Portable Support for Transparent Thread Migration in
Java

Eddy Truyen*, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen
and Pierre Verbaeten

Departement Computerwetenschappen, K.U.Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{eddy, bartvh}@cs.kuleuven.ac.be
http://www.cs.kuleuven.ac.be/~xenoops/CORRELATE/

Abstract. In this paper, we present a mechanism to capture and
reestablish the state of Java threads. We achieve this by extracting a
thread’s execution state from the application code that is executing in
this thread. This thread serialization mechanism is implemented by
instrumenting the original application code at the byte code level,
without modifying the Java Virtual Machine. We describe this thread
serialization technique in the context of middleware support for mobile
agent technology. We present a simple execution model for agents that
guarantees correct thread migration semantics when moving an agent to
another location. Our thread serialization mechanism is however
generally applicable in other domains as well, such as load balancing
and checkpointing.

1 Introduction

Mobile agent technology is promoted as an emerging technology that makes it
much easier to design, implement and maintain distributed systems. Adding mobility
to the object-oriented paradigm creates new opportunities to reduce network traffic,
overcome network latency and eventually construct more robust programs. Mobile
agents are active, autonomous objects or object clusters, which are able to move
between distributed locations (e.g. hosts, web servers, etc...) during their lifetime.

Java has been put forward as the platform for developing mobile applications.
There are various features of Java that triggered this evolution. First, in a large
number of application domains, Java’s machine-independent byte code has solved a
long-lasting problem known to agent-based systems, namely the fact that agents must
be able to run on heterogeneous platforms. A Java program is compiled into portable
byte code that can execute on any system, as long as a Java Virtual Machine (JVM) is
installed on that system. Nowadays, JVM’s are running on systems with different
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hardware and system software characteristics (ranging from off-the-shelf PC’s to
Smart Cards). Second, byte code is easily transportable over the net and can be
downloaded whenever necessary by means of the customizable Java class loading
mechanism [1]. This flattens the way for supporting code mobility. Third, Sun’s
powerful serialization mechanism allows migrating transparently data state of Java
objects (i.e. the contents of instance variables), making object state mobility possible.
Fourth, Java offers security concepts, allowing construction of secure agent execution
environments [2].

Unfortunately, Java is not designed as an agent-based system programming
language and therefore most agent-related functionality has to be added. Current
research tackles this problem by offering this functionality in the form of middleware
support for mobile agents. Conventional middleware technologies offer
communication mechanisms and a programming model to application programmers
for developing distributed applications. In order to support agent-based applications,
such conventional middleware functionality is extended with mobile object semantics
(e.g. semantics concerning the location of an object, etc.), mechanisms for migration
of agents, infrastructure for receiving arriving agents, resource management,
execution support, security etc. [3, 4]. In the past, research groups and companies
have built various mobile agent systems, fully implemented in Java [2,5].

1.1 Problem Statement: Transparent Thread Migration in Java

Migration is a mechanism to continue the current execution of an agent at another
location in the distributed system. To migrate an agent, some state information of the
agent has to be saved and shipped to the new destination. At the target destination, the
state of the agent is reestablished and finally the execution of the agent is rescheduled.

From the technical view, an agent consists of an object or a cluster of objects. In
Java, each object consists of the following states:

e Program state: this is the byte code of the object’s class.

e Data state: the contents of the instance variables of the object.

e Execution state: a Java object executes in one or more JVM threads. Each JVM
thread has its own program counter register (pc register) and has a private Java
stack. The Java stack is equivalent to the stack of conventional languages. A Java
stack stores frames. A new frame is created each time a Java method is invoked. A
frame is destroyed when its method completes. Each frame holds local variables
and an operand stack for storing partial results and passing arguments to methods
and receiving return values [6].

In order to migrate a thread, its execution must be suspended and its Java stack and
program counter must be captured in a serializable format that is then send to the
target location. At the target location, the stack must be reestablished and the program
counter must be set to the old code position. Finally the thread must be rescheduled
for execution. If migration exhibits this property it is called transparent or strong
migration. If the programmer has to provide explicit code to read and reestablish the
state of an agent, migration is called non-transparent or characterized as weak
migration [7].
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Although code migration and data migration is strongly supported in Java, thread
migration is completely not supported by current Java technology. JVM threads are
not implemented as serializable. Furthermore, the Java language does not define any
abstractions for capturing and reestablishing the thread state information inside the
JVM. Due to these technical obstructions, recent state-of-the art middleware support
for Java-based mobile agents such as Mole is not able to provide agent applications
with transparent thread migration. Weak thread migration is supported, but burdens
the programmer with manually encoding the ‘logical’ execution state of an agent into
the agent’s data state [2].

