Automatic Test Data Generation from
Embedded C Code

Eileen Dillon and Christophe Meudec

Institute of Technology, Carlow
Computing and Networking Department,
Kilkenny Road, Carlow, Ireland
Tel : +353 (0)59 9176266
Fax : 4353 (0)59 9170517
{dillone,meudecc}@itcarlow.ie

Abstract. A fundamental area of software engineering that remains a
challenge for software developers is the delivery of software with the min-
imum of remaining defects. While progress is constantly being made in
the provision of static analysis tools to partly address this problem, the
complementary dynamic testing approach, which remains an essential
technique in the software industry for the verification and validation of
software, has received less attention. Within the software testing activity,
the actual generation of test data for the purpose of automated software
testing is still mainly a manual task. We present CSET (C Symbolic Exe-
cution Tool) which automatically generates test data from C source code
to fulfil code coverage criteria. CSET implements the symbolic execution
technique with an intermediate path traversal conditions checker and a
test data generation facility. We examine how the traditional problems
associated with the symbolic execution technique have been overcome
using Logic Programming and Constraint Logic Programming (CLP).
The approach used to handle pointer manipulations is detailed. Inter-
procedural results on previously published sample code and industrial
embedded C code with pointers are presented.

1 Introduction

Microprocessor based embedded systems are omnipresent in our everyday envi-
ronment, from the telecommunication to the automotive industries. The thor-
ough verification and validation of the software part of those embedded systems
is critical for the overall success of the product. An automatic technique that
has great potential in this phase of software development is symbolic execution.
By abstracting the code under analysis using symbolic values rather than actual
values, symbolic execution can be adapted via automatic test data generation
to automatically support many of the tasks involved in the dynamic verification
and validation of software [4], including: coverage testing (tests fulfilling ade-
quacy criteria), security analysis (tests highlighting buffer overflows), reliability
(tests exposing run-time errors) and validation (tests falsifying assertions).

M. Heisel et al. (Eds.): SAFECOMP 2004, LNCS 3219, pp. 180134}, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Automatic Test Data Generation from Embedded C Code 181

However, symbolic execution has not thus far fulfilled its full potential be-
cause of the many seemingly intractable difficulties that arise in its exploitation.
While most of the difficulties encountered are common to the analysis of all
application software, such as the automatic satisfiability checking of large and
complex Path Traversal Conditions (PTCs) or the difficulty in implementing a
test data generation step, the C programming language presents a unique chal-
lenge for the developers of tools based on symbolic execution that require a
strong path feasibility checker: the pervasive use of pointers in C code. C is the
dominant programming language for embedded systems [26]. This is largely due
to its inherent flexibility, the extent of support, small code size, speed and the
availability of compilers for a wide range of hardware.

MISRA C [24] is a well defined subset of C that forbids the use of C fea-
tures that give concern in a safety-related context. For example, while pointers
are allowed they can only reference statically declared data. MISRA C is used
in the automotive industry for software up to, and including, SIL 3 [6]. Most
safety-related automotive software are given a SIL of 1 or 2. As our work covers
the MISRA C subset it has direct relevance for the safety aspects of today’s
automotive industry.

In this paper we present our automated tool CSET (C Symbolic Execution
Tool), aimed at automatically generating test data to fulfil a code coverage cri-
terion, that can be integrated in automatic verification and validation tools for
embedded software written in C. This works builds on our previous results on
SPARK-Ada [2T[13] and Java Bytecode [9]. We extend our previous results [8] on
C by tackling interprocedural test data generation, comparing our tool against
a commercial equivalent [I5] and also by presenting refined experimental re-
sults using our improved path feasibility checker. Our work is based on the use
of the symbolic execution technique, Logic Programming and Constraint Logic
Programming. For completeness we acknowledge that new test data generation
techniques with as wide a range of applications as symbolic execution have been
investigated [TT27JT2|28]. Other techniques, with a smaller focus, have also been
proposed [1R]7].

The remainder of the paper is structured as follows. Section 2 introduces the
symbolic execution technique. Section 3 presents our rationale for using Logic
Programming and Constraint Logic Programming to overcome the problems
inherent to symbolic execution in an automatic test data generation context.
Section 4 introduces CSET, our tool for the symbolic execution of, and test
data generation from, embedded C code. Its handling of C pointers is presented.
In section 5 we discuss our experience so far of CSET on previously published
sample code as well as on industrial code. The paper concludes with an overall
assessment of our results.

