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Abstract. We present upper bounds on the size of codes that are locally
testable by querying only two input symbols. For linear codes, we show
that any 2-locally testable code with minimal distance δn over any finite
field � cannot have more than |�|3/δ codewords. This result holds even
for testers with two-sided error. For general (non-linear) codes we obtain
the exact same bounds on the code size as a function of the minimal
distance, but our bounds apply only for binary alphabets and one-sided
error testers (i.e. with perfect completeness). Our bounds are obtained by
examining the graph induced by the set of possible pairs of queries made
by a codeword tester on a given code. We also demonstrate the tightness
of our upper bounds and the essential role of certain parameters.

1 Introduction

Locally testable codes are error-correcting codes that admit very efficient code-
word testers. Specifically, using a constant number of (random) queries, non-
codewords are rejected with probability proportional to their distance from the
code.

Locally testable codes arise naturally from the study of probabilistically
checkable proofs, and were explicitly defined in [5] and systematically studied in
[7]. The task of testing a code locally may also be viewed as a special case of
the general task of property testing initiated by [9,6], where the property being
tested here is that of being a codeword. In this paper we explore codes that can
be tested with constant number of queries.

We focus on codes C ⊂ Σn that have large distance (i.e., each pair of code-
words differ in at least Ω(n) coordinates) and large size (i.e., at the very least,
|C| should grow with n and |Σ|). Such codes are known to exist. Specifically,
in [7] locally testable codes are shown such that |C| = |Σ|k for k = n1−o(1). We
highlight two of these results:
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1. For Σ = {0, 1}, three queries are shown to suffice. Furthermore, these codes
are linear.

2. For |Σ| > 2, two queries are shown to suffice.4

This raises the question of whether binary codes and/or linear codes can have
codeword tests that make only two queries. In this paper, we show that the
answer is essentially negative; that is, for codes of linear distance, such codes
can contain only a constant number of codewords. More general statements are
provided by Theorems 3.1 and 4.1, which address linear codes over arbitrary
fields and non-linear binary codes, respectively. We also address the tightness of
our upper-bounds and the essential role of certain parameters (i.e., our upper-
bounds apply either to linear codes or to binary codes that have a tester of
perfect completeness).

Organization: In Section 2 we present the main definitions used in this paper, and
state our main results. In Section 3 we study linear codes that admit two-query
codeword testers. In Section 4 we study general binary codes that admit two-
query codeword testers of perfect completeness. Due to space considerations, the
rests of our results appear only in our technical report [3]: In [3, Sec. 5] we show
that our upper-bounds cease to hold for ternary non-linear codes (rather than for
non-linear codes over much larger alphabets as considered in [7] and mentioned
in Item 2 above). In [3, Sec. 6] we show that perfect completeness is essential for
the results regarding non-linear binary codes (presented in Section 4).

2 Formal Setting

We consider words over an alphabet Σ. For w ∈ Σn and i ∈ [n], we denote by
wi the i-th symbol of w; that is, w = w1 · · ·wn.

2.1 Codes

We consider codes C ⊆ Σn over a finite size alphabet Σ. The blocklength of
C is n, and the size of C is its cardinality |C|. We use normalized Hamming
distance as our distance measure; that is, for u, v ∈ Σn the distance ∆(u, v) is
defined as the number of locations on which u and v differ, divided by n (i.e.,
∆(u, v) = |{i : ui �= vi}|/n). The relative minimal distance of a code, denoted δ(C),
is the minimal normalized Hamming distance between two distinct codewords.
Formally

δ(C) = min
u�=v∈C

{∆(u, v)}

The distance of a word w from the code, denoted ∆(w, C), is minv∈C{∆(w, v)}.
4 We comment that these codes are “linear” in a certain sense. Specifically, Σ is a

vector space over a field F , and the code is a linear subspace over F (rather than
over Σ). That is, if Σ = F � then C ⊂ Σn is a linear subspace of F n·� (but not of
Σn, no matter what finite field we associate with Σ). In the coding literature such
codes are called F -linear.
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A code is called redundant if its projection on some coordinate is constant (i.e.,
there exists i ∈ {1, . . . , n} such that for any two codewords w, w′ it holds that
wi = w′

i). A redundant code can be projected on all non-redundant coordinates,
yielding a code with the same size and distance, but smaller blocklength. Thus,
w.l.o.g., we assume all codes to be non-redundant.

