ELEMENTS OF THE THEORY OF COMPUTATION Second Edition Harry
R. Lewis Gordon McKay Professor of Computer Science Harvard University
and Dean of Harvard College Cambridge, Massachusetts Christos H.
Papadimitriou C. Lester Hogan Professor of Electrical Engineering and
Computer Science University of California Berkeley, California PRENTICE-
HALL, Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data Lewis, Harry R. Elements
of the theory of computation / Harry R. Lewis and Christos H. Papadimitriou.
— 2nd ed. p. cm. Includes bibliological references and index. ISBN: 0-13-
262478-8 1. Machine theory. 2. Formal languages. 3. Computational
complexity. 4. Logic, Symbolic and mathematical. 1. Papadimitriou, Christos
H. II. Title. QA267.149 1998 511.3—dc21 97-13879 CIP Publisher: Alan Apt
Development Editor: Sondra Chavez Editorial/Production Supervision:
Barbara Kraemer Managing Editor: Bayani Mendoza Deleon Editor-in-Chief:
Marcia Horton Assistant Vice President of Production and Manufacturing:
David W. Riccardi Art Director: Jayne Conte Manufacturing Manager: Trudy
Pisciottt Manufacturing Buyer: Donna Sullivan Editorial Assistant: Toni Holm
©1998 by Prentice-Hall, Inc. Simon & Schuster / A Viacom Company Upper
Saddle River, New Jersey 07458 All rights reserved. No part of this book may
be reproduced, in any form or by any means, without permission in writing
from the publisher. The author and publisher of this book have used their best
efforts in preparing this book. These efforts include the development, research,
and testing of the theories and programs to determine their effectiveness. The
author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The
author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs. Printed in the United States of America
10 98765432 ISBN D-13-StSMT7fi-fi Prentice-Hall International (UK)
Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall
Canada Inc., Toronto Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-
Hall of India Private Limited, New Delhi Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore Editora Prentice-Hall do Brasil,
Ltda., Rio de Janeiro

To our daughters

Contents Preface to the First Edition vii Preface to the Second Edition ix
Introduction 1 1 Sets, Relations, and Languages 5 1.1 Sets 5 1.2 Relations and
functions 9 1.3 Special types of binary relations 13 1.4 Finite and infinite sets
20 1.5 Three fundamental proof techniques 23 1.6 Closures and algorithms 30
1.7 Alphabets and languages 42 1.8 Finite representations of languages 47
References 52 2 Finite Automata 55 2.1 Deterministic finite automata 55 2.2
Nondeterministic finite automata 63 2.3 Finite automata and regular
expressions 75 2.4 Languages that are and are not regular 86 2.5 State
minimization 92 2.6 Algorithmic aspects of finite automata 102 References 110
3 Context-free Languages 113 3.1 Context-free grammars 113 3.2 Parse trees
122 3.3 Pushdown automata 130 3.4 Pushdown automata and context-free
grammars 136 3.5 Languages that are and are not context-free 143 3.6
Algorithms for context-free grammars 150

3.7 Determinism and parsing 158 References 175 4 Turing machines 179 4.1
The definition of a Turing machine 179 4.2 Computing with Turing machines
194 4.3 Extensions of Turing machines 200 4.4 Random access Turing
machines 210 4.5 Nondeterministic Turing machines 221 4.6 Grammars 227
4.7 Numerical functions 233 References 243 5 Undecidability 245 5.1 The
Church-Turing thesis 245 5.2 Universal Turing machines 247 5.3 The halting
problem 251 5.4 Unsolvable problems about Turing machines 254 5.5
Unsolvable problems about grammars 258 5.6 An unsolvable tiling problem
262 5.7 Properties of recursive languages 267 References 272 6
Computational Complexity 275 6.1 The class V 275 6.2 Problems, problems...
278 6.3 Boolean satisfiability 288 6.4 The class MV 292 References 299 7
NP-completeness 301 7.1 Polynomial-time reductions 301 7.2 Cook's
Theorem 309 7.3 More /V'"P-complete problems 317 7.4 Coping with ./VP-
completeness 333 References 350 Index 353

Preface to the First Edition This book is an introduction, on the undergraduate
level, to the classical and contemporary theory of computation. The topics
covered are, in a few words, the theory of automata and formal languages,
computability by Turing machines and recursive functions, uncomputability,
computational complexity, and math- mathematical logic. The treatment is
mathematical but the viewpoint is that of com- computer science; thus the

chapter on context-free languages includes a discussion of parsing, and the
chapters on logic establish the soundness and completeness of resolution
theorem-proving. In the undergraduate curriculum, exposure to this subject
tends to come late, if at all, and collaterally with courses on the design and
analysis of al- algorithms. It is our view that computer science students should
be exposed to this material earlier —as sophomores or juniors— both because
of the deeper insights it yields on specific topics in computer science, and
because it serves to establish essential mathematical paradigms. But we have
found teaching to a rigorous undergraduate course on the subject a difficult
undertaking because of the mathematical maturity assumed by the more
advanced textbooks. Our goal in writing this book has been to make the
essentials of the subject accessible to a broad undergraduate audience in a way
that 1s mathematically sound but presupposes no special mathematical
experience. The whole book represents about a year's worth of coursework.
We have each taught a one-term course covering much of the material in
Chapters 1 through 6, omitting on various occasions and in various
combinations the sec- sections of parsing, on recursive functions, and on
particular unsolvable decision problems. Other selections are possible; for
example, a course emphasizing com- computability and the foundations of
mechanical logic might skip quickly over Chap- Chapters 1 through 3 and
concentrate on Chapters 4, 6, 8, and 9. However, it 1s used, our fervent hope is
that the book will contribute to the intellectual development

Preface of the next generation of computer scientists by introducing them at an
early stage of their education to crisp and methodical thinking about
computational problems. We take this opportunity to thank all from whom we
have learned, both teachers and students. Specific thanks go to Larry
Denenberg and Aaron Temin for their proofreading of early drafts, and to
Michael Kahl and Oded Shmueli for their assistance and advice as teaching
assistants. In the spring of 1980 Al- Albert Meyer taught a course at M.L.T.
from a draft of this book, and we thank him warmly for his criticisms and
corrections. Of course, the blame for any re- remaining errors rests with us
alone. Renate D'Arcangelo typed and illustrated the manuscript with her
characteristic but extraordinary perfectionism and rapidity.

Preface to the Second Edition Much has changed in the fifteen years since the
Elements of the Theory of Com- Computation first appeared —and much has

remained the same. Computer science is now a much more mature and
established discipline, playing a role of ever in- increasing importance in a
world of ubiquitous computing, globalized information, and galloping
complexity —more reasons to keep in touch with its foundations. The authors
of the Elements are now themselves much more mature and busy —that is why
this second edition has been so long in coming. We undertook it because we
felt that a few things could be said better, a few made simpler —some even
omitted altogether. More importantly, we wanted the book to reflect how the
theory of computation, and its students, have evolved during these years.
Although the theory of computation is now taught more widely in absolute
terms, its relative position within the computer science curriculum, for
example vis a vis the subject of algorithms, has not been strengthened, hi fact,
the field of the design and analysis of algorithms is now so mature, that its
elementary principles are arguably a part of a basic course on the theory of
computation. Besides, undergraduates today, with their extensive and early
computational experience, are much more aware of the applications of
automata in compilers, for example, and more suspicious when simple models
such as the Turing machine are presented as general computers. Evidently, the
treatment of these subjects needs some updating. Concretely, these are the
major differences from the first edition: o0 Rudiments of the design and analysis
of algorithms are introduced infor- informally already in Chapter 1 (in
connection with closures), and algorith- algorithmic questions are pursued
throughout the book. There are sections on algorithmic problems in connection
with finite automata and context-free grammars in Chapters 2 and 3 (including
state minimization and context- free recognition), algorithms for easy variants
of A”P-complete problems,

Preface and a section that reviews algorithmic techniques for "coping with
AfV- completeness" (special case algorithms, approximation algorithms, back-
backtracking and branch-and-bound, local improvement, and simulated anneal -
annealing algorithms). o The treatment of Turing machines in Chapter 4 is more
informal, and the simulation arguments are simpler and more quantitative. A
random access Turing machine is introduced, helping bridge the gap between
the clum- clumsiness of Turing machines and the power of computers and
programming languages. o We included in Chapter 5 on undecidability some
recursive function the- theory (up to Rice's Theorem). Grammars and recursive
numerical functions are introduced and proved equivalent to Turing machines

earlier, and the proofs are simpler. The undecidability of problems related to
context-free grammars is proved by a simple and direct argument, without
recourse to the Post correspondence problem. We kept the tiling problem,
which we revisit in the Ar'P-completeness chapter. o Complexity is done in a
rather novel way: In Chapter 6, we define no other time bounds besides the
polynomial ones —thus V is the first complexity class and concept
encountered. Diagonalization then shows that there are exponential problems
not in V. Real-life problems are introduced side-by- side with their language
representations (a distinction that is deliberately blurred), and their
algorithmic questions are examined extensively. o There is a separate AfP-
completeness chapter with a new, extensive, and, we think, pedagogically
helpful suite of A”“P-completeness reductions, cul- culminating with the
equivalence problem for regular expressions —closing a full circle to the first
subject of the book. As mentioned above, the book ends with a section on
algorithmic techniques for "coping with MV- completeness." o There are no
logic chapters in the new edition. This was a difficult decision, made for two
reasons: According to all evidence, these were the least read and taught
chapters of the book; and there are now books that treat this subject better.
However, there is extensive treatment of Boolean logic and its satisfiability
problems in Chapter 6. o Overall, proofs and exposition have been simplified
and made more informal at some key points. In several occasions, as in the
proof of the equivalence of context-free languages and pushdown automata,
long technical proofs of inductive statements have become exercises. There are
problems following each section. As a result of these changes, there is now at
least one more way of teaching out of the material of this book (besides the
ones outlined in the first edition, and the ones that emerged from its use): A
semester-length course aiming at the

Preface coverage of the basics of both the theory of computation and
algorithms may be based on a selection of material from Chapters 2 through 7.
We want to express our sincere thanks to all of our students and colleagues
who provided feedback, ideas, errors, and corrections during these fifteen
years— it 1s impossible to come up with a complete list. Special thanks to
Martha Sideri for her help with the revision of Chapter 3. Also, many thanks to
our editor, Alan Apt, and the people at Prentice-Hall —Barbara Kraemer,
Sondra Chavez, and Bayani de Leon— who have been so patient and helpful.
In the present second printing, many errors have been corrected. We are in-

indebted to Carl Smith, Elaine Rich, Ray Miller, James Grimmelmann, Rocio
Guillen, Paliath Narendran, Kuo-Liang Chung Zhizhang Shen, Hua Ren,
Charles Wells, Eric Thomson, Eric Fried, Jeremy Dawson, and especially
Mikkel Nygaard Hansen, for pointing out errors to us, and to Barbara Taylor-
Laino for making sure they were corrected. Finally, we would appreciate
receiving error reports or other comments, preferably by electronic mail to the
address elements@cs.berkeley.edu. Con- Confirmed errors, corrections, and
other information about the book can also be obtained by writing to this
address.

ELEMENTS OF THE THEORY OF COMPUTATION

Introduction Look around you. Computation happens everywhere, all the time,
initiated by everybody, and affecting us all. Computation can happen because
computer scientists over the past decades have discovered sophisticated
methods for man- managing computer resources, enabling communication,
translating programs, de- designing chips and databases, creating computers
and programs that are faster, cheaper, easier to use, more secure. As it is
usually the case with all major disciplines, the practical successes of computer
science build on its elegant and solid foundations. At the basis of physical
sciences lie fundamental questions such as what is the nature of matter? and
what is the basis and origin of organic life? Computer science has its own set
of fundamental questions: What is an algorithm? What can and what cannot be
computed? When should an algorithm be considered practically feasible? For
more than sixty years (starting even before the advent of the electronic
computer) computer scientists have been pondering these questions, and
coming up with ingenious answers that have deeply influenced computer
science. The purpose of this book is to introduce you to these fundamental
ideas, models, and results that permeate computer science, the basic paradigms
of our field. They are worth studying, for many reasons. First, much of modern
com- computer science is based more or less explicitly on them —and much of
the rest should... Also, these ideas and models are powerful and beautiful,
excellent examples of mathematical modeling that is elegant, productive, and
of lasting value. Besides, they are so much a part of the history and the
"collective sub- subconscious" of our field, that it is hard to understand
computer science without first being exposed to them. It probably comes as no
surprise that these ideas and models are mathemat- mathematical in nature.

Although a computer is undeniably a physical object, it is also 1

2 Introduction true that very little that is useful can be said of its physical
aspects, such as its molecules and its shape; the most useful abstractions of a
computer are clearly mathematical, and so the techniques needed to argue
about them are necessarily likewise. Besides, practical computational tasks
require the ironclad guarantees that only mathematics provides (we want our
compilers to translate correctly, our application programs to eventually
terminate, and so on). However, the mathematics employed in the theory of
computation is rather different from the mathematics used in other applied
disciplines. It 1s generally discrete, in that the emphasis is not on real numbers
and continuous variables, but on finite sets and sequences. It is based on very
few and elementary concepts, and draws its power and depth from the careful,
patient, extensive, layer-by-layer manipula- manipulation of these concepts —
just like the computer. In the first chapter you will be reminded of these
elementary concepts and techniques (sets, relations, and induction, among
others), and you will be introduced to the style in which they are used in the
theory of computation. The next two chapters, Chapters 2 and 3, describe
certain restricted mod- models of computation capable of performing very
specialized string manipulation tasks, such as telling whether a given string,
say the word punk, appears in a given text, such as the collective works of
Shakespeare; or for testing whether a given string of parentheses is properly
balanced —Ilike () and (())(), but not)(). These restricted computational
devices (called finite-state automata and pushdown automata, respectively)
actually come up in practice as very useful and highly optimized components of
more general systems such as circuits and compilers. Here they provide fine
warm-up exercises in our quest for a formal, general definition of an algorithm.
Furthermore, it is instructive to see how the power of these devices waxes and
wanes (or, more often, is preserved) with the addition or removal of various
features, most notably of nondeterminism, an in- intriguing aspect of
computation which is as central as it is (quite paradoxically) unrealistic. In
Chapter 4 we study general models of algorithms, of which the most ba- basic
is the Turing machine,' a rather simple extension of the string-manipulating
devices of Chapters 2 and 3 which turns out to be, surprisingly, a general
frame- Named after Alan M. Turing A912-1954), the brilliant English
mathematician and philosopher whose seminal paper in 1936 marked the
beginning of the theory of computation (and whose image, very appropriately,

adorns the cover of this book). Turing also pioneered the fields of artificial
intelligence and chess-playing by computer, as well as that of morphogenesis
in biology, and was instrumental in breaking Enigma, the German naval code
during World War II. For more on his fascinating life and times (and on his
tragic end in the hands of official cruelty and bigotry) see the book Alan
Turing: The Enigma, by Andrew Hodges, New York: Simon Schuster, 1983.

Introduction 3 work for describing arbitrary algorithms. In order to argue this
point, known as the Church- Turing thesis., we introduce more and more
elaborate models of com- computation (more powerful variants of the Turing
machine, even a random access Turing machine and recursive definitions of
numerical functions), and show that they are all precisely equivalent in power
to the basic Turing machine model. The following chapter deals with
undecidability, the surprising property of certain natural and well-defined
computational tasks to lie provably beyond the reach of algorithmic solution.
For example, suppose that you are asked whether we can use tiles from a given
finite list of basic shapes to tile the whole plane. If the set of shapes contains a
square, or even any triangle, then the answer is obviously "yes." But what if it
consists of a few bizarre shapes, or if some of the shapes are mandatory, that
is, they must be used at least once for the tiling to qualify? This is surely the
kind of complicated question that you would like to have answered by a
machine. In Chapter 5 we use the formalism of Turing machines to prove that
this and many other problems cannot be solved by computers at all. Even when
a computational task is amenable to solution by some algorithm, it may be the
case that there is no reasonably fast, practically feasible algorithm that solves
it. In the last two chapters of this book we show how real-life com-
computational problems can be categorized in terms of their complexity:
Certain problems can be solved within reasonable, polynomial time bounds,
whereas others seem to require amounts of time that grow astronomically,
exponentially. In Chapter 7 we identify a class of common, practical, and
notoriously difficult problems that are called MV -complete (the traveling
salesman problem is only one of them). We establish that all these problems
are equivalent in that, if one of them has an efficient algorithm, then all of them
do. It is widely believed that all TV"P-complete problems are of inherently
exponential complexity; whether this conjecture is actually true 1s the famous V
MV problem, one of the most important and deep problems facing
mathematicians and computer scientists today. This book is very much about

algorithms and their formal foundations. However, as you are perhaps aware,
the subject of algorithms, their analysis and their design, is considered in
today's computer science curriculum quite separate from that of the theory of
computation. In the present edition of this book we have tried to restore some
of the unity of the subject. As a result, this book also provides a decent, if
somewhat specialized and unconventional, introduction to the subject of
algorithms. Algorithms and their analysis are introduced informally in Chapter
1, and are picked up again and again in the context of the restricted models of
computation studied in Chapters 2 and 3, and of the natural computational
problems that they spawn. This way, when general models of algorithms are
sought later, the reader is in a better position to appreciate the scope of the
quest, and to judge its success. Algorithms play a

4 Introduction major role in our exposition of complexity as well, because
there is no better way to appreciate a complex problem than to contrast it with
another, amenable to an efficient algorithm. The last chapter culminates in a
section on coping with J\fV-completeness, where we present an array of
algorithmic techniques that have been successfully used in attacking TV"P-
complete problems (approximation algorithms, exhaustive algorithms, local
search heuristics, and so on). Computation is essential, powerful, beautiful,
challenging, ever-expanding —and so is its theory. This book only tells the
beginning of an exciting story. It is a modest introduction to a few basic and
carefully selected topics from the treasure chest of the theory of computation.
We hope that it will motivate its readers to seek out more; the references at the
end of each chapter point to good places to start.

Sets, Relations, and Languages 1.1 SETS They say that mathematics is the
language of science —it is certainly the lan- language of the theory of
computation, the scientific discipline we shall be studying in this book. And
the language of mathematics deals with sets, and the com- complex ways in
which they overlap, intersect, and in fact take part themselves in forming new
sets. A set is a collection of objects. For example, the collection of the four
letters a, 6, ¢, and d is a set, which we may name L; we write L= {a, b,c, d}.
The objects comprising a set are called its elements or members. For example,
b is an element of the set L; in symbols, b £ L. Sometimes we simply say that b
1s in L, or that L contains b. On the other hand, z 1s not an element of L, and we
write z £ L. In a set we do not distinguish repetitions of the elements. Thus the

set {red, blue, red} is the same set as {red, blue}. Similarly, the order of the
elements 1s immaterial; for example, {3,1,9}, {9,3,1}, and {1,3,9} are the
same set. To summarize: Two sets are equal (that is, the same) if and only if
they have the same elements. The elements of a set need not be related in any
way (other than happening to be all members of the same set); for example, {3,
red, {d, blue}} is a set with three elements, one of which is itself a set. A set
may have only one element; it is then called a singleton. For example, {1} is
the set with 1 as its only element; thus {1} and 1 are quite different. There is
also a set with no element at all. Naturally, there can be only one such set: it is
called the empty set, and is denoted by 0. Any set other than the empty set is
said to be nonempty. So far we have specified sets by simply listing all their
elements, separated by commas and included in braces. Some sets cannot be
written in this way,

6 Chapter 1: SETS, RELATIONS, AND LANGUAGES because they are
infinite. For example, the set N of natural numbers is infinite; we may suggest
its elements by writing N = {0,1,2,...}, using the three dots and your intuition in
place of an infinitely long list. A set that is not infinite is finite. Another way to
specify a set is by referring to other sets and to properties that elements may or
may not have. Thus if/ = {1,3,9} and G = {3,9}, G may be described as the set
of elements of / that are greater than 2. We write this fact as follows. G = {x: x
E I'and x is greater than 2}. In general, if a set A has been defined and P is a
property that elements of A may or may not have, then we can define a new set
B = {x: xE A and x has property P}. As another example, the set of odd
natural numbers 1s O = {x: x E N and x is not divisible by 2}. Aset Ais a
subset of a set B —in symbols, A C B— if each element of A is also an
element of B. Thus O C N, since each odd natural number is a natural number.
Note that any set 1s a subset of itself. If A is a subset of B but A is not the same
as B, we say that A is a proper subset of B and write A C B. Also note that the
empty set is a subset of every set. For if B is any set, then fiCB, since each
element of 0 (of which there are none) is also an element of B. To prove that
two sets A and B are equal, we may prove that AC B and B C A. Every
element of A must then be an element of B and vice versa, so that A and B have
the same elements and A = B. Two sets can be combined to form a third by
various set operations, just as numbers are combined by arithmetic operations
such as addition. One set operation is union: the union of two sets is that set
having as elements the objects that are elements of at least one of the two given

sets, and possibly of both. We use the symbol U to denote union, so that All B
= {x:xE Aor xE B}. For example, {1,3,9} U {3,5,7} = {1,3,5,7,9}. The
intersection of two sets is the collection of all elements the two sets have in
common; thatis, An B = {x: x E A<md x £ B}.

1.1: Sets 7 For example, {1,3,9} n {3,5,7} = {3}, and {1,3,9}n{a,6,c,d} =0.
Finally, the difference of two sets A and B, denoted by A — B, is the set of all
elements of A that are not elements of B. A- B - {x:x G A and x $. B). For
example, {1,3,9} -{3,5,7} = {1,9}. Certain properties of the set operations
follow easily from their definitions. For example, if A, B, and C are sets, the
following laws hold. Idempotency A U A= A AnA = A Commutativity AUB =
B U A AnB = BnA Associativity (,4UB)UC = 1U(BuC) (AnB) nC=An(Bn
C) Distributivity (Au B)nC = (AnC)U(BDC) (AnB)UC=(AUC)n(BU
C) Absorption (AuB)nA- A {AnB)UA = A DeMorgan's laws A- (BUC) =(A
-B)n(A-C)A-(BDC)=(A-B)U(A-C) Example 1.1.1: Let us prove the
first of De Morgan's laws. Let L= A-(BUC) and R=(A-B)n(A-C); we are to
show that L=R. We do this by showing (a) LC R and (b) R C L. (a) Let x be
any element of L; thenx £ A, but x £ B and x £ C. Hence x is an element of both
A— B and A— C, and is thus an element of R. Therefore LC R. (' b) Letx £
R; then x 1s an element of both A— B and A — C, and is therefore in A but in
neither B nor C. Hence xe Abutx £ BUC, so

8 Chapter 1: SETS, RELATIONS, AND LANGUAGES Therefore R C L, and
we have established that L= 1?.<> Two sets are disjoint if they have no
element in common, that is, if their intersection is empty. It is possible to form
intersections and unions of more than two sets. If S is any collection of sets,
we write 1J S for the set whose elements are the elements of all the sets in S.
For example, if S = {{a,b}, {b, c}, {c,d}} then\JS = {a,b,c,d}; and if S =
{{n} : ne N}, that is, the collection of all the singleton sets with natural
numbers as elements, then \JS = N. In general, (J S = {x: x 6 P for some set P
G S}. Similarly, P1 S = {x: x e P for each set P e S}. The collection of all
subsets of a set A is itself a set, called the power set of A and denoted 2A. For
example, the subsets of {c, d} are {c, d} itself, the singletons {c} and {d} and
the empty set 0, so A partition of a nonempty set A is a subset II of 2A such that
0 1s not an element of II and such that each element of A is in one and only one
set in II. That is, Il is a partition of A if Il is a set of subsets of A such that A)
each element of I is nonempty; B) distinct members of I are disjoint; C) For

example, {{a, b}, {c}, {d}} 1s a partition of {a, b, c, d}, but {{fo, c}, {c, d}}
is not. The sets of even and odd natural numbers form a partition of N.
Problems for Section 1.1 1.1.1. Determine whether each of the following is
true or false. () 0 C0O (b) 06 0 (c) 06 {0} (d) 0 C {0} (e) {a,b} G {a,b,c,
{a,b}} (f) {a,b}C{ab,{a,b}} (g) {a, b} C2<°6'<0-6» (h) {{a,fo}}e2"6-"6»
(1) {a,b,{a,b}}-{a,b} = {a,b}

1.2: Relations and Functions 9 1.1.2. What are these sets? Write them using
braces, commas, and numerals only. (a) ({1,3,5}U{3,1})n{3,5,7} (¢) ({1,2,5} -
{5,793 U ({5 1,9} - {1,2,5}) (e) 20 1.1.3. Prove each of the following. (a) A
UBnC)=(AUB)n(AUC) (b) An(BuC)={AnB)uDnC) (c) inDUB)
=J4(e)*-(BnC)=(A-B)UD-C) 1.14. LetS = {a, b,c, d}. (a) What
partition of S has the fewest members? The most members? (b) List all
partitions of S with exactly two members. 1.2 RELATIONS AND
FUNCTIONS Mathematics deals with statements about objects and the
relations between them. It is natural to say, for example, that "less than" is a
relation between objects of a certain kind —namely, numbers— which holds
between 4 and 7 but does not hold between 4 and 2, or between 4 and itself.
But how can we express relations between objects in the only mathematical
language we have available at this point —that is to say, the language of sets?
We simply think of a relation as being itself a set. The objects that belong to the
relation are, in essence, the combinations of individuals for which that relation
holds in the intuitive sense. So the less-than relation is the set of all pairs of
numbers such that the first number is less than the second. But we have moved
a bit quickly. In a pair that belongs to a relation, we need to be able to
distinguish the two parts of the pair, and we have not explained how to do so.
We cannot write these pairs as sets, since {4,7} is the same thing as {7,4}. Itis
easiest to introduce a new device for grouping objects called an ordered pairJ
We write the ordered pair of two objects a and b as (a, 6); a and b are called
the components of the ordered pair (a,b). The ordered pair (a,b) is not the
same as the set {a,b}. First, the order matters: (a,b) is different from (b,a), '
True fundamentalists would see the ordered pair (a, 6) not as a new kind of
object, but as identical to {a, {a, 6}}.

10 Chapter 1: SETS, RELATIONS, AND LANGUAGES whereas {a,b} = {b,
a}. Second, the two components of an ordered pair need not be distinct; G,7) is
a valid ordered pair. Note that two ordered pairs (a, b) and (c, d) are equal

only when a = ¢ and 6 = d. The Cartesian product of two sets A and B, denoted
by A x B, is the set of all ordered pairs (a, b) withae A and b € B. For
example, A binary relation on two sets A and B is a subset of A x B. For
example, {(1,6),(1,c),C,d),(9,d)} is a binary relation on {1,3,9} and {b,c,d}.
And {(hj) 'mhj G N and 1 <j} is the less-than relation; it is a subset of N x N
—often the two sets related by a binary relation are identical. More generally,
let n be any natural number. Then if ai,.. m, an are any n objects, not necessarily
distinct, (ct\,... ,an) is an ordered tuple; for each i =1,...,n, Oj is the ith
component of (ai,...,an). An ordered m-tuple (foi,..., 6TO), where mis a
natural number, is the same as (ai,..., an) if and only if m=n and ai = fo», for 1
=1,... ,n. Thus D,4), D,4,4), (D,4), 4), and D,D,4)) are all distinct. Ordered 2-
tuples are the same as the ordered pairs discussed above, and ordered 3-, 4-,
5-, and 6-tuples are called ordered triples, quadruples, quintuples, and
sextuples, respectively. On the other hand, a sequence is an ordered n-tuple for
some unspecified n (the length of the sequence). If A\,..., An are any sets, then
the n-fold Cartesian product Ai x * * * x An is the set of all ordered n-tuples
(at,... ,an), with a, G Ai, for each1i=1,... ,n. In case all the Ai: are the same set
A, the n-fold Cartesian product A x * » x A of A with itselfis also written An.
For example, N2 is the set of ordered pairs of natural numbers. An n-ary
relation on sets A\,...,An is a subset of Axx * * m X An; 1-, 2-, and 3-ary
relations are called unary, binary, and ternary relations, respectively. Another
fundamental mathematical idea is that of a function. On the intu- intuitive level,
a function is an association of each object of one kind with a unique object of
another kind: of persons with their ages, dogs with their owners, num- numbers
with their successors, and so on. But by using the idea of a binary relation as a
set of ordered pairs, we can replace this intuitive idea by a concrete defini-
definition. A function from a set A to a set B is a binary relation R on A and B
with the following special property: for each element a £ A, there is exactly
one ordered pair in R with first component a. To 1llustrate the definition, let C
be the set of cities in the United States and let S be the set of states; and let Ri
={(xy):xeCyy£S,and £ is acity instate «/},1?2 = {(X,y) : xe S,y £ C,
and y is a city in state x}.

1.2: Relations and Functions 11 Then R\ is a function, since each city is in one
and only one state, but R2 is not a function, since some states have more than
one cityJ] In general, we use letters such as /, g, and h for functions and we
write / : A 1->- B to indicate that / 1s a function from A to B. We call A the

domain of /. If a is any element of A we write /(a) for that element b of B such
that (a, b) G /; since / s a function, there is exactly one b £ B with this
property, so /(a) denotes a unique object. The object /(a) is called the image of
a under /. To specify a function/ : A h* B, it suffices to specify f(a) for each a
£ A; for example, to specify the function R\ above, it suffices to specify, for
each city, the state in which it is located. If / : Ah* B and A' is a subset of A,
then we define f[A'] = {/(a) : ae A'} (thatis, {fo : b= f(a) for some a G 4'}).
We call fJA'] the image of .A' under /. The range of / is the image of its domain.
Ordinarily, 1f the domain of a function is a Cartesian product, one set of
parentheses 1s dropped. For example, if / : N x N h* N is defined so that the
image under / of an ordered pair (m, n) is the sum of m and n, we would write
f(m,n) = m + n rather than f{(m,n)) = m + n, simply as a matter of notational
convenience. If/ : A1 x A2 x... x An h* B is a function, and /(fli,..., an) = b,
where O1 £ Atfor1=1,... ,nand b £ B, then we sometimes call ai,...,an the
arguments of / and fo the corresponding value of /. Thus / may be specified by
giving its value for each n-tuple of arguments. Certain kinds of functions are of
special interest. A function/ : A h* B is one-to-one if for any two distinct
elements a, al G A, } {a) "/(a')- For example, if C is the set of cities in the
United States, S is the set of states, and g : S h* C is specified by g(s) = the
capital of state s for each s £ S, then g is one-to-one since no two states have
the same capital. A function/ : A h* B is onto B if each element of B is the
image under / of some element of A. The function g just specified is not onto C,
but the function Ri defined above is onto S since each state contains at least
one city. Finally a mapping / : A h* B is a bijection between .A and B if it is
both one-to-one and onto B; for example, if Co is the set of capital cities, then
the function g : S h* Co specified, as before, by g(s) = the capital of state s is a
bijection between S and Co. ' We consider Cambridge, Massachusetts, and
Cambridge, Maryland, not the same city, but different cities that happen to have
the same name.

12 Chapter 1: SETS, RELATIONS, AND LANGUAGES The inverse of a
binary relation R C A x B, denoted R~1 C B x A, is simply the relation {(&, a)
: (a, b) £ R}. For example, the relation 1?2 defined above is the inverse of Ri.
Thus, the inverse of a function need not be a function. In the case of Ri its
inverse fails to be a function since some states have more than one city; that is,
there are distinct cities ci and C2 such that 1?1(c1) = Ri(c2). A function/ : A h*
B may also fail to have an inverse if there is some element b £ B such that } {a)

7"b for all a £ A. If / : Ah* 5 1s a bijection, however, neither of these
eventualities can occur, and f~1 is a function —indeed, a bijection between B
and A. Moreover f~1(f(a)) =a for eacha £ A, and /(/~1(fo)) = 6 for each foes.
When a particularly simple bijection between two sets has been specified, it is
sometimes possible to view an object in the domain and its image in the range
as virtually indistinguishable: the one may be seen as a renaming or a way of
rewriting the other. For example, singleton sets and ordered 1-tuples are,
strictly speaking, different, but not much harm is done if we occasionally blur
the distinction, because of the obvious bijection / such that /({a}) = (a) for any
singleton {a}. Such a bijection is called a natural isomorphism; of course this
is not a formal definition since what is "natural" and what distinctions can be
blurred depend on the context. Some slightly more complex examples should
make the point more clearly. Example 1.2.1: For any three sets A, B, and C,
there is a natural isomorphism of A x B x C to (A x B) x C, namely f(a,b,c) =
((a,b),c) for any a £ A,b£ B, and c ¢ CO Example 1.2.2: For any sets A and £?,
there is a natural isomorphism <j> from nAxB that is, the set of all binary
relations on A and B, to the set {/ : / is a function from A to 2B}. Namely, for
any relation R C A x B, let <f>{R) be that function/ : A h» 2b such that /(a) =
{b:b<E B and (a, 6) G R}. For example, if 5 is the set of states and R C S x
S contains any ordered pair of states with a common border, then the naturally
associated function/ : S h* 2s 1s specified by f(s) = {s' : s' € S and s' shares a
border with s}.<>

1.3: Special Types of Binary Relations 13 Example 1.2.3: Sometimes we
regard the inverse of a function/ : A h* B as a function even when / is not a
bijection. The idea is to regard f~1 C B x A as a function from B to2A, using
the natural isomorphism described under Example 1.2.2. Thus f~1{b) is, for
any b G B, the set of all a G * such that f(a) = b. For example, if Ri is as
defined above —the function that assigns to each city the state in which it is
located— then R™1(s), where s is a state, is the set of all cities in that state. If
Q and R are binary relations, then their composition Q o 1?, or simply QR, is
the relation {(a, b) : for some c, (a, ¢) G Q and (c, 6) 6 1J}. Note that the
composition of two functions / : Ai->B and g: £7 i-> C is a function /i from
" to C such that h(a) = g(f(a)) for each a £ A. For example, if/ is the function
that assigns to each dog its owner and g assigns to each person his or her age,
then fog assigns to each dog the age of its owner.0 Problems for Section 1.2
1.2.1. Write each of the following explicitly. (a) {l}x {1,2} x {1,2,3} (b)

0x{1,2} (c) 2<1.2}x{1,2} 1.2.2. Let R = {(a,b),(a,c),(c,d),(a,a),(b,a)}. What is
R 01?, the composition of R with itself? What is R~1, the inverse of Rl Is R, R
o R, or R~1 a function? 1.2.3. Let/: Ah*Band g: Bh*C. Leth: Ah* C be
their composition. In each of the following cases state necessary and sufficient
conditions on/ and g for h to be as specified. (a) Onto. (b) One-to-one. (c) A
bijection. 1.2.4. If A and B are any sets, we write BA for the set of all
functions from A to B. Describe a natural isomorphism between {0,1} A and
2A. 1.3 SPECIAL TYPES OF BINARY RELATIONS Binary relations will be
found over and over again in these pages; it will be helpful to have convenient
ways of representing them and some terminology for discussing their
properties. A completely "random" binary relation has no significant internal
structure; but many relations we shall encounter arise out

14 Chapter 1: SETS, RELATIONS, AND LANGUAGES of specific contexts
and therefore have important regularities. For example, the relation that holds
between two cities if they belong to the same state has certain "symmetries"
and other properties that are worth noting, discussing, and exploiting. In this
section we study relations that exhibit these and similar regularities. We shall
deal only with binary relations on a set and itself. Thus, let A be a set, and R C
A x Abe arelation on A. The relation R can be represented by a directed
graph. Each element of A is represented by a small circle —what we call a
node of the directed graph— and an arrow 1s drawn from a to b if and only if
(a, b) £ R. The arrows are the edges of the directed graph. For example, the
relation R = {(a,b),(b,a),(a,d),(d,c),(c,c),(c,a)} is represented by the graph in
Figure 1-1. Note in particular the loop from ¢ to itself, corresponding to the
pair (c, ¢) £ R. From a node of a graph to another there is either no edge, or
one edge —we do not allow "parallel arrows." Figure 1-1 There is no formal
distinction between binary relations on a set A and di- directed graphs with
nodes from A. We use the term directed graph when we want to emphasize that
the set on which the relation is defined is of no independent interest to us,
outside the context of this particular relation. Directed graphs, as well as the
undirected graphs soon to be introduced, are useful as models and abstractions
of complex systems (traffic and communication networks, compu-
computational structures and processes, etc.). In Section 1.6, and in much more
detail in Chapters 6 and 7, we shall discuss many interesting computational
problems arising in connection with directed graphs. For another example of a
binary relation/directed graph, the less-than-or- equal-to relation < defined on

the natural numbers is illustrated in Figure 1-2. Of course, the entire directed
graph cannot be drawn, since it would be infinite. A relation R C Ax A is
reflexive if (a, a) e R for each a e A. The directed graph representing a
reflexive relation has a loop from each node to itself. For example, the
directed graph of Figure 1-2 represents a reflexive relation, but that of Figure
1-1 does not. A relation R C A x A is symmetric if (b, a) £ R whenever (a, b) £
R.

1.3: Special Types of Binary Relations 15 Figure 1-2 In the corresponding
directed graph, whenever there is an arrow between two nodes, there are
arrows between those nodes in both directions. For exam- example, the
directed graph of Figure 1-3 represents a symmetric relation. This directed
graph might depict the relation of "friendship" among six people, since
whenever a; is a friend of y, y 1s also a friend of x. The relation of friendship is
not reflexive, since we do not regard a person as his or her own friend. Of
course, a relation could be both symmetric and reflexive; for exam- example,
{(a, b) : aand b are persons with the same father} is such a relation. Figure 1-
3 A symmetric relation without pairs of the form (a, a) is represented as an
undirected graph, or simply a graph. Graphs are drawn without arrowheads,
combining pairs of arrows going back and forth between the same nodes. For
example, the relation shown in Figure 1-3 could also be represented by the
graph in Figure 1-4. A relation R 1s antisymmetric if whenever (a, b) 6 R and a
and b are distinct, then (b, a) £ R. For example, let P be the set of all persons.
Then {(a, b) : a,b e P and a is the father of 6}

16 Chapter 1: SETS, RELATIONS, AND LANGUAGES) O & O c/O-0Oe 6d
Figure 1-4 1s antisymmetric. A relation may be neither symmetric nor
antisymmetric; for example, the relation {(a, b) : a, b £ P and a 1s the brother of
b) and the relation represented in Figure 1-1 are neither. A binary relation R is
transitive if whenever (a, b) £ R and F, c¢) £ R, then (a, ¢) £ R. The relation {(a,
b) : a, & £ Pand a is an ancestor of b} is transitive, since if a is an ancestor of
b and b 1s an ancestor of ¢, then a is an ancestor of c. So is the less-than-or-
equal relation. In terms of the directed graph representation, transitivity is
equivalent to the requirement that whenever there is a sequence of arrows
leading from an element a to an element z, there is an arrow directly from a to
z. For example, the relation illustrated in Figure 1-5 1s transitive. Figure 1-5 A
relation that is reflexive, symmetric, and transitive is called an equiva-

equivalence relation. The representation of an equivalence relation by an
undirected graph consists of a number of clusters; within each cluster, each
pair of nodes is connected by a line (see Figure 1-6). The "clusters" of an
equivalence relation are called its equivalence classes. We normally write [a]
for the equivalence class containing an element a, provided the equivalence
relation R is under- understood by the context. That is, [a] = {b : (a,b) £ R},
or, since it! 1s symmetric, [a] = {b : F, a) £ R}. For example, the equivalence
relation in Figure 1-6 has three equivalence classes, one with four elements,
one with three elements, and one with one element.

1.3: Special Types of Binary Relations 17 0 Figure 1-6 Theorem 1.3.1: Let R
be an equivalence relation on a nonempty set A. Then the equivalence classes
of R constitute a partition of A. Proof: Let [l = {[o] : a £ A}. We must show
that the sets in II are nonempty, disjoint, and together exhaust A. All
equivalence classes are nonempty, since a £ [a] for all a £ A, by reflexivity. To
show that they are disjoint, consider any two distinct equivalence classes [a]
and [b], and suppose that [a] D [b] 0. Thus there is an element ¢ such that ¢ £
[a] and c £ [b]. Hence {a,c) £ R and (c, b) £ R; since R is transitive, (a, b) £ R;
and since R is symmetric, (b, a) £ R. But now take any element d £ [a]; then (d,
a) £ R and, by transitivity, (d, b) £ R. Hence d £ [b], so that [a] C [b].
Likewise [b] C [a]. Therefore [a] = [b]. But this contradicts the assumption
that [a] and [b] are distinct. To see that |J I = A, simply notice that each
element a of A is in some set in Il —namely, a £ [a], by reflexivity. m Thus
starting from an equivalence relation R, we can always construct a
corresponding partition I. For example, if R = {(a,b) : a and b are persons and
a and b have the same parents}, then the equivalence classes of R are all
groups of siblings. Note that the con- construction of Theorem 1.3.1 can be
reversed: from any partition, we can construct a corresponding equivalence
relation. Namely, if n is a partition of A, then R= {(a,b) : a and b belong in the
same set of I} is an equivalence relation. Thus there is a natural isomorphism
between the set of equivalence relations on a set A and the set of partitions of
A. Arelation that is reflexive, antisymmetric, and transitive is called a partial
order. For example, {(a, b) : a,b are persons and a is an ancestor of b}

18 Chapter 1: SETS, RELATIONS, AND LANGUAGES is a partial order
(provided we consider each person to be an ancestor of himself or herself). If
R C Ax Ais a partial order, an element a £ Ais called minimal if the following

is true: (b, a) £ R only if a =b. For example, in the ancestor relation defined
above, Adam and Eve are the only minimal elements. A finite partial order
must have at least one minimal element, but an infinite partial order need not
have one. A partial order R C A x A is a total order if, for all a,b £ A, either
(a, b) £R or (b, a) £ R. Thus the ancestor relation is not a total order since not
any two people are ancestrally related (for example, siblings are not); but the
less-than-or-equal-to relation on numbers is a total order. A total order cannot
have two or more minimal elements. A path in a binary relation R is a
sequence (o1,... ,an) for some n> 1 such that (a«, ai+ti) £R fori=1,...,n- 1;
this path 1s said to be from a\ to an. The length of a path (oi,..., an) is n. The
path (a\,..., an) is a cycle if the di's are all distinct and also {an,a\) £ R.
Problems for Section 1.3 1.3.1. Let R = {(o, ¢),(c.e), (e, €), (e, b), (d, b), (d,
of)}. Draw directed graphs rep- representing each of the following. (a) R (b)
R-1 (¢) tfuirl (d) RDR'I 1.3.2. Let R and S be the binary relations on A =
{1,..., 7} with the graphical representations shown in the next page. (a)
Indicate whether each of R and 5 1s (1) symmetric, (11) reflexive, and (iii)
transitive. (b) Repeat (a) for the relation R U S. 1.3.3. Draw directed graphs
representing relations of the following types. (a) Reflexive, transitive, and
antisymmetric. (b) Reflexive, transitive, and neither symmetric nor
antisymmetric. 1.3.4. Let A be a nonempty set and let R C A x A be the empty
set. Which properties does R have? (a) Reflexivity. (b) Symmetry. (¢)
Antisymmetry. (d) Transitivity. 1.3.5. Let/ : A y-* B. Show that the following
relation R is an equivalence relation on A: (a, b) £ R if and only if /(a) = /(&).

1.3: Special Types of Binary Relations 19 1.3.6. Let R C A x A be a binary
relation as defined below. In which cases is R a partial order? a total order?
(a) A— the positive integers; (a, b) £ R ifand only if b is divisible by a. (b) 1
= NxN; ((a, b)(c, d)) £ Rifand onlyifa<corb<d.(c) A=N;(a,b) €Rif
and only ifb—a or b=a+ 1. (d) A is the set of all English words; (a, b) £1?
if and only if a 1s no longer than b. (e) A is the set of all English words; (a, b) £
R if and only if a 1s the same as b or occurs more frequently than b in the
present book.

20 Chapter 1: SETS, RELATIONS, AND LANGUAGES 1.3.7. Let R\ and R*
be any two partial orders on the same set A. Show that Ri n 1?2 is a partial
order. 1.3.8. (a) Prove that if S 1s any collection of sets, then Rs = {(A,B) :
A,B £ S and A C B} is a partial order. (b) Let S =2*1'2'3*. Draw a directed

graph representing the partial order Rs defined in (a). Which are the minimal
elements of 1.3.9. Under what circumstances does a directed graph represent a
function? 1.3.10. Show that any function from a finite set to itself contains a
cycle. 1.3.11. Let 5 be any set, and let V be the set of all partitions of S. Let R
be the binary relation on V such that (n1,n2) € R if and only if for every Si e

nx, there is an S2 <E n2 such that Si C S2; if (Ili, n2) G R we say that IIi
refines n2. Show that R is a partial order on V. What elements of V are
maximal and minimal? Suppose that V were an arbitrary collection of subsets
of 2s, which need not be partitions of S. Would R necessarily be a partial
order? 1.4 FINITE AND INFINITE SETS A basic property of a finite set is its
size, that is, the number of elements it contains. Some facts about the sizes of
finite sets are so obvious they hardly need proof. For example, if A C B, then
the size of A is less than or equal to that of B; the size of A 1s zero if and only if
A is the empty set. However, an extension of the notion of "size" to infinite sets
leads to dif- difficulties if we attempt to follow our intuition. Are there more
multiples of 17 @,17,34,51,68,...) than there are perfect squares
@,1,4,9,16,...)? You are welcome to speculate on alternatives, but experience
has shown that the only satisfactory convention is to regard these sets as having
the same size. We call two sets A and B equinumerous if there is a bijection/ :
A h-> B. Recall that if there is a bijection f: A >-> B, then there is a bijection
Z : B h-> A; hence equinumerosity is a symmetric relation. In fact, as is easily
shown, it is an equivalence relation. For example, {8,red, {0,&}} and {1,2,3}
are equinumerous; let /(8) =1, /(red) =2, /({0,&}) = 3. So are the multiples of
17 and the perfect squares; a bijection is given by /A7n) =n2 for eachn £ N. In
general, we call a set finite if, intuitively, it is equinumerous with {1,2,..., n}
for some natural number n. (For n=0, {1,..., n} is the empty set, so 0 is finite,
being equinumerous with itself.) If A and {1,..., n} are equinumer-
equinumerous, then we say that the cardinality of A (in symbols, \A\) is n. The
cardinality of a finite set is thus the number of elements in it.

1.4: Finite and Infinite Sets 21 A set 1s infinite if it 1s not finite. For example,
the set N of natural numbers is infinite; so are sets such as the set of integers,
the set of reals, and the set of perfect squares. However, not all infinite sets are
equinumerous. A set is said to be countably infinite if it is equinumerous with
N, and countable if it is finite or countably infinite. A set that is not countable
is uncountable. To show that a set A is countably infinite we must exhibit a
bijection/ between A and N; equivalently, we need only suggest a way in

which A can be enumerated as A — {ao,ai,a2,...}, and so on, since such an
enumeration immediately suggests a bijection —just take/@)=a0)/(1) = ai,...
For example, we can show that the union of any finite number of countably
infinite sets is countably infinite. Let us only illustrate the proof for the case of
three pairwise disjoint, countably infinite sets; a similar argument works in
general. Call the sets A, B, and C. The sets can be listed as above: A =
{ao,ai,...}, B= {bo,bi,...}, C = {c0,Cx,...}, Then their union can be listed
asiuBuC = {a0,60, c0,01,61, c\, a2,. m.}. This listing amounts to a way of
"visiting" all the elements in A U B U C by alternating between different sets,
as illustrated in Figure 1-7. The technique of interweaving the enumeration of
several sets is called "dovetailing" (for reasons that any carpenter can give
after looking at Figure 1-7). A B C c4 Figure 1-7 The same idea can be used to
show that the union of a countably infinite collection of countably infinite sets
is countably infinite. For example, let us show that N x N is countably infinite;
note that N x N is the union of {0} x N, {1} x N, {2} x N, and so on, that is, the
union of a countably infinite collection of countably infinite sets. Dovetailing
must here be more subtle than in the

22 Chapter 1: SETS, RELATIONS, AND LANGUAGES example above: we
cannot, as we did there, visit one element from each set before visiting the
second element of the first set, because with infinitely many sets to visit we
could never even finish the first round! Instead we proceed as follows (see
Figure 1-8). A) In the first round, we visit one element from the first set: (@,0).
B) In the second round, we visit the next element from the first set, @,1), and
also the first element from the second set, A,0). C) In the third round we visit
the next unvisited elements of the first and second sets, @,2) and A,1), and
also the first element of the third set, B,0). D) In general, in the nth round, we
visit the nth element of the first set, the (n — 1)st element of the second set, and
the first element of the nth set. {4}x {3}x {2}xN1iQnigqNaQD,3)00\
C3)\boooB,4)O {I}x N {0} x N Figure 1-8 Another way of viewing this
use of dovetailing is to observe that the pair (1, j) is visited mth, where m = [(i
4-7J + 31 +j]; that is to say, the function f(i,j) = \[{i +jJ + 31 +j] is a bijection
from N x N to N (see Problem 1.4.4). At the end of the next section, we present
a technique for showing that two infinite sets are not equinumerous.

1.5: Three Fundamental Proof Techniques 23 Problems for Section 1.4 1.4.1.
Prove that the following are countable. (a) The union of any three countable

sets, not necessarily infinite or dis- disjoint. (b) The set of all finite subsets of
N. 1.4.2. Explicitly give bijections between each of the following pairs. (a) N
and the odd natural numbers. (b) N and the set of all integers. (¢) N and N x N
x N. (We are looking for formulas that are as simple as possible and involve
only such operations as addition and multiplication.) 1.4.3. Let C be a set of
sets defined as follows, 1. Dec 2. If S1 £ C and S2 £ C, then {S!,S2} £ C. 3. If
Si £ Cand S2 £ C, then Si x S2 £ C. 4. Nothing is in C except that which
follows from A), B), and C). (a) Explain carefully why it is a consequence of
A-4) that {0, {0}} £ C. (b) Give an example of a set S of ordered pairs such
that S £ C, and \S\ > 1. (c) Does C contain any infinite sets? Explain. (d) Is C
countable or uncountable? Explain. 1.4.4. Show that the dovetailing method of
Figure 1-8 visits the pair (i,j) mth, where [(1J3] 1.5 THREE
FUNDAMENTAL PROOF TECHNIQUES Every proof'is different, since
every proof is designed to establish a different result. But like games of chess
or baseball, observation of many leads one to realize that there are patterns,
rules of thumb, and tricks of the trade that can be found and exploited over and
over again. The main purpose of this section is to introduce three fundamental
principles that recur, under various disguises, in many proofs: mathematical
induction, the pigeonhole principle, and diagonalization. The Principle of
Mathematical Induction: Let A be a set of natural num- numbers such that

24 Chapter 1: SETS, RELATIONS, AND LANGUAGES A) Oe¢A, and B) for
each natural number n, if {0,1,...,n} C A, thenn+ 1 £ A. Then A= N. In less
formal terms, the principle of mathematical induction states that any set of
natural numbers containing zero, and with the property that it contains n+ 1
whenever it contains all the numbers up to and including n, must in fact be the
set of all natural numbers. The justification for this principle should be clear
intuitively; every natural number must wind up in A since it can be "reached"
from zero in a finite succession of steps by adding one each time. Another way
to argue the same idea is by contradiction; suppose A) and B) hold but A~ N.
Then some number 1s omitted from A. In particular, let n be the first number
among 0,1,2,... that is omitted from NJ Then n cannot be zero, since 0 G A by
A); and since 0,1,..., n— 1 C A by the choice of n, then n G A by B), which is
a contradiction. In practice, induction is used to prove assertions of the
following form: "For all natural numbers n, property P is true." The above
principle is applied to the set A= {n: P is true of n} in the following way. A)
In the basis step we show that 0 £ A, that is, that P is true of 0. B) The

induction hypothesis is the assumption that for some fixed but arbitrary n> 0, P
holds for each natural number 0,1,..., n. C) In the induction step we show, using
the induction hypothesis, that P is true of n + 1. By the induction principle, A is
then equal to N, that is, P holds for every natural number. Example 1.5.1: Let us
show that for anyn> 0, 1 + 2 H hn = r"'k- Basis Step. Let n= 0. Then the sum
on the left is zero, since there 1s nothing to add. The expression on the right is
also zero. 2 Induction Hypothesis. Assume that, for some n>0,1 +2 + e+
m=m+m whenever m<n. ' This is a use of another principle, called the least
number principle, that is ac- actually equivalent to the principle of
mathematical induction, so we are not really "proving" the principle of
mathematical induction. The least number principle is: If A C N and A" N,
then there 1s a unique least number n € N — A; that is, a unique number n such
thatn £ Abut0,1,...,n— 1 € A. A somewhat frivolous example of the least
number principle is the fact that there are no uninteresting numbers. For
suppose there were; then there would have to be a least such num- number, say
n. But then n would have the remarkable property of being the least
uninteresting number, which would surely make n interesting, ..

1.5: Three Fundamental Proof Techniques 25 Induction Step. 1 + 2 H+n+ (n
+1)=A+2+eee+n)+(n+1)(n+ 1) (by the induction hypothesis) Tl ~\~
TIn2+n+2n+22(n+1J+(n+1)as was to be shown.«§m Example 1.5.2:
For any finite set A, \2A\ = 21; that is, the cardinality of the power set of A is
2 raised to a power equal to the cardinality of A. We shall prove this statement
by induction on the cardinality of A. Basis Step. Let A be a set of cardinality n
=0. Then A=0, and 21 =2° = 1; on the other hand, 2A = {0}, and \2A\ = |
{0}|= 1. Induction Hypothesis. Let n > 0, and suppose that \2A\ = 2”1
provided that |4| <n. Induction Step. Let A be such that \A\=n +1. Since n> 0,
M contains at least one element a. Let £7 = A - {a}; then \B\— n. By the
induction hypothesis, \2B\ = 2Is' = 2n. Now the power set of A can be divided
into two parts, those sets containing the element a and those sets not containing
a. The latter part is just 2B, and the former part is obtained by introducing a
into each member of 2B. Thus 2A =2BU{CU{a}:C &2B}. This division in fact
partitions 2A into two disjoint equinumerous parts, so the cardinality of the
whole is twice 21B', which, by the induction hypothesis, is 2 m 2n = 2n+1, as
was to be shown.O We next use induction to establish our second fundamental
principle, the pigeonhole principle. The Pigeonhole Principle: If A and B are
finite sets and \A\ > \B\, then there 1s no one-to-one function from A to B. In

other words, if we attempt to pair off the elements of A (the "pigeons") with
elements of B (the "pigeonholes"), sooner or later we will have to put more
than one pigeon in a pigeonhole. Proof: Basis Step. Suppose \B\ =0, that is, B
= (. Then there 1s no function f : 14 B whatsoever, let alone a one-to-one
function.

26 Chapter 1: SETS, RELATIONS, AND LANGUAGES Induction Hypothesis.
Suppose that / is not one-to-one, provided that / : A h-> B, \A\>\B\, and \B\ <
n, where n > 0. Induction Step. Suppose that/ : A M- B and \A\>\B\—n + 1.
Choose some a £ A (since \A\>\B\=n+ 1> 1, A is nonempty, and therefore
such a choice is possible). If there is another element of A, say a', such that f(a)
= f{a'), then obviously / is not a one-to-one function, and we are done. So,
suppose that a is the only element mapped by / to /(a). Consider then the sets A
— {a}, B- {/(a)}, and the function g from A - {a} to B - {/(a)} that agrees
with / on all elements of A - {a}. Now the induction hypothesis applies,
because B - {/(a)} has nelements, and \A - {a}\=\A\-1 >\B\-1 =\B - {f{a)}\.
Therefore, there are two distinct elements of A - {a} that are mapped by g (and
therefore by /) to the same element of B - {&}, and hence / is not one-to-one. m
This simple fact is of use in a surprisingly large variety of proofs. We present
just one simple application here, but point out other cases as they arise in later
chapters. Theorem 1.5.1: Let R be a binary relation on a finite set A, and let
a,b £ A. If there is a path from a to b in R, then there is a path of length at most
\A\. Proof: Suppose that (o1, 02,..., an) is the shortest path froma\=atoan=b,
that is, the path with the smallest length, and suppose that n > \A\. By the
pigeonhole principle, there is an element of A that repeats on the path, say at =
aj for some 1 <1 <j <n. But then (ai,a2,...,aj,0j+Hi,... ,an) is a shorter path from
a to b, contradicting our assumption that (ai,a2,... ,an) is the shortest path from
a to b. m Finally, we come to our third basic proof technique, the
diagonalization principle. Although it is not as widely used in mathematics as
the other two principles we have discussed, it seems particularly well-suited
for proving certain important results in the theory of computation. The
Diagonalization Principle: Let R be a binary relation on a set A, and let D, the
diagonal set for R, be {a:a £ Aand (a, a) £ R}. Foreacha £ A, letRa= {b:b
£ Aand (a, b) £ R}. Then D is distinct from each Ra. If A is a finite set, then R
can be pictured as a square array; the rows and columns are labeled with the
elements of A and there is a cross in the box with row labeled a and column
labeled b just in case (a, b) £ R. The diagonal set D corresponds to the

complement of the sequence of boxes along the main diagonal, boxes with
crosses being replaced by boxes without crosses, and vice versa. The sets Ra
correspond to the rows of the array. The diagonalization principle can then be
rephrased: the complement of the diagonal is different from each row.

1.5: Three Fundamental Proof Techniques 27 Example 1.5.3: Let us consider
the relation R = {(a,b),(a,d),(b,b),(b,c), (c, ¢), (d, b), (d, ¢), (d, e), (d, /), (e,
e), (e,/), (/,a), (/,c), (/,d), (/,c)}; notice that 170 = {M}, Jfc = {b,c}, Rc =
{c},1?7d = {b,c,e.f},Re = {e, f) and Rf =[a,c,d,e]. All in all, R may be pictured
likethis;tabcdefaXbXXXcXXXXdXXeXXX/XXThe
sequence of boxes along the diagonal is Its complement is X X X X X X which
corresponds to the diagonal set D = {a, d, /}. Indeed, D is different from each
row of the array; for D, because of the way it is constructed, differs from the
first row in the first position, from the second row in the second position, and
so on.O The diagonalization principle holds for infinite sets as well, for the
same reason: The diagonal set D always differs from the set Ra on the question
of whether a is an element, and hence cannot be the same as Ra for any a. We

illustrate the use of diagonalization by a classic theorem of Georg Cantor
A845-1918).

28 Chapter 1: SETS, RELATIONS, AND LANGUAGES Theorem 1.5.2: The
set 2N 1is uncountable. Proof: . Suppose that 2N is countably infinite. That is,
we assume that that there is a way of enumerating all members of 2N as 2 =
{Ro,R1,R2, m m m} (notice that these are the sets Ra in the statement of the
diagonalization prin- principle, once we consider the relation R = {(i,j) : j £ -
Ri}). Now consider the set (this is the the diagonal set). D is a set of natural
numbers, and therefore it should appear somewhere in the enumeration {Ro,
Ri, R2, m m m} But D cannot be Ro, because it differs from it with respect to
containing 0 (it does if and only if 1?0 does not); and it cannot be R\ because it
differs from it with respect to 1; and so on. We must conclude that D does not
appear on the enumeration at all, and this is a contradiction. To restate the
argument a little more formally, suppose that D = Rk for some k> 0 (since D is
a set of natural numbers, and {Ro,R1,R,2,- m m} was supposed to be a
complete enumeration of all such sets, such a k must exist). We obtain a
contradition by asking whether k £ R”- (a) Suppose the answer is yes, k £ Rk-
Since D — {n £ N : n £ Rn}, it follows that k £ D; but D = Rk, a contradiction.
(b) Suppose the answer is no, k £ Rk~, then k £ D. But D is Rk, so k £ Rk,

another contradiction. We arrived at this contradiction starting from the
assumption that 2N is countably infinite, and continuing by otherwise
impeccably rigorous mathemat- mathematical reasoning; we must therefore
conclude that this asumption was in error. Hence 2N is uncountable. m For a
different rendering of this proof, in terms of establishing that the set of real
numbers in the interval [0,1] is uncountable, see Problem 1.5.11. Problems for
Section 1.5 1.5.1. Show by induction that

1.6: Closures and Algorithms 29 1.5.2. Show by induction that n4 — 4n2 is
divisible by 3 for all n> 0. 1.5.3. What is wrong with the following purported
proof that all horses are the same color? Proof by induction on the number of
horses: Basis Step. There is only one horse. Then clearly all horses have the
same color. Induction Hypothesis. In any group of up to n horses, all horses
have the same color. Induction Step. Consider a group of n +1 horses. Discard
one horse; by the induction hypothesis, all the remaining horses have the same
color. Now put that horse back and discard another; again all the remaining
horses have the same color. So all the horses have the same color as the ones
that were not discarded either time, and so they all have the same color. 1.5.4.
Show that, if A and B are any finite sets, then there are \B\\A\ functions from A
to B. 1.5.5. Prove by induction: Every partial order on a nonempty finite set
has at least one minimal element. Need this statement be true if the requirement
of finiteness 1s lifted? 1.5.6. Show that in any group of at least two people
there are at least two persons that have the same number of acquaintances
within the group. (Use the pigeonhole principle.) 1.5.7. Suppose we try to
prove, by an argument exactly parallel to the proof of Theorem 1.5.2, that the
set of all finite subsets of N is uncountable. What goes wrong? 1.5.8. Give
examples to show that the intersection of two countably infinite sets can be
either finite or countably infinite, and that the intersection of two uncountable
sets can be finite, countably infinite, or uncountable. 1.5.9. Show that the
difference of an uncountable set and a countable set is un- uncountable. 1.5.10.
Show that if S is any set, then there 1s a one-to-one function from S to 2s, but
not vice versa. 1.5.11. Show that the set of all real numbers in the interval
[0,1] is uncountable. (Hint: It is well known that each such number can be
written in binary notation as an infinite sequence of Os and Is —such as
.0110011100000... Assume that an enumeration of these sequences exists, and
create a "diag- "diagonal" sequence by "flipping" the ith bit of the ith
sequence.)

30 Chapter 1: SETS, RELATIONS, AND LANGUAGES 1.6 CLOSURES
AND ALGORITHMS Consider the two directed graphs R and R* in Figure 1-
9 (a) and (b). R* contains R; also, R* is reflexive and transitive (whereas R is
neither). In fact, it is easy to see that R* is the smallest possible directed graph
that has these properties —that is, contains R, is reflexive, and is transitive (by
"smallest" we mean the one with the fewest edges). For this reason, R* is
called the reflexive transitive closure of R. We next define this useful concept
formally: Definition 1.6.1: Let R C A2 be a directed graph defined on a set A.
The reflexive transitive closure of R is the relation R*= {(a, b) : a, b € A and
there is a path froma to b in R.} Notice the interesting contrast between the
definition "from below" artic- articulated in Definition 1.6.1 and the informal
definition "from above" whereby we introduced the reflexive transitive closure
(the smallest relation that contains R and is reflexive and transitive). It is
perhaps intuitively clear that the two defini- definitions are equivalent.
Towards the end of this section we shall study more closely such "definitions
from above," and the reason why they always correspond to an alternative
definition "from below." Algorithms Definition 1.6.1 immediately suggests an
algorithm for computing the reflexive transitive closure R* of any given binary
relation R over some finite set A = {ai,a2,. ..,an}:

1.6: Closures and Algorithms 31 Initially R* ;=0 for i = 1,... ,n do for each i-
tuple (&i,..., &*) G Al do if (bi,...,b1) is a path in R then add (&1,6)) to R*.
The rigorous study of algorithms is in some sense what this book is all about;
but to give a formal definition of an algorithm at this point would be to spoil
the nice story we have to tell. Until a formal general model for algo-
algorithms is introduced, we shall be treating algorithms informally and
somewhat nonrigorously, gradually increasing our insight and familiarity. It
will then be clear that our definition of an algorithm, when its time comes,
indeed captures correctly this important concept. Accordingly, this section only
contains an intuitive treatment of algorithms and an informal introduction to
their analysis. Fortunately, it is easy to tell an algorithm when you see one. The
procedure we describe above for computing R* is a detailed and unambiguous
sequence of instructions that produces a result —what we call R*. It consists
of elementary steps which we may reasonably assume are easy to carry out:
Initializing R* to 0, adding new elements to R*, testing whether (bj,bj+1) £ R
—this latter has to be done 1 - 1 times in the last line of the algorithm to test
whether (&i,..., bt) is a path of R. We assume that somehow this algorithm

operates on elements of A and R directly, so we need not specify how such sets
and relations are represented for manipulation by the algorithm. We shall next
argue that the relation R* computed by this algorithm is indeed the reflexive
transitive closure of R (that is, the algorithm is correct). The reason is that our
algorithm is just a straightforward implementation of Definition 1.6.1. It adds
to R*, initially empty, all pairs of elements of A that are connected by a path in
R. Possible paths are checked one by one, in increasing length. We stop at
sequences of length n because, by Theorem 1.5.1, if two nodes of A are
connected by a path, then there is a path of length n or less that connects them.
It 1s thus clear that our algorithm will eventually terminate with the cor- correct
answer. One question that will prove most important and relevant to our
concerns in this book is, after how many steps will it terminate? In the last part
of the book we shall develop a whole theory of how the answer to such
questions is calculated, and when the result is deemed satisfactory. But let us
proceed informally for now. What we need is an indication of how many
elementary steps, how much "time," the algorithm requires when presented
with a relation R as an input. As it is reasonable to expect that the algorithm
will take more time on larger input relations, the answer will depend on how
large the input relation is —more concretely, it will depend on the number n of
elements in the set A. Thus, we are seeking a function/ : N h> N such that, for
eachn> 1, if the algorithm is

32 Chapter 1: SETS, RELATIONS, AND LANGUAGES presented with a
binary relation R C A x A with \A\ =n, it will terminate after at most f(n) steps.
As is typical in the analysis of algorithms, we shall allow /(n) to be a rough
overestimate, as long as it has the correct rate of growth. Rates of growth are
thus our next topic. The Growth of Functions Of these three functions from the
set of natural numbers to itself, which is the largest? /(n) = 1,000,000-n; g(n) =
10 -n3; h(n) = 2" Although for all values of n up to about a dozen we have f(n)
> g(n) > h(n), 1t should be intuitively clear that the correct ranking is the exact
opposite; if we take n large enough we shall eventually have f(n) < g(n) < h(n).
In this subsection we shall develop the concepts necessary for ranking such
functions according to their ultimate potential for producing large values.
Definition 1.6.2: Let/ : N 4 N be a function from the natural numbers to the
natural numbers. The order of /, denoted O(f), is the set of all functions j:Nh>N
with the property that there are positive natural numbers ¢ > 0 and d > 0 such
that, for all n £ N, g{n) <c m f(n) + d. If in fact this inequality holds for all n,

we say that g(n) G 0{f(n)) with constants ¢ and d. If for two functions f,g: N
M- N we have that/ £ O(g) and g £ O(/), then we write / x g. It is clear that the
relation x defined on functions is an equivalence relation: It is reflexive
(because always / £ O(f), with constants 1 and 0) and it is symmetric (because
the roles of / and g are completely interchangeable in the definition of x).
Finally, it is transitive. Because suppose that / £ O(g) with constants ¢, d, and g
£ O(h) with constants ¢',d'. Then for all n, f(n) <c m g(n) +d <c m (c m h(n) +
d)+d=(cec)h(n)+(d+c-d'). Thus/ £ O(h) with constants ¢ * ¢' and d + ¢
m d'. Thus, all functions from the set of natural numbers to itself are partitioned
by x into equivalence classes. The equivalence class of / with respect to x is
called the rate of growth of /. Example 1.6.1: Consider the polynomial f(n) =
31n2 + Yin + 3. We claim that f(n) £ O(n2). To see this, notice that n2 > n, and
so /(n) <48n2 + 3, and thus f(n) £ O(n2) with constants 48 and 3. Of course,
also n2 € O(f(n)) —with constants 1 and 0. Hence n2 x 31n2 m++ 17n+ 3, and
the two functions have the same rate of growth. Similarly, for any polynomial
of degree d with nonnegative coefficients f(n) = adnd + a<i-ind~] + m m m +
a\n + a0

1.6: Closures and Algorithms 33 where a* > 0 for all 1, and a* > 0, it is easy to
prove that f(n) £ O(nd) —with constants “2i=1 at and ao- All polynomials of
the same degree have the same rate of growth. Consider then two polynomials
with different degrees; do they also have the same rate of growth? The answer
here 1s negative. Since all polynomials with the same degree have the same
rate of growth, it suffices to consider the two simplest representatives, namely
two polynomials of the formnl and v?, with 0 <i <j. Obviously, nl £ 0{vP)
with constants 1 and 0. We shall prove that n' 1 0{nl). Suppose for the sake of
contradiction that indeed *n? £ O{nl) with constants ¢ and d. That is, for all n £
N n? <en' + d. But this is easily found to be absurd by tryingn=c + d: ¢(c +
d)i+d<{c + d)i+1 <(c¢ + d);. To summarize, for any two polynomials / and g, if
they have the same degree then / x g. Otherwise, if g has larger degree than /,
then / £ O(g) but g £ O(f); that is, g has higher rate of growth than f.() Example
1.6.2: The previous example suggests that the rate of growth of a polynomial is
captured by its degree. The larger the degree of / the higher the rate of growth.
But there are functions with rate of growth higher than that of any polynomial.
A simple example is the exponential function 2™, Let us first establish that, for
all n £ N, n <2™, We shall use induction on n. The result certainly holds when
n= 0. So, suppose that it holds for all natural numbers up to and including n.

Then we have n+ 1 <2n+ 1 <2" + 2" =2"+1, where 1in the first inequality we
used the induction hypothesis, and in the second we used the fact that 1 < 2n for
all n. We shall now extend this easy fact to all polynomials. We shall show that
for any 1> 1, n* £ 0B"); that is, ni<c2n+d A) for appropriate constants ¢ and d.
Take ¢ = Bil and d = (i2l. There are two cases: If n <12, then the inequality
holds because nl < d. If on the other hand n > 12, then we shall show that the
inequality A) again holds because now nl < c2n. In proof, let m be the quotient
of n divided by 1 —the unique integer

34 Chapter 1: SETS, RELATIONS, AND LANGUAGES such that im <n< im +
1. Then we have nl <{im + il by the definition of m=1\m + 1)* <iiBm+1)1 by
the inequality n < 2" applied to n=m+ 1 <c2mi by recalling that ¢ = Bi)*
<c2™ again by the definition of m. Thus the rate of growth of any polynomial
is no faster than that of 2n. Can a polynomial have the same rate of growth as
2"? If so, then any polynomial of larger degree would have the same rate of
growth as well; and we saw in the previous example that polynomials of
different degrees have different rates of growth. We conclude that 2™ has a
higher rate of growth than any polynomial. Other exponential functions, such as
5T nT™ nl 2™ | or, worse, 22 , have even higher rates of growth.* Analysis
of Algorithms Polynomial and exponential rates of growth arise very naturally
in the analysis of algorithms. For example, let us derive a rough estimate of the
number of steps taken by the algorithm for the reflexive transitive closure
introduced in the beginning of this section. The algorithm examines each
sequence (&i,...,6)) of length up to n to determine whether it is a path of R, and,
if the answer is "yes," it adds (&1, 6;) tb R*. Each such repetition can
definitely be carried out in n or fewer "elementary operations" —testing
whether (a, b) £ R, adding (a, b) to R*. Thus, the total number of operations
can be no more than n- (1 + n+ n2 H hn"), which is in O(nn+1). We have thus
determined that the rate of growth of the time requirements of this algorithm is
O(nn+1). This outcome is rather disappointing because it is an exponential
function, with an even higher rate of growth than 2™. This algorithm is not
efficient at all! The question then arises, is there a faster algorithm for
computing the reflexive transitive closure? Consider the following: Initially R*
:=RU {(a1,ai) : a, e A} while there are three elements ai,aj,ak G A such that
(ai,aj),(aj,ak) £ R* but (ai,ak) $ R* do: add (a,i,ak) to R*.

1.6: Closures and Algorithms 35 This algorithm is perhaps even more natural

and intuitive than the first one. It starts by adding to R* all pairs in R and all
pairs of the form (aj,aj) —thus guaranteeing that R* contains R and 1s
reflexive. It then repeatedly looks for violations of the transitivity property.
Presumably this search for violations proceeds in some organized way not
spelled out exactly in the algorithm, say by running through all values of a;, for
each of them through all values of aj, and finally of a”. If such a violation is
discovered then it is corrected by adding an appropriate pair to R*, and the
search for a violation must start all over again. If at some point all triples are
examined and no violation is found, the algorithm terminates. When the
algorithm terminates, R* will certainly contain R, and it will be reflexive;
besides, since no violation was found in the last iteration of the while loop, R*
must be transitive. Furthermore, R* is the smallest relation that has all these
properties (and it is thus the sought reflexive transitive closure of R). To see
why, suppose that there is a proper subset of R*, call it Ro, that contains R, and
is reflexive and transitive. Consider then the first pair that does not belong to
Ro, and still was added to R* by the algorithm. It cannot be a pair in R, or a
pair of the form (a,, a;), because all these pairs do belong to Ro. Thus, it must
be a pair (a,i,ak) such that both (a1,a,j) and (a,j,ak) belong to R* at that point
—and therefore also to Ro, since (ai,a,k) was the first pair in which the two
relations differ. But then Ro, by hypothesis a transitive relation, must also
contain (a”, a") —a contradiction. Therefore, the result will be the reflexive
transitive closure of R and the algorithm is correct. But when will the
algorithm terminate? The answer is after at most n2 iterations of the while
loop. This is because after each successful iteration a pair (ai,a,k) is added to
R* that was not there before, and there are at most n2 pairs to be added. Hence
the algorithm will terminate after at most n2 iterations. And since each
iteration can be carried out in O(n3) time (all triples of elements of A need to
be searched), the complexity of the new algorithm is O(n2 x n3) = O(n5) —a
polynomial rate of growth, and thus a spectacular improvement over our
exponential first attempt. ai O O* 6a3 Figure 1-10 Example 1.6.3: Let us see
how the new algorithm performs on the graph in Figure 1-10. We start in the
first line with the graph plus all self-loops. Suppose

36 Chapter 1: SETS, RELATIONS, AND LANGUAGES that the search for
triples (0j, a,, a") that violate transitivity is conducted in the "natural" order
(ai,ai,ai),(al,al,a2),..., @1,01,04), (ai,a2,ai), (ai,a2,a2),.. .,@4,04,04). The
first violation thus discovered is (@"04,03), so edge @,1,0,3) is added. We

next start checking all triples from the beginning —because the introduction of
(a1, a3) may have caused a violation of transitivity in a triple that was
examined in the previous iteration. Indeed, the next violation discovered is
@1,03,02), and so @1,02) is added. We start once again from the beginning,
this time to discover a violation for @4, a3,02) —edge (a4,02) is added. In the
next iteration we go through all triples without discovering a violation, and
hence we conclude that we have computed the reflexive transitive closure of
the graph. ”* This example illustrates the source of our algorithm's relative
inefficiency, reflected in the steep n5 growth of its complexity: A triple
(01,05,0k) must be tested again and again for possible violation of transitivity,
since a newly inserted pair may create new violations in triples that have been
already checked. Can we do better? In particular, is there a way to order the
triples so that newly added pairs never introduce transitivity violations in the
already examined triples? Such an ordering would yield an O(n3) algorithm,
because each triple would then have to be examined once and only once. As it
turns out, such an ordering is possible: We order all triples (a,, Oj, ajt) to be
searched in increasing j —the middle index! We first look systematically for
violations of transitivity of the form (aj, a®afc); those that are found are
corrected by adding the appropriate pairs, and the search continues from the
point it stopped. Once all triples of the form (aj,ai,afc) have been examined,
we look at all triples of the form @1,02, a*), then @",03,0"), and so on. The
precise order in which the triples within each group are examined is
immaterial. Once we examine the last group, all triples of the form (a1, an, a%),
then we stop, having computed the reflexive transitive closure. The full
algorithm is this: Initially R* := RU {(ai,a1) : at G A) for eachj =1,2,..., ndo
foreachi=1,2,...,nand k= 1,2,..., ndo if (ai,a)), (aj,ak) G R* but (a,,ofc) *
R* then add (ai,ak) toR*. Why does this idea work? Consider a path
(aio,ail,...,aik 1,aih) fromaio to aik, where 1 <1ij <n for all j. Define the rank
of the path to be the largest integer among ix,... ,ik-i~, that is, the largest index
appearing in any intermediate node. Trivial paths, such as edges and self-
loops, have rank zero, as they have no intermediate nodes. With this
terminology we can argue about the correctness of our latest algorithm. In
particular, we can prove the following statement: For each j =

1.6: Closures and Algorithms 37 0,... ,n, immediately after the jth execution of
the outer loop, R* contains all pairs (ai,ak) such that there is a path of rank j or
less from a% to a*, in R. Notice that, since all paths have rank at most n, this

implies that in the end all pairs joined by any path will have been added in R*.
The proof of this statement 1s by induction on j. The result is certainly true
when j = 0 —no iterations yet, and accordingly R* contains only pairs
connected by trivial paths, of rank 0. For the induction hypothesis, suppose that
the result holds for j up to some value, say m <n, and consider the m + 1st
iteration. We must show that the m + 1st iteration adds to R* precisely those
pairs that are connected in R by paths of rank equal to m+ 1, that is, in which
the highest-indexed node is am | 1. If two nodes a” and o/t are connected by
such a path, then they must be connected by such a path in which am+i appears
exactly once —if aTO | 1 appears more than once, then omit the portion of the
path between the first and the last appearance— while all other intermediate
nodes are indexed m or less. And such a path would consist of a path of rank m
or less froma; to am | i, followed by a path of rank m or less from am+i to o/t.
By the induction hypothesis, both pairs (ai,am+1) and (am+i,ak) must be in R*
at this point. Therefore, the algorithm will discover that (a»,om+i), (om+i,0fc)
£ R* but (a,, ak) £ R*, and will add the pair {ai,au) to R*. Conversely, the m +
Ist iteration will add to R* only pairs (0j, a,) that are connected by a path of
rank exactly m+ 1. The algorithm is correct. Example 1.6.3 (continued): If we
apply this algorithm to the graph in Figure 1-10, no edges are added whenj =1
and j = 2. Then when j = 3 the edge @4,02) is added, and when j — A the
edges @1,03) and (ax, a2) are added. 0 Closure Properties and Closures The
transitive closure of a relation is just one instance of an important style of
defining larger sets (or relations) starting from smaller ones. Definition 1.6.3:
Let D be a set, letn> 0, and let R C Dn+1 be a (n+ 1)- ary relation on D. Then
a subset B of D 1s said to be closed under R if 6nt+1 £ B whenever 61,..., bn £
B and F1,..., bn, bnt1) £ R. Any property of the form "the set B is closed under
relations Ri, R2,..., Rm" is called a closure property of B. Example 1.6.4: The
set of a person's ancestors is closed under the relation {(o, b) : a and b are
persons, and 6 is a parent of 0}, since the parent of an ancestor is also an
ancestor.”)

38 Chapter 1: SETS, RELATIONS, AND LANGUAGES Example 1.6.5: Let A
be a fixed set. We say that set S satisfies the inclusion property associated with
A if A CS. Any inclusion property is a closure property, by taking the relation
R to be the unary relation {(a) : a £ A} (notice that we must take n=0 in
Definition 1.6.3).0 Example 1.6.6: We shall occasionally say that a set A C D
is closed under a function f: Dk h-> D. There should be no mystery as to what

this means, since a function is a special kind of relation. For example, we may
say that the natural numbers are closed under addition. We mean that for any m,
n G N we also have m+ n G N —since (m, n, m+ n) is a triple in the "addition
relation" over the natural numbers. N is also closed under multiplication, but it
is not closed under subtraction.) Example 1.6.7: Since relations are sets, we
can speak of one relation as being closed under one or more others. Let D be a
set, let Q be the ternary relation on D2 (that is, a subset of (D x £>K) such that
Q={((a,b),{b,c),(a,c)):a,b,c£ED}. Then a relation R C D x D is closed under Q
if and only if it is transitive. We conclude that transitivity is a closure property.
On the other hand, refiexivity is a closure property, because it is the inclusion
property of the set {(d,d) :d£ D}.Q A common type of mathematical
construction is to pass from a set A to the minimal set B that contains A and has
property P. By "minimal set B" we mean "a set B that does not properly
include any other set B' that also contains A and has property P." Care must be
taken, when a definition of this form is used, that the set B 1s well denned, that
is, that there exists only one such minimal set. Since a set of sets can have
many minimal elements or none at all, whether B is well denned depends on
the nature of property P. For example, if P is the property "has either b or ¢ as
an element" and A = {a}, then B is not well denned since both {a, 6} and {a,
c} are minimal sets with A as a subset and with property P. However, as the
following result guarantees, if P is a closure property, then the set B is always
well defined: Theorem 1.6.1: Let P be a closure property defined by relations
on a set D, and let A be a subset of D. Then there 1s a unique minimal set B that
contains A and has property P. Proof: Consider the set of all subsets of D that
are closed under R\,..., Rm and that have A as a subset. We call this set of sets
S. We need to show that S

1.6: Closures and Algorithms 39 has a unique minimal element B. It is easy to
see that S 1s nonempty, since it contains the "universe" D —itself trivially
closed under each Ri, and certainly containing A. Consider then the set B
which 1s the intersection of all sets in S, First, B 1s well defined, because it 1s
the intersection of a non-empty collection of sets. Also, it is easy to see that it
contains A —since all sets in S do. We next claim that B is closed under all
Ri's. Suppose that a\,..., ani-\ G B, and (o1,..., onj_1,0nj) G Ri- Since B is the
intersection of all sets in S, it follows that all sets in S contain ai,...,ani-\. But
since all sets in S are closed under Ri, they all also contain ani. Therefore B
must contain ani, and hence B is closed under Rt. Finally B 1s minimal,

because there can be no proper subset Bl of B that has these properties (B'
contains A and is closed under the R”s). Because then B1 would be a member
of <S, and thus it would include B. m We call B in Theorem 1.6.1 the closure
of A under the relations R\,..., Rm. Example 1.6.8: The set of all your ancestors
(where we assume that each person is an ancestor of her- or himself) is the
closure of the singleton set containing only yourself under the relation {(a, b) :
a and b are persons, and 6 is a parent of a}.<> Example 1.6.9: The set of
natural numbers N is the closure under addition of the set {0,1}. N 1s closed
under addition and multiplication, but not under subtraction. The set of integers
(positive, negative, and zero) is the closure of N under subtraction.”) Example
1.6.10: The reflexive, transitive closure of a binary relation R over some finite
set A denned as R* = {(a, b) : there is a pathin R froma to 6} (recall
Definition 1.6.1) richly deserves its name: It turns out that it is the closure of R
under transitivity and reflexivity —both closure properties. First, R* is
reflexive and transitive; for there is a trivial path froma to a for any element a,
and if there 1s a path from a to 6, and a path from b to c, then there is a path
froma to c. Also, clearly R C 1?7*, because there 1s a path from a to 6 whenever
(a, 6) G R. Finally, R* is minimal. For let (a,b) G R*. Since (a,b) G R*, there
is a path (a = oi,..., a/t =b) froma to b. It follows by induction on k that (a, b)
must belong to any relation that includes R and is transitive and reflexive.

40 Chapter 1: SETS, RELATIONS, AND LANGUAGES The reflexive,
transitive closure of a binary relation is only one of several possible closures.
For example, the transitive closure of a relation R, denoted R+, is the set of all
(a,b) such that there is a nontrivial path from a to b in R —it need not be
reflexive. And the reflexive, symmetric, transitive closure of any relation
(there 1s no special symbol) is always an equivalence relation. As we shall
show next, there are polynomial algorithms for computing all of these closures.
0 Any closure property over a finite set can be computed in polynomial time!
Suppose that we are given relations R\ C Dri,..., R* C Drk of various arities
over the finite set D, and a set A C £>; we are asked to compute the closure A*
of Aunder R\,..., Rk m This can be carried out in polynomial time by a
straightfor- straightforward generalization of the O(n5) algorithm we devised
for the transitive closure problem in the last subsection: Initially A* := A while
there is an index 1, 1 <1 <k, and r, elements a,jx,...,ajr. 1 G A* and aJr G D -
A* such that (a,j1,.. .,a,jr.) £ Ri do: add ajr. to A*. It is a straightforward
extension of our argument for the transitive closure algorithm, which we leave

as an exercise (Problem 1.6.9), to show that the above algorithm is correct,
and that it terminates after O(nr+1) steps, where n=\D\ and r 1s the largest
integer among ri,..., r &. It follows that the closure of any given finite set under
any closure property defined in terms of given relations of fixed arity can be
computed in polynomial time. As a matter of fact, in Chapter 7 we shall prove
a very interesting converse statement: Any polynomial-time algorithm can be
rendered as the computation of the closure of a set under some relations of
fixed arity. In other words, the polynomial algorithm for closure shown above
is the mother of all polynomial algorithms. Problems for Section 1.6 1.6.1. Are
the following sets closed under the following operations? If not, what are the
respective closures? (a) The odd integers under multiplication. (b) The
positive integers under division. (¢) The negative integers under subtraction.
(d) The negative integers under multiplication. (¢) The odd integers under
division. 1.6.2. What is the reflexive transitive closure R* of the relation R =
{(a,b), (a, ¢), (a,d), (d, ¢), (d, e)}? Draw a directed graph representing R*.