2 Symbolic Execution

Symbolic execution [17] is primarily a static technique that follows the control
structure of the code under analysis to generate symbolic information.

182 E. Dillon and C. Meudec

Table 1. PTC and symbolic values for path: 1, 2, 3, 4.

Line|Code Path Traversal Condition den a
1 |int map (int den, int a) { true Den A
2 den = den*(a+a); true Den*(A+A) | A
3 if (den == 90) Den*(A+A) = 90 Den*(A+A) | A
4 return -1/(den-90); Den*(A+A) = 90 Den*(A+A) | A
5 else return -2; _ _ _
6 |} - - -

2.1 The Symbolic Execution Technique

Symbolic execution does not execute a program. The notion of execution implies
the traversal of a path through the program using a set of data values to represent
the input variables [B]. A program that is executed in this way will result in a
set of output values. In symbolic execution, on the other hand, information is
extracted from the source code of a program by representing inputs as symbolic
values rather than using actual values. A set of symbolic expressions, one for
each variable, is produced. Each of these symbolic expressions is made up in
terms of input variables and constants. The presence of a conditional statement
such as an if ...else splits the execution of the program into different paths.
Symbolic execution records for each potential path, a Path Traversal Condition
(PTC). This is the logical combination of the Boolean logic conditions that were
encountered along that path [21].

For example, consider the artificial code in Table [Il. There are 2 potential
paths through this program only one of which is analysed here. The PTC must
be satisfiable in order for the path to be feasible i.e. if a set of values for the
variables in the PTC exists that satisfies it (within the type and range of values
allowed), then that path is a feasible path through the program. Infeasible paths
are common; no set of values for the variables in the PTC exists which satisfy
that expression. For accurate program analysis infeasible paths must be detected.
This involves checking the PTC for satisfiability. Further, for test data generation
purposes a solution to the PTC of feasible paths must be generated. For the path
illustrated, our CSET tool correctly identifies the PTC as satifiable and therefore
generates a suitable test, e.g. Den = -1, A = -45 which when executed, using
a third party tool, generates a division by 0 run-time error. On this example,
CSET generates just 2 tests to achieve full path coverage. On the other hand,
the dynamic analysis part of C++Test [15], a popular testing tool, generates 64
tests but fails to cover the path illustrated thus only achieving 50% path coverage
overall. The static analysis part of C++Test also fails to flag the division by 0.

2.2 Traditional Problems of Symbolic Execution

Despite the high promises that the introduction of the symbolic execution tech-
nique engendered, it has not, to date, been used to its full potential in industry at

Automatic Test Data Generation from Embedded C Code 183

least for dynamic verification and validation purposes. This is due to a number of
technical difficulties that have traditionally hampered its practical development.

Satisfiability Checking and Test Data Generation. The PTCs generated
during symbolic execution are complex algebraic expressions and their satisfia-
bility is in general undecidable [29]. Hence, automatic test data generators can
never achieve completeness.

A PTC condition can contain many expressions involving integers, floating
point numbers, pointer references and multi-dimensional input-dependent array
references organised in arrays and structures combined by Boolean operators.
Input dependent array references create ambiguities in PTCs.

In practice, determining the feasibility of such PTCs is very difficult. This
implies that automatic test data generators based on symbolic execution are
usually only applicable on restrictive subsets of programming languages, exhibit
a high level of unsoundness and are not scalable.

Loops. Traditional symbolic execution cannot in general proceed beyond a loop
unless the number of iterations is known. Difficulties arise when handling loops
whose iterations are input-dependent. Analysing these accurately in the general
case requires the use of recurrence relations [5].

Pointers. Pointers are problematic because all references to them are ambigu-
ous until actual execution time (the aliasing problem). Further, pointer arith-
metic, as allowed in C, is problematic since knowledge of the specific memory
storage mechanism used is usually not included in symbolic execution tools.

Static analysis tools have efficiently tackled pointers on large industrial code.
Lyle and Binkley [20] decompose C programs into program slices using a vari-
ation of symbolic execution to deal with pointer variables. Their approach is
however not applicable to automatic test data generation. LCLint [10] is a static
analysis tool used to detect errors in programs written in C. It requires the use
of user annotations and the emphasis is on tractability rather than soundness
(not all errors found are true errors—false positives) or completeness (all defects
reported). PREfix [3] is a fully automated compile-time analyser, which detects
errors, using symbolic execution, in large real-world examples in C and C++
code. It outputs the execution paths through the source code where these de-
fects lie. It tries to avoid false positives but at the expense of completeness. The
SLAM project [1] uses static analysis on C programs to determine whether they
violate given usage rules. The programmer does not have to annotate the code
and false error messages (noise) are kept to a minimum. It has been successfully
applied to industrial code. The tool can analyse the feasibility of paths in the C
program. SLAM is incomplete but sound within its context of application.

