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Preface

This book describes work carried out by the authors and their co-authors
during the period 2011-2017. From its beginnings at the Hamilton Institute in
Ireland, the work eventually embraced a rich network of researchers in several
disciplines from across the globe, involving collaborators from North America,
Europe, Australia and Asia, and researchers from both academia and industry.

The period 2011-2017 will probably be considered to be a very disruptive
period in the evolution of the automobile. Cars have basically been in the
same form, with the same functionality, since the invention of the diesel
engine. Now, suddenly, disruption and innovation are coming from every
direction, causing a rethink of the ways that cars are designed and used in
cities. It is our great fortune to have been active in the automotive area
during this period, and to have been able to work on some of the research
challenges that have arisen.

As we have mentioned, this book describes work carried out not only by
the authors, but also by a host of other collaborators, to all of whom we owe
a huge debt of gratitude.

First and foremost, we would like to thank our Ph.D. and Masters
students who worked directly on this topic. In particular, we would like to
mention and acknowledge the contributions of Arieh Schlote, and Florian
Hausler who were (along with Sonja) our first students working on this topic,
as well as the more recent contributions of Mingming Liu, Yingqi Gu, and
Eoin Thompson. All of the aforementioned contributed greatly to our EV
work, and many of our joint results are reported in this book.

Thanks is also due to our colleagues, Wynita Griggs and Rodrigo
Ordénez-Hurtado, for their substantial contributions.

We are also greatly indebted to our close collaborators: Chris King
(Northeastern University); Martin Corless (Purdue University); Jia Yuan Yu
(Concordia University); Joe Naoum-Sawaya (Ivey Business School); Giovanni
Russo, Jakub Marecek (both IBM Research); Kay Massow, Ilja Radusch,
Thomas Hecker (all from Fraunhofer Fokus); Steve Kirkland (University
of Manitoba); Rick Middleton (the University of Newcastle, Australia);
Astrid Bergmann and Jorg Raisch (both Technical University of Berlin);
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Julio Braslavsky (CSIRO Energy); Mahsa Faizrahnemoon (Simon Fraser
University); and Brian Purcell (Nissan Ireland). Finally we thank Julian
Danner for his tireless work in helping prepare the figures in this book.

Robert Shorten also thanks ESB swimming club for facilitating work on
this manuscript during the long winter training sessions of 2016-17.

We are also very grateful to our funding agencies; in particular Science
Foundation Ireland.

Finally, we thank CRC Press -Taylor & Francis for giving us the opportu-
nity to write this book. In particular, we would like to thank Nora Konopka
for supporting this project, Kyra Lindholm for coordinating the manuscript
preparation, Karen Simon for handling the final production, Shashi Ku-
mar for his LaTeX assistance, and John Gandour for designing the book cover.
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MATLAB® is a registered trademark of The MathWorks, Inc. For product
information please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA

Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com


www.mathworks.com
mailto:info@mathworks.com

Acronyms

ADAS

Al

AIDL

AIMD

API

CCCV

DER

EMU

EV

EVRP

FEV

G2V

GMFV

HEV

HIL

HVAC

2v

ICE

Advanced Driver Assistance System.
Additive Increase.

Android Interface Definition Language.
Additive Increase Multiplicative Decrease.
Application Programming Interface.
Constant Current, Constant Voltage.
Distributed Energy Resource.

Engine Management Unit.

Electric Vehicle.

Electric Vehicle Routing Problem.

Full Electric Vehicle.

Grid to Vehicle.

Guaranteed Minimum Future Value.
Hybrid Electric Vehicle.
Hardware-in-the-Loop.

Heating, Ventilation, Air Conditioning.
Infrastructure to Vehicle.

Internal Combustion Engine.

XV



xvi

ICEV
IoT
ISA
ITS
JOSM
KKT
MD
MFPT
NMAE
NTS
OEM
PHEB
PHEV
PV
QoS
SOC
SPONGE
SUMO
TCP
TraCI
V2G
V21

V2v

Electric and Plug-in Hybrid Vehicle Networks

Internal Combustion Engine Vehicle.
Internet of Things.

Intelligent Speed Advisory.
Intelligent Transportation Systems.
Java OpenStreetMap Editor.
Karush-Kuhn-Tucker.
Multiplicative Decrease.

Mean First Passage Time.
Normalized Mean Absolute Error.
National Travel Survey.

Original Equipment Manufacturer.
Plug-in Hybrid Electric Bus.
Plug-in Hybrid Electric Vehicle.
Photovoltaics.

Quality of Service.

State Of Charge.

Smart Procurement Of Naturally Generated Energy.
Simulation of Urban MObility.
Transmission Control Protocol.
Traffic Control Interface.

Vehicle to Grid.

Vehicle to Infrastructure.

Vehicle to Vehicle.



Acronyms xvii

V22X Vehicle to Infrastructure and Vehicle to Vehicle.
VANET Vehicular Ad-hoc NETwork.

YoY Year on Year.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

1

Introduction to Electric Vehicles

1.1 Introduction

Growing concerns over the limited supply of fossil-based fuels are motivating
intense activity in the search for alternative road transportation propulsion
systems. In addition, regulatory pressures to reduce urban pollution, COq
emissions and city noise have made plug-in electric vehicles [23, 166] a very
attractive choice as the alternative to the internal combustion engine [140].
However, despite the enormous benefits of such vehicles, their adoption and
uptake has, to this point, been disappointing. In this chapter we shall outline
some of the impediments to electric vehicles, and discuss some of the solu-
tions to these problems that will be addressed in this book, as well as other
opportunities that arise when using this new form of mobility.

1.2 Benefits and Challenges

Basically, an Electric Vehicle (EV) is a vehicle that no longer relies solely
on an Internal Combustion Engine (ICE) as the only propulsion mechanism,
but rather uses an electric drive system as a replacement, or to enhance, the
ICE. Roughly speaking, three types of electrically propelled vehicles can be
distinguished.

e A Hybrid Electric Vehicle (HEV) combines an ICE and an electric motor
within the drive train. Mostly, the electric motor supports the ICE for
fuel economy and/or performance. The vehicle is then either propelled by
the combustion engine or the electric drive.

e A Plug-in Hybrid Electric Vehicle (Plug-in Hybrid Electric Vehicle
(PHEV)) is a vehicle equipped, in general, with a larger battery compared
to HEVs, that allows recharging of the battery via home outlets or at
charging stations. While in most cases both the electric drive and the ICE
are able to propel the vehicle, some vehicles use solely the electric drive.
In this latter case the ICE can be used to recharge the battery or directly

1



2 Electric and Plug-in Hybrid Vehicle Networks

produce electricity for the electric drive. Also, in most cases PHEVs can
be used in a full electric mode if there is enough energy stored in the
battery. This allows one to select when and where to release pollutants.
This functionality shall be used in some applications discussed in the book.

e A Full Electric Vehicle (FEV) runs solely on an electric drive system. As
with PHEVs their batteries are large and can be recharged in charging
stations or at home. Since there are no pollutants released while driving,
these vehicles are often marketed as zero-emission vehicles. Naturally, this
is not exactly a correct terminology, since the recharging of the batter-
ies will cause emissions depending on the actual emissions of the power
generation in the country. Due to the fact that many power plants are
located in less populated areas, the use of FEVs still has beneficial effects
on emissions in population centers. Such vehicles may be considered as
filters for turning dirty into clean energy.

Of these three types, we shall distinguish PHEVs and FEVs from HEVs,
and we shall denote the former as plug-in EVs, to emphasize that they con-
tinuously have to recharge their batteries. In Figure 1.1 a graphical overview
over the various EV types is given.

Electric Ve-
hicles (EVs)

{ Plug-in Elec- } { Hybrid Electric }

tric Vehicles Vehicles (HEVs)

Full Electric Ve- Plug-in Hybrid Elec-
hicles (FEVs) tric Vehicles (PHEVs)

FIGURE 1.1
Classification of some different EV types

While the deployment of plug-in EVs can give rise to various environmen-
tal and health improvements, their adoption to date has been disappointing.
According to initial reports [6], even in Europe, where the green agenda was
well received, fewer than 12000 EVs were sold in the first half of 2012 (of
which only 1000 of these were sold in the UK). This number represented less
than 0.15% of total new car sales in that year. These figures were in spite
of the fact that many European governments had offered incentives for the
purchase of EVs in the form of subsidies and had also invested in enabling
infrastructure. There are however hints that the numbers may soon dramati-
cally change. For instance, growing 59% year over year (YoY), approximately
12000 electric cars were sold across the US in January 2017, accounting for
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approximately 1% of US auto sales'. Similarly, the Chinese market had more
than 32000 new electric cars on the streets in March 2017, an 89% increase
over the same month the previous year, with the annual growth rate at 31%>2.
Numbers in Europe remain contradictory, with Northern countries leading the
market (e.g., in 2017 Norway has the highest per capita number of all-electric
cars in the world: more than 100 000 in a country of 5.2 million people?®). How-
ever, things seem to be speeding up, recently Volvo have announced that all
new cars launched from 2019 onwards will be partially or completely battery-
powered. The company called this step a “historic end” to building models
that only have an internal combustion engine*. The day after the Volvo an-
nouncement, Emmanuel Macron’s government announced that France will end
sales of petrol and diesel vehicles by 2040, as part of an ambitious plan to meet
the targets of the Paris climate accord®. Only few days later, a similar plan
was unveiled to ban the sale of new diesel and petrol cars by 2040 in the UK
in a bid to encourage people to buy electric vehicles®.

Despite such recent promising signals, still the percentage of traveling EV
remains very low at a global scale. Some of the main factors hindering the
widespread adoption of EVs from the point of view of customers are as follows:

1. Price: EVs have, to date, been expensive, even when subsidized. A major
factor in the cost of such vehicles is the cost of the battery [13]. While
battery costs are forecast to reduce dramatically over the next few years
[27, 158], this is currently an important aspect in understanding the sales of
EVs. In response to this, some companies, are proposing to lease batteries
to the customer to offset some of the battery related costs.

2. Vehicle size: EVs are sometimes small with limited luggage space to
reduce energy consumption, or to accommodate batteries (in some hybrid
vehicles). This is sometimes a problem for potential purchasers of vehicles
who, on occasion, would like to transport significant loads using their
vehicles.

3. Long charging times: Charging times for plug-in EVs can be long [201].
An often cited fact by advocates of electric vehicles in response to this is
that fast charging methods can service average vehicles in about 30 min-
utes [35, 28]. Such time-scales may be just about acceptable to a normal

Ihttps://cleantechnica.com/2017/02/04/us-electric-car-sales-59- january-
2017/. Last Accessed July 2017.
®https://evobsession.com/china-electric-car-sales—keep-soaring-march-2017/.
Last Accessed July 2017.
Shttp://e360.yale.edu/features/with-norway-in-the-lead-europe-set-for-
breakout-on-electric-vehicles. Last Accessed July 2017.
‘https://www.theguardian.com/business/2017/jul/05/volvo-cars-electric-
hybrid-2019. Last Accessed July 2017.
Shttps://www.theguardian.com/business/2017/jul/06/france-ban-petrol-diesel-
cars-2040-emmanuel-macron-volvo. Last Accessed July 2017.
Shttp://www.telegraph.co.uk/news/2017/07/25/new-diesel-petrol-cars-banned-
uk-roads-2040-government-unveils/. Last Accessed July 2017.
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car owner. However, in the presence of queuing, 30 minutes can rapidly
become several hours, and push such fast charging stations into the realm
of “not acceptable”. Thus, it is likely that overnight or workplace charging
will be the principal method of vehicle charging for the foreseeable future.
An associated issue in large cities concerns the availability of charging
points. This is especially an issue in cities with large apartment block
type dwellings.

4. Limited range: Maximum ranges of less than 300km in favorable con-
ditions are not unusual for EVs, and this reduces significantly when air-
conditioning or heating is switched on [49]. Hence, the range is not only
limited but to a certain degree also unpredictable, which worsens the is-
sue. Additionally, other issues, that are a nuisance for normal ICE vehicles,
are exacerbated as a result of the limited range. For example, the cost of
searching for a parking space at the end of a journey is much higher than
for a conventional vehicle, because the EV’s range is low and therefore
energy should not be wasted searching for a parking spot. Research is
ongoing to address these issues, with much of the current work focusing
on new battery types, optimal vehicle charging, vehicle routing, and in-
vehicle energy management systems with a view to minimizing wastage of
energy and thereby increasing vehicle range [162]. 7

The latter two issues are often grouped together as one and discussed under
the title of range anwiety [140, 180]. Further challenges that arise include the
following.

1. Charging (from the perspective of generation distributors): The
energy that will potentially be required to charge the large volumes of
batteries of EVs will considerably increase the load on the distribution
grid, and can cause power quality issues when not regulated.

2. Traffic management: While traffic management in general is an impor-
tant factor, the issue becomes more pressing if EVs are present due to
their limited energy availability. Hence, a traffic jam or rerouting due to
road work or accidents, can have a strong impact on the energy required
for the journey and in the worst case force the drivers to recharge before
the end of the journey.

3. Charging Infrastructure: While momentarily most charging occurs at
home during night-time, an important consideration is the availability and
distribution of charging stations. This is related to the issue of limited

7"Some of these issues lead to changes in driver behavior when faced with the need
to increase range. For example, in [194], behavioral adaptations (in response to limited
available energy) were observed among participants of a study group, who were leased a
battery EV for a year. Some of these behavioral adaptations included turning off the air
conditioning or heater and driving more slowly, as well as swapping vehicles with other
users.
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range and long charging times, i.e. range anxiety. A major issue in this
context is charge point anxiety - that is the angst associated with not
being able to access a charge point when needed.

4. Electromagnetic emissions: Another issue regarding EVs concerns elec-
tromagnetic emissions. While there is no evidence that electromagnetic
radiation from EVs is dangerous, this issue is a focus point for regulatory
authorities (see e.g. the EU Green Car Programme) and has been raised
by several research agencies [7].

5. Battery related issues: A further concern is whether enough lithium
can be sourced to build batteries to construct enough vehicles to replace
the existing passenger vehicle fleet. Are we simply substituting one rare
resource (oil) with another (lithium)? Also, the transportation of batteries
is not trivial and necessitates special precautions [126, 9]. Finally, most
reasonably sized batteries are not capable of realizing the range enjoyed
by conventional ICE based vehicles, which comes in play in regard to
the above mentioned issue of range anxiety. While this latter issue is the
subject of much research, battery size and performance currently represent
one of the major determinants in the design of EVs today [14, 13].

1.3 Contribution of the Book

Our objective in this book is to address some of the issues that impede
the adoption of plug-in EVs. Rather than focusing on single vehicles, our
focus shall be on developing techniques to better use networks of electric
vehicles. We believe, at the time of writing this book, that this aspect of EV
technology has not been significantly documented elsewhere.

To this end we partitioned the book into four parts. The first part of the
book is concerned with energy management. Topics that we shall consider
include: plug-and-play infrastructure for charging fleets of vehicles; how
energy is dissipated in electric vehicles; how to avoid queuing at charging
stations; routing of EVs to consume energy efliciently; and a consideration of
some of the unintended consequence of plug-in EV usage.

The second part of the book will consider using ideas from the sharing
economy to better share “road electrification”. Topics that we shall consider
include: on demand mobility for EVs; and the sharing of personal charge
points.

The third part of the book will focus on the actuation possibilities
afforded by the use of PHEVs. By judiciously selecting when/where one
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engages the electric motor, a range of new ideas can be implemented in
cities. Specifically, we shall see how such ideas can be used to regulate
emissions in a local region, better balance the needs of the grid and the
transportation network, and manage energy consumption in a fleet of vehicles.

Finally, the last part of the book discusses analytics that can be used
to support the design and testing of electro mobility (E-mobility) concepts
without the need for large scale fleet testing.



2

Disruption in the Automotive Industry

2.1 Introduction

This is one of the most exciting times for working in the automotive indus-
try. In the past few years, many disruptive forces have emerged and these are
empowering real change in the way cars are sold, used and conceived. Driven
by examples of companies in other industry branches that did not respond to
disruptive technologies, most notably Kodak [55], automotive Original Equip-
ment Manufacturers (OEMs) are currently embracing these new technologies
and searching for new ways to deliver mobility to consumers, and to monetize
mobility platforms. It is in the context of this changing landscape that this
book is written.

2.2 Causes for Change

At this present time change in the automotive industry is being driven by a
number of forces. At a very coarse level, these can be categorized as follows
(in no particular order).

(i) Connectivity: We are well on the way to a point where vehicles can com-
municate seamlessly with each other and with the road infrastructure in
place. This is creating new opportunities for services for drivers, passen-
gers, city managers and general citizens and is opening up new vistas of
service delivery that can be monetized by OEMs.

(i) New vehicle types: Important changes have also taken place in the types
of vehicles that are used. Gone are the days when the Internal Combus-
tion Engine (ICE) ruled supreme. New vehicle types, such as EVs, HEVs,
PHEVs, Fuel Cell vehicles, and electric bikes, are becoming more common.
These vehicles are not simply replacements for the ICE, they should be
seen as new forms of mobility, and offer new methods of actuation for reg-
ulators to combat pollution and manage energy consumption [164, 88, 80].
The HEV is one such vehicle type. As we shall see in this book, by orches-
trating the switching between electric and ICE mode, several problems in

7



(iii)

(iv)

(vi)
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cities can be addressed. Similarly, by viewing the battery in EVs as a filter
for turning dirty energy into clean energy, huge opportunities arise in the
manner in which EVs can be deployed.

Algorithmic developments: An important aspect of smart mobility,
often forgotten, is that much of the heavy lifting required for real prac-
tical progress, has been completed by the networking community. Many
of the mathematical boundaries in networking, associated with large scale
distributed control and optimization, have been pushed back by this com-
munity, to a point where very large scale distributed solutions can be
implemented over graphs with time-varying connectivity properties. Per-
haps the best example of such a contribution is the TCP /TP protocol. As
we shall see, the Additive Increase Multiplicative Decrease (AIMD) algo-
rithm, developed as part of this protocol, can also be used to orchestrate
and coordinate fleets of vehicles in an optimal manner. Importantly, this
can be done without the need for inter-vehicle communication, and with
only intermittent feedback from a central coordinator.

Demographic changes: An important driving force in the automotive
industry is being caused by changing demographics. Put simply, there
is a discernible trend emerging among younger generations away from
traditional car ownership models, towards an on-demand model. This is
creating new opportunities for OEMs in the way cars are used (car and ride
sharing), and creating the need for new financial models for car payment.

Platform monetization: Companies such as Apple have pioneered a vi-
sion that has moved computers from being simple computing devices, to
being more general delivery platforms. A similar, and potentially more
profitable journey is now underway in the automotive industry. Cars, be-
cause of their physical size, and because consumers, when in these vehicles,
are captive, have tremendous potential for delivering auxiliary services to
drivers and passengers alike. An indication of the size of this market can
be seen from the amount of radio advertising that is delivered in-car. This
is a huge missed opportunity for OEMs. They provide the delivery plat-
form, yet derive none of the income from this revenue stream. There is
now a concerted effort from OEMs to avoid this situation arising again in
the future.

By-products of the ICE and aggregation: Another force that is driv-
ing change in the automotive sector is the realization that the ICE is
causing problems for humans in three distinct ways. First, there is an
irrefutable connection between road transportation and global warming.
Second, there is now a growing realization that the ICE and its by-products
(particulate matter, ozone, benzene, nitrate oxides, carbon monoxide), are
harmful to human health and are having negative consequences for air
quality in many cities. Few would knowingly swim in a dirty swimming
pool. Yet, on a daily basis, we do something very similar with the air that
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(vii)

(viii)

we breathe. There has been considerable regulatory pressure in many re-
gions of the world to improve air quality. The response from the automotive
industry has been to make cars cleaner, if only at the test stand and less
so in real operation. However, even with effective reductions of emissions
from individual cars, as car volumes continue to grow, the aggregate effect
may give rise to an increase in pollution rather than a decrease. Thus, the
third factor associated with the ICE, is the realization that even without
the connected car, people are connected through the air they breathe, and
it is the aggregate behavior that affects the quality of this resource.

Regulation: Another force for change in transport is regulation. Reg-
ulation is driven by four main considerations: safety; greenhouse gases;
congestion; air quality. Much of the currently proposed regulation is con-
cerned with air quality and proposes severely limiting ICE access to cities
from the near future![153].

Partial and full autonomy: The penultimate driving force in trans-
portation is the seemingly unstoppable march towards autonomous driv-
ing. Full, and partial autonomy, are real topics of interest for OEMs. The
marriage of vehicle electrification, and full and partial autonomy, is likely
to give rise to significant innovation opportunities in the near future.

Sustainability and constrained resources: The final driving force is
related to the aggregation effect mentioned in (vi). Throughout society,
there is a move away from the assumption of infinite resources, to an
assumption of a contained resource. This gives rise to economic concepts of
budgets, sharing, and utility maximization. The development of protocols
for sharing a restricted resources among competing actors in way that
maximizes overall utility for the group of users is one of the challenging
tasks to be solved in the context of future mobility.

Much of the work that we shall describe is motivated by some of the forces

described above. Our particular perspective is on the networks of EVs and how
these can be orchestrated in a manner that derives maximal benefit for the
user of the vehicle and for society. As we shall see, this perspective shall lead
to a rich exploration involving distributed control and optimization, queueing
theory, as well as some new ideas in electro-mobility.

Thttp://www.independent.co.uk/environment/climate-change/norway-to-ban-

the-sale-of-all-fossil-fuel-based-cars-by-2025-and-replace-with-electric-
vehicles-a7065616.html. Last Accessed July 2017.
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3

Introduction to Energy Management Issues

3.1 Introduction

In this part we will investigate issues that are linked to the energy management
of EVs. This area includes the management or distribution of energy for a
single vehicle, as well as for networks of vehicles. Much of the current work in
this area is focusing on new battery types, optimal charging, and in-vehicle
energy management systems. On the other hand, energy management on an
aggregated scale, though rarely treated in the literature, is critical if many
EVs are used. In this part we will mainly focus on the latter case.

Energy management issues on an aggregated level can broadly be cate-
gorized in three ways: energy consumption with respect to travel on a road
network; the usage and distribution of charging facilities; and the interaction
of vehicles with the power grid. We will here briefly introduce the main issues
and concepts in these three areas.

3.2 Energy Consumption in Road Networks

Intelligent traffic management is essential to achieving two main goals: the
reduction of harmful emissions; and the improvement of the efficiency of the
transportation network. A key enabling technology in developing traffic man-
agement strategies is the availability of accurate traffic models that can be
easily used for both prediction and control. A major objective in developing
such models is the development of smart traffic management systems that
proactively predict traffic flows and take pre-emptive measures to avoid in-
cidents (traffic build up, pollution peaks etc.) rather than reacting to traffic
situations [40]. Such measures include: 1. recommending alternative vehicle
paths based on advanced routing techniques; 2. adjusting the timing and the
phasing of green periods in traffic lights; and 3. changing the speed limits, or
the recommended speeds.

Recent examples in the literature that implement such actions can be found
in [79], [142] and [122] respectively. In the case that a large portion of the
traffic consists of plug-in EVs, especially of FEVs, the benefits of such smart
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traffic management systems are even greater than for conventional vehicles.
The main reason for this is the dependence of journey fidelity on consumed
energy over each route, and the relatively long charging times that are needed
once the vehicle battery is depleted. For instance, congestion in one area of
the city can give rise to longer queues at a charging station within that area
when the plug-in EV owners try to charge. Similarly, routing and rerouting of
EVs will affect the consumed energy of a given vehicle. Hence, it is important
to give the users the option to choose energy consumption as an optimality
criterion, in a similar way as the user now can select, for example, between the
shortest path (e.g., in km), the minimum time path, the most economic path
(e.g., where toll charges are minimized) and the minimum fuel path (i.e., where
fuel consumption is taken into explicit account). Additionally, the constraints
due to the limited battery capacity and the charging options should ideally
also be taken into account during route planning, which consequently requires
a complete redesign of the common routing strategies. Thus, effective traffic
management is of utmost importance to tackle many of the issues hindering
the adoption of EVs. To achieve this goal, the availability of accurate traffic
models is recognized as a compelling topic in the context of EVs. However, very
few examples of such dedicated bespoke traffic models exist in the literature
for EVs. Notable exceptions are [96] and [162]. The latter model is of use in
the context of this book and will be presented in detail in Chapter 4. Note
that accurate traffic models also assist the electricity grid by supporting the
power providers with accurate predictions of the energy demand.

3.3 Distribution of Charging Facilities

One of the main factors associated with range anxiety is linked to the long
charging times of FEVs [24]. While long time scales are acceptable for charging
at home or at work, they become prohibitive once the range is insufficient
for the journeys made between charging periods. For charging during the
journeys, even fast charging, which takes 15 minutes or more, is unacceptable
once the need for queuing at charging stations is taken into account, which
can prolong charging times up to an hour or longer. Thus, the benefits of
optimizing routing and in-vehicle systems to maximize the range of FEVs,
appears of minor impact if all of the saved energy is used while searching for
convenient charging opportunities.

The importance of developing efficient methods to prevent FEVs from
wasting time while queuing at charging stations is also illustrated by the vol-
ume of recent published works on the topic. Among these, we note [50], where
vehicles compute a routing policy that minimizes the expected journey time
while considering the intentions of other vehicles (i.e., intentions of charging
en route); and [30], where a reservation-based charging approach is proposed.
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In particular, in these and other works, reservations are periodically updated
for requesting the change of the charging station selection decision to take
into account the uncertain aspects of traffic; [82], where a higher level dis-
tributed scheduling algorithm together with a lower level cooperative control
policy for individual FEVs on a highway is designed to optimize the operation
of the overall charging network; [58], where charging operators of fast charg-
ing stations can set a limit on the FEV’s requested State Of Charge (SOC) in
overloaded conditions to increase total charged energy, revenues for the charg-
ing stations as well as decrease the probability of blocking arriving FEVs. An
alternative approach to this problem is described in Chapter 6 where the
load balancing approach described in [87] is given (this can be viewed as a
kind of dual of the routing problem). Note also that the collaborative routing
strategies in Chapter 5 tackle the load balancing problem by actively taking
charging into account.

3.4 Interaction with the Power Grid

Even though the adoption of plug-in EVs is slower than expected, the future
uptake of these vehicles will add a non-negligible energy load on the power
grid, due to the charging process. In this context a high penetration of plug-in
EVs may increase the stresses on the grid significantly and cause, in extreme
cases, problems such as voltage deviations, line overloading, or transformer
overloading [155, 146, 151, 85, 37]. Based on anticipated uptake levels ranging
from 10% up to 50%, studies agree that these adverse effects limit the amount
of plug-in EVs that can be charged simultaneously without additional invest-
ments for the grid.

Another method to handle the extra charging load by the plug-in EVs is to
control the charging procedure such that the adverse effects on the electricity
grid are minimized (i.e., the EVs participate in a load management scheme).
There are two main reasons for this being a viable alternative. Firstly, the
electricity grid has to be constituted to deal with the peak power demand;
hence there are long periods during which the electricity grid has spare capac-
ity available. Using this spare capacity for charging will reduce the stresses on
the grid, while at the same time increase its efficiency. Secondly, plug-in EVs
are ideal candidates for load management due to their highly flexible demand
elasticities. We will in Chapter 7 introduce the concepts of load management
and give a brief review over proposed methods to achieve controlled charging.
Also, in Chapter 7 we will discuss in detail a load management scheme that
was previously proposed in [172, 171, 176]. This management scheme deals
with the simultaneous charging of vehicles over longer periods, mostly during
night time or work place charging.

In addition, many works also discuss the use of plug-in EVs to support
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the distribution grid with energy in times of need, since their internal bat-
tery allows them to act as a storage device. This is often termed Vehicle to
Grid (V2G) operation and leads to various benefits for the distribution grid.
In Chapter 8, we explain how the scheme proposed in Chapter 7 can be ex-
tended to allow for such operations. In this context, we will also discuss the
consequences that V2G operations can have on the environment and illustrate
why these should be considered.

Notes and References

Energy management is a central issue for EVs both in terms of the individual
energy management and the aggregated effects in traffic and during charging.
The control mechanisms in place not only influence a single vehicle owner but
cause interactions with other road users as well as any electricity consumer.
The remainder of this part deals with issues associated with these topics.

This part of the book is based on the following papers by the authors
and their co-workers. The chapter on traffic modeling for EVs is based on a
paper written in collaboration with Arieh Schlote and Steve Kirkland [162].
The chapter on routing is based on several works of the authors (such as [162]
in collaboration with Steve Kirkland and Arieh Schlote, [42] in collaboration
with Steve Kirkland, [163] in collaboration with Arieh Schlote!). The chapter
on load balancing is based on work [87] in collaboration with Florian Hausler,
Arieh Schlote and Ilja Radusch?. The chapters on charging mechanisms are
mainly based on works [172] and [169] in collaboration with Rick Middleton.
Finally, the chapter on V2G energy exchange is based on works [173] and [175]
in collaboration with Rick Middleton and Wynita Griggs respectively®.

L©IEEE. Figures 5.3 and 5.4 reprinted, with permission, from [163].
2©IEEE. Reprinted, with permission, from [87].
3(©IEEE. Reprinted, with permission, from [175].



4
Traffic Modeling for EVs

4.1 Introduction

This chapter reviews currently existing traffic models for EVs with particular
emphasis on a recently introduced Markov chain based model. In addition,
some applications based on this traffic model are described. Very few exam-
ples in the literature of traffic models exist for EVs. Notable among these are
[96] and [162]. While both of them are based on the use of Markov chains, [96]
captures the diurnal variation in the use of a single vehicle. On the other hand,
[162] provides a macroscopic description of mobility flows. In this chapter we
are interested in this second model, as it has been proved useful in many ap-
plication studies to accurately describe an aggregate behavior of a network
of vehicles. This model is based on homogeneous Markov chains, and adapts
the model initially proposed for conventional vehicles (see [40]), which in turn
was similar in spirit to the well-known Google’s PageRank algorithm [114].
The remainder of this chapter is organized as follows: Section 4.2 describes
the traffic model for EVs introduced in [162]; Section 4.3 describes a num-
ber of traffic applications that can be planned on the basis of the proposed
model; finally, Section 4.4 concludes the chapter and outlines interesting lines
of research to further extend the work presented here.!

4.2 Traffic Model
4.2.1 Basic Notions of Markov Chains and Graph Theory

First we recall some basic notions on Markov chains, as they underpin the
EV traffic model that we are going to discuss here. A Markov chain (MC) is a

INote that mathematical models are not the only way to represent traffic and tackle
the aforementioned problems. Other authors have preferred to simulate traffic in a city, and
evaluate how traffic would react to single control actions. See for instance [130] and [71] for
an example of this, where traffic simulated in Simulation of Urban MObility (SUMO) was
used with the ultimate goal of computing efficient routing strategies and for dimensioning
the number of public charging stations in an urban context respectively.
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discrete time stochastic process with a finite or countable number of states. At
each time step, the state changes and the new state is chosen in a probabilistic
manner. The transition probabilities depend only on the state of the chain at
the previous time step and not on the past history of the process. Throughout
this chapter we shall only consider homogeneous Markov chains. We denote
by p;; the probability of going from state i to state j in one time step and
if the number of states is finite, then the matrix P of elements p;;, together
with the initial distribution vector, fully describes the evolution of the Markov
chain. The matrix P is called the transition matrix and it is a row-stochastic
non-negative matrix, as the elements of each row are probabilities and they
sum up to 1.

There is a strong link between Markov chains with finite state space and
graphs. A graph is a set of states (or nodes or vertices) that can be connected
by edges (or arcs). We will only consider directed edges here. An edge from
state i to state j indicates that it is possible to make a transition from state 4
to state j. It is possible to give a weight to each edge that corresponds to the
cost of using that edge. If the aggregate cost of all outgoing edges of each node
is normed to 1 then the costs can be interpreted as the probabilities of using
the corresponding edges. In this context states of a given Markov chain can
be associated with nodes in the graph and non-zero probabilities of transition
between two states in the chain can be associated with directed edges between
the corresponding nodes with the given probability as a weight.

The graph is called strongly connected if starting from any node it is possi-
ble to reach any other node by following the edges. The graph is strongly con-
nected if and only if the transition matrix of the corresponding Markov chain
is irreducible. Throughout this chapter and the remainder of this manuscript,
we will assume that all the Markov chain transition matrices considered are
irreducible and primitive unless noted otherwise. We can apply the Perron-
Frobenius theorem, see for example [94, Theorem 8.8.4], to ensure the ex-
istence of an invariant measure 7 with 7' P = «'. In this situation, 7 is
entry-wise positive and its entries sum to 1; we call 7 the chain’s stationary
distribution.

An important notion in the study of irreducible Markov chains is the Mean
First Passage Time (MFPT) m,;, which gives the expected number of steps
of a random walk starting from vertex ¢ and finishing in vertex j governed
by the weights of the graph’s edges [102]. A related concept to the MFPTs
is given by the Kemeny constant, which is the expected cost of a random
trip on the graph where the destination is chosen according to the stationary
distribution. For node ¢ this value can be computed as

Ki == Zmijwj. (41)
J#i
It is well known that K is independent of the starting node ¢, and thus is a

global parameter for the Markov chain [102], that in some cases may be used
as a global efficiency measure of the road network (e.g., see [40], [57]).
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4.2.2 Basic Markovian Model of Traffic Dynamics

The utilization of Markovian models to represent traffic dynamics goes back
to the paper [40]. We now recall the main concepts behind this model, and
then we explain how it can be extended to describe EV dynamics.

Graphs and Markov chains can be used quite naturally to model urban
traffic networks. The starting point of the Markovian model describes the
transitions between road segments. The directed graph associated with the

J1 J3 J4 J5 J?

J2 J6

FIGURE 4.1
Example of a primal graph of an urban traffic network

JiJo JaJ3 J3Js JuJs JsJs JoJ7
) M) M )

J7Js

JoJy

J1J3 J5J7

FIGURE 4.2
The dual graph corresponding to the graph shown in Figure 4.1

Markov chain is constructed in the following way. Each intersection in the road
network is a vertex in the graph, and there is an edge between two vertices
if there is a road segment that connects the two corresponding intersections.
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An example of such a graph can be found in Figure 4.1, where junctions
J1,Ja, ..., Jr are connected by road segments. For instance, the road segment
J1Jo is the road that allows a vehicle to drive from J; to Jo, and is different
from JoJ; which goes from Js to Jy. This graph is called primal graph. On the
other hand, in the dual graph the nodes are the edges of the primal graph, (i.e.,
the road segments of the traffic network), and there is an edge between two
nodes if it is possible to make a direct transition between the corresponding
road segments. The dual graph corresponding to Figure 4.1 can be found in
Figure 4.2. It can be noted that dual graphs carry more information than
the corresponding primal graphs. For instance, we can see from Figure 4.2
that cars are not allowed to perform U-turns at junction Jy, while the same
information cannot be recovered from the primal graph in Figure 4.1. The
weights for the edges in the dual graph are given by the turning probabilities.
In the following, we are interested in the Markov chain that corresponds to
the dual graph.

Remark 4.1. The diagonal elements of the transition matrix P are related
to the probability to remaining in the same state (i.e., the same road). This
quantity is proportional to the average time that vehicles spend along a given
road which depends, among others, on the length of the road, on the average
congestion, and on the speed limits on the road. If we let ¢; > 1 denote the
average travel time required to travel along the ith road, then the diagonal
entry corresponding to the ith road can be computed as P;; = (£; —1)/%; (see
the Appendix of [40]). Note that #; needs to be greater than one, as values
smaller than one would imply that a vehicle could be able to drive along more
than one road in less than a time step of the Markov chain (also, ; smaller
than one would cause negative entries in the matrix P). A more detailed
discussion of the unit of measurement, or the step size in the computation of
the diagonal entries can be found in [162]. Finally, note that the presence of at
least one positive diagonal element in matrix P, together with the assumption
of P being an irreducible matrix, guarantees that P is primitive as well (see
[114]).

4.2.3 Benefits of Using Markov Chain to Model Mobility
Dynamics

Markov chains appear to be particularly suitable for traffic applications for a
number of reasons:

e Microscopic behavior is embedded into the chain through aggregation. For
this purpose, data can be easily measured (e.g., travel times and turning
probabilities);

e The suitability of Markov chains for big-data applications is discussed,
for example, in the context of Google’s PageRank algorithm ([114]). Ac-
cordingly, well-established and robust algorithms are already available to
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TABLE 4.1
Interpretation of MC quantities in the corresponding MC
Quantity /Markov| Traffic MC EV Traffic MC
Chain
Perron eigenvector | Vehicular density in the | Energy consumption
network density

MFPT

Average time required to
go from 7 to j

Average energy required
to go from i to j

Kemeny constant

Average time required
for a random trip

Average energy required
for a random trip

Second eigenvector

Neighbourhood  where
vehicles spend most of
their time

Neighbourhoods  where
EVs consume most en-
ergy from their batteries

handle datasets of the size of millions, and more, webpages. This prop-
erty appears particularly convenient to model urban networks composed
by a large number of roads. As an example, the model described above
has been validated over real data of North Jutland in Denmark (where
the primal road network has 17956 vertices and 39372 edges) and of the
city of Beijing, see [135], [133] and [199]. Note also that the suitability
of Markov chains to capture and model complex dynamical systems was
initially discussed in [67] and in the context of urban networks in [161];

e The proposed model opens the way to multi-variate and derivative models.
Namely, while the basic Markov chain describes the probability of making a
transition from one road segment to another in one time step, it is possible
to easily switch to a unity of energy instead of time. As a consequence, the
new Markov chain describes the energy consumption of EVs in an urban
network, rather than the time spent in the same network;

e Many of the properties of the Markov chain have a nice straightforward
interpretation in the mobility counterpart. For instance, Table 4.1 gives
the interpretation of Markov chain quantities in the conventional mobility
case, and in the EV case considered here.

The next section illustrates in a greater detail how the traffic model for EVs
can be derived from the conventional model described in Section 4.2.2.

4.2.4 Energy Consumption in a Markov Chain Traffic Model
of EVs

In the basic Markov chain transition matrix P, the step unit is a unit of time,
i.e., a vehicle goes from one state to another (or possible the same) state with
a certain probability after a unit of time. In some cases however it may be
desirable to change the step unit from a unit of time to something different
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(e.g., a unit of pollution as in [41]). In this context, we are interested in con-
sidering the energy expended by EVs in traveling along one road, rather than
the time required to do so. For this purpose, the matrix P can be transformed
into another Markov chain transition matrix Q as

Q=(I-D)P+D, (4.2)

where D = diag(11, . . .,w,) is a diagonal matrix of weights w;,7 =1,...,n, n
is the number of road segments in the network of interest, and I is the identity
matrix of appropriate dimensions. The weights w;,7 = 1,...,n can be chosen
as

- W; — &

wy

where w;,7 = 1,...,n correspond to the average cost associated with traveling
through the ith road segment (e.g., in terms of battery consumption) and
0 < a < w; is the cost associated with one step of the Markov chain, and
will be denoted as the step size. In the Markov chain EV model, the unit
of the Markov chain is a unit of energy, associated with the average energy
consumption from the battery in the EVs. For this purpose, we adopt in the
following a simple model that is taken from [162] and represents an extension
of the simple constant speed model inspired by [129].

