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Abstract. This paper presents improvements to SOSDM based on ideas
gleaned from the Danger Theory of immunology. In the new model, an-
tibodies emit a signal describing their current level of contentment –
monitoring the total level of contentment in the system provides a mech-
anism for determining when an immune response should occur, i.e. when
new antibodies should be produced. It also provides a method of detect-
ing catastrophic changes in the environment, i.e. significant changes in
input data, and thus provides a means of removing antibodies. The new
system, dSOSDM, is shown to be more robust and better able to deal
with dynamically changing databases than SOSDM.

1 Introduction

A growing body of literature has shown that the Artificial Immune System (AIS)
paradigm is a viable metaphor for performing data-clustering, for example [4,5,8].
In particular, the most recent applications capitalize on the dynamic aspect of
the immune metaphor to produce systems capable of clustering moving data.
Such systems must necessarily be self-regulating, however experience has shown
that they are often difficult to control. This paper introduces an extension to
an existing system that allows it to self-regulate its own size, in response to a
dynamically changing environment. The extensions are rooted in the relatively
contentious Danger Theory.

Danger theory is a theory that has been proposed by Matzinger [7] as an
alternative viewpoint to the classical self/non-self discrimination theory popular
with a large faction of immunologists. The theory claims to counter certain ob-
jections to the classical viewpoint and takes the stance that the immune system
does not discriminate between self and non-self, but ‘some self from some non-
self’. It is proposed that this occurs by the immune system responding to danger
and not non-self. The theory is controversial – this paper does not defend or
dispute its existence, nor does it attempt to exactly model any of the proposed
biological mechanisms implicit in the theory. It is simply of interest because at
a high level, some of its concepts can be adapted to improve the engineering of
artificial systems.

The interested reader should refer to [7,2] for a detailed description of how
she proposes the immune system utilises the notion of danger. The theory in-
vokes many different types of immunological cell with a complex sequence of

J. Timmis et al. (Eds.): ICARIS 2003, LNCS 2787, pp. 194–203, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Improving SOSDM: Inspirations from the Danger Theory 195

signals passing between them. However, a detailed analysis is unnecessary here
in to order to understand how the theory can inspire the implementation of arti-
ficial systems. An extremely simplified explanation is as follows: if cells become
damaged (for example due to attack by invading bacteria) then those cells emit
a distress signal as they undergo lytic cell death. Antigen-presenting cells in the
region of the cells emitting these signals capture any antigens in the neighbour-
hood, and then travel to the local lymph node where they present the captured
antigen to lymphocytes. The immune system then responds, causing the stimu-
lated antibodies within the danger zone to undergo clonal expansion. The nature
of what exactly constitutes a danger signal is unclear and is the subject of much
immunological research. It has been suggested that heat-shock proteins might
be released as a cell dies, or that the sudden lack of synaptic contact with an
antigen presenting cell might signal danger. However, in order to make use of
the concept in artificial systems, it is sufficient to accept that such a signal can
exist.

1.1 Danger Theory and AIS

The literature contains very few direct examples of the danger theory being
utilised in Artificial Immune Systems. [3] implements a basic version of the idea
in a computer immune system by using the signals generated by dying com-
puter processes to indicate danger, and thus detect when a fault has occurred,
though this is clearly only one of many possible danger signals that could be
emitted by a computer immune system. [1] present a conceptual discussion on
the use of danger theory in artificial systems, and attempt to ground the discus-
sion by suggesting relevant application areas to which the theory could usefully
be applied. However, their ideas tend to be directed towards systems which es-
sentially implement some form of negative selection (for example to perform
anomaly detection) and consider how danger theory can address weaknesses in
such systems. In fact, they state that “it is not obvious how the Danger Theory
could be of use to data-mining problems . . . because the notions of self and non-
self are not used”. However, in this paper we argue that the concepts embodied
in the Danger Theory can be applied to models of the immune system in which
there is no notion of self and non-self, so long as the AIS practitioner does not
intend to faithfully replicate mechanisms observed in the biological system. This
approach is of course common in probably all biologically inspired paradigms –
neural networks cannot hope to faithfully model brains, nor ant-colony systems
real colonies of ants, yet by taking inspiration from natural systems, successful
artificial ones have been produced.

We suggest that two basic ideas can be gleaned from the Danger Theory
which can be useful to many kinds of artificial immune system implementations:

1. cells can emit distress signals, which reflect their relationship with the current
state of their immediate environment

2. cells can die an unnatural unprogrammed death (lytic cell death as opposed
to apoptosis, natural cell death) if severely stressed
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The new version of SOSDM implements both these ideas. First however, a
brief description of the limitations of the current SOSDM and other AIS models
is given.