It thus emerges that static analysis tools have successfully handled pointers at
the expense of soundness and completeness. They have nevertheless successfully
demonstrated their usefulness on large industrial code. However, the approaches

184 E. Dillon and C. Meudec

used, especially for pointer handling, cannot be used in the area of automated
test data generation which requires stronger path satisfiability checking capabil-
ities and an actual test data generation step.

Function calls. Interprocedural symbolic execution is problematic because of
the complexity it engenders. In particular, the complex identifier scoping rules of
high level programming languages are difficult to respect (including the pass-by-
reference and pass-by-value mechanisms), the semantics of functions with side
effects is intricate and finally, function calls substantially increase the complexity
of the underlying control flow graph of the program under test.

2.3 Conclusion

Past symbolic executors that provide a test data generation facility only deal
with subsets of programming languages that excludes pointers, do not incor-
porate a powerful PTC satisfiability checker, and do not integrate a subpath
selection strategy. Further, the various techniques that have successfully been
used in static analysis tools do not seem transferrable to dynamic tools.

Before detailing in section 4 how we have successfully tackled these issues,
over a number of projects RIIT3[9§], we present the programming paradigm on
which our work is based.

3 Logic Programming and Constraint Logic Programming

As seen, a symbolic executor needs to be implemented that is guided in its search
by the feasibility of potentially large algebraic expressions. In particular, given
an algebraic expression, along with the variables involved and their respective
domains, it must be shown that there exists an instantiation of the variables
which reduces the expression to true. In effect, an algebraic expression constrains
its variables to a particular set of values from their respective domains. If any
of the sets are empty, the PTC is unsatisfiable.

To implement the kind of solver required here, e.g. able to work with non-
linear constraints over floating point numbers and integers, it is possible to im-
plement heuristics by writing a specialized program in a procedural language
(such as C, or using an existing solving routines library). Although the heuris-
tics are readily available, this approach requires a substantial amount of effort
and the resulting solver is likely to be hard to maintain, modify and extend. Fur-
ther, because of the heterogeneity of the programming constructs that appear in
PTCs, unsound simplifications need to made to make this approach tractable.
We believe that this is the approach currently used in most static and dynamic
state-of-the-art commercial tools that use the symbolic execution technique (al-
though we have no means of verifying this) and that this is the source of their
weak PTCs checking capabilities.

Automatic Test Data Generation from Embedded C Code 185

The advantages of using Logic Programming over procedural programming
have long been recognized for testing tools [14] and in commercial static analysers
(e.g. the SPARK Examiner [25]).

Prolog’s in-built depth-first search procedure and its backtracking facilities
make Prolog a strong candidate for implementing a symbolic executor that fol-
lows the control flow graph of the program under consideration according to a
given testing criterion and backtracks whenever unsatisfiability of the current
PTC is detected by a purpose built constraints solver.

Constraint Logic Programming (CLP) [16] improves the modelling capabili-
ties of mathematical relationships between objects of Prolog by providing richer
data structures on which constraints can be expressed and by using constraint
resolution mechanisms (also known as decision procedures) to reduce the search
space under consideration. When the decision procedure is incomplete—e.g. for
non-linear arithmetic constraints—the problematic constraints are suspended, it
is also said delayed, until they become linear. Non-linear arithmetic constraints
can become linear whenever a variable becomes instantiated. This can happen
when other constraints are added to the system of constraints already considered
or during labelling.

The labelling mechanism further constrains the system of constraints ac-
cording to some value choosing strategy. It can be viewed as a process to make
assumptions about the system of constraints under consideration. This mecha-
nism is used to awaken delayed constraints or generate a solution to an already
known satisfiable system of constraints (as required for test data generation).

4 CSET

4.1 Overview

CSET (C Symbolic Execution Tool) is a symbolic execution tool for embedded C
code which incorporates intermediate PTC checking and a test data generation
stage. The main output from the tool are test data that can exercise the paths
found feasible through a C source code. As schematised in Fig. [, CSET is
composed of the following:

Preprocessor. gcc is used to generate a C program free from macros.

