
http://www.cambridge.org/9780521889056

This page intentionally left blank

P1: SFK
9780521889056pre CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 19:16

EXCEL BASICS TO BLACKBELT

Excel Basics to Blackbelt is intended to serve as an accelerated guide to deci-
sion support designs. Its structure is designed to enhance the skills in Excel
of those who have never used it for anything but possibly storing phone
numbers, enabling them to reach a level of mastery that will allow them to
develop user interfaces and automated applications. To accomplish this, the
major theme of the text is the integration of the basics; as a result, readers will
be able to develop decision support tools that are at once highly intuitive from
a working components perspective but also highly significant from the per-
spective of practical use and distribution. Applications integration discussed
includes the use of MicroSoft MapPoint, XLStat, and RISKOptimizer, as well
as how to leverage Excel’s iteration mode, Web queries, Visual Basic code,
and interface development. There are ample examples throughout the text.

For the accompanying Web site material, please go to
http://www.cambridge.org/bendoly.

Elliot Bendoly is an associate professor at Emory University’s Goizueta Busi-
ness School. He holds a Ph.D. from Indiana University in operations man-
agement and decision sciences with an information systems specialization in
enterprise resource planning (ERP) and knowledge management. Professor
Bendoly serves on the editorial boards of the Journal of Operations Man-
agement and Decision Sciences. His research has been published in leading
academic journals, including the Journal of Operations Management, Pro-
duction and Operations Management, MIS Quarterly, Information Systems
Research, Journal of Applied Psychology, Decision Sciences, and the Journal
of Service Research. He is also the coeditor of Strategic ERP Extension and
Use. He has served as the academic liaison for APICS: The Association for
Operations Management and is a cofounder of the Behavioral Dynamics
in Operations Management Network. He has lectured on decision support at
research institutions such as Harvard University, as well as to practitioners
at firms such as AT Kearney and Price Waterhouse Coopers Inc.

i

P1: SFK
9780521889056pre CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 19:16

ii

P1: SFK
9780521889056pre CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 19:16

EXCEL BASICS TO BLACKBELT

An Accelerated Guide to Decision Support Designs

ELLIOT BENDOLY
Emory University

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-88905-6

ISBN-13 978-0-511-41415-2

© Elliot Bendoly 2008

2008

Information on this title: www.cambridge.org/9780521889056

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521889056

P1: SFK
9780521889056pre CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 19:16

Contents

SECTION 1. GETTING ORIENTED

1. Necessary Foundations for Decision Support page 3

2. The Development Environment 8
2.1. Fixed Data 8
2.2. Formatting 12
2.3. Labeling (Naming) 15
2.4. Comments 18
2.5. Hyperlinks 19
2.6. Formulae 19
2.7. Copying Content and Formats 23
2.8. Built-In Tools 23

Chapter 2 Supplement: Logic and Structure in
Conditional Statements 27

Practice Problems 33

3. Getting Data – Acquisition, Linkage, and Generation 34
3.1. Text File Imports and Basic Table Transfers 34
3.2. More Sophisticated Application Transfers 36
3.3. Online Data Acquisition 47
3.4. Simulating Data: The Basics 49
3.5. Living Data Records: The Basics 53
3.6. Living Records in Practice 56

Practice Problems 58

SECTION 2. HARVESTING INTELLIGENCE

4. Structuring Problems and Option Visualization 63
4.1. Value of Data Visualization 64
4.2. Selective Pruning for Presentation and Analysis 78

v

P1: SFK
9780521889056pre CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 19:16

vi Contents

4.3. Visualizing Constraints 82
Practice Problems 87

5. Simplification Tactics 89
5.1. Heuristics in Decision-Making Practice 90
5.2. Heuristics Applied to Data Rationalization 94
5.3. Attribute Grouping Approaches 95
5.4. Data Grouping Approaches 102
5.5. Giving Form to Future Categorization 112

Cited References 116
Chapter 5 Supplement: Making Heuristics Automatic
(the Non-Elegant Way) 116
Practice Problems 119

6. The Analytics of Optimization 122
6.1. Optimization with Solver 122
6.2. Deeper Insights into Optimization Solutions 133

Practice Problems 150

7. Complex Optimization 154
7.1. How Solver “Solves” 154
7.2. The Benefit of Alternate Optimization Options 157

Chapter 7 Supplement: A Primer on Genetic Algorithms 173
Practice Problems 179

SECTION 3. LEVERAGING DYNAMIC ANALYSIS

8. Controlled Simulation Analysis 183
8.1. Approaches to the Use of Simulation in Analysis 184
8.2. Assessing Simulated Variants 187
8.3. Assessing System Simulations 192
8.4. An Introduction to Stochastic System Structures 199

Chapter 8 Supplement: Simulation Control Made Friendly 202
Practice Problems 207

9. Scenario Generation and Optimization 209
9.1. Basic Simulation Optimization Capabilities 210
9.2. Optimization of Simulated Variants 213
9.3. Optimization of System Simulations 216

Practice Problem 227

10. Visualizing Complex Analytical Dynamics 229
10.1. Random Walks 230
10.2. Frictionless Boxes 231
10.3. Path-Directed Flows 232

Chapter 10 Supplement: Visually Derived Paths 240

P1: SFK
9780521889056pre CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 19:16

Contents vii

SECTION 4. ADVANCED AUTOMATION AND INTERFACING

11. VB Editing and Code Development 249
11.1. The Visual Basic Editor 249
11.2. Object Manipulations 254
11.3. Syntax and Coding 259
11.4. User-Defined Functions 273

Practice Problems 279

12. Automating Application Calls 281
12.1. Calls to MapPoint 281
12.2. Calls to Solver 285
12.3. Calls to RiskOptimizer 288
12.4. Calls to XLStat 294
12.5. A Final Note on the Value of Linguistics 296

Practice Problems 296

13. Guided and User-Friendly Interfaces 298
13.1. Interface Locking and Protecting 300
13.2. Dynamic Interfacing: Pop-Ups/Dialogs 303
13.3. Customizing Primary Excel Interfaces 306
13.4. Don’t Give Up on the Spreadsheet 314

Practice Problem 314

Glossary of Key Terms 317
Appendix – Shortcut (Hot Key) Reference 325
Index 327

P1: SFK
9780521889056pre CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 19:16

viii

P1: SJT
9780521889056c01 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:42

Section 1

Getting Oriented

1

P1: SJT
9780521889056c01 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:42

2

P1: SJT
9780521889056c01 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:42

1

Necessary Foundations for Decision Support

Professionals are expected to make decisions on a daily basis. Some of these
decisions may appear trivial, such as what shirt to wear, or what to have for
lunch. Some may appear routine and almost free of in-depth consideration.
Should I provide my PIN number when prompted by the ATM? Should I
respond (in some fashion) to a question addressed to me by a colleague?
Other decisions are more complex and potentially more significant. Should I
recommend that my client invest in a particular firm? Should I offer to take
on additional work now that one of my current projects appears to be nearing
completion? Should I purchase a new technology, given my current knowl-
edge of its potential benefits? Should I recommend a settlement in a lawsuit,
given my expectations of how the other party is likely to act in the near term?

These aren’t simple questions, and we can’t expect individuals to always
have immediate and appropriate answers. What we can expect, however, is
some level of thought, and some level of a desire for assistance when good
solutions are needed. The origin of this assistance can vary, but being the
eternal tool builders that we are, we tend to find such assistance in the form
of data analysis and interpretation mechanisms. Increasingly these are high-
tech, information-intensive mechanisms, and are ever more within our own
grasp to develop and master.

We can describe such mechanisms through a range of potential – if not typi-
cal – attributes and benefits of decision support systems (DSS). Some of these
attributes and benefits are shown in Figure 1.1. For many developers and ana-
lysts, only a few of the above issues and attributes are viewed as worthy of rig-
orous pursuit. A truly practical and forward-thinking perspective of decision
support, however, will ultimately suggest a development process and finished
product that at least has taken each of these issues and attributes into consid-
eration in some shape or form. Toward this goal, the power of visualization
cannot be underemphasized. As such, an understanding of how to leverage
the visualization of data analysis, its results, and its implications/suggestions
are naturally critical to the development of DSS.

3

P1: SJT
9780521889056c01 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:42

4 Necessary Foundations for Decision Support

Eased Access (to raw distributed data; often updated in near-real time)

Facilitated Analysis (of data often through use of automated intelligence)

Rich Communication (of results and new ideas in a meaningful and practical
form, often augmented by sophisticated graphical depictions)

Typical Attributes

Reduced
Cost

Greater Partner Satisfaction
(both customers and supp liers)

Increased
Innovation

Higher
Retention

Elevated Strategic Advantage

Common Targeted Benefits

Reduced Lead-Time
to complete work

Worker
Empowerment

Greater
Consistency

Smarter Response (to
changes / failures)

Figure 1.1. Elements of DSS.

Consider the following key principles put forward by Edward Tufte,∗

world-renowned scholar on data and relational visualization:

1) Enforce Wise Visual Comparisons: Comparison is a critical element in the devel-
opment of understanding and, ultimately, practice. It allows for the illustration
of practical relevance of effects and decisions that may give rise to them. It’s the
mechanism by which analytical and theoretical findings are vetted by intuition
past real-world experience. It encourages faith in the diligence of the analyst, and
hence any system, on the framework he or she is promoting the use of.

2) Show Causality (IF possible to even “suggest”): Most practical researchers cringe
when people throw around claims of “causality” without really having appropri-
ate evidence. However, in some cases, certain logically thought-out and reasoned
explanations can definitely prove convincing towards such claims. The task of the
developer is to provide enough temporal and situational information, as well as
information regarding the binding relationships relevant, to allow individuals to
understand any causal suggestions made or implied, as well as potentially critique
them as appropriate. Developers should be willing to sufficiently provide repre-
sentation to allow others to draw their own conclusions regarding causality rather
than focusing on driving home their own hypotheses as immutable fact.

3) The World We Seek to Understand Is Multivariate, as Our Displays Should Be
(AND as our analysis that supports our displays should be): Only meaningful
dimensions should be incomplete (not multivariate for multivariation’s sake –
knowing the price of tea in Boston is seldom helpful in predicting stock values
over time). Push for multidimensional considerations in analysis and visualization,

∗ Tufte, E. R., Beautiful Evidence. Cheshire, CT: Edward R. Tufte Graphic Press, 2006.

