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Abstract. We present an incremental polynomial-time algorithm for
enumerating all circuits of a matroid or, more generally, all minimal
spanning sets for a flat. This result implies, in particular, that for a
given infeasible system of linear equations, all its maximal feasible sub-
systems, as well as all minimal infeasible subsystems, can be enumerated
in incremental polynomial time. We also show the NP-hardness of several
related enumeration problems.

1 Introduction

Let M be a matroid on ground set S of cardinality |S| = n, i.e. a collection of
subsets of S satisfying (i) ) € M, (ii) if X € M and Y C X then Y € M, and
(iii) if X,Y € M and |Y| > |X]| then there exists an element y € Y \ X such
that X U {y} € M. Elements of M are called the independent sets of M. We
assume throughout the paper that M is defined by an independence oracle, i.e.
an algorithm 7 which, given a subset X of S, can determine in unit time whether
or not X is independent in M. This assumption implies that the rank of any

set X C S, r(X) = max{|I| : I independent subset of X}, and in particular,

the rank of the matroid r(M) def r(S) can be determined in O(n) time by the

well-known greedy algorithm. Hence the rank of X in the dual matroid M*
(that is, the matroid whose maximal independent sets are the complements of
the maximal independent sets of M) r*(X) = r(S\ X)+|X|—r(M), can also be
computed in O(n) time. In particular, Z can be used as an independence oracle
for the dual matroid.

Let C(M) be the family of all circuits of M, i.e. the family of all minimal
dependent subsets of S, and let B(M) be the family of all bases of M, i.e., the
collection of all maximal independent sets. By definition, C(M) and the family

* This research was supported in part by the National Science Foundation Grant IIS-
0118635. The research of the first and third authors was also supported in part by the
Office of Naval Research Grant N00014-92-J-1375. The second and third authors are
also grateful for the partial support by DIMACS, the National Science Foundation’s
Center for Discrete Mathematics and Theoretical Computer Science.

T. Ibaraki, N. Katoh, and H. Ono (Eds.): ISAAC 2003, LNCS 2906, pp. 485-[494] 2003.
© Springer-Verlag Berlin Heidelberg 2003


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595.276 824.882 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice


486 E. Boros et al.

B(M*)={X : S\ X € B(M)} of bases of the dual matroid M* are mutually
transversal hypergraphs.

It is a folklore result that all bases of a matroid M can be enumerated
with polynomial delay, i.e. in poly(n) time per each generated base. This can
be done by traversing the connected "metagraph” G = (B(M),E) in which
two 7vertices” B,B’ € B(M) are connected by an edge in & iff B and B’
can be obtained from each other by exchanging a pair of elements, i.e. when
|B\ B'| = |B’\ B| = 1. The connectivity of G then follows from the well-known
base aziom:

If BB’ € B(M) and x € B'\ B then (BUy)\ x € B(M) for somey € B\ B’.

When M is the cycle matroid of a given graph G = (V, E) and C(M) is the
family of all simple cycles of G, all elements of C(M) can also be enumerated with
polynomial delay (see e.g. [9]). This is also true for M*, the cocycle matroid of G,
when each element of C(M*) is a minimal set of edges whose removal increases
the number of connected components of G (see e.g. [8]). In general, however,
we are not aware of any polynomial-delay algorithm for enumerating all circuits
of an arbitrary matroid M. Intuitively, the circuit enumeration problem seems
to be harder than the base enumeration due to the fact that |C(M)| < (n —
r(M))|B(M)|, whereas in general, |B(M)| cannot be bounded by a polynomial
in n and |C(M)|. In addition, there is a combinatorial reduction which reduces
the enumeration of all bases of a matroid to the enumeration of all circuits of
another matroid (see Section [)).

In this paper we present a simple algorithm for enumerating all circuits of
an arbitrary matroid M in incremental polynomial time, i.e. show that for each
k < |C(M)], one can compute k circuits of M in poly(n, k) time. This is done
in Section 2. By duality, this result also gives an incremental polynomial time
algorithm for enumerating all hyperplanes or, more generally, all flats of a given
rank in M or M*. Thus, any level of the lattice of flats of M can be produced
in incremental polynomial time.