Parser. The parser converts the preprocessed C code to a Prolog readable for-
mat for input into the symbolic executor adding scoping information for all
variables. For example the Prolog terms obtained for the function given in
Table [l is represented in Fig. 2

Symbolic Executor. The symbolic executor is implemented in ECLiPSe [19].
It takes as input the Prolog readable format of the C code under analysis
and interacts with the solver to return test data.

Solver. The solver used is the PTC Solver [22] as introduced in Section 4.3.

186 E. Dillon and C. Meudec

C Source i
Preprocessor Intermediate Parser Prolog Terms
Program C Program

Symbolic
Executor

Test Data
Report

function_definition(map, [declaration(int, [Den]) ,declaration(int, [A])],
[assignment (Den,multiply(Den, (A+A))),
if _statement (8,expression(Den==90), [return(-1/(Den-90))],
[return(-2)])

PTC Solver

Fig.1. CSET Architecture.

],int).
Fig. 2. Prolog Terms.

4.2 Algorithm Sketch

The main algorithm follows the design implemented in [2TJ9T3]. Details of the
variables (such as their type, initial value and output value) in the Prolog read-
able format are added in a data structure that records changes to the variables
during symbolic execution. The statements in the input file are processed se-
quentially. During an assignment the symbolic value of the assigned variable is
updated to the assigned expression expressed in terms of input variables and
constants only. Basic block statements proceed without creating choice points
in the Prolog execution. Whenever a decision is encountered, it is symbolically
executed i.e. expressed in terms of input variables and constants only, and a
Prolog choice point is generated. The decision (or its negation) is then added
to the current constraint store through the solver. If the solver fails to add a
constraint then the PTC is unsatisfiable in which case, the symbolic executor
will backtrack, undoing all actions up to the last choice point, and then pro-
ceeds forward again. This is achieved using the intrinsic backtracking facility of
Prolog, which simplifies greatly the design of the symbolic executor and allows
the intermediate checking of the PTCs. If successful, symbolic execution contin-
ues forward. On reaching a return statement all input variables involved in the
current PTC are labelled by a call to the solver. This involves generating values
for each input variables with respect to the PTC. If all the found feasible paths
have been examined the symbolic executor terminates, otherwise backtracking
occurs.

Automatic Test Data Generation from Embedded C Code 187

4.3 Addressing the Traditional Problems of Symbolic Execution

Here we detail how we have addressed the traditional problems of symbolic
execution in CSET .

Satisfiability Checking and Test Data Generation. For the symbolic ex-
ecution to be amenable, intermediate feasibility path checking is essential as
otherwise many paths will be generated that are only discovered as infeasible at
the end of the symbolic execution. In CSET, every time a decision in the code
is encountered a choice point in the Prolog symbolic executor is created and the
symbolically executed decision (or its negation) is immediately submitted to the
PTC Solver. This allows many infeasible subpaths to be eliminated from the
search space. This technique improves the scalability of CSET.

The PTC Solver [22], implemented in ECLiPSe [19], has been developed to
check the satisfiability of PTCs as generated by a symbolic executor, and includes
a labelling strategy. It has been used on a number of projects for a variety of
target programming languages: Ada [21], Java Bytecode [9] and now C. It has
a well defined Prolog interface and can be integrated in a Prolog or C++ [13]
tool.

The solver is composed of the following components:

fd, a constraint solver over integers (using domain propagation techniques)
provided as a library by ECLiPSe;

clpq, a constraint solver over infinite precision rational numbers (used to
incorrectly model floating point variables) provided as a library by ECLiPSe;
— a bespoke bridge between fd and clpq to handle mixed constraints;

custom extensions to handle C bitwise operators, constraints over arrays,
records and enumeration literals. These make extensive use of the ECLiPSe
delaying mechanism to handle constraints which cannot be resolved imme-
diately (e.g. array access with unknown index).

Whenever a constraint is submitted to the solver it is added to its existing
store of constraints and the solver can then:

— fail: the system of constraints was unsatisfiable, the system of constraint
remains as it was before the addition of the latest constraint (i.e. the solver
backtracks automatically);

— succeeds: the system of constraints may be satisfiable (e.g. if non-linear con-
straints are present the solver may fail to detect their unsatisfiability at this
stage).