P1: SJT
9780521889056c01 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:42

Necessary Foundations for Decision Support 5

but do so as needed intelligently. Consider which multivariate depictions have the
most critical meaning, juxtapose those, and don’t clutter with others.

4) Completely Integrate Words, Numbers, and Images: Any disconnects between data
and graphics only tend to weaken their potential. In some cases, the unintegrated
presentation of both actually can mislead. Analysts need to view numerical and
textual content as reinforcing graphics (and vice-versa) rather than idiosyncratic
to specific elements of analysts. People need to be able to quickly understand
what data and text graphics are driven by. This is another key to generating faith
in the analyst and his/her tool.

5) Most of What Happens in Design Depends upon the Quality, Relevance, and
Integrity of Content: Garbage fed into a graph results at best in beautiful garbage
(i.e., it still has little practical value; it still stinks). Know the audience. Under-
stand the context of practice. Be fully aware of what needs to be analyzed and
presented – and do it the right way. Mistakes, insufficiency, and irrelevant detail
can destroy many hours, days, and even months of work.

Regardless of the technical nature of the systems developed for support,
a continued and serious consideration of these principles helps to guarantee
that developed tools are used, valued, and worthy of future generations’
development and use.

Aside from these recommendations, it is essential to reinforce a point here,
particularly for those new to DSS development: Decision support systems
quite literally refer to applications that are designed to support, not replace,
decision making. Unfortunately, this is too often forgotten by decision sup-
port system users, or these users simply equate the notion of intelligent sup-
port of human decision making with automated decision making. Not only
does that miss the point of the application development, it also sets up a
sequence of potentially disruptive behaviors and events that include exces-
sive anthropomorphism of technology, poor or impractical decisions based on
incomplete knowledge and interpretation, disastrous results, and ultimately
the scapegoating by technology decision makers, developers, and technicians
that maintain these applications. It’s easy for decision makers to view decision
support systems as remedies for difficult work, particularly if they can blame
others for their own lack of effort.

Although often difficult to codify, there is an implied contract between
those who attest to deliver intelligent tools and those who accept their use:
namely, that the analyst is not attempting to intentionally mislead. But what
does that really mean? Simply not attempting to lead decision makers towards
policies that benefit the confederates of a developer? Or does that also include
omitting data and analysis considered for the sake of ease in development,
with the knowledge that doing so may severely bias results?

Ultimately these issues relate to accountability and ethics in organizations,
but they also relate to personal accountability and ethics on the part of those

P1: SJT
9780521889056c01 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:42

6 Necessary Foundations for Decision Support

developing these applications. If you want to develop a strong decision sup-
port tool for yourself, you guarantee that any problems rest in your lap. But if
you want to be able to pass the tool onto others (the most powerful implication
of DSS development given the nature of modern, highly pervasive technolo-
gies), you have a responsibility to pay a great deal of attention to exactly
how your applications might be used by others. Critical here is guiding usage
through built-in assistance in analysis, clear visualization of how characteris-
tics of problems and solutions relate, and formally structured interfaces that
deter, if not prohibit, misuse. In my mind, it is difficult to distinguish those
who intend to use their positions as knowledge brokers to the detriment of
others; even those seemingly willing to discard diligence or accept obscured
presentation in the pursuit of personal gains.

With this in mind, this text is written not only for the potential developer,
but also for the potential user. Know what to expect as possibilities of DSS
and you can know what to expect from the efforts of those pushing their
tools on you. Developers be forewarned – DSS is becoming increasingly
available for non-programmers. This text illustrates the beginning scope of
that availability.

The basic structure builds upon past examples to illustrate how simple ideas
can evolve, as does the skillful understanding of the potential for enriching
decision support. The first few chapters of the text, grouped together in a sec-
tion entitled “Getting Oriented,” are designed to ease people into simple but
effective use of the Excel 2007 environment as a platform for tool develop-
ment and visualization. Navigation and data acquisition are central themes;
however, basic logic concepts essential to the nature of discussions through-
out the remainder of the text are also covered. Discussion of capabilities from
external applications like MapPoint and the Internet are also provided.

In Section II, “Harvesting Intelligence,” we will dive into the structuring
of decision-making problems in ways that are meaningful to assisted analysis
and transparent to those in practice (aided by concepts and approaches to
visualizing key aspects of these problems). Simplification tactics in managing
large sets of data and approaching problem solutions in general are then dis-
cussed as a prelude to more sophisticated approaches to leveraging problem
structures and available solution technologies. Use of Excel’s Solver and Pal-
isade’s RISKOptimizer packages will be discussed here, along with the use
of XLStat.

In the “Leveraging Dynamic Analysis” section, Chapters 8 through 10 deal
with the design and construction of simulations from a number of angles, mak-
ing use of a variety of available tools. Use of controls to simplify the manage-
ment of simulations is discussed, as are approaches to simulation optimiza-
tion as a merger of concepts from past chapter discussions. The high potential
value of Macro recordings are introduced, along with how to make the best

P1: SJT
9780521889056c01 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:42

Necessary Foundations for Decision Support 7

use of them in conjunction with a range of methods and tools. Approaches
to rich visualization of simulations are discussed as well.

In the last section of the text, “Advanced Automation and Interfacing,”
we deal with work that could not easily be conducted in a spreadsheet
interface alone (even one as advanced as Excel’s). The Visual Basic devel-
oper environment is discussed throughout. Coverage includes topics dealing
with Macro editing, function creation, application calls, integrated automa-
tion, and advanced interface development. Example spreadsheets referenced
throughout the text are available at www.bizbreed.com.

As a reminder to the reader, this is not a textbook designed for an advanced
programming course. Nor is it a statistics text, nor a single source dictionary
of all things Excel. This is a guide for the sorcerer’s apprentice – for those pro-
fessionals who want to demonstrate their own genius, and need only the right
coaching, inspiration, and reinforcement through example to get there. The
structure and content are not designed to inundate, but rather to illuminate.

Because readers come to this text at various skill levels, multiple starting
points have been built in. Even those looking for uncommon references and
keys to unlocking automation and application integration are going to find
value here. However, the real hope is that this book will open the world of DSS
development to a community otherwise intimidated by software supported
analysis. Everyone deserves to know how accessible DSS design can be and
the potential it holds. It’s time to shatter the wall between the untouchable
programmer and the professional in need. It can start here.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2

The Development Environment

This discussion of decision support design starts by jumping into the basics of
the Excel development environment. Figure 2.1 provides an annotated view
of what people typically see when opening up a new file in Excel. Only a few
key elements of this interface are central to our early discussion.

Excel files are called workbooks. They contain any number of worksheets
(i.e., spreadsheets) that can be used in tandem. Ninety-five percent of the
time, Excel has been relegated to storing information, largely by those who
don’t know what else Excel can do. Not that storing info in Excel is bad, but
there are often better alternatives available for storage, such as databases in
the case of very large sets of data. Functionally the storage capability of Excel
represents only the bare tip of this technological iceberg.

Regardless, knowing how the cell structure in the spreadsheet works is a
good place to start and is essential to our future discussion.

Cells in spreadsheets can contain:

� Fixed data: Data you’ve entered, numerical or otherwise.
� Formatting: Background color, border thickness, font type, and so on.
� Labels: References other than the standard ColumnRow reference.
� Comments: Notes regarding the contents.
� Formulae: Can be mathematical/statistical, text based, or a range of other types

such as logic based or search oriented.
� Live data links: Data that are drawn from an externally linked source, such as a

database or the Internet.

2.1 Fixed Data

Data entry in Excel is about as basic as it gets – just click and type. And it’s
probably the only thing that people universally know how to do in Excel. But
Excel makes some kinds of data entry easier in ways that many current users
don’t realize.

8

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.1 Fixed Data 9

different toolbars)

Main workbook and
sheets (multiple sheets
Main workbook and sheets
(multiple sheets per book)

(each tab activates different toolbars)

Label (Name) and content bar

Excel navigation tabs

Figure 2.1. Basic front-end elements of the Excel environment.

For example, Excel has an automatic pattern-recognition element that, by
default, will attempt to aid you in filling in additional cells of data. Although
it’s not always successfully, it’s often convenient.

For example, say I want to enter the number 1 into five cells in row 1. I can
start by entering the number 1 in cell A1.This is shown in Figure 2.2.

Note that when cell A1 is selected, its border is bold and a small square
appears at the bottom right of the cell. That small square is the copy prompt.
If I pull that square either right or down, Excel will attempt to fill in all other
cells I highlight with the pattern – in this case, the number 1. By pulling the
square to the right and highlighting the next four cells, I get the results shown
in Figure 2.3.

At this point, with all five cells selected, I could pull that copy prompt down
a couple rows and get the spreadsheet shown in Figure 2.4.

Ascending values and alternating text values are also recognized. For exam-
ple, take a look at Figure 2.5.

Figure 2.2. Initial entry.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

10 The Development Environment

Figure 2.3. After copying across.

Figure 2.4. After copying the row down.

Figure 2.5. Initial sequential entry, followed by copy.

Figure 2.6. Initial text sequential entry, followed by copy.

Figure 2.7. Initial switching sequence, followed by copy.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.1 Fixed Data 11

Or consider the copy shown in Figure 2.6.
Although this may not be exactly what we wanted (the alphabet isn’t

extrapolated here), we are provided with a potentially meaningful sequence
based on Excel’s existing pattern recognition. Some results of pattern recog-
nition by Excel are a bit less intuitive, however. For example, take a look at
Figure 2.7.

Here, as in the previous examples, Excel is trying to figure out exactly what
numeric pattern the user is trying to specify. However, not every pattern that
may seem natural to us is encoded in these rules, or other mathematical rules
may have automatic priority in Excel. There are often a lot of options for
trying to recognize and continue numeric patterns; in this case, the option
selected just isn’t one we expected. Excel has a lot of intelligence built into
it, and sometimes it just tries too hard.

There are several simple ways to avoid ending up with an Excel-
extrapolated pattern that doesn’t fit a user’s need. One method is to com-
pletely avoid relying on pattern recognition and use some kind of a formula
that generates the pattern you want. For example, type = A1 into cell E2,
press Enter, and use the copy prompt on E2 to pull that entry into all later
cells in that row. This would essentially duplicate the pattern in cells A1–D2
for as long as you would want it repeated.

