapter 15, “Getting
Started with Enterprise Beans,” and is found in the directory
tut-install/examples/ejb/converter/. This section builds on the example by adding
the necessary elements to secure the application by using the getCallerPrincipal
and isCallerInRolemethods, which are discussed inmore detail in “Accessing an
Enterprise Bean Caller’s Security Context” on page 493.

In general, the following steps are necessary when using the getCallerPrincipal and
isCallerInRolemethods with an enterprise bean. In the example application
included with this tutorial, many of these steps have been completed for you and are
listed here simply to showwhat needs to be done should you wish to create a similar
application.

1. Create a simple enterprise bean application.
2. Set up a user on the GlassFish Server in the file realm, in the group TutorialUser,

and set up default principal to rolemapping. To do this, follow the steps in “To Set
Up Your System for Running the Security Examples” on page 474.

3. Modify the bean to add the getCallerPrincipal and isCallerInRolemethods.

6

Examples: Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 501

ptg

4. If the application contains a web client that is a servlet, specify security for the
servlet, as described in “Specifying Security for Basic AuthenticationUsing
Annotations” on page 476.

5. Build, package, deploy, and run the application.

Modifying ConverterBean
The source code for the original ConverterBean class wasmodified to add the
if..else clause that tests whether the caller is in the role of TutorialUser. . If the user
is in the correct role, the currency conversion is computed and displayed. If the user is
not in the correct role, the computation is not performed, and the application displays
the result as 0. The code example can be found in the following file:

tut-install/examples/ejb/converter-secure/converter-secure-ejb/src/java/
converter/ejb/ConverterBean.java

The code snippet (withmodifications shown in bold) is as follows:

package converter.ejb;

import java.math.BigDecimal;

import javax.ejb.Stateless;

import java.security.Principal;

import javax.annotation.Resource;

import javax.ejb.SessionContext;

import javax.annotation.security.DeclareRoles;

import javax.annotation.security.RolesAllowed;

@Stateless()

@DeclareRoles("TutorialUser")

public class ConverterBean{

@Resource SessionContext ctx;

private BigDecimal yenRate = new BigDecimal("89.5094");
private BigDecimal euroRate = new BigDecimal("0.0081");

@RolesAllowed("TutorialUser")

public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("TutorialUser")) {

result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

} else {

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

@RolesAllowed("TutorialUser")

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = new BigDecimal("0.0");

Principal callerPrincipal = ctx.getCallerPrincipal();

if (ctx.isCallerInRole("TutorialUser")) {

result = yen.multiply(euroRate);

Examples: Securing Enterprise Beans

The Java EE 6Tutorial: Basic Concepts502

ptg

return result.setScale(2, BigDecimal.ROUND_UP);

} else {

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

}

Modifying ConverterServlet
The following annotations specify security for the converterweb client,
ConverterServlet:

@WebServlet(name = "ConverterServlet", urlPatterns = {"/"})
@ServletSecurity(

@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL,

rolesAllowed = {"TutorialUser"}))

▼ ToBuild, Package, andDeploy the Secure Converter ExampleUsing
NetBeans IDE

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

InNetBeans IDE, select File→OpenProject.

In theOpenProject dialog, navigate to:
tut-install/examples/security/

Select the converter-secure folder.

Select theOpen asMain Project check box.

ClickOpenProject.

Right-click the converter-secure project and select Build.

Right-click the converter-secure project and select Deploy.

▼ ToBuild, Package, andDeploy the Secure Converter Example
UsingAnt

Follow the steps in “To Set UpYour System for Running the Security Examples”on
page 474.

In a terminalwindow, go to:
tut-install/examples/security/converter-secure/

1

2

3

4

5

6

7

8

1

2

Examples: Securing Enterprise Beans

Chapter 25 • Getting Started Securing Enterprise Applications 503

ptg

Type the following command:
ant all

This command both builds and deploys the example.

▼ ToRun the Secure Converter Example

Open awebbrowser to the followingURL:
http://localhost:8080/converter

AnAuthentication Required dialog box appears.

Type a user nameandpassword combination that corresponds to a userwhohas
already been created in the file realmof theGlassFish Server andhas been assigned
to the groupof TutorialUser; then clickOK.
The screen shown in Figure 15–1 appears.

Type 100 in the input field and click Submit.
A second page appears, showing the converted values.

SecuringApplicationClients
The Java EE authentication requirements for application clients are the same as for
other Java EE components, and the same authentication techniques can be used as for
other Java EE application components. No authentication is necessary when accessing
unprotected web resources.

When accessing protected web resources, the usual varieties of authentication can be
used: HTTP basic authentication, SSL client authentication, or HTTP login-form
authentication. These authenticationmethods are discussed in “Specifying an
AuthenticationMechanism in the Deployment Descriptor” on page 467.

Authentication is required when accessing protected enterprise beans. The
authenticationmechanisms for enterprise beans are discussed in “Securing Enterprise
Beans” on page 486.

An application client makes use of an authentication service provided by the
application client container for authenticating its users. The container’s service can be
integrated with the native platform’s authentication system, so that a single sign-on
capability is used. The container can authenticate the user either when the application
is started or when a protected resource is accessed.

An application client can provide a class, called a loginmodule, to gather
authentication data. If so, the javax.security.auth.callback.CallbackHandler

3

1

2

3

Securing Application Clients

The Java EE 6Tutorial: Basic Concepts504

http://localhost:8080/converter

ptg

interfacemust be implemented, and the class namemust be specified in its
deployment descriptor. The application’s callback handlermust fully support
Callback objects specified in the javax.security.auth.callback package.

Using LoginModules
An application client can use the Java Authentication and Authorization Service
(JAAS) to create loginmodules for authentication. A JAAS-based application
implements the javax.security.auth.callback.CallbackHandler interface so that
it can interact with users to enter specific authentication data, such as user names or
passwords, or to display error and warningmessages.

Applications implement the CallbackHandler interface and pass it to the login
context, which forwards it directly to the underlying loginmodules. A loginmodule
uses the callback handler both to gather input, such as a password or smart card PIN,
from users and to supply information, such as status information, to users. Because the
application specifies the callback handler, an underlying loginmodule can remain
independent of the various ways that applications interact with users.

For example, the implementation of a callback handler for a GUI applicationmight
display a window to solicit user input. Or the implementation of a callback handler for
a command-line tool might simply prompt the user for input directly from the
command line.

The loginmodule passes an array of appropriate callbacks to the callback handler’s
handlemethod, such as a NameCallback for the user name and a PasswordCallback
for the password; the callback handler performs the requested user interaction and sets
appropriate values in the callbacks. For example, to process a NameCallback, the
CallbackHandlermight prompt for a name, retrieve the value from the user, and call
the setNamemethod of the NameCallback to store the name.

Formore information on using JAAS for loginmodules for authentication, refer to the
following sources (see “Further Information about Security” on page 454 for the
URLs):
■ Java Authentication and Authorization Service (JAAS) Reference Guide
■ Java Authentication and Authorization Service (JAAS): LoginModule Developer’s

Guide

UsingProgrammatic Login
Programmatic login enables the client code to supply user credentials. If you are using
an EJB client, you can use the com.sun.appserv.security.ProgrammaticLogin class
with its convenient login and logoutmethods. Programmatic login is specific to a
server.

Securing Application Clients

Chapter 25 • Getting Started Securing Enterprise Applications 505

ptg

Securing Enterprise Information SystemsApplications
In EIS applications, components request a connection to an EIS resource. As part of
this connection, the EIS can require a sign-on for the requester to access the resource.
The application component provider has two choices for the design of the EIS sign-on:
■ Container-managed sign-on: The application component lets the container take

the responsibility of configuring andmanaging the EIS sign-on. The container
determines the user name and password for establishing a connection to an EIS
instance. Formore information, see “Container-Managed Sign-On” on page 506.

■ Component-managed sign-on: The application component codemanages EIS
sign-on by including code that performs the sign-on process to an EIS. Formore
information, see “Component-Managed Sign-On” on page 506.

You can also configure security for resource adapters. See “Configuring Resource
Adapter Security” on page 507 formore information.

Container-ManagedSign-On
In container-managed sign-on, an application component does not have to pass any
sign-on security information to the getConnection()method. The security
information is supplied by the container, as shown in the following example:

// Business method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");
// Invoke factory to obtain a connection. The security

// information is not passed in the getConnection method

javax.resource.cci.Connection cx = cxf.getConnection();

...

Component-ManagedSign-On
In component-managed sign-on, an application component is responsible for passing
the needed sign-on security information to the resource to the getConnection
method. For example, security informationmight be a user name and password, as
shown here:

// Method in an application component

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory

javax.resource.cci.ConnectionFactory cxf =

Securing Enterprise Information Systems Applications

The Java EE 6Tutorial: Basic Concepts506

ptg

(javax.resource.cci.ConnectionFactory)initctx.lookup(

"java:comp/env/eis/MainframeCxFactory");

// Get a new ConnectionSpec

com.myeis.ConnectionSpecImpl properties = //..

// Invoke factory to obtain a connection

properties.setUserName("...");
properties.setPassword("...");
javax.resource.cci.Connection cx =

cxf.getConnection(properties);

...

ConfiguringResourceAdapter Security
A resource adapter is a system-level software component that typically implements
network connectivity to an external resourcemanager. A resource adapter can extend
the functionality of the Java EE platform either by implementing one of the Java EE
standard service APIs, such as a JDBC driver, or by defining and implementing a
resource adapter for a connector to an external application system. Resource adapters
can also provide services that are entirely local, perhaps interacting with native
resources. Resource adapters interface with the Java EE platform through the Java EE
service provider interfaces (Java EE SPI). A resource adapter that uses the Java EE SPIs
to attach to the Java EE platformwill be able to work with all Java EE products.

To configure the security settings for a resource adapter, you need to edit the resource
adapter descriptor file, ra.xml. Here is an example of the part of an ra.xml file that
configures the following security properties for a resource adapter:

<authentication-mechanism>

<authentication-mechanism-type>

BasicPassword

</authentication-mechanism-type>

<credential-interface>

javax.resource.spi.security.PasswordCredential

</credential-interface>

</authentication-mechanism>

<reauthentication-support>false</reauthentication-support>

You can find outmore about the options for configuring resource adapter security by
reviewing as-install/lib/dtds/connector_1_0.dtd. You can configure the following
elements in the resource adapter deployment descriptor file:
■ Authenticationmechanisms: Use the authentication-mechanism element to

specify an authenticationmechanism supported by the resource adapter. This
support is for the resource adapter, not for the underlying EIS instance.
There are two supportedmechanism types:
■ BasicPassword, which supports the following interface:

javax.resource.spi.security.PasswordCredential

Securing Enterprise Information Systems Applications

Chapter 25 • Getting Started Securing Enterprise Applications 507

ptg

■ Kerbv5, which supports the following interface:

javax.resource.spi.security.GenericCredential

TheGlassFish Server does not currently support this mechanism type.
■ Reauthentication support: Use the reauthentication-support element to

specify whether the resource adapter implementation supports reauthentication of
existing Managed-Connection instances. Options are true or false.

■ Security permissions: Use the security-permission element to specify a security
permission that is required by the resource adapter code. Support for security
permissions is optional and is not supported in the current release of the GlassFish
Server. You can, however, manually update the server.policy file to add the
relevant permissions for the resource adapter.
The security permissions listed in the deployment descriptor are different from
those required by the default permission set as specified in the connector
specification.
Formore information on the implementation of the security permission
specification, visit http://download.oracle.com/
docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

PolicyFiles.html#FileSyntax.

In addition to specifying resource adapter security in the ra.xml file, you can create a
securitymap for a connector connection pool tomap an application principal or a user
group to a back-end EIS principal. The securitymap is usually used if one ormore EIS
back-end principals are used to execute operations (on the EIS) initiated by various
principals or user groups in the application.

