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Abstract. At Eurocrypt 02 Cramer and Shoup [7] proposed a gen-
eral paradigm to construct practical public-key cryptosystems secure
against adaptive chosen-ciphertext attacks as well as several concrete
examples. Among the others they presented a variant of Paillier’s [21]
scheme achieving such a strong security requirement and for which two,
independent, decryption mechanisms are allowed. In this paper we re-
visit such scheme and show that by considering a different subgroup,
one can obtain a different scheme (whose security can be proved with
respect to a different mathematical assumption) that allows for inter-
esting applications. In particular we show how to construct a perfectly
hiding commitment schemes that allows for an on-line / off-line efficiency
tradeoff. The scheme is computationally binding under the assumption
that factoring is hard, thus improving on the previous construction by
Catalano et al. [5] whose binding property was based on the assumption
that inverting RSA[N, N] (i.e. RSA with the public exponent set to N)
is hard.

1 Introduction

Secrecy of communication is clearly one of the most important goal of cryp-
tography, therefore many secret-key and public-key cryptosystems have been
proposed to solve it. It is furthermore widely admitted that the main security
notion to be achieved is the semantic security [11] (a.k.a. indistinguishability of
ciphertexts). Actually, a semantically secure public-key cryptosystem is not only
important for secret communications, but it is also a fundamental primitive for
many more complex protocols such as electronic voting, electronic auctions and
secret evaluation of functions to cite some of them. However, having a ”secure”
cryptosystem is in general not sufficient to construct efficient solution for the
above mentioned problems. In general more specific properties, such as a kind of
malleability, or even homomorphic relations, are very useful to obtain practical
constructions.
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Roughly speaking, a public-key encryption scheme allows someone to encrypt
a message for a unique recipient, the one who owns the corresponding private
key (a.k.a. decryption key). But in practice, there is often a natural hierarchy,
either for security or for safety reasons: the head of a group may want to be
able to read any message sent to the members of the group, people may want to
be able to recover the plaintexts even if they loose their private key. Therefore,
it is highly desirable to provide schemes that enable to deal with intermediate
scenarios, in which users are allowed to process their own data, but not those of
other users.

Moreover, in practice, there are many situations on which we need more than
a plain encryption function. In particular, it is often useful to have a provably
secure encryption primitive that allows to perform some computation on the
plaintexts without revealing them explicitly.

In this paper we propose a simple cryptosystem achieving both the above
goals.

1.1 Related Work

El Gamal’s scheme [8] was the first scheme based on the discrete logarithm
problem, more precisely on the Diffie-Hellman problem. Furthermore, it enjoys
a multiplicative homomorphic property (as the RSA cryptosystem [22]) by which
one can easily obtain an encryption of m; - mo by simply multiplying encryp-
tions of my and ms. This feature, however, is not very convenient for practical
purposes. Indeed for many applications one may desire an efficient cryptosystem
equipped with an additive homomorphic property, i.e. such that from encryptions
of my and ms one can obtain the encryption of mi+ms by simply combining the
corresponding ciphertexts. The first additively homomorphic cryptosystem was
proposed by Goldwasser and Micali [I1] in their seminal paper on probabilis-
tic encryption. The Goldwasser-Micali’s scheme is based on quadratic residues.
Given an RSA modulus N, to encrypt a bit b one chooses a pseudo-square
g € Z} (ie. a non quadratic residue having Jacobi symbol equal to 1) and
computes ¢’r? mod N for random r € Z} . The security of the cryptosystem is
based on the so-called quadratic residuosity assumption. To improve on band-
width Benaloh and Fisher [IJ6] proposed a generalization of Goldwasser-Micali
cryptosystem based on the prime residuosity assumption. The basic idea of their
scheme is to consider Z. (instead of Zs) as underlying message space (where e is
a small prime such that it divides ¢(IN) but e? does not). To encrypt a message
m one then sets g"™r¢ mod N, where, in this case, g is a non e-residue (i.e. an
element whose order is a multiple of ¢). The main drawback of this scheme how-
ever is that decryption is rather inefficient as it requires some kind of exhaustive
search to recover the message (and thus it imposes e to be very small). A more ef-
ficient variant of the Benaloh-Fischer scheme was proposed in 1998 by Naccache
and Stern [18], who observed that in order to make the decryption procedure
faster one can consider a value e that is not prime but instead obtained as the
product of several small primes ey, ..., e, such that e divides ¢(NN) but none of
the e?’s does.
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At the same time a completely different approach was proposed by Okamoto
and Uchiyama [20] who suggested to work on the group Z% where N = p%q.
The resulting scheme is very efficient and allows for a pretty large bandwidth
(they use Z, as underlying message space), but unfortunately it is vulnerable to
a simple chosen-ciphertext attack that permits to factor the modulus.

