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Abstract. Much of current robot research is about learning tasks in
which the task to be achieved is pre-specified, a suitable technology for
the task is chosen and the learning process is then experimentally investi-
gated. A more interesting research question is how can robot be provided
with an architecture that would enable it to developmentally ‘grow-up’
and accomplish complex tasks by building on basic built-in capabilities.
Previous work by the authors defined the requirements of a robot archi-
tecture that would enable this to happen – in this paper, we describe
how some components of such an architecture can be achieved using an
immune network model, and present preliminary results that show the
plausibility of the suggested approach.

1 Introduction

A great deal of current research work in mobile robotics and autonomous systems
is still focused on getting a robot to learn to do some task such as pushing an
object to a known location or running as fast as possible over rough ground.
The learning process may be supervised, unsupervised or a process of occasional
reinforcement, but the whole aim in such work is to get the robot to achieve the
task that was pre-defined by the researcher.

As a step towards achieving truly autonomous robots that can function pro-
ductively for long periods in unpredictable environments, it is important to in-
vestigate how one might design robots that are capable of ‘growing up’ through
experience. By this, we mean that the robot starts with only some basic skills
such as an ability to move about and an ability to sense and react to the world ,
but in the course of time it develops genuinely new skills that were not entirely
engineered into it at the start. In particular it should be capable of building some
kind of hierarchy of skills, such that for each new skill snew there is one or more
sets of skills S1, S2, · · ·Sn such that snew is significantly more easily acquired if
the robot has acquired all the members of some Si than if it lacks at least one
member of each of those sets. To achieve this requires a fundamental shift in
thinking when designing robotic architectures compared to the type of systems
prevalent in the literature today.

Previous work by the authors [1] attempted to lay out a research agenda by
which this question could be answered and identified six essential ingredients of
an architecture that can realise growing-up robots. These are: sensors, memory,
data-abstraction, planning, motivation, and finally a developmental schedule.
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[1] provides an overview of existing developmental architectures in relation to
the above features. In this paper, we argue that an immune-network model can
form the central component of a new architecture, which in particular provides
a convenient method for handling the first four requirements. The immune net-
work model was first proposed by Jerne in [7], and suggested that antibodies not
only recognise foreign antigens, but also are connected together in a large-scale
network formed by chains of stimulation and suppression between communicat-
ing antibodies. Although still controversial in immunological circles, the model
has been successfully adopted by many AIS practitioners, producing diverse ap-
plications from data-mining systems [16] to simple robot-control architectures
[4,10,14].

In the next sections, we describe the proposed architecture in detail and
provide results of some early experimentation. Although this in no way represents
the complete architecture and is tested only in simulation, it does at least point
to the plausibility of the model.

2 Previous Work

AIS ideas have already appeared in robotics research. Lee [9] proposed an AIS
for realisation of cooperative strategies and group behaviour in collections of
mobile robots, and Singh and Thayer [13,15] proposed another architecture for
coordination and control of large scale distributed robot teams based on concepts
from the immune system. Of more relevance to this research is the work of Ishig-
uro and Watanabe who introduce an immune-network for behaviour-arbitration
in [4,17], for gait-control in walking robots [5] and also the work of [10] who
also consider an immune network for decentralised autonomous navigation in a
robot. In some senses, this work suffers from the same problems as other robotic
approaches in that it results in a control module that is essentially static, i.e.
successfully implements certain fixed behaviours, but would not permit a robot
to ‘grow-up’ in the developmental sense outlined in the introduction. However,
the overall approach contains many elements that can be incorporated into our
proposed system and hence is briefly outlined here.