When the PTC is used to derive test cases the ambiguity can persist during
symbolic execution and be resolved at the actual creation step of the test cases
during labelling. This sampling is exhaustively attempted for variables over in-
tegers but of course only partially performed for the infinite precision rational
numbers.

The PTC Solver can handle complex algebraic expression over integers, infi-
nite precision rational numbers, enumeration literals, that are organised in arrays

188 E. Dillon and C. Meudec

(including multi-dimensional arrays) and structures [21[9]. As the PTC solver
properly models arrays and structures, these types can contain elements of any
type including, of course, arrays and structures ...

To understand how ECLiPSe’s delaying mechanism can be used to handle
unknown index reference, consider the following example:

1: x = aljl;
2: alj-1]1 = x-1;

On line 1, the symbolic executor submits a constraint to the solver of the
form eq_cast(Xy, element(A,[J])) where X; represents the new value of x in the
symbolic executor. The solver delays the following constraint on the variable J:
element(A, [J], R1) where Ry will be the result of the element at position J in A
whenever J becomes known. eq-cast(X;, R1), used to perform implicit casting,
delays if necessary.

On line 2, the symbolic executor submits A; = up_arr(A,J — 1,X; — 1)
where A; represents the new value of a in the symbolic executor. The solver
delays up_arr(A, J —1,eq_cast(X; — 1), A1) on J.

During labelling, as J will be instantiated, the delayed constraints are au-
tomatically resumed (in any order) and are eliminated. This implies that the
symbolic values of a and x are now free from unknown index references.

While this is only an overview of how ambiguous array references are handled
in the PTC solver (we have omitted the extra constraints placed by the PTC
solver on the indices for example) it illustrates the general principles by which
CSET can support all C array constructs.

Loops. As mentioned, traditional symbolic execution cannot proceed as usual in
the presence of input-dependent iterative constructs. However, in the restricted
case of trying to fulfil a given test coverage criterion, loops can accurately be
dealt with according to the feasibility (or not) of the intermediate path followed
in conjunction with a heuristics-based intermediate path selection strategy tar-
geted at the chosen test data adequacy criterion. Integrating this approach in a
symbolic executor that includes an intermediate PTCs checker, and for branch
coverage at least, all loop constructs can be handled adequately as demonstrated
in [ZT0113].

As currently the aim of CSET is to fulfil the path coverage criterion (because
our ultimate aim is automatic Worst Case Execution Time estimation), which is
harder to achieve than branch coverage for example, it does not include a path
selection strategy. Thus CSET, will attempt to cover all the combinations of the
Prolog choice points, as introduced by loops in the code, during the symbolic
execution. Only the size of the definition domain of variables and the actual
decisions in the iterative constructs limits CSET in its search.

Pointers. Previous symbolic executors, that include a test data generation
phase, have avoided implementing pointers. Multi-level pointers indirection and

Automatic Test Data Generation from Embedded C Code 189

static pointer arithmetic have been successfully incorporated into CSET. Sim-
ilarly to [2] (which is not a dynamic analysis tool), CSET stores information
about every variable in the source program in a memory map structure [8]. This
structure is used to replicate the way that C pointers behave during execution.

& Operator. When a variable is declared all its details are stored into the
memory map, this includes its name, type, initial value (if any) and an arbi-
trary memory address. When a pointer is assigned the address of a variable,
that variable is located in the memory map and its memory address is re-
trieved. This is assigned to the output field of the pointer in the memory
map. An array is stored as one variable in the memory map since arrays
are stored in contiguous memory in C. Therefore assigning the address of
an individual element to a pointer variable is more complex than just de-
scribed. The name of the array has to be extracted and its position in the
memory map is found. Next the memory address of the individual element
is calculated. For example, if the array starts at memory address 1000 and
is of type int, the third element is located at memory address 1008 since the
type int is represented by 4 bytes in CSET. In a similar way the address of
objects such as structures are handled.

* Operator. When a pointer is de-referenced, it is symbolically executed to
see what memory address it holds. The memory map is searched to find the
details of the variable stored at that address and if found the corresponding
output value is returned. There are a number of reasons why the memory
address may not be found in the memory map. If the pointer has not yet been
assigned the address of any object the pointer is assigned a random value.
If its value is not within the memory range allocated to the program the
symbolic execution will halt. The pointer may refer to the memory address of
an array element. As stated, arrays are stored as one variable in the memory
map. In this instance, the memory address of the nearest variable is found
and this variable is checked to see if it is an array. If so, the memory address
is checked to see if it legitimately refers to an element of that array, and if
so the value that that element contains is returned. Pointers to structures
are handled in a comparable way.