More recently Paillier [2T] proposed a generalization of the Okamoto-Uchi-
yama cryptosystem that works in the multiplicative group Z3, and allows to
consider N as a standard RSA modulus. Details of Paillier’s scheme are presented
below, but its basic idea is that to encrypt a message m € Zy one selects a
random value y in Z% and sets the ciphertext as g™y mod N? (where g is an
element whose order is a multiple of N in Z}..). The semantic security of the
scheme is proved with respect to the decisional N-th residuosity assumption:
given a random value = € Z}; it is computationally infeasible to decide if there
exists another element z in Z};,, such that z = 2V mod N2. Paillier’s scheme
is more efficient (in terms of bandwidth) than all previously described schemes,
moreover no adaptive chosen ciphertext attack recovering the factorization of
the modulus is known. For these reasons Paillier’s proposal is the best solution
presented so far in terms of additively homomorphic cryptosystems.

At Eurocrypt’02 Cramer and Shoup [7] proposed a very general and beautiful
methodology to obtain security against adaptive chosen-ciphertext attacks from
a certain class of cryptosystems with some well-defined algebraic properties.
In particular they showed how to modify Paillier’s original scheme in order to
achieve such a strong security goal. The resulting variant, moreover, allows for a
double decryption mechanism: one can decrypt either if the factorization of the
modulus is available or if some specific discrete logarithm is known.

1.2 Owur Contribution

As described above all the additively homomorphic cryptosystems known so far
base their security on some assumption relying on deciding residuosity.

In this paper we further investigate on the basic Cramer-Shoup variant and
show that by slightly modifying the underlying structure of the scheme we ob-
tain a new cryptosystem that allows for some more useful applications, main-
taining, at the same time, all the “good” properties and with security based on
a different (non residuosity-related) decisional assumption@. Our new public-key
encryption scheme, as the proposal in [7] allows for a double decryption mech-
anism based either on the factorization of the modulus, or on the knowledge of
a discrete logarithm. The former trapdoor can be seen as the master one, while
the latter is a local one: the knowledge of a discrete logarithm helps to decrypt
ciphertexts which have been encrypted with a specific key only, while the fac-
torization of the modulus helps to decrypt any ciphertext, whatever the key is
(as long as the underlying modular group remains the same). The basic version

! Here, by non-residuosity related assumption, we mean a decisional assumption which
claims something different from the intractability of deciding memberships in a high-
residues set.
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of our scheme enjoys an additive homomorphic property (similarly to the Pail-
lier’s scheme [21]). Furthermore, it is semantically secure in the standard model,
based on the decisional Diffie-Hellman assumption modulo a square composite
number. Thus our proposal is the first additively homomorphic cryptosystem
that can be proved semantically secure with respect to a non residuosity-related
decisional assumption.

We emphasize that by applying the Cramer-Shoup [7] general methodology,
our scheme can be proved secure against adaptive chosen-ciphertext attacks in
the standard model.

Interestingly enough, given the master key, a kind of gap group [19] appears
in which the computational Diffie-Hellman problem is hard, while the corre-
sponding decisional problem turns out to be easy — thanks to the easiness of
computing the partial discrete logarithm problem (see below). This is the first
gap group structure known not based on elliptic curves and pairings.

As an additional result we show how to construct a new, efficient, perfectly
hiding / computationally binding commitment scheme based on factoring. A
useful property of such a commitment scheme is that it allows for an on-line/off-
line efficiency trade-off, by which, one may perform the most expensive part of
the work, before knowing the message to commit to. To our knowledge no other
trapdoor commitment scheme with this property, based on factoring, is known.

2 Preliminaries

2.1 Definitions and Notations

Let N = pq be a safe-prime modulus, meaning with this that p and ¢ are primes
of the form p = 2p’ + 1 and ¢ = 2¢' + 1, where p’ and ¢’ are also primes. In the
remaining of this paper, we denote by SP(¢) the sets of safe prime numbers of
length £. We consider G = QR 2 the cyclic group of quadratic residues modulo
NZ2. We have ord(G) = A\(N?)/2 = pp'qq¢’ = NA(N)/2, with A\(N) = 2p'q’. The
maximal order of an element in this group is NA(N)/2, and every element of
order N is of the form a = (1 4+ kN).

The latter statement is not so trivial, but it will be very useful rewritten as
follows: there are exactly N elements of order N in Z%.,, and they are all of the
form @ = 1 4+ kN. Furthermore, since N is odd, if one denotes by ¢ the inverse
of 2 modulo N:

a=1+kN = (1+tkN)? mod N2

Therefore, they are all in G too.

2.2 The Partial Discrete Logarithm Problem

Let g be an element of maximal order in G. For simplicity, we assume that
™) mod N? = (1 4+ N) mod N2, that is k = 1. Given g and h = g% mod N?
(for some a € [1,0rd(G)]), Paillier [21] defined the Partial Discrete Logarithm
Problem as the computational problem of computing @ mod N. We assume this
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problem is difficult (without the factorization of the modulus), as stated in the
following assumption.