1.7: Alphabets and Languages 41 1.6.3. Is the transitive closure of the
symmetric closure of a binary relation nec- necessarily reflexive? Prove it or
give a counterexample. 1.6.4. Let R C A x A be any binary relation. (a) Let Q =
{(a, b) : a, b G A and there are paths in R froma to 6 and from 6 to a}. Show
that Q 1s an equivalence relation on A. (b) Let II be the partition of A
corresponding to the equivalence relation Q. Let 11 be the relation {(S,T) : 5,
T G II and there is a path in R from some member of S to some member of T}.
Show that TZ is a partial order on II. 1.6.5. Give an example of a binary
relation that is not reflexive but has a transitive closure that is reflexive. 1.6.6.
Recall the three functions in the beginning of the subsection on rates of growth:
/(n) =1,000,000-n; g(n) = W-n3; h{n) = 2n. What are appropriate constants ¢
and d for the inclusions f(n) G O(g(n)), f(n) G O{h(n)), and g(n) G O(h(n)O
What is the smallest integer n such that the values /(n) < g(n) <h(nO 1.6.7.
Arrange these functions in order of increasing rate of growth. Identify any
functions with the same rate of growth: 1.6.8. You have five algorithms for a
problem, with these running times: 106n, 10V, n4, 2n, n! (a) Your computer
executes 108 steps per second. What is the largest size n you can solve by each
algorithm in a second? (b) In a day? (Assume that a day is 105 seconds). (c)
How would the numbers in (a) and (b) change if you bought a computer ten
times faster? 1.6.9. Show that the algorithm given in the end of this section
correctly computes the closure of a set A C D under the relations Ri C DVLI,...,

R” C Drk in O(nr) time, where n= [D|, and r is the maximum of the arities t\,...,
r&. (Hint: The argument is a straightforward generalization of the one for the
O(nd) transitive closure algorithm.)

42 Chapter 1: SETS, RELATIONS, AND LANGUAGES 1.7 ALPHABETS
AND LANGUAGES The algorithms we studied informally in the last section
have much that is left vague. For example, we have not specified exactly how
the relations R and R* that need to be accessed and modified are represented
and stored. In computational practice, such data are encoded in the computer's
memory as strings of bits or other symbols appropriate for manipulation by a
computer. The mathematical study of the theory of computation must therefore
begin by understanding the mathematics of strings of symbols. We start with the
notion of an alphabet: a finite set of symbols. An ex- example is, naturally, the
Roman alphabet {a, b,..., z} . An alphabet particularly pertinent to the theory of
computation is the binary alphabet {0,1}. In fact, any object can be in an
alphabet; from a formal point of view, an alphabet is simply a finite set of any
sort. For simplicity, however, we use as symbols only letters, numerals, and
other common characters such as $, or #. A string over an alphabet is a finite
sequence of symbols from the alphabet. Instead of writing strings with
parentheses and commas, as we have written other sequences, we simply
juxtapose the symbols. Thus watermelon is a string over the alphabet
{a,b,...,z},and 0111011 is a string over {0,1}. Also, using the natural
isomorphism, we identify a string of only one symbol with the symbol itself;
thus the symbol a is the same as the string a. A string may have no symbols at
all; in this case it is called the empty string and is denoted by e. We generally
use u, v, X, y, z, and Greek letters to denote strings; for example, we might use
w as a name for the string abc. Of course, to avoid confusion it is a good
practice to refrain from using as symbols letters we also use as names of
strings. The set of all strings, including the empty string, over an alphabet £ is
denoted by £*. The length of a string is its length as a sequence; thus the length
of the string acrd is 4. We denote the length of a string w by [w/; thus [101| =3
and |e| = 0. Alternatively (that is, via a natural isomorphism) a string w £ T,*
can be considered as a function w : {1,..., [w|} h->S; the value of w(j), where
1 <j <\w\, is the symbol in the jth position of w. For example, if w =
accordion, then wC) = wB) = ¢, and w(l) = a. This alternative viewpoint
brings out a possible point of confusion. Naturally, the symbol ¢ in the third
position is identical to that in the second. If, however, we need to distinguish

identical symbols at different positions in a string, we shall refer to them as
different occurrences of the symbol. That is, the symbol a e £ occurs in the jth
position of the string w £ S* if w(j) = a. Two strings over the same alphabet
can be combined to form a third by the operation of concatenation. The
concatenation of strings x and y, written X o y or simply Xy, is the string x
followed by the string y; formally, w =x o y if

1.7: Alphabets and Languages 43 and only if \w\ =\x\ + \y\, w(j) = x(j) for j =
1,..., x|, and w(\x\ + j) = y(j) for j = 1,..., \y\. For example, 01 0 001 = 01001,
and beach o boy = beachboy. Of course, w oe = eow = w for any string w. And
concatenation 1s associative: (wWx)y = w {xy) for any strings w, X, and y. A
string v is a substring of a string w if and only if there are strings x and y such
that w = xvy. Both x and y could be e, so every string is a substring of itself;
and taking x =w and v =y = e, we see that e is a substring of every string. If w
= xv for some X, then v is a suffix of w; if w = vy for some y, then u is a prefix
of w. Thus road is a prefix of roadrunner, a suffix of abroad, and a substring of
both these and of broader. A string may have several occurrences of the same
substring; for example, ababab has three occurrences of ab and two of abab.
For each string w and each natural number 1, the string id1 is defined as w° =e,
the empty string wl+1 =wl o w for each 1 > 0 Thus w1 = w, and do2 = dodo.
This definition is our first instance of a very common type: definition by
induction. We have already seen proofs by induction, and the underlying idea is
much the same. There 1s a basis case of the definition, here the definition of wl
for 1 = 0; then when that which is being denned has been specified for all j <1,
itis defined for j =1 + 1. In the example above, wz+1 is defined in terms of
1d1. To see exactly how any case of the definition can be traced back to the
basis case, consider the example of do2. According to the definition (with1 =
1), (doJ = (dol odo. Again according to the definition (with 1 = 0) (dol —
(doH odo. Now the basis case applies: (doH =e. So (doJ = (eodo)odo =
dodo. The reversal of a string w, denoted by wR, is the string "spelled back-
backwards" : for example, reversell = esrever. A formal definition can be
given by induction on the length of a string: A) If w 1s a string of length 0, then
wR =w =e. B) If w is a string of lengthn + 1 > 0, then w = ua for some a £ S,
and wR — auR. Let us use this definition to illustrate how a proof by induction
can depend on a definition by induction. We shall show that for any strings w
and x, (wx)R = xRwR. For example, (dogcat)R = (cat)R(dog)R = tacgod. We
proceed by induction on the length of x. Basis Step. \x\ = 0. Then x = e, and

(Wwx)R = (we)R = wR =ewR = eRwR = xRwR. Induction Hypothesis. If \x\ <
n, then (Wx)R = xRwR.

44 Chapter 1: SETS, RELATIONS, AND LANGUAGES Induction Step. Let [x|
=n+ 1. Then x = ua for some u £ S* and a £ £ such that [w|=n. (to)" =
(1u(«a))fi since x = ua =((wu)a)R since concatenation is associative =a(wu)R
by the definition of the reversal of (wu)a =auRwR by the induction hypothesis
= (ua)RwR by the definition of the reversal of ua =xRwR since x = ua Now we
move from the study of individual strings to the study of finite and infinite sets
of strings. The simple models of computing machines we shall soon be
studying will be characterized in terms of regularities in the way they handle
many different strings, so it is important first to understand general ways of
describing and combining classes of strings. Any set of strings over an
alphabet £ —that is, any subset of £%— will be called a language. Thus £*, 0,
and £ are languages. Since a language 1s simply a special kind of set, we can
specify a finite language by listing all its strings. For example, {aba,czr,d,/} is
a language over {a,b,...,z} . However, most languages of interest are infinite, so
that listing all the strings is not possible. Languages that might be considered
are {0,01,011,0111,...}, {w £ {0,1}* : w has an equal number of 0's and 1's},
and {w £ £* : w = wR}. Thus we shall specify infinite languages by the
scheme L= {w £ £* : w has property P}, following the general form we have
used for specifying infinite sets. If S is a finite alphabet, then S* is certainly
infinite; but is it a countably infinite set? It is not hard to see that this is indeed
the case. To construct a bi- jection /:N4 £*, first fix some ordering of the
alphabet, say S = {a\,..., an}, where oi,... ,an are distinct. The members of S*
can then be enumerated in the following way. A) For each k> 0, all strings of
length k are enumerated before all strings of length k + 1. B) The nk strings of
length exactly k are enumerated lexicographically, that is, aix ... aik precedes
ajl ... ajk, provided that, for some m, 0 <m <k — 1, ie=jeioT£=l,...,m, and 1
For example, if S = {0,1}, the order would be as follows: e,
0,1,00,01,10,11,000,001,010,011,...

1.7: Alphabets and Languages 45 If £ is the Roman alphabet and the ordering
of £=1a\,..., a"} is the usual one {a,...,z}, then the lexicographic order for
strings of equal length is the order used in dictionaries; however, the ordering
described by A) and B) for all strings in £* differs from the dictionary
ordering by listing shorter strings before longer ones. Since languages are sets,

they can be combined by the set operations of union, intersection, and
difference. When a particular alphabet £ 1s understood from context, we shall
write A —the complement of A— instead of the differ- difference £* - A. In
addition, certain operations are meaningful only for languages. The first of
these is the concatenation of languages. If L\ and L2 are languages over £, their
concatenation is L=L\o L2, or simply L= LiL2, where L= {w E T,* : w =x
oy for some x G L\and y G L2}. For example, if £ = {0,1}, L\={w G £*: w
has an even number of 0's} and L2 = {w : w starts with a 0 and the rest of the
symbols are 1's}, then LxoL2 = {w : w has an odd number of 0's}. Another
language operation is the Kleene star of a language L, denoted by L*. L* is the
set of all strings obtained by concatenating zero or more strings from L. (The
concatenation of zero strings is e, and the concatenation of one string is the
string itself.) Thus, L* = {w G £*: w =u>\0 * * * 0 Wk for some k> 0 and
some wi,..., w/t G L}. For example, if L= {01,1,100}, then 110001110011 G
L*, since 110001110011 =10100001 0101000 1 o 1, and each of these
strings 1s in L. Note that the use of S* to denote the set of all strings over S is
consistent with the notation for the Kleene star of S, regarded as a finite
language. That is, if we let L= S and apply the definition above, then S* 1s the
set of all strings that can be written as wi o m m m 0 wk for some k> 0 and
some wi,..., Wk G S. Since the W{ are then simply individual symbols in S, it
follows that S* is, as originally denned, the set of all finite strings whose
symbols are in S. For another extreme example, observe that 0* = {e}. For let
L =0 in the above definition. The only possible concatenation w\o u>2 © e ¢«
wj, with k> 0 and wi,..., Wk G L s that with k = 0, that is, the concatenation of
zero strings; so the sole member of L* in this case is e! As a final example, let
us show that if L is the language {w G {0,1}* : w has an unequal number of 0's
and 1's}, then L* = {0,1} *. To see this, first note that for any languages L\ and
L2, if L\ CI2, then L\ C L\ as is evident from the definition of Kleene star.
Second, {0,1} C L, since each of 0 and 1, regarded as a string, has an unequal
number of 0's and I's. Hence {0,1}* C L*; but L* C {0,1}* by definition, so L*
={0,1}*

(¢]

46 Chapter 1: SETS, RELATIONS, AND LANGUAGES We write L+ for the
language LL*. Equivalently, L+ is the language {w 6 £*: w=u>\ow2o0°°*°*0
Wk for some k> 1 and some it»i,... ,tu*; 6 £}. Notice that L+ can be
considered as the closure of L under the function of concatenation. That 1s, L+
is the smallest language that includes L and all strings that are concatenations

of strings in L. Problems for Section 1.7 1.7.1. (a) Prove, using the definition
of concatenation given in the text, that con- concatenation of strings 1s
associative. (b) Give an inductive definition of the concatenation of strings. (c)
Using the inductive definition from (b), prove that the concatenation of strings
is associative. 1.7.2. Prove each of the following using the inductive definition
of reversal given in the text. (a) (WR)R = w for any string w. (b) If vis a
substring of w, then VR is a substring of wR. (c¢) (1u')fi — (wRy for any string
wandi>0.1.7.3. Let S = {oi,... ,a,26} be the Roman alphabet. Carefully
define the binary relation < on £* such that x <y if and only if x would precede
y in a standard dictionary. 1.7.4. Show each of the following. (a) {e}* = {e}
(b) For any alphabet S and any L C £*, (L*)* = L*. (c¢) If a and b are distinct
symbols, then {a,b}* = {a}*({6} {a}*)*- (d) If S is any alphabet, ¢ £ Lx C E*
and e 6 L2 C £*, then (Li£*L2)* = £*. (e) For any language L, OL=10 = 0.
1.7.5. Give some examples of strings in, and not in, these sets, where £ = {a,
b}. (a) {w: for some uE ££, w = uuRu] (b) {w : inn=www} (c¢) {w : for
some «,»E£ £* uvw =uwu} (d) {w : for some it £ £*, www =uu} 1.7.6. Under
what circumstances is L+ =L* - {e}? 1.7.7. The Kleene star of a language L is
the closure of L under which relations?

1.8: Finite Representations of Languages 47 1.8 FINITE REPRESENTATIONS
OF LANGUAGES A central issue in the theory of computation is the
representation of languages by finite specifications. Naturally, any finite
language is amenable to finite rep- representation by exhaustive enumeration of
all the strings in the language. The issue becomes challenging only when
infinite languages are considered. Let us be somewhat more precise about the
notion of "finite representation of a language." The first point to be made 1s that
any such representation must itself be a string, a finite sequence of symbols
over some alphabet E. Second, we certainly want different languages to have
different representations, otherwise the term representation could hardly be
considered appropriate. But these two requirements already imply that the
possibilities for finite representation are severely limited. For the set E* of
strings over an alphabet E 1s countably infinite, so the number of possible
representations of languages is countably infinite. (This would remain true
even if we were not bound to use a particular alphabet E, so long as the total
number of available symbols was countably infinite.) On the other hand, the set
of all possible languages over a given alphabet E —that is, 2E — is
uncountably infinite, since 2*, and hence the power set of any countably infinite

set 1s not countably infinite. With only a countable number of representations
and an uncountable number of things to represent, we are unable to represent
all languages finitely. Thus, the most we can hope for is to find finite
representations, of one sort or another, for at least some of the more interesting
languages. This is our first result in the theory of computation: No matter how
pow- powerful are the methods we use for representing languages, only
countably many languages can be represented, so long as the representations
themselves are fi- finite. There being uncountably many languages in all, the
vast majority of them will inevitably be missed under any finite
representational scheme. Of course, this is not the last thing we shall have to
say along these lines. We shall describe several ways of describing and
representing languages, each more powerful than the last in the sense that each
is capable of describing languages the previous one cannot. This hierarchy
does not contradict the fact that all these finite representational methods are
inevitably limited in scope for the reasons just explained. We shall also want
to derive ways of exhibiting particular languages that cannot be represented by
the various representational methods we study. We know that the world of
languages 1s inhabited by vast numbers of such unrep- unrepresentable
specimens, but, strangely perhaps, it can be exceedingly difficult to catch one,
put it on display, and document it. Diagonalization arguments will eventually
assist us here. To begin our study of finite representations, we consider
expressions —

48 Chapter 1: SETS, RELATIONS, AND LANGUAGES strings of symbols—
that describe how languages can be built up by using the operations described
in the previous section. Example 1.8.1: Let L= {w G {0,1}* : w has two or
three occurrences of 1, the first and second of which are not consecutive}. This
language can be de- described using only singleton sets and the symbols U, o,
and *as {0}*o0 {1} 0 {0}*0 {0} o {1} 0 {0}* 0 (({1} 0 {0}*) UO0*). It is not
hard to see that the language represented by the above expression is precisely
the language L denned above. The important thing to notice is that the only
symbols used in this representation are the braces { and }, the parentheses (
and), 0,0, 1, * o, and U. In fact, we may dispense with the braces and o and
write simply Z, = 0*10*010*A0* UO0*). Roughly speaking, an expression such
as the one for L in Example 1.8.1 is called a regular expression. That is, a
regular expression describes a language exclusively by means of single
symbols and 0, combined perhaps with the symbols U and *, possibly with the

aid of parentheses. But in order to keep straight the expressions about which
we are talking and the "mathematical English" we are using for discussing
them, we must tread rather carefully. Instead of using U, *, and 0, which are the
names in this book for certain operations and sets, we introduce special
symbols U, *, and 0, which should be regarded for the moment as completely
free of meaningful overtones, just like the symbols a, b, and 0 used 1n earlier
examples. In the same way, we introduce special symbols (and) instead of the
parentheses (and) we have been using for doing mathematics. The regular
expressions over an alphabet E* are all strings over the alphabet E U {(,), 0,
U,* } that can be obtained as follows. A) 0 and each member of E is a regular
expression. B) If a and f3 are regular expressions, then so is (af3). C) If a and
C are regular expressions, then so is (all/3). D) If a is a regular expression,
then so 1s a*. E) Nothing is a regular expression unless it follows from A)
through D). Every regular expression represents a language, according to the
interpreta- interpretation of the symbols U and * as set union and Kleene star,
and of juxtaposition of expressions as concatenation. Formally, the relation
between regular expressions and the languages they represent is established by
a function £, such that if a 1s any regular expression, then C{a) is the language
represented by a. That is, £ is a function from strings to languages. The function
C is denned as follows.

1.8: Finite Representations of Languages 49 A) £@) =0, and £(a) = {a} for
eacha G E. B) If a and C are regular expressions, then £((a/3)) = £(a)£(/3). C)
If g and C are regular expressions, then £((all/3)) =£(a) U£(/3). D) Ifqis a
regular expression, then £(a*) = £(q)*. Statement 1 defines C(a) for each
regular expression a that consists of a single symbol; then B) through D) define
£(q) for regular expres- expressions of some length in terms of C(a') for one or
two regular expressions a' of smaller length. Thus every regular expression is
associated in this way with some language. Example 1.8.2: What is £
(((aUb)*a))? We have the following.)) =C((aVb)*)£(a) byB) =£((aU6)*){a}
by A) =C((aUb))*{a} by D) =(£(a)ULF))*{a}byC) =({a;U {&})>} by A)
twice ={a,b}*{a} ={w £ {a, b}*: w ends withan a} Example 1.8.3: What
language is represented by (c*(aUFc*))*)? This regular expression represents
the set of all strings over {a, b, ¢} that do not have the substring ac. Clearly no
string in £((c*(aUFc*))*)) can contain the substring ac, since each occurrence
of a in such a string is either at the end of the string, or is followed by another
occurrence of a, or is followed by an occurrence of b. On the other hand, let w

be a string with no substring ac. Then w begins with zero or more c's. If they
are removed, the result is a string with no sub-string ac and not beginning with
c. Any such string is in £((aUFc*))); for it can be read, left to right, as a
sequence of a's, 6's, and c¢'s, with any blocks of ¢'s immediately following 6's
(not following a's, and not at the beginning of the string). Therefore w G £((c*
(allFc*))*)).0 Example 1.8.4: (O*U(((O*AUA1)))((O0*)AUA1)))*)O%))
represents the set of all strings over {0,1} that do not have the substring 111.0
Every language that can be represented by a regular expression can be
represented by infinitely many of them. For example, a and (aU0) always rep-
represent the same language; so do ((all/3)U7) and (a\J(3U"Y)). Since set
union

50 Chapter 1: SETS, RELATIONS, AND LANGUAGES and concatenation are
associative operations —that is, since (Li U L<i) UL3 =L\ U (Z/2 U L3) for
all Li,L2,Ls, and the same for concatenation— we nor- normally omit the extra
(and) symbols in regular expressions; for example, we treat aU6Uc as a
regular expression even though "officially" it is not. For an- another example,
the regular expression of Example 1.8.4 might be rewritten as O*UO*AUI11)
(OO*AU11))*O*. Moreover, now that we have shown that regular expressions
and the lan- languages they represent can be defined formally and
unambiguously, we feel free, when no confusion can result, to blur the
distinction between the regular expres- expressions and the "mathematical
English" we are using for talking about languages. Thus we may say at one
point that a* b* is the set of all strings consisting of some number of a's
followed by some number of b's —to be precise, we should have written {a}*
o {&}*. At another point, we might say that a*b* is a regu- regular expression
representing that set; in this case, to be precise, we should have written (a*b*).
The class of regular languages over an alphabet E is defined to consist of all
languages L such that L= C(a) for some regular expression a over E. That is,
regular languages are all languages that can be described by regular
expressions. Alternatively, regular languages can be thought of in terms of
closures. The class of regular languages over E is precisely the closure of the
set of languages with respect to the functions of union, concatenation, and
Kleene star. We have already seen that regular expressions do describe some
nontrivial and interesting languages. Unfortunately, we cannot describe by
regular expres- expressions some languages that have very simple descriptions
by other means. For example, {Onl™ : n> 0} will be shown in Chapter 2 not

to be regular. Surely any theory of the finite representation of languages will
have to accommodate at least such simple languages as this. Thus regular
expressions are an inadequate specification method in general. In search of a
general method for finitely specifying languages, we might return to our general
scheme L= {w G S*: w has property P}. But which properties P should we
entail? For example, what makes the pre- preceding properties, aw consists of
a number of 0's followed by an equal number of 1's" and uw has no occurrence
of 111" such obvious candidates? The reader may ponder about the right
answer; but let us for now allow algorithmic prop- properties, and only these.
That 1s, for a property P of strings to be admissible as a specification of a
language, there must be an algorithm for deciding whether a given string
belongs to the language. An algorithm that is specifically designed,

1.8: Finite Representations of Languages 51 for some language L, to answer
questions of the form "Is string w a member of L?" will be called a language
recognition device. For example, a device for recognizing the language L= {w
£ {0,1}*: w does not have 111 as a substring}. by reading strings, a symbol at
a time, from left to right, might operate like this: Keep a count, which starts at
zero and is set back to zero every time a 0 1s encoun- encountered in the input;
add one every time a 1 is encountered in the input; stop with a No answer if the
count ever reaches three, and stop with a Yes answer if the whole string is read
without the count reaching three. An alternative and somewhat orthogonal
method for specifying a language is to describe how a generic specimen in the
language 1s produced. For example, a regular expression such as (e Ub U bb)
(a U ab U abb)* may be viewed as a way of generating members of a language:
To produce a member of L, first write down either nothing, or b, or bb; then
write down a or ab, or abb, and do this any number of times, including zero; all
and only members of L can be produced in this way. Such language generators
are not algorithms, since they are not designed to answer questions and are not
completely explicit about what to do (how are we to choose which of a, ab, or
abb is to be written down?) But they are important and useful means of
representing languages all the same. The relation between language recognition
devices and language generators, both of which are types of finite language
specifications, is another major subject of this book. Problems for Section 1.8
1.8.1. What language is represented by the regular expression (((a*aN)U6)?
1.8.2. Rewrite each of these regular expressions as a simpler expression
represent- representing the same set. (a) 0*Ua*U6*U(all6)* (b)

({a*b*y(b*a*)y (c) (a*6)*UF*a)* (d) (all6)*a(aU6)* 1.8.3. Let E = {a, b}.
Write regular expressions for the following sets: (a) All strings in E* with no
more than three a's. (b) All strings in E* with a number of a's divisible by
three. (¢) All strings in E* with exactly one occurrence of the substring aaa.
1.8.4. Prove that if L is regular, then so is L' = {w : uw 6 L for some string it}.
(Show how to construct a regular expression for V from one for L.)

52 Chapter 1: SETS, RELATIONS, AND LANGUAGES 1.8.5. Which of the
following are true? Explain. (a) baa e a*b*a*b* (b) b*a*Da*b* =a* U 6* (¢)
a*b* nb*c* =0 (d) abed G (a{cd)*b)* 1.8.6. The star height h(a) of a regular
expression a is defined by induction as follows. =0 h (a) =0 for each oeS
=h(aP) = the maximum of /i(a) and For example, if a = (((a6)*U6*)*Ua*), then
h(a) = 2. Find, in each case, a regular expression which represents the same
language and has star height as small as possible. (a) ((abc)*aby (b) (a(ab*c)y
(c) (c(a*b)y (d) (a*Ub*Uab)* (e) (abb*a)* 1.8.7. A regular expression is in
disjunctive normal formifit is of the form (ctiUa”U ¢ * « Ua:n) for some n> 1,
where none of the aj's contains an oc- occurrence of U. Show that every
regular language is represented by one in disjunctive normal form.
REFERENCES An excellent source on informal set theory is the book o P.
Halmos Naive Set Theory, Princeton, N.J.: D. Van Nostrand, 1960. A splendid
book on mathematical induction is o G. Polya Induction and Analogy in
Mathematics, Princeton, N.J.: Princeton University Press, 1954. A number of
examples of applications of the pigeonhole principle appear in the first chapter
of o C. L. Liu Topics in Combinatorial Mathematics, Buffalo, N.Y.:
Mathematical Association of America, 1972. Cantor's original diagonalization
argument can be found in o G. Cantor Contributions to the Foundations of the
Theory of Transfinite Num- Numbers New York: Dover Publications, 1947.
The O-notation and several variants were introduced in

References 53 o D. E. Knuth "Big omicron and big omega and big theta," ACM
SIGACT News, 8 B), pp. 18-23, 1976. The O(n3) algorithm for the reflexive-
transitive closure 1s from o S. Warshall "A theorem on Boolean matrices,"
Journal of the ACM, 9, 1, pp. 11- 12, 1962. Two books on algorithms and their
analysis are o T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to
Algorithms, Cam- Cambridge, Mass.: The MIT Press., 1990, and o G.
Brassard, P. Bratley Fundamentals of Algorithms, Englewood Cliffs, N.J.:
Prentice Hall, 1996. Two advanced books on language theory are o A.

Salomaa Formal Languages New York: Academic Press, 1973. 0 M. A.
Harrison Introduction to Formal Language Theory, Reading, Massach.:
Addison-Wesley, 1978.

Finite Automata 2.1 DETERMINISTIC FINITE AUTOMATA This book is
about mathematical models of computers and algorithms. In this and the next
two chapters we shall define increasingly powerful models of com-
computation, more and more sophisticated devices for accepting and
generating lan- languages. Seen in the light of the whole development of the
book, this chapter will seem a rather humble beginning: Here we take up a
severely restricted model of an actual computer called a finite automaton,' or
finite-state machine. The finite automaton shares with a real computer the fact
that 1t has a "central processing unit" of fixed, finite capacity. It receives its
input as a string, deliv- delivered to it on an input tape. It delivers no output at
all, except an indication of whether or not the input is considered acceptable. It
is, in other words, a language recognition device, as described at the end of
Chapter 1. What makes the finite automaton such a restricted model of real
computers is the complete absence of memory outside its fixed central
processor. Such a simple computational model might at first be considered too
trivial to merit serious study: of what use is a computer with no memory? But a
finite automaton is not really without memory; it simply has a memory capacity
that 1s fixed "at the factory" and cannot thereafter be expanded. It can be argued
that the memory capacity of any computer 1s limited —by budget constraints,
by physical limits, ultimately by the size of the universe. Whether the best
mathematical model for a computer is one that has finite memory or one that
has unbounded memory is an interesting philosophical question; we shall study
both kinds of models, starting with the finite one and later dwelling much more
An automaton (pronounced: o-to-ma-ton, plural: automata) is a machine de-
designed to respond to encoded instructions; a robot. 55

56 Chapter 2: FINITE AUTOMATA on the unbounded one. Even if one thinks,
as we do, that the correct way to model computers and algorithms is in terms
of an unbounded memory capacity, we should first be sure that the theory of
finite automata is well understood. It turns out that their theory is rich and
elegant, and when we understand it we shall be in a better position to
appreciate exactly what the addition of auxiliary memory accomplishes in the
way of added computational power. A further reason for studying finite

automata 1s their applicability to the design of several common types of
computer algorithms and programs. For example, the lexical analysis phase of
a compiler (in which program units such as 'begin' and '+' are identified) is
often based on the simulation of a finite automaton. Also, the problem of
finding an occurrence of a string within another —for example, whether any of
the strings air, water, earth, and fire occur in the text of Elements of the Theory
of Computation'— can also be solved efficiently by methods originating from
the theory of finite automata. Input tape V Readinghead ababab ab Figure
2-1 Let us now describe the operation of a finite automaton in more detail.
Strings are fed into the device by means of an input tape, which 1s divided into
squares, with one symbol inscribed in each tape square (see Figure 2-1). The
main part of the machine itself'is a "black box" with innards that can be, at any
specified moment, in one of a finite number of distinct internal states. This
black box —called the finite control— can sense what symbol is written at any
position on the input tape by means of a movable reading head. Initially, the
reading head is placed at the leftmost square of the tape and the finite control is
set in a designated initial state. At regular intervals the automaton reads one
symbol from the input tape and then enters a new state that depends only on the
t All four of them do, three of them outside this page.

2.1: Deterministic Finite Automata 57 current state and the symbol just read —
this 1s why we shall call this device a deterministic finite automaton, to be
contrasted to the nondeterministic version introduced in the next section. After
reading an input symbol, the reading head moves one square to the right on the
input tape so that on the next move it will read the symbol in the next tape
square. This process is repeated again and again; a symbol is read, the reading
head moves to the right, and the state of the finite control changes. Eventually
the reading head reaches the end of the input string. The automaton then
indicates its approval or disapproval of what it has read by the state it is in at
the end: if it winds up in one of a set of final states the input string is
considered to be accepted. The language accepted by the machine is the set of
strings it accepts. When this informal account is boiled down to its
mathematical essentials, the following formal definition results. Definition
2.1.1: A deterministic finite automaton is a quintuple M = (K, T,,6,s,F) where if
is a finite set of states, S is an alphabet, s 6 K is the initial state, F C K is the
set of final states, and E, the transition function, is a function from K x £ to K.
The rules according to which the automaton M picks its next state are encoded

into the transition function. Thus if M is in state q 6 K and the symbol read
from the input tape is a 6 S, then S(q, a) 6 if is the uniquely determined state to
which K passes. Having formalized the basic structure of a deterministic finite
automaton, we must next render into mathematical terms the notion of a
computation by an automaton on an input string. This will be, roughly speaking,
a sequence of configurations that represent the status of the machine (the finite
control, reading head, and input tape) at successive moments. But since a
deterministic finite automaton is not allowed to move its reading head back
into the part of the input string that has already been read, the portion of the
string to the left of the reading head cannot influence the future operation of the
machine. Thus a configuration is determined by the current state and the unread
part of the string being processed. In other words, a configuration of a
deterministic finite automaton (if, 11,6, s,F) is any element of if x £*. For
example, the configuration illustrated in Figure 2-1 1s (q2,ababab). The binary
relation Km holds between two configurations of M if and only if the machine
can pass from one to the other as a result of a single move. Thus 1f (g, w) and
(q',w') are two configurations of M, then (q,w) \~m (</'jw') if and only if w =
aw' for some symbol a 6 E, and 6(q, a) = q'. In this case we say

58 Chapter 2: FINITE AUTOMATA that (q, w) yields (q',w') in one step. Note
that in fact \~m is a function from K x S+ to K x £*, that is, for every
configuration except those of the form (g, €) there is a uniquely determined next
configuration. A configuration of the form (q,e) signifies that M has consumed
all its input, and hence its operation ceases at this point. We denote the
reflexive, transitive closure of \~m by \-*M; (q,w) \-*M (</',«/) 1s read, (q,w)
yields (</",«/) (after some number, possibly zero, of steps). A stringw 6 S* is
said to be accepted by M if and only if there is a state q 6 F such that (s,w) \-
*M (q,e). Finally, the language accepted by M, L(M), 1s the set of all strings
accepted by M. Example 2.1.1: Let M be the deterministic finite automaton (K,
£,£, s,F), where K ={qo,qi}, s F— =and 6 is the function tabulated below. q
qogoq\qlaababqo, {qo}, 6{g,a) qo qo It is then easy to see that L(M) is
the set of all strings in {a, b} * that have an even number of b's. For M passes
from state qo to q\ or from q\ back to qo when a b is read, but M essentially
ignores a's, always remaining in its current state when an a is read. Thus M
counts 6's modulo 2, and since q0 (the initial state) is also the sole final state,
M accepts a string if and only if the number of b's is even. If M is given the
input aabba, its initial configuration is (qo,aabba). Then (qo,aabba) \~m

(qo,abba) \~m {qo,bba) \-M (qi,ba) “m (qo,a) I-m (qo,e) Therefore (qo,
aabba) \-*M (qo,e), and so aabba is accepted by M.O

2.1: Deterministic Finite Automata 59 .a b Figure 2-2 The tabular
representation of the transition function used in this example is not the clearest
description of a machine. We generally use a more convenient graphical
representation called the state diagram (Figure 2-2). The state diagramis a
directed graph, with certain additional information incorporated into the
picture. States are represented by nodes, and there is an arrow labeled with a
fromnode q to q' whenever 6(q,a) = q'. Final states are indicated by double
circles, and the initial state is shown by a >. Figure 2-2 shows the state
diagram of the deterministic finite automaton of Example 2.1.1. Example 2.1.2:
Let us design a deterministic finite automaton M that accepts the language L(M)
= {w € {a, b}* : w does not contain three consecutive b's}. We let M = (K, S,
S, s, F), where K= {90,91,92,93}, s =qo, F = {90,91,92}, and S is given by
the following table. q0 q0 q\1q\92 929393 aabababab S(qg,a) 90 91 %0
92 90 93 93 93 The state diagram is shown in Figure 2-3. To see that M does
indeed accept the specified language, note that as long as three consecutive 6's
have not been read, M is in state qi (where 1 1s 0, 1, or 2) immediately after
reading a run of i consecutive b's that either began the input string or was
preceded by an a. In particular, whenever an a is read and M is in state qo, qi,
or </2> M returns to

60 Chapter 2: FINITE AUTOMATA its initial state </o- States qo, q\, and </2
are all final, so any input string not containing three consecutive &'s will be
accepted. However, a run of three fo's will drive M to state qz, which is not
final, and M will then remain in this state regardless of the symbols in the rest
of the input string. State qz is said to be a dead state, and if M reaches state qz
it is said to be trapped, since no further input can enable it to escape from this
state. 0 Problems for Section 2.1 2.1.1. Let M be a deterministic finite
automaton. Under exactly what circum- circumstances is ¢ 6 L(M)? Prove your
answer. 2.1.2. Describe informally the languages accepted by the deterministic
finite au- automata shown in the next page. 2.1.3. Construct deterministic finite
automata accepting each of the following lan- languages. (a) {w 6 {a,b}*:
each a in w 1s immediately preceded by a b}. (b) {w 6 {a,b}* : w has abab as
a substring}. (¢) {w € {a,b}* : w has neither aa nor bb as a substring}. (d) {w
€ {a, b} *: w has an odd number of a's and an even number of fo's}. (e) {w €

{a,b}*: w has both ab and ba as substrings}. 2.1.4. A deterministic finite-state
transducer is a device much like a deter- deterministic finite automaton, except
that its purpose is not to accept strings or languages but to transform input
strings into output strings. Informally, it starts in a designated initial state and
moves from state to state, depending on the input, just as a deterministic finite
automaton does. On each step, however, it emits (or writes onto an output tape)
a string of zero or one or more symbols, depending on the current state and the
input symbol. The state diagram for a deterministic finite-state transducer
looks like that for a deterministic finite automaton, except that the label on an
arrow looks like

2.1: Deterministic Finite Automata 61 a'b

62 Chapter 2: FINITE AUTOMATA a/a b/b IF b/b a/e a/w, which means "if
the input symbol is a, follow this arrow and emit out- output w". For example,
the deterministic finite-state transducer over {a,b} shown above transmits all
&'s in the input string but omits every other a. (a) Draw state diagrams for
deterministic finite-state transducers over {a, b} that do the following. (1) On
input w, produce output a™, where n is the number of occurrences of the
substring ab in w. (i1) On input w, produce output a™, where n is the number
of occurrences of the substring aba in w. (ii1) On input w, produce a string of
length w whose ith symbol is ana ifi — 1, or ifi > 1 and the ith and (i - 1)st
symbols of w are different; otherwise, the ith symbol of the output is a b. For
example, on input aabba the transducer should output ababa, and on input
aaaab it should output abbba. (b) Formally define (i) a deterministic finite-
state transducer; (i1) the notion of a configuration for such an automaton; (ii1)
the yields in one step relation h between configurations; (iv) the notion that
such an automaton produces output u on input w; (v) the notion that such an
automaton computes a function. 2.1.5. A deterministic 2-tape finite automaton
is a device like a deterministic finite automaton for accepting pairs of strings.
Each state is in one of two sets; depending on which set the state is in, the
transition function refers to the first or second tape. For example, the
automaton shown below accepts all pairs of strings (wi,w2) € {a,b}* x {a,b}*
such that [w2| = 2| States for first tape States for second tape

2.2: Nondeterministic Finite Automata 63 (a) Draw state diagrams for
deterministic 2-tape finite automata that accept each of the following. (1) All

pairs of strings A01,102) in {a,b}* x {a,b}* such that [i01| = W2\, and w\{1) 7"
102A) for all 1. (i1) All pairs of strings A01,102) in {a,b}* x {a,b}* such that
the length of W2 is twice the number of a's in w\ plus three times the number of
fo's in w\. (i11) {(anb,anbm) :n,m>0}. (iv) {(anfo,arafon) :n,m>0}. (b)
Formally define (1) a deterministic 2-tape finite automaton; (i1) the notion of a
configuration for such an automaton; (1i1) the yields in one step relation h
between configurations; (iv) the notion that such an automaton accepts an
ordered pair of strings; (v) the notion that such an automaton accepts a set of
ordered pairs of strings. 2.1.6. This problem refers to Problems 2.1.5 and
2.1.6. Show that if / : S* M- S* is a function that can be computed by a
deterministic finite-state transducer, then {A0,/A0)) : w 6 £*} is a set of pairs
of strings accepted by some deterministic two-tape finite automaton. 2.1.7. We
say that state q of a deterministic finite automaton M = (K, £, 5, qo, F) is
reachable if there exists w 6 S* such that (qo,w) \-*M (q,e). Show that if we
delete from M any nonreachable state, an automaton results that accepts the
same language. Give an efficient algorithm for computing the set of all
reachable states of a deterministic finite automaton. 2.2
NONDETERMINISTIC FINITE AUTOMATA In this section we add a
powerful and intriguing feature to finite automata. This feature is called
nondeterminism, and is essentially the ability to change states in a way that is
only partially determined by the current state and input symbol. That is, we
shall now permit several possible "next states" for a given combination of
current state and input symbol. The automaton, as it reads the input string, may
choose at each step to go into any one of these legal next states; the choice is
not determined by anything in our model, and 1s therefore said to be
nondeterministic. On the other hand, the choice 1s not wholly unlimited either;
only those next states that are legal from a given state with a given input
symbol can be chosen.

64 Chapter 2: FINITE AUTOMATA Such nondeterministic devices are not
meant as realistic models of com- computers. They are simply a useful
notational generalization of finite automata, as they can greatly simplify the
description of these automata. Moreover, we shall see below that
nondeterminism is an inessential feature of finite automata: every
nondeterministic finite automaton is equivalent to a deterministic finite
automaton. Thus we shall profit from the powerful notation of nondeterministic
finite automata, always knowing that, if we must, we can always go back and

redo everything in terms of the lower-level language of ordinary, down-to-
earth deterministic automata. Figure 2-4 To see that a nondeterministic finite
automaton can be a much more con- convenient device to design than a
deterministic finite automaton, consider the language L= (abU aba)*, which is
accepted by the deterministic finite automa- automaton illustrated in Figure 2-
4. Even with the diagram, it takes a few moments to ascertain that a
deterministic finite automaton is shown; one must check that there are exactly
two arrows leaving each node, one labeled a and one labeled b. And some
thought is needed to convince oneself that the language accepted by this fairly
complex device is the simple language (abUaba)*. One might hope to find a
simpler deterministic finite automaton accepting L; unfortunately, it can be
shown that no deterministic finite automaton with fewer than five states can
accept this language (later in this chapter we develop methods for minimizing
the number of states of deterministic finite automata). However, L is accepted
by the simple nondeterministic device shown in Figure 2-5. When this device
is in state " and the input symbol is b, there are two possible next states, </o
and q2. Thus Figure 2-5 does not represent a deterministic finite automaton.
Nevertheless, there is a natural way to interpret the diagram as a device
accepting L. A string is accepted if there is some way to get from the initial
state (q0) to a final state (in this case, q0) while following arrows labeled
with the symbols of the string. For example ab is accepted by going from q0 to
</1, to q0; aba is accepted by going from q0 to q\ to g2, to q0. Of course, the
device might guess wrong and go from q0 to q\ to q0 to </i on

2.2: Nondeterministic Finite Automata 65 b Figure 2-5 input aba, winding up
in a nonfinal state; but this does not matter, since there is some way of getting
from the initial to a final state with this input. On the other hand, the input abb
is not accepted, since there is no way to get from </o back to </o while reading
this string. Indeed, you will notice that from </o there is no state to be entered
when the input is b. This is another feature of nondeterministic finite automata:
just as from some states with some inputs there may be several possible next
states, so with other combinations of states and input symbols there may be no
possible moves. We also allow in the state diagram of a nondeterministic
automaton arrows that are labeled by the empty string e. For example, the
device of Figure 2-6 accepts the same language L. From </2 this machine can
return to q0 either by reading an a or immediately, without consuming any
input. The devices illustrated in Figures 2-5 and 2-6 are instances of the

following general type: Definition 2.2.1: A nondeterministic finite automaton is
a quintuple M = (K,H,A,s,F), where if is a finite set of states, £ is an alphabet,

66 Chapter 2: FINITE AUTOMATA s 6 K is the initial state, F C K is the set of
final states, and A, the transition relation, is a subset of if x (S U {e}) x K.
Each triple (q,u,p) e A is called a transition of M —the formal counter-
counterpart of an arrow labeled a from q to p in the state diagram of M. If M is
in state q and the next input symbol is a, then M may next follow any transition
of the form (q, a,p) or (g, e,p); if a transition (g, e,p) is followed, then no input
symbol is read. The formal definitions of computations by nondeterministic
finite automata are very similar to those for deterministic finite automata. A
configuration of M is, once again, an element of K x £*. The relation Vm
between configurations (yields in one step) is defined as follows: (q,w) \~m W
>w') if and only if there isau 6 £ U {e} such that w =uw' and (q,u,q') 6 A.
Note that \~m need not be a function; for some configurations (q,w), there may
be several pairs (q',w') —or none at all— such that {q,w) \~m (q',w"). As
before, \-*M is the reflexive, transitive closure of \~m and a string w € S* is
accepted by M if and only if there is a state q e F such that (s,w) \-*M (q,e).
Finally (M), the language accepted by M, is the set of all strings accepted by
M. Example 2.2.1: Figure 2-7 shows one of several possible nondeterministic
fi- finite automata that accept the set of all strings containing an occurrence of
the pattern bb or of the pattern bab (see Section 2.5 for a systematic study of
au- automata for detecting patterns in the input string). Formally, this machine
is (K, T,,A,s,F), where s = qo, F = {q4}, and A = {(qo,a,q0),(qo,b,qo),
(90,b,q1), {<H,b,q2),{qi,a,q3),(q2,e,qA), (Q3, b, 94), (94,3, q4), (q4,b, q%) .
When M is given the string bababab as input, several different sequences of
moves may ensue. For example, M may wind up in the nonfinal state </o in
case

2.2: Nondeterministic Finite Automata a,b % 67 Figure 2-7 the only transitions
used are {qo,a,qo) and (qo,b,qo)'- (qo,bababab) \~m {qo,ababab) Y~m
(qo,babab) Y~m (qo,abab) Y~m (<70,e) The same input string may drive M
from state qo to the final state q\, and indeed may do so in three different ways.
One of these ways is the following. (qo,bababab) Y~m (qi,ababab) \~m
(q3,babab) \~m (g4,abab) Y-m (qi,bab) \-M (g*,ab) \~m {qi,b) Y-m (?4,e)
Since a string 1s accepted by a nondeterministic finite automaton if and only if
there is at least one sequence of moves leading to a final state, it follows that

babababe Example 2.2.2: Let S be the alphabet S = {a\,..., an}, containing n
symbols, where n> 2, and consider the following language: L= {w : there is a
symbol a; € S not appearing in w}.

68 Chapter 2: FINITE AUTOMATA That is, L contains all those strings in S*
that fail to contain occurrences of all symbols in S. For example, if n = 3, then
e,ai,a2,aia\azai € L, but B3B1B3B1B2 * L. It is relatively easy to design a
nondeterministic finite automaton M = (K, S, A, s, F) that accepts this rather
sophisticated language. Here K contains n + 1 states K = {s,q\,q2,. m. ,qn}, all
accepting (F = K). A has two kinds of transitions (see Figure 2-8 for an
illustration of the case n = 3). The initial transitions are those of the form (s,e,
<7,) for all 1, 1 <1 <n, and the main transitions are all triples of the form
(q1,a.j,q1), where 1 " j. This completes the list of transitions in A. Figure 2-8
Intuitively, M starts its operation on an input by guessing the symbol miss-
missing from the input, and passing to the corresponding state. If the symbol
selected is aj, then state qi is visited. At this state the automaton checks that
indeed the symbol guessed does not occur in the string. If so, it ends up
accepting. This automaton illustrates vividly the remarkable power of
nondeterministic de- devices: they can guess and always be right, since one
successful computation is all that is required for acceptance. As we shall see
later in Section 2.5, any deterministic finite automaton that accepts the same
language must be far more complicated. <0 A deterministic finite automaton is
just a special type of a nondeterministic finite automaton: In a deterministic
finite automaton, it so happens that the transition relation A is in fact a function
from K x S to K. That is, a nonde- nondeterministic finite automaton
(K,E,S,s,F) is deterministic if and only if there are no transitions of the form
(q, e,p) in A, and for each q € K and a € S there 1s exactly one p € K such that
(q,a,p) € A. It is therefore evident that the class of languages accepted by
deterministic automata is a subset of the class of languages accepted by
nondeterministic automata. Rather surprisingly, these classes are in fact equal.
Despite the apparent power and generality enjoyed by nondeterministic
automata, they are no more powerful than the deterministic

2.2: Nondeterministic Finite Automata 69 ones in terms of the languages they
accept: A nondeterministic finite automaton can always be converted into an
equivalent deterministic one. Formally, we say that two finite automata M1 and
M2 (deterministic or nondeterministic) are equivalent if and only if L{M\) =

L{M2). Thus two automata are considered to be equivalent if they accept the
same language, even though they may "use different methods" to do so. For
example, the three automata in Figures 2-4-2-6 are all equivalent. Theorem
2.2.1: For each nondeterministic finite automaton, there is an equiv- equivalent
deterministic finite automaton. Proof: Let M = (K,Y,,A,s,F) be a
nondeterministic finite automaton. We shall construct a deterministic finite
automaton M' — (K1, E, 8', s', F') equivalent to M. The key idea is to view a
nondeterministic finite automaton as occupying, at any moment, not a single
state but a set of states: namely, all the states that can be reached from the
initial state by means of the input consumed thus far. Thus if M had five states
{qo,. m., 94} and, after reading a certain input string, it could be in state qo,
q2, or gz, but not qi, or q*, its state could be considered to be the set
{qo0,q2,qz}, rather than an undetermined member of that set. And if the next
input symbol could drive M from q0 to either q\ or g2, from g2 to g0, and from
g3 to g2, then the next state of M could be considered to be the set {<70,<71,
<72}- The construction formalizes this idea. The set of states of M' will be K'
= 2K, the power set of the set of states of M. The set of final states of M' will
consist of all those subsets of K that contain at least one final state of M. The
definition of the transition function of M' will be slightly more complicated.
The basic idea is that a move of M' on reading an input symbol a € E imitates a
move of M on input symbol a, possibly followed by any number of e-moves of
M. To formalize this idea we need a special definition. For any state q € K, let
E(q) be the set of all states of M that are reachable from state q without
reading any input. That is, = {p£K:(q,e)\-*M(p,e)}. To put it otherwise, E(q) is
the closure of the set {q} under the relation {(p, r) : there 1s a transition (p, e,r)
€ A}. Thus, E(q) can be computed by the following algorithm: Initially set
E(q) := {q}; while there is a transition (p, e,r) € Awithp € E(q) and r $ E{q)

do: E{q) :=E(q) U {r}.

70 Chapter 2: FINITE AUTOMATA This algorithm is a specialization of our
general algorithm for closure com- computations (recall the last algorithm in
Section 1.6) to the situation in hand. It is guaranteed to terminate after at most
\K\ iterations, because each execution of the while loop adds another state to
E(q), and there are at most \K\ states to be added. We shall see many instances
of such closure algorithms later. 91 Example 2.2.3: In the automaton of Figure
2-9, we have E(qo) — {90,91, 92,93}, E{qi) = {91,92,93}, and E(q2) =
{g2}.<> We are now ready to define formally the deterministic automaton M'

— (K1, £,<5',s",F") that is equivalent to M. In particular, K' = 2K, s' = E(s),
and for each Q C K and each symbol a € £, define S'(Q, a) = [j{E(p) :p£ K and
(q, a,p) € A for some q € Q}. That is, S'(Q, a) 1s taken to be the set of all states
of M to which M can go by reading input a (and possibly following several e
transitions). For example, if M is the automaton of Figure 2-9, then s' = {q0,
gx, q2, 73'- Since the only transitions from qi on input a are (91, a, q0) and
(qi,a, g4), it follows that S'({qi},a) = E(q0) U £(94) = {90,91,92,93,94} . It
remains to show that M' is deterministic and equivalent to M. The
demonstration that M' is deterministic is straightforward: we just notice that 5'
is single-valued and well defined on all Q G K' and a G S, by the way it was
constructed. (That 5'(Q,a) = 0 for some Q G K' and a G E does not mean 5' is
not well defined; 0 is a member of K'.)

2.2: Nondeterministic Finite Automata 71 We now claim that for any string w
G E* and any states p,qe K, (q,w) h*M (p,e) if and only if (E(q),w) \-*M, (P,e)
for some set P containing p. From this the theorem will follow easily: To show
that M and M' are equivalent, consider any string w G £*. Then u> € L(M) if
and only if (s,w) \-*M (/, e) for some f £ F (by definition) if and only if (I?
(s),«;) h™f; (Q,e) for some Q containing / (by the claim above); in other words,
ifand only if (s',w) \-*M, (Q,e) for some Q G F'. The last condition is the
definition of w G L(M'). We prove the claim by induction on \w\. Basis Step.
For [iu| = 0 —that is, for w = e— we must show that (q, €) \-*M (p, e) if and
only if (E(q),e) \-*M, (P, e) for some set P containing p. The first statement is
equivalent to saying that p G E(q). Since M' is deterministic, the second
statement is equivalent to saying that P = E(q) and P contains p; thatis, p G
E(q). This completes the proof of the basis step. Induction Hypothesis.
Suppose that the claim is true for all strings w of length k or less for some k >
0. Induction Step. We prove the claim for any string w of length k +1. Let w =
va, where a G S, and v G S*. For the only if direction, suppose that (q, w) \-
*M (p,e). Then there are states ri and r-1 such that (q,w) \-*M (n,a)\-M (r2,e)\-
*M (p,e). That is, M reaches state p from state q by some number of moves
during which input v is read, followed by one move during which input a is
read, followed by some number of moves during which no input is read. Now
(q, va) \-*M {r\,a) is tantamount to (q,v) \~*M (ri,e), and since |t>| =k, by the
induction hypothesis (E(q),v) \-*M, (Ri,e) for some set Ri containing r\. Since
(ri,a) \~m (?*2,e), there is a triple {r\,a,r2) G A, and hence by the construction
of M', Efa) C 8'{R1,a). But since (r2,e) \-*M (p,e), it follows that p G Efa), and

therefore p G S'(Ri,a). Therefore (R\,a) \~m' (P,e) for some P containing p, and
thus {E(q),va)\-*M, (Rua)\-M' (P,e). To prove the other direction, suppose that
(E(q), va) \-*M, (Ri1,a) \~m' (P, e) for some P containing p and some R\ such
that S'(Ri,a) = P. Now by the definition of 5\ 5'(Ri,a) is the union of all sets
Efa), where, for some state r\ G -Ri, (r1,a,r2) is a transition of M. Since p G P
= S'(Ri,a), there is some particular t2 such that p G E(r2), and, for some r1 G 1?
1, (r1,a,r2) is a transition of M. Then (12,e) h"* (p,e) by the definition of Efo).
Also, by the induction hypothesis, (q,v) \~*M (1], €) and therefore (q,va) \-*M
(r\,a) \>m

72 Chapter 2: FINITE AUTOMATA This completes the proof of the claim and
the theorem. m Example 2.2 A: The proof of Theorem 2.2.1 has the salutary
property of being constructive, in that it provides an actual algorithm for
constructing, starting from any nondeterministic finite automaton M, an
equivalent deterministic M'. Let us apply this algorithm then to the
nondeterministic automaton in Figure 2-9. Since M has 5 states, M' will have
25 =32 states. However, only a few of these states will be relevant to the
operation of M' —namely, those states that can be reached from state s1 by
reading some input string. Obviously, any state in K' that is not reachable from
s' 1s irrelevant to the operation of M' and to the language accepted by it. We
shall build this reachable part of M' by starting from s' and introducing a new
state only when it is needed as the value of S'(q, a) for some state q € K'
already introduced and some a € S. We have already defined E(q) for each
state q of M. Since s' = E(qo) = {90,91,92,93}, (91,a,90), (91,2,94), and
(q3,a,q4) are all the transitions (q,a,p) for some q € s'. It follows that S'(s',a) =
E(qo)UE(qi) = {90,91, 92,93,94} - Similarly, (90,M2) and (q2,b,q4) are all the
transitions of the form (q, b,p) for some 5 £ s', so 8'(a',b) = E(q2)UE(qi) =
{92,93,94}. Repeating this calculation for the newly introduced states, we
have the following. <5'({90,91,92,93,94} ,a) = {90,91,92,93,94},
<5'({90,91,92,93,94} b) = {92,93,94}, <5'({92,93,94},a) = £(94) = {93,94},
<5'({92,93,94>,&) = £(94) = {93,94} - Next, <5'({93,94},a) =£"(94) =
{93,94}, <5'({93,94} ,&) = 0, and finally (J'@,a)=(J'@,6) = 0. I The relevant
part of M' is illustrated in Figure 2.10. F', the set of final states, contains each
set of states of which g is a member, since q” is the sole member

2.2: Nondeterministic Finite Automata 73 Figure 2-10 of F; so in the
illustration, the three states {qo,qi1,92,93,94}, {92,93,94}, and {93,94} °ft M'

are final.0 Example 2.2.5: Recall the n + 1-state nondeterministic finite
automaton in Example 2.2.2 with S = {ai,..., an} for accepting the language L=
{» e S* : there is a symbol a« € E that does not occur in w}. Intuitively, there
1s no way for a deterministic finite automaton to accept the same language with
so few states. Indeed, the construction is in this case exponential. The
equivalent deter- deterministic automaton M' has as initial state the set s' —
E(s) = {s,q1,92,..., qn}- Even in this case, M' has several irrelevant states —in
fact, half of the states in 2K are irrelevant. For example, state {s} cannot be
reached from s'; neither can any state that contains some qi but not s. Alas,
these are all the irrelevant states: as it turns out, all the remaining 2™ states of
K' —that is to say, all states of the form {s} U Q for some nonempty subset Q
of {qi,... ,qn}— are reachable froms'. One might hope, of course, that other
kinds of optimizations may reduce the number of states in M'. Section 2.5
contains a systematic study of such optimizations. Unfortunately, it follows
from that analysis that in the present case of automaton M', the exponential
number of states in M' is the absolute minimum possible.<0 Problems for
Section 2.2 2.2.1. (a) Which of the following strings are accepted by the
nondeterministic finite automaton shown on the left below? (i) a (i1) aa

74 Chapter 2: FINITE AUTOMATA b o (iii) (iv) (b) ton (i) (i1) (ii1) (iv) (V)
aab Repeat for the following strings and the nondeterministic finite automa-
automaon the right above: e ab abab aba abaa 2.2.2. Write regular expressions
for the languages accepted by the nondeterminis- nondeterministic finite
automata of Problem 2.2.1. 2.2.3. Draw state diagrams for nondeterministic
finite automata that accepts these languages. (a) (ab)*(ba)*Uaa* (b)
({abUaab)*a*)* (c) {{a*b*a*)*b)* (d) (baUb)*u[bbUa)* 2.2.4. Some authors
define a nondeterministic finite automaton to be a quintuple (K,Y,,A,S,F),
where K,H,A,, and F are as defined and S is a finite set of initial states, in the
same way that F is a finite set of final states. The automaton may
nondeterministically begin operating in any of these initial states. (a) Show that
the language L C {ai,...,an} * consisting of all strings that are missing at least
one symbol (recall Example 2.2.2) would be accepted by such an automaton
with n states qi,...,qn, all of which are both final and initial, and the transition
relation A = {(q1,a,j,q1) : (b) Explain why this definition is not more general
than ours in any signif- significant way. 2.2.5. By what sequences of steps,
other than the one presented in Example 2.2.1, can the nondeterministic finite
automaton of Figure 2-7 accept the input bababab? 2.2.6. (a) Find a simple

nondeterministic finite automaton accepting (ab U aab U aba)*.

2.3: Finite Automata and Regular Expressions 75 (b) Convert the
nondeterministic finite automaton of Part (a) to a deter- deterministic finite
automaton by the method in Section 2.2. (¢) Try to understand how the machine
constructed in Part (b) operates. Can you find an equivalent deterministic
machine with fewer states? 2.2.7. Repeat Problem 2.2.6 for the language (a U
b)*aabab. 2.2.8. Repeat Problem 2.2.6 for the language (a U b)*a(a Ub)(a U
b)(a Ub)(a Ub). 2.2.9. Construct deterministic finite automata equivalent to
the nondeterministic automata shown below. ft 6- b O- <?2 (a) b a ~"s2 a\ HP
>—. (b) 2.2.10. Describe exactly what happens when the construction of this
section is applied to a finite automaton that is already deterministic. 2.3
FINITE AUTOMATA AND REGULAR EXPRESSIONS The main result of the
last section was that the class of languages accepted by finite automata remains
the same even if a new and seemingly powerful feature —nondeterminism— is
allowed. This suggests that the class of languages accepted by finite automata
has a sort of stability: Two different approaches, one apparently more
powerful than the other, end up defining the same class. In this section we shall
prove another important characterization of this class of languages, further
evidence of how remarkably stable it is: The class of languages accepted by
finite automata, deterministic or nondeterministic, 1s the same as the class of
regular languages —those that can be described by regular expressions, recall
the discussion in Section 1.8. We have introduced the class of regular
languages as the closure of certain finite languages under the language
operations of union, concatenation, and Kleene star. We must therefore start by
proving similar closure properties of the class of languages accepted by finite
automata: Theorem 2.3.1: The class of languages accepted by finite automata 1s
closed under

76 Chapter 2: FINITE AUTOMATA (a) union; (b) concatenation; (¢) Kleene
star; (d) complementation; (e) intersection. Proof: In each case we show how
to construct an automaton M that accepts the appropriate language, given two
automata Mi and M2 (only M\ in the cases of Kleene star and
complementation). (a) Union. Let Mx = {KUH, Ai,Si,F1) and M2 = (.fi"'S,
A2,s2,F2) be non- deterministic finite automata; we shall construct a
nondeterministic finite au- automaton M such that (M) = L(Mi)UL(M2). The
construction of M is rather simple and intuitively clear, illustrated in Figure 2-

11. Basically, M uses non- determinism to guess whether the input is in L(M\)
or in [(M2), and then processes the string exactly as the corresponding
automaton would; it follows that L(M) = L(Mi1) U L(M2). But let us give the
formal details and proof for this case. M Figure 2-11 Without loss of
generality, we may assume that K\ and Ki are disjoint sets. Then the finite
automaton M that accepts L(Mi) U L(M2) is defined as follows

2.3: Finite Automata and Regular Expressions 77 (see Figure 2-11): M = (K,
E, A, s, F), where s is a new state not in K\ or K2, K = KiUK2U{s}, F =
F1UF2, A= A1 UA2 U {(s,e,s1),(s,e,s2)}. That is, M begins any computation
by nondeterministically choosing to enter either the initial state of M\ or the
initial state of M2,and thereafter, M imitates either M\ or M2. Formally, if w S
S*, then (s,w) \-*M (q,e) for some q S F if and only if either (si,w) h*Mi (q,e)
for some g 6 Fi, or (s2, w) h-*M2 (q,e) for some q £ F2. Hence M accepts u; if
and only 1f M\ accepts w or M2 accepts tu, and L{M) = L(Mi) U L(M2). (b)
Concatenation. Again, let M\ and M2 be nondeterministic finite automata; we
construct a nondeterministic finite automaton M such that L(M) = L{M)\) o
L(M2) The construction is shown schematically in Figure 2-12; M now
operates by simulating M\ for a while, and then "jumping" nondeterministically
from a final state of Mi to the initial state of M2. Thereafter, M imitates M2.
We omit the formal definition and proof. Ml M, Figure 2-12 M (c) Kleene star.
Let M\ be a nondeterministic finite automaton; we construct a nondeterministic
finite automaton M such that (M) = L{M\)*. The construc- construction is
similar to that for concatenation, and is illustrated in Figure 2-13. M consists
of the states of M\ and all the transitions of M\; any final state of Mi is a final
state of M. In addition, M has a new initial state s. This new initial state is also
final, so that e is accepted. From s there is an e-transition to the initial state s\
of Mi, so that the operation of Mi can be initiated after M has been started in
state s. Finally, e-transitions are added from each final state of

78 Chapter 2: FINITE AUTOMATA M Figure 2-13 Mi back to s\; this way,
once a string in L(Mi1) has been read, computation can resume from the initial
state of Mi. (d) Complementation. Let M = (K, E, S, s, F) be a deterministic
finite automa- automaton. Then the complementary language L= S* - L(M) 1s
accepted by the deterministic finite automaton M = (K, T,,S,s,K - F). That is, M
is identical to M except that final and nonfinal states are interchanged. (e)
Intersection. Just recall that Lin L2 = E* - ((£* - LO U (£' - L2)), and so

closedness under intersection follows from closedness under union and
complementation ((a) and (d) above). m We now come to the main result of this
section, the identification of two important techniques for finitely specifying
languages —in fact, of a language generator and a language acceptor: Theorem
2.3.2: A language is regular if and only if it is accepted by a finite automaton.
Proof: Only if. Recall that the class of regular languages is the smallest class
of languages containing the empty set O and the singletons a, where a is a
symbol, and closed under union, concatenation, and Kleene star. It is evident
(see Figure 2-14) that the empty set and all singletons are indeed accepted by
finite automata; and by Theorem 2.3.1 the finite automaton languages are
closed under union, concatenation, and Kleene star. Hence every regular
language is accepted by some finite automaton. Example 2.3.1: Consider the
regular expression (abUaab)*. A nondeterministic finite automaton accepting
the language denoted by this regular expression can

2.3: Finite Automata and Regular Expressions 79 be built up using the methods
in the proof of the various parts of Theorem 2.3.1, as illustrated in Figure 2-
14.0 stage 1 a; b stage 2 ab; aab stage 3 ab U aab stage 4 (ab U aab)* Figure 2-
14//. Let M= (AT, E, A, s, F) be a finite automaton (not necessarily deter-
deterministic). We shall construct a regular expression R such that [(R) =
L(M). We shall represent L(M) as the union of many (but a finite number of)
simple languages. Let K — {q\,..., qn} and s = q\. Fori,) =1,...,nand k=0,...,
n, we define R(i,j,k) as the set of all strings in E* that may drive M from state
qi to state qj without passing through any intermediate state numbered k + 1 or
greater —the endpoints " and qj are allowed to be numbered higher than k.
That is, R(i,j,k) 1s the set of strings spelled by all paths from q”* to qj of rank k
(recall the similar maneuver in the computation of the reflexive-transitive

80 Chapter 2: FINITE AUTOMATA closure of a relation in Section 1.6, in
which we again considered paths with pro- progressively higher and higher-
numbered intermediate nodes). When k = n, it follows that R(i,j,n) = {w 6 £* :
(q,,w) ="M (<7j,e)}. Therefore L(M) = \J{R(l,j,n):qj&F}. The crucial point is
that all of these sets R(i,,k) are regular, and hence so is L(M). The proof that
each R(1,j,k) is regular is by induction on k. For k=0, R(1,j,Q) is either {a e £
U {e} : (qi,a,qj)) e A} ifi/j,oritis {e} U{ae EU {e} : (qi,a,q)) EA} ifi=
J- Each of these sets 1s finite and therefore regular. For the induction step,
suppose that R(1, j, k-1) for all 1,j have been defined as regular languages for

all 1,j. Then each set R(i,j, k) can be defined combining previously defined
regular languages by the regular operations of union, Kleene star, and
concatenation, as follows: R(i,j,k) = R(i,j,k- 1) u R(1,k k-)R(kk k- 1)*R(k,j,k-
1). This equation states that to get from % to qj without passing through a state
numbered greater than k, M may either A) go from qi to qj without passing
through a state numbered greater than k - 1; or B) go (a) from <& to q”; then (b)
from gk to gk zero or more times; then (c¢) from gk to qj; in each case without
passing through any intermediate states numbered greater than k-1. Therefore
language R(1,j,k) is regular for all 1, j, k, thus completing the induction. m
Example 2.3.2: Let us construct a regular expression for the language accepted
by the deterministic finite automaton of Figure 2-15. This automaton accepts
the language {w e {a, b}* : w has 3k + 1 6's for some k e N}. Carrying out
explicitly the construction of the proof of the if part can be very tedious (in this
simple case, thirty-six regular expressions would have to be constructed!).
Things are simplified considerably if we assume that the nonde- terministic
automaton M has two simple properties:

2.3: Finite Automata and Regular Expressions 81 Figure 2-15 (a) It has a
single final state, F = {/}. (b) Furthermore, if (q,u,p) € A, thenq " fand p/ s;
that 1s, there are no transitions into the initial state, nor out of the final state.
This "special form" is not a loss of generality, because we can add to any
automa- automaton M a new initial state s and a new final state /, together with
e-transitions from s to the initial state of M and from all final states of M to /
(see Fig- Figure 2-16(a), where the automaton of Figure 2-15 is brought into
this "special form"). Number now the states of the automaton qly g2,..., qn, as
required by the construction, so that s = qn-\ and / = qn. Obviously, the regular
expression sought is R(n— 1, n, n). We shall compute first the R(1,j,0)'s, from
them the R(i,j, 1)'s, and so on, as suggested by the proof. At each stage we
depict each R(1, j, fc)'s as a label on an arrow going from state <& to state qj.
We omit arrows labeled by 0, and self-loops labeled {e}. With this
convention, the initial automaton depicts the correct values of the R(i,j, 0)'s —
see Figure 2-16(a). (This is so because in our initial automaton it so happens
that, for each pair of states (qi,qj) there is at most one transition of the form
(qi, u, qj) in A. In another automaton we might have to combine by union all
transitions from q, to qj, as suggested by the proof.) Now we compute the R(i,j,
1)'s; they are shown in Figure 2-16(b). Notice immediately that state qi need
not be considered in the rest of the construction; all strings that lead M to

acceptance passing through state qi have been consid- considered and taken
into account in the R(1,J, 1)'s. We can say that state q\ has been eliminated. In
some sense, we have transformed the finite automaton of Figure 2-16(a) to an
equivalent generalized finite automaton, with transitions that may be labeled
not only by symbols in E or e, but by entire regular expressions. The resulting
generalized finite automaton has one less state than the original one, since </i
has been eliminated.

82 Chapter 2: FINITE AUTOMATA (a) (b) aU ba*ba*b >O a*b >O
a*b(aUba*ba*b)* (c) (d) Figure 2-16 Let us examine carefully what is
involved in general in eliminating a state q (see Figure 2-17). For each pair of
states qi / q and qj " q, such that there is an arrow labeled a from qt to g and an
arrow labeled j3 from q to qj, we add an arrow from % to qj labeled ccy*13,
where 7 is the label of the arrow from q to itself (if there is no such arrow,
then 7 = 0, and thus 7* = {e}, so the label becomes a/3). If there was already
an arrow from qt to qj labeled S, then the new arrow is labeled 6 U 07* C. 6 U
ay* 8 qi Figure 2-17 Continuing like this, we eliminate state qi to obtain the
R(i,j, 2)'s in Figure 2-17(c), and finally we eliminate q$. We have now deleted
all states except the

2.3: Finite Automata and Regular Expressions 83 initial and final ones, and the
generalized automaton has been reduced to a single transition from the initial
state to the final state. We can now read the regular expression for M as the
label of this transition: R = R{4,5, 5) = R{4,5,3) = a*b(ba*ba*b U a)*, which
is indeed {w £ {a, b} *: w has 3A; + 1 b's for some k £ N}.” Problems for
Section 2.3 2.3.1. In part (d) of the proof of Theorem 2.3.1 why did we insist
that M be deterministic? What happens if we interchange the final and nonfinal
states of a nondeterministic finite automaton? 2.3.2. What goes wrong in the
proof of Part (¢) of Theorem 2.3.1 if we simply make si final, and add arrows
from all members of Fi back to s\ (without introducing a new starting state)?
2.3.3. Give a direct construction for the closure under intersection of the
languages accepted by finite automata. (Hint: Consider an automaton whose set
of states is the Cartesian product of the sets of states of the two original
automata.) Which of the two constructions, the one given in the text or the one
suggested in this problem, is more efficient when the two languages are given
in terms of nondeterministic finite automata? 2.3.4. Using the construction in
the proofs of Theorem 2.3.1, construct finite au- automata accepting these

languages. (a) a*(abUbal)e)b™ (b) ((aUb)*(eUc)*)* (¢) ((ab)* U (bc)*)ab
2.3.5. Construct a simple nondeterministic finite automaton to accept the lan-
language (ab U aba)*a. Then apply to it the construction of Part (c¢) of the proof
of Theorem 2.3.1 to obtain a nondeterministic finite automaton ac- accepting
((abU aba)*a)*. 2.3.6. Let L,L' C E*. Define the following languages. 1.
Pref(L) = {w € E* : x=wy for some x £ L, y € E*} (the set of pre- prefixes of
L). 1. Suf(L) = {w £ E*: x=yw for some x £ L,y S E*} (the set of suf-

suffixes of). 3. Subseq(L) = {wiW-2 .. -Wk: k£N, Wi £ E*fori=1,..., k,
and there is a string x — x§W\X\WiX2 ... WkXk £ L.} (the set of subsequences
ofL).

84 Chapter 2: FINITE AUTOMATA 4. /L' = {w e E* : wx 6 L for some x e
L'} (the right quotient of Lby L'). 5. Max(L) = {w £ L: ifx " e then u;a; " L}.
6. L*={wR : w 6 L}. Show that if Lis accepted by some finite automaton,
then so is each of the following. (a) Pref(L) (b) Suf(L) (¢) Subseq(L) (d) L/L,
where V 1s accepted by some finite automaton. (e) L/L', where L' is any
language. (f) Max(L) (g)LR (b) (d) 2.3.7. Apply the construction in Example
2.3.2 to obtain regular expressions cor- corresponding to each of the finite
automata above. Simplify the resulting regular expressions as much as you can.
2.3.8. For any natural number n> 1 define the nondeterministic finite
automaton Mn = (Kn,T,n,An,sn,Fn) with Kn - {qi,Q2, * * * ,qn}, sn=qi, Fn=
{qi}, £n=1aij 'm hi - !)---)n}) and &n = {(i,a,1},j) :1,) =1,...,n}. (a) Describe
L(Mn) in English.

2.3: Finite Automata and Regular Expressions 85 (b) Write a regular
expression for (c) Write a regular expression for L(Ms). It is conjectured that,
for all polynomials p there is an n such that no regular expression for L(Mn)
has length smaller than p(n) symbols. 2.3.9. (a) By analogy with Problem
2.1.5, define a nondeterministic 2-tape finite automaton, and the notion that
such an automaton accepts a par- particular set of ordered pairs of strings. (b)
Show that { {amb, anV) : n,m,p>0, and n=m or n = p] is accepted by some
nondeterministic 2-tape finite automaton. (c) We shall see (Problem 2.4.9) that
nondeterministic 2-tape finite au- automata cannot always be converted into
deterministic ones. This being the case, which of the constructions used in the
proof of Theorem 2.3.1 can be extended to demonstrate closure properties of
the following? (1) The sets of pairs of strings accepted by nondeterministic 2-
tape finite automata. (i1) The sets of pairs of strings accepted by deterministic

2-tape finite au- automata. Explain your answers. 2.3.10. A language L1is
definite if there is some k such that, for any string w, whether w e L depends
only on the last k symbols of w. (a) Rewrite this definition more formally. (b)
Show that every definite language is accepted by a finite automaton. (¢) Show
that the class of definite languages is closed under union and complementation.
(d) Give an example of a definite language L such that L* is not definite. (e)
Give an example of definite languages Li,L.2 such that L1L2 is not definite.
2.3.11. Let E and A be alphabets. Consider a function h from S to A*. Extend h
to a function from E* to A* as follows. h{e) =e. h(w) —h{w)h{a) for any w £
E*<r € E. For example, if E= A= {a, b}, h(a) = ab, and h(b) — aab, then
h(aab) =h(aa)h(b) =h(a)h(a)h(b) Any function h : E* (-»* A* defined in this
way froma function h : E (-»* A* is called a homomorphism.

86 Chapter 2: FINITE AUTOMATA Let h be a homomorphism from E* to A*.
(a) Show that if L C E* is accepted by a finite automaton, then so is h[L]. (b)
Show that if L is accepted by a finite automaton, then so is {w 6 S*: h(w) 6 L).
{Hint: Start from a deterministic finite automaton M accepting L, and construct
one which, when it reads an input symbol a, tries to simulate what M would do
on input h(a).) 2.3.12. Deterministic finite-state transducers were introduced in
Problem 2.1.4. Show that if L is accepted by a finite automaton, and / is
computed by a deterministic finite-state transducer, then each of the following
is true. (a) f[L] i1s accepted by a finite automaton. (b) f~1[L] is accepted by a
finite automaton. 2.4 LANGUAGES THAT ARE AND ARE NOT REGULAR
The results of the last two sections establish that the regular languages are
closed under a variety of operations and that regular languages may be
specified either by regular expressions or by deterministic or nondeterministic
finite automata. These facts, used singly or in combinations, provide a variety
of techniques for showing languages to be regular. Example 2.4.1: Let E =
{0,1,...,9} and let L C E* be the set of decimal representations for nonnegative
integers (without redundant leading 0's) divisible by 2 or 3. For example,
0,3,6,244 ¢ L, but 1,03,00 $. L. Then L is regular. We break the proof into four
parts. Let L\ be the set of decimal representations of nonnegative integers. Then
it is easy to see that Li=0U{l,2,...,9} £") which is regular since it is denoted by
a regular expression. Let Li be the set of decimal representations of
nonnegative integers divisible by 2. Then Li is just the set of members of L,
ending in 0, 2, 4, 6, or 8; that is, which is regular by Theorem 2.3.1(e). Let L3
be the set of decimal representations of nonnegative integers divisible by 3.

Recall that a number is divisible by 3 if and only if the sum of its digits 1s
divisible by 3. We construct a finite automaton that keeps track in its finite
control of the sum modulo 3 of a string of digits. L3 will then be the
intersection

2.4: Languages That Are and Are Not Regular 87 0,3,6,9 ,0,3,6,9 1,4,7 \.
0,3,6,9 Figure 2-18 with L\ of the language accepted by this finite automaton.
The automaton is pictured in Figure 2-18. Finally, L=12 U L3, surely a
regular language. 0 Although we now have a variety of powertful techniques for
showing that languages are regular, as yet we have none for showing that
languages are not regular. We know on fundamental principles that nonregular
languages do exist, since the number of regular expressions (or the number of
finite automata) is countable, whereas the number of languages is uncountable.
But to demonstrate that any particular language is not regular requires special
tools. Two properties shared by all regular languages, but not by certain
nonreg- nonregular languages, may be phrased intuitively as follows: A) As a
string is scanned left to right, the amount of memory that is required in order to
determine at the end whether or not the string is in the language must be
bounded, fixed in advance and dependent on the language, not the particular
input string. For example, we would expect that {anbn : n> 0} is not regular,
since it is difficult to imagine how a finite-state device could be constructed
that would correctly remember, upon reaching the border between the a's and
the fe's, how many a's it had seen, so that the number could be compared
against the number of 6's. B) Regular languages with an infinite number of
strings are represented by au- automata with cycles and regular expressions
involving the Kleene star. Such languages must have infinite subsets with a
certain simple repetitive struc- structure that arises from the Kleene star in a
corresponding regular expression or a cycle in the state diagram of a finite
automaton. This would lead us to

88 Chapter 2: FINITE AUTOMATA expect, for example, that {an: n>11is a
prime} is not regular, since there is no simple periodicity in the set of prime
numbers. These intuitive ideas are accurate but not sufficiently precise to be
used in formal proofs. We shall now prove a theorem that captures some of this
intuition and yields the nonregularity of certain languages as an easy
consequence. Theorem 2.4.1: Let L be a regular language. There is an integer n
> 1 such that any string w 6 L with \w\>n can be rewritten as w = xyz such that

y e, \xy\ <n, and xylz G L for each 1 > 0. Proof: Since L is regular, Lis
accepted by a deterministic finite automaton M. Suppose that n 1s the number of
states of M, and let w be a string of length n or greater. Consider now the first
n steps of the computation of M on w: (qo,w1w2...wn) \-m (qi,w2...wn) \-M =
m ® “m (gn,e), where qo is the initial state of M, and u>\ .. .wn are the n first
symbols of w. Since M has only n states, and there are n + 1 configurations
(</$, Wit\ ..., wn) appearing in the computation above, by the pigeonhole
principle there exist 1 and j,0<1<j<n, such that qi = qj. That is, the string y =
WjWj+i ... Wj drives M from state qi back to state qi, and this string is
nonempty since 1 < j. But then this string could be removed from w, or repeated
any number of times in w just after the jth symbol of w, and M would still
accept this string. That is, M accepts xylz 6 L for eachi > 0, wherex = w\ . ..Wi,
and z= Wj+i ...wm. Notice finally that the length of xy, the number we called j
above, is by definition at most n, as required. m This theorem is one of a
general class called pumping theorems, because they assert the existence of
certain points in certain strings where a substring can be repeatedly inserted
without affecting the acceptability of the string. In terms of its structure as a
mathematical statement, the pumping theorem above is by far the most
sophisticated theorem that we have seen in this book, because its assertion,
however simple to prove and apply, involves five alternating quantifiers.
Consider again what it says: for each regular language L, there exists ann> 1,
such that for each string w in L longer than n, there exist strings x, y, z with w =
xyz, y ~ e, and \xy\ < n, such that for each 1 > 0 xylz 6 L. Applying the theorem
correctly can be subtle. It is often useful to think of the application of this result
as a game between yourself, the prover, who is striving to establish that the
given language L is not regular, and an adversary who is insisting that L is
regular. The theorem states that, once L has been fixed, the

2.4: Languages That Are and Are Not Regular 89 adversary must start by
providing a number n; then you come up with a string w in the language that is
longer than n; the adversary must now supply an appropriate decomposition of
w into xyz; and, finally, you triumphantly point out i for which xylz is not in the
language. If you have a strategy that always wins, no matter how brilliantly the
adversary plays, then you have established that L is not regular. It follows from
this theorem that each of the two languages mentioned earlier in this section is
not regular. Example 2.4.2: The language L= {albl : 1 > 0} is not regular, for if
it were regular, Theorem 2.4.1 would apply for some integer n. Consider then

the string w = anbn £ L. By the theorem, it can be rewritten as w = xyz such
that \xy\ <n and y * e —that is, y = al for some 1 > 0. But then xz = an~lbn " L,
contradicting the theorem. 0 Example 2.4.3: The language L= {an : nis prime}
is not regular. For suppose it were, and let x, y, and z be as specified in
Theorem 2.4.1. Then x = ap, y = aq, and and z = ar, where p, r > 0 and q > 0.
By the theorem, xynz 6 L for each n> 0; that is, p + nq + r is prime for eachn>
0. But this is impossible; for letn=p +2q+r+2;thenp+nq+r=(q+1)
(p + 2q +r), which is a product of two natural numbers, each greater than 1.<>
Example 2.4.4: Sometimes it pays to use closure properties to show that a
language is not regular. Take for example L= {w € {a, b}* : w has an equal
number of a's and 6's}. L is not regular, because if L were indeed regular, then
so would be L D a*b* —by closure under intersection; recall Theorem
2.3.1(e). However, this latter language is precisely {anbn: n> 0}, which we
just showed is not regular.<0 In fact, Theorem 2.4.1 can be strengthened
substantially in several ways (see Problem 2.4.11 for one of them). Problems
for Section 2.4 2.4.1. An arithmetic progression is the set {p + qn: n=
0,1,2,...} for some p,q£ N. (a) (Easy) Show that if LC {a}*and {n: an G L} is
an arithmetic progression, then L is regular. (b) Show that if LC {a}* and {n:
an 6 L} is a union of finitely many arithmetic progressions, then L is regular.

90 Chapter 2: FINITE AUTOMATA (c) (Harder) Show that if LC {a}*is
regular, then {n: an E L} is a union of finitely many arithmetic progressions.
(This 1s the converse of Part (b)-) (d) Show that if £ is any alphabet and L C S*
is regular, then {{w|: w E L} is a union of finitely many arithmetic
progressions. (Hint: Use Part (cH 2.4.2. Let D= {0,1} and let T=D x D x D.
A correct addition of two numbers in binary notation can be pictured as a
string in T* 1f we think of the symbols in T as vertical columns. For example, 0
10 1+0110 10 11 would be pictured as the following string of four symbols.
liipii] Show that the set of all strings in T* that represent correct additions is a
regular language. 2.4.3. Show that each of the following is or 1s not a regular
language. The decimal notation for a number is the number written in the usual
way, as a string over the alphabet {0,1,..., 9}. For example, the decimal
notation for 13 is a string of length 2. In unary notation, only the symbol / is
used; thus 5 would be represented as ///// in unary notation. (a) {w (b) {w (¢)
{w PP (d) {w (e) {w (f) {w w is the unary notation for a number that is a
multiple of 7}. w 1s the decimal notation for a number that is a multiple of 7}
w 1s the unary notation for a number n such that there is a pair + 2 of twin

primes, both greater than n} w is, for some n > 1, the unary notation for 10n} w
is, for some n > 1, the decimal notation for 10n} w is a sequence of decimal
digits that occurs in the infinite decimal expansion of 1/7} (For example, 5714
is such a sequence, since 1/7 =0.14285714285714...) 2.4.4. Prove that
{anbambam+n : nm> 1} is not regular. 2.4.5. Using the pumping theorem and
closure under intersection, show that the following are not regular. (a) {wwR :
we {a,b}*} (b) {ww:wE{a, b}*} (c) {ww:wG {a, &}*}, where w
stands for w with each occurrence of a replaced by b, and vice versa.

2.4: Languages That Are and Are Not Regular 91 2.4.6. Call a string x over the
alphabet {(,)} balanced if the following hold: (1) in any prefix of x the number
of ('s 1s no smaller than the number of')'s; (i1) the number of ('s in x equals that
of')'s. That is, x is balanced if it could be derived from a legal arithmetic
expression by omitting all variables, num- numbers, and operations. (See the
next chapter for a less awkward definition.) Show that the set of all balanced
strings in {(,)}* is not regular. 2.4.7. Show that for any deterministic finite
automaton M = (K,Y,,6,s,F), M accepts an infinite language if and only if M
accepts some string of length greater than or equal to \K\ and less than 2\K\.
2.4.8. Are the following statements true or false? Explain your answer in each
case. (In each case, a fixed alphabet S is assumed.) (a) Every subset of a
regular language 1s regular. (b) Every regular language has a regular proper
subset. (c) If Lis regular, thenso is {xy: x£ Land y~L}. (d) {w : w=wR} is
regular. (e) If L1is a regular language, then so is {w : w £ Land wR £ L}. (f) If
C is any set of regular languages, then \J C is a regular language. (g) {xyxR : x,
y £ S*} 1s regular. 2.4.9. The notion of a deterministic 2-tape finite automaton
was defined in Prob- Problem 2.1.5. Show that {(anb,ambp) : n,m,p > 0,n=m
or n=p} is not accepted by any deterministic 2-tape finite automaton. (Hint:
Suppose this set were accepted by some deterministic 2-tape finite automaton
M. Then M accepts (anb, ant+1bn) for every n. Show by a pumping argument
that 1t also accepts {anb, ant+1bn+q) for some n> 0 and q > 0, a contradiction.)
By Problem 2.3.9, then, nondeterministic 2-tape finite automata cannot always
be converted to deterministic ones, and by Problem 2.1.5, the sets accepted by
deterministic 2-tape finite automata are not closed under union. 2.4.10. A 2-
head finite automaton is a finite automaton with two tape heads that may move
independently, but from left to right only, on the input tape. As with a 2-tape
finite automaton (Problem 2.1.5), the state set is divided into two parts; each
part corresponds to reading and moving one tape head. A string is accepted if

both heads wind up together at the end of the string with the finite control in a
final state. 2-head finite automata may be either deterministic or
nondeterministic. Using a state-diagram notation of your own design, show that
the following languages are accepted by 2-head finite automata. (a) {anbn
:n>0) (b) {wew : w £ {a,b}*} (c) {alba2ba3b...bakb:k>1} In which cases can
you make your machines deterministic?