▼ ToMapanApplicationPrincipal to EIS Principals
When using the GlassFish Server, you can use securitymaps tomap the caller identity
of the application (principal or user group) to a suitable EIS principal in
container-managed transaction-based scenarios.When an application principal
initiates a request to an EIS, the GlassFish Server first checks for an exact principal by
using the securitymap defined for the connector connection pool to determine the
mapped back-end EIS principal. If there is no exact match, the GlassFish Server uses
the wildcard character specification, if any, to determine themapped back-end EIS
principal. Securitymaps are used when an application user needs to execute EIS
operations that require to be executed as a specific identity in the EIS.

To work with securitymaps, use the Administration Console. From the
Administration Console, follow these steps to get to the securitymaps page.

In the navigation tree, expand the Resources node.1

Securing Enterprise Information Systems Applications

The Java EE 6Tutorial: Basic Concepts508

http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://download.oracle.com/docs/cd/E17409_01/javase/6/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

ptg

Expand the Connectors node.

Select the Connector Connection Pools node.

On the Connector Connection Pools page, click the nameof the connection pool for
which youwant to create a securitymap.

Click the SecurityMaps tab.

ClickNew to create a new securitymap for the connection pool.

Type a namebywhich youwill refer to the securitymap, aswell as the other required
information.
Click the Help button formore information on the individual options.

2

3

4

5

6

7

Securing Enterprise Information Systems Applications

Chapter 25 • Getting Started Securing Enterprise Applications 509

ptg

This page intentionally left blank

ptg

Java EE SupportingTechnologies
Part VIII introduces several technologies that support the Java EE platform. This part
contains the following chapters:
■ Chapter 26, “Introduction to Java EE Supporting Technologies”
■ Chapter 27, “Transactions”
■ Chapter 28, “Resource Connections”

P A R T V I I I

511

ptg

This page intentionally left blank

ptg

Introduction to Java EE Supporting
Technologies

The Java EE platform includes several technologies and APIs that extend its
functionality. These technologies allow applications to access a wide range of services
in a uniformmanner. These technologies are explained in greater in Chapter 27,
“Transactions,” and Chapter 28, “Resource Connections.”

The following topics are addressed here:
■ “Transactions” on page 513
■ “Resources” on page 514

Transactions
In a Java EE application, a transaction is a series of actions that must all complete
successfully, or else all the changes in each action are backed out. Transactions end in
either a commit or a rollback.

The Java Transaction API (JTA) allows applications to access transactions in amanner
that is independent of specific implementations. JTA specifies standard Java interfaces
between a transactionmanager and the parties involved in a distributed transaction
system: the transactional application, the Java EE server, and themanager that controls
access to the shared resources affected by the transactions.

The JTA defines the UserTransaction interface that applications use to start, commit,
or abort transactions. Application components get a UserTransaction object through
a JNDI lookup by using the name java:comp/UserTransaction or by requesting
injection of a UserTransaction object. An application server uses a number of
JTA-defined interfaces to communicate with a transactionmanager; a transaction
manager uses JTA-defined interfaces to interact with a resourcemanager.

See Chapter 27, “Transactions,” for amore detailed explanation. The JTA 1.1
specification is available at http://www.oracle.com/technetwork/java/javaee/
tech/jta-138684.html.

26C H A P T E R 2 6

513

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

ptg

Resources
A resource is a program object that provides connections to such systems as database
servers andmessaging systems.

The Java EEConnectorArchitecture andResource
Adapters
The Java EE Connector Architecture enables Java EE components to interact with
enterprise information systems (EISs) and EISs to interact with Java EE components.
EIS software includes such kinds of systems as enterprise resource planning (ERP),
mainframe transaction processing, and nonrelational databases. Connector
architecture simplifies the integration of diverse EISs. Each EIS requires only one
implementation of the Connector architecture. Because it adheres to the Connector
specification, an implementation is portable across all compliant Java EE servers.

The specification defines the contracts for an application server as well as for resource
adapters, which are system-level software drivers for specific EIS resources. These
standard contracts provide pluggability between application servers and EISs. The Java
EE Connector Architecture 1.6 specification defines new system contracts such as
GenericWork Context and Security Inflow. The Java EE Connector Architecture 1.6
specification is available at http://jcp.org/en/jsr/detail?id=322.

A resource adapter is a Java EE component that implements the Connector
architecture for a specific EIS. A resource adapter can choose to support the following
levels of transactions:
■ NoTransaction: No transaction support is provided.
■ LocalTransaction: Resourcemanager local transactions are supported.
■ XATransaction: The resource adapter supports the XA distributed transaction

processingmodel and the JTA XATransaction interface.

See Chapter 28, “Resource Connections,” for amore detailed explanation of resource
adapters.

JavaMessage Service
Messaging is amethod of communication between software components or
applications. Amessaging system is a peer-to-peer facility: Amessaging client can
sendmessages to, and receivemessages from, any other client. Each client connects to
amessaging agent that provides facilities for creating, sending, receiving, and reading
messages.

Resources

The Java EE 6Tutorial: Basic Concepts514

http://jcp.org/en/jsr/detail?id=322

ptg

The JavaMessage Service (JMS) API allows applications to create, send, receive, and
readmessages. It defines a common set of interfaces and associated semantics that
allow programs written in the Java programming language to communicate with other
messaging implementations.

The JMSAPIminimizes the set of concepts a programmermust learn in order to use
messaging products but provides enough features to support sophisticatedmessaging
applications. It also strives tomaximize the portability of JMS applications across JMS
providers in the samemessaging domain.

JavaDatabase Connectivity Software
To store, organize, and retrieve data, most applications use relational databases. Java
EE applications access relational databases through the JDBCAPI.

A JDBC resource, or data source, provides applications with ameans of connecting to
a database. Typically, a JDBC resource is created for each database accessed by the
applications deployed in a domain. Transactional access to JDBC resources is available
from servlets, JavaServer Faces pages, and enterprise beans. The connection pooling
and distributed transaction features are intended for use by JDBC drivers to
coordinate with an application server. Formore information, see “DataSourceObjects
and Connection Pools” on page 530.

Resources

Chapter 26 • Introduction to Java EE SupportingTechnologies 515

ptg

This page intentionally left blank

ptg

Transactions

A typical enterprise application accesses and stores information in one ormore
databases. Because this information is critical for business operations, it must be
accurate, current, and reliable. Data integrity would be lost if multiple programs were
allowed to update the same information simultaneously or if a system that failed while
processing a business transaction were to leave the affected data only partially updated.
By preventing both of these scenarios, software transactions ensure data integrity.
Transactions control the concurrent access of data bymultiple programs. In the event
of a system failure, transactionsmake sure that after recovery, the data will be in a
consistent state.

The following topics are addressed here:
■ “What Is a Transaction?” on page 517
■ “Container-Managed Transactions” on page 518
■ “Bean-Managed Transactions” on page 524
■ “Transaction Timeouts” on page 525
■ “UpdatingMultiple Databases” on page 526
■ “Transactions inWeb Components” on page 528
■ “Further Information about Transactions” on page 528

What Is aTransaction?
To emulate a business transaction, a programmay need to perform several steps. A
financial program, for example, might transfer funds from a checking account to a
savings account by using the steps listed in the following pseudocode:

begin transaction

debit checking account

credit savings account

update history log

commit transaction

27C H A P T E R 2 7

517

ptg

Either all or none of the three stepsmust complete. Otherwise, data integrity is lost.
Because the steps within a transaction are a unified whole, a transaction is often
defined as an indivisible unit of work.

A transaction can end in twoways: with a commit or with a rollback.When a
transaction commits, the datamodificationsmade by its statements are saved. If a
statement within a transaction fails, the transaction rolls back, undoing the effects of
all statements in the transaction. In the pseudocode, for example, if a disk drive were to
crash during the credit step, the transaction would roll back and undo the data
modificationsmade by the debit statement. Although the transaction fails, data
integrity would be intact because the accounts still balance.

In the preceding pseudocode, the begin and commit statementsmark the boundaries
of the transaction.When designing an enterprise bean, you determine how the
boundaries are set by specifying either container-managed or bean-managed
transactions.

Container-ManagedTransactions
In an enterprise bean with container-managed transaction demarcation, the EJB
container sets the boundaries of the transactions. You can use container-managed
transactions with any type of enterprise bean: session ormessage-driven.
Container-managed transactions simplify development because the enterprise bean
code does not explicitly mark the transaction’s boundaries. The code does not include
statements that begin and end the transaction. By default, if no transaction
demarcation is specified, enterprise beans use container-managed transaction
demarcation.

Typically, the container begins a transaction immediately before an enterprise bean
method starts and commits the transaction just before themethod exits. Eachmethod
can be associated with a single transaction. Nested ormultiple transactions are not
allowed within amethod.

Container-managed transactions do not require all methods to be associated with
transactions.When developing a bean, you can set the transaction attributes to specify
which of the bean’s methods are associated with transactions.

Enterprise beans that use container-managed transaction demarcationmust not use
any transaction-managementmethods that interfere with the container’s transaction
demarcation boundaries. Examples of suchmethods are the commit, setAutoCommit,
and rollbackmethods of java.sql.Connection or the commit and rollback
methods of javax.jms.Session. If you require control over the transaction
demarcation, youmust use application-managed transaction demarcation.

Enterprise beans that use container-managed transaction demarcation alsomust not
use the javax.transaction.UserTransaction interface.

Container-ManagedTransactions

The Java EE 6Tutorial: Basic Concepts518

ptg

TransactionAttributes
A transaction attribute controls the scope of a transaction. Figure 27–1 illustrates why
controlling the scope is important. In the diagram, method-A begins a transaction and
then invokes method-B of Bean-2. When method-B executes, does it run within the
scope of the transaction started by method-A, or does it execute with a new
transaction? The answer depends on the transaction attribute of method-B.

A transaction attribute can have one of the following values:

■ Required

■ RequiresNew

■ Mandatory

■ NotSupported

■ Supports

■ Never

RequiredAttribute
If the client is running within a transaction and invokes the enterprise bean’s method,
themethod executes within the client’s transaction. If the client is not associated with a
transaction, the container starts a new transaction before running themethod.

The Required attribute is the implicit transaction attribute for all enterprise bean
methods running with container-managed transaction demarcation. You typically do
not set the Required attribute unless you need to override another transaction
attribute. Because transaction attributes are declarative, you can easily change them
later.

FIGURE 27–1 TransactionScope

Bean-1
-
-
-
method-A(){
 -
 -
 -
 bean-2.method-B()
}

Bean-2
-
-
-
method-B(){
 -
 -
 -
}

TX1
TX?

Container-ManagedTransactions

Chapter 27 • Transactions 519

ptg

RequiresNewAttribute
If the client is running within a transaction and invokes the enterprise bean’s method,
the container takes the following steps:

1. Suspends the client’s transaction
2. Starts a new transaction
3. Delegates the call to themethod
4. Resumes the client’s transaction after themethod completes

If the client is not associated with a transaction, the container starts a new transaction
before running themethod.

You should use the RequiresNew attribute when you want to ensure that themethod
always runs within a new transaction.

MandatoryAttribute
If the client is running within a transaction and invokes the enterprise bean’s method,
themethod executes within the client’s transaction. If the client is not associated with a
transaction, the container throws a TransactionRequiredException.

Use the Mandatory attribute if the enterprise bean’s methodmust use the transaction
of the client.

NotSupportedAttribute
If the client is running within a transaction and invokes the enterprise bean’s method,
the container suspends the client’s transaction before invoking themethod. After the
method has completed, the container resumes the client’s transaction.

If the client is not associated with a transaction, the container does not start a new
transaction before running themethod.

Use the NotSupported attribute formethods that don’t need transactions. Because
transactions involve overhead, this attributemay improve performance.

SupportsAttribute
If the client is running within a transaction and invokes the enterprise bean’s method,
themethod executes within the client’s transaction. If the client is not associated with a
transaction, the container does not start a new transaction before running themethod.

Because the transactional behavior of themethodmay vary, you should use the
Supports attribute with caution.

Container-ManagedTransactions

The Java EE 6Tutorial: Basic Concepts520

ptg

NeverAttribute
If the client is running within a transaction and invokes the enterprise bean’s method,
the container throws a RemoteException. If the client is not associated with a
transaction, the container does not start a new transaction before running themethod.