Assumption 1 (Partial Discrete Logarithm over Z3.). For every prob-
abilistic polynomial time algorithm A, there exists a megligible function negl()
such that for sufficiently large ¢

p,q < SP(/2); N = pg;
Pr | A(N,g,h) =amod N |g < G; a <+ [1,0rd(G)]; | = negl(¥).
h = g% mod N?;

Moreover Paillier proved that, when the factorization of the modulus is avail-
able, such a problem is efficiently solvable.

Theorem 2 (See [21]). Let N be a composite modulus product of two large
primes. Let G be the cyclic group of quadratic residues modulo N%. The Partial
Discrete Logarithm problem (in G) cannot be harder than factoring.

Proof. 1t is easy to see that we can solve the PDL problem if the factorization
of N is provided, by using the following algorithm,

1. Compute C' = h*®™) mod N2 = (1 + N)® mod N? = (1 + aN) mod N?;
2. Return the integer (C' — 1 mod N?)/N.

2.3 Details of Paillier’s Cryptosystem

Let N = pq be an RSA modulus and g an element having order aN (a > 1) in
the multiplicative group Z},.. To encrypt a message m € Zy Paillier proposed
the following mechanism

Py(m,y) = g"y" mod N?
for some random y € Z}, and he proved that:

— Py is a bijection between Zy x Z3} and Z}..

— Py is a trapdoor function equivalent to RSA[N, N].

— The above encryption scheme is semantically secure against chosen-plaintext
attack under the N-residuosity assumption (see [21] for details).

Since Py is a bijection, given g, for an element w € ZY., there exists an unique
pair (¢, z) € Zy x Z% such that w = g2 mod N2. We say that c is the class of
w relative to g. Informally, (see [2I] for more details) Paillier defined the Com-
putational Composite Residuosity Class Problem as the problem of computing ¢
given w and assumed that it is hard to solve.
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2.4 The “Lite” Cramer-Shoup Variant

Let N be a product of two safe primes p and ¢ and g an element of order A(N)
in Z%. Such a g can be found by randomly selecting a 1 € Z},, and setting g =
— 2V, Tt is not hard to show that this results in a generator with overwhelming
probability (see [7] for more details). Then we produce the remaining part of
the public key h as follows. Randomly choose a secret key z € [0, N2 /2] and set
h = g mod N2. (Note that for the purposes of this paper, we are considering a
very simplified version of the Cramer-Shoup scheme, achieving semantic security
only with respect to a passive adversary. The reader is referred to [7] for the
complete solution achieving full security properties).

To encrypt a message m € Zy one chooses a random value r € [0, N/4]
and computes the ciphertext (A, B) where A = ¢g" mod N? and B = h"(1 +
mN) mod N2.

Conversely to decrypt a ciphertext (A, B) two methods are possible: either
by computing (1+mN) as B/A* mod N? or by using the decryption procedure
described by Paillier [21] for his scheme. Note that for this second mechanism
to work, knowing the value of B is sufficient. Indeed m can be retrieved from
B =h"(1+mN) mod N? as follows. We denote by 7 the inverse of A(N) mod N
(note that ged(N, A(N)) = 1):

B B ™) — 1 mod N2
e N

7 (mod N) since B ) =14 mA\(N)N

2.5 The Decisional Diffie-Hellman Problem over Z};.

Informally speaking, the Decisional Diffie-Hellman Problem consists, when given
two random Diffie-Hellman “public keys” A = g* and B = ¢°, in distinguishing
the resulting shared key g from a random value (see [L1] for the definition
of computational indistinguishability). Of course, this is to be done without
possessing neither any secret keys a, b nor the factorization of the modulus.

We thus state the Decisional Diffie-Hellman Assumption (DDH) over a squa-
red composite modulus of the form N = pq.

Assumption 3 (DDH Assumption over Z}.). For every probabilistic poly-
nomial time algorithm A, there exists a negligible function negl() such that for
sufficiently large ¢

p.q < SP(L/2); N = pg;
g+ G; z,y,z+ [1, ord(G)];
X = ¢® mod N2;Y = g¥ mod N?; —
Zy = g* mod N2; Z; = ¢*¥ mod N?;
b+ {0,1};

A(N, X, Y,

Prl 7, mod N) = b

% = negl(¢).

The Decisional Diffie-Hellman Assumption is related to the regular Diffie-
Hellman assumption that says that given g® and ¢g® one cannot compute g% in
polynomial time. Clearly this assumption relies on the hardness of computing
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discrete logs. Reductions in the inverse direction are not known. Interestingly
enough, if the factorization of the modulus is available solving the decisional
Diffie-Hellman problem (over Zy=2) turns out to be easy.

Theorem 4. Let N be a composite modulus product of two large primes. Let
G be the cyclic group of quadratic residues modulo N?. The decisional Diffie-
Hellman problem (in G) cannot be harder than factoring.