92 Chapter 2: FINITE AUTOMATA 2.4.11. This problem establishes a
stronger version of the Pumping Theorem 2.4.1; the goal is to make the
"pumped" part as long as possible. Let M = (K, S, 6, s, F) be a deterministic
finite automaton, and let w be any string in L(M) of length at least \K\. Show
that there are strings x, y, and z such that w = xyz, \y\ > (\w\ - \K\ + 1)/|AT], and
xynz G L(M) for eachn>0.2.4.12. LetD={0,1} andlet T=DxDxD. A
correct multiplication of two numbers in binary notation can also be
represented as a string in T*. For example, the multiplication 10 x 5 = 50, or 0
01010x000101 1100 10 would be pictured as the following string of six
symbols. Show that the set of all strings in T* that represent correct
multiplications is not a regular language. (Hint: Consider the multiplication Bn
+ 1) xB» +1).) 2.4.13. Let I C S* be a language, and define Ln= {x 6 L: \x\ <
n}. The density of Lis the function di(n) = \Ln\. (a) What is the density of (a U
6)*? (b) What is the density of ab*ab * ab*al (c) What is the density of (ab U
aab)*l (d) Show that the density of any regular language is either bounded from
above by a polynomial, or bounded from below by an exponential (a function
of the form 2cn for some n). In other words, densities of regular languages
cannot be functions of intermediate rate of growth such as niogn (inni:
Consider a deterministic finite automaton accepting L, and all cycles —closed
paths without repetitions of nodes— in the state diagram of this automaton.
What happens if no two cycles share a node? What happens if there are two
cycles that share a node?) 2.5 STATE MINIMIZATION In the last section our
suspicion that deterministic finite automata are poor models of computers was
verified: Computation based on finite automata cannot

2.5: State Minimization 93 achieve such trivial computational tasks as
comparing the number of a's and the number of 6's in a string. However, finite
automata are useful as basic parts of computers and algorithms. In this regard,
it 1s important to be able to minimize the number of states of a given
deterministic finite automaton, that is, to determine an equivalent deterministic

finite automaton that has as few states as possible. We shall next develop the
necessary concepts and results that lead to such a state minimization algorithm.
Figure 2-19 Given a deterministic finite automaton, there may be an easy way
to get rid of several states. Let us take, for example, the deterministic
automaton in Figure 2-19, accepting the language L= (ab U 6a)* (as it is not
very hard to check). Consider state q-j. It should be clear that this state is
unreachable, because there is no path from the start state to it in the state
diagram of the automaton. This is the simplest kind of optimization one can do
on any deterministic finite automaton: Remove all unreachable states and all
transitions in and out of them. In fact, this optimization was implicit in our
conversion of a nondeterministic finite automaton to its equivalent
deterministic one (recall Example 2.2.4): We omitted from consideration all
states (sets of states of the original automaton) that are not reachable from the
start state of the resulting automaton. Identifying the reachable states is easy to
do in polynomial time, because the set of reachable states can be defined as the
closure of {s} under the relation {(p,q) : 5{p, a) =q for some a 6 S}.
Therefore,the set of all reachable states can be computed by this simple
algorithm: R:={s}; while there is a state p £ R and a £ S such that S(p, a) add
6(p, a) to R. R do However, the remaining automaton after the deletion of
unreachable states (Figure 2-20) still has more states than are really needed,
this time for subtler reasons. For example, states g+ and q§ are equivalent, and
therefore they can be

94 Chapter 2: FINITE AUTOMATA merged into one state. What does this
mean, exactly? Intuitively, the reason we call these states equivalent is that,
from either state, precisely the same strings lead the automaton to acceptance.
Our next definition captures a similar relation between strings that have "a
common fate" with respect to a language. Definition 2.5.1: Let LC £* be a
language, and let x,y £ S*. We say that x and y are equivalent with respect to L,
denoted x «£ vy, if for all zeS*, the following is true: xz £ Lif and only if yz £ L.
Notice that «i 1s an equivalence relation. That 1s, x k,1 y if either both strings
belong to L or neither is in L; and moreover, appending any fixed string to both
x and y results in two strings that are either both in L or both not in L. Example
2.5.1: If x is a string, and when L is understood by context, we denote by [x]
the equivalence class with respect to L to which x belongs. For example, for
the language L= (ab U 6a)* accepted by the automaton in Figure 2-20, it is not
hard to see that «£ has four equivalence classes: A) [e] =L, B) [a] = La, C) [b]

= Lb, D) [aa] = L(aaUbb)Y,*. In A), for any string x £ L, including x = e, the Z's
that make xz £ L are precisely the members of L. In B), any x £ La needs a z of
the form bL in order for xz to be in L. Similarly, for C) the Z's are of the form
aL.. Finally, in D) there is no z that can restore tola string with a prefix in L(aa
U bb). In other words, all strings in set A) have the same fate with respect to
inclusion in L; and the same for B), C), and D). Finally, it is easy to see that

these four classes exhaust all of S*. Hence these are the equivalence classes of
«-0

2.5: State Minimization 95 Notice that «I relates strings in terms of a language,
not in terms of an automaton. Automata provide another, somewhat less
fundamental, relation, described next. Definition 2.5.2: Let M = (K, £, <5, s,F)
be a deterministic finite automaton. We say that two strings x, y E S* are
equivalent with respect to M, denoted x ~my, if> intuitively, they both drive M
from s to the same state. Formally, x ~my if there is a state q such that (s,x) \-
*M (g,e) and (s,y) \-*M (g,e). Again, ~mis an equivalence relation. Its
equivalence classes can be iden- identified by the states of M —more
precisely, with those states that are reachable from s and therefore have at least
one string in the corresponding equivalence class. We denote the equivalence
class corresponding to state q of M as Eq. Example 2.5.1 (continued): For
example, for the automaton M in Figure 2- 20, the equivalence classes of ~m
are these (where L= (abUba)* is the language accepted by M) A) Eqi = (bay,
B) Eq2 =Laua C) Eq3 = abL, D) Eq4 =b{ab)\ E) Eq5 =L(bb\Jaa)Y,*, F) Em=
abLb. Again, they form a partition of S*.<> These two important equivalence
relations, one associated with the lan- language, the other with the automaton,
are related as follows: Theorem 2.5.1: For any deterministic finite automaton
M = {K,T,,8,s,F) and any strings x, y £ S*, 1f x ~m V, then x Proof: For any
string x £ £*, let q(x) £ K be the unique state such that (s,x) \-*M (q(x),e).
Notice that, for any x,z G £*, xz £ (M) 1f and only if (q(x),z) \-*M (/, e) for
some f E F. Now, if x ~m V then, by the definition of ~m, q(x) = q{y), and thus
x ~m V implies that the following holds: xz E (M) if and only if yz E I(M) for
all zE £*}, which is the same as x A very suggestive way of expressing
Theorem 2.5.1 is to say that ~mis a refinement of "l(m)- In general, we say
that an equivalence relation ~ is a refinement of another ps if for all x, yx ~y
implies xsay. If~is a

96 Chapter 2: FINITE AUTOMATA refinement of rj, then each equivalence

class with respect to ~ is contained in some equivalence class of 1j; that is,
each equivalence class of 1] is the union of one or more equivalence classes of
~. For example, the equivalence relation that relates any two cities of the
United States that are in the same county is a refinement of the equivalence
relation that relates any two cities that are in the same state. Example 2.5.1
(continued): For an example that is more to the point, the equivalence classes
of ~m for the automaton M in Figure 2-20 "refine" in this sense the equivalence
classes of ~I(m)> exactly as predicted by Theorem 2.5.1. For example, classes
Egs and [aa] coincide, while classes Eqi and Eq3 are both subsets of [e].<>
Theorem 2.5.1 implies something very important about M and any other
automaton M accepting the same language [(M): Its number of states must be at
least as large as the number of equivalence classes of L(M) under «. In other
words, the number of equivalence classes of L{M) 1s a natural lower bound on
the number of states of any automaton equivalent to M. Can this lower bound
be achieved? We next show that indeed it can. Theorem 2.5.2 (The Myhill-
Nerode Theorem): Let L C S* be a regular language. Then there 1s a
deterministic finite automaton with precisely as many states as there are
equivalence classes in rj” that accepts L. Proof: As before, we denote the
equivalence class of string x 6 S* in the equivalence relation Wj by [x]. Given
L, we shall construct a deterministic finite automaton (the standard automaton
for L) M — (K,T,,6,s,F) such that L=1(M). M is defined as follows: K = {[x]
: X £ £%}, the set of equivalence classes under «/,. s = [e], the equivalence
class of e under «£. F = {[x] :xeL}. Finally, for any [x] £ K and any a £ S,
define /([x],a) = [xa\. How do we know that the set K is finite, that is, that «£
has finitely many equivalent classes? L is regular, and so it is surely accepted
by some deterministic finite automaton M'. By the previous theorem, ~m> is a
refinement of 177, and so there are fewer equivalence classes in L than there are
equivalence classes of ~M' —that is to say, states of M'. Hence K is a finite
set. We also have to argue that S 1s well defined, that is, <5([a;],a) = [xa] is
independent of the string x € [x\. But this is easy to see, because x ss” x' if and
only if xa ss” x'a. We next show that L= L(M). First we show that for all x, y €
£*, we have ([x],y)h*M([xy},e). A)

2.5: State Minimization 97 This is established by induction on \y\. It is trivial
when y = e, and, if it holds for all y's of length up to n and y = y'a, then by
induction ([x],y'a) \-*M ([xy'],a)\-*M([xy],e). Now A) completes the proof:
For all x € E*, we have that x € (M) if and only if ([e],x) h *{q,e) for some q

€ F, which is by A) the same as saying [x] € F, or, by the definition of F, [x £
L]. m Example 2.5.1 (continued): The standard automaton corresponding to the
language L= (abUba)* accepted by the six-state deterministic finite automaton
in Figure 2-20 is shown in Figure 2-21. It has four states. Naturally, it is the
smallest deterministic finite automaton that accepts this language.0 Figure 2-21
Incidentally, Theorems 2.5.2 immediately imply the following characteriza-
characterization of regular languages, sometimes itself called the Myhill-
Nerode Theorem: Corollary: A language L is regular if and only if « alence
classes. has finitely many equiv- equivProof: If L is regular, then L = I(M) for
some deterministic finite automaton M, and M has at least as many states as «£
has equivalence classes. Hence there are finitely many equivalence classes in
«£. Conversely, if »£ has finitely many equivalence classes, then the standard
deterministic finite automaton M” (recall the proof of Theorem 2.5.2) accepts
L.m Example 2.5.2: The corollary just proved is an interesting alternative way
of specifying what it means for a language L to be regular. Furthermore, it
provides another useful way for proving that a language is not regular —
besides the Pumping Theorem. For example, here is an alternative proof that L
= {anbn : n> 1} is not regular: No two strings al and aJ', with1 "], are
equivalent under «/,, simply

98 Chapter 2: FINITE AUTOMATA because there is a string (namely, bl)
which, when affixed al gives a string in L, but when affixed to aj produces a
string not in L. Hence kl has infinitely many equivalence classes [¢], [a], [aa],
[aaa],..., and hence by the corollary L is not regular. 0 For any regular language
L the automaton constructed in the proof of The- Theorem 2.5.2 is the
deterministic automaton with the fewest states that accepts L—an object of
obvious practical importance. Unfortunately, this automaton is defined in terms
of the equivalence classes of ss”, and it is not clear how these equivalence
classes can be identified for any given regular language L — especially if Lis
given in terms of a deterministic automaton M. We shall next develop an
algorithm for constructing this minimal automaton, starting from any
deterministic finite automaton M such that L=L{M). Let M= (K, E, S, s, F) be
a deterministic finite automaton. Define a rela- relation Am C K x £*, as
follows: (q,w) £ Amifand only if (q,w) \-*M (/, e) for some / £ F; that is, (q,
w) £ Am means that w drives M from q to an accepting state. Let us call two
states q,p £ K equivalent, denoted q = p, if the following holds for all z £ £*:
(9, 2) £ Amifand only if (p, z) £ Am- Thus, if two states are equivalent, then

the corresponding equivalence classes of ~m are subsets of the same
equivalence class of «£. In other words, the equivalence classes of = are
precisely those sets of states of M that must be clumped together in order to
obtain the standard automaton of L(My. We shall develop an algorithm for
computing the equivalence classes of =. Our algorithm will compute = as the
limit of a sequence of equivalence relations =o, =i, =21 * * mm> defined next.
For two states q,p £ K, g =n p if the following is true: (q,z) £ AM if and only 1f
(p, z) £ AM for all strings z such that \z\ < n. In other words, =n is a coarser
equivalence relation than =, only requiring that states q and p behave the same
with respect to acceptance when driven by strings of length up to n. Obviously,
each equivalence relation in =0, =1, =2, * m m is a refinement of the previous
one. Also, q =0 P holds if q and p are either both accepting, or both non-
accepting. That is, there are precisely two equivalence classes of =o-' F and K
— F (assuming they are both nonempty). It jemains to show how =n+i depends
on =,,. Here is how: ' The relation = can be called the quotient of ~m by ~I- If
~ 1s a refinement of «, then the quotient of « by ~, denoted « / ~, 1s an
equivalence relation on the equivalence classes of ~. Two classes [x] and [y]
of ~ are related by ss / ~ if x « y—it is easy to see that this is indeed an
equivalence relation. To return to our geographic example, the quotient of the
"same state" relation by the "same county" relation relates any two counties
(each with at least one city in it) that happen to be in the same state.

2.5: State Minimization 99 Lemma 2.5.1: For any two states q,p € K and any
integer n> 1, q=np ifand only if (a) g =n i p, and (b) for all a € E, S(q,a)
=,, ! d(p,a). Proof: By definition of =n, q =n p if and only if ¢ =n 1 p, and
furthermore any string w = av of length precisely n drives either both q and p
to acceptance, or both to nonacceptance. However, the second condition is the
same as saying that S(q,a) =ra_i S(p,a) for any a G E. m Lemma 2.5.1 suggests
that we can compute =, and from this the standard automaton for L, by the
following algorithm: Initially the equivalence classes of =0 are F and K — F;
repeat for n:=1,2,... compute the equivalence classes of =n from those =n 1
until =n 1s the same as =n-i- Each iteration can be carried out by applying
Lemma 2.5.1: For each pair of states of M we test whether the conditions of
the lemma hold, and if so we put the two states in the same equivalence class
of =n. But how do we know that this 1s an algorithm, that the iteration will
eventually terminate? The answer is simple: For each iteration at which the
termination condition is not satisfied, =,,/-,, !, =nis a proper refinement of

=n_1, and thus has at least one more equivalence class than =n-\- Since the
number of equivalence classes cannot become more than the number of states
of M, the algorithm will terminate after at most \K\ — 1 iterations. When the
algorithm terminates, say at the nth iteration and having com- computed
=,,=,, |, then the lemma 1mplies that =n==n | 1==n+2==n+3= **m Hence the
relation computed 1s precisely =. In the next section we give a more careful
analysis of the complexity of this important algorithm, establishing that it is
polynomial. Example 2.5.3: Let us apply the state minimization algorithm to the
deter- deterministic finite automaton M in Figure 2-20 (of course, by the
previous example, we know what to expect: the four-state standard automaton
for L(M)). At the various iterations we shall have these equivalence classes of
the corresponding Initially, the equivalence classes of =0 are {91,93} and
{q2,94,95,96} After the first iteration, the classes of =1 are {91,93}, {92},
{94,</6}, and {95}. The splitting happened because 5(q2,b) "0
HQ1,b),S(q5.b), and S(g4,a) "0 %5,a)- After the second iteration, there is no
further splitting of classes. The algorithm thus terminates, and the minimum-
state automaton is shown in

100 Chapter 2: FINITE AUTOMATA q6} 6- a,b Figure 2-22 Figure 2-22. As
expected, it is isomorphic with the standard automaton shown in Figure 2-21.
<> Example 2.5.4: Recall the language L. C {a\,... ,an} * of all strings that do
not contain occurrences of all n symbols, and the corresponding deterministic
finite automaton with 2n states (Example 2.2.5). We can now show that these
states are all necessary. The reason is that «£ has 2n equivalence classes.
Namely, for each subset A of E, let La be the set of all strings containing
occurrences of all symbols in A, and of no symbols in S - A (for example, Lq =
{e}). Then it is not hard to see that the 2n sets La are precisely the equivalence
classes of «/,. Because if x G La and y G LB for two distinct subsets A and B
of E, then for any z G Ly,-b, xz G L, and yz £ L (here we assumed that B 1s not
contained in A; otherwise, reverse the roles of A and B).<& Recall that there
1s a nondeterministic finite automaton with n + 1 states that accepts the same
language (Example 2.2.2). Although deterministic au- automata are exactly as
powerful as nondeterministic ones in principle, determin- determinism comes
with a price in the number of states which is, at worst, exponential. To put it in
a different way, and in fact a way that anticipates the important issues of
computational complexity discussed in Chapters 6 and 7: When the number of
states 1is taken into account, nondeterminism is exponentially more powerful

than determinism in the domain of finite automata. Problems for Section 2.5
2.5.1. (a) Give the equivalence classes under kl for these languages: (1) L=
(aabUab)*. (i1) L= {x : x contains an occurrence of aababa}. (ii1) L={xxR:x£
{a,b}*}. (1v) L= {xx:x G {a, &} *}. (v) Ln— {a, b}*a{a, b}n, where n> 0 is
a fixed integer, (vi) The language of balanced parentheses (Problem 2.4.6).

2.5: State Minimization 101 (b) For those languages in (a) for which the
answer is finite, give a deterministic finite automaton with the smallest
possible number of states that accepts the corresponding language. 2.5.2. Call
a string X G E* square-free if it cannot be written as x = uvvw for some u,v, w
G E*, v "e. For example, lewis and christos are square-free, but harry and
papadimitriou are not. Show that, if [E|> 1, then the set of all square-free
strings in E* is not regular. 2.5.3. For each of the finite automata (deterministic
or nondeterministic) consid- considered in Problems 2.1.2 and 2.2.9, find the
minimum-state equivalent deter- deterministic finite automaton. 2.5.4. A two-
way finite automaton is like a deterministic finite automaton, except that the
reading head can go backwards as well as forwards on the input tape. If it tries
to back up off the left end of the tape, it stops operat- operating without
accepting the input. Formally, a two-way finite automaton M is a quintuple (K,
E, 6, s, F), where K, E, s, and F are as defined for deter- deterministic finite
automata, and S 1s a function fromK x E to K x {<—, —»}; the <—or —>
indicates the direction of head movement. A configuration is a member of K x
E* x E*; configuration (p, u, v) indicates that the machine is in state p with the
head on the first symbol of v and with u to the left of the head. If v=-e,
configuration (p, u, ¢) means that M has completed its operation on u, and
ended up in state p. We write (pi,ui,vi) hM (p2,U2,v2) if and only if vi = av for
some a G E, fi(Pi>(T) = (iP2,e), and either 1. e = and ui =u\O, V2 =v, or
2. e =«—,1/1=ua' for some u G E* and V2 =a'v\. As usual, \-*M is the
reflexive, transitive closure of \-M. M accepts w if and only if (s,e,w) \~*M
(f,w,e) for some / G F. In this problem you will use the Myhill-Nerode
Theorem (Theorem 2.5.2 and its corollary) to show that a language accepted
by a two-way finite automaton is accepted by a one-way finite automaton.
Thus, the apparent power to move the head to the left does not enhance the
power of finite automata. Let M be a two-way finite automaton as just defined.
(a) Let g G K and w € E*. Show that there 1s at most one p G K such that
(q,e,w) \-*M (p,w,e). (b) Let t be some fixed element noiin K. For any w G E*,
define a function {t} as follows. otherwise

102 Chapter 2: FINITE AUTOMATA By Part (a), Xw 1s well defined. Also,
for any w G E*, define 6W : K x £ h-> K U {<} as follows: {p, if(g, w, a) \-
~M (p, w, a) but it is not the case that (q, w, a) \~If (r, w, a) h" (p, w, a) for any
r *p, t, if there is no p £ if such that (q, w, a) 1-* (p, w, a) (Here by h* we
mean the transitive (not reflexive) closure of \~m, that is, the "yields in one or
more steps' relation on configurations.) Now suppose that w,v £ E*, Xw = Xv,
and Ow = 6V. Show that, for any u G S*, M accepts wu if and only if M accepts
vu. (c) Show that, if (M) is the language accepted by a deterministic two-
way automaton, then (M) is accepted by some ordinary (one-way)
deterministic finite automaton. (Hint: Use (b) above to show that ~[(M) has
finitely many equivalence classes.) (d) Conclude that there is an exponential
algorithm which, given a deter- deterministic two-way automaton M,
constructs an equivalent deterministic finite automaton. (Hint: How many
different functions Xw and 6W can there be, as a function of \K\ and [E[?) (e)
Design a deterministic two-way finite automaton with O(n) states ac- accepting
the language Ln = {a, b} *a{a, b}n (recall Problem 2.5.1(a)(v)). Comparing
with Problem 2.5.1(b)(v), conclude that the exponential growth in (d) above is
necessary. (f) Can the argument and construction in this problem be extended to
nondeterministic two-way finite automata? 2.6 ALGORITHMS FOR FINITE
AUTOMATA Many of the results in this chapter were concerned with different
ways of rep- representing a regular language: as a language accepted by a
finite automaton, deterministic or nondeterministic, and as a language
generated by a regular ex- expression. In the previous section we saw how,
given any deterministic finite automaton, we can find the equivalent
deterministic finite automaton with the fewest possible states. All these results
are constructive, in that their proofs im- immediately suggest algorithms which,
given a representation of one kind, produce a representation of any one of the
others. In this subsection we shall make such algorithms more explicit, and we
shall analyze roughly their complexity. We start from the algorithm for
converting a nondeterministic finite au- automaton to a deterministic one
(Theorem 2.2.1); let us pinpoint its complex- complexity. The input to the
algorithm 1s a nondeterministic finite automaton M =

2.6: Algorithms for Finite Automata 103 (K, S, A, s, F); thus, we must
calculate its complexity as a function of the car- cardinalities of K, S, and A.
The basic challenge is to compute the transition function of the deterministic
automaton, that is, for each Q C K, and each a £ E, to compute S'(Q,a) =

[J{E(p) :p£K and (q,a,p) G A for some q G Q}. It is more expedient to
precompute all 2?(p)'s once and for all, using the closure algorithm explained
in that proof. It is easy to see that this can be done in total time O(|AT|3) for all
E(p)'s. Once we have the E(p)'s, the computation 01S'(Q, a) can be carried out
by first collecting all states p such that (q, a,p) £ A, and then taking the union of
all 1£(p)'s —a total of O{\ A| \K\2) elementary operations such as adding an
element to a subset of K. The total complexity of the algorithm is thus
OBIxI|.fiT|3|£||A.ftT[2). It 1s no surprise that our complexity estimate is an
exponential function of the size of the input (as manifested by the 2”1 factor);
we have seen that the output of the algorithm (the equivalent deterministic
finite automaton) may in the worst case be exponential. Converting a regular
expression R into an equivalent nondeterministic finite automaton (Theorem
2.3.2) is in comparison efficient: It is very easy to show by induction on the
length of R that the resulting automaton has no more than 2[i?| states, and
therefore no more than 4[1?|2 transitions —a polynomial. Turning a given finite
automaton M = (K,H,A,s,F) (deterministic or not) into a regular expression
generating the same language (Theorem 2.3.2) involves computing \K\3 regular
expressions R(i,],k). However, the length of these expressions is in the worst
case exponential: During each iteration on the index k, the length of each
regular expression is roughly tripled, as it is the concatenation of three regular
expressions from the previous iteration. The resulting regular expressions may
have length as large as 3" —an exponential function of the size of the
automaton. The minimization algorithm in the previous section which, given
any deter- deterministic automaton M = (K, E,<5, s,F), computes an equivalent
deterministic finite automaton with the smallest number of states, is
polynomial. It proceeds in at most \K\ — 1 iterations, with each iteration
involving the determination, for each pair of states, whether they are related by
=n; this test only takes 0(|S|) elementary operations such as testing whether two
states are related by a previously computed equivalence relation =n_i. Thus
the total complexity of the minimization algorithm is 0(|S|.K"|3) —a
polynomial. Given two language generators or two language acceptors, one
natural and interesting question to ask is whether they are equivalent that is,
whether they generate or accept the same language. If the two acceptors are
deterministic finite automata, the state minimization algorithm also provides a
solution to the equivalence problem: Two deterministic finite automata are
equivalent if

104 Chapter 2: FINITE AUTOMATA and only if their standard automata are
identical. This is because the standard automaton only depends on the language
accepted, and 1s therefore a useful standardization for testing equivalence. To
check whether two deterministic automata are identical is not a difficult
isomorphism problem, because states can be identified starting from the initial
states, with the help of the labels on the transitions. In contrast, the only way
we know how to tell whether two nondeterministic automata, or two regular
expressions, are equivalent is by converting them into two deterministic finite
automata, and then testing them for equivalence. The algorithm is, of course,
exponential. We summarize our discussion of the algorithmic problems related
to regular languages and their representations as follows: Theorem 2.6.1: (a)
There is an exponential algorithm which, given a nonde- nondeterministic
finite automaton, constructs an equivalent deterministic finite au- automaton.
(b) There is a polynomial algorithm which, given a regular expression, con-
constructs an equivalent nondeterministic finite automaton. (c) There is an
exponential algorithm which, given a nondeterministic finite automaton,
constructs an equivalent regular expression. (d) There is a polynomial
algorithm which, given a deterministic finite automa- automaton, constructs an
equivalent deterministic finite automaton with the small- smallest possible
number of states. (e) There is a polynomial algorithm which, given two
deterministic finite au- automata, decides whether they are equivalent. (f)
There is an exponential algorithm which, given two nondeterministic finite
automata, decides whether they are equivalent; similarly for the equivalence of
two regular expressions. We know that the exponential complexity in (a) and
(c) above is neces- necessary, because, as Example 2.2.5 and Problem 2.3.8
indicate, the output of the algorithm (in (a), the deterministic automaton; in (c),
the equivalent regular expression) may have to be exponential. There are,
however, three important questions that remain unresolved in Theorem 2.6.1:
A) Is there a polynomial algorithm for determining whether two given nonde-
nondeterministic finite automata are equivalent, or is the exponential
complexity in (f) inherent? B) Can we find in polynomial time the
nondeterministic automaton with the fewest states that is equivalent to a given
nondeterministic automaton? We can certainly do so in exponential time: Try
all possible nondeterministic automata with fewer states than the given one,
testing equivalence in each case using the exponential algorithm in ().

2.6: Algorithms for Finite Automata 105 C) More intriguingly, suppose that we

are given a nondeterministic finite au- automaton and we wish to find the
equivalent deterministic finite automaton with the fewest states. This can be
accomplished by combining the algo- algorithms for (a) and (d) above.
However, the number of steps may be expo- exponential in the size of the given
nondeterministic automaton, even though the end result may be small —simply
because the intermediate result, the unoptimized deterministic automaton
produced by the subset construction, may have exponentially more states than
necessary. Is there an algorithm that produces directly the minimum-state
equivalent deterministic automa- automaton in time which is bounded by a
polynomial in the input and the final output? As we shall see in Chapter 7 on
JV/'P-completeness, we strongly suspect that all three of these questions have
negative answers although at present nobody knows how to prove it. Finite
Automata as Algorithms There is something very basic that can be said about
deterministic finite au- automata in connection with algorithms: A deterministic
finite automaton M is an efficient algorithm for deciding whether a given string
is in L{M). For ex- example, the deterministic finite automaton in Figure 2-23
can be rendered as the following algorithm: Figure 2-23 <7i: Let a :— get-
next-symbol; if a = end-of-file then reject; else if a = a then goto q\; else ifa =
b then goto qi\ g2: Let a := get-next-symbol; if a = end-of-file then reject; else
if a = a then goto qi\ else if a = b then goto q3; q3: Let a := get-next-symbol;

106 Chapter 2: FINITE AUTOMATA if a = end-of-file then accept; else ifa =
a then goto q%\ else if a = b then goto q\; To render a deterministic finite
automaton M = (K, S, S, s, F) as an algo- algorithm, for each state in K we
have [S| + 2 instructions, of which the first obtains the next input symbol, and
each of the others is responsible for performing the correct action for a
particular value of the input symbol —or for the case in which we have
reached the end of the input string, an event that we call "end-of-file." We can
express formally the discussion above as follows: Theorem 2.6.2: If Lis a
regular language, then there is an algorithm which, given w £ £*, tests whether
it1s in Lin O(\w\) time. But how about nondeterministic finite automata? They
are definitely a powerful notational simplification, and they are the most
natural and direct way of rendering regular expressions as automata (recall the
constructions in the proof of Theorem 2.3.1), but they do not obviously
correspond to algorithms. Of course, we can always transform a given
nondeterministic finite automaton to the equivalent deterministic one by the
subset construction in the proof of Theorem 2.2.1, but the construction itself

(and the ensuing automaton) may be exponential. The question arises, can we
"run" a nondeterministic finite automaton directly, very much the same way we
run deterministic ones? We next point out that, with a modest loss in speed, we
can. Recall the idea behind the subset construction: After having read part of
the input, a nondeterministic automaton can be in any one of a set of states. The
subset construction computes all these possible sets of states. But when we are
only interested in running a single string through the automaton, perhaps a
better idea is this: We can calculate the sets of states "on the fly," as needed
and suggested by the input string. Concretely, suppose that M = (K, E, A, s, F)
1s a nondeterministic finite automaton, and consider the following algorithm:
So :=E(s),n:=0; repeat the following setn :=n+ 1, and let a be the nth input
symbol; if a * end-of-file then Sn :=\J{E(q) : for some p G Sn i, (p, a, q) £ A}
until a = end-of-file if 5n_! n F * 0 then accept else reject Here E{q) stands for
the set {p : (q,) \-*M (p, €)}, as in the subset construc- construction.

2.6: Algorithms for Finite Automata 107 94 Figure 2-24 Example 2.6.1: Let us
"run," using this algorithm, the nondeterministic finite automaton in Figure 2-24
on the input string aaaba. The various values for the set Sn are shown below.
50 ={90,91}, 51 ={90,91,92}, 5*2 ={90,91,92}, S3 ={90,91,92}, £4 =
{91,92,93,94}, 5*5 ={92,93,94} - The machine ends up accepting the input
aaaba, because 55 contains a final state. O It is easy to prove by induction on
the length of the input string that this algorithm maintains the set Sn of all states
of M that could be reached by reading the first n symbols of the input. In other
words, it simulates the equivalent deterministic finite automaton without ever
constructing it. And its time requirements are quite modest, as the following
theorem states (for a proof of the time bound, as well as an improvement, see
Problem 2.6.2). Theorem 2.6.3: [f M = (K, JC, A, s, F) is a nondeterministic
finite automaton, then there is an algorithm which, given w € £*, tests whether
it 1s in L(M) in timeO(\K\2\w\). Suppose next that we are given a regular
expression a over the alphabet E, and we wish to determine whether a given
string w £ E* 1s in L[a], the language generated by a. Since a can be easily
transformed into an equivalent nondeterministic finite automaton M, of size
comparable to that of a (recall the

108 Chapter 2: FINITE AUTOMATA constructions in Theorem 2.3.1), the
algorithm above is also useful for answering such questions.T A related
computational problem, which also can be solved by methods based on finite

automata, 1s that of string matching, a most central problem in computer
systems and their applications. Let us fix a string x £ E*, which we shall call
the pattern. We wish to devise an efficient algorithm which, given any string
u>, the text (presumably much longer than x), determines whether x occurs as a
substring of w. Notice that we are not interested in an algorithm that takes both
x and w as inputs and tells us if x occurs in w; we want our algorithm, call it
Ax, to specialize in discovering the pattern x in all possible longer strings. Our
strategy 1s, naturally enough, to design a finite automaton that accepts the
language Lx = {w e E* : x 1s a substring of w}. (b) Figure 2-25 In fact, it is
trivial to design a nondeterministic finite automaton for ac- accepting Lx. For
example, if E = {a, b} and x = ababaab, the corresponding nondeterministic
finite automaton is shown in Figure 2-25(a). But in order to turn this into a
useful algorithm we would have to resort to the direct simulation of Theorem
2.6.3 —with its running time O(\x 2|w|), polynomial but very slow for this
application— or convert it into an equivalent deterministic automaton For the
reader familiar with the Unix operating system, this algorithm lies at the basis
of the commands grep and egrep.

2.6: Algorithms for Finite Automata 109 —a construction which we know 1is
potentially exponential. Fortunately, in the case of nondeterministic automata
arising in string-matching applications, the subset construction is always
efficient, and the resulting deterministic automa- automaton Mx has exactly the
same number of states as the original nondeterministic one (see Figure 2-
25(b)). It is clearly the minimal equivalent automaton. This automaton Mx is
therefore an algorithm for testing whether w € Lx in time O(|tu]), for any string
w € E*. Still, this algorithm has a drawback that makes it unsuitable for the
many practical applications of string matching. In real applications, the
underlying alphabet E has several dozens, often hundreds, of symbols. A
deterministic finite automaton rendered as an algorithm must execute for each
input symbol a long sequence of if statements, one for each symbol of the
alphabet (recall the first algorithm in this subsection). In other words, the O
notation in the O(jw|) running time of the algorithm "hides" a potentially large
constant: the running time is in fact O(|E|w]). For a clever remedy, see Problem
2.6.3. Problems for Section 2.6 2.6.1. Show that these two regular expressions
do not represent the same language: aa(a U 6)* U (bb)*a* and (ab U ba U a)*.
Do so (a) by subjecting them to a general algorithm; and (b) by finding a string
generated by one and not by the other. 2.6.2. (a) What is the sequence of Si's

produced if the nondeterministic finite automaton in Example 2.6.1 is
presented with input bbabbabba? (b) Prove that the algorithm for running a
nondeterministic finite automa- automaton with m states on an input of length n
takes time O(m2n). (¢) Suppose that the given nondeterministic finite
automaton has at most p transitions from each state. Show that an O(mnp)
algorithm 1s pos- possible. 2.6.3. Let E be an alphabet, x — a\... an £ E* and
consider the nondeterministic finite automaton Mx = (K,H,A,s,F), where K =
{qo,qi,---,qn}, A= {(ft-1,a«,ft) :1=0,... n- 1} U {(ft,a,ft) : a€ E,ze {O,n}}
(recall Figure 2-25). (a) Show that L(MX) = {w £ E*: x is a substring of w}.
(b) Show that the deterministic finite automaton M'x with the fewest states that
is equivalent to Mx also has n + 1 states. What is the worst-case time required
for its construction, as a function of n? (c) Show that there is a
nondeterministic finite automaton M" equivalent to Mx, also withn + 1 states
{qo,Qi, m m m ,qn}, and with the following important property: Each state
except qo and qn has exactly two tran- transitions out of it, of which one is an
e-transition. (Hint: Replace each

110 Chapter 2: FINITE AUTOMATA backwards transition in the deterministic
finite automaton on Figure 2-25 by an appropriate e-transition; generalize.) (d)
Argue that M" remedies the problem of the hidden constant |S| dis- discussed in
the last paragraph of the text. (e¢) Give an algorithm for constructing M" from x.
What is the complexity of your algorithm as a function of nl (f) Devise an O(n)
algorithm for the problem in (e) above. (Hint: Suppose that the e-transitions of
M" are (<7i,e, <//(»)),1=1, ...n— 1. Show how to compute f(i), based on the
values f(j) for j <i. A clever "amortized" analysis of this computation gives the
O(n) bound.) (g) Suppose that E = {a,b} and x = aabbaab. Construct Mx, M'x,
and M". Run each of these automata on the input aababbaaabbaaabbaabb.
REFERENCES Some of the first papers on finite automata were o G. H. Mealy
"A method for synthesizing sequential circuits," Bell System Tech- Technical
Journal, 34, 5, pp. 1045-1079, 1955, and o E. F. Moore "Gedanken
experiments on sequential machines," Automata Stud- Studies, ed. C. E.
Shannon and J. McCarthy, pp. 129-53. Princeton: Princeton University Press,
1956. The classical paper on finite automata (containing Theorem 2.2.1) is o
M. O. Rabin and D. Scott "Finite automata and their decision problems," IBM
Journal of Research and Development, 3, pp. 114-25, 1959. Theorem 2.3.2,
stating that finite automata accept regular languages, is due to Kleene: o S. C.
Kleene "Representation of events by nerve nets," in Automata Studies, ed. C.

E. Shannon and J. McCarthy, pp. 3-42. Princeton: Princeton University Press,
1956. Our proof of this theorem follows the paper o R. McNaughton and H.
Yamada "Regular expressions and state graphs for au- automata," IEEE
Transactions on Electronic Computers, EC-9, 1 pp. 39-47, 1960. Theorem 2.4-
1 (the "pumping lemma") is from o V. Bar-Hillel, M. Perls, and E. Shamir "On
formal properties of simple phrase structure grammars," Zeitschrift fur
Phonetik, Sprachwissenschaft, und Kommu- nikationsforschung, 14, pp. 143-
172, 1961. Finite-state transducers (Problem 2.1.4) were introduced in o S.
Ginsburg "Examples of abstract machines," IEEE Transactions on Electronic
Computers, EC-11, 2, pp. 132-135, 1962. Two-tape finite state automata
(Problems 2.1.5 and 2-4-7) are examined in o M. Bird "The equivalence
problem for deterministic two-tape automata," Jour- Journal of Computer and
Systems Sciences, 7, pp. 218-236, 1973. The Myhill-Nerode Theorem
(Theorem 2.5.2) 1s from

References 111 o A. Nerode "Linear automaton transformations," Proc. AMS,
9, pp.541-544, 1958. The algorithm for minimizing finite automata is from
Moore's paper cited above. A more efficient algorithmis givenin o J. E.
Hopcroft "An nlogn algorithm for minimizing the states in a finite au-
automaton," in The Theory of Machines and Computations, ed. Z. Kohavi. New
York: Academic Press, 1971. The simulation of nondeterministic automata
(Theorem 2.6.3) 1s based on o K. Thompson "Regular expression search
algorithms," Communications of the ACM, 11, 6, pp. 419-422, 1968. The fast
pattern matching algorithm in Problem 2.6.3 is from o D. E. Knuth, J. H.
Morris, Jr, V. R. Pratt "Fast pattern matching in strings," SIAM J. on
Computing, 6, 2, pp. 323-350, 1976. The equivalence of one-way and two-way
finite automata (Problem 2.5-4) ”s shown in o J. C. Shepherdson "The
reduction of two-way automata to one-way automata," IBM Journal of
Research and Development, 3. pp. 198-200, 1959.

Context-Free Languages 3.1 CONTEXT-FREE GRAMMARS Think of
yourself as a language processor. You can recognize a legal English sentence
when you hear one; "the cat is in the hat" is at least syntactically correct
(whether or not it says anything that happens to be the truth), but "hat the the in
is cat" is gibberish. However you manage to do it, you can immediately tell
when reading such sentences whether they are formed according to generally
accepted rules for sentence structure. In this respect you are acting as a

language recognizer: a device that accepts valid strings. The finite automata of
the last chapter are formalized types of language recognizers. You also,
however, are capable of producing legal English sentences. Again, why you
would want to do so and how you manage to do it are not our concern; but the
fact 1s that you occasionally speak or write sentences, and in general they are
syntactically correct (even when they are lies). In this respect you are acting as
a language generator. In this section we shall study certain types of formal
language generators. Such a device begins, when given some sort of "start"
signal, to construct a string. Its operation is not completely determined from the
beginning but is nevertheless limited by a set of rules. Eventually this process
halts, and the device outputs a completed string. The language defined by the
device is the set of all strings that it can produce. Neither a recognizer nor a
generator for the English language is at all easy to produce; indeed, designing
such devices for large subsets of natural languages has been a challenging
research front for several decades. Nevertheless the idea of a language
generator has some explanatory force in attempts to discuss human language.
More important for us, however, is the theory of generators of formal,
"artificial" languages, such as the regular languages and the important class of
"context-free" languages introduced below. This theory will neatly complement
113

114 Chapter 3: CONTEXT-FREE LANGUAGES the study of automata, which
recognize languages, and is also of practical value in the specification and
analysis of computer languages. Regular expressions can be viewed as
language generators. For example, consider the regular expression a(a* U
b*)b. A verbal description of how to generate a string in accordance with this
expression would be the following First output an a. Then do one of the
following two things: Either output a number of a's or output a number of 6's.
Finally output a b. The language associated with this language generator —that
is, the set of all strings that can be produced by the process just described —is,
of course, exactly the regular language defined in the way described earlier by
the regular expression a(a* U b*)b. In this chapter we shall study certain more
complex sorts of language gen- generators, called context-free grammars,
which are based on a more complete understanding of the structure of the
strings belonging to the language. To take again the example of the language
generated by a(a* U b*)b, note that any string in this language consists of a
leading a, followed by a middle part —generated by (a* U b*)— followed by

a trailing b. If we let 5 be a new symbol interpreted as "a string in the
language," and M be a symbol standing for "middle part," then we can express
this observation by writing 5 ->m aMb, where —» is read "can be." We call
such an expression a rule. What can M, the middle part, be? The answer is:
either a string of a's or a string of 6's. We express this by adding the rules M ->
A and M ->m B, where A and B are new symbols that stand for strings of a's
and 6's, respectively. Now, what is a string of a's? It can be the empty string A
-> e, or it may consist of a leading a followed by a string of a's: A ->m aA.
Similarly, for B: B ->m e and B ->m bB. The language denoted by the regular
expression a(a* U b*)b can then be defined alternatively by the following
language generator.

3.1: Context-Free Grammars 115 Start with the string consisting of the single
symbol S. Find a symbol in the current string that appears to the left of —> in
one of the rules above. Replace an occurrence of this symbol with the string
that appears to the right of —> in the same rule. Repeat this process until no
such symbol can be found. For example, to generate the string aaab we start
with 5, as specified; we then replace S by aMb according to the first rule, S ->
aMb. To aMb we apply the rule M -> A and obtain aAb. We then twice apply
the rule A -> aA to get the string aaaAb. Finally, we apply the rule A ->e. In
the resulting string, aaab, we cannot identify any symbol that appears to the left
of -> in some rule. Thus the operation of our language generator has ended, and
aaab was produced, as promised. A context-free grammar is a language
generator that operates like the one above, with some such set of rules. Let us
pause to explain at this point why such a language generator is called context-
free. Consider the string aaAb, which was an intermediate stage in the
generation of aaab. It is natural to call the strings aa and b that surround the
symbol A the context of A in this particular string. Now, the rule A —t aA says
that we can replace A by the string aA no matter what the surrounding strings
are; in other words, independently of the context of A. In Chapter 4 we
examine more general grammars, in which replacements may be conditioned
on the existence of an appropriate context. In a context-free grammar, some
symbols appear to the left of —> inrules —5, M, A, and B in our example—
and some —a and b— do not. Symbols of the latter kind are called terminals,
since the production of a string consisting solely of such symbols signals the
termination of the generation process. All these ideas are stated formally in the
next definition. Definition 3.1.1: A context-free grammar G is a quadruple

(VH,R,S), where V is an alphabet, S (the set of terminals) 1s a subset of V, R
(the set of rules) 1s a finite subset of (V - E) x V*, and S (the start symbol) is an
element of V— E. The members of V - S are called nonterminals. For any A
£V -Y, and u G V*, we write A -*q u whenever (A,u) £ R. For any strings u,v
G V* we write u=>o0 v if and only if there are strings x, y€ V¥and A£ V—
E such that u = xAy, v =xv'y, and A ~"g v'. The relation =>£, is the reflexive,
transitive closure of =>q. Finally, L(G), the language generated by G, is {w €
£* . S=>q w}; we also say that G generates each string in [(G). A language L
is said to be a context-free language if L= L(G) for some context-free grammar
G.

116 Chapter 3: CONTEXT-FREE LANGUAGES When the grammar to which
we refer is obvious, we write A—» w and u=> v instead of A -»gw and u
="gv. We call any sequence of the form a derivation in G of wn from wq. Here
u>0, * * *, wn may be any strings in V*, and n, the length of the derivation, may
be any natural number, including zero. We also say that the derivation has n
steps. Example 3.1.1: Consider the context-free grammar G = (V,T,,R,S),
where V= {S,a,b}, E= {a,b}, and R consists of the rules 5 ->aSb and 5 ->e.
A possible derivation is 5 =$m aSb =$m aaSbb =$m aabb. Here the first two
steps used the rule 5 -4 aSb, and the last used the rule 5 —> e. In fact, it is not
hard to see that [.(G) = {anbn : n> 0}. Hence some context-free languages are
not regular. 0 We shall soon see, however, that all regular languages are
context-free. Example 3.1.2: Let G be the grammar (W,H,R,S,), where W =
{S,AN,VP}UX, S = {Jim, big, green, cheese, ate}, R={P"N, P-> AP, S -»m
PVP, A -»m big, .A -4 green, N —> cheese, 1V - Jim, V ->m ate} Here 6? is
designed to be a grammar for a part of English; 5 stands for sentence, A for
adjective, N for noun, V for verft, and P for phrase. The following are some
strings in L(G). Jim ate cheese big Jim ate green cheese big cheese ate Jim
Unfortunately, the following are also strings in L[G):

3.1: Context-Free Grammars 117 big cheese ate green green big green big
cheese green Jim ate green big Jim Example 3.1.3: Computer programs written
in any programming language must satisfy some rigid criteria in order to be
syntactically correct and there- therefore amenable to mechanical
interpretation. Fortunately, the syntax of most programming languages can,
unlike that of human languages, be captured by context-free grammars. We shall
see in Section 3.7 that being context-free is extremely helpful when it comes to

parsing a program, that is, analyzing it to understand its syntax. Here, we give a
grammar that generates a fragment of many common programming languages.
This language consists of all strings over the alphabet {(,),*,*, id} that
represent syntactically correct arithmetic expressions involving + and *. id
stands for any identifier, that is to say, variable nameJ Examples of such strings
are id and id * (id * id + 1d), but not *id + (or + *id. Let G=(V, £, R, E)
where V, S, and R are as follows. V= {+,*/(,), id, TEE}, £ = {+,*,(,), 1d}, R =
{E"E + T, (Rl) E*T, (R2) T ~“T*F, (RS) T*F, (M) FME), (RS5) F ->id}. (iffi)
The symbols E, T, and F are abbreviations for expression, term, and factor,
respectively. The grammar G generates the string (id * id +id) * (id + 1d) by
the following derivation. E =>T by Rule R2 * F by Rule R3 * (E) by Rule R5 *
(E + T) by Rule Rl * Incidentally, discovering such identifiers (or reserved
words of the language, or numerical constants) in the program is accomplished
at the earlier stage of lexical analysis, by algorithms based on regular
expressions and finite automata.

118 Chapter 3: CONTEXT-FREE LANGUAGES =>T*(T + T) by Rule R2
=>T * (F + T) by Rule R4 * (id + T) by Rule R6 * (id + F) by Rule R4 * (id +
id) by Rule R6 =>F * (id + id) by Rule R4 =>(E) * (id + id) by Rule R5 =>(E
+ T) * (id + id) by Rule Rl =>(E + F)* (id + id) by Rule R4 =>{E +id) * (id +
id) by Rule R6 =>(T + id) * (id + id) by Rule R2 =>(T * F +1id) * (id + id) by
Rule R3 =>(F *F +1id) * (id + id) by Rule R4 =(F*id + id)*(id + id) by Rule
R6 =*(1d * 1d + 1d) * (id + 1d) by Rule R6 See Problem 3.1.8 for context-free
grammars that generate larger subsets of programming languages.0 Example
3.1.4: The following grammar generates all strings of properly bal- balanced
left and right parentheses: every left parenthesis can be paired with a unique
subsequent right parenthesis, and every right parenthesis can be paired with a
unique preceding left parenthesis. Moreover, the string between any such pair
has the same property. We let G — (V, T,,R,S), where R = {S -»+ e, S”'SS, Two
derivations in this grammar are S"SS=> 5E) => S((S)) => 5(()) => ()(()) and

3.1: Context-Free Grammars 119 Thus the same string may have several
derivations in a context-free grammar; in the next subsection we discuss the
intricate ways in which such derivations may be related. Incidentally, L(G) is
another context-free language that is not regular (that it is not regular was the
object of Problem 2.4.6).0 Example 3.1.5: Obviously, there are context-free
languages that are not regular (we have already seen two examples). However,

all regular languages are context- free. In the course of this chapter we shall
encounter several proofs of this fact. For example, we shall see in Section 3.3
that context-free languages are precisely the languages accepted by certain
language acceptors called pushdown automata. Now we shall also point out
that the pushdown acceptor is a generalization of the finite automaton, in the
sense that any finite automaton can be trivially considered as a pushdown
automaton. Hence all regular languages are context- free. For another proof,
we shall see in Section 3.5 that the class of context- free languages is closed
under union, concatenation, and Kleene star (Theorem 3.5.1); furthermore, the
trivial languages 0 and {0} are definitely context-free (generated by the
context-free grammars with no rules, or with only the rule S -> o,
respectively). Hence the class of context-free languages must contain all
regular languages, the closure of the trivial languages under these operations.
Figure 3-1 But let us now show that all regular languages are context-free by a
direct construction. Consider the regular language accepted by the
deterministic finite automaton M = (K, £, S, s, F). The same language is
generated by the grammar G(M) = (V, S, R, S), where V=K U £, S=s, and R
consists of these rules: R= {q->map:6(q,a)=p) U {q->me:qGF}. That
1s, the nonterminals are the states of the automaton; as for rules, for each
transition from q to p on input a we have in R the rule q -¥ ap. For example, for
the automaton in Figure 3-1 we would construct this grammar: S -¥ aS, S -¥
bA, A->m aB, A->mbA,B->maS.B -¥bA, B -¥e.

120 Chapter 3: CONTEXT-FREE LANGUAGES 1t is left as an exercise to
show that the resulting context-free grammar gener- generates precisely the
language accepted by the automaton (see Problem 3.1.10 for a general
treatment of context-free grammars such as G(M) above, and their relationship
with finite automata).”) Problems for Section 3.1 3.1.1. Consider the grammar
G=(V,X,R,5), where V={a,b,S,A}, £ ={a,6}, R={S-¥ AA, A-¥ AAA,.
A ->m a, A->bA, A -> Ab}. (a) Which strings of L(G) can be produced by
derivations of four or fewer steps? (b) Give at least four distinct derivations
for the string babbab. (¢) For any m,n,p> 0, describe a derivation in G of the
string bmabnabp. 3.1.2. Consider the grammar (V,'E,R,S), where V, S, and R
are defined as fol- follows: V= {a,b,S,A}, £={a,6}, R={5->maAa, 5 -)e
bAb, S->e, A -)* 55}. Give a derivation of the string baabbb in G. (Notice that,
unlike all other context-free languages we have seen so far, this one is very
difficult to de- describe in English.) 3.1.3. Construct context-free grammars

that generate each of these languages. (a) {wcwR : w G {a,b}*} (b) [wwR :
we {a,b}*} (¢) {we {ab}*:w=wR}

3.1: Context-Free Grammars 121 3.1.4. Consider the alphabet £ = {a,b, (,), U,*
, 0}. Construct a context-free grammar that generates all strings in £* that are
regular expressions over {a, b}. 3.1.5. Consider the context-free grammar G =
(V, £,R, S), where V= {a, R={SS A AABBDbD,S,AB], -¥aB, -+bA, ->m o, -
>05, ->BAA, -4 b, -¥ ABB}. (a) Show that ababba G L(G). (b) Prove that
L(G) is the set of all nonempty strings in {o, b) that have equal numbers of
occurrences of a and b. 3.1.6. Let G be a context-free grammar and let k > 0.
We let Lk(G) C L(G) be the set of all strings that have a derivation in G with k
or fewer steps. (a) What is L$ {G), where G is the grammar of Example 3.1.4
(b) Show that, for all context-free grammars G and all k> 0, Lk(G) 1s finite.
3.1.7. Let G= (V,ZR.,S), where V= {a,b,S}, S= {a,b},and R= {S -¥ aSb, S -
¥ aSa, S ->+bSa, S -¥bSb, S ->« ¢}. Show that [(G) is regular. 3.1.8. A
program in a real programming language, such as C or Pascal, consists of
statements, where each statement is one of several types: A) assignment
statement, of the form id := E, where E is any arithmetic expression (generated
by the grammar of Example 3.1.3). B) conditional statement, of the form, say, if
E < E then statement, or a while statement of the form while E < E do
statement. C) goto statement; furthermore, each statement could be preceded by
a label. D) compound statement, that is, many statements preceded by a begin,
followed by an end, and separated by a ";"* Give a context-free grammar that
generates all possible statements in the simplified programming language
described above.

122 Chapter 3: CONTEXT-FREE LANGUAGES 3.1.9. Show that the
following languages are context-free by exhibiting context- free grammars
generating each. (a) {ambn :m>n} (b) \ambn(?dq :m+n=p +q} (c) {w € {o,
b}* : w has twice as many 6's as 0's} (d) {uawb : u, w G {o, 6} *, [u|=|w|} (e)
WICW2C... cwkecavjl : k> 1,1 <j <k, Wi G {a,b}+ fori=1,..., k} (f) {ambn
:m<2n} 3.1.10. Call a context-free grammar G = (V,T,,R,S) regular (or right-
linear) if R C (V- E) x Y,*(V - S U {e}); that s, if each transition has a right-
hand side that consists of a string of terminals followed by at most one
nonterminal, (a) Consider the regular grammar G = (V,T,,R,S), where V = {a,
b, A, B,S} S={a,6} R= {S-¥ abA, S-+B,S->baB, S -> e, Construct a
nondeterministic finite automaton M such that L(M) = L(G). Trace the

transitions of M that lead to the acceptance of the string abba, and compare
with a derivation of the same string in G. (b) Prove that a language is regular 1f
and only if there is a regular grammar that generates it. {Hint: Recall Example
3.1.5.) (c) Call a context-free grammar G = (V,S,1?, S) left-linear if and only if
RC(V-S)x(V-S)U {e})£* Show that a language is regular if and only if it
is the language generated by some left-linear grammar. (d) Suppose that G =
(V,T,,R, S) is a context-free grammar such that each rule in R is either of the
form A -> wB or of the form A -> Bw or of the form A ->m w, where in each
case 4.BGF-S and w G S*. Is L(G) necessarily regular? Prove it or give a
counter-example. 3.2 PARSE TREES Let G be a context-free grammar. A
string w G L(G) may have many deriva- derivations in G. For example, if G is
the context-free grammar that generates the language of balanced parentheses
(recall Example 3.1.4), then the string ()() can be derived from S by at least
two distinct derivations, namely, s "~ ss * (S)s * ()s => 0(S) "~ 00

3.2: Parse Trees 123 and S => SS => 5E) => (S)(S) => E)() = ()() However,
these two derivations are in a sense "the same." The rules used are the same,
and they are applied at the same places in the intermediate string. The only
difference is in the order in which the rules are applied. Intuitively, both
derivations can be pictured as in Figure 3-2.) (5) Figure 3-2 We call such a
picture a parse tree. The points are called nodes; each node carries a label that
is a symbol in V. The topmost node is called the root, and the nodes along the
bottom are called leaves. All leaves are labeled by terminals, or possibly the
empty string e. By concatenating the labels of the leaves from left to right, we
obtain the derived string of terminals, which is called the yield of the parse
tree. More formally, for an arbitrary context-free grammar G = (V,T,,R,S), we
define its parse trees and their roots, leaves, and yields, as follows. 1. o a This
is a parse tree for each a G S. The single node of this parse tree is both the root
and a leaf. The yield of this parse tree is 0. 2. f A—> e is a rule in R, then is
a parse tree; its root is the node labeled A, its sole leaf is the node labeled e,
and its yield is e.

124 3. If Chapter 3: CONTEXT-FREE LANGUAGES 3/2 Vn Are parse trees,
where n> 1, with roots labeled Ai,...,An respectively, and with yields yi,...,
yn, and A—> Ai... Anis arule in R, then 2/2 Vn is a parse tree. Its root is the
new node labeled A, its leaves are the leaves of its constituent parse trees, and
its yield is j/i... yn. 4. Nothing else is a parse tree. Example 3.2.1: Recall the

grammar G that generates all arithmetic expressions over id (Example 3.1.3).
A parse tree with yield id * (id + 1d) is shown in Figure 3-3.0 Intuitively, parse
trees are ways of representing derivations of strings in L(G) so that the
superficial differences between derivations, owing to the order of application
of rules, are suppressed. To put it otherwise, parse trees represent equivalence
classes of derivations. We make this intuition precise below. Let G = (V, S,-R,
S) be a context-free grammar, and let D = x\ =>¢ x-1 => xn and D' = x| x'n be
two derivations in G, where Xi, x\e V* for1=1,..., n, X\, X[€ V - E, and xn,
x'n e S* That is, they are both derivations of terminal strings from a single
nonterminal. We say that D precedes D', written D -< D', if n> 2 and there 1s
an integer k, 1 <k <nsuch that A) for all 1 *k we have xt =x\\ B) xfc 1 =x'k x
= uAvBw, where u,v,w G V* and A,B,GV-T,;

3.2: Parse Trees 125 T+ EIIF T111id F I1d Figure 3-3 C) Xk = uyvBw,
where A -¥y £ R; D) Xk =uAvzw where B -¥ z £ R; E) xk+1 = x'k+1 = uyvzw.
In other words, the two derivations are identical except for two consecutive
steps, during which the same two nonterminals are replaced by the same two
strings but in opposite orders in the two derivations. The derivation in which
the leftmost of the two nonterminals is replaced first is said to precede the
other. Example 3.2.2: Consider the following three derivations Di, D2, and
D3 in the grammar G generating all strings of balanced parentheses: D, =S"SS*
EM = D2 =S=>SS=>EM =D3 =5 =p 55=p EM =0 (E)M => ((S))(S) =
(E)O =} » ())() We have that D1 -< D2 and Z?2 -< D3. However, it is not the
case that D\ -< D3, since the two latter derivations differ in more than one
intermediate string. Notice that all three derivations have the same parse tree,
the one shown in Figure 3-4.0 We say that two derivations D and D' are similar
if the pair (D,D') belongs in the reflexive, symmetric, transitive closure of -<.
Since the reflexive,

126 Chapter 3: CONTEXT-FREE LANGUAGES 5 Figure 3-4 symmetric,
transitive closure of any relation is by definition reflexive, symmetric, and
transitive, similarity is an equivalence relation. To put it otherwise, two
derivations are similar if they can be transformed into another via a sequence
of "switchings" in the order in which rules are applied. Such a "switching" can
replace a derivation either by one that precedes it, or by one that it precedes.
Example 3.2.2 (continued): Parse trees capture exactly, via a natural isomor-
isomorphism, the equivalence classes of the "similarity" equivalence relation

between derivations of a string defined above. The equivalence class of the
derivations of (())() corresponding to the tree in Figure 3-4 contains the
derivations Di1,D2, D3 shown above, and also these seven: D1 =S"SS" (S)S =
D5 =SASS* EM = D6 =S=>SS=> EM => (S)(S) => E)() => (E))() =* @H D7
=S=>88" §(S) = D8 =8"S5=>§(S) => (S)(S) " ({S)){S) => (E))() =P @H
D9 =S=>SS=> S(S) => (S)(S) " EH DI0 =S"SS”* S(S) = These ten derivations
are related by -< as shown in Figure 3-5. Figure 3-5

3.2: Parse Trees 127 All these ten derivations are similar, because, informally,
they represent applications of the same rules at the same positions in the
strings, only differing in the relative order of these applications; equivalently,
one can go from any one of them to any other by repeatedly following either a -
<, or an inverted -<. There are no other derivations similar to these. There are,
however, other derivations of (())() that are not similar to the ones above —
and thus are not captured by the parse tree shown in Figure 3- 4. An example is
the following derivation: 5 => SS => SSS => S(S)S => S((S))S => 5(O)M =»
S(O)(S) =» 5(0))) => ()()* Its parse tree is shown in Figure 3-6 (compare
with Figure 3-4).<0> Figure 3-6 Each equivalence class of derivations under
similarity, that is to say, each parse tree, contains a derivation that is maximal
under -<; that is, it is not preceded by any other derivation. This derivation is
called a leftmost deriva- derivation. A leftmost derivation exists in every parse
tree, and it can be obtained as follows. Starting from the label of the root A,
repeatedly replace the leftmost nonterminal in the current string according to
the rule suggested by the parse tree. Similarly, a rightmost derivation is one
that does not precede any other derivation; it is obtained from the parse tree by
always expanding the rightmost nonterminal in the current string. Each parse
tree has exactly one leftmost and exactly one rightmost derivation. This is so
because the leftmost derivation of a parse tree is uniquely determined, since at
each step there is one nonterminal to replace: the leftmost one. Similarly for
the rightmost derivation. In the example above, D\ is a leftmost derivation, and
D\o 1s a rightmost one. It is easy to tell when a step of a derivation can be a
part of a lefimost derivation: the leftmost nonterminal must be replaced. We
write x M- yifarid

128 Chapter 3: CONTEXT-FREE LANGUAGES only if x = wAP, y = waP,
where w G £*, a,PGV* AGV-S, and A ->a 1s arule of G. Thus, if X\ =>x2
=>eege=>> xn is a leftmost derivation, then in fact xi =>¢ X2 N e ¢ » A xn,

Similarly for rightmost derivations (the notation is xM-y). To summarize our
insights into parse trees and derivations in this section, we state without formal
proof the following theorem. Theorem 3.2.1: Let G = (V,Y,,R,S) be a context-
free grammar, and let AG V— S, and w G S*. Tften i/ie following statements
are equivalent: (a) A=>* w. (b) There is a parse tree with root A and yield w.
1 * (¢) There is a leftmost derivation A-=> w. R * (d) There is a rightmost
derivation A”™- w. Ambiguity We saw in Example 3.2.2 that there may be a
string in the language generated by a context-free grammar with two
derivations that are not similar —that is to say, with two distinct parse trees,
or, equivalently, with two distinct rightmost derivations (and two distinct
leftmost derivations). For a more substantial ex- example, recall the grammar
G that generates all arithmetic expressions over id in Example 3.1.3, and
consider another grammar, G', that generates the same language, with these
rules: E*E + E, E*"E*E, E-+(E), E ->id. It 1s not hard to see that L(G') = L{G).
Still, there are important differences between G and G'. Intuitively, the variant
G', by "blurring the distinction" between factors (F) and terms (T) "risks
getting wrong" the precedence of multiplication over addition. Indeed, there
are two parse trees for the expression id + id * id in G', both shown in Figure
3-7. One of them, 3-7(a), corresponds to the "natural" meaning of this
expression (with * taking precedence over +), the other is "wrong." Grammars
such as G', with strings that have two or more distinct parse trees, are called
ambiguous. As we shall see extensively in Section 3.7, assigning a parse tree
to a given string in the language —that is to say, parsing the string— is an
important first step towards understanding the structure of the string, the
reasons why it belongs to the language —ultimately its "meaning." This 1s of
course of special importance in the case of grammars such as G and G' above
that generate fragments of programming languages. Ambiguous grammars such

3.3: Pushdown Automata 129 EE1id E\E *+ E 11d E 1 id (b) Figure 3-7
as G' are of no help in parsing, since they assign no unique parse tree —no
unique "meaning"— to each string in the language. Fortunately, in this case
there is a way to "disambiguate" G" by introduc- introducing the new
nonterminals T and F (recall the grammar G of Example 3.1.3). That is, there
1s an unambiguous grammar that generates the same language (namely, the
grammar G defined in Example 3.1.3; for a proof that the gram- grammar G is
indeed unambiguous see Problem 3.2.1). Similarly, the grammar given in
Example 3.1.4 for generating balanced strings of parentheses, which is also

ambiguous (as discussed at the end of Example 3.2.2, can be easily made
unam- unambiguous (see Problem 3.2.2). In fact, there are context-free
languages with the property that all context-free grammars that generate them
must be ambiguous. Such languages are called inherently ambiguous.
Fortunately, programming languages are never inherently ambiguous. Problems
for Section 3.2 3.2.1. Show that the context-free grammar G given in Example
3.1.3, which gen- generates all arithmetic expressions over id, is unambiguous.
3.2.2. Show that the context-free grammar given in Example 3.1.4, which
gener- generates all strings of balanced parentheses is ambiguous. Give an
equivalent unambiguous grammar. 3.2.3. Consider the grammar of Example
3.1.3. Give two derivations of the string id * id + id, one which is leftmost and
one which is not leftmost. 3.2.4. Draw parse trees for each of the following.
(a) The grammar of Example 3.1.2 and the string "big Jim ate green cheese."
(b) The grammar of Example 3.1.3 and the strings id + (id +1d) * id and (id *
id +1id * id).

130 Chapter 3: CONTEXT-FREE LANGUAGES 3.3 PUSHDOWN
AUTOMATA Not every context-free language can be recognized by a finite
automaton, since, as we have already seen, some context-free languages are not
regular. What sort of more powerful device could be used for recognizing
arbitrary context-free languages? Or, to be a bit more specific, what extra
features do we need to add to the finite automata so that they accept any
context-free language? To take a particular example, consider {wwR : w G {a,
6} *}. It is context- free, since it is generated by the grammar with rules S —>
aSa, S—> bSb, and S —> e. It would seem that any device that recognizes the
strings in this language by reading them from left to right must "remember" the
first half of the input string so that it can check it —in reverse order— against
the second half of the input. It is not surprising that this function cannot be
performed by a finite automaton. If, however, the machine 1s capable of
accumulating its input string as it is read, appending symbols one at a time to a
stored string (see Figure 3-8), then it could nondeterministically guess when
the center of the input has been reached and thereafter check the symbols off
from its memory one at a time. The storage device need not be a general-
purpose one. A sort of "stack" or "pushdown store," allowing read and write
access only to the top symbol, would do nicely. Inputa b b a b 1 Finite control
bablReading/ head /ba—*-babba"Stack" or "Pushdown store" Figure
3-8 To take another example, the set of strings of balanced parentheses (Exam-

(Example 3.1.4) is also nonregular. However, computer programmers are
familiar with a simple algorithm for recognizing this language: Start counting at
zero, add one for every left parenthesis, and subtract one for every right
parenthesis. If the count either goes negative at any time, or ends up different
from zero, then the string should be rejected as unbalanced; otherwise it should
be accepted. Now,

3.3: Pushdown Automata 131 a counter can be considered as a special case of
a stack, on which only one kind of symbol can be written. To address this
question from yet another point of view, rules such as A -t aB are easy to
simulate by a finite automaton, as follows: "If in state A reading a, go to state
B." But what about a rule whose right-hand side is not a terminal followed by
a nonterminal, say the rule A -> aBbi Certainly the machine must again go from
state A to state B reading a, but what about 67 What further action would allow
us to remember the presence of b in this rule? A stack would be handy here: By
pushing b on the top of a stack, we resolve to remember it and act upon it when
it resurfaces again —presumably to be checked against a b in the input. The
idea of an automaton with a stack as auxiliary storage can be formalized as
follows. Definition 3.3.1: Let us define a pushdown automaton to be a sextuple
M= (KT, T,A,s,F), where K is a finite set of states, X is an alphabet (the input
symbols), F is an alphabet (the stack symbols), s £ K is the initial state, F C K
is the set of final states, and A, the transition relation, is a finite subset of (K x
(X U {e}) x F*) x (K xT*). Intuitively, if ((p, a, /?), (q, 7)) £ A, then M,
whenever it is in state p with f3 at the top of the stack, may read a from the
input tape (if a = e, then the input is not consulted), replace /3 by 7 on the top
of the stack, and enter state q. Such a pair ((p, a, /?), (q, 7)) is called a
transition of M; since several transitions of M may be simultaneously
applicable at any point, the machines we are describing are nondeterministic in
operation. (We shall later alter this definition to define a more restricted class,
the deterministic pushdown automata.) To push a symbol is to add it to the top
of the stack; to pop a symbol is to remove it from the top of the stack. For
example, the transition ((p, u, €), (q, a)) pushes a, while ((p,u,a),(q,e)) pops a.
As is the case with finite automata, during a computation the portion of the
input already read does not affect the subsequent operation of the machine. Ac-
Accordingly, a configuration of a pushdown automaton is defined to be a
member of K x X* x F*: The first component is the state of the machine, the
second is the portion of the input yet to be read, and the third is the contents of

the pushdown store, read top-down. For example, if the configuration were
(q,w,abc), the a would be on the top of the stack and the ¢ on the bottom. If (p,

X, a) and (q,y,£)

132 Chapter 3: CONTEXT-FREE LANGUAGES are configurations of M, we
say that (p,x,a) yields in one step (q,y,() (no- (notation: (p,x,a) \~m {q,y,Q) if
there is a transition ((p, a,/?),(<?, 7)) £ A such that x =ay, a =/3r], and £ =777
for some r\ £ T*. We denote the reflexive, transitive closure of \~m by \-*M.
We say that M accepts a string w £ £* if and only if (s,w,e) \~*M (p, e, e) for
some state p £ F. To put it another way, M accepts a string w if and only if
there is a sequence of configurations C0,Ci,...,Cn (n> O) such that Co \~m
Ci\~m mmm \~m Cn, Co = (s,w,e), and Cn= (P1i e, e) for some p £ F. Any
sequence of configurations Co, C\, m m m, Cn such that Ci \~m Ci+i for 1 =0,...,
n— 1 will be called a computation by M; it will be said to have length n, or to
have n steps. The language accepted by M, denoted L(M), is the set of all
strings accepted by M. When no confusion can result, we write h and h*
instead of \~m and \-*M. Example 3.3.1: Let us design a pushdown automaton
M to accept the language L= {wcwR : w £ {a,b}*}. For example, ababcbaba
£ L, butabcab £ L, and cbc 1 L. We let M = (K, S, T, A,s,F), where K = {s,f}, S
={a,b,c}, T={a,b}, F={/}, and A contains the following five transitions. A)
((s,a,e),(s,a)) B) ((s,b,e),(s,b)) C) ((s,c.e),(/,e)) D) ((/,0,0))(/,¢)) E) ((£b,b),
(f,e)) This automaton operates in the following way. As it reads the first half of
its input, 1t remains in its initial state s and uses transitions 1 and 2 to transfer
symbols from the input string onto the pushdown store. Note that these
transitions are applicable regardless of the current content of the pushdown
store, since the "string" to be matched on the top of the pushdown store is the
empty string. When the machine sees a c in the input string, it switches from
state s to state / without operating on its stack. Thereafter only transitions 4 and
5 are operative; these permit the removal of the top symbol on the stack,
provided that it is the same as the next input symbol. If the input symbol does
not match the top symbol on the stack, no further operation is possible. If the
automaton reaches in this way the configuration (/, e, €) —final state, end of
input, empty stack —then the input was indeed of the form wcwR, and the
automaton accepts. On the other hand, if the automaton detects a mismatch
between input and stack symbols, or if the input is exhausted before the stack is
emptied, then it does not accept. To illustrate the operation of M, we describe
a sequence of transitions for the input string abbcbba. Example 3.3.2: Now we

construct a pushdown automaton to accept L= {wwR : w £ {a,b}*}. That is,
the strings accepted by this machine are the

3.3: Pushdown Automata 133 State s s s s f f f f Unread Input abbcbba bbcbba
bcbba cbba bba ba a e Stack e a ba bba bba ba a e Transition Used 122355
4 same as those accepted by the machine of the previous example, except that
the symbol c that marked the center of the strings is missing. Therefore the
machine must "guess" when it has reached the middle of the input string and
change from state s to state / in a nondeterministic fashion. Thus M = (K, £,F,
A.s,F), where K=s,/}, S = {a, 6}, F= {/}, and A is the set of the following
five transitions. A) ((s,a,e),(s,a)) B) ((s,b,e),(s,b)) C) ((s,e,e),(f,e)) D) ((fa,a),
(f.e)) E) ((f;b,b),(f,e)) Thus this machine is identical to that of the last example,
except for tran- transition 3. Whenever the machine is in state s, it can
nondeterministically choose either to push the next input symbol onto the stack,
or to switch to state / without consuming any input. Therefore even starting
from a string of the form wwR, M has computations that do not lead it to the
accepting configuration (/, e, €); but there is some computation that leads M to
this configuration if and only if the input string is of this form.O Example 3.3.3:
This pushdown automaton accepts the language {w e {a, b}* : w has the same
number of a's and b's}. Either a string of a's or a string of 6's is kept by M on
1ts stack. A stack of a's indicates the excess of a's over 6's thus far read, if in
fact M has read more a's than 6's; a stack of 6's indicates the excess of 6's over
a's. In either case, M keeps a special symbol ¢ on the bottom of the stack as a
marker. Let M= (K, S, T, A, s, F), where K= {s, q,/}, E={a, 6}, T= {a, 6,
c}, F=1{/}, and A s listed below. A) ((s,e,e),(q.c)) B) ((q,a,c),{qg.,ac)) C)
((9,a,2),(q,aa))

134 Chapter 3: CONTEXT-FREE LANGUAGES D) ((q.a,b),(g,e)) E) ((q,b,c),
(q,bc)) F) ((q,b,b),(G) ((q,b,a),((8) ((g,e,¢),(f,e)) Transition 1 puts M in state
q while placing a ¢ on the bottom of the stack. In state g, when M reads an a, it
either starts up a stack of a's from the bottom, while keeping the bottom marker
(transition 2), or pushes an a onto a stack of a's (transition 3), or pops a b from
a stack of 6's (transition 4). When reading a b from the input, the machine acts
analogously, pushing a b onto a stack of 6's or a stack consisting of just a
bottom marker, and popping an a from a stack of a's (transitions 5, 6, and 7).
Finally, when c is the topmost (and therefore the only) symbol on the stack, the
machine may remove it and pass to a final state (transition 8). If at this point all

the input has been read, then the configuration (/, e, €) has been reached, and
the input string is accepted. The following table contains an illustration of the
operation of M. State s q 4 q qq qq q q f Unread Input abbbabaa abbbabaa
bbbabaa bbabaa babaa abaa baa aa a e e Stack e ¢ ac ¢ be bbc be bbc be c e
Transition Comments . 1 27 5 6 4 6 4 4 8 Initial configuration. Bottom marker.
Start a stack of a's. Remove one a. Start a stack of 6's. Accepts. Example 3.3.4:
Every finite automaton can be trivially viewed as a push- pushdown automaton
that never operates on its stack. To be precise, let M= (K, S, A, s, F) be a
nondeterministic finite automaton, and let M' be the push- pushdown automaton
(K, S,0,A' s, F), where A'= {((p, u, €), (g, ¢)) : (p,u, q) G A}. In other
words, M' always pushes and pops an empty string on its stack, and otherwise
simulates the transitions of M. Then it is immediate that M and M' accept
precisely the same language. <0>

3.3: Pushdown Automata 135 Problems for Section 3.3 3.3.1. Consider the
pushdown automaton M = (K, S, F, A, s, F), where K={s,f}, F={f}, S = {a,6},
r=W, A= {{(a, a, e), (a, 2)), ((«, 6, ¢e), (s, a)), ((« a,e), (/,e)), (a) Trace all
possible sequences of transitions of M on input aba. (b) Show that aba, aa, abb
£ L(M), but baa, bab, baaaa £ (M). (c) Describe L(M) in English. 3.3.2.
Construct pushdown automata that accept each of the following. (a) The
language generated by the grammar G = (V, E, R, S), where = {(,),[,]}, S >
E)}. (b) The language {am6n :m<n< 2m}. (c) The language {«; € {a,b}*: «;=
wR}. (d) The language {«; £ {a, b}*: w has twice as many 6's as a's}. 3.3.3.
Let M= (K, S,T, A,s, F) be a pushdown automaton. The language ac- accepted
by M by final state is defined as follows: Lf(M) = {weZ* : (s,w,e) \-*M (f,e,a)
for some / G F,a £ T}. a) Show that there is a pushdown automaton M' such that
L(M') = LfiM). b) Show that there is a pushdown automaton M" such that
Lf(M") = L(M).

136 Chapter 3: CONTEXT-FREE LANGUAGES 3.3.4. Let M = (K, , £,F,
A,s,F) be a pushdown automaton. The language accepted by M by empty store
is defined as follows: Le(M) = {w e £* : (s, w, €) h*M (q, e, e) for some q G
K}. (a) Show that there 1s a pushdown automaton M' such that Le(M') = L(M).
(b) Show that there is a pushdown automaton M" such that L(M") = Le {M). (¢)
Show by a counterexample that it i1s not necessarily the case that Le(M) =
L(M)U{e}. 3.4 PUSHDOWN AUTOMATA AND CONTEXT-FREE
GRAMMARS In this section we show that the pushdown automaton is exactly

what is needed to accept arbitrary context-free languages. This fact is of
mathematical and practical significance: mathematical, because it knits
together two different for- formal views of the same class of languages; and
practical, because it lays the foundation for the study of syntax analyzers for
"real" context-free languages such as programming languages (more on this in
Section 3.7). Theorem 3.4.1: The class of languages accepted by pushdown
automata 1s ex- exactly the class of context-free languages. Proof: We break
this proof into two parts. Lemma 3.4.1: Each context-free language is accepted
by some pushdown au- automaton. Proof: Let G = (V, S, R, S) be a context-free
grammar; we must construct a pushdown automaton M such that L(M) = L(G).
The machine we construct has only two states, p and ¢, and remains
permanently in state q after its first move. Also, M uses V, the set of terminals
and nonterminals, as its stack alphabet. We let M = ({p, </}.£, V, A,p, {<?}),
where A contains the following transitions: A) ((p,e.e),(q,S)) B) ((q, e, A), (q,
x)) for eachrule A -» xinR. C) ((q, a, a), (q, €)) for eacha G S. The
pushdown automaton M begins by pushing S, the start symbol of G, on its
initially empty pushdown store, and entering state q (transition 1). On each
subsequent step, it either replaces the topmost symbol A on the stack,

3.4: Pushdown Automata and Context-Free Grammars 137 provided that it is a
nonterminal, by the right-hand side x of some rule A -» x in R (transitions of
type 2), or pops the topmost symbol from the stack, provided that it is a
terminal symbol that matches the next input symbol (transitions of type 3). The
transitions of M are designed so that the pushdown store during an accepting
computation mimics a leftmost derivation of the input string; M intermittently
carries out a step of such a derivation on the stack, and between such steps it
strips away from the top of the stack any terminal symbols and matches them
against symbols in the input string. Popping the terminals from the stack has in
turn the effect of exposing the leftmost nonterminal, so that the process can
continue. Example 3.4.1: Consider the grammar G = (V,T,,R,S) with V=
{S,a,b,c}, E={ab,c},and R = {S—>aSa,S —> bSb,S —> ¢), which
generates the language {wcwR : w 6 {a, &} *}. The corresponding pushdown
automaton, ac- according to the construction above, is M= ({p, q}, E, V, A,p,
{q}), with (T1) (T2) (T3) ((q,¢,5),(q,¢)), (T4) ((q.a,2),(q,¢)), (T5) ((q,b,b),
(q,e)), (T6) ((g,c,c),(g,e))} (T7). The string abbcbba is accepted by M through
the following sequence of moves. ((q.e,S),(q,aSa)), ((q,e,S),(q,bSb)), State P q
qd9999949494q4q q Unread Input abbcbba abbcbba abbcebba bbebba bbebba

bcbba bebba cbba cbba bba ba a e Stack e S aSa Sa bSba Sba bSbba Sbba
cbba bba ba a e Transition Used T1 T2 TS T3 T6 T3 T6 T4 T7 T6 T6 TS5

138 Chapter 3: CONTEXT-FREE LANGUAGES Compare this to the
operation, on the same string, of the pushdown au- automaton of Example
3.3.1.0 To continue the proof of the Lemma, in order to establish that (M) =
L(G), we prove the following claim. Claim. Letw £ E*and a £ (V - T,))V* U
{e}. Then S 4* wa if and only if (q,w,S) \-*M (q,e,a). This claim will suffice
to establish Lemma 3.4.1, since it will follow (by taking a =€) that S * w if
and only if (q, e, S) \-*M {q, e, €) —in other words, w £ L(G) if and only if w
£ L(M). (Only if) Suppose that S 4* wa, where w £ £*, and a £ (V- H)V* U
{e}. We shall show by induction on the length of the leftmost derivation of w
from S that (q, w, S) \~*M (q, e, a). Basis Step. If the derivation is of length 0,
then w = e, and a = S, and hence indeed (q,w,S) \-*M (qg,e,a). L * Induction
Hypothesis. Assume that if S m=?m wa by a derivation of length n or less, n>
0, then (q,w,S) \~*M (q,e,a). Induction Step. Let S=Mo=m «i 4 ***4un4
un+i = wa be a leftmost derivation of wa from S. Let A be the lefimost
nonterminal of un. Then un = xA/3, and unt\ =xj/3, where x £ £*, 0,7 £ V*,
and A -> 7 is a rule in 1?. Since there is a leftmost derivation of length n of un
= xA/3 from S, by the induction hypothesis (q,x,S)y-*M(q,e,Al3). B) Since "4
—>T71is arule inR, (q,e,A0)\-M(q,e,”), C) by a transition of type 2. Now
notice that unti is wa, but it is also ary/3. Hence, there is a string g/ £ E* such
that w = xy and j/a = 7/3. Thus, we can rewrite B) and C) above as (q,W,S)|-
M{q,y,10). D) However, Since ya = 7/3, (9,/,7/3)I-M(g,e,a0, E) by a
sequence of \y\ transitions of type 3. Combining D) and E) completes the
induction step.