In Section [B] we consider the enumeration of all circuits of M which contain a
given element a € S. Again, we show that all circuits through a can be enumer-
ated in incremental polynomial time, and discuss some dual formulations of this
result. We are not aware of any efficient algorithm for enumerating all circuits
containing ¢ > 2 elements of a given matroid M. In Section ] we argue that this
problem can be solved with polynomial delay for each fixed ¢ when M is the cycle
or cocycle matroid of a given graph, but becomes NP-hard when ¢ is part of the
input. Section bl deals with the enumeration of all minimal subsets X of a given
set D C S such that X spans a given flat A of M. Examples of such spanning
sets include generalized Steiner trees and multiway cuts in graphs. We reduce
the enumeration problem for minimal A-spanning sets to the generation of all
circuits through a given element in some extended matroid, and hence obtain
an incremental polynomial-time algorithm. All maximal subsets of a given set
D which do not span A can also be enumerated in incremental polynomial time.
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Finally, Section [@] discusses some variants of the circuit enumeration problem
for two matroids on S. We also discuss generalized circuits whose definition
is obtained by replacing some singletons of S by subsets, i.e., by performing
the parallel extension of the rank function r(X) for some sets Ap,..., A4, C S.
We show that the enumeration problems corresponding to these variants and
generalizations of circuits are all NP-hard already for graphic and cographic
matroids. By duality, this is also true for analogous problems stated in terms of
generalized hyperplanes.

2 Enumeration of All Circuits of a Matroid

Let M be a matroid defined by an independence oracle on ground set S of size
n, and let C(M) C 2° be the family of all circuits of M.

Theorem 1. For each k < |C(M)|, computing k circuits of M can be carried
out in poly(n, k) time.

Proof. If B is a base of M and € S\ B then there exists a unique circuit
C = C(B,z) such that x € C C B U z. This circuit C(B,z), called the
fundamental circuit of z in the base B, can be computed by querying the
independence oracle on at most | B| subsets of B Ux. We start by constructing
a base B® of M and the system F(B°) = {C(B° x) |z € S\ B°} of n —r(M)
fundamental circuits for B°. This can be done in poly(n) time. Next, the family
C(M) of circuits of any matroid satisfies the circuit axiom:

If Cy and Cy are distinct circuits of M and e € Cy N Cy there exists a circuit
Cg such that 03 g (01 @] 02) \6.

Given an arbitrary collection C’ of k circuits of M we can check in poly(n, k)
time whether or not C’ is closed with respect to the circuit axiom, i.e., for any
two distinct circuits C7,Cy € C' with a common element e € C; N Cy the given
collection C’ also contains a circuit C3 C (C1UC2)\e. To enumerate all circuits in
M we start with the fundamental system of circuits ' = F(B°) and repeatedly
check whether C’ is closed with respect to the circuit axiom. Since each violation
of the circuit axiom produces a new circuit, it remains to show that if some
system C’ of circuits is closed with respect to the circuit axiom and F(B°) C C’
then C’' = C(M). This follows from the fact that any set system C’ C 29 satisfying
the circuit axiom and the Sperner condition C1,Cs € C', Cy # Co = C1 € Cy
defines a matroid M’ on S, see [6JT1]. By definition, the bases of M’ are all
maximal independent sets for C’, i.e. all those maximal subsets of S which contain
no set in C’. In our case ¢’ C C(M) and hence C’ is Sperner by definition.
Furthermore, since C’' contains the fundamental system of circuits for B° €
B(M), it follows that B° is also a base of M’ implying that the ranks of M
and M’ are equal. Let C' € C(M) be an arbitrary circuit of M, then C is the
fundamental circuit for some base B € B(M) and some element z € S\ B,
ie. C = C(B,z). Since B is independent in M’ and |B| = r(M) = r(M’'), we
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conclude that B € B(M’). Now M’ must also contain a unique fundamental
circuit ' = C'(B, z). Since any circuit of M’ is also a circuit of M, we conclude
that C' = C(B,z) = C'(B, x), which shows that C € C' = C(M’). O

Let H:(M) = {X : X maximal subset of S such that r(X) < ¢} be the
family of all flats of rank ¢ in M, where t is an integer threshold. In particular,
when t = rank(M) — 1 the family H,;(M) consists of all hyperplanes of M. Let
also C;(M) = {X : X minimal subset of S such that r(X) < |X| — t}, so that
C1(M) = C(M) is exactly the family of all circuits of M.