We shall assume a driving pattern where vehicles are stationary at the
beginning of each road segment (i.e., speed equal to zero) and accelerate at
a constant rate a; until they reach the cruising speed, vcruise, and then de-
celerate at a constant rate as to reach the end of the road segment with zero
velocity. The energy can be calculated as the sum of the energies in the ac-
celeration phase, the cruising phase and the deceleration phase. In particular,
the following forces affect the vehicle:

e F,.c = ma is the force acting on the vehicle while it accelerates to, or
decelerates from, the cruising speed

o Fio1 = proimyg is the force needed to overcome the rolling resistance
o [4= % pAC’dv2 is the aerodynamic drag force
o Fiope = mgsin(¢) is the hill climbing force,

where a is the vehicle’s acceleration, A is its frontal area, m its mass and v
its speed, po1, p, Cq and g are constants and ¢ is the inclination of the road
segment. For our calculations we assume a car weight of 1235kg, gravita-
tional acceleration of g = 9.81 m/s?. Further reasonable parameter choices for
a medium sized EV are: p = 1.2kg - m3, o) = 0.01, Cy = 0.35, A = 1.6 m?
[129]. We shall assume that the slope along a road segment is constant. In
general (given an accurate velocity profile) we can calculate the energy ex-
pended as the integral of the force over the path. As discussed above we split
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this in three parts.

x1
W = / (Facc+Frol+Fad+Fslopc)dx+
0

Wi
T2
+/ (Frol+Fad+Fslope)d$+

1

Wa
3
+/ (Facc + Frol + Fad + Fslope) dx,
xr

2

W3

where x7 is the distance after which the cruising speed is reached and x» is
the distance after which the deceleration process is started and x3 corresponds
to the length of the whole road segment. If we regard speed and distance as
functions of time ¢ and denote them wv(t) and s(t) respectively, then speed,
time, and distance are related by

v(t) = v(0) + at
and 1
s(t) = s(0) +v(0)t + §at2,

where a € R is the constant acceleration. We also assume a constant acceler-
ation and deceleration of a; = —as = 3m/s?. If the length of the road, z3, is
large enough, we obtain

2 2
— 1 1 Ucruise 1ve .
T1 = —at?.,. = —qp [ =€) = = Zeruise

2 ace 2 ay 2 ay
and )
To = T3 + 1 ’Ucruise,
2 a2

where t... is the time it takes to accelerate the vehicle to cruising speed at
rate a; and veruise is the cruising speed. Thus

1 1
W, = / (ma1 + lromg + gpAC’dv2 + mg sin(gb)) dx
0

1 9 102 . 1 v
- . — “cruise o : ZpAC, cruise

For the second integral we obtain

xro 1
Wy = / (um]mg + ipACdv2 + mg sin(¢)) dx

1

1 ,Ugruise 1 ,Ugruise : 1 2
=|x3+ 5 as - 5 ay mg (:LLYO] + SIH(QZ/))) + ipACdvcruise s
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and for the third integral

xr3 1
Wi = / <ma2 + tromg + ipAC’dUZ + mg sin(qb)) dx

2

. 102 1 V2 s
= (maz +mg (frol + 51n(<;5))> (—2C;‘;1“> — gpACdi";‘;“e.

We further assume that the losses along the drive train are a constant 15% and
during deceleration 50% of the energy can be saved by regenerative braking.
An additional and highly important factor in the consumption of battery load
is on-board equipment such as heating, light, air-conditioner, radio and many
others that draw power at constant rate over time. Their demand is much
harder to model as it depends on the individual driver, but their aggregate
effect cannot be neglected as it will be further elaborated in Chapter 15. We
now have a way to approximate energy requirements for traversing given road
segments. Because of the regenerative braking it is possible that the energy
requirement takes a negative value, meaning that a vehicle gains energy by
traversing that road segment. In the next section we deal with the question,
as to how our framework extends to the case where we have negative weights
on some road segments.

Remark 4.2. The previous model allows one to construct the Markov chain
transition matrix using only measured traffic data (e.g., average speeds) and
some static data (e.g., slopes of the roads). However, it is possible to directly
use the proposed Markov chain approach also by directly measuring average
battery consumption data, if available.

4.2.5 Dealing with Negative Entries

In Section 4.2.4, in (4.2) positive weights w; were used to build a diagonal ma-
trix D that in turn transformed the basic Markov chain P into a new Markov
chain Q. The new transition matrix Q was characterized by a different step
unit than the original transition matrix P. However, in the case of EVs, the
mechanism of regenerative braking can cause non-positive entries in some of
the weights w;. In order to apply the previously developed theory for the con-
version mechanism, we shall make the assumption that the energy required
to travel along a road ¢ cannot be exactly zero, otherwise the corresponding
weight w; would be equal to 0 and in turn this would disallow using (4.2)
to calculate the diagonal matrix D. In addition, note that negative weights
imply that Q may not necessarily be a transition matrix of a Markov chain
anymore, it might not be stochastic (since it might not be non-negative and
some values may be greater than 1), so standard methods to analyze Markov
chains would not apply anymore to matrix Q. In particular, with negative
weights, the matrix Q and its eigenvectors do not seem to have a straightfor-
ward interpretation as in the case of all positive weights.
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To be able to use the theory of Markov chains previously described, we
define an intermediate Markov chain whose step unit is a unit of energy ex-
changed between the vehicle and the road network, regardless of whether such
a unit of energy was spent or gained (thanks to regenerative braking). To do
this, let W = diag (w1, wa, ..., w,), and let [W] be the diagonal matrix that
contains the absolute values of all weights, |W| = diag (Jw1], ..., |wn]). Ac-
cordingly we define D = I — o|W|~!, where now 0 < o < min; |w;|. We then
obtain the transition matrix of the intermediate chain from

Q= (I-D)P+D. (4.4)

We are interested in keeping track of the sign of energy exchange (i.e., to
compute the actual energy required to travel a given route). We assume that
transitions between streets occur at the end of the energy step, and that
the gain or loss of energy while driving along road segment ¢ is independent
of the choice of the next road segment j. With these assumptions in place,
we introduce the notation o; to indicate the sign of the change in energy
transferred from the vehicle to the network. That is, o; = 1 if the vehicle loses
energy driving along road i, and o; = —1 if the vehicle gains energy driving
along road i.

As the quantity of interest is energy instead of time, we use the term mean
first passage energy (MFPE) instead of mean first passage time in this context.
We use the intermediate Markov chain matrix CNQ to calculate a generalized
version of MFPE (generalized to include possible negative values), following
and extending the approach of [78]: For j # 14, to calculate m;;, the MFPE
from ¢ to j, we observe that in going from 7 to j we make a direct transition
with probability g;; and spend o; units of energy. With probability g;; we
make a transition to k # j where we again spend o; units of energy to get to
k, in addition the expected energy required to get from k to j is equal to my;.
Thus for j # 4

n
mij = qijoi + Zaik(mkj +0;) = Zaikmkj + Z@kﬂi = Z(Ekmkj + 0y
k=1

Py Py k]
For any fixed j = 1...,n we can write this in vector form

me) = Quyma) + () (4.5)
where m;) = (mlj, M2y s TM(G—1)j, T(41)js - - - ,mn]-)T and equivalently

o(;) is the vector of all o; for i # j and Q(;) is obtained from the matrix

Q by eliminating the jth row and the jth column. Now we can calculate m;;
for all ¢ # j using the formula

mg) = (I- Q) tog), (4.6)

where we use the fact that (I — Q) is a singular, irreducible M-matrix and
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according to [18, Theorem 4.16] each of its proper principal submatrices is
invertible.

Remark 4.3. Note that (4.6) is identical to a standard formula for calculating
mean first passage times in the case of positive weights only. As we have shown
it still works if we have negative weights in the chain.

As in the case of positive weights we are interested in the Kemeny constant
as a global efficiency measure, but if we introduce negative weights in our
graph, then (4.1) is no longer independent of the starting node . However, we
can generalize the notion of the Kemeny constant in the following way. Let 7
be the Perron eigenvector of Q and let

K= Z 7T1'K1': Z mZijij. (47)
i=1,...,n i=1,...,n YE)

Then K coincides with the Kemeny constant as defined in (4.1) in the case
where all weights are positive.

4.3 Sample Applications

One of the main advantages of the derived model is that it can be used to
predict traffic flows and to facilitate the taking of pre-emptive measures to
mitigate congestion or to balance traffic in general. In Chapter 5 we shall see
in detail how the model can be used to derive alternative non-conventional
routing advisors. In this section we shall now illustrate the use of the Markov
model to balance traffic in a decentralized manner.

4.3.1 Traffic Load Control

Being able to control the stationary distribution of a road traffic network opens
up a wide range of possibilities and different applications. In many cases, it
is possible to plan optimal target stationary distributions and try to drive
the system towards them. For example, using the congestion chain it may be
possible to equalize the traveling time on alternative routes to distribute the
load within the network. Alternatively road network designers may be able
to unburden some road segments in order to facilitate maintenance activities.
In the context of EVs, the control of the entries of the Perron eigenvector
corresponds to control where energy is consumed within a network of EVs.
Thus, from a network designing point of view, it may be interesting to be able
to match high energy consumption with free charging point capacity. This
can be used to balance the energy demand at charging stations, and thus to
potentially reduce the queues of vehicles requiring charging.
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TABLE 4.2
Speed limits (in km/h) in the uncontrolled case, in the unrealistic optimal
solution, and in the realistic balanced case

Road Segment J1J2 J1J3 J2J1 J2J3 J3J1 J3J2 J3J4 J4J3
Uncontrolled 50 50 50 50 50 50 50 50
Optimal (Unrealistic) 15 44 15 29 44 29 117 122
Realistic Solution 30 50 30 40 50 40 100 100
Road Segment J4J5 J5J4 J5J6 J5J7 J6J5 J6J7 J7J5 J7J()
Uncontrolled 50 50 50 50 50 50 50 50
Optimal (Unrealistic) 117 117 45 21 42 10 23 8
Realistic Solution 100 100 50 40 50 30 40 30

4.3.1.1 Theoretical Approach

A simple strategy to regulate the Perron eigenvector of the chain is to influence
the diagonal entries of the transition matrix via diagonal scaling. In practice,
the scaling can be determined by a host of factors, some of which can be
controlled by the network designer. One of these is the speed limit. Recall
that if the left Perron eigenvector of P is ' and we wish to achieve through
feedback a target left eigenvector z' of Q (as from (4.2)) for some positive
vector z = (z1,...,2,) we set w; = % according to Lemma 1 in [162].

A useful application of the Perron vector control is now illustrated
through an example which exploits again the road network of Figure 4.2. The
dotted line in Figure 4.3 depicts the nominal density of cars in the case of
uniform speed limits set to 50 km/h. Let us assume that the road engineer is
interested in manipulating speed limits in order to achieve a uniform density
of cars along all road segments (traffic balancing). Lemma 1 in [162] can be
used to compute the “optimal” weights, and predict the “optimal” speed
limits accordingly. We validate our approach using SUMO (Simulation of
Urban MOBIlity), a popular realistic mobility simulator, described in more
detail in Chapter 17. The dotted line in Figure 4.3 shows that cars can be
balanced indeed, although such “optimal” speed limits are unrealistic, as
shown in Table 4.2, second line. A better trade-off is shown with solid line in
Figure 4.3, where reasonable speed limits are identified instead (e.g., they are
all multiples of 10), as reported in the third line of Table 4.2.

Remark 4.4. The proposed application assumes that drivers will not change
their routes as a reaction to the new imposed speed limits; we also varied
speed limits under the implicit assumption that this would correspond to pro-
portionally adjusting average travel speeds. Despite these assumptions, Figure
4.3 shows that the road network traffic, as observed from SUMO simulations,
is in accordance with the theory.
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FIGURE 4.3

Comparison of traffic density as a function of speed limits. Uniform speed
limits lead to the unbalanced solution shown with a dotted line. A very good
balance, in solid line, can be achieved using the unrealistic speed limits re-
ported in Table 4.2, second line. A trade-off solution, shown with a dashed
line, is obtained by using realistic speed limits as shown in Table 4.2, third
line

4.3.1.2 Decentralized Traffic Load Control

In the previous section we controlled the Perron vector by choosing appropri-
ate weights in the graph. However, note that while it is known that different
speed limits or different traffic light sequencing affect the weights, it is very
hard to find a precise mathematical relation between them. Thus, it might
be more appropriate not to change speed limits (or traffic light sequencing)
in a single action, but rather to finely tune them until the desired effects are
achieved. In this section we shall use an algorithm from [168] to reach our
goal. In particular, let us assume that a large road network consists of two
main components that are connected by four bridging streets as depicted in
Figure 4.4. We assume that each road segment is able to measure the density
of cars traveling on that road, and to communicate this information to the
neighboring roads.
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As illustrated in a different context in [168], our objective here is to de-
termine speed limits that equalize the load across certain road segments. To
this end, let Z be the set of road segments of interest, let us discretize time
in steps k = 1,2,... and let speed limits v;(0) at time & = 0 be given for all
i € Z. Let us denote by 0;(k) the density of energy dissipated on each road
segment at the kth time step. Then we use the following iterative equation to
update the speed limits

vi(k +1) = vi(k) +UZ(9j(k) —0i(k)), (4.8)

where 77 is a positive parameter and the sum is taken over all road segments
7 =1,...,n that road i can communicate with. The implicit consensus is then
conducted by alternating the following two steps:

1. Determine densities of interest (e.g., energy dissipation) at time k.
2. Update speed limits according to (4.8).

We have used SUMO simulation runs and calculated the stationary distri-
bution of the energy Markov chain. We used the entries of the stationary
distribution to compute the density of each road segment. We then performed
an iterative update of the speed limits according to (4.8). In Figure 4.5 we
give the relevant entries of the stationary distribution as a function of the
number of simulation steps. In this context we adopted the implicit consensus
algorithm in Equation (4.8) without proving that it achieves the balancing of
the stationary vector. Full details of the algorithm can be found in [168].

4.4 Concluding Remarks

In this chapter we have reviewed a Markov chain based model to provide a
macroscopic description of energy consumption of EVs in a road network.
Classic Markov chain theory was generalized to account for some negative en-
tries in the transition matrices, required to model regenerative braking effects.
We have also provided some sample applications of the described model, while
other applications like routing will be further described in Chapter 5. However,
it is our opinion that the same framework may be further extended and other
EV related applications may be developed as well; for instance the proposed
model may be used to plan the optimal positioning of charging points (i.e.,
identifying the optimal nodes in the primal network). Another interesting line
of research may be the enhancement of the graph to further include other
transportation networks, to integrate the reduced range of EVs with other
means of transportation (e.g., bikes). This would eventually lead to so-called
multi-modal transportation networks, along the lines of [57].
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FIGURE 4.4
Scenario of a big city and a suburb with 4 connecting streets, where we try to
equalize the amount of energy expended on each street out of the suburb
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Convergence results for the suburb scenario. The vertical axis shows the cor-
responding entries of the Perron vector. Each time step corresponds to one
simulation instance
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5
Routing Algorithms for EVs

5.1 Introduction

Most drivers of conventional vehicles are already familiar with routing services.
Roughly speaking, a routing adviser computes the optimal route that connects
an origin point with a destination point. Typically, the user has a choice on the
optimality criterion that is used to compute the optimal path, where the most
popular choices are the shortest path (e.g., in km), the minimum time path,
the most economic path (e.g., where toll charges are minimized) and the min-
imum fuel path (i.e., where fuel consumption is taken into explicit account).
Shortest path search algorithms are also well established in the literature,
where classic approaches include Bellman’s routing solutions [16], Dijkstra’s
algorithm [52] and dynamic programming algorithms [19]. Sometimes, the op-
timality of the solution is relaxed in order to obtain routing suggestions in a
reasonable amount of time, especially in the case of very large road networks.

Routing algorithms are rather more specialized when applied to electric
vehicles. Here, the refueling need of a vehicle is a primary concern due to
the limited battery capacity and the relatively long time required for vehicle
charging. Such concerns have been investigated by many researchers from
the scientific community and a number of different approaches have been
proposed. More specifically, it is possible to distinguish three particular
categories of routing problems that are of significant interest in the case of
electric vehicles:

1. Route planning (i.e., minimum energy routing): In this case the
topography of the road network, together with (predicted or measured)
traffic conditions are used to calculate the minimum energy route to a
destination; see for example [138]. Such routing is not only beneficial in
terms of energy consumption, but also in other ways as energy efficient
routes also increase the battery lifetime due to the reduced number
of battery charging cycles [98]. An important aspect of such route
computations is the estimation of the energy recuperation (regenerative
braking) coefficient, both in route calculation and in the on-board energy
optimization [98]. In this context, the elevation profile of the roads

33
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composing the candidate routes has a strong impact on the identification
of the optimal route. Other authors have proposed the use of real-world
driving patterns extracted from existing databases to pre-compute optimal
routing suggestions in terms of energy consumption [115]. The advantage
of such an approach is that energy consumption can be evaluated not
only as a function of static parameters (e.g., the altitude values), but also
as a function of (average) time-stamped values of the velocity. Note that
this class of routing algorithms considers “single” vehicles in the sense
that the optimal choice is not affected by what other vehicles do in the
road network.

. Planning of both the route and charging events: Logistics systems

are seen as one of the most attractive fields of application for EVs; in
particular due to the lower costs for charging in comparison to those
for refueling [200]. In this case, the Electric Vehicle Routing Problem
(EVRP) consists of planning the most convenient order in which a set of
customers should be served, given the battery constraints, the availability
of charging points, and the constraints on the time window in which
customers are supposed to be served [5]. This problem is known to be
an NP-hard problem, as it is a natural extension of capacitated vehicle
routing problems [5]. During the operation time, it is expected that a
single vehicle might possibly have to charge several times in order to serve
all the customers.

. Multi-agent route and charging planning: In this class of problems,

charging events are now explicitly taken into account when recommending
optimal routes. In particular, should the battery capacity of a vehicle not
be enough to reach the final destination, then the recommended routes
will be shaped in order to include a charging point along the path. In
this case, it is of paramount importance also to consider the possibility
that other vehicles might use the same charging stations, as this will
affect the time required for charging and in turn, the time required for
the whole journey. Accordingly, the EV routing problem now becomes
finding an energy optimal route with appropriate charging stops, and
minimal idle waiting time at charging stations [8]. For instance in [187] a
Vehicle to Vehicle (V2V) communication protocol is proposed to realize
the context-awareness aspect of route planning, while in [8] a centralized
solution is explored. Note that in this context both competitive and
cooperative approaches can be designed, depending on whether vehicles
are expected to compete, or are incentivized to cooperate, to find an
available charging point. Note that in this class of routing problems the
effect of feedback should not be neglected (i.e., the impact of routing
advice on the evolution of traffic flows).
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Given this basic background, this chapter is intended to give a very brief
qualitative introduction on the topic of routing. As there are many papers
on this subject, our intention is to mention some of the approaches that are
available in the literature and to point the interested reader to the relevant
results.

5.2 Examples of Selfish Routing for EVs

In what follows, a vehicle plans its optimal route without taking into account
the actions of other vehicles. For this reason, such algorithms are sometimes
called selfish routing algorithms because a macroscopic view of the whole
population of vehicles is missing, or opportunistic routing because a vehicle
chooses its optimal route without considering the impact of its choice upon
the whole population of vehicles or the road network. We shall also present
applications that exploit the Markov chain framework illustrated in Chapter 4.

Minimum Energy Routing: As already mentioned, a very simple,
yet important, routing strategy for electric vehicles is obtained by minimizing
the distance to the destination not in terms of travel time or actual distance,
but instead in terms of energy charge needed to finish the journey. Such
a solution can be developed using the Markov chain model described in
Chapter 4, by using the weights calculated as in Section 4.2.4 in combination
with a classic graph search algorithm (e.g., Dijkstra’s algorithm [52]).

For instance, let us consider the road network depicted in Figure 5.1 as a
case study for minimum energy routing. There are three routes connecting
Ja to Js. Assume that route (a) is 1.8 km long and is traveled at an average
speed of 50km/h, route (b) is 1km long and traveled at 80km/h and route
(c) is 1.4km long and traveled at 80km/h. Further, assume that route (b)
is not flat, but rises up a small hill at its center at a constant slope of 5%
in both directions. Table 5.1 reports the energy required to travel each route
calculated with two different power levels needed by auxiliary systems in
the vehicle. According to [61] the power demand of accessory systems in an
electric vehicle varies hugely depending on weather; e.g., the power may vary
from a minimum of 500 W to a maximum of 3500 W, for instance in winter,
when the heating is running at full power. When traveling from J; to Jy, the
driver has a choice to take one of three routes (a),(b) or (c). The shortest
route between Jo and Js is route (b), but we can see in Table 5.1 that all
other (longer) routes perform better when minimizing the required energy for
traveling. This is due to the topology of route (b) and the high energy costs
for electric vehicles ascending hills. Additionally, we can see that route (a)
is more energy efficient than route (c¢) if the auxiliary power demand is low,
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FIGURE 5.1

There are three possible paths to go from J; to J3. Different routing strategies
based on minimum distance or minimum energy consumption suggest differ-
ent paths, also depending on the different environmental conditions (e.g., air
conditioning switched on or off).

TABLE 5.1
Required energy (in kWs) to travel from Js to J3 in the road network depicted
in Figure 5.1

Auxiliary Power Demand || Low (500 W) | High (3500 W)
Route (a) 535 924

Route (b) 915 1050

Route (c) 695 884

while this relationship is reversed if the auxiliary power demand is high. This
implies that, especially in more complex routing tasks, an estimate of the
power demand and its changes over time may have an impact on the choice
of the most efficient route.

An important conclusion from this simple example is that it is possible
to assist users in making energy conscious route choices by providing energy
road maps, i.e., road maps in which the displayed distance corresponds to
energy consumption instead of travel distance.

Congestion Avoidance Routing: In order to minimize the risk of
traffic accidents and congestion along the vehicle’s path, in some situations
it may be advisable to avoid the roads that most people use. Such popular
roads could for example be close to shopping areas or train stations. The
basic Markov chain presented in Chapter 4 describes how often roads are
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taken, while ignoring travel times or energy consumption. Thus, it carries
information about popularity and the stationary distribution can be used to
find the minimum popularity route, again using conventional graph search
algorithms.

Mixed Minimum Energy/Congestion Avoidance Routing: Both
minimum energy and minimum popularity routing may be too focused on
one aspect of traveling. To circumvent this, it is possible to use a weighted
sum of the above two quantities to find an optimal path, in terms of an
appropriate trade-off of the two aspects. In this sum we have an additional
tuning parameter that can be set according to how important energy and
popularity are considered to be. In this context, it is possible to use the
Markov chain presented in Chapter 4, which contains information about both
energy consumption and popularity and use its stationary distribution as
weights for the graph search.

Energy Optimal Safe Routing: This algorithm was first proposed
in [42] in the case of conventional ICE vehicles, and had the objective to take
into account whether a driver was familiar or not with the territory to be
driven. In fact, it makes sense to take into account the probability that the
driver makes a mistake and does not follow the exact route recommended by
the routing adviser (e.g., a car navigator). In this case, a re-routing suggestion
is required to send back the driver along the correct track to reach the desired
destination. Clearly, making such mistakes causes an inconvenience to the
driver, and in general re-routing has an impact on the overall objective
function (e.g., an increased travel time or an increased fuel consumption).

In the specific case of EVs, the consequences of mistakes might be even
more critical, as they might give rise to an unexpected increase of energy
consumption. Accordingly, the safe-routing algorithm takes into account the
familiarity of the driver with the territory to be driven, and recommends the
path where the probability of making a mistake is the smallest, or where
the consequences are not too critical (e.g., even when taking the wrong
path, it is still possible to find an EV charging point nearby). The routing
algorithm coincides with a conventional algorithm (e.g., a minimum-time
routing algorithm) in the case that the driver confirms that he or she is
actually familiar with the territory.

The following simple example from [42] briefly summarizes the main phi-
losophy underlying the safe-routing algorithm. Let us consider the simple road
graph shown in Figure 5.2. According to the model outlined in Chapter 4 the
first step consists in transforming the primal network shown in Figure 5.2 into
the dual one, where nodes correspond to roads. Let us denote the roads in ac-
cordance with junctions they connect (i.e., the road from junction Jy to J3
is named JyJ3). For simplicity, we assume that travel times are proportional
to road lengths, and are normalized so that road JyJ3 takes for instance one
unit of time, while J,.J; requires /2 time units. The diagonal entries of the
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FIGURE 5.2
Example of a primal network. The objective is to compute the best path to
go from the origin node Jo to the target node Jp.
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TABLE 5.2
Transition matrix P zy
JoJl J1J2 J2J3 J3JT JlJT JTJO J5J1 J1J5 J4J5 J2J4 J3J4

Jo 0 1/3 0 0 1/3 0 0 1/3 0 0 0
J1Js 0 0 1/2 0 0 0 0 0 0 1/2 0
JaJs 0 0 0 1/2 0 0 0 0 0 0 1/2
JsJr 0 0 0 0 1 0 0 0 0 0
T Jr 0 0 0 0 0.74 | 0.26 0 0 0 0 0
JrJo  0.13 0 0 0 0 0.87 0 0 0 0 0
Js 1 0 1/6 0 0 1/6 0 1/2 | 1/6 0 0 0
JiJs 0 0 0 0 0 0 071 | 029 | 0O 0 0
JaJs 0 0 0 0 0 0 1 0 0 0 0
JaJy 0 0 0 0 0 0 0 o |[o71|o020]| o0
JsJy 0 0 0 0 0 0 0 0 1 0 0
TABLE 5.3

Transition matrix P corresponding to a perturbed optimal path
']OJI JlJz J2J3 J3JT J1JT JTJO J5J1 J1J5 J4J5 J2J4 J3J4

JoJu 0 1—e 0 0 €/2 0 0 €/2 0 0 0
J1Js 0 0 1—¢ 0 0 0 0 0 0 € 0
JoJs 0 0 0 1—¢ 0 0 0 0 0 0 €
JsJr 0 0 0 0 1 0 0 0 0 0
Judr 0 0 0 0 0.74 | 0.26 0 0 0 0 0
JrJo 0.3 0 0 0 0 0.87 0 0 0 0 0
JsJ1 0 1/6 0 0 1/6 0 1/2 | 1/6 0 0 0
JiJs 0 0 0 0 0 0 071 | 029 | 0O 0 0
JaJs 0 0 0 0 0 0 1 0 0 0 0
Jady 0 0 0 0 0 0 0 o |07 o020 o0
JsJy 0 0 0 0 0 0 0 0 1 0 0

random walk transition matrix P gy take into account the travel times, while
the off-diagonal entries are given the same probability. The entries of the ma-
trix are reported in Table 5.2, where for further convenience the columns and
row entries (i.e., roads) are specified.

Dijkstra’s algorithm can then be used to compute the minimum time
path using the knowledge of travel times, and the optimal path is clearly
JoJ1 — J1Jo — JoJ3 — J3Jr with an overall travel time of 4 time units, while
the second best path (denoted as the alternative path in the following) is
JoJi — JiJp which takes 2 + 2v/2 time units. We now perturb the two op-
timal paths assuming a probability of making mistakes equal to €, so the
perturbed transition matrix associated with the minimum time path becomes
as in Table 5.3

Obviously the diagonal elements are not modified because they are only
related to travel times. Similarly it is possible to perturb the transition matrix



40 Electric and Plug-in Hybrid Vehicle Networks

associated with the alternative path. The obtained transition matrices are
used to compute the corresponding mean first passage time matrices and to
compare the expected mean first passage times from the origin road to the
destination (e.g., entry (1,6) of the mean first passage time matrix).

Then, it is possible to observe that for values of ¢ smaller than 8.69%, the
minimum time path is indeed the most convenient one; for values of € greater
than 8.69%, the alternative path becomes the most convenient one (i.e., it is
the safest one); while when € is exactly equal to 8.69%, then the two paths
are equally convenient (see [42]).

Therefore, the safe routing path coincides with the minimum time path
when ¢ = 0, while it may be different, as in the given example, for larger
values of €.

|
5.3 Collaborative Routing
5.3.1 A Motivating Example

Clearly “selfish routing” only makes sense if very few cars make routing
choices. As more and more cars make use of route assist technologies, such an
assumption is becoming more and more unrealistic. In particular, one known
problem of routing advisers is that if all vehicles that have the same (or close)
origin-destination pairs are recommended to use the same route, then local
congestion events might occur along the common recommended route. Such a
problem may be even more compelling in the case of EVs, as in addition there
might be queues at the charging points along the same route. Thus, balancing
vehicles along different routes that connect the same origin and the same desti-
nation becomes again more convenient in the case of EVs. This problem is now
illustrated through a simple example, inspired by the one presented in [163].

Let us assume that a group of vehicles has the same origin and the same
destination. We also assume that there are three similar routes from the ori-
gin to the destination, that require on average 60, 70 and 80 minutes of travel
time. Along each route there is exactly one charging point after 30 minutes
of traveling. Let us assume that the initial level of the batteries of the vehi-
cles does not allow them to reach the destination without charging. In the
simulation, we assume that the average time for charging is about 15 min-
utes. In principle, all three routes are feasible for the vehicles. However, if
all vehicles follow an opportunistic routing strategy, most likely all of them
will take the shortest route (i.e., in terms of travel time). This leads to con-
gested demand for charging along that route. We compare that solution with
another one where we assume that a central routing adviser forces vehicle 4
to take a particular route through some sort of automated booking system
with the objective of balancing the charging load. The routing adviser simply
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associates an EV with the route with (current) minimum load, where the load
both refers to the cars currently charging, and those that have already made a
reservation at the charging point. As can be seen from Figure 5.3 and Figure
5.4, this algorithm manages to balance both the number of cars along each
possible route and the quantity of energy required at each charging station.
At the end of the simulation 80 vehicles have completed their journey with an
average journey time of about 1 hour and 50 minutes. Just to give an idea of
how things would have degenerated with the opportunistic routing strategies,
if all vehicles chose the shortest path, which apparently is the best solution,
then only 35 vehicles would have finished their journey by the end of the
simulation with an average time of more than 5 hours.

18 I I I
------ EVs along path 1
16 |- --- EVs along path 2 |
----- EVs along path 3
ul — Total number of traveling EVs | |
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FIGURE 5.3

With a centralized routing adviser, the number of EVs is fairly distributed
along the available routes.

5.3.2 Collaborative Routing under Feedback

The previous example showed that centralized routing strategies can be in
some cases more efficient than opportunistic routing strategies. In this section
we further, briefly, mention recent ideas in collaborative routing solutions.
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FIGURE 5.4
With a centralized routing adviser, also the energy load can be well balanced
among the three charging points.
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The discussion here follows some of the results gathered in [86] and [125]. In
particular, the following aspects are relevant when designing a collaborative
routing strategy:

e Flapping instability: Poorly designed routing systems are prone to flap-
ping. This is a phenomenon where congestion is not alleviated by collab-
orative routing; rather, traffic congestion is simply shifted from one part
of the network to another part, as a consequence of ill-conceived routing
signals.

e Need for closed-loop design: Routing algorithms are in some cases de-
signed in an open-loop fashion (e.g., historical data are used to predict the
level of congestion in the road network). Most cities have elastic require-
ments necessitating the need for closed-loop routing algorithms where ac-
tual traffic information is considered. Note that closed-loop solutions are
expected to be more convenient than open-loop strategies, as they also
take into account the most recent available traffic data, and use them to
influence the choice of the recommended route.

e Delay induced instabilities: Routing instabilities can also be induced
if congestion information is “old” or, in other words, if there are delays in
communicating congestion information to drivers. This is a typical insta-
bility induced by delays in a feedback loop.

e Poor trade-off between utility of the community and utility of in-
dividuals: Routing algorithms can be designed to maximize the benefit to
the driver or to the community. Sometimes the needs of both stakeholders
are conflicting. For example, to minimize pollution, more polluting vehicles
may receive preferential routes if these are shorter.

e Community constraints: Most routing algorithms do not take into ac-
count network and queueing constraints that arise from societal behavior.
Fair access to routes is almost never considered in the context of routing
algorithms (e.g., in the example in the previous section, the longest route
should not be always recommended to the same driver).

Preliminary collaborative routing strategies have been applied in the context
of research projects (e.g., TEAM!) with the main objective of balancing the
density of vehicles across a network, under a feedback signal. In particular, this
can be performed by pursuing a number of different goals: namely, to balance
congestion; to balance travel times; to balance battery consumption; or to bal-
ance aggregate emissions. A number of use cases have been considered as well,
namely, to balance parking demand; to balance traffic load; to balance queues
at EV charging points; or to avoid pollution peaks in the close proximity of
sensitive areas (e.g., kindergartens, hospitals). In terms of scientific research,
the challenges in developing collaborative routing strategies rely on developing

Thttp://www.collaborative-team.eu/. Last Accessed July 2017.
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algorithms that preserve user privacy (i.e., not to share the information about
where single individuals go); guarantee fair access to the resource for all vehi-
cles (i.e., EV charging points; or time-minimum optimal routes); and impose
minimal communication with the centralized or distributed routing infrastruc-
ture in a “plug and play manner”. Different collaborative routing algorithms
may be distinguished among those that try to model users’ behaviors and
anticipate their routing preferences; and those that try to influence and steer
the choices of the drivers via penalties and pricing functions to convince them
in taking a (collectively) convenient route.

5.4 Concluding Remarks

This chapter gave a brief introduction on the topic of routing, both consid-
ering opportunistic and collaborative routing strategies. Especially research
related to the second class of routing strategies is still in its nascent stage,
and while some preliminary examples have been discussed in Section 5.3.2,
this still remains a very active area for research, requiring new ideas and new
algorithms.



6
Balancing Charging Loads

6.1 Introduction

In the recent years, we have seen a continuous improvement in the availability
of charge points for EVs in many countries. For large numbers of charge points,
it becomes interesting to treat the problem of allocating charge points as an
optimization problem. For an individual EV, the charging process duration
depends on the battery capacity installed on-board (typically from 20kWh
to 85kWh), the initial SOC, and the type of the charge point. Thus, the
charging time can range from 15 minutes up to 10 hours or more, depending
on these factors [24]. While such time scales might be acceptable when the
vehicle is only charged at night time, things change if the car owner needs
charging during a journey to reach the final destination. In such situations,
in the presence of queuing, it may take up to an hour until the battery is
fully loaded, thus pushing such fast charging stations into the realm of “not
acceptable”. Such considerations have led to a host of research papers on
this topic in recent years [82] [58]. Important examples include [50], where
vehicles compute a routing policy that minimizes the expected journey time
while considering the intentions of other vehicles (i.e., intentions of charging
en route); and [30], where a reservation-based charging approach is proposed.
Much of this work appears to have been motivated by [87], which initially
proposed a distributed algorithm for balancing demand over a network of
charge points. Our objective in this chapter is to revisit this work and to
describe its main features.

The problem of balancing the charging load across a set of charging sta-
tions can be tackled in a number of ways. Classic approaches to this problem
include routing individual vehicles in a manner to balance load, or, given av-
erage traffic densities, placing the charging stations in a manner to service
the expected demand in a balanced fashion. Such charging station positioning
problems are already a topical problem in the operations research community
[195] and [179]. Notwithstanding the fact that these problems are extremely
interesting from a theoretical perspective, they do suffer from a number of
practical drawbacks. First, traffic densities are temporal in nature. Conse-
quently, an optimal placement of charging stations for morning traffic might
be sub-optimal in evening traffic or may vary over time, thus rendering its
usefulness somewhat questionable. Similarly, load balanced routing strategies

45
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place severe constraints on drivers by forcing them to take particular routes
and by forcing them to particular charging stations. The willingness of drivers
to follow recommendations is a significant issue in the design of such systems.
With this latter point in mind, another approach might be to let the driver
choose a route and then use some sort of admission control to balance the oc-
cupancy of charging stations along this route. Such strategies have high data-
gathering and communication requirements and again place severe constraints
on vehicles and drivers in a way that may make such a system unacceptable
to users in practical situations. It is therefore of interest to investigate other
balancing solutions. As before, the objective is to balance charging demand
across a number of charging stations. We also wish to create a system that
adapts to changing traffic densities (flexible infrastructure) and which can be
implemented without centralized communication between infrastructure and
vehicles. A further objective is to realize the system in a plug-and-play man-
ner; namely, charging stations can enter and leave the system as they wish,
without placing a reconfiguration requirement on a centralized infrastructure.

6.2 Stochastic Balancing for Charging

The starting point is an analogy with the mobile cellular network. We view
(electric) vehicles as phones and charging stations as access points. The idea
is to divide a city area into partition cells and within each cell to associate
each vehicle with one charging station. The division of partition cells can
be based on graph clustering techniques (e.g., Voronoi diagrams) that make
use of electric vehicle density patterns, so that the ratio of EVs to charging
stations is roughly constant in each cell. Note that this partition could be easily
adapted based on temporal density patterns. The main feature of this kind of
algorithm is that drivers are not forced to take selected routes; rather, as they
travel from one partition cell to another they are assigned to a charging station
in a manner akin to hand-off in mobile phone networks. The partitioning of
the city into cells can be realized in many ways and this is not our focus
here. Rather, our focus is the car assignment problem within a cell which
takes place over faster time scales than the partitioning problem. To achieve
this we propose the following stochastic algorithm. Within a partition cell,
charging stations broadcast a green signal, indicating their ability to accept
a new vehicle, with a frequency that is a decreasing function of the current
queue length. Hence, charging stations with more spare capacity advertise
their service with a higher frequency. Similarly, we assume that vehicles listen
to green signals with a frequency that is a decreasing function of the current
level of their battery. If, at a given time, a vehicle senses a green light from a
charging station, then the vehicle is assigned to the charging station. In this
way, vehicles that are more in need of charge are associated with the charging
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stations that have the shortest queue in a fully decentralized fashion. The
actual implementation of the protocol is described in detail in the following
section.

6.3 Basic Algorithm
6.3.1 Charging Stations

Algorithm 6.1 Charging station
Py — F(N) |
Broadcast green light with probability p(cl)P

We assume that at every time step the ith charging station communicates
its availability to accept a new vehicle with probability p(c p- To do this it uses
Algorithm 6.1, where N; is number of vehicles currently queuing for charging
at the ith charging station, and F' is some function mapping the occupancy
to [0,1]. We assume that F'(0) = 1 and as the queue grows F' monotonically
decreases to 0. As charging stations with a shorter queue are more likely to
accept a new car than charging stations with a longer queue, this mechanism is

able to balance the number of vehicles associated with each charging station.