If you would prefer to rely on Excel’s pattern-recognition mechanisms, you
could also try entering your numbers as text. Excel’s options for intelligently
identifying and extending text patterns are much more limited and may be
more likely to generate unexpected results. To enter numbers as text in any
given cell, precede the number with an apostrophe, such as ’1 or ’2. This
will ensure that Excel interprets the entry as text, at least as far as pattern
recognition is concerned. Within the spreadsheet Excel will still let you per-
form mathematical functions using the numbers following that apostrophe,
although it is an added step and may create other difficulties in formatting
and more advanced use of such data down the line, so this doesn’t tend to be
an approach that’s often used.

Still another mechanism to augment existing pattern-recognition capabil-
ities is made available through the Edit Custom Lists button, found in the
Popular tab of the Excel Options dialog box (Figure 2.8 shows the loca-
tion of the Excel Options button under the Office button drop-down, as
well as the appearance of the Popular options dialog once Excel Options is
selected).

Click the Edit Custom Lists button to open the Custom Lists dialog box, as
seen in Figure 2.9. This functionality allows you to view the existing custom
lists, generate new lists, and import other lists that aren’t currently being
recognized by the workbook.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

12 The Development Environment

Figure 2.8. Excel option access and access to Edit Custom Lists.

2.2 Formatting

Formatting can be applied to a wide range of elements within Excel. The
most common is cell formatting. The following sections explore static and
conditional cell formatting.

Figure 2.9. Edit Custom Lists dialog box.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.2 Formatting 13

Figure 2.10. Accessing cell formatting options.

2.2.1 Static Formatting for Cells

Static formats can be modified in a variety of ways. Access to formatting
options is gained by either right-clicking on the desired cell and then selecting
Format Cells in the shortcut window that appears (as shown in Figure 2.10),
or by selecting Format>Format Cells from the standard toolbar.

Whether choosing Format Cells from the shortcut menu or selecting
Format>Format Cells, the Format Cells dialog box displays. The formatting
options in this dialog box include:

� Number: Allows modification of the type of numeric/text presentation for that cell.
For example, this allows numbers representing percentages to be presented as such
(i.e., with a % sign), numbers that represent dates to be presented in month-day
format, or very large/small numbers to presented in scientific notation (e.g., 3.45E8
instead of 345,000,000, or 3.45E-8 instead of 0.0000000345).

� Alignment: Allows changes to horizontal and vertical alignment of contents within
cells, as well as whether cells are merged with neighboring cells, and whether or
not text within the cell simply keeps running outside the boundaries of the cell or
wraps (as it would in a paragraph in MS Word) based on the boundaries of the
cell.

� Font: Self-explanatory. Pick a font, any font. Not to mention color, bold, italics,
underline, etc.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

14 The Development Environment

Figure 2.11. Accessing conditional formatting.

� Border: Allows changes in the appearance of the cell boundary. Line thickness,
color, and line type are options.

� Fill: Allows changes in the appearance of the interior background of the cell.
Pattern selection (for example, striped or hatched) and color fill are options.

� Protections: When accompanied by sheet security options, prevents unauthorized
users from modifying the contents or other attributes of the cell.

2.2.2 Conditional Formatting

Unlike static formatting, conditional formatting offers a more dynamic
approach to highlighting the contents of cells. Any cell or set of cells sub-
ject to conditional formatting will take on a special appearance only when it
contains special values. In the current standard versions of Excel, each cell
can have up to three conditional formatting rules associated with it, aside
from the default cell format.

Click the Conditional Formatting button in the Home tab. A drop-down
menu appears with a list of conditional formatting options (shown in Fig-
ure 2.11). From here, you can select which type of conditional formatting you
want to apply.

If you select the Manage Rules option, the Conditional Formatting Rules
Manager opens, and you can add, edit, and delete rules from the same window.
Basically, this dialog box allows you to spell out rules or conditions, and specify
fonts, borders, and patterns to apply when the cell(s) take on specific values
or ranges of values. In the example shown in Figure 2.12, cells subject to
the conditional format will take on one colored background pattern when
their values are below 0.4, while those with value above 0.6 will take on an
alternate pattern.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.3 Labeling (Naming) 15

Figure 2.12. Developing conditional formatting rules.

Any other default, such as static formatting, will apply to cells that don’t
meet either criterion. In this case, the static format of these cells involves no
background shading of any kind, so cells with values between 0.4 and 0.6 are
unshaded.

There are a couple of points I’d like to make here about formatting multiple
cells.

� All static formatting and conditional formatting actions can be applied to multiple
cells simultaneously by selecting a group of cells prior to beginning any of the
above procedures. A group of adjacent cells can be selected by selecting a cell at
a corner of the range desired, holding down the mouse button, and highlighting
all other cells in the adjacent range. A group of non-adjacent cells can be selected
by holding down the Ctrl key and then clicking on each of the cells in the desired
group. When selected, the same access to both static and conditional formatting
windows is available.

� If you’ve already formatted a single cell in a particular way and would like to repli-
cate that format in other cells,, the Format Painter is a handy tool for copying that
format to new cells. You can access the Format Painter by clicking the paint brush
icon in the Home toolbar of Excel 2007. Select the cell with the appropriate format
you want to copy, click the Format Painter icon, and select the set of additional
cells where you would like to apply your format.

2.3 Labeling (Naming)

Labels, or names as they are called by standard, provide a way of referencing
cells in a meaningful fashion other than the generic A1 or C12. For example,
a cell that is consistently used to contain the estimated cost of shipping might

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

16 The Development Environment

Figure 2.13. Making use of names or labels to reference cells.

be more meaningfully labeled ShippingCost as opposed to G4. If cell H13
contains the rate of return on an investment, a more meaningful name for
this cell might be RateofReturn.

Clearly labeled or named cells can be helpful for at least a couple of reasons.
Other users can more easily understand what the cell contains. For example,
when calculating using a formula, it’s beneficial for others to know what terms
you are referring to in the calculation. Excel makes it easy to visually associate
terms with the data they represent by highlighting cells on a spreadsheet when
cells with a formula are selected. Another reason for clear labeling is so that
you know what you were thinking after you built a tool (when you might
want to modify that tool).

Labels can be assigned to cells by first selecting the desired cell and then
entering a new label for that cell in the label box (name box) usually located
near the upper-left corner of the spreadsheet.

When unlabeled cells are initially selected, their column-row reference will
appear in that label/name box. Click the Label box, enter the new label or
name for the cell, and then press Enter. The new name for the cell will display
in the label box, such as MarketShare (Figure 2.13).

The cell may then be referenced by either its column-row designation or its
new label. More conveniently, however, if at any point the developer wants
to move the location of that cell and its contents, the new label will go along
with it. This can be very helpful in avoiding confusion when other cells or
applications depend on being able to locate the cell’s information after such
a move.

2.3.1 Handling Label Typos/Changes

If a typographical error in labeling is made, or if the developer later wants to
change the name of the cell, the most secure route to correct this issue is to
select Name Manager from the Formulas menu to open the Name Manager
dialog box. This dialog box enables the user to delete the undesired label and

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.3 Labeling (Naming) 17

Figure 2.14. Managing names assigned to elements in a workbook.

add others. From the Name Manager all existing labels in a workbook can be
modified (Figure 2.14).

2.3.2 Cell Range Labels

As with formatting, multiple cells can be selected simultaneously and assigned
a specific label. For example, cells A1:A30 might be labeled Top10Companies
if they reference information on the profitability of 10 leading firms. The use
of range labels becomes more meaningful in more advanced applications, but
they remain extremely useful in helping others to understand the design of a
developer’s tool.

2.3.3 Worksheet Labels

Referring back to the idea that Excel documents are really workbooks that
contain multiple worksheets, each worksheet has a name that can be rela-
beled as well. Changing the label of a worksheet is extremely straightfor-
ward. Just double-click the tab label corresponding to the worksheet of choice

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

18 The Development Environment

Figure 2.15. Modifying sheet labels.

(e.g., Sheet1 as shown in Figure 2.15), and type in a new name for that sheet
(e.g., Raw Data).

2.3.4 Object Names

Objects include items such as drawn shapes (e.g., circles), controls (e.g., option
buttons), and inserted clips (e.g., .wav files). Each of these items can be
assigned labels/names for referencing (Figure 2.16).

Labels for cells and objects are universal across all worksheets in a specific
workbook. In other words, if you label cell A1 on Sheet1 something similar to
PRICE, you can still refer to that cell as PRICE for anything done on Sheet2
in that workbook.

2.4 Comments

Along with the labeling of cells to provide better reference mechanisms,
comments can be added to specific cells to add greater clarity when needed.
For example, aside from labeling a cell Cost, a developer might add the text
shown in Figure 2.17 to appear in comment form when the cursor passes
above the cell.

Comments are added to selected cells by right-clicking on the cell and
then selecting Insert Comment from the shortcut menu. The developer will

Figure 2.16. Assigning names to objects.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.6 Formulae 19

Figure 2.17. Application of a comment to a cell.

then be able to modify the text within the new comment bubble as well as
manipulate the height and width of that bubble.

2.5 Hyperlinks

Although hyperlinks (links to Web pages and pages on local drives) can be
embedded within cells, they require the cell content to be used entirely for
this purpose. So why waste a cell this way when hyperlinks can be assigned
to non-cell objects such as drawn circles? Honestly, I’ve never found a good
reason; however, the option is available by either right-clicking and selecting
Hyperlink from the shortcut menu or selecting a cell, and then selecting
Hyperlink from the Insert tab on the main menu.

2.6 Formulae

Some formulae are basic, such as adding the contents of two cells, dividing
the contents of one by another, and then subtracting a third. The syntax of
others (such as factorial, power, and natural log) is less obvious.

Excel 2007, when loaded with Palisades software, has more than 500 func-
tions already built in for use within cells. These are probably more than any
one person will probably ever want to use, but it’s nice to have them avail-
able. After you select a cell in which to embed a built-in function, follow
the Formulas>Insert Function menu path. The Insert Function dialog box
(shown in Figure 2.18) will display.