Proof. Assume the factorization of the modulus is provided, we are given a
challenge triplet G = (g%, ¢% ¢°) and we have to determine if it is a Diffie-
Hellman triplet or not. Our strategy is as follows. Using the factorization of the
modulus we compute a mod N, b mod N and ¢ mod N, then we check whether
the following relation holds:

ab=cmod N. (1)

Note that if G is a Diffie-Hellman triplet, the relation () is in fact satisfied
with probability 1. On the other hand if G is not a Diffie-Hellman triplet, the
probability that the relation () is verified is:

Prlab=cmod N A ab# cmod p'q'N].

Since a, b and ¢ are random elements in Z%,» they can be written as a = a; +az N,
b=0b1+bN and ¢ = ¢1 + coN where a1, as, b1, ba, ¢1, ca € Zn. Thus denoting
6 = agby + a1bs + asba N the above probability becomes

Pr[a;by = ¢; mod N A § # ¢2 mod ¢(N)]
= Prla;1b; = ¢; mod N] x Pr[d Z ¢2 mod ¢(N)].

The probability that a1b; = ¢; mod N for randomly chosen a1, by and ¢ is
clearly . On the other hand the probability that the event § # ¢, mod ¢(N)
happens is bounded by 1 — ﬁ In total the above probability can be bounded

by % — m and thus our strategy succeeds with probability approximately
1-+. O
N

Remark 5. A Gap-Group is a group in which a computational problem is hard,
but the corresponding decisional one is “easy”. In other words, the computa-
tional and the decisional problems are strictly separated in such a group. This
implies that the corresponding Gap-Problem [19] is computationally hard. The
first example of gap group was proposed by Joux and Nguyen in [T5]. The above
result shows that, when the factorization of N is provided, Z%.. can be seen as
a some kind of gap group for the Diffie-Hellman problem.

3 The Scheme

Our scheme can be seen as an additively homomorphic variant of the well-known
El Gamal cryptosystem [§]. Let h and g be two elements of maximal order in
G. Note that, if h is computed as g%, where z €r [1, A\(IN?)], then z is coprime
with ord(G) with high probability, and thus & is of maximal order. The message
space here is Zy .
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Key Generation - Choose a random element o € Z},, a random value a €
[1,0rd(G)] and set ¢ = a® mod N? and h = g mod N2. The public key is
given by the triplet (N, g, h) while the corresponding secret key is a.

Encrypt - Given a message m € Zy, a random pad 7 is chosen uniformly and
at random in Zp= the ciphertext (A, B) is computed as

A= g" mod N? B =h"(14+mN) mod N2
First Decryption Procedure - Knowing a, one can compute m as follows
B/(A%) — 1 mod N2
m = ¥ .

Alternate Decryption Procedure - If the factorization of the modulus is
provided, one can compute a mod N and r mod N as seen in the previous
section. Let ar mod ord(G) = 41 + 72N, thus 71 = ar mod N is efficiently
computable. Note that

Ny (ar )
D<B>“V _ (g (4 mN)M

— 2

So, still denoting by 7 the inverse of A(N) in Z%;, one can compute m as

D — 1 mod N?
m:+~ﬂ (mod N).

Remark 6. Note that even though the two described decryption procedures pro-
duce the same result when applied to correctly generated ciphertext they are
not equivalent from a computational point of view. Indeed knowing the discrete
logarithm a of h with respect to the base g in Z3,, allows to decrypt any valid
ciphertext generated using g and h as underlying public key. More precisely
knowledge of a allows to decrypt any ciphertext generated with respect of a
public key in {N} x G x H where G x H is the set of the couples (g, h) such
that h = ¢ mod N2. On the other hand knowing the factorization of the mod-
ulus allows to decrypt ciphertexts generated with respect to any public key in
{N} xG xG.

Remark 7. Another interesting comparison is regarding the invalid (that is, not
correctly generated) ciphertexts. Namely, if a ciphertext is not correctly gener-
ated, the fault can be detected when decrypting using the secret discrete log-
arithm. On the other hand, however, if the ciphertext is decrypted using the
factorization of the modulus, the resulting - invalid - plaintext cannot be rec-
ognized as such. To illustrate this, consider the following example. Let (A, B)
a given ciphertext, with A € G. Since g is a generator of G there exists r, and
thus K, m, such that:

A = g" where r € [1,0rd(G)],
B =h"(K +mN) where K,m € Zy.
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If decrypted with the discrete logarithm trapdoor, this leads to a failure,
since B/A?* differs from 1 mod N. Then, the incorrect encryption is detected.

Conversely if one decrypts using the factorization, one gets a mod N and
r mod N and thus (let us denote ar = v + 2 N):

A(N)
D:(éJ = g M) =AM (K 4 NV = (K 4+ mN)MY) mod N2
g
= K* + \KM YN = K* 4+ A(K~ mod N)mN  (mod N?)
=1+4+aN +mLAN =1+ (ar +mL mod N)A(N)N (mod N)?,

where one can write K*) =1+ oN mod N2, L = K~ mod N and where 7
is the inverse of A mod N. Thus, the output plaintext is m’ = aA™! + mK !
mod N.