In [4,17], antibodies are formed into a network that successfully arbitrates
between simple behaviours on a real robot; initially they handcrafted antibodies,
in later work they evolved them. An antibody consists of a paratope defining a
desirable condition and related motor-action, and an idiotope which identifies
other antibodies to which the idiotope is connected. Connection between the
idiotope of one antibody x and the paratope of an antibody y stimulates the
antibody y, and links between antibodies in the network can either be evolved
by a genetic algorithm [17] or formed via an on-line adaptation mechanism which
provides reinforcement signal to links, [5]. The architecture which we propose
must also handle behaviour arbitration, however we wish to construct it in such
a way that its links also express sequences of actions, and thus paths in the
network represent both a past history of robot actions (i.e. an episodic memory)
and also provide information useful for planning.
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A related line of research to AIS is that of the application of classifier sys-
tems to robot-control. Rules in a classifier system consist of conditions which
are matched against the current state of the environment, and associated ac-
tions which are executed by the ‘winning’ rule. Such systems have been used
to control a robot in simulation, for example [18] and also animats navigating
in environments containing aliasing states, for example [8]. However, although
these system generate control rules automatically, individual rules are distinct
and there is no interaction between rules, therefore a pure classifier system ap-
proach cannot represent sequences of actions which is essential if the goals of
this research are to be met. However, both the work of [18] and [8] partially in-
forms the architecture proposed here, in particular in the chosen representation
of antibodies in the network with regard to representing sensor information and
motor actions.

Finally, [2] proposes a developmental mechanism which has some similarities
to the proposed method, but it is not clear whether his system is scalable. His
work, and its relation to our proposed model, is further discussed in section 3.1.

3 A New Architecture

Let us suppose that at the very start, the robot is driven by basic instincts such
as a ‘desire to avoid collisions’ and a ‘desire to seek novelty’. The robot should
learn through experience, and the learned behaviours should gradually take over
control from the instinct-driven initial system. The robot therefore needs to cap-
ture some minimal details of its experiences. In the proposed model, depicted in
figure 1, this information is held as a collection of rule-like associations (RLAs).
Each RLA is a node in a network and consists of a (partial) description C of
sensory information, a robot action command A and a partial description of the
sensory effects E of doing the action. After creation, an RLA therefore expresses
some of the expected results of doing action A in a context C, and weighted
network links express the sequencing information; a sub-path involving strongly
positive weights would express an episode.

In immunological terminology, antibodies correspond to these RLAs, and
antigens correspond to sensory data (not necessarily just raw data, see below);
the C and E parts of an RLA can be regarded as paratope and epitope. Much as
in Jerne’s [7] immune-network hypothesis, connections are formed and adjusted
by a process of recognition between the paratope of one antibody and the epitope
of another, and result in stimulation and suppression of one antibody by another,
according to a dynamical equation of the form given in equation 1, as first sug-
gested by Farmer in [3]. In this equation, ai(t) ≥ 0 represents the strength or
concentration of antibody i at time t, ei represents the stimulation of antibody
i by the antigen (current sensory information), the first summation term rep-
resents the total stimulation of the antibody i from the other antibodies in the
network, the second summation term represents the suppression of antibody i
from other antibodies in the network, and ki is a natural decay factor.
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Fig. 1. A schematic representation of the proposed architecture

dai(t)
dt

=


ei +

N∑
j=1

mijaj(t) −
N∑

j=1

m′
jiaj(t) − ki


 ai(t) (1)

Immune system models require a mechanism by which recognition can occur.
For example, AIS network models (e.g. [16]) often use the Euclidean distance in
data-space between two data-items to signify recognition. In the proposed archi-
tecture, recognition between RLAs or antibodies serves the following purposes:

– individually, they can express a temporal association between RLAs – a
strong positive connection between X and Y means that if RLA X fits the
current situation then RLA Y is a possible candidate to describe the subse-
quent situation. Thus, individually, they can capture some aspects of episodic
memory. Importantly, the boundaries of episodes can emerge from the dy-
namics of the network. That is, an episode ends when there is no clear winner
as to the successor RLA.

– individually, they can (as inhibitory links) express a competition between
different RLAs to account for the current situation.

– collectively, they can act as an attentional mechanism. The dynamics of the
network can cause it to settle to a state in which some set of RLAs are
reasonably active and the remainder are not; the active set represents the
‘current memory context’, as it were. In the set of linear differential equations
in equation 1 above, the system can only have either a point attractor or a
limit cycle depending on the values of the constants involved, but note that
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the ei would normally be time-dependent (the external data changes with
robot activity) so the system should be capable of flipping between different
attractors and limit cycles as the robot moves and the environment changes.