6.3.2 Electric Vehicles

Algorithm 6.2 Electric vehicle

Py  Gle)

Listen for green signals with probability p(El%/

Once the ith electric vehicle has decided to search for a charging station
we assume that this vehicle at each time step senses a green signal according
to Algorithm 6.2, where G is a function that maps the vehicles current SOC,
e;, to a probability. We require that G is a decreasing function and G(0) = 1.

Throughout this chapter we use the following way to compute pg%/

M -4 6.1
Pev M (6.1)
where e; is the actual level of energy in ith EV, and M is a maximum quantity
of energy. The rationale behind Equation (6.1) is that EVs with low charge
are more likely to sense a green signal than vehicles with plenty of residual
charge, thus giving EVs priority according to their requirements.
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Remark 6.1. There are many possibilities to refine the basic algorithm. For
example, instead of balancing the number of vehicles, it is also possible to
balance the energies requested at each charging station. It is also possible
to take into account other factors in the computation of p%)v, for example
the expected energy required to reach a charging station or the distance to
it, the expected time to reach the destination and the user needs, such as
the accepted detours, location preferences, etc. It may however be justified to
ignore these factors, if one assumes that the partition cells are small enough
so that each station in a cell is equally acceptable to the user.

6.3.3 Protocol Implementation

Each second, during which a charging station gives a green light and an EV
senses such a broadcast, the EV is assigned to the charging station. Note that
contrary to most approaches (see for instance [69]) the proposed approach is
fully distributed. It is worth mentioning at this point that a fully centralized
solution to this problem could easily be implemented. Indeed, such solutions
are in many cases preferable to distributed ones. We focus on distributed
solutions as they can be very attractive for this application for a number of
reasons: (i) such algorithms are usually robust to possible failures, including
attacks and manipulations, in a way that centralized solutions are not; (ii) in
addition, the approach could easily be extended by introducing a reputation
system to identify misbehaving vehicles or charging stations; (iii) distributed
self-organizing optimization algorithms are very suitable to handle scenarios
which are highly stochastic in nature (e.g., see for example the Transmission
Control Protocol (TCP) in communication networks or [145] in the context of
vehicular mobility); (iv) the decentralized approach we describe has certain
privacy and security benefits, as there is no need for an entity, which knows
about the locations of all individual vehicles. On the contrary, decisions can
be made in a decentralized manner with only limited information; (v) finally,
decentralized solutions facilitate the possibility of implementing plug-and-play
policies, where charging stations become available only at particular moments
of the day. For example private car parks, office blocks, and universities may
make their charging stations available during off-peak times. The latter point
needs to be emphasized and will be discussed later through an example. In
a centralized solution the adding of charging stations requires updates to the
centralized structure, whereas a self-organizing structure leads to a truly plug-
and-play system.

Remark 6.2. The implementation of the proposed protocol in a probabilis-
tic framework rather than through a more straightforward deterministic ap-
proach is preferable for the following reason. A single charging station cannot
know which charging station has the shortest queue unless some information
is exchanged among stations (either via a centralized hub, or directly). The
proposed approach does not require any direct exchange of information and
thus has good scalability properties (with numbers of vehicles and stations).
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6.4 Analysis
6.4.1 Quality of Service Analysis: Balancing Behavior

The algorithm described in the previous sections is best analyzed in a queue-
ing theory framework. We now describe a possible approach to do this and
give results, under simplifying assumptions, regarding the algorithm for two
distinct scenarios. In this section we let the probabilities p(cf)P for Algorithm 6.1
be calculated according to

P =107, (6.2)

where N; is the number of vehicles at the ith charging station. To ease expo-
sition, we make the following assumptions:

(i) There is no delay between a car requesting service and assignment to a
charging station.

(ii) After being assigned, the vehicle is instantly added to the charging sta-
tion’s queue.

iii e assume that a car is assigned to charging station i wi robabili
iii) Wi that i igned to charging station ¢ with probability
(i)
Zp ClP-, where the sum in the denominator is taken over all charging sta-
iPcp
tions in the same partition cell as station 1.

(iv) Each car waiting at a charging station is charged with a rate independent
of the total number of vehicles awaiting service.

(v) We model the arrival process of cars to the charging stations as a Poisson
process and assume that the charging times for each car are exponentially
distributed.

Remark 6.3. The first assumption is justified, as it makes sense to let the as-
signment happen on a much faster time scale. Also delays before assignments,
if taken into account, do not change the balancing behavior of the approach.
The second assumption is a bit stronger, as it does not consider the effect
of the delay between vehicle assignment and arrival at the charging station;
however it may be a valid approximation if the partition cell is small and
distances to the charging station can be covered much faster than it takes
to charge a vehicle. The third assumption is purely to simplify notation. It
is possible to compute the exact expression, which will include higher order
terms and exchange the simpler expression for it. Assumptions (iv) and (v) are
quite standard in queueing theory, see for example [165] for a similar model.

Under the above assumptions, the system can be modeled as a Markov
chain, where for n,, charging stations the state of the Markov chain is an n,,
dimensional vector that reports the occupancy of each station. The transition
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probabilities between the states can be readily computed from the rates of
the arrival process and the service process and the used assignment rule for
each station. For the algorithms described above it immediately follows that
the Markov chain is irreducible and primitive [141], which assures existence
and uniqueness of a stationary distribution. If the number of customers in
each station is bounded, then the number of states is finite and we can use
the transition matrix to compute the stationary distribution, which yields
information about what fraction of time the chain spends in each state.

6.4.2 Quality of Service Analysis: Waiting Times

We now give some complementary results to indicate how quickly EVs are
assigned to a place in a queue at a charging station. We call this time the
waiting time. As before, to facilitate exposition, we make the following as-
sumptions. (i) If two EVs sense a green light, then only one EV is assigned to
the available charging station, for instance the one with the minimum residual
charge. Similarly, if one EV senses multiple green lights, then it is assigned
to only one charging station (e.g., the closest one). (ii) We assume that the
probability that an EV will be assigned to charging station ¢ is
(@)
e (6.3)
Zj PoP

which is obtained by neglecting high order terms (i.e., considering only terms
that are linear with respect to the probabilities). (iii) In deriving the following
lemmas we make a stationarity assumption; namely, that the system has
reached steady state and the number of vehicles queuing at each of the
charging stations is constant.

Lemma 6.4. (EV waiting time) : Consider a network of n,, identical
charging stations, available for charging at all times. Assume that at a cer-
tain time the ith vehicle makes a request to access a queue for charging at a
whatever charging station. Then the average waiting time tfi;/g‘t before being
assigned to a specific charging station is

. —1
0 = (p (1= prea) (6.4)
where .
Pred = H (1- ng), (6.5)
j=1

p(ggg is the probability that the jth charging station broadcasts a green light, and
p%)v 1s the probability that the ith EV senses a green signal, as in Algorithms
6.1 and 6.2 respectively.
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Proof. At any one time step the ith EV gets assigned if it receives at least one
green signal and it is currently listening for signals. These events occur with

probability 1 — p,.q and p%)v respectively. As the two events are independent,
the joint probability is p%)v(l — Pred)- From this it is possible to compute
the expected waiting time, which can be seen to be equal to the one given in

Equation (6.4). O

According to Lemma 6.4 the expected waiting time is short if p,eq is
small, which occurs if the number of charging stations is large or if the
queues are small. Lemma 6.4 can be interpreted as a quality of service
measure for the customers. One may equally be concerned about the quality
of service for the charging stations. For the charging stations it is undesirable
to be idle. Obviously this situation will occur at times with low demand.
However, the system should avoid having one or several stations idle,
while other stations have a high workload. The following lemma quanti-
fies the probability that the assignment rule assigns cars in a non-optimal way.

Lemma 6.5. Consider a network of n,, identical charging stations. At a
given time, let B be the set of all stations that are busy charging one or more
vehicles, and let ny be the number of charging stations that are idle. Assume
that at this time instant a vehicle is assigned to one of the stations. Then the
probability that this vehicle is assigned to a busy station instead of an idle one

s given by
nr

nr—+ ZieB F(Nz)

Proof. According to our assumptions the new car is assigned to one of the
busy stations with probability

1—

(6.6)

ZzEB F(N)
> F(N;)

Further F(N;) = 1 for any idle station. Using this in Equation (6.7) and
rearranging it yields Equation (6.6). O

(6.7)

Remark 6.6. Lemma 6.5 addresses the undesirable situation where a car is
assigned to an occupied station even though an idle station is available. It
is possible to obtain more comprehensive quality of service measures along
the same lines as in the lemma. For example it is possible to compute the
probability that a newly arriving car is assigned to a specific charging station.
Such problems can be addressed as a queueing theory problem in an almost
identical manner to Lemma 6.5. Given the exact shape of the function F' it
is possible to further refine this result. For example, if one uses a function of
the form of (6.2) the probability of a new car being assigned to a particular
charging station depends not on the absolute values of the queues, but only
on the difference of the queues’ lengths.
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In Lemma 6.5 the probability that a new EV is assigned to a busy station
instead of an idle station depends strongly on the shape of the function F.
Here a rapid decrease of F' is preferable. For example, consider a system with
10 charging points, of which 2 are idle. Assume that all other stations each
have 2 EVs in their queue. If we use (6.2) to define F, then the probability
given by (6.6) is less than 0.04.

6.5 Simulations

We now present two simulations to illustrate the efficacy of the approach.

For our simulations we used again Equation (6.2) to calculate p(é)P.

Simulation 1 (Deterministic vs. Stochastic) : The first simulation
compares the stochastic algorithm with a deterministic one. The simulation
runs for 8 hours. Moreover, we assume a fixed charge rate of 0.01kW/s per
vehicle and a charge request of energy ranging between 1 and 10 kWh, so that
the maximum time for recharge (i.e., corresponding to a request of 10kWh
of energy) is 1000 seconds (i.e., =~ 16 minutes). We also assume that at the
beginning of the simulation (8 AM) all the 20 available charging stations
are empty. In the deterministic approach a new car is directly assigned to the
charging station having the shortest queue. Figure 6.1 and Figure 6.2 compare
the results of both approaches.

Remark 6.7. It can be seen from Figure 6.1 and Figure 6.2 that the deter-
ministic assignment strategy is better than the stochastic approach. By its
very nature, the deterministic method is optimal and achieves perfect balance
more often than any other assignment algorithm. However, the aim of our
work here is to validate the performance of the stochastic approach, which
may be desirable for a number of reasons. For example, the deterministic
method requires a large amount of communication between all participants
(cars, stations, cloud). With this in mind Figure 6.1 shows that the average
number of vehicles waiting at the charging stations using the stochastic al-
gorithm is very close to that obtained from a centralized solution. The two
approaches also provide very close results in terms of the variance of the vec-
tor of queue lengths (variance equal to zero corresponds to exactly the same
number of vehicles queuing at each charging station), as shown in Figure 6.2.

Simulation 2 (Plug-and-play Behavior): A feature of the proposed
approach is that it provides the opportunity of handling a dynamically varying
number of available charging stations in a manner that is completely trans-
parent to both the vehicles and the stations. Such a possibility is convenient
in several circumstances, for instance shopping malls or workplaces might re-
serve charging facilities to customers and employees during working hours and
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FIGURE 6.1

The decentralized minimum-communication stochastic approach provides re-
sults very close to the heavy-communication deterministic centralized ap-

proach: here the average number of queuing vehicles at each charging station
is shown.

be publicly available at other times. In this simulation we show that the al-
gorithm can be used to achieve such functionality. We assume that we have
three available charging stations until 12 PM, at which point two new charging
stations start offering charging facilities.

Figure 6.3 illustrates that the maximum difference between the longest
queue and the shortest one is usually very small (well-balancing), and is par-
ticularly large only when the new charging stations become available. As de-
picted in Figure 6.4, as the new two charging stations become available, very
short waiting times are restored.
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FIGURE 6.2

The decentralized minimum-communication stochastic approach provides re-
sults very close to the heavy-communication deterministic centralized ap-
proach: here the average variance of queuing vehicles at each charging station
is shown.

6.6 Concluding Remarks

This chapter illustrates an approach to reduce the potential for queuing of
electric vehicles at charging stations based on an analogy between electric
vehicles/charging stations and mobile phones/base stations. The second con-
tribution is a stochastic technique for balancing load across queues. The re-
sulting system balances load across the charging network, and avoids peaks
in individual queues, while at the same time avoiding driver inconvenience
through enforced route selection.
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The fairness of the algorithm is measured in terms of maximum difference
between the busiest and the most free charging station (larger than 1 implying
a sort of unfairness).
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Aggregate time required before receiving a green signal. As can be seen, the
waiting time is greatly reduced when the 2 new charging stations are available,
which occurs at the time indicated by the vertical line.



7
Charging EVs

7.1 Introduction

Power demand usually follows periodic patterns, with a higher demand of
power during the day, and a lower demand during the night, when many
activities are stopped. The exact shape of the electrical load pattern depends
then on a number of factors, such as the location, the day of the week, the
season or the weather. At all times, power demand has to be matched by
an equally high power generation. In a classical distribution grid, there are
several grid services responsible to achieve this match on various time scales.
When the power demand is very high, i.e., at peak times, the power grid
operates closer to its physical limits, and this implies that usually energy
generation is more expensive during these periods. Another consequence of
these peaks is that the transmission losses are higher, since the losses are
proportional to the square of the current, while the demand is proportional
to the current. Hence, to improve network utilization, it would be desirable
to reduce peaks, possibly by shifting power consumption to moments when
the demand is low, i.e., valleys, and eventually reshaping the demand curve to
make it as flat as possible [29, 68, 1, 63, 118]. Consequently, the charging of
EVs can increase the generation costs dramatically when the charging occurs
during peaks, or even cause power quality issues, such as voltage deviations,
see for example [154, 51, 68, 146, 155]. In this regard the power grid could even
become a limiting factor in the adoption of EVs [146, 155, 151]. In addition,
the distribution of the EV charging, in a worst case scenario, can also lead to
imbalances in the three phases of the network loading, and negatively affect
the voltage profile and in general power quality [150].

While the previous considerations may be seen as an impediment to a
smooth adoption of EVs, there is also a general expectation that a smart uti-
lization of EVs may actually eventually support the operation of the grid. In
particular, this is due to the fact that, nowadays, the power grid is undergoing
a deep transformation to facilitate the inclusion of Distributed Energy Re-
sources (DERs), especially from renewable sources, i.e., wind and sun. DERs
are intrinsically small-sized, non-dispatchable and intermittent power plants,
and their widespread adoption is changing the classical top-down structure of
power grids. In particular, tighter stabilizing measures are required to increase
power generation from DERs ([64, 160]), and other expensive infrastructure,
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i.e., batteries or super capacitors, is used to increase the flexibility of DERs.
In addition, ancillary services such as load management or demand side man-
agement, are becoming popular as an alternative to the classical paradigm
that power generation should follow the demand, and rather, the demand is
controlled in order to follow the generation. Accordingly, some electric loads
adapt their instantaneous power consumption to fulfill some ancillary services
that can be useful for the grid [108]. For example, excess wind energy gen-
erated at night is stored in form of thermal energy in refrigerator units such
that later during peak times this energy can be used to reduce the output of
a conventional coal power plant [191]. In this context, while not all electrical
loads are feasible candidates for such demand side management services, EVs
are ideal candidates, since they fulfill three key requirements, as identified by
[25, 29, 64].

e Flexibility: The charging of an EV can be scheduled with some degrees
of freedom, as it can be often postponed and/or reduced for a significant
period with small inconvenience to the owners.

e Predictability: Once connected, it is possible to accurately predict the
energy needs of an EV. Further, it is possible to estimate in advance the
long term energy requirements using historical driving patterns [151].

e Availability: If EVs are connected to the grid whenever they are idle,
including at home and at work, a considerable number of EVs would be
available throughout most of the day, thus forming a virtual battery of
considerable size.

The possibility of using EVs as storage devices implies that in principle, if
needed, EVs can also inject power back into the power grid. Such an operation
is commonly known as V2G [1, 147], as the power flows in this case from the
vehicle to the grid. Although V2G operations have the potential to support
the power grid tremendously, they should be performed in a cautious manner.
In fact, V2G services may have some implications for customers. Firstly, the
lifespan of the battery of the vehicle may be reduced due to the additional
stresses caused by the charging cycles of V2G services, that may possibly
also include over-depletion cycles. Secondly, if the owner collects the vehicle
earlier than originally planned, V2G services may not leave enough energy
for the next trip. Finally, one should also pay attention to environmental
consequences, as we will further discuss in Chapter 8.

There is also a third enabled service, that is usually less discussed but
also attractive, that is enabling the EVs to participate in reactive power bal-
ancing tasks. This service consists in supporting the power grid by delivering
or absorbing reactive power to improve the power factor in a region. It is
expected to be more useful for vehicles parked close to industry sites, where
more reactive power is produced or required. The advantage of using EVs to
counteract reactive power demand, is that it will not be required to transport
reactive power over long distances, which in turn reduces not only the costs
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and transmission losses, but also increases the amount of active power that
can be transmitted to the loads.

From the previous discussion, it is clear that EVs might actually support

the grid and even facilitate the increased deployment of renewable energy
generation. However, there are some obvious limitations that need to be con-
sidered. These are:

Limited energy: Each EV can only draw, or provide in case of V2G
operations, a limited amount of energy due to its limited battery capac-
ity. Naturally, the trend to increase the battery sizes and the increase of
penetration levels will mitigate this limitation.

Limited power: The charger, as well as the battery, of an EV will have
a limited power that can be handled. Much of the controlled EV charging
will most likely occur at home where a single phase outlet is used, with a
capacity around 4 kW [37, 51, 68]. In the future this might change and more
three-phase charging with higher power capabilities will be used. As for
the limited energy availability this development and increased penetration
levels mitigate the effects.

Limited connectivity to the power grid: Although it has been esti-
mated that cars are on average parked up to 90% of the time ([31]), not
all parking spots are equipped with plugs that would actually connect the
vehicle to the grid for Grid to Vehicle (G2V) or V2G power exchange. In
this context, an increase of charging capabilities at work places, shopping
centers and on street parking, would significantly increase the availability.

Customer constraints: It is important to consider the constraints of
the owners in regard to their transportation needs (e.g., in terms of the
desired driving range or utilization of additional energy-demanding on-
board services). These needs can vary between persons, charging locations,
and charging times.

Limitations of the charging cycle: Very often a Constant Current,
Constant Voltage (CCCV) method is used to charge EV batteries, where
first a constant charging current is applied until a certain voltage is
reached. Afterward, the voltage is kept constant while the charging current
is decreased. While during the constant current mode it is possible to ad-
just the current (and thus, control the power), this cannot be done during
the constant voltage part. Hence, the EVs should be treated as uncon-
trollable loads during part of the charging process. Also, especially when
the voltage of the battery is low it is recommended to use low charging
currents [119].
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7.2 EV Charging Schemes

Due to the previously described implications, controlled EV charging is an ac-
tive research area. There is a vast literature concerned with EV charging, see
for examples [51, 1, 147, 36, 68, 196, 143]. The suggested methods vary widely
throughout the literature. For comparison purposes of these methods, the
following properties can be identified: (i) control architectures; (ii) communi-
cation requirements; (iii) degree of control actuation; (iv) supported services;
(v) control methods; (vi) measurement and prediction requirements; (vii) op-
erational time scales; and (viii) control focus. In the following, we shall give a
brief discussion of the existing literature organized in terms of these charac-
teristics.

7.2.1 Control Architectures

Commonly three control architectures are employed for charging plug-in EVs.

e Centralized control: A central controller aggregates information from
connected EVs, and possibly from connected measurement devices, and
then uses these measurements to make a decision in regards to the charg-
ing. The control decision is then communicated to the connected EVs,
which will make the necessary low-level adaptations to their charging rate.

e Distributed control: In this case there exists a central management unit
that can gather information from measurement devices and/or connected
vehicles. This information is then communicated to the connected vehicles
that use it to augment local information and take appropriate charging
decisions.

e Decentralized control: In this case, coordination is achieved using
purely local measurements and communication among participants. Each
participant, as in the distributed case, chooses the appropriate action given
the available information.

Many studies assume a centralized control structure, see for example
[132, 51, 37, 147, 177]. However, using a central control structure implies
that the central management unit requires large amounts of information to
take the appropriate charging decisions. In the case of EV charging this can
include a large amount of data such as the energy needs of every single vehicle,
estimated connection and disconnection times, as well as the physical limita-
tions imposed by the charger and the battery. Note that such an information
exchange may in some cases not be desired, or even possible, due to commu-
nication limitations or privacy issues. After gathering all the information, the
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centralized controller will take the appropriate decision as to which control
action that should be taken, i.e., how to schedule the EVs. This decision can
be taken using various methods. For example, in the centralized control struc-
ture of [51], vehicle owners may select a priority for their preferred charging
time during the evening and night, where the highest priority coincides with
the evening peak. Then, the algorithm schedules the charging times of the ve-
hicles according to the selected priorities and the impact on the distribution
grid, guaranteeing that the distribution grid will operate within its allowed
constraints. Power flow analysis is continuously performed to keep checking
that the limits imposed by the distribution grid are not violated. Alternatively,
another frequent solution is to define an objective function and optimize the
scheduling to minimize (or maximize) the objective function. Such an ap-
proach is taken by [177, 132, 89]. For example, in [132] the objective function
depends on the SOC, the battery capacity, the expected charging time, as well
as the willingness to pay more (or less) by the vehicle owner. After the op-
timization is concluded, the centralized controller informs the vehicles about
their schedule.

The main disadvantage of centralized control structures is that they are
generally less robust to failures of components and often scale badly with the
size of the problem. For example, the strategy used in [51] requires repeated
load flow analysis for each EV connected to the distribution grid. Similarly,
strategies based on centralized optimization may in some cases become pro-
hibitively complex to solve.

Despite these disadvantages, central controllers can usually find a globally
optimal scheduling, since all the required information is available to the single
centralized controller. However, this raises other issues in regard to data pro-
tection. The second main advantage of such controllers is that it is possible
for the provider to adapt the behavior of the control easily from a central
location. For example, a change in the desired demand can be easily achieved
by properly adjusting the central controller.

An alternative architecture is the decentralized control structure. Its main
advantage is that it is usually more robust to component failures, and lit-
tle dedicated infrastructure is required. However, the achieved performance is
often sub-optimal, because not all the information is available to every sin-
gle car in the network. Additionally, adjusting the behaviour externally can
prove more challenging than in a centralized approach, due to the individual
controllers of each EV.

Distributed control structures combine the robustness of decentralized al-
gorithms with the ability to easily govern the overall behavior from a central
management unit, as in centralized control structures. For this reason, most
algorithms designed for the control of EVs are distributed algorithms, see for
example [196, 68, 60, 59, 118, 172, 171, 176, 173, 170, 74].
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7.2.2 Communication Requirements

A first concern regarding the communication aspects, is that exchanging large
amounts of data may lead to considerable communication and computation
delays, especially for large scale systems like power networks. Such delays can
degrade the performance, and eventually cause damage to the power grid; for
example, if transformers are overloaded for too long periods. This is especially
critical for fast reacting services. Further, while it is generally acknowledged
that distributed and decentralized algorithms impose lower communication
loads than centralized ones, this is not always the case. For instance, dis-
tributed algorithms with a high communication load can be found in [132, 196],
while efficient ones can be found in [68, 60, 59, 172, 171, 176, 170].

A second concern involves privacy issues and data protection. The more
data that is shared, the more important it becomes to prevent misuse of the
information. In this context, it is not necessarily important how much data
is transmitted, but also what data is exchanged. This varies widely among
the proposed schemes. For example, the centralized algorithm suggested in
[51], needs a two-way communication between the central controller and the
EV. The vehicle transmits a preferred charging time and a load profile of
the vehicle, as well as its connection and disconnection times. In return, the
central controller transmits the required charging allowance. Even though the
communication load is relatively low, this algorithm does not scale efficiently
with the number of EVs, and the transmitted information may be intercepted
by malicious agents. It might be also possible to use no communication at all
among the agents and utilize the frequency and voltage as an indication of the
required actions. While to the best of our knowledge we are not aware of an
EV charging mechanism doing this, there is an example of such an algorithm
for thermostatically controlled loads in [11].

7.2.3 Degree of Control Actuation

The next important characteristic is the ability of a controller to manipulate
the charge rates. Very roughly, it is possible to distinguish three main cate-
gories: binary charging capabilities (i.e., on-off charging), multi-step charging,
and continuously adaptable charging capabilities. Generally speaking, a higher
flexibility in actuation leads to a better control over the aggregated power con-
sumption [132]. However, additional flexibility increases the complexity as well
as the cost of the infrastructure, such that the increased performance has to
be weighted against these costs. Many recent works propose algorithms that
require binary charging capabilities, such as [147, 51, 176]. Note that in [1]
the EVs at electrical nodes are aggregated and that this aggregated power
can vary continuously within given limits. Also, later in Section 7.3 we shall
describe a specific framework that can exploit both binary and continuously
adaptable power levels.
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7.2.4 Supported Services

A plug-in EV can, in principle, support three basic charging services: uni-
directional power flow adjustments; bi-directional power flow regulation, i.e.
V2G operation; as well as reactive power exchange with the grid. The first
mechanism is the basic property needed for controlled charging, see for ex-
ample [36, 143, 196, 68, 37, 51, 172, 171, 176, 170, 132, 154, 59]. This ba-
sic capability is considered necessary for a widespread deployment of EVs
[146, 155, 10, 143, 150, 73, 37, 63]. Other studies have also investigated the
feasibility of V2G services, see [89, 1, 147, 173, 170] for examples of this. An
example of how a charging algorithm can be extended to include V2G services
is given in Chapter 8.

As mentioned, such services can bring additional problems for the EVs in
the form of additional stresses on the battery and eventual implications on
the customer or the environment. For a discussion on the latter topic we will
refer the reader here to Chapter 8. To lessen the impact on the vehicle owner
[1] imposes limitations on the energy that can be used for V2G operations
and/or the time when such operation is allowed.

The third service that can be provided by EVs is reactive power exchange.
While this capability is not widely considered in the literature, it seems to
be a logical next step beyond conventional charging. Most likely, it will be
adopted and useful for areas with high penetration level of EVs that are
in close proximity to large consumers and providers of reactive power. For
instance, work place charging of vehicle fleets might be a candidate example
for such a service [31, 173, 170].

7.2.5 Control Methods

In the load management literature there are three main ways to control power
consumption [188, 112]:

e Time of use: Here, power consumption is indirectly controlled by varying
the electricity price, depending on the time of the day. Prices are usually
fixed and there are two or three different levels of price. Such schemes
are already in use in many countries. For example the electricity provider
AGL in Australia defines three such levels: Peak, Shoulder, and Off-Peak!.

e Real time pricing: Here, the electricity price varies in real time depend-
ing on the demand and the generation. It is expected that the customers,
or the electric appliances themselves, will react to such a varying price
with an equally fast adaptation of the charge rates. The response to these

TAGL Energy Price Fact Sheet, available online at http://www.agl.com.au/~/
media/AGLData/DistributorData/PDFs/PriceFactSheet_AGD20308MR.pdf. Last Accessed
July 2017.
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prices can be automated to achieve an optimal behavior.

e Direct load control: Here, the charge rates are directly adjusted by
the load management scheme without the need for pricing adjustments or
pricing signals. Naturally, participation might be encouraged by monetary
incentives.

The authors of [112] discuss various other methods of control, such as
load curtailment programs, other pricing programs, or education programs.
However, the above three types are the most popular in the literature and we
will therefore focus on those.

Control methods based on the time of use are already exploited by some
electricity providers. While they are effective in shifting part of the load away
from peak times (due to the higher prices), their effectiveness is limited. The
main reason is that these are indirect methods that require individual actions
from the owners. Further, they are relatively inflexible due to the fixed time
periods. In addition, even if a charging action is shifted to off-peak times, there
may be a second peak later when all EVs commence charging at the start
of the off-peak pricing period [151]. Hence, most works actually recommend
methods either based on real time pricing [68, 196, 60, 118, 59] or on direct
control [37, 51, 1, 29, 132, 154, 103, 172, 171, 176, 170]. On the other hand, real
time pricing causes the EVs to react automatically by optimizing a specific
cost defined by the algorithm. Firstly, this requires the customers to trust
that the actions undertaken are in their best interest. Secondly, it shifts the
burden partly towards the customers, since they are charged higher prices for
the consumed power during peak demand. Finally, also direct load control is
considered controversial since the customer’s needs might not be taken into
account. For instance, if the grid remotely disconnects some EVs to reduce the
peak, then a vehicle owner may not have enough energy for his or her next trip.
One way to handle this drawback for the owners is to introduce constraints.
For example, in [51], the vehicle owner selects a preferred charging time, while
in [37] the vehicle owner dictates a charging deadline when the vehicle has to
be fully charged. In other situations it might be not essential to fully charge
a vehicle, since the charging will be an additional service provided to the
customer, see for example [172, 170].

7.2.6 Measurement and Forecasting Requirements

Most charging schemes exploit some additional forecast information, such as
daily demand predictions [68, 37, 132] or energy requirements of the EVs
[68]. Robustness to errors in such predictions is an important factor, since
predictions cannot be expected to be perfect.
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7.2.7 Operational Time Scales

The previously discussed load management tasks can operate at various time
scales. The specific time scale will depend on the restriction caused by the
communication network as well as the capabilities of the chargers themselves.
Hence, the proposed smart charging algorithms vary in the implemented time
scale. While 15 min time slots are considered in [37, 154], [51] uses 5 min slots,
[68] assumes in their simulations hourly time slots, and [12] argues for the
possibility of very fast time scales of a few milliseconds. Other studies allow
for a range of different time scales [172, 171, 176, 170, 68] without specifying
the actual length.

7.2.8 Charging Policies

Many studies compute the power allocated to EVs to mitigate the inconve-
nience to the grid as much as possible, given the charging constraints (or
preferences) of the EVs. Alternatively, the EVs can adapt their charging to
maximize customer satisfaction, or in other terms the Quality of Service (QoS)
to the vehicle owners, given the constraints of the power grid, see for example
[51, 170]. Both optimization perspectives have been investigated in the liter-
ature, and lead often to two different outcomes. In the first one the actual
charging demand depends on the individual choices, and may still result in
adverse effects on the grid. On the other hand, the second perspective may
give rise to some inconveniences to the customers, since the hard constraints
are dictated by the distribution grid.

7.3 Specific Charging Algorithms for Plug-In EVs

In the following, let C, denote the available power in the resource sharing
problem. This available power is specified by the energy provider as the desired
maximum demand by electric loads. While in some cases these electric loads
will consist solely of EVs which charge in a controlled manner, it might in
other cases include other non-controlled EVs or other electric loads. We will
assume that the charging algorithms operate with a slotted time frame, so
that changes in operation occur at discrete time steps. The time steps are
indexed by integers k. Further, we let P;(k) be the power drawn by EV i
at time step k and n(k) be the total number of vehicles participating in the
charging scheme. Note that the number of participating EVs is dependent
on k since vehicles can connect and disconnect from the distribution grid. In
what follows we assume that there are no non-controllable loads. Then, the
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power constraint can be expressed by

n(k)

> Pi(k) < C,. (7.1)
i=1

In these charging tasks a second constraint imposed by the individual chargers
comes into play. This means that the power drawn by an EV cannot exceed the
rated power output of the charger supplying the vehicle P;(k). For instance,
in some domestic scenarios, that is where plug-in EVs charge at a single phase
home outlet, we would choose P;(k) = 4kW, since the maximum power out-
put of a standard single phase 230 V outlet is 4.6kW [37]. In addition, the
controller will typically limit the charging to lie within a predefined feasible
set P, i.e.

P;(k) € P. (7.2)

For example, for chargers that can only switch the charging on or off, this
means that P = {0, Pi}. Note that we here neglect any power consumed by
the charger. Given these constraints the EVs try to maximize the power taken
from the grid (i.e., Equation (7.1)) subject to the user-centric constraints (i.e.,
Equation (7.2)).

7.3.1 Management Strategies

The system underlying the proposed charging structure consists of three parts:
the power grid, the EV chargers, and a central management unit. These three
parts are interlinked through the exchange of power and/or information. The
power grid connects the feeders, power generators, and the charging vehicles.
At the same time the central management unit has access to power grid state
information, such as the power flow at a transformer or power line. It uses this
information to decide when to send broadcast signals to the connected EVs.
These EVs then react individually. Note that the central management unit
does not receive any individual information from the EVs. Neither, do the EVs
communicate among themselves. Hence, there is very little critical information
exchange, which lessens concerns regarding data protection and privacy issues.
However, a key requirement is that the infrastructure is able to communicate
to vehicles. While such functionality is not widespread, the assumption of
grid-to-vehicle communication underpins most of the work in this area. The
central management unit monitors the current demand and is informed about
the available power from the grid. As soon as the demand exceeds the available
power, i.e., constraint (7.1) is violated, it sends a broadcast signal to inform
the connected vehicles that the power consumption should be reduced. We will
call such a signal, a capacity event signal. The reaction of the EVs to capacity
event signals is determined by an algorithm that runs independently locally
on each connected EV. This algorithm is the key part of the management
system and defines the behavior of the overall distributed charging system. In
the remainder of this chapter we shall describe two such algorithms.
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7.3.2 Binary Automaton Algorithm

The binary automaton algorithm controls the demand of the vehicles by inter-
rupting their charging progress throughout the time they are connected to the
charger. This means that at certain times while the EV is connected, it inter-
rupts its charging progress, i.e. there is no power demand, until it is allowed
to continue. At regular intervals, indexed by k, the central management unit
will send capacity event signals or refrain from sending a signal, depending
on current overall consumption. The EVs react to these signals in a different
manner depending on whether they are currently charging or waiting to be
allowed to start charging (again). Note that we here assume that once the
EV finishes charging, i.e. its battery is fully charged, it disconnects from the
charger.

The “turn-off” phase is executed if a capacity event signal has been re-
ceived. In this case some of the EVs that are currently charging will decide
to interrupt their charging progress. Additionally, during this phase no EV is
allowed to start or resume charging, if they are currently waiting. Hence, dur-
ing this phase EVs either continue uninterrupted with their charging or turn
off, i.e. stop consuming power. In this way the aggregated demand by EVs
is likely to be reduced as desired. The decision whether or not to interrupt
the charging is decided by the EV in a probabilistic manner and is governed
by two variables: an individual probability p;(k) and a constant integer s.
The integer s is a common variable among all agents and hence has to be
somehow communicated among the EVs. Since it is constant this can however
be directly fixed in the charger upon the installation. Then, with probabil-
ity p;(k) the EV will interrupt its charging, its power consumption is set to
Pi(k+1) =0, and it resets the probability p;(k+1) = % On the other hand,
with probability 1 — p;(k), the EV decides not to interrupt its charging, its
power consumption is set to P;(k+1) = P;(k), and the EV increases the prob-
ability of interrupting for the next time step by setting p;(k+1) = p;(k) + 1.
This also means that after at most s time steps with a capacity event the EV
will interrupt its charging progress.

The “turn-on” phase is structured in a similar fashion. It governs starting
or resuming, if previously interrupted, charging and is executed whenever no
capacity event signal is received. A vehicle that is already switched on is
not affected by this phase and continues uninterrupted. As before each EV
maintains two variables that are associated with this phase: the probability
v;(k) € [0,1] and an integer r common among all EVs. With probability
vi(k) the vehicle sets its power consumption to P;(k + 1) = P; and resets the
probability to its initial value, i.e. v;(k+1) = % So in this case the EV starts
charging or resumes doing so, if it was previously interrupted in a turn-off
phase. With probability 1 — v;(k) the EV remains switched off. In this case it
increases the probability of turning on by setting v;(k + 1) = v;(k) + %

Figure 7.1 depicts a detailed flow chart of the algorithm as executed at
each time step by the EVs. Note that the common parameters r and s define
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Still turned off?

Still turned on?

FIGURE 7.1
Flow diagram of the binary automaton algorithm executed by a vehicle to
control the charging procedure

the behavior of the algorithm. The larger these are chosen the longer the EV
is expected to remain on or off. In this simple setting we assume that a fair
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share is achieved if the duty cycles of the vehicles are identical on average,
i.e., the time they are on is on average the same for all EVs. This is achieved
by selecting r and s identical for all EVs.

For a detailed mathematical analysis of the algorithm, we refer the reader
to [176, 169].

7.3.3 AIMD Type Algorithm

Additive Increase Multiplicative Decrease (AIMD) algorithms, see [34] and
Chapter 18, have been very successful in regulating congestion in the Inter-
net [167]. Bandwidth sharing in the Internet presents similar issues to power
sharing at a charging station: flows leave and join the network; the available
capacity may change over time; and the system can be very large scale. AIMD
algorithms are characterized by an Additive Increase (AI) phase and by a Mul-
tiplicative Decrease (MD) phase. Accordingly, during the AI phase the EVs
increase their charge rates linearly with time, by an additive constant a > 0
(in kW s™1), as shown in Figure 7.2. When a capacity event signal is received,
each EV reduces its drawn power by a multiplicative factor 8 € (0,1). Note
that the capacity event in our case corresponds to the congestion event in
the case of Internet flow control. While there the congestion event point to
a congested link, here the capacity event indicates that all available power is
used. A more detailed discussion of the AIMD algorithm and its properties
is given in Chapter 18. A slightly more complex variant of the multiplicative

No Capacity event
signal received?

BY (k) Pi(k) with probability A; (k)

i

Pi(k+1) =
[ (k+1) {ﬁf)(k)Pi(k) with probability 1 — A; (k).

(Pl 1) = min (Ri(6) + ), 7)) e

FIGURE 7.2
Block diagram of the AIMD algorithm. The algorithm is run by each EV
independently.
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decrease is the probabilistic selection of the reduction factor. This variant
helps maximize the transferred power, while still satisfying the constraints on
total and local powers. In our case, upon detecting a capacity event, we as-
sume that each vehicle can either reduce its charge rate by a large or a small
amount, according to two possible multiplicative factors denoted by V) and
B3, The choice of § is determined in a probabilistic manner where we use \;
to denote the probability that EV i chooses (") (and thus, 1 — \; for ).
Controlling these probabilities as well as the other parameters a, (1), and
B3 enables us to implement different policies among the EVs. For example,
in some situations policies to minimize cost are important, and in other situa-
tions speed of charging is important. To give a flavor of how different policies
might be realized we consider two typical scenarios: a domestic charging sce-
nario and a workplace scenario. Note that other scenarios can be found in
[172, 171, 173, 170]. In each situation the fundamental assumption is that the
available charging power must be shared by a number of vehicles to achieve
certain policy objectives.

7.4 Test Scenarios

We use the following use cases to test both algorithms.