Pointer Arithmetic. CSET only supports static pointer arithmetic within sin-
gle array and structure objects. In other words, the symbolic executor must
be able to identify the resulting element pointed to by a pointer arithmetic
expression and it must be an array element or structure field value. For ex-
ample, when a pointer to an array of integers is incremented, the type that
the pointer is currently pointing to is first found and as the type int is rep-
resented as 4 bytes in CSET, the pointer now holds the memory address 4
bytes on from the one it initially held.

Dynamic Memory Allocation. The standard library functions malloc and
free have been simulated in CSET. The allocation of memory is achieved
by adding a variable of the type being allocated to the memory map. The
pointer that points to this location is updated with the appropriate memory
address. When memory is freed, the corresponding pointer and variable are

190 E. Dillon and C. Meudec

removed from the memory map. This memory is then available for use by
the program whenever other variables need to be allocated.

Function Calls. CSET handles interprocedural test data generation using an
approach we previously described for SPARK-Ada code [21]. On encountering a
function call, the symbolic executor matches the parameters with the arguments
passed and processing proceeds as during actual execution. In addition, our
memory map structure allows us to deal naturally with the pass-by-reference
mechanism.

Furthermore, as during parsing of the source code identifiers are uniquely
identified according to their scope our Prolog readable source code has a flat
scoping level structure. Thus during symbolic execution scoping does not have
to be taken into account.

4.4 Current Limitations

CSET does not check whether the input C code is beyond its limitations.

C Subset. While, the subset of C handled by CSET subsumes the MISRA
subset [24], CSET cannot handle full ANSI C. The incompleteness of CSET is
due to the following restrictions: only static pointer arithmetic within single array
and structure objects is supported; and the following features are not handled:
assignments within || and && expressions, pointers to functions, implicit modulo
assignments, variables qualifiers such as extern, static and volatile. Finally only
the malloc and free standard library functions are supported.

Large Integers. The PTC Solver can only handle 16 bit-encoded integers. This
limitation can cause unsoundness in CSET.

Numerical Precision. Floating-point numbers in the code are incorrectly
represented using infinite precision rational numbers within linear constraints
but reverts to double precision floating-point numbers whenever non-linear con-
straints are posted to the solver. Again this can lead to unsoundness. Constraints
solving over floating-point numbers is an area of on-going research [23].

PTCs Size. Symbolic execution can generate thousands of constraints involv-
ing thousands of variable occurrences. This is of course particularly true when
analyzing code that contains loops that iterate a large number of times. Ana-
lyzing such code can therefore take several hours and in practice prevents the
analysis of code containing large iterations.

Non-Linear Constraints. The analysis of PTCs that contain non-linear con-
straints can be hampered because the PTC Solver cannot always detect on
submission their unsatisfiability. If such a path reaches the labelling stage its
complete analysis is intractable in general using our approach.

Automatic Test Data Generation from Embedded C Code 191

5 Experience

CSET has been applied to a selection of functions from [28] and industrial C code
made available to us by Pi Technology (Cambridge UK). All timings have been
generated on a 2.5Ghz processor. Our results are compared against C+-+Test [15]
which was also used to generate the path coverage measures quoted. For test
objects containing loops (indicated by *) the path coverage quoted is an approx-
imation.

5.1 Previously Published Samples

Table[2 illustrates the results obtained for test objects from [28] in where several
thousands tests on each test objects are generated to achieve a high level of
branch coverage. The number of iterations of both loops for ComplexBranch was
reduced from 100 to 5 to make the code amenable to CSET. Netflow has proved
too complex for CSET to handle.

Table 2. Published Samples Results.

Test Object CSET Results C++Test Results

Name Cyclomatic|Max. Nesting| No. Tests | %Path [Execution| No. Tests | %Path |Execution

Complexity Level Generated|Covered| Time |Generated|Covered| Time
Atof* 16 2 262 13 122secs 3 0 3secs
ClassifyFloat 14 2 26 25 94secs 1000 6 28secs
ClassifyInt 14 2 32 27 3.8hrs 1000 13 32secs
ComplexBranch* 13 2 304 51 24hrs 1000 29 26secs
IsElem 2 1 2 100 0.2sec 1000 100 26secs
LineCover* 8 4 12 16 9.2hrs 1000 16 25secs
Netflow* 14 2 0 0 failed 1000 0 58secs

For objectiveness we need to mention that C++Test is not explicitly targeted
at path coverage and that it is a general purpose commercial tool with many
functionalities that our tool does not provide. On the other hand, CSET is able
to flag the subpaths that have been detected as infeasible.