3.4: Pushdown Automata and Context-Free Grammars 139 (If) Now suppose
that (q, w, S) \=*M (q, e, a) withw £ E*and a £ (V- T,)V* U {e}; we show
that S * wa. Again, the proofis by induction, but this time on the number of
transitions of type 2 in the computation by M. Basis Step. Since the first move
in any computation is by a transition of type 2, if (q,w,S) \~*M (g,e,a) with no
type-2 transitions, then w = e and a = S, and the result is true. Induction
Hypothesis. If (q,w,S) h*M (q,e,a) by a computation with n type 2 L * steps or
fewer, n> 0, then S =? wa. Induction Step. Suppose that (q,w,S) \-*M (qg,e,a) in
n+ 1 type-2 transitions, and consider the next-to-last such transition, say,
(q,w,S) \-*M {q,y,A/3) hM (q,y,70) \~*m fee,a), where w = xy for some x,y £

£*, and A—> 7 is a rule of the grammar. By L* L* the induction hypothesis we
have that S * xA/3, and thus S " #7/3- Since however (<z,g/,7/3) r-J*- (g, e,a),
presumably by transitions of type 3, it follows that ya = j/3, and thus S " xya =
wa. This completes the proof of Lemma 3.4.1, and with it half the proof of
Theorem 3.4.1. m We now turn to the proof of the other half of Theorem 3.4.1.
Lemma 3.4.2: // a language is accepted by a pushdown automaton, it is a
context-free language. Proof: It will be helpful to restrict somewhat the
pushdown automata under consideration. Call a pushdown automaton simple if
the following is true: Whenever ((g,a,/3), (p, 7)) 1s a transition of the
pushdown automaton and q 1s not the start state, then /3 € F, and |—y| <2. In
other words, the machine always consults its topmost stack symbol (and no
symbols below it), and replaces it either with e, or with a single stack symbol,
or with two stack symbols. Now it is easy to see that no interesting pushdown
automaton can have only transitions of this kind, because then it would not be
able to operate when the stack 1s empty (for example, it would not be able to
start the computation, since in the beginning the stack is empty). This is why
we do not restrict transitions from the start state. We claim that if a language is
accepted by an unrestricted pushdown au- automaton, then it is accepted by a
simple pushdown automaton. To see this, let M = (K, S, F, A, 8, F) be any
pushdown automaton; we shall construct a simple pushdown automaton M' =
(K1, E, TU {Z}, A", s', {/'}) that also accepts L(M);

140 Chapter 3: CONTEXT-FREE LANGUAGES here s' and /' are new states
not in K, and Z is a new stack symbol, the stack bottom symbol, also not in F.
We first add to A the transition ((s',e,€),(s,Z)); this transition starts the
computation by placing the stack bottom symbol in the bottom of the stack,
where it will remain throughout the computation. No rule of A will ever push a
Z in the stack —except to replace it at the bottom of the stack. We also add to
A the transitions ((f, e, Z), (/', e)) for each/ 6 F. These transitions end the
computation by removing Z from the bottom of the stack and accepting the input
seen so far. Initially, A' consists of the start and final transitions described
above, and all transitions of A. We shall next replace all transitions in A' that
violate the simplicity condition by equivalent transitions that satisfy the
simplicity condi- condition. We shall do this in three stages: First we shall
replace transitions with |/3|> 2. Then we shall get rid of transitions with |7| >
2, without introducing any transitions with |/3|> 2. Finally, we shall get rid of
transitions with /3 = e, without introducing any transitions with |/3| > 2 or ["y| >

2. Consider any transition ({q, a, C), (p, 7)) 6 A', where /3 = B\---Bn with n >
1. It is replaced by new transitions that pop sequentially the individual
symbols in B\ m m m Bn, rather than removing them all in a single step.
Specifically, we add to A' these transitions: where, fori=1,... n- 1,
qB1B2..Bi is a new state with the intuitive meaning "state q after symbols
B\B2 m.. Bt have been popped. We repeat this with all transitions ((q,u,/3), {p,
7)) 6 A' with |[/3|> 1. It is clear that the resulting pushdown automaton is
equivalent to the original one. Similarly, we replace transitions ((q,u,C), (p,
7)) with 7= C\ ...,Cm and m > 2 by the transitions ((rm 2,e,e),(rm 1,C2)),
where r\,..., rm 1 are new states. Notice that all transitions ((q, a, ft), (p, 7)) €
A have now J71 <1 —a more stringent requirement than simplicity (and
actually

3.4: Pushdown Automata and Context-Free Grammars 141 one that would be a
loss of generality). It will be restored to j-y| < 2 in the next stage. Also, no
transitions ((q,u,C), (p, 7)) with /3| > 1 were added. Finally, consider any
transition ((q, a, €), (p, 7)) with g * s' —the only possi- possible remaining
violations of the simplicity condition. Replace any such transition by all
transitions of the form ((q, a, A), (p,jA)), for all A£ F U {Z}. That is, if the
automaton could move without consulting its stack, it can also move by
consulting the top stack symbol, whatever it may be, and replace it immedi-
immediately. And we know that there 1s at least one symbol in the stack:
throughout the main computation —apart from the start and final transitions—
the stack never becomes empty. Notice also that at this stage we may introduce
7's of length two —this does not violate the simplicity condition, but is
necessary for obtaining general pushdown automata. It is easy to see that this
construction results in a simple pushdown automa- automaton M' such that
L{M) =L(M"). To continue the proof of the lemma, we shall exhibit a context-
free grammar G such that L(G) = L(M'); this would conclude the proof of the
lemma, and with it of Theorem 3.4.1. We let G=(V, S.,1?, S), where V
contains, in addition to a new symbol S and the symbols in S, a new symbol
(q,A,p) for all gq,p 6 Jvand each A6 F U {e, Z}. To understand the role of the
nonterminals (q, A,p), remember that G 1s supposed to generate all strings
accepted by M1. Therefore the nonterminals of G stand for different parts of
the input strings that are accepted by M1. In particular, if A 6 F, then the
nonterminal (q, A,p) represents any portion of the input string that might be
read between a point in time when Af'is in state q with A on top of its stack,

and a point in time when M'removes that occurrence of A from the stack and
enters state p. If A= e, then (q, e,p) denotes a portion of the input string that
might be read between a time when M is in state q and a time when it is in state
p with the same stack, without in the interim changing or consulting that part of
the stack. The rules in R are of four types. A) The rule S -t (s, Z, /'), where s is
the start state of the original pushdown automaton M and /' the new final state.
B) For each transition ((q,a,B), (1.Q), where ,r GK\a G £ U {e}, B,Ce FU
{e}, and for each p 6 K* we add the rule (q, B,p) —> a{r, C,p). C) For each
transition ((q,a,B), (r, C1C2)), where q,r £K',a£ S U {e}, Be F U {e}, and
C1,C2 £ F and for each p,p' € K' we add the rule {q,B,p)"a{r,Cup")(p',C2,p).
D) For each q G K\ the rule (q, e, q) -> e. Note that, because M'is simple,
either type 2 or type 3 applies to each transition of M'. A rule of type 1 states
essentially that any input string which can be read by M' passing from state s to
the final state, while at the same time the net

142 Chapter 3: CONTEXT-FREE LANGUAGES effect on the stack is that the
stack bottom symbol was popped, is a string in the language (M). A rule of
type 4 says that no computation is needed to go from a state to itself without
changing the stack. Finally, a rule of type 2 or 3 says that, if ((q, a, B),(p, 7)) €
A', then one of the possible computations that lead from state q to state p while
consuming B (possibly empty) from the top of the stack, starts by reading input
a, replacing B by 7, passing to state r, and then going on to consume 7 and end
up 1n state p —reading whatever input is appropriate during such computation.
If 7= C1C2, this last computation can in principle pass through any state p'
immediately after C\ is popped (this is a type-3 rule). These intuitive remarks
are formalized in the following claim. Claim. For any q,p £ K\A £ F U {e},
and x e £%, (q, A,p) =>*G x ifand only if (q, X, A) \-*M- (p, e, €). Lemma
3.4.2, and with it Theorem 3.4.1, follows readily from the claim, since then {s,
e, /) =>q x for some / 6 F if and only if (s, x, €) h" (/, e, e); that is, x e L(G) if
and only if a; £ [(M). Both directions of the claim can be proved by induction
on the length either of the derivation of G or the computation of M\ they are left
as an exercise (Problem 3.4.5). m Problems for Section 3.4 3.4.1. Carry out the
construction of Lemma 3.4.1 for the grammar of Example 3.1.4. Trace the
operation of the automaton you have constructed on the input string (()()).
3.4.2. Carry out the construction of Lemma 3.4.2 for the pushdown automaton
of Example 3.3.2, and let G be the resulting grammar. What is the set \w 6 {a,
b}*:(q, a,p) =£>£> w}? Compare with the proof of Lemma 3.4.2. 3.4.3.

Carry out the construction of Lemma 3.4.2 for the pushdown automaton of
Example 3.3.3. The resulting grammar will have 25 rules, but many can be
eliminated as useless. Show a derivation of the string aababbba in this
grammar. (You may change the names of the nonterminals for clarity.) 3.4.4.
Show that if M = (K, S,F, A, s,F) is a pushdown automaton, then there is
another pushdown automaton M' = (K1, E, F, A", s, F) such that (M1) = L(M)
and for all ((gu,/3),(p,7)) G A, |/3]| +[7| < 1- 3.4.5. Complete the proof of
Lemma 3.4.2.

3.5: Languages that Are and Are Not Context-Free 143 3.4.6. A context-free
grammar is linear if and only if no rule has as its right- hand side a string with
more than one nonterminal. A pushdown automa- automaton (K, S,F, A,s,F) is
said to be single-turn if and only if whenever (s. w, e) !-*(</!, why,) h (q* w2,
72) h**w”r3) and | y2 \<|r1 |theny31 <Iy21. (That is, once the stack starts
to decrease in height, it never again increases in height.) Show that a language
is generated by a linear context-free gram- grammar if and only if it is accepted
by a single-turn pushdown automaton. 3.5 LANGUAGES THAT ARE AND
ARE NOT CONTEXT-FREE Closure Properties In the last section, two views
of context-free languages —as languages generated by context-free grammars
and as languages accepted by pushdown automata— were shown to be
equivalent. These characterizations enrich our understand- understanding of the
context-free languages, since they provide two different methods for
recognizing when a language is context-free. For example, the grammatical
representation is more natural and compelling in the case of a programming
language fragment such as that of Example 3.1.3; but the representation in terms
of pushdown automata is easier to see in the case of {w 6 {a,b}* : w has equal
numbers of a's and 6's} (see Example 3.3.3). In this subsection we shall
provide further tools for establishing context-freeness: we show some clo-
closure properties of the context-free languages under language operations —
very much in the spirit of the closure properties of regular languages. In the
next subsection we shall prove a more powerful pumping theorem which
enables us to show that certain languages are not context-free. Theorem 3.5.1:
The context-free languages are closed under union, concatena- concatenation,
and Kleene star. Proof:. Letd = (Vi1,S1,.R1,S1) and G2 = (V2, T,2,R2,S2) be two
context-free grammars, and without loss of generality assume that they have
disjoint sets of nonterminals —that is, V\— Ej and V2 — £2 are disjoint.
Union. Let S be a new symbol and let G=(Vi UV2 U {S}, £1 U£2, R, S),

where R=R"UR2 U {S -> Su S -> S2}. Then we claim that L(G) = L(G1) U
L(G2). For the only rules involving S are S -> Si and S -> S2: so S =>q w if
and only if either S\ =$>q w or S2 ="q w; and since G\ and G2 have disjoint
sets of nonterminals, the last disjunction is equivalent to saying that w 6
L(G1)UL(G2). Concatenation. The construction is similar: L(G1)[(G2) is
generated by the grammar G= (Vi UVr2U{5} ,EiUE2,-RiUi12U{5 -~ S1S2},S).

144 Chapter 3: CONTEXT-FREE LANGUAGES Kleene Star. L{G\)* is
generated by As we shall see shortly, the class of context-free languages is not
closed under intersection or complementation. This is not very surprising;
Recall that our proof that regular languages are closed under intersection
depended on closure under complementation; and that construction required
that the automaton be deterministic. And not all context-free languages are
accepted by deterministic pushdown automata (see the corollary to Theorem
3.7.1). There is an interesting direct proof of the closure under intersection of
regular languages, not relying on closure under complement, but on a direct
construction of a finite automaton whose set of states is the Cartesian product
of the sets of states of the constituent finite automata (recall Problem 2.3.3).
This construction cannot of course be extended to pushdown automata —the
product automaton would have needed two stacks. However, it can be made to
work when one of the two automata is finite: Theorem 3.5.2: The intersection
of a context-free language with a regular lan- language is a context-free
language. Proof: If Lis a context-free language and R 1s a regular language,
then L= L(Mi) for some pushdown automaton Mi = (A!"1,S,F1, Ai,si,F1), and R
= L(M2) for some deterministic finite automaton M2 = {K2,H, $, s2,F2). The
idea 1s to combine these machines into a single pushdown automaton M that
carries out computations by Mi and M2 in parallel and accepts only if both
would have accepted. Specifically, let M= (K, E, F, A, s, F), where K — Ki x
K2, the Cartesian product of the state sets of Mi and M2; r =r1; s = («1,82); F =
F1 x F2, and A, the transition relation, is denned as follows. For each transition
of the pushdown automaton ((qi,a,/3), (pi/y)) G Ai, and for each state g2 G K2,
we add to A the transition (((q1,92).a,0),({p1,5(q2,a)),'y)); and for each
transition of the form ((qi,e,/3), (p1,7)) G Ai and each state q2 G K2, we add to
A the transition (((qi, q2), e, 0), ((pi, g2), 7)). That is, M passes from state (qi,
g2) to state {p1,p2) in the same way that Mi passes from state q\ to pi, except
that in addition M keeps track of the change in the state of M2 caused by
reading the same input.

3.5: Languages that Are and Are Not Context-Free 145 It is easy to see that
indeed w £ (M) if and only if w £ L(Mi) PI L[M-2). m Example 3.5.1: Let L
consist of all strings of a's and 6's with equal numbers of a's and 6's but
containing no substring abaa or babb. Then L is context-free, since it is the
intersection of the language accepted by the pushdown automaton in Example
3.3.3 with the regular language {a, b}* — {a, b} *(abaaLibabb){a, 6} *<D A
Pumping Theorem Infinite context-free languages display periodicity of a
somewhat subtler form than do regular languages. To understand this aspect of
context-freeness we start from a familiar quantitative fact about parse trees.
Let G = (VH,R,S) be a context-free grammar. The fanout of G, denoted </>
{QG), is the largest number of symbols on the right-hand side of any rule in R. A
path in a parse tree is a sequence of distinct nodes, each connected to the
previous one by a line segment; the first node is the root, and the last node is a
leaf. The length of the path is the number of line segments in it. The height of a
parse tree is the length of the longest path in it. Lemma 3.5.1: The yield of any
parse tree of G of height h has length at most Proof: The proofis by induction
on h. When h = 1, then the parse tree is a rule of the grammar (this 1s Case 2 of
the definition of a parse tree), and thus its yield has at most <p(G)h = 4>{G)
symbols. Suppose then that the result is true for parse trees of height up to h >
1. For the induction step, any parse tree of height h +1 consists of a root,
connected to at most 4>{G) smaller parse trees of height at most h (this is Case
3 of the definition of a parse tree). By induction, all these parse "subtrees"
have yields of length at most <fi(G)h each. It follows that the total yield of the
overall parse tree is indeed at most <fi(G)h+1, completing the induction. m To
put it another way, the parse tree of any string w £ L(G) with \w > <j)(G)h
must have a path longer than h. This is crucial in proving the following
pumping theorem for context-free languages. Theorem 3.5.3: Let G = (V, S,i?,
S) be a context-free grammar. Then any string w £ L{G) of length greater than
(>{G)\v"” can be rewritten asw = uvxyz in such a way that either v or y is
nonempty and uvnxynz is in L(G) for every n>0. Proof: Let w be such a string,
and let T be the parse tree with root labeled S and with yield w that has the
smallest number of leaves among all parse trees

146 Chapter 3: CONTEXT-FREE LANGUAGES with the same root and yield.
Since X"s yield is longer than 0(G)lv~El, it follows that T has a path of length
at least \V - S| +1, that 1s, with at least \V - E| + 2 nodes. Only one of these
nodes can be labeled by a terminal, and thus the remaining are labeled by

nonterminals. Since there are more nodes in the path than there are
nonterminals, there are two nodes on the path labeled with the same member A
of V - S. Let us look at this path in more detail (see Figure 3-9). Figure 3-9 Let
us call u, v, X, y, and z the parts of the yield of T as they are shown in the
figure. That is, x 1s the yield of the subtree T" whose root is the lower node
labeled A; v is the part of the yield of the tree T" rooted at the higher A up to
where the yield of T" starts; u is the yield of T up to where the yield of T"
starts; and z is the rest of the yield of T. It is now clear that the part of X"
excluding T" can be repeated any number of times, including zero times, to
produce other parse trees of G, whose yield is any string of the form uvnxynz, n
> (. This completes the proof, except for the requirement that vy * e. But if vy
= ¢, then there is a tree with root S and yield w with fewer leaves than that of
T —namely, the one that results if we omit from T the part of T" that excludes
T"— contrary to our assumption that T 1s the smallest tree of this kind. =
Example 3.5.2: Just like the pumping theorem for regular languages (Theorem
2.4.1), this theorem is useful for showing that certain languages are not context-
free. For example, L= {anbncn : n> 0} is not. For suppose that L— L(G) for
some context-free grammar G = (V,T,,R,S). Letn> ('3 . Then w = anbncn is in
L(G) and has a representation w = uvxyz such that v or

3.5: Languages that Are and Are Not Context-Free 147 y is nonempty and
uvnxynz is in L{G) for eachn= 0,1, 2,... There are two cases, both leading to a
contradiction. If vy contains occurrences of all three symbols a, b, c, then at
least one of v, y must contain occurrences of at least two of them. But then
uv2xy2z contains two occurrences out of their correct order —a b before an o,
or a ¢ before an a or b. If vy contains occurrences of some but not all of the
three symbols, then uv2xy2z has unequal numbers of a's, 6's, and c's.O
Example 3.5.3: L= {an: n>1 is a prime} is not context-free. To see this, take
a prime p greater than </>(G)'v ~E', where G = (V, T,,R, S) is the context- free
grammar allegedly generating L. Then w = ap can be written as prescribed by
the theorem, w = uvxyz, where all components of w are strings of a's and vy *
e. Suppose that vy = aq, and uxz = ar, where q and rare natural numbers, and q
> (). Then the theorem states that r + nq is a prime, for all n> 0. This was found
absurd in Example 2.4.3. It was no accident that, in our proofthat {an: n>1is
a prime} 1s not context-free, we resorted to an argument very similar to that in
Example 2.4.3, showing that the same language is not regular. It turns out that
any context-free language over a single-letter alphabet is regular; thus, the

result of the present example follows immediately from this fact and Example
2.4.3.0 Example 3.5.4: We shall next show that the language L= {w £ {a,b,c}*
: w has an equal number of a's, b's, and c's} is not context-free. This time we
need both Theorems 3.5.3 and 3.5.2: If L were context-free, then so would be
its intersection with the regular set a*b*c*. But this language, {anbncn : n> 0},
was shown to be non-context-free in Example 3.5.2 above.0 These negative
facts also expose the poverty in closure properties of the class of context-free
languages: Theorem 3.5.4: The context-free languages are not closed under
intersection or complementation. Proof: Clearly {anbncm : m,n> 0} and
{ambncn : myn> 0} are both context-free. The intersection of these two
context-free languages is the lan- language {anbncn : n> 0} just shown not to
be context-free. And, since Li r\L2 = Lx UL2, if the context-free languages
were closed under complementation, they would also be closed under
intersection (we know they are closed under union, Theorem 3.5.1). m

148 Chapter 3: CONTEXT-FREE LANGUAGES Problems for Section 3.5
3.5.1. Use closure under union to show that the following languages are
context- free. (a) {ambn :m"n} (b) {a,b}* -{anbn: n>0} (c) {ambncpdq : n=
g, oim<poim+n=p + q} (d) {a, b}* - L, where Lis the language L=
{babaabaaab... ban~1banb : n> 1} (e) {w £ {a, by : w=wR} 3.5.2. Use
Theorems 3.5.2 and 3.5.3 to show that the following languages are not context-
free. (a) {ap : pisaprime} (b) {a"" :n>0} (¢) {www : w £ {a,b}*} (d) {w
£ {a, b, c}*: w has equal numbers of a's, 6's, and c's} 3.5.3. Recall that a
homomorphism is a function h from strings to strings such that for any two
strings v and w, h(vw) = h(v)h(w). Thus a homomorphism is determined by its
values on single symbols: if w = a\... an with each <2j a symbol, then h(w) =
h(a\)... h(an). Note that homomorphisms can "erase": h(w) may be e, even
though w is not. Show that if L is a context- free language and h is a
homomorphism, then (a) h[L] is context-free; (b) h-1[L] (that is, {w e S*: ft
(to) G L}) 1is context-free. (Hint: Start from a pushdown automaton M
accepting L. Construct another pushdown automaton, similar to M, except that
it reads its input not from the input tape, but from a finite buffer that is
occasionally replenished in some way. You supply the rest of the intuition and
the formal details.) 3.5.4. In the proof of Theorem 3.5.2, why did we assume
that M2 was determin- deterministic? 3.5.5. Show that the language L=
{babaabaaab.. .ban~Ibanb : n> 1} is not context-free (a) by applying the
Pumping Theorem C.5.3); (b) by applying the result of Problem 3.5.3. (Hint:

What is h[L], where h(a) = aa, and h(b) =a?) 3.5.6. If Li,L.2 C S* are
languages, the right quotient of L\ by £2 1s defined as follows. L1/L2 = {w £
E* : there is a u £ L? such that wu £ L\}

3.5: Languages that Are and Are Not Context-Free 149 (a) Show that if L\ is
context-free and R is regular, then Li/R is context- free. (b) Prove that [dPbn :
p is a prime number and n> p} is not context-free. 3.5.7. Prove the following
stronger version of the Pumping Theorem (Theorem 3.5.3): Let G be a context-
free grammar. Then there are numbers K and k such that any string w £ L(G)
withiw[> K can be rewritten as w = uvxyz with vxy <k\n such a way that either
v or y is nonempty and uvnxynz e L(G) for every n> 0. 3.5.8. Use Problem
3.5.7 to show that the language {ww : w £ {a, b} *} is not context-free. 3.5.9.
Let G=(V, S, R, S) be a context-free grammar. A nonterminal A of G is called
self-embedding if and only if A ="uAv for some u,v GV*. (a) Give an
algorithm to test whether a specific nonterminal of a given context-free
grammar is self- embedding. (b) Show that if G has no self-embedding
nonterminal, then L(G) is a regular language. 3.5.10. A context-free grammar G
=(V, S, 1?7, 5) 1s said to be in Greibach normal form if every rule is of the form
or A->w for some w £ S(V - £)*. (a) Show that for every context-free
grammar G, there is a context-free grammar G" in Greibach normal form such
that L(G") = L{G') - {e}. (b) Show that if M is constructed as in the proof of
Lemma 3.4.1 from a grammar in Greibach normal form, then the number of
steps in any com- computation of M on an input w can be bounded as a function
of the length of mw. 3.5.11. Deterministic finite-state transducers were
introduced in Problem 2.1.4. Show that if L is context-free and / 1s computed
by a deterministic finite- state transducer, then (a) f[L] is context-free; (b)
f~x[L] 1s context-free. 3.5.12. Develop a version of the Pumping Theorem for
context-free languages in which the length of the "pumped part" is as long as
possible. 3.5.13. Let Mi and M2 be pushdown automata. Show how to
construct push- pushdown automata accepting L{M\)\IL{M2), (M1)L(M2),
and L(Mi1)*, thus providing another proof of Theorem 3.5.1. 3.5.14. Which of
the following languages are context-free? Explain briefly in each case. (a)
{ambncp : m=nor n=p or m=p) (b) {ambncp : m norn/porm/p}

150 Chapter 3: CONTEXT-FREE LANGUAGES (c¢) {ambncp : m=nand n=
pand m=p} (d) {w £ {a, b, c}*: w does not contain equal numbers of
occurrences of a, b, and ¢} (e) {w £ {a,b}*: w=w\W2 m m m wm for some

m> 2 and w-y,..., wm such that [ti>1| =\u>2\ = e ¢ e = |wra| > 2} 3.5.15.
Suppose that Lis context-free and R 1s regular. Is L— 1? necessarily context-
free? What about R — LI Justify your answers. 3.6 ALGORITHMS FOR
CONTEXT-FREE GRAMMARS In this section we consider the computational
problems related to context-free languages, we develop algorithms for these
problems, and we analyze their com- complexity. All in all, we establish the
following results. Theorem 3.6.1: (a) There is a polynomial algorithm which,
given a context-free grammar, constructs an equivalent pushdown automaton.
(b) There 1s a polynomial algorithm which, given a pushdown automaton, con-
constructs an equivalent context-free grammar. (c) There is a polynomial
algorithm which, given a context-free grammar G and a string x, decides
whether x £ L(G). It is instructive to compare Theorem 3.6.1 with the
corresponding statement summarizing the algorithmic aspects of finite automata
(Theorem 2.6.1). To be sure, there are certain similarities: in both cases there
are algorithms which transform acceptors to generators and vice versa —then
finite automata to reg- regular expressions and back, now pushdown automata
to context-free grammars and back. But the differences are perhaps more
striking. First, in Theorem 2.6.1 there was no need for an analog of part (¢)
above, since regular languages are rep- represented in terms of an efficient
algorithm for deciding precisely the membership question in (c): a
deterministic finite automaton. In contrast, for context-free languages we have
so far introduced only non-algorithmic, nondeterministic ac- acceptors —
pushdown automata. In order to establish part (¢), we show in the next
subsection that for any context-free language we can construct a deter-
deterministic acceptor; the construction is rather indirect and sophisticated,
and the resulting algorithm, although polynomial, is no longer linear in the
length of the input. A second major difference between Theorem 2.6.1 and
Theorem 3.6.1 is that in the present case we do not mention any algorithms for
testing whether two given context-free grammars (or two pushdown automata)
are equivalent; neither do we claim that there are algorithms for minimizing the
number of states in a pushdown automaton. We shall see in Chapter 5 that such
questions about

3.6: Algorithms for Context-Free Grammars 151 context-free grammars and
pushdown automata are not amenable to solution by any algorithm —however
inefficient! The Dynamic Programming Algorithm We turn now to proving part
(c) of the Theorem (parts (a) and (b) are straight- straightforward

consequences of the constructions in the proofs of the Lemmata 3.4.1 and
3.4.2). Our algorithm for deciding context-free languages is based on a useful
way of "standardizing" context-free grammars. Definition 3.6.1: A context-free
grammar G = (V,H,R,S) is said to be in Chomsky normal formif R C (V - S) x
V2. In other words, the right-hand side of a rule in a context-free grammar in
Chomsky normal form must have length two. Notice that no grammar in
Chomsky normal form would be able to produce strings of length less than two,
such as a, b, or e; therefore, context-free languages containing such strings
cannot be generated by grammars in Chomsky normal form. However, the next
result states that this is the only loss of generality that comes with Chomsky
normal form: Theorem 3.6.2: For any context-free grammar G there is a
context-free gram- grammar G' in Chomsky normal form such that [(G') —
L(G) — (E U {e}). Further- Furthermore, the construction of G' can be carried
out in time polynomial in the size of G. In other words, G' generates exactly the
strings that G does, with the possible exception of strings of length less than
two —since G' is in Chomsky normal form, we know that it cannot generate
such strings. Proof: We shall show how to transform any given context-free
grammar G = (V, E, R, S) into a context-free grammar in Chomsky normal
form. There are three ways in which the right-hand side of a rule A ->m x may
violate the con- constraints of Chomsky normal form: long rules (those whose
right-hand side has length three or more), e-rules (of the form A ->m ¢), and
short rules (of the form A -»+ a or A ->m B). We shall show how to remove
these violations one by one. We first deal with the long rules of G. Let A ->m
BiB2. m .Bn £ R, where B\,..., Bn £ V and n> 3. We replace this rule withn —
1 new rules, namely:

152 Chapter 3: CONTEXT-FREE LANGUAGES where A\,..., An 2 are new
nonterminals, not used anywhere else in the gram- grammar. Since the rule A -»
BiB2 . m m Bn can be simulated by the newly inserted rules, and this is the only
way in which the newly added rules can be used, it should be clear that the
resulting context-free grammar is equivalent to the original one. We repeat this
for each long rule of the grammar. The resulting grammar is equivalent to the
original one, and has rules with right-hand sides of length two or less. Example
3.6.1: Let us take the grammar generating the set of balanced paren-
parentheses, with rules S—> SS,S —> (S),S —> e. There is only one long
rule, S -> (S). It is replaced by the two rules 5 ->m (S1 and Si -» S).<> We
must next take on the e-rules. To this end, we first determine the set of erasable

nonterminals £ = { AeV-E:A=>* ¢}, that is, the set of all nonterminals that may
derive the empty string. This is done by a simple closure calculation: £:=0
while there is a rule A->awitha £ £ *and A'$ £ do add A to £. Once we have
the set £, we delete from G all e-rules, and repeat the follow- following: For
each rule of the form A ->m BC or A->m CB withB £ £ and C e V, we add to
the grammar the rule A -> C. Any derivation in the original grammar can be
simulated in the new, and vice versa —with one exception: € cannot be
derived in the language any longer, since we may have omitted the rule 5 -> ¢
during this step. Fortunately, the statement of the Theorem allows for this
exclusion. Example 3.6.1 (continued): Let us continue from the grammar with
rules S-+S8S, 5->Fi, Si->S), S-"e. We start by computing the set £ of vanishing
nonterminals: Initially £ = 0; then £ = {S}, because of the rule 5 ->m e; and this
is the final value of £. We omit from the grammar the e-rules (of which there is
only one, 5 ->m ¢), and add variants of all rules with an occurrence of 5, with
that occurrence omitted. The new set of rules is 5 -+SS, 5->Ei, Si->S), S”S,
S!-+).

3.6: Algorithms for Context-Free Grammars 153 The rule S -+ S was added
because of the rule 5 -» SS with 5 £ 5; it is of course useless and can be
omitted. The rule Si -») was added because of the rule Si -> 5) with S G £. For
example, the derivation in the original grammar 5=> SS”"S(S) =>5() =P () can
now simulated by —omitting the 5 => SS part, since the first 5 would be
eventually erased— and finally {Si => 0 —using the S\ =>) rule to anticipate
the erasing of the 5 in the rule Si => S).{} Our grammar now has only rules
whose right-hand sides have length one and two. We must next get rid of the
short rules, those with right-hand sides with length one. We accomplish this as
follows: For each A e V we compute, again by a simple closure algorithm, the
set T>(A) of symbols that can be derived from A in the grammar, T>(A) = {B
£V:A=>*£7} as follows: V(A) := {A} while there is a rule B -> C with B
£ V{A) and C1 V(A) do add C to V{A). Notice that for all symbols A, A€
~D(A); and if a is a terminal, then V{a) = {a}. In our third and final step of the
transformation of our grammar to one in Chomsky normal form, we omit all
short rules from the grammar, and we replace each rule of the form A —>m BC
with all possible rules of the form A—>m B'C where B' £ ~D(B) and C £
TA(C). Such a rule simulates the effect of the original rule A—> BC, with the
sequence of short rules that produce B' from B and C" from C. Finally, we add
the rules S —> BC for each rule A—> Z?C such that A 6 X>E) - {S}. Again,

the resulting grammar 1s equivalent to the one before the omission of the short
rules, since the effect of a short rule is simulated by "anticipating” its use when
the left-hand side first appears in the derivation (if the left-hand side 1s 5, and
thus it starts the derivation, the rules 5 —> BC added in the last part of the
construction suffice to guarantee equivalence). There is again only one
exception: we may have removed a rule 5 —> a, thus omitting the string a from
the language generated by G. Once again, fortunately this omission is allowed
by the statement of the theorem.

154 Chapter 3: CONTEXT-FREE LANGUAGES Example 3.6.1 (continued):
In our modified grammar with rules S-+SS, S->(Si, SWS), Si ->) we have
PE1) = {S1,)}, and PD) = {A} for all *G V - {Si}. We omit all length-one
rules, of which there is only one, Si —>). The only nonterminal with a
nontrivial set T>, Si, appears on the right-hand side of only the second rule.
This rule is therefore replaced by the two rules S —> (S1,S —> (),
corresponding to the two elements of P(Si). The final grammar in Chomsky
normal formis S-+SS, 5->Ei, Sj->S), S->(). After the three steps, the grammar
is in Chomsky normal form, and, except for the possible omission of strings of
length less than two, it generates the same language as the original one. In
order to complete the proof of the theorem, we must establish that the whole
construction can be carried out in time polynomial in the size of the original
grammar G. By "size of G" we mean the length of a string that suffices to fully
describe G —that is to say, the sum of the lengths of the rules of G. Let n be
this quantity. The first part of the transformation (getting rid of long rules) takes
time O(n) and creates a grammar of size again O{n). The second part, getting
rid of e-rules, takes O(n2) time for the closure computation (O(n) iterations,
each doable in O(n) time), plus O(n) for adding the new rules. Finally, the third
part (taking care of short rules) can also be carried out in polynomial time
(O(n) closure computations, each taking time O(n2)). This completes the proof
of the theorem. m The advantage of Chomsky normal form is that it enables a
simple polyno- polynomial algorithm for deciding whether a string can be
generated by the grammar. Suppose that we are given a context-free grammar G
=(V, E, R, S) in Chomsky normal form, and we are asked whether the string x
=x\m m mxn, withn> 2, is in L(G). The algorithm is shown below. It decides
whether x £ L(G) by analyzing all substrings of x. For each 1 and s such that 1 <
1 <1+ s <n, define N[1,1 + s] to be the set of all symbols in V that can derive
in G the string xt m m -Xi+S. The algorithm computes these sets. It proceeds

computing N[i, 1 + s] from short strings (s small) to longer and longer strings.
This general philosophy of solving a problem by starting from minuscule
subproblems and building up solutions to larger and larger subproblems until
the whole problem is solved is known as dynamic programming.

3.6: Algorithms for Context-Free Grammars 155 for 1 :=1 to ndo N[1,1] :=
{x,}; all other N[1,j] are initially empty fors :=1ton-1dofori:=1ton-s
do fork:=1ito1+s— 1 do ifthere is a rule A-+ BC £ R with 5 e N[i, k] and
Ce N[k + 1,1 +s] then add .4 to N[1i,1 + s]. Accept x if S £ N[1,n]. In order to
establish that the algorithm above correctly determines whether x £ L(G), we
shall prove the following claim. Claim: For each natural number s with 0 <s <
n, after the sth iteration of the algorithm, forall1=1,...,n—s, N[i,1+s] = {A
£V :A="*xt m m m xits). Proof of the Claim: The proof of this claim is by
induction on s. Basis Step. When s = 0 —where by "the zeroth iteration of the
algorithm" we understand the first (initialization) line— the statement is true:
since G is in Chomsky normal form, the only symbol that can generate the
terminal xi 1s Xi itself. Induction Step: Suppose that the claim is true for all
integers less than s > 0. Consider a derivation of the substring Xj--xj+s, say
from a nonterminal A. Since G is in Chomsky normal form, the derivation
starts with a rule of the form A —> BC, that is, A® BC =*>* xr--xi+s, where
B,C £ V. Therefore, for some k with1 <k <1+ s, B=>* Xi mm*Xk, and C =*>*
xk+1 m **Xi+g. We conclude that Ae {A£V: A=$>*x"m m -xits} if and
only if there is an integer k, 1 <k <i+s, and two symbols B£ {AGV: A=
ftm*Ximmmx/.}and C£ {A£V:A=*Xk+i m mmxit+s} suchthat A->BC
e R. We can rewrite the string Xi-- -Xk as Xj ¢ ¢ * xi+s>, where s' =k —1, and
the string Xk-+\ » m * xi+s as Xk+i m * m Xk+i+s", where s"=1+s—k— 1.
Notice that, since 1 <k <1 +s, we must have s',s" <s. Hence, the induction
hypothesis applies! By the induction hypothesis, {A £ V: A =*m* Xi--Xk) =
N[i,k], and {A £V : A=*>* Zfc+1 « m -xi+s} = N[k + L,i +s}. We conclude
that AL {A£V:A=>*Xi-- mxits} if and only if there 1s an integer k, 1 <k <
1+ s, and two symbols B £ N[1,k] and C £ N[k + 1,1 + s] such that A -> BC £ R.

156 Chapter 3: CONTEXT-FREE LANGUAGES But these are precisely the
circumstances under which our algorithm adds A to NJi, 1 4- s]. Therefore the
claim holds for s as well, and this concludes the proof of the induction
hypothesis —and of the claim. m It follows immediately from the claim that the
algorithm above correctly decides whether x £ L(G): At the end, the set

/V[1,n] will contain all symbols that derive the string X\ m m -xn = x.
Therefore, x £ I(G) if and only if S £ To analyze the time performance of the
algorithm, notice that it consists of three nested loops, each with a range
bounded by \x\ = n. At the heart of the loop we must examine for each rule of
the form A —> BC whether B £ N[i,j] and C £ N\j + L,i + s\; this can be
carried out in time proportional to the size of the grammar G —the length of its
rules. We conclude that the total number of operations is O(}Y3 \G\) —a
polynomial in both the length of x and the size of G. For any fixed grammar G
(that 1s, when we consider \G\ to be a constant), the algorithm runs in time
O(n3). m Example 3.6.1 (continued): Let us apply the dynamic programming
algo- algorithm to the grammar for the balanced parentheses, as was rendered
in Chomsky normal form with rules S-> SS,S ->(S1,51 ->S),S->(). Suppose we
wish to tell whether the string (()(())) can be generated by G. We display in
Figure 3.10 the values of N[1,1 + s] for 1 <i <j <n= 8, resulting from the
iterations of the algorithm. The computation proceeds along parallel diagonals
of the table. The main diagonal, corresponding to s = 0, contains the string
being parsed. To fill a box, say [2,7], we look at all pairs of boxes of the form
1V[2,A;] and N[k + 1,7] with 2 <k < 7. All these boxes lie either on the left of
or above the box being filled. For k = 3, we notice that 5 £ N[2,3], S £1V[4,7],
and 5 —> SS i1s a rule; thus we must add the left-hand side 5 to the box
JV[2,7]. And so on. The lower-right corner is N[1,n], and it does contain 5;
therefore the string is indeed in L(G). In fact, by inspecting this table it is easy
to recover an actual derivation of the string (()(())) in G. The dynamic
programming algorithm can be easily modified to produce such a derivation;
see Problem 3.6.2.0 Part (c) of Theorem 3.6.1 now follows by combining
Theorems 3.6.2 and the claim above: Given a context-free grammar G and a
string X, we determine whether x G L(G) as follows: First, we transform G into
an equivalent context- free grammar G' in Chomsky normal form, according to
the construction in the proof of Theorem 3.6.2, in polynomial time. In the
special case in which \x\ < 1, we can already decide whether x £ L(G): It is if
and only if during

3.7: Determinism and Parsing 157321 ((04)S05(0006(00007)5
00008)0Si15050)000S10S151234567 8 Figure 3-10 the
transformation we had to delete a rule S —> x. Otherwise, we run the dynamic
programming algorithm described above for the grammar G' and the string x.
The total number of operations used by the algorithm is bounded by a

polynomial in the size of the original grammar G and the length of the string x.
m Problems for Section 3.6 3.6.1. Convert the context-free grammar G given in
Example 3.1.3 generating arithmetic expressions into an equivalent context-
free grammar in Chom- Chomsky normal form. Apply the dynamic
programming algorithm for deciding whether the string x = (id + id + id) * (id)
is in L(G). 3.6.2. How would you modify the dynamic programming algorithm
in such a way that, when the input x is indeed in the language generated by G,
then the algorithm produces an actual derivation of x in G? 3.6.3. (a) Let G =
(V, S, 1?, S) be a context-free language. Call a nonterminal AGV — £
productive if A =>q x for some x G S*. Give a polynomial algorithm for
finding all productive nonterminals of G. (Hint: It is a closure algorithm.) (b)
Give a polynomial algorithm which, given a context-free grammar G, decides
whether L(G) = 0. 3.6.4. Describe an algorithm which, given a context-free
grammar G, decides whether L(G) is infinite. (Hint: One approach uses the
Pumping Theorem.) What is the complexity of your algorithm? Can you find a
polynomial-time algorithm?

158 Chapter 3: CONTEXT-FREE LANGUAGES 3.7 DETERMINISM AND
PARSING Context-free grammars are used extensively in modeling the syntax
of program- programming languages, as was suggested by Example 3.1.3. A
compiler for such a programming language must then embody a parser, that is,
an algorithm to determine whether a given string is in the language generated
by a given context- free grammar, and, if so, to construct the parse tree of the
string. (The compiler would then go on to translate this parse tree into a
program in a more ba- basic language, such as assembly language.) The
general context-free parser we have developed in the previous section, the
dynamic programming algorithm, although perfectly polynomial, is far too
slow for handling programs with tens of thousands of instructions (recall its
cubic dependence on the length of the string). Many approaches to the parsing
problem have been developed by com- compiler designers over the past four
decades. Interestingly, the most successful ones among them are rooted in the
idea of a pushdown automaton. After all, the equivalence of pushdown
automata and context-free grammars, which was proved in Section 3.4, should
be put to work. However, a pushdown automaton is not of immediate practical
use in parsing, because it is a nondeterministic de- device. The question then
arises, can we always make pushdown automata operate deterministically (as
we were able to do in the case of finite automata)? Our first objective in this

section is to study the question of deterministic pushdown automata. We shall
see that there are some context-free languages that cannot be accepted by
deterministic pushdown automata. This is rather dis- disappointing; it suggests
that the conversion of grammars to automata in Section 3.4 cannot be the basis
for any practical method. Nevertheless, all is not lost. It turns out that for most
programming languages one can construct deterministic pushdown automata
that accept all syntactically correct programs. Later in this section we shall
give some heuristic rules —rules of thumb— that are useful for constructing
deterministic pushdown automata from suitable context-free gram- grammars.
These rules will not invariably produce a useful pushdown automaton from any
context-free grammar; we have already said that that would be impos-
impossible. But they are typical of the methods actually used in the
construction of compilers for programming languages. Deterministic Context-
free Languages A pushdown automaton M is deterministic if for each
configuration there is at most one configuration that can succeed itina
computation by M. This con- condition can be rephrased in an equivalent way.
Call two strings consistent if the first is a prefix of the second, or vice versa.
Call two transitions ((p, a, /3), (q, 7)) and ((p, a',/3'), (q1,7')) compatible if a
and a' are consistent, and /3 and /3' are also consistent —in other words, if
there is a situation in which both transitions

3.7: Determinism and Parsing 159 are applicable. Then M is deterministic if it
has no two distinct compatible transitions. For example, the machine we
constructed in Example 3.3.1 to accept the language {wcwR : w £ {a, &} *} is
deterministic: For each choice of state and input symbol, there is only one
possible transition. On the other hand, the machine we constructed in Example
3.3.2 to accept {wwR : w £ {a, 6}*} is not deterministic: Transition 3 is
compatible with both Transitions 1 and 2; notice that these are the transitions
that "guess" the middle of the string—an action which is intuitively
nondeterministic. Deterministic context-free languages are essentially those
that are accepted by deterministic pushdown automata. However, for reasons
that will become clear very soon, we have to modify the acceptance
convention slightly. A lan- language is said to be deterministic context-free if it
is recognized by a deterministic pushdown automaton that also has the extra
capability of sensing the end of the input string. Formally, we call a language
LCS* deterministic context-free if L$ = L{M) for some deterministic
pushdown automaton M. Here $ is a new symbol, not in S, which is appended

to each input string for the purpose of marking its end. Every deterministic
context-free language, as just defined, is a context-free language. To see this,
suppose a deterministic pushdown automaton M accepts L%. Then a
(nondeterministic) pushdown automaton M' that accepts L can be constructed.
At any point, M' may "imagine" a § in the input and jump to a new set of states
from which it reads no further input. If, on the other hand, we had not adopted
this special acceptance conven- convention, then many context-free languages
that are deterministic intuitively would not be deterministic by our definition.
One example is L=a* U {anbn : n> 1}. A deterministic pushdown automaton
cannot both remember how many a's it has seen, in order to check the string of
fe's that may follow, and at the same time be ready to accept with empty stack
in case no fe's follow. However, one can easily design a deterministic
pushdown automaton accepting LS: If a $ is met while the machine is still
accumulating a's, then the input was a string in a*. If this happens, the stack is
emptied and the input accepted. The natural question at this point is whether
every context-free language 1s deterministic —just as every regular language is
accepted by a deterministic finite automaton. It would be surprising if this
were so. Consider, for example, the context-free language L= {anbm(f: m, n,p
>0, and m/norm/p}. It would seem that a pushdown automaton could accept
this language only by guessing which two blocks of symbols to compare: the
a's with the fe's, or the 6's with the c's. Without so using nondeterminism, it
would seem, the machine

160 Chapter 3: CONTEXT-FREE LANGUAGES could not compare the fe's
with the a's, while at the same time preparing to compare the fe's with the c's.
However, to prove that L is not deterministic requires a more indirect
argument: The complement of L is not context-free. Theorem 3.7.1: The class
of deterministic context-free languages is closed un- under complement. Proof:
Let I C E* be a language such that LS is accepted by the deterministic
pushdown automaton M = (K, £,F, A, s,F). It will be convenient to assume, as
in the proof of Lemma 3.4.2, that M is simple, that is, no transition of M pops
more than one symbol from the stack, while an initial transition places a stack
bottom symbol Z on the stack that is removed just before the end of the
computation; it is easy to see that the construction employed to this end in the
proof of Lemma 3.4.2 does not affect the deterministic nature of M. Since M is
deterministic, 1t would appear that all that is required in order to obtain a
device that accepts (£* — L)$ is to reverse accepting and non-accepting states

—as we have done with deterministic finite automata in the proof of Theorem
2.3.1(d), and will do again in the next chapter with more complex deterministic
devices. In the present situation, however, this simple reversal will not work,
because a deterministic pushdown automaton may reject an input not only by
reading it and finally reaching a non-accepting state, but also by never finishing
reading its input. This intriguing possibility may arise in two ways: First, M
may enter a configuration C at which none of the transitions in A is applicable.
Second, and perhaps more intiguingly, M may enter a configuration from which
M executes a never-ending sequence of e-moves (transitions of the form (q,e,a)
(p,P)). Let us call a configuration C = (q,w,a) of M & dead end if the following
is true: If C \~*M C" for some other configuration C" = (q',w',a"), then w' = w
and \a"\ > \a\. That is, a configuration is said to be a dead end if no progress
can be made starting from it towards either reading more input, or reducing the
height of the stack. Obviously, if M is at a dead-end configuration, then it will
indeed fail to read its input to the end. Conversely, it is not hard to see that, if
M has no dead-end configurations, then it will definitely read all its input. This
is because, in the absence of dead-end configurations, at all times there 1s a
time in the future in which either the next input symbol will be read, or the
height of the stack will be decreased —and the second option can only be
taken finitely many times, since the stack length cannot be decreased infinitely
many times. We shall show how to transform any simple deterministic
pushdown automa- automaton M into an equivalent deterministic pushdown
automaton without dead-end configurations. The point is that, since M is
assumed to be simple, whether a configuration is or is not a dead end only
depends on the current state, the next input symbol, and the top stack symbol. In
particular, let q 6 K be a state, a £ £

3.7: Determinism and Parsing 161 an input symbol, and ieFa stack symbol. We
say that the triple (q, a, A) is a dead end if there is no state p and stack symbol
string a such that the configu- configuration (g, a, A) yields either (p, e, a) or
(p, a,). That 1s, a triple (g, a, A) is dead end if it 1s a dead end when
considered as a configuration. Let DC"XEXF denote the set of all dead-end
triples. Notice that we are not claiming that we can effectively tell by
examining a triple whether it is in D or not (although it can be done); all we
are saying is that the set D is a well-defined, finite set of triples. Our
modification of M is the following: For each triple (q, a, A) e D we remove
from A all transitions compatible with E, a, A), and we add to A the transition

((9,a,A),(r,e)), where r 1s a new, non-accepting state. Finally, we add to A
these transitions: ((r, a,e), (r, ¢)) foralla £ S, ((r, $.¢), (r',e)), and (1',e,A),
(r',e)) for each igFU {Z}, where 1' is another new, non-accepting state. These
transitions enable M', when in state r, to read the whole input (without
consulting the stack), and, upon reading a $, to empty the stack and reject. Call
the resulting pushdown automaton M'. It is easy to check that M' is
deterministic, and accepts the same language as M (M' simply rejects
explicitly whenever M would have rejected implicitly by failing to read the
rest of the input). Furthermore, M' was constructed so that it has no dead end
configurations —and hence, it will always end up reading its whole input.
Now reversing the role of accepting and non-accepting states of M' produces a
deterministic pushdown automaton that accepts (S* — L)$, and the proof'is
complete. m Theorem 3.71 indeed establishes that the context-free language L=
{anbmcp : m”*nor m”p} above is not deterministic: If L were deterministic,
then its complement, L would also be deterministic context-free —and
therefore certainly context-free. Hence, the intersection of L with the regular
language a*b*c* would be context-free, by Theorem 3.5.2. But it is easy to see
that L n a*b*c* is pre- precisely the language {anbncn : n> 0}, which we
know is not context-free. We conclude that the context-free language L is not
deterministic context-free: Corollary: The class of deterministic context free
languages is properly con- contained in the class of context-free languages In
other words, nondeterminism is more powerful than determinism in the context
of pushdown automata. In contrast, we saw in the last chapter that non-
nondeterminism adds nothing to the power of finite automata —unless the
number of states is taken into account, in which case it is exponentially more
powerful. This intriguing issue of the power of nondeterminism in various

computational contexts is perhaps the single most important thread that runs
through this book.

162 Chapter 3: CONTEXT-FREE LANGUAGES Top-Down Parsing Having
established that not every context-free language can be accepted by a
deterministic pushdown automaton, let us now consider some of those that can.
Our overall goal for the remainder of this chapter is to study cases in which
context-free grammars can be converted into deterministic pushdown automata
that can actually be used for "industrial grade" language recognition. However,
our style here is rather different from that of the rest of this book; there are
fewer proofs, and we do not attempt to tie up all the loose ends of the ideas we

introduce. We present some guidelines —what we call "heuristic rules"— that
will not be useful in all cases, and we do not even attempt to specify exactly
when they will be useful. That is, we aim to introduce some suggestive
applications of the theory developed earlier in this chapter, but this venture
should not be taken as anything more than an introduction. Let us begin with an
example. The language L= {anbn} is generated by the context-free grammar G
=({a, b, S}, {a, b}, R, S), where R contains the two rules 5—>+aSb and 5 —
> e. We know how to construct a pushdown automaton that accepts L: just
carry out the construction of Lemma 3.4.1 for the grammar G. The result is Mi=
({p.a},{a,b},{a,b,S}£up,{q}), where A1 =((p, ¢, ¢), (q, 5)), ((q, &, S), (q,
aSb))((q, e, 5), (q, €)), Since Mi has two different transitions with identical
first components —the ones corresponding to the two rules of G that have
identical left-hand sides— it is not deterministic. Nevertheless, L1is a
deterministic context-free language, and Mi can be modified to become a
deterministic pushdown automaton Mi that accepts L%. Intuitively, all the
information that Mi needs at each point in order to decide which of the two
transitions to follow is the next input symbol. If that symbol is an a, then Mi
should replace 5 by aSb on its stack if hope of an accepting computation is to
be retained. On the other hand, if the next input symbol is a b, then the machine
must pop 5. M2 achieves this required anticipation or lookahead by consuming
an input symbol ahead of time and incorporating that information into its state.
Formally, Mi = ({p, q, qa, gb, q$}, {a, b}, {a, b, S} A2,p, {?$}), where A2
contains the following transitions.

3.7: Determinism and Parsing 163 A) ((p,e.€).,(q,S)) B) ((q.,a,e),(Qa,e)) C)
((qa,e,a),(q.¢)) D) ((q,b,e),(qb,.e)) E) ((gb,e,b),(q.¢)) F) ((g$,e).fe.e)) G)
((«/0,e,5))(«/0O)a56)) (8) ((gb,e,S),(gb,e)) From state 9, M2 reads one input
symbol and, without changing the stack, enters one of the three new states qa,
qb, or g$. It then uses that information to differentiate between the two
compatible transitions ((q,e,S),(q,aSb)) and ((9, e, 5), (g, €)): The first
transition is retained only from state qa and the second only from state gb. So
M2 is deterministic. It accepts the input ab$ as follows. Step 01234567 8
State V Q Qa Qa Q Qb Qb Q Q% Unread Input ab% ab% b% b% b% % % %
e Stacke 5 5 aSb Sb Sb b e e Transition Used Rule of G 127 S —v aSb 3 4
8 5-s.e 5 6 So Mi can serve as a deterministic device for recognizing strings of
the form anbn. Moreover, by remembering which transitions of M2 were
derived from which rules of the grammar (this 1s the last column of the table

above), we can use a trace of the operation of Mi in order to reconstruct a
leftmost derivation of the input string. Specifically, the steps in the computation
where a nonterminal is replaced on top of the stack (Steps 3 and 6 in the
example) correspond to the construction of a parse tree from the root towards
the leaves (see Figure 3-11 (a)). Devices such as M2, which correctly decide
whether a string belongs in a context-free language, and, in the case of a
positive answer, produce the corre- corresponding parse tree are called
parsers. In particular, M<i is a top-down parser because tracing its operation
at the steps where nonterminals are replaced on the stack reconstructs a parse
tree in a top-down, left-to-right fashion (see Figure 3-11(b) for a suggestive
way of representing how progress is made in a top-down parser). We shall see
a more substantial example shortly.

164 5 (step 3) aS b | (step 6) e (a) Chapter 3: CONTEXT-FREE
LANGUAGES Portion S of parse tree already constructed Portion to be
constructed (b) Figure 3-11 Naturally, not all context-free languages have
deterministic acceptors that can be derived from the standard nondeterministic
one via the lookahead idea. For example, we saw in the previous subsection
that some context-free languages are not deterministic to begin with. Even for
certain deterministic context-free languages, lookahead of just one symbol may
not be sufficient to resolve all uncertainties. Some languages, however, are not
directly amenable to parsing by lookahead for reasons that are superficial and
can be removed by slightly modifying the grammar. We shall focus on these
next. Recall the grammar G that generates arithmetic expressions with
operations + and * (Example 3.1.3). In fact, let us enrich this grammar by
another rule, (R7) designed to allow function calls —such as sqrt(x * x + 1)
and f(z)— to appear in our arithmetic expressions. Let us try to construct a top-
down parser for this grammar. Our construc- construction of Section 3.4 would
give the pushdown automaton with £={(,),+,*, id}, and A as given below. @)

((p.e,¢).(q.E)) A) ((q.¢,E).(q.E + B) ((q.¢,E),(q,T))

3.7: Determinism and Parsing 165 C) ((q.e,T),(q,T*F)) D) ({q,e,T),(q,F)) E)
((@¢.F),(@(E)) F) ((0,¢,F).(,\d) G) ((q,¢,F),(q,\d(E))) Finally, ((q,a,2),
(q,e)) € A for all a £ E. The nondeterminism of M3 1s manifested by the sets of
transitions 1-2, 3-4, and 5-6-7 that have identical first components. What is
worse, these decisions cannot be made based on the next input symbol. Lets us
examine more closely why this is so. Transitions 6 and 7. Suppose that the

configuration of M3 is (q,\d,F). At this point M3 could act according to any
one of transitions 5, 6, or 7. By looking at the next input symbol —i1d— M3
could exclude transition 5, since this transition requires that the next symbol be
(. Still, M3 would not be able to decide between transitions 6 and 7, since they
both produce a top of the stack that can be matched to the next input symbol —
id. The problem arises because the rules F ->m id and F ->¢ id(E) of G have
not only identical left-hand sides, but also the same first symbol on their right-
hand sides. There is a very simple way around this problem: Just replace the
rules F ->¢ id and F ->+ \d(E) in G by the rules F ->m 1d"™4, A ->¢ ¢, and A ->m
(E), where A 1s a new nonterminal (A for argument). This has the effect of
"procrastinating" on the decision between the rules F ->m id and F ->m 1d(£)
until all needed information is available. A modified pushdown automaton M3
now results from this modified grammar, in which transitions 6 and 7 are
replaced by the following. F') ((q,e,F),(q,\dA)) G') ((q,e,A),(q.e)) (8")
((g,e,A),(Now looking one symbol ahead is enough to decide the correct
action. For example, configuration (q, id(id),F) would yield (9, 1d(id),1d"4),
(q, (1d), A), (q, (id), (E)), and so on. This technique of avoiding
nondeterminism is known as left factoring. It can be summarized as follows.
Heuristic Rule 1: Whenever A ->« aC\, A ->¢ afc, m ..,A-t a/3n are rules with a
~e and n> 2, then replace them by the rules A—>a A'and A' —>m /% for i =
I,...,n, where A' is a new nonterminal. It is easy to see that applying Heuristic
Rule 1 does not change the language generated by the grammar. We now move
to examining the second kind of anomaly that prevents us from transforming M3
into a deterministic parser.

166 Chapter 3: CONTEXT-FREE LANGUAGES Transitions 1 and 2. These
transitions present us with a more serious problem. If the automaton sees 1d as
the next input symbol and the contents of the stack are just E, it could take a
number of actions. It could perform transition 2, replacing E by T (this would
be justified in case the input is, say, id). Or it could replace Eby E+ T
(transition 1) and then the top E by T (this should be done if the input is 1d +
id). Or it could perform transition 1 twice and transition 2 once (input id + id +
1d), and so on. It seems that there is no bound whatsoever on how far ahead the
automaton must peek in order to decide on the right action. The culprit here is
the rule E ->¢ E + T, in which the nonterminal on the left-hand side is repeated
as the first symbol of the right-hand side. This phenomenon is called left
recursion, and can be removed by some further surgery on the grammar. To

remove left recursion from the rule E —>m E + T, we simply replace it by the
rules E ->+ TE', E' -+ +TE\ and E' -> e, where E' is a new nonterminal. It can
be shown that such transformations do not change the language produced by the
grammar. The same method must also be applied to the other left recursive rule
of G, namely T ->+ T*F. We thus arrive at the grammar G' = {V, S, R', E) where
V=EU{E,E, T, T,F A}, and the rules are as follows. A) B) C) D) E) F) G)
B)VDAO)EEETTrFFAA—Y->->—>¢>a—>n—>m->0—>1 -t
TE1 +TE' e FT' *FT' e (E) \dA e IE) The above technique for removing left
recursion from a context-free gram- grammar can be expressed as follows.'
Heuristic Rule 2: Let A—>m Aa\,.. ;, A—> Aanand A—>/?1,... ,A—>j3m
be all rules with A on the left-hand side, where the fa 's do not start with an A
and n> 0 (that is, there is at least one left-recursive rule). Then replace these
rules by A ->m faA',. ..,A-+ fan A' and A' ->¢ otiA',. ., A'-tanA', and A' > ¢,
where A' is a new nonterminal. Still the grammar G' of our example has rules
with identical left-hand sides, only now all uncertainties can be resolved by
looking ahead at the next input ' We assume here that there are no rules of the
form A—> A.

3.7: Determinism and Parsing 167 symbol. We can thus construct the following
deterministic pushdown automaton M4 that accepts 1(G)$. where K =
{P,Q,Q\d,Q+,Q*,Q),Q(,Q9}, and A is listed below. {(q,a,e),(qa,e)) for each a
G £ U {$} ((qa,e,a), (q, e)) for eacha G £ ((<?a,e,£0,(<?a,T.E')) for eacha G
£U {$} ((qa,e.E"),(qa,e)) for eacha G {),$} ((?,,, e, T), (<?a, FT')) for each a
GE U {$} ((«o,e,r'),(«o0,e)) for eacha G {+,),$} ((«(,e,F), («<, ((gra,e,"),
(gra,e)) for eacha G {+,*,),$} Then M4 is a parser for G". For example, the
input string id * (id)$ would be accepted as shown in the table in the next page.
Here we have indicated the steps in the computation where a nonterminal has
been replaced on the stack in accordance with a rule of G". By applying these
rules of G" in the last column of this table in sequence, we obtain a leftmost
derivation of the input string: * FT'E' =>+ idT'E' =>1d * FT'E' =» 1d * (E)T'E'
=» 1d * (TE")T'E' =>1d * (FT'E")T'E' =» id * {\AT'E")T'E' =>id * (idE")T'E' ="
id * \d)T'E' =» 1d * (\d)E' =» 1d * (id) In fact, a parse tree of the input can be
reconstructed (see Figure 3-12; the step of the pushdown automaton
corresponding to the expansion of each node of the parse tree is also shown
next to the node). Notice that this parser constructs the parse tree of the input in
a top-down, left-first manner, starting from E and repeatedly applying an
appropriate rule to the leftmost nonterminal.

168 Chapter 3: CONTEXT-FREE LANGUAGES Step01-H23456789 10
111213141516 17 18 19 20 21 22 23 24 25 26 State Pq q\d q\d q\d q q* q*
q* 9 Q(Q(q 1\d"id q\d q Q) fI\ q q$ q$ q$ Unread Input id * (id)$ id*(id)$ *
(1d)$ *(1d)$ *(id)$ *(1d)$ *(1d)$ (id)$ (id)$ (id)$ (id)$ id)$ id)$ id)$)$)$)$
)$)$8$5$88FeeeStacke EE TE' FT'E' \dATE' ATE' ATE' T'E' *FT'E'
FT'E' FT'E' (E)T'E' E)TE' E)TE' TE")TE' FTE")T'E' \dATE')TE' ATE")TE'
AT'EYTE' TE)TE' E)TE')TE' TE' TE'E' e Rule of G" 148957148106
3 6 6 3 In general, given a grammar G, one may try to construct a top-down
parser for G as follows: Eliminate left recursion in G by repeatedly applying
Heuristic Rule 2 to all left-recursive nonterminals A of G. Apply Heuristic
Rule 1 to left- factor G whenever necessary. Then examine whether the
resulting grammar has the property that one can decide among rules with the
same left-hand side by looking at the next input symbol. Grammars with this
property are called LLA). Although we have not specified exactly how to
determine whether a grammar is indeed LLLA) —nor how to construct the
corresponding deterministic parser if it is LLA)— there are systematic
methods for doing so. In any case, inspection of the grammar and some
experimentation will often be all that is needed.

3.7: Determinism and Parsing 169 E (step 3) T (step 4) E' (step 26) F(step 5)
id A (step 8) T'(step 9) T (step 16) T (step 25) E' (step 22) F (step 17) T (step
21) e id 4 (step 20) e Figure 3-12 Bottom-Up Parsing There is no one best way
to parse context-free languages, and different methods are sometimes
preferable for different grammars. We close this chapter by briefly considering
methods quite dissimilar from those of top-down parsing. Neverthe-
Nevertheless they, too, find their genesis in the construction of a pushdown
automaton. In addition to the construction of Lemma 3.4.1, there is a quite
orthogonal way of constructing a pushdown automaton that accepts the
language generated by a given context-free grammar. The automata of that
construction (from which the top-down parsers studied in the last subsection
are derived) operate by carrying out a leftmost derivation on the stack; as
terminal symbols are generated, they are compared with the input string. In the
construction given below, the automaton attempts to read the input first and, on
the basis of the input actually read, deduce what derivation it should attempt to
carry out. The general effect, as we shall see, 1s to reconstruct a parse tree
from the leaves to the root, rather than the other way around, and so this class
of methods is called bottom-up. The bottom-up pushdown automaton is

constructed as follows. Let G = (V,H,R,S) be any context-free grammar; then
letM = (K, 2, A, p, F), where K= {p, q], r =V, F = {q}, and A contains the
following.

170 Chapter 3: CONTEXT-FREE LANGUAGES A) ((p,a.e), (p,a)) for each a
GE. B) ({p, e, aR), (p, A)) for each rule A ->+ a in R. Before moving to the
proof itself, compare these types of transitions with those of the automaton
constructed in the proof of Lemma 3.4.1. Transitions of type 1 here move input
symbols onto the stack; transitions of type 3 in Lemma 3.4. pop terminal
symbols off the stack when they match input symbols. Transitions of type 2
here replace the right-hand side of a rule on the stack by the corresponding
left-hand side, the right-hand side being found reversed on the stack; those of
type 2 of Lemma 3.4.1 replace the left-hand side of a rule on the stack by the
corresponding right-hand side. Transitions of type 3 here end a computation by
moving to the final state when only the start symbol remains on the stack;
transitions of type 1 of Lemma 3.4.1 start off the computation by placing the
start symbol on the initially empty stack. So the machine of this construction is
in a sense perfectly orthogonal to the one of Lemma 3.4.1. Lemma 3.7.1: Let G
and M be as just presented. Then L(M) = L(G). Proof: . Any string in L(G) has
a rightmost derivation from the start symbol. Therefore proof of the following
claim suffices to establish the lemma. Claim: For any ieE' and 7 G F*, (p, 1,7)
\~*M (p,e,S) if and only if 5 =$-g For if we let x be an input to M and 7 = e,
then since q is the only final state and it can be entered only via transition 3,
the claim implies that M accepts x if and only if G generates x. The only if
direction of the claim can be proved by an induction on the number of steps in
the computation of M, whereas the if direction can be proved by an induction
on the number of steps in the rightmost derivation of x from 5. m Let us
consider again the grammar for arithmetic expressions (Example 3.1.3, without
the rule F -t \d(E) of the previous subsection). The rules of this grammar are
the following. E-+E + T (RI) E-~T (R2) T ->T*F (R3) T-> F (i?4) F ->+ (E)
(R5) F ->1d (R6)

3.7: Determinism and Parsing 171 If our new construction is applied to this
grammar, the following set of transitions is obtained. (p,a,e),(p,a)) for eacha G
£ (AO) (p,e,T + E),{p,E) (Al) (p,e,T),(p,E) (A2) {p,e,F*T),{p,T) (A3)

(p.e.F).(p.r) (A4) (p,e,)EQ).(p.F) (A5) (p, e, 1d), (p.F) (A6) (p.e,£;).(«.e) (A7)
Let us call this pushdown automaton M. The input id * (id) 1s accepted by M as

shown in the table below. Step 012345678910 11 1213 14 State PPP P
PPPPPPPPPP <j Unread Input id* (id) *(id) *(id) *(id) (id)id)))))eee
e e Stacke id F T *T (*T id(*T F(*T T(*T E(*T)E(*T F*T T E e Transition
Used AO A6 A4 AO AO AO A6 A4 A2 AO A5 A3 A2 A7 Rule of G R6 R4
R6 R4 R2 R5 R3 R2 We see that M is certainly not deterministic: Transitions
of type AO are compatible with all the transitions of type Al through AS8. Still,
its overall "philosophy" of operation is suggestive. At any point, M may shift a
terminal symbol from its input to the top of the stack (transitions of type AO,
used in the sample computation at Steps 1, 4, 5, 6, and 10). On the other hand,
it may occasionally recognize the top few symbols on the stack as (the reverse
of) the right-hand side of a rule of G, and may then reduce this string to the
corresponding left-hand side (transitions of types A2 through A6, used in the

172 Chapter 3: CONTEXT-FREE LANGUAGES sample computation where a
"rule of G" is indicated in the rightmost column). The sequence of rules
corresponding to the reduction steps turns out to mirror exactly, in reverse
order, a rightmost derivation of the input string. In our example, the implied
rightmost derivation is as follows. =>m T * (F) =»T*(id) =""F*(id) => 1d * (id)
This derivation can be read from the computation by applying the rules men-
mentioned in the right-hand column, from bottom to top, always to the rightmost
nonterminal. Equivalently, this process can be thought of as a bottom-to-top,
left-to-right reconstruction of a parse tree (that is, exactly orthogonal to Figure
3-1 I(b)). In order to construct a practically useful parser for L(G), we must
turn M into a deterministic device that accepts L(G)%. As in our treatment of
top-down parsers, we shall not give a systematic procedure for doing so.
Instead, we carry through the example of G, pointing out the basic heuristic
principles that govern this construction. First, we need a way of deciding
between the two basic kinds of moves, namely, shifting the next input symbol to
the stack and reducing the few top- topmost stack symbols to a single
nonterminal according to a rule of the grammar. One possible way of deciding
this 1s by looking at two pieces of information: the next input symbol —call it
b— and the top stack symbol —call it a. (The symbol a could be a
nonterminal.) The decision between shifting and reducing is then done through
arelation PC Vx (E U {$}) called a precedence relation P. If (a, b) 6 P, then
we reduce; otherwise we shift b. The correct precedence relation for the
grammar of our example is given in the table below. Intuitively, (a, b) G P
means that there exists a rightmost derivation of the form 5 4-Q fiAbx M-g p-

yabx. Since we are reconstructing rightmost derivations backwards, it makes
sense to undo the rule A—> -ya whenever we observe that a immediately
precedes b. There are systematic ways to calculate precedence relations, as
well as to find out when, as is the case in this example, a precedence relation
suffices to

3.7: Determinism and Parsing 173 (id*ETF()idVVV+VVV*VVVS§
V V V decide between shifting and reducing; however, in many cases
inspection and experimentation will lead to the right table. Now we must
confront the other source of nondeterminism: when we decide to reduce, how
do we choose which of the prefixes of the pushdown store to replace with a
nonterminal? For example, if the pushdown store contains the string F *T + E
and we must reduce, we have a choice between reducing F to T (Rule R4) or
reducing F * T to T (Rule R3). For our grammar, the correct action is always
to choose the longest prefix of the stack contents that matches the reverse of the
right-hand side of a rule and reduce it to the left-hand side of that rule. Thus in
the case above we should take the second option and reduce F * T to T. With
these two rules (reduce when the top of the stack and the next in- input symbol
are related by P, otherwise shift; and, when reducing, reduce the longest
possible string from the top of the stack) the operation of the push- pushdown
automaton M becomes completely deterministic. In fact, we could design a
deterministic pushdown automaton that "implements" these two rules (see
Problem 3.7.9). Once again, bear in mind that the two heuristic rules we have
described —namely, A) use a precedence relation to decide whether to shift or
reduce, and B) when in doubt, reduce the longest possible string— do not
work in all situations. The grammars for which they do work are called weak
precedence grammars; in practice, many grammars related to programming
languages are or can readily be converted into weak precedence grammars.
And there are many, even more sophisticated methods for constructing top-
down parsers, which work for larger classes of grammars. Problems for
Section 3.7 3.7.1. Show that the following languages are deterministic context-
free. (a) {ambn :m"n} (b) {wcwR :w e {a,b}*}

174 Chapter 3: CONTEXT-FREE LANGUAGES (¢) {cambn: m#n} U
{damb2m: m> 0} (d) {amcbn: m# n} U\amdb2m: m> 0} 3.7.2. Show that
the class of deterministic context-free languages is not closed under
homomorphism. 3.7.3. Show that if L is a deterministic context-free language,

then L 1s not inher- inherently ambiguous. 3.7.4. Show that the pushdown
automaton M' constructed in Section 3.7.1 accepts the language L, given that M
accepts L$. 3.7.5. Consider the following context-free grammar: G— (V, S, R,
S), where V= {{,),.,a,S,A}, £={(,),..},and R={S ->(),S ->a,S -» (A),A -
> 5, —>™M.5} (For the reader familiar with the programming language
LISP, L{G) contains all atoms and lists, where the symbol a stands for any non-
null atom.) (a) Apply Heuristic Rules 1 and 2 to G. Let G' be the resulting
grammar. Argue that G" 1s LL{1). Construct a deterministic pushdown
automaton M accepting L.{G)%. Study the computation of M on the string
((())-a). (b) Repeat Part (a) for the grammar resulting from G if one replaces
the first rule by A—> e. (c¢) Repeat Part (a) for the grammar resulting from G
if one replaces the last rule by A -> S.A in G. 3.7.6. Consider again the
grammar G of Problem 3.7.5. Argue that G is a weak precedence grammar,
with the precedence relation shown below. Construct a deterministic
pushdown automaton that accepts [(G)$.a) ASa('VVVmeVVEVV377.
Let G" = (V,Y1,R',S) be the grammar with rules 5 ->+ (A),S ->a, A->S.A, A -
> e. Is G' weak precedence? If so, give an appropriate precedence relation;
otherwise, explain why not. 3.7.8. Acceptance by final state is defined in
Problem 3.3.3. Show that L is de- deterministic context-free if and only if Lis
accepted by final state by some deterministic pushdown automaton.

References 175 3.7.9. Give explicitly a deterministic pushdown automaton that
accepts the lan- language of arithmetic expressions, based on the
nondeterministic pushdown automaton M and the precedence table P of the last
subsection. Your au- automaton should look ahead in the input by absorbing the
next input symbol, very much like the pushdown automaton M4 of the previous
section. 3.7.10. Consider the following classes of languages: (a) Regular (b)
Context-free (¢) The class of the complements of context-free languages (d)
Deterministic context-free Give a Venn diagram of these classes; that is,
represent each class by a "bub- "bubble," so that inclusions, intersections, etc.
of classes are reflected accurately. Can you supply a language for each non-
empty region of your diagram? REFERENCES Context-free grammars are a
creation of Noam Chomsky; see o N. Chomsky "Three models for the
description of languages," IRE Transactions on Information Theory, 2, 3, pp.
113-124, 1956, and also o N. Chomsky "On certain formal properties of
grammars," Information and Con- Control, 2, 137-167, 1959. In the last paper,
Chomsky normal form was also introduced. A closely related notation for the

syntax of programming languages, called BNF (for Backus Normal Form or
Backus-Naur Form), was also invented in the late 1950s; see o P. Naur, ed.
"Revised report on the algorithmic language Algol 60," Communi-
Communications of the ACM, 6, 1, pp. 1-17, 1963, reprinted in S. Rosen, ed.,
Programming Systems and Languages New York: McGraw-Hill, pp. 79-118,
1967. Problem 3.1.9 on the equivalence of regular grammars and finite
automata 1s from o N. Chomsky, G. A. Miller "Finite-state languages,"
Information and Control, 1, pp. 91-112, 1958. The pushdown automaton was
introduced in o A. G. Oettinger "Automatic syntactic analysis and the
pushdown store," Pro- Proceedings of Symposia on Applied Mathematics, Vol.
12, Providence, R.I.: Ameri- American Mathematical Society, 1961. Theorem
3.4-1 on the equivalence of context-free languages and pushdown automata
was proved independently by Schutzenberger, Chomsky, and Evey. o M. P.
Schutzenberger "On context-free languages and pushdown automata," In-
Information and Control, 6, 3, pp. 246-264, 1963. o N. Chomsky "Context-free
grammar and pushdown storage," Quarterly Progress Report, 65, pp. 187-194,
M.LT. Research Laboratory in Electronics, Cambridge, Mass., 1962

176 Chapter 3: CONTEXT-FREE LANGUAGES o J. Evey "Application of
pushdown store machines," Proceedings of the 1963 Fall Joint Computer
Conference, pp. 215-217. Montreal: AFIPS Press, 1963. The closure
properties presented in subsection 3.5.1, along with many others, were pointed
out in o V. Bar-Hillel, M. Perles, and E. Shamir "On formal properties of
simple phrase structure grammars," Zeitschrift fur Phonetik,
Sprachwissenschaft und Kommu- nikationsforschung, 14, PP- 143-172, 1961.
In the same paper one finds a stronger version of Theorem 3.5.3 (the Pumping
Theorem for context-free grammars; see also Problem 3.5.7). An even stronger
version of that theorem appears in o W. G. Ogden "A helpful result for proving
inherent ambiguity," Mathematical Systems Theory, 2, pp. 191-194, 1968. The
dynamic programming algorithm for context-free language recognition was
discov- discovered by o T. Kasami "An efficient recognition and syntax
algorithm for context-free lan- languages," Report AFCRL-65-758 A965), Air
Force Cambridge Research Labora- Laboratory, Cambridge, Mass., and
independently by o D. H. Younger "Recognition and parsing of context-free
languages in time n3," Information and Control, 10, 2, pp. 189-208, 1967. A
variant of this algorithm is faster when the underlying grammar is unambiguous
o J. Earley "An efficient context-free parsing algorithm," Communications of

the ACM, 13, pp. 94-102, 1970. The most efficient general context-free
recognition algorithm known is due to Valiant. It runs in time proportional to
the time required for multiplying two n x n matrices, currently O(n23")- o L. G.
Valiant "General context-free recognition in less than cubic time," Journal of
Computer and Systems Sciences, 10, 2, pp. 308-315, 1975. LLA) parsers were
introduced in o P. M. Lewis II, R. E. Stearns "Syntax-directed transduction,"
Journal of the ACM, 15, 3, pp. 465-488, 1968, and also in o D. E. Knuth "Top-
down syntax analysis," Ada Informatica, 1, 2, pp. 79-110, 1971. Weak
precedence parsers were proposed in o J. D. Ichbiah and S. P. Morse "A
technique for generating almost optimal Floyd- Evans productions for
precedence grammars," Communications of the ACM, 13, 8, pp. 501-508,
1970. The following is a standard book on compilers o A. V. Aho, R. Sethi, J.
D. Ullman Principles of Compiler Design, Reading, Mass.: Addison-Wesley,
1985. Ambiguity and inherent ambiguity were first studied in o N. Chomsky
and M. P. Schutzenberger "The algebraic theory of context free languages," in
Computer Programming and Formal Systems (pp. 118-161), ed. P. Braffort, D.
Hirschberg. Amsterdam: North Holland, 1963, and

References 177 o S. Ginsburg and J. S. Ullian "Preservation of unambiguity
and inherent ambi- ambiguity in context-free languages," Journal of the ACM,
13, 1, pp. 62-88, 1966, respectively. Greibach normal form (Problem 3.5) is
from o S. Greibach "A new normal form theorem for context-free phrase
structure gram- grammars," Journal of the ACM, 12, 1, pp. 42-52, 1965. Two
advanced books on context-free languages are o S. Ginsburg The Mathematical
Theory of Context-free Languages, New York: McGraw-Hill, 1966, and o M.
A. Harrison Introduction to Formal Language Theory, Reading, Massach.:
Addison- Wesley, 1978.

Turing Machines 4.1 THE DEFINITION OF A TURING MACHINE We have
seen in the last two chapters that neither finite automata nor pushdown
automata can be regarded as truly general models for computers, since they are
not capable of recognizing even such simple languages as {anb"cn: n>0}. In
this chapter we take up the study of devices that can recognize this and many
more complicated languages. Although these devices, called Turing machines
after their inventor Alan Turing A912-1954), are more general than the au-
automata previously studied, their basic appearance is similar to those
automata. A Turing machine consists of a finite control, a tape, and a head that

can be used for reading or writing on that tape. The formal definitions of
Turing ma- machines and their operation are in the same mathematical style as
those used for finite and pushdown automata. So in order to gain the additional
computa- computational power and generality of function that Turing machines
possess, we shall not move to an entirely new sort of model for a computer.
Nevertheless, Turing machines are not simply one more class of automata, to
be replaced later on by a yet more powerful type. We shall see in this chapter
that, as primitive as Turing machines seem to be, attempts to strengthen them do
not have any effect. For example, we also study Turing machines with many
tapes, or machines with fancier memory devices that can be read or written in
a random access mode reminiscent of actual computers; significantly, these
devices turn out to be no stronger in terms of computing power than basic
Turing machines. We show results of this kind by simulation methods: We can
convert any "augmented" machine into a standard Turing machine which
functions in an analogous way. Thus any computation that can be carried out on
the fancier type of machine can actually be carried out on a Turing machine of
the standard variety. Furthermore, towards the end of this chapter we define a
certain kind of 179

180 Chapter 4: TURING MACHINES language generator, a substantial
generalization of context-free grammars, which is also shown to be equivalent
to the Turing machine. From a totally different perspective, we also pursue the
question of when to regard a numerical function (such as 2X + x2) as
computable, and end up with a notion that is once more equivalent to Turing
machines! So the Turing machines seem to form a stable and maximal class of
com- computational devices, in terms of the computations they can perform. In
fact, in the next chapter we shall advance the widely accepted view that any
reasonable way of formalizing the idea of an "algorithm" must be ultimately
equivalent to the idea of a Turing machine. But this is getting ahead of our
story. The important points to remem- remember by way of introduction are
that Turing machines are designed to satisfy simultaneously these three criteria:
(a) They should be automata; that is, their construction and function should be
in the same general spirit as the devices previously studied. (b) They should be
as simple as possible to describe, define formally, and reason about. (¢) They
should be as general as possible in terms of the computations they can carry
out. Now let us look more closely at these machines. In essence, a Turing
machine consists of a finite-state control unit and a tape (see Figure 4-1).

Communication between the two 1s provided by a single head, which reads
symbols from the tape and is also used to change the symbols on the tape. The
control unit operates in discrete steps; at each step it performs two functions in
a way that depends on its current state and the tape symbol currently scanned
by the read/write head: A) Put the control unit in a new state. B) Either: (a)
Write a symbol in the tape square currently scanned, replacing the one already
there; or (b) Move the read/write head one tape square to the left or right. The
tape has a left end, but it extends indefinitely to the right. To prevent the
machine from moving its head off the left end of the tape, we assume that the
leftmost end of the tape is always marked by a special symbol denoted by >;
we assume further that all of our Turing machines are so designed that,
whenever the head reads a >, it immediately moves to the right. Also, we shall
use the distinct symbols *<— and -> to denote movement of the head to the left
or right; we assume that these two symbols are not members of any alphabet
we consider. A Turing machine is supplied with input by inscribing that input

string on tape squares at the left end of the tape, immediately to the right of the
>

4.1: The definition of a Turing Machine 181 Read/write head (moves in both
directions) Finite control Figure 4-1 symbol. The rest of the tape initially
contains blank symbols, denoted U. The machine is free to alter its input in any
way it sees fit, as well as to write on the unlimited blank portion of the tape to
the right. Since the machine can move its head only one square at a time, after
any finite computation only finitely many tape squares will have been visited.
We can now present the formal definition of a Turing machine. Definition
4.1.1: A Turing machine is a quintuple (K, E,<S5, s, H), where ifis a finite set
of states; E 1s an alphabet, containing the blank symbol U and the left end
symbol >, but not containing the symbols <- and —>; s 6 K is the initial state;
H C K is the set of halting states; 6, the transition function, is a function from
(K—H) xEtoifx (E U {«—, ->}) such that, (a) for all q £ K - H, if S(q, >)
=(p,b), thenb =->m (b) forallq£ K-Hand a £ E, if S(q, a) = (p, b) thenb *
> Ifq£ K—H, a £ E, and S(q,a) — (p, &), then M, when in state q and
scanning symbol a, will enter state p, and A) ifb is a symbol in S, M will
rewrite the currently scanned symbol a as b, or B) if b is <— or ->, M will
move its head in direction b. Since S is a function, the operation of M is
deterministic and will stop only when M enters a halting state. Notice the
requirement (a) on 8: When it sees the left end of the tape >, it must move right.

This way the leftmost > is never erased, and M never falls off the left end of its
tape. By (b), M never writes a >, and therefore > i1s the unmistakable sign of
the left end of

182 Chapter 4: TURING MACHINES the tape. In other words, we can think of
> simply as a "protective barrier" that prevents the head of M from
inadvertently falling off the left end, which does not interfere with the
computation of M in any other way. Also notice that S is not defined on states
in H; when the machine reaches a halting state, then its operation stops.
Example 4.1.1: Consider the Turing machine M = (K, E, S, s, {h}), where K =
{qo,qt,h}, £={a,U,>}, s=90, and 6 is given by the following table. 9, 90 90 91
9191aaUaU>S(q (91 (h, (90 (90, (91, ,*) ,U) U) ,«) ->) "*) When M is
started in its initial state go, it scans its head to the right, changing all a's to U's
as it goes, until it finds a tape square already containing LJ; then it halts.
(Changing a nonblank symbol to the blank symbol will be called erasing the
nonblank symbol.) To be specific, suppose that M is started with its head
scanning the first of four a's, the last of which is followed by a LJ. Then M will
go back and forth between states q0 and q\ four times, alternately changing an a
to a LJ and moving the head right; the first and fifth lines of the table for 6 are
the relevant ones during this sequence of moves. At this point, M will find
itself in state q0 scanning LJ and, according to the second line of the table, will
halt. Note that the fourth line of the table, that is, the value of S(qi,a), is
irrelevant, since M can never be in state q\ scanning an a if it is started in state
q0. Nevertheless, some value must be associated with S(qi,a) since S is
required to be a function with domain (K-H) x E.<0> Example 4.1.2: Consider
the Turing machine M = (K,H,S,s,H), where K ={qo,h}, £={a,L.],>}, s=90, H=
{hl,

4.1: The definition of a Turing Machine 183 g, 90 90 90 a a U > 6(q,a) (qo,<r-
) (ft, U) (90,-») and # is given by this table. This machine scans to the left until
it finds a U and then halts. If every tape square from the head position back to
the left end of the tape contains an a, and of course the left end of the tape
contains a >, then M will go to the left end of the tape, and from then on it will
indefinitely go back and forth between the left end and the square to its right.
Unlike other deterministic devices that we have encountered, the operation of a
Turing machine may never stop.Q We now formalize the operation of a Turing
machine. To specify the status of a Turing machine computation, we need to

specify the state, the contents of the tape, and the position of the head. Since all
but a finite initial portion of the tape will be blank, the contents of the tape can
be specified by a finite string. We choose to break that string into two pieces:
the part to the left of the scanned square, including the single symbol in the
scanned square; and the part, possibly empty, to the right of the scanned square.
Moreover, so that no two such pairs of strings will correspond to the same
combination of head position and tape contents, we insist that the second string
not end with a blank (all tape squares to the right of the last one explicitly
represented are assumed to contain blanks anyway). These considerations lead
us to the following definitions. Definition 4.1.2: A configuration of a Turing
machine M = (K, E, S, s, H) is a member of K x >£* x (E*(E - {U}) U {e}).
That is, all configurations are assumed to start with the left end symbol, and
never end with a blank —unless the blank is currently scanned. Thus (q, >a,
aba), (h,>ULJU, Ua), and (q, > Ua U U, e) are configurations (see Figure 4-
2), but (q,>baa,a,bc\J) and (g, Uaa, ba) are not. A configuration whose state
component is in H will be called a halted configuration. We shall use a
simplified notation for depicting the tape contents (including the position of the
head): We shall write wau for the tape contents of the configuration (q,wa,u);
the underlined symbol indicates the head position. For the three configurations
illustrated in Figure 4-2, the tape contents would be represented as >aaba,
>UUL[Lla, and >UaULJ. Also, we can write configurations by including the
state together with the notation for the tape and head position. That is, we can
write (q,wa,u) as (q,wau). Using this convention, we would

184 Chapter 4: TURING MACHINES uu U (g, >, a, aba) uuuu (h, > UU, U,
Lto) uuuuuu(q, >Ual, U, e) Figure 4-2 write the three configurations shown
in Figure 4-2 as (q,>aaba), (/1,>UUUUa), and (q,>Ua\JU). Definition 4.1.3: Let
M = (K)Y,,S,s,H) be a Turing machine and consider two configurations of M,
(qi,wia\u{) and (92,7202"2), where 01,02 € S- Then if and only if, for some b
G SU {e<-,->}, <5(gt,ai) = (q2,b), and either

4.1: The definition of a Turing Machine 185 1. b 6 £, W\=w2, Mi = «2, and
<z2 =b, or 2. 6 =<—, w\=w2a2, and either (a) «2 =aiMi, if a\ " LJ or «1 " e,
or (bym2 =e, ifai =Uand «! =¢; or 3. & =->, W2 = W\ai, and either (a) mi =
a2«2, or (b) Mi =«2 =e, and a2 = LJ. In Case 1, M rewrites a symbol without
moving its head. In Case 2, M moves its head one square to the left; if it is
moving to the left off blank tape, the blank symbol on the square just scanned

disappears from the configuration. In Case 3, M moves its head one square to
the right; 1f it 1s moving onto blank tape, a new blank symbol appears in the
configuration as the new scanned symbol. Notice that all configurations, except
for the halted ones, yield exactly one configuration. Example 4.1.3: To
illustrate these cases, let w,u £ £*, where u does not end witha LJ, and leta, b
6 S. Case 1. S(qi,a) - {qi,b). Example: (qi,ivau) \~m {q2,wbu). Case 2.
5{qi,a) = (q2,<-). Example for (a): (qi,wbau) \~m (q2,wbau). Example for (b):
(q\wb}j)) \»m (Q2,wb). Case 3. S(qi,a) = (92,-*)- Example for (a): (qi,wabu)
\~m (g2,wabu). Example for (b): (qi,wa) \-M fa, wall). 0 Definition 4.1.4: For
any Turing machine M, let, \-*M be the reflexive, transitive closure of hjw; we
say that configuration C\ yields configuration C2 if Ci \-*M C2- A computation
by M is a sequence of configurations Cq , C\,..., Cn, for some n > 0 such that
Co I~Af Cl I~Af C2 hM ¢ « « \~M Cn. We say that the computation is of length
n or that it has n steps, and we write Co 1-jjj- Cn. Example 4.1.4: Consider the
Turing machine M described in Example 4.1.1. If M is started in configuration
(qi, >\Jaaaa), its computation would be represented

186 Chapter 4: TURING MACHINES formally as follows. (qi,>Uaaaa)
[~m(<70,>Uaaaa) 1~Af(<Zi,>U Uaaa) >U Uaaa) hM(?OI>UULJaa)
hM(gi,>UUUUa) hM(go,>UUUUa) hM(gi,>UUUUU) I-m(<?0,>LIUUUUU)
hM(/1,>uuuuuu) The computation has ten steps.0 A Notation for Turing
Machines The Turing machines we have seen so far are extremely simple —at
least when compared to our stated ambitions in this chapter— and their tabular
formis already quite complex and hard to interpret. Obviously, we need a
notation for Turing machines that is more graphic and transparent. For finite
automata, we used in Chapter 2 a notation that involved states and arrows
denoting transi- transitions. We shall next adopt a similar notation for Turing
machines. However, the things joined by arrows will in this case be
themselves Turing machines. In other words, we shall use a hierarchical
notation, in which more and more complex machines are built from simpler
materials. To this end, we shall define a very simple repertoire of basic
machines, together with rules for combining machines. The Basic Machines.
We start from very humble beginnings: The symbol-writing machines and the
head-moving machines. Let us fix the alphabet £ of our machines. For each a 6
£U {—>, <—} — {>}, we define a Turing machine Ma = ({s,h},H,S,s,{h}),
where for eachb G £ - {>}, 6(s,b) = (h,a). Naturally, <S(s,t>) is still always
(s, —>). That is, the only thing this machine does is to perform action a —

writing symbol a if a £ £, moving in the direction indicated by a ifa £ {<—, —
>}— and then to immediately halt. Naturally, there is a unique exception to this
behavior: If the scanned symbol is a >, then the machine will dutifully move to
the right. Because the symbol-writing machines are used so often, we
abbreviate their names and write simply a instead of Ma. That is, ifa G S, then
the a-writing machine will be denoted simply as a. The head-moving machines
M<_ and M_y will be abbreviated as L (for "left") and R (for "right")-

4.1: The definition of a Turing Machine 187 The Rules for Combining
Machines. Turing machines will be combined in a way suggestive of the
structure of a finite automaton. Individual machines are like the states of a
finite automaton, and the machines may be connected to each other in the way
that the states of a finite automaton are connected together. However, the
connection from one machine to another is not pursued until the first machine
halts; the other machine is then started from its initial state with the tape and
head position as they were left by the first machine. So if Mi, M2, and M3 are
Turing machines, the machine displayed in Figure 4-3 operates as follows:
Start in the initial state of M\; operate as M\ would operate until M\ would halt;
then, if the currently scanned symbol is an a, initiate M2 and operate as M2
would operate; otherwise, if the currently scanned symbol is a b, then initiate
M3 and operate as M3 would operate. Mi -* M2 M3 Figure 4-3 It is
straightforward to give an explicit definition of the combined Turing machine
from its constituents. Let us take the machine shown in Figure 4-3 above.
Suppose that the three Turing machines Mi, M2, and Ms are Mi = (#!,
£,«!,*1Hi), M2 = (K2,E,S2,s2,H2), and M3 = (K3,H,63,s3,H3). We shall
assume, as it will be most convenient in the context of combining machines,
that the sets of states of all these machines are disjoint. The combined machine
shown in Figure 4-3 above would thenbe M = (K, S, S, s, H), where K =
KI1UK2UK3, S =51, H=H2L)H3. For eacha G S and q G K—H, S(q, a) 1s
defined as follows: (a) If ¢ G Kx - Hi, then S(q,a) = Si(q,a). (b) If q G K2 -
H2, then S(q, a) =S2 (q, a). (¢) If ¢ G K3 - H3, then S(q, a) = S3(q, a). (d)
Finally, if ¢ G Hx —the only case remaining— then S(q, a) — s2 ifa — a,
S(q, a) =S3 ifa =6, and S(q, a) G H otherwise. All the ingredients of our
notation are now in place. We shall be building machines by combining the
basic machines, and then we shall further combine the combined machines to
obtain more complex machines, and so on. We know that, if we wished, we
could come up with a quintuple form of every machine we thus describe, by

starting from the quintuples of the basic machines and carrying out the explicit
construction exemplified above.

