Arm-Pointer: 3D Pointing Interface
for Real-World Interaction

Eiichi Hosoya, Hidenori Sato, Miki Kitabata
Ikuo Harada, Hisao Nojima, and Akira Onozawa

NTT Microsystem Integration Laboratories
3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198 Japan
{hosoya,hide, kitabata,harada,nojima,onoz}@aecl.ntt.co.jp

Abstract. We propose a new real-world pointing interface, called Arm-Pointer,
for user interaction with real objects. Pointing at objects for which a computer
is to perform some operation is a fundamental, yet important, process in
human-computer interaction (HCI). Arm-Pointer enables a user to point the
computer to a real object directly by extending his arm towards the object. In
conventional pointing methods, HCI studies have concentrated on pointing at
virtual objects existing in computers. However, there are the vast number of
real objects that requires user operation. Arm-Pointer enables users to point at
objects in the real world to inform a computer to operate them without the user
having to wear any special devices or making direct contacts with the objects.
In order to identify the object the user specifies, the position and direction of
the arm pointing are recognized by extracting the user's shoulders and arms.
Therefore, an easy-to-use real-world oriented interaction system is realized
using the proposed method. We developed an algorithm which uses weighted
voting for robust recognition. A prototype system using a stereo vision camera
was developed and the real-time recognition was confirmed by experiment.

1 Introduction

This paper presents a new method for a real-world pointing system, called Arm-
Pointer. Among computer-human interaction techniques, identifying a target object
by pointing to the object is one of the most fundamental, yet critical, processes. A
typical example of such a pointing process is when we use a computer mouse to point
at icons and menus on a computer display.

In a real world environment, there are many objects, such as electronic devices,
that are operated by human users. Each real-world object has its own user interface,
such as a mouse, keyboard, or remote controller; however, because of the number of
such objects, those operations become more complicated. To make the usage of these
real-world objects easier, a more intuitively learnable and unified interface is
required. From the viewpoint of usability, nothing should be attached to the user's
body, the pointing should be detected in real time, and the recognition accuracy
should be reliable enough.

Some research have been devoted to achieving object pointing at some distance
from the computer display using sensors [1-4]. Put-That-There [1] uses magnetic

N. Sebe et al. (Eds.): HCI/ECCV 2004, LNCS 3058, pp. 72-82, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Arm-Pointer: 3D Pointing Interface for Real-World Interaction 73

sensors and can extract the position of the cursor on the screen. Ubi-Finger [2] is a
gesture-input device that uses bending, touch, IR, and acceleration sensors to detect
finger gestures for interaction with real objects. These methods can point to a real or
virtual object with high accuracy and high speed, but they require the attachment of
some equipment to the user [2, 3] or the construction of an environment with sensors
[1, 4], which constraints user's position and motion during use.

Other pointing methods based on image processing have been proposed [5-13].
HyperMirror [9] and the Mirror Metaphor Interaction System [10] detect pointing
position on a two-dimensional (2D) screen overlapped by self-image. Finger-Pointer
[11] and GWINDOWS [12] uses two cameras and extract the three-dimensional (3D)
position of the finger to control a cursor on the 2D screen. With these methods, the
user does not have to wear any equipment, so they reduce operation-related stress, but
they need a display to show the objects to be pointed.

Our proposed method, Arm-Pointer, is a method based on image processing. It can
perform 3D recognition of arm pointing direction, which is advantageous for usability
and applicability. With Arm-Pointer, the user does not have to wear any equipment
and can point to a target real object directly just by stretching out his arm without
using a display. Arm-Pointer restricts user position and motion much less than sensor-
based methods, and also restricts the shape of user's body much less than other image
processing methods that need difficult and robust recognition of the position of small
parts or shapes like the finger. Therefore, Arm-Pointer has various applications, such
as the control of electric appliances. This paper describes the prototype and discusses
its operation and performance based on experimental results.

2 Arm-Pointer

Our goal is to build a real-world pointing system that a user can operate without
having to wear equipment and that allows the user to point at object directly in the
real world. It is also important for the system to be robust to background images and
the user's dress. In what follows, the Arm-Pointer algorithm is explained.

2.1 System Configuration

The configuration of Arm-Pointer is shown in Fig. 1. The system consists of a stereo
vision camera, an infrared (IR) remote controller, and a PC. A user stands in front of
the stereo vision camera facing it. The user points to a target object by extending his
arm, and the system detects that object using the position pointed to. And if the object
has a function for interactive operation, the function will be activated. For example,
when the user just points at the TV, the TV will turn on.