Corollary 1. Given an integer parameter t, all flats in Hy(M) can be enumer-
ated in incremental polynomial time. Similarly, all elements of C+(M) can also
be enumerated in incremental polynomial time.

Proof. Since each hyperplane of M is the complement of a cocircuit of M and
vice versa, the enumeration of all hyperplanes of M is equivalent with the circuit
enumeration for the dual matroid M*. Hence by Theorem[I] all hyperplanes of M
can be enumerated in incremental polynomial time. Furthermore, the corollary
also holds for the family H.(M) of all flats of rank ¢, because H:(M) consists of
all hyperplanes of the truncated matroid My, whose rank function is defined by
ri41(X) = min{r(X),¢t+1}. Finally, let 7 = |S| —r(M) — ¢ then enumerating all
flats of rank 7 for M* is equivalent with the enumeration of all maximal solutions
Y C S to the inequality 7*(Y) = r(S\Y) +|Y| —r(M) < 7. The latter problem
is in turn equivalent with the enumeration of all minimal solutions X = S\Y
to the inequality 7(X) < | X| —t. O

By Corollary [ the lattice L(M) of flats of any matroid M can be computed
in incremental polynomial time. It is known [5] that [£(M)] > 2r(M),

3 Circuits through a Given Element

An important open question in linear programming is whether there exists an
efficient way to enumerate all vertices of a given polytope

n
P={z=(z1,...,2,) ER" : Zaixi:a, X1yeer Ty >0},
i=1

where a,aq,...,a, are given d-dimensional vectors. Each vertex of P can be
identified with a minimal supporting set I of coordinates [n] = {1,...,n} for
which the system of linear equations

Zaixi =a (1)

icl

has a positive real solution. Dropping the non-negativity conditions we arrive
at the problem of enumerating all minimal sets I C [n] for which () has a
real solution. This is equivalent with the enumeration of all those circuits of the
vectorial matroid M = {a,a,...,a,} C R? that contain a. When M is the
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cycle or cocycle matroid of some connected graph G = (V, E) and a = (wv) € E
is an edge with endpoints u,v € V, enumerating all circuits through a calls for
computing all simple uv-paths or all minimal uv-cuts in GG, which can be done
with polynomial delay [9]. The following result indicates that all circuits through
a given element a can be efficiently enumerated for any matroid M.

Theorem 2. Let M be a matroid with ground set S, let a € S, and let C(M,a)
the set of circuits C of M such that a € C. Assuming that M is defined by an
independence oracle, all elements of C(M,a) can be enumerated in incremental
polynomial time.

Proof. Two elements x,y € S are said to be connected in M if either z = y or
there is a circuit C' € C(M) containing both x and y. We may assume w.l.o.g.
that M is connected. Given aset X C S, let D(X) = X\({C € C(M,a) : C C
X}, where as before C(M, a) denotes the set of all circuits containing a. Lehman’s
theorem [6/11] asserts that for any connected matroid M the circuits of M not
containing a are precisely the minimal sets of the form D(Cy U C3) where C4
and Cy are distinct members of C(M, a). Hence for any connected matroid M:

C(M)| < [C(M, a)|(IC(M, a)| +1) /2.