4 Security Requirements
4.1 One-Wayness

In this section we prove that the one-wayness of the scheme presented in section Bl
can be related to the Lift Diffie-Hellman problem that we are about to define.
Let g, X, Y, Z € G where X = ¢g°mod N2, Y = ¢gY mod N? and Z =
g®¥ mod N2. The well known (computational) Diffie-Hellman (modulo N?) asks
to compute Z when X,Y,g and N are provided. Similarly we define the Lift
Diffie-Hellman problem as the one to compute Z when X, Y, g, N and Z mod N
are given. Of course it cannot be harder than the Computational Diffie-Hellman
problem, but we don’t know if the two problems are actually equivalent.

Definition 8 (Lift Diffie-Hellman Problem). We say that the Lift Diffie-
Hellman computational problem is hard if, for every probabilistic polynomial time
algorithm A, there exists a negligible function negl() such that for sufficiently
large ¢

p,q < SP(t/2); N =pg;
A(N, X,Y,Z mod N) g G; z,y+ [1,0rd(G)];  neal(r
= Z (modN?) X = ¢® mod N%;Y = g¥ mod N?; = negl(£).
Z = ¢g®¥ mod N?;

Pr

Theorem 9 (One-wayness). The scheme presented in section [3, is one-way
if and only if the Lift Diffie-Hellman problem is hard.

Proof. For g,h € G, let (N,g,h) be a public key, and (A,B) = (¢",h"(1 +
mN)) mod N? an encryption of a random message m. If one can efficiently solve
the Lift Diffie-Hellman problem then, on input X = A =g¢",Y = h and z =
h"(14+mN) mod N = h” mod N, one can compute the quantity Z = h” mod N>
from which retrieving m is trivial.

Conversely if one can correctly extract m from a correctly generated ci-
phertext, then such a capability can be used to solve the Lift Diffie-Hellman
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problem as follows. Assume we are given g, X = ¢g® mod N2, Y = ¢g¥ mod N?
and z = ¢g"¥ mod N. For a randomly chosen message m, we generate a ci-
phertext (A, B) as follows: we set the public key (N,g,h = Y), A = X and
B = 2(1+mN) mod N2. Our goal is to retrieve Z = g*¥ mod N2.

Let M be the extracted plaintext corresponding to (A, B). We have by defi-
nition:

B=Z(1+MN)=Z+ZMN = Z+ (Zmod NYMN = Z + zMN mod N>.

On the other hand, from the construction of B, it follows that z + zmN = Z +
2zM N mod N2. Thus, we can efficiently compute Z = z(1+ (m—M)N) mod N2.
O

With the following theorem we make explicit the relation existing between
the lift Diffie-Hellman problem and the partial Discrete Logarithm problem.

Theorem 10. If the Partial Discrete Logarithm problem is hard then so is the
Lift Diffie-Hellman problem.

Proof. The proof goes by a standard reduction argument. Assume we are given
an oracle O for the lift Diffie-Hellman problem that on input a triplet of the form
(X,Y,Z) = (¢* mod N2, g¥ mod N2, g*¥ mod N) returns the value g*¥ mod N2
with some non negligible probability e. Our goal is to use the provided oracle
to compute the partial discrete logarithm of a given challenge h = g*tt2% in
Zy2 with respect to the base g (we assume g is a generator of the group G of
quadratic residues in Z};,). Since g is a generator of G any quadratic residue c
can be written as ¢ = g””?/\(m for some r1 € Zxny and 1o € Zy. Moreover
g*MN)/2 = (1 + aN) for some a € Zy.

Now we set X = h and Y = ¢g" (1 + 7o N) mod N? where r; is a random
value in [0...(N + 1)/4], and r a random element in Zy. Note that Y is not
uniformly distributed over G, but its distribution is statistically close to uniform
(the statistical difference is of order O(27/71)). Finally we set Z = X" mod N.

Observe that

Y =g (1 +79N) = g™ (1 + arga  IN) = gntm22AN/2 (1nod N)?

where 8 = o~ mod N.
Now we query the oracle O on input (X,Y, Z) and with probability € it will
provide the correct answer Z’ such that

7 = g(a1+ﬂ2N)(T1+ﬂT’2%/2) mod N2 = thmﬁm)\(N)/Q mod N2

Thus
A i
- g@Pr2AN/2 od N? = (14 a173N) mod N?

from which we can get a; easily.
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In [21] Paillier noted that when the order of g is maximal, and N is the prod-
uct of two safe primes, then the partial discrete logarithm problem is equivalent
to the problem of computing the composite residuosity class. This equivalence
result can easily be extended to the case on which g is a generator of the group
of quadratic residues modulo N?2. This implies that, in our case, the Lift DH
problem is at least as hard as the computational class problem introduced by
Paillier.

4.2 Semantic Security

Theorem 11 (Semantic Security). If Decisional Diffie-Hellman Assumption
in Zy= holds, then the scheme presented in section [3, is semantically secure.