7.4.1 Domestic Charging

In a domestic scenario the available power is shared among the connected
EVs without taking the vehicle charging time into account. This is typical of
night-time charging when there are no real time limitations, and when each
of the users subscribes to a flat-rate contract. So the objective is to maximize
the transferred energy to the vehicles, while assigning the same priority to
each vehicle. This is in its form similar to the fairness notion in the binary
case, however we aim to equalize the charging rates. This can be achieved by
selecting the parameters a, 31, 82, and X identical for all EVs.

7.4.2 Workplace Scenario

One property of a workplace scenario is that EVs do not compete but cooperate
to achieve a common goal. This implies that an EV is willing to receive a
smaller charge rate than another EV in the case that the second EV has more
need for energy. We assume here that upon connection, each EV will request
the desired quantity of energy and will also specify the expected deadline for
recharging. Then, we denote by P, the minimum power demand to serve an
EV as requested without exceeding the power limitation of the charger P;.
For instance, if EV ¢ requires 16kW h of energy in 8h, then P, = 2kW if
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the maximum charge rate is above 2kW. The infrastructure will then try
to give as much power as possible to each EV, keeping the shares of power
proportional to the requested charge rates P,. To achieve this, we tune the
additive parameters «; to be linearly proportional to the desired charge rates
P,. In particular, to minimize EV communication, we assume that an off-line
map can be used by each vehicle to compute the «; given its own P,. Here,
we assume that the maximum o; = 0.1kW h~! corresponds to the maximum
P;, while a;; = 0 corresponds to a zero charge rate. Intermediate values of a;
can then be found accordingly. AIMD does not require the knowledge of the
total available power, and thus the algorithm can be implemented by each EV
without any communication at all, except that of a broadcast of the capacity
event notification.

Remark 7.1. The use of proportional «; to achieve linearly proportional P; is
motivated by the fact that the fixed point P} of the dynamics for AIMD with
linear constraints (but no constraints in the single P;), if any, is given by

Pr=A7(1-8) "y, (7.3)

where A7 is the (possibly average) time between two successive capacity
events.

7.5 Simulations

We will give here simulation results using MATLAB® for various scenarios
in two simulation settings. For the sake of illustration, we neglect here the
distribution grid and any non-controllable loads. For interested readers we
refer to [169, 170], where these algorithms are simulated in a power grid using
the standard IEEE37 test feeder?.

The first simulation setting assumes a constant available power C), of
40kW and a fixed number of 25 EVs connected. They are all connected from
the beginning of the simulation, with a random request for energy, until they
receive the required energy. The second simulation setting assumes a dynamic
environment where EVs connect to the grid at any time, with a random re-
quest for energy, and remain connected until fully served. The available power
C, varies randomly with a rate limitation of 5kW s~!. The total number of
EVs that are allowed to connect is 25. However, as mentioned before they con-
nect randomly. The connection times are drawn from a uniform distribution,
however we limit the connection time to the first hour of the simulation.

Many parameters are identical for both settings. The simulated period is
4 h with a time step duration of 1s. Each EV has an energy requirement

2Distribution Test Feeders, available online at https://ewh.ieee.org/soc/pes/dsacom/
testfeeders/. Last Accessed July 2017.
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between 2kW h and 10kW h, which is drawn from a uniform distribution.
The maximum power consumption of an EV is set to 3.7kW.
In total we investigate four scenarios:

1. Binary Algorithm: All connected EVs utilize the Binary Algorithm to
achieve a fair share of their on times.

2. AIMD in a domestic scenario: All connected EVs utilize the AIMD algo-
rithm where their parameters are selected as in Section 7.4.1.

3. AIMD in a workplace scenario: All connected EVs utilize the AIMD algo-
rithm where their parameters are selected as in Section 7.4.2.

4. Binary Algorithm and AIMD in domestic scenario: EVs utilize either the
Binary Algorithm in Section 7.3.2 or the AIMD algorithm where their
parameters are selected as in Section 7.4.1.

7.5.1 Binary Algorithm

As mentioned the EVs employ the Binary Algorithm. The parameters are
chosen as s = 3 and r = 60. Figures 7.3 and 7.5 depict the aggregated power
allocated to the EVs vs. the available power C), for the constant and dynamic
setting, respectively. The allocated power was filtered over a short time scale
(10min) to improve the clarity of the figure. As can be observed the sum of
charge rates is always close to the available power. Figures 7.4 and 7.6 depict
the average charge rate of 3 randomly selected agents. Even though the agents
are only turning on and off at times the average charging rate is equivalent
among agents showing a fair share of the allowed on-times. Note that we here
can investigate the charge rate instead of the on time due to the fact that the
power consumption when on is equal for all agents.

7.5.2 AIMD in a Domestic Scenario

The following parameters are chosen for all the EVs: a = 0.04kWs~!, g(1) =
0.7, 5 = 0.98, and A\ = 0.06. Figures 7.7 and 7.9 depict the aggregated
power allocated to the EVs vs. the available power C,,, for the constant and
dynamic setting, respectively. The allocated power was filtered over a short
time scale (10min) to improve the clarity of the figure. As can be observed
the sum of charge rates is always close to the available power and is able to
follow better than the Binary Algorithm, which is expected due to the extra
freedom of the controller. Figures 7.8 and 7.10 depict the average charge rate
of 3 randomly selected agents. As desired the individual charge rates of the
EVs are equalized.
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Constant simulation setting for the Binary Algorithm scenario. The aggre-
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Dynamic simulation setting for the Binary Algorithm scenario. The aggregated
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7.5.3 AIMD in a Workplace Scenario

The AIMD parameters, apart from «, are selected identical to the domestic
scenario: () = 0.7, B®) = 0.98, and A = 0.06. « is on the other hand adjusted
according to the desired charge rate as proposed in (7.3). Figures 7.11 and 7.12
depict the ratio between the actual and desired charge rate of three randomly
selected vehicles, for the constant and dynamic setting, respectively. As can
be seen this ratio is equalized as desired. The aggregated power consumption
in relation to the available power experiences a similar behavior to the one
shown in the domestic setting and is therefore not repeated here.
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FIGURE 7.11

Constant simulation setting for the workplace AIMD algorithm scenario. The
averaged ratio between the charge rates and the desired charge rates of 3
randomly selected EVs.

7.5.4 Binary and AIMD Algorithm Scenario

Here, we investigate the special case where some EVs utilize the Binary Algo-
rithm while others use the AIMD in a domestic scenario. We choose identical
parameters as previously used in the simulations. This also means that the
EVs do not aim to achieve fairness among all but solely among the ones using
the same algorithm. Note that in this regard it is equally possible to con-
trol additional groups that aim to achieve another type of fairness among
themselves, such as the domestic and the workplace scenario. Note that the
resulting aggregated share looks similar as in other scenarios and is therefore
omitted.
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Dynamic simulation setting for the workplace AIMD algorithm scenario. The
averaged ratio between the charge rates and the desired charge rates of 3
randomly selected EVs.

Figures 7.13 and 7.14 depict the average charge rate of 3 randomly selected
EVs, where one agent utilizes the Binary Algorithm (EV 1) and two the AIMD
algorithm (EVs 2 and 3). As desired the EVs utilizing the AIMD algorithm
equalize their charge rate.

7.6 Concluding Remarks

This chapter reviews the main aspects associated with charging of EVs, and
discusses issues arising in the design and operation of charging mechanisms.
We then discussed two specific charging algorithms for EVs. Inspired by con-
gestion control in communication networks, the resulting EV charging strate-
gies are flexible, efficient and simple to implement.
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8
Vehicle to Grid

8.1 Introduction

In Chapter 7 we discussed how a fleet of vehicles can be charged when plugged
to the grid. During this time however, the grid may occasionally take energy
from the connected EVs, either to support power generation at peak moments
of the day, or to deliver ancillary services (e.g., frequency regulation). Such an
operation is known as V2G (Vehicle-to-Grid), as the power flow now goes from
the vehicle to the grid (see for instance [1, 147]). The recent literature contains
many examples of research works studying the V2G concept [63], [2], [89].
Issues considered include the ability of V2G to balance the demands of the grid
with available supply, the cost returns of V2G operations, and the integration
of renewable energy into the V2G concept. In particular, distributed [100] and
decentralized [197] mechanisms have been proposed to coordinate EVs to offer
V2G regulation services.

While there is a rich literature on how EVs can be used to provide V2G op-
erations, the same level of attention has not been paid to the possible impact
of such services. In particular, a discharging of EVs may cause some inconve-
nience to the owners. For example, V2G operations may affect the ability of
the EV user to make the next trip without charging the vehicle, or may even
affect negatively the environment. Finally, frequent charging and discharging
of the battery associated with V2G operations may also have an impact on
the efficiency and on the lifetime of the battery [62].

This chapter is devoted to describe V2G services that can be provided
by EVs to the power grid. In particular, we show how to the AIMD-based
algorithm illustrated in Chapter 7 can be extended to include V2G opera-
tions and active/reactive power exchange. Also, we discuss some (unintended)
issues that may arise with V2G operations. In particular, a key conclusion
is that treating a fleet of electric vehicles as a virtual storage system is not
straightforward, due to the fact that the carbon footprint depends critically
on the manner in which energy is drawn from the vehicles.

81
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8.2 V2G and G2V Management of EVs

We now describe how the AIMD-based charging algorithm introduced in
Chapter 7 can be easily extended to further include V2G operations, and
reactive power exchange. In doing so, we follow reference [173], and we con-
tinue to use the notation introduced in Chapter 7.

8.2.1 Assumptions and Constraints

e First, we assume that the charge rate P; > 0 of the ith EV (i.e.,
the active power drawn from the grid), is continuously adjustable. For
simplicity, we also neglect the losses arising from conversion in the battery.

e Second, we denote, by a negative value, the power flowing from the ith EV
to the grid, i.e., P; < 0. Accordingly, we implicitly assume that charging
circuits should include active rectifiers to perform V2G operations.

e Third, we assume that the ith EV is also able to exchange reactive
power (); with the grid, to provide ancillary services for reactive power
management. We refer to this ability as reactive Vehicle-to-Grid (rV2G)
or reactive Grid-to-Vehicle (rG2V). From a hardware perspective, this
is also achievable with standard active rectifier connections. We assume
that the positive direction of the reactive power flow is from the grid to
the EV, in accordance with the sign of the active power flow.

e Fourth, we assume that the apparent power (Si = /P?+ Q%) per EV is
limited by an upper bound S; (see for example [31]). Such a constraint is
determined by physical limitations such as a maximum inverter current
limit.

e Fifth, we assume that the infrastructure is aware of the instantaneous
active power demand, the instantaneous available power, and the re-
quired and the supplied reactive power. Such knowledge is required to
communicate to the EVs when congestion events occur, and also when
the charging mode has to switch from V2G to G2V and vice versa.

e We finally assume that the infrastructure is able to send capacity notifica-
tions to the EVs. This can be achieved, for instance, by adopting network
communication methods, like Wi-Fi, power line communication (PLC),
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mobile Internet or Zig-Bee. We also assume that the infrastructure com-
municates to the vehicles when the vehicle mode G2V has to switch to
V2G (and vice versa).

8.2.2 Management of Active/Reactive Power Exchange

In Chapter 7, we introduced the maximum (active) power P;(k) that could
be supplied to the ith vehicle at the kth time step. In the present context, we
must now include upper bounds on the maximum reactive power that can be
exchanged with the grid

Qz(k) < @z(k)? (81)

and on the maximum apparent power

In principle, it is desirable that the charge rate P;(k) is as close as possible to
the rated power output of the charger P;(k), as this would imply the quickest
(allowed) charge of the vehicle. Also, it is desirable to have the exchanged
reactive power as close as possible to the reactive power desired by the grid.
However, due to the limitations of the charger outlet, it might not be possible
to satisfy both requests at the same time. Thus, in the following discussion, we
assume that the active power management (i.e., charging) has a higher priority
over reactive power exchange (i.e., ancillary services), and that reactive power
exchange does not interfere with the charging process. With this assumption,
it is possible to generalize the AIMD algorithm described in Section 7.3.3 to
further include the reactive power management step, after the charging step.
The overall algorithm is illustrated in Figure 8.1, and consists of two AIMD
cycles. The first AIMD cycle involves the computation of the charge rate, and
is identical to the one described in Section 7.3.3. The second AIMD cycle is
used to compute the reactive power that needs to be exchanged with the grid.
Accordingly, the reactive power management does not influence the battery
charging process, and is transparent to the EV owner.

Remark 8.1. In specific situations, one may be interested in exchanging pri-
orities.

8.2.3 V2G Power Flows

In the discussion this far we have, somewhat tacitly, assumed that the reactive
power flow was also unidirectional (i.e., from the grid to the vehicles). However,
both active and reactive power may actually flow in the other direction from
the vehicle to grid.

To mathematically embed the possibility of discharging of the EVs we shall
adopt the notation of negative power exchange (either active or reactive) to
indicate that the power flow is actually from the vehicle towards the grid
(V2G). In principle, such a possibility is not allowed by the AIMD algorithm
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FIGURE 8.1
Flow diagram of the double AIMD algorithm used for active/reactive power
exchange

(positive rates can additionally increase, or multiplicatively decrease, but in
any case they would remain positive rates). For this reason, we assume that
the grid further notifies the EVs whenever the active (or reactive) power flow
is required to change its direction, and we shall call this “mode notification”
(i.e., aG2V rather than aV2G, or rG2V rather than rV2G). When the mode
notification (either for reactive or for active power) indicates V2G mode, then
the vehicles start entering in the additive phase (as in Section 7.3.3) but the
positive additive parameter is now subtracted from P;(k) and Q;(k), respec-
tively. When a capacity event occurs (i.e., the power injected by the EVs
exceeds the demand of the grid), the vehicles “decrease” (in absolute value)
the power injected by the usual multiplicative parameter 3" and 3(®) that
are selected in a stochastic manner.

The active power AIMD in V2G mode (i.e., aV2G) contains the changes
for reverse power flow and is illustrated in Figure 8.2. On the other hand the
active power AIMD in G2V mode (i.e., aG2V) remains unchanged from the
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one previously presented in Figure 7.2 besides that the mode notification is
processed before the active capacity event. These two modes together describe
the active power AIMD shown in Figure 8.1.

The reactive power AIMD similarly has two modes depending on the power
flow. Tts operation is as in Figures 8.2 and 7.2, when the active power P;(k)
is replaced by the reactive power @Q;(k) and the bound P; is replaced by

?? — P;(k)?, where P;(k) is determined by the active power AIMD executed
beforehand.

Mode notification
indicates change?

Switch to
aG2V mode

No Capacity event
signal received?

Yes
B (k)Pi(k)  with probability A;(k)
Pi(k+1) =19 2 . .
B;”(k)P;(k) with probability 1 — A;(k).
[E(k + 1) = max (P, (k) — a;(k), — ’,-,)} End

FIGURE 8.2
Flow diagram of the active AIMD algorithm used for V2G charging in aV2G
mode

The modified AIMD algorithm (i.e., the double AIMD algorithm with
a further mode notification event) can operate in 4 different possible ways,
depending on whether the active and the reactive power exchanges actually
occur in the G2V or in the V2G direction (i.e., aV2G-rV2G, aV2G-rG2V,
aG2V-rV2G, aG2V-rG2V). This means for example when operating in aV2G-
rV2G, the EV first process the active AIMD in V2G mode, as illustrated in
Figure 8.2 and then consecutively executes the reactive AIMD in V2G mode.
A number of different optimization problems can also be implemented using
the algorithm. More details can be found in [173].
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8.3 Unintended Consequences of V2G Operations

In this section we discuss some consequences, sometimes unintended, of V2G
services. In particular, when drawing energy from EVs, three key points need
to be addressed: (i) revenues for the owners (e.g., price), (ii) the inconvenience
for the vehicle owners, and (iii) the effects on the environment. While most of
the literature is focused on the first two points, and is trying to evaluate and
quantify the actual inconvenience for the owners (see for instance [62] where
the degradation cost of the battery is explicitly taken into account when V2G
operations are planned), fewer authors have analyzed the last point, and here
we further explore this aspect.

We evaluate the effects on the environment of V2G operations in a simple
way.

e We assume that the grid requires a given number of kWh to improve its
operation;

e We assume that a fleet of vehicles (including PHEVs and FEVs) are con-
nected to the grid, and are ideal candidates to provide the required energy
to the grid. We further assume that the energy stored in the batteries of
the vehicles is greater than the energy required by the grid: thus, the grid
has some flexibility to choose from what vehicles, and to what extent, it
can take the required energy;

e We further assume that the grid can also take the required energy from
some connected (conventional) power plants, that can increase their gen-
erated power, as an alternative to take energy from vehicles;

e Finally, we wish to find the optimal mix of energy (some from PHEVSs,
some from FEVs, and some from the power plants) in order to minimize
pollution (here, an aggregated mixture of CO, NOx, SOx, and volatile
organic compounds (VOCs), as from [75]).

8.3.1 Utility Functions

We solve the optimization problem by formulating utility functions that
relate the quantity of energy that is taken from a vehicle to the environmental
impact of a vehicle losing this amount of energy. In particular, note that such
utility functions are assumed to be increasing with the quantity of energy
taken from the vehicle (if a very small quantity of energy is taken from the
vehicle, then there are no repercussions on pollution; but the more energy
is taken, the more inconvenience is caused to the owner who may have to
look for alternative (more polluting) means of transportation). Also, for
simplicity, we shall consider piecewise linear functions, although other (more
complicated or realistic) shapes of utility functions may be considered as well.



Vehicle to Grid 87

Below we list the main factors that we consider to build the utility functions.

PHEVs: For simplicity, we assume here that PHEVs can either drive
in pure EV mode, or can switch to ICE mode. Accordingly, the environmental
footprint of a PHEV depends on several factors. Firstly, the distance that
a vehicle can drive in full electric mode is a critical factor, and it depends
on the energy stored in the battery. If the desired driving distance is larger
than the capacity of the PHEV, the vehicle’s combustion engine will switch
on as soon as the SOC is low. This will have an impact on the environment
through the use of carbon based fuels. Therefore, taking electric energy due
to V2G operations from PHEVs has the effect of reducing their fully electric
mode ranges, and potentially to produce more pollutants. Note that the
full electric mode range cannot be computed trivially as it depends upon
several factors such as: the state of charge of the battery pack; basic power
consumption per kilometer; individual driving behavior; and usage of other
electrical appliances (for example, heating, air conditioning, entertainment
systems, headlights, or GPS); see [185] or [49]. The driven route also has a
strong influence on the available full electric range, as power consumption
varies according to driving speed, traffic conditions, and the topology of the
terrain, as we have described in Chapter 4. One more subtle factor that
should be considered is related to losses caused by energy transfers. For
example, continuous charging and discharging could reduce energy efficiency
significantly. Also, if too much energy is taken from the vehicle, it may
not be able to drive in restricted areas (e.g., in some city centers where
only electrically powered vehicles are allowed), and longer journeys may be
required (with an associated increase in aggregate pollution production).

FEVs: FEVs are characterized by many of the factors that we have
listed for the PHEVs. However, the main difference is that now FEVs cannot
rely on an alternative propulsion system (ICE) if not enough energy is
available for the next trip. This poses a number of further aspects, that often
are not simple to consider and evaluate: (i) charging, due to unexpected V2G
operations, a vehicle may have to charge during the next trip to reach the final
destination, or might remain connected for an extra period before being used
for traveling. The emissions due to the extra charging period depend on the
generation side; (ii) second vehicle, rather than spending time for charging,
the owner may decide to take a second vehicle, if available. Accordingly,
extra emissions depend on the nominal emissions per kilometer of the second
vehicle (or on its state of charge, if it is another FEV or a PHEV); (iii) public
transport, if a second vehicle is not available, the owner may also decide to
take public transport. In principle, such a decision may even be better in
terms of pollution, especially if highly developed and environmentally friendly
transportation systems are available; (iv) other measures, in some cases,
there may even not be alternatives, and the next trip may have to be canceled.
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Power plants: Obviously, the grid may decide to simply take the re-
quired energy from available conventional power plants, rather than from
vehicles through V2G operations. For this purpose, one should only consider
the power plants that can actually regulate their power output (while we do
not consider here the reserves for sudden failing of other generators, or the
short-time demand and power matching spinning reserves). Here the utility
functions take into account the air pollutants and emissions caused by power
plants as a function of the produced energy, and the pollution caused by
modulating the power output. Some other factors that need to be taken into
account in this case are the emissions related with waste materials (e.g., their
disposal), emissions associated with extra fuel and carbon, associated with
maintenance, efficiency and losses of the power plants. In particular, note
that not all of the previous factors are caused by instantaneous emissions
(e.g., maintenance), but still have an impact on the long run, see [186], [75].
For simplicity, we assume that the relationship between the energy delivered
by the power plant and the resultant production of pollution is linear. While
this relationship is an approximation of the true one [157], it is commonly
used in the literature as it represents a good trade-off between simplicity and
accuracy; see for instance [75], [15], [139].

8.3.2 Optimization Problem

In the optimization problem, the objective is to provide the required energy,
denoted by FE)..q in a region of interest. This energy can be delivered by some
connected PHEVs, FEVs, and available power plants. The optimization prob-
lem is solved at every time step (where the choice of the time step depends
on the specific problem of interest). The optimization objective is to minimize
the total pollution caused by FEVs, PHEVs, and power plants. Each of the
N participants is assigned a unique index and is assigned to its corresponding
group. In particular, let H, F, and P be the sets of indices that correspond
PHEV, FEV, and power plants, respectively. Similarly, let f;(), ¢;(-) and h;(-)
be the utility functions associated with the ith PHEV, FEV and power plant
respectively. Then the optimization problem can be formulated as

min Zfz(Ez) +ZQ¢(E1‘) +Zhi(Ei)
¢ i€H ieF icP
N
subject to Z E; = Eyeq (ieHUFUP)
i=1 ’
—-E, <E; <E; (i e HUF)
0<E;<E, (i €P)
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where the objective is to determine the optimal values of the free variables F;,
that correspond to the energy supplied to the grid by a vehicle (if i € H U F)
or a plant (if (¢ € P)). Such optimal values are determined by minimizing
the sum of produced pollutants (first line), provided that the grid receives
the desired amount of energy (second line), and the energies provided by
the vehicles (third line) and by the power plants (last line) are feasible. In the
case of the vehicles, the energy supplied by the vehicles is constrained between
—E,; and E;, where the lower bound can be negative (if vehicles are actually
charged, up to the full level of their batteries), while the upper bound is given
by the actual level of energy in their batteries. In the case of the power plants,
the upper bounded F; takes into account the maximum energy that can be
supplied by the power plant in a time step.

8.3.3 Example

In order to provide some concrete results, we now show an application of the
optimization problem (8.3) through a very simple example. In particular, we
assume that three vehicles are willing to participate in a V2G energy exchange
programme, and that the electricity grid requires 18 kWh. The three vehicles
are a PHEV and two FEVs. We assume that the FEV owners will take alter-
native means of transportation, if required. Batteries and range abilities of the
FEVs are those documented for a Nissan Leaf under different environmental
conditions ([49]), while data for a Chevrolet Volt is chosen for the PHEV!.
We assumed that most of the power used to charge the vehicles was generated
from renewable sources (data from [75]). Finally, the pollution factor of the
power plant was also taken from [75]. Other parameters (e.g., actual SOC,
minimum SOC, length of the next trip) were chosen in an arbitrary fashion
(see [175] for more details). Then, the results of the optimization problem are
reported in Table 8.1. The first two rows of the table correspond to the case
where the desired 18 kWh are equally taken from the three available vehicles
(no optimization at all). As can be seen, this gives rise to 47.7274 g of pollution
(according to the mixture previously discussed). The second two rows show
that pollution can be reduced down to about 40g if the optimization prob-
lem (8.3) is solved, and the grid optimally chooses how much energy should be
taken from each vehicle. In particular, note that most of the energy is actually
taken from the PHEV, as it is more flexible in terms of its propulsion system
(i.e., it can also travel in ICE mode). Finally, the last two rows correspond
to the case when also the power plant is available. In this case, the overall
pollution can further decrease (i.e., below 39 g), and interestingly the optimal
solution envisages that one FEV gets actually charged (i.e., operated in the
conventional G2V mode) rather than discharged.

IManufacturer’s Brochure, 2013 Chevrolet Volt, available online at https://www.
vehiclehistory.com/vehicle-fuel-capacity-specifications/chevrolet/volt/2013.

Last Accessed July 2017.


https://www.vehiclehistory.com/vehicle-fuel-capacity-specifications/chevrolet/volt/2013
https://www.vehiclehistory.com/vehicle-fuel-capacity-specifications/chevrolet/volt/2013

90 Electric and Plug-in Hybrid Vehicle Networks

TABLE 8.1
Produced pollution when the required 18 kWh of energy are provided by the
available participants

FEV1 PHEV2 PHEV1 plant1 Total

E; [kWh] 6 6 6 - 18
firgi lg] 18.0389 18.3184 11.3702 — A7.7274
E; [kWh]  3.0476  3.0755  11.8768 — 18
fi g lg] 7.4408 10.8901 21.6826 — 40.0135

E; [kWh] 3.0476  -0.2567  11.9556  3.2535 18
fisgihi [g] 7.4408  2.5134 21.8209  7.1906 38.9658

8.3.4 Alternative Cost Functions

In the previous section we have shown through a simple example that in gen-
eral it might be more effective to perform V2G operations in a smart manner,
rather than equally sharing the V2G services among the available participants.
Our optimization problem was formulated in terms of minimum impact on the
environment (i.e., by minimizing the quantity of pollutants), but other cost
functions can be considered as well. For instance, one may be interested in
equalizing the pollution caused by each participant, under the assumption
that it would be fairer to ensure that the impact on the environment caused
by each participant should be the same. Alternatively, one may be interested
in minimizing other functions (e.g., taking the perspective of the grid, it would
be interesting to take the energy from the cheapest available vehicles). Similar
extensions can be found, for instance, in [174].

8.4 Concluding Remarks

In this chapter we have reviewed the ongoing research on the ancillary services
that can be provided by EVs, and on V2G operations in particular. In addition,
we have described how a charging algorithm can be easily modified to further
account for the possibility to exchange reactive power, and to reverse the flow
from the vehicles to the grid. Also, we have shown that poor choices in V2G
operations may have severe environmental effects, thereby mitigating one of
the principal benefits of plug-in vehicles; namely, that of cleaner air.

Accordingly, an optimal integration of EVs in the power grid is still sub-
ject of research, especially with respect to the optimal provision of ancillary
services (i.e., reactive power exchange, and V2G).
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Sharing Economy and Electric Vehicles

9.1 Introduction and Setting

Consumer behavior across a spectrum of markets is experiencing a powerful
disruptive paradigm shift. Driven by limited natural resources, expanding
middle-class, outdated business models, and pressures to reduce wastage,
consumers are moving from a sole-ownership, to a shared-ownership model
with guaranteed access. Examples of such systems can already be widely
found in the realm of mobility services. While the value of the sharing
economy is not in question, remarkably, structured platforms to support
the deployment and the design of such services, are poorly developed with
significant opportunities for improvement. Roughly speaking, several different
types of shared products can be discerned.

A. Opportunistic sharing: Services based on opportunistic sharing of re-
sources exploit large scale availability of unused resources, and/or outdated
business models. Here supply-demand balance is achieved by trading ex-
cess supply between actors in return for monetary reward. Sometimes,
services of this kind exploit information exchange and brokerage between
users to create services; for example, in the trading of flat rate services
(i.e., trading of mobile phone minutes). Examples of products in this area
include Parkatmyhouse.com' and peer-to-peer car sharing services. Trad-
ing of mobile phone minutes, unused water allowances, and excess energy
are further examples of opportunistic sharing. The key enablers for such
products are mechanisms for informing actors of available resources, their
delivery, and for their payment.

B. Federated negotiation and sharing: Here supply-demand balance is
achieved by aggregating actors to empower them to better negotiate with
suppliers. Roughly speaking, in this case, groups of users come together
to negotiate better contracts with utilities (gas, electricity, water, health),
or to provide mutually beneficial services such as collaborative storage of
energy. The key enablers for such products are mechanisms for grouping

Thttps://wuw. justpark.com/. Last Accessed July 2017.
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together communities and for enforcing contractual obligations for feder-
ations of like-minded consumers.

C. Bespoke shared products: Driven by the success of existing shared
services, the rapid development of Internet of Things (IoT) technologies,
and the need for sustainable design, a number of large companies are
already exploring ways to design products with the specific objective of
being shared.

D. Shared products created by policy gradients: Significant oppor-
tunities are also arising in response to gradients resulting from national
policy. In many areas, opportunities exist to monetize the trading of
transferable credits and risk that arises as a result of government policies.
The key enablers for such products are analytics to ensure fairness in
allocation of risk and credits.

9.2 Contributions

Clearly, EVs and the Sharing Economy are a very good match and our ob-
jective in this part of the book is to describe some of the work that occurs
at the interface of these two domains. While many companies are already ac-
tive in this space, including BMW, Daimler, Fiat, Peugeot, Volkswagen, and
Renault, much work remains to be done. For example, as we write this text,
generic cloud based brokerage engines to both host and support the devel-
opment of mobile and ad-hoc collaborative consumption services are needed
by both consumers and application developers. Also, analytics and tools to
help design collaborative consumption services do not currently exist to any
significant degree. Finally, general platforms for bringing together communi-
ties, and aggregating and federating informed consumers, in a manner that
addresses the contractual, liabilities and privacy aspects of users, to create
virtual super-users for the purpose of negotiation, do not exist in the area of
shared trading. While each of these gives rise to opportunities for research in
several areas, our focus in this part of the book is on the development of be-
spoke analytics and tools to help design collaborative consumption services in
the context of EVs. Specifically, we are interested in alleviating certain forms
of angst associated with EV ownership. In the first chapter of this section we
deal with range anxiety, and in the second chapter with charge point anxiety.
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Notes and References

This part is based on the following papers by the authors and their co-workers.
The chapter on car sharing is based on papers written in collaboration with
Wynita Griggs, Christopher King, Paul Borrel, Mingming Liu, and Karl Quinn
[106], [121]2. The chapter on charge point access is based on the work [76] that
was carried out with the collaboration of Wynita Griggs, Jia Yuan Yu and
Florian Hiusler®, while the design of the Charge Point Adaptor (CPA) was
done in collaboration with Rodrigo Ordénez-Hurtado, with some input from
Brian Mulkeen and Eoin Thompson.

2©IEEE. Figure 10.9 and Table 10.6 reprinted, with permission, from [87].
3(©IEEE. Reprinted, with permission, from [76].
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On-Demand Access and Shared Vehicles

10.1 Introduction

We have already discussed some of the issues that impede the adoption of
electric vehicles. In this chapter, we focus on the most pressing of these issues,
range anxiety (see below), and to a lesser extent, vehicle size by developing
a flexible vehicle access model to alleviate both of these issues. Specifically, a
solution is proposed to some of these problems based on car sharing. This idea
is an embodiment of flexible vehicle access that was first suggested in [83] and
further developed and analyzed in [107]. Indeed, the timeliness of the idea is
evidenced by the fact that several automotive manufacturers, including Fiat,
and Volkswagen, have developed a form of car sharing with similarities in both
goals and implementation, to that described here. The principal difference to
these embodiments is that we advocate and describe an on-demand model,
whereas car manufacturers are suggesting a model that guarantees access for
a fixed, but small, number of days. Our contribution in this chapter is thus
threefold. We develop tools to design an on-demand service using ideas from
queueing theory and using predictive analytics. We then demonstrate, in the
context of real Irish mobility patterns, that such an on-demand service is
economical, both in terms of the number of ICE vehicles needed, and in terms
of real additional cost to vehicle manufacturers. Finally, we provide some
quantitative analysis of how much fleet emissions can be reduced, even by
introducing a very small number of EVs.

We note that in our models it is assumed that extensive trips are planned
and the on-demand scheme responds to demand announced on the previous
day (or several days in advance). There are, of course, other possible on-
demand scenarios. The assumptions described below pose no fundamental
restrictions in this respect and the methods presented here can be extended.
The important point to note in this context is that the customer is not assigned
a fixed number of days per year in which access is guaranteed; rather the user
is allowed to request a vehicle at any time. This is the meaning of on-demand
in our context.

97
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10.2 On Types of Range Anxiety

Our basic assumption is that the range anxiety problem and vehicle cost are
the major barriers to the purchase of electric vehicles. For the purpose of this
chapter we consider the term range anxiety to mean the angst of a vehicle
owner that he or she will not have enough range to reach the destination
without the need for recharging. Roughly speaking, one may consider two
types of problems associated with range anxiety.

(i) The first problem is associated with an inadequate battery level to com-
plete a trip while driving to a destination.

(ii) The second problem is associated with electric vehicles being unsuited to
the trip distribution demanded by the user. For example, a long trip, or
vacation (or indeed a trip where a large luggage load is required), are all
problematic for a typical electric vehicle.

In many cities the first of these problems can to a large extent be avoided
with adequate trip planning. For example, in cities where single dwelling
households with garages or driveways are common, it is possible to charge
vehicles adequately overnight to have a full battery charge the next morning.
As we shall see later, this is, in most cases, adequate for the majority of trips.
Since most UK and Irish cities are of this type, we shall assume that overnight
charging is possible and focus on the second of the above range anxiety issues.

It is worth noting that the issue of range anxiety has been the subject of
the attention of policy bodies and car manufacturers over the past number
of years. Roughly speaking, research attention has focused on three areas: (i)
better batteries; (ii) optimizing energy management in the vehicles; and (iii)
novel energy delivery strategies for electric vehicles. Big efforts on designing
better batteries have been made worldwide [14]. To optimize energy manage-
ment, manufacturers have looked both within the electric vehicle through the
management of the vehicle sub-systems, and outside of the vehicle through
the use of energy-aware routing and the use of special lanes (see the eCo-
FEV project!). Finally, several methods of delivering energy to the vehicle
have been suggested. These include battery swapping, as was advocated by
BetterPlace?, under-road induction, and fast charging outlets. These activi-
ties have addressed for the most part item (i) above; and largely ignore the
inconvenience associated with item (ii).

Ihttp://wuw.egvi.eu/projectslist/23/37/eCo-FEV. Last Accessed July 2017.
2https://web.archive.org/web/20080907071156/http: //www.betterplace.com/. Last
Accessed July 2017.
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10.3 Problem Statement

Our car sharing concept closely follows the flexible access suggestion in [83]
in the following manner.

When an electric vehicle is purchased, the new EV owner also automatically
becomes a member of a car sharing scheme, where a shared vehicle may
be borrowed from a common pool on a 24 h basis. The shared vehicles are
large ICE-based vehicles suitable for long range travel and with large goods
transportation capacity.

Remark 10.1. We suggest free membership of the scheme, but a pricing model
could be implemented to regulate demand on weekends, public holidays, or
other occasions when synchronized (correlated) demand is likely to emerge,
or to regulate emissions. Further, if the shared ICE-based vehicles are chosen
to be sufficiently high-end, then a further incentive for consumers to purchase
electric vehicles is provided.

A number of issues need to be resolved before any such system could be
deployed. These issues reduce to the marginal cost of the system. More specifi-
cally, we wish to determine if such a sharing concept could be deployed giving
reasonable QoS to the electric vehicle owner, without significantly increas-
ing the cost of each vehicle. Referring to Figure 10.1, this amounts to asking
whether a reasonable QoS can be delivered when M, the number of shared
ICE-based vehicles, is significantly less than N, the number of purchased EVs.
To answer this question, we consider two scenarios.

Request
Fleet of N electric " Fleet of M
ol shared
venicles % ICE vehicles
Price

FIGURE 10.1
Car sharing concept
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Spontaneous journeys : If we want to achieve a low probability for the
event that an individual requesting a vehicle is not allocated one, how
should the proportion % be chosen?

Planned journeys : For fixed M and N, how many days in advance does
a user have to make a reservation so that the probability that the request
is declined is lower than some very small constant?

In solving the above problems we shall make the following assumptions.

1. Membership assumptions

I1

I.2

I.3

14

A shared vehicle is borrowed for a single “day” period and returned to the
pool of shared vehicles to be shared again the next day. In other words,
at the beginning of each “day”, M cars are available for sharing.

Customers collect their vehicles from a number of sharing sites. They either
park their own EV at the site when collecting the ICE vehicle, or travel
there using some other form of transport.

Members of our car sharing scheme do not have access to an ICE based
vehicle other than through the car sharing scheme.

Members of the car sharing community are willing to accept the same QoS
metric for vehicle access.

1I. Demographic assumptions

II.1

11.2

Long journeys in private cars are rare, meaning that the range of an electric
vehicle, even under worst case conditions (e.g.: air conditioning use, traffic
congestion, bad weather), should be sufficient for most journeys.

Most urban dwellings are houses rather than apartments, meaning that
there are no structural impediments to overnight charging, and that a full
overnight charge should be sufficient to satisfy the needs of most daily
mobility patterns.

The validity of these latter assumptions is the subject of the next section.

10.3.1 Data Analysis and Plausibility of Assumptions

Assumption 1.1 is based on statistics of mobility patterns described below,
which show that most drivers require their car for a whole day, if it is required.
Assumption 1.2 describes a common practice in car sharing schemes, while 1.3
is a simplifying assumption.

To make a case for the plausibility of Assumptions II.1 and II1.2 we exam-

ined publicly available data on contemporary Irish mobility patterns.

Data for the creation of Table 10.1 and Figures 10.2, 10.3 and 10.4 were



On-Demand Access and Shared Vehicles 101

obtained from the 2009 Irish National Travel Survey (NTS) Microdata File,
Central Statistics Office, (C)Government of Ireland®. In the NTS, respondents
were asked to provide details about their travel for a given (randomly selected)
24 h period, which roughly corresponded to a day of the week.

Table 10.1 shows the percentages of people who drove private vehicles (over
the 24h period that they were queried about) for cumulative daily distances
greater than 50km, 75km and 100km. Figure 10.2 relates to those people
who were questioned about their travel over the 24h “Monday” period (i.e.:
row two of Table 10.1), and depicts number of people versus total distances
they drove in private vehicles over that 24 h Monday period. Figure 10.2 illus-
trates a trend observed in the percentages in Table 10.1; namely, that longer
cumulative journeys over the course of a day were rare*. For respondents
who drove cumulative distances greater than 75km over a 24h period (see
the third column of Table 10.1), Figure 10.3 illustrates those hours of a 24h
period over which respondents had their vehicles in use (many vehicles were
in use roughly between 8am and 6 pm), and Figure 10.4 depicts number of
respondents versus total time (out of a 24 h period) their vehicle was in use.