Typically (in this paper) Σ is a finite field F and we view F
n as a vec-

tor space over F. In particular, for u, v ∈ F
n the inner product of the two

is 〈v, u〉 =
∑n

i=1 vi · ui (all arithmetic operations are in F). The weight of
v ∈ F

n, denoted wt(v), is the number of non-zero elements in v. In this case
∆(u, v) = wt(u − v)/n.

2.2 Testers and Tests

By a codeword tester (or simply tester) with query complexity q, completeness c
and soundness s (for the code C ⊆ Σn) we mean a randomized oracle machine
that given oracle access to w ∈ Σn (viewed as a function w : {1, . . . , n} → Σ)
satisfies the following three conditions:

– Query Complexity q: The tester makes at most q queries to w.
– Completeness: For any w ∈ C, given oracle access to w the tester accepts

with probability at least c.
– Soundness: For any w that is at relative distance at least δ(C)/3 from C,

given oracle access to w, the tester accepts with probability at most s.5

If C has a codeword tester with query complexity q, completeness c and soundness
s we say C is [q, c, s]-locally testable.

A deterministic test (or simply test) with query complexity q is a deterministic
oracle machine that given oracle access to w ∈ Σn makes at most q queries to
w, and outputs 1 (= accept) or 0 (= reject). Any (randomized) tester can be
described as a distribution over deterministic tests, and we adopt this view
throughout the text.

A (deterministic) test is called adaptive if its queries depend on previous
answers of the oracle, and otherwise it is called non-adaptive. A test has perfect
completeness if it accepts all codewords. Both notions extend to (randomized)
testers. Alternatively, we say that a tester is non-adaptive (resp., has perfect
completeness) if all the deterministic tests that it uses are non-adaptive (resp.,
have perfect completeness resp.), and otherwise it is adaptive (resp., has non-
perfect completeness).

2.3 Our Results

We study 2-query codeword testers. Our main results are upper-bounds on the
sizes of linear (resp., binary) codes admitting such testers (resp., testers of perfect
completeness):
5 We have set the detection radius of the tester at third its distance (i.e., for any w

whose distance from C is at least 1
3
· δ(C) the test rejects with probability at least

s). As will be evident from the proofs, our results hold for any radius less than half
the distance.
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Theorem 2.1 For any constants c > s, any [2, c, s]-locally testable linear code
over Σ has at most |Σ|3/δ codewords, where δ is its relative distance.

Theorem 2.2 For any constant s < 1, any [2, 1, s]-locally testable binary code
has at most 23/δ codewords, where δ is its relative distance.

In contrast to the above, we state the following facts:

1. The upper-bounds stated in Theorems 2.1 and 2.2 are reasonablly tight: For
some constants s < 1 and δ > 0, and every finite field F, there exists a linear
[2, 1, s]-locally testable code of size |F|1/δ and minimal relative distance δ
over F (see, Proposition 3.6).

2. Non-linearity of the code is essential to Theorem 2.1 and binary alphabet is
essesntial to Theorem 2.2: there exists good non-linear codes over ternary
alphabets that have 2-query codeword testers (of perfect completeness). That
is, for some constants s < 1 and δ > 0, there exists a [2, 1, s]-locally testable
ternary code of relative distance δ that has size that grows almost linearly
with the blocklength (see [3, Thm. 5.6]).

3. Perfect completeness is essesntial to Theorem 2.2: there exists good non-
linear codes over binary alphabets that have 2-query codeword testers of
non-perfect completeness. That is, for some constants c > s > 0 and δ > 0,
there exists a [2, c, s]-locally testable binary code of relative distance δ that
has size that grows almost linearly with the blocklength (see [3, Thm. 6.1]).

4. Regarding the difference between linearity and “semi-linearity” (as in Foot-
note 1), we note that there exists good GF (2)-linear codes over {0, 1}2 that
have 2-query codeword testers (of perfect completeness): (see [3, Thm. 5.7]).