The great thing about this dialog box is that the functions are organized
into a set of about 10 fairly intuitive categories, plus the all-encompassing
All category and User Defined items. Even better, this dialog box gives you
instructions on the kinds of inputs each function takes, and what it does with

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

20 The Development Environment

Figure 2.18. Selection of functions for use by category.

those inputs. (I’ll show a couple of examples shortly.) The following is a list
of some of the options available in the Insert Function dialog box:

� Financial: Anything from interest-accrual calculations to net present value (NPV)
to yields on T-bills. Useful stuff (makes you wonder why you were ever forced to
memorize any formulae in Finance classes).

� Date & Time: Getting and working with current date and time representations.
� Math & Trig: Common calculations that come up in business models such as sums

(�x), products (
∏

x), factorials (x!), exponentials(ex), and rounding.
� Statistical: Averages, counts, normal distribution (such as z-score) calcs, quartiles,

F-tests, and even things like the Poisson distribution.
� Lookup & Reference: Some of the neatest and most useful functions are in this

category. Sifting through data can be a very frustrating activity for a manager.
These functions make the task a lot easier, quicker, and potentially more accurate.
An example of a simple reference tool that allows for an alternative means of
accessing information elsewhere in a workbook is INDIRECT. Providing a cell
reference or cell label/name in quotation marks as the argument of this function
will return the value in the corresponding cell. For example, if cell A1 is labeled
FirstCell and contains the value 12, the INDIRECT(A1) or INDIRECT(FirstCell)
will provide the value of 12 when called.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.6 Formulae 21

The Lookup & Reference function is often used in conjunction with other
functions in a workbook. For illustration, the following sidebar provides an
example of how often some functions (VLOOKUP, MATCH, and OFFSET)
might be used in integration.

Sidebar on Formula (Function) use: VLOOKUP, MATCH and OFFSET

In the workbook Chp2 IdentitiesList we have an example of where a class roster is
used to look up a fake ID associated with a student’s name (B2 re-labeled Name)
in a table (StudentInfo). As shown in Figure 2.19, the ID is in the second column
of the table. (This function needs the exact spelling of the name.)

Figure 2.19. Example of VLOOKUP function in use.

Although I may already have an understanding of how to use this (and other
functions), Excel won’t leave me in the dark if I don’t. If I select Insert Function,
I’m given a full list of all the parameters associated with the function, some of which
may be optional. In the case of OFFSET, for example, the Functions Argument
dialog box opens, as shown in Figure 2.20. And as far as an example of integrated
use, check out Figure 2.21.

Figure 2.20. Example of assisted field interface for the OFFSET function.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

22 The Development Environment

Figure 2.21. Example of combined use of MATCH and OFFSET.

In Figure 2.21, I used the MATCH function to find out which row a student’s
name is in (within just the Names column, NamesList) and selected the student
name that appears just after it using the OFFSET function (my starting base it
the Nameheader cell – A4 – in this table).

� Database: Not an impressive list, but handy when interfacing Excel with DBs.
Provides averages, sums, and other summaries based on the contents of fields in
databases.

� Text: Functions that allow you to merge text into a single string {such as CON-
CATENATE(alien,ate) = alienate}, determine the length of a string {such as
LEN(alienate) = 8}, extract a portion of text in a cell {such as MID(alienate,2,4)
= lien}, or simply find text within a large text {such as FIND(nate,alienate) = 5 or
FIND(nation,alienate)=#VALUE!, which essentially represents an error because
nation cannot be found anywhere in the text alienate}.

� Information: Provides information on the contents on cells, such as whether the
number contained is odd, whether it’s not a number at all (text), or whether the
cell contains an error as an output of the function within it (taking the square root
of a negative number would provide the error term #NUM).

� Engineering: Probably not all that useful to you, but allows for options such as the
translation of binary to hexadecimal notation (for comp sci.) and calculations with
imaginary complex numbers (for physics).

� Logical: Short list, but a critical one in decision support – specially the IF statement.
IF can be applied to both numerical and text inquiries. It allows you to test whether
the value in another cell is equal to, not equal to, or in some other way related to
other specifications (e.g., >=), and allows you to specify which calculation you
want to be active in this cell under either condition (for example, if true or if false).
� examples: IF(B2=B3, B3*B3, “Not Applicable”)
� IF(OFFSET(Nameslist,1,1)=MAX(B2:B3),“Maximum”,“–”)

For more insights into the scope of the usefulness of conditional statements
in general, see the supplement to this chapter. For those not familiar with

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.8 Built-In Tools 23

the nature of logical statements (perhaps from past philosophy or computer
science coursework), this supplement will provide essential insights. Similar
ways of thinking will be assumed throughout the later chapters of this text.

2.7 Copying Content and Formats

As shown in use of the copy prompt in copying fixed data across cells, and
in doing so making implicit use of Excel’s pattern recognition, functions of
all kinds as well as cell formats and other attributes can easily be pulled
across (or down) ranges of other cells. A few caveats are worth mentioning,
however. Cells conditionally formatted relative to a group of other cells (e.g.,
as available through Excel 2007’s group-relative formatting capabilities) may
impact the conditional appearance of other cells in the original range. If not
expected, this can occasionally prove frustrating, particularly if new cells in
the formatted group represent outliers of some kind. They may reduce the
apparent distinctiveness of certain cells in the originally formatted group.

Another caveat deals with functions that include cell references (as many
do). As cells with such functions are copied, if they use soft-references to cells
(e.g., “=MATCH(B3, A1:A20,0)”) Excel will automatically change these
referenced cells as well (e.g., “=MATCH(B4, A2:A21,0)” if the cell copied
to is one row below. Obviously this often not what a user wants. In this case,
a user would probably not want the key range A1:A20 to change. To avoid
this, the use of cell and cell range labels (names) can do the trick beautifully
because Excel will not attempt to alter the use of such labeled ranges as
it copied among other cells. Alternatively, one can use hard referencing to
prevent any such changes in references as they are copied. A hard-referenced
cell in a formula has its column and row each preceded by a dollar sign ($),
such as A1 or A1:A20. When typing such a reference into a cell or
function within a cell, you can toggle between soft and hard referencing by
pressing the F4 key on the keyboard – or more directly, by adding a $ as
needed. Partial hard references that allow changes in either row (e.g., $A1)
or column (e.g., A$1) but not both can also come in handy, as we’ll see in some
of the more advanced examples presented throughout this book. Of course,
if there are only a handful of cells or cell-ranges that you plan to regularly
reference, the best tactic is still to use the cell and range labeling approaches
discussed earlier.

2.8 Built-In Tools

Functions are great, but sometimes you need to perform a more sophisticated
task that can’t be handled easily by a set of functions. Here’s where Excel’s
tools and data manipulation devices come in handy. Generally they are found

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

24 The Development Environment

NameIDCorrels - Microsoft Excel

1

2

3

4

5

6

7

A

Selected Name
Dentity, Ida

Name
Structure, S
Body, Senor
Volum sir

Associated ID

A5 Structure, S

B C D

fx

5043 0

101703025
1721344 9

8

Next Name in List

Student ID 2 Name Length

1305
1312

Student IDs

100%

AnalysisSheet4Raw Data

Ready

Figure 2.22. Example of the Sort capability in Excel.

on the Data tab. In the interest of time, we’ll only go over a few elements
found in the Data Tab menus.

We’ll start with Sort. As an example, select a range of cells (e.g., the Stu-
dentInfo range from the last example); select Data>Sort to open the Sort
dialog box. Then select which column you want to sort by (and how). Fig-
ure 2.22 shows the result of choosing the StudentID column for sorting:

You can apply a hierarchical sort, by adding “Then by” requirements in
the window above (e.g., first sort by “Program” to get all the BBA and LAS
students separated, then by “StudentID”).

Another nice tool is the Data Filter. This one’s pretty handy for tables that
you’ve already constructed. You can select any cell in that table and go to
Data→Filter. Excel will automatically convert your table headers into drop-
downs that you can use to selectively present only specific records of interest.
For example, having used the Autofilter on this table, I have the choice of
filtering out all but the LAS students.

Other convenient tools are considered “Add-ins.” Many come standard
with Excel but are not ‘active’ until you specify that you want them added
to your list of available tools. Other tools (like the cluster analysis that we’ll
discuss later) don’t come with Excel, but can be acquired from other sources
(i.e., either freeware or purchased from other sources).

Data Analysis (possible through the “Analysis ToolPak” add-in) actually
does come standard with Excel, though again you may have to “add it” to
your data menu. To access Excel Add-Ins, click on the Office button in the
upper left hand corner of your screen (see Figure 2.23).

Under Excel Options you’ll find the option to make additional tools,
referred to as add-ins, available to you for use in analysis. Some of the tools
that come standard with Excel (and may be particularly useful but may not be
formally added into your version) include the Analysis ToolPak and Solver
Add-In. To make these available for use, select Excel Add-ins on the lower
pull-down tab and then click Go. A new dialog box displays that shows a
set of add-ins your system (see Figure 2.24). After the installation process
completes, the Data Analysis tool should now be part of the data menu.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

2.8 Built-In Tools 25

Figure 2.23. Reiteration: Office Button ac-
cess to Excel Options.

Data Analysis provides access to a range of tools; some are more useful to
certain kinds of work than others. For example, let’s try it out the Histogram
tool using the data on the Analysis sheet of the LookupExample workbook.
From the Data Analysis dialog box, select Histogram and then click OK (see
Figure 2.25).

Figure 2.24. Add-ins pop-up interface.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

26 The Development Environment

Figure 2.25. Data Analysis pop-up interface.

Inagine that we’re interested in a histogram of the length of student names.
The Histogram dialog box (Figure 2.26) is divided into two sections: Input
and Output Options. In the Input section, fill in the Input Range (the data
that you want a histogram on) as well as a Bin Range (the upper limits of each
bar in the histogram). I’ve created a Bin Range within cells H8:H13 on
the example worksheet and I use it here. In the Output Options section, select
the Output Range option button to determine where the bin summaries are
provided and where a graphical output, if requested, is to be generated. The
completed Histogram dialog box is shown in Figure 2.26.

The appropriate information in this particular case provides a listing of the
bins specified, the upper cut-off values for each bin, the number of observa-
tions falling within it (count), as well as a histogram (as requested).