2.2 Processing Flow

Figure 2 shows the processing/data flow of the whole system. A depth image and a
color input image are generated from an output image of a stereo vision camera. A
mirror image is also generated and displayed, but this is an additional function for the

74 Eiichi Hosoya et al.

STEPO

Object
registration

EE——_;._-S‘ STEP1 \
Stereo camera ~ ’ - =
& 3D pomtlng’ Real object| |camera image
& LuT

| =
W
= /
STEPZ@

Search of D Remote
[] Lontrollerﬂ

4 target object

ontrof Nir
controller - lirror
Fig. 1. Arm Pointer: Real-world poin-

ting interface Fig. 2. Processing/data flow

% Display ||
R

evaluation of user feedback. The system can perform all operations without the
display. In the case of interaction with an object, there are roughly two recognition
steps. In STEP 1, 3D coordinates of shoulders and arms are recognized and the 3D
coordinates of the pointed position are calculated. In STEP 2, the target object is
found using the detected position information. All objects are registered beforehand
for initialization, which is in STEP 0. STEP 0 to STEP 2 are outlined as follows:

STEP 0 Initialization
Subdivide voxels and register target objects.
Repeat following steps for each video frame.
STEP 1 3D recognition
Extract skin color and recognize 3D position of arms and shoulders.

STEP 2 Object search
Calculate 3D pointing line, vote, and activate command.

3 Initialization

Information about all target objects in the room has to be registered beforehand. This
information is used for object search and detection from the pointing direction. In this
section, voxel space is defined and the registration of objects described.

. Target objects

§ Voxel space

Fig. 3. Object registration in the voxel space

Arm-Pointer: 3D Pointing Interface for Real-World Interaction 75

3.1 Voxel Subdivision

Real space is divided into voxel space (discrete space) as shown in Fig. 3. The
resolution of voxel space changes with application or the number of objects. Our
system can be used in rooms of various sizes by changing the size of voxel space.

3.2 Target Object Registration

We create a look-up table (LUT) corresponding to all voxels. Every record of the
LUT contains information about a voxel, such as 3D coordinates, name, and
functions. Using this LUT, the system can retrieve the information about a target
object, such as televisions, air-conditioners, or walls, by using the 3D coordinates as a
search key.

4 3D Recognition and Object Search

The 3D coordinates of the position of the user's shoulders and arms, that is, the 3D
pointing direction, are computed by using a depth image and color input image
obtained from the stereo vision camera. The object pointed to is detected by
determining the pointing direction in the 3D voxel space. First, in this section, the
image processing for 3D recognition of 3D pointing direction and the simple object
search are described for easy explanation. Next, the improved method is described.

4.1 3D Recognition Flow

The 3D pointing direction is obtained by extracting the 3D position of shoulders and
arms, and the 3D position of shoulders are calculated from the 3D position of the
face. Fig. 4 shows the coordinate corresponding to each position to be extracted. The
steps in the 3D recognition process are outlined as follows:

STEP 1 3D recognition
STEP 1-1 Extract skin color from input image
h1<h<h2, $1<8<8,, Vi<v<V,
STEP 1-2 Recognize face and arms
Reduce image noise by 2D image processing
Exclude background noise by depth image
Exclude error extraction by 2D position restriction of face and arms
Calculate 2D coordinates of center of gravity of face and arms;
(st yf)s (Xars yar)a (Xala yal)
STEP1-3 Extract shoulders
Calculate 2D coordinates of shoulders from face position;(Xg, Vs), (Xs1, Ys1)
STEP1-4 Extract distance
Calculate 3D coordinates of shoulders and arms from depth image;

(Xsr: Ysrs Zsr)a (Xsla Ysis Zsl)a (Xara Yar, Zar)a (Xala Yal, Zal)

In STEP 1-1, the skin color region in the color input image is extracted. The range
on the HSV color space of the input image is specified for skin color extraction. The
calibration for skin color restrictions is performed beforehand. Each range (h;<h<h,,
$1<8<s,, V{<v<V,) is decided by the calibration for the current light condition.