188 Chapter 4: TURING MACHINES Example 4.1.5: Figure 4-4(a) illustrates
a machine consisting of two copies of R. The machine represented by this
diagram moves its head right one square; then, if that square contains an a, or a
6, or a >, or a U, it moves its head one square further to the right. >Ra,b,U,% R
(b) Figure 4-4 It will be convenient to represent this machine as in Figure 4-
4(b). That is, an arrow labeled with several symbols is the same as several
parallel arrows, one for each symbol. If an arrow is labeled by all symbols in
the alphabet £ of the machines, then the labels can be omitted. Thus, if we
know that £ = {a, 6, >, U}, then we can display the machine above as -R-s- R,
where, by convention, the leftmost machine is always the initial one.
Sometimes an unlabeled arrow connecting two machines can be omitted
entirely, by jux- juxtaposing the representations of the two machines. Under
this convention, the above machine becomes simply RR, or even R2.Q
Example 4.1.6: If a G £ is any symbol, we can sometimes eliminate multiple
arrows and labels by using a to mean "any symbol except 0." Thus, the machine
shown in Figure 4-5(a) scans its tape to the right until it finds a blank. We shall
denote this most useful machine by f?u- >/>>«">*" (a) (b) Figure 4-5 Another
shorthand version of the same machine as in Figure 4-5 (a) 1s shown in Figure
4-5(b). Here a " U is read "any symbol a other than U." The advantage of this
notation is that a may then be used elsewhere in the diagram as the name of a
machine. To illustrate, Figure 4-6 depicts a machine that scans to the right

4.1: The definition of a Turing Machine 189 Figure 4-6 U (a) Ru (b) Lu (c) fID
(d) LD Figure 4-7 until it finds a nonblank square, then copies the symbol in
that square onto the square immediately to the left of where it was found.0
Example 4.1.7: Machines to find marked or unmarked squares are illustrated in
Figure 4-7. They are the following. (a) Ru, which finds the first blank square to
the right of the currently scanned square. (b) Lu, which finds the first blank
square to the left of the currently scanned square. (c) Rq-, which finds the first
nonblank square to the right of the currently scanned square. (d) Ljj, which
finds the first nonblank square to the left of the currently scanned square. 0
Example 4.1.8: The copying machine C performs the following function: If C
starts with input w, that 1s, if string w, containing only nonblank symbols but
possibly empty, is put on an otherwise blank tape with one blank square to its

190 Chapter 4: TURING MACHINES left, and the head is put on the blank
square to the left of w, then the machine will eventually stop with w U w on an
otherwise blank tape. We say that C transforms UiuLJ into UwUwU. A diagram
for C is given in Figure 4-8.0 R—"—* r Ru Figure 4-8 Example 4.1.9: The
right-shifting machine 5_*, transforms UwU, where w con- contains no blanks,
into ULJ w\J. It is illustrated in Figure 4-9.0 >L *~\JRualLua 1 URu
Figure 4-9 Example 4.1.10: Figure 4-10 is the machine defined in Example
4.1.1, which erases the 0's in its tape. Figure 4-10 As a matter of fact, the fully
developed transition table of this machine will differ from that of the machine
given in Example 4.1.1 in ways that are subtle, inconsequential, and explored
in Problem 4.1.8 —namely, the machine in Figure 4-10 will also contain
certain extra states, which are final states of its constituents machines.0

4.1: The definition of a Turing Machine Problems for Section 4.1 4.1.1. Let
M= (K,T,,6,s,{h}), where K ={qo,q1,h}, Z={a,b,U>}, s =90, and S is given by
the following table. 191 9,9090909091919191aabU>ab U>6(q,a)
(qi,b) (91, @) (h, U) (90,~0 (90,-0O (90,->) (qo, —>) (91,~") (a) Trace the
computation of M starting from the configuration (qo,>aabbba). (b) Describe
informally what M does when started in g0 on any square of a tape. 4.1.2.
Repeat Problem 4.1.1 for the machine M = (K, E,6, s, {h}), where K =
{q0,q1,Q2,h}, E={a,b,U>}, s =90, and 6 is given by the following table (the
transitions on > are 5(q, >) = (q, >), and are omitted). 9, 90 90 90 91 91 91 92
Q292aabU0bUO0OUS(q,a) (91,*) (90, ->) (90,->) (91,") (92, ->) (g1,<-)
(72,->) (72,->) (/1,U)

192 Chapter 4: TURING MACHINES Start from the configuration (q0, >abb U
bb U U U 060). 4.1.3. Repeat Problem 4.1.1 for the machine M = (K, E, 6, s,
{h}), where K ={qo, 91,92,93,94, h}, S={a,6,U>}, s =90, and S is given by
the following table. 9, 90 90 90 90 01 01 91 91 92 92 92 92 93 93 93 93 94 94
9494aabU>abU>abU>abU>abU>S(q (92, (93 (h, (90, (92, (92,
(92, @1, (91 (93 (fi, (92, (94, (94, @4, (93, (92, (94, (1, (94, ,*) ,a) U) ->) ->)
N ">) ->),6) ,0) U) ->m) ->) ->m) ->) ->) ->) ->) LI) ">) Start from the
configuration (qo,t>aaabbbaa). 4.1.4. Let M be the Turing machine (K, E, 6, s,
{h}), where K ={90,91, 92, h}, E={a,U>}, and E is given by the following
table. Let n > 0. Describe carefully what M does when started in the configura-
configuration (90, > LJ a"a).

4.1: The definition of a Turing Machine 193 9,909090919191111192aa U
>aU>aU> (91, (90, (90, (92, (h, (Q1, (92 (90, (72, u) ->) u) u) ->) a) <-) ->)
4.1.5. In the definition of a Turing machine, we allow rewriting a tape square
without moving the head and moving the head left or right without rewriting the
tape square. What would happen if we also allowed to leave the head
stationary without rewriting the tape square? 4.1.6. (a) Which of the following
could be configurations? (i) (g,oo0UoU,U,Uo) (i1) (g, abc, b, abc) (iii) (p, oabc,
a, e) (iv) (h,>,e,e) (v) (q, >0 U ab, b, Uaal) (vi) (p, >a, ab, Uo) (vii)
(q,>,e,Uaa) (viii) (h, >0,a, UUU U U U a) (b) Rewrite those of Parts (1)
through (viii) that are configurations using the abbreviated notation. (c)
Rewrite these abbreviated configurations in full. (1) (g,>abcd) (i1) (9,»11) (ii1)
(p, >ooUU) (1v) Ih,t>Uabc) 4.1.7. Design and write out in full a Turing
machine that scans to the right until it finds two consecutive o's and then halts.
The alphabet of the Turing machine should be {o, b, U, >}. 4.1.8. Give the full
details of the Turing machines illustrated. >LL. >R

194 Chapter 4: TURING MACHINES 4.1.9. Do the machines LR and RL
always accomplish the same thing? Explain. 4.1.10. Explain what this machine
does. “u RuaRub 4.1.11. Trace the operation of the Turing machine of Example
4.1.8 when started on t>Uaabb. 4.1.12. Trace the operation of the Turing
machine of Example 4.1.9 on> U aabbU. 4.2 COMPUTING WITH TURING
MACHINES We introduced Turing machines with the promise that they
outperform, as lan- language acceptors, all other kinds of automata we
introduced in previous chapters. So far, however, we have presented only the
"mechanics" of Turing machines, without any indication of how they are to be
used in order to perform computa- computational tasks —to recognize
languages, for example. It is as though a computer had been delivered to you
without a keyboard, disk drive, or screen —that is, without the means for
getting information into and out of it. It is time, therefore, to fix some
conventions for the use of Turing machines. First, we adopt the following
policy for presenting input to Turing machines: The input string, with no blank
symbols in it, is written to the right of the lefimost symbol >, with a blank to its
left, and blanks to its right; the head is positioned at the tape square containing
the blank between the > and the input; and the machine starts operating in its
initial state. If M= (K.Y,.S,s,H)is a Turing machine and w G (E - {U,>})*, then
the initial configuration of M on input w is (s,>Uw). With this convention, we
can now define how Turing machines are used as language recognizers.

Definition4.2.1: Let M = (K, S, S, s, H) be a Turing machine, such that H =
{y,n} consists of two distinguished halting states (y and n for "yes" and "no"
Any halting configuration whose state component is y is called an accepting
configuration, while a halting configuration whose state component is n is
called a rejecting configuration. We say that M accepts an input w € (E- {LJ,
>1)*1f (s, >Uw) yields an accepting configuration; we say that M rejects w if
(s, >Uw) yields a rejecting configuration. Let Eo C E - {U,>} be an alphabet,
called the input alphabet of M; by fixing So to be a subset of E - {LJ, >}, we
allow our Turing machines to use extra symbols during their computation,
besides those appearing in their inputs. We

4.2: Computing with Turing Machines 195 say that M decides a language L. C
Eq if for any string weSJ the following is true: If w £ L then M accepts w; and
if w fi L then M rejects w. Finally, call a language L recursive if there is a
Turing machine that decides it. That is, a Turing machine decides a language L
if, when started with input w, it always halts, and does so in a halt state that is
the correct response to the input: yifw 6 L, nif w fi L. Notice that no
guarantees are given about what happens if the input to the machine contains
blanks or the left end symbol. Example 4.2.1: Consider the language L=
{anbncn : n> 0}, which has heretofore evaded all types of language
recognizers. The Turing machine whose diagram is shown in Figure 4-11
decides L. In this diagram we have also utilized two new basic machines,
useful for deciding languages: Machine y makes the new state to be the
accepting state y, while machine n moves the state to n. [n"Ji.c c,U /a, U Figure
4-11 The strategy employed by M is simple: On input anbnen it will operate in
n stages. In each stage M starts from the left end of the string and moves to the
right in search of an a. When it finds an o, it replaces it by a d and then looks
further to the right for a 6. When a 6 is found, it is replaced by a d, and the
machine then looks for a c. When a c is found and is replaced by a d, then the
stage 1s over, and the head returns to the left end of the input. Then the next
stage begins. That is, at each stage the machine replaces an o, a b, and a c by
cfs. If at any point the machine senses that the string is not in a*b*c*, or that
there is an excess of a certain symbol (for example, if it sees a b or ¢ while
looking for an 0), then it enters state n and rejects immediately. If however it
encounters the right end of the input while looking for an o, this means that all
the input has been replaced by d's, and hence it was indeed of the form anbnen,
for some n> 0. The machine then accepts.0 There is a subtle point in relation

to Turing machines that decide languages: With the other language recognizers
that we have seen so far in this book (even the nondeterministic ones), one of
two things could happen: either the machine accepts the input, or it rejects it. A
Turing machine, on the other hand, even if

196 Chapter 4: TURING MACHINES it has only two halt states y and n,
always has the option of evading an answer ("yes" or "no"), by failing to halt.
Given a Turing machine, it might or it might not decide a language —and there
1s no obvious way to tell whether it does. The far-reaching importance —and
necessity— of this deficiency will become apparent later in this chapter, and in
the next. Recursive Functions Since Turing machines can write on their tapes,
they can provide more elaborate output than just a "yes" or a "no:" Definition
4.2.2: Let M = (K,E,6,s,{h}) be a Turing machine, let Eo C E — {L1,>} be an
alphabet, and let w G E*,. Suppose that M halts on input w, and that (s,t>Uw)
\-*M (h,t>]Jy) for some y G Eq. Then y is called the output of M on input w,
and is denoted M(w). Notice that M(w) is defined only if M halts on input w,
and in fact does so at a configuration of the form (h, t=Uy) with y G E*. Now
let / be any function from E*, to E*,. We say that M computes function / if, for
all w G Eg, M(w) = f(w). That is, for all w G Eg M eventually halts on input
w, and when it does halt, its tape contains the string > U f{w). A function/ is
called recursive, if there 1s a Turing machine M that computes /. Example
4.2.2: The function n : S* i->- E* defined as n(w) = ww can be computed by
the machine C5< , that 1s, the copying machine followed by the left-shifting
machine (both were defined towards the end of the last section).”) Strings in
{0,1}* can be used to represent the nonnegative integers in the familiar binary
notation. Any string w = O102...on G {0,1}* represents the number num(w) =
oi m 2"+ 02 m2n+ ... + an. And any natural number can be represented in a
unique way by a string in 0 U 1@ U 1)* —that is to say, without redundant 0's
in the beginning. Accordingly, Turing machines computing functions from
{0,1}* to {0,1}* can be thought of as computing functions from the natural
numbers to the natural numbers. In fact, numerical functions with many
arguments —such as addition and multiplication— can be computed by Turing
machines computing functions from {0,1,; }* to {0,1}*, where ";" is a symbol
used to separate binary arguments. Definition 4.2.3: Let M = (K, T,,S,s,{h}) be
a Turing machine such that 0,1,; G E, and let / be any function from N* to N for
some k> 1. We say

4.2: Computing with Turing Machines 197 that M computes function / if for all
tut,..., to* 6 0 U 1{0,1}* (that s, for any k strings that are binary encodings of
integers), num(M(wi;... ;wjt)) = /(num(wi),..., num(wfc)). That is, if M is
started with the binary representa- representations of the integers n\,... ,n* as
input, then it eventually halts, and when it does halt, its tape contains a string
that represents number f(ni,... ,71*) —the value of the function. A function/ :
N*1-> N is called recursive if there 1s a Turing machine M that computes /. In
fact, the term recursive used to describe both functions and languages
computed by Turing machines originates in the study of such numerical func-
functions. It anticipates a result we shall prove towards the end of this chapter,
namely that the numerical functions computable by Turing machines coincide
with those that can be defined recursively from certain basic functions.
Example 4.2.3: We can design a machine that computes the successor function
succ(n) =71 + 1 (Figure 4.12; Sr is the right-shifting machine, the rightward
analog of the machine in Example 4.1.9). This machine first finds the right end
of the input, and then goes to the left as long as it sees 1's, changing all of them
to O's. When it sees a 0, it changes it into a 1 and halts. If it sees a U while
looking for a 0, this means that the input number has a binary representation
that is all I's (it is a power of two minus one), and so the machine again writes
a 1 in the place of the U and halts, after shifting the whole string one position to
the right. Strictly speaking, the machine shown does not compute n +1 because
it fails to always halt with its head to the left of the result; but this can be fixed
by adding a copy of Ru (Figure 4-5).0 Figure 4-12 The last remark of the
previous subsection, on our inability to tell whether a Turing machine decides
a language, also applies to function computation. The price we must pay for the
very broad range of functions that Turing machines can compute, is that we
cannot tell whether a given Turing machine indeed computes such a function —
that is to say, whether it halts on all inputs.

198 Chapter 4: TURING MACHINES Recursively Enumerable Languages If a
Turing machine decides a language or computes a function, it can be rea-
reasonably thought of as an algorithm that performs correctly and reliably some
computational task. We next introduce a third, subtler, way in which a Turing
machine can define a language: Definition 4.2.4: Let M = (K, T,,6,s,H) be a
Turing machine, let So C S - {U,>} be an alphabet, and let L C Eg be a
language. We say that M semidecides L if for any string w G Sq the following
is true: w G Lif and only if M halts on input w. A language L is recursively

enumerable if and only if there is a Turing machine M that semidecides L. Thus
when M is presented with input w G L, it 1s required to halt eventually. We do
not care precisely which halting configuration it reaches, as long as it does
eventually arrive at a halting configuration. If however w G Sq — L, then M
must never enter the halting state. Since any configuration that is not halting
yields some other configuration E is a fully defined function), the machine must
in this case continue its computation indefinitely. Extending the "functional"
notation of Turing machines that we introduced in the previous subsection
(which allows us to write equations such as M(w) = v), we shall write M(w)
=/* 1f M fails to halt on input w. In this notation, we can restate the definition
of semidecision of a language L. C SJ by Turing machine M as follows: For all
w G Eg, M(w) =/+ ifand only if w £ L. Example 4.2.4: Let L= {w G {a,b}*:
w contains at least one a}. Then Lis semidecided by the Turing machine
shown in Figure 4-13. Figure 4-13 This machine, when started in configuration
(qO, >LIw) for some w G {a, b} *, simply scans right until an a is encountered
and then halts. If no a is found, the machine goes on forever into the blanks that
follow its input, never halting. So L is exactly the set of strings w in {a, b} *
such that M halts on input w. Therefore M semidecides L, and thus Lis
recursively enumerable.” "Going on forever into the blanks" is only one of the
ways in which a Turing machine may fail to halt. For example, any machine
with S(q, a) = (q, a) will "loop forever" in place if it ever encounters an a in
state q. Naturally, more complex looping behaviors can be designed, with the
machine going indefinitely through a finite number of different configurations.

4.2: Computing with Turing Machines 199 The definition of semidecision by
Turing machines is a rather straightfor- straightforward extension of the notion
of acceptance for the deterministic finite automaton. There is a major
difference, however. A finite automaton always halts when it has read all of its
input —the question is whether it halts on a final or a nonfinal state. In this
sense it is a useful computational device, an algorithm from which we can
reliably obtain answers as to whether an input belongs in the accepted
language: We wait until all of the input has been read, and we then observe the
state of the machine. In contrast, a Turing machine that semidecides a language
L cannot be usefully employed for telling whether a string w is in L, because, if
w £ L, then we will never know when we have waited enough for an answer*
Turing machines that semidecide languages are no algorithms. We know from
Example 4.2.1 that {anbncn : n> 0} is a recursive language. But is it

recursively enumerable? The answer is easy: Any recursive language is also
recursively enumerable. All it takes in order to construct another Turing ma-
machine that semidecides, instead of decides, the language is to make the
rejecting state n a nonhalting state, from which the machine is guaranteed to
never halt. Specifically, given any Turing machine M = (K, S, 6, s, {y, n}) that
decides L, we can define a machine M' that semidecides L as follows: M = (K,
Y,,S',s, {y}), where 8' is just 5 augmented by the following transitions related
to n —no longer a halting state: S'(n, a) = (n, a) for all a 6 S. It is clear that if
M indeed decides L, then M' semidecides L, because M' accepts the same
inputs as M; further- furthermore, if M rejects an input w, then M1 does not halt
on w (it "loops forever" in state n). In other words, for all inputs w, M'(w) =/A
if and only if M{w) =n. We have proved the following important result:
Theorem 4.2.1: If a language 1s recursive, then it is recursively enumerable.
Naturally, the interesting (and difficult) question is the opposite: Can we
always transform every Turing machine that semidecides a language (with our
one-sided definition of semidecision that makes it virtually useless as a
computa- computational device) into an actual algorithm for deciding the same
language? We shall see in the next chapter that the answer here is negative:
There are recursively enumerable languages that are not recursive. An
important property of the class of recursive languages is that it is closed under
complement: Theorem 4.2.2: If Lis a recursive language, then its complement
Lis also We have already encountered the same difficulty with pushdown
automata (recall Section 3.7). A pushdown automaton can in principle reject an
input by manip- manipulating forever its stack without reading any further input
—in Section 3.7 we had to remove such behavior in order to obtain
computationally useful pushdown automata for certain context-free languages.

200 Chapter 4: TURING MACHINES recursive. Proof: If Lis decided by
Turing machine M = (K, £,<5, s, {y,n}), then L1is decided by the Turing
machine M' = (K, S, 5', s, {y, n}) which is identical to M except that it
reverses the roles of the two special halting states y and n. That is, 5' is
defined as follows: {nif S(q, a) =y, y X5(q,a)=n, S(q,a) otherwise. It is clear
that M'(w) =y if and only if M(w) = n, and therefore M' decides 1. m Is the
class of recursively enumerable languages also closed under comple-
complement? Again, we shall see in the next chapter that the answer is
negative. Problems for Section 4.2 4.2.1. Give a Turing machine (in our
abbreviated notation) that computes the following function from strings in {a,

b} * to strings in {a, b} *: f(w) = wwR. 4.2.2. Present Turing machines that
decide the following languages over {a, b}: (a) 0 (b) {e} (c¢) {a} (d) {a}*
4.2.3. Give a Turing machine that semidecides the language a*ba*b. 4.2.4. (a)
Give an example of a Turing machine with one halting state that does not
compute a function from strings to strings. (b) Give an example of a Turing
machine with two halting states, y and n, that does not decide a language. (¢)
Can you give an example of a Turing machine with one halting state that does
not semidecide a language? 4.3 EXTENSIONS OF THE TURING MACHINE
The examples of the previous section make it clear that Turing machines can
perform fairly powerful computations, albeit slowly and clumsily. In order to
better understand their surprising power, we shall consider the effect of
extending the Turing machine model in various directions. We shall see that in
each case

4.3: Extensions of the Turing Machine 201 the additional features do not add to
the classes of computable functions or decidable languages: the "new,
improved models" of the Turing machine can in each instance be simulated by
the standard model. Such results increase our confidence that the Turing
machine is indeed the ultimate computational device, the end of our
progression to more and more powerful automata. A side benefit of these
results is that we shall feel free subsequently to use the additional features
when designing Turing machines to solve particular problems, secure in the
knowledge that our dependency on such features can, if necessary, be
eliminated. Multiple Tapes One can think of Turing machines that have several
tapes (see Figure 4-14). Each tape is connected to the finite control by means
of'a read/write head (one on each tape). The machine can in one step read the
symbols scanned by all its heads and then, depending on those symbols and its
current state, rewrite some of those scanned squares and move some of the
heads to the left or right, in addition to changing state. For any fixed integer k >
1, a k-tape Turing machine is a Turing machine equipped as above with k tapes
and corresponding heads. Thus a "standard" Turing machine studied so far in
this chapter is just a fc-tape Turing machine, with k= 1. Definition 4.3.1: Let k
> 1 be an integer. A fc-tape Turing machine is a quintuple (K, S,<5, s,H),
where K, S, s, and H are as in the definition of the ordinary Turing machine,
and 5, the transition function, is a function from (K - H) x £*to K x (S U {<-, -
+})k. That is, for each state q, and each fc-tuple of tape symbols (ai,...,ak),
S(q, {ax,... ,ak)) = (p, (&1, m.., bk)), where p 1s, as before, the new state, and

bj is, intuitively, the action taken by M at tape j. Naturally, we again insist that
if aj => for some j <k, then bj =—K Computation takes place in all k tapes of
a A;-tape Turing machine. Ac- Accordingly, a configuration of such a machine
must include information about all tapes: Definition 4.3.2: Let M =

(K,H,S,s,H) be a fc-tape Turing machine. A configuration of M is a member of
Kx (>£*x (£%(£ - {U}) U {e}))fc. That is, a configuration identifies the state,
the tape contents, and the head position in each of the k tapes. If (q, (wiaiUj,...
,wka,kUK)) is a configuration of a fc-tape Turing machine (where we have used
the fc-fold version of the abbreviated notation for configu- configurations), and
if 6(p, (ai,..., ak)) = {b\,..., b"), then in one move the machine

202 Chapter 4: TURING MACHINES Tape 1 Tape 2 Tapefc Finite control
Figure 4-14 would move to configuration (p, (w”a”u’,..., w'ka'ku'k)), where,
for1=1,..., k, w'ialiu\ 1s WjOjUj modified by action bi, precisely as in
Definition 4.1.3. We say that configuration (q, (w\atui,..., wfcafcufc)) yields in
one step configuration (p,(w'lafu'l,...,wlka/bulk)). Example 4.3.1: A fc-tape
Turing machine can be used for computing a function or deciding or
semideciding a language in any of the ways discussed above for standard
Turing machines. We adopt the convention that the input string is placed on the
first tape, in the same way as it would be presented to a standard Turing
machine. The other tapes are initially blank, with the head on the leftmost blank
square of each. At the end of a computation, a fc-tape Turing machine is to
leave its output on its first tape; the contents of the other tapes are ignored.
Multiple tapes often facilitate the construction of a Turing machine to per-
perform a particular function. Consider, for example, the task of the copying
ma- machine C given in Example 4.1.8: to transform > U wU into > Uw U
wLJ, where w G {a,b}*. A 2-tape Turing machine can accomplish this as
follows. A) Move the heads on both tapes to the right, copying each symbol on
the first

4.3: Extensions of the Turing Machine 203 tape onto the second tape, until a
blank is found on the first tape. The first square of the second tape should be
left blank. B) Move the head on the second tape to the left until a blank is
found. C) Again move the heads on both tapes to the right, this time copying
symbols from the second tape onto the first tape. Halt when a blank 1s found on
the second tape. This sequence of actions can be pictured as follows. At the
beginning: First tape >\Jw Second tape >U After A): First tape > U wU Second

tape > U wU After B): First tape >UwU Second tape >Uw After C): First tape
>Uw U jyU Second tape > U toU Turing machines with more than one tape
can be depicted in the same way that single-tape Turing machines were
depicted in earlier sections. We simply attach as a superscript to the symbol
denoting each machine the number of the tape on which it is to operate; all
other tapes are unaffected. For example, U2 writes a blank on the second tape,
Ly searches to the left for a blank on the first tape, and 1?1'2 moves to the right
the heads of both the first and the second tape. A label al on an arrow denotes
an action taken if the symbol scanned in the first tape is an a. And so on. (When
representing multi-tape Turing machines, we refrain from using the shorthand
M2 for MM.) Using this convention, the 2-tape version of the copying machine
might be illustrated as in Figure 4-15. We indicate the submachines performing
Functions 1 through 3 above.”>1 S1,2\ A) UUI1 2 J Figure , JV B) 4-15 C)
Example 4.3.2: We have seen (Example 4.2.3) that Turing machines can add 1
to any binary integer. It should come as no surprise that Turing machines

204 Chapter 4: TURING MACHINES can also add arbitrary binary numbers
(recall Problem 2.4.3, suggesting that even finite automata, in a certain sense,
can). With two tapes this task can be accomplished by the machine depicted in
Figure 4-16. Pairs of bits such as 01 on an arrow label are a shorthand for, in
this case, al =0, a2 — 1. Figure 4-16 This machine first copies the first binary
integer in its second tape, writing zeros in its place (and in the place of the ";"
separating the two integers) in the first tape; this way the first tape contains the
second integer, with zeros added in front. The machine then performs binary
addition by the "school method," starting from the least significant bit of both
integers, adding the corresponding bits, writing the result in the first tape, and
"remembering the carry" in its state. <> What is more, we can build a 3-tape
Turing machine that multiplies two numbers; its design is left as an exercise
(Problem 4.3.5). Evidently, fc-tape Turing machines are capable of quite
complex compu- computational tasks. We shall show next that any fc-tape
Turing machine can be simulated by a single-tape machine. By this we mean
that, given any fc-tape Turing machine, we can design a standard Turing
machine that exhibits the same input-output behavior —decides or semidecides
the same language, com- computes the same function. Such simulations are
important ingredients of our methodology in studying the power of
computational devices in this and the next chapters. Typically, they amount to a
method for mimicking a single step of the simulated machine by several steps

of the simulating machine. Our first result of this sort, and its proof, is quite
indicative of this line of reasoning.

4.3: Extensions of the Turing Machine 205 Theorem4.3.1: Let M = (K, S, 5, s,
H) be a k-tape Turing machine for some k > 1. Then there 1s a standard Turing
machine M' = (K', £,S',s",H), where £ C £', and such that the following holds:
For any input string x £ S*, M on input x halts with output y on the first tape if
and only if M' on input x halts at the same halting state, and with the same
output y on its tape. Furthermore, if M halts on input x after t steps, then M'
halts on input x after a number of steps which is O(t m (\x\ +t)). UuuUuu (a)
>>0>0a0b0ulOblblb0a0UOuOuOulOuluu(b)Figure 4-17
Proof: The tape of M' must somehow contain all information in all tapes of M.
A simple way of achieving this is by thinking that the tape of M' is divided into
several tracks (see Figure 4-18(b)), with each "track" devoted to the
simulation of a different tape of M. In particular, except for the leftmost square,
which contains as usual the left end symbol >, and the infinite blank portion of
the tape to the right, the single tape of M' is split horizontally into 2k tracks.
The first, third,..., Bk — 1)st tracks of the tape of M' correspond to the first,
second,..., fcth tapes of M. The second, fourth,..., 2fcth tracks of the tape of

206 Chapter 4: TURING MACHINES M' are used to record the positions of
the heads on the first, second,..., kth tapes of M in the following way: If the
head on the ith tape of M is positioned over the nth tape square, then the 2ith
track of the tape of M' contains a 1 in the (n + 1)st tape square and a 0 in all
tape squares except the (n+ I)st. For example, if k — 2, then the tapes and
heads of M shown in Figure 4-18(a) would correspond to the tape of M' shown
in Figure 4-18(b). Of course, the division of the tape of M' into tracks is a
purely conceptual device; formally, the effect is achieved by letting S' = EU(S
x{0,1})™\ That is, the alphabet of M' consists of the alphabet of M (this enables
M' to receive the same inputs as M and deliver the same output), plus all 2fc-
tuples of the form (ai,&i,. ..,ak,bk) with a”,.. .,ak £ S and bi,...,bk £ {0,1}. The
translation from this alphabet to the 2fc-track interpretation is simple: We read
any such 2fc-tuple as saying that the first track of M' contains aiy the second b\,
and so on up to the 2fcth track containing bk- This in turn means that the
corresponding symbol of the ith tape of M contains a*, and that this symbol is
scanned by the ith head if and only ifbi = 1 (recall Figure 4-17(b)). When
given an input w £ £%, M' operates as follows. A) Shift the input one tape

square to the right. Return to the square imme- immediately to the right of the >,
and write the symbol (>,0, >, 0,.. * ,>,0) on it —this will represent the left end
of the k tapes. Go one square to the right and write the symbol
(U,1,U,1,...,.LJ,1) —this signifies that the first squares of all k tapes contain a
U, and are all scanned by the heads. Pro- Proceed to the right. At each square,
ifa symbol a * U is encountered, write in its position the symbol (a,0,U,0,...
,U,0). If a U is encountered, the first phase is over. The tape contents of M'
faithfully represent the initial configuration of M. B) Simulate the computation
by M, until M would halt (if it would halt). To simulate one step of the
computation of M, M' will have to perform the following sequence operations
(we assume that it starts each step simulation with its head scanning the first
"true blank," that is, the first square of its tape that has not yet been subdivided
into tracks): (a) Scan left down the tape, gathering information about the
symbols scanned by the k tape heads of M. After all scanned symbols have
been identified (by the I's in the corresponding even tracks), return to the
leftmost true blank. No writing on the tape occurs during this part of the
operation of M', but when the head has returned to the right end, the state of the
finite control has changed to reflect the fc-tuple of symbols from S, in the k
tracks at the marked head positions. (b) Scan left and then right down the tape
to update the tracks in accor- accordance with the move of M that is to be
simulated. On each pair of

4.3: Extensions of the Turing Machine 207 tracks, this involves either moving
the head position marker one square to the right or left, or rewriting the symbol
from E. C) When M would halt, M' first converts its tape from tracks into
single- symbol format, ignoring all tracks except for the first; it positions its
head where M would have placed its first head, and finally it halts in the same
state as M would have halted. [Vfany details have been omitted from this
description. Phase 2, while by no means conceptually difficult, is rather messy
to specify explicitly, and indeed there are several choices as to how the
operations described might actually be carried out. One detail is perhaps
worth describing. Occasionally, for some n> w\, M may have to move one of
its heads to the nth square of the corresponding tape for the"first time. To
simulate this, M' will have to extend the part of its tape that is divided into 2k
tracks, and rewrite the first U to the right as the 2fc-tuple m, 0, U, 0,..., U, 0) e
£'. It is clear that M' can simulate the behavior of M as indicated in the
statement of the theorem. It remains to argue that the number of steps required

by M' for simulating t steps of M on input x is O(t m (\x\ + t)). Phase 1 of the
simulation requires C(Jar|) steps of M'. Then, for each step of M, M' must carry
out the maneuver in Phase 2, (a) and (b). This requires M' to scan the 2fc-track
part of its tape twice; that is, it requires a number of steps by M' that is
proportional to the length of the 2fc-track part of the tape of M'. The question
1s, how long can this part of M"s tape be? It starts by being |ar| + 2 long, and
subsequently it increases in length by no more than one for each simulated step
of M. Thus, if't steps of M are simulated on input x, the length of the 2fc-track
part of the tape of M' is at most |ar| + 2 + t, and hence each step of M can be
simulated by O(\x\ + t) steps of M, as was to be shown. m By using the
conventions described for the input and output of a fc-tape Turing machine, the
following result is easily derived from the previous theorem. Corollary: Any
function that 1s computed or language that is decided or semidecided by a k-
tape Turing machine is also computed, decided, or semide- cided,
respectively, by a standard Turing machine. Two-way Infinite Tape Suppose
now that our machine has a tape that is infinite in both directions. All squares
are initially blank, except for those containing the input; the head is initially to
the left of the input, say. Also, our convention with the > symbol would be
unnecessary and meaningless for such machines. It is not hard to see that, like
multiple tapes, two-way infinite tapes do not add substantial power to Turing
machines. A two-way infinite tape can be easily simulated by a 2-tape
machine: one tape always contains the part of the tape to

208 Chapter 4: TURING MACHINES the right of the square containing the
first input symbol, and the other contains the part of the tape to the left of this in
reverse. In turn, this 2-tape machine can be simulated by a standard Turing
machine. In fact, the simulation need only take linear, instead of quadratic,
time, since at each step only one of the tracks is active. Needless to say,
machines with several two-way infinite tapes could also simulated in the same
way. Multiple Heads What if we allow a Turing machine to have one tape, but
several heads on it? In one step, the heads all sense the scanned symbols and
move or write independently. (Some convention must be adopted about what
happens when two heads that happen to be scanning the same tape square
attempt to write different symbols. Perhaps the head with the lower number
wins out. Also, let us assume that the heads cannot sense each other's presence
in the same tape square, except perhaps indirectly, through unsuccessful
writes.) It is not hard to see that a simulation like the one we used for fc-tape

machines can be carried out for Turing machines with several heads on a tape.
The basic idea is again to divide the tape into tracks, all but one of which are
used solely to record the head positions. To simulate one computational step by
the multiple-head machine, the tape must be scanned twice: once to find the
symbols at the head positions, and again to change those symbols or move the
heads as appropriate. The number of steps needed is again quadratic, as in
Theorem 4.3.1. The use of multiple heads, like multiple tapes, can sometimes
drastically simplify the construction of a Turing machine. A 2-head version of
the copying machine C in Example 4.1.8 could function in a way that is much
more natural than the one-head version (or even the two-tape version, Example
4.3.1); see Problem 4.3.3. Two-Dimensional Tape Another kind of
generalization of the Turing machine would allow its "tape" to be an infinite
two-dimensional grid. (One might even allow a space of higher dimension.)
Such a device could be much more useful than standard Turing machines to
solve problems such as "zigsaw puzzles" (see the tiling problem in the next
chapter). We leave it as an exercise (Problem 4.3.6) to define in detail the
operation of such machines. Once again, however, no fundamental increase in
power results. Interestingly, the number of steps needed to simulate t steps of
the two-dimensional Turing machine on input x by the ordinary Turing machine
is again polynomial in t and [ar|. The above extensions on the Turing machine
model can be combined: One can think of Turing machines with several tapes,
all or some of which are two-way infinite and have more than one head on
them, or are even multidimensional.

4.4: Random Access Turing Machines 209 Again, it is quite straightforward to
see that the ultimate capabilities of the Turing machine remain the same. We
summarize our discussion of the several variants of Turing machines discussed
so far as follows. Theorem 4.3.2: Any language decided or semidecided, and
any function com- computed by Turing machines with several tapes, heads,
two-way infinite tapes, or multi-dimensional tapes, can be decided,
semidecided, or computed, respectively, by a standard Turing machine.
Problems for Section 4.3 4.3.1. Formally define: (a) M semidecides L, where
M is a two-way infinite tape Turing machine; (b) M computes /, where M is a
fc-tape Turing machine and / is a function from strings to strings. 4.3.2.
Formally define: (a) a fc-head Turing machine (with a single one-way infinite
tape); (b) a configuration of such a machine; (c) the yields in one step relation
between configurations of such a machine. (There is more than one correct set

of definitions.) 4.3.3. Describe (in an extension of our notation for fc-tape
Turing machines) a 2-head Turing machine that compute the function f{w) =
ww. 4.3.4. The stack of a pushdown automaton can be considered as a tape that
can be written and erased only at the right end; in this sense a Turing machine
is a generalization of the deterministic pushdown automaton. In this problem
we consider a generalization in another direction, namely the deterministic
pushdown automaton with two stacks. (a) Define informally but carefully the
operation of such a machine. Define what it means for such a machine to
decide a language. (b) Show that the class of languages decided by such
machines is precisely the class of recursive languages. 4.3.5. Give a three-tape
Turing machine which, when started with two binary integers separated by a ';'
on its first tape, computes their product. (Hint: Use the adding machine of
Example 4.3.2 as a "subroutine." 4.3.6. Formally define a Turing machine with
a 2-dimensional tape, its configu- configurations, and its computation. Define
what it means for such a machine to decide a language L. Show that t steps of
this machine, starting on an input of length n, can be simulated by a standard
Turing machine in time that is polynomial in t and n.

210 Chapter 4: TURING MACHINES 4.4 RANDOM ACCESS TURING
MACHINES Despite the apparent power and versatility of the variants of the
Turing ma- machines we have discussed so far, they all have a quite limiting
common feature: Their memory is sequential; that is, in order to access the
information stored at some location, the machine must first access, one by one,
all locations between the current and the desired one. In contrast, real
computers have random access memories, each element of which can be
accessed 1n a single step, if appropri- appropriately addressed. What would
happen if we equipped our machines with such a random access capability,
enabling them to access any desired tape square in a single step? To attain such
a capability, we must also equip our machines with registers, capable of
storing and manipulating the addresses of tape squares. In this subsection we
define such an extension of the Turing machine; significantly, we see that it too
is equivalent in power to the standard Turing machine, with only a polynomial
loss in efficiency. Registers \R2 Rl Program counter T{2] T[3] T[4] Figure 4-
18 A random access Turing machine has a fixed number of registers and a one-
oneway infinite tape (see Figure 4-18; we continue to call the machine's
memory a "tape" for compatibility and comparison with the standard model,
despite the fact that, as we shall see, it behaves much more like a random

access memory chip). Each register and each tape square is capable of
containing an arbi- arbitrary natural number. The machine acts on its tape
squares and its registers as dictated by a fixed program —the analog of the
transition function of ordinary Turing machines. The program of a random
access Turing machine is a sequence of instructions, of a kind reminiscent of
the instruction set of actual computers. The kinds of instructions allowed are
enumerated in Figure 4-19. Initially the register values are 0, the program
counter is 1, and the tape contents encode the input string in a simple manner
that will be specified shortly. Then the machine executes the first instruction of
its program. This will change the contents of the registers or of the tape
contents as indicated in Figure 4-19;

4.4: Random Access Turing Machines 211 Semantics Ro T[Rj] := Ro
Instruction read write store load load add add sub sub half jump jpos jzero halt
Operand 3333 =c3—c3=csssRoRoRoRo=Rj=c=Ro+Rj=Ro+
¢ =max{Ro - Rj,0} =max{i?o ~c, 0} Ro RoRo K :=sifRo>0thenk :=sif
Ro =0 then k := s k:=0 Notes: j stands for a register number, 0 <j <k. T[]
denotes the current contents of tape square 1. Rj denotes the current contents of
Register j. s < p denotes any instruction number in the program, ¢ is any natural
number. All instructions change k to k + 1, unless explicitly stated otherwise.
Figure 4-19 also, the value of the program counter k, an integer identifying the
instruction to be executed next, will be computed as indicated in the figure.
Notice the special role of Register 0: it is the accumulator, where all
arithmetic and logical computation takes place. The /tth instruction of the
program will be executed next, and so on, until a halt instruction is executed —
at this point the operation of the random access Turing machine ends. We are
now ready to define formally a random access Turing machine, its
configurations, and its computation. Definition 4.4.1: A random access Turing
machine is a pair M = (k,U), where k > 0 is the number of registers, and Il =
(tti, tt2, ..., np), the program, is a finite sequence of instructions, where each
instruction Wi 1s of one of the types shown in Figure 4-19. We assume that the
last instruction, irp, is always a halt instruction (the program may contain other
halt instructions as well). A configuration of a random access Turing machine
(k, IT) 1s a k + 2-tuple (K,Ro,R1,...,Rk-1,T), where k £ N is the program counter,
an integer between 0 and p. The configu- configuration is a halted
configuration if k is zero. For each j, 0 <j <k, R3; 6 N is the current value of
Register j. T, the tape contents, is a finite set of pairs of positive integers —that

18,

212 Chapter 4: TURING MACHINES a finite subset of (N - {0}) x (N - {0})
— such that for ali1 > 1 there is at most one pair of the form (i,m) G T.
Intuitively, (i,m) G T means that the ith tape square currently contains the
integer m > 0. All tape squares not appearing as first components of a pair in T
are assumed to contain 0. Definition 4.4.1 (continued): Let M = (k,U) be a
random access machine. We say that configuration C = (k,RO,Ri,..., Rk-1, T) of
M yields in one step configuration C = (k',R"R][, ... ,R'k 1,T"), denoted C hM
C", if, intuitively, the values of k', the R's and T" correctly reflect the
application to k, the R;j's, and T of the "semantics" (as in Figure 4-19) of the
current instruction nK. We shall indicate the precise definition for a only a few
of the fourteen kinds of instructions in Figure 4-19. If 7rK 1s of the form read j,
where j <k, then the execution of this instruction has the following effect: The
value contained in Register 0 becomes equal to the value stored in tape square
number Rj —the tape square "addressed" by Register j. That is, R'o = T[Rj],
where T[Rj] is the unique value m such that (Rj,m) £ T, if such an m exists, and
0 otherwise. Also, k' =k + 1. All other components of the configuration C are
1dentical to those of C. If ttk 1s of the form add = ¢, where ¢ > 0 is a fixed
integer such as 5, then we have R'o = Ro + ¢, and k' =k + 1, with all other
components remaining the same. If 7rK is of the form write j, where j <k, then
we have k' =k + 1, T' is T with any pair of the form (Rj,m), if one exists,
deleted, and, 1f Rq > 0, the pair (Rj,Ro) added; all other components remain
the same. If nK is of the form jpos s, where 1 <s <p, then we have k! =s ifRo
>0, and k' = ¢ + 1 otherwise; all other components remain the same. Similarly
for the other kinds of instructions. The relation yields, \-*M, is the reflexive
transitive closure of \~m- Example 4.4.1: The instruction set of our random
access Turing machine (recall Figure 4-19) has no multiplication instruction
mply. As it happens, if we allowed this instruction as a primitive, our random
access Turing machine, although still equivalent to the standard Turing
machine, would be much more time-consuming to simulate (see Problem
4.4.4). The omission of the multiplication instruction is no great loss, however,
because this instruction can be emulated by the program shown in Figure 4- 20.
Iff Register O initially contains a natural number x and Register 1 initially ' The
computation of a random access Turing machine starts with all registers 0.

4.4: Random Access Turing Machines 213 contains y, then this random access

Turing machine will halt, and Register 0 will contain the product x m y.
Multiplication 1s done by successive additions, where the instruction half is
used to reveal the binary representation of y (actually, our instruction set
contains this unusual instruction precisely for this use). 1. store 2 2. load 1 3.
jzero 19 4. half 5. store 3 6. load 1 7. sub 3 8. sub 3 9. jzero 13 10. load 4 11.
add 2 12. store 4 13. load 2 14. add 2 15. store 2 16. load 3 17. store 1 19.
load 4 18. jump 2 19. load 4 20. halt Figure 4-20 Here is a typical sequence of
configurations (since this machine does not interact with tape squares, the T
part of these configurations is empty; there are k = 5 registers): A; 5,3,0,0,0; 0)
h B; 5,3,5,0,0; 0) h C; 3,3,5,0,0; 0) h D; 3,3,5,0,0; 0) h E; 1,3,5,0,0; 0) h F;
1,3,5,1,0; 0) h G; 3,3,5,1,0; 0) h (8; 2,3,5,1,0; 0) h (9; 1,3,5,1,0; 0) h AO;
1,3,5,1,0; 0) h A1; 0,3, 5,1,0; 0) h A2; 5,3,5,1,0; 0) I- A3;5,3,5,1,5; 0) h A4;
5,3,5,1,5; 0) h AS; 10,3,5,1,5; 0) h A6; 10,3,10,1,5; 0) h A7; 1,3,10,1,5; 0) h
A8; 1,1,10,1,5; 0) I- B; 1,1,10,1,5; 0) h* AS; 0,0,20,0,15; 0) h B; 0,0,20,0,15;
0) h C; 0,0,20,0,15;0) h A9; 0,0,20,0,15; 0) h B0O; 15,0,20,0,15; 0)] However,
since the present program is intended to be used as a part of other random
access Turing machines, it makes sense to explore what would happen if it
were started at an arbitrary configuration.

214 Chapter 4: TURING MACHINES Let x and y be the nonnegative integers
stored in Registers 0 and 1, re- respectively, at the beginning of the execution
of this program. We claim that the machine eventually halts with the product x
y stored in Register 0 —as if it had executed the instruction "mply 1." The
program proceeds in several iterations. An iteration is an execution of the
sequence of instructions tt2 through Trig. At the fcth iteration, k> 1, the
following conditions hold: (a) Register 2 contains x2k, (b) Register 3 contains
[y/2k\ (c) Register 1 contains \ y/2k~x\, (d) Register 4 contains the "partial
result" x m (y mod 2k). The iteration seeks to maintain these "invariants." So,
instructions 7T2 through tt5 enforce Invariant (b), assuming (c) held in the
previous iteration. Instructions -kq through 7Tg compute the fcth least
significant bit of y, and, if this bit is not zero, instructions itg through tti2 add
x2k~1 to Register 4, as man- mandated by Invariant (d). Then Register 2 is
doubled by instructions Tri3 through TTi5, enforcing Invariant (a), and finally
Register 3 is transferred to Register 1, enforcing (c). The iteration is then
repeated. If at some point it is seen that \ y/2k~I\ = 0, then the process
terminates, and the final result is loaded from Register 4 to the accumulator.
We can abbreviate this program as "mply 1," that is, an instruction with

semantics Rq := Rg-Ri. We shall therefore feel free to use the instruction
"mply ;" or "mply = ¢" in our programs, knowing that we can simulate them by
the above program. Naturally, the instruction numbers would be different,
reflecting the program of which this mply instruction is a part. If a random
access Turing machine uses this instruction, then it is implicitly assumed that,
in addition to its registers explicitly mentioned, it must have three more
registers that play the role of Registers 2, 3, and 4 in the above program.” In
fact, we can avoid the cumbersome appearance of random access Turing
machine programs such as the one in the previous example by adopting some
useful abbreviations. For example, denoting the value stored in Register 1 by
1?1, in Register 2 by 1?72, and so on, we can write := R2 as an abbreviation of
the sequence 1. load 1 2. add 2 3. sub =1 4. store 1

4.4: Random Access Turing Machines 215 Once we adopt this, we could use
better-looking names for the quantities stored at Registers 1 and 2, and express
this sequence of instructions simply as x :— y + x — 1. Here x and y are just
names for the contents of Registers 1 and 2. We can even use abbreviations
like while x> 0 do x := x — 3, where x denotes the value of Register 1,
instead of the sequence 1. load 1 2. jzero 6 3. sub =3 4. store 1 5. jump 1
Example 4.4.1 (continued): Here is a much more readable abbreviation of the
mply program in Figure 4-20, where we are assuming that x and y are to be
multiplied, and the result is w: w:=0 while y > 0 do begin z := halffo) ify - z -
zt" O thenw :=w + xx :=x + x y := z end halt The correspondence between
the form above and the original program in Figure 4-20 is this: y stands for Ri,
x for 1?2, z for R3, and w for R4. Notice that we have also omitted for clarity
the explicit instruction numbers; if goto instructions were necessary, we could
label instructions by symbolic instruction labels like a and b wherever
necessary. Naturally, it is quite mechanical from an abbreviated program such
as the above to arrive to an equivalent full-fledged random access Turing
machine pro- program such as the original one.O Although we have explained
the mechanics of random access Turing ma- machines, we have not said how
they receive their input and return their output. In order to facilitate
comparisons with the standard Turing machine model, we shall assume that the
input-output conventions of random access Turing ma- machines are very much
in the spirit of the input-output conventions for ordinary

216 Chapter 4: TURING MACHINES Turing machines: The input is presented

as a sequence of symbols in the tape. That is, although the tape of a random
access Turing machine may contain arbitrary natural numbers, we assume that
initially these numbers encode the symbols of some input string. Definition
4.4.2: Let us fix an alphabet E —the alphabet from which our random access
Turing machines will obtain their input— with USE and > " E (> is not needed
here, since a random access Turing machine is in no danger of falling off the
left end of its tape). Also let E be a fixed bijection between E and {0,1,..., [E| -
1|}; this is how we encode the input and the output of random access Turing
machines. We assume that E(U) = 0. The initial configuration of a random
access Turing machine M = (k,U) with input w = 0102 m m -an G (E - {U})* is
{K,RO,...,Rk x,T), where k=1, Rj =0 for all j, and T = We say that M accepts
string x G E* if the initial configuration with input x yields a halted
configuration with RQ = 1. We say it rejects x if the initial configuration with
input x yields a halted configuration with Rq = 0. In other words, once M halts,
we read its verdict at Register 0; if this value 1s 1, the machine accepts, if it is
0, it rejects. Let Eo C E - {U} be an alphabet, and let L C E$ be a language.
We say that M decides L if whenever x e L, M accepts x, and whenever x £ L
M rejects x. We say that M semidecides L if the following is true: x G Lif and
only if M on input x yields some halted configuration. Finally, let/ : EJ >->e
Eq be a function. We say that M computes / if, for all x G E”, the starting
configuration of machine M with input x yields a halted configuration with
these tape contents: {(1,E(ai)), B, E(02)), * m m, (ra, E(an))}, where f(x) = ai =
* -an. Example 4.4.2: We describe below a random access Turing machine
program, in abbreviated form, deciding the language {anbncn : n>0}. acount
:=bcount := ccount := 0, n:= 1 while T[n] =1 do: n:=n+ 1, acount := acount
+ 1 while T[n] =2 do: n:=n+ 1, bcount := bcount + 1 while T[n] =3 don:=
n+ 1, acount := acount + 1 if acount = bcount = ccount and T[n] = 0 then
accept else reject We are assuming here that E(a) = 1, E(&) = 2, E(¢) = 3, and
we are using the variables acount, bcount, and ccount to stand for the number
ofa's, 6's, and c's, respectively, found so far. We are also using the
abbreviation accept for "load =1, halt" and reject for "load =0, halt." 0
Example 4.4.3: For a more substantial example, we now describe a random
access Turing machine that computes the reflexive transitive closure of a finite

4.4: Random Access Turing Machines 217 binary relation (recall Section 1.6).
We are given a directed graph R C A x A, where A = {a0,..., an 1}, and we
wish to compute R*. One important question immediately arises: How are we

to represent a relation R C A x A as a, string? R can be represented in terms of
its adjacency matrix An, an n x n matrix with 0-1 entries such that the 1,jth entry
is 1 ifand only if (a”, a,) G R (see Figure 4-21 for an example). In turn, the
adjacency matrix can be represented as a string in {0,1} * of length n2, by first
arranging the first row of the matrix, then the second row, and so on. We denote
the string representation of the adjacency matrix of a relation R as xR. For
example, if R is the binary relation shown in Figure 4-21 (a), then An and xr
are as shown in Figure 4-2 1(b) and (c), respectively. (a) 0101 01100QO0 1
1000 (b)0101011000011000 (c) Figure 4-21: A graph, its adjacency
matrix, and its string representation. We must therefore design a random access
Turing machine M that com- computes the function / defined as follows: For
any relation R over some finite set {ai,..., an}, f{xR) — xR*. Notice that we
are not interested in how M responds to inputs that are not in {0,1}" , that is,
inputs that do not represent adjacency matrices of directed graphs. The
program of M is shown below; we are assuming that E@) = 1 and E(I) = 2. As
always, E(U) = 0. The first three instructions compute the number n of elements
of the set A (one less than the smallest number whose square is the address of a
blank in the input tape). From then on, the (1,j)th entry of the matrix, with 0 <1,
] <n, can be fetched as the (i-n + j)-th symbol on the tape of M. Since this
program is a straightforward implementation of the O(n3) algorithm in Section
1.6, 1t is clear that it indeed computes the reflexive transitive closure of the
relation represented by its input. Naturally, an unabbreviated random access
Turing machine program can be mechanically derived from the program
above.” Evidently, the random access Turing machine is a remarkably
powerful and

218 Chapter 4: TURING MACHINES n := 1 while T[nmn]/0don:=n+1n
:=n— 11:=0 while i<fidoj:=! + ,T[i-n+1]:=2 1 :=] :=k:=0 while /<ndoj
=7+ 1,whilei<ndoi:=1+1, while fe <ndo fc:=fc+ 1, if T[i-n+;] =2
and T[j m n+ k] =2 then T[1 m n + k] := 2 halt agile model. How does its
power compare to that of the standard Turing ma- machine? It is very easy to
see, and not at all surprising, that the random access Turing machine is at least
as powerful as the standard Turing machine. Let M = (K, E,6,s,H) be a Turing
machine; we can design a random access Turing machine M' that simulates M.
M' has a register, call it n, that keeps track of the head position of M On its
tape. Initially n points to the beginning of the in- input. Each state q G K is
simulated by a sequence of instructions in the program of M'. For example,

suppose that E = {U,a, b}, E(a) = 1, EF) =2, and let q be a state of M such that
5(q7 U) - <j>7 '>.)9 S(q: a) - (pa <')9 S(q: b) - (I', I-Da and 5(q=>) = (S, —>)'
The sequence of instructions simulating state q is this: q: if T[n] =0 thenn :=n
+ 1, goto p if T[n] — 1 thenif n> 0 then n :=n— 1, goto p else goto s if T[n]
= 2 then T[n] := 0, goto r The else clause in the third line (which should be
present in any line sim- simulating a <r- move) has the effect of the > symbol,
making sure that the head never falls off the left end of M"s tape. We have
shown: Theorem 4.4.1: Any recursive or recursively enumerable language, and
any recursive function, can be decided, semidecided, and computed,
respectively, by a random access Turing machine. The remarkable direction is
the opposite: Theorem 4.4.2: Any language decided or semidecided by a
random access Tur- Turing machine, and any function computable by a random
access Turing machine, can be decided, semidecided, and computed,
respectively, by a standard Turing machine. Furthermore, if the machines halt
on an input, then the number of steps taken by the standard Turing machine is
bounded by a polynomial in the number of steps of the random access Turing
machine on the same input.

4.4: Random Access Turing Machines 219 Proof: Let M = (k, II) be a random
access Turing machine deciding or semide- ciding a language L C E* or
computing a function from E* to E*. We will outline the design an ordinary
Turing machine M' that simulates M. We shall describe M' as a (k + 3)-tape
machine, where k is the number of registers of M, which simulates M; we
know from Theorem 4.3.1 that such a machine can in turn be simulated by the
basic model. Turing machine M' keeps track of the current configuration of the
random access Turing machine M, and repeatedly computes the next
configuration. The first tape 1s used only for reading the input of M, and
possibly for reporting the output at the end, in the case where M computes a
function. The second tape is used for keeping track of the T part of the
configuration —the tape contents of M. The relation T 1s maintained as a
sequence of strings of the form A11, 10), a left parenthesis followed by the
binary representation of an integer, followed by a comma, followed by another
binary integer, followed by a right parenthesis. The intended meaning of the
above string is that the seventh tape square of M contains the integer 2. The
pairs of integers in the sequence representing T are not in any particular order,
and may be separated by arbitrarily long sequences of blanks (this necessitates
an endmarker, such as $, at the end of the representation of T, to help M' decide

when it has seen all such pairs). Each of the next k tapes of M' maintain the
contents of a register of M, also in binary. The current value of the program
counter k of M is maintained in the state of M' in a manner to be explained
below. The simulation has three phases. During the first phase, M' receives on
its first tape the input x = a\O2...an £ S* and converts it to the string A,
E(a1))... (n, E(an)) on the second tape. Thus M' can start the second phase, the
simulation of M, from the initial configuration of M on input x. During the
second phase M' repeatedly simulates a step of M by several steps of its own.
The precise nature of the step to be simulated depends heavily on the program
counter k of M. As we said before, k is maintained in the state of M'. That is,
the set of states of M' that are used during this phase are separated into p
disjoint sets K\ UK\ U « « m U Kp, where p is the number of instructions in the
program Il of M. The set of states Kj "specializes" in simulating the instruction
it] of II. The precise nature of this part of M' depends of course on the kind of
the instruction itj . We shall give three indicative examples of how this is done.
Suppose first that tt, is add 4, requiring that the contents of Register 4 be added
to those of Register 0. Then M' will perform binary addition (recall Example
4.3.2) between its two tapes representing Registers 4 and 0, will leave the
result in the tape for Register 0, and then move to the first state of Kj+\ to start
the simulation of the next instruction. If the instruction is, say, add = 33, then M'
will start by writing the integer 33 in binary on the {k + 3)rd tape (the one
heretofore unassigned to parts of M); the binary representation

220 Chapter 4: TURING MACHINES of the fixed integer 33 is "remembered"
by the states of Kj. Then it will add 33 to the contents of Register 0, and finally
it will erase the last tape and will move to Kj+i. Suppose next that tt, is write
2, requiring that the contents of the accumu- accumulator be copied to the tape
square pointed at by Register 2. Then M' will add at the right end of the second
tape —the one where the contents of the tape of M are kept in the (x,y) format
— the pair (x,y), where x is the contents of Register 2 and y those of Register
0; both x and y are copied from the corre- corresponding tapes of M'. M' will
then scan all other pairs (x',y') on the second tape, comparing each x', bit by
bit, with the contents of Register 1. If a match is found, the pair is erased, thus
maintaining the integrity of the table. Then the state moves to Kj+i, and the next
instruction is executed. Suppose now that ttj is jpos 19, requiring that
instruction 19 be executed next if Register O contains a positive integer. Turing
machine M' simply scans its tape representing Register 0; ifa 1 is found in the

binary representation of the integer in it, M moves to K\$\ otherwise it moves
to Kj+\. It is straightforward to simulate, in a very similar manner, all other
kinds of instructions in the table of Figure 4-19. Eventually, M may reach a halt
instruction. If this happens, M' enters its third phase, translating M's output to
the Turing machine output conventions. If M is deciding a language, then M'
would read the contents of Register 0. If they are 1, it will halt at state y, if they
are 0 it will halt at state n. If M is semideciding a language, then M' simply
halts at state h. Finally, if M is computing a function, then M must translate the
contents of the tape of M to a string in £*, inverting the bijection E, and then
halt. It is clear from the preceding discussion that a k + 3-tape Turing machine
M' can be designed that performs the above tasks —and hence, by Theorem
4.3.1, a standard Turing machine can. To prove the second part of the theorem,
we shall establish that t steps of M on an input of size n can be simulated in O(t
+ nK time. Naturally, the constants in the O notation will, as usual, depend on
the simulated machine M; for example they will depend on the largest constant
(as inadd = 314159) mentioned in the program of M. The O(t + nK bound is
based on the following three observations: (a) At each step of M (including the
addition and subtraction steps, see Prob- Problem 4.4.3) can be simulated in
O(m) steps of M', where m is the total length of the nonblank parts of all tapes
of M' —that is to say, the total length of the binary encodings of all integers in
the current configuration of M. (b) The parameter m defined above can at each
step increase by at most O(r), where r 1s the length of the longest binary
representation of any integer stored in the registers or tape squares of M. This
is so because the increase comes either from an add instruction or from a store
instruction, and in

4.5: Nondeterministic Turing Machines 221 both cases it is trivial to see that
the increase can only be linear int. (¢) Finally, it is easy to see that r = 0 {t);
that 1s, the length of the largest integer represented by M can only increase by a
constant at each step. The claimed bound follows by putting these three facts
together. m Problems for Section 4.4 4.4.1. Give explicitly the full details of
the random access Turing machine program of Example 4.4.2. Give the
sequence of configurations of this machine on input aabccece. 4.4.2. Give (in our
abbreviated notation) a random access Turing machine pro- program that
decides the language {wcw : w € {a, b} *}. 4.4.3. Show that, in the simulation
in the proof of Theorem 4.4.2, each step can be simulated by O(m) steps of M',
where m 1s the total length of M"s tapes. (You must establish that the 2-tape

addition Turing machine in Example 4.3.2 operates in linear time.) Can you
estimate the constant in O{m)l 4AA. Suppose that our random access Turing
machines had an explicit instruction mply. What goes wrong now in the second
part of the proof of Theorem 4.4.27 4.5 NONDETERMINISTIC TURING
MACHINES We have added to our Turing machines many seemingly powerful
features — multiple tapes and heads, even random access— with no
appreciative increase in power. There is, however, an important and familiar
feature that we have not tried yet: nondeterminism. We have seen that when
finite automata are allowed to act nondetermin- istically, no increase in
computational power results (except that exponentially fewer states may be
needed for the same task), but that nondeterministic push- pushdown automata
are more powerful than deterministic ones. We can also imagine Turing
machines that act nondeterministically: Such machines might have, on certain
combinations of state and scanned symbol, more than one possible choice of
behavior. Formally, a nondeterministic Turing machine is a quintuple (K, E, A,
s, H), where K, E, s, and H are as for standard Turing machines, and A is a
subset of (K - H) x E) x (K x (E U {<-, ->})), rather than a function from (K -
H) xE to K x (S U {<-, ->¢}). Configurations and the relations \-M and \-*M
are defined in the natural way. But now \~m need not be single-valued: One
configuration may yield several others in one step.

222 Chapter 4: TURING MACHINES When Turing machines are allowed to
act nondeterministically, is there any increase in computational power? We
must first define what it means for a non- deterministic Turing machine to
compute something. Since a nondeterministic machine could produce two
different outputs or final states from the same in- input, we have to be careful
about what is considered to be the end result of a computation by such a
machine. Because of this, it is easiest to consider at first nondeterministic
Turing that semidecide languages. Definition 4.5.1: Let M = (K,H,A,s,H) be a
nondeterministic Turing ma- machine. We say that M accepts an input w G (E -
{>, LJ})*if (s,>Uw) \-*M (h, vav) for some hG Hand a e E, it, v g E*. Notice
that a nondeterministic machine accepts an input even though it may have many
nonhalting computa- computations on this input input —as long as at least one
halting computation exists. We say that M semidecides a language L. C (E —
{>, U})* if the following holds for all w G (S - {>, LI})*: w G Lif and only if
M accepts w. It is a little more subtle to define what it means for a
nondeterministic Turing machine to decide a language, or to compute a

function. Definition 4.5.2: Let M = (K, T1,A,s,{y,n}) be a nondeterministic
Turing machine. We say that M decides a language L C (E — {>, U})* if the
following two conditions hold for all w G (S - {>,LJ})*: (a) There is a natural
number N, depending on M and w, such that there is no configuration C
satisfying (s, >Uto) h1* C. (b) 1v £ Lif and only if (s, >Uw) \-*M (y, vav) for
some it, v £ S* a G E. Finally, we say that M computes a function/ : (E — {>,
LJ})* h* (E— {>, LI})* if the following two conditions hold for all w G (E -
{>, U})*: (a) There is an N, depending on M and w, such that there is no
configuration C satisfying (s,>Uw) hjJJ- C. (b) (s, >Uw) \-*M (h, vav) if and
only ifua =>U, and v = f(w). These definitions reflect the difficulties
associated with computing by non- deterministic Turing machines. First notice
that, for a nondeterministic machine to decide a language and compute a
function, we require that all of its computa- computations halt; we achieve this
by postulating that there is no computation continuing after 1V steps, where 1V
is an "upper bound" depending on the machine and the input (this is condition
(a) above). Second, for M to decide a language, we only require that at least
one of its possible computations end up accepting the input. Some, most, or all
of the remaining computations could end up rejecting —the machine accepts by
the force of this single accepting computation. This is a very unusual,
asymmetric, and counterintuitive convention. For example, to

4.5: Nondeterministic Turing Machines 223 create a machine that decides the
complement of the language, it is not enough to reverse the roles of the y and n
states (since the machine may have both ac- accepting and rejecting
computations for some inputs). As with nondeterministic finite automata, to
show that the class of languages decided by nondeterministic Turing machines
is closed under complement, we must go through an equivalent deterministic
Turing machine —and our main result in this section (Theorem 4.5.1) states
that an equivalent deterministic Turing machine must exist. Finally, for a
nondeterministic Turing machine to compute a function, we require that all
possible computations agree on the outcome. If not, we would not be able to
decide which one is the right value of the function (in the cases of deciding or
semideciding a language, we resolve this uncertainty by postulating that the
positive answer prevails). Before showing that nondeterminism, like the
features considered in the pre- previous sections, can be eliminated from
Turing machines, let us consider a classic example that demonstrates the power
of nondeterminism in Turing machines as a conceptual device. Example 4.5.1:

A composite number is one that is the product of two natural numbers, each
greater than one; for example, 4, 6, 8, 9, 10, and 12 are composite, but 1, 2, 3,
5,7, and 11 are not. In other words, a composite number is a non-prime other
than one or zero. Let C = {100,110,1000,1001,1010,..., 1011011,...} be the set
of all bi- binary representations of composite numbers. To design an "efficient"
algorithm deciding C is an ancient, important, and difficult problem. To design
such an algorithm it would seem necessary to come up with a clever way of
discovering the factors, if any, of a number —a task that seems quite complex.
Naturally, by searching exhaustively all numbers smaller than the given number
(in fact, smaller than its square root) we would end up discovering its factors;
the point is that no more direct method is evident. However, if nondeterminism
is available, we can design a machine to semide- cide C rather simply, by
guessing the factors, if there are any. This machine operates as follows, when
given as input the binary representation of integer n: A) Nondeterministically
choose two binary numbers p, q larger than one, bit by bit, and write their
binary representation next to the input. B) Use the multiplication machine of
Problem 4.3.5 (actually, the single-tape machine that simulates it) to replace
the binary representations of p and q by that of their product. C) Check to see
that the two integers, n and p m q, are the same. This can be done easily by by
comparing them bit by bit. Halt if the two integers are equal; otherwise
continue forever in some fashion (recall that at present we are only interested
in a machine that semidecides C).

224 Chapter 4: TURING MACHINES This machine, on input 1000010 (the
binary representation of 66) will have many rejecting (nonhalting)
computations, corresponding to phase 1 above choosing pairs of binary
integers, such as 101; 11101, that fail to multiply to 66. The point is that, since
66 1s a composite number, there will be at least one com- computation of M
that will end up accepting —and that is all we need. In fact, there will be more
than one (corresponding to2-33 = 6-11 =11-6 = 33-2 = 66). If the input were
1000011, however, no computation would end up accepting —because 67 is a
prime number. This machine can be modified to a nondeterministic machine
that decides the language C. The deciding machine has the same basic
structure, except that in Phase A) the new machine never guesses an integer
with more bits than n itself —obviously, such an integer cannot be a factor of n.
And 1n Phase 3, after comparing the input and the product, the new machine
would halt at state y if they are equal, and at state n otherwise. As a result, all

computations will eventually halt after some finite number of steps. The upper
bound N required by Definition 4.5.2 1s now easy to compute explicitly.
Suppose that the given integer n has I bits. Let N\ be the maximum number of
steps in any computation by the multiplying machine on any input of length 2£+1
or less; this is a finite number, the maximum of finitely many natural numbers.
Let N-1 the number of steps it takes to compare two strings of length at most 3£
each. Then any computation by M' will halt after Ni + N2 + 3£ + 6 steps,
certainly a finite number depending only on the machine and the input.m§e
Nondeterminism would seem to be a very powerful feature that cannot be
eliminated easily. Indeed, there appears to be no easy way to simulate a non-
deterministic Turing machine by a deterministic one in a step-by-step manner,
as we have done in all other cases of enhanced Turing machines that we have
examined so far. However, the languages semidecided or decided by nonde-
nondeterministic Turing machines are in fact no different from those
semidecided or decided, respectively, by deterministic Turing machines.
Theorem4.5.1: // a nondeterministic Turing machine M semidecides or de-
decides a language, or computes a function, then there is a standard Turing ma-
machine M' semideciding or deciding the same language, or computing the
same function. Proof: We shall describe the construction for the case in which
M semidecides a language L; the constructions for the case of deciding a
language or computing a function are very similar. So, let M = (K, S, A, s, H)
be a nondeterministic Turing machine semideciding a language L. Given an
input w, M' will attempt to run systematically through all possible
computations by M, searching for one that halts. When and if it discovers a
halting computation, it too will halt. So M' will halt if and only if M halts, as
required.

4.5: Nondeterministic Turing Machines 225 But M may have an infinity of
different computations starting from the same input; how can M explore them
all? It does so by using a dovetailing procedure (recall the argument illustrated
in Figure 1-8). The crucial observation is the following: Although for any
configuration C of M there may be several configurations C such that C h C",
the number of such configurations C" is fixed and bounded in a way that
depends only on M, not on C. Specifically, the number of quadruples (q, a, p,
b) e A that can be applicable at any point is finite; in fact, it cannot exceed \K\
m (|[S|+2), since this is the maximum number of possible combinations (p,b)
withp e Kand b eSU {<-,->}. Let us call r the maximum number of quadruples

that can be applicable at any point; the number r can be determined by
inspection of M. In fact, we shall assume that for each state-symbol
combination (q, a), and for each integer i £ {1, 2,..., r}, there is a well-defined
ith applicable quadruple (g, a,P1, 6j). If for some state- symbol combination
(q,a) there are fewer than r relevant quadruples in A, then some may be
repeated. Since M is nondeterministic, it has no definite way to decide at each
step how to choose among its r available "choices." But suppose that we help
it decide. To be precise, let Md, the deterministic version of M, be a device
with the same set of states as M, but with two tapes. The first tape is the tape
of M, 1nitially containing the input w, while the second tape initially contains a
string of n integers in the range 1,..., r, say i\i-2.. An. Md then operates as
follows for n steps: In the first step, among the r possible next state-action
combinations (pi, b\),..., (pr, br) that are applicable to the initial configuration,
Md chooses the 1ith —that is, (p”, b”), the one suggested by the currently
scanned symbol in the second tape, 1\. Md also moves its second tape head to
the right, so that it next scans 12- In the next step, Md takes the 12th
combination, then the 13th, and so on. When Md sees a blank on its second
tape, meaning that it has run out of "hints," it halts. Md is an important
ingredient in our design of the deterministic Turing machine M' that simulates
M. We shall describe M' as a 3-tape Turing machine; we know by Theorem
4.3.1 that M' can be converted into an equivalent single- tape Turing machine.
The three tapes of M' are used as follows: A) The first tape is never changed;
it always contains the original input w, so that each simulated computation of
M can begin afresh with the same input. B) The second and the third tapes are
used to simulate the computations of Md, the deterministic version of M, with
all strings in {1,2,..., r}*. The input 1s copied from the first tape onto the
second before M' begins to simulate each new computation. Initially, the third
tape contains e, the empty string (and therefore the simulation of Md will not
even start the first time around).

226 Chapter 4: TURING MACHINES C) Between two simulations of Md, M'
uses a Turing machine N to generate the lexicographically next string in {1,
2,..., v} * That is, N will generate from e the strings 1,2,..., r, 11,12,..., rr,
I11,.... For r =2, N is precisely the Turing machine that computes the binary
successor function (Example 4.2.3); its generalization to r > 2 is rather
straightforward. M' is is the Turing machine given in Figure 4-22. By C1"*2
we mean a simple Turing machine that erases the second tape and copies the

first tape on the second. B3 is the machine that generates the lexicographically
next string in the third tape. Finally, Md' is the deterministic version of M,
operating oil tapes 2 and 3. This completes the description of M'. C1-2
B3M2d3 Figure 4-22 We claim that M' halts on an input w if and only if (some
computation of) M does. Suppose that M' indeed halts on input w; by
inspecting Figure 4-22, this means that Md halts with its third tape head not
scanning a blank. This implies that, for some string «i«2 ®*+inS {1,2,..., 1} *,
Md, when started with 1v on its first tape and 1\i1 * -in on its second, halts
before reaching the blank part of its second tape. This, however, means that
there is a computation of M on input w that halts. Conversely, if there is a
halting computation of M on input w, say with n steps, then M', after at most r +
r2 + m m m + rn failed attempts, the string in {1, 2,..., r} * corresponding to the
choices of M's halting computation will be generated by B3, and Md will halt
scanning the last symbol of this string. Thus M' will halt, and the proof is
complete. m As we had expected, the simulation of a nondeterministic Turing
machine by a deterministic one is not a step-by-step simulation, as were all
other simulations we have seen in this chapter. Instead, it goes through all
possible computations of the nondeterministic Turing machine. As a result, it
requires exponentially many steps in n to simulate a computation of n steps by
the nondeterministic 'machine —whereas all other simulations described in
this chapter are in fact polynomial. Whether this long and indirect simulation is
an intrinsic feature of nondeterminism, or an artifact of our poor understanding
ofit, 1s a deep and important open question, explored in Chapters 6 and 7 of
this book. Problems for Section 4.5 4.5.1. Give (in abbreviated notation)
nondeterministic Turing machines that ac- accept these languages.

4.6: Grammars 227 (a) a*abb*baa* (b) {wwRuuR :w,uf {a,b}*} 4.5.2. Let M
= (K, £, S, s, {h}) be the following nondeterministic Turing machine: £=
{a,>,U}, A={(q0, U, qua), (40, U, qx,U), (qi,U, q1,U), (qua, q0, ->), (qua, h,
-»)} Describe all possible computations of five steps or less by M starting
from the configuration (go,»LJ). Explain in words what M does when started
from this configuration. What is the number r (in the proof of Theorem 4.5.1)
for this machine? 4.5.3. Although nondeterministic Turing machines are not
helpful in showing clo- closure under complement of the recursive languages,
they are very convenient for showing other closure properties. Use
nondeterministic Turing machines to show that the class of recursive languages
is closed under union, concate- concatenation, and Kleene star. Repeat for the

class of recursively enumerable languages. 4.6 GRAMMARS In this chapter
we have introduced several computational devices, namely the Turing machine
and its many extensions, and we have demonstrated that they are all equivalent
in computational power. All these various species of Turing machines can be
reasonably called automata, like their weaker relatives —the fi- finite
automata and the pushdown automata— studied in previous chapters. Like
those automata, Turing machines and their extensions act basically as language
acceptors, receiving an input, examining it, and expressing in various ways
their approval or disapproval of it. Two important families of languages, the
recursive and the recursively enumerable languages, have resulted. But in
previous chapters we have seen that there is another important fam- family of
devices, very different in spirit from language acceptors, that can be used to
define interesting classes of languages: language generators, such as regular
ex- expressions and context-free grammars. In fact, we have demonstrated that
these two formalisms provide valuable alternative characterizations of the
classes of languages denned by language acceptors. This chapter would not be
complete without such a maneuver: We shall now introduce a new kind of
language genera- generator that is a generalization of the the context-free
grammar, called the grammar

228 Chapter 4: TURING MACHINES (or unrestricted grammar, to contrast it
with the context-free grammars) and show that the class of languages generated
by such grammars is precisely the class of recursively enumerable ones. Let us
recall the essential features of a context-free grammar. It has an alphabet, V,
which is divided into two parts, the set of terminal symbols, E, and the set of
nonterminal symbols, V— E. It also has a finite set of rules, each of the form
A —>u, where A is a nonterminal symbol and u £ V*. A context- free grammar
operates by starting from the start symbol S, a nonterminal, and repeatedly
replacing the left-hand side of a rule by the corresponding right-hand side until
no further such replacements can be made. In a grammar all the same
conventions apply, except that the left-hand sides of rules need not consist of
single nonterminals. Instead, the left-hand side of a rule may consist of any
string of terminals and nonterminals containing at least one nonterminal. A
single step in a derivation entails removing the entire substring on the left-hand
side of a rule and replacing it by the corresponding right-hand side. The final
product is, as in context-free grammars, a string containing terminals only.
Definition 4.6.1: A grammar (or unrestricted grammar, or a rewriting system)

is a quadruple G = (V, E, R, S), where V is an alphabet; E C V is the set of
terminal symbols, and V - E is called the set of nonterminal symbols; S E V —
E is the start symbol; and R, the set of rules, is a finite subset of (V*(V - E)V*)
x V*, We write u-» v if (u,v) 6 R; we write u="g v if and only if, for some
wi,w2 6 V* and some rule u' -» v' ¢ R, u=wiu'w2 and v = wiv'w2- As usual,
="g 1s the reflexive, transitive closure of =>-g- A string w £ E* is generated by
G ifand only if S ~*G w; and 1(G), the language generated by G is the set of
all strings in S* generated by G. We also use other terminology introduced
originally for context-free gram- grammars; for example, a derivation is a
sequence of the form wo Example 4.6.1: Any context-free grammar is a
grammar; in fact, a context-free grammar is a grammar such that the left-hand
side of each rule is a member of V—E, rather than V¥(V — £)V*, Thus, in a
grammar, a rule might have the form uAv —> uwv, which could be read
"replace A by w in the context of u and 1>." Of course, the rules of a grammar
may be of a form even more general than this; but it turns out that any language
that can be generated by a grammar can be generated by one in which all rules
are of this "context-dependent replacement" type (Problem 4.6.3).0

4.6: Grammars 229 Example 4.6.2: The following grammar G generates the
language {anbncn: n>1}. G=(V,E,R,S), where V= {8§, a, b,
c,A,B,C,Ta,Tb,Tc}, S= {a, b, ¢}, and R = {S -> ABCS, S->TC, CA -» AC, SA
-» AB, CB -> BC, CTC -> Tcc, crc ->1r6C, BTb ->m T66, Ta -> ¢}. The first
three rules generate a string of the form (ABC)nTc. Then the next three rules
allow the A's, B's, and C's in the string to "sort out" themselves correctly, so
that the string becomes AnBnCnTc. Finally, the remaining rules allow the Tc to
"migrate" to the left, transforming all C's to c's, and then becoming T>. In turn,
Tb migrates to the left, transforming all -B's into b's and becoming Ta, and
finally Ta transforms all A's into a's and then is erased. It is rather obvious that
any string of the form anbncn can be produced this way. Of course, many more
strings that contain nonterminals can be produced; however, it is not hard to
see that the only way to erase all nonterminals 1s to follow the procedure
outlined above. Thus, the only strings in {a, b, ¢} that can be generated by G
are those in {a"bncn : n> 1}.<> Evidently, the class of languages generated by
grammars contains certain non-context-free specimens. But precisely how
large is this class of languages? More importantly, how does it relate to the
other two important extensions of the context-free languages we have seen in
this chapter, namely, the recursive and the recursively enumerable languages?

As it happens, grammars play with respect to Turing machines precisely the
same role that context-free grammars play in relation to pushdown automata,
and regular expressions to finite automata: Theorem 4.6.1: A language is
generated by a grammar if and only if it is recursively enumerable.