1.2 Byte Code Rewriting of Application Code

We implemented a thread serialization mechanism by extracting the state of a
running thread from the application code that is running in that thread. To achieve
this, we developed a byte code transformer that instruments the application code by
inserting code blocks that do the actual capturing and reestablishing of the current
thread’s state. We implemented this transformer using the byte code rewriting tool
JavaClass[8], that offers a programming interface for byte code reengineering.

Our system makes it possible that running threads can be saved at any execution
point, even at difficult points such as in the middle of evaluating an expression, or
during the construction of an object. The implemented mechanism is fully
implemented at the code level. As such, it does not require changes to the JVM.

We now give an overview of the remainder of this paper. In the next section we
give an overview of our approach in the context of mobile agents. In section 3, we
describe the implementation of how a thread’s execution state can be captured and
later reestablished. In the following two sections we give a quantitative analysis of
our thread serialization mechanism and we discuss related work with regard to this. In
section 6, we describe how our thread serialization mechanism can be used in other
domains such as load balancing. In section 7, we describe the implementation status
of the prototype and raise some final issues related to the subject of this paper.
Finally, we conclude.

2 Overview of Our Approach

In this section we give a high-level overview of how our thread serialization
mechanism is used for migrating mobile agents. We present a simple execution model
for agents that guarantees correct thread migration semantics when moving an agent
to another location.

2.1 Execution Model for Agents

In order to allow easy migration, a suitable model for executing agents must be
deployed in the middleware layer of the agent system. Figure 1 gives an overview of
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this execution model [9]. We offer a complement to JVM threads at a higher
abstraction level, namely tasks. A task is a higher-level construct for executing a
computation (i.e. a sequence of instructions) concurrently with other computations. A
task encapsulates a JVM thread that is used for executing that task. As such, a task’s
execution state is the execution state of a JVM thread in which the task is running.

An agent is implemented as a cluster of Java objects that cooperate together to
implement its expected functionality. For executing its program, an agent owns a task
that is exclusively used for that agent. This gives an important property to agents,
namely that they are self-contained. They do not share any execution state. When
migrating the agent its task is migrated with it, without impacting the execution of
other agents. In principle, an agent may encapsulate multiple tasks in more intelligent
execution schemes (e.g. a mobile agent that has one main task and several helper
tasks).

A so-called TaskScheduler schedules the execution of tasks. The task scheduler
controls what task is to execute next. As such, we can experiment with different
scheduling policies, tailored to a specific application domain. When the scheduler
starts a task, the task is assigned a JVM thread for executing itself. In principle, the
execution model allows creating a new thread for each task, let the different threads
run concurrently and rely on the efficient JVM implementation for context switching
support.
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Fig. 1. Execution Model for Agents

It is important to realize that this execution model is transparently enforced upon
the mobile agent application by the middleware layer. For example, the enforcement
of synchronization constraints inherent to concurrent execution should ideally be
realized within the middleware layer of the agent system. Tasks support this, since
they are programmable entities: system developers (who build middleware)
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implement specialized tasks that offer primitives useful for constructing various
powerful concurrency models with built-in support for specific synchronization
mechanisms. For example in Figure 1, a BlockingTask is a specialized task derived
from the base class Task that is used for implementing a concurrency model
supporting synchronous invocation semantics between agents.

2.2 Serializable Tasks

A task is serializable at any execution point, making transparent thread migration
possible. In opposition to the Java object serialization mechanism, task
(de)serialization is not automatic but must be initiated by calling two special
primitives, which are each defined as a method on Task. These primitives are meant
for requesting capturing and reestablishment of a task’s execution state. We illustrate
the use of these primitives in the context of a migration scenario of an agent:

e public void capture(). This method must be called whenever the current
executing task must be suspended and its execution state must be captured in a
serializable format. For example, an agent that wants to migrate invokes this
method (indirectly) on its task. After state capturing is finished, a migrator
middleware component migrates the agent together with its serialized task to the
target location. Notice that our task serialization mechanism requires that state
capturing must be initiated within the execution of the task that is to be migrated.

e public void resume(). Invoking this method on a Task object, will
reschedule the task with the task scheduler. When the task scheduler restarts the
task (by calling start () on it), the execution state of the task is first reestablished
before resuming execution. In the migration example, this method will be called by
the peer migrator middleware component at the target location after it receives the
migrating agent.