Clearly, this approach raises several questions. By what process(es) are RLAs
created, and on what timescales? How are the connections between antibodies
formed, and the strength of their affinities quantified? How will the dynamics of
the network operate? We consider these questions next.

3.1 Generating RLAs

Although the aim of the architecture is to provide a framework in which the
robot can grow-up, it seems reasonable to start with a system that has built-in
basic behaviours, for example “explore”, “avoid obstacles”, “avoid boredom”.
We propose that this is handled by a partially pre-built network of RLAs, which
then undergoes adaptation and growth until it becomes capable of allowing the
robot to perform non-trivial and purposeful-seeming sequences of actions.

First, there is a short fixed-length queue that contains recent interesting
sensory and motor events. The queue provides a form of short-term or working
memory and distantly resembles human short-term memory which experimental
studies have suggested is of bounded capacity (although expandable through
lengthy training) and contains things that are fairly closely linked to the sensory
input. For our initial purposes, ‘interesting’ means ‘significantly changing’; for
example if the robot is moving straight ahead across a vast empty space, the
queue should not alter. The contents of this queue provide the raw material
from which candidate RLAs can be built and then inserted into the network.
Clearly the queue needs to contain some consequences of an action before this
can happen, so RLAs can only get created at certain moments. The RLA pool
can be viewed as containing fragments of experience. We propose RLAs of the
following form:

RLA-3:
condition: front-sensors = high

and left-sensors = low
and moving-average-of-front-sensors = low

action: turn right
expectation: left-sensors = high
activation: 0.05

links: 7/0.9, 453/-0.2, 64/1.2

Note that the condition does not fully describe the raw sensor data, and may refer
to higher-level data constructs at later stages of the robots development. At the
very start only raw sensor data will be available, but in real application, this will
contain far too much information to be useful. So, abstractions will be proposed –
for example, natural ones to suggest at the start would contain either thresholded
or thresholded-moving-average versions of raw sensory information. We envisage
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that there will be some data proposer and data critic processes that suggest and
evaluate new data abstractions built out of all existing data items (whether raw
or already abstracted). Thus, the data universe will be dynamic. It is envisaged
that the RLA proposer processes will gradually generate RLAs representing
higher and higher levels of knowledge, thus representing the robot ‘growing-
up’ in terms of its capabilities to understand its world. Thus, for example, an
early set of RLAs composed of raw sensor data indicating that a robots left and
front sensors are high, might eventually be replaced by an RLA representing the
concept ‘corner’, with an associated action to turn right. Note that this thinking
has some similarities with the work of Drescher [2] who introduced a general
learning and concept-building mechanism called the schema mechanism in order
to reproduce aspects of Piagetian cognitive development [11] during infancy. In
this mechanism, the world is initially represented only in terms of very simple
motor and sensor elements. Crucially however, the mechanism can define new,
abstract, actions and invent novel concepts by constructing new state elements
to describe aspects of the world that the existing repertoire of representations
fails to express. Eventually, representations are discovered which can represent
an object independently of how it is currently perceived and may be far removed
from the original description.

Newly-formed RLAs will be presented to the network, where they will survive
by being found to be useful and continue to survive only by continuing to be
useful. Conversely, RLAs will be removed from the network if their stimulation
falls below some threshold value. Data proposer processes are likely to be based
on clustering techniques, for example k-means clustering or self-organising maps.
Recent work by Prem et al in relation to this architecture shows promising results
in using the ISO-map technique [12] for finding abstractions in time-series of
sensor data generated by a real-robot. Data critic processes are likely to be
based on checking whether data items have become redundant.

3.2 Quantifying Recognition between RLAs

As already stated, there is no straightforward way of quantifying the extent to
which one RLA in the network should recognise another. As already mentioned
in section 2, [10,17] tackled this problem by using a genetic algorithm, but this
method has significant disadvantages if the goals of the new architecture are to be
achieved. Firstly, use of a GA is likely to be too computationally expensive and
slow in a real robotic environment, and furthermore, the connection strengths
between antibodies could possibly change over time as the robot learns more
about its environment, which would require the use of a continuously running
GA. This type of process does not really have an analogy in the biological im-
mune system in which connection strengths are determined by physical binding
processes which do not alter over time, but there is an obvious analogy with
the kind of Hebbian learning processes occurring in neural networks in which
connection strengths are continuously adjusted over time.