You could get the same numbers that appear in the new Frequency column
by using built-in formulae (see the contents of the Count column to the left of

Figure 2.26. Specification of histogram inputs.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

Chapter 2 Supplement: Logic and Structure in Conditional Statements 27

Name
Persona, Lady
Body, Senor
Figure, Guy
Charact, Mum
Physiq, Sainty

1
2
3
4
5
6
7

A

D1

B
Student IDs

4123
1312
3124
2355
4451
5043

Name Length
11
9
9

10
12
10

Student ID 2
16999129
1721344
9759376
5546025

19811401
25431849

C D E

Point

Raw Data Sheet4 Analysis
100%

Home

Get External

Insert Page Form Data Revie View Devel Add-I

Na... M

Data
Connections

Sort &
Filter

Data Outline
Solver

Analysis

Data Analysis

All
Refresh

Tools

fx

Figure 2.27. Specification of Regression inputs based on structure of spreadsheet.

the new table). Another issue to consider here is the fact that the numbers in
the new table are static. In other words, if the calculations behind the original
data change (which might shift the data), this table won’t change. In contrast,
the numbers in the Count column will change because they are dynamically
linked to the actual data by a function.

Let’s consider another tool in the pack: Regression. Choosing that option
provides a pop-up screen as shown in Figure 2.27. It allows you to specify a
Y variable and any number of X variable that you might want to include in
a regression. If we’re interested in whether or not student IDs are somehow
predictive of the length of student names (we must have hit our heads coming
in today), we could include perhaps both the student IDs and the square
of those IDs (really hit our heads hard) for example as X variables in the
regression. The results provided, shown in Figure 2.28, are admittedly fairly
rich from the perspective of the needs of a typical analyst desiring a quick
snapshot of possible data relationships.

As with the histogram example, the results here are also static, meaning
that they are not responsive to changes in original data. There are other more
dynamic capabilities in Excel that allow for similar informational depictions.
Beyond this point, and as far as interpretation of the present results are
concerned, here the interdependence between the predictive and dependent
variables are fairly slight, as would be expected. Keep in mind, however, that
a single regression taken alone can indicate patterns even among unrelated
random numbers. Be cautious. In general it’s always valuable to question the
kinds of results that tools provide to you – touch base with reality before you
take the output of analysis as infallible.

Chapter 2 Supplement: Logic and Structure in Conditional Statements

In most management settings, decisions that are made at one point in time
affect the kinds of decisions that need to be confronted down the road. As

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

28 The Development Environment

Figure 2.28. Sample annotated output of the Regression tool.

an example, consider the choice to expand the number services offered by a
firm to its clients. If an option to expand is rejected, perhaps no additional
decisions on the matter need to be made. However, if expansion is the choice,
additional questions need to be answered. Should the expansion be targeted
toward acquiring new clients, or toward better serving existing clients? If we
simply want to better serve existing clients, is our end goal to increase their
patronage, or to increase the likelihood of retention? Are we concerned about
encouraging mid- or long-term retention?

The structure of these complex multiphase decisions can be mapped out
in a straightforward and commonly used framework called a decision tree.

Decision tree structures (shown in Figure 2.29) are useful not only in out-
lining the course of a decision-making process, but also in outlining the course
of a set of questions that might be asked in attempting to assess the specific
state of a management scenario. We can draw an analogy here with the com-
mon game of 20 Questions with the answers true or false (we stick to this
assumed limitation for now).

Different kinds of questions might be relevant when trying to determine
what kinds of calculations to make based on the current information available

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

Chapter 2 Supplement: Logic and Structure in Conditional Statements 29

Bigger than
a breadbox?

Mineral?

Animal?

Y

N

Vegetable?

Man Made?

Y

N

Man Made?

Mammal?

Y

N

Y

N

Etc.

Etc.

Y

N

Etc.

Etc.

Y

N

Etc.

Etc.

Y

N

Etc.

Etc.

20th Q:
Is it a
“…..”?

Y

N

Reward
Player

 Mock Player
continuously

Figure 2.29. Example tree structure for determining identity.

to a business analysis (such as contained in a spreadsheet). For example,
let’s say that we are a firm that manages large advertising projects for other
businesses. We have a facility with a limited number of rooms, and typically
assign an individual room to a single advertising project. Other rooms may
be used for a variety of other activities that we manage (printing, secretarial,
storage, management offices, maintenance offices for on-going campaigns,
and so on). Occasionally we may run short of space and need to consider
renting additional space. We might like to try to determine the risk of such an
event in planning for such rentals. But our calculation of risk may be based on
a complex set of issues including the number of projects, past space reserved,
managers involved, nature of the projects and clients, and so on.

It wouldn’t take much for the calculation of risk, conditional on so many
variables, to become complex, but we could consider starting to map it out
in a spreadsheet (see Figure 2.30). Let’s say that based on the information
we’ve started to lay out, the nature of risk (or uncertainty) we face regarding
our need for capacity might be spelled out in a decision tree as shown in
Figure 2.31.

Calculating this risk can become convoluted. But no matter how strange or
complex the conditions of a work system may be, they shouldn’t be ignored;
rather, they should be captured as faithfully as possible with regard to their
potential impact on decision making and performance.

Similar decision structures, as well as much simpler ones and much more
complex ones, are possible in Excel through the use of.

The simplest form of the IF statement has three components:

1) A condition to test for (should be something that can be shown to be either TRUE
or FALSE)

2) An affirmative response (what to do if TRUE)
3) A negative response (what to do if FALSE)

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

30 The Development Environment

Figure 2.30. Example professional application of a conditional statement.

Using the space rental example, consider a much simpler version of 20
Questions to figure out the risk level facing the firm.

Rather than 20 Questions, this game can be called 1 Question. Basically
one question is asked (one condition is tested) and one of two results (either
an affirmative or a negative response) will be recorded (in cell C13, shown in
Figure 2.32).

We don’t have to limit ourselves to games of 1 Question, however, when
it comes to using IF statements. In a single cell in a worksheet we may want
to ask a sequence of questions that are each appropriate given the result of
earlier questions (conditions). We do this using embedded or compound IF
statements. Figure 2.33 shows an example using the first three levels of the
earlier example (in alternate shades of gray here).

Are there less than
4 projects on hand?

Y

N1st Condition

Next condition if true

Next condition if false

Do we have enough
rooms for these?

Do we have enough
rooms for these?

Y

N

Next condition if true

Next condition if false

Is Sandy the
coordinator?

Is Jim the
coordinator?

Do something.
E.g. set risk equal

to zero
Y

N

Affirmative
response

Negative
response

Do something.

Do something else.

Y

N

Do something.

Do something else.

Y

N

Affirmative
response

Negative
response

Negative
response

Affirmative
response

Less risky
situation

More risky
situation

Do something.
E.g. calc square of

project-pull risk, and store

Figure 2.31. Tree structure characteristic of current professional application.
Note: Implied is a different “risk-dynamic” dependent upon projects coordination.

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

Chapter 2 Supplement: Logic and Structure in Conditional Statements 31

Figure 2.32. Relationship between conceptual tree structures and use of IF state-
ments.

The IF statement that would embody this structure is as follows (gray-
shaded to match above). Note what each gray-shaded set of parentheses
encloses: always three elements – a condition, an affirmative response, and a
negative response.

Value of Cell A1 is
smaller than 4?

Y

N1 Condition st

Next condition if true

Next condition if false

Value of Cell C12 is
less than that in A1?

Value of Cell C12 is
less than that in A1?

Y

N

Next condition if true

Next condition if false

Value of Cell A12 is
equal to “Sandy”?

Value of Cell A12
is equal to “Jim”?

Y

N

Affirmative
response

Negative
response

Do something.

Do something else.

Y

N

Do something.

Do something else.

Y

N

Affirmative
response

Negative
response

Negative
response

Affirmative
response

Do something.
E.g. set risk equal

to zero

Do something.
E.g. calc square of

project-pull risk, and store

Figure 2.33. Gray-shaded representation of tree structure (specific to content in a
spreadsheet).

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

32 The Development Environment

= IF(A1<4, IF(C12<A1, 0, A2∧2), IF(C12<A1, IF(A12=“JIM”,
something, something else), IF(A12=“SANDY”, something, something
else)))

It’s worth noting a couple of major limitations to the use of IF statement in
the spreadsheet. (Incidentally, these are limits that don’t apply if we’re coding
behind the scenes, which is something we’ll get to later in this book.)

1) The result of an IF statement developed in a spreadsheet can only come in the
form of cell content (e.g., a number, text).

2) This content can only appear in the cell in which the IF statement resides.

However, the usefulness of the IF statement concept can (and often does)
extend beyond the contents of any single cell. For example:

1) We could use conditional formatting to have the cell appearance change as the
contents change (subject to the results of the IF statement).

2) Other cells in the spreadsheet may have their values based on the contents of that
cell.

3) Similarly, in recursive use (iteration mode), we can use an IF statement in a single
cell to basically serve as an ON/OFF switch for a host of other automated activities
in the spreadsheet (such as data record construction, Monte Carlo simulations,
and so on).

As a final note on how Excel interprets “conditions” or “logic” statements,
it is worth mentioning that whenever we use a statement such as A11>12 as
part of an IF statement, it triggers a response in Excel. Excel recognizes it as
either TRUE or FALSE.

If you type =(A11>12) into a cell in a spreadsheet, the result that pops
out will be either True or False, depending on what value is in cell A11 in this
case.

However, Excel also uses numerical representations for True and False. In
Excel, True is equal to 1 and False is equal to 0. If you multiply a True times
a True, Excel will give you the value 1 (i.e., 1 × 1 = 1). If you add a True to
two Falses, Excel will give you the value 1 as well (1 + 0 × 0 = 1).

This dual interpretation can come in extremely handy when you want to
do quick calculations with existing data that already contains True or False
responses.

Say for example you’re trying to keep track of the capacity of a network
of warehouses. In one column of a spreadsheet you might have records of
the storage space for each warehouse. In the adjacent column you might
have True or False statements on whether the space is accessible on a given
date (perhaps some of these are in regions you can’t get to, don’t have the
capabilities to store what you want to store, or have simply been shut down).
You could create a third column that multiplies the first (#) and the second

P1: SJT
9780521889056c02 CUUS195/Bendoly 978 0 521 88905 6 May 20, 2008 22:9

Practice Problems 33

(True/False) and have a sum at the base of that column to let you know how
much space is really available.