SummaryofTransactionAttributes
Table 27–1 summarizes the effects of the transaction attributes. Both the T1 and the T2
transactions are controlled by the container. A T1 transaction is associated with the
client that calls a method in the enterprise bean. Inmost cases, the client is another
enterprise bean. A T2 transaction is started by the container just before themethod
executes.

In the last column of Table 27–1, the word “None”means that the business method
does not execute within a transaction controlled by the container. However, the
database calls in such a business methodmight be controlled by the transaction
manager of the databasemanagement system.

TABLE 27–1 TransactionAttributes and Scope

TransactionAttribute Client’sTransaction BusinessMethod’sTransaction

Required None

T1

T2

T1

RequiresNew None

T1

T2

T2

Mandatory None

T1

Error

T1

NotSupported None

T1

None

None

Supports None

T1

None

T1

Never None

T1

None

Error

SettingTransactionAttributes
Transaction attributes are specified by decorating the enterprise bean class ormethod
with a javax.ejb.TransactionAttribute annotation and setting it to one of the
javax.ejb.TransactionAttributeType constants.

Container-ManagedTransactions

Chapter 27 • Transactions 521

ptg

If you decorate the enterprise bean class with @TransactionAttribute, the specified
TransactionAttributeType is applied to all the business methods in the class.
Decorating a business method with @TransactionAttribute applies the
TransactionAttributeType only to that method. If a @TransactionAttribute
annotation decorates both the class and themethod, themethod
TransactionAttributeType overrides the class TransactionAttributeType.

The TransactionAttributeType constants shown in Table 27–2 encapsulate the
transaction attributes described earlier in this section.

TABLE 27–2 TransactionAttributeTypeConstants

TransactionAttribute TransactionAttributeType Constant

Required TransactionAttributeType.REQUIRED

RequiresNew TransactionAttributeType.REQUIRES_NEW

Mandatory TransactionAttributeType.MANDATORY

NotSupported TransactionAttributeType.NOT_SUPPORTED

Supports TransactionAttributeType.SUPPORTS

Never TransactionAttributeType.NEVER

The following code snippet demonstrates how to use the @TransactionAttribute
annotation:

@TransactionAttribute(NOT_SUPPORTED)

@Stateful

public class TransactionBean implements Transaction {

...

@TransactionAttribute(REQUIRES_NEW)

public void firstMethod() {...}

@TransactionAttribute(REQUIRED)

public void secondMethod() {...}

public void thirdMethod() {...}

public void fourthMethod() {...}

}

In this example, the TransactionBean class’s transaction attribute has been set to
NotSupported, firstMethod has been set to RequiresNew, and secondMethod has
been set to Required. Because a @TransactionAttribute set on amethod overrides
the class @TransactionAttribute, calls to firstMethodwill create a new transaction,
and calls to secondMethodwill either run in the current transaction or start a new
transaction. Calls to thirdMethod or fourthMethod do not take place within a
transaction.

Container-ManagedTransactions

The Java EE 6Tutorial: Basic Concepts522

ptg

RollingBack aContainer-ManagedTransaction
There are two ways to roll back a container-managed transaction. First, if a system
exception is thrown, the container will automatically roll back the transaction. Second,
by invoking the setRollbackOnlymethod of the EJBContext interface, the bean
method instructs the container to roll back the transaction. If the bean throws an
application exception, the rollback is not automatic but can be initiated by a call to
setRollbackOnly.

Synchronizing a SessionBean’s InstanceVariables
The SessionSynchronization interface, which is optional, allows stateful session
bean instances to receive transaction synchronization notifications. For example, you
could synchronize the instance variables of an enterprise bean with their
corresponding values in the database. The container invokes the
SessionSynchronizationmethods (afterBegin, beforeCompletion, and
afterCompletion) at each of themain stages of a transaction.

The afterBeginmethod informs the instance that a new transaction has begun. The
container invokes afterBegin immediately before it invokes the business method.

The container invokes the beforeCompletionmethod after the business method has
finished but just before the transaction commits. The beforeCompletionmethod is
the last opportunity for the session bean to roll back the transaction (by calling
setRollbackOnly).

The afterCompletionmethod indicates that the transaction has completed. This
method has a single boolean parameter whose value is true if the transaction was
committed and false if it was rolled back.

MethodsNotAllowed inContainer-Managed
Transactions
You should not invoke anymethod that might interfere with the transaction
boundaries set by the container. The list of prohibitedmethods follows:
■ The commit, setAutoCommit, and rollbackmethods of java.sql.Connection
■ The getUserTransactionmethod of javax.ejb.EJBContext
■ Anymethod of javax.transaction.UserTransaction

You can, however, use thesemethods to set boundaries in application-managed
transactions.

Container-ManagedTransactions

Chapter 27 • Transactions 523

ptg

Bean-ManagedTransactions
In bean-managed transaction demarcation, the code in the session ormessage-driven
bean explicitly marks the boundaries of the transaction. Although beans with
container-managed transactions require less coding, they have one limitation:When a
method is executing, it can be associated with either a single transaction or no
transaction at all. If this limitation will make coding your bean difficult, you should
consider using bean-managed transactions.

The following pseudocode illustrates the kind of fine-grained control you can obtain
with application-managed transactions. By checking various conditions, the
pseudocode decides whether to start or stop certain transactions within the business
method:

begin transaction

...

update table-a

...

if (condition-x)

commit transaction

else if (condition-y)

update table-b

commit transaction

else

rollback transaction

begin transaction

update table-c

commit transaction

When coding an application-managed transaction for session ormessage-driven
beans, youmust decide whether to use Java Database Connectivity or JTA
transactions. The sections that follow discuss both types of transactions.

JTATransactions
JTA, or the Java Transaction API, allows you to demarcate transactions in amanner
that is independent of the transactionmanager implementation. GlassFish Server
implements the transactionmanager with the Java Transaction Service (JTS).
However, your code doesn’t call the JTSmethods directly but instead invokes the JTA
methods, which then call the lower-level JTS routines.

A JTA transaction is controlled by the Java EE transactionmanager. Youmay want to
use a JTA transaction because it can span updates tomultiple databases from different
vendors. A particular DBMS’s transactionmanagermay not work with heterogeneous
databases. However, the Java EE transactionmanager does have one limitation: It does
not support nested transactions. In other words, it cannot start a transaction for an
instance until the preceding transaction has ended.

Bean-ManagedTransactions

The Java EE 6Tutorial: Basic Concepts524

ptg

To demarcate a JTA transaction, you invoke the begin, commit, and rollback
methods of the javax.transaction.UserTransaction interface.

Returningwithout Committing
In a stateless session bean with bean-managed transactions, a business methodmust
commit or roll back a transaction before returning. However, a stateful session bean
does not have this restriction.

In a stateful session bean with a JTA transaction, the association between the bean
instance and the transaction is retained acrossmultiple client calls. Even if each
business method called by the client opens and closes the database connection, the
association is retained until the instance completes the transaction.

In a stateful session bean with a JDBC transaction, the JDBC connection retains the
association between the bean instance and the transaction acrossmultiple calls. If the
connection is closed, the association is not retained.

MethodsNotAllowed inBean-ManagedTransactions
Do not invoke the getRollbackOnly and setRollbackOnlymethods of the
EJBContext interface in bean-managed transactions. Thesemethods should be used
only in container-managed transactions. For bean-managed transactions, invoke the
getStatus and rollbackmethods of the UserTransaction interface.

TransactionTimeouts
For container-managed transactions, you can use the Administration Console to
configure the transaction timeout interval. See “Starting the Administration Console”
on page 42.

For enterprise beans with bean-managed JTA transactions, you invoke the
setTransactionTimeoutmethod of the UserTransaction interface.

TransactionTimeouts

Chapter 27 • Transactions 525

ptg

▼ ToSet aTransactionTimeout

In theAdministration Console, expand the Configuration node and selectTransaction
Service.

On theTransaction Service page, set the value of theTransactionTimeout field to the
value of your choice (for example, 5).

With this setting, if the transaction has not completed within 5 seconds, the EJB
container rolls it back.

The default value is 0, meaning that the transaction will not time out.

Click Save.

UpdatingMultipleDatabases
The Java EE transactionmanager controls all enterprise bean transactions except for
bean-managed JDBC transactions. The Java EE transactionmanager allows an
enterprise bean to updatemultiple databases within a transaction. Figure 27–2 and
Figure 27–3 show two scenarios for updatingmultiple databases in a single
transaction.

In Figure 27–2, the client invokes a business method in Bean-A. The business method
begins a transaction, updates Database X, updates Database Y, and invokes a business
method in Bean-B. The second business method updates Database Z and returns
control to the business method in Bean-A, which commits the transaction. All three
database updates occur in the same transaction.

In Figure 27–3, the client calls a business method in Bean-A, which begins a
transaction and updates Database X. Then Bean-A invokes amethod in Bean-B, which
resides in a remote Java EE server. Themethod in Bean-B updates Database Y. The
transactionmanagers of the Java EE servers ensure that both databases are updated in
the same transaction.

1

2

3

UpdatingMultiple Databases

The Java EE 6Tutorial: Basic Concepts526

ptg

FIGURE 27–2 UpdatingMultipleDatabases

Databases

Y Z

Java EE
Server

X

Client
Bean-A Bean-B

FIGURE 27–3 UpdatingMultipleDatabases across Java EE Servers

Databases

X Y

Java EE
Server

Java EE
Server

Client

Bean-A Bean-B

UpdatingMultiple Databases

Chapter 27 • Transactions 527

ptg

Transactions inWebComponents
You can demarcate a transaction in a web component by using either the
java.sql.Connection or the javax.transaction.UserTransaction interface. These
are the same interfaces that a session bean with bean-managed transactions can use.
Transactions demarcated with the UserTransaction interface are discussed in “JTA
Transactions” on page 524.

Further Information aboutTransactions
Formore information about transactions, see
■ Java Transaction API 1.1 specification:

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

Transactions inWeb Components

The Java EE 6Tutorial: Basic Concepts528

http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html

ptg

Resource Connections

Java EE components can access a wide variety of resources, including databases, mail
sessions, JavaMessage Service objects, andURLs. The Java EE 6 platform provides
mechanisms that allow you to access all these resources in a similar manner. This
chapter explains how to get connections to several types of resources.

The following topics are addressed here:
■ “Resources and JNDINaming” on page 529
■ “DataSourceObjects and Connection Pools” on page 530
■ “Resource Injection” on page 531
■ “Resource Adapters and Contracts” on page 534
■ “Metadata Annotations” on page 538
■ “CommonClient Interface” on page 540
■ “Further Information about Resources” on page 541

Resources and JNDINaming
In a distributed application, components need to access other components and
resources, such as databases. For example, a servlet might invoke remotemethods on
an enterprise bean that retrieves information from a database. In the Java EE platform,
the Java Naming andDirectory Interface (JNDI) naming service enables components
to locate other components and resources.

A resource is a program object that provides connections to systems, such as database
servers andmessaging systems. (A Java Database Connectivity resource is sometimes
referred to as a data source.) Each resource object is identified by a unique,
people-friendly name, called the JNDI name. For example, the JNDI name of the JDBC
resource for the Java DB database that is shipped with the GlassFish Server is
jdbc/__default.

28C H A P T E R 2 8

529

ptg

An administrator creates resources in a JNDI namespace. In the GlassFish Server, you
can use either the Administration Console or the asadmin command to create
resources. Applications then use annotations to inject the resources. If an application
uses resource injection, the GlassFish Server invokes the JNDI API, and the
application is not required to do so. However, it is also possible for an application to
locate resources bymaking direct calls to the JNDI API.

A resource object and its JNDI name are bound together by the naming and directory
service. To create a new resource, a new name/object binding is entered into the JNDI
namespace. You inject resources by using the @Resource annotation in an application.

You can use a deployment descriptor to override the resourcemapping that you
specify in an annotation. Using a deployment descriptor allows you to change an
application by repackaging it rather than by both recompiling the source files and
repackaging. However, formost applications, a deployment descriptor is not
necessary.

DataSourceObjects andConnectionPools
To store, organize, and retrieve data, most applications use a relational database. Java
EE 6 componentsmay access relational databases through the JDBCAPI. For
information on this API, see http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136101.html.