2 Limitations of SOSDM and Other AIS Models

SOSDM was first presented in [5,6] as system for clustering dynamically chang-
ing data-sets. It is a self-organising system based on analogies with immunol-
ogy and sparse-distributed memories – an overview of the algorithm is given
in figure 1. This paper concerns step (6) of the algorithm – the original model
dynamically adjusted the number of antibodies in its system through the use
of an antibody-addition mechanism and an antibody-deletion mechanism. The
former mechanism added antibodies to the system whenever stagnation of the
system was detected – this was defined to occur whenever the number and type
of antibody in the system had remained static over some pre-defined and fixed
number of iterations. The antibody-deletion mechanism deleted antibodies from
the system whenever their stimulation-level (relative to other antibodies in the
system) was less than another pre-defined threshold. These methods have some
unappealing aspects:

– Stagnation could occur simply because the system had discovered the best
set of antibodies to cluster the data, and not because it had become ‘stuck’
in a local optima

– If unnecessary antibodies were added due to incorrectly detecting stagnation,
the delete mechanism would have to be invoked several iterations later to
remove such antibodies

– Determining a suitable threshold below which to delete antibodies was diffi-
cult – if not chosen carefully, severe oscillations occurred in which antibodies
would be deleted then re-added a few iterations later, etc.

The literature shows that controlling the growth of an artificial immune sys-
tem can often be problematic. In many proposed immune-network algorithms,
for example [9], new antibodies are added to systems via a cloning mechanism,
which needs to be carefully checked in order to produce networks of bounded
size. Thus, the problem for such systems is not how to add antibodies but how
to delete them from the system in order to prevent exponential growth of the
network. Timmis [9] tackled this by introducing a resource allocation mecha-
nism, in which a network had a finite number of arbitrary resources which it
had to allocate to its members. Antibodies that do not obtain sufficient resource
are removed. This work was further improved on by Neal [8] who simplified the
resource allocation mechanism in an algorithm named SSAIS such that resources
were not allocated centrally (which is contrary to the distributed nature of the
biological immune system) but were dealt with locally by each node in the net-
work. In the next section, we propose a mechanism by which both antibody
addition and deletion can be controlled by an algorithm inspired from danger
theory.
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1. begin with a fixed number of antibodies A, randomly initialised.
2. present a subset s of the data-set visible at time t to the SOSDM
3. distribute the data in the set s to each antibody in the SOSDM, with a strength

proportional to the relative affinity of the antibody for the data
4. compute the accumulated error at each antibody
5. update all antibody definitions depending on the total accumulated error at

each antibody
6. add or delete antibodies if necessary
7. go back to step 2

Fig. 1. The SOSDM algorithm

3 Adding Danger to SOSDM

A key aspect of the SOSDM algorithm is that antigens become bound to an
antibody if the affinity of the antibody for the antigen relative to all other an-
tibodies in the system is greater than some threshold. Thus, it follows that all
antigens bind to at least one antibody, even though the affinity between any
given antigen-antibody pair may be very weak.

Inspired by the notions embodied in the danger-theory of immunology, we
propose that an antibody accumulates a measure of the affinity between itself
and all antigens it binds too. This quantity can be considered to be a measure
of the current level of ‘contentment’ that the antibody is currently experiencing.
The antibody transmits its current contentment level to the system – if the
total level of contentment within the system consistently remains below a fixed
threshold, then the system responds by producing a new antibody. Using the idea
of contentment, we also model both natural and lytic cell death. If the system
suddenly experiences a significant change in its overall level of contentment, cells
undergo lytic death in response to the sudden ‘shock’. This could happen for
example if the data which the system is exposed to suddenly changes radically,
for example if entire clusters disappear or clusters ‘move’. If a cell has zero
contentment, this indicates that it is not bound to any antigens and it undergoes
natural cell death (i.e. the process is independent of the danger theory). The
model is explained in detail below.

4 The New Model

Assume that an SOSDM immune system I contains N antibodies, ai, each con-
sisting of a binary string of length l, and X antigens (data-items), xi, also of
length l. Applying the SOSDM algorithm results in nai antigens binding to an
antibody ai.