PRACTICE PROBLEMS

Practice 2.1

All of the minor methods discussed in this chapter can be used together to get some
otherwise tedious work done in a quick but user-friendly way. For example, let’s work
to develop a threshold table for z-scores.

1) Type the following text into the cells of a new spreadsheet: In cell A1 type z-score,
in B1 type Cumulative, in C1 type Density.

2) In the cells below A1, create a list of numbers from –3, –2.9, –2.8, up to 3. Use the
copy prompt to do this. Label that full numeric range of cells z-scores.

3) In the cells below B1, use the normsdist function to convert the values in the range
z-scores (using the label as your reference, not the column-row designation) into
percentages (fixed format them to be viewed as%). Use the copy prompt to copy
down the rest of column B. Label that full numeric range of cells Cumulative.

4) In cell C2, type =Cumulative. In cell C3, type =Cumulative-B2. Use the copy
prompt to copy the contents of C3 down to the rest of the cells in column C.

5) In D1 type Threshold =, and in D2 type some number between 0 and 0.04. Label
D2 threshold.

6) Use conditional formatting to make the background of any cell in column C green
if it is greater than that threshold.

Practice 2.2

Select an approximately 200-word paragraph to analyze. This doesn’t need to be rele-
vant to your area of expertise; however, it might make this exercise more meaningful
to you. Import the paragraph it into a single cell in a new workbook. Using the FIND
and MID functions, decompose it into a list (column in Excel) of individual words.

Use the COUNTIF function to create a second column that specifies how many
times each word is found in the list you created. Then use conditional formatting to
color numbers (in that second column) red if they are greater than 2 and green if
they are equal to 1.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3

Getting Data – Acquisition, Linkage,
and Generation

Aside from typing information into Excel, there are a number of other ways
to get new data into spreadsheets. These methods include opening struc-
tured, plain-text files in ways that are meaningful to Excel (for example,
rawdata.txt); using other desktop applications as data sources (such as tables
in MS Word and tabular results from SPSS); drawing information from struc-
tured or nonstructured online sources (such as content from COMPUSTAT
or even the whitepages.com); and developing systems that create/simulate
large volumes of data with desired characteristics (mainly for use in illus-
trating or testing the robustness of proposed management policies). In this
chapter we’ll touch on each of these at some level.

3.1 Text File Imports and Basic Table Transfers

If you have a text file that contains information, such as a survey or database
data in text-file format, it can be opened into Excel as a new file. You simply
need to specify how data in that file are organized, such as separated by
spaces, tabs, commas, and so on.

As an example, imagine a text file titled Chp3 MultRespsFinal.txt. Each
record in this file occupies a new row, and the information relating to each
record is organized sequentially with each field separated by a comma.
This kind of data organization is referred to as comma delimited. Select
Home>Open in Excel and then find and select this text document. The Step 1
of the Text Import Wizard opens, as shown in Figure 3.1.

In this case, we have what is referred to as a delimited file. It’s relatively
easy to import raw files such as these into other programs – certain markers
such as commas help designate where a type of data ends and another begins.
Most applications are designed to be able to make sense out of data organized
this way.

Comma delimitation (or delimitation of some other kind) is specifically
designated in the Delimiters section of Step 2 of the Text Import Wizard,

34

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.1 Text File Imports and Basic Table Transfers 35

Figure 3.1. Text Import Wizard interface.

shown in Figure 3.2. In this case, selecting Comma provides you with a preview
of how the data will appear in the spreadsheet once Finish is selected. What
you end up with in the spreadsheet is a relatively intuitively structured display
of the contents of that file, if done correctly (Figure 3.3).

Direct imports from other MS office programs (such as tabular data in MS
Word) or non-MS programs that use tabular structures (for example, SPSS)

Figure 3.2. Specification of comma delimitation.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

36 Getting Data – Acquisition, Linkage, and Generation

Figure 3.3. Spreadsheet content once imported.

are even easier. In most cases, select the table or range of data of interest,
copy it, select a starting cell in your spreadsheet, and paste it by pressing
Ctrl-P. Alternatively, you can select Edit>Paste and achieve the same result.

3.2 More Sophisticated Application Transfers

Few meaningful corporate decisions can be made without some implied, if not
explicit, consideration for the geographical surroundings in which the firm is
set (local demand, local labor, environmental regulations, international law,
and so on). Fortunately, if we want to account for geography, infrastructure,
and demographics, we have a number of resources already available to us.
One of those is MS MapPoint, shown in Figure 3.4.

3.2.1 MapPoint Data Sources

MapPoint is more than a mapping program. It’s also a geographic information
system (GIS) with geo-data already built into it. You can access this data
through the Data Mapping Wizard as shown in Figure 3.5.

Figure 3.4. Basic front-end elements of the MapPoint environment.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.2 More Sophisticated Application Transfers 37

Figure 3.5. Specifying map type for data depiction.

The wizard starts by presenting several different ways to graphically rep-
resent this geo-data. After you select a presentation type, you’ll need to
specify what data you want to present. For example, you might be interested
in graphing demographic data relating to specific areas in the United States
(Figure 3.6).

MapPoint can then present a host of demographic options specific to your
needs (depending on what MapPoint database you have access to). When
those data are fully specified, you can then tweak some of the aesthetics of
the map you want to generate (see Figure 3.7). Before you know it, you have

Figure 3.6. Initial data specification.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

38 Getting Data – Acquisition, Linkage, and Generation

Figure 3.7. Potential demarcation specs and final mapped result.

a geographic representation of data to which you can add information, pan
across, and zoom in and out.

These maps are interactive. If you place your cursor over certain areas or
features, comment boxes will pop up to provide specific details. With this in

Figure 3.8. Activating and using the location sensor by panning.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.2 More Sophisticated Application Transfers 39

Figure 3.9. Requesting an export to Excel, and spreadsheet generated.

mind, the Location Sensor shown in Figure 3.8 is another tool that might be
helpful.

When the Location Sensor is turned on, you can move the cursor over a
location (for example, Monroe Heights, VA) and see a summary of the data
mapped at that location as well as the longitude and latitude. This could come
in handy for some quick approximations of distances between a variety of
locations.

3.2.2 From MapPoint to Excel

It is easy to export MapPoint data into Excel where the data can be manipu-
lated. There are several approaches worth going over for those interested in
leveraging this data. In MapPoint,the most direct method is Data>Export to
Excel, as seen in Figure 3.9.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

40 Getting Data – Acquisition, Linkage, and Generation

Figure 3.10. Example of radius selection around a geographic point of interest.

Alternatively, if you want to export a specific geographic region, select that
region in MapPoint and then conduct an export only. Using the numerous
drawing tools available (such as the radius tool), you can select a geographi-
cally relevant area of interest (100 miles around Nashville, TN, for example),
and restrict the export of data to that area. This is demonstrated in Fig-
ure 3.10. And the nice thing is that you are getting exactly what you want
without the burden of having to wait for a much larger volume of data to
otherwise be exported.

3.2.3 From Excel to MapPoint

Data stored or created in Excel can also be imported into MapPoint; however,
the more MapPoint-related data you add to an Excel project, the more time
it will take for functions such as zooming, panning, analysis, and so on to
work. So, if you are interested in a select set of data, such as associated
with a relatively specific geographic area like New York, it’s worth avoiding
importing and exporting large volumes of unrelated data.

The Link Data Wizard is particularly useful if you want to import update-
able data from Excel – for example, data that you might want to eventually
change in both Excel and MapPoint. To open the Link Data Wizard, start
by selecting Data>Link Data Wizard (Figure 3.11). In the first page of the
wizard, choose the Excel spreadsheet from which you want to retrieve the
data and then click Next.

The wizard will then ask for a unique reference key to designate each record
in the data you want to import. That reference code can be numeric- or text-
based, but it has to be unique. In other words, each record must have a value
for that key that is not used by another record. This is an important point

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.2 More Sophisticated Application Transfers 41

Figure 3.11. Using the Link Data Wizard to tie MapPoint maps to Excel data (refre-
shable).

to keep in mind with geo-data because many geo-names, such as Springfield,
Monroe, Oakville, and so on, are used by many cities in the United States.

After the key is selected, designate what each record attributes matches
concepts in MapPoint (See Figure 3.12). For example, MapPoint recognizes
geographic areas such as cities, counties, states, and countries, and has addi-
tional data for each of these. There may be more data than you would like
to import that MapPoint isn’t familiar with – and MapPoint will be happy to
graph that for you, but that’s about all you can expect as far as MapPoint’s
understanding is concerned.

The Link Data Wizard can update your map without much additional work
on your part. As an example, try setting up a data link using the Chp3
SampleDemogs file. When mapped, edit the data by adding sound or taking
the square of the data and copying over the original. Click the scale/legend in
MapPoint and select the Update Now option to update your map in MapPoint.

You are not limited to previously exported data that you have simply mod-
ified in Excel. You can always pick an entirely new series to export into

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

42 Getting Data – Acquisition, Linkage, and Generation

Figure 3.12. Specifying reference keys and other information being linked to a map.

MapPoint from Excel. For example, if you used some kind of marketing
model to assess the likelihood that residents of specific census tracts would
seek your services from a specific geographically located firm, you might
import and graph those newly derived data (Figure 3.13). Or, as shown on
the right side of Figure 3.13, if similar analysis helped designate which of a set

Figure 3.13. Examples of imported data for the same region showing intensity and
partitioning.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.2 More Sophisticated Application Transfers 43

Figure 3.14. Inserting (embedding) a MapPoint map object in Excel.

of competing firms were dominant in a geographic marketspace, you could
import and graph that information.

3.2.4 Excel (MapPoint): Embedded Maps

MapPoint objects can also be imported into Excel. To do so, select a cell
within the range of data and reference-key designations you want; then select
Insert>Object to open the Object dialog box (Figure 3.14). Scroll down to
Microsoft MapPoint North America Maps, and click OK to embed a map of
the United States into Excel. Double-click the map to activate the MapPoint
toolbar in Excel, shown in Figure 3.15.

Click the Link Data Wizard to initiate a series of pop-up windows prompt-
ing you to specify where the data are located in the workbook. Browse for
your Excel filename (in this example, Chp3 SampleDemogs.xls). From the
Link Data Wizard, select the worksheet name where your data are stored.
Depending on compatibility, you may need to re-save your Excel file as an
Excel 97-2003 worksheet prior to linking, or MapPoint might not recognize it.
Otherwise, it’s the same procedure as followed when the Link Data Wizard
was discussed.