In the JDBCAPI, databases are accessed by using DataSource objects. A DataSource

has a set of properties that identify and describe the real-world data source that it
represents. These properties include such information as the location of the database
server, the name of the database, the network protocol to use to communicate with the
server, and so on. In the GlassFish Server, a data source is called a JDBC resource.

Applications access a data source by using a connection, and a DataSource object can
be thought of as a factory for connections to the particular data source that the
DataSource instance represents. In a basic DataSource implementation, a call to the
getConnectionmethod returns a connection object that is a physical connection to
the data source.

A DataSource object may be registered with a JNDI naming service. If so, an
application can use the JNDI API to access that DataSource object, which can then be
used to connect to the data source it represents.

DataSource objects that implement connection pooling also produce a connection to
the particular data source that the DataSource class represents. The connection object
that the getConnectionmethod returns is a handle to a PooledConnection object
rather than being a physical connection. An application uses the connection object in
the sameway that it uses a connection. Connection pooling has no effect on

DataSourceObjects and Connection Pools

The Java EE 6Tutorial: Basic Concepts530

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

ptg

application code except that a pooled connection, like all connections, should always
be explicitly closed.When an application closes a connection that is pooled, the
connection is returned to a pool of reusable connections. The next time
getConnection is called, a handle to one of these pooled connections will be returned
if one is available. Because connection pooling avoids creating a new physical
connection every time one is requested, applications can run significantly faster.

A JDBC connection pool is a group of reusable connections for a particular database.
Because creating each new physical connection is time consuming, the server
maintains a pool of available connections to increase performance.When it requests a
connection, an application obtains one from the pool.When an application closes a
connection, the connection is returned to the pool.

Applications that use the Persistence API specify the DataSource object they are using
in the jta-data-source element of the persistence.xml file:

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The
application code does not refer to any JDBC objects.

Resource Injection
The javax.annotation.Resource annotation is used to declare a reference to a
resource; @Resource can decorate a class, a field, or amethod. The container will inject
the resource referred to by @Resource into the component either at runtime or when
the component is initialized, depending on whether field/method injection or class
injection is used.With field-based andmethod-based injection, the container will
inject the resource when the application is initialized. For class-based injection, the
resource is looked up by the application at runtime.

The @Resource annotation has the following elements:
■ name: The JNDI name of the resource
■ type: The Java language type of the resource
■ authenticationType: The authentication type to use for the resource
■ shareable: Indicates whether the resource can be shared
■ mappedName: A nonportable, implementation-specific name to which the resource

should bemapped
■ description: The description of the resource

The name element is the JNDI name of the resource and is optional for field-based and
method-based injection. For field-based injection, the default name is the field name

Resource Injection

Chapter 28 • Resource Connections 531

ptg

qualified by the class name. Formethod-based injection, the default name is the
JavaBeans property name, based on themethod qualified by the class name. The name
elementmust be specified for class-based injection.

The type of resource is determined by one of the following:
■ The type of the field the @Resource annotation is decorating for field-based

injection
■ The type of the JavaBeans property the @Resource annotation is decorating for

method-based injection
■ The type element of @Resource

For class-based injection, the type element is required.

The authenticationType element is used only for connection factory resources, such
as the resources of a connector, also called the resource adapter, or data source. This
element can be set to one of the javax.annotation.Resource.AuthenticationType
enumerated type values: CONTAINER, the default, and APPLICATION.

The shareable element is used only for Object Resource Broker (ORB) instance
resources or connection factory resource. This element indicates whether the resource
can be shared between this component and other components andmay be set to true,
the default, or false.

The mappedName element is a nonportable, implementation-specific name to which the
resource should bemapped. Because the name element, when specified or defaulted, is
local only to the application, many Java EE servers provide a way of referring to
resources across the application server. This is done by setting the mappedName
element. Use of the mappedName element is nonportable across Java EE server
implementations.

The description element is the description of the resource, typically in the default
language of the system onwhich the application is deployed. This element is used to
help identify resources and to help application developers choose the correct resource.

Field-Based Injection
To use field-based resource injection, declare a field and decorate it with the
@Resource annotation. The container will infer the name and type of the resource if
the name and type elements are not specified. If you do specify the type element, it
must match the field’s type declaration.

In the following code, the container infers the name of the resource, based on the class
name and the field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class:

Resource Injection

The Java EE 6Tutorial: Basic Concepts532

ptg

package com.example;

public class SomeClass {

@Resource

private javax.sql.DataSource myDB;

...

}

In the following code, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

@Resource(name="customerDB")
private javax.sql.DataSource myDB;

...

}

Method-Based Injection
To usemethod-based injection, declare a setter method and decorate it with the
@Resource annotation. The container will infer the name and type of the resource if
the name and type elements are not specified. The setter methodmust follow the
JavaBeans conventions for property names: Themethod namemust begin with set,
have a void return type, and only one parameter. If you do specify the type element, it
must match the field’s type declaration.

In the following code, the container infers the name of the resource based on the class
name and the field name: com.example.SomeClass/myDB. The inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

private javax.sql.DataSource myDB;

...

@Resource

private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

...

}

In the following code, the JNDI name is customerDB, and the inferred type is
javax.sql.DataSource.class:

package com.example;

public class SomeClass {

Resource Injection

Chapter 28 • Resource Connections 533

ptg

private javax.sql.DataSource myDB;

...

@Resource(name="customerDB")
private void setMyDB(javax.sql.DataSource ds) {

myDB = ds;

}

...

}

Class-Based Injection
To use class-based injection, decorate the class with a @Resource annotation, and set
the required name and type elements:

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory")

public class SomeMessageBean {

...

}

The @Resources annotation is used to group togethermultiple @Resource
declarations for class-based injection. The following code shows the @Resources
annotation containing two @Resource declarations. One is a JavaMessage Service
message queue, and the other is a JavaMail session:

@Resources({

@Resource(name="myMessageQueue",
type="javax.jms.ConnectionFactory"),

@Resource(name="myMailSession",
type="javax.mail.Session")

})

public class SomeMessageBean {

...

}

ResourceAdapters andContracts
A resource adapter is a Java EE component that implements the Java EE Connector
Architecture for a specific EIS. Examples of EISs include enterprise resource planning,
mainframe transaction processing, and database systems. As illustrated in
Figure 28–1, the resource adapter facilitates communication between a Java EE
application and an EIS.

Resource Adapters and Contracts

The Java EE 6Tutorial: Basic Concepts534

ptg

Stored in a Resource Adapter Archive (RAR) file, a resource adapter can be deployed
on any Java EE server, much like a Java EE application. A RAR filemay be contained in
an Enterprise Archive (EAR) file, or it may exist as a separate file.

A resource adapter is analogous to a JDBC driver. Both provide a standard API
through which an application can access a resource that is outside the Java EE server.
For a resource adapter, the target system is an EIS; for a JDBC driver, it is a DBMS.
Resource adapters and JDBC drivers are rarely created by application developers. In
most cases, both types of software are built by vendors that sell tools, servers, or
integration software.

The resource adaptermediates communication between the Java EE server and the EIS
bymeans of contracts. The application contract defines the API through which a Java
EE component, such as an enterprise bean, accesses the EIS. This API is the only view
that the component has of the EIS. The system contracts link the resource adapter to
important services that aremanaged by the Java EE server. The resource adapter itself
and its system contracts are transparent to the Java EE component.

FIGURE 28–1 ResourceAdapters

EIS

Java EE Server

Enterprise Bean

Web Component

Transaction
Connection
Security

Resource
Adapter

Managers

Application
Contract

Application
Contract

System

Contracts

Resource Adapters and Contracts

Chapter 28 • Resource Connections 535

ptg

Management Contracts
The Java EE Connector Architecture defines system contracts that enable resource
adapter lifecycle and threadmanagement.

LifecycleManagement
The Connector Architecture specifies a lifecycle management contract that allows an
application server tomanage the lifecycle of a resource adapter. This contract provides
amechanism for the application server to bootstrap a resource adapter instance during
the deployment or application server startup. This contract also provides ameans for
the application server to notify the resource adapter instance when it is undeployed or
when an orderly shutdown of the application server takes place.

WorkManagement Contract
The Connector Architecture workmanagement contract ensures that resource
adapters use threads in the proper, recommendedmanner. This contract also enables
an application server tomanage threads for resource adapters.

Resource adapters that improperly use threads can jeopardize the entire application
server environment. For example, a resource adaptermight create toomany threads or
might not properly release threads it has created. Poor thread handling inhibits
application server shutdown and impacts the application server’s performance because
creating and destroying threads are expensive operations.

The workmanagement contract establishes ameans for the application server to pool
and reuse threads, similar to pooling and reusing connections. By adhering to this
contract, the resource adapter does not have tomanage threads itself. Instead, the
resource adapter has the application server create and provide needed threads.When
it is finished with a given thread, the resource adapter returns the thread to the
application server. The application servermanages the thread, either returning it to a
pool for later reuse or destroying it. Handling threads in this manner results in
increased application server performance andmore efficient use of resources.

In addition tomoving threadmanagement to the application server, the Connector
Architecture provides a flexible model for a resource adapter that uses threads.
■ The requesting thread can choose to block (stop its own execution) until the work

thread completes.
■ The requesting thread can block while it waits to get the work thread.When the

application server provides a work thread, the requesting thread and the work
thread execute in parallel.

Resource Adapters and Contracts

The Java EE 6Tutorial: Basic Concepts536

ptg

■ The resource adapter can opt to submit the work for the thread to a queue. The
thread executes the work from the queue at some later point. The resource adapter
continues its own execution from the point it submitted the work to the queue, no
matter when the thread executes it.

With the latter two approaches, the submitting thread and the work threadmay
execute simultaneously or independently. For these approaches, the contract specifies
a listenermechanism to notify the resource adapter that the thread has completed its
operation. The resource adapter can also specify the execution context for the thread,
and the workmanagement contract controls the context in which the thread executes.

GenericWorkContext Contract
The workmanagement contract between the application server and a resource adapter
enables a resource adapter to do a task, such as communicating with the EIS or
deliveringmessages, by delivering Work instances for execution.

A generic work context contract enables a resource adapter to control the contexts in
which the Work instances that it submits are executed by the application server’s
WorkManager. A generic work context mechanism also enables an application server to
support newmessage inflow and delivery schemes. It also provides a richer contextual
Work execution environment to the resource adapter while still maintaining control
over concurrent behavior in amanaged environment.

The generic work context contract standardizes the transaction context and the
security context.

Outboundand InboundContracts
The Connector Architecture defines the following outbound contracts, system-level
contracts between an application server and an EIS that enable outbound connectivity
to an EIS.
■ The connectionmanagement contract supports connection pooling, a technique

that enhances application performance and scalability. Connection pooling is
transparent to the application, which simply obtains a connection to the EIS.

■ The transactionmanagement contract extends the connectionmanagement
contract and provides support formanagement of both local and XA transactions.
A local transaction is limited in scope to a single EIS system, and the EIS resource
manager itself manages such transaction. An XA transaction or global transaction
can spanmultiple resourcemanagers. This form of transaction requires
transaction coordination by an external transactionmanager, typically bundled
with an application server. A transactionmanager uses a two-phase commit

Resource Adapters and Contracts

Chapter 28 • Resource Connections 537

ptg

protocol tomanage a transaction that spansmultiple resourcemanagers or EISs,
and uses one-phase commit optimization if only one resourcemanager is
participating in an XA transaction.

■ The securitymanagement contract providesmechanisms for authentication,
authorization, and secure communication between a Java EE server and an EIS to
protect the information in the EIS.
A work securitymapmatches EIS identities to the application server domain’s
identities.

Inbound contracts are system contracts between a Java EE server and an EIS that
enable inbound connectivity from the EIS: pluggability contracts formessage
providers and contracts for importing transactions.