Proof. For the sake of contradiction assume the scheme is not semantically se-
cure. This means that there is a polynomial time distinguisher A that can break
semantic security. Our goal then is, given a quadruple G = (g, g%, ¢°, g), to use
A to decide if it is a Diffie-Hellman or a random one (i.e. if ¢ = ab mod ord(G)
or not). The public key is first set as (IV,g,h) where h = g¢%; then once the
adversary has chosen the messages mq and mq, we flip a bit d and we encrypt
mq as follows: E(mg) = (A, B) where A = ¢g® and B = g°(1 + mqN) mod N2,

Clearly if G is a Diffie-Hellman quadruple, the above is a valid encryption
of mg and A will give the correct response with non negligible advantage. On
the other hand, if G is not a Diffie-Hellman quadruple, we claim that even a
polynomially unbounded adversary gains no information about mg from E(mg)
in a strong information-theoretic sense.

Let ¢ = ab + r mod ord(G), we can note that r is random and uniformly
distributed in [1, ord(G)] and can be written as 71 +roA(N)/2, with r1, 79 € Zy.
The information received by the adversary (together with the public key) is of
the form

g" mod N%,  ¢®**"(1+myN) mod N?

Let us concentrate on the second value (for the sake of simplicity let us assume
that g*(M)/2 = (1 4+ N) mod N?).
g (1 +mgN) = g®g" g"2*MN/2(1 4 myN) mod N2
= ¢+ (1 + N)"2 (1 4+ mgN) mod N2
= g"™™ (1 + (rg +mg)N) mod N2

Note that, in the above relation, ro hides mgy perfectly and thus A cannot
guess d better than at random.

5 A First Application: Trapdoor Commitment

5.1 A New On-Line/Off-Line Trapdoor Commitment Scheme

In this section we present a new trapdoor commitment scheme based on the
encryption function proposed in section [B] The security of the scheme can be
proven to be equivalent to the hardness of factoring.
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As sketched in the introduction an useful property of the proposed commit-
ment function is that it allows for an on-line/off-line efficiency trade off, meaning
with this that it becomes very efficient to compute when a preprocessing stage
is allowed. On-line/off-line trapdoor commitment schemes were first proposed
by [5]. In particular, to commit to a message m the sender has to compute only
two modular multiplications (using a previously computed value). Such a value
is completely independent of m and for this reason can be computed before even
knowing to which message to commit to. Furthermore we point out that such
a preprocessing step requires a single modular exponentiation. Thus even when
the precomputation time is considered, our new scheme is basically as efficient
as all the other trapdoor commitment schemes known in the literature.

5.2 Trapdoor Commitments

A trapdoor commitment scheme (a.k.a. chameleon commitment [16]) is a func-
tion with associated a pair of matching public and private keys (the latter also
called the trapdoor of the commitment). The main property we want from such
a function is collision-resistance: unless one knows the trapdoor, it is infeasible
to find two inputs that map to the same value. On the other hand, knowledge
of the trapdoor suffices to find collisions easily.

More formally, a trapdoor commitment scheme is a triplet (1C,C, D), where:

— K is a randomized key generation algorithm. On input a security parameter
k it outputs a pair of public and private keys: K(1¥) = (pk, sk).
— The function C is the commitment function which depends on PK

C:PKxMxR—C

where PK, M, R, C are the public key, message, randomness and committed
values spaces respectively.
— The function D is the collision-finding function,

D:SKxMxRxCxM-—R

on input the trapdoor information, a committed value (with its inputs) and
a message it finds the corresponding random string. That is, given m, r and
¢ = C(pk, m,r), for any message m’ we have D(sk,m,r,c,m') = r’ such that
¢ =C(pk,m',r").

We require that

1. (KC,C, D) are functions computable in polynomial time.

2. No efficient algorithm, taking as input the public key, should be able to
find, with non negligible probability, two messages m # m’ and two random
values r # 1’ such that C(pk, m,r) = C(pk,m/,r’).

3. For any message m, the distribution {¢ = C(pk, m,r)},cr has to be indis-
tinguishable from uniform.

Note that the term “indistinguishable” above can be intended as usual in three
ways: either the distributions are identical, or they are statistically indistinguish-
able or computationally indistinguishable (see [12]).
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5.3 Previous Work on Trapdoor Commitments

The notion of trapdoor commitments was first proposed by Brassard, Chaum
and Crépeau [4] in the context of zero-knowledge arguments. It is well known
that trapdoor commitments can be based on the existence of claw-free trapdoor
permutations [T3[14].

A specific implementation based on factoring was presented in [13T4] and
it requires a number of modular squarings in Z% which is proportional to the
length of the committed message.

A famous scheme based on the hardness of computing discrete logarithms
has been presented by Boyar et al. [3]. This scheme requires a full modular
exponentiation (or alternatively, once again, a number of multiplications which
is proportional to the length of the message).