This bound and Theorem [ readily imply that all circuits in C(M,a) can be
enumerated in output polynomial time poly(|C(M, a)|) by simply generating all
circuits in C(M) and discarding those of them that do not pass through a.
In fact, since our enumeration problem is self-reducible, the above bound also
implies an incremental polynomial-time algorithm. To see this, assume that we
wish to enumerate a given number & of circuits in C(M, a), or list all of them
if k > |C(M,a)|. Since for each integer k' < |C(M)| we can obtain k" circuits
in C(M) in poly(n,k’) time, we can decide whether or not k > |C(M,a)| by
attempting to generate k' = k(k + 1)/2 circuits in C(M), in time bounded by a
polynomial in n and k. If we discover that |C(M)| < k(k + 1)/2 by producing
all circuits in C(M) then we also have the entire set C(M,a). Suppose now
that we have computed k(k + 1)/2 circuits in C(M) but fewer than k of them
pass through a. Let b # a be another element of S. Delete b and compute the
connected component S’ which contains a in the matroid M restricted to S'\ b.
Note that any circuit of C(M,a) which does not contain b must belong to S’.
So we may apply the same procedure to the connected matroid M’ obtained by
restricting M on S’, and either obtain all circuits of C(M,a) which avoid b, or
conclude that the number of such circuits exceeds k. Since in the latter case we
can reduce the size of S by removing b for good (as long as we are not required
to produce more than k circuits of C(M,a)), we may now assume w.l.o.g. that
for each element b # a we have obtained all the circuits in C(M, a) which avoid
b. This means that in time polynomial in n and k we can produce all circuits
in C(M, a) which skip some element of S. Unless S itself is the only element of
C(M, a), this gives the entire set C(M,a). O

By duality, Theorem [Z gives an incremental polynomial-time algorithm for
enumerating all hyperplanes (or, more generally, all flats of a given rank ¢) which



490 E. Boros et al.

do not contain a. Needless to say that all hyperplanes (or flats of rank ¢) which
contain an arbitrary set of elements A C S can be enumerated in incremental
polynomial time because this is equivalent with enumerating all circuits of the
(truncated) matroid M restricted to S\ A.

It is also worth mentioning that {C'\ {a} | C € C(M,a)} and {C'\{a} | C' €
C(M*,a)} form a pair of mutually transversal Sperner hypergraphs. For instance,
these hypergraphs consist of all uv-paths and all uv-cuts respectively, when M
is a cycle matroid of a connected graph G = (V, E) in which edge a = (uv)
connects vertices u,v € V.

4 Circuits through t Elements

It is natural to ask what is the complexity of enumerating all circuits of M which
contain a given set A = {ay,... ,a;} of t > 2 elements of S. As we argue below,
this problem is NP-hard when ¢ is part of the input but can be solved with
polynomial delay if ¢t = |A] is fixed and M is the cycle or cocycle matroid of a
given graph G = (V, E). However, we are not aware of an efficient algorithm for
listing all circuits through ¢t = const > 2 elements of arbitrary matroids.

Let M be the cycle matroid of G so that the circuits of M are the simple
cycles of G. An edge set A may be contained in a simple cycle only if A itself is a
simple cycle or A is a union of k pairwise vertex disjoint simple paths P, ... , P
for some integer positive k < t. All simple cycles containing Pi,... , Py can be
enumerated with polynomial delay via lexicographic backtracking [9] by growing
and merging these partial paths (so that their number continually decreases).
Hence backtracking listing algorithms reduce the enumeration of simple cycles
containing ai, ... ,a; to the following decision problem:

Does there exist a simple cycle in G which contains k given disjoint paths
P,..., P 7

When k£ is fixed, by considering all possible permutations and reversals of
Py, ..., P, the latter problem can in turn be polynomially reduced to the well-
known disjoint-path problem:

Given k pairs of vertices {u;,v;}, @ =1,...,k of a graph, can these pairs
be connected by k pairwise vertex disjoint paths?

Even though the disjoint path problem is NP-complete when k is part of the
input (see [4]), it is known [I0] to be solvable in polynomial time for each fixed
k. Hence all simple cycles through t = const edges can be enumerated with delay
bounded by a polynomial in the size of the input graph.

As we mentioned earlier, if t = |A| is part of the input then the problem of
enumerating all simple cycles through ¢ edges of a graph becomes NP-complete.
In fact, given a graph G = (V, E) and a (large) matching A C E it is NP-hard
to decide whether G has any simple cycle containing A. This can be seen from
the following argument. Given a graph H = (U, E), substitute an edge e, for
each vertex u € U. Then, unless G consists of a single edge, the resulting graph
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G = P, x H has a simple cycle through the matching A = {e,, : u € U} iff the
original graph H is Hamiltonian, a condition which is NP-complete to verify.