MetadataAnnotations
Java EE Connector Architecture 1.6 introduces a set of annotations tominimize the
need for deployment descriptors.
■ The @Connector annotation can be used by the resource adapter developer to

specify that the JavaBeans component is a resource adapter JavaBeans component.
This annotation is used for providingmetadata about the capabilities of the
resource adapter. Optionally, you can provide a JavaBeans component
implementing the ResourceAdapter interface, as in the following example:

@Connector(

description = "Sample adapter using the JavaMail API",
displayName = "InboundResourceAdapter",
vendorName = "My Company, Inc.",
eisType = "MAIL",
version = "1.0"

)

public class ResourceAdapterImpl

implements ResourceAdapter, java.io.Serializable {

...

...

}

■ The @ConnectionDefinition annotation defines a set of connection interfaces and
classes pertaining to a particular connection type, as in the following example:

@ConnectionDefinition(

connectionFactory =

samples.mailra..api.JavaMailConnectionFactory.class,

connectionFactoryImpl =

samples.mailra.ra.outbound.JavaMailConnectionFactoryImpl.class,

connection =

samples.connectors.mailconnector.api.JavaMailConnection.class,

connectionImpl =

samples.mailra..ra.outbound.JavaMailConnectionImpl.class

)

Metadata Annotations

The Java EE 6Tutorial: Basic Concepts538

ptg

public class ManagedConnectionFactoryImpl implements

ManagedConnectionFactory, Serializable {

...

...

@ConfigProperty(defaultValue = "UnknownHostName")
public void setServerName(String serverName) {

...

}

}

■ The @AdministeredObject annotation designates a JavaBeans component as an
administered object.

■ The @Activation annotation contains configuration information pertaining to
inbound connectivity from an EIS instance, as in the following example:

@Activation(

messageListeners = {

samples.mailra.api.JavaMailMessageListener.class

}

)

public class ActivationSpecImpl

implements javax.resource.spi.ActivationSpec,

java.io.Serializable {

...

@ConfigProperty()

// serverName property value

private String serverName = new String("");

@ConfigProperty()

// userName property value

private String userName = new String("");

@ConfigProperty()

// password property value

private String password = new String("");

@ConfigProperty()

// folderName property value

private String folderName = new String("Inbox");

// protocol property value

// Normally imap or pop3

@ConfigProperty(

description = "Normally imap or pop3"
)

private String protocol = new String("imap");
...

...

}

■ The @ConfigProperty annotation can be used on JavaBeans components to
provide additional configuration information that may be used by the deployer
and resource adapter provider. The preceding example code shows several
@ConfigProperty annotations.

The specification allows a resource adapter to be developed inmixed-mode form, that
is the ability for a resource adapter developer to use bothmetadata annotations and

Metadata Annotations

Chapter 28 • Resource Connections 539

ptg

deployment descriptors in applications. An application assembler or deployermay use
the deployment descriptor to override themetadata annotations specified by the
resource adapter developer.

The deployment descriptor for a resource adapter is named ra.xml. The
metadata-complete attribute defines whether the deployment descriptor for the
resource adaptermodule is complete or whether the class files available to themodule
and packaged with the resource adapter need to be examined for annotations that
specify deployment information.

For the complete list of annotations and JavaBeans components introduced in the Java
EE 6 platform, see the Java EE Connector Architecture 1.6 specification.

CommonClient Interface
This section explains how components use the Connector Architecture Common
Client Interface (CCI) API and a resource adapter to access data from an EIS. The CCI
API defines a set of interfaces and classes whosemethods allow a client to perform
typical data access operations. The CCI interfaces and classes are as follows:
■ ConnectionFactory: Provides an application component with a Connection

instance to an EIS.
■ Connection: Represents the connection to the underlying EIS.
■ ConnectionSpec: Provides ameans for an application component to pass

connection-request-specific properties to the ConnectionFactorywhenmaking a
connection request.

■ Interaction: Provides ameans for an application component to execute EIS
functions, such as database stored procedures.

■ InteractionSpec: Holds properties pertaining to an application component’s
interaction with an EIS.

■ Record: The superinterface for the various kinds of record instances. Record
instances can be MappedRecord, IndexedRecord, or ResultSet instances, all of
which inherit from the Record interface.

■ RecordFactory: Provides an application component with a Record instance.
■ IndexedRecord: Represents an ordered collection of Record instances based on the

java.util.List interface.

A client or application component that uses the CCI to interact with an underlying EIS
does so in a prescribedmanner. The componentmust establish a connection to the
EIS’s resourcemanager, and it does so using the ConnectionFactory. The Connection
object represents the connection to the EIS and is used for subsequent interactions
with the EIS.

CommonClient Interface

The Java EE 6Tutorial: Basic Concepts540

ptg

The component performs its interactions with the EIS, such as accessing data from a
specific table, using an Interaction object. The application component defines the
Interaction object by using an InteractionSpec object.When it reads data from the
EIS, such as from database tables, or writes to those tables, the application component
does so by using a particular type of Record instance: a MappedRecord, an
IndexedRecord, or a ResultSet instance.

Note, too, that a client application that relies on a CCI resource adapter is verymuch
like any other Java EE client that uses enterprise beanmethods.

Further Information about Resources
Formore information about resources and annotations, see
■ Java EE 6 Platform Specification (JSR 316):

http://jcp.org/en/jsr/detail?id=316

■ Java EE Connector Architecture 1.6 specification:
http://jcp.org/en/jsr/detail?id=322

■ EJB 3.1 specification:
http://jcp.org/en/jsr/detail?id=318

■ CommonAnnotations for the Java Platform:
http://www.jcp.org/en/jsr/detail?id=250

Further Information about Resources

Chapter 28 • Resource Connections 541

http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=318
http://www.jcp.org/en/jsr/detail?id=250

ptg

This page intentionally left blank

ptg

Index

Numbers andSymbols
@AccessTimeout annotation, 281
@ApplicationScoped annotation, 310–312
@ConcurrencyManagement annotation, 280
@Consumes annotation, 229–231
@ConversationScoped annotation, 310–312
@DeclareRoles annotation, 490–492
@DELETE annotation, 220–235
@DenyAll annotation, 491
@Dependent annotation, 310–312
@DependsOn annotation, 279
@DiscriminatorColumn annotation, 347–348
@DiscriminatorValue annotation, 347–348
@Embeddable annotation, 344–345
@EmbeddedId annotation, 339
@Entity annotation, 334
@GET annotation, 220–235
@HttpConstraint

annotation, 457, 476
@HttpMethodConstraint annotation, 457, 476
@Id annotation, 339
@IdClass annotation, 339
@Inject annotation, 310
@Local annotation, 253, 272
@Lock annotation, 280–282
@ManagedBean annotation, 77, 85–87
@ManyToMany annotation, 341, 342
@ManyToOne annotation, 341
@Named annotation, 312
@NamedQuery annotation, 382
@OneToMany annotation, 341, 342, 343
@OneToOne annotation, 341, 342, 343

@Path annotation, 220–235
@PathParam annotation, 231–235
@PermitAll annotation, 491
@PersistenceContext annotation, 350
@PersistenceUnit annotation, 350
@POST annotation, 220–235
@PostActivate annotation, 273, 274
@PostConstruct annotation, 261–264, 273, 274
@PreDestroy annotation, 261–264, 273, 274
@PrePassivate annotation, 273, 274
@Produces annotation, 229–231, 314
@PUT annotation, 220–235
@Qualifier annotation, 309
@QueryParam annotation, 231–235
@Remote annotation, 253, 272
@Remove annotation, 261, 273, 276
@RequestScoped annotation, 310–312
@Resource annotation, 531–534
@RolesAllowed annotation, 490
@RunAs annotation, 494–496
@Schedule and @Schedules annotations, 294–295
@ServletSecurity annotation, 457, 476
@SessionScoped annotation, 310–312
@Singleton annotation, 278
@Startup annotation, 278
@Stateful annotation, 273
@Timeout annotation, 293
@Timeoutmethod, 296
@Transient annotation, 335
@WebFilter annotation, 187
@WebInitParam annotation, 184, 188
@WebListener annotation, 181

543

ptg

@WebMethod annotation, 275
@WebService annotation, 208
@WebServiceRef annotation, 70
@WebServlet annotation, 62, 183–184

A
abstract schemas, 382
access control, 434
action events, 127

actionListener attribute, 126, 154, 156
ActionListener interface, 152
actionListener tag, 143, 152
referencingmethods that handle action

events, 156, 172
writing a backing-beanmethod to handle action

events, 172–173
Administration Console, 34

starting, 42–43
afterBeginmethod, 523
afterCompletionmethod, 523
annotations, 3

JAX-RS, 220–235
security, 439, 476–477, 486, 490–492

Ant tool, 41
appclient tool, 34
applet containers, 15
applets, 9, 10
application client containers, 15
application clients, 8–9

securing, 504–505
applications

JavaServer Faces, 74
security, 436–437
undeploying, 61–62

asadmin tool, 34
attributes referencing backing beanmethods, 154

action attribute, 154, 155
actionListener attribute, 154, 156
validator attribute, 155, 156
valueChangeListener attribute, 155, 156

audit modules, pluggable, 441
auditing, 435
auth-constraint element, 459

authenticatemethod, 469–471
authenticating users, 461–468
authentication, 434–435, 449

basic, 462
certificate-basedmutual, 465
client, 465
digest, 464–465
form-based, 463–464, 479–484
mutual, 465–466
user name/password-basedmutual, 466

authenticationmechanism, EJB, 493
authorization, 434–435
authorization constraints, 458, 459
authorization providers, pluggable, 441
auto commit, 28

B
backing beanmethods

See attributes referencing backing beanmethods
See referencing backing beanmethods
Seewriting backing beanmethods

backing bean properties, 146, 160–161, 162
bound to component instances, 168–169
properties for UISelectItems composed of

SelectItem instances, 168
UIData properties, 164–165
UIInput and UIOutput properties, 163
UISelectBoolean properties, 165
UISelectItem properties, 167
UISelectItems properties, 167–168
UISelectMany properties, 165–166
UISelectOne properties, 166–167
writing, 162–170

backing beans, 74, 159–162
developing, 77, 85–87
method binding, 122
properties

See backing bean properties
basic authentication, 462

EJB, 493
example, 475–479

bean-managed transactions, See transactions,
bean-managed

Index

The Java EE 6Tutorial: Basic Concepts544

ptg

bean validation, 29
Bean Validation

constraints, 376–377
examples, 376–380
Java Persistence API, 337–339
JavaServer Faces applications, 174–178,

378–379
beans, defined for CDI, 307
beans.xml file, 315
beforeCompletionmethod, 523
BLOBs, See persistence, BLOBs
bookmarkable URLs, component tags, 139–140
BufferedReader class, 185
build artifacts, removing, 61–62
business logic, 246
business methods, 256

client calls, 275
exceptions, 276
locating, 266
requirements, 275
transactions, 521, 523, 525, 526

C
CallbackHandler interface, 504
capture-schema tool, 34
certificate authorities, 451
certificates, 436

digital, 437, 450–453
managing, 451

server
generating, 452–453

using for authentication, 446
class files, removing, 61–62
clients

authenticating, 465
securing, 504–505

CLOBs, See persistence, CLOBs
collections

persistence, 335–337, 426
commitmethod, 523
commits, See transactions, commits
CommonClient Interface, Connector

Architecture, 540–541

component binding, 162
binding attribute, 162

component classes
UIData class, 164–165
UIInput and UIOutput classes, 163
UISelectBoolean class, 165
UISelectItem class, 167
UISelectItems class, 167
UISelectMany class, 165–166
UISelectOne class, 166–167

component-managed sign-on, 506
component properties, See backing bean properties
component tag attributes

action attribute, 171
actionListener attribute, 126, 154, 172
binding attribute, 117, 119, 162
columns attribute, 129
converter attribute, 122, 146–147
for attribute, 124, 138
id attribute, 117
immediate attribute, 117, 118
redisplay attribute, 124
rendered attribute, 117, 118
style attribute, 117, 119, 138
styleClass attribute, 117, 119
validator attribute, 122, 173
value attribute, 117, 119, 162
valueChangeListener attribute, 122, 156, 173

component tags, 162
attributes

See component tag attributes
body tag, 119–120
bookmarkable URLs, 139–140
button tag, 139–140
column tag, 115
commandButton tag, 115, 126–127
commandLink tag, 115, 127
dataTable tag, 115, 135–138, 164
form tag, 115, 120
graphicImage tag, 115, 127
head tag, 119–120
inputHidden tag, 115, 121
inputSecret tag, 115, 121, 124
inputText tag, 115, 121, 123–124