We mention that some of our results are analogous to results regarding proba-
bilistic checkable proof (PCP) systems. In particular, let PCPΣ

c,s[log, q] denote
the class of languages having PCP systems with logarithmic randomness, making
q queries to oracles over the alphabet Σ, and having completeness and sound-
ness bounds c and s respectively. Then, it is known that PCP{0,1}

1,s [log, 2] = P
for every s < 1, whereas PCP{0,1}

c,s [log, 2] = NP for some c > s > 0 and

PCP{0,1,2}
1,s [log, 2] = NP for some s < 1.6 Folllowing [7], we warn that the trans-

lation between PCPs and locally-checkable codes is not obvious. In particular,
we do not know whether it is possible to obtain our coding results from the
known PCP results or the other way around.

3 Linear Codes

In this section we show that [2, c, s]-locally testable linear codes with constant
minimal relative distance must have very small size. Throughout this section F

is a finite field of size |F|. A code C ⊆ F
n is called linear if it is a linear subspace

of F
n. The main result of this section is the following.

6 The first two results are proven in [2], whereas the third result is lolklore that is
based on the NP-Hardness of approximating Max3SAT as established in [1].
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Theorem 3.1 (Theorem 2.1, restated): Let C ⊂ F
n be a [2, c, s]-locally testable

linear code with minimal relative distance δ. If c > s then

|C| ≤ |F|3/δ

We start by pointing out that, when considering testers for linear codes, the
tester can be assumed to be non-adaptive and with perfect completeness. This
holds by the following result of [4].

Theorem 3.2 [4]: If a linear code (over any finite field) is [q, c, s]-locally testable
using an adaptive tester, then it is [q, 1, 1− (c− s)]-locally testable using a non-
adaptive tester.

Notice that if we start off with a tester having completeness greater than sound-
ness (c > s), then the resulting non-adaptive, perfect-completeness tester (guar-
anteed by Theorem 3.2) will have soundness strictly less than 1. Thus, in order
to prove Theorem 3.1 it suffices to show the following.

Theorem 3.3 Let C ⊆ F
n be a [2, 1, s]-locally (non-adaptively) testable linear

code, with s < 1, and let the minimal relative distance be δ. Then:

|C| ≤ |F|3/δ

In the rest of the section we prove Theorem 3.3. The proof idea is as follows.
Each possible test of query complexity 2 and perfect completeness imposes a
constraint on the code, because all codewords must pass the test. Thus, we
view the n codeword coordinates as variables and the set of tests as inducing
constraints on these variables (i.e., codewords correspond to assignments (to
the variables) that satisfy all these constraints). Since the code is linear, each
test imposes a linear constraint on the pair of variables queried by it. (A linear
constraint on the variables x, y has the form ax+by = 0 for some fixed a, b ∈ F).
We will show that in a code of large distance, these constraints induce very few
satisfying assignments. Specifically, we look at the graph in which the vertices
are the (n) codeword-coordinates (or variables) and edges connect two vertices
that share a test. The main observation is that in any codeword, the values of
all variables in a connected component are determined by the value of any one
variable in the component; that is, the assignment to a single variable determines
the assignment to the whole component. By perfect completeness, any word that
satisfies all constraints in all connected components will pass all tests. Hence
there cannot be many variables in small connected components, for then we
could find a word that is far from the code and yet is accepted with probability
1. But this means that the code is essentially determined by the (small number
of) large connected components, and hence the size of the code is small. We now
give the details, starting with a brief discussion of dual codes which is followed
by the proof.
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3.1 Linearity Tests and Dual Codes

Recall that C ⊆ F
n is linear iff for all u, v ∈ C we have u + v ∈ C. In this case

δ(C) = minw∈C{wt(w)/n}. As pointed out in [8], codeword tests for linear codes
are intimately related to the “dual” of the code. For a linear code C, the dual
code C⊥ is defined as the subspace of F

n orthogonal to C, i.e.

C⊥ = {v : v ⊥ C}
where v ⊥ C iff for all u ∈ C, v ⊥ u (recall v ⊥ u iff 〈v, u〉 = 0).

The support of a vector v, denoted Supp(v), is the set of indices of non-
zero entries. Similarly, the support of a test T is the set of indices it queries.
Notice that a non-adaptive test with query complexity q has support size q. For
v, u ∈ F

n we say that v covers u if Supp(v) ⊇ Supp(u). A test is called trivial if
it always accepts. Elementary linear algebra gives the following claim.