The disappointingly long CSET running time of the some of these examples
can be explained by the presence of non-linear constraints in infeasible paths
in the code under analysis. To increase the soundness of CSET our timeout
labelling strategy has been set to a generous value. Hence a high proportion of
the total running time can be fruitlessly spent trying to generate tests for these
paths. For LineCover, for example, this proportion amounts to 95%. We have
no satisfactory solution to this problem.

While these results illustrate the limitations of our approach for handling
complex algorithms, we are encouraged by the higher level of path coverage
obtained by CSET, using a minimal number of tests, when compared to a popular
dynamic analysis tool as it suggests a higher level of completeness for our path
feasibility checking facility.

192 E. Dillon and C. Meudec
5.2 Industrial Code

Table [3 illustrates the complexity measures and the results obtained by CSET
for a selection of C functions from industrial code. The selection was chosen for
its wide variety of C features including arrays (single and multi-dimensional),
enumerations, loops, casting, function calls, pointers and pointer arithmetic.
Interprocedural test data generation was performed on the original code.

Table 3. Industrial C Code Samples Results.

Test Object CSET Results C++Test Results

Name Cyclomatic|Max. Nesting| No. Tests | %Path |Execution| No. Tests | %Path |Execution

Complexity Level Generated|Covered| Time |Generated|Covered| Time
Aip_med_filter 5 1 6 37 15secs 50 37 2secs
Byc_reset_boost* 2 1 16 5lsecs 50 16 3secs
Iti_engine_sync 6 2 10 55 18secs 1000 11 Ssecs
Oop-add_to_list* 7 3 123 59 59secs 50 7 18secs
Std_check-lrc* 2 1 1 33 4secs 50 33 2secs

Results reported in Table B] are very promising as the running time is low
and the percentage of paths covered by our tests is always higher or equal to
what can be achieved using a common dynamic analysis tool. No limitations
were applied to the range of data inputs or to the number of iterations of any
loops encountered. It is worth noting that the industrial C code examples have
a lower cyclomatic complexity and nesting level than the test objects from [28]
that we examined.

6 Conclusions

CSET is the first automatic test data generator based on symbolic execution
able to handle pointers as found in embedded C code.

Thus, we believe that the many applications of the symbolic execution tech-
nique can finally be successfully implemented for the most popular programming
language in embedded systems. For example, although CSET is aimed at fufil-
ing the path coverage criterion, we have shown [21l9] how for our approach, the
easier, branch coverage criterion can be targeted. Further, CSET is able to han-
dle a larger subset of C than the MISRA [24] subset that has specifically been
developed for the automotive industry.

Our use of Logic Programming and Constraint Logic Programming, to ad-
dress the traditional problems associated with implementing a useful automatic
test data generator based on the symbolic execution technique, has been vindi-
cated in this work by the results obtained on industrial code.

Whilst CSET is not without its limitations, and much work remains to be
done to be able to tackle efficiently general C code, it seems sufficiently powerful
already to deal with industrial C code, the target language of this work.

Automatic Test Data Generation from Embedded C Code 193

Acknowledgements. Thanks to Mike Ellims (Pi Technology, Cambridge UK)
for giving us the C source from an Engine Control Unit and to Joachim Wegener
(Daimler-Chrysler, Berlin Germany) for making available his examples from [28].

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

T. Ball and S.K. Rajamani. The SLAM project: debugging system software via
static analysis. ACM SIGPLAN Notices, 37(1):1-3, January 2002.
URL http://research.microsoft.com/slam/.

. J. Blieberger, B. Burgstaller, and B. Scholz. Interprocedural symbolic evaluation

of Ada programs with aliases. In In Ada-FEurope’99 International Conference on
Reliable Software Technologies, pages 136-145, Stantander, Spain, June 1999.

W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic program-
ming errors. Software-Practice and Experience, 30(7):775-802, 2000.

L.A. Clarke and D.J. Richardson. Application of symbolic evaluation. Journal of
Systems Software, 5:15-35, January 1985.