In many cases, Excel may graph your data using a method you might not
want (using pushpins rather than colored regions, for example). But, as with
all graphs in Excel, this can easily be changed by selecting the map and clicking
the Shaded Area button in the Data Mapping Wizard – Map Type page. (See
Figure 3.16. Note: This page is available only after a map is embedded.)

In the case of maps embedded in Excel, you might find the updating process
more convenient at some level (e.g., if the spreadsheet containing the source

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

44 Getting Data – Acquisition, Linkage, and Generation

Figure 3.15. Appearance of a MapPoint map embedded in Excel.

data also contains the mapping of that data). Unfortunately, graphical updates
are not as dynamic as those with Excel plots. You still need to double-click
the map, right-click the legend, and then click Update Now. To perform
this update, only Excel needs to be open; you don’t have to switch between
programs.

Figure 3.16. Editing an embedded map in Excel.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.2 More Sophisticated Application Transfers 45

Figure 3.17. Example of route specification, derived directions, and route mapping.

3.2.5 Routing Information and Insights through MapPoint

Aside from data storage and visualization, MapPoint’s Routing tool provides
fairly accurate estimates for travel distance, time, and cost. To activate this
tool, select the automobile icon on the main MapPoint toolbar, or choose
Route>Route Planner. This provides the opportunity to add any number of
sites to a constructed route. Selecting Get Directions will do just that: provide
a set of step-by-step directions for carrying out the route in the sequence
specified as well as a graphical mapping of that sequenced route. Additional
summary measures of the specified sequence also comes in the form of total
trip distance, time estimates, and cost (Figure 3.17).

Some sequences specified in routes are less ideal than others. Visual inspec-
tion alone would suggest that driving directly to Atlanta first in this example

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

46 Getting Data – Acquisition, Linkage, and Generation

Figure 3.18. Manual editing and resequencing of routes.

might not be ideal. Fortunately, MapPoint makes the visually driven manual
manipulation of route sequences fairly straightforward by allowing any site
to be selected and shifted in its order of sequence in a route (Figure 3.18).
After a sequence is modified, associated route directions can be updated (by
clicking Get Directions again) to provide a new set of directions, summary
of total route distance, time, and cost (Figure 3.19).

I don’t have to do all of that in MapPoint directly. I can accomplish
the same thing using a map embedded in Exel (i.e., I don’t actually have
to deal with MapPoint directly to get this done; however, it often runs
faster).

As with everything else, all of these data are subject to export into Excel
for further analysis, manipulation, and subsequent feeds back into MapPoint.
The key here is that these products can be used in a back-and-forth dialogue
to develop meaningful insights that anyone of these applications alone might
not provide.

Quick note on re-sequencing: As may already have become obvious, manual re-
sequencing with the intention of minimizing costs or distance can be substituted for
by MapPoint’s built-in route optimization mechanism (Optimize Stops on the Route
Planner frame). We will discuss the mechanics of route optimization in Chapter 5
and then again in Chapter 7. The art of route optimization is not a simple one, and
there are many approaches that can be taken. Some will be better than others, subject
to the specific goals of the analyst or DSS developer. For now it is sufficient to just
recognize that whatever method is used, MapPoint continues to provide an excellent
mechanism through which to visualize solutions derived.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.3 Online Data Acquisition 47

Figure 3.19. Updating directions, graphics, and summaries after route editing.

3.3 Online Data Acquisition

The integration of alternative data-rich applications with Excel has the poten-
tial of opening up numerous opportunities for developers and managers who
might otherwise be unaware of these convenient resource integrations. At
this point, let’s look at how we can bring the Internet into this intergration
fold.

Many online sources of potentially valuable data are already publicly avail-
able and are updated on a regular basis. The number of these sources is on the
rise. The implication of this, however, is that what the sources said yesterday
may not be relevant to a decision that needs to be made today. In Excel, Web
queries are used to draw information from online resources. Similar to data
analysis, a Web query is a tool that comes standard in Excel.

Select Data>Web Query to open the New Web Query dialog box. Specify
from where the data will be drawn, such as the URL. Figure 3.20 shows an
example of the public job site hosted by Microsoft.

Newer versions of Excel, such as Excel 2007, have an updated interface
for selecting what you want to import. In the previous example, only the job
specification table has been selected (shown as a gray check marked box here,
however in a live document it would appear as a green check marked box as

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

48 Getting Data – Acquisition, Linkage, and Generation

Figure 3.20. Example Web query interface.

opposed to one containing a yellow arrow). You can toggle between selecting
and deselecting these elements with the click of the mouse.

Click Import after making the table selections (check marks will appear).
You will then be asked where you want the results of the query to be placed
in your spreadsheet. Specify the in upper-left corner where you want the
input data to start. I usually pick cell A2 for simplicity. After you provide
location information, the first importation of data will occur. The data you’re
interested in will start somewhere to the right of and below the cell you
selected, depending on the table structures on that Web page.

So that updates don’t overwrite other work on the worksheet, consider
doing additional work to the right or below the import space. Losing infor-
mation can be frustrating, so I recommend saving various versions as you
develop your spreadsheet.

After a new Web query is created (or just prior to import), further speci-
fications can be made by selecting Properties from the Data tab. This opens
the External Data Range Properties dialog box, as shown in Figure 3.21.

This dialog box enables you to set a number of properties for your Internet-
imported data. In this example, I’ve made additional specifications that the
data be updated every 10 minutes, updates do not change the column widths
on the spreadsheet, and all formats are preserved. Later in this chapter, we’ll
take a look at how this might be important when building a tool for collecting
Web data over time.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.4 Simulating Data: The Basics 49

Figure 3.21. Example specifications for Web query.

3.4 Simulating Data: The Basics

When acquired data are not available or do not sufficiently characterize future
scenarios, developers often rely on random numbers to portray dynamics.
There are many different ways to calculate random numbers in Excel. The
following sections discuss some of the more common methods. (For examples,
refer to Chp3 RandomNumbers.xls.)

3.4.1 Uniformly Distributed Randoms

These are basically a random values ranging from some minimum value (“a”)
to some maximum (“b”). To create a random number based on this distri-
bution in Excel, start with the random number generation function Rand().
Rand() automatically gives you a random number between 0 and 1. To change
that to a range from “a” to “b,” enter the following information into a cell
(replacing “a” and “b” with real numbers):

= a + Rand()∗(b − a)

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

50 Getting Data – Acquisition, Linkage, and Generation

Figure 3.22. Example sample population from uniform distribution.

If a = 1 and b = 5 for 1,000 random numbers, we might get what’s reflected
in Figure 3.22. Note: Press F9 to generate new random numbers.

3.4.2 Triangularly Distributed Randoms

These distributions also represent random values ranging from some min-
imum value (“a”) to some maximum (“b”). However, unlike uniformly
distributed randoms, the chance of picking a number in this range peaks
at some value “c”, and is essentially zero at both “a” and “b.” Excel uses the
IF statement along with the Rand() function to provide the following form:

= IF (Rand()<(c-a)/(b-a), {for example, is Rand() below the peak?}
a+SQRT((b-a)*(c-a)*Rand()), {for example, if yes, then use this calc}
b-SQRT((b-a)*(b-c)*(1-Rand()))) {for example, if no, then use this calc instead}

If a = 1, b = 5, and c = 4 for 1,000 random numbers, we might get what’s
reflected in Figure 3.23.

Figure 3.23. Example sample population from triangular distribution.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.4 Simulating Data: The Basics 51

Figure 3.24. Example sample population from normal distribution.

3.4.3 Normally Distributed Randoms

You’re probably familiar with this one (at least in theory – i.e., the bell curve).
Fortunately, Excel makes this simple:

= NORMINV(Rand(), µ, σ)

If µ = 3 and σ = 1 for 1,000 random numbers, we might get what’s reflected
in Figure 3.24.

Excel’s built-in functions allow for several other common distributions to
be handled the same way (such as CHIINV() for the χ -dist, FINV() for F-dist,
TINV() for t-dist, and so on).

Sometimes it’s useful to consider the chances that alternative discrete
events occur. For example, a person decides to buy Brand X as opposed
to Brand Y; or three people don’t show up for hotel room reservations on
Friday (as opposed to one person, or two or four peope); or a competing
firm decides to build its new facility in Jacksonville instead of Des Moines
or Toledo; or items 2 and 17 are dropped from a federal bill outlining tax
incentives for small exporters.

Each of these events is discrete – it either happens, or it doesn’t. If it does
occur, the implication is that alternative events that could have happened in
its place didn’t, at least for the specific timeframe considered. Sometimes the
alternative events are related in an ordinal fashion, for example three people
not showing up is more than two people not showing up. Sometimes alterna-
tive events are simply nominal – not easily comparable by a single measure,
but distinct from each other nevertheless (buying Brand X instead of Brand
Y, for example). The consideration of these kinds of variables and their uncer-
tainty are just as important to good decision making as is the consideration

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

52 Getting Data – Acquisition, Linkage, and Generation

of more continuous variables (those that can take on meaningful decimal
values).

3.4.4 Uniform Discrete Randoms

These are the simplest of these are variables that describe multiple discrete
events, with each event having exactly the same chances of occurring at a
given points in time. Regardless of what each event is, it can be represented
by some kind of coding such as Event 1, Event 2, and so on, up to Event n. This
makes it easy to use Excel to generate random events with equal (uniform)
chances of occurring. For n random events, we can use either:

= RANDBETWEEN(1,n), or =INT(n*RAND()+1)

Both will provide equally weighted random integers between 1 and n that
can correspond to each of the n events under consideration.

3.4.5 Bernoulli Discrete Randoms

In some circumstances, we are interested in only one of two events taking
place, such as a potential customer either signing up or not signing up for an
offered service contract. The chances of either event are often not equal.
These are called Bernoulli events, and the outcomes are typically coded
numerically as 0 (doesn’t sign up) or 1 (does). If the probability of the 1
event is p (29%, 73%, 8%, or another percentage), we can generate a 0,1
variable value in Excel by using the following IF-based statement:

= IF(RAND()<=p, 1, 0)

We could even replace the 0,1 coding directly with meaningful info, such
as by continuing the previous example as:

= IF(RAND()<=29%, “Signs up”, “Doesn’t sign up”)

3.4.6 Custom Discrete Randoms

In some circumstances, we have multiple (more than two) alternative events,
each of which has its own probability of occurring instead of the others.
Because these are true alternatives, adding up the chances of each event
should give us 100% (all possible outcomes need to be accounted for). We
can consider these events and their probabilities in a tabular format. The
following is an example from the hotel industry:

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.5 Living Data Records: The Basics 53

Figure 3.25. Example sample pulls from a dis-
crete distribution.