TABLE 10.1
Percentages of people who drove cumulative distances greater than 50km,
75km and 100 km over a 24 h period

Sample Population 50km 75km 100km

Monday 23% 12% 7%
Tuesday 23%  14% 8%
Wednesday 23%  14% ™%
Thursday 26% 18%  11%
Friday 2%  17% 9%
Saturday 24%  15% 9%
Sunday 24% 17%  11%

3Central Statistics Office, National Travel Survey 2009, available online at https://www.
ucd.ie/t4cms/NTSY%20Report’202009.pdf. Last Accessed July 2017; and National Travel
Survey 2009 Codebook for Anonymised Microdata Files, available online at http://www.
ucd.ie/issda/static/documentation/cso/nts-2009.pdf. Last Accessed July 2017.

4Graphs of the nature of Figure 10.2, but concerning travel over the other days of the
week, were similar in shape to Figure 10.2, and have thus been omitted.
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FIGURE 10.2
Number of survey respondents reporting about their travel for the 24 h “Mon-
day” period, versus total distances they drove over that period
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FIGURE 10.3
Number of respondents (who drove >75km total daily distance) using their
vehicles, versus hour of the day
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FIGURE 10.4
Number of respondents (who drove >75km total daily distance), versus total
time that their vehicle was in use over their 24 h survey period

10.3.2 Comments on NTS Dataset

The NTS dataset allows us to make some very general statements which sup-
port the assumptions listed above. As might be anticipated, longer journeys
are not as frequent as shorter ones, and vehicles do indeed tend to be in use for
a single day for each user. Thus, the dataset appears to be indeed consistent
with the Assumptions II.1 and II.2 above. However, the dataset is subject to
certain limitations due to its size and the manner in which it was collected,
and it is important to comment on these before proceeding.

First, the dataset does not take into account correlated driving behav-
iors between days. However, we assume that drivers making regular long-
distance trips would not purchase EVs. Consequently, the tail of the distri-
butions following from the datasets should be representative of the quali-
tative behavior of drivers making regular short trips, but who infrequently
need larger vehicles or vehicles for larger trips. In what follows we shall
assume that the typical EV owner follows a distribution given by these
datasets although clearly from the above discussion this is a simplification
as driving behavior varies across EV owners.

Second, it is possible that the car sharing scheme may affect the driving
patterns of scheme members (EV owners). For example, given ICE vehicle
access, long-distance driving may become more attractive. In the analysis
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to follow (in the next section), this feedback mechanism is also ignored to
keep matters simple.

e The data also indicates that vehicles are “in use” for the entire working
day. We assume that vehicles are charged overnight to full capacity and
that it is not necessary for a vehicle to be again charged during the day.
As we have already mentioned, this latter assumption is consistent with
cities such as Dublin where garage space or a driveway is the norm, and
is consistent with charging times for standard home charge points. The
interested reader is referred to [46] for further information about driver
charging behavior.

Given the above discussion, it is clear that the presented data provides a
plausibility argument in support of Assumptions II.1 and II.2 subject to the
aforementioned limitations of the dataset. For a further and more detailed
discussion of the limits of using such datasets the interested reader is referred
to [47].

10.4 Mathematical Models

Using elementary probability and queueing theory methods, we now pose solu-
tions to the QoS problems presented in Section 10.3. Consider a population of
N electric vehicle owners (i.e.: N “users”) who occasionally require access to
an ICE-based vehicle (ICE or Internal Combustion Engine Vehicle (ICEV))
for a non-standard trip (either a long-range trip or a trip where large load
carrying capacity is required). We assume that a user will keep the ICEV for
a full day, based on the driver behaviors described in the previous section.
Thus, each day is characterized by the number of users who require an ICEV
on that day. There is a fleet of M ICEVs available to satisfy this need. The
main question is then to determine the relation between M and N. This will
be determined by requiring some QoS conditions to be met. For example, a
QoS condition might be a guarantee on the probability of finding an ICEV
available.

An important assumption in what follows is that all users are willing to
accept the same QoS metric for vehicle access. This is defined by a probability
of a scheme member not being able to access a vehicle when required. Similar
assumptions are standard in the networking community, and are based on
the assumption that a member of the car sharing scheme will not join the
scheme unless the given QoS metric is acceptable. Clearly, different levels of
service can be provided if groups of users are willing to pay for a higher level
of service. However, to keep matters simple here we assume that drivers who
sign up for the scheme are prepared to be served using the same QoS metric.
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10.4.1 Model 1: Binomial Distribution

In the simplest model, each user independently requests an ICEV each day
with probability p. Based on the data available in Table 10.1 we may estimate
this probability as p = 0.0886, assuming that ICEVs are used for trips over
100 km. The assumption that cars are required for a whole day are justified by
the data in Figures 10.2 to 10.4, which show that the overwhelming majority
of cumulative trips over 75km require a period of 5h or more. With the
available data we are not able to estimate the proportion of drivers that make
long trips on a regular basis, who would not participate in the scheme. On the
other hand it may be expected that some ICEVs are requested even though
the actual trip length turns out to be less than 100 km. In the following we
will use p = 0.1 to illustrate the applicability of the proposed scheme.

Thus, the number of requests X each day is a binomial random variable:

X ~ Bin(V, p).

The mean number of requests per day is Np, and the standard deviation is
v/ Np(1 — p). In principle, the number of requests may be anything from 0 to
N, but for large N it is very unlikely that X will deviate from the mean by
more than a few standard deviations.

The QoS condition we consider here can be quantified as follows. For each
M < N, define

Q(M) =P(X > M).

Then the QoS condition could be to find the smallest M such that Q(M) < €
for some specified € > 0. For any given N and p this can be calculated explicitly
using the formula

QM) = XN: (],lf) PP —p)Nr

However it is more useful to get an approximate formula from which the
scaling relation can be read off. For N large enough we can use the normal
approximation for the binomial, which says that

X — Np
VNp(1-p)

is approximately a standard normal random variable. There is a standard
rule of thumb regarding applicability of the normal approximation for the
binomial, namely that

1—
N29max<p7p>.
I-p p
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Using the normal approximation, we have

O R _ M- Np
Q(M)_\/ﬂ/7 e dX, r N )

This readily yields estimates for M in order to satisfy a desired QoS condition.
For example, in order to satisfy the QoS condition

Q(M) < 0.05

meaning a less than 5% chance of not finding an ICEV available, it is sufficient
to take

r > 1.65 <= M > Np—+ 1.65\/Np(1 — p).

For example, using the values N = 1000 users and p = 0.1 for the probability
of a user requesting an ICEV, this provides a value M > 116.

10.4.2 Model 2: A Queueing Model

When the number of requests exceeds the number of available ICEVSs, a queue
forms and users must wait one or several days until a vehicle becomes available.
It is desirable to keep the probability of long delays small, and this can be
achieved by appropriate scaling of M with N. This is the subject of this
section.

Let X, be the number of outstanding requests at the end of the nth day,
and let A, be the number of new requests that arrive during the nth day.
Since the number of vehicles is M, the relation between these variables on
successive days is

Xn+1 = max {O,Xn - M} + An+1.

That is, the queue length is reduced by M at the start of each day (but not
reduced below zero), and is then increased during the day by the number of
new requests.

The QoS condition is to ensure that X, is unlikely to be large, implying
that users are unlikely to have to wait a long time before being assigned an
ICEV. Since M users can be serviced each day, in the worst-case a user must
wait | X,,/M | extra days until service, where | x| gives the largest integer less
than or equal to . We consider the QoS condition which guarantees that the
probability that any user needs to wait d,, extra days or more is less than e,
that is

P(X, > d,M) <e.

By choosing M sufficiently large we can guarantee that this probability is
small. The following lemma provides bounds for the probability of large
queues. These bounds provide easy estimates which can be used for the choice
of M.
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Lemma 10.2. Define

p=M—Np,  o*=Np(l-p), = %
Then for all k > 1,
1 —1
B(X, > dy M) < e (DM (6“7/2 - 1) .
Proof. A proof of the Lemma 10.2 can be found in [106]. O

Using the bound in Lemma 10.2 we find a sufficient condition to guarantee
the QoS bound, namely
1 1

3 e~ (dw—1)M~y (elw/Q — 1)_ <e.

For a given d,, and € we may use this to find a value for M needed to meet
the QoS condition. For example, using the same values as above N = 1000,
p = 0.1, ¢ = 0.05, and taking d,, = 3 (meaning that the probability that
there is a customer who waits more than 4 days is less than 5%), we find
that the inequality is satisfied whenever M > 103. Taking d,, = 2 we find
M > 105, and with d,, = 1 we find M > 121. For a fleet size of 20000 vehicles
with M = 2000 (10%) and M = 3500 (17%), the behavior of the bound is
depicted in Figures 10.5 and 10.6, respectively, for various estimates of the
probability of a long distance trip. As can be seen, the bound tends rapidly
to zero, indicating that the probability of waiting for a shared vehicle longer
than one or two days vanishes rapidly.

10.4.3 Two Opportunities for Control Theory

Before proceeding we note briefly that the aforementioned dimensioning prob-
lems offer opportunities for control engineers. These stem from two basic flaws
in our model.

(i) Synchronized demand: First, the statistical model does not take into
account periods of synchronized demand. For example, during periods of
vacation, hot weather, etc., demand profiles are almost certainly going to
be very different from the statistics we have presented, and are likely to be
highly synchronized. To address this problem, two avenues of actuation are
possible. One could simply make the number of shared vehicles increase
with demand. An alternative is to include a price signal to moderate de-
mand during periods of synchronized requests. This is depicted in Figure
10.7 where the strategy tries to create a pricing structure that maintains
the QoS at some desired level during periods of synchronized demand. The
design of such a pricing signal (integral action) is non-trivial due to all the
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FIGURE 10.5

Probability (bound) of not finding a car with N = 20000 and M = 2000 (10%).
dy = 1 is the left most curve; d,, = 6 is the right most curve. Note that curves
for d, = 2, ...,6 are hardly distinguishable

usual reasons; feedback delays in the control loop; the need for special in-
frastructure, and the use of a single signal for all users. In addition, a more
serious concern is that the objective of the control is to smooth demand
and break up synchronization; rather than to just attenuate synchronized
behavior. A further complication is that the signaling should also ensure
a degree of fairness of access for subscribers to the scheme, while at the
same time preserving the privacy of individual users.

Prediction and optimization under feedback: Another problem is
that our set-up assumes decoupling between the statistical model and the
car sharing scheme. Recall that our system was designed by first building a
statistical model, and then using this model to dimension the car sharing
scheme. This set-up ignores the effect of the car sharing scheme on the
statistics governing the model. Put simply, the availability of a free car
is quite likely to influence the likelihood that users will avail of a car
sharing service. A more advanced design would include a model of user
behavior and dimension the number of free cars in a closed loop fashion.
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FIGURE 10.6

Probability (bound) of not finding a car with N = 20000 and M = 3500 (17%).
dy = 1 is the left most curve; d,, = 6 is the right most curve. Note that curves
for d, = 2, ...,6 are hardly distinguishable.

This is clearly a big topic (prediction and optimization under feedback)
with links to areas such as reinforcement learning and adversarial game
theory, but it is beyond the scope of the present book.

10.5 Financial Calculations

We now explore the financial model associated with this car sharing model.
Initially, we will model our calculations based on a shared fleet comprised
solely of a single ICE vehicle type: the Volkswagen (VW) Golf class car. In
this model we are essentially comparing the similarly sized VW Golf and the
Nissan Leaf to focus solely on examining range anxiety of the kind discussed
above.

Subsequently, we will model our calculations based on a shared fleet that is
constructed to reflect the broader needs of the EV owners; namely, sometimes
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desired QoS —>O—>’ price }" demand }——> actual QoS

FIGURE 10.7
Schematic of pricing strategy

a family car is needed, sometimes a large vehicle is needed for transporting
goods, and sometimes a smaller car is required for short out of town trips by
a single person or couple. In this subsequent model we focus on both range
anxiety and a range of vehicle sizes. To do this we make some simplifying
assumptions. Instead of modeling the demand for various vehicle types, which
is the correct method of analysis, we shall weight various vehicle classes to
construct a vehicle fleet. We assume that these weights reflect demand. This
simplifying model is adopted for two reasons; to keep analysis simple, and
to reflect the fact that data of the type needed to build a multi-dimensional
queueing model is not available to us.

In both model calculations we use VW vehicles. Note that VW is a rela-
tively high-end marque, and the vehicle fleet could be constructed in a manner
that is considerably cheaper. Table 10.2 illustrates the composition and pricing
of our shared vehicle fleet (including the single vehicle VW Golf price). Vehicle
purchase prices were sourced from the VW website (www.volkswagen.ie) on
23rd September, 2013. The weighted average vehicle purchase price given the
fleet make-up is €23,308.

TABLE 10.2

Composition of the shared vehicle fleet
Purpose % of Fleet Vehicle Purchase Price
Singles/Couples 20% VW Polo €14,195
Family without luggage 20% VW Golf €19,995
Family with luggage 50% VW Passat €27,165
Transport 10% VW Passat Estate €28,870

We also assume a fleet of N Nissan Leaf electric vehicles. These electric
vehicles retailed for €25,990 each in Ireland at the same time (23/9/2013). It
is important to note that there are more expensive and less expensive ICEV
and EV offerings.

Ahead of detailing the two model calculations we recall Table 10.1. Table
10.1 indicates that the probability of cumulative journeys greater than 75 km
is approximately 0.15 (average), and of 100km is 0.09 (average). If we con-
servatively assume that the daily range of a fully charged electric vehicle is
75km, then it follows from Figure 10.6 that most customers will be allocated
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an ICE-based vehicle within 3 days for (M, N) = (3500,20000); namely, if
M/N = 0.17. If we assume that the daily range is 100 km, then it follows
from Figure 10.5 that most customers will be allocated an ICE-based vehicle
within 3 days for (M, N) = (2000, 20000); namely, if M /N = 0.10. In essence,
in order to provide 20000 EVs with an ICEV within 3 days then we need an
additional 2000 ICEVs to cater for journeys of 100 km and an additional 3500
ICEVs to cater for journeys of 75 km.

10.5.1 Range Anxiety Model (VW Golf vs. Nissan Leaf)

We utilize a financial model for both the car sharing models, which is in line
with current and well known car financing structures. We take an approach
that amortizes the purchase of a new ICEV over a three year period with a 20%
straight line depreciation Year on Year (YoY). However, first year depreciation
is at 40% as suggested as standard by AA®. This gives three year depreciation
costs for a VW Golf as listed in Table 10.3.

TABLE 10.3
Depreciation costs of the VW Golf fleet

Start Value Year 1 Year 2 Year 3

Car Value €19,995 €11,997 €9,598 €7,678
YoY Depreciation (%) 40% 20% 20%
YoY Depreciation (€) €7,798 €2,399 €1,920
% Value vs. Start 60% 48% 38%
GMFV 40%

It is important to note that we also make the assumption that the ICEV
is sold in year three for a value close to its depreciated value. Motor compa-
nies such as Hyundai, Ford, etc. provide Guaranteed Minimum Future Value
(GMFV) mechanisms such that the depreciated value of the car is close to the
GMFV of the car after a given time that is typically three years. The three
year amortization of depreciation and GMFV allow us to financially model
the depreciation costs of the ICEV within a three year bound.

Considering the revenues from 20000 EVs at a cost of €25,990 is €519.8
million we will now present the additional cost of this car sharing model using
the threee year financial approach outlined above.

In the case of 100km journeys we have described how 2000 ICEVs are
required. As we are using a VW Golf in this model then the 2000 ICEVs would
have once off costs of €40m, which is 7.7% of the EV revenues. However, such a
once off financing mechanism is not typical of financing car purchases in the car
industry. Instead, we utilize the three year amortization and GMFV method

Shttp://www.theaa.com/car-buying/depreciation. Last Accessed July 2017.
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outlined above so as the costs can be modeled more realistically. In Table 10.3
the sum of the single VW Golf depreciation values (YoY Depreciation €) over
the three year period is €12,317. In year three we dispose of the VW Golf
asset at, or near, the GMFV value of ~ 40%. As such, the cost of the VW
Golf over three years then becomes the depreciation costs of €12,317. As we
require 2000 VW Golf cars for this car sharing model this then equates to
a fleet cost of €24.6m over three years, or an average of €8.2m per annum.
This represents an annual cost overhead of 1.5% per annum for three years
for 100 km journeys serviced by a fleet of 2000 VW Golf cars within three
days. In the case of 75km journeys we require 3500 VW Golf cars, which has
a similarly calculated annual cost overhead of 2.7%.

10.5.2 Range Anxiety Model with a Range of Vehicle Sizes

This model will utilize the same three year financial approach for a range of
ICEVs as used in the VW Golf model. However, the cost of the ICEV is the
weighted average, €23,308, of a range of VW ICEV types taken from Table
10.2. In this scenario we are modeling both range anxiety and the ability
to cater for ICEV usages for a family (i.e., VW Passat) with luggage and
transport purposes (i.e., VW Passat Estate).

TABLE 10.4
Depreciation costs of the weighted ICE fleet

Start Value Year 1 Year 2 Year 3

Car Value €23,380 €13,985 €11,188 £8,950
YoY Depreciation (%) 40% 20% 20%
YoY Depreciation (€) €9,323 €2,797 €2,238
% Value vs. Start 60% 48% 38%
GMFV 40%

The revenues from 20000 EVs at a cost of €25,990 remain unchanged at
€519.8 million.

As per the previous model, 100 km journeys require 2000 ICEVs. As we
are using a weighted average of different ICEV class cars in this model then
the 2000 ICEVs would have once off costs of €46.6m, which is 9% of the EV
revenues. In Table 10.4 the sum of the depreciation values (YoY Depreciation
€) over the three year period is €14,358. As we again require 2000 ICEVs then
this equates to a fleet cost of €28.7m over three years, or an average of €9.6m
per annum. This represents an annual cost overhead of 1.8% per annum for
three years for 100 km journeys that are serviced by a range of ICEV within
three days. In the case of 75km journeys we require 3500 ICEVs, which has
a similarly calculated annual cost overhead of 3.1%.
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10.5.3 Financial Assumptions and Key Conclusions

In both models we assume further incremental costs such as traveling to ICEV
location, parking logistics, car cleaning, annual servicing, and all other oper-
ational costs are either mitigated via an implemented pricing model and/or
absorbed by the fixed cost structure already with the dealership, rental com-
pany, and so on. We also assume that at the end of the three year period the
EV owner must stop using the service or replace that EV with a new EV to
start another three year cycle, which maintains the calculations and logic of
the approach over terms greater than an initial three years.

Assumptions in the financial model are justified in the use of standard
financing models used in car finance, AA derived depreciation models, and
weighted average EV and ICEV vehicle purchase prices. However, we do note
that our assumptions ignore synchronized demand, are not based on demand
distributions for vehicle classes, and mileage restrictions may need to be offset.

In the model where we used VW Golf to focus solely on alleviating range
anxiety the overall percentage cost is between 4.5% (100km, three years)
and 8.1% (75 km, three years) of the 20000 EV costs. In the weighted average
model where we focused on alleviating range anxiety, and also offering a range
of ICEV size options, then the overall percentage cost is between 5.4% (100 km,
three years) and 9.3% (75km, three years) of the 20000 EV costs. Note, for
further clarification the boundaries of our model ranges from 3.3% overall
costs (2000 VW Polo, 100 km) to 11.7% overall costs (3500 VW Passat Estate,
75km).

To place these figures into context, consider Table 10.5. As can be seen,
the cost of the car sharing scheme is considerably less than the average level
of subsidy afforded to electric vehicles in major western countries; in 2013
at approximately 23% for a Nissan Leaf EV. Further incentives to encourage
the uptake of electric vehicles might include a combination of car sharing
and subsidies or replacing the subsidies with an increased level of car sharing.
Whether car sharing can really encourage the uptake of such vehicles can only
really be tested through implementation. However, we believe that we have
demonstrated that a significant range related issue can be solved using this
idea, and that this will ultimately affect market growth in a positive manner.

To conclude it is worth recalling some of the assumptions underlying our
analysis.

e Our analysis ignores synchronized demand (at weekends or during holiday
periods). We argue that a pricing structure could be enforced to break up
this demand and give a degree of QoS to the scheme members.

e As we have mentioned, our combined fleet analysis is not based on demand
distributions for each vehicle class. Rather, it is a simplified calculation to
give the reader an indicative picture of the cost of the scheme.

o We have ignored the fact that the shared vehicles would be in continuous
use thereby rendering their value lower than standard GMFV. However,
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TABLE 10.5
Subsidies to EV purchase (direct and indirect) and cost of Nissan Leaf. Data
sourced from Nissan: September 2013.

Country Subsidy Cost (Nissan Leaf) Percentage
Ireland €5,000 €25,990 19%
Belgium €9,000 €29,890 30%
France €7,000 €30,190 23%
Portugal €5,000 €31,100 16%
United Kingdom  £5,000 £20,990 25%
United States $7,500 $28,800 26%

GMFV mileage restrictions may be offset through gains made when bulk
buying 2000 or 3500 ICEVs, and/or through negotiating greater mileage
restriction caps, and/or by ensuring a reduction in any additional charges
beyond the restricted mileage, and so on. Additionally, other depreciation
models are easily incorporated into the given framework. Note that depre-
ciation of the entire cost of the shared vehicles over a three year period
to zero value is also very cost effective when compared with the average
cost of government subsidies (7.7% for a VW Golf in the 100 km model
to 15.7% for a weighted average ICEV in the 75 km model, in comparison
with the 23% average subsidy). A fleet of 3500 VW Passat Estates in the
75km model depreciated to zero is more efficient than subsidies (19.4%
compared to 23%).

Notwithstanding the above facts, we have shown how the costs from the two
model calculations are significantly less than the government subsidies costs.
This gives governments and/or industry the opportunity to augment and/or
replace subsidies with this alternative model to encourage the uptake of EVs,
make EVs more approachable, and reduce pollution in short journeys.

From a financial modeling perspective the most pressing problems, if in-
direct, relate to managing an implementation at scale, working within and
refocusing current government and industrial policy, conveying the benefits
and driving usage uptake with consumers, and technological advances that
over time increase EV range while maintaining or decreasing EV pricing for
the consumer.

10.5.4 Long-Term Simulation

We now present a simulation to further validate the performance of our car
sharing system. We simulated demand based on the estimate for the proba-
bility of requiring an ICE vehicle from Figure 10.2 and serviced this demand
using our car sharing and queueing model. Users requested an ICE (no accom-
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FIGURE 10.8

A simulation to illustrate the behavior of the queueing model. For bookings

greater than three days in advance, the number of unhappy customers goes
to zero.

modation for type of ICE was implemented in our simulation) with a fixed
probability of p = 0.1 (to emulate infrequent need to take a long journey), in-
dependently of each other. The number of members of the car sharing program
was N = 1000. The size of the ICE fleet was varied from M = 90 to M = 111.
Figure 10.8 depicts the percentage of customers who experienced not being
able to access a car within d,, days over a 1000 day period. Of course, a fleet of
less than 100 ICE vehicles provided less than the average demand and did not
result in a satisfying solution. The three graphs show (estimated) probabilities
for a customer to have to wait (i) at least 3 days (dashed curve), (ii) at least 2
days (dashed-dotted curve) and (iii) at least a day (dotted curve). As can be
seen, the number of unhappy customers (rejections) goes rapidly to zero as M
exceeds 100 just by a small amount. In fact, for M > 105 no customers having
to wait two days were observed and for M = 111, the chance of being rejected
on the first day was below 1%. This is entirely consistent with the conclusions
presented above and illustrates that the predictions of the mathematics are
upper bounds on performance. We note that Figure 10.8 is a correction of

the corresponding figure displayed in [106], where the figure shown does not
correspond to the discussed values of N and p.
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10.6 Reduction of Fleet Emissions

The sharing model described so far was applied to address the issue of cus-
tomer range anxiety for electric vehicles. Now, we illustrate through a case
study how the same idea can be applied to reduce fleet pollution levels. This
objective becomes relevant when owners of fleets have a choice as to how EVs
and non-EVs are needed to satisfy the needs of a business. By selecting the
proportions correctly, one can reduce total fleet pollutants and guarantee a
good quality of service for fleet users by ensuring flexible vehicle access based
on statistical guarantees.

Large fleet owners (municipal authorities, universities, delivery companies)
usually own various kinds of ICEVs for multi-functional purposes [99]. For ex-
ample, in the case of a university, some of the vehicles are only adopted as
campus vehicles with intermittent use, and others have longer travel demands
based on continuous access. On any given day, these vehicles can be used
for different purposes, for instance, security, cleaning, gardening and build-
ing maintenance. Some of these vehicles have fixed routines on campus (e.g.,
cleaning, postal), while other types of vehicles may have unpredicted driving
requests (e.g., security vehicles for emergencies). Clearly, given the different
demands placed on vehicles, there is a choice in the way we dimension this
fleet. Electric vehicles are cleaner, and quieter, but ICEVs offer more flexi-
bility in terms of driving range. The basic idea now is to replace the entire
existing vehicle fleet with a mix of electric vehicles and ICE vehicles in order
to reduce fleet emissions. We shall embed this idea in a statistical framework
following the approach in the beginning of this chapter and use the solution
presented there to dimension the number of ICE-based vehicles. Implicit in
this assumption is again that the use of such vehicles can be planned a number
of days in advance, and that all EVs can be fully charged overnight.

Then, based on the solution of the optimal mix in the shared fleet, we
then briefly estimate the reduction of pollutants when compared with a fleet
of only ICEVs. We do this by considering a specific case study as follows.

10.6.1 Case Study

We now consider the following scenario: a large company owns a large fleet
of 200 ICEVs. This company wishes to update all of these vehicles to reduce
pollutants. In the meantime, they also wish to know how many extra large
sized ICEVs they need to buy for effective fleet management.

Here we adapt a real distribution of the driving distance range for the US
postal services®. The profile for the distribution is illustrated in Figure 10.9.
To be consistent with the assumption made in the postal report, it is con-

Shttps://postalmuseum.si.edu/research/pdfs/DA-WP-09-001.pdf. Last Accessed
July 2017.
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sidered that any delivery vehicle traveling more than 40 mile/d (64.37 km/d)
is regarded as making a long journey, thus requiring large size ICEVs. From
Figure 10.9, the probability for each user requesting an ICEV is calculated
as 3.28%. We assume that the pollutant for each long-journey ICEV is taken
as 350 g/km (see [144]). Then, the optimal values of M, when € is 0.05 and
for two different values of k£ are shown in Table 10.6. In Table 10.6 it is also
possible to see that significant amounts of pollutants have been reduced, while
guaranteeing a high QoS, even with a small proportion of ICEVs.
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FIGURE 10.9
Distribution profile of the driving range for the vehicles in the delivery com-

pbany

TABLE 10.6
Comparison Table for the Simulation Results

Reduced COy | Percentage COq
Total | k| e | M (kg/day) [144] | Reduced (%)
200 110.05]| 12 1594 81.87
200 31005 8 1711 87.91
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10.7 Concluding Remarks

In this chapter we have seen that there are various potential approaches to
addressing the shortcomings of EVs as perceived by potential customers. In
recent years there has been a significant drive to improve the range of EVs by
increasing battery capacity, introducing more efficient production techniques
for car components and motors. It may thus be argued that now or at least
very soon an EV will easily provide the means of driving the standard routes of
a large majority of car owners. However, some capabilities of ICEVs are clearly
out of reach for EVs. The flexibility provided by an ICEV may therefore still
outweigh the potential benefits of an EV.

A possible approach to this question is that OEMs see themselves not as car
manufacturers but as providers of mobility concepts and means. The sharing-
economy inspired concept proposed in this chapter would be to sell a mobility
package which largely consists of an EV but which offers the capabilities of
ICEVs as well for these relatively rare occasions where they are needed.

The overhead for such a solution is relatively small. Indeed, we have seen
that significant amounts of pollutants have been reduced and good QoS can
be provided with only a small proportion of ICEVs.
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Sharing Electric Charge Points and
Parking Spaces

11.1 Introduction

The previous chapter has considered designing shared services to alleviate the
problem of range anxiety. An equally important problem is that of charge point
anziety; that is, the angst associated with the inability to access a charge point
when charging is required. This is an important and active area of research
for many innovative companies as well, see for instance the SmartPlug and
the business model of BlockCharge!, or the PlugShare app?. Charge-point
access, and access to parking spaces, have much in common. Parking spaces
represent a limited resource, for which competition is intense. Furthermore,
the competition for spaces is often a result of artificial congestion, and this
competition can sometimes be alleviated by sharing private spaces that are
located close to areas where parking spaces are limited. As an example of such
a scenario consider university campuses which experience parking congestion
during the day, exactly at the same time when surrounding districts often have
vacant spaces. In such situations home owners may be able to monetize their
spaces by making them available to the university. Similarly, significant op-
portunities exist for owners of private charge points to monetize their charge
points. The situation in the context of charge points is particularly frustrating
in Ireland. Current policy (July 2016) is that purchasers of plug-in (the first
2000) EVs have a home charge point installed free-of-charge as part of an in-
centive scheme to encourage adoption of plug-in EVs. Thus, even though the
number of available charge points in Ireland currently far exceeds the number
of public charge points, remarkably, lack of infrastructure is still cited as an
impediment to adoption of plug-in EVs. It is also worth noting that in the
context of parking, major companies and cities are responding to these chal-
lenges. For example, SFpark® and JustPark? provide examples of companies

Ihttps://www.linkedin.com/pulse/blockcharge-blockchain-based-solution-
charging-cars. Last Accessed July 2017

2http://www.plugincars.com/how-to-use-plugshare-guide.html. Last Accessed July
2017

Shttp://sfpark.org. Last Accessed July 2017.

“https://www.justpark.com. Last Accessed July 2017.
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investing in shared parking research and products within a smart cities con-
text. Similar ideas are also currently emerging to share charge point access;
see the initiative by Renault announced in 2016°.

Our objective now is to discuss analytics to enable the design of such shar-
ing systems. Specifically, we will describe the design of a system for sharing
a resource so that spatial and temporal demand are better balanced. Recog-
nizing that many private parking spaces and charge points are unused most
of the day, and that resource congestion, or synchronized demand, is often
caused by poor planning, we consider a situation where there are two nearby
entities that have complementary supply and demand, i.e., there is a shortfall
of resource at one and a simultaneous surplus at the other. In our work, we
use the university campus as an example. The second entity is comprised of
the homes of private residents who are in possession of their own garages,
driveways and charge points, and these are made available as an overflow for
the campus. Consequently, we consider a problem in which the campus has
access to two classes of resource: a premium resource (parking spaces or charge
point), e.g., those located on the university campus; and secondary resources
located nearby and perhaps serviced by a shuttle. Given this basic scheme,
we consider three specific design issues. First, we wish to design hardware to
enable private home owners to allow other vehicles to use their driveway for
charging or parking during pre-specified times. Second, we wish to guaran-
tee a quality of service for the landlords by setting aside reserve resources
on campus as contingency for events where secondary resources are suddenly
unavailable. Finally, we wish to ensure that the premium resources are allo-
cated optimally among users (drivers) while preserving each user’s privacy.
To keep matters simple, in what follows we shall illustrate this idea using
parking spaces as the resource to be shared. We do this as data on the use
of parking spaces is more readily available, and we have used this to develop
a campus sharing systems that is documented in [76]. However, we note that
the problem of charge points access can be solved in an identical manner, and
our analytics apply equally well in such situations. Finally, the last part of
this chapter describes a hardware device to enable the sharing of personal and
private charge points.

11.2 Setting: Parking Spaces

Imagine a university campus with a total of N parking spaces, surrounded
by a total of M private parking spaces (e.g., from residential complexes), as
illustrated in Figure 11.1. A typical working day sees the university parking

5http ://www.autovolt-magazine.com/swedish-citizens-create-electric-car-
charging-infrastructure/. Last Accessed July 2017.
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fill to capacity with vehicles belonging to students and staff to the extent
that the IV spaces cannot meet the demand. Some campus arrivals thus have
to search elsewhere. At the same time, many nearby residents drive to work
during the day and vacate their M private parking spaces. What we have is a
wasted resource in one area (i.e. the residential parking spaces) and a stressed

resource nearby (i.e., the on-campus parking).
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FIGURE 11.1
The parking scenario: premium spaces are those on the university campus,

whereas secondary spaces are those belonging to the apartment buildings

We assume that a contract exists between the university and the landlords
or owners of these M private parking spaces. The contract stipulates that
these landlords lease their driveways to the university during the daytime
while the landlords expect to be away (e.g., at work). In the sequel, we will
denote the time period in which the extra spaces are leased by [0, W].

We define premium resources to be the on-campus parking spaces, while
the secondary resources are the contracted residential parking spaces. We will
now consider how to design a parking system, bearing in mind the needs of
the campus, and the needs of the landlords. We shall consider the following.

1. How do we accommodate the needs of parking space owners (landlords)
given that situations may arise when landlords will need to return home

during the contracted interval?

. How do we accommodate the needs of the landlords given that situations
arise when misbehaving university members will not vacate the parking
space outside of the contracted interval?

3. How do we allocate efficiently access to the premium spaces to the univer-

sity community in a manner that preserves the privacy of individuals in

the community?
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As we shall see, we answer these questions in a stochastic framework by devel-
oping suitable QoS metrics to dimension the aforementioned parking system.
To address items 1 and 2, we shall set aside a subset of () premium spaces as
a reserve. We shall address item 3 by applying recent ideas from distributed
resource allocation.

Remark 11.1 (Driveway Assumption). We assume throughout that the res-
idential parking is such that each landlord has his or her own driveway as
opposed to downtown parking scenarios with on-street parking only.

Remark 11.2. Note that the notions of parking space and charge point are
interchangeable in the context of the above items.

11.3 Dimensioning and Statistics

In this section, we consider the problem of dimensioning @ € {0,1,...,N}
premium spaces as reserve in order to provide sufficient QoS guarantees to
the landlords of the secondary spaces. Let 1,..., M index the parking spaces
and suppose, for simplicity, that we consider landlords with a single driveway
only. For each such parking space ¢ = 1,..., M, we define a non-negative
random variable T; which denotes the time at which he or she returns home
and needs to get the parking space back. Under normal circumstances, T; is
greater than W, but on rare occasions a landlord may choose to come home

early.
For simplicity, we assume that each parking space ¢ = 1,..., M has exactly
one daytime user per day. For each parking space i =1,..., M, we also define

a non-negative random variable A; which denotes the departure time of the
daytime user of the space i. Under normal circumstances, A; is less than W,
but we assume a small number of miscreants so that not all spaces are always
vacated on time.

For convenience, recall that [0, W] denotes the nominal rental window for
every parking space. In other words, the landlord of space ¢ agrees to park
only outside the interval [0, W], whereas the daytime user of space i agrees to
park during the interval [0, W] only.

Definition 11.3 (Home-early and Overstay). We define the following two
events for each secondary parking space:=1,..., M:

Ei £ {T’z € [O,W]} N {Tl < Az}7
0O; £ {W < Tz} N {Tl < Az}
Each of these events represents an outcome where a landlord would like to use
the space 7 but cannot do so. The home-early event E; is due to the landlord

needing the space during the day. The overstay event O; is due to the fact
that the daytime user overstayed.
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For ease of presentation, we assume the following properties concerning
the above random variables.

Assumption 11.4 (For Simplicity). The random variables {T1,..., Ty} are
independent and identically distributed (i.i.d). Likewise, {A1,..., Ay} are
i.i.d. Moreover, all these random variables are mutually independent. Finally,
we assume that all the distributions have densities.

11.3.1 The Dimensioning Formulae

We begin by quantifying the probability of an event O; in terms of the proba-
bility of daytime users overstaying. Recall that the distribution of the random
variable A; characterizes the probability of the daytime user overstaying in
space 4. First, observe that

P(O;) < P(4; > W).

Next, we derive an exact expression for P(O;) using the independence assump-
tion (Assumption 11.4).

Lemma 11.5 (Probability of O1). Let Fa denote the probability distribution
of A1 and let Fr denote the probability distribution of Ty. Under Assump-
tion 11.4, we have

(oo}

PO = [ (Fra) - Fr(W)dFa(a).
a=W

Remark 11.6. We estimate F'4 from data in the following section.

Proof. Observe that
P(Ol) = ]P)(W <T) < Al)

:/ P(W<T1<A1|A1:a,)dFA(CL)
a=W

/Oo P(W < T < a)dFa(a).
a=W

The claim follows by definition of the distribution Frp of T7. O

Now we derive a formula that we can use to dimension the reserve parking
space ) from the contingent of N premium spaces. Recall that there are @
reserve parking spaces (the reserve “buffer”) set aside by the university. We
consider the probability p(M, Q) of the event that more than @ spaces are
needed to accommodate landlords needing the reserve buffer during daytime
[0, W1:

M
p(M,Q) =P (Z lg, > Q) :
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where 1g, denotes a Bernoulli random variable taking the value 1 when event
E; occurs, and the value 0 otherwise. We first characterize the probability of
the event F; in terms of the probability distributions of 77 and A;.

Lemma 11.7 (Probability of E;). Let Fr denote the probability distribu-
tion of Ty. Let F4 denote the probability distribution of Ay. Under Assump-
tion 11.4, we have

w
P(E)) = / (FA(W) = Fa(E)dFr(t) + Fr(W)(1 = FA(W).

Remark 11.8. Fr and F4 are estimated from data in the next section.

Proof. Let ¢ 2 P (E;). Observe that

p=P{T1 < A1} n{T1 € [0,W]})
=P{T1 < A1} n{Th < W}) (by non-negativity of T7)
=P{Ty < A} N {Ty < W} | A < W)P(A; < W)
+P({T < An{Th <W}| AL >W)P(4 > W)
=P(Th <A | A <W)P(A; < W)
+P(Thy < W)P(A; > W) (by Bayes’ Rule)
=P(Th <A <W)+P(Th <W)P(A; > W)

=0

w
= [ (BAW) = Fa@)dFe(6) + Fr(W)(1 - Fa(0),
which is the claim. O

As a corollary, we have the following expression for the probability that
setting () reserve spaces at the university is not enough.

Corollary 11.9 (Probability that @) reserve spaces are not enough). Let
¢ = P(Ey). Under Assumption 11.4, p(M,Q) is a random variable entirely
characterized by ¢:

M

p0r.Q) = Y () )eta - o (1)

k=Q

11.3.2 Parking Data and Example

In the previous section, we considered arbitrary probability distributions Frp
and F4 in the formulae derived. In this section, we give estimates Fr, F'a of
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these distributions using publicly available data. Given samples Z1, Zo, ..., Z,
from the distribution F7p, the corresponding empirical distribution-estimate
takes the form

Fr(z) = Z liz, <2
i=1

where s is the sample size. First, we estimate the distribution F'4. Recall that
Aj; is the random variable denoting the duration of use of the ith secondary
parking space. To derive an estimate, we use data on parking space utiliza-
tion collected in the city of Dublin. Each data point corresponds to the time
duration of one parking event. The histogram distribution of these durations
is shown in Figure 11.2. Of course, we can obtain a better estimate of the
distribution of parking usage in a university campus if we have access to more
particular data. Based on Figure 11.2, in order to simulate the fact that 5% of
users of secondary parking spaces overstay, we set W = 170 for our example.
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FIGURE 11.2
Parking data (Source: Dublin City Council, 21 December 2013)

Next, we estimate the distribution Fr for {7;}. This distribution accounts
for landlords who do not leave home and who arrive home normally after
working hours. There are many reasons for landlords to return home early, or
not leave home at all. For simplicity, we estimate the frequency of such days
with the number of sick days had by NHS staff in England over the period
from April 2009 to February 2014. This data is presented in Figure 11.3. For
simplicity, we use the average sickness absence rate to estimate the probability
of T; = 0 and assume that T; = W otherwise (see Table 11.1).