Index

545

ptg

component tags (Continued)
inputTextarea tag, 115, 121
link tag, 139–140
message tag, 115, 138–139
messages tag, 115, 138–139
output tag, 141–142
outputFormat tag, 115, 125
outputLabel tag, 116, 123, 124–125
outputLink tag, 116, 123, 125
outputMessage tag, 123
outputText tag, 116, 123, 127, 165
panelGrid tag, 116, 128–129
panelGroup tag, 116, 128–129
resource relocation, 141–142
selectBooleanCheckbox tag, 116, 130, 165
selectItems tag, 167
selectManyCheckbox tag, 116, 132–133, 165
selectManyListbox tag, 116, 132
selectManyMenu tag, 116, 132
selectOneListbox tag, 116, 131
selectOneMenu tag, 117, 131, 166, 167
selectOneRadio tag, 117, 131

components
buttons, 115
check boxes, 116
combo boxes, 116, 117
data grids, 115
hidden fields, 115
hyperlinks, 115
labels, 116
list boxes, 116
password fields, 115
radio buttons, 117
table columns, 115
tables, 116
text areas, 115
text fields, 115

composite components, Facelets, 94–96
concurrent access, 517
confidentiality, 449
Connection interface, 523, 528
connection pooling, 530
connections, securing, 449–453
connectors, See Java EE Connector architecture

container-managed sign-on, 506
container-managed transactions, See transactions,

container-managed
containers, 13–15

See also applet containers
See also application client containers
See also EJB containers
See alsoweb containers
configurable services, 13
nonconfigurable services, 13
securing, 439–440
security, 430–435
services, 13
trust between, 496

context parameters, 57
specifying, 66–67

context roots, 57–58
Contexts andDependency Injection (CDI) for the

Java EE platform, 29, 305–315
beans, 307
configuring applications, 315
EL, 312
examples, 317–330
Facelets pages, 313
injectable objects, 308
injecting beans, 310
managed beans, 307–308
overview, 306
producermethods, 314
qualifiers, 309
scopes, 310–312
setter and getter methods, 312–313

conversational state, 247
conversionmodel

See also converter tags
converter attribute, 122, 146–147
Converter implementations, 145–151
converterId attribute, 146
javax.faces.convert package, 145

Converter implementation classes
BigDecimalConverter class, 145
BigIntegerConverter class, 145
BooleanConverter class, 145
ByteConverter class, 145

Index

The Java EE 6Tutorial: Basic Concepts546

ptg

CharacterConverter class, 145
DateTimeConverter class, 145, 146, 147
DoubleConverter class, 145
EnumConverter class, 145
FloatConverter class, 145
IntegerConverter class, 146
LongConverter class, 146
NumberConverter class, 146, 147, 149–151
ShortConverter class, 146

converter tags
convertDateTime tag, 147
convertDateTime tag attributes, 148–149
converter tag, 147
convertNumber tag, 147, 149–151
convertNumber tag attributes, 150–151

cookie parameters, 234
createTimermethod, 293
credential, 444
Criteria API, 415–426

creating queries, 418–419
examples, 372–373
expressions, 421–422, 422–423
path navigation, 421
query execution, 425–426
query results, 421–423, 424–425

cryptography, public-key, 451
custom validators

validatemethod, 173
Validator implementation

backing beanmethods, 170

D
data encryption, 465
data integrity, 434, 517, 518
data sources, 530
databases

See also transactions
clients, 246
connections, 276, 525
data recovery, 517
EIS tier, 6
message-driven beans and, 250
multiple, 524, 526–527

DataSource interface, 530
debugging, Java EE applications, 45–46
declarative security, 430, 456, 486
Dependency Injection for Java (JSR 330), 29, 305
deployer roles, 21
deployment, 267–269
deployment descriptors, 17, 430, 439–440, 456

enterprise bean, 440
enterprise beans, 259, 486, 488
Java EE, 18
runtime, 18
security-role-mapping element, 447–448
security-role-ref element, 473–474
web application, 53, 440

runtime, 54
web applications, 51

destroymethod, 195
development roles, 19–22

application assemblers, 21
application client developers, 21
application component providers, 20–21
application deployers and administrators, 21
enterprise bean developers, 20
Java EE product providers, 20
tool providers, 20
web component developers, 20

digest authentication, 464–465
digital signatures, 451
DNS, 31
document roots, 53
doFiltermethod, 187, 188, 190
doGetmethod, 184
domains, 42
doPostmethod, 184
downloading, GlassFish Server, 38

E
EAR files, 17
EIS tier, 12

security, 506–509
EJB, security, 486–496
EJB containers, 14

container-managed transactions, 518

Index

547

ptg

EJB containers (Continued)
services, 245, 246, 486–496

EJB JAR files, 258
ejb-jar.xml file, 259, 440, 488
EJBContext interface, 523, 525
EL, 78, 99–112

backing beans, 161–162
composite expressions, 106
deferred evaluation expressions, 100
expression examples, 112
immediate evaluation expressions, 100
literal expressions, 106, 109
literals, 105
lvalue expressions, 100, 102
managed beans, 312
method expressions, 100, 106
operators, 111
overview, 99–100
parameterizedmethod calls, 107–108
reserved words, 111
rvalue expressions, 100, 102
tag attribute type, 108–109
type conversion during expression

evaluation, 106
value expressions, 100, 102

embeddable classes, See persistence: embeddable
classes

end-to-end security, 438
enterprise applications, 3
enterprise beans, 11, 25–26

See also business methods
See also Java EE components
See alsomessage-driven beans
See also session beans
accessing, 251
classes, 258
compiling, 267–269
contents, 258–260
defined, 245
dependency injection, 252
deployment, 258
distribution, 253
exceptions, 300–301
getCallerPrincipalmethod, 493–494

implementor of business logic, 11
interfaces, 251–258, 258
isCallerInRolemethod, 493–494
JAX-RS resources, 237–240
JNDI lookup, 252
lifecycles, 261–264
local access, 254–255
local interfaces, 254
packaging, 258, 267–269
performance, 253
programmatic security, 493–494
remote access, 255–256
remote interfaces, 256
securing, 486–496
singletons, 238
timer service, 290–300
types, 246
web services, 247, 256–257, 286–289

Enterprise Information Systems, See EIS tier
entities

abstract, 345
abstract schema names, 384
application-managed entity

managers, 350–351
cascading operations, 343

orphans, 343–344
collections, 397
container-managed entitymanagers, 350
creating, 365–366
discriminator columns, 347
entitymanager, 349–353
finding, 351–352, 366
inheritance, 345–349, 370–371
inheritancemapping, 347–349
lifecycle, 352
managing, 349–355, 365–367
mapping tomultiple tables, 363
non-entity superclasses, 346
overview, 333–345
persistent fields, 334–339
persistent properties, 334–339
persisting, 352
primary keys, 339–341
querying, 355

Index

The Java EE 6Tutorial: Basic Concepts548

ptg

relationships, 366
removing, 353, 367
requirements, 334
superclasses, 345–346
synchronizing, 353
validating, 337–339

entity providers, 227–229
entity relationships

bidirectional, 342
many-to-many, 341, 369–370
many-to-one, 341
multiplicity, 341
one-to-many, 341
one-to-one, 341
query language, 342
unidirectional, 342

equalsmethod, 340
event and listenermodel

See also value-change events
listener class, 170
ValueChangeEvent class, 156

examples, 37–46
basic authentication, 475–479
Bean Validation, 376–380
building, 44
CDI, 317–330
classpath, 268
Criteria API, 372–373
directory structure, 44
JAX-RS, 235–240
JAX-WS, 208–216
persistence, 357–380
primary keys, 340
query language, 366–367, 385–390
required software, 37–41
security, 430–433

form-based authentication, 479–484
servlet, 198–199
servlets, 62–70, 266
session beans, 266, 271–278
singleton session beans, 278–286
timer service, 297–299
web clients, 266
web services, 286–289

exceptions
business methods, 276
enterprise beans, 300–301
mapping to error screens, 67–68
rolling back transactions, 301, 523
transactions, 520, 521

Expression Language
See EL

expressions
lvalue expressions, 161
tag attribute type, 108–109

F
Facelets, 83–97

See also EL
composite components, 94–96
configuring applications, 88–89
features, 83–85
resources, 96–97
templating, 91–93
XHTML pages, 87–88

Facelets applications, developing, 85–91
FacesServlet, mapping, 78–79
filter chains, 187, 190
Filter interface, 187
filters, 187

defining, 187
mapping to web components, 189
mapping to web resources, 189
overriding request methods, 189
overriding responsemethods, 189
response wrappers, 189

foreign keys, 359
form-based authentication, 463–464
form parameters, 234
forwardmethod, 192

G
garbage collection, 264
GenericServlet interface, 180
getCallerPrincipalmethod, 493–494

Index

549

ptg

getConnectionmethod, 530
getRemoteUsermethod, 471
getRequestDispatchermethod, 191
getRollbackOnlymethod, 525
getServletContextmethod, 193
getSessionmethod, 193
getStatusmethod, 525
getUserPrincipalmethod, 471
GlassFish Server

adding users to, 445–446
downloading, 38
enabling debugging, 46
installation tips, 38
securing, 440–441
server log, 45–46
SSL connectors, 450
starting, 41
stopping, 42
tools, 34–35

groups, 444
managing, 444–446

H
hashCodemethod, 340
header parameters, 234
helper classes, 258

session bean example, 276
HTTP, 207

basic authentication, 462
over SSL, 465

HTTPmethods, 226–229
HTTP request URLs, 185

query strings, 186
request paths, 185

HTTP requests, 185
See also requests

HTTP responses, 186
See also responses
status codes, 67–68

HTTPS, 437, 450, 451, 459–460
HttpServlet interface, 180
HttpServletRequest interface, 185, 471
HttpServletResponse interface, 186

HttpSession interface, 193

I
identification, 434–435
implicit navigation, 76
includemethod, 192
initmethod, 184
InitialContext interface, 32
initParams attribute, 184
injectable objects, 308
integrity, 449

of data, 434
internationalizing JavaServer Faces applications,

FacesContext.getLocalemethod, 148
invalidatemethod, 194
isCallerInRolemethod, 493–494
isUserInRolemethod, 471

J
JAAS, 33, 435, 505

loginmodules, 505
JACC, 30, 441
JAF, 32
JAR files, 17

query language, 396
JAR signatures, 436
JASPIC, 30–31
Java API for JavaBeans Validation, See Bean

Validation
Java API for XMLBinding, 33
Java API for XML Processing, 32
Java API for XMLWeb Services, See JAX-WS
Java Authentication and Authorization

Service, 435
See also JAAS

Java Authentication Service Provider Interface for
Containers, 30–31

Java Authorization Contract for Containers, 30
See also JACC

Java BluePrints, 44
Java Cryptography Extension (JCE), 435

Index

The Java EE 6Tutorial: Basic Concepts550

ptg

Java Database Connectivity API, See JDBCAPI
Java DB, 34

starting, 43
stopping, 43

Java EE 6 platform, APIs, 22–31
Java EE applications, 6–12

debugging, 45–46
deploying, 267–269
iterative development, 269
tiers, 6–12

Java EE clients, 8–9
application clients, 8–9

See also application clients
web clients, 49–71

See alsoweb clients
Java EE components, 8
Java EE Connector Architecture, 514
Java EE Connector architecture, 29–30
Java EEmodules, 17, 18

See alsowebmodules
application client modules, 19
EJBmodules, 19, 258
resource adaptermodules, 19

Java EE platform, 6–12
Java EE securitymodel, 13
Java EE servers, 14
Java EE transactionmodel, 13
Java Generic Security Services, 435
Java GSS-API, 435
JavaMessage Service (JMS) API, 29, 514–515

See alsomessage-driven beans
Java Naming andDirectory Interface API, 31–32

See also JNDI
Java Persistence API, 28
Java Persistence API query language, See query

language
Java Persistence Criteria API, SeeCriteria API
Java Secure Sockets Extension, 435
Java Servlet technology, 26, 179–200