Now, let M be the cocycle matroid of a connected graph G = (V, E) and
accordingly, let the circuits of M be the minimal cuts of G. It is well-known
and easy to see that an edge set C' C E forms a minimal cut in G iff there is a
partition V' = UUW such that C' is the set of all edges between U and W and the
induced subgraphs G[U] and G[W] are both connected. In particular, this means
that C' (and each subset of C') must form a bipartite graph. Given an edge set
A ={a1,...,a;} C E which forms a bipartite graph G4 = (V4, A), let us split
G 4 into connected components G4, = (Va,,4;), i = 1,... ,k for some k < t.
Then the problem of enumerating all minimal cuts containing A can be solved
with polynomial delay via lexicographic backtracking [9] by growing and merging
these connected components in all possible ways (so that their number can only
decrease). Specifically, backtracking listing algorithms reduce the enumeration
of minimal cuts containing a1, ... ,a; to the following decision problem:

Given two disjoint vertex sets U’, W’/ C V| can they be extended to a parti-
tion U, W which defines a minimal cut, that is U’ CU, W/ C W, UNW = (),
UUW =V, and the induced subgraphs G[U], G[W] are both connected ?

If t, and hence |U’| +|W’|, is bounded this problem can be solved in polynomial
time. In fact, this is true for the following more general problem:

Given a graph G = (V, E) and r pairwise disjoint vertex sets U{,...U. C V,
are there vertex sets Uy ... U, C V which are still pairwise disjoint, U/ C U;
and the induced subgraph G[U;] is connected (i.e. spans U;) for each ¢ =
1 ,r 7

P

Robertson and Seymour [10] proved that for bounded |U{|+...+|U.| the above
problem can be solved in polynomial time. Obviously, w.l.o.g. one can assume
that the extended sets Uy ... U, form a partition of V and hence for » = 2 the
above problem includes the previous one.

Finally, similarly to minimal cycles, the enumeration of all minimal cuts
through t edges becomes NP-hard when ¢ is part of the input. Indeed, given a
graph G = (V, E) and a matching A = {a; = (u1,w1),... ,a: = (ur,wy)} C E,
it may be NP-hard to tell whether G has a minimal cut containing A. This
claim can be shown as follows. Let U’ = {ug,...,ut}, W = {w,... ,we},
and V' = V' \ (U UW'). Consider the set G of all graphs G = (V, E) such
that (i) the induced subgraph G[V’] is complete, (ii) G[U'] and G[W'] are edge-
free, (iii) there are no edges between U’ and W’ except A, and (iv) the edges
between V' and U’ and between V' and W' are symmetric in the sense that
(v,u;) € E < (v,w;) € Eforall v e V' and all i = 1,...,¢ Note that
condition (iv) makes irrelevant any reversals in A, and that the decision problem:

Given a graph G € G, is it possible to split V'’ between U’ and W’ to obtain
two connected induced subgraphs ?

is polynomially equivalent with the special case of the CNF satisfiability problem
in which all clauses are either strictly positive or strictly negative, and the clauses
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in the positive and negative halves are symmetric. It remains to notice that this
special case of the satisfiability problem is NP-complete since it is equivalent
to the identification of self-compliment saturated hypergraphs, a problem whose
NP-completeness was shown in [3].

We mention in closing that the results of this section also indicate that it
may be NP-complete to decide whether a cycle or cocycle matroid M has a
hyperplane avoiding a given set A of elements.

5 Minimal Spanning Sets for a Flat

Let M be a matroid on S. Each circuit C' containing a given element a € S can
be identified with a minimal (independent) set I such that a € Span(I), where

Span(I) ={xe S : r(IUzx)=r(I)}

is the closure operator. In this section we consider the problem of enumerat-
ing all minimal sets I spanning a given collection of elements A C S. In fact,
we will consider a slightly more general problem of generating all minimal sub-
sets I C D which span A, where D and A are two given nonempty (and not
necessarily disjoint) sets of elements of M. We denote the family of all such
minimal spanning sets I by SPAN (D, A). Note that since A C Span(I) implies
Span(A) C Span(I), we could assume that A is a flat, i.e. A = Span(A).