First, we measure the average distress of each antibody bit, d(aij) which
is simply a cumulative measure of the error between the actual value of the
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antibody bit j and the value of corresponding antigen bit j of each antigen it
binds.

d(aij) =
k=nai∑

k=0

(|aij − xkj |)/nai
(1)

Then, once all data-items have been stored in the immune system, for each
antibody ai, the total number of bits whose average distress is greater than a
threshold Tb (the distress-threshold) is calculated – Dai

Dai =
j=l∑

j=1

{
1 if d(aij) > Tb

0 otherwise
(2)

The contentment of an antibody, cai is then defined as shown below, and
reflects the percentage of contented bits in the antibody.

cai = 1 − (Dai/l) (3)

Thus, the average contentment of the whole immune system, cI can also be
calculated, simply as

cI =
i=N∑

i=1

cai/N (4)

cI is central to the new addition mechanism. The idea is to monitor the value of
system contentment cI and use it to signal to the immune system that it needs
to produce new antibodies. In order to ignore the effects of any instability in
the system from one iteration to the next due to random effects, we monitor
the moving-average of cI – m(cI) – and compare it to a threshold denoted Ts,
the system-contentment threshold. If m(cI) is below this threshold, then a new
antibody is added to the system, in order that it can try and increase its con-
tentment level. The algorithm is shown in figure 2. Antibodies with contentment
level equal to zero, i.e. that do not recognise any antigens, undergo the equivalent
of natural cell death and are removed from the system. The algorithm allows
the system to be in one of two states: immature or matured. Whenever a new
antibody is added to the system, it enters a maturational phase to allow it to
adjust to the new set of antibodies. This phase endures for a fixed number of
iterations before the system is considered mature.

5 Experiments Using Static Data-Sets

An initial set of experiments was performed with the original SOSDM in order
to analyse how the contentment parameter varied and hence determine suit-
able settings and sensitivities for the bit-threshold Tb and the system-threshold
Ts. Typical results are reported for an experiment on a data-set known as the
quarter-set, containing 200 binary data-items, each of length 64 bits, in which
the data is equally divided into 4 clusters (see [5,6] for a detailed description of
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– At each iteration
• Calculate moving-average of system contentment cI over previous m it-

erations, m(cI)
∗ If m(cI) < Ts and the system is not immature, add a new antibody

to the system
∗ Set system-phase to immature if an new antibody added

• If the system is immature phase
∗ Update number of iterations immature counter
∗ If immature counter equals maximum iterations allows in maturation,

reset system phase to matured

Fig. 2. The new mechanism for antibody addition

this data-set). The original SOSDM algorithm was run in each from a starting
point in which it contained two antibodies, and new antibodies were added at
intervals of 20 iterations whenever stagnation was detected, up to a maximum of
4, as described in section 2. The deletion mechanism in SOSDM was turned off so
that antibodies could only ever be added to the system for the purpose of these
experiments. The moving average of the system contentment was calculated over
5 iterations of the algorithm.

5.1 Parameter Settings

The first experiments investigated the variation in the contentment parameter
as the original SOSDM system was running. Figure 3(a) shows the variation in
contentment of both the whole system and individual antibodies as the threshold
Tb is varied. From these experiments, we concluded that a sensible value for the
threshold parameter was 0.35 – if the parameter is set below this, it takes the
system too long to achieve a stable level of contentment, and if it is much higher,
the average contentment is always too high to make it a meaningful indicator
of system performance. Figure 3(b) shows the variation in individual antibody
contentment at the fixed threshold of 0.35. Further experiments showed that this
choice of value was robust across the two other data-sets described in section 5.2.

Further experiments were performed using the quarter data-set, this time
using dSOSDM with Tb set to the chosen value of 0.35. Again, no deletion
mechanism was included, to see if the addition mechanism alone could control
the size of the systems produced. As above, the systems were initialised with 2
antibodies, however this time no limit was placed on the number of antibodies
the mechanism could add. Figure 4 shows how the setting of the system-threshold
parameter Ts affects the number of antibodies present in the final system after
dSOSDM had been applied for 200 iterations. The results are the average of 10
experiments for each value of Ts.

Figure 4 suggests that 0.5 < Ts < 0.6 is a suitable value – the number of anti-
bodies produced is then comparable to the known number of clusters (although
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Fig. 4. Average number of antibodies obtained using dSOSDM as parameter Ts, the
system-threshold, is varied

of course, due to the random method of generating the clusters, there may be
more or less than exactly 4 clusters). Increasing the contentment threshold, i.e.
requiring the average match between an antibody and its bound antigens to be
higher, forces the system to find sub-clusters and hence add more antibodies.
This parameter offers a simple way of tuning the specificity of the system –
if specific trends wish to be identified in the data, the value can be increased,
whereas a lower value identifies more general trends.