As a consequence, tasks are not serializable at each moment, but only after the
execution state capturing process is finished and before the execution state
reestablishment process is started.

Each task is associated with a separate Context object into which its thread
execution state is captured, and from which its execution state is later reestablished.
This context object can be serialized by means of the Java object serialization
mechanism. To capture and reestablish a task’s thread state, byte code instructions are
inserted into the code of the encapsulating agent. These instructions capture the
current Java stack and the last executed instruction (i.e. program counter index) into
the task’s context. Obviously, byte code instructions are also inserted that reestablish
the original stack from the context and jump to the instruction where execution was
suspended. The next section discusses this in detail.
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3 Implementation of Thread Serialization

Each task is associated with a number of boolean flags that represent a specific
execution mode of the task. A task can be in three different modes of execution:

e Running: the task is normally executing.

e Capturing: the task is in the process of capturing its current execution state into its
context. When the task is in this mode, its flag isCapturing is set.

e Restoring: the task is in the process of reestablishing its previous execution state
from its context. When the task is in this mode, its flag isRestoring is set.

In the rest of this section, we describe respectively the mechanisms behind the state
capturing and reestablishing process. Finally we shortly describe the implementation
of the byte code transformer itself.

3.1 Capturing Execution State

Whenever an agent wants to migrate, it calls indirectly on its task the operation
capture () that suspends the execution of the agent and initiates the state capturing
process by setting the flag i sCapturing.

public void capture() {
Context currentContext = getContext (Thread.currentThread()) ;
if (currentContext.isRestoring) {
currentContext.isRestoring = false;
} else {
currentContext.isCapturing = true;
currentContext.pushThis (this) ;

Fig. 2. Starting Capturing and Finishing Reestablishment

Since the execution state of an ongoing task is a sequence of stack frames located
in the method call stack of the task’s JVM thread, we traverse that stack and do state
capturing for each stack frame. This is realized by subsequently suspending the
execution of each method on the stack after the last performed invoke-instruction
(LPI) executed by that method, and starting with the top frame’s method.'

Figure 3 illustrates how this works. In this example, the method
computeSerial () is the top frame’s method. When control returns from
capture (), a state capturing code block for the top frame is first executed. The
frame is then discarded by suspending the execution of its corresponding method (i.e.
computeSerial ()) through an inserted return instruction, initiating the state

' The top frame is also called current frame [6] and corresponds with the method that invokes
capture() - the current method.
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capturing process for the previous frame on the stack (i.e. myMethod ()). The same
process is then recursively repeated for each frame on the stack.

For each method on the stack, we save the corresponding stack frame in the state it
was before executing the method’s LPIL. An artificial program counter is also stored
in the task’s context. This is a cardinal index that refers to the LPI.

Our byte code transformer inserts a state capturing code block after every invoke-
instruction occurring in the application code. These are all the code positions in a
method myMethod () where control may be transferred back to, after the capturing of
the called method computeSerial () is finished.

public class A {
private B b = new B(..);
public void myMethod() { calling method
int 1 = 0;
java.util.Date today = ...;
Vector v = new Vector();
if (L. o
boolean test = false;

ifisCapturing() { ——————
store stackframe into context
store artificial PC as LPI-index .
return; I

}
LPI — int k = 5 * b.computeSerial (today) ;
}

4

}

public class B { go to previous stack frgme

public int computeSerial (Date date) { top frame’s method

if isCapturing() {
store stackframe into context
store artificial PC as LPI-index
return;

LPI —Jp curren tTask.capture();

return ...;
}
}

}

Fig. 3. State Capturing

3.2 Reestablishing Execution State

Calling the operation resume () upon a suspended Task object reschedules this
task with the task scheduler. Actual reestablishment of the task’s execution state is
however initiated when the task scheduler restarts the task. To reestablish the
execution state, we just call again all the relevant methods in the order they have been
on the stack when the state capturing took place. Figure 4 illustrates this for the same
example as in section 3.1.