Ezample 1 (Generalized Steiner trees and point-to-point connections) Let G =
(V, E) be a graph with k given disjoint vertex sets V1,... , Vi C V. A generalized
Steiner tree is a minimal set of edges I C E connecting all vertices within each
set V;, i.e., for each ¢ = 1,... k, all vertices of V; must belong to a single
connected component of (V,I). In particular, for Kk = 1 we obtain the usual
definition of Steiner trees. When each set V; consists of two vertices {u;,v;},
generalized Steiner trees are called point-to-point connections. Let T7i,... Ty
be arbitrary spanning trees on Vip,...,V; composed of "new” edges, and let
M the cycle matroid of the multigraph (V,EUT; U...UTy) with a total of
|E| + V1| + ...+ |Vi| — k edges. Then SPAN(E, Ty U ... UTy}) is the family of
all generalized Steiner trees for Vi,..., V.

Ezample 2 (Multiway cuts) For a connected graph G = (V, E) with k pairs of
vertices {u;,v;}, @ =1,...,k, a multiway cut is a minimal collection of edges
whose removal disconnects each u; from v;. Letting A = {(u;v;) : i=1,...,t}
and assuming w.l.o.g. that AN FE = (), the family of all multicuts of G' can be
identified with the family SPAN(E, A) for the cocycle matroid of (V, E U A).

Theorem 3. Given a matroid M with ground set S and two non-empty sets
D,A C V, all elements of SPAN (D, A) can be enumerated in incremental
polynomial time. All mazximal subsets of D which do not span A can also be
enumerated in incremental polynomial time.
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Proof. Let a be a new element representing A, and let M, be the matroid on
D U a with the following rank function:

fr(X), fag X
pIX) = {max{r((X \a)Ua) : a€ A}, otherwise. (2)

It is easy to check that M, is indeed a matroid. When M is a vectorial matroid
over a large field, a can be interpreted as the ”general linear combination” of all
elements of A; in general, p(X) is the so-called principal extension of r(X) on
A with value 1 (see e.g. [7]).

When I € SPAN (D, A) then I U« is a circuit in M, and conversely, for any
circuit C'in M,, containing «, the set C'\ o belongs to SPAN (D, A). Hence the
enumeration problem for SPAN (D, A) is equivalent with that for the set of all
circuits through « in M,,. Given an independence oracle for M, the rank function
() of the extended matroid can be trivially evaluated in oracle-polynomial time.
Therefore the first claim of Theorem [3 directly follows from Theorem 2 To see
the second claim note that the maximal subsets of D which do not span A are
in one-to-one correspondence with the hyperplanes of M, which avoid a. O

Finally, let us note that since SPAN(S,S) is the set of bases of M, the
proofs of Theorems[2 and Blshow that the enumeration of all bases of a matroid
can be reduced to the enumeration of all circuits of another matroid.

6 Circuits in Two Matroids, Generalized Circuits

Let My and Ms be two matroids on S, with rank functions r1 (X) and ro(X). It
is known that the minimum of the submodular function r1(X) +r2(S\ X) for all
X C S gives the maximum cardinality of a set I independent in both M; and Ms,
and that this minimum can be computed in polynomial time [2]. In particular,
when the ranks of M7 and M, are equal one can determine in polynomial time
whether M; and My share a common base, i.e. B(M;) N B(Mz) # 0. In fact,
using this as a subroutine for backtracking on matroids obtained by deleting
and contracting elements of S, all bases in B(M;) N B(Mz) can be enumerated
with polynomial delay.