76 Eiichi Hosoya et al.

Center-of-gravity of a face
(Xf , yf ,2zf)
Position of a shoulder
(Xsr, Ysr, Zsr)

A left arm

Center-of-gravity of an arm

(Xar, Yar, Zar)
A

3D pointing direction
A right arm

(Xal, Yal, Zal) y

(Xsl, Ysl, Zsl) X
z
World coordinate

(Xsry Ysry Zsr)

Fig. 4. Calculation for 3D recognition of arms

In STEP 1-2, face and arms recognition is performed. A pre-process reduces noise
by avoiding holes and too small areas. The face and arm regions are detected within
the given permissible range of user's position, as far as the user faces the camera.
With these restrictions, incorrect recognition because of background colors is
reduced. Here, (X, yr) are the center-of-gravity coordinates of the face, (X, ya) are
the center-of-gravity coordinates of the right arm, and (X,, y,) those of the left arm.

In STEP 1-3, the positions of both shoulders are calculated from (xy, y). Here, for
ease of computation, we assume that the user is looking to the front (in the direction
of the camera), and that the shoulder is fixed at a certain distance and direction. The
coordinates of shoulders, (X, ys) and (Xg, ys), are determined as those separated
certain amount of length from (xy, yy).

Xg =Xp—dX, ye=yrtdy, xq=x¢+dx, yqg=yrtdy, 1
dx, dy: difference lengths of between face and shoulders. })

Thus, 2D coordinates of the shoulders and arms in a pointing direction can be
acquired from a color input image.

In STEP 1-4, the z coordinates of shoulders, z, zy, and arms, z,, z,, are obtained
as depths at their x and y coordinates in the depth image.

The user's 3D pointing direction is indicated by a 3D pointing line that extends
from the shoulder along the arm. With this method, the arm has to be fully extended
for pointing, but shape recognition of a finger or hand is not necessary. Therefore,
there are no constraints imposed by the user's clothes or finger shape.

4.2 Object Search

The target object is searched for in the pointing direction obtained by 3D recognition
of the shoulders and arms. The steps in object search are outlined as follows.

STEP 2 Object search
STEP 2-1 Calculate 3D pointing line
STEP 2-2 Vote
Calculate crossing voxel of the line
If an object is registered in a voxel, increase voting value for the voxel
If a voting value is over the threshold, go to STEP 2-3, else go to STEP 2-4
STEP 2-3 Activate command

Arm-Pointer: 3D Pointing Interface for Real-World Interaction 77

If the registered object has an interactive function, a command is activated.
STEP 2-4 Decrease voting value after the certain number of frames

In STEP 2-1, the equation of the 3D pointing line is as follows:

X -Xer _ Y -¥Ysr _ Z -Zsgr _

= = =
Xar - Xsr Yar - Ysr Zar - Zsr T (2)
X -Xsl _ ¥ -¥sl _ Z -Zgl _

- - =t 3
Xal - Xsl Yal - Ysl Zal - Zsg] 1 ()

In STEP 2-2, voting is performed for detection of the voxel with the target object.
First, each voxel crossing the pointing line is detected from the nearest to the farthest
in order. If the registered object exists in the voxel, voting value is incremented. If the
voting value reaches the threshold after several repetitions for frames, the system
goes to STEP 2-3. STEP 2 is repeated until the object is found or room wall is
reached. In STEP 2-3, if the detected object is registered as an object with an
interactive function, the command of the function is activated. For example, a TV can
be turned on or off. In STEP 2-4, the voting value is decreased after a certain time
(number of frames).

4.3 Improvements

The method explained in the previous section, referred to as the simple method here,
often can not detect a target object quickly. In this section, we propose some
improvements using a weighted voting algorithm for better extraction performance.
In the improved method, the system votes not only for the crossing voxel through
which the pointing line passes, but also voxels neighboring the crossing voxel with a
weighted voting value. The area for voting comprises 26 neighboring voxels as
shown in Fig. 5. Voting values are decreasing with the distance from the arm to
crossing voxel. Using this improved method, it is possible to detect the target object
faster, even if the detected position of face and arms are unstable. In this work, we
tested Arm-Pointer using only one set of voting weights, which we decided
voluntarily. In future work, we will test and evaluate the system using other sets of
voting weights to further improve the performance of the voting method. The
processing flow in the new voting step (STEP2-2') is as follows. This step replaces
STEP2-2 in the simple method.

STEP2-2' Vote
Calculate the crossing voxel V. (X, Y., Z.) that includes an object.
Vote V. and its 26 neighboring voxels according to the weight,
if they include any object.