Proposition 3.4 The support of any non-trivial perfect-completeness test for
C covers an element of C⊥ \ {0n}.
Proof: Let T be a test and CT be the projection of (the linear space) C onto
Supp(T ). The projection is a linear operator, so CT is a linear space over F. The
linear space CT must be a strict subspace of F

Supp(T ), because |CT | = |FSupp(T )|
(i.e. CT includes all vectors in F

Supp(T )) implies that either T reject some valid
codeword in C (in violation of perfect completeness) or T always accepts (in
violation of non-triviality). It follows that (CT )⊥ has a non-zero element, denoted
w. However, Supp(w) ⊆ Supp(T ) and w ∈ C⊥, completing the proof. ��

Clearly one can assume that all tests used by a tester are non-trivial. We also
assume C⊥ has no element of weight 1, because otherwise C is redundant. Since
we consider only testers that make two queries, it follows that all tests they use
have support size exactly two. Furthermore, without loss of generality, all the
tests are linear.7

3.2 Upper Bounds on Code Size

By the above discussion (i.e., end of Section 3.1), we may assume (w.l.o.g.) that
the [2, 1, s]-tester for C is described by a distribution over

C⊥
2

def= {v ∈ C⊥ : wt(v) = 2}
The test corresponding to v ∈ C⊥

2 refers to the orthogonality of v and the oracle
w; that is, the test accepts w if v ⊥ w and rejects otherwise.8 We now look at
C⊥
2 and bound the size of (C⊥

2 )⊥. Our theorem will follow because C ⊆ (C⊥
2 )⊥.

7 In genenral, without loss of generality, a one-sided tester for a property P accepts y
if and only if its view of y is consistent with its view of some x ∈ P . In our case P
is a linear space, so consistecy means satisfying a linear system. For further details
see Appendix.

8 Notice that since wt(v) = 2 such a test amounts to two queries into w.
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The set C⊥
2 gives rise to a natural graph, denoted GC . The vertex set of

GC is V (GC) = {1, . . . , n} and (i, j) ∈ E(GC) iff there exists vij ∈ C⊥
2 with

Supp(vij) = {i, j}.
The key observation is that, for any edge (i, j) ∈ E(GC) there is some cij ∈

F \ {0} such that for any w ∈ C it holds that wi = cij · wj . To see this, notice
the constraint corresponding to (i, j) can be written as aijwi + bijwj = 0, where
aij , bij ∈ F\{0} (if either aij or bij are 0 then vij has support size one, meaning C
is redundant). So, by transitivity, the value of w on all variables in the connected
component of i, is determined by wi. (Moreover, all these values are non-zero iff
wi �= 0.) Assuming that the number of connected components is k, this implies
that there can be at most |F|k different codewords (because there are only k
degrees of freedom corresponding to the settings (of all variables) in each of the
k components). To derive the desired bound we partition the components into
big and small ones, and bound the number of codewords as a function of the
number of big components (while showing that the small components do not
matter).

Let C1, . . . , Ck be the connected components of GC . We call a component
small if its cardinality is less than δn/3. Without loss of generality, let C1, . . . Cs

be all the small components, and let S =
⋃s

i=1 Ci denote their union.

Claim 3.5 |S| ≤ 2δn/3.

Proof: Otherwise there exists I ⊂ {1, . . . , s} such that

δn/3 ≤
∑

i∈I

|Ci| < 2δn/3

For every i ∈ I, we consider a vector wi ∈ (C⊥
2 )⊥ with Supp(wi) = Ci. To

see that such a vector exists, set an arbitrary coordinate of Ci to 1 (which is
possible because the code is not redundent) and force non-zero values to all
other coordinates in Ci (by virtue of the above discussion). Furthermore, note
that this leaves all coordinates out of Ci unset, and that the resulting wi satisfy
all tests in C⊥

2 (where the tests that correspond to the edges in Ci are satified by
our setting of the non-zero values, whereas all other tests refer to vertices out of
Ci and are satisfied by zero values). Now, define w =

∑
i∈I wi. By definition, we

have Supp(w) = ∪i∈IC
i, and δn/3 ≤ wt(w) < 2δn/3 follows by the hypothesis.