In contrast to this result, deciding whether M; and M contain a common cir-
cuit is NP-hard already when M is the cycle matroid of some graph G = (V, E)
and M is the uniform matroid on E whose bases are all subsets of size r = |V|—1.
In this case, C(M1)NC(M3) # 0 iff G is Hamiltonian. A similar argument for the
NP-complete maximum cut problem shows that testing if C(M7) NC(Ms3) # 0
remains NP-hard when M; is the cocycle matroid of a graph G = (V, F) and
M is again a uniform matroid on F.

Of course, given two matroids M7 and M, on S one can always enumerate all
elements of C(M;) UC(Mz) in incremental polynomial time due to Theorem [I}
Note, however, that deciding whether a given set C' € C(M;)UC(M,) is inclusion-
wise mazimal in C(M;) U C(Mz) may be NP-hard. This is because for any set
A C S we may choose Ms to be the matroids for which A is the only circuit, and
then deciding whether A is maximal becomes equivalent with determining if M;
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has a circuit containing A (see Section H)). Perhaps more surprisingly, for two
matroids M; and My on S enumerating all minimal elements of C(M;) UC(Ma)
may also be hard.

Proposition 1. Let My and Ms be the cycle matroids of two graphs G1 =
(V1, E) and Gy = (Va, E) with identical sets of edges, and let MIN{C(M;) U
C(Ma3)} be the collection of all minimal edge sets which form a cycle in Gy or
Gs. Then, given a set family M C MIN{C(My)UC(Ms)}, it is NP-complete
to tell whether M can be extended, i.e. M # MIN{C(M;) UC(Mz)}.

We conclude with yet another generalization of the notion of circuit in a
matroid. Let M be a matroid defined by an independence oracle on some ground
set U, and let Ay,..., A, be given (not necessarily disjoint) subsets of U. We
define a generalized circuit as a minimal subset X of S = [n] such that | J,. v As
is a dependent set in M.

Proposition 2. Enumerating all generalized circuits for the cycle matroid of a
graph is NP-hard when A1, ..., A, are disjoint sets of edges of size 2 each.

It is easy to see that in Propositions[Il and Blthe cycle matroids of Gy and G4
can be replaced by the cocycle matroids of some graphs (e.g., the planar duals
of G1 and G3). Also, by matroid duality, Proposition [0 shows that it may be
NP-hard to enumerate all generalized hyperplanes of M, i.e., all those maximal
subsets X of S = [n] for which Span(U;ex A4;) # S.

In contrast to Proposition 2| all generalized bases of M, i.e. all minimal sets
X C [n] for which Span(U;exA;) = S can be generated in incremental quasi-
polynomial time regardless of the sizes of Ay, ..., A,, see [1] for more detail.

References

1. E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, Matroid intersections, poly-
matroid inequalities, and related problems, in Proc. 27th Intl. Symp. on Mathemat-
ical Foundations of Computer Science, (MFCS) 2002, LNCS 2420, pp. 143-154.

2. J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Combina-
torial structures and their applications, Gordon and Breach, 69-87.

3. T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and

related problems, STAM J. Comput., 24 (1995) 1278-1304.

R. Karp, On the complexity of combinatorial problems, Networks 5 (1975) 45—68.

T. Lazarson, Independence functions in algebra, (Thesis), Univ. London (1957).

A. Lehman, A solution of the Shannon switching game, J. Soc. Indust. Appl. Math.

12 (1964) 687-725.

7. L. Lovasz, Submodular functions and convexity, in Mathematical Programming:
The State of the Art, Bonn 1982, pp. 235-257, (Springer Verlag, 1983).

8. J.S. Provan and D. R. Shier, A paradigm for listing (s, t)-cuts in graphs, Algorith-
mica, 15(4) (1996) 357-372.

9. R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees, Networks, 5 (1975) 237-252.

10. N. Robertson and P. D. Seymour, Graph minors, XIII, The disjoint path problem,
J. Comb. Th., Ser. B 63 (1995) 65-110.

11. D.J.A. Welsh, Matroid Theory, Academic Press, 1976.

S Gt



	Introduction
	Enumeration of All Circuits of a Matroid
	Circuits through a Given Element
	Circuits through $t$ Elements
	Minimal Spanning Sets for a Flat
	Circuits in Two Matroids, Generalized Circuits