5 Application Prototype

We developed a prototype system using our proposed method. The system consists of
a PC (Pentium 1V, 2 GHz), stereo vision camera (Digiclops), infrared multi-remote
controller (CROSSAM2+USB), and image processing software. In this system,

78 Eiichi Hosoya et al.

a display can be used additionally for confirming operations by overlaying CG
information, although our method can be implemented without a display.

The user has to face the camera and extend his arm to the target. If the object
included in the voxel is interactive, its function will be activated. This system makes
it possible to operate many apparatuses in the room with only one remote controller.

Crossing voxel
Ve; (Xe,Ye,Zc) djcid
\ clbjc
\ a dlcl|d
4 c|blc
bla|b
p .
V4 clbjc
/<Pointing Pointing -\' dicld
direction direction clblc
dic|d
T 2y Weighted voting

Simple method Improved method

Fig. 5. Weighted voting

I
center of face

I
& e / center of arm

il - 1%

VR

shoulder

(a) Input image (b) Depth image (c) Position extraction

Fig. 6. Examples of 2D extraction

center of face
|

center of arm

% Y |

N
= a shoulder g
@ 1

(b) Position extraction

(a) Input image

Fig. 7. In the case of short-sleeved shirt

Arm-Pointer: 3D Pointing Interface for Real-World Interaction 79

6 Evaluation

We tested the system for evaluation. In this section, examples of user operation and
results of a comparison evaluation are shown.

6.1 Experiment

An experiment using the prototype system confirmed basic operations. The
processing speed of this system reached about 150 msec/frame, including indication
on the display.

An example of the extraction results for the shoulders and centers of the arms are
shown in Fig. 6. Figure 6(a) and (b) are an input color image and a depth image,
respectively. Figure 6(c) shows the result of skin color extraction, and the 2D position
of the center of a face, shoulders, and arms. Although many candidates are extracted
at first, finally only the face and arms are detected. Figure 7 shows an example of the
extraction results when the user is wearing a short-sleeved shirt. In the case of either a
long-sleeved shirt (Fig. 6) or short-sleeved shirt, the 3D direction of the arm can be
extracted similarly, without changing any system parameters.

Figure 8 shows an example of the results of the 3D pointing experiment. The red
line segment that shows the pointing direction and the voxel frame of the 3D pointing
position is displayed and changes. Figure 9 shows an example where interaction with
an object was performed. In the case of this figure, since a TV is selected by pointing,
the frame of the voxel with the TV is emphasized on the screen. The TV is thus
turned on and the message indicated on the screen.

Fig. 8. Examples of 3D pointing

80 Eiichi Hosoya et al.

6.2 Comparison Evaluation

For the evaluation, the simple method Arm-Pointer, improved method Arm-Pointer,
and an ideal case were compared. The working time for detecting an object pointed at
is one of the most important indices for user interface evaluation. In the experiment,
users pointed at objects indicated randomly and the detecting time was measured. We
prepared a laser pointer as the ideal device for pointing, because user can point at
precise positions in real time perfectly with a laser pointer, though he can't interact
with objects. So we used the measured working time of the laser pointer as the ideal
working time value. Working time was evaluated for three types of method: the laser
pointer, the simple method, and the improved method.

The number of showing objects for the user was 18 (6 objects x 3 times). Each 3D
position of the 6 numbered objects was random on a wall. The sequence of showing
objects was random. Four subjects were participated. The object sequence was the
same for each. Voxel space resolution was 5 x 5 x 5 for size 2.5 x 2.5 x 2.5 m’.
Voting weights in the improved method are (a, b, ¢, d) = (10, 5, 2, 1). The object
number was indicated automatically on the display in front of the user. The working
time from object number indication until pointing finished was measured.

Table 1 shows the results of experiment. Averages of working time were 1.44 [s]
for the laser pointer, 3.66 [s] for the simple method, 2.74 [s] for the improved
method, respectively. The improved method is faster than the simple method, and the
speed is not so slow compared with the laser pointer as an ideal device for pointing. A
laser pointer can point at precise positions, but no interactions are available with it
and the user needs to keep holding. However, our method has advantages in that it
allows interaction with real objects and the user does not have to hold anything. In
this experiment, laser pointer has a feedback effect because of projected laser beam.
We plan to perform an experiment with feedback for our simple and improved
methods and evaluate the methods under more similar conditions in future.