Hence, ∆(w, C) ≥ δ/3.
On the other hand, w is orthogonal to C⊥

2 . To see this, consider any v ∈ C⊥.
If Supp(v) ⊆ Ci, for some i ∈ I, then the “view v has of w” (i.e. the values of
the coordinates v queries) is identical to the view v has of the codeword wi, and
so 〈v, w〉 = 〈v, wi〉 = 0. Otherwise (i.e., Supp(v) has empty intersection with
S), by definition v “sees” only zeros, and so 〈v, w〉 = 0.

We conclude w is δ
3 -far from C, yet it passes all possible tests of query com-

plexity two. This contradicts the soundness condition, and the claim follows.
��
Proof (of Theorem 3.3): Assume for the sake of contradiction that

|C| > |F|3/δ
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Recall that (by the “key observation”) the values of all variables in a connected
component are determined by the value of a single variable in this component.
Since there are at most 3/δ large connected components in GC (because each has
cardinality at least δn/3), the contradiction hypothesis implies that there exist
two codewords x �= y that agree on all variables that reside in the large connected
components. Indeed, these two codewords x �= y, may differ on variables that
reside in the small connected components (i.e., variables in S), but Claim 3.5 says
that there are few such variables (i.e.. |S| ≤ 2δn/3). By linearity x− y ∈ C (but
x − y �= 0n), and so 0 < wt(x − y) ≤ |S| < δn. We have reached a contradiction
(because C has distance δ), and Theorem 3.3 follows.

3.3 Tightness of the Upper Bound

We remark that our upper bound is quite tight. For any δ < 1, consider the
following code Cn ⊂ F

n formed by taking 1/δ elements of F and repeating each
one of them δn times. Thus, a codeword in Cn is formed of 1/δ blocks, each block
of the form eδn for some e ∈ F (here ek means k repetitions of e).

Proposition 3.6 Cn is a linear [2, 1, 1− 2δ
3|F| ]-locally testable code with minimal

relative distance δ and size |F|1/δ.

For instance, taking F = GF (2), the soundness parameter in the proposition is
1 − δ/3.

Proof: The linearity, distance and size of Cn are self-evident. Consider the
following natural tester for Cn: Select a random block, read two random elements
in it, and accept iff the two are equal. This tester has perfect completeness and
query complexity 2. As to the soundness, let k = 1/δ and write v ∈ F

n as
(v(1), . . . , v(k)), where v(i) is the i-th block of v (i.e., |v(i)| = δn). The Hamming
distance of v from Cn is the sum of the Hamming distances of the individual
blocks v(i) from the code B = {eδn : e ∈ F}.

Suppose v has relative distance at least δ/3 from Cn. Let δi denote the relative
distance of v(i) from B. Then, 1

k

∑k
i=1 δi ≥ δ/3 (and δi ≤ 1− 1

|F|). The acceptance
probability of the tester equals

1
k

k∑

i=1

(
δ2
i + (1 − δi)2

)
= 1 − 2

k

k∑

i=1

(1 − δi) · δi

≤ 1 − 2
k|F|

k∑

i=1

δi

≤ 1 − 2δ

3|F|

where the first inequality is due to δi ≤ 1 − 1
|F| . Thus, the soundness parameter

is as claimed. ��
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4 Non-linear Codes

In this section we provide upper bounds on the code size of arbitrary (i.e., possi-
bly non-linear) 2-locally testable codes. Our bounds apply only to binary codes
and testers with perfect completeness, and with good reason: There exist good
2-testable binary codes with non-perfect completeness (see [3, Sec. 6]) and there
exist good 2-testable codes with perfect completeness over ternary alphabets
(see [3, Sec. 5]). Our main result is:

Theorem 4.1 (Theorem 2.2, restated): If C ⊆ {0, 1}n is a [2, 1, s]-locally testable
code with minimal relative distance δ and s < 1, then

|C| ≤ 23/δ

The proof (presented below) generalizes that of the binary linear case (binary
means F = GF (2)), with some necessary modifications, which we briefly outline
now. In the binary linear case a test querying xi and xj forces xi = xj for all
codewords (this is the only possible linear constraint of size two over GF (2)). In
that case, the set of all tests corresponds to an undirected graph in which each
connected component forces all variables to have the same value. In the non-
linear case a test (adaptive or non-adaptive) corresponds to a 2-CNF. (Recall
that in both cases we deal with perfect completeness testers.) The set of all
tests (which is itself a 2-CNF) corresponds to a directed graph of constraints
on codewords, where the constraint xi ∨ xj translates to the pair of directed
edges x̄i → xj and x̄j → xi. In the resulting directed graph, a strongly connected
component takes the role played by the connected component in the linear case.
Namely, for any codeword, all variables in a strongly connected component are
fixed by the value of a single variable in the component. As in the linear case, we
use the properties of the code and its tester (i.e., the code’s large distance and
the fact that the tester rejects any word that is far from the code with non-zero
probability) to show that the weight of the small strongly connected components
is small. Hence, the code is determined by a small number of large connected
components.

Proof of Theorem 4.1

Again, we view the n codeword coordinates as variables and the set of tests
(which are 2-CNFs) as inducing constraints on these variables. We stress that
each test (even an adaptive one) can be represented by a 2-CNF.9 Let F be
the conjunction of all non-trivial deterministic tests that are used by a 2-query
tester that has perfect completeness with respect to C. We look at the satisfying
assignments of F , and use this to bound the size of C. If F includes a clause of

9 In general, an adaptive test querying k variables is a decision tree of depth k. It is
easy to verify that (the function computed by) such a tree can be represented both
as a k-CNF and as a k-DNF.
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size 1 then C is redundant. Thus, assuming non-redundancy of C implies that F
can be represented by a 2-CNF in which each clause has exactly two literals.

We examine the following directed graph GF . The vertex set of GF is the
set of literals {x1, x̄1 . . . , xn, x̄n}. For each clause (� ∨ �′) ∈ F we introduce in
GF one directed edge from �̄ to �′, and one from �̄′ to �. We use the notation
� � �′ to indicate the existence of a directed path from � to �′ in GF . We use
the notation w(�) to denote the value of literal � under assignment w to the
underlying variables. Identifying True with 1 and False with 0, we have

Claim 4.2 (folklore): The following two conditions are equivalent

1. The assignment w satisfies F .
2. For every directed edge � � �′ it holds that w(�) ≤ w(�′).

A strongly connected component in a directed graph G is a maximal set of vertices
C ⊆ V (G) such that for any v, v′ ∈ C it holds that v � v′. For two strongly
connected components C and C′ in G, we say C � C′ iff there exist v ∈ C and
v′ ∈ C′ such that v � v′. (Indeed, this happens iff for all v ∈ C, v′ ∈ C′ it holds
that v � v′.)

By Claim 4.2, w satisfies all constraints corresponding to edges of a strongly
connected component C iff w(�) = w(�′) for all �, �′ ∈ C. So, any satisfying
assignment w either sets to 1 all literals in C, or sets them all to 0. In the first
case we say that w(C) = 1 and in the latter we say w(C) = 0.

Let L be the set of literals belonging to large strongly-connected components,
where a component is called large iff its cardinality is at least δn/3. Consider an
arbitrary assignment ρ′ to the variables of L that can be extended to a satisfying
assignment (to F). In particular, ρ′ does not falsify any clause of F (i.e., no clause
of F is set to 0 by ρ′). A literal � �∈ L is said to be forced by ρ′ if there exists
�′ ∈ L such that �′ � � and ρ′(�′) = 1. This is because any satisfying assignment
to F that extends ρ′ must set � to 1 (since for such an assignment ρ it must
holds that ρ(�) ≥ ρ(�′) = 1. Indeed, the complementary literal (i.e., �̄) is forced
to 0. Let ρ be the closure of ρ′ obtained by (iteratively) fixing all forced literals
to the value 1 (and their complementary literals to 0). By definition, ρ does not
falsify F . Let Sρ be the set of unfixed variables under ρ.

Claim 4.3 For any closure ρ of an assignment that satisfies L, it holds that
|Sρ| ≤ 2δn/3.