If data is not available to estimate the distributions Fr and Fjy, it is
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Monthly sickness absence rates (Source: Health and Social Care Information
Centre)



Sharing Electric Charge Points and Parking Spaces 127

TABLE 11.1

Probability distribution function of T;. For simplicity, we assume that the
function is constructed so that 4.2% of landlords remain at home due to sick-
ness, while the other 95.8% return home exactly at time instant W.

Random variable T; | Probability
T, =0 0.042
T,=W 0.958

insightful to consider the assumption that Fr and F'4 are normal distributions
N(u,0?) and N(v, p?), respectively. This assumption gives a reasonable model
for Fr and F4 as long as the tail probability in the negative half line is
negligible, e.g. when the variances are small compared to the means. In this
case, letting ® denote the standard normal distribution function, Lemma 11.7

gives:
w
W — t— t—)?
p(El):/ (Q)( V)—@( u>> e S gt
0 P p
(M) (1 a(To)).
o P
By further assuming that the expected return time p of landlords is 2¢ above

the expected departure time v of daytime users, and that the rental term W
is the midpoint between p and v, we obtain

v+e P
P(E;) :/ (@(6) - @(t - ”)) G
0 P P
r () <1 - ¢(6)) .
o p
We can therefore conclude that for sufficiently large v compared to the vari-
ances o2 and p?, the value of P(E;) depends mainly on the value of €, or the
difference between p and v.

Finally, we use Corollary 11.9 to perform a dimensioning exercise based on
our data. Figure 11.4 illustrates the probability p(M, Q) that @) reserve spaces
are insufficient when M secondary spaces are contracted. For a fixed value of
P(E;), the probability p(M, Q) eventually falls exponentially fast versus Q.
The dependence of p(M,Q) on M is more subdued. In other words, for a

fixed value of p(M, @), a linear increase in the number of secondary spaces
only requires a logarithmic increase in the number of reserve spaces.
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11.4 Efficient Allocation of Premium Spaces

In this section, we focus our attention on the point of view of the user (i.e.
a staff member or student) who requires parking at the university. Typically,
such users would purchase a monthly or yearly parking ticket. This ticket then
provides them with the opportunity to compete for a university parking space.
However, such a ticket does not necessarily guarantee them a parking space on
the university grounds. That is, if they arrive to the university “too late” on
any given day, the car parks on campus may already be full. This is because
more parking tickets are sold than there are actual spaces to park. Such “first
come, first served” systems can be inefficient. Consider the example of student
mothers or fathers who, even though they paid the same amount for a monthly
or yearly parking ticket as everyone else, must first always take their children
to school in the morning.

For our scheme, we suppose that the university has been able to obtain
enough apartment building parking spaces such that (N — Q) + M is greater
than or equal to the number of university users requiring a parking space
on any given day. The problem then is how to allocate the premium and
secondary parking spaces to users efficiently and fairly over time.

11.4.1 Algorithm

We are considering the problem of providing efficient access to the available
premium spaces on campus. These spaces refer to the N — () spaces available
after allocating @) of the spaces as reserve according to Section 11.3. For
simplicity of exposition, we shall assume that Q = 0 in this section, but
the results generalize in a straightforward fashion.

We introduce and recall the following notation to describe the problem
data and the variables used in our algorithm.

N : an integer denoting the number of available premium parking spaces.

n : an integer denoting the number of users wishing to use premium
parking spaces. We assume that n > N.

k : denotes discrete time, £ = 0,1,2,3,.... In our interpretation, this
corresponds to the number of days the system is operating. For con-
venience, we assume spaces are assigned on a per-day basis, but the
general principles of the algorithm do not depend on this assump-
tion.

X;(k) : this is a state variable associated with the ith user. It takes the value
1 if this user is given access to a premium parking space on the kth
day and zero otherwise.
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X;(k) : this is average access for the ith user up to the kth day, i.e.
Lk
)= 1 2o %)

It is possible to formulate the premium parking space allocation problem
in several ways. For example, one could require that the long-term average
admission to the premium parking space is equal for all users, i.e., for all
ij=1,...,n,

k—o0

This assumes that all users are equal in the desire to access the premium
parking space. Here, we follow a more general approach and assume that each
user 4 has a cost function f; : [0, 1] — R. For a frequency z € [0, 1] of premium
space allocation, the cost f;(z) represents the monetary inconvenience cost
that user ¢ experiences from z. This function specifies the priority that this
user is assigned. It could represent the amount a user is willing to pay, or
it could be related to the number of passengers carried by this user, or the
access that this user has to public transportation (meaning that users with
fewer possibilities for alternative transport should have prioritized access to
parking spaces). Given these individual cost functions, our aim is to design
a system that achieves overall minimal cost for the group. We formulate the
optimal allocation of resources as a minimization problem:

n
,min_ ; fi(zi)

(11.2)
subject to ZZZ =N, and 2, >0, i=1,..n
i=1

Our proposed simple algorithm for solving the parking allocation problem
can be summarized as follows. We assume that, for each day, each user is
allocated access to the premium spaces by tossing a coin. For example, one
embodiment of this idea is to use a smart-phone application. More specifically,
each user is assigned a cost function by a government authority. For example,
this could be based on vehicle class, disability, need for childcare, etc.

We will assume that the functions f; are continuously differentiable and
strictly convex so that, in particular, the optimal point z* € R”™ satisfying
the constraints is unique. Furthermore, we introduce an assumption which
ensures that the optimal point z* has only positive entries. This assumption
also guarantees that the algorithm we will describe is well defined for every
user.

We wish to control access to the premium space in such a way that the
average utilization for each user approaches the optimal value z*, i.e. for large
k we want to achieve

Xi(k) =~ 2}

K2
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subject to the (loose) capacity constraint Y., X; ~ N. That is, all premium
spaces are occupied on average. Furthermore, we wish to do this in a manner
that preserves the privacy of users. That is, we do not wish to reveal X; and
fi to any other user during the course of the optimization. Finally, the neces-
sary communication between the users should be minimal so as not to create
a communication overhead that would be hard to sustain in an uncertain
environment where users cannot be expected to participate at all times.

In what follows, the mechanism for preserving privacy is to develop a dis-
tributed algorithm. We loosely follow the ideas in [192], where a distributed
stochastic algorithm is presented which guarantees that the average utilization
variables X;(k) converge to the optimal points z;®. Also, a more detailed dis-
cussion on the distributed optimization algorithm AIMD, and its convenience
for large scale applications, is given in Chapter 18. The algorithm presented
here extends the ideas of [192], however, as we need to address the further
constraint that the instantaneous utilization variables X;(k) sum to N, or
at least to a value close to it. Moreover, the resource to be allocated in our
setting is atomic as opposed to arbitrarily divisible. These differences require
substantial changes to the algorithm presented in [192].

At each time k, each user ¢ determines a probability p;(k) and sets

1,  with probability p;(k),

. " (11.3)
0, with probability 1 — p;(k),

Xi(k+1) = {

where we note that all users make this probabilistic choice independently of
other users or previous decisions. The evolution of the probabilities is governed
by the equation

Xi(k)
(k) £ P(Xi(k) =1) =T (k) ————.
k) £ BOX(H) = 1) =0 o
Note that each user i can determine its own probability with the exclusive
knowledge of its own past utilization X;(k) and cost function f;. No informa-
tion from other users is required. The scalar I'(k) is a network-wide constant
determined by the central agency and broadcast to all users. Here, I'(k) is
chosen such that p;(k) € (0,1) for alli=1,...,n and all k¥ € N; for instance,
we may assume that the central authority that owns the parking lot calculates
I'(k) based on past utilization and broadcasts this scalar to all participating
vehicles. It is determined in a time-varying manner as it also influences the
demand for premium spaces. Specifically, if at a certain time k each p;(k) is
fixed then the expected utilization of the premium spaces is

E (l};Xz(kJr 1)) = ;pz(lﬂ) T(k)> ) (11.5)

=1

(11.4)

6 As the algorithm is stochastic, the convergence holds with probability 1, which is also
called almost sure convergence in a stochastic context.
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Moreover, the (random) instantaneous utilization Y. ; X;(k + 1) is concen-
trated around the expected utilization by independence and Hoeffding’s In-
equality [93]. If we wish to ensure optimal utilization of the premium spaces
and avoid overbooking, the expected utilization should be below the number
of premium parking spaces; for instance, a standard deviation below this num-
ber, depending on the desired QoS metric. Denoting this number by Ng < N,
we will therefore adjust I'(k) so that the expectation in (11.5) tracks Np. As
the expectation is unknown, we use the observed utilization as an estimator
for this. Taking a simple error regulation approach, we thus arrive at

T(k+1)=T(k)+~ <NEXH:Xi(k)>. (11.6)

i=1

The overall system is now described by the dynamics of X; given by (11.3),
the dynamics of p; given by (11.4) and the dynamics of I' as in (11.6).

11.4.2 Example

We simulate a population of 900 users competing for 450 premium parking
spaces. Each evening, users are assigned a parking space as described above
(with the scalar I'(k) determined using the simple error regulation law (11.6).
For simplicity, users have one of three cost functions: fi(z) = 1 — z + z/4,
fa(2) =1—2+425/6, and f3(2) = 1 —2+2%/8, all of which are strictly convex.
Also the highest cost is associated with z = 0 which fits the interpretation
of cost incurred for not obtaining access to a premium parking space. For
better interpretation of the constant I'(k) we simulated the problem for the
normalized cost functions f;(z) = f;(z)—1+z,i = 1,2,3. This does not change
the optimal point by the Karush-Kuhn-Tucker (KKT) conditions. However,
it ensures that I'(k) is positive.

Figure 11.5 shows the average utilization achieved for each class of vehicle.
Figures 11.6 and 11.7 show that the average utilization of premium spaces is
concentrated around the target utilization of 450.

11.5 Turning Private Charge Points into Public Ones

The previous discussion exploited the strong parallels that exist between the
angst associated with not being able to find a parking space in a congested
environment, and the (perhaps) extreme angst that EV owners feel when at-
tempting to charge their vehicles in a non-home environment. The solution ad-
vocated in the prequel to both of these problems is to allow owners of parking
spaces or charge points to make these available to others in exchange for mon-
etary reward. Note again that the idea of sharing charge points is well founded
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Instantaneous allocation {X;(k)} for three users

for a number of reasons. First, in Ireland, the geographical density of public
or community charge points is often very low leading to congested behavior
in certain areas. This is especially true in campus environments (universities,
business parks, large scale industrial complexes). In addition, since charg-
ing times are much longer than the process of refueling petrol, long queues
may build up at some charging stations, thus further reducing the practical
availability of charging points. Thus, demand for public charge points often
outstrips supply and in such situations it makes sense to augment the public
charge points with private ones. Second, in Ireland, public charge points are
currently deployed by the State (via the ESB Group), and accessed for free by
registered EV owners who qualified for a state grant to purchase their electric
vehicle. It is planned that this free access will end at some point, after which
users will pay to charge their vehicles. Furthermore, in Ireland, purchasers
of plug-in vehicles have had a home charging unit installed at their homes
as part of the EV incentive scheme. Thus, in addition to the public charge
points, a network of private charge points is not only available to augment,
but also to compete with the public network and to enable a market for EV
charging in Ireland. Note also that while such sharing strategies are very easy
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to implement in the case of parking, requiring very little in the way of new
infrastructure, unfortunately this is not the case for sharing of charge points.
A typical 16 A home charging unit (available as part of the ESB scheme) is
depicted in Section 11.5.

As can be seen, access to the unit is managed via a key and the car
simply plugs into the device until charged. To enable smart sharing, we have
constructed a smart adapter’. The adaptor is designed to convert a standard
IEC 62196 16 A home charging unit into a public one. A schematic for the
device is depicted in Figure 11.9. As can be seen the smart plug acts as an
interface between the plug-in EV and the home charging station. Charging of
multiple vehicles is supported (via multiplexing); and the device connects to
the cloud via the cellular network or WiFi. The amount of charge delivered to
a vehicle is monitored internally, and several payment modes are supported;
direct payment; a subscription model; or via a web interface. The charging
cable at the car remains locked until payment or complete charging. More
details of the unit can be also found in [181].

7 Pricing adapter for domestic EV charging stations, United Kingdom Patent Applica-
tion No. 1621894.3.
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11.6 Concluding Remarks

The lack of infrastructure is sometimes cited as an impediment to the adoption
of plug-in EVs, as it may give rise to the fear of not finding a charge point when
required. However, as we describe in this chapter, this fear may be alleviated
by simply improving the efficiency of the existing infrastructure, for instance
by designing shared strategies to access it. In particular, we have shown how a
smart adapter may be to convert a standard home charging unit into a public
one. Then, after recognizing that most private charge points are unused most
of the day, when owners are at work, we discussed analytics to enable the
sharing of the private charge point, with a probabilistically guaranteed quality
of service.
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FIGURE 11.8
Home charging unit in Ireland



Sharing Electric Charge Points and Parking Spaces

137

Smartphone

- Remote account management:
* Search, booking, payment
- Local payment

Remote

‘Web Server

- Owner/user account

- Data storage/processing
- Statistics

monitoring/

control

N N
Measures ( ) Commands
NFC-based Wi-Fi
Plug’s ID Local Modem
Pe ent A
aymmen Measures r \ Commands
=1 \ Human-Machine Interf \ ¥
NF uman-Machine Interface \
TaC *NFC Wi-Fi
| |Shield Shield Socket 1
To the
charging
station Cable @
|@—— Detector
Input’s Microcontroller A Lock 1
l— F-o-ZZZZZ:Z:: o=
Interrupter Integrated Circuit ﬁLock 2
—> Output’s
T Switch @
Energy Socket 2
Met,
cter Pricing Plug

FIGURE 11.9
Smart charging unit



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Part II1

EVs and Smart Cities



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

12

Context-Awareness of EVs in Cities

12.1 Introduction

In this part we describe a number of non-conventional ancillary services that
can be offered by EVs. Conventional ancillary services usually focus on the ser-
vices that can be offered by plug-in EVs when they are connected for recharg-
ing, and they usually include demand response, frequency regulation, and re-
active power balancing. Such possibilities have been explored in the first part
of this book. On the other hand, in this part we are interested in exploring
the services that can be provided by EVs when they are traveling.

The first chapter is devoted to the analysis of the services that can be
delivered by hybrid vehicles in particular. In this case, the principal concern
of the hybrid architecture is usually the optimization of the fuel efficiency of
the vehicle. This implies that the Engine Management Unit (EMU) is pro-
grammed to minimize fuel efficiency, and maximize the expected lifetime of
the vehicle battery. However, the hybrid architecture can be exploited to opti-
mizing the performance of the vehicle with respect to other stakeholders (e.g.,
pedestrians, society in general). For instance, one can imagine a PHEV as a
moving agent that has the ability to decide when, and where, to pollute (i.e.,
travel in an “ICE-like” mode, where most or all of the torque is produced
by the combustion engine). On the other hand, the PHEV can turn into a
“FEV-like” mode, when most or all of the torque is produced by the electric
engine, when and where it is preferable. In this way, the PHEV can drive in an
environmentally friendly fashion in sensitive areas, e.g., close to kindergartens
or hospitals, or in the city center. In this regard, note that some cities are
planning an outright ban on polluting vehicles from the city center.

In a similar manner, the ability of the EMU to orchestrate between two
traveling modes can be exploited to offer even more services. In Chapter 14,
PHEVs decide when and where to travel in a FEV-like mode in order to
discharge their batteries proactively of a pre-fixed quantity. In this way, the
PHEV becomes a deterministic load from the viewpoint of the power grid,
and thus, a schedulable and dispatchable load. Accordingly, this mitigates the
burden of the grid to accommodate an otherwise unpredictable and possibly
non controllable load. In addition to this, it is possible to use the PHEVs to
store inexpensive energy generated from renewable sources. Roughly speaking,
if weather forecasts predict a large availability of energy from wind plants for

141



142 Electric and Plug-in Hybrid Vehicle Networks

the next night, when PHEVs will be connected for charging, then it is possible
to suggest to the PHEV’s owner to consume most of the energy stored in the
battery during the day. Such an approach is also illustrated for the specific
case of a fleet of hybrid buses.

Finally, Chapter 15 describes an Intelligent Speed Advisory (ISA) system
for EVs. In general, ISA systems are used to provide a number of benefits,
including an improved vehicle and pedestrian safety, a better utilization of the
road network, or reduced emissions. Here, we are interested to the specific case
of EVs, and provide a methodology that allows drivers to manage a budget
of some description, and at the same time maximize the energy efficiency of
their EVs when traveling in a green zone area.

Notes and references

This part is based on joint work by the authors and their co-workers. The
chapter on the regulation of pollution is based on [164] written in collabora-
tion with Arieh Schlote, Florian Hausler, Thomas Hecker, Astrid Bergmann
and Ilja Radusch!. The chapter on the controlled energy consumption on
the basis of weather forecasts is based on works [80] and [137], written in
collaboration with Yingqi Gu, Florian Hausler, Wynita Griggs, Joe Naoum-
Sawaya and Mingming Liu?. Finally, the chapter on the ISA system is based on
works [122]3 and [123]? in collaboration with Mingming Liu, Rodrigo Ordéfez-
Hurtado and Yinggi Gu.

L©IEEE. Reprinted, with permission, from [164].
2@©IEEE. Reprinted, with permission, from [137].
3©IEEE. Reprinted, with permission, from [122].
4©IEEE. Reprinted, with permission, from [123].
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Using PHEVs to Regulate Aggregate
Emissions (twinLIN)

Our objective in this chapter is to describe an attractive method to regulate
pollution without overly inconveniencing a vehicle owner. The basic idea is to
create a feedback loop that, based on measurements of pollution levels, gives
recommendations to the EMUs of PHEVs regarding the driving mode, in order
to maintain the pollution level below a safe pre-determined level. Traditionally,
this can be achieved by adapting speed limits, re-routing vehicles, and by
changing traffic light sequencing. These measures are highly invasive. However,
PHEVs, offer this new flexibility in terms of the driving mode that can be
exploited to solve the pollution regulation problem, potentially, without overly
inconveniencing the vehicle owner. Such a vision corresponds to viewing the
battery as a type of filter for vehicular traffic that geographically separates
the location where energy is used and the location where it is being produced
(perhaps using fossil fuels or other “dirty” forms of energy). Essentially we
generate the energy in a place that is away from humans, so that pollutants
can be filtered, gathered and neutralized, and we deliver it, via batteries, in a
form that is clean and safe.

When taking this point of view, new vehicle classes such as electric and
hybrid electric vehicles that allow cars to traverse sensitive areas without pol-
luting them, become a powerful tool in controlling pollution levels in cities.
Power-split hybrid vehicles, in particular, which can be operated in fully elec-
tric, and in ICE mode, allow us to control the manner in which pollution
is delivered into the environment. Thus by orchestrating the way in which a
fleet of such vehicles switch into fully electric mode (based on a function of
the aggregate pollution levels), one should, in principle, be able to regulate
pollution levels in a manner that is non-invasive to the driver. The vehicle
only uses as much electric power as is necessary to keep the aggregate pollu-
tion level below a certain threshold. More refined versions of this basic idea
can be used to specifically protect cyclists and to protect pedestrians [81, 91].
This chapter explains how this can be achieved in practice, by describing the
construction of a proof-of-concept context aware hybrid vehicle: the twinLIN,
and by describing the application of basic control theory to this problem, and
is based on prior work in [164], [110] and [109] which investigated methods
based on V2X (Vehicle-to-Everything, e.g., V2V and V2I) to contribute to the
regulation of air quality in our cities.
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Before proceeding it is worth noting that the link between the ICE and
human health has recently become a very hot topic. Recent papers link the
harmful by-products of the ICE to a range of ailments. By-products of the ICE
include: CO; NOz; SO; Ozone; Benzene; PM10; and PM25. All of these
affect humans adversely and have been linked to lung disease, heart disease,
certain cancers, and most recently dementia [33] [66]. In a study in the US [38]
it is claimed that problems with air quality lead to three times as many deaths
as car accidents. Amazingly, just how damaging to health those vehicles can
be appears only now to be a topic of interest with public discourse hitherto
focusing mainly on greenhouse emissions and on vehicle safety. This basic fact
provides the main motivation for this and prior work [110] and [109]; namely,
to investigate methods based on V2X to contribute to the regulation of air
quality in our cities.

It is also worth noting that governments and municipal authorities have
already started to respond to the air-quality issue. For example, cities in some
countries ban certain vehicles from densely populated areas (Umweltzonen'),
and sometimes speed limits are adapted to respond to pollution peaks?. In
particular, the concept of the Umuweltzonen is widespread throughout Ger-
many. Limits on particulate matter and other pollutants have been in effect
in Germany and the EU for some time. For example, in the EU, exposure to a
yearly average of 40 ug/m? and a daily average of 50 ug/m? have been set for
particulate matter smaller than 10 um (PM10). However, even though these
measures are very welcome, they do not go far enough. Roughly speaking,
they suffer from three main drawbacks. First, they are per-vehicle measures.
Degradation of air quality results from the aggregate effect of vehicles. En-
forcing per-vehicle measures (unless we ban vehicles all together), takes no
account of this effect. In fact, while the per-car emissions have been success-
fully decreased in the last years, the growth in the number of new cars has led
to a substantial effective increase in the overall (aggregate) emission output
in certain regions [54]. Second, these measures are open-loop measures. The
regulation is the same irrespective if there is one vehicle in a spatial area (in
the middle of the night), or if there are thousands of vehicles in the same area.
Finally, all of these measures are highly invasive and affect the vehicle owners
in a very disruptive manner. They may even have unintended consequences
for the city. Forcing vehicles away from an certain zone may lead to congestion
elsewhere or even a higher total amount of emissions in the whole city.

This chapter is organized as follows: In Section 13.1 we present some im-
portant notions from networking research and describe how these translate in
a seamless fashion to fleets of hybrid vehicles, by using some V2V and V2X
communication. In Section 13.2.1 we describe the construction of a proof-
of-concept context aware hybrid vehicle, the twinLIN, and the smart-phone
application we used to implement the previous idea. In Section 13.2.2, we

Ihttp://gis.uba.de/website/umveltzonen/umweltzonen.php. Last Accessed July
2017.
2http://www.brussels.be/artdet.cfm/6357. Last Accessed July 2017.
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review a pollution model (that we have used in our models in the absence
of pollution measurements). We later present some simulation results that
show the efficacy of the proposed idea, at least in a simulation environment,
and outline some possible more sophisticated generalizations of the proposed
framework.

13.1 Background

The principal objective of this chapter is to use the opportunity afforded by
V2X to develop effective techniques to use PHEVs to regulate the pollution
level in urban areas. The basic idea in [109, 164] is to place a feedback loop
around a group of PHEVs, and use this loop to control the group emissions.
Specifically, we are interested in the following aspects:

(i) Aggregate pollution levels should not exceed some given levels: More
specifically, the objective here is to decouple pollution in a certain area (or
group of vehicles) from the number of vehicles in that area.

(i) Best effort behavior and disturbance rejection: Vehicles in a geo-
graphic area should adjust their behavior in order to share the allowed
pollution level irrespective of the number of participating vehicles and should
also respond to mitigate non-vehicle pollution generation by becoming cleaner
if pollution levels rise.

(iii) Fairness : Ideally, cars that are more polluting should be more in-
convenienced than less polluting ones.

Items (i)-(iii) closely resemble the requirements of classical resource al-
location algorithms found in networking applications (such as the Internet).
Essentially, we are viewing the pollution control problem as a resource
allocation problem, where a certain amount of pollution is shared among
competing vehicles, see for instance Figures 13.1 and 13.2. The realization
that the pollution control problem can be recast in a resource allocation
framework is very fortunate. Network resource allocation problems are at a
mature stage, and algorithms from the networking community for solving such
problems are readily available. Relevant ideas include the Kelly framework
[101], RED [167], AIMD congestion control, to name but a few. In the next
section we shall illustrate how some of these ideas, together with new vehicle
types, can be used to great effect to manage aggregate vehicle emissions.
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13.2 Cooperative Pollution Control

The basic idea now is to orchestrate and coordinate switching between drive
modes in a fleet of hybrid vehicles so as to achieve regulated pollution levels.
Feedback is used to adjust the level of coordination to achieve the desired
level of regulation. The control loop is depicted in Figure 13.3. In our work,
the infrastructure uses algorithms of the form of Algorithm 13.1, where g(+)
is a function of present and past emissions and depends on the chosen control
algorithm.

Network:

adjusts local
r l property

Central ( )
Entity:

measures and
feeds back a
global quan-
tity

FIGURE 13.3
Feedback loop for cooperative pollution control.

Algorithm 13.1 Central probability control

E(k) <+ Measurement or estimate of current emission levels

Broadcast probability of changing to EV mode (p) to all vehicles.

To realize this objective we assume the availability of a context-aware hy-
brid vehicle, whose switching into fully electric mode can be made dependent
on the location of the vehicle as well as in response to an external signal. Our
approach here is to allow vehicles to randomly select their mode of operation
in response to these signals (in contrast to the approach in [110]) as in Al-
gorithm 13.2. Here p is the probability that a hybrid electric vehicle engages
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its ICE engine and f(-) is a function used internally in the vehicle to allow
one of several different types of optimality objectives to be achieved. Another
important point that has to be considered is the availability of accurate and
real time pollution estimates or measurements. These can be obtained in two
ways: either by roadside infrastructure measurements or by communication of
on-board measurements of emissions of the vehicles themselves.

Algorithm 13.2 Vehicle mode choice
p < broadcast probability value
b < f(p)

Use ICE with probability p and EV mode otherwise.

We now describe all the ingredients required to implement the desired
cooperative pollution control task.

13.2.1 The Networked Car

The first vehicle that we used for cooperative pollution control was a 2008
model Toyota Prius, as described in [164]. More recently, a 2015 Toyota Prius
VVTi 1.8 5DR CVT Plug-in Hybrid vehicle was used in its place. The engine
management system of the Prius allows the vehicle to be powered by the ICE
alone, the battery, or using a combination of both, and it is this degree of free-
dom that can be used to regulate emissions. For such an objective, we have
made some important modifications to the basic vehicle to make it behave as
a context-aware vehicle. First, we have automated the switching of the vehicle
from ICE to EV mode by adapting the EV-mode button hardware in the ve-
hicle. For this purpose, a dedicated Bluetooth-controlled mechanical interface
was constructed to override the manual EV button based on signals from a
smartphone. The switching can be triggered on the basis of the GPS location,
of external context information, or on-board signals such as speed and battery
level. Second, special-purpose hardware was constructed to permit communi-
cation between a smartphone and the controller area network (CAN) bus. The
Prius provides a CAN access to the vehicle diagnosis (On Board Diagnosis 11
(OBDII)) interface. Using special commands on the Bluetooth channel, the
smartphone subscribes to specific in-vehicle data. The CAN Gateway reads
this data from the CAN interface, filters the requested data and delivers them
to the smartphone. Due to safety reasons, the module works in a read-only
mode as CAN networks are very sensitive to adaptations. Communication to
other vehicles, to GPS, and to a cloud server can be also realized through the
smartphone. Although different choices are obviously possible, in our latest
tests we use a Samsung Galaxy S III mini (model no. GT-I8190N) running
the Android Jelly Bean operating system (version 4.1.2) and the OBDII in-
terface device that we used was the Kiwi Bluetooth OBD-II Adaptor by PLX
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Devices®. Thus, the smartphone has access to in-vehicle bus data as driving
mode, battery level, and pollution levels via a central server. The Android
application then allows the vehicle to interact with its environment in a very
smart manner. Importantly, it allows controlled delivery of emissions and pol-
lution into the city environment (be it noise pollution, or more directly harmful
pollutants), allowing us to control where and when these emissions are deliv-
ered into the environment. A movie demonstrating the first operations of the
vehicle can be found at http://www.hamilton.ie/aschlote/twinLIN.mov.

13.2.2 Pollution Modeling and Simulation

In principle a practical application of a cooperative pollution control program
would rely upon emissions measurements in a road network. For the sake of
experimental validation of the idea, here we adopt an average speed emission
model to roughly estimate emissions from each vehicle (see [20]). The average-
speed approach is described in detail in the UK Design Manual for Roads and
Bridges (DMRB) [20]. According to these models, the emission factor f(t,p)
is computed as

k
ft,p)= - (a+bv+cv3+dv3+ev4+fv5+gv6) , (13.1)

where ¢ denotes the type of vehicle (and depends on fuel, emission standard,
category of vehicle, engine power), p denotes the pollutant of interest (e.g.
CO, CO2, NOx, Benzene), v denotes the average speed of the vehicle, and
the parameters a,b,c,d, e, f,g and k depend on both the type of vehicle and
the pollutant p under consideration. For the purpose of this work, the values
of the parameters are taken from Appendix D, in [20]. For convenience, we
report in Table 13.1 the emission factors for CO which have been used later
in Section 13.3 (parameters d, e, f and g are zero for the chosen pollutant and
classes of vehicles, and have not been reported in the table).

3PLX Devices Inc., 440 Oakmead Parkway, Sunnyvale, CA 94085, USA. Phone: +1
(408) 7457591. Website: http://www.plxdevices.com. Last Accessed July 2017.
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In (13.1) it is assumed that speeds are measured in km/h and emission
factors in g/km. At this point it is probably worth noting that the average-
speed model suffers from the drawback that very different vehicle operational
behaviors are characterized by the same average speed. More realistic and ac-
curate models can easily be embedded into the simulation environment with-
out changing the qualitative features of the simulation (or the analysis). Also,
as we shall see, the key point in our work is the assumption that the pollution
levels in the group are an increasing function of the number of vehicles in fully
ICE mode.

13.2.3 Mathematical Formulation

Many problems in the intelligent transport context can be formulated as utility
optimization problems. These have the form

max > (D)
i=1

Di,...,Dp,
(13.2)

n
subject to ZDi =C,
i=1

where in our situation n is the number of cars in a geographic area, C is a
pollution budget for a given pollutant and D; is the amount of budget allocated
to car i. The individual objective functions f; map D; to some measure of
utility for the individual. We are going to outline a number of potential utility
functions later in Section 13.3.3.

A large number of methods is available to solve utility maximization prob-
lems. Some could, for example, be solved by a traffic management center and
communicated to the vehicles. However, this approach requires a significant
amount of communication, accurate measurements, knowledge of all utility
functions and perfect compliance of all vehicles. Furthermore, traffic condi-
tions such as the number of vehicles and the driving speed change over time
requiring a re-computation of the optimal allocation in short time intervals.
In our work, we thus focus on decentralized and iterative approaches to solve
this optimization problem with minimal communication overhead. In what
follows, we shall reformulate the above optimization as a control theoretic
problem and use a stochastic implementation to implement the control strat-
egy. This shall allow us to implement aggregate emissions control based on
measurements available to the infrastructure. We repeat that this formulation
of the problem completely removes the need for any dedicated V2I or V2V
communication, and only requires that cars are able to listen to broadcast
information. This gives rise to a feedback loop of the type depicted in Figure
13.4.
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ﬂ(@ Controller p(k)= f(p(k), k) E(k)= H(z™) Blk)
FIGURE 13.4

A basic control loop, with a time-discrete implementation of a classical PI
control

13.2.4 Integral Control

In this section we focus on the regulation problem, and wish to maintain
pollution in a geographic area below a given threshold by orchestrating the
switching of vehicles into fully electric mode. In the next chapter we shall dis-
cuss related optimization problems that solve problem (13.2) using the results
in [193]. Also, Section 13.3.3 and paper [164] discuss examples of situations
where both regulation and optimization are simultaneously achieved.

For the regulation objective here, we consider the following scenario.

(i) Let us denote by E(k) the amount of pollution produced by all vehicles
in a geographic area at time instant k. Let p(k) be the probability that
an individual vehicle is using its combustion engine at time k. We assume
that there is an increasing, possibly non-linear relationship between the
average levels of pollution E(k) generated by the vehicles (in a geographic
area), and the value of the signal p(k).

(i) Pollution levels in a geographic area can be measured or estimated without
explicit communication from the vehicles.

(#4i) There is no explicit V2V communication.

(iv) There is no explicit V2I communication, but participating vehicles can
listen and respond to broadcast measurements.

With these assumptions we can set up the regulation problem classically
as depicted in Figure 13.4 where E*(k) denotes the desired level of pollution
at time instant k. In principle, the feedback control problem can be solved in
many different ways, see for instance [164] for a comparison among different
control strategies. Here, we simply adopt a Pl-like control, where the control
action is proportional to the error, and to the integral of the error, between
the desired pollution threshold and the actual measured pollution. Roughly
speaking, the central entity in Figure 13.3 allows vehicles to travel in ICE
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mode when pollution is safely below the threshold, and starts broadcasting a
probability p(k) smaller than 1 when the safe threshold is exceeded. The more
the threshold is exceeded, the smaller is the probability.

.|
13.3 Simulations

13.3.1 Simulation Set-up

This section describes the simulation results obtained by implementing the
integral control algorithm described in Section 13.2.4 and explores other more
sophisticated scenarios of interest. As a simple example, we consider a grid-like
road network simulated in SUMO [113] (i.e., where streets intersect orthog-
onally), and we measure the aggregate level of pollution using the average
model described in Section 13.2.2. Although the investigated grid does not
correspond to a particular city, and may be seen as a simplification of a true
transportation network, it still reflects the topology of many big cities, that
can be found in North America. In order to implement the cooperative pollu-
tion control strategies previously described, SUMO data are sampled every 10
seconds, and SUMO is interfaced with MATLAB where the control algorithm
was coded.

In the simulation, cars enter from 5 different points of the network and
drive along random routes. Over a time interval of 10000 seconds we increase
the number of cars in the network until 2000 cars have entered. We then
continue the simulation for 6 hours. For the purpose of emissions modeling
we assume that all cars are petrol electric hybrid cars with weight below 2.5
Tonnes and with combustion engine capacity between 1400 and 2000 cc, whose
emission factors were reported in Table 13.1. We further consider a realistic
vehicle mix in terms of emission standards. The evolution of the number of cars
over time in the network is depicted in Figure 13.5. To better understand the
performance of our algorithms, we simulated what happens if we assume, that
all cars decide not to use their electric drive at all, or where all cars are just
conventional combustion driven vehicles. Figure 13.5 shows the evolution of
emissions over time in this uncontrolled scenario. As one might easily expect,
the two quantities are strongly correlated.

13.3.2 Disturbance Rejection

Figure 13.5 illustrated the obvious fact that harmful emissions increase as the
number of vehicles in the network increases. Our objective now is to show that
using a cooperative pollution control, we can decrease the coupling between
the number of vehicles and the aggregate emissions. For this purpose, we de-
ploy the integral control strategy described in Section 13.2.4. We concentrate
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FIGURE 13.5
Evolution of the number of vehicles and corresponding CO emissions in the
network if all cars are combustion driven

here on the control of the carbon monoxide emissions (CO), but the same
approach can be used for any other pollutant or combinations of pollutants.
In particular, we assume that we are interested in regulating the CO emis-
sions to the value 150 grams every minute. The evolution of the emissions and
the corresponding evolution of the broadcast probability in all three scenarios
are depicted in Figures 13.6 and 13.7. Note that the target values we picked
for the pollutants were selected arbitrarily but can easily be adapted to safe
levels.

Next we repeat the above simulations where we also add an external source
of CO that is active from minute 180 to 270 and contributes 40 grams of CO
per minute during this time. In reality this could for example happen if the
wind turns and carries pollution from an industrial area into the city for some
time. In this situation the cars treat this source of pollution as a disturbance
and adjust their behavior to compensate for it. Paradoxically, the aggregate
emissions from the hybrid vehicles can be much cleaner than the background
air quality. The results are depicted in Figure 13.8 where the light curve



Using PHEVs to Regulate Aggregate Emissions (twinLIN) 155

shows the pollution caused by PEHVs only, while the darker curve shows that
the overall pollution, including the external source as well, is still maintained
around the desired value (i.e., the integral control algorithm manages to reject
the external disturbance).
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FIGURE 13.6
Evolution of emissions in the controlled case

13.3.3 Extensions

Figures 13.6 and 13.8 clearly emphasize the effectiveness of pollution control
strategies in achieving a desired level of pollution. This result was obtained
by allowing only some hybrid vehicles to travel in ICE mode, according to
a probability distribution that takes into account the distance between the
actual pollution level and the desired one (i.e., less hybrid vehicles will travel in
ICE mode when the pollution is high). In this sense the broadcast probability
can be seen as the desired fraction of cars that on average will travel in ICE
mode. In particular, note that the same probability is broadcast to all vehicles.

The previous approach can be greatly enhanced if we allow the central
entity to broadcast customized probabilities to each vehicle, rather than the
same one to all of them, or if we use the AIMD algorithm, as in Chapter 18. In
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this way, other objectives can be achieved as well, in addition to maintaining
pollution close to a desired level. In particular, some specific concepts of fair-
ness can be implemented as well, as discussed in Section 13.1. Some of these
are discussed in [164] and in later chapters.

13.4 Concluding Remarks

In this chapter we have described how hybrid vehicles can be used to control
aggregate traffic related emissions in urban scenarios. Roughly speaking, the
idea is to individually control the switching from one driving mode to another
of PHEVSs traveling in a given area, so that the aggregate emissions do not
exceed a desired threshold. For this purpose, as specially modified vehicle was
described and demonstrated.