230 Chapter 4: TURING MACHINES Proof: Only if. Let G = (V,T:,R,S) be a
grammar. We shall design a Turing machine M that semidecides the language
generated by G. In fact, M will be nondeterministic; its conversion to a
deterministic machine that semidecides the same language is guaranteed by
Theorem 4.5.1. M has three tapes. The first tape contains the input, call it w,
and 1s never changed. In the second tape, M tries to reconstruct a derivation of
w from S in the grammar G; M therefore starts by writing S on the second tape.
Then M proceeds in steps, corresponding to the steps of the derivation being
constructed. Each step starts with a nondeterministic transition, guessing one
between \R\ +1 possible states. Each of the first \R\ of these \R\ +1 states is the
beginning of a sequence of transitions that applies the corresponding rule to the
current contents of the second tape. Suppose that the chosen rule is u-» v. M
then scans its second tape from left to right, nondeterministically stopping at
some symbol. It then checks that the next [it| symbols match it, erases it, shifts
the rest of the string appropriately to make just enough space for v, and writes
v init's place. If the check fails, M enters an unending computation —the
present attempt at generating w has failed. The \R\ + 1st choice of M entails
checking whether the current string equals w, the input. If so, M halts and
accepts: w can indeed be generated by G. And if the strings are found unequal,
M again loops forever. It is clear that the only possible halting computations of
M are those that correspond to a derivation of w in G. Thus M accepts w if and
only if w € L(G), and the only if direction has been proved. //. Suppose now
that M = (K, E, 6, s, {h}) is a Turing machine. It will be convenient to assume
that S and K are disjoint, and that neither contains the new endmarker symbol
<. We also assume that M, if it halts, it always does so in the configuration (h,
>U) —that is, after having erased its tape. Any Turing machine that
semidecides a language can be transformed into an equivalent one that satisfies
the above conditions. We shall construct a grammar G =(V, £ - {U, >}, R, S)
that generates the language IC(S- {U, >})* semidecided by M. The alphabet V
consists of all symbols in E and all states in K, plus the start symbol S and the
endmarker <. Intuitively, the derivations of G will sim- simulate backward
computations of M. We shall simulate configuration (g, >uaw) by the string

>uaqw< —that is, by the tape contents, with the current state in- inserted
immediately after the currently scanned symbol, and with the endmarker <
appended at the end of the string. The rules of G simulate backwards moves of
M. That is, for each q G K and a € S, G has these rules, depending on 6(q,a).
A) If 6(q, a) = (p, b) for some p € Kand b € S, then G has a rule bp -> aq. B) If
6(q, a) = (p, —>) for some p G K, then G has a rule abp —> aqb for all b G E,
and also the rule a Up<—> ag< (the last rule reverses the extension

4.6: Grammars 231 of the tape to the right by a new blank). C) If S(q, a) =
(p,«-) for some p £ K, and a”LJ, then G has a rule pa -» aq. D) If S(q, U) =
(p,«-) for some p e K, then G has a rule pab -» ag& for all 6 £ E, and also the
rule p<\ —> Ug<i that reverses the erasing of extraneous blanks. Finally, G
contains certain transitions for the beginning of the computation (the end of the
derivation) and the end of the computation (the beginning of the derivation).
The rule S ->> U h< forces the derivation to start exactly where an accepting
computation would end. The other rules are > U s -» e, erasing the part of the
final string to the left of the input, and < -» e, erasing the endmarker and
leaving the input string. The following result makes precise our notion that G
simulates backward computations of M: Claim: For any two configurations
(qi,Uiai. W\) and (92,1*272”2) of M, we have that (qi,uiaiivi) hM
(92,«202.w2) if and only 1fu2a2q2W2< ="g The proof of the claimis a
straightforward case analysis on the nature of the move M, and is left as an
exercise. We now complete the proof of the theorem, by showing that, for all w
£ (E- {>, U})* M halts on w if and only if w £ [.(G). w € I(G) if and only if
L) h<="q > U sw<="g w<\because S -> > LJ h<\1is the only rule that
involves S, and the rules > LJ s -> e and < -» ¢ are the only rules that allow for
the eventual erasing of the state and the endmarker «. Now, by the claim, > LJ
h<=">1J sw<ifand only if (s, t=Utv) \-*M {h, >LJ), which happens if and
only 1f M halts on w. This completes the proof of the Theorem. m Theorem
4.6.1 1dentifies grammars with an aspect of the Turing machines that we have
deemed unrealistic —semidecision, with its one-sided definition that provides
no information when the input is not in the language. This is consistent with
what we know about grammars: If a string can be generated by the grammar,
we can patiently search all possible derivations, starting from the shorter ones
and proceeding to the longer ones, until we find the correct one. But if no
derivation exists, this process will go on indefinitely, without giving us any
useful information. As it turns out, we can also identify grammars with the

more useful modes of computation based on Turing machines.

232 Chapter 4: TURING MACHINES Definition 4.6.2: Let G = (V, E,.R,S) be
a grammar, and let/ : E* n- E* be a function. We say that G computes / if, for
all w,v € £%, the following is true: SwS =>q v if and only if v = f{w). That is,
the string consisting of the input w, with a starting symbol of G on each side,
yields exactly one string in £*: the correct value of f{w). A function/ : E* h->
E* is called grammatically computable if and only if there is a grammar G that
computes it. We leave the proof of the following result —a modification of the
proof of Theorem 4.6.1— as an exercise, see Problem 4.6.4: Theorem 4.6.2: A
function f: E* t-)- E* is recursive if and only if it is grammatically
computable. Problems for Section 4.6 4.6.1. (a) Give a derivation of the string
aaabbbccc in the grammar of Example 4.6.2. (b) Prove carefully that the
grammar in Example 4.6.2 generates the lan- language L= {anbncn : n> 1}.
4.6.2. Find grammars that generate the following languages: (a) {ww : w e
{a,b}*} (b) {a2" :n>0} (c) {a:n>0} 4.6.3. Show that any grammar can be
converted into an equivalent grammar with rules of the form uAv —> uwv,
withA£V—E, and u,v,w € V*. 4.6.4. Prove Theorem 4.6.2. (For the only if
direction, given a grammar G, show how to construct a Turing machine which,
on input w, outputs a string u € E* such that SwS =" u, if such a string u exists.
For the if direction, use a simulation similar to the proof of Theorem 4.6.1,
except in the opposite (forward) direction.) 4.6.5. An oddity in the use of
grammars to compute functions is that the order in which rules are applied is
indeterminate. In the following alternative, due to A. A. Markov A903-1979),
this indeterminacy is avoided. A Markov system is a quadruple G =
(V,T,,R,R1), where V is an alphabet; SCF; R is a finite sequence (not set) of
rules («i -» vi,...,Uk -> vk), where Ui,Vi £ V*; and Ri is a set of rules from R.
The relation w ="g w' is defined as follows: If there is an 1 such that w, is a
substring of w, then let

4.7: Numerical Functions 233 1 be the smallest such number, and let w\ be the
shortest string such that w = wiUiW2; then w =g w' provided that w' =
wiViW2- Thus if a rule is applicable, then there is at most one rule, and it is
applicable in exactly one position. We say that G computes a function/ : E* \-*
E* 1f for all and the first time that a rule from R\ was used was the last one,
un 1 ="g «,,. Show that a function is computable by a Markov system if and
only if it is recursive. (The proofis similar to that of Theorem 4.6.2.) 4.7

NUMERICAL FUNCTIONS Let us now adopt a completely different point of
view on computation, one that is not based on any explicit computational or
information-processing formalism such as Turing machines or grammars, but
instead focuses on what has to be computed: functions from numbers to
numbers. For example, it is clear that the value of the function /(m,n)=m-n2+3-
m2-m+17 can be computed for any given values of m and n, because it is the
composition of functions —addition, multiplication, and exponentiation, plus a
few constants— that can be computed. And how do we know that
exponentiation can be com- computed? Because it is recursively defined in
terms of a simpler function (namely, multiplication) and values at smaller
arguments. After all, mnis 1 if n= 0, and otherwise it is m-mn~I.
Multiplication itself can be defined recursively in terms of addition —and so
on. In principle, we should be able to start with functions from natural num-
numbers to natural numbers that are so simple that they will be unequivocally
considered computable (e.g., the identity function and the successor function
succ(n) =n+ 1), and combine them slowly and patiently through combinators
that are also very elementary and obviously computable —such as composition
and recursive definition— and finally get a class of functions from numbers to
numbers that are quite general and nontrivial. In this section we shall undertake
this exercise. Significantly, the notion of computation thus defined will then be
proved identical to the notions arrived at by the other approaches of this chap-
chapter —Turing machines, their variants, and grammars— that are so different
in spirit, scope, and detail.

234 Chapter 4: TURING MACHINES Definition 4.7.1: We start by defining
certain extremely simple functions from N* to N, for various values of k>0 (a
0-ary function is, of course, a constant, as it has nothing on which to depend).
The basic functions are the following: (a) For any k > 0, the fc-ary zero
function is defined as zerc>k(n\,..., nk) = 0 for all ni,... ,7ifc 6 N. (b) For any k
> >0, the jth k-ary identity function is simply the function idfcij(m,..., nk) =
r1j for all m,..., nk € N. (¢) The successor function is defined as succ(n) =n+ 1
for all n € N. Next we introduce two simple ways of combining functions to get
slightly more complex functions. A) Let k,£ > 0, let g: N*1->- N be a fc-ary
function, and let hi,...,hk be £-ary functions. Then the composition of g with
hi,..., hk is the £-arj function defined as f(ni ,...,m)= g(hi (ni,...,m),...,hk{ni,...,
ne)). B) Let k> 0, let g be a fc-ary function, and let h be a (k + 2)-ary function.
Then the function defined recursively by g and h is the (k + I)-ary function /

defined as f(ni,...,nk,0) = f(m,...,nk,m + 1) = h(nu,...,nk,m, for all ni, m * m, nk, m
e N. The primitive recursive functions are all basic functions, and all func-
functions that can be obtained by them by any number of successive
applications of composition and recursive definition. Example 4.7.1: The
function plus2, defined as plus2(n) =n+ 2 is primitive recursive, as it can be
obtained from the basic function succ by composition with itself. In particular,
letk=£=11nA) of Definition 4.7.1, and let g= hi = succ. Similarly, the
binary function plus, defined as plus(m, n) = m+ n is prim- primitive
recursive, because it can be recursively defined from functions obtained by
combining identity, zero, and successor functions. In particular, in Part 2 of
Definition 4.7.1 set k — 1, take g to be the idi.1 function, and let h be the
ternary function h(m,n,p) = succ(id3>3(m,n,p)) —the composition of succ with
1d3;3- The resulting recursively defined function is precisely the plus function:

plus(m,0) = m, plus(m,n + 1) = succ(plus(m,n)).

4.7: Numerical Functions 235 Why stop? The function multiplication mult(m,
n) = m m n is denned recur- recursively as mult(m,0) = zero(m), mult(m, n+ 1)
= plus(m, mult(m, n)), and the function exp(m,n) = mn is defined as exp(m, 0) =
succ(zero(m)), exp(m, n + 1) = mult(m, exp(m, n)). Hence all these functions
are primitive recursive. All constant functions of the form /(ni,..., rik) = 17 are
primitive recursive, since they can be obtained by composing an appropriate
zero function with the succ function, in this example seventeen times. Also, the
sign function sgn(n), which is zero if n = 0, and otherwise it is one, is also
primitive recursive: sgn(O) = 0, and sgn(n + 1) = 1. For better readability, we
shall henceforth use m + n instead of plus(m,n), m ¢ n instead of mult(m,n), and
m fn instead of exp(m,n). All numerical functions such as m-(n+ m2) + 178m
are thus primitive recursive, since they are obtained from the ones above by
successive compositions. Since we are confined within the natural numbers,
we cannot have true subtraction and division. However, we can define certain
useful functions along these lines, such as m~ n=max{m—n, 0}, and the
functions div(m,n) and rem(m, n) (the integer quotient and remainder of the
division of m by n; assume that they are both 0 if n = 0). First define the
predecessor function: pred(O) =0, pred(n + 1) = n, from which we get our
"nonnegative subtraction" functionm~ 0 =m, m~n+ 1 = pred(m ~ n). The
quotient and remainder functions will be defined in a subsequent example.s(} It
is rather clear that we can calculate the value of any primitive recursive
function for given values of its arguments. It is equally self-evident that we can

calculate the validity of assertions about numbers suchas mm n>m2 +n+ 7,

236 Chapter 4: TURING MACHINES for any given values of m and n. It is
convenient to define a primitive recursive predicate to be a primitive recursive
function that only takes values 0 and 1. Intuitively, a primitive recursive
predicate, such as greater-than(m,n), will capture a relation that may or may
not hold between the values of m and n. If the relation holds, then the primitive
recursive predicate will evaluate to 1, otherwise to 0. Example 4.7.2: The
function iszero, whichis 1 ifn=0, and 0 if n> 0, is a primitive recursive
predicate, defined recursively thus: iszero(O) = 1, iszero(m+ 1) = 0.
Similarly, isone(O) = 0, and isone(n + 1) = iszero(n). The predicate
positive(n) is the same as the already defined sgn(n). Also, greater-than-or-
equal(m,n), written m > n, can be defined as iszero(n ~ m). Its negation, less-
than(m,n) is of course 1 ~ greater-than-or-equal(m,n). In general, the negation
of any primitive recursive predicate is also a primitive recursive predicate. In
fact, so are the disjunction and conjunction of two primitive recursive
predicates: p(m,n) or q(m,n) is 1 ~ iszero(p(m,n) + q(m,n)), and p(m,n) and
q(m,n) is 1 ~ iszero(p(m,n) * q(m,n)). For example, equals(m,n) can be defined
as the conjunction of greater-than-or-equal(m,n) and greater-than-or-
equal(n,m). Furthermore, if / and g are primitive recursive functions and p is a
primitive recursive predicate, all three with the same arity k, then the function
denned by cases ,,, fg(nu...,nk), if p(m,... ,nk); j\nu...,nk)- (ni nfc) otherwise
otherwise is also primitive recursive, since it can be rewritten as: f{ni,...,nk)=
p(ni,..., nk) m g (ni,..., nk) + A~ p{nx,..., nk)) m h(ni,..., nk). As we shall see,
definition by cases is a very useful shorthand.0 Example 4.7.3: We can now
define div and rem. rem@,n) =0, , , 1 \ 0 if equal(rem(m,n),pred(n)); rem(m +
I,n)=<, ., ,. m [rem(m,n) + | otherwise,

4.7: Numerical Functions 237 and div@,n) =0, div(m+ 1 n) = { d'V"'m+ *>n)
+ * if equal(rem(m, n), pred(n)); 1 div(m, n) otherwise. Another interesting
function that turns out to be primitive recursive is digit(m,n,p), the m-th least
significant digit of the base-p representation of n. (As an illustration of the use
of digit, the predicate odd(n), with the obvi- obvious meaning, can be written
simply as digit(l,n, 2).) It is easy to check that digit(m,n,p) can be defined as
div(rem(n,pt m),p t (m~ !))m(> Example 4.7A: If f(n,m) is a primitive
recursive function, then the sum sum/(n, m) = f(n, 0) + f(n, 1) + 1- /(n, m) is
also primitive recursive, because it can be defined as sum/(n, 0) =0, and

sum/(n,m+ 1) = sum/(n, m) + f(n,m + 1). We can also define this way the
unbounded conjunctions and disjunctions of predicates. For example, if p(n, m)
is a predicate, the disjunction p(n, 0) or p(n, 1) or p(n, 2) or m * * or p(n, m) is
just sgn(sump(n,m)).O Evidently, starting from the extremely simple materials
of Definition 4.7.1, we can show that several quite complex functions are
primitive recursive. How- However, primitive recursive functions fail to
capture all functions that we should reasonably consider computable. This is
best established in terms of a diagonal- ization argument: Example 4.7.5: The
set of primitive recursive functions is enumerable. This 1s because each
primitive recursive function can in principle be defined in terms of the basic
functions, and therefore can be represented as a string in a finite alphabet; the
alphabet should contain symbols for the identity, successor, and zero functions,
for primitive recursion and composition, plus parentheses and the symbols 0
and 1 used to index in binary basic functions such as 1di7,n (see Section 5.2 for
another use of such indexing, this time to represent all Turing machines). We
could then enumerate all strings in the alphabet and keep only the ones that are
legal definitions of primitive recursive functions —in fact, we could choose to
keep only the unary primitive recursive functions, those with only one

argument.

238 Chapter 4: TURING MACHINES Suppose then that we list all unary
primitive recursive functions, as strings, in lexicographic order In principle,
given any number n > 0, we could find the n-th unary primitive recursive
function in this list, /,,, and then use its definition to compute the number fn{n)
+ 1. Call this number g(n). Clearly, g(n) is a computable func- function —we
just outlined how to compute it. Still, g is not a primitive recursive function.
Because if it were, say g = fm for some m > 0, then we would have fm{m) =
fm(m) + 1, which is absurd. This 1s a diagonalization argument. It depends on
our having a sequential listing of all primitive recursive functions; from that
listing one can define a function which differs from all those in the list, and
which, therefore, cannot itself be in the list. Compare this argument with the
proof of Theorem 1.5.2, stating that 2N is uncountable. There we started with a
purported listing of all the members of 2N, and obtained a member of 2N not in
the listing.” Evidently, any way of defining functions so that they encompass
everything we could reasonably call "computable" cannot be based only on
simple opera- operations such as composition and recursive definition, which
produce functions that can always and reliably be recognized as such, and

therefore enumerated. We have thus discovered an interesting truth about
formalisms of computation: Any such formalism whose members
(computational devices) are self-evident (that is, given a string we can decide
easily whether it encodes a computational device in the formalism) must be
either too weak (like finite-state automata and prim- primitive recursive
functions) or so general as to be useless in practice (like Turing machines that
may or may not halt on an input). Any formalism that cap- captures all
computable functions, and just these, must include functions that are not self-
evident (just as it is not self-evident whether a Turing machine halts on all
inputs, and thus decides a language). Indeed, we define next a subtler operation
on functions, corresponding to the familiar computational primitive of
unbounded iteration —essentially the while loop. As we shall see, unbounded
iteration does introduce the possibility that the result may not be a function.
Definition 4.7.2: Let gbe a (k + 1)-ary function, for some k> 0. The
minimalization of g is the fc-ary function / defined as follows: ithe least m such
that g{nx, ...,nk,m) = I, if such an m exists; 0 otherwise. We shall denote the
minimalization of g by /z m[g(ni,..., nk,m) = 1].

4.7: Numerical Functions 239 Although the minimalization of a function g is
always well-defined, there is no obvious method for computing it —even if we
know how to compute g. The obvious method m:=0; while g(ni,..., n*, m) * 1
do m:=m+ 1; output mis not an algorithm, because it may fail to terminate.
Let us then call a function g minimalizable if the above method always
terminates. That is, a [k + 1)-ary function g is minimalizable if it has the
following property: For every ni,...,nk £ N, there is an m 6 N such that
g(ni,...,nk,m) = 1. Finally, call a function /z-recursive if it can be obtained from
the basic functions by the operations of composition, recursive definition, and
minimal- minimalization of minimalizable functions. Note that now we cannot
repeat the diagonalization argument of example 4.7.5 to show that there is a
computable function that is not /z-recursive. The catch is that, given a
purported definition of a /x-recursive function, it is not clear at all whether
indeed it defines a "-recursive function —that is, whether all applications of
minimalization in this definition indeed acted upon minimalizable functions!
Example 4.7.6: We have defined an inverse of addition (the ~ function), and an
inverse of multiplication (the div function); but how about the inverse of
exponentiation —the logarithm? Using minimalization J we can define the log-
logarithm function: log(m,n) is the smallest power to which we must raise m +

2 to get an integer at least as big as n+ 1 (that is, log(m,n) = |"logm+2(n + 1)];
we have used m+ 2 and n+ 1 as arguments to avoid the mathematical pitfalls
in the definition of logm n when m < 1 or n = 0). The function log is defined as
follows: log(m, n) = /z p| greater-than-or-equal((m + 2) f P, n+1)]. Note that
this 1s a proper definition of a /z-recursive function, since the function g(m,n,p)
= greater-than-or-equal((m+ 2) fp, n+ 1) is minimalizable: indeed, for any m,
n> 0 there is p > 0 such that (m + 2)p > n—because by raising an integer > 2
to larger and larger powers we can obtain arbitrarily large integers.<£ We can
now prove the main result of this section: ' The logarithm function can be
defined without the minimalization operation, see Problem 4.7.2. Our use of
minimalization here is only for illustration and convenience.

240 Chapter 4: TURING MACHINES Theorem4.7.1: A function f: ~Nk h->
N is *-recursive if and only if it is recursive (that is, computable by a Turing
machine). Proof: Only if: Suppose that/ is a /x-recursive function. Then it is
defined from the basic functions by applications of composition, recursive
definition, and minimalization on minimalizable functions. We shall show that /
is Turing computable. First, it is easy to see that the basic functions are
recursive: We have seen this for the successor function (Example 4.2.3), and
the remaining functions only involve erasing some or all of the inputs. So,
suppose that / : N* h-> N is the composition of the functions g : Nf h-> N and
hi,..., hi : N* k> N, where, by induction we know how to compute g and the
hi's. Then we can compute / as follows (in this and the other cases we give
programs in the style of random access Turing machine programs that compute
these functions; it is fairly easy to see that the same effect can be achieved by
standard Turing machines): mi := hi(ni,.. .,nk); m2 := h2 {ni,... ,n/.); me :=
hf(ni,... ,nk)\ output g(mi,... ,mi. Similarly, if/ is defined recursively from g and
h (recall the definition), then /(ni,... ,nk,m) can be computed by the following
program: v := g(m,...,nk); if m = 0 then output v else for i :=1,2,... mdo v :=
h(ni,... ,nk,i - 1,v); output v. Finally, suppose that / is defined as /z m[g(r11,...,
nk,m)\, where g is min- minimalizable and computable. Then / can be
computed by the program m :=0; while g(rii,..., nk,m) * 1 do m := m+ 1; output
m Since we are assuming the g is minimalizable, the algorithm above will
terminate and output a number. We have therefore proved that all basic
functions are recursive, and that the composition and the recursive definition of
recursive functions, and the mini- minimalization of minimalizable recursive
functions, are recursive; we must conclude

4.7: Numerical Functions 241 that all /z-recursive functions are recursive. This
completes the only if direction of the proof. //. Suppose that a Turing machine
M=(K, S, S, s, {h}) computes a function/ : N h-> N —we are assuming for
simplicity of presentation that / is unary; the general case is an easy extension
(see Problem 4.7.5). We shall show that/ is /i-recursive. We shall patiently
define certain /z-recursive functions pertaining to M and its operation until we
have accumulated enough materials to define / itself. Assume without loss of
generality that K and £ are disjoint. Let 6 = |S| 4- \K\, and let us fix a mapping
E from T,LIK to {0,1,..., b-1}, such that E@) = 0 and E(1) = 1 —recall that,
since M computes a numerical function, its alphabet must contain 0 and 1.
Using this mapping, we shall represent configurations of M as integers in base-
6. The configuration (q, a\a,i... a" m m m an), where the a,'s are symbols in S,
will be represented as the base-6 integer a\a” m m m a"qak+i m m m an, that is,
as the integer E(0iNn+E(a2N"-1 + - m m+E(ak)bn-k+1+E(q)bn-k+E(ak+1)bn-
k-1 + - m -+E(an) We are now ready to embark on the definition of / as a /z-
recursive function. Ultimately, / will be defined as f(n) =
num(output(last(comp(n)))). num is a function that takes an integer whose base-
6 representation is a string of 0's and 1's and outputs the binary value of that
string, output takes the integer representing in base 6 a halted configuration of
the form > U hw, and omits the first three symbols > U h. comp(n) is the
number whose representation in base 6 is the juxtaposition of the unique
sequence of configurations that starts with > LJ sw, where w is the binary
encoding of n, and ends with > LJ hw', where w' is the binary encoding of /(n);
such a sequence exists, since we are assuming that M computes a function —
namely, /. And last takes an integer representing the juxtaposition of
configurations, and extracts the last configuration in the sequence (the part
between the last > and the end). Of course, we have to define all these
functions. We give most of the def- definitions below, leaving the rest as an
exercise (Problem 4.7.4). Let us start with, well, last. We can define
lastpos(n), the last (rightmost, least significant) position in the string encoded
by n in base 6 where a > occurs: lastpos(n) = /x m[equal(digit(m,n, b), E(>))
or equal(m,n)]. Notice that, in order to make the function within the brackets
minimalizable, we allowed lastpos(n) to be nif no > is found in n. Incidentally,
this 1s another

242 Chapter 4: TURING MACHINES superficial use of minimalization, as
this function can be easily redefined without the use of minimalization. We can

then define last(n) as rem(n, 6 flastpos(n)). We could also define rest(n), the
sequence that remains after the deletion of last(n), as div(n,6 flastpos(n)).
output(n) is simply rem(n, b j logF ~ 2,n~ 1) ~ 2) —recall our convention that
the arguments of log must be decreased by 2 and 1, respectively. The function
num(n) can be written as the sum digit(l, n, b) m 2+digitB, n, b) m2 2 + e«
+digit(logF ~2,n~ 1), n, 6) * 2 flogF ~ 2, n~ 1). This is a /z-recursive
function since both the summand and the bound logF ~ 2,n ~ 1) are. Its inverse
function, bin(n), which maps any integer to the string that is its binary
encoding, encoded again in as a base-ft integer, is very similar, with the roles
of 2 and b reversed. The most interesting (and hard to define) function in the
definition of f(n) above is comp(n), which maps n to the sequence of
configurations of M that carries out the computation of f(n) —in fact, the base-
6 integer that encodes this sequence. At the highest level, it is just comp(n) = fi
m[iscomp(m,n) and halted(last(m))], A) where iscomp(m, n) is a predicate
stating that m is the sequence of configurations in a computation, not
necessarily halted, starting from >sb(n). (Incidentally, this 1s the only place in
this proof in which minimalization is truly, inherently needed.) Notice that the
function within the brackets in A) is indeed minimaliz- able: Since M is
assumed to compute /, such a sequence m of configurations will exist for all n.
halted(n) is simply equal(digit(logF - 2, n~ 1) ~ 2,n,6),E(/1)). We leave the
precise definition of iscomp as an exercise (Problem4.7.4). It follows that / is
indeed a /i-recursive function, and the proof of the theorem has been
completed. m Problems for Section4.7 4.7.1. Let/ : N h-> N be a primitive
recursive function, and define F : N *-¥ N by F(n) =/(/(/(.../(«)...))), where
there are n function compositions. Show that F is primitive recursive. 4.7.2.
Show that the following functions are primitive recursive: (a) factorial(n) = n\.
(b) gcd(m,n), the greatest common divisor of m and n. (c¢) prime(n), the
predicate that is 1 if n is a prime number. (d) p(n), the nth prime number, where
p@) =2, p(l) =3, and so on. (e) The function log defined in the text.

References 243 4.7.3. Suppose that / is a /z-recursive bijection from N to N.
Show that its inverse, Z, is also /z-recursive. 4.7.4. Show that the function
iscomp described in the proof of Theorem 4.7.1 is primitive recursive. 4.7.5.
Which modifications must be made to the construction in the proof of the if
directions of Theorem 4.7.1 if M computes a function / : Nfc h-> N with k> 1?
4.7.6. Develop a representation of primitive recursive functions as strings in
an alphabet S of your choice (see the next chapter for such a representation of

Turing machines). Formalize the argument in Example 4.7.5 that not all
computable functions can be primitive recursive. REFERENCES Turing
machines were first conceived by Alan M. Turing: o A. M. Turing "On
computable numbers, with an application to the Entschei- dungsproblem,"
Proceedings, London Mathematical Society, 2, 42 pp. 230-265, and no. 43, pp.
544-546, 1936. Turing introduced this model in order to argue that all detailed
sets of instructions that can be carried out by a human calculator can also be
carried out by a suitably defined simple machine. For the record, Turing's
original machine has one two-way infinite tape and one head (see Section
17-5). A similar model was independently conceived by Post; see o E. L. Post
"Finite Combinatory Processes. Formulation I," Journal of Symbolic Logic, 1,
pp. 103-105, 1936. The following books contain interesting introductions to
Turing machines: o M. L. Minsky Computation: Finite and Infinite Machines,
Englewood Clifts, N.J.: Prentice-Hall, 1967. o F. C. Hennie Introduction to
Computability, Reading, Mass.: Addison-Wesley, 1977. The following are
other advanced books on Turing machines and related concepts in- introduced
in this and the three subsequent chapters: o M. Davis, ed., The Undecidable,
Hewlett, N.Y.: Raven Press, 1965. (This book contains many original articles
on several aspects of the subject, including the papers of Turing and Post cited
above.) o M. Davis, ed., Computability and Unsolvability New York:
McGraw-Hill, 1958. o S. C. Kleene, Introduction to Metamathematics,
Princeton, N.J.: D. Van Nos- trand, 1952, o W. S. Brainerd and L. H.
Landweber, Theory of Computation, New York: John Wiley, 1974,

244 Chapter 4: TURING MACHINES o M. Machtey and P. R. Young, An
Introduction to the General Theory of Algo- Algorithms, New York: Elsevier
North-Holland, 1978, o H. Rogers, Jr., The Theory of Recursive Functions and
Effective Computability, New York: McGraw-Hill, 1967, o M. Sipser,
Introduction to the Theory of Computation, Boston, Mass.: PWS Publishers,
1996, o J. E. Hopcroft and J. D. Ullman Introduction to Automata Theory,
Languages, and Computation, Reading, Mass.: Addison Wesley, 1979. o C. H.
Papadimitriou Computational Complexity, Reading, Mass.: Addison Wes-
Wesley, 1994. o H. Hermes, Enumerability, Decidability, Computability, New
York: Springer Verlag, 1969 (translated from the German edition, 1965). Our
notion and notation for combining Turing machines (Section 4-3) was
influenced by this last book. Random access machines, similar in spirit to our
"random access Turing machines" in Section 2.4, were studied in o S. A. Cook

and R. A. Reckhow "Time-bounded random-access machines," Jour- Journal
of Computer and Systems Sciences, 7, 4, pp. 354-375, 1973. Primitive and fi-
recursive functions are due to Kleene o S. C. Kleene "General recursive
functions of natural numbers," Mathematische Annalen, 112, pp. 727-742,
1936, and Markov Algorithms (Problem 2.6.5) are from o A. A. Markov
Theory of Algorithms, Trudy Math. Inst. V. A.Steklova, 1954. English
translation: Israel Program for Scientific Translations, Jerusalem, 1961.

Undecidability 5.1 THE CHURCH-TURING THESIS In this book we address
this question: What can be computed? (And, more in- triguingly, what cannot
be computed?) We have introduced various and diverse mathematical models
of computational processes that accomplish concrete com- computational tasks
—in particular, decide, semidecide, or generate languages, and compute
functions. In the previous chapter we saw that Turing machines can carry out
surprisingly complex tasks of this sort. We have also seen that certain
additional features that we might consider adding to the basic Turing machine
model, including a random access capability, do not increase the set of tasks
that can be accomplished. Also, following a completely different path (namely,
trying to generalize context-free grammars), we arrived at a class of language
generators with precisely the same power as Turing machines. Finally, by try-
trying to formalize our intuitions on which numerical functions can be
considered computable, we defined a class of functions that turned out to be
precisely the recursive ones. All this suggests that we have reached a natural
upper limit on what a computational device can be designed to do; that our
search for the ultimate and most general mathematical notion of a
computational process, of an algo- algorithm, has been concluded successfully
—and the Turing machine is the right answer. However, we have also seen in
the last chapter that not all Turing ma- machines deserve to be called
"algorithms:" We argued that Turing machines that semidecide languages, and
thus reject by never halting, are not useful compu- computational devices,
whereas Turing machines that decide languages and compute functions (and
therefore halt at all inputs) are. Our notion of an algorithm must 245

246 Chapter 5: UNDECIDABILITY exclude Turing machines that may not halt
on some inputs. We therefore propose to adopt the Turing machine that halts on
all inputs as the precise formal notion corresponding to the intuitive notion of

an "algo- "algorithm. " Nothing will be considered an algorithm if it cannot be

rendered as a Turing machine that is guaranteed to halt on all inputs, and all
such machines will be rightfully called algorithms. This principle is known as
the Church- Turing thesis. It is a thesis, not a theorem, because it is not a
mathematical result: It simply asserts that a certain informal concept
(algorithm) corresponds to a certain mathematical object (Turing machine).
Not being a mathematical statement, the Church-Turing thesis cannot be
proved. It is theoretically possi- possible, however, that the Church-Turing
thesis could be disproved at some future date, if someone were to propose an
alternative model of computation that was publicly acceptable as a plausible
and reasonable model of computation, and yet was provably capable of
carrying out computations that cannot be carried out by any Turing machine. No
one considers this likely. Adopting a precise mathematical notion of an
algorithm opens up the in- intriguing possibility of formally proving that
certain computational problems can- cannot be solved by any algorithm. We
already know enough to expect this. In Chapter 1 we argued that if strings are
used to represent languages, not ev- every language can be represented: there
are only a countable number of strings over an alphabet, and there are
uncountably many languages. Finite automata, pushdown automata, context-free
grammars, unrestricted grammars, and Tur- Turing machines are all examples
of finite objects that can be used for specifying languages, and that can be
themselves described by strings (in the next section we develop in detail a
particular way of representing Turing machines as strings). Accordingly, there
are only countably many recursive and recursively enumer- enumerable
languages over any alphabet. So although we have worked hard to extend the
capabilities of computing machines as far as possible, in absolute terms they
can be used for semideciding or deciding only an infinitesimal fraction of all
the possible languages. Using cardinality arguments to establish the limitation
of our approach is trivial; finding particular examples of computational tasks
that cannot be ac- accomplished within a model is much more interesting and
rewarding. In earlier chapters we did succeed in finding certain languages that
are not regular or context-free; in this chapter we do the same for the recursive
languages. There are two major differences, however. First, these new
negative results are not just temporary setbacks, to be remedied in a later
chapter where an even more powerful computational device will be defined:
according to the Church-Turing thesis, computational tasks that cannot be
performed by Turing machines are impossible, hopeless, undecidable. Second,
our methods for proving that lan- languages are not recursive will have to be

different from the "pumping" theorems we used for exploiting the weaknesses
of context-free grammars and finite au-

5.2: Universal Turing Machines 247 tomata. Rather, we must devise techniques
for exploiting the considerable power of Turing machines in order to expose
their limitations. The aspect of the power of Turing machines that we will
explore 1s a kind of introspective ability they possess: We point out that Turing
machines can receive encodings of Turing machines as inputs, and manipulate
these encodings in interesting ways. We will then ask what happens when a
Turing machine manipulates an encoding of itself —an ingenious yet simple
application of the diagonalization principle. How to encode a Turing machine
so it can be manipulated by another (or the same!) Turing machine is thus our
next subject. 5.2 UNIVERSAL TURING MACHINES Is hardware or software
the basis of computation? You may have an opinion on the matter —and on
whether the question is meaningful and productive. But the fact is that the
formalism for algorithms we introduced and developed in the last chapter —
the Turing machine— is an "unprogrammable" piece of hardware, specialized
at solving one particular problem, with instructions that are "hard-wired at the
factory." We shall now take the opposite point of view. We shall argue that
Tur- Turing machines are also software. That is, we shall show that there is a
certain "generic" Turing machine that can be programmed, about the same way
that a general-purpose computer can, to solve any problem that can be solved
by Turing machines. The "program" that makes this generic machine behave
like a specific machine M will have to be a description of M. In other words,
we shall be thinking of the formalism of Turing machines as a programming
language, in which we can write programs. Programs written in this language
can then be interpreted by a universal Turing machine —that is to say, another
program in the same language. That a program written in a language can
interpret any program in the same language is not a very novel idea —it is the
basis of the classical method for "bootstrapping" language processors.T But to
continue with ' Language implementors often write translators for a
programming language in the same programming language. But how is the
translator to be itself translated? One way to do this is the following: Write the
translator in a simple fragment of the same language, leaving out the more
sophisticated (and difficult to translate) features of the language. Then write a
translator for this fragment —a much simplified task— in an even more
stripped-down version of the language. Continue this way until your language

is so simple and explicit that it resembles an assembly language, and so it can
be directly translated in one.

248 Chapter 5: UNDECIDABILITY our project in this book we must make this
point precise in the context of Turing machines. To begin, we must present a
general way of specifying Turing machines, so that their descriptions can be
used as input to other Turing machines. That is, we must define a language
whose strings are all legal representations of Turing machines. One problem
manifests itself already: No matter how large an alpha- alphabet we choose for
this representation, there will be Turing machines that have more states and
more tape symbols. Evidently, we must encode the states and tape symbols as
strings over a fixed alphabet. We adopt the following conven- convention: A
string representing a Turing machine state is of the form {g} {0,1}*; that is, the
letter q followed by a binary string. Similarly, a tape symbol is always
represented as a string in {0} {0,1}*. Let M = (K, £, <5, s, H) be a Turing
machine, and let 1 and j be the smallest integers such that 2* >\K\, and 2j > |S|
+ 2. Then each state in K will be represented as a q followed by a binary
string of length 1; each symbol in £ will be likewise represented as the letter a
followed by a string of j bits. The head directions <— and —> will also be
treated as "honorary tape symbols" (they were the reason for the "+2" term in
the definition of j). We fix the representations of the special symbols U,t>, <—,
and —>+ to be the lexicographically four smallest symbols, respectively: U
will always be represented as o(P, > as aO07']., <— as a(P~210, and —>* as
a(P~211. The start state will always be represented as the lexicographically
first state, qOI. Notice that we require the use of leading zeros in the strings
that follow the symbols a and g, to bring the total length to the required level.
We shall denote the representation of the whole Turing machine M as "M".
"M", consists of the transition table S. That is, it is a sequence of strings of the
form (qta,p,b), with q and p representations of states and a, b of symbols,
separated by commas and included in parentheses. We adopt the convention
that the quadruples are listed in increasing lexicographic order, starting with
<$(s,l_1). The set of halting states H will be determined indirectly, by the
absence of its states as first components in any quadruple of "M". If M decides
a language, and thus H = {y, n}, we will adopt the convention that y is the
lexicographically smallest of the two halt states. This way, any Turing machine
can be represented. We shall use the same method to represent strings in the
alphabet of the Turing machine. Any string kjGS' will have a unique

representation, also denoted "w", namely, the juxta- juxtaposition of the
representations of its symbols.

5.2: Universal Turing Machines 249 Example 5.2.1: Consider the Turing
machine M = (K, T,,S,s,{h}), where K = {s, q, h}, S= {U, >, o}, and 6 is given
in this table. state, s s s q q g symbol a U>a U>6 (?.U) (/I,U) («,"P) (s,a)
(«,->) Since there are three states in K and three symbols in E, we have z= 2
and j = 3. These are the smallest integers such that 21 > 3 and 2J> 3 + 2. The
states and symbols are represented as follows: state/symbol sqhu><-a
representation qOO qOlI qll 0000 000l 0010 aOll olOO Thus, the
representation of the string >aa Uais " >o0o Uo" =
000I0I000I0000000IO0. The representation "M" of the Turing machine M
is the following string: "M" = (qOO, alOO0O, qOl, a000), (gO0, 0000, qll,
0000), (gO0, 000l, gOO, o0ll), (gO1, 0100, gOO, 00ll), (qO1, a0OO0,
g00, o0ll), {qOl, 0o00OlI, gOl, 011).<> Now we are ready to discuss a
universal Turing machine U, which uses the encodings of other machines as
programs to direct its operation. Intuitively, U takes two arguments, a
description of a machine M, "M", and a description of an input string w, "w".
We want U to have the following property: U halts on input "M" "w" if and
only if M halts on input w. To use the functional notation for Turing machines
we developed in the last chapter,

250 Chapter 5: UNDECIDABILITY We actually describe not the single-tape
machine U, but a closely related 3- tape machine U' (then U will be the single-
tape Turing machine that simulates [/'). Specifically, U' uses its three tapes as
follows: the first tape contains the encoding of the current tape contents of M;
the second tape contains the encoding of M itself; and the third tape contains
the encoding of the state of M at the current point in the simulated computation.
The machine U' is started with some string "M" "w" on its first tape and the
other two tapes blank. (It does not matter how U' behaves if its input string is
not of this form.) First U' moves "M" onto the second tape and shifts "w" down
to the left end of the first tape, preceding it by " > U". Thus at this point the first
tape contains ">Uw". U' writes in the third tape the encoding of the initial state
s of M, always q01 (U1 can easily determine 1 and j by examining "M"). Now
U' sets about simulating the steps of the computation of M. Between such
simulated steps, U' will keep the heads on the second and third tapes at their
left ends, and the head of the first tape scanning the a of the encoded version of

the symbol that M would be scanning at the corresponding time. U' simulates a
step of M as follows: It scans its second tape until 1t finds a quadruple whose
first component matches the encoded state written in its third tape, and whose
second component matches the encoded symbol scanned in the first tape. If it
finds such a quadruple, it changes the state to the third component of that
quadruple, and performs in the first tape the action suggested by the fourth
component. If the fourth component encodes a symbol of the tape alphabet of
M, this symbol is written in the first tape. If the fourth component is o(P~210,
the encoding of «-, then U' moves its first head to the first a symbol to the left,
and if it 1s the encoding of —>, to the right. If a U is encountered, U' must
convert it to aCF, the encoding of a blank of M. If at some step the state-symbol
combination is not found in the second tape, this means that the state is a
halting state. U' also halts at an appropriate state. This completes our
description of the operation of U'. Problems for Section 5.2 5.2.1. Recall the
Turing machine M in Example 4.1.1 (a) What is the string "M"? (b) What is the
representation of the string aaal (c) Suppose that the universal C-tape) Turing
machine U' described in this chapter simulates the operation of M on input aaa.
What are the contents of the tapes of U' at the beginning of the simulation? At
the beginning of the simulation of the third step of Ml 5.2.2. By analogy to the
universal Turing machine, we could hope to design a universal finite automaton
U that accepts the language {"M" "w" : w G L(M)}. Explain why universal
finite automata cannot exist.

5.3: The Halting Problem 251 5.3 THE HALTING PROBLEM Suppose that
you have written a program, in your favorite programming lan- language, that
performs the following remarkable feat: It takes as input any pro- program P,
written in the same language, and an input X of that program. By some clever
analysis, your program always determines correctly whether the pro- program
P would halt on input X (it returns "yes" if it does), or whether it would run
forever (it returns "no"). You have named this program halts(F, X). This 1s a
most valuable program. It discovers all sorts of subtle bugs that make other
programs run forever on certain inputs. Using it you can achieve many
remarkable things. Here is one somewhat subtle example: You can use it to
write another program, with the ominous name diagonal(X) (recall the proof
by diagonalization that 2N is not countable in Section 1.5): diagonal(X) a : if
halts(X, X) then goto a else halt Notice what diagonal(X) does: If your halts
program decides that program X would halt if presented with itself as, input,

then diagonal(X) loops forever; otherwise it halts. And now comes the
unanswerable question: Does diagonal(diagonal) halt? It halts if and only if the
call halts(diagonal, diagonal) returns "no"; in other words, it halts if and only
if it does not halt. This is a contradiction: we must conclude that the only
hypothesis that started us on this path is false, that program halts(P, X) does not
exist. That is to say, there can be no program, no algorithm for solving the
problem halts would solve: to tell whether arbitrary programs would halt or
loop. This kind of argument should be familiar not only from your past
exposure to computer science, but also from general twentieth-century culture.
The point 1s that we have now introduced all the necessary machinery for
presenting a formal, mathematically rigorous version of this paradox. We have
a full-fledged notation for algorithms, a "programming language" of sorts: the
Turing ma- machine. In fact, in the last section we introduced one last feature
we need: we have developed a framework that allows our "programs" to
manipulate other programs and their inputs —exactly as our fictitious program
halts(P, X) does. We are thus ready to define a language that is not recursive,
and prove that it is not. Let H = {"M" "w" : Turing machine M halts on input
string w}. Notice first that H is recursively enumerable: It is precisely the
language semide- cided by our universal Turing machine U in the previous
section. Indeed, on input "M" "w", U halts precisely when the input is in H.

252 Chapter 5: UNDECIDABILITY Furthermore, if H is recursive, then every
recursively enumerable language is recursive. In other words, H holds the key
to the question we asked in Section 4.2, whether all recursively enumerable
languages are also Turing decidable: the answer is positive if and only if H is
recursive. For suppose that It is indeed decided by some Turing machine Mo-
Then given any particular Turing machine M semideciding a language (M),
we could design a Turing machine M' that decides (M) as follows: First, M'
transforms its input tape from> U w\A to >"M" "w"U and then simulates Mo
on this input. By hypothesis, Mo will correctly decide whether or not M
accepts w. Anticipating the issues dealt with in Chapter 7, we could say that
there are reductions from all recursively enumerable languages to H, and thus
H 1s complete for the class of recursively enumerable languages. But we can
show, by formalizing the argument for halts(F, X) above, that H is not
recursive. First, if H were recursive, then Hi = { "M" : Turing machine M halts
on input string "M" } would also be recursive. (H\ stands for the halts(Jf, X)
part of the diagonal program.) If there were a Turing machine Mq that could

decide H, then a Turing machine Mi to decide Hi would only need to transform
its input string > U "M"U to > U "M" "M"U and then yield control to Mo.
Therefore, it suffices to show that Hi is not recursive. Second, if Hi, were
recursive, then its complement would also be recursive: Hi = {w : either w is
not the encoding of a Turing machine, or it is the encoding "M" of a Turing
machine M that does not halt on "M"}. This is so because the class of
recursive languages is closed under complement (Theorem 4.2.2). Incidentally,
Hi is the diagonal language, the analog of our diagonal program, and the last
act of the proof. But Hi cannot even be recursively enumerable —Ilet alone
recursive. For suppose M* were a Turing machine that semidecided Hi. Is
"M*" in Hi"? By definition of Hi, "M*" G Hi if and only if M* does not accept
input string "M*". But M* is supposed to semidecide ~H~I, so "M*" e ~H~I if
and only if M* accepts "M*". We have concluded that M* accepts "M*" if and
only if M* does not accept "M*". This is absurd, so the assumption that Mo
exists must have been in error. Let us summarize the development of this
section. We wanted to discover whether every recursively enumerable
language is recursive. We observed that this would be true if and only if the
particular recursively enumerable language H were recursive. From H we
derived, in two steps, the language Hi, which has to be recursive in order for
H to be recursive. But the assumption that Hi is recursive led to a logical
contradiction, by diagonalization. We have therefore proved the following
most important theorem.

5.3: The Halting Problem 253 Theorem 5.3.1: The language H is not recursive;
therefore, the class of recur- recursive languages is a strict subset of the class
of recursively enumerable languages. We said earlier that this argument is an
instance of the diagonalization principle used in Section 1.5 to show that 2N is
not countable. To see why, and to underscore one more time the essence of the
proof, let us define a binary relation R on strings over the alphabet used for the
encoding of Turing machines: (u, w) G R if and only ifu="M" for some
Turing machine M that accepts w. (R is a version of H.) Now let, for each
string u, Ru= {w : (u, w) € R] (the 1?u's correspond to the recursively
enumerable languages), and consider the diagonal of R, that is, D = {w: (w,w)
<£ R} (D 1s H\). By the diagonalization principle, D * Ru for all u; that is, Hi
is a language different from any recursively enumerable language. And why is
D ~ Ru for any u? Because D differs, by its very construction, from each Ru
(and therefore from each recursively enumerable language) on at least one

string —namely, u. Theorem 5.3.1 answers negatively the first of the two
questions we posed in the end of Section 4.2 ("is every recursively enumerable
language also re- recursive?" and "is the class of recursively enumerable
languages closed under complement?"). But the same proof supplies the
answer to the other question. It is easy to see that Hi, like H, is recursively
enumerable, and we have shown that Hi is not recursively enumerable.
Therefore we have also proved the fol- following result. Theorem 5.3.2: The
class of recursively enumerable languages i1s not closed under complement.
Problems for Section 5.3 5.3.1. We can find a particular example of a
nonrecursive function without using a diagonal argument. The busy-beaver
function /? : N i-> N is defined as follows: For each integer n, C{n) is the
largest number m such that there is a Turing machine with alphabet {>, U,o, 6}
and with exactly n states which, when started with the blank tape, eventually
halts at configuration (a) Show that, if / is any recursive function, then there is
an integer kf such that C(n + kf) > f(n). (kf is the number of states in the Turing
machine Mf, which, when started with input o™, halts with a"T™) on its tape.)

254 Chapter 5: UNDECIDABILITY (b) Show that C is not recursive.
(Suppose it were; then so would be f(n) = CBn). Apply the result in (a)
above.) 5.3.2. We know that the class of recursively enumerable languages is
not closed under complementation. Show that it is closed under union and
intersection. 5.3.3. Show that the class of recursive languages is closed under
union, comple- complementation, intersection, concatenation, and Kleene star.
5.4 UNDECIDABLE PROBLEMS ABOUT TURING MACHINES We have
proved a momentous result. Let us back off a bit and see what it says on the
intuitive level, in light of the Church-Turing thesis. Since the proof establishes
that H 1s not recursive, and we have accepted the principle that any algorithm
can be turned into a Turing machine that halts on all inputs, we must conclude
that there is no algorithm that decides, for an arbitrary given Turing machine M
and input string w, whether or not M accepts w. Problems for which no
algorithms exist are called undecidable or unsolvable; we shall see many of
them in this chapter. The most famous and fundamental undecidable problem is
the one of telling whether a given Turing machine halts on a given input —
whose undecidability we just established. This problem is usually called the
halting problem for Turing machines. Note that the undecidability of the halting
problem in no way implies that there may not be some circumstances under
which it is possible to predict whether a Turing machine will halt on an input

string. In Example 4.1.2 we were able to conclude that a certain simple
machine i1s bound to never halt on a certain input. Or we might examine the
transition table of the Turing machine, for example, to check whether a halt
state i1s anywhere represented; if not, the machine cannot halt on any input
string. This and more complex analyses may yield some useful information for
certain cases; but our theorem implies that any such analysis must ultimately
either be inconclusive or yield incorrect results: There is no completely
general method that correctly decides all cases. Once we have established, by
diagonalization, that the halting problem is undecidable, the undecidability of a
great variety of problems follows. These results are proved not by further
diagonalizations, but by reductions: we show in each case that if some
language 1.2 were recursive, then so would be some language Lx, already
known not to be recursive. Definition 5.4.1: Let I/1,1/2 Q S* be languages. A
reduction from Lx to L2 1s a recursive function r : X* h> X* such that x € L\ if
and only if t(x) G £2-

5.4: Undecidable Problems about Turing Machines 255 The reader must take
care to understand the "direction" in which a reduc- reduction is to be applied.
To show that a language L2 is not recursive, we must identify a language L\ that
1s known to be not recursive, and then reduce L\ to 1/2- To reduce L2 to L\
would achieve nothing: it would merely show that L2 could be decided if we
could decide L\ —which we know we cannot. Formally, the correct use of
reductions in proofs of undecidability is the following: Theorem 5.4.1: If Li 1s
not recursive, and there is a reduction from L\ to L2, then Z/2 is also not
recursive. Proof: Suppose that .2 is recursive, say decided by Turing machine
M2, and let T be the Turing machine that computes the reduction r. Then the
Turing machine TM2 would decide Lx. But Li is undecidable —a
contradiction. m We next use reductions to show that several problems about
Turing ma- machines are undecidable. Theorem 5.4.2: The following problems
about Turing machines are undecid- undecidable. (a) Given a Turing machine
M and an input string w, does M halt on input w? (b) Given a Turing machine
M, does M halt on the empty tape? (c) Given a Turing machine M, is there any
string at all on which M halts? (d) Given a Turing machine M, does M halt on
every input string? (e) Given two Turing machines M\ and Mi, do they halt on
the same input strings? (f) Given a Turing machine M, is the language that M
semidecides regular? Is it context-free? Is it recursive? (g) Furthermore, there
is a certain fixed machine M, for which the following problem is undecidable:

Given w, does M halt on w? Proof: Part (a) was proved in the previous
section, (b) We describe a reduction from H to the language L= {"M" : M halts
one}. Given the description of a Turing machine M and an input x, our
reduction simply constructs the description of a Turing machine Mw that
operates as follows: Mw, when started on the empty tape (that is, in
configuration (s,t>LJ)), writes w on its tape and then starts to simulate M. In
other words, if w = O1i ¢ ¢ ¢ an, then Mw is simply the machine Ra\Ra2R m. m
Ranl.uM.

256 Chapter 5: UNDECIDABILITY And it is easy to see that the function r that
maps "M" "w" to "Mw" is indeed recursive. (¢) We can reduce the language L
shown to be nonrecursive in Part (b) to the language V= {"M" : M halts on
some input}, as follows. Given the repre- representation of any Turing machine
M, our reduction constructs the representation of a Turing machine M' that
erases any input it is given, and then simulates M on the empty string. Clearly,
M' halts on some string if and only if it halts on all strings, if and only if M
halts on the empty string. (d) The argument for Part (¢) works here as well,
since M' is constructed so that it accepts some input if and only if it accepts
every input. (¢) We shall reduce the problem in Part (d) to this one. Given the
descrip- description of a machine M, our reduction constructs the string "j/" is
the description of the machine that immediately accepts any input. Clearly, the
two machines M and y accept the same inputs if and only if M accepts all
inputs. (f) We reduce the problem in Part (b) above to the present one. We
show how to modify any Turing machine M to obtain a Turing machine M' such
that M' halts either on the strings in H or on no strings, depending on whether
M halts on the empty string or not. Since there is no algorithm for telling
whether M halts on the empty string, there can be none for telling whether
L(M) 1s O (which is regular, context-free, and recursive) or H (which is none
of the three). First, M' saves its input string and initiates whatever M would do
on input e. When and if M would halt, M' restores its input and carries out on
that input the operation of the universal Turing machine U. Thus M' either halts
on no input, because it never finishes imitating M on input e, or else it halts on
precisely the strings in H. (g) The fixed machine Mo alluded to in the statement
of the theorem is precisely the universal Turing machine U. m Problems for
Section 5.4 5.4.1. Say that Turing machine M uses k tape squares on input
string w if and only if there is a configuration of M, (g, uav), such that (s,
t>LJw) \-*M (q, vav) and \uav\ > k. (a) Show that the following problem is

solvable: Given a Turing machine M, an input string w, and a number k, does
M use k tape squares on input w?

5.4: Undecidable Problems about Turing Machines 257 (b) Suppose that/ : N
h-> N is recursive. Show that the following problem is solvable: Given a
Turing machine M and an input string w, does M use /(|w|) tape squares on
input w? (c) Show that the following problem is undecidable: Given a Turing
machine M and an input string w, does there exist a k> 0 such that M does not
use k tape squares on input w? (That is, does M use a finite amount of tape on
input w?) 5.4.2. Which of the following problems about Turing machines are
solvable, and which are undecidable? Explain your answers carefully. (a) To
determine, given a Turing machine M, a state q, and a string w, whether M ever
reaches state q when started with input w from its initial state. (b) To
determine, given a Turing machine M and two states p and q, whether there 1s
any configuration with state p which yields a configuration with state q, where
p is a particular state of M. (¢) To determine, given a Turing machine M and a
state g, whether there is any configuration at all that yields a configuration with
state g. (d) To determine, given a Turing machine M and a symbol a, whether
M ever writes the symbol a when started on the empty tape. (e) To determine,
given a Turing machine M, whether M ever writes a nonblank symbol when
started on the empty tape. (f) To determine, given a Turing machine M and a
string w, whether M ever moves its head to the left when started with input w.
(g) To determine, given two Turing machines, whether one semidecides the
complement of the language semidecided by the other. (h) To determine, given
two Turing machines, whether there is any string on which they both halt, (i) To
determine, given a Turing machine M, whether the language semidecided by M
is finite. 5.4.3. Show that it is an undecidable problem to determine, given a
Turing ma- machine M, whether there is some string w such that M enters each
of its states during its computation on input w. 5.4.4. Show that the halting
problem for Turing machines remains undecidable even when restricted to
Turing machines with some small, fixed number of states. (If the number is
required to be fixed but not small, the existence of a universal Turing machine
establishes the result. Show how any Turing machine can be simulated, in some
suitable sense, by a Turing machine with about half a dozen states but a much
larger alphabet. Actually, three states are enough; in fact, two would be enough
if we allowed our machines to write and move in a single step.)

258 Chapter 5: UNDECIDABILITY 5.4.5. Show that any Turing machine can
be simulated, in some sense we leave it to you to specify, by an automaton with
no tape but with two counters. A counter is a pushdown store with only one
symbol, except for a distin- distinguishable bottom-marker, which is never
removed. Thus a counter may be thought of as a register for containing a
number in unary. The possible operations on a counter are the following: add
1; see if it contains 0; and i1f it does not contain 0, subtract 1. Conclude that the
halting problem for these 2-counter machines is undecidable. (Hint: Start by
showing how to simulate a Turing machine tape by two push-down stores with
two sym- symbols; show that these can be simulated by four counters, by
encoding the pushdown store contents in unary; finally, simulate four counters
by two, by encoding four numbers a, 6, c, d as 2a365¢7d.) 5.5 UNSOLVABLE
PROBLEMS ABOUT GRAMMARS Unsolvable problems do not occur only
in the domain of Turing machines, but in virtually all fields of mathematics. For
example, there are several undecidable problems related to grammars,
summarized below. Theorem 5.5.1: Each of the following problems is
undecidable. (a) For a given grammar G and string w, to determine whether w
£ L{G). (b) For a given grammar G, to determine whether e¢ £ L(G). (¢) For
two given grammars G\ and G2, to determine whether 1(Gi1) = L{G2)- (d) For
an arbitrary grammar G, to determine whether L(G) = 0. (e) Furthermore, there
is a certain fixed grammar Go, such that it is undecidable to determine whether
any given string w is in L(Gq). Proof: We shall show a reduction from the
halting problem to (a); very similar reductions establish the remaining parts.
Given any Turing machine M and string w, we simply apply to M the
construction given in the proof of Theorem 4.6.1 to produce a grammar G such
that L(QG) is the language semidecided by M. It follows that w € L(G) if and
only if M halts on input w. m Since we had already established that grammars
are exactly as powerful as Turing machines (Theorem 4.6.1), the
undecidability results above probably came as no surprise. What is much more
astonishing, however, is that similar questions about context-free grammars
and related systems —a rather simple and limited domain— are undecidable.
Naturally, the undecidable problems cannot include telling whether w £ L(G),
or whether [(G) = 0 —these problems can be solved by algorithms, and in fact
efficient ones (recall Theorem 3.6.1). Several other problems, however, are
not solvable.

5.5: Unsolvable Problems about Grammars 259 Theorem 5.5.2: Each of the

following problems is undecidable. (a) Given a context-free grammar G, 1s
L(G) = E* ? (b) Given two context-free grammars Gi and G2, is L{G\) = (c)
Given two pushdown automata Mi and Mi, do they accept precisely the same
language? (d) Given a pushdown automaton M, find an equivalent pushdown
automaton with as few states as possible. Proof: (a) The main technical
difficulty is in proving Part (a); the other parts follow rather easily. We shall
reduce to Part (a) the problem shown to be unde- undecidable in Part (d) of
Theorem 5.5.1, that is, the problem of deciding whether a given generalized
grammar generates any string at all. Let G1 = (Vi, S1,171,51) be a generalized
grammar. We first modify this grammar as follows: Let the rules of Gi be m -
>m/?,, for1=1,..., i?1|. We add to Vi \R\\ new nonterminal symbols Ai, 1= 1,...,
-Ri|, one for each rule in Ri, and replace the ith rule, for 1 = 1,..., \Ri\, by the
two rules m-»m At and Ai -»m /?,. Let us call the resulting grammar G[=
(V{,'Ei,R'1,S1). It is clear that L(G[) = L{G\); any derivation of a string in G\
can be turned into a standard derivation of the same string in G[, in which each
odd step applies a rule of the form Ui —>m At, while the subsequent even step
applies a rule of the form Ai -* Vi. From G[we shall construct a context-free
grammar G2 over an alphabet S such that L(G2) — S* if and only L(G\) = 0.
This reduction would then establish Part (a). Suppose that there is a derivation
of a terminal string in G[; by the remark above, we can assume that it is a
standard derivation, namely, 1j => X\ => X2 => £3 => ¢ ¢« « =>¢ X where Xi
G V{* for all 1, and xn G S|, nis even, each Xi with 1 odd contains ex- exactly
one Aj nonterminal, while each x* with 1 even contains no Aj nonterminal.
Such a derivation can be represented as a string in the alphabet S =V U {=>},
precisely the string displayed above. In fact, for reasons that will be clear
soon, we shall be more interested in the boustrophedon versionT of the string
that corresponds to the standard derivation, in which the odd-numbered Xi's
£1,2:3, etc. are reversed: ' Boustrophedon, from a Greek word meaning "as the
ox turns," is a way of writing alternate lines in opposite direction, from left to
right and from right to left.

260 Chapter 5: UNDECIDABILITY Consider now the language Dq* C S*
consisting of all such boustrophedon versions of standard derivations of
terminal strings in G. It is clear that Dql = 0 if and only if L{G\) = 0. To put it
otherwise, in terms of the complement DG[= £* if and only if L(G{) =
Therefore, all we have to show in order to conclude the proof'is that Dqi 1s
context-free. To this end, let us look closer at the language Dq” . What does it

take for a string w to be in this language? That is, when does a string w fail to
be a boustrophedon version of a standard derivation of a terminal string in G'j?
It does if and only if at least one of the following conditions holds: A) w does
not start with Si =>. B) w does not end with =>¢ v, where v £ £*. C) w
contains an odd number of =>'s. D) w is of the form u*y=>voiu=>y, where (a)
u contains an even number of occurrences of =>¢, (b) y contains exactly one
occurrence of =>, and (c) y is not of the form y = y\Aiy2 =>¢ yfPiVi' for some i
<\Ri\and 2/1,2/2 £ £*, where /% is the right-hand side of the ith rule of Gi. E)
w is of the formu=>y=> v, where (a) u contains an odd number of
occurrences of =», (b) y contains exactly one occurrence of =>, and (c) y 1s not
of the form y = «/1ai2/2 => 2/2"2/? for some 1 <\Ri\ and j/i, /2 G Si, where at
is the left-hand side of the ith rule of Gi. If w satisfies any one of these five
conditions, and only then, w is in Dg> . That is, -Dq< is the union of the five
languages L\, L2, L3, Lt, and L5 described in A) through E) above. We claim
that all five languages are context-free, and in fact that we can construct
context-free grammars that generate them. For the first three, which happen to
be regular languages, this is trivial. For [4 and LS, our argument is indirect:
We shall argue that we can design a nondeterministic pushdown automaton for
each, and rely on Theorem 3.6.1 Part (b), stating that there is an algorithm for
constructing from any pushdown automaton M a context-free grammar G such
that L(G) = L(M). The pushdown automaton M4 accepting L4 works in two
phases. In the first phase, it scans input w from left to right, always
remembering whether it has seen an odd or even number of =>'s (this can be
accomplished by two states). When an even-numbered => is encountered, M4
has two options, and chooses between them nondeterministically: It can either
continue to count =>'s modulo two, or it can enter the second phase.

5.5: Unsolvable Problems about Grammars 261 In the second phase, M4
accumulates its input in its stack until a =>¢ is found. If no Ai symbol was
pushed, or more than one, then M3 can accept —the input is in [4. Otherwise,
M4 compares its stack contents (a string of the form y*Aiy” when read from the
top down) with the part of the input up to the next =>. If a mismatch is found
before Ai is encountered, or if it is discovered that Ai is not replaced in the
input by flf- (a string remembered by M4 in its state space), or if a mismatch is
found after this, or if the next =>¢ (or the end of the input) is not found
immediately after the stack becomes empty, then again M4 accepts. Otherwise
it rejects. This concludes the description of M4, and it is clear that L(Mi) = L 4.

The construction for LS is very similar. We can thus design context-free
grammars that generate each of the languages L\ through LS5; hence we can
design a context-free grammar Gi for their union. Thus, given any generalized
grammar Gi, we can construct a context-free grammar G2 such that [(G2) =
Dql = But we know that Dg<= S* if and only 1f L(Gi1) = 0. We conclude that if
we had an algorithm for deciding whether any given context-free grammar
generates all of £*, then we could use this algorithm for deciding whether a
given generalized grammar generates the empty language, which we know is
impossible. The proof of Part (a) is complete. (b) If we could tell whether two
context-free grammars generate the same lan- language, then we would be able
to tell if a context-free grammar generates £*: take the second grammar to be a
trivial grammar that does generate £*. (c) If we could tell whether any two
pushdown automata are equivalent, then we would be able to tell if two given
context-free grammars are equivalent by transforming them into two pushdown
automata that accept the same language, and then testing them for equivalence.
(d) If there were an algorithm for minimizing the number of states of a
pushdown automaton, just as there is for finite automata, then we would be
able to tell if a given pushdown automaton accepts £*: It does if and only if the
optimized pushdown automaton has one state and accepts £*. And it is
decidable whether a one-state pushdown automaton accepts £* (this is
established in Problem 5.5.1). m Problems for Section 5.5 5.5.1. Show that it
is decidable, given a pushdown automaton M with one state, whether L(M) =
£*. (Hint: Show that such an automaton accepts all strings if and only if it
accepts all strings of length one.) 5.5.2. A Post correspondence systemis a
finite set P of ordered pairs of nonempty strings; that is, P is a finite subset of
£* x £*. A match of P

262 Chapter 5: UNDECIDABILITY is any string w £ S* such that, for some n
> (0 and some (not necessarily distinct) pairs (ui,vi), (u2,v2),..., (un.vn), w =
u\u2 . ..un=v\v2 ...vn. (a) Show that it is undecidable, given a Post
correspondence system, to deter- determine whether it has a match. (Start with
a restricted version, in which matches must start with a distinguished pair in
P.) (b) Use (a) above to find an alternative proof of Theorem 5.5.2. 5.5.3. A
(nondeterministic) 2-head finite automaton (THFA) consists of a finite control,
an input tape, and two heads that can read but not write on the tape and move
only left to right. The machine is started in its initial state with both heads on
the leftmost square of the tape. Each transition is of the form (qg,a,b,p), where q

and p are states, and a and 6 are symbols or e. This transition means that M
may, when in state g, read a with its first head and 6 with its second and enter
state p. M accepts an input string by moving both heads together off the right
end of the tape while entering a designated final state. (a) Show that it is
solvable, given a THFA M and an input string w, whether M accepts w. (b)
Show that it is unsolvable, given a THFA M, whether there is any string that M
accepts. (Use the previous problem.) 5.6 AN UNSOLVABLE TILING
PROBLEM We are given a finite set of tiles, each one unit square. We are
asked to tile the first quadrant of the plane with copies of these tiles, as shown
in Figure 5-1. We have an infinite supply of copies of each tile. 1 Figure 5-1
The only restrictions are that a special tile, the origin tile, must be placed in
the lower left-hand corner; that only certain pairs of tiles may abut each other

5.6: An Unsolvable Tiling Problem 263 horizontally; and that only certain
pairs of tiles may abut each other vertically. (Tiles may not be rotated or turned
over.) Is there an algorithm for determining whether the first quadrant can be
tiled, given a finite set of tiles, the origin tile, and the adjacency rules? This
problem can be formalized as follows. A tiling system is a quadruple V = (D,
d0, H, V), where D is a finite set of tiles, d0 € D, and H, V C D x D. A tiling
by I? is a function/ : N x N \-¥ D such that the following hold: /@,0)=do,
(/(m,t1),/(m+ Lti))efi forallm,neN, (/(m, n),f{lm,n+ 1)) G V forallm,neN.
Theorem 5.6.1: The problem of determining, given a tiling system, whether
there is a tiling by that system is undecidable. Proof: We reduce to this tiling
problem the problem of determining, given a Turing machine M, whether M
fails to halt on input e. This is simply the complement of the halting problem,
and thus an undecidable problem. If this problem can be reduced to the tiling
problem, the tiling problem is surely un- undecidable. The basic idea is to
construct from any Turing machine M a tiling system V such that a tiling by V, if
one exists, represents an infinite computation by M starting from the blank tape.
Configurations of M are represented horizontally in a tiling; successive
configurations appear one above the next. That is, the horizontal dimension
represents the tape of M, while the vertical dimension stands for time. If M
never halts on the empty input, successive rows can be tiled ad infinitum; but if
M halts after k steps, it is impossible to tile more than k rows. In constructing
the relations H and 'V, it is helpful to think of the edges of the tiles as being
marked with certain information; we allow tiles to abut each other horizontally
or vertically only if the markings on the adjacent edges are identical. On the

horizontal edges, these markings are either a symbol from the alphabet of M or
a state-symbol combination. The tiling system is arranged so that if a tiling is
possible, then by looking at the markings on the horizontal edges between the
nth and (n + 1)st rows of tiles, we can read off the configuration of M after n —
1 steps of its computation. Thus only one edge along such a border is marked
with a state-symbol pair; the other edges are marked with single symbols. The
marking on a vertical edge of a tile is either absent (it only matches vertical
edges also with no marking) or consists of a state of M, together with a
"directional" indicator, which we indicate by an arrowhead. (Two exceptions

264 Chapter 5: UNDECIDABILITY are given under (e) below.) These
markings on the vertical edges are used to communicate a left- or right-hand
movement of the head from one tile to the next. To be specific, let M =
(K)Y,,5,s,H). Then V = (D,do,H,V), where D contains the following tiles: (a)
For eacha G S and q G K, the tiles illustrated in Figure 5-2, which simply
communicate any unchanged symbols upwards from configuration to con-
configuration. Figure 5-2 (b) For each a G £ and q G K such that S(q, a) — (p,
b), where p G K and 6 G S, the tile shown in Figure 5-3. This tile
communicates the head position upwards and also changes the state and
scanned symbol appropriately. (P,b) Figure 5-3 (¢) For eacha G Sand q GK
such that S(q, a) = (p, -»m) for some p G K, and for eachb G S — {>} the tiles
shown in Figure 5-4. These tiles communicate head movement one square from
left to right, while changing the state appropriately. Notice that, naturally
enough, we allow no state to enter the left-end symbol > from the left. (P,b)
Figure 5-4

5.6: An Unsolvable Tiling Problem 265 (d) Tiles similar to those of (¢) for the
case in which 6(q,a) = (p,«-) are illustrated in Figure 5-5. The symbol > is not
excepted here. (q, a) Figure 5-5 These tiles do the bulk of the simulation of M
by V. It remains only to specify some tiles to initiate the computation and
ensure that the bottom row 1is tiled correctly. (e) The origin tile do is illustrated
in Figure 5-6(a). It specifies on its top edge the initial state s of M and the
symbol >. That is, instead of having M start at configuration (s,>LJ), we
instead think that it starts at (s,>); by our convention concerning >, its next
configuration will definitely be (s,1>LJ). The right edge of the origin tile is
marked with the blank symbol; this edge can be matched only by the left edge
of our last tile, shown in Figure 5-6(b), which in turn propagates to the right

the information that the top edge of every tile in the bottom row is marked with
the blank. U u LJ U Figure 5-6 This completes the construction ofD. The set of
tiles under (e) ensures that the border between the first two rows is marked (s,
>) LJ LJ LJ ...; the other tiles force each subsequent border to be marked
correctly. Note that no tile mentions any halt state, so that if M halts after n
steps, only n rows can be tiled. Example 5.6.1: Consider the Turing machine
(K,T,,S,s,{h}), where £ = {>, LJ}, K— {s, h}, and S is given by = («,«-)m

266 Chapter 5: UNDECIDABILITY <m-« -H- -a- u -H- -H- -th LJ LJ Figure 5-
7 This machine simply oscillates its head from left to right and back again,
never moving beyond the first tape square. The tiling of the plane associated
with the infinite computation of M is shown in Figure 5-7. (} Problems for
Section 5.6 5.6.1. Let M = ({s}, {a, U, >},<S, s), where «5(s, LJ) = (s,a), and
6(s,a) = («,-»m). Find the set of tiles associated with M via the construction in
this section, and illustrate the first four rows of a tiling of the plane by means
of these tiles. 5.6.2. Show that there is some fixed set of tiles D and adjacency
rules H and V such that the following problem is undecidable: Given a partial
tiling, that is, a mapping/ : S \-¥ D for some finite subset S C N x N such that /
obeys the adjacency rules, can/ be extended to a tiling of the whole plane?
5.6.3. Suppose the rules of the tiling game are changed so that instead of fixing
a particular tile to be placed at the origin, we fix instead a particular set of
tiles and stipulate that only these tiles may be used in tiling the first row. Show
that the tiling problem remains undecidable 5.6.4. Suppose the rules of the
tiling game are changed as follows: The tiles are not perfectly square, but may
have various bumps and notches along their edges. Two tiles may be laid down
next to each other only if their edges fit together perfectly, like pieces of a
jigsaw puzzle; and only tiles with perfectly straight sides can be used at the
edges. Show that the tiling problem remains

5.7: Properties of Recursive Languages 267 undecidable, even if we are now
allowed to rotate tiles or turn them over. (There is no specified "origin tile" in
this version.) 5.6.5. Suppose that we think of square tiles as being determined
by the colors of their four edges, and that two edges may abut provided that
they are similarly colored. Show that if we are allowed to rotate tiles and turn
them over, then any nonempty set of tiles can be used to tile the entire first
quadrant (even when we continue to require that one special tile be placed at
the origin). 5.7 PROPERTIES OF RECURSIVE LANGUAGES We have

already seen that every recursive language is recursively enumerable, but the
two classes are not the same: The language H is one that bears witness to the
difference. Which recursively enumerable languages are recursive? There are
many ways to answer this question; we present one next. Theorem 5.7.1: A
language is recursive if and only if both it and its complement are recursively
enumerable. Proof: If Lis recursive, then L is recursively enumerable by
Theorem 4.2.1; also, L is recursive, and hence recursively enumerable, by
Theorem 4.2.2. For the other direction, suppose that L is semidecided by Mx
and L 1s semidecided by M2. Then we can construct a Turing machine M that
decides L. For convenience, we describe M as a 2-tape machine; by Theorem
4.3.1, M can be simulated by a 1-tape machine. The machine M begins by
putting its input string w on both tapes and placing its heads at the right ends of
both copies of the input. Then M simulates both Mx and M2 in parallel: at each
step of the operation of M, one step of Mi's computation is carried out on the
first tape, and one step of M2's computation is carried out on the second tape.
Since either Mi or M2 must halt on w, but not both, M eventually reaches a
situation in which the simulated version of either Mi or M2 is about to halt.
When this happens, M determines which of Mi and M2 was about to halt, and
halts on y or n accordingly. m There is an interesting alternative
characterization of recursively enumer- enumerable languages: They are
precisely those that can be enumerated by some Turing machine. Definition
5.7.1: We say that a Turing machine M enumerates the language L if and only if,
for some fixed state q of M, L= {w: (s,>U) \-*M (

268 Chapter 5: UNDECIDABILITY A language is Turing-enumerable if and
only if it there is a Turing machine that enumerates it. That is, M enumerates L
by starting from blank tape and computing away, periodically passing through a
special state q (not a halting state). Entering state q signals that the string
currently on M's tape is a member of L; M may then leave state q and reenter it
later on with some other member of L on its tape. Notice that the members of L
can be listed in any order and with repetitions. Theorem 5.7.2: A language 1s
recursively enumerable if and only if it is Turing- enumerable. Proof: Suppose
that L is semidecided by Turing machine M. Then we can design a machine M'
which, instead of taking a string as input, starts from the empty tape,
systematically generates (for instance, in lexicographic order) all strings over
the alphabet of L, and carries out on each the same computation that M would
carry out. Unfortunately, the obvious way to achieve this goal may not work:

Our new machine M' cannot hope to finish its computation on each string
before beginning to work on the next, since it may get "hung up" forever on
some string for which the calculation by M does not terminate, even though
there are other strings M would accept that have not yet been generated. (This
strategy would of course work if L were decided by M; see the proof of the
next theorem.) The solution is based on a version of the the "dovetailing"
procedure we used in Section 1.4 to show that a union of countably many sets
is countable. Instead of attempting to complete the computation on each string
as it 1s generated, M' carries out the following sequence of operations: (Phase
1) First M' carries out one step of the computation of M on the
(lexicographically) first string over the alphabet of M. (Phase 2) Then it
carries out two steps of the computation of M on each of the first two strings.
(Phase 3) Then it carries out three steps of the computation of M on each of the
first three strings, and so on. The first time M' discovers that M would accept a
string, say w\, M' writes wi on its tape and pauses in state q to signal that w\ £
L. In general, after the ith string in L has been discovered, call it Wi, M' first
displays it at state q, and starts all over from Phase 1, and so on, keeping uii on
its tape. Whenever it now discovers a string accepted by M, it first compares it
with Wi] if they are unequal, it continues. If it finds that the string just
discovered is the same as Wi, then it looks for the next string accepted by M.

5.7: Properties of Recursive Languages 269 This next string will be iuj+i.
Again, Wj+i is displayed at state q, remembered, and compared. It is clear that
any member of L will eventually be displayed. The other direction is
somewhat easier. If M enumerates L, then we can modify M to semidecide L as
follows: Redesign M so that it saves any input supplied to it before beginning
its enumeration process. Furthermore, every time M would enter the
distinguished state q, the modified machine compares the current tape contents
with the saved input string. If a match is found, the input string is accepted;
otherwise, the enumeration process continues. The new machine then
semidecides exactly the language enumerated by M. m How about recursive
languages? It turns out that they can be enumerated in a more orderly fashion.
Definition 5.7.2: Let M be a Turing machine enumerating a language L. We say
that M lexicographically enumerates L if the following is true, where q is the
special "display" state: Whenever (q,>\Jw) \~~m (q,>Uw"), then w' comes lex-
lexicographically after w. A language is lexicographically Turing-enumerable
if and only if it there is a Turing machine that lexicographically enumerates it.

Theorem 5.7.3: A language is recursive if and only if it is lexicographically
Turing-enumerable. Proof: Suppose that M is a Turing machine that decides L.
Then the following Turing machine M' (which was our first unsuccessful
attempt at proving the same direction of Theorem 5.7.2) lexicographically
enumerates L: M' generates one after the other in lexicographic order all
strings in the alphabet of L, and runs M on each. Whenever M accepts, M'
displays the string and continues to the next one. If M rejects, M' simply
continues to the next string without passing through the display state. For the
other direction, suppose that L is lexicographically enumerated by a Turing
machine M. There are two cases: If Lis finite, then there is nothing to prove,
since in this case Lis certainly recursive (as well as context-free, regular,
etc.). So, suppose that L is infinite. The following machine M' decides L: On
input w, start the enumerating machine M. Wait until either w is displayed, or
any string that comes lexicographically after w 1s displayed. In the first case,
accept w\ in the second, reject. Since there are finitely many strings that come
lexicographically before w (fewer than |S + 1/*"l) and L is infinite, we know
that one of the two will happen. m Every Turing machine M semidecides a
unique language denoted L(M) —namely, the set of all inputs on which it halts.
But L(M) is semidecided by many other Turing machines, ranging from trivial
perturbations of M (for

270 Chapter 5: UNDECIDABILITY example, a version of M with its states
renumbered, or a machine that performs a meaningless "dance" into new states
just before halting, and is otherwise identical to M) to very subtle variants (the
reader should be able to supply a few). In other words, this function from the
set of all Turing machines to the class of recursively enumerable languages is
far from an isomorphism, as it maps an infinity of wildly different machines to
the same language. In fact, we know that it is undecidable whether two given
machines are mapped to the same language by this mapping. The following
result suggests that this mapping is so complicated, that, in some sense made
precise below, all conceivable problems about it are undecidable. Theorem
5.7.4 (Rice's Theorem): Suppose that C is a proper, nonempty subset of the
class of all recursively enumerable languages. Then the following problem is
undecidable: Given a Turing machine M, is L(M) 6 CI Proof: We can assume
that 0 * C (otherwise, repeat the rest of the argument for the class of all
recursively enumerable languages not in C, which is also a proper, nonempty
subset of the recursively enumerable languages). Next, since C is nonempty,

we can assume that there is a language L g C semidecided by machine M/,. We
shall reduce the halting problem to the problem of deciding whether the
language semidecided by a given Turing machine is in C. Suppose then that we
are given a Turing machine M, and input w, and we wish to decide whether M
halts on w. To accomplish this, we construct a Turing machine Tm,w, such that
the language semidecided by Tm)U, 1s either the language L fixed above or the
language 0. On input x, Tm,w simulates the universal Turing machine U on
input "M""w". If it halts, then Tm,w, instead of halting, goes on to simulate Ml
on input x: It either halts and accepts, or never halts, depending on the behavior
of ML on x. Naturally, if U"M""w") =/*, TM,w {X) =/* as well. To review,
Tm,w is this machine: TM,w(x) : if U("M""w") £/- then ML[x) else /m Claim:
The language semidecided by Tm,w is in class C if and only if M halts on input
w. Notice that the claim states that the construction of Tm,w from M and w is a
reduction of the halting problem to the problem of telling, given a Turing
machine, whether the language semidecided by it is in C. This would conclude
the proof of the theorem Proof of the claim: Suppose that M halts on input w.
Then Tm,w on input x determines this, and then always goes on to accept x if
and only if x e L. Hence, in this case, the language semidecided by Tm,w is L
—whichis in C.

5.7: Properties of Recursive Languages 271 Suppose then that M(w) =/\ In this
case Tm,w never halts, and thus Mx semidecides the language 0, known not to
be in C. m The undecidability of many problems follow from Rice's Theorem:
Given a Turing machine M, is the language semidecided by it, L(M), regular?
context- free? finite? empty? £*? recursive? —and so on. Problems for Section
5.7 5.7.1. Show that L is recursively enumerable if and only if, for some
nondetermin- istic Turing machine M, L= {w : (s > U) \-*M (/i,>Uu>) } ,wheres
is the initial state of M. 5.7.2. Show that if a language is recursively
enumerable, then there is a Turing machine that enumerates it without ever
repeating an element of the lan- language. 5.7.3. (a) Let £ be an alphabet not
containing the symbol ";", and suppose that L C £%;£* 1s recursively
enumerable. Show that the language V= {x e S* : x;y 6 L for some y € £*} is
recursively enumerable. (b) Is V in (a) necessarily recursive if Lis recursive?
5.7.4. A grammar is said to be context-sensitive if and only if each rule is of
the formu—> v, where \v\ > \u\. A context-sensitive language is one
generated by a context-sensitive grammar. (a) Show that every context-
sensitive language is recursive. (Hint: How long can derivations be?) (b)

Show that a language is context-sensitive if and only if it is generated by a
grammar such that every rule is of the form uAv —> uwv, where Ais a
nonterminal, and w " e. (¢) An in-place acceptor (or linear-bounded
automaton) is a nondeter- ministic Turing machine such that the tape head never
visits a blank square except for the two immediately to the right and to the left
of the input. Show that a language is context-sensitive if and only if it is
semidecided by an in-place acceptor. (Hint: Both directions are
specializations of the proof of Theorem 4.6.1.) 5.7.5. The class of context-
sensitive languages introduced in the previous prob- problem, and
characterized alternatively by nondeterministic in-place Turing acceptors in
Part (c) above, completes the Chomsky hierarchy, an influ- influential
framework for thinking about the expressiveness of language genera-
generators and the power of automata, proposed by the linguist Noam Chomsky
in the 1960s. The Chomsky hierarchy consists of these five classes of lan-
languages, in the order in which they were introduced in this book: regular lan-
languages, context-free languages, recursive languages, recursively enumerable

272 Chapter 5: UNDECIDABILITY languages, context-sensitive languages.
Arrange these classes of languages in order of increasing generality (so that
each class in the list properly in- includes all previous ones), and write next to
each the corresponding class of automata and/or grammars. 5.7.6. Suppose that
/: Sq h-» EJ 1s a recursive onto function. Show that there is a recursive
function g : SJ (->m Eq such that f{g{w)) = w for eachw 6 Eg. 5.7.7. Show that
it is undecidable to tell whether the language semidecided by a given Turing
machine is (a) finite. (b) regular. (¢) context-free. (d) recursive. (e) equal to
the language {wwR : w £ {a, &}*}m 5.7.8. The nonrecursive languages L
exhibited in this chapter have the property that either L or L is recursively
enumerable. (a) Show by a counting argument that there is a language L such
that neither L nor L is recursively enumerable. (b) Give an example of such a
language. 5.7.9. This problem continues Problem 3.7.10: Extend the Venn
diagram of the (a) regular, (b) context-free, (c¢) deterministic context-free, and
(d) comple- complements of context-free languages, to include the following
three new classes: (e) recursive, (f) recursively enumerable, (g) complements
of recursively enumerable languages. Give an example of a language in each
region of the Venn diagram. 5.7.10. Describe a Turing machine M that has the
property that, on any input, it outputs "M" —its own description. (Hint: First
write a program in a programming language that prints itself. Or, for a more

complicated argument, see the next problem.) 5.7.11. (a) Argue that there 1s a
Turing machine G which, when presented with the description of a Turing
machine M, it computes the description of another Turing machine M2, which
on any input x first simulates M on input "M", and then, if M halts with a valid
description of a Turing machine N on its tape, it simulates N on input x. (b)
Argue that there 1s a Turing machine C which, when presented with the
description of two Turing machines M\ and M2, it computes the Turing
machine that is the composition of M\ and M2; that is, the machine which, on
any input x, first simulates M2 on x, and then it simulates Mx on the result.

References 273 (c) Suppose that M is a Turing machine which, when its input
is a valid description of a Turing machine, it outputs another valid description
of a Turing machine. Show that any such M has a fixpoint, that is, a Turing ma-
machine F with the property that F and the machine represented by M("F")
behave exactly the same on all inputs. (Suppose that the composition — recall
Part (b)— of M and G —recall Part (a)— is presented as an input to G. Check
that the machine whose description is output is the required fixpoint F.) (d) Let
M be any Turing machine. Argue that there is another Turing machine M' with
the following property: For any input x, if M halts on input x with output y, then
M" also halts on input x, and its output is y"M'n —that is, M' pads the output of
M with its own description, its "signature." REFERENCES The undecidability
of the halting problem was proved by A. M. Turing in his 1936 paper
referenced in the previous chapter. The undecidability of problems related to
context- free grammars was proved in the paper by Bar-Hilel, Perles, and
Shamir cited at the end of Chapter 3. Post's correspondence problem (see
Problem 5.5.2) is from o E. L. Post "A variant of a recursively unsolvable
problem," Bulletin of the Amer- ical Math. Society, 52, pp. 264-268, 1946.
The Chomsky hierarchy (see Problem 5.7.5) is due to Noam Chomsky o N.
Chomsky "Three models for the description of language," IRE Transactions on
Information Theory, 2, 3, pp.113-124, 1956. The tiling problem (Section 5.6)
1s from o H. Wang "Proving theorems by pattern recognition," Bell System
Technical Journal, 40, pp. 1-141, 1961. For many more unsolvable problems,
see the references of the last chapter, especially the books by Martin Davis.