Proof: Otherwise, let C1, . . . , Ck be a topological ordering of the unfixed
strongly connected components comprising Sρ, where the ordering is according
to � (as defined above). (Indeed, the digraph defined on the Ci’s by � is acyclic.)
For j = 0, . . . , k, let v(j) be the assignment extending ρ defined by:

v(j)(Ci) =
{

0 i ≤ j
1 i > j

By Claim 4.2, each assignment v(j) satisfies F . Since C is 2-locally testable with
soundness s < 1, each word that is at distance at least δ/3 from C must falsify
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some clause in F . But since v(j) satisfies F , it must be that v(j) is within dis-
tance δ/3 from some codeword, denoted w(j). By the constradiction hypothesis,
we have ∆(v(0), v(k)) = |Sρ|/n > 2δ/3, which implies w(0) �= w(k) (because
∆(v(0), v(k)) ≤ ∆(v(0), w(0)) + ∆(w(0), w(k)) + ∆(w(k), v(k)), which is upper-
bounded by 2 · (δ/3) + ∆(w(0), w(k))). It follows that

∆(v(k), w(0)) ≥ ∆(w(k), w(0)) − ∆(w(k), v(k)) ≥ δ − (δ/3) = 2δ/3

On the other hand, recall that ∆(v(0), w(0)) ≤ δ/3. Since, for each j, it holds
that ∆(v(j), v(j+1)) < δ/3 (because |Cj | < δn/3), there must be j ∈ {0, 1, . . . , k}
such that δ/3 ≤ ∆(v(j), w(0)) ≤ 2δ/3. For this j, it holds that ∆(v(j), C) ≥ δ/3.
But v(j) satisfies F and so it is accepted by the tester with probability 1, in
contradiction to the soundness condition. ��

Our proof is nearly complete. As in the proof of Theorem 3.3, assume for the
sake of contradiction that

|C| > 2δ/3

In this case, there must be two distinct codewords w �= u that agree on all
large connected components. Let ρ′ be the restriction of w to the variables of
the large connected components. That is, ρ′ agrees with w and with u on the
assignment to all variables in L and is unfixed otherwise. Let ρ be the closure of
ρ′ (obtained by forcing as above). Note that w and u are satisfying assignments
to F that agree on ρ′, so they also must agree on ρ (which is forced by ρ′). Thus,
by Claim 4.3

0 < ∆(u, w) ≤ |Sρ|/n < δ

This contradicts the hypothesis that the minimal distance of C is δ, and the
theorem follows.
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Appendix: A General Proposition Regarding Property
Testing

In Section 3.1, we used the fact that, without loss of generality, a perfect-
completeness codeword-tester for a linear code makes only linear tests. This
fact is a special case of the following general (folklore) proposition:

Proposition A.1 Let M be an oracle machine for the promise problem (Πyes,
Πno) such that for every x ∈ Πyes it holds that Pr[Mx = 1] = 1 (i.e., M has
perfect completeness). Then, modifying M such that it outputs 1 if and only if
its view is consistent with some x′ ∈ Πyes may only improve its performance.
That is, denoting the modified machine by M̃ , we have Pr[M̃x = 1] = 1 for
every x ∈ Πyes and Pr[M̃x = 1] ≤ Pr[Mx = 1] for every x.

In our case, the property being tested is belonging to a certain linear subspace,
and thus in our case consistecy (among two answers) means satisfying a linear
condition.

Proof: Let us fix a contents r to the random-tape of M , and denote by viewx
M (r)

the view of machine M on random-tape r and access to oracle x. Then, machine
M̃ accepts on random-tape r and access to oracle x if and only if viewx

M (r)
equals viewx′

M (r) for some x′ ∈ Πyes (where the condition may be determined by
scanning all x′ ∈ Πyes and computing the corresponding viewx′

M (r)’s). Clearly,
Pr[M̃x = 1] = 1 for every x ∈ Πyes (by considering x′ = x). On the other
hand, for every x and r, if Mx(r) �= 1 then by the one-sided feature of M it
must be that viewx

M (r) differs from viewx′
M (r) for all x′ ∈ Πyes. It follows that

M̃x(r) �= 1 too. Thus, Pr[M̃x �= 1] ≥ Pr[Mx �= 1], and the proposition follows.
��
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