The ideas presented here can be generalized to handle a number of deriva-
tive scenarios. For example, it is possible to relax the assumption that all
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Pollution is maintained around the desired value, even in the presence of an
external pollution source. Pollution caused by single PHEVSs is shown with a
lighter color

cars are within a small geographic area and, instead, assume that we regard
a company that has a fleet of vehicles, such as a taxi company, a delivery
company, or a public transport organization. Then, we can give the company
an emissions budget that then must be allocated to its vehicles in the same
fashion as earlier. Some ideas in this direction are further explored in Chapter
14.
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14

Smart Procurement of Naturally Generated
Energy (SPONGE)

In most developed economies, road vehicles account for a huge amount of the
energy that is consumed by society. The inefficiency of such vehicles has long
been the subject of research in the automotive community. At this present
point in time, it can be said that three forms of response towards reducing
road traffic’s thirst for energy have been provided by car manufacturers. The
first response was to make vehicles more efficient; both in terms of having bet-
ter engines ([105], [159], [202]) and improved aerodynamics'. This approach
has resulted in reductions in energy consumption and research in this direction
continues in the area of improving engine combustion efficiency, power-train
friction reduction, waste-heat recovery, vehicle rolling resistance, air drag re-
duction, and improved controls®. As a second level of response, automotive
manufacturers have also tried to teach people how to drive their vehicles more
efficiently. Examples of work in this direction include the ECOWILL project
that ran from March 2010 to April 2013, funded by the Intelligent Energy
Europe program of the European Union, which aimed to boost and train peo-
ple across thirteen countries in Europe in eco-driving®. Indeed, many vehicles
now come with eco-driving options as standard*, and new vehicle technolo-
gies have been widely adopted to alert drivers to more energy efficient driving
practices. For instance, gear shift indicators for certain classes of vehicles were
recently made mandatory within the European Union®. The purpose of the
indicators is to inform drivers of when to change gear to minimize fuel con-
sumption. In addition to technological improvements, other instruments have
been used to teach environmentally friendly driving behaviors. For example,
the project TEAMS, a European research project co-funded by the European

ISustainable Energy Ireland - A Guide to Vehicle Aerodynamics. Available
online at http://www.seai.ie/Your_Business/Technologies/Transport/Aerodynamics_
Transport_Guide.pdf. Last Accessed July 2017.

2http://www.volvobuses.com/SiteCollectionDocuments/VBC/Downloads/Volvo-B8R-
Euro6-Brochure-EN.pdf. Last Accessed July 2017.

3Project Website: https://ec.europa.eu/energy/intelligent/projects/en/
projects/ecowill. Last Accessed July 2017.

“https://www.renault.co.uk/discover-renault/innovation-and-technology/eco-
driving.html. Last Accessed July 2017.

SEUROPA EUR-Lex: Access to European Union law. http://eur-1lex.europa.eu/
legal-content/EN/TXT/?uri=URISERV:mi0053. Last Accessed July 2017.

6Project Website: http://www.collaborative-team.eu. Last Accessed July 2017.
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Union, has as an objective, among other applications, to develop a Green, Safe
and Collaborative Driving Serious Game and Community Building (SG-CB)
application. The aim of this application is to create a gamified social network
environment for participants (drivers and travelers) to be able to exchange
simple feedback about their current level of performance and thus build a
community and together reach higher levels of green driving and lower traffic.
Efforts have also been made to encourage car sharing”,®. According to [56],
car sharing can reduce car ownership at a rate of one rental car replacing
fifteen owned vehicles. The third level of response offered towards reducing
vehicular energy consumption concerns the emergence of collaborative and
connected vehicle technology. For example, see [122], where a distributed and
privacy-aware speed advisory system was proposed in which the objective was
to recommend optimal speeds for groups of vehicles traveling along highways
to minimize emissions over the entire fleet. In [120], an approach was proposed
that simultaneously optimized the numbers and locations of, and speed limits
posted on, variable message signs as a means to improve the smoothness and
reduce the environmental impact of freeway traffic. Future intended improve-
ments include the ability to incorporate real-time traffic data. In [90], a type of
observed collective behavior regarding diverse sets of vehicles traveling along
a two-lane highway with different velocities was described.

In this current chapter, we go one step further and report a more holis-
tic view of the energy consumption process and thereby introduce a fourth
level of response. Specifically, we wish to allow drivers to make use of (poten-
tially zero cost - free) renewable energy as it becomes available. We do that
by allowing weather forecasts to influence the energy management system of
vehicles individually and fleet-wise. This provides us with the advantage of
using free renewable energy in an optimal way to maximize the efficiency of
the transportation fleet. We call this idea Smart Procurement Of Naturally
Generated Energy (SPONGE). As we will see, SPONGE can indeed be viewed
as an evolution of eco-driving, where we now prime cars to use renewables as
they become available, thus following a “use it or lose it” line of thought.
Note that, from the perspective of plug-in EVs, the SPONGE solution has
also the potential to simplify the “charging paradigm”, and to provide a plat-
form for creating aggregated super batteries. Hitherto, most charging research
has focused on how to share the available energy among the connected fleet of
vehicles in a manner that is compliant with the desires of the EV owners, the
constraints of the grid, and the available power. Note that in this case, there
might arise some problems in the power grid to accept the unexpected load,
with the ultimate possibility of causing thermal overload of network compo-
nents, low voltages at sensitive locations of the network, and increased phase
unbalance ([48]). Even ignoring this, the required optimizations often place
severe constraints on the EV owners in the form of inconvenient charging pro-

"https://www.carsharing.ie. Last Accessed July 2017.
Shttps://www.gocar.ie. Last Accessed July 2017.
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files. On the other hand, in a SPONGE context, one would compute the same
quantity in advance, and deplete the batteries of the vehicles while traveling
of the same quantity (one can even monetize some of this energy to power
secondary services from the vehicle such as WiFi or street sensing). Thus, the
charging process becomes fully schedulable and programmable. The charging
problem can be thus be reduced to a best-effort problem where the cars share
the available energy during the charging period using some simple algorithm
such as AIMD algorithms ([173] and [43]). Thus, clearly, the difficulties of
matching the demand and the offer are shifted to the driving stage through
an optimal orchestration of the ICE and the electric engine.

This chapter is organized as follows. Section 14.1 formulates the basic
SPONGE problem, in a more formal fashion. Section 14.2 describes the several
ingredients that are required to implement the SPONGE approach in practice.
Section 14.3 describes a special use case where SPONGE is applied to a fleet
of hybrid buses. provides some simulation results to support the efficacy of the
proposed methods. Finally, in Section 14.5, we give some simulation results
obtained in the use case of the hybrid buses.

14.1 Mathematical Formulation

For convenience, and ease of exposition, we make the following set of
simplifying assumptions.

(i) We assume that during some fixed time of the day (e.g., 8am to 6pm), a
group of PHEVs will participate in the SPONGE scheme by proactively
adjusting their energy consumption patterns at every available clock
period to make space available in the battery of the PHEV. We assume
that this fixed time period consists of M clock periods and we index every
available clock period as k € {1,2,..., M}.

(ii) We assume that during some other fixed time period of the day, these
vehicles are plugged in for charging, and that for this period, a reliable
day-ahead forecast of available renewable energy is available. We denote
this expected available energy by FE,,. For example, a typical assumption
might be that vehicles charge from 1lpm to 6am (i.e., at night time),
though it is not necessary for this time period to be the same for all
vehicles. Although, in principle, the future horizon of optimization can be
longer than one day, weather forecasts might not be reliable enough to
support optimal decisions over longer time periods, see ([92] and [203]).

(iii) Each vehicle is assumed to be capable of operating in full electric mode,
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in ICE mode, or in a combination of both. We have already described in
Section 13.2.1 how this could be done, for instance, for the specific case
of the Toyota Prius.

(iv) We assume that at any clock period n(k) < N vehicles are in transit,
and that these vehicles can report their energy consumption over some
period to a central agent. In practice, this allows us to regulate energy
consumption in a feedback loop, in the same way in which pollution was
regulated in Chapter 13, as shown in Figure 13.3.

The SPONGE idea can be mathematically formulated in a manner that is
again very similar to the pollution regulation control problem (13.2):

n(k)
DlIIla)(D ; fi(Di(k))

(14.1)

(k) E
subject to Z D;(k) = J\Zv
i=1

The optimization problem (14.1) is similar to (13.2), but now the quantity
D;(k) represents a budget of energy expended (i.e., consumed) by the ith
vehicle in the interval of time index k, and not a quantity of emissions. In
addition, the equality constraint says that the overall amount of energy con-
sumed by all the vehicles n(k) driving on the road in the kth interval should
match a pre-fixed quantity F,,/M. In particular, the matching between the
expected available energy F,, and the consumed energy is performed at the
kth window of time (i.e., to take into account that different vehicles are on the
road during a different time of the day). In particular, note that the main dif-
ference between the mathematical formulation of SPONGE (i.e., (14.1)) and
the pollution regulation problem described in Chapter 13 is that in the latter
case we are interested in regulating the instantaneous value of the emissions.
On the other hand, here we are interested in regulating the cumulative value
of the energy depleted during a driving period (e.g., during the day).

The optimization problem may be solved in many ways under suitable
assumptions on the utility functions f;. The problem is most interesting when
the f; represent a generalized notion of benefit and this is considered to be a
private information, not to be revealed to other vehicles. The problem is then
to solve the utility optimization problem in a privacy preserving manner.
Note that the f; may be incorporated to represent various use cases. For
example, OEMs may partner with electrical utility companies to provide a
service where the price of energy is part of the purchase plans for PHEVs.
The owners paying more upfront, may have prioritized access to “free energy”
as it becomes available. Alternatively, the f; could represent the price paid by
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an individual vehicle owner for energy access. Some hybrid modes blend the
EV motor with the ICE to optimize fuel economy and emissions, so another
interesting embodiment of the optimization scenario is to take the required
energy in a manner that minimizes the impact on fuel economy of the fleet.
In this situation, the utility functions could represent the driving efficiency of
the driver.

14.2 Practical Implementation

We now briefly comment on the initial implementation and validation of the
SPONGE ideas.

A. Large-Scale Traffic Simulator : The fleet of vehicles implementing
SPONGE ideas has been simulated in the SUMO environment, using the
“remote control” interface Traffic Control Interface (TraCI) [189], that allows
one to adapt the simulation and to control singular vehicles on the fly. A
full description of an embedding platform, where real vehicle behaviour, and
simulations, can be merged, is given in Part IV.

B. Test Vehicle : Validation of the SPONGE concept was carried out
using a test vehicle, a 2015 Toyota Prius VVTi 1.8 5DR CVT Plug-in Hybrid
vehicle, already illustrated in Section 13.2.1 for the distributed emission
control task.

C. Weather forecasting : An important component in any real practical
implementation of the SPONGE program is the ability to have a reasonably
accurate, and cheap, prediction of the expected energy FE,, that will be
later available for charging. To obtain a feeling for fidelity of such tools, we
evaluated the accuracy of a free online forecasting tool over a 3 month period.
The tool that we evaluated is provided by the Technical University of Crete?,
where the energy generated by a solar plant can be predicted (anywhere in
the world) by simply providing the technical parameters of the plant. We
collected real data on-site from Photovoltaics (PV) panels mounted on the
flat roof of the building in University College Dublin, Ireland. We recorded
a total of 100 days and the predicted and the actual recorded energies are
shown in Figure 14.1. As also shown in Figure 14.2 the predictions are
relatively accurate with 80% of the predictions within 3% of Normalized
Mean Absolute Error (NMAE) and the maximum NMAE is 7%. Thus, our
data suggests that accurate predictions can be performed even for small
powers, and even when a free online tool is employed. As for wind power

mttp://www.intelligence.tuc.gr/renes/. Last Accessed July 2017.
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forecasts, we note that a recent study in Germany reported that “typical
wind-forecast errors for representative wind power forecasts for a single wind
project are 10% — 15% root mean square error of installed wind capacity but
can drop down to 6% — 8% for day-ahead wind forecasts for a single control
area and to 5% — 7% for day-ahead wind forecasts for all of Germany”!°. The
accuracy may further be increased if other (commercial) tools are employed.
From the previous discussion it appears reasonable to claim that on average
the prediction error is below 10%, and this is consistent with other recent
studies as well, see for instance [92] and [203].
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=
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FIGURE 14.1

Comparison between the real and the predicted energy generated from PV
panels in UCD

Remark 14.1. While the effect of uncertainty is beyond the scope of the present
discussion, we note briefly that it is simple to accommodate for forecasting
errors by buying extra energy, if required, from the outer grid, or by appro-
priately using other storage devices, if available. However, interactions with
the grid are not always convenient, either in terms of price, or in terms of
environmental friendliness of the average power mix from the grid (see [175]).

Onttps://www.nrel.gov/grid/solar-wind-forecasting.html. Last Accessed July
2017.
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Histogram of the percentage of NMAE

An alternative to this is to formulate an uncertainty description as part of the
optimization.

14.2.1 SPONGE Simulation Results

We now briefly report some simulation results to show a possible solution of
the SPONGE optimization problem formulated in Equation (14.1). As previ-
ously stated, this problem is regulatory in nature, the idea being to regulate
a fleet-wise electric energy consumption. The kinds of signals broadcast by
the central authority to orchestrate fleet behavior are probabilistic in nature,
where the probability that vehicles are directed to travel in EV mode is a
function of the gap between the desired target of electric energy that the fleet
should consume, and the energy that each vehicle has already consumed. The
objective is to achieve an overall energy consumption equal to the expected
energy that will be available from renewable sources in the next charging pe-
riod. In particular, assume that 40 PHEVs participate to the SPONGE scheme
from 9:00 to 18:00. The iteration step-size of the algorithm is assumed to be
1 minute, thus providing a reasonable switching time interval for each PHEV
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operating in either EV or ICE mode. Accordingly, the algorithm is iterated
540 times overall. In addition, assume that the total available renewable en-
ergy for the next charging period is equal to 540 kWh, so that energy should
be allocated with a rate of 1kWh/minute from 9:00 to 18:00, to match the
final target. Finally, each PHEV is assumed to have the same battery capacity
of 20kWh with the initial state of charge (SOC) of the battery equal to 80%.
SUMO, and its “remote control” interface, TraCI (short for Traffic Control
Interface) [6], is used to simulate the motion of vehicles and control the driv-
ing mode of single vehicles on the fly. For the purpose of this simulation, as
in [80], we shall consider that vehicles drive in the area enclosing the campus
of the National University of Ireland Maynooth (NUIM), as shown in Figure
14.3. At every time step, each PHEV sends its current energy state to the

AN

S

FIGURE 14.3
Area near the NUIM campus, used for our simulation set-up

central infrastructure. Upon receiving these data, the central infrastructure
calculates and broadcasts some global signals to all PHEVs. Upon receiving
this information, each PHEV updates its probability to travel in EV mode.
Then, the PHEV compares such a value with its own “coin-flipped” value,
which is a uniformly distributed random number in the range [0, 1], and fi-
nally decides which mode (i.e., EV or ICE) the vehicle should travel during
the next time interval, using a similar strategy to the one described in Chapter
13. Note that it is assumed here that the electric mode of each PHEV can only
have two states, i.e., either completely on (value 1) or off (ICE mode, value
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0), during each unit of time (i.e., 1 minute). In the SUMO simulations, the
practical energy consumption of each vehicle was calculated according to an
approximated linear mapping between the traveled distance and the SOC. The
simulation results are illustrated in Figures 14.4 and 14.5. In Figure 14.4, it is
shown that the overall energy consumption of the PHEVs is indeed controlled
to eventually achieve the expected energy target. As a further result, Figure
14.5 shows that the final objective is achieved by maintaining the energy rate
constant throughout the day (i.e., around 1kWh/minute).
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FIGURE 14.4

Evolution of the cumulative target energy allocated to the fleet of PHEVs

Remark 14.2. As a general remark, note that deploying the algorithm of twin-
LIN in the SPONGE case presents two main drawbacks: (i) there is a con-
tinuous communication between the infrastructure and the vehicles (i.e., to
continuously communicate the level of energy); and (ii) the gains on the control
algorithm depend on the dimension on the network (i.e., the number of vehi-
cles participating to the SPONGE program). Accordingly, in the remainder
of this chapter we shall describe a different algorithm to apply SPONGE-like
ideas, in a specific case study, to overcome the previous drawbacks.
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Evolution of the averaged allocation rate of target energy to the fleet of PHEVs

14.3 Specific Use Case: SPONGE for Plug-in Buses

While in principle the SPONGE program can be applied to regulate energy
consumption in any fleet of PHEVSs, a special case arises when the fleet con-
sists of Plug-in Hybrid Electric Buses (PHEBs). PHEBs are increasingly seen
as an effective tool in combating air pollution in some cities, and as a tool
for reducing cities’ reliance on fossil fuels (thereby reducing greenhouse gas
emissions) [127, 97]. Consequently, the design and operation of such buses has
been the subject of much research interest. Hitherto, significant research effort
has focused on improving the fuel economy while guaranteeing that both the
ICE and the electric machine work in the high-efficiency area; typically, by
taking into account knowledge of both bus routes and passenger loadings in a
predictive manner. Selected examples of work in this direction can be found
in [182, 117, 116]. The objective now is to extend this line of inquiry further,
and use the degree of freedom of their electric motors to further accommodate
energy from renewable sources, as in the SPONGE spirit.
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14.3.1 Sponge Bus Problem Formulation

Let : = {1,2,..., N} index the set of N PHEBs participating to the SPONGE
program. We shall make the following assumptions:

e It is assumed that after a number of trips along their (different) routes,
the N PHEBSs stop for charging at the bus station. For instance, we can
assume that the PHEBs will not drive from 11pm to 6am, and they will
be charged in this time frame;

e [t is also assumed that a 24-hour ahead forecast of energy from the renew-
able energy sources will be available (e.g., a forecast of how much energy
will be generated by the wind plants connected with the charging station
at night time). We denote this amount of energy available by E,, as before;

e Early in the morning, before being dispatched along their routes, the buses
will compute how the energy E,, should be optimally shared among them-
selves during the day (i.e., in terms of energy consumption of their own
batteries);

e In order to compute the optimal allocations of energy, we shall assume
that each PHEB is equipped with a device to transmit messages to the
central infrastructure via Vehicle to Infrastructure (V2I) technology;

e The central infrastructure has the ability to broadcast messages to the
whole network of PHEBs using some Infrastructure to Vehicle (I12V) tech-
nology.

Note that it is not required for vehicles to exchange information among them-
selves, and thus, it is not required PHEBs for the vehicles to be equipped with
V2V communication devices. When traveling along their routes, the buses will
be able to choose when it is more convenient to switch from electric mode to
ICE mode (i.e., using the ICE) and back. In this context, D; denotes the
energy consumption by the ith bus along its trip. Then, we are interested in
computing the solution of the following optimization:

N

D1,Ds,...,Dn

(14.2)

In the optimization problem (14.2), the terms D; can be interpreted as a “bud-
get” of energy that is allocated to the ith bus in order to maximize a utility
function of interest, such that the sum of the energy budgets allocated to all
the buses matches F,, as in the SPONGE spirit. Although the mathematical
formulation (14.2) closely resembles that of (14.1) in the case of cars, still
there are two main differences that should be kept in mind when solving the
problem:



170 Electric and Plug-in Hybrid Vehicle Networks

1. The route of buses is known in advance. Accordingly, it is possible to take
it directly into account in the objective function.

2. Buses of the same company may be expected to cooperate to achieve a
common goal. In principle, on the other hand, cars’ owners are expected
to behave in a selfish way to achieve a personal goal.

In this work we shall explore the particular case where one is interested in
maximizing the saving of COy emissions. Clearly, each f; is an increasing
function of D; as no C'O, emissions are saved when the bus travels all the
time in ICE mode, while no pollution occurs when all the vehicles travel in
electric mode all the time. The utility functions of 15 PHEBs that we shall
study are shown in Figure 14.6 as a function of the percentage of the use of
the electrical engine for each bus. These functions are constructed from real
data and the next section will explain how the utility functions are designed
in detail.
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FIGURE 14.6

Utility functions of 16 PHEBs in Dublin city. Note that some buses pollute
more than others (and thus, have a greater potential in terms of CO5 savings)
depending on the characteristics of their routes (e.g., speed limits). The dot’
points mark the fitted curves of utility functions using cubic splines.
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14.3.2 Construction of the Utility Functions
14.3.2.1 Electrical Energy Consumption

Under the assumption that a vehicle is traveling at a constant velocity s,
the amount of electrical energy consumption of vehicles can be modeled as a
convex function of s, see [185] for instance. The convex function depends in
turn on, among other things, the physical characteristics of the bus. In our
work, we used the real energy consumption data of a BYD electric bus!! and
noticed that it can be accurately approximated with a polynomial function of
degree 4 of the vehicle speed s as

e(s) = aps” + a5’ + azs® + azs + au. (14.3)

where ag, a1, as, g, ay are all constant parameters. Using a conventional least
square method to fit the real energy consumption, the following values for the
parameters were obtained in [137]

ap = 3.1970 - 1074,

a1 = —0.0604,
o = 4.3123,
as = —151.2257,

g = 3.3288 - 103,

and the corresponding utility function is depicted in Figure 14.7 which shows
both the empirically measured data and the fitted polynomial function. Al-
though energy consumption is known to increase with the cube of the speed for
aerodynamic reasons, still, it is very large for low speeds as well, because the
energy required for ancillary services (e.g., air conditioning) increases when
traveling time increases. This aspect has been extensively discussed in [185],
among others, and is consistent with collected experimental data'!.

Remark 14.3. While we acknowledge that (14.3) provides only a rough esti-
mate of how much energy may be consumed by a bus along a stretch of its
route, still it provides a proxy of the actual quantity which may be enough
for our forecasting purposes.

14.3.2.2 Saving of CO,

In an analogous manner to power consumption, C'Oy emissions may also be
computed as a function of the speed of the vehicles, by adopting for instance
the average-speed model from [20], already described in Section 13.2.2. In
particular, here we use function

a+b3i+c52+ds3+es4+fs5+gs6>’ (14.4)

S

h(s)zk(

11http://insideevs .com/byd-electric-bus-test-results-in-canada/. Last Accessed
July 2017.
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A typical energy cost function for PHEBs traveling at a constant speed

where a, b, c,d, e, f, g, k € R are chosen corresponding to the vehicle code R203
in [20] (i.e., diesel buses with up to 15t of gross vehicle mass).

14.3.2.3 Utility Functions f;

The overall utility function f; quantifies how much C'Oy has been saved by
the ith bus, provided that the bus is allowed to spend a budget of D; units of
energy when traveling along its route. In the following, we shall assume that
the whole path traveled by a bus during the day can be split into a number
of very small sections, corresponding to the distance traveled by a bus in
one second. For simplicity, we shall assume that the bus speed in each of the
sections is constant and is a proper fraction of the posted speed limit to take
into account the possible effects of congestion events. The speeds will then be
used in the computation of the COs emissions (14.4) and the energy usage
(14.3). Also, we shall denote by R; the set of all the sections traveled by the
ith PHEB, and by ~; the fraction of the time that a PHEB will travels in EV
mode along the Ith section of the route. Note that R; is the set of all sections
traveled by a bus during a day (or in general, between two different runs of
the optimization algorithm). Given that bus routes are typically cyclic, this
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implies that the same stretch of a road might appear more times in R;, and
possibly with different values of optimal ~;. To construct the utility functions,
we make the assumption that every PHEB will optimally use the allocated
energy D; and thus the corresponding utility function f;(D;) for PHEB ¢ is
given by

fi(D;) =max Y h(s(l))-w

" leER;

st. > e(sl))- L) -y = D; (14.5)
lER;

0<vw<1IleR,

where L(l) denotes the length of the Ith section of a trip. Due to the fact that
all bus routes are fixed and known a priori, given a fixed D;, (14.5) is a linear
program with a single budget constraint (i.e., a continuous linear knapsack
problem [45]) and thus the optimal electric energy allocation can be easily
computed by sorting the trip sections by decreasing order of the ratio :EZ((ll))))
and then activating the electric engine according to the sorted order. The
utility function of each PHEB can thus be computed off-line. Particularly, for
each bus i, we vary D; between 1 and 100 in steps of 1 and compute the optimal
fi(D;). We note that (14.5) is a parametric linear program with parameter D;,
and thus f;(D;) for all i+ € N is a piece-wise concave function [4]. However,
since the derivative f/(D;) may be required by the optimization algorithm,
as described in more detail in the next section, we have approximated f;(D;)
for each bus by using cubic spline functions. The resulting utility functions
for the 16 PHEBs that are used in the illustrative example of this paper are
shown in Figure 14.6.

14.4 Optimization Problem

In principle, many different methods may be used to solve the optimization
problem (14.5) to compute the optimal energy budgets D; for each bus. In
particular, in Section 14.2.1 we had already explained a possible solution via a
PI-like control, in the context of the distributed regulation of pollution. Now
we shall see an alternative solution based on the AIMD algorithm used in ear-
lier chapters. Note that we now use the AIMD algorithm to solve optimization
problems (see Part IV). This is particularly convenient for this specific case, as
it allows us to simply embed the utility functions of single buses. In particular,
this choice is motivated by the following main reasons:

e Low-communication requirements: Although we have presented here
a simple case study with a small number of buses, the same program can
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be easily generalized to include hundreds of buses. Also, the batch opti-
mization formulation (i.e., before the buses are dispatched during the day)
might be actually solved in real-time to account for non fully-predictable
aspects (for example to respond to traffic peaks or weather forecast
updates). In this context, it is convenient to consider the communication
cost of solving the optimization algorithm. AIMD based optimization can
be solved using only intermittent binary feedback and can thus, unlike
many other distributed optimization techniques, be solved without the
need to broadcast the Lagrange multipliers in a pseudo-continuous manner.

e Privacy-preservation requirements: In our application, the utility
functions f; potentially reveal sensitive private information. For example,
when formulated in a slightly different manner, these functions may
reveal how good a particular driver is on a given route. This information
is potentially very useful for an employer and could potentially be used
in a nefarious manner. In addition, in unionized environments, revealing
these functions to an employer could also be of concern and consequently
impede the adaptation of ideas like SPONGE. Given this context, a
natural question is whether the distributed optimization can be solved
without revealing private information, and in this regard AIMD has some
very nice privacy properties.

e Agent actuation: AIMD requires very little actuation ability on the
agent-side. This is in contrast to other distributed algorithms (like the
PI-like control or ADMM (see [21]) where at each time step, agents must
solve a local optimization problem.

e Algorithm parameterization: In AIMD the gain parameters of the net-
work are independent of network dimension; rather, they only depend on
the largest derivative over all utility functions. Thus, selecting a gain for
the algorithm is extremely simple in the case of AIMD.

A pseudo-code to implement the AIMD algorithm for this specific application
is given in Algorithm 14.1, while a more detailed discussion of the AIMD
algorithm and its properties is provided in Chapter 18.

Note that the algorithm does not compute the optimal budgets D; in a
single step, but in an iterative fashion, as D;(k) represents the value of the
unknown energy to be allocated to the ¢th PHEB, computed at time step k.
In Algorithm 14.1, kyax represents the maximum number of iterations before
the algorithm stops (e.g., after five minutes of iterations). The basic idea of
Algorithm 14.1 is that if the sum of the D; (k) of all PHEBs is smaller than E,,,
then each PHEV increases its target energy consumption D;(k) at the next
iteration k41 by a quantity c. However, if the sum of the energy budgets of all
PHEBs exceeds E,, (this situation is usually called a congestion event), then
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Algorithm 14.1 Unsynchronized AIMD Algorithm
1: Initialization: k =1, D;(k) = 0;
2: Broadcast the parameter I" to the entire networks;
3: while k < k. do
4 if 2N Di(k) < Eay then

5 Di(k-f—l):Di(k)-l-Oz

6 else with probability p;(k) = Fm, D;(k+1)=pD;(k)
7: else D;(k+1)=D;(k) +«

8 end if

9: k=k+1

10: end while

each PHEB decreases its energy consumption by a multiplicative factor 0 <

. o1 i — _ 1 _ .
B < 1 with probability p;(k) FiDi(k)f;(Di(k))’ where I' is a constant common

broadcast parameter, and D;(k) is the time average of the sequence of D;(k) at
congestion events, up to the last iteration. The motivation for this algorithm
is as in [193]. Here the p;’s are chosen to be inversely proportional to the
derivatives of the utility functions to ensure that they are strictly increasing
(a key ingredient of the proof in [193]) for the concave utility functions used
here; with the optimal point being a maximum (the f;’s are concave here) as
opposed to a minimum in [193].

14.5 Simulation Results

We assume that 16 PHEBs participate to a SPONGE program in Dublin city,
Ireland. The area of interest is depicted in Figure 14.8, and has been imported
from OpenStreetMap [84] into SUMO. We further assume that weather fore-
casting tools predict an availability of 500 kWh in the next charging period.
Ten minutes before starting their routes, the buses and the CA solve the opti-
mization problem using the described AIMD algorithm, and optimally allocate
the 500 kWh of available energy to the 16 different buses. In particular, Fig-
ure 14.9 compares the energy that would be required by each bus to travel all
the time in EV mode (white bar) with the actually available one, as optimally
allocated by the AIMD algorithm (black bar). Finally, Figure 14.10 shows
that the AIMD algorithm converges to the optimal solution that can be easily
computed by solving (14.2) using a full-information centralized optimization
solver.
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FIGURE 14.8
Road network of Dublin City, Ireland, imported from OpenStreetMap, used
in our simulations

14.6 Concluding Remarks

In this chapter, we have described a strategy that takes advantage of the ability
of PHEVs to travel in both the electric and fuel modes to absorb naturally
generated electrical energy in a smart manner from the grid. Then we have
tailored this idea to the special case of a fleet of PHEBs that follow different
routes with different energy requirements.

The work can be extended in a number of directions. In particular, it might
be useful to take into account the driver behavior as a further input into the
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Comparison of the energy required to travel all the time in EV mode, and the
optimal energy for the 16 buses

design of the utility functions. Also, a seamless integration of the proposed
idea into the hybrid drive cycle of the vehicles is a further interesting aspect.
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An Energy-Efficient Speed Advisory
System for E'Vs

15.1 Introduction

Intelligent Speed Adaptation (ISA) systems, often embedded as a component
of Advanced Driver Assistance Systems (ADASs), have become a fundamental
part of Intelligent Transportation Systems (ITS). They can often result in im-
proved vehicle and pedestrian safety, a better utilization of the road network,
and reduced emissions. In the literature, many papers have addressed their
design from different viewpoints, including the perspective of road operators,
infrastructure providers and transportation engineers, and some interesting
results have been illustrated among others in ([72, 198, 26, 32, 3, 95, 184]).

In this chapter we are interested in designing a speed advisory problem for
a fleet of electric vehicles. Such a situation might occur in some sensitive areas
in city centers that are closed to conventional traffic, and only allow transit to
specific categories of low (or zero) polluting vehicles, see for instance the case
of Umweltzonen' in Germany; or a similar problem might occur for a fleet of
urban electric buses, as investigated in Chapter 14. In particular, the use of
electric buses to decrease harmful emissions and noise pollution is becoming
widespread in different cities of the world, see for instance the recent cases of
Sao Paulo?, Louisville in the US? or Wien in Europe®.

The starting point of the work described in this chapter is the observation
that, roughly speaking, different EVs are designed to operate optimally (e.g.,
in terms of energy efficiency) at different vehicle speeds and at different load-
ing conditions. In this chapter, the problem is addressed, of computing the
optimal speed that should be recommended to all vehicles belonging to the
fleet of EVs, in order to minimize the overall energy consumption of the fleet;
or similarly, to extend their range. Clearly, this task is performed provided

Ihttp://gis.uba.de/website/unweltzonen/umweltzonen.php. Last Accessed July
2017.
®https://cities-today.com/sao-paulo-to-introduce-its-first-fleet-of-fully-
electric-buses/. Last Accessed July 2017.
Shttp://cleantechnica.com/2015/01/16/louisville-gets-first-fully-electric—
zero-emissions-city-buses/. Last Accessed July 2017.
dhttp://www.siemens.com/innovation/en/home/pictures—of-the-future/mobility-
and-motors/electric-mobility-electric-buses.html. Last Accessed July 2017.
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that some basic safety and QoS requirements are guaranteed (i.e., the opti-
mal recommended speed should be within a reasonable realistic range). As we
shall see in the remainder of the chapter, the optimal speed heavily depends
on how a single EV travels in traffic (e.g., whether air conditioning is on or off
and how many people are on board). Since people might not be interested in
sharing such a private piece of information, we are interested in obtaining the
optimal solution without requiring single vehicles to communicate personal
information to other vehicles or even to a central infrastructure. Accordingly,
in our work we adopt a recently proposed algorithm (see [122]) that is a con-
sensus algorithm that somewhat preserves the privacy of individual vehicles,
as will be better illustrated later in the chapter.

This chapter is organized as follows: Section 15.2 illustrates a basic model
of power consumption in electric vehicles, that is a simplified version of the
one used in Chapter 4. Such a model will be required to formulate single utility
functions that relate the traveling speed with the energy efficiency. Section 15.3
describes the algorithm proposed in [122] and adapts it to the specific scenario
of interest. Section 15.4 reports simulation results to show the efficacy and the
performance of the proposed approach, and finally Section 15.5 concludes the
chapter and outlines our current lines of research.

15.2 Power Consumption in EVs

Most of the discussion here follows the reference ([185]), where the ranges of
EVs are reported for different brands and under different driving cycles. Power
consumption in an EV driving at a steady-state speed (along a flat road) is
caused by four main sources:

e Aerodynamics : aerodynamic power losses are proportional to the cube of
the speed of the EV, and depend on other parameters typical of a single
vehicle, such as its frontal area and the drag coefficient (which in turn,
depends on the shape of the vehicle);

e Drivetrain : drivetrain losses result from the process of converting energy
in the battery into torque at the wheels of the car. Their computation
is not simple, as losses might occur at different levels (in the inverter,
in the induction motor, gears, etc.); in some cases, power losses have
been modeled as a third-order polynomial, whose parameters have been
obtained by fitting some experimental data (see ([185]);

e Tires : the power required to overcome the rolling distance depends on
the weight of the vehicle (and thus, on the number of passengers as well),
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and is proportional to the speed of the vehicle;

e Ancillary systems : this last category includes all other electrical loads
in the vehicle, such as Heating, Ventilation, Air Conditioning (HVAC)
systems, external lights, audio, battery cooling systems, etc. In this case
the power consumption does not depend on the speed of the vehicle
and can be represented by a constant term that clearly depends on
external factors (e.g., weather conditions) and personal choices (desired
indoor temperature, volume of the radio, etc.). According to experimental
evaluations (see again ([185]), the power losses due to ancillary services
usually vary between 0.2 and 2.2 kW.

If we sum up all the previous terms, then the power consumption P.,,, can
be represented as a function of the speed v as:

PO7L
cons =@+a1+a2v+a3v2 (15.1)
v

v

where on the left hand side we have divided the power by the speed, to obtain
an indication of energy consumption per kilometer, expressed in kWh/km.
Such a unit of measurement is usually employed in energy-efficiency evalua-
tions. Accordingly, Figure 15.1 shows a possible relationship between speed
and power consumption, obtained using data from Tesla Roadster (see [185])
and assuming a low power consumption for ancillary services of 0.56 kW (i.e.,
assuming air conditioning switched off). As can be noted from the figure, there
is a large energy consumption when the speed is large (due to the fact that
power increases with the cube of the speed for aerodynamic reasons), but also
for low speeds, due to the fact that travel times increase, and accordingly
constant power required by ancillary services requires more energy than the
same services delivered with high speeds.

In order to implement the proposed system, we shall further assume here
that vehicles are equipped with a V2X communication system, and can ex-
change information with other vehicles at a short distance, and with the in-
frastructure. For instance, each vehicle could be equipped with a specific com-
munication device (e.g., a mobile phone with access to WiFi/3G networks).
Note that such a technological equipment, though usually already available in
most EVs, will further have an impact on the energy consumption pattern.
Also, note that such an assumption had not been considered in Chapter 13 or
Chapter 14.
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FIGURE 15.1
Energy consumption as a function of the speed of the EV

15.3 Algorithm

Assume that N EVs have access to a common clock (for example, a GPS
clock). Let k € {1,2,3,...} be discrete time instants in which new information
from vehicles is collected and new speed recommendations are made. Let s; (k)
be the recommended speed of the vehicle ¢ € N := {1,2,..., N} calculated at
time instant k. Thus, the vector of recommended speeds for all vehicles is given
by s (k)" := [s1 (k) ,s2 (k), ..., sy (k)], where the superscript T represents the
transposition of the vector. Note that between two consecutive time instants
(k,k 4+ 1), the recommended speeds are constant while the driving speeds are
time-varying real-valued variables. We denote by N;. the set of neighbors of
vehicle ¢ at time instant k, i.e., those vehicles which can successfully broadcast
their recommended speeds to vehicle i.

In addition, we assume that each vehicle i can evaluate a function f; that
determines its average power consumption at a given steady-state speed, ac-
cording to (15.1). Note that in order to achieve this, it is necessary that the
vehicle both knows its parameters in the function, and also monitors the func-
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tioning of some electric appliances on-board (e.g., the intensity of the HVAC
system or whether the radio is switched on). We shall assume that functions
fi are convex, continuously differentiable and with a Lipschitz continuous first
derivative f/ which is assumed with positive bounded growth rate in the do-
main of interest D. We assume that the recommended speed can vary within
the domain D = [5,130], which is a realistic range of speeds, expressed in
km/h. Then, the requirement on the derivative can be expressed as

fi(a) = fi(b)

a—2b

<dY (15.2)

max’

0 < diy, <
for all a,b € D (i.e., for reasonable steady-state speeds) such that a # b,
and suitable positive constants dr(:gn, dlﬁigx. Notice that (15.1) fulfills all
the previous requirements, and thus, the previous assumptions are usually
satisfied in the application of interest here. In this context, we consider the
following problem:

Problem 1: Design a speed advisory system system for a fleet of EVs
connected via V2X communication systems. The speed recommended by the
system is the speed that minimizes the total power consumption of the fleet of
vehicles.

We now formulate the problem as follows:

min > f;(s;),
jeN

seRN

N (15.3)
s.t. s; =s;,Vi,7 € N.

This problem is an optimized consensus problem and can be solved in a
variety of ways (for example using ADMM [21]). Our focus in this present
work is not to construct a fully distributed solution to this problem, but
rather to construct a partially distributed solution which allows rapid
convergence to the optimum, without requiring the vehicles to exchange
information that reveals individual cost functions to other vehicles. This is
the privacy preserving component of our problem statement.

Remark 15.1. We shall not address Problem 1 with the objective to calculate
the optimal speed to be recommended to all the vehicles in one step. On
the other hand, we propose an iterative algorithm that at each step yields
individual recommended speeds that will eventually converge to the same
value under a consensus constraint. In doing this, we shall assume that the
vehicles will be compliant with the recommended speed (this might be more
realistic for public transportation rather than for single vehicles, but non-
compliance with the recommended speed is not investigated here).
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To solve (15.3) we use an iterative feedback scheme of the form
s(k+1)=P(k)s(k)+G(s(k))e, (15.4)

where {P (k)} € R¥*¥ is a sequence of row-stochastic matrices®, e € R¥ is
the column vector with all entries equal to 1, and G : RY — R is a continuous
function with some assumptions to satisfy as we shall see in (15.9). Similar
algorithms were proposed and studied, among others, in [111, 110]; they were
further investigated in [122].