Our transformer inserts additional code in the beginning of each method body. This
inserted code consists of several state reestablishing code blocks, one for each code
position where the previous execution of the method may have been suspended; these
code positions are the invoke-instructions that occur in the method body. In a switch
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instruction the appropriate state reestablishing code block is selected based on the
stored LPI-index of the method. The chosen code block then restores the method’s
frame to its original state and restores the method’s pc register by jumping to the
method’s LPI, skipping the already executed instructions. Executing its LPI initiates
the reestablishing process of the next stack frame. Finally, during reestablishment of
the top stack frame, the operation capture () is invoked by our inserted code for a
second time. Now, this operation sets the isRestoring flag back to false, finishing
the reestablishing process (see Figure 2).

if isRestoring() {
get LPI from context;

public class A { switch(LPI){

private B b = new B(..);

public void myMethod () {
int 1 = 0; '<

case invoke compueserial
load stackframe;

java.util.Date today = ...; goto invoke Serials
Vector v = new Vector(); case ...
if (...) |

boolean test = false; }}
) N

LPI —p int k = 5 * b.computeSerial (today) ; 80 to next stackframe
}
ifisRestoring() { —————
) get LPI from context;
public class B { switch(LPD){

case invoke qpure;
load stackframe;
8010 invoke captureCurrentiask;

case ....
LPI —p currentTask.capture ();

..... )

return ...; ]
) S

} N

Fig. 4. State Reestablishment

3.3 Implementation of Transformer

In order to generate the correct state capturing and reestablishing code block for a
invoke-instruction occurring in a method, we first need to know what’s on the
method’s stack frame before that invoke-instruction is executed. That is, we need to
analyze the type of the local variables visible in the scope of the instruction and the
type of the values that are on the operand stack before the instruction is executed.
This analysis is rather complex, since type information is not anymore explicitly
represented in the byte codes of the method. The implementation of this analysis is
based on a type inference process that is similar to the one used in the Java byte code
verifier, as described in the Java Virtual Machine specification [6].

After the type inference analysis completes, our transformer starts rewriting the
original application code method per method. Each method is rewritten invoke-
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instruction per invoke-instruction. Our transformer distinguishes between instance
method invocations, static method invocations, super-calls and constructor invocation.
For example, Figure 5 shows the information captured and reestablished when the
method’s LPI is an instance method invocation (invokevirtual).

this-pointer

local variable 1

captured in
this frame

partial result 1

frame’s

operand stack object ref of called method

A4

captured in

argument value 1 N
next frame

<«4—— next stack frame

Fig. 5. Stack Frame before Invoking an Instance Method

4 Quantitative Analysis

Instrumenting and inserting code introduces time and space overhead. Since code
is inserted for each invoke-instruction that occurs in the program, the space overhead
is directly proportional to the total number of invoke-instructions that occur in the
agent’s application code. Note that JDK method calls are not instrumented (see
section 7.2).

Per invoke-instruction, the number of additional byte code instructions is a
function of the number of local variables in the scope of that instruction (L), the
number of values that are on the operand stack before executing the instruction (V)
and the number of arguments expected by the method to be invoked (4). Table 1
shows per invoke-instruction the file space penalty in terms of the number of
additional byte code instructions.

Table 1. Space and Time Overheads

LiV|A4 File space Overhead Duration capturing Duration
penalty normal frame reestablishing
+2¢ (c<1) execution (# instr / avg. time) Sframe
(max/avg #instr) (# instr) (# instr/ avg. time )
0(0]|0 14/14 4 71/<0.001 ms 45/0.001 ms
1{0]0 19/18 4 105 /<0.001 ms 68/ <0.001 ms
0(1]0 17/16 4 104/ <0.001 ms 67/ <0.001 ms
0(0]|1 15/15 4 71/<0.001 ms 46/ <0.001 ms
5012 44 /41 4 274/ 0.002 ms 184/ <0.002 ms
313(3 41/38 4 272/ 0.002 ms 183/ <0.002 ms
5/5[5 59/54 4 406/ 0.007 ms 275/ 0.004 ms

The last three columns of the table show respectively the run-time overhead per
invoke-instruction during normal execution and the overheads of the capturing and
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reestablishment of one stack frame. These run-time overheads are expressed as the
number of additional byte code instructions executed, and as an average time
measurement (expressed in milliseconds). Notice that run-time overhead during
normal execution is constant per invoke-instruction.