See also servlets
Java Transaction API, See JTA
JavaBeans Activation Framework, 32
JavaBeans components, 9
JavaMail API, 30

JavaServer Faces application development, 77–81
backing beans, 159–162
bean property, 164
Bean Validation, 174–178
web pages, 113–144

JavaServer Faces applications
HTML tags, 114–142
lifecycle, 79–80
queueingmessages, 173

JavaServer Faces core tag library, 113, 143
See also validator tags
action attribute, 126
actionListener tag, 143, 152
attribute tag, 143
convertDateTime tag, 143, 147
convertDateTime tag attributes, 148–149
converter tag, 143, 147
converterId attribute, 146
convertNumber tag, 143, 147, 149–151
convertNumber tag attributes, 150–151
facet tag, 129, 143
loadBundle tag, 143
metadata tag, 140
param tag, 125, 143
selectItem tag, 116, 131, 133, 134, 143
selectItems tag, 116, 131, 133, 134, 143
type attribute, 151
validateDoubleRange tag, 144, 152
validateLength tag, 144, 152
validateLongRange tag, 144, 153, 154
validator tag, 144
valueChangeListener tag, 143, 151–152
viewparam tag, 140

JavaServer Faces HTML tag library, See component
tags

JavaServer Faces tag libraries, 84
JavaServer Faces core tag library, 113, 143
JavaServer Faces HTML tag library, 113
namespace directives, 114

JavaServer Faces technology, 10, 26–27, 73–81
See also component tags
See also Facelets
advantages, 75–76

Index

551

ptg

JavaServer Faces technology (Continued)
FacesContext class

Validator interface, 173
features, 74–75

JavaServer Pages Standard Tag Library, See JSTL
javax.servlet.http package, 180
javax.servlet package, 180
JAX-RS, 28, 219–241

introduction, 204–205
other information sources, 240–241
reference implementation, 219

JAX-WS, 33
defined, 207
examples, 208–216
introduction, 204
service endpoint interfaces, 208
specification, 217

JAXB, 33
JAXP, 32
JCE, 435
JDBCAPI, 31, 515, 530
JNDI, 31–32, 529

data source naming subcontexts, 32
enterprise bean lookup, 252
enterprise bean naming subcontexts, 32
environment naming contexts, 32
naming contexts, 31
naming environments, 31
naming subcontexts, 32

JSR 299, SeeContexts andDependency Injection
(CDI) for the Java EE platform

JSR 311, See JAX-RS
JSSE, 435
JSTL, 27
JTA, 28

See also transactions, JTA
JTS API, 524

K
Kerberos, 435, 436
key pairs, 451
keystores, 436, 450–453

managing, 451

keytool utility, 451

L
LDAP, 31
lifecycle, JavaServer Faces, 79–80
listener classes, 180

defining, 180
listener interfaces, 180
listeners

HTTP, 440
IIOP, 440

local interfaces, defined, 254
log, server, 45–46
login

configuring, 461–468
login configuration, 467–468
loginmethod, 469–471
loginmodules, 505
logoutmethod, 469–471

M
managed beans, defined for CDI, 307–308
Managed Beans specification, 28, 305
matrix parameters, 234
message-driven beans, 25, 249–251

accessing, 249
defined, 249
garbage collection, 264
onMessagemethod, 250
transactions, 518, 524

message listeners, JMS, 249
message security, 457
MessageBodyReader interface, 227–229
MessageBodyWriter interface, 227–229
messages

integrity, 465
MessageFormat pattern, 125, 143
outputFormat tag, 125
param tag, 125, 143
parameter substitution tags, 143
queueingmessages, 173

Index

The Java EE 6Tutorial: Basic Concepts552

ptg

securing, 438
metadata annotations

resource adapters, 538–540
security, 439

Metamodel API, 415–417
using, 372, 417–418

method expressions, 155
method permissions, 489

annotations, 490–492
mutual authentication, 465–466

N
naming contexts, 31
naming environments, 31
navigationmodel

action attribute, 126, 154, 155
actionmethods, 171
ActionEvent class, 156
logical outcome, 171
referencingmethods that perform

navigation, 155, 171
writing a backing beanmethod to perform

navigation processing, 171–172
NDS, 31
NetBeans IDE, 40
NIS, 31
non-repudiation, 434

O
onMessagemethod, message-driven beans, 250

P
package-appclient tool, 34
parameters, extracting, 231–235
path parameters, 233
path templates, 223–226
permissions, security policy, 441
persistence

BLOBs, 364–365

cascade operations, 363–364
CLOBs, 364–365
collections, 335–337
configuration, 353
context, 349–355
embeddable classes, 344–345
entities, 333–345
examples, 357–380
many-to-many, 369–370
maps, 336
one-to-many, 359
one-to-one, 358–359
overview, 333–356
persistence units, 353–355
persistent fields, 335
primary keys, 339–341

compound, 361–363
generated, 360

properties, 335
queries, 333–356, 366–367, 382–384

See also query language
creating, 418–419
Criteria, 415–426
dynamic, 382
executing, 425–426
expressions, 421–422, 422–423
joins, 420
parameters, 383
path navigation, 421
results, 421–423, 424–425
static, 382
typesafe, 415–426

query language, 342
relationships, 358–359
scope, 353–355
self-referential relationships, 358
temporal types, 365

persistence units
query language, 381, 396

pluggable audit modules, 441
pluggable authorization providers, 441
POJOs, 4
policy files, 436
primary keys, 359

Index

553

ptg

primary keys (Continued)
compound, 361–363
defined, 339–341
examples, 340
generated, 360

principal, 444
PrintWriter class, 186
producermethods, 314
programmatic security, 430, 440, 456, 487
proxies, 207
public key certificates, 465
public-key cryptography, 451

Q
qualifiers, using, 309
Quality of Service, 435
query language

ABS function, 407
abstract schemas, 382, 384, 396
ALL expression, 405
ANY expression, 405
arithmetic functions, 405–407
ASC keyword, 412
AVG function, 410
BETWEEN expression, 389, 402
Boolean literals, 400
Boolean logic, 408
case expressions, 407–408
collectionmember expressions, 397, 404
collections, 397, 404
compared to SQL, 386, 395, 398
comparison operators, 389, 402
CONCAT function, 406
conditional expressions, 388, 400, 401, 409
constructors, 411–412
COUNT function, 410
DELETE expression, 389, 390
DELETE statement, 385
DESC keyword, 412
DISTINCT keyword, 386
domain of query, 381, 394, 396
duplicate values, 386
enum literals, 400

equality, 409–410
ESCAPE clause, 403
examples, 366–367, 385–390
EXISTS expression, 405
FETCH JOIN operator, 398
FROM clause, 384, 394–398
grammar, 390–413
GROUP BY clause, 384, 412–413
HAVING clause, 384, 412–413
identification variables, 384, 394, 396
identifiers, 394–395
IN operator, 398, 402–403
INNER JOIN operator, 398
input parameters, 387, 401
IS EMPTY expression, 389
IS FALSE operator, 409
IS NULL expression, 388
IS TRUE operator, 409
JOIN statement, 386, 387, 397–398
LEFT JOIN operator, 398
LEFT OUTER JOIN operator, 398
LENGTH function, 406
LIKE expression, 388, 403
literals, 400
LOCATE function, 406
LOWER function, 406
MAX function, 410
MEMBER expression, 404
MIN function, 410
MOD function, 407
multiple declarations, 396
multiple relationships, 387
named parameters, 386, 401
navigation, 386–388, 388, 397, 399
negation, 409
NOT operator, 409
null values, 403–404, 408–409
numeric comparisons, 409
numeric literals, 400
operator precedence, 401–402
operators, 401–402
ORDER BY clause, 384, 412
parameters, 386
parentheses, 401

Index

The Java EE 6Tutorial: Basic Concepts554

ptg

path expressions, 382, 398–399
positional parameters, 401
range variables, 396–397
relationship fields, 382
relationships, 382, 386, 387
return types, 410
root, 397
scope, 381
SELECT clause, 384, 410–412
setNamedParametermethod, 386
SIZE function, 407
SQRT function, 407
state fields, 382
string comparison, 409
string functions, 405–407
string literals, 400
subqueries, 404–405
SUBSTRING function, 406
SUM function, 411
syntax, 384–385, 390–413
TRIM function, 406
types, 399, 409
UPDATE expression, 385, 389, 390
UPPER function, 406
WHERE clause, 384, 400–410
wildcards, 403

query parameters, 232
query roots, 419–420

R
realms, 441, 443

admin-realm, 443
certificate, 443

adding users, 446
configuring, 440
file, 443

referencing backing beanmethods, 154–157
for handling action events, 156, 172
for handling value-change events, 156–157
for performing navigation, 155, 171
for performing validation, 156, 173

relationship fields, query language, 382

relationships
direction, 342–344
unidirectional, 359

remote interfaces, defined, 256
request method designator, 226–229
request method designators, 220–235
request parameters, extracting, 231–235
RequestDispatcher interface, 191
requests, 185

See alsoHTTP requests
customizing, 188
getting information from, 185

resource adapters, 29–30, 514, 534–538
metadata annotations, 538–540
security, 507–508

resource classes, 220–235
resource injection, 531–534
resourcemethods, 220–235
resources, 514–515, 529–541

See also data sources
ResponseBuilder class, 227–229
responses, 186

See alsoHTTP responses
buffering output, 186
customizing, 188
setting headers, 184

RESTful web services, 28, 219–241
defined, 219–220

roles, 444
application, 447–448
declaring, 468–469
mapping to groups, 447–448
mapping to users, 447–448
referencing, 490–492
security, 446–447, 468–469, 489, 490–492

rollbackmethod, 523, 525
rollbacks, See transactions, rollbacks
root resource classes, 220
run-as identity, 494–496

S
SAAJ, 33
SASL, 435

Index

555

ptg

schema, deployment descriptors, 439–440
schemagen tool, 34
scopes, using, 310–312
secure connections, 449–453
Secure Socket Layer (SSL), 449–453
security

annotations, 439, 476–477, 486
web applications, 456

application, 436–437
characteristics of, 434–435

application client tier
callback handlers, 505

application clients, 504–505
callback handlers, 504, 505
constraints, 457–461
container trust, 496
containers, 430–435, 439–440
context

enterprise beans, 493–494
declarative, 430, 439–440, 456, 486
deploying enterprise beans, 496
EIS applications, 506–509

component-managed sign-on, 506–507
container-managed sign-on, 506

end-to-end, 438
enterprise beans, 486–496
example, 430–433
groups, 444
introduction, 429–454
JAAS loginmodules, 505
Java SE, 435–436
login forms, 504
loginmodules, 505
mechanism features, 433–434
mechanisms, 435–438
message, 457
message-layer, 438
method permissions, 489

annotations, 490–492
policy domain, 444
programmatic, 430, 440, 456, 469–474, 487
propagating identity, 494–496
realms, 443
resource adapters, 507–508

role names, 468–469, 490–492
roles, 444, 446–447, 468–469, 489
run-as identity, 494–496
transport-layer, 437–438, 449–453
users, 443
web applications, 455–484

overview, 455
web components, 455–484

security constraints, 457–461
multiple, 460–461

security domain, 444
security identity

propagating, 494–496
specific identity, 495

security-role-mapping element, 447–448
security-role-ref element, 473–474
security role references, 473–474
security roles, 446–447, 489
server, authentication, 465
server log, 45–46
servers, certificates, 450–453
servicemethods, servlets, 184
Servlet interface, 180
ServletContext interface, 193
ServletInputStream class, 185
ServletOutputStream class, 186
ServletRequest interface, 185
ServletResponse interface, 186
servlets, 10, 180

binary data, 185, 186
character data, 185, 186
compiling, 267–269
creating, 183–184
examples, 62–70, 198–199, 266
finalizing, 195
initializing, 184
lifecycle, 180–182
lifecycle events, 180
packaging, 267–269
servicemethods, 184, 196, 197
tracking service requests, 196

session beans, 25, 247–249
activation, 261
bean-managed concurrency, 280, 282–283