Computational Complexity 6.1 THE CLASS P In the previous chapter we saw
that there exist well-defined decision problems that cannot be solved by
algorithms, and gave some specific examples of such problems. We can

therefore classify all computational problems into two cate- categories: those
that can be solved by algorithms, and those that cannot. With the great advances
in computer technology of the last few decades, one may reasonably expect that
all the problems of the former type can now be solved in a satisfactory way.
Unfortunately, computing practice reveals that many prob- problems, although
in principle solvable, cannot be solved in any practical sense by computers
due to excessive time requirements. Suppose that it is your task to schedule the
visits of a traveling sales rep- representative to 10 regional offices. You are
given a map with the 10 cities and distances in miles, and you are asked to
produce the itinerary that minimizes the total distance traversed. This is surely
the kind of task that you would like to use a computer to solve. And, from a
theoretical standpoint, the problem is certainly solvable. If there are n cities to
visit, the number of possible itineraries is finite —to be precise, (n— 1)!, that
is, 1-2-3 m m m (n— 1). Hence an algorithm can easily be designed that
systematically examines all itineraries in order to find the shortest. Naturally,
one can even design a Turing machine that computes the shortest tour. Still, one
gets an uneasy feeling about this algorithm. There are too many tours to be
examined. For our modest problem of 10 cities, we would have to examine 9!
= 362,880 itineraries. With some patience, this can be carried out by a
computer, but, what if we had 40 cities to visit? The number of itineraries is
now gigantic: 39!, which is larger than 1045. Even if we could examine 1015
tours per second —a pace that is much too fast even for the most powerful 275

276 Chapter 6: COMPUTATIONAL COMPLEXITY supercomputers, existing
or projected —the required time for completing this calculation would be
several billion lifetimes of the universe! Evidently, the fact that a problem is
solvable in theory does not imme- immediately imply that it can be solved
realistically in practice. Our goal in this chapter is to develop a formal
mathematical theory —a quantitative refinement of the Church-Turing thesis—
that captures this intuitive notion of "a practi- practically feasible algorithm."
The question 1s, which algorithms —and which Turing machines— should we
consider as practically feasible? As the introductory example of the
TRAVELING SALESMAN PROBLEM re- reveals, the limiting parameter here
is the time or number of steps required by the algorithm on a given input. The
(n— 1)! algorithm for the TRAVELING SALESMAN PROBLEM was deemed
unrealistic exactly because of the excessive exponential growth of its time
requirements (it is easy to see that the function (n— 1)! grows even faster than

2"). In contrast, an algorithm with a polynomial rate of growth, like the
algorithms we have developed in various parts of this book, would obviously
be much more attractive. It seems that, in order to capture the notion of
"practically feasible algo- algorithm" we must limit our computational devices
to only run for a number of steps that is bounded by a polynomial in the length
of the input. But which computational devices exactly should we choose as the
basis of this important theory? The Turing machine, its multitape variant, the
multidimensional one, or perhaps the random access model? The simulation
results in Section 4.3 tell us that, since we are interested in polynomial
growths, the choice does not matter —as long as we leave out the
nondeterministic model with its apparent exponential power, recall Section 4.5
and see Section 6.4. If a Turing machine of any one of these deterministic kinds
halts after a polynomial number of steps, there is an equivalent Turing machine
of any other kind which also halts after a polynomial number of steps —only
the polynomials will differ. So we might as well settle on the simplest model,
the standard Turing machine. This "model independence" 1s an important side
benefit of the choice of the polynomial rates of growth as our concept of
"efficiency." We are therefore led to the following definition: Definition 6.1.1:
A Turing machine M = (K, E, S, s, H) is said to be polyno- mially bounded if
there is a polynomial p(n) such that the following is true: For any input x, there
is no configuration C such that (s,>Ux) \-*m C. In other words, the machine
always halts after at most p(n) steps, where n is the length of the input. A
language is called polynomially decidable if there is a polynomially bounded
Turing machine that decides it. The class of all polynomially decidable
languages is denoted V.

6.1: The Class P 277 Our quantitative refinement of the Church-Turing thesis
can now be stated as follows: Polynomially bounded Turing machines and the
class V adequately capture the intuitive notions, respectively, of practically
feasible algorithms and realistically solvable problems. In other words, we
are proposing V as the quantitative analog of the class of recursive languages.
In fact, V does indeed have some of the properties of the class of recursive
languages: Theorem 6.1.1: V is closed under complement. Proof: If a language
Lis decidable by a polynomially bounded Turing machine M, then its
complement is decided by the version of M that inverts y and n. Obviously, the
polynomial bound is unaffected. m Moreover, we can use diagonalization to
exhibit certain simple recursive languages that are not in V. Consider the

following quantitative analog of the "halting" language H (recall Section 5.3):
E - {"M" "w" : M accepts input w after at most 2H steps}. Theorem 6.1.2: E $
V. Proof: The proof mimics rather faithfully that of the undecidability of the
halting problem (Theorem 5.3.1). Suppose that E € V. Then the following
language is also in V: E1 ={"M" : M accepts "M" after at most 21"M"1 steps},
and, by Theorem 6.1.1 so is its complement, E\. Therefore, there is a Turing
machine M* accepting all descriptions of Turing machines that fail to accept
their own description within time 2™ (where n is the length of the
description); M* rejects all other inputs. Furthermore, M* always halts within
p(n) steps, where p(n) 1s a polynomial. We can assume that M* is a single-tape
machine because, otherwise, it can be converted to one with no loss of the
polynomial property. Recall that, since p(n) is a polynomial, there is a positive
integer no such that p(n) < 2" for all n> no- Furthermore, we can assume that
the length of the encoding of M* is at least no, that is, |"M*"| > no. If not, we
can add to M* no useless states that are never reached in a computation. The
question is now this: What does M* do when presented with its own
description, "M*" ? Does it accept or reject? (It was constructed so that it does
one of the two.) Both answers lead to a contradiction: If M* accepts "M*"
,then

278 Chapter 6: COMPUTATIONAL COMPLEXITY since M* decides Ei, this
means that M* does not accept "M*" within 2' M* I steps; but M* was
constructed so that it always halts within p(n) steps on inputs of length n, and 2'
M* "> p(|"M*"|); so it must reject. Similarly, by assuming that M* rejects its
own description, we deduce that it accepts it. Since the only assumption that
led to this contradiction was that E E V, we must conclude that E$ V. m
Problems for Section 6.1 6.1.1. Show that V is also closed under union,
intersection, and concatenation. 6.1.2. Show that V is closed under Kleene star.
(This is harder than the proofs of the closure properties in the previous
problem. To tell whether x E L* for some L E V, you have to consider all
substrings of x, starting with the ones of length one and progressing towards
longer and longer ones —very much like the dynamic programming algorithm
for context-free recognition; recall Section 3.6.) 6.2 PROBLEMS,
PROBLEMS... How well does the class V capture the intuitive notion of
"satisfactorily solvable problem?" How widely accepted is the thesis that
polynomial algorithms are precisely the empirically feasible ones? It is fair to
say that, while it is the only serious proposal in this arena, it can be challenged

on various grounds”. For example, it can be argued that an algorithm with time
requirements n100, or even 10100n2, is not at all "practically feasible," even
though it is a polynomial- time one. Also, an algorithm with time requirements
nloglogn may be considered perfectly feasible in practice, despite the fact that
its growth is not bounded by any polynomial. The empirical argument in
defense of our thesis is that such extreme time bounds, though theoretically
possible, rarely come up in practice: Polynomial algorithms that arise in
computational practice usually have small exponents and palatable constant
coefficients, while nonpolynomial algorithms are usually hopelessly
exponential, and are therefore of quite limited use in practice. ' But even the
Church-Turing thesis was challenged extensively during its time, and in fact
from both sides: There were mathematicians who thought that Turing
decidability is too restricted a notion, while others opined that it is too liberal.
In fact, complexity theory, the subject of this and the next chapter, can be seen
as the latest and most serious challenge of the latter type.

6.2: Problems, problems... 279 A further criticism of our thesis is that it
categorizes an algorithm based only on its worst-case performance (the largest
running time over all inputs of length n). Arguably, an average-case approach
—for example, insisting that the time requirements of a Turing machine, when
averaged over all possible inputs of length n, be bounded by p(n)— would be
a better predictor of the practical utility of the algorithm. Although average-
case analysis seems a very reasonable alternative, it is in fact itself open to
even more devastating challenges. For example, which distribution on the
inputs should we adopt in our average-case analysis? There seems to be no
satisfactory answer. Despite these reservations, however, polynomially
bounded computation is an appealing and productive concept, and it leads to
an elegant and useful theory. By focusing on the gray areas on its boundary, one
often forgets what a useful classification tool it is, that it includes mostly
practically feasible algorithms, and excludes mostly impractical ones. But the
best way to get acquainted with polynomial-time computation, its true scope,
and its limitations, is to introduce a variety of interesting computational
problems that are known to belong in V. It is also instructive to contrast such
problems with certain examples of stubborn problems that do not seem to be
inV. Often the difficult and the easy problems look very similar. We have
already seen some very interesting specimens and subclasses of V. For
example, all regular languages and all context-free languages belong there

(recall Theorems 2.6.2 and 3.6.1, part (c)). We also know that the reflexive-
transitive closure of a relation can be computed in polynomial time (Section
1.6). We next examine an interesting variant of this latter problem. The
reachability problem is the following REACHABILITY: Given a directed
graph G CVxV, where V = {vi,..., vn} is a finite set, and two nodes Vi,V] GV,
is there a path from v{ to Vjl (All graphs mentioned in the context of
computational problems are, of course finite.) [s REACHABILITY in VI
Strictly speaking, since V contains only lan- languages, REACHABILITY has
no business there. REACHABILITY is what we call a problem. A problemis a
set of inputs, typically infinite, together with a yes-or-no question asked of
each input (a property an input may or may not have). In the example of
REACHABILITY the set of inputs is the set of all triples (G, Vi, Vj), where G
is a finite graph, and Vi, Vj are two nodes of G. The question asked is whether
there is a path from v to Vj in G. This is not the first time that we see
problems. The HALTING PROBLEM is definitely a problem: Its inputs are
Turing machines and strings, and the question asked is whether the given
Turing machine halts when started on this input string: HALTING PROBLEM:
Given a Turing machine M and an input string w, does M accept w?

280 Chapter 6: COMPUTATIONAL COMPLEXITY In Chapter 5 we studied
the HALTING PROBLEM in terms of its "linguistic sur- surrogate," the
language H = {"M" "w" : Turing machine M halts on string w}. Similarly, we
can study the REACHABILITY problem in terms of the language R =
{K(G)b(1)h(j) : There is a path from Vi to Vj in G}, where b(i) denotes the
binary encoding of integer 1, and k is some reasonable way of encoding graphs
as strings. Several natural encodings of graphs come to mind. Let us agree to
encode a graph G C V x V by its adjacency matrix, linearized as a string
(recall Example 4.4.3 and Figure 4-21). One of the main points that will
emerge from the discussion that follows is that the precise details of encodings
rarely matter. Languages encode problems. But of course also any language
LCS* can be thought of as a problem: THE DECISION PROBLEM FOR L.
Given a string x G £*, 1s x G LI It 1s productive to think of a problem and the
associated language interchange- interchangeably. Languages are more
appropriate in connection to Turing machines, while problems are more clear
statements of practical computational tasks of interest, for which we must
develop algorithms. In the following pages we shall introduce and discuss
extensively many interesting problems; we shall treat a problem and the

corresponding language as two different aspects of the same thing. For ex-
example, we shall next point out that REACHABILITY is in V. By this we
mean that the corresponding language R, defined above, is in V. Indeed,
REACHABILITY can be solved by first computing the reflexive- transitive
closure of G, in time O(n3) by the random access Turing machine of Example
4.4.3. Inspecting the entry of the reflexive-transitive closure of G that
corresponds to V{ and Vj would then tell us whether there is a path from Vi to
Vj in G. Since we know that random access machines can be simulated by
ordinary Turing machines in polynomial time, it follows that REACHABILITY
1s in V. Notice that, since we are only interested in determining whether the
time bound is or is not a polynomial, we felt free to express it as a function not
of the length of the input, which is m =\n(G)h(i)h(j)\, but as a function of n =
\V\, the number of nodes: Since it is easy to see that m= O(n3), this is yet
another inconsequential inaccuracy, one that will not interfere with the issues
that we deem important. Eulerian and Hamiltonian Graphs Historically the first
problem concerning graphs, studied and solved by the great mathematician of
the eighteenth century Leonard Euler, is this:

6.2: Problems, problems... 281 EULER CYCLE: Given a graph G, is there a
closed path in G that uses each edge exactly once? The path sought can go
through each node many times (or even not at all, if the graph has isolated
nodes, nodes without edges in or out of them). A graph that contains such a path
is called Eulerian or unicursal. For exam- example, the graph shown in Figure
6-1(a) is Eulerian while the graph in Figurei 6-1(b) is not. (b) Figure 6-1 It is
not difficult to see that EULER CYCLE is in V—by this we mean, of course,
that the corresponding language L= {k{G) : G is Eulerian} is in P. This
follows from the following neat characterization of Eulerian graphs due to,
well, Euler. Call a node in a graph isolated if and only if it has no edges
incident upon it. A graph G is Eulerian if and only if it has the following two
properties: (a) For any pair of nodes u,v € V neither of which is isolated, there
is a path fromu to v; and (b) All nodes have equal numbers of incoming and
outgoing edges. It is rather immediate that both conditions are necessary for the
graph to be Eulerian. We leave the proof of sufficiency as an exercise
(Problem 6.2.1). It is thus very easy to test whether a graph is Eulerian: We
first make sure that all nodes, except for any isolated ones, are connected; this
can be done in polynomial time by computing the reflexive-transitive closure
of the graph, and

282 Chapter 6: COMPUTATIONAL COMPLEXITY then testing whether all
nodes except for the i1solated ones are connected in all possible ways (after all,
the reflexive-transitive closure of a graph contains the answer to all possible
connectivity questions on the graph). We know that the reflexive-transitive
closure can be computed in a polynomial number of steps. We then test whether
all nodes have an equal number of incoming and outgoing edges —this can be
obviously done in polynomial time as well. Incidentally, this is an instance of a
pattern that will be repeated ad nauseam in the next pages: We show that a
problem (euler cycle) is in V by using the previously established fact that
another problem (in our case REACHABILITY) in V —that is, by reducing it
to an already solved problem. Perhaps the main point of this and the next
chapter is that there are many natural, decidable, simply stated problems that
are not known or believed to be in V. Very often, such a problem is very
similar to another that is known to be in V\ Consider, for example, the
following problem, studied by another famous mathematician, this time of the
nineteenth century, William Rowan Hamilton —and many mathematicians after
him: HAMILTON CYCLE: Given a graph G, 1s there a cycle that passes
through each node of G exactly once? Such a cycle is called a Hamilton cycle,
and a graph that has one is called Hamiltonian. Notice the difference: Now it is
the nodes, not the edges, that must be traversed exactly once; not all edges need
be traversed. For example, the graph in Figure 6-1 (b) is Hamiltonian but not
Eulerian, while the one in Figure 6-1 (a) is both Eulerian and Hamiltonian.
Despite the superficial similarity between the two problems EULER CYCLE
and HAMILTON CYCLE, there appears to be a world of difference between
them. After one and a half centuries of scrutiny by many talented
mathematicians, no one has discovered a polynomial algorithm for
HAMILTON CYCLE. Naturally, the following algorithm does solve the
problem: Examine all possible permutations of the nodes; for each test whether
it is a Hamilton cycle. Unfortunately it fails to be polynomial, as do all simple
ways of improving it and speeding it up. Optimization Problems The
TRAVELING SALESMAN PROBLEM,; introduced informally in the beginning
of this chapter, is another simply stated problem for which, despite intense
research efforts over several decades, no polynomial-time algorithm is known.
We are given a set {ci, c2,..., cn} of cities, and an n X n matrix of nonnegative
integers d, where dij denotes the distance between city a and city Cj. We are
assuming that du= 0 and d* = dji for all 1,j. We are asked to find the shortest

6.2: Problems, problems... 283 tour of the cities, that is, a bijection -n from the
set {1,2,..., n} to itself (where ir(1) is, intuitively, the city visited ith in the
tour), such that the quantity c(?r) = dx(iOrB) + rf7rBOrC) H H "7r(n-10r(n) +
Mr(nOr(1) 1s as small as possible. There is a serious obstacle for studying the
traveling salesman problem within our framework of problems and languages:
Unlike all other problems we have seen in this chapter, the traveling salesman
problem is not the kind of problem that requires a "yes" or "no" answer and
can therefore be studied in terms of a language. It is an optimization problem,
in that it requires us to find the best (according to some cost function) among
many possible solutions. There 1s a useful general method for turning
optimization problems into languages, so that we can study their complexity:
Supply each input with a bound on the cost function. In this case, consider the
following problem: TRAVELING SALESMAN PROBLEM: Given an integer
n> 2, an n x n distance matrix dij, and an integer B > 0 (intuitively, the budget
of the traveling salesman) find a permutation tt of {1,2,... ,n} such that c(tt) <
B. If we could solve the original optimization problem in polynomial time, that
is, if we had an algorithm for computing the cheapest tour, then obviously we
would be able to solve this "budget" version in polynomial time as well: Just
compute the cost of the cheapest tour and compare it with B. Thus, any
negative result about the complexity of the TRAVELING SALESMAN
PROBLEM as denned just now will reflect negatively on our prospects for
solving the original, optimization version of the problem. We shall use this
maneuver to bring many interesting optimization problems within our language
framework. In the case of maximization problems we do not supply a budget B
but instead a goal K. For example, the following is an important maximization
problem transformed this way: INDEPENDENT SET: Given an undirected
graph G and an integer K > 2, is there a subset C of V with \C\ > K such that
for all Vi, Vj G C, there is no edge between vt and Vj? INDEPENDENT SET
is yet another natural and simply stated problem for which, despite prolonged
and intense interest by researchers, no polynomial-time algo- algorithm has
been found. Let us introduce two more optimization problems on undirected
graphs. The next problem is in some sense the exact opposite of
INDEPENDENT SET: CLIQUE: Given an undirected graph G and an integer
K > 2, is there a subset C of V with \C\ > K such that for all vi,Vj G C, there is
an edge between v and vf.

284 Chapter 6: COMPUTATIONAL COMPLEXITY For the next problem, let

us say that a set of nodes covers an edge if it contains at least one endpoint of
the edge. NODE COVER: Given an undirected graph G and an integer B > 2,
is there a subset C of V with \C\ < B such that C covers all edges of G? We can
think of the nodes of an undirected graph as the rooms of a museum, and each
edge as a long straight corridor that joins two rooms. Then the NODE COVER
problem may be useful in assigning as few as possible guards to the rooms, so
that all corridors can be seen by a guard. To illustrate these interesting
problems, the largest independent set of the graph in Figure 6-2 has three
nodes; the largest clique has four nodes; and the smallest node cover has six
nodes. Can you find them? Can you convince yourself that they are optimal?
Figure 6-2 Integer Partitions Suppose that we are given several positive
integers, say 38,17,52,61,21,88,25. We are asked whether they can be divided
into two disjoint sets, which include between them all numbers, and both add
up to the same number. In the above

6.2: Problems, problems... 285 example the answer is "yes," because 38 + 52
+61=17+21+ 88+ 25=151. The general problem is this: PARTITION:
Given a set n nonnegative integers a\,...,an represented in binary, is there a
subset P C {1,...,n] such that "2iePa% = J2i1&pair- This problem can be solved
by a simple algorithm explained next. First, let H be the sum of all integers in S
divided by 2 (if this number is not an integer, then the numbers in S add up to
an odd number and cannot be partitioned into two equal sums; so we can
already answer "no"). For each 1, 0 <1 <n, define this set of numbers: B(1) =
{b <H : b is the sum of some subset of the numbers {a\,..., a,} }. If we knew
B{n), we could solve the PARTITION problem easily by just testing whether
H £ B(n). If so, there is a partial sum that adds up to H and the answer is "yes";
otherwise, the answer is "no." But notice that B(n) can be computed by the
following algorithm: 5@) := {0}. for 1 = 1,2,.. .,ndo B(1) :=B(i-1), for j = at, at
+1,a,+2,..,Hdoifj - at€ B(i - 1) then add j to B(1) For example, in the
instance of PARTITION shown above, with a\=38, 02 =17, as =52, a\=61,
05 =21, a§ = 88, a-j = 25, the B(1) sets are as follows: 5@) ={0} £2(1)=
{0,38} 5B) ={0,17,38,55} 5C) ={0,17,38,52,55,69,90,107} 5D) =
{0,17,38,52,55,61,69,78,90,107,113,116,130,151} SE) =
{0,17,21,38,52,55,59,61,69,73,76,78,82,90,99,107, 111, 113,116,128,
130,134,137,151} 5F) =
{0,17,21,38,52,55,59,61,69,73,76,78,82,88,90,99,105,107,109, 111,
113,116,126,128,130,134,137,140,143,147,149,151} 5G) =

{0,17,21,25,38,42,46,52,55,59,61,63,69,73,76,77,78,80,82,84,86,
88,90,94,98,99,101,103,105,107,109, 111, 113,115,116,124,126,128,
130,132,134,136,137,138,140,141,143,147,149,151} This instance of
PARTITION is a "yes" instance, because the half-sum 5 = 151 is contained in
5QG).

286 Chapter 6: COMPUTATIONAL COMPLEXITY It is easy to prove by
induction on i that this algorithm correctly computes B(1), for i = 0,..., n, and
does so in O(nH) time (see Problem 6.2.5). Have we then proved that
PARTITION is in VI The bound O(nH), despite its perfectly polynomial
appearance, is not poly- polynomial in the length of the input. The reason is
that the integers a,\,..., an are given in binary, and thus their sum will in general
be exponentially large when compared to the length of the input. For example,
if all n integers in an instance of PARTITION are about 2n, then H is
approximately [2n, while the length of the input is only O{n2). In fact,
PARTITION is one of the notoriously hard problems, including the
TRAVELING SALESMAN PROBLEM, HAMILTON CYCLE, and
INDEPENDENT SET, for which no true polynomial algorithm is known or
expected any time soon (and which are the subject of the next chapter).
However, the above algorithm does establish that the following problem is
indeed in V. UNARY PARTITION: Given a set of n natural numbers {ai,... ,an}
repre- represented in unary, is there a subset P C {l,...,n} such that X"igp a1 =
This 1s because the input of the unary version has length about H, and so the
O(nH) algorithm suddenly becomes "efficient." This pair of problems,
PARTITION and UNARY PARTITION, with their con- contrasting complexity,
illustrates the following important fact about input repre- representations: The
precise representation of mathematical objects such as graphs, automata,
Turing machines, and so on, as inputs to problems makes little differ-
difference in the membership of the corresponding language in V, because the
lengths of all reasonable representations of the same object are related by a
polynomial. The only encoding convention whose violation leads to
misleading results, is that integers should be encoded in binary” and not in
unary. Equivalence of Finite Automata In Chapter 2 we saw that the following
important problem concerning finite automata is in V (Theorem 2.6.1, part (e)):
EQUIVALENCE OF DETERMINISTIC FINITE AUTOMATA: Given two
deter- deterministic finite automata Mi and M2, is L(M\) = In contrast, we
noticed that we only know how to test nondeterministic finite automata for

equivalence in exponential time. That is, we do not know whether either of the
following two problems is in V: ' Or in decimal, hexadecimal, or in any other
radix system; all such representations of the same integer have lengths that are
constant multiples of each other.

6.2: Problems, problems... 287 EQUIVALENCE OF NONDETERMINISTIC
FINITE AUTOMATA: Given two non- deterministic finite automata Mi and
M2, 1s L(Mi) = L(M2)? and EQUIVALENCE OF REGULAR EXPRESSIONS:
Given two regular expressions 1?1 and R2, is L{R{) = L{R2I One could solve
either problem by transforming the two given nondetermin- istic automata (or
regular expressions) to deterministic ones (Theorem 2.6.1), and then checking
the resulting deterministic automata for equivalence. The problem is, of
course, that the transformation from regular expressions or non- deterministic
automata to deterministic may increase exponentially the number of states of
the automaton (recall Example 2.5.4). Hence this approach fails to establish
that either one of EQUIVALENCE OF NONDETERMINISTIC FINITE AU-
AUTOMATA and EQUIVALENCE OF REGULAR EXPRESSIONS is in V —
as do, in fact, far more sophisticated approaches. Problems for Section 6.2
6.2.1. Show that a graph is Eulerian if and only if it is connected and the in-
degree of each node equals its out-degree. {Hint: One direction is easy. For the
other, start at a node, and traverse an edge to get to another node. Continue
traversing new edges until you cannot find a new one; at this point you are back
at the starting node (why?). Show how you can start again and traverse the
pieces of the graph you have left untraversed.) 6.2.2. Prove that the algorithm
given in the text solves PARTITION in O(nH) steps. 6.2.3. Solve the traveling
salesman problem for five cities A, B, C, D, and E with the following distance
matrix: 6.2.4. We study optimization problems in terms of their language
versions, defined in terms of a "budget" B or "target" K. Choose one of the
optimization problems introduced in this section, and show that there is a
polynomial algorithm for the original problem if and only if there is one for the
"yes-no" version. (One direction is trivial. For the other, binary search is
needed, plus a property of these problems that might be called self-
reducibility.)

288 O Chapter 6: COMPUTATIONAL COMPLEXITY O O O -6- O -6 -0- -O-
-6 -0 6.2.5. Does the undirected graph above have a Hamilton cycle? What is
the largest clique, largest independent set, and smallest node cover of this

graph? 6.3 BOOLEAN SATISFIABILITY In the previous section we saw many
interesting computational problems that are in V', and some others that are
suspected not to be in Vm But perhaps the most fundamental problems of both
kinds are related to Boolean logic. Boolean logic is a familiar mathematical
notation for expressing compound statements such as "either it is not raining
now or the cane is not in the corner." In Boolean Logic we use Boolean
variables x+,x2, m m m to stand for the indi- individual statements such as "it is
raining now." That is, each variable denotes a statement that can in principle
be true or false independently of the truth value of the others. We then use
Boolean connectives to combine Boolean variables and form more
complicated Boolean formulae. For our purposes in this book we need only
consider Boolean formulae of a specific kind, defined next. Definition 6.3.1:
Let X = {x\,x2,... xn} be a finite set of Boolean vari- variables, and let X =
{x~1, x~2,... T"}, where the 5Tf, x",... , X"~ are new symbols standing for the
negations, or opposites, of xi,x2, m m m ,xn. We call the el- elements of X U X
literals; variables are positive literals, whereas negations of variables are
negative literals. A clause C is a nonempty set of literals: CCIUL Finally, a
Boolean formula in conjunctive normal form (or

6.3: Boolean Satisfiability 289 simply Boolean formula, since we shall treat
no other kind in this book) is a set of clauses defined on X. Example 6.3.1: Let
X = {x1,X2,x3}, and therefore X = {STfx~2,£3"}. C\— {x1,x~2,X3} is a
clause. Although a clause is a set of literals, we shall employ a special
notation when writing clauses: We shall use parentheses instead of our usual
set brackets; and we shall separate the various literals in the clause (if there
are more than one) by the delimiter V (pronounced or), instead of a comma. As
always with sets, order is not important, and repetition of elements is not
tolerated. For example, the clause C above will be written C = (xi V x~2~V
x3). The following is a Boolean formula in conjunctive normal form: F=
{0c1V"VZ3),(zr),0E2VM)}. A) It consists of three clauses, one of which is C
above.<0 Definition 6.3.2: So far we have only defined the syntax, or apparent
structure, of Boolean formulae. We next define the semantics, or meaning, of
such a formula. Let F be a Boolean formula in conjunctive normal form defined
over the variables in X = {x\, X2,... xn}. A truth assignment for F is a mapping
from X to the set {T, L}, where T and L are two new symbols pronounced
true and false, respectively. We say that a truth assignment T satisfies F if the
following holds: For each clause C £ F there is at least one variable Xi such

that either (a) T(x1) =T, and x{ e C, or (b) T(x1) =+, and x~ ¢ C. That is, a
clause is satisfied if it contains at least one true literal, where X{ is
considered true if and only if T{x\) = T, and x~1 is considered true if and only
if T{x{) = L. Finally, F is called satisfiable if there is a truth assignment that
satisfies it. Example 6.3.2: The Boolean formula F in A) above is satisfied by
the truth assignment T, where T{x\) ==+, T(x2) — T, and T(xs) = T. This truth
assignment satisfies the clause C\ =[x\ V x~2 V £3) because T{x") =T, and X3
6 C\\ T satisfies the clause C2 = (icl) because STf £ C2, and T{x\) = X; and it
finally satisfies the third clause C3 = (X2 V ¥2) (this is not too surprising, as
any truth assignment would satisfy C3). There are many truth assignments that
fail to satisfy F: For example, any truth assignment T" with T'{x\) = L would
fail to satisfy C2 and thus fail to satisfy F. Still, F is satisfiable, because there
is at least one truth assignment that satisfies 1t.<0 Example 6.3.3: Consider
now this formula: F' = {(xI Vx2V x3),(x"V x2),(x*V x3),(x"V X" x"VX"Vx")}.

290 Chapter 6: COMPUTATIONAL COMPLEXITY Is it satistiable? The
correct answer here 1s "no." Let us prove it. The clause (xi V x2 V x3) requires
that at least one of the variables x\, x2, and a;3 be T. Similarly, the last clause
requires that at least one of them be L. Consider then the remaining three
clauses, and suppose that T(x1) = T. Then in order for the clause (x~[V x2) to
be satisfied, T(x2) must be T; and to satisfy (x~2 V x3) we must have T(x3) =
T. On the other hand, if T(x\) = L then the (x~3 Vii) clause forces T{xz) to be
J , and the (x~2 V13) clause then makes T(x2) necessarily J . So, no matter
what T(xi) is, the truth values of the three variables must be the same if the
formula is to be satisfied. To summarize, for a truth assignment to satisfy F' it
must (a) map at least one variable to T; (b) map at least one variable to L; and
(c) map all three variables to the same truth value. This is clearly impossible,
and thus F' encodes a contradiction: It is unsatisflable.<0 This suggests the
following important problem: SATISFIABILITY: Given a Boolean formula F
in conjunctive normal form, is it satisfiable? As it perhaps became apparent in
the previous example, it 1s a fairly tricky problem. Indeed, there is no known
polynomial-time algorithm to date for this fundamental and very well-studied
problem, and it is widely believed that no such algorithm exists. 2-
SATISFIABILITY Suppose that we restrict the instances of SATISFIABILITY
to ones in which all clauses have two or fewer literals. What results is a new
problem, which we call 2-SATISFIABILITY. We say that 2-SATISFIABILITY
is a special Case of SATISFIA- SATISFIABILITY. By this we mean that the

set of all possible inputs is a subset of the set of inputs for SATISFIABILITY,
and the answers to each common input in the two problems are the same. A
typical instance of 2-SATISFIABILITY is shown below. Vi2), (isV?), (x1),
(x"Vx"), (x3Vx4), EJ VarB), E1 V2£), (x4 Vzi)} B) We shall next describe a
sensible method for searching for a satisfying truth as- assignment for such a
formula. During the course of our method, several variables will have been
assigned Tori, while the rest are not yet assigned. Initially no variable is
assigned a truth value. Suppose that there is in our formula a clause with just
one literal, say the third clause (x1) in the example in B). Then clearly this
literal must be T in any satisfying truth assignment, and therefore we can
immediately decide on the value of this variable. That is, in our example we
immediately decide

6.3: Boolean Satisfiability 291 that T(x\) = T, and proceed. Now that we know
that T{x\) = T, we can omit from the formula all clauses that contain X\ as one
of their literals, because these clauses are already satisfied (in our example we
omit the first clause). If however a clause contains the opposite literal STT,
then we omit the literal from the clause, because this literal is J and thus it is
of no use in satisfying the clause. In our example, the first clause is omitted,
and the fourth clause is replaced by (¥2). Thus, assigning a truth value to a
literal that appears alone in a clause, may result in new single-literal clauses,
and we must repeat (in our example B) we next set T{x2) =-L). We call this
process of pursuing one-literal clauses until none exists a purge. If at any point
of the purge the empty clause is produced —presumably because both clauses
(x,) and (x~1), for some 1, were present at the previous step— then we say that
the purge has failed. In any event, after O(n) steps of this sort, where n is the
number of clauses in the given formula, the purge must indeed either fail (in
which case we decide that the formula 1s unsatisfiable), or halt with a set of
clauses each of which has two distinct literals. In B), for example, the initial
purge ends up setting T(x\) = T, T(x2) = -L, and deleting the first four clauses.
We can therefore assume that we have a formula with precisely two literals in
each clause. How can we look for a satisfying truth assignment? Here is a
simple idea: Take any variable whose truth value has not been assigned yet, try
setting its truth value to T, and perform the purge; then restore the formula in its
original form, set the same variable to L and perform the purge again. If both
purges fail, we give up; the formula is unsatisfiable. If however at least one of
the two purges succeeds, then we set the variable to the successful truth value

and continue. In our example trying the value T(xs) =T in the four clauses that
remain after the first purge, {(x3 V x4), (x3 Vx5), {xl VXE), (x4 VSI)} C)
starts a new purge that fails after setting T(x") =T (the clauses (#4) and (xj)
result); so we must restore the four clauses in C) and try T(xz) = L. This
succeeds in finding a satisfying truth assignment for the whole formula (there
are no clauses left), namely T(x\) = T and T(x") = -L. It is easy to see (Problem
6.3.2) that this simple algorithm correctly solves the satisfiability problem
when there are at most two literals per clause. Since the algorithm performs at
most two purges for each variable, and each purge can be performed in
polynomial time, it follows that 2-SATISFIABILITY is in V'. Problems for
Section 6.3 6.3.1. Find all satisfying truth assignments of the Boolean formula
consisting of these clauses: (xi ViJV?), E7 V x4), (x2 VX3 V3)).

292 Chapter 6: COMPUTATIONAL COMPLEXITY 6.3.2. (a) Show that the
purge algorithm described in the text correctly solves any instance of 2-
SATISFIABILITY in polynomial time. (Hint: Suppose the purge algorithm
decides the formula is unsatisfiable, and yet a satisfying truth assignment
exists. How did the purge algorithm miss this assignment?) (b) What is the
lowest polynomial bound you can show for this algorithm? (¢) How would the
purge algorithm work on this formula? (xi V X2), (x7 V x1), (x2 Vxj)(xi V x4),
(x3 Vx4). 6.3.3. This is an alternative proof that 2-SATISFIABILITY is in V.
Any clause with two literals, say (x V' y), can be thought of as two
implications, namely (x —>y) and (y —> x) (the clause (x) can be thought of
as (x —> x)). Thus, starting from any instance of 2-SATISFIABILITY, we can
construct a directed graph with all literals as nodes that depicts all these
implications. Show that an instance of 2-SATISFIABILITY is unsatisfiable if
and only if there is a variable x such that there is a path from x to x and a path
from x to x in this graph. Conclude that 2-SATISFIABILITY is in V. 6.4 THE
CLASS NP One of the main goals of complexity theory is to discover
mathematical methods that will help us prove that problems of interest are not
in V- We have already seen such a method: The diagonalization argument used
to establish, in full analogy with the unsolvability of the halting problem H, that
E *V, where E is the language E = {"M" "w" : M accepts input w after at most
2H steps} (Theorem 6.1.2). However, this result is hardly satisfying. The
reason is that, unlike the notion of decidability, V and polynomial-time
computation are con- concepts of earthy, practical motivation. It is not enough
to exhibit an artificial halting-like problem like E and argue that it is not in V.

We want to identify natural, reasonable, practically important problems that
are not in V. We saw 1n the last section a plethora of natural, reasonable
problems, quite plausibly of practical interest, that appear not to belong in V-
HAMILTON CY- CYCLE, the TRAVELING SALESMAN PROBLEM,
INDEPENDENT SET, PARTITION, SATISFIABILITY. Despite prolonged,
intense efforts by mathematicians and com- computer scientists to discover a
polynomial-time algorithm for each of these prob- problems, none has been
found. It would be most worthwhile, then, to use the ideas and methods of
computational complexity to establish that no such polynomial- time algorithm
1s possible, thus saving our fellow scientists from further 1ll-fated attempts.

6.4: The Class NP 293 Unfortunately, there is a subtle difficulty in coming up
with such an impos- impossibility proof. The reason is that, as we shall see
next, all of these problems can be solved by polynomially bounded
nondeterministic Turing machines. And sep- separating determinism from
nondeterminism at the polynomial-time level is one of the most important and
deep unsolved problems in computer science today. It was established in
Chapter 4 that if a language L is decidable in polyno- polynomial time by a
Turing machine of one of several varieties (single-tape, multiple- tape, two-
dimensional, even random access), then L is decidable in polynomial time by a
machine of any of the other kinds. What about the last variant of the Turing
machine model that we have introduced in Chapter 4, namely the
nondeterministic Turing machine (Section 4.6)? Is it also equivalent to the re-
remaining kinds, up to a polynomial? In order to discuss this important issue,
let us first define formally what we mean by saying that a language is decided
by a nondeterministic Turing machine within a polynomial time bound; the
definition is a straightforward extension of that for deterministic machines.
Definition 6.4.1: A nondeterministic Turing machine M = (K, T,,A,H) is said to
be polynomially bounded if there is a polynomial p(n) such that for any input x,
there is no configuration C of M with (s,>Lte) h"x' C; that is, no computation
of this machine continues for more than polynomially many steps. And define
MYV (for nondeterministic polynomial) to be the class of all languages that are
decided by a polynomially bounded nondeterministic Turing machine. It is
important at this point to recall the peculiar definition of what it means for a
nondeterministic machine to decide a language L: For each input not in L, all
computations of the machine must reject the input; for each input in L, we only
require that there be at least one computation that accepts the input —none,

some, most, or all of the other computations may reject the input, as long as
there is at least one accepting one. The set of all possible computations of a
nondeterministic Turing machine on a given input is best pictured by a treelike
structure (see Figure 6-3). Nodes represent configurations, and downward
lines are steps. Nondeterministic choices are represented by nodes that have
more than one downward line leaving them. Time is measured in the vertical
dimension. In Figure 6-3, for example, the input is accepted after five steps.
Such a picture makes it transparent why nondeterminism is such a powerful
mode of computation: There are astronomically many configurations that are
produced in very short time (vertical distance from the root). As we shall see
in the next examples, this power of nondeterminism can be put to use in
"solving" some of the formidable problems we have seen in the last section.
Example 6.4.1: We mentioned in the previous section that it is widely believed

294 Chapter 6: COMPUTATIONAL COMPLEXITYOOnnnnOnnnynn
Onnnnynnnn Figure 6-3 that SATISFIABILITY is not in V. Let us now
show that it is in J\fV'. We shall design a nondeterministic Turing machine M
that decides in polynomial non- deterministic time all encodings of satisfiable
Boolean formulae in conjunctive normal form. M operates as follows: On input
w, it first checks to see whether w is indeed the encoding of a Boolean formula
in conjunctive normal form (if not, it rejects immediately), and counts the
number of variables, n, that appear in it. This is easy to accomplish
deterministically in polynomial time. At the end of this first stage, the second
tape of M contains the string >7n, with as many 7's as the formula has
variables. Then M goes into a nondeterministic phase, during which it writes
on its second tape a sequence of n T's and _L's over the /'s. Which sequence of
T'sand L's, exactly? The answer is "any sequence, nondeterministically." A
more precise answer is perhaps "all sequences, each in a different branch of
the tree of nondeterministic computations? It is easy to design a nonde-
nondeterministic machine that does this: Just add a new state q to K, and add to
A the transitions (ignoring the other tapes, where no activity takes place) (q, I,
q, T)s (qa /7 g, J_)9 (qa Ts q, ')>)9 (q9 _Ls q, '>)9 (qa U9 q'a U)s where q' is the
state that continues the computation. The final phase of M is deterministic: M
interprets the string in {T, L}ninits second tape as a truth assignment for the
input formula. It then visits each clause of the input one by one, and checks
whether it contains a literal that is

6.4: The Class NP 295 T under the truth assignment. If it finds that all clauses
have a T literal, M accepts. Otherwise, 1f an unsatisfied clause is found, M
rejects. It is straightforward to see that M, as described above, establishes that
SATISFIABILITY is in MV. First, all computations are of length bounded by
some small polynomial. For the crucial part, if the input encodes a satisfiable
Boolean formula, then M will "guess" the satisfying truth assignment at some
branch of the nondeterministic computation, and will therefore have at least
one accepting computation —in addition to possibly many rejecting ones.
Hence the input will be accepted. If the input formula is unsatisfiable, or not a
formula at all, then all computations will end up rejecting. <O Example 6.4.2:
The TRAVELING SALESMAN PROBLEM (as defined in Section 6.2 with the
"budget" B given) is also in AfV. The nondeterministic Turing machine that
achieves this writes in its second tape, nondeterministically, a string of zeros,
ones, and U's of length equal to that of the input. Then the machine enters a
deterministic phase, in which it checks to see if the string written on its second
tape happens to be the encoding of a bijection tt of the integers 1,..., n where n
is the number of cities in the given input —bijection 7T is encoded by writing
7r(1),7rB),... in binary, separated by U's. If the string is indeed the encoding of
a bijection, the machine goes on to deterministically calculate the cost of the
tour, and compare it with the "budget" B in its input. If the cost is smaller, the
machine accepts; in all other eventualities (if the guessed string is not the
encoding of a bijection, or if it represents a tour with cost greater than B) the
machine rejects. It is clear that a string is in the language decided by this
machine if and only if it encodes a "yes" instance of the TRAVELING
SALESMAN PROBLEM. Similarly, it is easy to show that the other apparently
difficult problems we encountered in the previous section, INDEPENDENT
SET, HAMILTON CYCLE, and PARTITION (though not EQUIVALENCE OF
NONDETERMINISTIC FINITE AU- AUTOMATA) are also in AfV.<) Notice
how cleverly the nondeterministic "algorithms" of the two previous examples
exploit the fundamental asymmetry in the definition of nondeterminis-
nondeterministic time-bounded computation. They try out all possible solutions
to the prob- problem in hand in independent computations, and accept as soon
as they discover one that works —oblivious of the others that do not. The
analogy with the class of recursively enumerable languages, another class
whose definition had an asymmetry of a similar kind between acceptance and
rejection, is tempting here. As with that class, it is not at all clear that MV is
closed under complement (while it is clear in the case of V, as well as the

class of recursive functions). Also, it is immediate that V C MV (the analog of
the fact that every recursive language is recursively enumerable). This is
because

296 Chapter 6: COMPUTATIONAL COMPLEXITY deterministic machines
are simply nondeterministic ones in which the transition relation happens to be
a function. Is V equal to MVI In other words, are nondeterministic Turing
machines yet another version of Turing machines equivalent to the rest with
respect to the class of languages decided in polynomial time? At first glance,
one gets the in- intuitive feeling that nondeterminism is such a strong and
"different" feature that this should not be the case. The trees that represent the
set of computations of a nondeterministic Turing machine (recall Figure 6-3)
have many nodes (that is, configurations), all at a moderate depth. The only
way that a deterministic Turing machine can compete with the nondeterministic
one with respect to the number of reachable configurations is by operating for
an exponential number of steps. The nondeterministic machines that decide
SATISFIABILITY and the TRAVELING SALESMAN PROBLEM above
search quite effortlessly an exponen- exponentially large population of
possibilities; it would be truly remarkable i1f the same effect could be achieved
in a methodical deterministic manner in polynomial time. This difficulty of
using a deterministic Turing machine to search a large set of "solutions" was
also reflected in the proof of Theorem 4.5.1. It was shown there that a
nondeterministic Turing machine can be simulated by a deterministic one; but
that simulation was not a direct step-by-step simulation, like the ones of
Theorems 4.3.1 and 4.3.2 (for which we were able to prove polynomial
bounds). The simulation of a nondeterministic Turing machine resorted to an
exhaustive examination of all possible computations. Again, one gets the
intuitive feeling that this is inherent in nondeterminism, since it allows multiple
choices at each step, and so there is an exponentially large multitude of
possible computations to be checked. In order to compare nondeterministic and
deterministic machines in terms of their time performance, we must first define
a much more general class of languages: Definition 6.4.2: A Turing machine M
= (K,H,S,s,H) 1s said to be ex- exponentially bounded if there is a polynomial
p{n) such that the following is true: For any input x, there is no configuration C
such that (s, oLkc) \-2M +1 C. That is, the machine always halts after at most
exponentially many steps. Finally, define £XV to be the class of all languages
that are decided by some exponentially bounded Turing machine. Theorem

6.4.1: If LE MV, then L e EXV. Proof: Suppose that we are given a
nondeterministic polynomially bounded Turing machine M deciding L with
time bound p(n). We shall show how to

6.4: The Class NP 297 construct a deterministic Turing machine M' that
decides the same language in time cp'n' for some constant ¢ (the theorem then
follows, by considering the polynomial k -pin), for some k such that 2k > c).

M' is precisely the machine constructed in the proof of Theorem4.5.1. M'
simulates M on all possible computations of length 1, then on all possible
computations of length 2, and so on, up to length p(n) + 1, at which point either
an accepting computation has been discovered, or all computations have halted
rejecting. To simulate a computation of M of length £, M' needs Oil) steps —to
copy the input, to produce the next string in {1,2,..., r}e (where r is the degree
of nondeterminism of M, a fixed number depending only on M and equal to the
maximum possible number of quadruples in A that share the same first two
components), and to simulate M following the choices suggested by this string.
Thus, M' can carry out the simulation of M on an input of length n in time which
completes the proof withc =1 + 2. m As we have already mentioned, whether
V=MV s a question of central importance to complexity theory that is
presently unresolved. Whether MV = £XV, that is, whether the inclusion in the
above corollary is proper, is another question which, although quite a bit less
important, 1s equally open. We do know the following, however: In the chain of
inclusions V C MV C £XV, the third class properly includes the first. The
reason is that the language E, shown in Theorem 6.1.2 not to be in 'V, is
certainly in £XV: A Turing machine can in exponential time simulate M on
input w for 21wl steps. Thus, although we suspect that both of the inclusions
displayed above are proper, all we can currently prove is that at least one of
them is proper —and we do not know which... Succinct Certificates The
nondeterministic Turing machines we devised in Examples 6.4.1-2 for decid-
deciding SATISFIABILITY and the TRAVELING SALESMAN PROBLEM are
quite simple, and somewhat similar: They start by nondeterministically
generating a string, and then check deterministically whether the generated
string has a certain re- required property in relation to the input. If the input is
in the language, then at least one appropriate string exists. If the input is not in
the language, then no string with the required property can be found. Such a
string is called a certificate, or a witness. As we shall see, all problems in MV
have certificates, and only problems in MV do. A certificate

298 Chapter 6: COMPUTATIONAL COMPLEXITY must be polynomially
succinct, that is, of length that is at most a polynomial in the length of the input.
It must also be checkable in polynomial time. In the case of SATISFIABILITY,
checking the certificate entails testing whether the truth assignment satisfies all
clauses of the input formula; in the case of the TRAVELING SALESMAN
PROBLEM, testing whether the proposed tour has a total cost within the
budget; for INDEPENDENT SET, whether the given set of nodes is of the right
size and free of edges; and so on. Finally, all "yes" inputs of a problem must
have at least one certificate, while all "no" inputs must have none. The idea of
certificates can be formalized in the domain of languages, pro- providing an
interesting alternative definition of MV m Definition 6.4.3: Let E be an
alphabet, and let ";" be a symbol not in E. Consider a language V C E*; S*. We
say that V is polynomially balanced if there exists a polynomial p{n) such that
ifx; y £ V', then \y\ <p{\x\). Theorem 6.4.2: Let L C S* be a language, where ;"
E, and |[E| > 2. Then L £ MV if and only if there is a polynomially balanced
language L' C E*;E* such that L' £ V, and L= {x : there is a y £ E* such that x; y
£ L' }. Proof: Intuitively, language V summarizes all certificates of all inputs.
Thatis, L= {x; y : y 1s a certificate for x}. For each x £ S*, there 1s a set of y's
such that x; y £ L'; this set is the set of certificates of a;. If a; is in L, then its set
of certificates has at least one element; if x $ L, then this set of certificates is
empty. If such a language V exists, then a nondeterministic Turing machine
could decide L by trying all certificates (very much like the nondeterministic
Turing machine that decides SATISFIABILITY does) and then utilizing the
deterministic Turing machine that decides U. And conversely, any
nondeterministic Turing machine M deciding L provides a solid framework for
certificates for L: A certificate for an input x is precisely any accepting
computation of M on input x —both concise and polynomially checkable. The
formal proofis left as an exercise (Problem 6.4.5). m This concept of succinct
certificates is best illustrated in terms of the set CCNof composite numbers
(recall the discussion in Example 4.5.1). Suppose that we are given a natural
number in its usual decimal representation —for instance, 4,294,967,297 —
and asked whether it is composite. There is no clear, efficient way of
answering such questions. However, every number in C does have a succinct
certificate. For example, the number 4,294,967,297, which happens to be
composite, has as a certificate the pair of integers 6,700,417 and 641 that

References 299 have a product of 4,294,967,297. To check the validity of the

certificate, one just has to carry out the multiplication to be convinced that
4,294,967, 297 £ C. And this 1s the subtlety of a certificate: Once you have
found it, you can efficiently exhibit its validity. But finding it may not be easy:
The above factorization of 4,294,967,297 was first discovered by the
mathematician Leonard Euler A707- 1783) in 1732, a full 92 years after Pierre
de Fermat A601-1665), another great mathematician, had conjectured that no
such factorization existed! Problems for Section 6.4 6.4.1. Show that AfV is
closed under union, intersection, concatenation, and Kleene star. (The proofs
for AfV are much simpler that those for V-) 6.4.2. Define coAfV to be the
following class of languages {L: L £ AfV}. It is an important open problem
whether AfV =coAfV, that is, whether AfV is closed under complement. Show
that if AfV * coAfV, then V * AfV. 6.4.3. Call a homomorphism h (recall
Problems 2.3.11 and 3.5.3) nonerasing if it maps no symbol to e. Show that
AfV is closed under nonerasing homo- morphisms. You may want to think
about these questions: Is AfV closed under general homomorphisms? How
about the class of recursive languages? How about the recursive enumerable
ones? How about Vf See Problem 7.2.4 in the next chapter for the last one.
6.4.4. Define appropriate succinct certificates for PARTITION and CLIQUE.
6.4.5. Prove Theorem 6.4.2. REFERENCES The theory of computational
complexity, much anticipated in the late 1950s and early 1960s, was formally
developed by Hartmanis and Stearns in this paper o J. Hartmanis and R. E.
Stearns "On the computational complexity of algo- algorithms," Transactions of
the American Mathematical Society, 117, pp 285-305, 1965; Theorem 6.1.2
follows from results in that paper. The thesis that the class V adequately
captures the notion of an "efficiently solvable problem," also implicit in much
earlier work, emerged in the mid 1960s mainly in these two works: o A.
Cobham "The intrinsic computational difficulty of functions," Proceedings of
the 1964 Congress for Logic, Mathematics and the Philosophy of Science, pp.
24- 30, New York: North Holland, 1964, and

300 Chapter 6: COMPUTATIONAL COMPLEXITY o J. Edmonds "Paths,
trees and flowers," Canadian Journal of Mathematics, 17, 3, pp. 449767, 1965.
In the last paper, the class MV was also informally introduced (in terms of
certificates, recall Theorem 6.4-2), and it was first conjectured that P/ MV'm
For a much more extensive treatment of computational complexity, see o C. H.
Papadimitriou Computational Complexity, Reading, Massach.: Addison-
Wesley, 1994.

NP-completeness 7.1 POLYNOMIAL-TIME REDUCTIONS Many of the
concepts and techniques we use in complexity theory are time- bounded
analogs of the concepts and techniques that we developed for studying
undecidability. We have already seen in the proof of Theorem 6.1.2 that we can
use the polynomial-time analog of diagonalization in order to show that certain
languages are not in V. We shall next introduce polynomial-time reductions, the
analog of the reductions we employed for establishing undecidability in
Chapter 5. We shall use polynomial-time reductions to study the complexity of
several important and seemingly difficult problems in MV introduced in the
previous chapter: SATISFIABILITY, the TRAVELING SALESMAN
PROBLEM, INDEPENDENT SET, PARTITION, and others. As we shall see,
these problems have the following important completeness property: All
problems in MV can be reduced to them via polynomial-time reductions —in
much the same way that all recursively enumerable languages reduce to the
halting problem. We call such problems AfP-complete. Unfortunately, the
analogy with the halting problem breaks down after this point. There seems to
be no simple diagonalization argument which establishes that these A/'T'-
complete problems are not in V; diagonalization arguments ap- appear to apply
only to languages that are too hard and unnatural to matter, such as the
exponential-time language E in Theorem 6.1.2. Despite the fact that these jVP-
complete problems fail to provide a proof that V* MV, they do occupy an
important place in our study of complexity: // we assume that VMV —a
conjecture that is very widely accepted, although still far from proved— then
all A/'T-'-complete problems are indeed not in V (this is articulated in
Theorem 7.1.1 below). This somewhat indirect evidence of difficulty is the
most we can expect for a problem in MV, short of proving that 301

302 Chapter 7: NP-COMPLETENESS But we must now define the
polynomial-time variant of reduction (compare with Definition 5.4.1):
Definition 7.1.1: A function/ : S* h-» S* is said to be polynomial-time
computable if there is a polvnomially bounded Turing machine M that com-
computes it. Let now Li, Li C S* be languages. A polynomial-time computable
functionr : S* h-> S* is called a polynomial reduction from L\ to Li if for each
x £ £* the following holds: x £ L\ if and only if r(x) £ Li. Polynomial
reductions are important because they reveal interesting re- relationships
between computational problems. Strictly speaking, a polynomial reduction as
defined above relates two languages, not two problems. However, we know

from the discussion in Section 6.2 that languages can be used to en- encode all
kinds of important computational problems, such as HAMILTON CYCLE.
SATISFIABILITY, and INDEPENDENT SET. In this sense we can say thatr is
a polynomial reduction from Problem A to Problem B if it is a polynomial
reduction between the corresponding languages. That is, r transforms in poly-
polynomial time instances of Problem A to instances of Problem B in such a
way that a; 1s a "yes" instance of Problem A if and only if t(x) 1s a "yes"
instance of Problem B. r Instance . of Ax|? 1 1 r Instance of B Algorithm for
A1 ft) Algorithm forB -""""* 1 |* "no' J Figure 7-1 When we have a
polynomial reduction r from Problem A to Problem B, it is possible to adapt
any polynomial-time algorithm for B to obtain one for A (see Figure 7-1). To
tell whether any given instance x of Problem A is actually a "yes" instance of
A, one can start by computing t(x), and testing whether or not it is a "yes"
instance of B. If we have a polynomial algorithm for B, this method for solving
A is also polynomial, since both the reduction step and the algorithm for
solving the resulting instance of B can be done in polynomial time. In other
words, the existence of a polynomial reduction from A to B is evidence

7.1: Polynomial-time Reductions 303 that B is at least as hard as A. If B is
efficiently solvable, then so must be A; and, if A requires exponential time,
then so does B. We give several examples of reductions below. Example 7.1.1:
Let us describe a polynomial reduction from HAMILTON CYCLE to
SATISFIABILITY. Suppose that we are given an instance of HAMILTON
CYCLE, thatis, a graph G C Vx 'V, where V= {1,2, ...,n}. We shall describe
an algorithm r that produces a Boolean formula in conjunctive normal form
t(G), such that G has a Hamilton cycle (a closed path visiting each node of G
exactly once) if and only if t(G) is satisfiable. Formula t(G) will involve n2
Boolean variables, which we shall denote x*, with 1 <1,j <n. Intuitively, Xij
will be a Boolean variable with this intended meaning: "Node 1 of G is the jth
node in the Hamilton cycle of G." The various clauses of t(G) will then
express in the language of Boolean logic the requirements that a Hamilton
cycle must satisfy. What requirements must the xy- 's satisfy so that they indeed
define a Hamil- Hamilton cycle of Gl We shall cast each such requirement as a
clause. First, for j = 1,...,nwe have the clause j V x2j For a truth assignment to
satisfy this clause, it must set at least one of the variables Xij,x2j, m m m ,xnj to
T; thus this clause expresses, under the "intended meanings" of the Boolean
variables, the requirement that at least one node should appear ith in the

Hamilton cycle. But of course, only one node of G can appear ith in the
Hamilton cycle. Thus, we add to our Boolean formula all O(n3) clauses of the
form for 1,j,k=1,...,n and j " k. Since at least one literal in this clause must be
satisfied, these clauses successfully express the requirement that not both node
j and node k can appear ith on the cycle. The clauses so far guarantee that
exactly one node appears ith in the Hamil- Hamilton cycle. But we must also
require that node 1 appear exactly once in the cycle. This is done by the clauses
(Xn VIj2 V... Vxin) for 1= 1,... ,nand (x77VXfe~) fori,j,k=1,..,nand 1 "k

304 Chapter 7: NP-COMPLETENESS So far these clauses express the
requirement that the zy's represent a bisec- bisection or permutation of the
nodes of G. We must next express by new clauses the requirement that this
permutation is indeed a cycle of G. We do this by adding the clause (x1jVxkj+1)
A) for j = 1,... ,n and for each pair (i, k) of nodes such that (i, fc) is not an edge
of G. Here by Xk,n+i we mean the Boolean variable Xki; that is, addition in
the second index is assumed to be modulo n. Intuitively, the clauses in A) state
that, if there is no (i, k) edge in G, then it cannot be the case that i and k appear
consecutively in this order in the alleged Hamilton cycle. This completes the
construction of r(G). It is easy to argue that the construction of t(G) can be
carried out in polynomial time. There are O(n3) clauses to be constructed, with
a total number of O(n3) literals. The structure of these clauses is extremely
simple, and either depends on n alone, or depends on the edges of G in a rather
straightforward way. It would be straightforward to construct a polynomial-
time Turing machine that computes the function r. Next we have to argue that G
has a Hamilton cycle if and only if t{G) is satisfiable. Suppose that there is a
truth assignment T that satisfies t(G). Since T must make at least one literal T
in each of the clauses other than those in A) above, it follows that T encodes a
bijection on the nodes of G, that is, for each i exactly one T(xij) is T, and for
each j exactly one T(xij) 1s T. Denote by n(1) the unique j for which T(xit7r") =
T. The set of clauses in A) above must also be satisfied. This means that
whenever 1 =n(j) and k=n(j + 1) (where againn+ 1 means 1) then (j, k) must
be an edge of G. It follows that (ttA), ttB), ..., 7r(n)) is indeed a Hamilton
cycle of G. The if direction has been proved. Conversely, suppose that G has a
Hamilton cycle, say (ttA), ttB), ..., ir(n)). Then it is easy to see that the truth
assignment T, where T{xij) = T if and only if j = tt(z), satisfies all clauses of
t(G), and the proofis complete. Later in this chapter we shall see a reduction
in the opposite direction (The- (Theorems 7.3.1 and 7.3.2). Correctly

interpreting polynomial reductions as to the information they reveal with
respect to the difficulty of the problems involved can be confusing, and
requires some care and experience. The reader is encouraged at this point to
ponder these issues: Is this reduction good news or bad news about the
complexity of HAMILTON CYCLE? of SATISFIABILITY? Suppose that we
have a polynomial-time algorithm for HAMILTON CYCLE; what can we
conclude about SATISFIABILITY in the light of this reduction? What if we had
a polynomial- time algorithm for SATISFIABILITY? What can we conclude if
we know that HAMILTON CYCLE is a difficult problem? that
SATISFIABILITY is a difficult problem?”

7.1: Polynomial-time Reductions 305 Example 7.1.2: You must schedule n
tasks on two machines. Both machines have the same speed, each task can be
executed on either machine, and there are no restrictions on the order in which
the tasks have to be executed. You are given the execution times a\,..., an of the
tasks and a deadline D, all in binary. Can you complete all these tasks on the
two machines within this deadline? Another way to state this question is the
following: Is there a way to parti- partition the given binary numbers into two
sets so that the numbers in each set add up to D or less? We call this problem,
whose relation to the PARTITION prob- problem denned in the last chapter is
perhaps clear, TWO-MACHINE SCHEDULING. We also introduce another
problem, also closely related to PARTITION: KNAPSACK: Givena set S =
{ai,... ,an} of nonnegative integers, and an integer K, all represented in binary,
is there a subset PCS such that (This graphic name is supposed to bring to mind
a hiker who 1is trying to fill her knapsack to its limit with items of varying
weights.) How are these three problems (PARTITION, KNAPSACK, and
TWO-MACHINE SCHEDULING) related by polynomial reductions? We shall
show that there are six polynomial reductions, reducing any one of these three
problems to any other! Suppose that we have an instance of KNAPSACK, with
integers ai,...,an and K; we must reduce it to an equivalent instance of
PARTITION. If K happens to be equal to H=| Y17=1 a* the half-sum of the
given integers, then all our reduction has to do is to erase K from the input: The
resulting instance of partition is equivalent to the given instance of
KNAPSACK. The problem is, of course, that K will not in general be equal to
H. But this is easy to fix: Add to the set of aj's two large new integers ant+\ =
2H + 2K and ant+2 = 4H (notice that these numbers are integers even if H fails
to be one). Consider now the resulting set of integers {ai,... ,an_| 2} as an

instance of PARTITION —the reduction is complete. It is obvious that this
reduction can be carried out in polynomial time. We must now show that the
reduction works; that is, that the instance of partition has a solution if and only
if the original instance of knapsack had one. Notice first that if the new set of
integers can be partitioned into two sets with equal sums, then the two new
integers an+\ and an+2 must be on opposite sides of the partition (their sum
exceeds that of the remaining integers). Let P be the set of integers among the
original ones a,i,...,an that are on the same side as an+2 = 4H. We have that
4H+ J2 ai=2H + 2K+ " at. a,i€P (neS-P

306 Chapter 7: NP-COMPLETENESS Adding J2aiePai to both sides, we get
(since J2aiesai ="H) 4H + 2Yai = 4H + 2K, or Y a-eP ai = K- Hence, if the
resulting instance of PARTITION has a solution, then the original instance of
KNAPSACK has one. And conversely, if we have a solution of KNAPSACK,
then adding ant+2 to it yields a solution of the instance of PARTITION. This
was the reduction from KNAPSACK to PARTITION. We started with an
arbitrary instance of KNAPSACK and constructed an equivalent instance of
PARTITION. A reduction in the opposite direction is trivial, because
PARTITION is a special case of KNAPSACK. Given any instance of
PARTITION with inte- integers ai,...,an, the reduction to KNAPSACK
transforms the given instance of PARTITION to the instance of KNAPSACK
with the same numbers, and bound K =\ E,"=1 <*<e But what if K is not an
integer (that 1s, the given integers add to an odd number)? Then we can have
the reduction produce any impossible instance of KNAPSACK we wish, such
as the one withn— 1, a,\ =2, and K =1 —the given instance of PARTITION
was also impossible. The reduction from PARTITION to TWO-MACHINE
SCHEDULING is also easy: Given an instance of PARTITION with integers
ai,...,an, the reduction pro- produces an instance of TWO-MACHINE
SCHEDULING with n tasks, execution times a\,..., an, and deadline D = | |
EiLi ai\ (if \ SiLi ai Is n°t an integer, then this is already an impossible
instance). It 1s easy to see that the resulting instance of TWO-MACHINE
SCHEDULING is solvable if and only if the original instance of PARTITION
was. This is because the tasks can be partitioned into two sets with sums at
most D if and only if they can be partitioned into two sets with sums exactly D.
D Machine 1 Machine 2 Figure 7-2 The reduction from TWO-MACHINE
SCHEDULING to PARTITION is a lit- little more involved. Suppose that we
are given an instance of TWO-MACHINE SCHEDULING with task lengths

a\,... ,an, and deadline D. Consider the num- number / = 2D — FEILi ai-
Intuitively, / is the total idle time in any legal schedule

7.1: Polynomial-time Reductions 307 (see Figure 7-3). It is the amount of slack
that we have 1n solving the scheduling problem. We add now several new
numbers to the set of lengths of tasks, such that (a) the sum of these new
numbers 1s 7; and (b) moreover, we can make up any sum between 0 and I by
adding a subset of these new numbers. It is not hard to see that, if we were able
to do this, the resulting instance of PARTITION would be equivalent to the
original instance of TWO-MACHINE SCHEDULING, be- because we could
then transform any feasible schedule of the original tasks into an equitable
partition of the new set of numbers by adding to each of the two sets a subset of
the newly introduced numbers that will bring the sum of both to D. All we have
to do now is supply integers, adding up to I, so that any number between zero
and I is the sum of a set of these numbers. Superficially, this looks trivial to do:
Add I copies of the integer 1. What is wrong with this reduction, however, is
that it is not a polynomial-time reduction, for the same reason for which the
algorithm for PARTITION we sketched in the previous chapter failed to be
polynomial: The integer I is not bounded by a polynomial in the size of the
input —since the input consists of the task lengths and the deadline, all
encoded in binary, the number I could be exponentially large in the size of the
input. The solution is a little more complicated: The numbers we add are all
powers of 2 that are smaller than A-/, plus another integer to bring the sumto /.
For example, if I = 56, then the newly added integers would be 1, 2,4,8,16, and
25. All integers between 0 and 56, and only these, can be made up as the sum
of some subset of these integers. This completes the description of the
reduction from TWO-MACHINE SCHEDULING to PARTITION; the
reduction 1s polynomial, because the number of integers we introduce is
bounded by the logarithm of [—which is less than the size of the input.{} In
the above example we did not discuss direct reductions from KNAPSACK to
TWO-MACHINE SCHEDULING and back. But there is no need: As we show
next, polynomial reductions compose in a transitive fashion. Recall that the
composition of two functions / : Ai-» B and g: B i-» C is the function fog: A
1-» C, where for all x€ A, fo g(x) =g{f(x)). Lemma 7.1.1: If Ti is a
polynomial reduction from L\ to L and Ti is a poly- polynomial reduction
from Li to L3, then their composition T\ o t-i is a polynomial reduction from L\
to L3. Proof: Suppose that T\ is computed by a Turing machine M\ in time pi, a

polynomial, and t"is computed by Mi in time P2, also a polynomial. Then T\ o
T2 can be computed by the machine M1M2. On input x € ££, M\M2 will output
T\ o Ti(x) in time bounded bypi([x|) + P2 {Pi(\x\)) —a polynomial. The latter
term reflects the fact that |ti(x)| cannot be larger than pi([x|). It remains to show
that x € L\ if and only if n o Ti{x) € L3. But this is trivial: x € L\ if and only if
T\(x) € L2, ifand only if n o r"ix) € L3. m

308 Chapter 7: NP-COMPLETENESS We finally arrive at the following
important definition. Definition 7.1.2: A language L. C S* is called A/'P-
complete if (a) L€ AfV; and (b) for every language L' € MV, there is a
polynomial reduction from L' to L. Just as the decidability of H captured the
whole question of the decidability of Turing-acceptable languages, so the
question of whether any one Ar'P-complete language is in V turns out to be
equivalent to the whole V=MV question: Theorem 7.1.1: Let L be an NV-
complete language. Then V=MV if and only if L € P. Proof: (Only If) Suppose
that V= MV. Since Lis A/'P-complete, and hence L € MV (recall that an A/'P-
complete language must be in MV), it follows that Lev. (If) Suppose that L s
an Ar'P-complete language that is decided by a determin- deterministic Turing
machine Mi in time pi(n), a polynomial, and let L' be any language in MV; we
shall show that V £ V. Since L is Ar'P-complete and L' € MV, then there is a
polynomial reduction r from V to L (we are now using the second part of the
definition of an MV- complete language). Suppose that r is computed by some
Turing machine M<i in time P2(n), also a polynomial. Then we claim that the
Turing machine M2-M1 decides L' in polynomial time. To see that M2Mi
decides L, notice that M2Mi accepts input x if and only if t(x) € L; and since r
is a polynomial reduction, t(x) € Lif and only if x € L. Finally, to analyze the
time requirements of M2Mi, notice that its initial M2 part takes, on input X,
time £>2([a:|) to produce an input for Mi. This input will have length at most
p2(Ja:]), because M2 cannot write more than one symbol per step. Hence, the
computation of Mi on this input will take time at most pi(j>2('\x\)). The overall
machine will halt, on input x, within time p2(Jic|) + Pi(j>2(\x\) + \x\), and this
is a polynomial in [a:. Since L' was taken to be any language in MV and we
concluded that L' €V, it follows that MV = V.m Problems for Section 7.1 7.1.1.
In 3-COLORING we are given an undirected graph, and we are asked whether
its nodes can be colored with three colors such that no two adjacent nodes
have the same color. (a) Show that 3-COLORING is in MV. (b) Describe a
polynomial-time reduction from 3-COLORING to SATISFIABILITY.

7.2: Cook's Theorem 309 7.1.2. Some authors define a more general notion of
reduction, often called poly- polynomial Turing reduction. Let L\ and L<i be
languages. A polynomial Turing reduction from L\ to L2 is a 2-tape Turing
machine with three distinguished states, q?, q\, and qo, that decides L.2 in
polynomial time, and whose computation is defined in a rather peculiar way.
The yields relation of M for all configurations with states other than g-r is
defined exactly as for ordinary Turing machines. For g-r, however, we say that
(q?,touialvi,t>U2Q2V2) I~m (q,C'"g/ug™v") if and only if A) ui = u[, a[=
ax, v[=vi, 12 =u'2, a'2 = a2, v'2 =v2, and B) one of the following holds:
either Ba) U2C12V2 £ L\ and q' = qi, or Bb) u2a2v2 £ Li and q' = q0. In other
words, from state g-r, M never changes anything on its tapes; it just goes to
state q\ or qo, depending on whether or not the string in its second tape is in L\.
Furthermore, this counts as one step of M. (a) Show that if there is a
polynomial Turing reduction from L\ to L2, and one from L2 to L3, then there is
a polynomial Turing reduction from L\ to L3. (b) Show that if there is a
polynomial Turing reduction from L\ to L2, and L2 € V, then Lx € V'. (¢) Give a
polynomial Turing reduction from HAMILTON CYCLE to HAMIL-
HAMILTON PATH (the version in which we are not requiring that the path that
visits each node exactly once is closed). Can you find a direct (that is, not
using the reduction in the proof of Theorem 7.3.2 below) polynomial reduction
between the two problems? 7.2 COOK'S THEOREM We have not yet
established that A/3-complete languages exist —but they do. During these past
two decades research in computational complexity has dis- discovered
literally hundreds of such A/3-complete languages (or NT'-complete problems,
as we shall continue to blur the distinction between computational problems
such as SATISFIABILITY and HAMILTON CYCLE and the languages that
encode them). Many of these A/3-complete problems are important practical
problems from operations research, logic, combinatorics, artificial
intelligence, and other seemingly unrelated application areas. Prior to the
discovery of HV- completeness, much research effort had been devoted in vain
to finding polyno- polynomial algorithms for many of these problems. The
concept of A/3-completeness unified the experiences of researchers in these
diverse areas by showing that none of these problems is solvable by a
polynomial-time algorithm unless V=MV — a circumstance that appears to
contradict both intuition and experience. This

310 Chapter 7: NP-COMPLETENESS realization has had the beneficial effect

of diverting the research effort previ- previously focused on solving particular
]VP-complete problems towards other, more tractable goals, which are the
subject of Section 7.4. This redirection of re- research effort has been the most
profound effect of the theory of computation on computational practice.
Bounded Tiling Once we have proved the first J\fV-comp\ete problem, more
problems can be shown A/'P-complete by reducing to them a problem already
known to be HV- complete, and using the transitivity of polynomial reductions,
recall Lemma 7.1.1. But the first A/'P-completeness proof must be an
application of the defini- definition: We must establish that all problems in MV
reduce to the problem in hand. Historically, the first problem to be shown
A/'P-complete by Stephen A. Cook in 1971 was SATISFIABILITY. Instead of
giving that proof directly, we shall start with a version of the tiling problem
that was shown to be undecidable in Chapter 5. In the original tiling problem
we were given a tiling system V, and we were asked whether there 1s a way to
tile the infinite first quadrant so that any two vertically or horizontally adjacent
tiles are related as prescribed, and a given tile is placed at the origin. We can
define a less ambitious problem, called BOUNDED tiling, in which we are
asked whether there is a legal tiling, not of the whole quadrant, but of ans x s
square, where s > 0 is a given integer. This time, instead of specifying only the
tile placed at @,0), we specify the entire first row of'tiles. That is, we are
given a tiling system V = (D,H,V) (where we omit the starting tile do, which is
now irrelevant), an integer s > 0, and a function /o : {0,..., s - 1} 1i-» D. We are
asked whether there is an s x s tiling by V extending /0, that is, a function/ :
{0,1,...,s -1} x{0,1,..., s - 1} 1-» D such that /(m,0) = fo(m) for all m<s;
(f(m,n),f{lm + 1,n)) € H for all m<s - I,n <s; (f{m,n),f(mn+ 1)) € V for all m <
s,n<s - 1. The BOUNDED TILING problem is this: BOUNDED TILING
Given a tiling system V, an integer s, and a function fO : {0,..., s — 1} h-» D,
represented by its sequence of values (/o@),..., /o(s — 1)), is there ans x s
tiling by V extending /0? Theorem 7.2.1: BOUNDED TILING is MV-complete.
Proof: Let us first argue that it is in MV. The certificate in this case is a
complete listing of the s2 values of a tiling function /. Such a function can be
checked in polynomial time for compliance with the three requirements. Fur-
Furthermore, it 1s succinct: Its total length is s2 times the number of symbols it

7.2: Cook's Theorem 311 takes to represent a tile, and s is bounded from above
by the length of the input because the input includes the listing of fa. Actually,
the purpose of this twist to our tiling formalism was precisely to ensure that the

problemis in NV; if we only specify one starting tile, the problem becomes
much harder —it is provably not in V; see Problem 7.2.2. We must now show
that all languages in MV reduce via polynomial reduc- reductions to
BOUNDED TILING. So, consider any language L € HV. We must produce a
polynomial reduction from L to BOUNDED TILING, that is, a polynomial-time
computable function r such that for each x € £*, t(x) is the encoding of a tiling
system V = (D,H,V), plus an integer s > 0 and the encoding of a function /o,
with this property: There is an s x s tiling with V extending /o if and only if x €
L. To obtain this reduction, we must somehow exploit the little information we
have about L. All we know about L is that it is a language in MV, that is, we
know that there is a nondeterministic Turing machine M = (K.,Y,,S,s) such that
(a) all computations of M on input x halt within p {\x\) steps for some
polynomial p, and (b) there is an accepting computation on input x if and only
1ixeL. We start by describing the integer s constructed by r on input x: itis s =
p{\x\) + 2, two more than the time bound of M on input x. The tiling system T>
described in t(x) will be very similar to the one con- constructed in the proof
of the undecidability of the unbounded tiling problem (Theorem 5.6.1). We
shall describe the tiles in 'V, as in that construction, by their edge markings;
once more, the markings of the horizontal edges between rows tand t + 1 will
represent the tape contents of M in a legal computation with input x right after
the tth step (since M is nondeterministic, there may be several such
computations, and therefore there may now be several possible legal ways to
tile the s x s square). The Oth row of the s x s square, prescribed by /o, will be
occupied by tiles spelling the initial configuration (s, >Ux). That is, /o@) is a
tile with upper edge marking >, /o(1) 1s a tile with upper edge marking (s, U),
and for i =1,..., \x fo(1 + 1) 1s a tile with upper edge marking #», the ith letter
of the input x. Finally, for all 1 >\x\ + 1, fo(i) 1s a tile with upper edge marking
U (see Figure 7-3). Thus, the horizontal edge markings between the Oth and the
first rows will spell the initial configuration of M on input x. -U- -U- Figure 7-
3 The remaining tiles in V are exactly as in the proof of Theorem 5.6.1. Since

312 Chapter 7: NP-COMPLETENESS the machine 1s nondeterministic, there
may be more than one tile with bottom horizontal marking (q, a) € K x £,
corresponding to the possibly many choices of action when M scans an a in
state ¢, and each of them is constructed as in that proof. There is only one
minor difference: There is a tile with both upper and lower marking (y,a) for
each symbol a, effectively allowing the tiling to continue after the computation

has halted at state y —but not if it halts at state n. This completes the
construction of the instance t(x) of BOUNDED TILING. It should be clear that
the construction of the instance can be carried out in time polynomial in [x]. We
must now show that there is an s x s tiling by V if and only if a; € L. Suppose
that an s x s tiling exists. Our definition of /o ensures that the horizontal edge
markings between the Oth and the first rows must spell the initial configuration
of M on input x. It then follows by induction that the horizontal edge markings
between the nth and the n+ 1st rows will spell the configuration right after the
nth step of some legal computation of M on input x. Since no computation of M
on input x continues for more than p(|x|) = s — 2 steps, the upper markings of
the s — 2nd row must contain one of the symbols y and n. Since there is an s
— 1st row, and there is no tile with lower marking n, we must conclude that
the symbol y appears, and thus the computation is accepting. We conclude that
if a tiling of the s x s square with V exists, then M accepts x. Conversely, if an
accepting computation of M on input x exists, it can be easily simulated by a
tiling (possibly by repeating the last row several times, if the computation
terminates in fewer than p([x|) steps at state y). The proofis complete. m We
can now use BOUNDED TILING to prove the main result of this section:
Theorem 7.2.2 (Cook's Theorem): SATISFIABILITY is A/'P-complete. Proof:
We have already argued that the problem is in J\fV, we shall next reduce
BOUNDED TILING to SATISFIABILITY. Given any instance of the
BOUNDED TILING problem, say the tiling system V = (D,H,V), side s, and
bottom row /o, where D = {di,... ,dk}, we shall show how to construct a
Boolean formula t(D, s, /0) such that there 1s an s x s tiling / by V if and only if
t(T>, s) 1s satisfiable. The Boolean variables in r(X>, s,/0) are xmn(i for each
0 <m,n<s and d € D. The intended correspondence between these variables
and the tiling problem is that variable xmnd Is T if and only if f(m,r1) = d. We
shall next describe clauses which guarantee that / is indeed a legal s x s tiling
by V. We first have, for each m,n <s, the clause {xmndl V xmnd2 V ... V xmndk

V),

7.2: Cook's Theorem 313 stating that each position has at least one tile. For
each m,n <s and each two distinct tiles d * d! € D, we have the clause (xmnd V
xmnd'), stating that a position cannot have more than one tile. The clauses
described so far guarantee that the xmnd's represent a function / from {0.,..., s
— 1} x {0,..., s — 1} to D. We must next construct clauses stating that the
function described by the “mnd's is a legal tiling by V. We first have clauses

(£10/0(1)) for 1 =0,..., s — 1, forcing /(1,0) to be /o(1)- Then, for each n <s and
m<s— 1, and for each (d, d") £ D2 - H, we have the clause [Xmnd V 3-
m+1,n,d")*> which forbids two tiles that are not horizontally compatible to be
horizontally next to each other. For vertical compatibility, we have for each n <
s — 1 and m<s, and for each (d,d") € D2 — V, the clause (xmnci V
:Em,n+1,d")- This completes the construction of the clauses in t(V,s). It remains
to show that t(T>, s, /0) is satisfiable if and only if there is an s x s tiling by V
that extends /o- Suppose then that t(T>, s, /0) is satisfiable, say by the truth
assignment T. Since the big disjunctions are satisfied by T, for each m and n
there is at least one d e D such that T{xmnd) = T. Since the clauses (xmnd V
xmnd') are all satisfied by T, there is no m and n such that two or more xmnd's
are T under T. Hence T represents a function/ : {0,...,s — 1} x {0,..., s — 1}
1-» D. We claim that f{m,n) 1s a legal s x s tiling that extends /o. First, since the
clauses (x10fo(1)) are all satisfied, it must be the case that (i,0) = fo(1), as
required. Then the horizontal adjacency constraint must be satisfied, be-
because, if it is not satisfied at positions (m,n) and (m + 1,n), then one of the
clauses (xmnd V xm+\,n"d>) is left unsatisfied. Similarly for vertical
adjacency; thus f(m,n) 1s indeed a legitimate s x s tiling extending f0.
Conversely, suppose that an s x s tiling / extending /0 exists. Then define the
following truth assignment T: T(xmnd) = T if and only if f(m, n) =d. It is easy
to check that T satisfies all clauses, and the proofis complete. m Thus there is
no polynomial-time algorithm for SATISFIABILITY, unless V=MV. As we
have seen in Section 6.3, the special case of 2-SATISFIABIlity can be solved
in polynomial time. The following theorem suggests that the immediately next
most involved case is already intractable. In analogy with 2-SATISFIABILITY,
let 3-SATISFIABILITY be the special case of SATISFIABILITY in which all
clauses happen to involve three or fewer literals. Theorem 7.2.3: 3-
SATISFIABILITY is MV-complete. Proof: It is of course in MV, as it is the
special case of a problem in To show completeness we shall reduce
SATISFIABILITY to 3-SATISFIABILITY. This is a rather common kind of
reduction, in which a problem is reduced to

314 Chapter 7: NP-COMPLETENESS its own special case. Such reductions
work by showing how, starting from any instance of the general problem, we
can get rid of the features that prevent this instance from falling within the
special case. In the present situation we must show how, starting from any set
of clauses F, we can arrive in polynomial time at an equivalent set of clauses

t(F) with at most three literals in each clause. The reduction is simple. For
each clause in F with k> 3 literals, say C= (X1 VA2 V---VA*), we do the
following: We let j/i,... ,yk-3 be new Boolean variables, appearing nowhere
else in the Boolean formula t(F), and we replace clause C with the following
set of clauses: (A1VA2V»i1), (j/TVA3V2/2), (We break up all "long" clauses of
F this way, using a different set of y1 variables in each. We leave "short"
clauses as they are. The resulting Boolean formula is t(F). It is easy to see that
r can be carried out in polynomial time. We claim that t(F) is satisfiable if and
only if F was satisfiable. The intuition is this: Interpret the variable y, as
saying, "at least one of the literals Aj+2,..., Xk is true," and the clause (j/7 V
Xi+2 Vj/i+i) as saying, "if yt is true, then either Aj+2 is true, or j/j+i is true."
Formally, suppose that truth assignment T satisfies t(F). We shall show that T
also satisfies each clause of F. This is trivial for the short clauses; and if T
maps all k literals of a long original clause to L, then the yi variables would
not be able by themselves to satisfy all resulting clauses: The first clause
would force 2/1 to be T, the second y2 to be T, and finally the next-to-last
clause would cause yk-3 to be T, contradicting the last clause (incidentally,
notice that this is precisely the purge algorithm solving this instance of 2-
SATISFIABILITY). Conversely, if there is a truth assignment T that satisfies F,
then T can be extended to a truth assignment that satisfies t(F), as follows: For
each long clause C=(A1 VA2 Vm mm V A*) of F, let] be the smallest index
for which T(Xj) =T (since T was assumed to satisfy F, such a j exists). Then
we set the truth values of the new variables j/i,... ,yk-3 to be T"(j/j) =T if1 <]
- 2, and to be T'(y1) = £ otherwise. It is easy to see that T now satisfies t(F),
and the proof of equivalence is complete. m Consider finally the following
optimization version of SATISFIABILITY: MAX SAT: Given a set F of
clauses, and an integer K, is there a truth assignment that satisfies at least K of
the clauses?

7.2: Cook's Theorem 315 Theorem 7.2.4: MAX SAT is MV -complete. Proof:
Membership in MV is obvious. We shall reduce SATISFIABILITY to MAX
SAT. This reduction is an extremely simple one, but of a kind that is very com-
common and very useful in establishing A/'P-completeness results (see
Problem 7.3.4 for many more examples). We just have to observe that MAX
SAT is a general- generalization of SATISFIABILITY; that is, every instance of
SATISFIABILITY is a special kind of instance of MAX SAT. And this is true:
An instance of SATISFIABILITY can be thought of as an instance of MAX

SAT in which the parameter K happens to be equal to the number of clauses.
Formally, the reduction is this: Given an instance F of SATISFIABILITY with
m clauses, we construct an equivalent instance (F, m) of MAX SAT by just
apending to F the easily calculated parameter K = m. Obviously, there is a truth
assignment satisfying at least K = m clauses of F (of which there are exactly in)
if and only if there is one that satisfies all clauses of F. m As it turns out, the
restriction of MAX SAT to clauses with at most two literals can be shown to
be also ./VP-complete (compare with 2-satisfiability) . Problems for Section
7.2 7.2.1. Let us consider what happens in the reduction from L to BOUNDED
TILING when Lis in V —that is to say, when the machine M in the proof of
Theorem 7.2.1 is actually deterministic. It turns out that, in this case, the
resulting tiling system can be expressed as a closure of a set under certain
relations. Let M be a deterministic Turing machine deciding language L in time
p(n), a polynomial; let x be an input of M; and let s, (D,H,V), and /o be the
components of the bounded tiling instance resulting from the reduction in the
proof of Theorem 7.2.1 applied to x. Consider the sets P = {0,1,2,...,s - 1} and
S=PxPx£> LetSo C S be the following set: {(m,0,/0(m)) : 0 <m<s}. Let
Rh C S x S be the following relation: R{((m- 1,n,d),(m,n,d")) : 1 <m,n <s,(d,d")
€ H}, and Ry C S x S be this: R{((m,n- 1,d),(m,n,d")) : 0 <m<s,2 <n<s,
(dd)£V).