To summarize, we give a more formal analysis of the different overheads (in terms
of additional inserted byte code instructions):

e  Maximum file space penalty = 14 +5L + 3V + A + 2c (c <1)

e  Runtime overhead during normal execution = 4

e  Maximum duration capturing frame = 71 + 34L + 33V

e  Maximum duration reestablishing frame = 45 + 23L + 22V + A

In practice, file space penalty and run-time overhead is proportional to the number
of nested method invocations. This is of course completely dependent on the
complexity of the application under consideration. Table 2 shows experimental time
and file space measurements for two sample programs. File space penalty is relatively
high for these examples. This is because these sample programs are characterized by a
high ratio between the number of invoke-instructions and the total number of byte
code instructions. However in more ‘normal’ software development, we experienced
for two in-house developed applications an average byte code blow-up factor of 30%
and 37%.

Table 2. Experimental Data

Overhead normal File space penalty
execution
Factorial(100) 28.8 ms —28.4 ms: 1031KB — 498 KB:
1.5% 107%
Fibonnaci(30) 430 ms — 340 ms: 1018KB — 494K B:
27 % 106%

All the above run-time tests were performed on a Pentium II 350 MHz, 64 Mbytes,
Linux, Blackdown JDK1.2.2, JIT enabled.

Data overhead per captured stack frame is small since this consists of an integer
index pointing to the last performed invoke-instruction (LPI), and the associated
object reference in case of an instance method invocation.

5 Related Work

There are systems [11,12,13] that provide the required state capturing of Java
programs. However they modified the Java VM. The big disadvantage of these
systems is that the implemented support is not portable across existing Java platforms.
We found that it is possible to capture execution state efficiently at the application
code level, without requiring a modification of the JVM. This makes our thread
serialization mechanism portable across standard Java platforms

Researchers at TU Darmstadt [7] have implemented a thread serialization
mechanism that takes the same approach as we do. However, this is done by pre-
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processing the source code of the application, which is rather limited compared with
byte code transformation. First, with source code transformation, it is not possible to
extract the complete execution state of a running thread. It is for example not
possible to inspect the values that are on the operand stack of the current executing
method. Secondly, our thread serialization mechanism is more efficient in terms of
space and time overhead, due to the higher precise control offered at the byte code
level. For example, in [7] one reports a worst-case byte code blow-up factor of 470%,
while we experienced a worst-case blow-up factor of 107% for a similar sample
program. This difference in efficiency is because the low-level byte code instructions
make it much easier to manipulate the control flow in a program. For example, to
prevent re-execution of already executed method code during reestablishment we skip
the already executed code with a simple goto instruction. This instruction is however
not available at the source code level: in [7] one introduces instead a not small
number of if-statements to organize the skipping of already executed code. Although
this can be optimized using an unfolding technique [14], the general claim of
improved efficiency with byte code transformations remains. Third, byte code
transformation provides us with more flexibility. For example, with byte code
transformations it is allowed to insert reestablishing code before the execution of the
default super-call within a constructor, while this is not allowed at the source code
level. Finally, several practical benefits arise from the use of byte code
transformations: load-time modification and instrumentation of third party libraries
(of which the source code is not a priori available) is possible at the byte code level,
while it is not at the source code level.

The existing approaches that perform instrumentation at the source code level [7,
14] have used the exception throwing facility to capture execution state. We have
chosen not to use the exception mechanism, since entries on the operand stack are
discarded when an exception is thrown, which means that their values cannot be
captured from an exception handler.

6 Thread Migration Initiated by an External Control Instance

Until now we have only illustrated a migration scenario, where migration is
initiated by an agent itself. Another scenario is where migration of an agent is
initiated by an external control instance such as a load balancer component.

Our current thread serialization implementation is more difficult to use for such
systems. Remember that state capturing of a task can only be initiated within the
execution of that task itself. This makes it difficult for the external control instance to
initiate the state capturing process of another agent’s task. This deficiency may be
solved by associating with each task an additional fourth boolean flag, that signals an
external thread serialization request when set to true. An additional byte code
instruction that checks the value of this flag must then also be inserted after each
candidate LPI.

Currently, we follow another working approach in stead that consists of using a
more restricted variant of the agent execution model (see section 2.1). This rigid
execution model requires that on each point of time only one task is running while all
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other active tasks in the application are temporarily suspended and captured in a
serializable format.