. P.D. Coward. Symbolic execution systems—a review. Software Engineering Jour-

nal, 3(6):229-239, November 1988.

B.J. Czerny, J.G. D’Ambrosio, P.O. Jacob, and B.T. Murray. Identifying and
understanding relevant system safety standards for use in the automotive industry.
In Proceedings of the Society of Automotive Engineers World Congress, Michigan,
USA, March 2003.

R.A. DeMillo and A.J. Offutt. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering, 17(9):900-910, September 1991.

E. Dillon and C. Meudec. CSET: Symbolic execution and automatic test data
generation of embedded C code. In Proceedings 16th IFIP International Conference
on Testing of Communicating Systems, Oxford, UK, March 2004. Position Paper.
J. Doyle and C. Meudec. Automatic structural coverage testing of Java bytecode. In
Proceedings of the Third Workshop on Automated Verification of Critical Systems,
April 2003.

D. Evans. Static detection of dynamic memory errors. In Proceedings of the ACM
SIGPLAN 96 Conference on Programming Language Design and Implementation,
1996.

M.J. Gallagher and V.L. Narasimhan. ADTEST: A test data generation suite for
Ada software systems. IEEFE Transactions on Software Engineering, 23(8):473-484,
1997.

A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using
constraint solving techniques. In Proceedings ISSTA 98, pages 5362, 1998.

M. Grogan. Visual symbolic execution. Master’s thesis, Institute of Technology,
Carlow, Ireland, 2002.

D. Hamlet. Implementing prototype testing tools. Software-Practice and Experi-
ence, 25(4):347-371, April 1995.

Parasoft Inc. C++Test — version 2.2, 2004. http://www.parasoft.com/.

J. Jaffar and J-L. Lassez. Constraint Logic Programming. In Proceedings 14th
ACM Symposium on Principles of Programming Languages, pages 111-119, Mu-
nich, January 1987.

J.C. King. A new approach to program testing. In Proceedings International
Conference on reliable software, pages 228-233, April 1975.

194

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

E. Dillon and C. Meudec

B. Korel. Automated test data generation for programs with procedures. In Pro-
ceedings ISSTA’96, pages 209-215, 1996.

Parc Technologies Ltd. ECLiPSe Release 5.6, 2003.
http://www.icparc.ic.ac.uk/eclipse/.

J.R. Lyle and D.W. Binkley. Program slicing in the presence of pointers. In
Proceedings of the Foundations of Software Engineering, pages 255-260, Orlando,
FL, USA, November 1993.

C. Meudec. ATGen: automatic test data generation using constraint logic pro-
gramming and symbolic execution. Journal of Software Testing, Verification and
Reliability, 11(2):81-96, 2001.

C. Meudec. The PTC solver user manual — version 1.5.1. Technical report, Institute
of Technology, Carlow, Ireland, May 2004.

C. Michel, R. Rueher, and Y. Lebbah. Constraints solving over floating-point
numbers. In Proceedings of the 7th International Conference on Principles and
Practice of Constraint Programming, pages 524-538, Paphos, Cyprus, November
2001.

MISRA. Guidelines for the use of the C language in vehicle based software. Tech-
nical report, Motor Industry Software Reliability Association, 1998.

Praxis Critical Systems Ltd, UK. The Spark Examiner, 2004.
http://www.sparkada.com/.

V. Seppanen, A-M. Kahkonen, M. Oivo, H. Perunka, P. Isomursu, and P. Pulli.
Strategic needs and future trends of embedded software. Technical Report 48/96,
TEKES Development Center, Finland, October 1996.

N. Tracey, J. Clark, and K. Mander. Automated program flaw finding using sim-
ulated annealing. In Proceedings ISSTA’98, pages 73-81, 1998.

J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for auto-
matic structural testing. Information and Software Technology, 43:841-854, 2001.
E.J. Weyuker. Translatability and decidability questions for restricted classes of
program schemas. SIAM Journal of Computers, 8(4):587-589, 1979.

	Introduction
	Symbolic Execution
	The Symbolic Execution Technique
	Traditional Problems of Symbolic Execution
	Conclusion

	Logic Programming and Constraint Logic Programming
	CSET
	Overview
	Algorithm Sketch
	Addressing the Traditional Problems of Symbolic Execution
	Current Limitations

	Experience
	Previously Published Samples
	Industrial Code

	Conclusions