However, [5] describes use an on-line adaption mechanism in an immune-
network for achieving behaviour-arbitration – in this mechanism, affinity values
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are adaptively modified until the required behaviour emerges. This type of ap-
proach familiar to reinforcement learning appears to be more promising when
using real robots, and hence will be adopted in this architecture.

3.3 Network Dynamics

As mentioned in section 3.1, the RLA pool can be thought of as containing frag-
ments of experience which may become incorporated into the network. Initially,
the network should consist of instinct driven behaviours but over time, these
should be replaced by more sophisticated behaviours – however, it seems rea-
sonable that the network should still maintain some record of these instinctive
behaviours, as they may be useful at points in the future, and hence can override
other behaviours given the right conditions.

Biological and neurological studies tell us that the network cannot be in-
finitely large; the brain has a finite volume in which neurons can exist, and
similarly the immune system cannot physically contain an infinite number of
antibodies (and anyway, the number of different types of antibodies is limited
by the diversity of the DNA from which they can be formed) hence it seems
logical and practical that the size of the network must somehow be bounded.
Various mechanisms for achieving this can be found in the literature; plausible
ones would seem to be based on the notion of a competition for resources, where
RLAs would have to prove their worth to be allowed to remain in the network
else be replaced by others. The natural decay constant ki of the antibody would
aid this process but further ‘cell-death’ mechanisms need to be investigated.

3.4 The Emergence of Planning

Planning-like behaviour should emerge from the network: this could occur as
a dynamic cascade of internal events. For example, a goal is represented as an
antigen which is injected into the system. As in the immunological system, the
network must respond to this antigen - the antigen (goal) remains in the system
until it is satisfied. At any point in time, the external environment will consist of
multiple and changing data items, representing goals, sensory information and
(perhaps) maps and internal memory states; the resulting course of action is
results from a chain of RLAs firing, determined by the dynamically changing
concentrations of the antibodies. Thus, the network effectively records chains
of events that can allow a desired goal to be achieved. This may lead to the
emergence of more complex behaviours.

Alternatively, a more classical planning approach could be taken. The RLAs
associate expectations with states, therefore in theory a virtual antigen could
be injected into the system, representing some potential goal or action, and the
dynamical equations applied to determine what would be the result of such an
action. By comparing the results of a number of such virtual experiments, a ‘plan’
could then be selected. The network thus provides a blackboard for ‘thought’
experiments by the robot.
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4 An Initial, Partial Implementation of the Ideas

This section describes an experiment performed as a proof of concept for the
architecture, though clearly it is only a basic skeleton of the proposed sys-
tem. We used Olivier Michel’s simulation (http://diwww.epfl.ch/lami/team/
michel/khep-sim/) of a Khepera robot. This robot has six forward-looking IR
sensors and two backward-looking ones. Each returns a value between 0 (noth-
ing sensed) and 1023 (object very close), but disturbed by significant noise. The
robot has two wheels controlled by stepped motors, each wheel can be com-
manded to go forward or backward, by an integer amount in the range 0 to 10.
The robot’s world is bounded and contains user-configurable internal obstacles.
We used just the default world for this experiment and the robot actions were
limited to moving forward at speed 4 (ie both motors), or turning left or right
by 45 or by 90 degrees – that is, five possible actions.

In order to perform a proof-of-concept demonstration, a set of 32 hand-crafted
RLAs were produced, using the representation described below. It should be
emphasised however that in the final system all RLAs should be generated au-
tomatically by the system – methods for achieving this are currently under in-
vestigation. The concentrations of each antibody were initially all set to a value
of 0.1, and initially, there were no links in the network (that is, all link weights
were 0).