As stated a general requirement for the agent execution model in section 2.1, also
this variant execution model must transparently be enforced upon the application by a
dedicated middleware implementation, relieving the agent programmer from any
responsibility in complying with this variant execution model. This middleware
implementation is based on an in-house developed meta-level architecture called
Correlate with a generic Meta-Object Protocol (MOP) for run-time reflection [9].
Here, the middleware implementation is deployed at the meta-level, while the
application logic of the agents resides at the base-level.

Not only task scheduling but also context switching is now controlled at the meta-
level, without relying on the preemptive scheduling support of the JVM at all. There
is only one JVM thread running in the system. All tasks are scheduled within this
JVM thread by the task scheduler. To achieve context switching between tasks, we
use our thread state capturing mechanism. That is, at each meta-level interception
point (i.e. when meta-level logic takes control over base-level logic), we suspend and
capture the currently executing agent and let the task scheduler decide which task is to
be executed next, always using the one existing JVM thread. The Correlate MOP
guarantees that all this happens transparently to the application logic and thus puts no
responsibility on the agent programmer to call capture() for each separate
interception point.

As such, the Correlate MOP allows us to implement at the meta-level an automated
and coordinated multitasking scheme that satisfies the variant execution model. The
external control instance is now implemented as a meta-level component. Whenever
the external control instance is executing, it can safely assume that all other active
tasks are a priori suspended in a serializable form. Although time-inefficient, this
approach avoids polling of the external control instance to discover when an agent’s
task is ready for migration. We demonstrated a load balancing application using this
variant execution model at OOPSLA’99 [10].

7  Discussion

In this section we discuss relevant issues that relate to the subject of this paper and
we describe the implementation status of our current prototype.

7.1 A Classloader for Mobile Code

Since we perform a byte code level transformation, our thread serialization
mechanism requires that all methods that might initiate state capturing must be
transformed. Since mobile agent applications are in general of very dynamic nature, it
is often not possible to predict on advance which classes need to be transformed and
which classes not. This problem can be handled by deferring transformation until run-
time. In Java, this can easily be realized by implementing a custom classloader for
mobile code that automatically performs the transformation. In this regard, the
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overhead induced by the transformation process — which is not small for the current
implementation - becomes a relevant performance factor.

7.2 Transforming the Java API Libraries

Since a mobile agent — like any Java program — may use the JDK libraries, the
question arises whether it is necessary to transform these standard provided libraries
too. From a technical point of view, this is only a problem when a library call causes a
native method to be placed on the thread stack. We cannot handle this case, since we
extract thread execution state at the byte code level.

In our current prototype we chose however not to transform the JDK libraries at all
(nor the JDK method calls that happen from within the application code). In most
cases this is indeed not necessary, since library calls do not initiate state saving by
themselves. The exceptions to this are library calls that result in a callback to the
application code [7]. For example when the agent programmer uses the Observer
pattern with graphical packages such as Swing, callbacks occur. We believe however
that using callbacks is a dangerous programming style for agents, since it may violate
the thread encapsulation principle (see section 2.1).

7.3 Implementation Status of Current Prototype

An interesting problem with state capturing arises when so-called non-initialized
values are on the stack. These values cannot be saved. This problem occurs when
suspending the execution during the evaluation of the arguments for a constructor
operation. In this case, a non-initialized object reference was earlier pushed on the
operand stack by the byte code instruction new. Our transformer deals with this
problem by taking the code block that computes the argument values, moving it
before the new instruction and storing these values in temporal local variables. These
temporal variables are then used for retrieving the argument values when invoking the
constructor.

Although possible, we have not yet implemented state capturing during the
execution of an exception handler. The major difficulty here is dealing with the
finally statement of a try clause.

A third, more pragmatic issue is that our byte code transformer currently throws
away all debugging information associated with a Java class. This affects of course
the ability to debug a transformed class with the source-code debugger.

8 Conclusion

In this paper, we presented a portable mechanism for thread serialization in Java,
enabling transparent migration of mobile agents. This mechanism is realized by
capturing a thread’s execution state at the byte code level. The implemented prototype
is more efficient then similar approaches that extract thread state at the source code
level. This prototype has been used at an OOPSLA’99 demonstration [10].
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