316 Chapter 7: NP-COMPLETENESS Show that x G L if and only if the
closure of So under Rh and Ry contains, for each 0 <1,j <s, a triple (1,j,d) for
some d € D. In other words, not only can any closure property can be computed
in polynomial time (this was shown near the end of Section 1.6), but also,
conversely, any polynomial computation can be expressed as a closure
property. Of course, the use of huge relations such as Rh makes this result seem
a little artificial; but it turns out that it also holds in a much more meaningful
setting (see the references at the end of the chapter). 7.2.2. Consider BINARY
BOUNDED TILING, the version of BOUNDED TILING where we are not
given the first row of tiles, but only the tile at the origin, dO; the size of the
square to be tiled, s, is given in binary. (a) Show that there is a reduction from
the language E1 = {"M" : M halts on the empty string within 21"M"l steps} to
BINARY BOUNDED TILING. (b) Conclude that BINARY BOUNDED
TILING 1s not in V. (c) Let MSXYV be the class of all languages decided by a
nondeterministic Turing machine in time 2™ for some k > 0. Show that (1)
BINARY BOUNDED TILING is in MSXYV, and (11) all languages in MSXV are

polynomially reducible to BINARY BOUNDED TILING. That is to say,
BINARY BOUNDED tiling could be termed MSXV-complete. 7.2.3. (a) Show
that SATISFIABILITY remains A/'P-complete even if'it is restricted to
instances in which each variable appears at most three times. (Hint: Replace
the occurrences of variable, say, X, by new variables x\,...,Xk- Then add a
formula in which each of these variables appears twice, stating that "all these
variables are equivalent.") (b) What happens if each variable appears at most
twice? 7.2.4. Recall from Problem 6.4.3 that the class MV is closed under
nonerasing homomorphisms. Show that V is closed under nonerasing
homomorphisms if and only if V— MV. (Hint: One direction follows from (a).
For the other, consider the following language, which is obviously in V: L=
{xy: x€ {0,1}*1s the encoding of a Boolean formula F, and y G {T,£}* is a
truth assignment that satisfies F}.) 7.2.5. Consider the following special case
of MAX SAT: MAX 2-SAT: Given a set F of clauses, with at most two literals
each, and an integer K, is there a truth assignment that satisfies at least K of the
clauses?

7.3: More NP-complete Problems 317 Show that MAX 2-SAT is .VP-
complete. (This is hard. Consider the clauses (x), (), (2), (W), (sVy), (yVz),
(IVi), (zVw), (yVw), (zVu;). Show that this set of ten clauses has the following
property: All satisfying truth assignment on X, y, z can be extended to satisfy
seven clauses and no more, except for one, which can only be extended to
satisfy six. Can you use this "gadget" to reduce 3-SATISFIABILITY to MAX
2-SAT?) 7.3 MORE NP-COMPLETE PROBLEMS Once we have proved our
first AfP-complete problem, we can reduce it to other problems, and those to
still others, proving them all .VP-complete. See Figure 7-4 for a depiction of
the reductions proved in this section and the last, and see the problems and the
references for many more Af'P-complete problems. BOUNDED TILING
SATISFIABILITY 3SAT MAXSAT TNnpppNnPNT <5t INEQUIVALENCE
OF *-FREE INDEPENDENT SET R"GULAR EXPRESSIONS EXACT
COVER HAMILTON CYCLE CLIQUE NODE COVER KNAPSACK
UNDIRECTED HAMILTON CYCLE TRAVELING SALESMAN PROBLEM
PARTITION TWO MACHINE SCHEDULING Figure 7-4 J\fV-complete
problems arise in all fields and applications in which so- sophisticated
computation is done. It is an important skill to be able to spot Af'P-complete
problems —either by recognizing them as known Af'P-complete problems,T or
by proving them AT'P-complete from scratch. Such knowledge ' This is not

always easy, because AfV-comp\ete problems tend to come up in ap-
applications under all sorts of confusing guises.

318 Chapter 7: NP-COMPLETENESS saves researchers and programmers
from futile attempts at impossible goals, and redirects their efforts to more
hopeful venues (reviewed in Section 7.4 on coping with MV -completeness).
Af'P-complete problems such as GRAPH COLOR- COLORING (see Problem
7.1.1), SATISFIABILITY, and INDEPENDENT SET are important because
they come up frequently, and under various guises, in applications. Oth-
Others, like the TRAVELING SALESMAN PROBLEM, are important not only
because of their practical applications, but because they have been studied so
much. Still others, such as the problem we introduce next, are important
because they are often handy starting points for Af'P-completeness reductions
(SATISFIABILITY is important for all three reasons). We are given a finite set
U = {ui,... ,un) (the universe), and a family of m subsets of U, T = {Si, ...,Sm}.
We are asked whether there is an exact cover, that is, subfamily CCf such that
that the sets in C are disjoint and have U as their union. We call this problem
EXACT COVER. For example, let the universe be U = {u1,u2,u3,ui,Uf,,u&}
and the family of subsets T = {{ul,u3},{u2,u3,u6},{ul,u5},{u2,u3,ui},{us,u6},
{u2,ui}}. An exact cover exists in this instance: It is C = {{1*1,1*3}, {u5,u6},
{"2,”}}. Theorem 7.3.1: EXACT COVER is NV-complete. Proof: It is clear
that EXACT COVER is MV: Given an instance {U,T) of the problem, the
subfamily sought is a valid certificate. The certificate is polyno- mially
concise in the size of the instance (since it is a subset of T, which is a part of
the input), and it can be checked in polynomial time whether indeed all
elements of U appear exactly once in the sets of C. To prove Af'P-
completeness, we shall reduce SATISFIABILITY to the EX- EXACT COVER
problem. That is, we are given a Boolean formula F with clauses {C\,..., Ce}
over the Boolean variables X\,..., xn, and we must show how to construct in
polynomial time an equivalent instance t(F) of the EXACT COVER problem.
We shall denote the literals of clause Cj by \jk, k= 1,..., rrij, where rrij is the
number of literals in Cj. The universe of t(F) is the set U= {Xi : I<i<n}U{Cj :
3=1,...£} U{pk:1<<£ k=1,... ,mj}. That is, there is one element for
each Boolean variable, one for each clause, and also one element for each
position in each clause. Now for the sets in T. First, for each element pjk, we
have in T a set {pjk}- That is to say, the p ,Vs are very easy to cover. The
difficulty lies in covering the elements corresponding to the Boolean variables

and clauses. Each variable Xi belongs to two sets in T, namely, the set Ti, T =
{xi} U{pjk: k= x~},

7.3: More NP-complete Problems 319 which also contains all negative
occurrences of x,, and Ti,+ = {xi} U {pjk mm Xjk =Xi}, with the positive
occurrences (notice the reversal in signs). Finally, each clause Ci belongs to
nij sets, one for each literal in 1t, namely {Cj,pjk}, k= 1,... ,rrij. These are all
the sets in T, and this completes the description of t(F). Let us illustrate the
reduction for the given Boolean formula F, with clauses C\ = (xi Vxj), C2 =
(xTVx2 Vx3), C3 = (x2), and d = (x*VxH). The universe of t(F) is U=
{x1,X2,X3,Ci,C2,C3,C4,P11,P12,P21,P22,P23,P31,P41,P42}, and the family of
sets T consists of these sets: {pn}, {P12}, {P21}, {P22}, {P23}, {P3\, }
{P4i}, {P42}, Ti,£ = {xi,pn}, TL,T = {xi,P21}, T2+ = {x2,P22,P31}, T2,T =
{x2,P12,P41}, {Ci,pu}, {Ci,pi2}, {C2,P2l}, {C2,P22}, We claim that t(F) has
an exact cover if and only if F 1s satisfiable. Suppose that an exact cover C
exists. Since each x» must be covered, exactly one of the two sets Tij and Tit+
containing X, must be in C. Think of T};T G C as meaning that T{xi) =T, and Tj
]_ G C as meaning that T(xj) = +; this defines a truth assignment T. We claim
that T satisfies F. In proof, consider a clause Cj. The element in U
corresponding to this clause must be covered by a set {Cj,pjk}, for 1 <k <m,j.
This means that the element pjk is not contained in any other set in the exact
cover C; in particular, it is not in the set in C that contains the variable that
occurs (negated or not) at the kth literal of Cj. But this means that T makes the
kth literal of Cj T, and thus Cj is satisfied by T. Hence F is satisfiable.
Conversely, suppose that there is a truth assignment T that satisfies F. We then
construct the following exact cover C: For each Xi, C contains the set Ty if
T(x1) =T, and it contains the set T"x if T{xi1) = L. Also, for each clause Cj, C
contains a set {Cj,pjk} such that the kth. literal of Cj is made T by T, and thus
pjk is not contained in any set selected in C so far —we know that such a k

320 Chapter 7: NP-COMPLETENESS exists by our assumption that T satisfies
F. Finally, having covered all x, 's and Cj's, C includes enough singleton sets to
cover any remaining pjk elements that are not covered by the other sets. In the
illustration above, the exact cover that corresponds to the satisfying truth
assignment T(xi) =T, T{x2) =T, T(xz) = L contains these sets:

TuT, T2,t,T3); , {Cipn}, {C2,p22}, {C3,P31}, {C4,P42}, plus the singletons
{P12}, {P21}, {.P23}, {P41}- We conclude that t(F) has an exact cover, and

the proof'is complete. m The Traveling Salesman Problem We can use the
EXACT COVER problem to establish the TV'P-completeness of HAMILTON
CYCLE. Theorem 7.3.2: HAMILTON CYCLE is J\fV-complete. Proof: We
already know that it is MV. We shall now show how to reduce EXACT
COVER to HAMILTON CYCLE. We shall describe a polynomial-time
algorithm which, given an instance (U, T) of EXACT COVER, produces a
directed graph G = t(U, T) such that G has a Hamilton cycle if and only if (U,
T) has an exact cover. The construction is based on a certain simple graph that
has interesting properties vis a vis the Hamilton cycle problem —in TVT'-
completeness jargon such graphs are called gadgets. Figure 7-5(a) shows this
gadget. Imagine that it is a part of a larger graph G, connected to the rest of G
via the four nodes shown as solid dots. In other words, there are other nodes
and edges to the graph, but no edges other than the ones shown are adjacent to
the three nodes in the middle. Further, suppose that G has a Hamilton cycle, a
cycle which traverses each node of G exactly once. The question is, via which
edges is the Hamilton cycle going to traverse the three middle nodes? It is easy
to see that there are really only two possibilities: Either the edges (a, u), (u, v),
(v, w), (w, b) are a part of the Hamilton cycle, or the edges (c, w), (w, v), (v,
u), (u, d) are. All other possibilities leave some of the three nodes untraversed
by the Hamilton cycle, which therefore is not Hamilton at all. To put it
otherwise, this simple device can be thought of as two edges (a, b) and (c, d)
with the following additional constraint: In any Hamilton cycle of the overall
graph G, either (a, b) is traversed, or (c, d) is, but not both. This situation can
be depicted as in Figure 7-5 (b), where the two otherwise unrelated edges are
connected by an exclusive or sign, meaning that exactly one of themis to be
traversed by any Hamilton cycle. Whenever we show this construct in our
depiction of a graph, we know that in fact the graph contains the full subgraph
shown in Figure 7-5(a). In fact, we can have several edges connected by such
subgraphs with the same edge (see Figure 7-5(c)). The result is the same:
Either all edges on one side are traversed, or the edge on the other, but not
both.

7.3: More NP-complete Problems 321 (a) (b) This device is central to our
construction of the graph G = t(U,!F), cor- corresponding to the instance of
EXACT COVER with U= {u\... ,un} and T = {Si, ...,Sm}. We describe the
graph G next. There are nodes uo,ui,...,un and So,Si,...,Sm, that is, one for each
element of the universe, and one for each set in the given instance, plus two

more nodes. For 1 = 1,..., m, there are two edges (Si-1,51). Of course, in graphs
it makes no sense to have two different edges connecting the same pair of
nodes. The only reason we allow it in the present case is that the edges will be
later joined by "exclusive or" subgraphs as in Figure 7-4, and thus there will
be no "parallel" edges at the end of the construction. One of the two edges
(Sj_1,Sj) is called the long edge, and the other 1s the short edge. For j =1,..., n,
between the nodes wy-1 and Uj there are as many edges as there are sets in T
containing the element Uj. This way, we can think that each copy of the edge
(u-1,Uj) corresponds to an appearance of Uj in a set. Finally, we add the edges
(un, So) and (Sm,u0), thus "closing the cycle." Notice that the construction so
far only depends on the size of the universe and the number and sizes of the
sets; it does not depend on precisely which

322 Chapter 7: NP-COMPLETENESS SI= {«3>U4> S2= {u2,u3,u4} S3=
{ui,u2} Figure 7-6 sets contain each element. This fine structure of the instance
will influence our construction as follows: As each copy of edge (uj-1,u)
corresponds to an appearance of element uj in some set Si G T such that Uj G
Si, we join by an "exclusive or" subgraph this copy of edge (uj-1,Uj) with the
long edge (Sj_1,5)) (see Figure 7-6 for an illustration). This completes the
construction of the graph t(U,F). We claim that the graph t(U, T) has a Hamilton
cycle ifand only if t(U, J7) has an exact cover. First, suppose that a Hamilton
cycle exists. It must traverse the nodes corresponding to the sets in the order
S0,S1,.. .,Sm, then traverse the edge (Sm, u0), then the nodes u0, u+,..., un, and
finally finish along the edge (un,So) (see Figure 7-6). The question is, will it
traverse for each set Sj the short or the long edge (S /-1, Sj)? Let C be the set
of all sets Tj such that the short edge (Sj-1, Sj) 1s traversed by the Hamilton
cycle. We shall show that C is a legitimate set cover; that is, it contains all
elements without overlaps. But this 1s not hard to see: By the property of the
"exclusive or" subgraph, the elements in the sets in C are precisely the copies
of edges of the form (u, !,uj) that are

7.3: More NP-complete Problems 323 traversed by the Hamilton cycle; and
the Hamilton cycle traverses exactly one such edge for each element Uj E U. It
follows that each Uj G U is contained in exactly one set in C, and thus C is an
exact cover. Conversely, suppose that an exact cover C exists. Then a Hamilton
cycle in the graph t(U, T) can be constructed as follows: Traverse the short
copies of all edges (Sj-1,Sj) where Sj E C, and the long edges for all other

sets. Then for each element u,, traverse the copy of the edge (uj _i,u,) that
corresponds to the unique set in C that contains U{. Complete the Hamilton
cycle by the edges (un,S0) and (Sm,u0). m Once a problem is shown to be
A”P-complete, research often is focused on solving interesting yet tractable
special cases of the problem. jV'T'-completeness proofs often produce
instances of the target problem that are complex and "un- "unnatural." The
question often persists, whether the instances that are of interest in practice,
being much less complex, may not be solvable by some efficient al- algorithm.
Alternatively, it can be often shown that even substantially restricted versions
of the problem remain 7W-complete. We have already seen both pat- patterns
in connection to SATISFIABILITY, whose special case 2-SATISFIABILITY
can be solved in polynomial time, whereas the special case 3-
SATISFIABILITY is J\fV- complete. To introduce an interesting special case of
HAMILTON CYCLE, define UNDIRECTED HAMILTON CYCLE to be the
HAMILTON CYCLE problem restricted to graphs that are undirected, that is,
symmetric without self-loops. Theorem 7.3.3: UNDIRECTED HAMILTON
CYCLE is NT'-complete. Proof: We shall reduce the ordinary HAMILTON
CYCLE problem to it. Given a graph G C V x V, we shall construct a
symmetric graph G' CV'xV, without self-loops, such that G has a Hamilton
cycle if and only if G' has one. The construction, illustrated in Figure 7-7, is
this: First, V= {vq,V1,V2 : v £ V}i that is, G' has three nodes vq, vi, and v-1
for each node v of G. Of these vq is, informally, the entry node, to which edges
coming into v will be directed, and V2 is the exit node, from which edges
going out of v will emanate. Figure 7-7 Thus, the edges in G' are these (see
Figure 7-7; recall that undirected graphs are more conveniently depicted by
undirected lines connecting the nodes): {(u2,vo),(vo,u2) : (u,v) G

G} U{(vo,vi),(v1,Vo),(v1,v2),(v2,Vi) :v E V)}.

324 Chapter 7: NP-COMPLETENESS That is, the nodes vq,vi,V2 are
connected by a path in this order, and there is an undirected edge between «2
and vq whenever (u, v) G G. This completes the construction of G'. We must
now prove that G' has a Hamilton cycle if and only if G has one. Suppose that a
Hamilton cycle of G' arrives at node vq from an edge of the form (u2,vo). If the
Hamilton cycle leaves vq through an edge other than (i>0,"1), then it cannot
"pick up" node V\ in any other way, and thus it was erroneously assumed to be
a Hamilton cycle. Thus, edge (vo,vi) must be a part of the cycle, and so is (vi,
2). Then the cycle must continue through one of the edges (v2,wo), where

(v,w) G G, from there to w\, w2, to some z0 where (w,z) G G, and so on.
Therefore, the edges of the form A*0,”2) in the Hamilton cycle of G' constitute
in fact a Hamilton cycle of G. Conversely, any Hamilton cycle (v1,v2,... ,f'y!)
of G can be converted into a Hamilton cycle of G' as follows:
{vq,v\,\v\,Vq,v\,V2,....v v\). We conclude that G has a Hamilton cycle if
and only if G' has a Hamilton cycle, and the proofis complete. m Our next
result concerns the notorious TRAVELING SALESMAN problem —its "yes-
no" version, in which each instance is supplied with a budget B, as defined in
Section 6.2. Theorem 7.3.4: The TRAVELING SALESMAN PROBLEM is
MV-complete. Proof: We already know that the problem is in NV. To show
completeness, we shall reduce UNDIRECTED HAMILTON CYCLE to the
TRAVELING SALESMAN PROBLEM. Given a symmetric graph G, where
without loss of generality V = {vi,... ,v\v\}, we construct the following instance
of the TRAVELING SALESMAN PROBLEM: n, the number of cities, is \V\,
and the distance <% between any two cities i and j is @ if1 =j;dij=<11f
(V1,V))eG; 12 otherwise. Since G is a symmetric graph without loops, this
distance function is itself symmetric; that is to say, dij = dji for all cities 1 and
], as required. Finally, the budget is B = n. Obviously, any "tour" of the cities
has cost equal to the number of n plus the number of the intercity distances
traversed that are not edges of G. Thus, a tour of cost B or less exists if and
only if the number of "nonedges" used is zero, that is, if and only if the tour is a
Hamilton cycle of G. m Partitions and Cliques EXACT COVER also provides
a nice proof of the Af'P-completeness of PARTITION. It is easiest to start from
the closely related KNAPSACK problem, in which an arbitrary sum K to be
achieved is given (recall its definition in Example 7.1.2):

7.3: More NP-complete Problems 325 Theorem 7.3.5: KNAPSACK is MV-
complete. Proof: That KNAPSACK is in AfV is clear: Given an instance of
KNAPSACK ai,...,an, and K, a subset P of {1,..., n) such that J2ieP ai = K can
serve as a certificate that the answer to the given instance is "yes." It is
polynomially succinct, and it can be tested in polynomial time by binary
addition. We shall now reduce EXACT COVER to KNAPSACK. We are given
a universe U= {u%..., un} and a family T = {Si,..., Sm} of subsets of U. We
shall con- construct an instance t(U, T) of KNAPSACK, that is, nonnegative
integers al;..., a, and another K such that there is a subset PC {1,..., k} with
X”ep a1 — K i1 and only if there is a set of sets C C T that are disjoint and
collectively cover all of U. This construction is particularly simple, because it

relies on an unexpected relationship between set union and integer addition.
Subsets of a set of n ele- elements, such as those in J-, can be represented as
strings over {0,1}" (see Figure 7-8). In turn such strings can be interpreted as
integers between zero and 2n — 1, written in binary. Now taking the union of
such sets, provided that they are dis- disjoint, is the same as adding the
corresponding integers. Since in EXACT COVER we are asking whether the
disjoint union of the teams makes up the whole U, this seems to be the same as
asking whether there are integers among the given ones that add up to .ft" =1 +
2+4+ e me+2n-1 —the binary number with n ones. And this is very close to
an instance of KNAPSACK. SKJ S 00 11 UJjj S2 =53 = {u2,u3,u, {«1,«2>(a)
35%2=053=1(Mb)111010+11—1100v 111 (c)Figure 7-8: From sets
(a) to bit vectors (b) to integer addition in base m (c¢) There is one problem
with this simple reduction: The close correspondence between set union and
integer addition breaks down because in integer addition we may have carry.
Consider, for example, the sum 11 + 13 + 15 + 24 = 63; in binary 001011 +
001101 +001111 +011000 = 111111. If we translate back to subsets of {u\,...
,ub}, the sets {u3,u5,u6}, {u3,U4,u6}, {u3,U4,US5,u6}, and {u2,us} are neither
disjoint, nor do they cover all of U. In other words, carry makes the translation
between union and addition faulty. This problem can be very easily resolved
as follows: Instead of considering the strings in {0, 1}n as integers in binary,
consider them as integers in m-ary,

326 Chapter 7: NP-COMPLETENESS where m 1s the number of sets in T. That
is, we have m integers ai,...,am, where a; = Y ueSt mJ-1- We ask whether there
is a subset that adds up to K = Y?j=im*~1m This way carry is not a problem,
because the addition of fewer than m digits in m-ary, with each of the digits
either O or 1, can never result in carry. It is now clear that the resulting instance
of KNAPSACK has a solution if and only if the original instance of EXACT
COVER has a solution. m Corollary: PARTITION and TWO-MACHINE
SCHEDULING are NT-complete. Proof: There are polynomial reductions from
KNAPSACK to both of these prob- problems; recall Example 7.1.2. m We next
turn to three graph-theoretic problems introduced in Section 6.2:
INDEPENDENT SET, CLIQUE, and NODE COVER. Theorem 7.3.6:
INDEPENDENT SET 1s MV'-complete. Proof: It is clearly in MV\ and we
shall reduce 3-SATISFIABILITY to it. Suppose that we are given a Boolean
formula F with clauses C\,..., Cm, each with at most three literals. In fact, we
shall assume that all clauses of F have exactly three literals; if a clause has

only one or two literals, then we allow a literal to be repeated to bring the
total number to three. We shall construct an undirected graph G and an integer
K such that there is a set of K nodes in G with no edges between them if and
only if F is satisfiable. The reduction is illustrated in Figure 7-9. For each one
of the clauses C\,..., Cm of F, we have three nodes in G, connected by edges so
that they form a triangle —call the nodes of the triangle corresponding to
clause Ci en, Ci2, ¢ These are all the nodes of G —a total of 3m nodes. The
goal is K = m, equal to the number of clauses. For defining the remaining edges
of G, node c” is identified with the jth literal of clause Ci. Finally, two nodes
are joined by an edge if and only if their literals are the negation of one
another. This completes the description of the reduction; see Figure 7-9 for an
example. Suppose that there is an independent set I in G with K = m nodes.
Since any two nodes from the same triangle are connected by an edge,
evidently there is exactly one node in/ from each triangle. Recall that nodes
correspond to literals. Consider now the fact that a node is in/ to mean that the
corresponding literal is T. Since there are no edges between nodes in /, it
follows that no two such literals are the negation of one another, and therefore
they can be the basis of a truth assignment T. Notice that T may not be fully
defined on all variables, because the set of nodes in/ may fail to involve all
variables; for example, in Figure 7-9 the independent set indicated by the full
circles does not determine the value of variable X3. T may take any truth value
on such "missing" variables; the resulting truth assignment T satisfies all
clauses, because each clause has at

7.3: More NP-complete Problems 327 Figure 7-9 least one literal satisfied by
T. And conversely, given any truth assignment satisfying F, we can obtain an
independent set of size m by picking for each clause a node corresponding to a
satisfied literal. m The A/'T'-completeness of two other graph-theoretic
problems is now imme- immediate: Theorem 7.3.7: CLIQUE and NODE
COVER are NV-complete. Proof: They are both clearly in MV. Figure 7-10
CLIQUE, requiring that all edges between any two nodes in the set be present,
is in some sense the exact opposite of INDEPENDENT SET. The reduction
makes this sense precise. Given an instance (G, K) of INDEPENDENT SET,
where G C V x Vis an undirected graph and K > 2 is the goal, we create an
equivalent instance (G',K") of CLIQUE by just taking G' =V x V- {(i,]) : 1 £
V} - G, and keeping the same goal, K' = K. This works because, as it is fairly
easy to check, the maximum independent set of G is precisely the maximum

clique in

328 Chapter 7: NP-COMPLETENESS the complement of G, the graph that
contains all non-loop edges that are not in G (see Figure 7-10). Finally, NODE
COVER is the exact opposite of INDEPENDENT SET in a dif- different
sense: since the nodes in a node cover N C V "hit" between them all edges, the
set V— N must have no edges between its elements, and 1s thus an
independent set (see Figure 7-11). Hence, N C V is a node cover of G if and
only if V— N is an independent set of G. Thus, the maximum independent set
of G has size K or more if and only if the minimum node cover of G has size
\W\ - K or less. The reduction from INDEPENDENT SET to NODE COVER
leaves the graph the same, and simply replaces K by \V\ - K. m Figure 7-11
Finite Automata Our last A/'T'-completeness result concerns some of the first,
and apparently simplest, mathematical objects studied in this book:
nondeterministic finite automata and regular expressions. Among all problems
we introduced in the last chapter, there are only two whose membership in MV
is not obvious: EQUIVALENCE OF REGULAR EXPRES- EXPRESSIONS,
and the closely related problem EQUIVALENCE OF NONDETERMINISTIC
FINITE AUTOMATA. Given two regular expressions, what would be a
convincing certificate of their equivalence? Nothing succinct comes to mind. If,
however, we defined the complement problem INEQUIVALENCE OF
REGULAR EXPRESSIONS: Given two regular expressions 1?1 and R2, is
L(i71) ~ L(R2)? then certificates seem to become possible: A certificate of the
inequivalence of two regular expressions is a string belonging to the language
generated by one but not the other, that is, any element of (L(R1) - L(R2)) U
(L(R2) - L(R1)). Indeed, this set is nonempty if and only if the expressions are
inequivalent. But now the real difficulty reveals itself: Such certificates are
legitimate in all respects except for the crucial polynomial succinctness
property. Given two regular expressions 1?1 and R2, there 1s no obvious
polynomial upper bound on the length of the shortest string that belongs in (L(1?
1) - L(R2)) U (L(R2) - L(R1)). For such a bound to qualify, it should be
polynomial in the length

7.3: More NP-complete Problems 329 of the two expressions, \Ri + [172 —that
is, the number of symbols, such as a, 6, U, *, and parentheses, needed to
represent them. In fact, there are families of pairs of inequivalent regular
expressions which differ only in strings that are exponentially long in the size

of the expressions! To obtain a problem in MV we must look at a restricted
special case: #-free regular expressions, that is, regular expressions over
union and concatenation, not containing any occurrences of Kleene star.
Consider a *-free regular expres- expression, such as R=@U 1HO@ U 1) U
010@ U 1H. It is now easy to see that, if a; is a string in the language generated
by it (say, x = 1001 for R above), then \x\ <\R\. As a result of this observation,
the following problem is in MV: INEQUIVALENCE OF *-FREE REGULAR
EXPRESSIONS: Given two *-free reg- regular expressions Ri and 172, is
L(Ri1) " 1(1?2)? A valid certificate is any string in (L(1?1) — [(1?2)) U (L(1?2)
— L{R))), and all such strings are succinct, shorter than [i?1| + [i?2]- For an
analogous problem in the domain of nondeterministic finite automata, see
Problem 7.3.7. In fact, we can prove this result: Theorem 7.3.8:
INEQUIVALENCE OF *-FREE REGULAR EXPRESSIONS is MV- complete.
Proof: We have already argued that the problem is in MV. We shall show that
SATISFIABILITY reduces to INEQUIVALENCE OF *-FREE REGULAR
EXPRESSIONS. Given any Boolean formula with Boolean variables X\,..., xn
and clauses C\,..., Cm, we shall produce two regular expressions R\ and 172
over the alpha- alphabet S = {0,1}, neither of which contains an application of
the Kleene star, such that L{Ri1) ~ [(1?72) if and only if the given Boolean
formula is satisfiable. The second regular expression, 1?2, is very simple: @U
D@U 1) mm+(() Ul), with the expression @ U 1) repeated n times. The
language generated by 1?2 is obviously the set of all binary strings of length n,
that 1s to say, [(R2) = {0, 1}n. Now for the construction of Ri. In contrast to 1?
2, Ri depends heavily on the given Boolean formula. In particular, 1?1 is the
union of m regular expressions Ri = Q1 Ug2 U ¢ = Uftim, where regular
expression at depends on clause Ci. Each at is the concatenation of n regular
expressions: a, = aaai2 m --am,

330 Chapter 7: NP-COMPLETENESS where if Xj 1s a literal of Cj; if xj is a
literal of Cj; otherwise. If we disregard for a moment the distinction between 0
—1 and T — L, then strings in {0, 1} n can be thought of as truth assignments
to the Boolean vari- variables {xi,.. m ,xn}. In this interpretation, L(aj) is
precisely the set of all truth assignments that fail to satisfy Cj. Thus L{R)) is
the set of all truth assign- assignments that fail to satisfy at least one of the
clauses of the given Boolean formula. Thus, the given Boolean formula is
satisfiable if and only if L(R1) is different from {0, 1} n —which is precisely
L(1?2)- The proofis complete. m The equivalence problem for general regular

expressions and for nondeter- ministic finite automata can, of course, only be
harder (see the references for information about their precise complexity), and
similarly for the state mini- minimization problems for nondeterministic finite
automata. None of these simply stated problems about the most primitive of
computational models can be solved efficiently unless V= MV. But how about
the following less ambitious goal: Suppose that we wish, given a
nondeterministic finite automaton, to find the equivalent deterministic one with
the minimum number of states. We know that any such algorithm must be
exponential in the worst case because the output may have to be ex-
exponentially long in the size of the input (recall Example 2.5.4). But is there
an algorithm that runs in time polynomial in the size of the input and the output?
Such an algorithm would spend exponential time when the output is large, but
would swiftly output small automata. (The obvious algorithm which first car-
carries out the subset construction and then minimizes the resulting
deterministic automaton does not qualify, because the subset construction may
yield an in- intermediate result that is exponentially large, even though the final
output —the minimum equivalent deterministic automaton— may be
polynomial.) Unfortunately, we can show that even such an algorithm is
unlikely to exist: Corollary: Unless V = AtV, there is no algorithm which, given
a regular expression or a nondeterministic finite automaton, constructs the
minimum- state equivalent deterministic finite automaton in time that is
polynomial in the input and the output. Proof: Let Mn denote the simple n + 1-
state finite automaton accepting {0, 1} n. In the reduction in the proof of the
theorem, the given Boolean formula with n variables is unsatisfiable if and
only 1f the minimum-state deterministic finite automaton equivalent to R\ is
exactly Mn. Suppose now that an algorithm as described in the statement of the
corollary exists, with a time bound of the form p(\x\ + \y\), where p is a
polynomial, x is the

7.3: More NP-complete Problems 331 input of the algorithm, and y is its
output. Then we could solve SATISFIABILITY as follows. Given any Boolean
formula F with n variables, we first perform the reduc- reduction described in
the proof of the theorem to obtain a regular expression R+. Then we run, on
input RlIt the purported algorithm for p(\Ri\ + \Mn\) steps, where \Mn\ is the
length of the encoding of Mn. If the algorithm terminates within the allotted
time, then we know how to answer the original SATISFIA- SATISFIABILITY
question: We answer "no" if the output is Mn, and we answer "yes" in the event

of any other output. If, however, the algorithm does not halt after p([i?1| + \Mn))
steps, and since we know that it always halts after p(\x\ + \y\) steps, we can
conclude that its output would be longer than \Mn\. Hence the al- algorithm's
output is not Mn, and we can confidently answer "yes" to the original
SATISFIABILITY question. What we described in the previous paragraph is a
polynomial-time algo- algorithm for SATISFIABILITY —the time bound p(\Ri\
+\M)) 1s polynomial in the size of the Boolean formula F. Since
SATISFIABILITY 1s A”P-complete, we must conclude by Theorem 7.1.1 that
V = AfV, completing the proof. m Problems for Section 7.3 7.3.1. (a) Show that
EXACT COVER remains A/""P-complete even if all sets have no more than
three elements, and each element appears in at most three sets. (b) What
happens if either number is two? 7.3.2. Give the full graph (without the
abbreviation of the exclusive-or gadget) that would result from the reduction
from EXACT COVER to HAMILTON CY- CYCLE if the given instance of
EXACT COVER consists of the universe {u%, 112} and the family of sets T =
{{"1}, {"1,M2} }- 7.3.3. (a) Show that the HAMILTON PATH problem is W7>-
complete, A) by re- reducing the HAMILTON CYCLE problem to it; B) by
modifying slightly the construction in the proof of Theorem 7.3.2. (b) Repeat
for the problem HAMILTON PATH BETWEEN TWO SPECIFIED NODES
(the obvious definition). 7.3.4. Each of the following problems is a
generalization of an A/T-complete problem, and is therefore A/'P-complete.
That is, if certain parameters of the problem are fixed in a certain way, then the
problem in hand becomes a known A”P-complete problem (recall the proof of
Theorem 7.2.4). One can reduce any problem to its generalization by simply
introducing a new parameter, and otherwise leaving the instance as it is. For
each of the problems below, prove that it is A/""P-complete by showing that it
is the generalization of an A/""P-complete problem. Give the appro-
appropriate parameter restriction in each case.

332 Chapter 7: NP-COMPLETENESS (a) LONGEST CYCLE: Given a graph
and integer K, is there a cycle, with no repeated nodes, of length at least K1
(Hint: What happens to this problem if K is restricted to be equal to the number
of nodes of the graph?) (b) SUBGRAPH ISOMORPHISM: Given two
undirected graphs G and H, is G a subgraph of HI (That is, if G has nodes
vi,...,vn, can you find distinct nodes U\,..., un in H such that [uj, Uj] is an edge
in H whenever [1>1,V]] is an edge in G") (c) INDUCED SUBGRAPH
ISOMORPHISM: Given two undirected graphs G and H, 1s G an induced

subgraph of HI (That 1s, 1f G has nodes v\,..., vn, can you find distinct nodes
Ui,..., un in H such that [u,, Uj] 1s an edge in H if and only if [1>,, V]] is an edge
in G?) (d) RELIABLE GRAPH: Given an undirected graph G with nodes v\,...,
vn, ajinxji symmetric matrix R” of natural numbers, and an integer B, is there a
set 5 of B edges of G with the following property: Between nodes Vi V] there
are at least R” disjoint paths (that is, paths sharing no other node except for the
endpoints) with edges in 5. (Hint: What happens if Rij =2 for all 1, j, and B =
nl) (¢) INTEGER PROGRAMMING: Given m equations in n variables, with
integer coefficients a” and 6j, does it have a solution in which all x”s are either
zero or one? (Actually, this is a common generalization of many of the A/"T'-
complete problems we have seen; how many can you find?) (f) TAXICAB
RIPOFF: Given a directed graph G with positive lengths dij on its edges, two
nodes 1 and n, and an integer K, is there a path from 1 to n, not repeating any
node twice, with total length K or more? (g) HITTING SET: Given a family of
sets {Si, S2,.. m, Sn}, and an integer B, is there a set H with B or fewer
elements such that H intersects all sets in the family? (h) BIN PACKING:
Given a set of positive integers A = {ai,... ,an}, and two more integers B and
K, can the integers in A be partitioned into B subsets ("bins") such that the
numbers in each bin sum up to K or less? (i) SET COVER: Given a family T of
subsets of a universe U, and an integer K, are there K sets in T whose union
equals U? 7.3.5. Show that INDEPENDENT SET remains A/""P-complete
even if the size K of the INDEPENDENT SET sought equals [n/2], where n is
the number of nodes.

7.4: Coping with NP-completeness 333 7.3.6. Show that the following
problem is WP-complete. DOMINATING SET: Given a directed graph G and
an integer B, is there a set 5 of B nodes of G such that for every node u” 5 of
G, there 1s anode v E S such that (v, u) is an edge of G. 7.3.7. Call a
nondeterministic finite automaton M = (K,H,A,s,F) acyclic if there is no state q
and string w ”* e such that (q,w) \-*M (q,e). Show that the problem of telling
whether two acyclic nondeterministic finite automata are inequivalent is A”P-
complete. 7.4 COPING WITH NP-COMPLETENESS Problems do not go
away when they are proved A/""P-complete. But once we know that the
problem we are interested in is an A"P-complete problem, we are more
willing to lower our sights, to settle for solutions that are less than perfect, for
algorithms that are not always polynomial, or do not work on all possible
instances. In this section we review some of the most useful maneuvers of this

sort. Special Cases Once our problem has been shown A/'T'-complete, the first
question to ask is this: Do we really need to solve this problem in the full
generality in which it was formulated —and proved A/""P-complete? A/'T'-
completeness reductions often produce instances of the problem that are
unnaturally complex. Perhaps what we really need to solve is a more tractable
special case of the problem. For example, we have already seen that there is
an important special case of SATISFIABILITY that can be easily solved
efficiently: 2-SATISFIABILITY (recall Section 6.3). If all instances of
SATISFIABILITY that we must solve have clauses of this kind, then the fact
that the general problem is A/""P-complete is rather irrelevant. But often a
special case of interest turns out to be itself AfP-complete —for example, 3-
SATISFIABILITY is such a case, recall Theorem 7.2.3. We next see another
example. Example 7.4.1: Most problems involving undirected graphs become
easy when the graph is a tree —that is to say, it has no cycles, see Figure 7-12.
Looking back at our collection of A/'T'-complete graph problems, HAMILTON
CYCLE is of course trivial in trees (no tree has a cycle, Hamilton or
otherwise), but so is HAMILTON PATH —a tree has a Hamilton path only if it
i1s a Hamilton path. The CLIQUE problem also becomes trivial —no tree can
have a clique with more than two nodes. The INDEPENDENT SET problem is
also easy when the graph is a tree. The method used for its solution takes
advantage of the "hierarchical structure" of

334 Chapter 7: NP-COMPLETENESS trees. It is often useful in a tree to pick
an arbitrary node and designate it as the root (see Figure 7-12); once this has
been done, each node u in the tree becomes itself the root of a subtree T(u) —
the set of all nodes v such that the (unique) path from v to the root goes through
u; see Figure 7-12. Then problems can be solved bottom up, by going from the
leaves (subtrees with one node) to larger and larger subtrees, until the whole
tree (the subtree of the root) has been dealt with. For each node u we can
define the set of its children C(u) —the nodes 1n its subtree that are adjacent to
it, excluding u itself— and its set of grandchildren G {u) —the children of its
children. Naturally, these sets could be empty. For example, in Figure 7-12, the
root, denoted r, has two children and five grandchildren. Nodes with no
children are called leaves. B)cf(iN W) cfB) bD) A) A) A) A) A) Figure 7-12
The size of the largest independent set of the tree can now be found by
computing, for each node u, the number I(u), defined to be the size of the
largest independent set of T(u). It is easy to see that the following equation

holds: 7(u)=max{ " /(«), 1+~ /(«)} B) iNC(u) v£G(ti) What this equation says
1s that, in designing the largest independent set of T(u), we have two choices:
Either (this is the first term in the max) we do not put u into the independent
set, in which case we can put together all maximum independent sets in the
subtrees of its children, or (and this is the second term) we put u in the
independent set, in which case we must omit all its children, and assemble the
maximum independent sets of the subtrees of all its grandchildren. It is now
easy to see that a dynamic programming algorithm can solve the
INDEPENDENT SET problem in the special case of trees in polynomial time.
The algorithm starts at the leaves (where I(u) is trivially one) and computes
I(u) for

7.4: Coping with NP-completeness 335 larger and larger subtrees. The value
of I at the root is the size of the maximum independent set of the tree. The
algorithm 1s polynomial, because for each node u, all we have to do 1s compute
the expression in B), which only takes linear time. For example, in the tree of
Figure 7-12, the values of I(u) are shown in parentheses. The largest
independent set of the tree has size 14. Needless to say, the closely related
NODER COVER problem can also be solved the same way (recall the
reductions between NODE COVER and INDEPEN- INDEPENDENT SET).
So, if the graphs we are interested in happen to be trees, the fact that NODE
COVER and INDEPENDENT SET are .A/'T'-complete is irrelevant. Many
other .A/'T'-complete problems on graphs are solved by similar algorithms
when specialized to trees, see for example Problem 7.4.1.<£ Approximation
Algorithms When facing an Af'P-complete optimization problem, we may want
to consider algorithms that do not produce optimum solutions, but solutions
guaranteed to be close to the optimum. Suppose that we wish to obtain such
solutions for an optimization problem, maximization or minimization. For each
instance x of this problem, there is an optimum solution with value opt (a;); let
us assume that opt (a;) 1s always a positive integer (this is the case with all
optimization problems we study here; we can easily spot and solve instances
in which opt is zero). Suppose now that we have a polynomial algorithm A
which, when presented with instance x of the optimization problem, returns
some solution with value A(x). Since the problemis .A/'T'-complete and A is
polynomial, we cannot realis- realistically hope that A {x) is always the
optimum value. But suppose that we know that the following inequality always
holds: opt (a;) ~ ' where e is some positive real number, hopefully very small,

that bounds from above the worst-case relative error of algorithm A. (The
absolute value in this in- inequality allows us to treat both minimization and
maximization problems within the same framework.) If algorithm A satisfies
this inequality for all instances x of the problem, then it is called an e-
approximation algorithm. Once an optimization problem has been shown to be
A/'T'-complete, the fol- following question becomes most important: Are
there e-approximation algorithms for this problem? And if so, how small can e
be? Let us observe at the outset that such questions are meaningful only if we
assume that V* NV, because, if V = AtV, then the problem can be solved
exactly, with e = 0. All A/'T"-complete optimization problems can therefore be
subdivided into three large categories:

336 Chapter 7: NP-COMPLETENESS (a) Problems that are fully
approximable, in that there is an e-approximate polynomial-time algorithm for
them for all e > 0, however small. Of the A“P-complete optimization problems
we have seen, only TWO-MACHINE SCHEDULING (in which we wish to
minimize the finishing time D) falls into this most fortunate category. (b)
Problems that are partly approximable, in that there are e-approximate
polynomial-time algorithms for them for some range of e's, but —unless of
course V=MV— this range does not reach all the way down to zero, as with
the fully approximable problems. Of the A”P-complete optimization problems
we have seen, NODE COVER and MAX SAT fall into this interme-
intermediate class. (¢) Problems that are inapproximable, that is, there is no e-
approximation algorithm for them, with however large e —unless of course V
= MV. Of the A/'T'-complete optimization problems we have seen in this
chapter, un- unfortunately many fall into this category: the TRAVELING
SALESMAN PROB- PROBLEM, CLIQUE, INDEPENDENT SET, as well as
the problem of minimizing the number of states of a deterministic automaton
equivalent to a given regu- regular expression in output polynomial time
(recall the corollary to Theorem 7.3.8). Example 7.4.2: Let us describe a 1-
approximation algorithm for NODE COVER —that is to say, an algorithm
which, for any graph, returns a node cover that is at most twice the optimum
size. The algorithm is very simple: while there is an edge [u,v] left in G do add
uand v to C, and delete them from G For example, in the graph in Figure 7-13,
the algorithm might start by choosing edge [a, b] and inserting both endpoints
in C; both nodes (and their adjacent edges, of course) are then deleted from G.
Next [e, /] might be chosen, and finally [g,h]. The resulting set C is a node

cover, because each edge in G must touch one of its nodes (either because it
was chosen by the algorithm, or because it was deleted by it). In the present
example, C = {a, b7 e, /, g, h}, has six nodes, which is at most twice the
optimum value —in this case, four. To prove the "at most twice" guarantee,
consider the cover C returned by the algorithm, and let C be the optimum node
cover. \C\ is exactly twice the number of edges chosen by the algorithm.
However, these edges by the very way they were chosen, have no vertices in
common, and for each of them at least one of its endpoints must be in C —
because C 1s a node cover. It follows that the number of edges chosen by the
algorithm 1s no larger than the optimum set cover, and hence |C| <2 m \C\, and
this 1s indeed a 1-approximation algorithm.

7.4: Coping with NP-completeness 337 Figure 7-13 Can we do better?
Depressingly, this simple approximation algorithm is the best one known for
the NODE COVER problem. And only very recently have we been able to
prove that, unless V = AfV, there is no e-approximation algorithm for NODE
COVER for any e <|.<> Example 7.4.3: However, for TWO-MACHINE
SCHEDULING, there is no limit to how close to the optimum we can get: For
any e > 0 there is an e-approximation algorithm for this problem. This family
of algorithms is based on an idea that we have already seen: Recall that the
PARTITION problem can be solved in time O(nS) (where n is the number of
integers, and 5 1s their sum; see Section 6.2). It is very easy to see that this
algorithm can be rather trivially adapted to solve the TWO-MACHINE
SCHEDULING (finding the smallest D): The B(i) sets are extended to include
sums up to 5 (not just up to H="S). The smallest sum in B{n) that is > S is
the desired minimum D. One more idea is needed to arrive at our
approximation algorithm: Consider an instance of TWO-MACHINE
SCHEDULING with these task lengths
45362,134537,85879,56390,145627,197342,83625,126789,38562, 75402,
withn= 10, and 5 « 106. Solving it by our exact O(nS) algorithm would cost
us an unappetizing 107 steps. But suppose instead that we round up the task
lengths to the next hundred. We obtain the numbers
45400,134600,85900,56400,145700,197400,83700,126800,38600,75500,
which is really the same as 454,1346,859,564,1457,1974,837,1268,386, 755,

338 Chapter 7: NP-COMPLETENESS (normalizing by 100); thus we can now
solve this instance in about 105 steps. By sacrificing a little in accuracy (the

optimum of the new problem is clearly not very far from the original one), we
have decreased the time requirements a hundredfold! It is easy to prove that, if
we round up to the next fcth power of ten, the difference between the two
optimal values is no more than nlOk. To calculate the relative error, this
quantity must be divided by the optimum, which, obviously, can be no less than
. We have thus a ~—approximation algorithm, whose running time is O(f").
By setting 2"g° equal to any desirable e > 0, we arrive at an algorithm whose
running time is 0(”-) —certainly a polynomial.0 Example 7.4.4: How does one
prove that a problem is inapproximable (or not fully approximate)? For most
optimization problems of interest, this question had been one of the most
stubborn open problems, and required the development of novel ideas and
mathematical techniques (see the references at the end of this chapter). But let
us look at a case in which such a proofis relatively easy, that of the
TRAVELING SALESMAN PROBLEM. Suppose that we are given some large
number e, and we must prove that, unless V = AfV, there is no e-approximation
algorithm for the TRAVELING SALESMAN PROBLEM. We know that the
HAMILTON CYCLE problem is AfV- complete; we shall show that, if there is
an e-approximation algorithm for the TRAVELING SALESMAN PROBLEM,
then there 1s a polynomial-time algorithm for the HAMILTON CYCLE
problem. Let us start with any instance G of the HAMILTON CYCLE problem,
with n nodes. We apply to it the simple reduction from HAMILTON CYCLE to
TRAVELING SALESMAN PROBLEM (recall the proof of Theorem 7.3.4),
but with a twist: The distances dij are now the following (compare with the
proof of Theorem 7.3.4): @ if * =j; dij = 11 11(v1,Vj)eG; I 2 + ne otherwise.
The instance constructed has the following interesting property: If G has a
Hamilton cycle, then the optimum cost of a tour 1s n; if, however, there is no
Hamilton cycle, then the optimum cost is greater than n(l + ¢) —because at
least one distance 2 + ne must be traversed, in addition to at least n— 1 others
of cost at least 1. Suppose that we had a polynomial-time e-approximation
algorithm A for the TRAVELING SALESMAN PROBLEM. Then we would be
able to tell whether G has a Hamilton cycle as follows: Run algorithm A on the
given instance of the TRAVELING SALESMAN PROBLEM. Then we have
these two cases:

7.4: Coping with NP-completeness 339 (a) If the solution returned has cost >
n(l -+- e) + 1, then we know that the optimum cannot be n, because in that case
the relative error of A would have been at least n which contradicts our

hypothesis that A is an e-approximation algorithm. Since the optimum solution
is larger than n, we conclude that G has no Hamilton cycle. (b) If, however, the
solution returned by A has cost <n(l + ¢), then we know that the optimum
solution must be n. This is because our instance was designed so that it cannot
have a tour of cost betweenn + 1 and n(l + e). Hence, in this case G has a
Hamilton cycle. It follows that, by applying the polynomial algorithm A on the
instance of the TRAVELING SALESMAN PROBLEM that we constructed
from G in polynomial time, we can tell whether G has a Hamilton cycle —
which implies that V = J\fV. Since this argument can be carried out for any e >
0, however large, we must conclude that the TRAVELING SALESMAN
PROBLEM is inapproximable.O Ways of coping with ./VP-completeness often
mix well: Once we realize that the TRAVELING SALESMAN PROBLEM is
inapproximable, we may want to approximate special cases of the problem.
Indeed, let us consider the special case in which the distances d” satisfy the
triangle inequality dij < dik + dkj for each 1,},k, a fairly natural assumption on
distance matrices, which holds in most instances of the TRAVELING
SALESMAN PROBLEM arising in practice. As it turns out, this special case
is partly approximable, and the best known error bound is ~. What is more,
when the cities are restricted to be points on the plane with the usual Euclidean
distances —another special case of obvious appeal and relevance— then the
problem becomes fully approximable! Both special cases are known to be
A/'P-complete (see Problem 7.4.3 for the proof for the triangle inequality
case). Backtracking and Branch-and-Bound All ./V'P-complete problems are,
by definition, solvable by polynomially bounded nondeterministic Turing
machines; unfortunately we only know of exponential methods to simulate such
machines. We examine next a class of algorithms that tries to improve on this
exponential behavior with clever, problem-dependent stratagems. This
approach typically produces algorithms that are exponential in the worst case,
but often do much better.

340 Chapter 7: NP-COMPLETENESS A typical ./V'P-complete problem asks
whether any member of a large set So of "candidate certificates", or "candidate
witnesses" (truth assignments, sets of vertices, permutations of nodes, and so
onrecall Section 6.4) satisfies certain constraints specified by the instance
(satisfies all clauses, is a clique of size K, is a Hamilton path). We call these
candidate certificates or witnesses solutions. For all interesting problems, the
size of the set So of all possible solutions is typically exponentially large, and

only depends on the given instance x (its size depends exponentially on the
number of variables in the formula, on the number of nodes in the graph, and so
on). Now, a nondeterministic Turing machine "solving" an instance of this MV-
complete problem produces a tree of configurations (recall Figure 6-3). Each
of these configurations corresponds to a subset of the set of potential solutions
So, call it 5, and the "task" facing this configuration is to determine whether
there is a solution in S satisfying the constraints of x. Hence, So is the set
corresponding to the initial configuration. Telling whether 5 contains a solution
is often a problem not very different from the original one. Thus, we can see
each of the configurations in the tree as a subproblem of the same kind as the
original (this useful "self-similarity" property of A/'P-complete problems is
called self-reducibility). Making a nondeterministic choice out of a
configuration, say leading to r possible next configurations, corresponds to
replacing 5 with r sets, S\,...,Sr, whose union must be 5, so that no candidate
solution ever falls between the cracks. This suggests the following genre of
algorithms for solving jVP-complete problems: We always maintain a set of
active subproblems, call it A; initially, A contains only the original problem
So', that is, A= {So}- At each point we choose a subproblem from A
(presumably the one that seems most "promising" to us), we remove it from A,
and replace it with several smaller subproblems (whose union of candidate
solutions must cover the one just removed). This is called branching. Next,
each newly generated subproblem is submitted to a quick heuristic test. This
test looks at a subproblem, and comes up with one of three answers: (a) It may
come up with the answer "empty," meaning that the subproblem un- under
consideration has no solutions satisfying the constraint of the instance, and
hence it can be omitted. This event is called backtracking. (b) It may come up
with an actual solution of the original problem contained in the current
subproblem (a satisfying truth assignment of the original formula, a Hamilton
cycle of the original graph, etc.), in which case the algorithm terminates
successfully. (¢) Since the problem is TVP-complete, we cannot hope to have a
quick heuristic test that always comes up with one of the above answers
(otherwise, we would submit the original subproblem So to it). Hence, the test
will often reply "?", meaning that it cannot prove that the subproblem is empty,
but it

7.4: Coping with NP-completeness 341 cannot find a quick solution in it either;
in this case, we add the subproblem in hand to the set A of active subproblems.

The hope 1s that the test will come up with one of the two other answers often
enough, and thus will substantially reduce the number of subproblems we will
have to examine —and ultimately the running time of the algorithm. We can
now show the full backtracking algorithm: A := {So} while A is not empty do
choose a subproblem S and delete it from A choose a way of branching out of
S, say to subproblems Si,..., Sr for each subproblem S; in this list do if test(Sj)
returns "solution found" then halt else if testEj) returns "?" then add Si to A
return "no solution" The backtracking algorithm terminates because, in the end,
the subprob- subproblems will become so small and specialized that they will
contain just one can- candidate solution (these are the leaves of the tree of the
nondeterministic compu- computation); in this case the test will be able to
decide quickly whether or not this solution satisfies the constraints of the
instance. The effectiveness of a backtracking algorithm depends on three
important "design decisions:" A) How does one choose the next subproblem
out of which to branch? B) How is the chosen subproblem further split into
smaller subproblems? C) Which test is used? Example 7.4.5: In order to
design a backtracking algorithm for SATISFIABIL- SATISFIABILITY, we
must make the design decisions A) through C) above. In SATISFIABILITY the
most natural way to split a subproblem is to choose a variable x and create
two subproblems: one in which x = T, and one in which x = -L. As promised,
each subproblem is of the same sort as the original problem: a set of clauses,
but with fewer variables (plus a fixed truth assignment for each of the original
variables not appearing in the current subproblem). In the x =T subproblem,
the clauses in which x appears are omitted, and 5f is omitted from the clauses
in which it appears; exactly the opposite happens in the x =+ subproblem. The
question regarding design decision B) is, how to choose the variable x on
which to branch. Let us use the following rule: Choose a variable that appears
in the smallest clause (if there are ties, break them arbitrarily). This is a
sensible strategy, because smaller clauses are "tighter" constraints, and may
lead sooner to backtracking. In particular, an empty clause is the unmistakable
sign of unsatisfiability.

342 Chapter 7: NP-COMPLETENESS Now for design decision A) —how to
choose the next subproblem. In line with our strategy for B), let us choose the
subproblem that contains the smallest clause (again, we break ties arbitrarily).
Finally, the test (design decision C)) is very simple: if there is an empty
clause, return "subproblem is empty;" if there are no clauses, return "solution

found;" otherwise return "?" See Figure 7-14 for an application of the
backtracking algorithm described above to the instance (xWV z), (xW), (y V
z), (zVx), (xXWV z), which we know is unsatisfiable (recall Example 6.3.3). As
it turns out, this algorithm is a variant of a well-known algorithm for
SATISFIABILITY, known as the Davis-Putnam procedure. Significantly, when
the instance has at most two literals per clause, the backtracking algorithm
becomes exactly the polynomial purge algorithm of Section 6.3.Q V= 7=+t z=T
"CIIIptY" "el,l,ll)ty" "CIIIptY" "el,l,ll)ty" {(y)(y) Z::I: y: Ty/\Ky: :I: Hempty" "enlpty"
Figure 7-14 Example 7.4.6: Let us now design a backtracking algorithm for
HAMILTON CYCLE. In each subproblem we already have a path with
endpoints a and b, say, and going through a set of nodes TC V— {a, b}. We
are looking for a Hamilton path from a to 6 through the remaining nodes in 'V, to
close the Hamilton cycle. Initially a = b is an arbitrary node, and T — O.
Branching is easy —we just choose how to extend the path by a new edge, say
[a,c], leading from a to a node ¢ £ T. This node ¢ becomes the new value

7.4: Coping with NP-completeness 343 of a in the subproblem (node b is
always fixed throughout the algorithm). We leave the choice of the subproblem
from which to branch unspecified (we pick any subproblem from A). Finally,
the test 1s the following (remember that in a subproblem we are looking for a
path froma to 6 in a graph G — T, the original graph with the nodes in T
deleted). if G - T - {a, b} is disconnected, or if G— T has a degree-one node
other than a or 6, return "subproblem is empty;" if G— T is a path froma to b,
return "solution found;" otherwise return "?" Figure 7-15: Execution of
backtracking algorithm for HAMILTON CYCLE on the graph shown in the
root. Initially both a and b coincide with the dotted node. In the leaf
(backtracking) nodes the degree-one nodes are circled (in the middle leaves
there are many choices). A total of nineteen subproblems is considered. The
application of this algorithm to a simple graph is shown in Figure

344 Chapter 7: NP-COMPLETENESS 7-15. Although the number of partial
solutions constructed may seem large (nineteen), it is minuscule compared to
the number of solutions examined by the full-blown nondeterministic
"algorithm" for the same instance (this number would be (n- 1)! = 5,040).
Needless to say, it is possible to devise more sophisticated and effective
branching rules and tests than the one used here.O Determining the best design
decisions A) through C) depends a lot not only on the problem, but also on the

kinds of instances of interest, and usually requires extensive experimentation.
Backtracking algorithms are of interest when solving a "yes-no" problem. For
optimization problems one often uses an interesting variant of backtracking
called branch-and-bound. In an optimization problem we can also think that we
have an exponentially large set of candidate solutions; however, this time each
solution has a cost' associated with it, and we wish to find the candidate
solution in So with the smallest cost. The branch-and-bound algorithm is in
general the one shown below (the algorithm shown only returns the optimal
cost, but it can be easily modified to return the optimal solution). A := {So},
bestsofar— oo while A is not empty do choose a subproblem 5 and delete it
from A choose a way of branching out of S, say to subproblems Si,...,Sr for
each subproblem St in this list do 1f\Si\ =1 (that is, 5, is a complete solution)
then update bestsofar else if lowerbound(Sj) < bestsofar then add Si to A
return bestsofar The algorithm always remembers the smallest cost of any
solution seen so far, initially oo (performance often improves a lot if bestsofar
is initialized to the cost of a solution obtained by another heuristic). Every time
a full solution to the original problem is found, bestsofar is updated. The key
ingredient of a branch-and-bound algorithm (besides the design decisions A)
and B) it shares with backtracking) is a method for obtaining a lower bound on
the cost of any solution in a subproblem S. That is, the function lowerbound(S)
returns a number that is guaranteed to be less than or equal to the lowest cost of
any solution in 5. The branch-and-bound algorithm above will always
terminate with the optimal solution. This is because the only subproblems left
unconsidered are those for which lowerbound(Sj) >bestsofar —that is, those
subproblems of which the optimal solution is provably no better than the best
solution we have seen so far. ' We shall assume that the optimization problem
in question is a minimization problem; maximization problems can be treated
in a very similar way.

7.4: Coping with NP-completeness 345 Naturally, there are many ways of
obtaining lower bounds (lowerboundE) = 0 would usually do...). The point is
that, if lowerbound(S) is a sophisticated algorithm returning a value that is
usually very close to the optimum solution in 5, then the branch-and-bound
algorithm is likely to perform very well, that is, to terminate reasonably fast.
Example 7.4.7: Let us adapt the backtracking algorithm we developed for
HAMILTON CYCLE to obtain a branch-and-bound algorithm for the
TRAVELING SALESMAN PROBLEM. As before, a subproblem S is

characterized by a path from a to 6 through a set T of cities. What is a
reasonable lower bound? Here is one idea: For each city outside T U {a, b},
calculate the sum of its two shortest distances to another city outside T. For a
and b, calculate their shortest distance to another city outside T. It is not hard to
prove (see Problem 7.4.4) that the half sum of these numbers, plus the cost of
the already fixed path from a to b through T, is a valid lower bound on the cost
of any tour in the subproblem 5. The branch-and-bound algorithm is now
completely specified. There are far more sophisticated lower bounds for the
TRAVELING SALES- SALESMAN PROBLEM. 0 Local Improvement Our
final family of algorithms is inspired by evolution: What if we allow a solution
of an optimization problem to change a little, and adopt the new solution if it
has improved cost? Concretely, let So be the set of candidate solutions in an
instance of an optimization problem (again, we shall assume that it is a
minimization problem). Define a neighborhood relation TV on the set of
solutions N C Sq x So —it captures the intuitive notion of "changing a little."
For s £ Sq, the set {s': (s, s') £ N} is called the neighborhood of's. The
algorithm 1s simply this (see Figure 7-16 for a suggestive depiction of the
operation of local improvement algorithms): s :=initialsolution while there is a
solution s' such that N(s, s') and cost(s') <cost(s) do: s :=s' return s That is, the
algorithm keeps improving s by replacing with a neighbor s' with a better cost,
until there 1s no 5' in the neighborhood of s with better cost; in the latter case
we say that s 1s a local optimum. Obviously, a local optimum is not guaranteed
to be an optimal solution —unless of course N = So x So- The quality of local
optima obtained and the running time of the algorithm both depend critically on
TV: the larger the neighborhoods, the better the local optimum; on the other
hand, large neighborhoods imply that the iteration of the algorithm (an
execution of the while loop, and the ensuing search through

346 Chapter 7: NP-COMPLETENESS the neighborhood of the current solution
s) will be slower. Local improvement algorithms seek a favorable compromise
in this trade-off. As usual, there are no general principles to guide us in
designing a good neighborhood; the choice seems very problem-dependent,
even instance-dependent, and is best made through experimentation. cost local
optima Figure 7-16: Once the neighborhood relation has been fixed, the
solutions of an optimization problem can be pictured as an energy landscape,
in which local optima are depicted as valleys. Local improvement heuristics
jump from solution to solution, until a local optimum is found. Another issue

that affects the performance of a local improvement algorithm is the method
used in finding s'. Do we adopt the first better solution we find in the
neighborhood of s, or do we wait to find the best? Is the longer iteration jus-
justified by the speed of descent —and do we want speedy descent anyway?
Finally, the performance of a local improvement algorithm also depends on the
proce- procedure initialsolution. It is not clear at all that better initial solutions
will result in better performance —often a mediocre starting point is
preferable, because it gives the algorithm more freedom to explore the solution
space (see Figure 7-16). Incidentally, the procedure initialsolution should best
be randomized —that is, able to generate different initial solutions when called
many times. This allows us to restart many times the local improvement
algorithm above, and obtain

7.4: Coping with NP-completeness 347 many local optima. Example 7.4.8: Let
us take again the TRAVELING SALESMAN PROBLEM. When should we
consider two tours as neighbors? Since a tour can be considered as a set of n
undirected inter-city "links," one plausible answer is, when they share all but
very few links. Two is the minimum possible number of links in which two
tours may differ, and this suggests a well-known neighborhood relation for the
TRAVELING SALESMAN PROBLEM that we call 2-change (see Figure 7-
17). That is, two tours are related by N if and only if they difFer in just two
links. The local improvement algorithm using the 2-change neighborhood
performs reasonably well in practice. However, much better results are
achieved by adopting the 3-change neighborhood; furthermore, it is reported in
the literature that 4-change does not return sufficiently better tours to justify the
increase in iteration time. Figure 7-17 Perhaps the best heuristic algorithm
currently known for the TRAVELING SALESMAN PROBLEM, the Lin-
Kernighan algorithm, relies on A-change, a neighborhood so sophisticated and
complex that it does not even fit in our framework (whether two solutions are
neighbors depends on the distances). As its name suggests, A-change allows
arbitrary many link changes in one step (but of course, not all possible such
changes are explored, this would make the iteration exponentially slow).”)
Example 7.4.9: In order to develop a local improvement algorithm for MAX
SAT (the version of SATISFIABILITY in which we wish to satisfy as many
clauses as possible; recall Theorem 7.2.4), we might choose to consider two
truth as- assignments to be related by N if they only difFer in the value of a
single variable. This immediately defines an interesting, and empirically

successful, local im- improvement algorithm for MAX SAT. It is apparently
advantageous in this case to adopt as s' the best neighbor of s, instead of the
first one found that is better than s. Also, it has been reported that it pays to
make "lateral moves" (adopt a solution even if the inequality in the third line of
the algorithm is not strict).

348 Chapter 7: NP-COMPLETENESS This heuristic is considered a very
effective way of obtaining good solutions to MAX SAT, and is often used to
solve SATISFIABILITY (in this use, it is hoped that in the end the algorithm
will return a truth assignment that satisfies all clauses). 0 An interesting twist
on local improvement algorithms is a method called simulated annealing. As
the name suggests, the inspiration comes from the physics of cooling solids.
Simulated annealing allows the algorithm to "escape" from bad local optima
(see Figure 7-18, and compare with 7-17) by performing occasional cost-
increasing changes. Figure 7-18: Simulated annealing has an advantage over
the basic local improve- improvement algorithm because its occasional cost-
increasing moves help it avoid early convergence in a bad local optimum. This
often comes at a great loss of efficiency. s :=initialsolution, T := To repeat
generate a random solution s' such that N(s,s'), and let A :=cost(s')-cost(s) if A
<0 thens :=5s', else s :=s' with probability e~T update(T) until T =0

7.4: Coping with NP-completeness 349 return the best solution seen Intuitively,
the probability that a cost-increasing change will be adopted is determined by
the amount of the cost increase A, as well as by an important parameter T, the
temperature. The higher the temperature, the more aggres- aggressively more
expensive solutions are pursued. The way in which T 1s updated in the
penultimate line of the algorithm —the annealing schedule of the algorithm, as
it is called— 1s perhaps the most crucial design decision in these algorithms
—besides, of course, the choice of neighborhood. There are several other
related genres of local improvement methods, many of them based, like the
ones we described here, on some loose analogy with physical or biological
systems (genetic algorithms, neural networks, etc.; see the references). From
the point of view of the formal criteria that we have developed in this book,
the local improvement algorithms and their many variants are to- totally
unattractive: They they do not in general return the optimum solution, they tend
to have exponential worst-case complexity, and they are not even guaranteed to
return solutions that are in any well-defined sense "close" to the optimum.

Still, for many AfV-comp\ete problems, in practice they often turn out to be the
ones that perform best! Explaining and predicting the impres- impressive
empirical success of some of these algorithms is one of the most challenging
frontiers of the theory of computation today. Problems for Section 7.4 7.4.1.
Give a polynomial algorithm for the DOMINATING SET problem (recall
Prob- Problem 7.3.6) in the special case of trees (considered as symmetric
directed graphs). 7.4.2. Suppose that all clauses in an instance of satisfiability
contain at most one positive literal; such clauses are called Horn clauses.
Show that, if all clauses of a Boolean formula are Horn clauses, then the
satisfiability ques- question for this formula can be settled in polynomial time.
(Hint: When does a variable in a Horn formula have to be assigned T?) 7.4.3.
Show that the TRAVELING SALESMAN PROBLEM remains A/""P-complete
even if the distances are required to obey the triangle inequality. (Hint: Look
back at our original proof that the TRAVELING SALESMAN problem is .V"P-
complete.) 7.4.4. Suppose that, in an instance of the traveling salesman
problem with cities 1,2,... ,n and distance matrix dij, we only consider tours
that start from a, traverse by some path of length L the cities ina set T C
{1,2,...,n}, end up in another city b, and then visit the remaining cities and
return to o. Let us call this set of tours S.

350 Chapter 7: NP-COMPLETENESS (a) For each city1 £ {1,2,.. .,n}-T~ {a,
b}, let rrn be the sum of the small- smallest and next-to-smallest distances from
1 to another city in {1,2,..., n} — T-{a, b}. Let s be the shortest distances from
ato any city in {1,2,...,n} — T - {o, b}, plus the corresponding shortest
distance from b. Show that any tour in S has cost at least That is, the formula
above is a valid lower bound for S. (b) The minimum spanning tree of the n
cities is the smallest tree that has the cities as set of nodes; it can be computed
very efficiently. Derive a better lower bound for S from this information. 7.4.5.
How many 2-change neighbors does a tour of n cities have? How many 3-
change neighbors? 4-change neighbors? 7.4.6. (a) Suppose that in the simulated
annealing algorithm the temperature is kept at zero. Show that this is the basic
local improvement algorithm. (b) What is the simulated annealing algorithm
with the temperature kept at infinity? (c) Suppose now that the temperature is
zero for a few iterations, then infinity for a few, then zero again, etc. How is
the resulting algorithm related to the basic version of local improvement?
REFERENCES Stephen A. Cook was the first to exhibit an NV-complete
language in his paper o S. A. Cook "The Complexity of Theorem-Proving

Procedures," Proceedings of the Third Annual ACM Symposium on the Theory
of Computing pp. 151-158). New York: Association for Computing Machinery,
1971. Richard M. Karp established the scope and importance of MV-
completeness in his paper o R. M. Karp "Reducibility among Combinatorial
Problems," in Complexity of Computer Computations, (pp. 85-104), ed. R. E.
Miller and J. W. Thatcher. New York: Plenum Press, 1972, where, among a
host of other results, Theorems 7.3.1-7.3.7, and the results in problems 7.3.4
and 7.3.6, are proved. HV -completeness was independently discovered by
Leonid Levinino L. A. Levin "Universal Sorting Problems," Problemi
Peredachi Informatsii, 9, 3, pp. 265-266 (in Russian), 1973. The following
book contains a useful catalog of over 300 MV -complete problems from many
and diverse areas; many more problems have been proved MV-complete since
its appearence. o M. R. Garey and D. S. Johnson Computers and Intractability:
A Guide to the Theory of MV-completeness, New York: Freeman, 1979.

References 351 This book is also an early source of information on complexity
as it applies to concrete problems, as well as on approximation algorithms.
For much more recent and extensive treatment of this latter subject see o D.
Hochbaum (ed.) Approximation Algorithms for MV-hard Problems, Boston,
Mass: PWS Publishers, 1996, and for more information about other ways of
coping with J\fV- completeness see, for example, o C. R. Reeves, (ed.)
Modern Heuristic Techniques for Combinatorial Problems, New York: John
Wiley, 1993, and o C. H. Papadimitriou and K. Steiglitz Combinatorial
Optimization: Algorithms and Complexity Englewood Cliffs, N.J.: Prentice-
Hall, 1982; second edition, New York: Dover, 1997.

Index acceptance, 57 by finite automata, 57, 66 by nondeterministic finite
automata, 66 by pushdown automata, 132 by empty store, 136 by final state,
135 by Turing machines, 194 by random access Turing ma- machines, 216 by
nondeterministic Turing ma- machines, 222 accepting configuration, 194 Aho,
A. V., 177 alphabet, 42, 116, 181 algorithms 2-4, 31-41 for finite automata
102-10 for context-free grammars 150-8 Turing machines as —,179, 245- 7
efficient, 275-92 polynomial-time, 276-92 approximation, or e-approximation,
335-9 dynamic programming, 154, 334 backtracking and branch-and-bound,
339-45 local improvement and simulated annealing, 345-9 ambiguous
grammar, 128 antisymmetric relation, 15 approximation algorithm, 335-7
arguments of a function, 11 arithmetic progression, 89 backtracking algorithm,

341-3 Bar-Hillel, V, 110, 176 basic functions, 234 bijection, 11 BIN
PACKING, 332 binary alphabet, 42 binary relation, 10 binary representation
of the integers, 196-7, 219-20, 284-5, 316 BINARY BOUNDED TILING, 316
Bird, M., 11l blank symbol, U, 181 Boolean variable, 288 Boolean
connectives, 288 Boolean formula, 288-9 in conjunctive normal form, 288
Boolean logic, 288 bottom-up parsing, 169-72

354 Index BOUNDED TILING, 310-2, 315-6 boustrophedon language, 259
Brainerd, W. S., 244 branch-and-bouhd algorithm, 343-5 Brassard, G., 53
Bratley, P., 53 busy-beaver function, 253 Cantor, G., 27, 53 Cartesian product,
10 certificate, or witness, 297 Chomsky hierarchy, 272 Chomsky, N., 175-7,
273 Chomsky normal form, 151 Church-Turing thesis, 245-47 quantitative
refinement, 276 clause, 288 clique, 283, 326-7, 333, 336 closure, 30, 37-39
closure property, 39, 75-7, 143-5 Cobham, A., 299 compatible transitions, 158
compiler, 2, 56, 117, 162-70 complement of a set, 45 regular languages closed
under -76 context-free languages not closed under —, 147 recursive languages
closed under —, 199-200 recursively enumerable languages not closed under
—, 253 V closed” under —, 76 composite number, 223, 298-9 composition of
functions, 234 computation, 1-4, by grammars and other systems, 232 by a
random access Turing ma- machine, 216-8 by a Turing machine, 185, 194- 200
concatenation of strings, 42 concatenation of languages, 45 configuration, of a
finite automaton, 57, 66 of a pushdown automaton, 131 of a Turing macchine,
202-4 of a random access Turing ma- machine, 211 consistent strings, 158
context, 115, 228, 232 context-free grammar, 114-5 ambiguous, 128 self-
embedding, 149 —s and pushdown automata, 136 42 LLA), 167 weak
precedence, 173 undecidability of problems about —s, 259-62 context-free
language, 115-75 deterministic, 157 inherently ambiguous 129 context-
sensitive language, 271 Cook, S. A., 244, 350 Cook's Theorem, 312-3 Cormen,
T. H., 53 countable set, 21 countably infinite set, 21 counter machine, 258
cycle in a graph, 18 Euler cycle 281-2 Hamilton cycle 282, 320-4 Davis, M.,
243-4 Davis-Putnam procedure, 342 dead-end configuration, 160-1 decides,
195, 216, 222

Index 355 definite language, 85 definition by induction, 43 derivation, 116,
228 derivation, 228 leftmost, 127 rightmost, 127 deterministic finite
automaton, 57 deterministic finite-state transducer, 60 deterministic pushdown
automaton, 158 deterministic context-free language, 159 difference of sets, 7

directed graph, 14 disjoint sets, 8 disjunctive normal form of a regular
expression, 52 domain of a function, 11 DOMINATING SET, 333, 349
dynamic programming algorithm, 154, 278, 334 e-approximation algorithm,
335 Earley, J., 176 edge of a graph, 14 Edmonds, J., 299 element of a set, 5
empty set, 5 empty string, 42 enumerating Turing machine, 268 equinumerous
sets, 20 equivalence class, 16 EQUIVALENCE OF DETERMINISTIC FI-
FINITE AUTOMATA, 286 EQUIVALENCE OF NONDETERMINIS- TIC
FINITE AUTOMATA, 286, 295, 328 EQUIVALENCE OF REGULAR
EXPRES- EXPRESSIONS, 287, 328 equivalence relation, 16 equivalent finite
automata, 69 equivalent strings with respect to L, 94 equivalent strings with
respect to M, 95 erasing move of a Turing machine, 182 Euler, L., 281, 299
EULER CYCLE, 281-2 Eulerian graph, 281 Evey, J., 176 EXACT COVER,
318-21, 324-5, 331 exponentially bounded Turing ma- machine, 296 £XV, or
exponential time, 296-7 f false, £, 289 fanout of a context-free grammar, 145
Fermat, P. de, 299 final states, 57, 66, 131 finite set, 20 finite automaton, 55
nondeterministic, 65 two-way, 101 2-head, 91, 262 2-tape, 62-3 finite control,
56 finite-state machine, 55 4-change neighborhood, 347 fully approximable
problem, 336 function, 10 basic, 234 defined by cases, 236 defined
recursively, 234 primitive recursive, 234 "-recursive, 239

356 Index g Garey, M. R., 351 generalization of a problem, 315 generates, 115
gadget, 320 Ginsburg, S., 111, 177 grammar, or unrestricted grammar, 228-32
grammatically computable function, 232 graph,15 GRAPH COLORING, 318
Greibach normal form, 149 Greibach, S., 177 Halmos, P., 52 halted
configuration, 183, 211 HALTING PROBLEM, 279-80 halting problem for
Turing machines, 251-4 halting states, 181 Hamilton, W. R., 282 HAMILTON
CYCLE, 282-6, 292, 295, 302-4, 309, 320, 323, 331, 333, 338, 342-3
HAMILTON PATH, 309, 331, 333 HAMILTON PATH BETWEEN TWO
SPEC- SPECIFIED NODES, 331 Harrison, M. A., 53, 177 Hartmanis, J., 299
height of a parse tree, 145 Hennie , F. C, 243 Hermes, H., 244 HITTING SET,
332 Hochbaum, D., 351 homomorphism, 85, 148, 316 nonerasing, 299
Hopcroft, J. E., 111, 244 Horn clause, 349 Ichbiah, J. D., 177 identity function,
234 image of a function, 11 inapproximable problem, 336 INDEPENDENT
SET, 283, 286, 292, 296, 298, 301-2, 318, 326- 8, 332-6 INDUCED
SUBGRAPH ISOMORPHISM, 332 INEQUIVALENCE OF *-FREE
REGULAR EXPRESSIONS, 329 INEQUIVALENCE OF REGULAR
EXPRES- EXPRESSIONS, 328 infinite set, 21 inherently ambiguous language,

129 1nitial configuration, 194, 216 initial state, 56-7, 66, 131, 181 in-place
acceptor, or linear-bounded automaton, 271 input alphabet, 194 input symbols,
131 input tape, 56 instructions of a random access Tur- Turing machine, 211
INTEGER PROGRAMMING, 332 intersection of sets, 6 inverse of a function,
12 j Johnson, D. S., 351 k Karp, R. M., 350 Kasami, T., 176 Kleene, S. C, 110,
244

Index 357 Kleene star, 45 KNAPSACK, 305-7, 324-6 Knuth, D. E., 53, 111,
177 fc-tape Turing machine, 202 I label, 123 Landweber, L. H., 244 language,
44-52, regular 47-51, 77-80 context-free 114-75 deterministic context-free,
159- 75 recursive, 195, 199, 267-271 recursively enumerable, 199, 267- 271
accepted by a finite automaton, 57,66 accepted by empty store, 136 accepted
by final state, 135 generated by a grammar, 115, 228 —s vs. problems, 279-81
language generator, 51, 113 language recognition device, 51, 113 A-change
neighborhood, 347 leaves of a parse tree, 123 left-end symbol, >, 181 left
factoring, 165 left recursion, 166 left-linear grammar, 122 leftmost derivation,
127 Leiserson, C. E., 53 length, of a sequence 10, of a path, 18, of a string 42,
of a computation 132, 145, 185 of'a derivation 116 Levin, L. A., 350 Lewis, P.
M., 1II, 177 lexicographic enumeration, 269 lexicographic ordering, 44
lexicographically Turing-enumerable language, 269 Lin-Kernighan algorithm,
347 linear, 143 linear-bounded automaton, 271 literal, positive and negative,
288 Liu, C. L., 52 LI(1) grammar, 167 LONGEST CYCLE, 332 m Machtey,
M., 244 Markov, A. A., 244 Markov system, or Markov algorithm, 232 MAX
2-SAT, 316-7 MAX SAT, 314-6, 336, 347 McNaughton, R., 110 Mealy, G. H.,
110 member, or element, of a set, 5 Miller, G. A., 175 minimal element of a
partial order, 18 minimalizable function, 239 minimalization, 238 minimum
equivalent finite automa- automaton, 105, 330-1 minimum spanning tree, 350
Minsky, M. L., 243 Moore, E. F., 110 Morris, J. H., Jr., Ill Morse, S. P., 177 //-
recursive function, 239 n n-ary relation, 10

358 Index negative literal, 288 neighborhood, or neighborhood rela- relation,
345 Nerode, A., 1l n-fold Cartesian product, 10 node, 14, 123 node cover,
284, 327-8, 335-7 nondeterminism, 2, 63, 158, 221, 292 nondeterministic
finite automaton, 65 nondeterministic 2-tape finite automa- automaton, 85
nondeterministic Turing machine, 221 ATP, 293 nonterminal, 115, 228
nonerasing homomorphism, 299 NV, 293 ./VP-complete problems, 301-350
occurrence, 42 Oettinger, A. G., 175 Ogden, W. G., 176 one-to-one function,

11 onto function, 11 order of a function, O(-), 32 ordered pair, 9 ordered triple,
10 ordered tuple, 10 output of a machine, 196 V, 275-277 Papadimitriou, C.
H., 244, 300, 351 parse tree, 123 parser, 58, 163-70 partial order, 17 7, 326-7
partition of a set, 8 partly approximable problem, 336 path, 18, 145 Perles,
M., 110, 176 Polya, G., 52 polynomially balanced language, 298 polynomially
bounded Turing machine, 276, 293 polynomially decidable, 276 polynomial-
time algorithm, 276 polynomial reduction between two Ian- polynomial Turing
reduction, 309 pop, 131 positive literals, 288 Post correspondence system,
262 Post, E. L., 243, 273 power set, 8 Pratt, V. R., Ill precedence relation, 172
precedes, -<, 124-6 prefix, 43, 83 primitive recursive function, 234 primitive
recursive predicate, 236 problem, 279 program counter, 211 program of a
random access Turing machine, 211 proper subset, 6 push, 131 purge algorithm
for 2-SAT, 291, 342 pushdown automaton, 131-9 deterministic, 158-75 and
context-free languages, 136- 42 simple, 139-41 pushdown store, or stack, 131

Index q quadruple, 10 quintuple, 10 quotient of languages, 98 359 root of a
parse tree, 123 root of a tree, 334 rule of a grammar, 114-5, 227-8 Rabin, M.
0., 110 random access Turing machine, 211 range of a function, 11 rate of
growth of a function, 32 REACHABILITY, 279-80 reading head, 56 Reckhow,
R. A., 244 recursive function, 196 recursive language, 195 recursively
enumerable language, 198 reduce move of a parser, 171 reduction from a
language to another, 254 polynomial, 302 Reeves, C. R., 351 refinement of an
equivalence relation, 20,95 reflexive relation, 14 reflexive transitive closure,
30 register of a random access Turing machine, 211 regular expression, 48
regular language, 50, 75-91, 119 rejecting configuration, 194 rejects, 194, 216
RELIABLE GRAPH, 332 reversal, R, 43 rewriting system, 228 right quotient
of languages, 83, 148 right-linear grammar, 122 rightmost derivation, 127
Rivest, R. L., 53 Rogers, H., Jr., 244 Salomaa, A., 53 SATISFIABILITY, 290-
8, 301-4, 308- 18 satisfiable Boolean formula, 289 satisfying truth assignment,
289 Schutzenberger, M. P., 176-7 Scott, D., 110 self-embedding grammar, 149
self-reducibilityy, 287, 340 semuidecides, 198, 216, 222 sequence, 10 set, 5
SET COVER, 332 Sethi, R., 177 sextuple, 10 Shamir, E., 110, 176
Shepherdson, J. C., 11l shift move of a parser, 171 similar, 125 simple, 139
simulated annealing, 348-9 singleton, 5 single-turn pushdown automaton, 143
Sipser, M., 244 solution of a problem, 340-9 stack symbols, 131 standard
automaton for a regular lan- language, 96 standard derivation, 259 star height
of a regural expression, 52 *-free regular expressions, 329 start symbol, 115,

228 state, 56-7, 65, 115, 131, 181 state diagram, 59

360 Index Stearns, R. E., 177, 299 Steiglitz, K., 351 step, 116, 132, 185, 276
string, 42 string matching, 108 SUBGRAPH ISOMORPHISM, 332
subsequence, 83 subset, 6 substring, 43 successor function, 234 suffix, 43, 83
symbol, 42 symmetric relation, 14 tape, 57, 180, 201-9, 212 TAXICAB
RIPOFF, 332 temperature, 349 terminal symbol, 115, 228 ternary relation, 10
item Thompson, K., 111 3-COLORING, 308 3-SATISFIABILITY, 313, 317,
323, 326, 333 tile, 262 tiling problem, 263-7, 310-3 tiling system, 262 top-
down parser, 163 total order, 18 transformation of a configuration, 189
transition, 66, 131 transition function, 57, 181, 202, transition relation, 66,
131, 222 transitive relation, 16 TRAVELING SALESMAN PROBLEM, 276,
282-3,297-8, 301, 318, 324, 338-9, 345-9 tree, 333 true, T, 289 truth
assignment, 289 Turing, A. M., 2, 179, 243 Turing machine, 179-226, as
algorithm, 179, 245-7 computation by a —, 194-200 k-tape, 201-8 with
multiple heads, 208 with two-dimensional tapes, 208 with random access,
210-9 nondeterministic, 221-6, 292-4 universal, 247-50 efficient, 275-92
polynomially bounded 276-92 exponentially bounded, 296 Turing-enumerable
language, 268 TWO-MACHINE SCHEDULING, 305-7, 326, 336-7 two-way
finite automaton, 101 2-change neighborhood, 347 2-head finite automaton, 91,
262 2-SATISFIABILITY, 290-2, 313-5,323, 333 2-tape finite automaton, 62-3
Ullian, J. S., 177 Ullman, J. D., 177, 244 unary function, 10 unary notation, 90
UNARY PARTITION, 286 uncountable set, 21, 28-9 universal Turing machine,
247-50 undecidable language, 254-71 undirected graph, 15 UNDIRECTED
HAMILTON CYCLE, 322 4 unicursal, 281 union of sets, 6 unrestricted
grammar, 228 unsatisfiable Boolean formula, 290 unsolvable problem, 254-71

Index 361 v Valiant, L. G., 176 value of a function, 11 w Wang, H., 273
Warshall, S., 53 weak precedence grammar, 173 witness, or certificate, 297
Yamada, H., 110 yield of a parse tree, 123 yields, h*, 58, 185, 212 yields in
one step, h, 66, 132, 212 Young, P. R., 244 Younger, D. H., 176 zero function,
234