5.2 Results: Growing the AIS Using dSOSDM

Experiments were repeated using half and eighth data-sets, [5]. These binary
data-sets are again artificially generated to contain two and eight known clus-
ters respectively (although again, each cluster could contain sub-clusters due to
the random generation process). dSOSDM was applied to both data-sets, and
initialised with 2 random antibodies in each case. Ts was set to 0.55 and Tb to
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Table 1. Comparison of the average number of antibodies used by SOSDM and
dSOSDM to cluster data-sets, and average accuracy of recall (RA) of data (standard
deviations in brackets)

Data Expected # Clusters # Clusters RA RA
No. clusters SOSDM dSOSDM of string generalist dSOSDM

half 2 2.29 2.30 (0.58) 48 49.38 (0.49)
quarter 4 6.75 3.99 (1.41) 40 43.38 (0.76)
eighth 8 10.06 10.18 (0.96) 36 42.85 (0.29)

0.35, the values found from experiments with the quarter data-set. The length
of the maturational period was set to 10 iterations. Again, dSOSDM did not
use any deletion mechanism and no limit was placed on the number of anti-
bodies that could be added to the system. Table 1 shows the average number
of antibodies created by dSOSDM in each case (averaged over 100 runs of 200
iterations each). The table compares these results to those found using SOSDM
on the same data-sets, originally reported in [5]. Note that SOSDM required the
use of both addition and deletion mechanisms in order to control its size and
stability, but the simpler dSOSDM is either comparable or better in performance
in each case. The table also shows the average recall accuracy of each item in
the dataset which is indicative of the accuracy of clustering (see [5] for further
explanation).

6 Clustering Dynamically Changing Data

The original motivation behind SOSDM was to produce a system that could
dynamically cluster data, and thus react to changes in the environment. If new
clusters appear in the data-set, or clusters suddenly disappear, then the system
should be able to detect these changes and react accordingly, by adding new
antibodies or removing existing ones. Using the danger theory analogy, such
extreme changes in environment would cause severe stress or trauma to cells
which were previously content, causing them to undergo lytic cell death. Thus,
we model this in dSOSDM by monitoring the average change in cell contentment,
∆cI between iteration (t) and iteration (t + 1) for the system, according to
equation 5.

∆cI =
1
N

i=N∑

i=0

|cai
(t + 1) − cai

(t)| (5)

Note the use of the absolute value of the change in equation 5 as environ-
mental changes could have a positive or negative effect on contentment, however,
even sudden positive changes are traumatic to the cells. If ∆cI changes by more
than some fixed parameter z then the environment that the system has been ex-
posed is considered to have changed radically and all cells in the system undergo
lytic death. The consequence of this is that the system is effectively re-initialised
and therefore produces new, random, antibodies (the minimum number of anti-
bodies required to be present in the system is always fixed at 2). The only caveat
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Fig. 5. Variation in numberof antibodies with dynamically changing data

to this is that if the system is still in a maturational phase, then catastrophic
changes are ignored.

6.1 Experimental Results

Two set of experiments were performed with dynamically changing data: in ex-
periment 1, the environment consisted of the quarter data-set for 100 iterations,
this was replaced by the half data-set at iteration 101, and then again by the
quarter data-set again at iteration 201. Experiment 2 reversed the order of pre-
sentation of the data-sets, i.e., first the half set, then the quarter set, etc. Initial
experimentation showed that z = 0.05 was sufficient to cause the desired be-
haviour in the system. Figure 5 shows typical behaviour from both experiments
over 300 iterations. Points at which lytic cell death occurred are marked. The
left-hand figure shows antibodies being added to the system during the first 100
iterations to accurately cluster the quarter data-set with 4 antibodies – lytic
death occurs when the data changes and the system is re-initialised with 2 new
antibodies, and no further ones need to be added in order to cluster the half-set.
At iteration 200, lytic death again occurs and 2 new antibodies are produced
(therefore the total number in the system appears in the figure to remain con-
stant), and a further antibody is added to more accurately cluster the quarter
set. The right hand-figure basically shows the reverse – it is interesting to note
in this figure that during exposure to the final half data-set, the system con-
tentment is consistently just below the threshold Ts, resulting in the periodic
addition of a new antibody. The new antibody does not succeed in recognising
any antigens however, so is always removed due to natural cell death. dSOSDM
is thus able to dynamically adjust to the correct number of clusters present in
the data in each experiment.

7 Conclusion

Using ideas from Danger Theory, we have improved the original SOSDM al-
gorithm to make it more able to deal with dynamically changing environments.
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Simple experiments have shown that the immune systems produced do suffer un-
controllable expansion and can react to changes in the environment. However,
there is still much room for improvement – in particular we plan to modify the
mechanism given in section 6 so that antibodies react individually to changes in
their own contentment induced by their local environment, rather than transmit-
ting values to a central controller. This is a simple modification to the system.
This is more in keeping with the principles of the Danger Theory. Furthermore,
more complex data-sets will be tested, and comparisons to conventional cluster-
ing algorithms given.
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