The first commitment scheme with the on-line/off-line property was proposed
by [5]. The security of such scheme is based on the hardness of inverting the RSA
function (with public exponent set to N).

5.4 Our Commitment Scheme

Key Generation — The key generation algorithm, on input a security param-
eter ¢ produces a modulus N product of two safe primes of size ¢/2 together
with a square h of maximal order in G. The public key is given by N and h. The
factorization of the modulus is the private key.

Committing a Message — To commit to a message m € Zy the sender chooses
T €R Zna(N)/2 and sets

C(r,m) = h"(1 +mN) mod N2.

Then he sends B to the receiver. Notice that the sender can compute A" in
advance and without needing to know m. Once m is provided, only two more
multiplications are required to commit.

Remark 12. As already pointed out in [5] we notice that any commitment C can
be modified in order to obtain some on-line/off-line efficiency property. As a
matter of fact such a “modified” commitment scheme C’ would work as follows:
during the off-line stage the sender commits to a random value s with randomness
r using C as underlying commitment function. Let a = C(s,7) be the commitment
value. Once m is known the sender commits to it by simply sending a and
¢ =m@®s. The only problem with this approach is that it increases the length of
the commitment. Here we denote by on-line/off-line commitment schemes those
which achieve such an efficiency trade-off, without increasing the length of the
committed value.

Theorem 13 (Security). Under the assumption that factoring safe-prime mo-
duli is hard the above function C is a perfectly hiding trapdoor commitment
scheme.
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Proof. First notice that, for any m, if 7 is uniformly distributed in Zyx(n)/2,
then C(m,r) is uniformly distributed in G (this is because any 1 + mN is in G,
and A" is uniformly distributed in G, since h is a generator.)

Now given a commitment C(m,r) € G together with the corresponding
(m,r), knowing the factorization of the modulus, one can find collisions, for
any message m/ as follows. Let k be such that h*Y) = (14 kN) mod N2, and d
the inverse of k in Z%. Thus we can write

C(m,r) = h"(1+mN) = h"(1 + kdmN) mod N? = pr+4mAN) mod N2,
This implies that we can find the required r’ as follows
" =7+ (m—m')d\(N) mod NX(N)/2.

Finally to prove security we assume to have an algorithm A that can find,
on input (N, h), two couples (m,r) and (m/,r’) such that C(m,r) = C(m/,r’).
Note that if » = ¢/ this implies that m = m’, thus we will assume that r # r’.
From the two given couples one can write:

h'(1+mN) =h" (14 m'N) mod N?
and thus, letting A, =7 — ¢’ and A,, = m' —m,
hA" = (14 A,,N) mod N2.

Since h has order A(N)N/2 and (1 + A,,N) has order (at most) N, this means
that A, is a multiple of A(N)/2. This is enough to factor [17]. O

5.5 Application to On-Line/Off-Line Signatures

On-line/Off-line signatures were introduced by Even, Goldreich and Micali [9].
The basic idea is to split the signature generation process in two stages: the first
one, more expensive, is computed off-line before the message to sign is known.
The second, more efficient, phase is performed once the message is available. The
proposed method, however, is not very practical as it increases the length of the
signature by a quadratic factor. More recently Shamir and Taumann [23] intro-
duced a new paradigm — as well as several efficient constructions — based on
chameleon commitments, which performs the above conversion more efficiently.
Moreover, this technique, improves on the security of the underlying signature
scheme which is used to sign only random strings chosen off-line by the signer.

The basic idea is as follows. During the off-line phase the signer computes
a chameleon commitment function on input a random message m’ and random
string r’ and signs the resulting value H(m’,r’). Once the message m to sign is
known, the signer use his knowledge of the trapdoor key to compute a value r
such that H(m,r) = H(m/,r").

Using our new commitment scheme one can obtain a simple on-line/off-line
signature scheme based on factoring.
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6 Variants and Other Applications

6.1 A Variant of the Cryptosystem

We propose a variant of our scheme in which the randomness is chosen in a
smaller set, namely in Zy rather than in Zx2. Note, however, that we still
consider an element g of maximal order in G. To encrypt a message m € Zy,
the operations to perform remain the same:

A= g" mod N?, B =h"(14+mN) mod N?

With this variant, the decryption procedure that makes use of the factoriza-
tion is simplified, and in particular allows to detect some incorrectly generated
ciphertext. More precisely, it becomes possible to check whether the underlying
random exponent r belongs to the correct interval: before decrypting a cipher-
text, the receiver first recover p = log, A mod N using the factorization of the
modulus; after that, it checks if A = ¢g” mod N? holds. If the equality does not
hold, it rejects.

Of course, if the ciphertext is correctly generated, that is, r € Zy, the recov-
ered value p is actually r itself, and thus the equality holds. Whereas if A is not
correctly generated, the relation A = g” holds with negligible probability only.