Table 1. Experiment results

Method Ave.[s] SD
Laser pointer 1.44 0.33
Simple method 3.66 2.06
Improved method 2.74 1.34

SD: Standard Deviation

7 Conclusion

We proposed a 3D pointing interface called Arm-Pointer that can perform 3D
recognition of arm pointing direction. The user does not have to wear any equipment
and can point to a target object directly by extending his arm. Since Arm-Pointer can
point to real objects in a real space, it realizes an intuitive interface. In the case of
either a long-sleeved or short-sleeved shirt, Arm-Pointer can extract the arm pointing
direction correctly. Thus, Arm-Pointer will have various applications in the real
world. Future work includes considering more efficient voting algorithms especially
for the case of a large number of objects, and further improvements on the accuracy
of the system.

Arm-Pointer: 3D Pointing Interface for Real-World Interaction 81

Pointing to a voxel
containing a TV

“TV is turned ON”

Fig. 9. Interaction with a real object

Acknowledgement

The authors thank Dr. H. Ichino for supporting this research. They also thank the
members of the Home Communication Research Group at NTT for helpful
discussions.

References

(1]
(2]
(3]
(4]
(3]

(6]
(7]
(8]
(9]

Bolt, R.A. “Put-That-There”: Voice and Gesture at the Graphics Interface. Proc.
SIGGRAPH 1980, Vol14, No.3, (1980), pp. 262-270.

Tsukada, K. and Yasumura, M. Ubi-Finger: Gesture Input Device for Mobile Use. Proc.
APCHI 2002, Vol. 1, (2002), pp. 388-400.

Sugimoto, A., Nakayama, A. and Matsuyama, T. Detecting a Gazing Region by Visual
Direction and Stereo Cameras. Proc. ICPR 2002, (2002), pp. 278-282.

Rekimoto, J. SmartSkin: An Infrastructure for Freehand Manipulation on Interactive
Surfaces. Proc. CHI 2002, (2002), pp. 113-120.

Koike, H., Sato, Y., Kobayashi, Y., Tobita, H. and Kobayashi, M. Interactive Textbook
and Interactive Venn Diagram: Natural and Intuitive Interface on Augmented Desk
System. Proc. CHI 2000, (2000), pp. 121-128.

Freeman, W.T. and Weissman, C.D. Television control by hand gestures. Proc. AFGR
1995, (1995), pp. 179-183.

Krueger, M.W., Gionfriddo, T. and Hinrichsen, K. VIDEOPLACE An Artificial
Reality. Proc. CHI'85, (1985), pp. 35-40.

Shibuya, Y. and Tamura, H. Interface Using Video Captured Images. Human-Computer
Interaction: Ergonomics and User Interfaces, Vol.1, (1999), pp. 247-250.

Morikawa, O., Yamashita, J., Fukui, Y. and Sato, S. Soft initiation in HyperMirror-III.
Human-Computer Interaction INTERACT'01, (2001), pp. 415-422.

82 Eiichi Hosoya et al.

[10] Hosoya, E., Kitabata, M., Sato, H., Harada, 1., Nojima, H., Morisawa, F., Mutoh, S. and
Onozawa, A. A Mirror Metaphor Interaction System: Touching Remote Real Objects in
an Augmented Reality Environment. Proc. ISMAR'03, (2003), pp. 350-351.

[11] Fukumoto, M., Suenaga, Y. and Mase, K. “FINGER-POINTER”: Pointing Interface by
Image Processing. Computer & Graphics, Vol. 18, (1994), pp. 633-642.

[12] Wilson, A. and Oliver, N. GWINDOWS: Towards Robust Perception-Based UI. Proc.
CVPR 2003, (2003).

[13] Jojic, N., Brumitt, B., Meyers, B., Harris, S. and Huang, T. Detection and Estimation of
Pointing Gestures in Dense Disparity Maps. Proc. AFGR 2000, (2000), pp. 468-475.

	Arm-Pointer: 3D Pointing Interface for Real-World Interaction
	Introduction
	Arm-Pointer
	System Configuration
	Processing Flow

	Initialization
	Voxel Subdivision
	Target Object Registration

	3D Recognition and Object Search
	3D Recognition Flow
	Object Search
	Improvements

	Application Prototype
	Evaluation
	Experiment
	Comparison Evaluation

	Conclusion
	Acknowledgement
	References