Index

The Java EE 6Tutorial: Basic Concepts556

ptg

business interfaces, 251
clients, 247
concurrent access, 280–283
container-managed concurrency, 280
databases, 523
eager initialization, 278
examples, 266, 271–278, 278–286, 286–289
handling errors, 283
no-interface views, 251
passivation, 261
requirements, 273
singleton, 248, 278–286
stateful, 247, 248
stateless, 247–248, 249
transactions, 518, 523, 524
web services, 257, 287–288

sessions, 193–195
associating attributes, 193–194
associating with user, 195
invalidating, 194
notifying objects associated with, 194

SessionSynchronization interface, 523
setRollbackOnlymethod, 523, 525
sign-on

component-managed, 506
container-managed, 506

Simple Authentication and Security Layer, 435
SingleThreadModel interface, 183
SOAP, 203–205, 207, 217
SOAPmessages, 16, 33

securing, 438
SOAPwith Attachments API for Java, See SAAJ
SQL, 31, 386, 395, 398
SQL92, 408
SSL, 437, 449–453, 459–460, 465

connectors
GlassFish Server, 450

handshake, 449
verifying support, 450

standard converters
converter tags, 143, 147
NumberConverter class, 146
using, 145–151

standard validators
See also validator tags
using, 152–154

state fields, query language, 382
substitution parameters, defining, Seemessages,

param tag

T
templating, Facelets, 91–93
timer service, 290–300

automatic timers, 290, 294–295
calendar-based timer expressions, 290–293
cancelling timers, 296
creating timers, 293–294
examples, 297–299
exceptions, 296
getInfomethod, 296
getNextTimeoutmethod, 296
getTimeRemainingmethod, 296
getting information, 296
programmatic timers, 290, 293–294
saving timers, 296
transactions, 296–297

transactions, 513, 517–528
application-managed, 350–351
attributes, 519–522
bean-managed, 524–525, 525
boundaries, 518, 523, 524
business methods

See business methods, transactions
commits, 518, 523
container-managed, 518–523
container-managed transaction

demarcation, 518
defined, 518
exceptions

See exceptions, transactions
JDBC, 526
JTA, 524
managers, 521, 524, 526–527
message-driven beans, 250

See alsomessage-driven beans, transactions
nested, 518, 524

Index

557

ptg

transactions (Continued)
rollbacks, 518, 523, 525
scope, 519
session beans

See session beans, transactions
timeouts, 525–526
timer service, 296–297
web components, 528

transport-guarantee element, 459–460
transport guarantees, 459–460
transport-layer security, 437–438, 449–453
truststores, 450–453

managing, 451

U
UnavailableException class, 184
undeploying, modules and applications, 61–62
unified expression language, See EL
UniformResource Identifiers (URIs), 219
URI path parameters, 233
URI path templates, 223
user-data-constraint element, 459–460
user data constraints, 458, 459–460
users, 443

adding to GlassFish Server, 445–446
managing, 444–446

UserTransaction interface, 523, 525, 528
using pages, 96
utility classes, 258

V
validation, entities, 337–339
validationmodel

referencing amethod that performs
validation, 156

validator attribute, 122, 155, 156, 173
Validator interface, 170, 173
writing a backing beanmethod to perform

validation, 173
Validator implementation classes, 152–153

DoubleRangeValidator class, 144, 152

LengthValidator class, 144, 152
LongRangeValidator class, 144, 153, 154

validator tags, 144
validateDoubleRange tag, 152
validateLength tag, 152
validateLongRange tag, 153, 154

validators
custom validators, 144
registering, 153–154

value binding
acceptable types of component values, 163
properties, 163–168
value attribute, 162
value expressions, 164

value-change events
processValueChangeEventmethod, 174
referencingmethods that handle value-change

events, 156–157
type attribute, 151
ValueChangeEvent class, 151
valueChangeListener attribute, 122, 155, 173
ValueChangeListener class, 151–152, 174
valueChangeListener tag, 143, 151–152
writing a backing beanmethod to handle

value-change events, 173–174
value expressions, 161

ValueExpression class, 162

W
W3C, 32, 207, 217
WAR files, 17
web applications, 53

configuring, 51, 62
deployment descriptors, 51
document roots, 53
maintaining state across requests, 193–195
presentation-oriented, 49
securing, 455–484
security

overview, 455
service-oriented, 49
specifying context parameters, 66–67
specifying initialization parameters, 67

Index

The Java EE 6Tutorial: Basic Concepts558

ptg

specifying welcome files, 66
web beans, SeeContexts andDependency Injection

(CDI) for the Java EE platform
web clients, 8, 49–71

examples, 266
web components, 10, 50–51

See also Java EE components
applets bundled with, 10
concurrent access to shared resources, 183
forwarding to other web components, 192
including other web resources, 192
invoking other web resources, 191
mapping exceptions to error screens, 67–68
mapping filters to, 189
scope objects, 182
securing, 455–484
sharing information, 182
transactions, 528
types, 10
utility classes bundled with, 10
web context, 193

web containers, 15, 51
loading and initializing servlets, 180
mapping URLs to web components, 62

webmodules, 19, 53
deploying, 59
dynamic reloading, 60
undeploying, 61–62
updating, 60
viewing deployed, 60

web pages
XHTML, 78, 84

web-resource-collection element, 458–459
web resource collections, 458
web resources, 53

Facelets, 96–97
mapping filters to, 189
unprotected, 458

web services, 15–16
See also enterprise beans, web services
declaring references to, 70
endpoint implementation classes, 287
examples, 208–216, 286–289
introduction, 203

JAX-RS compared to JAX-WS, 203–205
web.xml file, 53, 440, 488
welcome files, specifying, 66
work flows, 248
writing backing beanmethods, 170–174

for handling action events, 172–173
for handling value-change events, 173–174
for performing navigation, 171–172
for performing validation, 173

writing backing bean properties
converters, 170
listeners, 170
validators, 170

WSDL, 16, 203–205, 207, 217
wsgen tool, 35
wsimport tool, 35

X
xjc tool, 34
XML, 15–16, 207

Index

559

	Contents
	Preface
	Part I: Introduction
	1 Overview
	Java EE 6 PlatformHighlights
	Java EE ApplicationModel
	DistributedMultitiered Applications
	Java EE Containers
	Web Services Support
	Java EE Application Assembly and Deployment
	Packaging Applications
	Development Roles
	Java EE 6 APIs
	Java EE 6 APIs in the Java Platform, Standard Edition 6.0
	GlassFish Server Tools

	2 Using the Tutorial Examples
	Required Software
	Starting and Stopping the GlassFish Server
	Starting the Administration Console
	Starting and Stopping the Java DB Server
	Building the Examples
	Tutorial Example Directory Structure
	Getting the Latest Updates to the Tutorial
	Debugging Java EE Applications

	Part II: The WebTier
	3 Getting Started withWeb Applications
	Web Applications
	Web Application Lifecycle
	WebModules: The hello1 Example
	Configuring Web Applications: The hello2 Example
	Further Information about Web Applications

	4 JavaServer FacesTechnology
	What Is a JavaServer Faces Application?
	JavaServer Faces Technology Benefits
	Creating a Simple JavaServer Faces Application
	Further Information about JavaServer Faces Technology

	5 Introduction to Facelets
	What Is Facelets?
	Developing a Simple Facelets Application
	Templating
	Composite Components
	Resources

	6 Expression Language
	Overview of the EL
	Immediate and Deferred Evaluation Syntax
	Value and Method Expressions

	7 Using JavaServer FacesTechnology in Web Pages
	Setting Up a Page
	Adding Components to a Page Using HTML Tags
	Using Core Tags

	8 Using Converters, Listeners, and Validators
	Using the Standard Converters
	Registering Listeners on Components
	Using the Standard Validators
	Referencing a Backing Bean Method

	9 Developing with JavaServer FacesTechnology
	Backing Beans
	Writing Bean Properties
	Writing Backing Bean Methods
	Using Bean Validation

	10 Java Servlet Technology
	What Is a Servlet?
	Servlet Lifecycle
	Sharing Information
	Creating and Initializing a Servlet
	Writing Service Methods
	Filtering Requests and Responses
	Invoking Other Web Resources
	Accessing the Web Context
	Maintaining Client State
	Finalizing a Servlet
	The mood Example Application
	Further Information about Java Servlet Technology

	Part III: Web Services
	11 Introduction to Web Services
	What Are Web Services?
	Types of Web Services
	Deciding Which Type of Web Service to Use

	12 Building Web Services with JAX-WS
	Creating a Simple Web Service and Clients with JAX-WS
	Types Supported by JAX-WS
	Web Services Interoperability and JAX-WS
	Further Information about JAX-WS

	13 Building RESTful Web Services with JAX-RS
	What Are RESTful Web Services?
	Creating a RESTful Root Resource Class
	Example Applications for JAX-RS
	Further Information about JAX-RS

	Part IV: Enterprise Beans
	14 Enterprise Beans
	What Is an Enterprise Bean?
	What Is a Session Bean?
	What Is a Message-Driven Bean?
	Accessing Enterprise Beans
	The Contents of an Enterprise Bean
	Naming Conventions for Enterprise Beans
	The Lifecycles of Enterprise Beans
	Further Information about Enterprise Beans

	15 Getting Started with Enterprise Beans
	Creating the Enterprise Bean
	Modifying the Java EE Application

	16 Running the Enterprise Bean Examples
	The cart Example
	A Singleton Session Bean Example: counter
	A Web Service Example: helloservice
	Using the Timer Service
	Handling Exceptions

	Part V: Contexts and Dependency Injection for the Java EE Platform
	17 Introduction to Contexts and Dependency Injection for the Java EE Platform
	Overview of CDI
	About Beans
	About Managed Beans
	Beans as Injectable Objects
	Using Qualifiers
	Injecting Beans
	Using Scopes
	Giving Beans EL Names
	Adding Setter and Getter Methods
	Using a Managed Bean in a Facelets Page
	Injecting Objects by Using ProducerMethods
	Configuring a CDI Application
	Further Information about CDI

	18 Running the Basic Contexts and Dependency Injection Examples
	The simplegreeting CDI Example
	The guessnumber CDI Example

	Part VI: Persistence
	19 Introduction to the Java Persistence API
	Entities
	Entity Inheritance
	Managing Entities
	Querying Entities
	Further Information about Persistence

	20 Running the Persistence Examples
	The order Application
	The roster Application
	The address-book Application

	21 The Java Persistence Query Language
	Query Language Terminology
	Creating Queries Using the Java Persistence Query Language
	Simplified Query Language Syntax
	Example Queries
	Full Query Language Syntax

	22 Using the Criteria API to Create Queries
	Overview of the Criteria and Metamodel APIs
	Using the Metamodel API to Model Entity Classes
	Using the Criteria API and Metamodel API to Create Basic Typesafe Queries

	Part VII: Security
	23 Introduction to Security in the Java EE Platform
	Overview of Java EE Security
	SecurityMechanisms
	Securing Containers
	Securing the GlassFish Server
	Working with Realms, Users, Groups, and Roles
	Establishing a Secure Connection Using SSL
	Further Information about Security

	24 Getting Started SecuringWeb Applications
	Overview of Web Application Security
	Securing Web Applications
	Using Programmatic Security with Web Applications
	Examples: Securing Web Applications

	25 Getting Started Securing Enterprise Applications
	Securing Enterprise Beans
	Examples: Securing Enterprise Beans
	Securing Application Clients
	Securing Enterprise Information Systems Applications

	Part VIII: Java EE SupportingTechnologies
	26 Introduction to Java EE SupportingTechnologies
	Transactions
	Resources

	27 Transactions
	What Is a Transaction?
	Container-Managed Transactions
	Bean-Managed Transactions
	Transaction Timeouts
	UpdatingMultipleDatabases
	Transactions in Web Components
	Further Information about Transactions

	28 Resource Connections
	Resources and JNDINaming
	DataSource Objects and Connection Pools
	Resource Injection
	Resource Adapters and Contracts
	Metadata Annotations
	Common Client Interface
	Further Information about Resources

	Index
	Numbers and Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