Note that decrypting such a ciphertext using the first decryption procedure
(i.e., with the discrete logarithm of h to the base g), the decryption never “fail”
at this step, simply because the receiver do not recover the value of r, and cannot
check its range.

The decryption procedure continues as follows. If using the discrete logarithm
trapdoor, the receiver computes h™ as A* mod N?; if using the factorization of IV,
he computes A" as h” mod N2. Then in both cases, one checks whether B/h" = 1
or not, and if yes, one recovers the plaintext.

6.2 The Small Diffie-Hellman Problem over Z}"Vz

We introduce a new variant of the Diffie-Hellman Problem. In a nutshell, when
given (A, B) = (g%, g°) where b is small, i.e. b € Zy, the computational (resp.,
decisional) problem consists in computing (resp., distinguishing from a random
element in G) the value C' = g% mod N2.

We thus state the Small Decisional Diffie-Hellman Assumption (S-DDH)
over a squared composite modulus of the form N = pq.

Assumption 14 (Small-DDH Assumption over Z}.). For every proba-
bilistic polynomial time algorithm A, there exists a megligible function negl()
such that for sufficiently large £

p,q < SP((/2); N =pg;
g Gz, z + [1,0md(G)];y + Zn; 1
X =g¢®*mod N%;Y = g¥ mod N%; | — = = negl(¥)
Zoy = g* mod N%; Z; = g*¥ mod N?; 2
b {0,1};

A(N, XY,

Pr Zymod N) =10
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One easily proves the following two theorems:

Theorem 15. The Small (Computational) Diffie-Hellman Problem cannot be
harder than factoring.

Theorem 16. The above variant of our cryptosystem is semantically secure
under the Small Decisional Diffie-Hellman assumption.

Indeed, knowing the factorization of N allows to fully retrieve the second
exponent, thus making the computational problem trivial. The proof for second
theorem is similar to the proof for the basic scheme (theorem [IT.

6.3 A New Hierarchical Encryption Scheme

A hierarchical encryption scheme [I(]] can be simply based on our scheme by
providing the authority with the master key (the factorization of the modulus)
and by giving to each player a local key (an El Gamal-like private key.)

In such a scheme, anybody is able to encrypt a message for a particular
player, in such way that only this player and the authority are able to decrypt
properly. Moreover, by randomly choosing two elements g, h and encrypting
with respect to such a “key”, it is possible to design ciphertexts that can be
decrypted by nobody but the authority.

Further work might consists in investigate such possibilities in the contexts
of electronic voting or digital auctions.

7 Conclusion

This paper is a further investigation within the family of homomorphic cryptosys-
tems modulo a squared composite number. As a first contribution, we provided
a new variant of the Cramer-Shoup scheme whose main feature is to offer two
different decryption procedures, based on two different trapdoors. In particular,
this scheme is the first additively homomorphic cryptosystem whose security is
not based on a residuosity-related assumption. Derived from this scheme is a
new trapdoor commitment, whose security provably relies on the factorization
problem. This commitment scheme allows for a very interesting on-line/off-line
efficiency trade-off, without increasing the length of the commitment.
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A Details for Theorem I0

In that theorem we use the fact that the distribution of the oracle input is
statistically close from the uniform one. Here we prove this fact with more details.

More formally, we want to evaluate the statistical distance § between the two
following distributions:

{g747222|(r1,72) € Zajo x Zy fand {g™ (14 12N)|(r1,72) € s x Zv |

First we note that the map Zy, x Zy — G : (c1, c2) = ¢ = g°* 7222 mod N?
is a bijection. Thus we have to compute:

5= Z P% |:gr1+7‘2>\/2 _ C] _ ZPr |:g7“1(1 + TQN) _ C]
e T1ERLN /2 T1ERL(N+1)/4
ro€ERLN r2€RZN
= Z Pr [r1=c¢] Pr [ro=c]— Pr [g”(l +7roN) = C]
T1€ERZN 2 r2€RLN T1E€ERL(N+1)/4
c€G r2€ERZN
2 1
= — X = - Pr [Tll—&—rN:c}
X TN T nenZiv 9" (L +r2N)

r2€RZN

Denoting ¢*/? = 1 4+ N mod N? and f = a~! mod N, we have g (1 4+
roN) = g"+72022 mod N2. Then we observe that for A2<r < %, we have
the following “collision”:

gr1+r25)\/2 — g(rl—A/2)+(r2[3+1)>\/2 (mod N)2

Hence, two cases appear when summing up (of course, the probabilities that
ro or rof3 or ro3 + 1 equals a given ¢y are all 1/N):

2.y x m f0<c< -2
Pr |:g'r’1+r2ﬂ)\/2 — gC1+Cg)\/2:| —
4 1L oip N+1 _ X A
Ly xy 57 —5<e<y
Consequently, we gets (recall that 258 — & = 244)

_ptq 2 8 |\ (A _ptg)p2 4

4 | AN N(N+1) 2 4 AN N(N+1)
<0 >0

This is easily seen negligible. a
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