As previously mentioned, antigens should capture the essence of the current
sensory experience of the robot. In this initial model, an antigen consists of
a binary string representing 2 types of sensory information; the first captures
the current sensory data, the second attempts to maintain some record of the
recent history of the robots experience. In both cases, rather than deal only
with raw sensory data, we describe the sensory information in a binary string
of total length 24 bits. The first 8 bits represent thresholded sensor values from
each of the robots eight sensors (1=over the threshold, 0=under the threshold).
A moving average of each sensor value is also maintained over 5 timesteps,
and each of these values is converted into a 2-bit value (00=0-255, 01=256-511,
10=512-767, 11=768-1023) resulting in a further 16 bits.

Antibodies consisted of a binary string with 3 parts. The first 24 bits rep-
resenting the condition part of the RLA corresponds to the current sensory
information, and thus has the same form as the antigens. The 2nd part denotes
a motor action, and the final part, the paratope, represents the expectation of
the sensory conditions that should prevail following execution of the action, and
therefore again consists of 24 bits. In this case however, the bits can contain
‘don’t care’ symbols.

The algorithm described below was run over a period of 100,000 timesteps
which took about 9 minutes using the Khepera simulator on a 1GHz PC.

1. Initialise a pool of antibodies with a concentration of 0.1. At this stage, all
connections have a strength of 0.0

2. At time t:
– Present an antigen representing sensory current conditions to the net-

work
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– Apply equation 1 to update the concentration of all antibodies in the
network

– Select the antibody with highest concentration and execute its action -
call this antibody x

3. At time t + 1:
– Get the current antigen
– If the match between the current antigen and the expectation of the

previously selected antibody x is greater than some threshold, update
the links between x and all antibodies whose condition part matches the
expectation of x, by an amount δ1 proportional to the strength of the
match

– else if the expectation was incorrect, decrease the strength of all links
emanating from x by an amount δ2.

4. Goto step (1)

The matching algorithm is simple; it does a bit-by-bit comparison and accu-
mulates a ‘match score’. A bit-comparison involing a ‘don’t care’ scores +1; if
there is no ‘don’t care’, then equality is worth +2 and inequality is worth −2.
Thus the score can range between −48 and +48, and the threshold we use is
80% of maximum. In this experiment, we chose δ1 = δ2 = 0.01 but this clearly
influences stability and speed of adaptability, and needs further experiment.

4.1 Results

After running the algorithm for an initial learning phase of 100000 iterations,
the RLAs chosen by the algorithm were recorded. A flow diagram showing the
sequences of surviving RLAs is shown in figure 2. Note that this is not the
immune network topology, but is instead used to illustrate how the different
sensory experiences are captured when using the immune network approach. As
an example, the RLA sequence 0, 1, 5, 6, 8, 0 captures the sequence of events
that occur when the robot meets an obstacle head-on and turns to avoid it.
This sequence could be interpreted as: ‘sensing clear space, go forward, obstacle
looming in front, go forward, obstacle ahead, turn right, obstacle to the left, turn
right, obstacle more to the left, turn right, sensing clear space, go forward’ and
so on.

The remaining RLAs appear to capture some episodes (sequences of sensory
events) in a reasonably stable manner, thus the robot could be said to have a
long-term memory that maintains a record of the relationships between sensory
situations, actions performed and the effects of those actions.

5 Conclusion

In this paper we have proposed a robot control architecture based on an AIS
that should be capable of capturing at least some aspects of ‘growing up’ through
experience. An initial experiment showed that it seemed to be capable of cap-
turing some episodes of experience. However, a lot more remains to be done and
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Fig. 2. Flow diagram showing sequences of chosen RLAs

in particular we have not yet done any experimental investigation of the idea of
changing the data universe dynamically, nor have we done much exploration of
the sensitivity of the system to the many choices involved. Clearly, much work
also needs to be performed in investigating the scalability of the system. Fur-
thermore, it is well known in robotics research that simulated systems rarely
transfer seamlessly to the real-world, therefore we fully intend to transfer this
architecture to a real-robot (see [6]).

However, we do believe that what we have sketched out represents a very
fruitful line of work, both in terms of studying robot development and in terms
of studying AISs. Too much research in AISs still relies on overly-simplistic
metaphors. We claim that the problems of robot development provide an excel-
lent context for studying AIS issues such as sophisticated matching algorithms,
the dynamics of network models, the problems of handling a continually-evolving
representation and even the computational tractability of AISs.
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