Here, we shall assume that (15.3) has a unique solution. Then, according
to elementary optimization theory, if all the f; are strictly convex functions,
then the optimization problem (15.3) has a solution if and only if there exists
a y* € R satisfying

N
Zf}(y*) =0. (15.5)

In this case by strict convexity y* is unique and the unique optimal point of
(15.3) is given by

s* :=y*e c RV, (15.6)
In order to obtain convergence of (15.4) we select a feedback signal
N
G(s (k) =—=py_ fi(s; (k). (15.7)
j=1
and we obtain the dynamical system
N
sk +1) = P(k)s(k) — 13 Fi(s; (k))e, (15.8)
j=1

In [124] it is shown that if {P(k)}, oy is a uniformly strongly ergodic sequence®

and p is chosen according to
-1

N
O<p<2(d di. | (15.9)
j=1

then (15.8) is uniformly globally asymptotically stable at the unique optimal
point s* = y*e of (15.3). More details, and the mathematical proofs can be
found again in [122].

Thus, we proceed as follows: For each k we define P (k) as

L= jeny e iEj =14,
P; (k)= e ifjeN;, , (15.10)
0, otherwise.

5Square matrices with non-negative real entries, and rows summing to 1.
6That is, for every ko € N the sequence P(ko), P(ko+1)P(ko), . .., P(ko+£) - - - P(ko), . ..
converges to a rank one matrix. See [124] for further details.
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where 4, j are the indices of the entries of the matrix P (k), and n; € Ris a
weighting factor.

The assumption of uniform strong ergodicity holds if the neighborhood
graph associated with the problem has suitable connectivity properties. If suf-
ficiently many cars travel in the city center area, it is reasonable to expect that
this graph is strongly connected at most time instances. Weaker assumptions
are possible but we do not discuss them here; see [134] for possible assump-
tions in this context. In any case, note that the time-varying communication
graph makes the dynamic system (15.4) become a switching system.

Now, we propose the following algorithm for solving (15.3). The underlying
assumption here is that at all time instants all EVs communicate their value
f; (sj (k)) to the base station, which reports the aggregate sum back to all
EVs. This is precisely the privacy preserving aspect of the algorithm, as EVs
do not have to reveal their cost functions to the base station, nor to other
vehicles. Some implicit information (i.e., the derivative of the cost function
at certain speeds) is indeed revealed to the base station but not to the other
EVs in the fleet.

Algorithm 15.1 Optimal Decentralized Consensus Algorithm
for k=1,2,3,.. do
for each i € N do
Get F (k)= 3 f; (sj (k)) from the base station.
jeN

Get s; (k) from all neighbors j € N
Do gi (k) =mi- > (s5 (k) = si (k).

JEN;
Do s; (k+1) =s; (k) + ¢ (k) — p- F (k).
end for
end for

15.4 Simulation

We now give some simulation results, obtained in MATLAB, taken from [122],
to illustrate the proposed algorithm.

15.4.1 Consensus and Optimality

According to the previous discussion, assume that the objective is to infer the
optimal speed that the ISA system should broadcast to a fleet of EVs traveling
in a given area of a city (e.g., in the city center). For this purpose, assume
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that a fleet of 100 vehicles travels in the city center for an hour, and for the
sake of comparison we make the following assumptions:

e In the first 20 minutes, the vehicles travel at the optimal speed calculated
from Algorithm 15.1.

e In the second 20 minutes, they travel at a speed above the optimal speed.

e In the last 20 minutes, they travel at a speed below the optimal speed.

In the first stage assume that the communication graph among the EVs
changes in a random way, i.e., at each time step an EV receives information
from a subset of vehicles belonging to the fleet. This is a simplifying assump-
tion that can be justified by assuming that in principle all vehicles might
communicate to all the other vehicles (i.e., they are relatively close), but
some communications might fail due to obstacles, shadowing effects, external
noise, or some other effects. Besides, in the two last stages we assume that the
change of speed occurs almost instantaneously, since there is no requirement
to iteratively compute an optimal speed.

The parameters in Algorithm 15.1 as n; = g = 0.001, and we simulate
different cost functions for each EVs by assuming a random number of people
inside each car (between 1 and 5 people) with an average weight of 80kg,
and by assuming a different consumption from ancillary services within the
typical range of 0.2 to 2.2kW. The curves of the cost functions used in our
experiment are shown in Figure 15.2. Finally, the evolution of the speeds of
the EVs are shown in Figure 15.3, while the average energy consumption is
shown in Figure 15.4. As can be noticed in Figure 15.4, the optimal speed
computed according to Algorithm 15.1 gives rise to the most efficient solution
in terms of energy consumption.

15.5 Concluding Remarks

In this chapter we presented an application for speed advisory systems, related
to determining the optimal speed that should be followed by a fleet of EVs,
with the specific objective of improving their energy efficiency or, in other
words, to collaboratively extend their traveling range. The proposed idea has
been implemented adopting a distributed consensus algorithm that has the
feature to preserve privacy of the personal information, which we believe is an
important point to motivate people to effectively collaborate.
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Utility functions chosen for the set of 100 vehicles. Note that all functions
are convex, and have an individual optimal speed usually between 30 and
40km/h, which is a reasonable speed for driving in the city center.
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The vehicles quickly start traveling at the optimal recommended speeds. In
the first 20 minutes the EVs travel at the optimal one.
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16
E-Mobility Tools and Analytics

16.1 Introduction

Most of the problems that we have discussed in the book are characterized
by scale. In some applications, the benefits of a particular technology are
predicated by large scale deployment, and in other applications, our prevailing
interest is in developing algorithms to orchestrate the behavior of large scale
ensembles of agents. Such issues give rise to new practical and theoretical
challenges. Our objective in this part of the book is to briefly touch on these
issues, and describe some of the ideas that have been developed and deployed
to overcome some of the immediate needs of practitioners.

The first problem that we shall discuss is the need to test large scale deploy-
ment of prototype technologies. Clearly, automotive and IoT manufacturers
are unable (for reasons of cost) to build thousands of prototype units. On the
other hand, large scale simulations alone are unsatisfactory, especially for ap-
plications where “human experience” determines eventual acceptability of a
particular technology. To bridge the gap between these extremes, a hardware-
in-the-loop platform has been constructed. This allows system designers to
embed real vehicles, driving on real roads, into large scale simulations. In this
way it is possible to emulate large scale scenarios, while at the same time
giving drivers a connected car experience. We give a brief description of this
platform, and its potential uses, in Chapter 17.

The final chapter of our book is concerned with bespoke analytics. Many
exciting mathematical problems, with exotic constraints and boundary con-
ditions, arise in an ITS context. Examples of applications include the need
to predict driver intent, the need to guarantee ergodic behavior of large scale
ensembles of agents, the need to solve large scale optimization problems in
a distributed manner, while at the same time coping with variations in the
number of agents, coping with closed loop data sets in real time, preserving
the privacy of individual agents, and not over-burdening the communication
network. The final chapter gives some hints as to design feedback systems to
solve certain optimization problems in a scale free manner; that is, when the
number of agents participating in the scheme is unknown. In the first of these
approaches these objectives are achieved using only intermittent feedback.
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A Large-Scale SUMO-Based Emulation
Platform

17.1 Introduction

Mobility simulators are an essential tool to design and evaluate new applica-
tions and services in the context of ITS [156]. Our objective here is to use
one such tool, SUMO, in conjunction with real vehicles, to evaluate appli-
cations that we have developed and described throughout the book. SUMO
[113] is an open source, microscopic road traffic simulation package primarily
being developed at the Institute of Transportation Systems at the German
Aerospace Centre (DLR). SUMO is designed to handle large road networks,
and comes with a “remote control” interface, TraClI [189], that allows one to
adapt the simulation and to control singular vehicles on the fly. SUMO allows
for different ways to generate road networks: they can be defined by the user
in XML; abstract road networks can be generated using the SUMO applica-
tion netgenerate; or they can be imported from different formats (e.g., from
OpenStreetMap). Similarly, vehicular flows can be (manually) given by the
users (e.g., by providing an origin to destination matrix, or by fixing junction
turning probabilities); alternatively, more realistic historical data from some
sample cities have been made available by researchers in the ITS community,
and can be uploaded in the SUMO environment.

While mobility simulators can be used to simulate large scale road net-
works, they cannot accommodate for all the complexities, uncertainties, tech-
nical issues, and drivers’ attitudes and responses that might arise in the real
world [183]. For this reason, proof of concepts prototypes and vehicles are also
used to further demonstrate ITS applications. However, large fleets of (thou-
sands of) vehicles equipped with the prototype technologies and communica-
tion abilities necessary for testing (e.g., connectivity-based) ITS applications
are obviously impractical. At the same time, while real-world test fleets of
small numbers of vehicles may be enough to demonstrate some elements of
proof of concept applications, they are not suited for many applications re-
quiring much larger fleet size and city-wide scenarios. One way to address
this problem is to merge both real vehicles and simulation. In this chapter we
describe a prototype simulation-based platform that we have built for embed-
ding, in real time, real vehicles into SUMO. The objective is to provide the
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drivers of real cars with a real feeling of being in a connected car use case,
and thus, to somewhat experience how it feels to be part of a large-scale con-
nected vehicle scenario. We call this platform a Hardware-in-the-Loop (HIL)
platform. Roughly speaking, the HIL platform is constructed by embedding
real vehicles (traveling on real roads) in a simulation platform. Measurements
from both the real vehicles and the virtual ones are used to advise the vehicle
fleet for a given use case. The HIL platform is designed with the following
objectives in mind. First, the HIL simulation platform should permit real hu-
man driver response (to the advice and directions given by the simulator), to
be observed and fed back to the simulator in real time, so that the simulator
may process human inputs that cannot otherwise be possibly predicted. Sec-
ond, the HIL should permit human behavioral factors to be explored in a safe
environment. Third, the HIL platform should incorporate elements of vehicle
safety into testing with real drivers (for example, for non line-of-sight inci-
dents). Finally, provided that a real vehicle is available, the platform should
be inexpensive to construct.

The remainder of this chapter is organized as follows. In Section 17.2,
we review previous work on this topic. In Section 17.3, we describe the key
components of the HIL platform. In Section 17.4, we briefly describe a sample
application that has been implemented using the platform. Finally, possible
interesting further lines of research are identified in Section 17.5.

17.2 Prior work

Three main categories of simulators can be discerned in the literature: traffic
simulators, driving simulators, and networking simulators. Traffic simulators
are typically used to develop strategies to improve the mobility and safety of
urban and rural travel; driving simulators are convenient to test human re-
sponses to new applications in a controlled environment; and finally, network-
ing simulators are used to evaluate the ability of Vehicular Ad-hoc NETworks
(VANETS) to exchange information in a challenging environment, like the ur-
ban one, in order to implement new cooperative strategies (e.g., cooperative
routing, safety alerts, and congestion messages). In this latter context, recent
years have witnessed a growing interest in developing more realistic environ-
ments to test and validate ITS applications. For example, [149] illustrates
preliminary benefits in integrating driving and traffic simulators. Clearly, mo-
bility simulators would benefit from realistically taking into account drivers’
behaviors, which is considered in driving simulators, while driving simulators
would provide an improved experience if implemented in a reasonably believ-
able traffic environment. Similarly, [53] describes efforts aiming to develop a
virtual IntelliDrive testbed within a microscopic traffic simulator. IntelliDrive
is a kind of V2I integrated platform that uses advanced wireless technologies to
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implement applications such as “systems warning drivers of traffic slowdowns
ahead, systems warning about cross-street vehicles that may potentially run
through a red light, and systems notifying drivers of roadway features, such
as sharp curves”. The authors in [148] describe the modeling and the imple-
mentation of an architecture to integrate a robotics and a traffic simulator to
facilitate the study of the driving behavior of autonomous vehicles in human-
steered urban traffic scenarios. The integration of more simulators was also
investigated in [128], where the Simulink/MATLAB model of an electric bus
powertrain subsystem was exported into a mobility simulator. Finally, similar
concepts are further extended in [204] where traffic, driving and networking
simulators are all integrated into one only research and development tool,
which is used to implement new applications for connected vehicles!.

Other works in the literature have attempted to increase the level of re-
alism of current simulators by considering some real vehicles traveling in the
road network as well. In this context, we note [152]. In this work, the objective
was to implement a mixed reality platform, where intersection control poli-
cies for autonomous vehicles (formerly only tested in simulation) were tested
with a real autonomous vehicle, interacting with multiple virtual vehicles (in
a simulation), at a real intersection, in real time. In such an example, hav-
ing all real vehicles would have been expensive in case some control policies
failed. At the same time, the experiment proved to provide results that were
different from those obtained using a fully simulated environment. Similarly,
[131] describes GrooveNet, which is a hybrid V2V network simulator, capable
of communication between simulated vehicles, real vehicles, and between real
and simulated vehicles. With such an approach it becomes feasible to deploy
a small fleet of vehicles (in the example, in the order of a dozen), to test
protocols that in truth involve hundreds or thousands of vehicles, which are
simulated. The HIL approach of [131] is close to what we describe here, though
GrooveNet is designed with other objectives in mind. Here, we are interested
in providing a platform in which ITS applications can be investigated and
experienced by a human driver. In particular, we are most interested in in-
vestigating closed-loop applications (involving feedback). On the other hand,
GrooveNet was designed to investigate V2V issues; in particular, with respect
to wireless communication issues in mobility networks. This latter issue is of
no interest in our context, while the applications of our interest, which are
in essence closed-loop control applications, can be investigated with a greater
level of ITS realism using the SUMO-based platform.

Isee for example VSIimRTI - Smart Mobility Simulation - available online at https:
//www.dcaiti.tu-berlin.de/research/simulation. Last Accessed July 2017.
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17.3 Description of the Platform

We now describe the main components of the HIL platform. A general
overview of the architecture of the platform is shown in Figure 17.1. The
main objective of the platform architecture is to provide the possibility for
feedback between simulated vehicles and the human driver in the real vehi-
cle. The main components are the applications deployed on the base station
computer interfacing hundreds of vehicles in SUMO, and the SumoEmbed
component, deployed on the smartphone, which serves as the interface to the
driver and the vehicle.

Real Vehicle

The original field-test vehicle used in the platform was a 2008 Toyota Prius
1.5 5DR Hybrid Synergy Drive and is pictured in Figure 17.2. More recently
a 2015 Plug-in Toyota Prius has been used, but any vehicle with an accessible
interface or gateway (such as an OBD-II diagnostic connector, in our case) is
suitable to be used as a field-test vehicle. The specifics of the ITS application
being tested may place further restrictions on the vehicle choice. The road net-
work we generated in SUMO. A virtual vehicle representing the Toyota Prius
(i.e., an avatar of the real vehicle) was created in SUMO. This was partially
achieved by assigning physical characteristics to the virtual vehicle that were
approximately the same as those of the real car. Further details on defining
vehicle types and routes in SUMO are available in the user documentation
found on the SUMO website?.

Road Network

For the applications tested in [77] road networks were imported from
OpenStreetMap. In particular, the maps using Java OpenStreetMap Editor
(JOSM)? were cleaned with XMLStarlet* before applying SUMO’s netconvert.

Smartphone

In the real vehicle, a Samsung Galaxy S III mini (model no. GT-I8190N)
running as operating system Android Jelly Bean (version 4.1.2) was used as
an interface to the vehicle. The purpose of the smartphone is to relay, over
a cellular network, periodic information from the vehicle’s onboard computer
(e.g., the speed of the vehicle) to the base station computer running SUMO,
and to receive messages from the base station computer and display them on
the smartphone user interface for the driver (e.g., recommendations for alter-

2http://www.sumo-sim.org. Last Accessed July 2017.

3JOSM (Java OpenStreetMap Editor). Website: http://josm.openstreetmap.de. Last
Accessed July 2017.

4Website: http://xmlstar.sourceforge.net. Last Accessed July 2017.
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FIGURE 17.1
Main components of the platform. The gray arrows highlight the dynamic
connections (i.e., the feedback loop) between the components.

native driving behaviors). The mobile data services of a commercial mobile
phone operator are used, where these services were provided using a 3G UMTS
900/2100 network, for the relay of data. The plug-in application that we de-
veloped for the smartphone is called SumoEmbed and is described further
below.

Python Script

Application-specific scripts in Python 2.7.3 that were run simultaneously with
SUMO on the base station computer, are used to interface SUMO and the
vehicle. The scripts typically consist of two parts: (i) a main part that acts
as a client to SUMO and adapts the traffic scenario simulations, according
to the ITS application being implemented, online via TraCI (TraCI uses a
TCP-based client/server architecture to provide access to SUMO); and (ii) a
second part that acts as a TCP server, listening for incoming calls from the
smartphone and then handling the data transfer between the smartphone and
the base station computer running SUMO.

Vehicle Gateway

The hardware device used to connect the smartphone and the Toyota Prius’
onboard computer was the Kiwi Bluetooth OBD-II Adapter by PLX Devices®

5PLX Devices Inc., 440 Oakmead Parkway, Sunnyvale, CA 94085, USA. Phone: +1
(408) 7457591. Website: http://www.plxdevices.com. Last Accessed July 2017.
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FIGURE 17.2
Field-test vehicle: 2008 Toyota Prius

The device plugs into the vehicle’s OBD-II diagnostic connector and com-
municates to the smartphone via Bluetooth. A variety of existing smartphone
applications are compatible for use with Kiwi Bluetooth. Among those Torque
Pro® was chosen given that an Android Interface Definition Language (AIDL)
Application Programming Interface (API) was included to handle third party
plug-in applications.

Before proceeding, some comments are appropriate, as described in the
following subsection.

Remark 17.1. In the prototype design, a single real vehicle was embedded into
SUMO. To do this in practice, we exploited the fact that in the parent process
of our Python script, TraCI provides access to SUMO via a single port, and
multiple real vehicles can be represented in SUMO by different vehicle IDs.
Passing or sharing the information of multiple vehicles between this parent
process of the Python script, and our Python subprocess that communicates
with the smartphone, may require the use of, for example, advanced shared
memory formats in Python. A single port was reserved for communication
with the smartphone in our Python subprocess, but it would be very simple
to extend this to handle multiple incoming calls (i.e., from multiple smart-
phones). The specific information exchanged between the real vehicle and the
simulator is application-driven and, in our current set-up, depends on what
data can be sent via the vehicle gateway (e.g., OBD-II diagnostic connec-
tor) and/or via the smartphone (e.g., human input through a user interface),
and whether this information needs to be concurrently managed in SUMO. In
principle, any information on the OBD-II can be used in the emulation set-up.
Information between the real vehicle and the base station computer, in our
current set-up, is transmitted once every second. This steady, periodic rate is

6 Torque Pro by Tan Hawkins. Available from Google Play: https://play.google.com/
store/apps/details?id=org.prowl.torque. Last Accessed July 2017.
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maintained throughout the duration of the simulation, for simplicity. However,
the information transmission frequency can be changed to implement other
applications as well, e.g., to enable event-driven information transmission.

17.4 Sample Application

The HIL platform has been used to test a range of ITS applications, some of
which have been described in early chapters (e.g., Chapters 4, 13 and 14). As
a further example, we now, very briefly, revisit the speed advisory problem
described in Chapter 15 with full details of the application described in [122].
In that paper, such a system was designed to minimize emissions along a
given route for regular ICEVs. To validate the design, the authors had used
the HIL platform outlined in this chapter. Specifically the Prius test vehicle
was embedded into a network of 30 ICEVs (i.e., with 29 other test ICEVs).
The emissions class for each of the virtual vehicles was selected randomly from
a set of profiles defined in [20]. The objective of the HIL tests was to record
the ability and willingness of the Prius driver to follow the recommended
speed. In the example, the ISA system starts recommending an optimal speed
after 300 seconds of motion. A trace depicting the driver behavior in response
to such recommendation is shown in Figure 17.3, while in Figure 17.4 the
corresponding reduction of COs emissions is shown.

17.5 Concluding Remarks

The HIL platform for emulating large-scale intelligent transportation systems
was presented. The platform embeds a real vehicle into SUMO. A goal of
the platform is to provide drivers with some sense of how it would feel to
participate in large-scale, feedback-based, connected vehicle applications, and
thus allow ITS developers to better examine real driver reactions in regards
to feedback control for applications in an ITS context.

The platform illustrated here can be generalized and extended along a
number of lines. In particular, interesting enhancements would be (i) a better
map-matching for those applications that are location-aware; (i) the inte-
gration of the platform with a discrete-event network simulator (e.g., ns-3),
the inclusion of V2V communication capabilities, and the addition of further
embedded real vehicles; (iii) improvements in the modular design of the plat-
form; and (iv) an enhancement of the platform with the ability to incorporate
real-time traffic information. Also, it would be interesting to explore other ITS
applications that might benefit of the main advantage of our platform, i.e., the
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Evolution of the speed related with the Prius for the HIL simulation. The
algorithm was turned on around time 300s. The average speed was calculated
with a window size of 20 time steps.

ability to investigate the feedback-loop relationship between the environment
and the vehicle.
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Scale-Free Distributed Optimization Tools
for Smart City Applications

18.1 Introduction

In almost all applications investigated in this book, the problem arises of pro-
visioning a limited resource in a distributed manner, without explicit knowl-
edge of the number of agents attempting to share that resource. Moreover
the number of agents can grow very large. Such problems can be formulated
as optimization problems or as feedback control problems, depending on the
application. One issue in the design of such systems is the need to find control
algorithms whose actions do not depend on the (unknown) number of agents
participating in the scheme. This independence of the number of agents assures
the scalability of the control algorithm. Further related issues that the control
algorithm has to handle are privacy concerns and communication overhead.
In this chapter we shall describe two methodologies that can be employed in
such circumstances.

18.2 The AIMD Algorithm

Consider n agents which all aim to access the same resource. The precise
quantity of available resource is unknown to the agents and it is not prac-
tical for the agents to communicate with each other. The additive-increase
multiplicative-decrease (AIMD) algorithm has been deployed with some suc-
cess in such situations.

In the continuous-time version of the AIMD algorithm each agent i has
an internal variable x;(t) which at time ¢ represents the quantity of shared
resource used by agent ¢. Two parameters, o; > 0, 3; € [0, 1), characterize the
time behavior of agent i. The algorithm consists of two alternating phases. In
the additive increase phase the consumption is increased linearly in time with
slope a;, so that if x;(t;) was the consumption at the beginning of an additive
increase phase, then

xi(t) = zi(ty) + ot — tg) (18.1)
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is the consumption at time ¢ > t; in the same additive increase phase. As
all agents continuously increase their consumption of the limited resource this
limit will eventually be reached. We call the occurrence of this a capacity
event and we label the times of capacity events by t; < to < ... <t <....
At capacity events agents have to be made aware of such an event; the precise
nature of this communication has to depend on a particular application. Those
agents that are aware will decrease their consumption instantaneously in a
multiplicative fashion so that

ZZ?z'(t;:Jrl) = ,Bidfi(tk) = ﬁz lim .T,Z(t) (182)

t 1

Combining (18.1) and (18.2) we see that the evolution of agent ¢ from capacity
event tj to capacity event ¢4 is modeled by

2i(tet1) = Biwi(ty) + oi(tkrr — tr). (18.3)

This relation can be extended to a full model of the evolution of all agents
by eliminating the time between capacity events ty1 —tx. Assuming that the
amount of available resource is given by a constant C,. we have at all capacity
events ¢t that

Cr=> xj(tr) =D xj(tryr) = Y (Bjwj(te) + aj(tugs — t)) . (18.4)
i—1 j=1 j=1

Thus

n

for — t = ﬁzu — By (1), (18.5)

j=1% j=1
And inserting this into (18.3) we obtain

n

@iltesr) = Bii(te) + e > (1= B))z;(th). (18.6)

Zj::l Oé] j=1

It is now convenient to introduce the vector z(t) € R™ with entries x;(t) and
the matrix

e} 0 ) a
Zj:l Qj
0 Bn Qn,
With this notation (18.6) for ¢ = 1,...,n can be summarized as
x(trr1) = Ax(ty). (18.8)

At first it is surprising that the AIMD algorithm results in such a simple
linear iteration, at least in the synchronized case in which all agents react to
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all capacity events. All of the entries of A are positive and the columns of
A sum to 1, so that the matrix is column stochastic. The Perron-Frobenius
theorem can now be used to deduce several important features of the iteration
(18.8). These properties and further investigations are derived in full detail in
the first chapters of [39].

Remark 18.1. The above analysis assumes that all agents respond in unison
to a capacity notification. In reality, only some agents will do this, and usu-
ally the response of an agent to a capacity notification is characterized in a
probabilistic manner. Such situations are also described by a linear system;
this time a stochastic switched linear system. Details of this unsynchronized
model can be found in [39, Chapters 6-9].

18.3 Optimal Resource Allocation

The AIMD algorithm can also be used to solve certain optimization problems.
Let us assume again that n agents wish to share a constant resource of which
C, > 0 units are available. Each agent associates a cost f;(z;) to the use of
a quantity x; > 0 of the resource. Alternatively, agents can associate a utility
gi(z;) to using a certain amount of resource. There is no substantial difference
in studying these problems: one would like to minimize costs and on the other
hand maximize utility. The negative of a cost function thus becomes a utility
function and vice versa.
An optimal resource allocation problem can be formulated as

n
T1;--,Tn im1

(18.9)
subject to Zml =C,, and x; >0, i=1,...,n.
i=1
For ¢ = 1,...,n we assume that the cost functions f; : [0,C,] — R are

strictly convex and continuously differentiable that satisfy f;(0) = 0. The
constraints of this optimization problem express two major properties we
have in mind: (i) the resource consumption z; can only be a nonnegative
value, so agents cannot produce the resource, (i) the consumption should
use all the available resource C, so that the allocation is not wasteful, (iii)
there is a hard upper bound on the available resource. In the earlier chapters
of this book, examples of the cost functions have been the inconvenience (or
the price) for the owners of EVs to charge their vehicles at given times in
Chapter 7; or the pollution emitted by a given ICE vehicle in Chapter 13;
or the energy consumption of an EV in Chapter 14. In some cases, we
have also been interested in solving maximization problems where the (now
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concave) functions could be interpreted as utility functions (e.g., savings of
COs emissions). Note that in all the previous examples, our x; variables were
physical (non-negative) quantities, e.g., money, energy, or emissions, and this
gives rise to the non-negative constraint in (18.9).

It is well known that compactness of the feasible space implies that an
optimal point x* at which the minimum is attained exists, and that the
optimal point is unique as a consequence of the assumption of strict convexity.
In particular, the unique point is known to satisfy the Karush-Kuhn-Tucker
(KKT) conditions over the Lagrangian equation associated with (18.9), see
for instance [22]. However, here we are not interested in the conventional
centralized solution of problem (18.9), but rather, we shall show that AIMD
can be used to obtain convergence of the long-term average state to the KTT
point z*. In particular, convergence to the optimal solution can be achieved
in a distributed fashion, requiring little communication of relevant data, and
in a privacy-preserving manner.

This objective can be achieved by introducing a stochastic aspect in
the algorithm. We introduce variable probabilities p;,¢ = 1,...,n which
define for each agent the probability of reducing their state if a capacity
event is announced. The key is to customize these probabilities p; of single
agents based on the past behavior of that agent and its cost function f;. More
specifically, we let x;(k) denote the value of the state at the kth capacity
event, and T;(k) denote the long-term average of the state variables, i.e.,

Fi(k) = s S wili). (18.10)

We then require that each agent performs the decrease step with probability

_ fi (@i(k))

p; (Z;(k)) =T =) (18.11)
In equation (18.11) f/(-) denotes the derivative of the cost function, and T’
is a suitable constant ensuring that 0 < p;(z;) < 1 for all z; € [0,C,] and
i = 1,...,n. This of course imposes further conditions on the formulation of
the optimization problem. The f/ should be positive, strictly increasing and
bounded on the interval [0,C,]. Also such a bound needs to be known so
that a suitable constant I' can be chosen. This however imposes only small
constraints on the class of optimization problems, see [193] for a discussion
of reformulations of a given optimization problem so that the condition in

(18.11) can be applied.
Equation (18.11) implies that each user will respond to the notification
of a capacity event independently of the behavior of the other agents with a
customized probability p; (Z;(k)). The response is then to perform the mul-
tiplicative decrease step on its share of the resource. It can be shown that
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the following convergence to the optimum holds (almost surely, that is, with
probability one) provided that all agents use the same parameters «, § in their
implementation of the AIMD algorithm (see [193] for detailed proofs in this
regard):

lim Z(k) = z™.

k—o0
In particular, note that the result guarantees that both the limit of ;(k)
exists, and that in fact it is equal to the optimal value. Underlying this result
is the observation that AIMD algorithms attempt to achieve consensus among
participating agents. Now for the particular problem under consideration here
the KKT conditions which characterize the optimal point are

fi(xi) = fi(x}), forall indices4,j = 1,...,n.

So in the optimal point the derivatives of the cost functions are indeed in
consensus and z* is the only feasible point with this property. This condition
follows from the KKT conditions, and is consistent with the optimality of the
steady-state vector of states obtained with the AIMD algorithm.

Remark 18.2. Note that in some cases the AIMD algorithm, and more specif-
ically Equation (18.11), may be reformulated for convenience by shifting the
derivative terms f/ (-) to the denominator.

18.4 Scale-Free Advantages of AIMD

In principle, many different methods may be used to solve the optimization
problem (18.9) to compute the optimal way to share the available resource
among the interested agents. For instance, in Chapter 13 we have deployed a
centralized PI-like solution to share a “budget” of pollution (resource) among
the traveling vehicles (agents). In other cases (see for instance Chapter 14)
we have alternatively used AIMD. The choice of AIMD is useful for many
applications due to its low-communication requirements, privacy-preservation
properties and the fact that AIMD requires very little actuation ability on
the agent-side. This is in contrast to other distributed algorithms, like the
PI-like control or ADMM (see [21], where at each time step, agents must
solve a local optimization problem). However, the main advantage of AIMD
appears to be the following:

Algorithm parameterization: In AIMD the gain parameters of the
network are independent of metwork dimension; rather, they only depend
on the largest derivative over all utility functions (i.e., the parameter T' in
(18.11)). Thus, selecting a gain for the algorithm is extremely simple in the
case of AIMD.
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A pseudo-code to implement the AIMD algorithm for our applications
in general is now briefly reported: Note that the algorithm is performed in an

Algorithm 18.1 Unsynchronized AIMD Algorithm

1: Initialization: k =1, z;(k) = 0;
2: Broadcast the parameter I' to the entire networks;
3: while k < k. do
4: if vazl zi(k) < C, then
5: zi(k+1)=z;(k) + «
6: else with probability p;(k) — 17 K) .
. probabl lty pz(k) =r f(kﬁ) ,:L'l(k + 1) - Bmz(k)
7: else z;(k+1) = z;(k) + «
8: end if
9: k=k+1

10: end while

iterative way, and here kp.x represents the maximum number of iterations
before the algorithm stops. According to the AIMD spirit, if the sum of shares
x;(k) of the shared resource is smaller than C,, then each agent increases its
share by a quantity «. However, if the sum of the shares exceeds C, (i.e.,
capacity event), then an agent decreases its share by a multiplicative factor

0 < B < 1 with probability p;(k) = F%, or keeps increasing its share
with probability 1 — p;(k). It is then proved in [193] that Z;(k) approaches the
optimal solution of the optimization problem when Algorithm 18.1 converges.

Remark 18.3. We note that AIMD has some nice properties concerning the
privacy of the agents. First, there is no inter-agent communication and only
limited feedback is required. Second, the algorithm is implicit, i.e., only re-
quiring a consensus on the utility functions. Finally, it is stochastic, so making
reconstruction of the f;’s is more difficult from observations. See [137] for a
more detailed discussion.

18.5 Passivity

Another scale free approach from the control literature comes from the
notion of passivity. A passive linear time-invariant system is a system whose
transfer function is positive real. The notion of a positive real (PR) function
and of a strict positive real (SPR) function is important in many areas of
engineering systems, in particular in control theory and in circuit theory. In
circuit theory the term passive component, i.e. an element that consumes
but does not supply energy, is commonly used. This use illustrates the



Scale-Free Distributed Optimization Tools for Smart City Applications 211

relation between passivity and energy which is often exploited in physical
systems. An important historical property that has made passivity (and
positive realness) particularly attractive to classical control engineers is that
a physical system, which is passive, has properties that makes the behavior
of the system “friendly”. For example, it is well known that a negative
feedback connection of two (strictly) passive systems is always asymptotically
stable, and that the stability of more complicated interconnections of passive
systems is characterized by simple algebraic conditions [17, 136]. This has
made passivity very useful in the design of distributed control systems. More
recently, passivity has assumed an important role in the study of optimization
algorithms and consensus [190], the study of cyber-physical systems [70], and
in the exploration of diagonal stability problems [17].

Our objective in this brief section is to make readers aware that pas-
sivity may be used as a design tool for designing closed loop systems. There
are many ways of understanding passivity. One can talk about generalized
notions of energy, and one may also speak of ensuring that in a negative
feedback loop a phase shift of less than 7w radians is always satisfied. Perhaps
the simplest method of explaining passivity is however to appeal to Lyapunov
arguments and it is precisely these arguments that we shall describe in this
book. To this end we recall the following from standard linear systems theory.
In what follows we assume that readers are familiar with elementary systems
theory: see for example, the textbook [104] for a revision of some of these
concepts.

Consider a linear time-invariant input-output system:

¢ = Az-+Bu

y — CuiDu (18.12)

where A € R™*"™ and B, C,D are matrices of dimension n x m, m X n and
mxm respectively. We assume that the above system is stable; that is that the
matrix A has eigenvalues in the open left half of the complex plane. Associated
with this linear system is its transfer function matrix:

G(s) = C(sI-A)"'B+D. (18.13)

Historically, most classical criteria for stability had been established in terms
of the frequency response of this transfer function matrix G(jw), —0o < w <
oo and j is the imaginary unit. For example, a system is said to be strictly
passive if G(jw) + G(jw)* > 0 for all w, and the classical Nyquist criteria
states that the feedback interconnection of two such Linear Time Invariant
(LTI) systems G; and G is stable if and only if [205] the Nyquist plot of
det [I + G1(jw)G2(jw)] does not make any encirclements of the origin.
Suppose now that Gi(jw) and Gz(jw) are both passive. Then, for all
weR
G1(jw) + G1(jw)”

> 0
e Je 18.14
G21(]w)+G21(]w) > 0. ( )
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(where invertibility follows directly from the Lyapunov equation). Thus:
G1(jw) + kG5 (jw) + G1(jw)* + kG5 ' (jw)* >0 (18.15)

for all k& > 0 (and in particular for £ > 1). For each fixed w, Lyapunov’s
inertia theorem implies that G1(jw) + kG5 ' (jw) cannot have eigenvalues on
the imaginary axis. Thus,

det [G (jw) G (jw) + k1] # 0. (18.16)

Since this is true for all £ > 1, and since A;,B1,Cy,D1, Ay, By, Cy, Do
(i.e., the matrices corresponding to the state-space representation of transfer
function matrices G; and Go) are real matrices, then this implies that det [I+
G1(jw)G2(jw)] does not make any encirclements of the origin (by continuity).
Thus, strict passivity is a sufficient condition for Nyquist to hold.

In addition, consider the case where Gy (jw) is a control and Go(jw) is
a parallel connection of passive elements. In this case Ga(jw) is the sum of
passive elements, which is also a passive element. Thus, adding or removing
one or more elements will not affect the stability of the feedback loop.

In particular, note that all the previous statements guarantee that appro-
priate interconnections of passive LTI systems form an overall stable system,
independently of the size of the single LTI subsystems.

18.6 Concluding Remarks

In most of the applications investigated in this book, the problem arises
of provisioning a limited resource in a distributed manner, without explicit
knowledge of the (possibly very large and time-varying) number of agents at-
tempting to share that resource. As we have shown, these problems can be
formulated as optimization problems, o feedback control problems in general.
However, a challenging aspect regards the design of optimal control algorithms
whose actions should not depend on the (possibly unknown) number of agents
participating in the scheme. Achieving this size-free property, together with
handling privacy concerns and communication overhead, motivated the dis-
cussion of the two methodologies, namely, AIMD and passivity, provided in
this chapter.



Postface

As we mentioned in the Preface, this book describes some of the work
carried out by the authors and their co-authors in the period 2011-2017. Our
objective in writing this book, and in much of our other work, was not to
focus on the details of EV propulsion mechanisms (this is covered in detail
elsewhere), but rather to focus on the opportunities of the new networked
actuation possibilities afforded by FEVs and PHEVs in our cities. While we
have included many use cases to illustrate this point, others, which we believe
to be important, are omitted due to space limitations, such as [91, 81]. In
particular, the migration of ideas to PEDELECS, and the focus on protecting
cyclists, would appear to be a very fruitful and useful direction for future
research; see [178] for some initial ideas in this direction.

One of the main reasons for our original interest in this topic was the
role that EVs could have in addressing a spectrum of societal challenges.
Looking back, our expectations in 2011 promised rapid adoption of the green
agenda, and equally rapid adoption of EVs in towns and cities, all as part of
a bigger Smart City and Smart Grid revolution. In this context, as we write
this last piece of text (July 2017), it is very hard not to be disappointed.
Except in a few outlier countries, EV adoption has been slow, and the
transportation agenda is still driven by greenhouse gas concerns (and only
to a much lesser extent by air quality related issues). Notwithstanding this
fact, we believe that there are grounds for optimism. Strong companies such
as TESLA and FARADAY FUTURE have emerged, conventional OEMs are
now well on the path to fleet electrification, and the issue of air quality,
which is perhaps the defining issue of our age, is now becoming a topic of
great concern worldwide. In addition, very recent announcements from car
companies' and national governments?'® seem to confirm that E-mobility
is eventually gaining momentum. As we place our work in this context,
we hope that this book will find its natural place, and perhaps help prac-
titioners and theoreticians push back some of the new barriers to EV adoption.

Thttps://wuw.theguardian.com/business/2017/jul/05/volvo-cars-electric-
hybrid-2019. Last Accessed July 2017.

®https://www.theguardian.com/business/2017/jul/06/france-ban-petrol-diesel-
cars-2040-emmanuel-macron-volvo. Last Accessed July 2017.

Shttp://www.telegraph.co.uk/news/2017/07/25/new-diesel-petrol-cars-banned-
uk-roads-2040-government-unveils/. Last Accessed July 2017.
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Finally, it is worth noting that some, if not all, of the work here, informed
and motivated some exciting theoretical research directions. Dimensioning
issues for sharing systems, privacy-preserving optimizations, scale-free feed-
back control, are all issues that we have grappled with during the course
of our work. Pressing issues such as the need for ergodic feedback design,
the co-design of prediction and feedback systems, the need for closed loop
identification at scale, and the need to predict driver intent in a closed loop,
are all important themes that remain to be resolved [65, 44] It is with this
latter thought in mind that we look forward with great excitement to the
next part of our E-mobility journey.

Emanuele Crisostomi

Pisa, July 2017

Robert Shorten
Dublin and Berlin, July 2017

Sonja Stiidli
Newcastle (Australia), July 2017

Fabian Wirth
Passau, July 2017
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