Past data shows that the following number of no-shows occur by these
probabilities regardless of the day of the week:

Number of Probability of that Number of
No-Shows No-Shows Occurring Cumulative

0 9% 0%
1 12% 9%
2 22% 21%
3 28% 43%
4 19% 71%
5 10% 90%

An easy way to draw random values from this table is to use the VLOOKUP
function again with the RAND() function. Specifically, using the last two
columns in the previous table, VLOOKUP will return the row with the Cumu-
lative probability <= RAND() (see Figure 3.25) and will return the value in
the second of those two columns:

= VLOOKUP(RAND(),LastTwoColumns,2)

3.5 Living Data Records: The Basics

The standard calculation mode in Excel is non-iterative automatic, meaning
that every time you make a change in the workbook, all cells get updated.
But sometimes you want to have more control over your data. The iteration
option enables you to gain some of that control.

Iteration allows for actions such as setting the value in cell A1 equal
to the value in A1 + 1 (for example, it enables you to enter the A1:
“=A1+1”equation into cell). In general, this is referred to as a circular loop

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

54 Getting Data – Acquisition, Linkage, and Generation

Figure 3.26. Specification of iteration mode in Excel.

because you’re asking the computer to base the value of something off of
itself. If the computer were told to do this continuously, that value would
soon become huge (and would keep growing). When faced with this situa-
tion, some software will give you an error message saying something to the
effect of “a circular loop has been detected and the value in the cell will not
stabilize.”

Iteration mode allows developers to say exactly how many times the com-
puter should do the calculation before stopping, thus avoiding problems usu-
ally caused by circular loops. To switch into the iteration mode, click the Office
button and then select Excel Options>Formulas to open the Excel Options
dialog box. Under the Calculation options section, check the Enable iterative
calculation checkbox (See Figure 3.26). For most cases, 1 iteration maximum
is appropriate. Select that and click OK to enable this setting.

Note: Use iteration mode only when it’s your best option. Trying to create other kinds
of spreadsheet workbook tools can be tough in this mode, as well as frustrating. Most
work is done in the non-iterative mode.

Under the iteration setting, calculations begin with the upper-left cell (such
as A1), and then progress through the first row of the spreadsheet from
left to right until that row comes to an end (cell IV1). Calculations then
resume, starting at the first column of the next row and progressing again
from left to right, until all cells containing calculations are handled (see
Figure 3.27).

In iteration mode, recalculations are started by pressing the same key used
to refresh/generate new random variable values in normal modes. In the
specifically single iteration mode, whenever F9 is pressed, if there is a calcu-
lation to be made in cell A1, Excel will base that calculation off of all infor-
mation currently available (such as information that currently appears in all).
If there is subsequent calculation to be made in cell B1, that calculation will
take into account all current information as well as the value just calculated
for A1. Similarly, any calculation for B2 would involve the updated values for

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.5 Living Data Records: The Basics 55

Figure 3.27. Order of refresh calculations under iteration mode.

both A1 and B1. After calculations are made for cells during a single itera-
tion (pressing F9), they will not change until another iteration is started. This
holds true for all mathematical calculations and logical and text functions, as
well as random number generation.

The spreadsheet Chp3 IterLoop.xls contains examples of how the iteration
mode might be applied. The first example is basically the baseline example
that illustrates how a typical circular loop is constructed, and how cell calcu-
lations based on it are changed upon each iteration (each time F9 is pressed).

In this example I have set up 14 cells such that the values contained in
13 of them are based on the value of the cell before it. I’ve depicted this
dependency with dashed lines. (Note that it is in the opposite direction of the
order by which cell calculations are made in the iteration mode – I did that
on purpose.) The value in the 14th cell is calculated by increasing itself by 1
(D18 is set to =D18+1, shown in Figure 3.28).

Figure 3.28. Example of living record cell interdependency needed for living records.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

56 Getting Data – Acquisition, Linkage, and Generation

Figure 3.29. Associated result of example living record update.

I’ve also restricted calculations to only particular situations (here only when
the value for a cell labeled Restart is set to True. In the spreadsheet this value
can be either modified directly through typing or toggled using the associated
check box.

Note: we’ll talk about creating check boxes later.

The calculations begin when Restart is True and I press F9. But after the
first iteration, the only cell that should change is cell D18 (=0+1=1). All
others take on the value of their assigned neighbors (0 to start). After a
second iteration, D17 takes on D18’s value (1) and D18 becomes 2. After 10
iterations we get what’s shown in Figure 3.29.

3.6 Living Records in Practice

To give the reader a better feeling for how the iteration mode can become
a critically valuable resource in practice, it’s worth considering a couple of
more sophisticated examples in which it is applied.

3.6.1 Example 1: Simulated Histories (A Preview of System Simulations)

The first in-practice example (found on the StockoutDemo worksheet of
the previous workbook) is considerably more complex in terms of the num-
ber and nature of cell dependencies. As in the previous example, I’ve illus-
trated where both forward (solid lines) and circular/backward dependencies
(dashed lines) exist, as well as how starting conditions are applied (light dot-
ted lines). Also, in this example one of the variables (Units in Stock) is tied
to a live data record and associated graph (see Figure 3.30).

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

3.6 Living Records in Practice 57

Figure 3.30. Inventory system example of living record use.

This example shows how far an individual might be able to leverage the
iteration mode and living records. The live data record that the graph is
working off of is no more complex that the previous 14-cell numeric example.
Basically, we have one cell at the bottom that continues to update itself (see
Figure 3.31). This cell is based off of the most recent value representing units
in stock, while cells above it take on values of those below them (i.e., values
from the past).

Note: The form of the plot shown is a simple line graph with the x-axis assum-
ed to be time. It is therefore depicting changes in inventory positions as time pro-
gresses.

3.6.2 Example 2: Web-Import Histories

Having already discussed the potential of acquiring data from the Web, and
given the example of building a living record based on randomly generated
data, we now have the basic tools necessary to construct a live data-recording
mechanism based on data updates from external sources.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

58 Getting Data – Acquisition, Linkage, and Generation

Figure 3.31. Specific structure of living record in inventory system example.

With online data provided by external sources, it often makes sense to only
record new data when we’re assured that they’re different from past data, and
to collect the time at which these changes are detected. This way you can get a
good idea of how data changes over time without having too much redundant
information. In a spreadsheet, that will basically mean selecting two columns
in which you want to store records (one column for your imported data,
another for the time at which the data are recorded). This approach requires
only limited (four, in this case) kinds of cell calculations. In this case, two
of these calculations will be repeated throughout most of your data record.
A typical spreadsheet layout for this purpose is described in the following
clip from Ch3 nrtRecords.xls. It’s fully annotated, and duplicates much of the
logic we’ve discussed (see Figure 3.32).

PRACTICE PROBLEMS

Practice 3.1

Select a set of data to map; then select a portion of the map and export that data
into Excel. Modify the data to your liking, maybe by replacing some of it with other
random values or some simple mathematical function. Click Update Now to see the
resulting change in the mapping.

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

Practice Problems 59

Figure 3.32. Specific structure of living record in Web query example.

Practice 3.2

Create a stock-value generator that picks values of a stock based on a random mech-
anism for selecting recently observed values of that stock. Create a stock-value
collector for an individual company (your choice), using the iterative mode Web
query and recording method discussed in this chapter. Run the collector for a two-
hour period (start early to make sure you have it working) and then use the collected
record and the RAND function to pick values from the list. Use whatever technique
you think may be appropriate.

Practice 3.3

Use a Web query to import a page from the NY Times job database. Use the following
URL stem, and add the last digit of your birth date to it to signify the page number

P1: SJT
9780521889056c03 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:45

60 Getting Data – Acquisition, Linkage, and Generation

being referenced: http://jobs.nytimes.com/js.php?qInd=nytcategorymanufacturing&
pp=25&view=2&page= (e.g., if my student ID ended with 0, I’d include a 1 at the
end of the above URL stem). Assume that interest in job locations (state info) is
uniformly distributed (for example, there’s a 1 in 50 chance that someone will be
interested a job in a particular given state). Use that info to draw a random state,
and create a count of the number of jobs located at that randomly drawn state.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

Section 2

Harvesting Intelligence

61

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

62

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4

Structuring Problems and Option Visualization

Decision modeling/representation describes the use of data and logic to clar-
ify the specific nature of a situation for which assistance in the decision-
making process may be needed. The hope is that in clarifying such details,
the development of meaningful suggestions and solutions may be easier to
create.

Most management problems for which decisions are sought can be rep-
resented by three standard elements – objectives, decision variables, and
constraints.

Objective
Maximize profit
Provide earliest entry into market
Minimize employee discomfort/turnover

Decision variables
Determine what price to use
Determine length of time tests should be run on a new product/service
Determine the responsibilities to assign to each worker

Constraints
Can’t charge below cost
Test enough to meet minimum safety regulations
Ensure responsibilities are at most shared by two workers

All of these elements can be visualized graphically often to the bene-
fit of analysis and general insights. Our initial discussion will be limited to
objectives and decision variables; we’ll discuss constraints later on in this
chapter.

In most business scenarios, managers are faced with making a set of deci-
sions that impact a final outcome (objective). This tends to make the decision
process more complex, and sometimes the rationale for making specific deci-
sions are difficult to describe.

63

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

64 Structuring Problems and Option Visualization

Q1: How did I get
into this situation?

Q4: When’s lunch?

Q2: What do I do
now that I’m in it?

Q3: How does
this affect my
credit rating
and insurance
premium?

Figure 4.1. Value and limitations in visualization.

4.1 Value of Data Visualization

As the old saying goes, a picture is worth a thousand words (Figure 4.1).
Some pictures are cute, but may say very little to professionals – at least

not initially.
Misleading suggestions can throw a decision maker off his or her game.

It’s the responsibility of individuals charged with providing decision support
to clarify what limitations exist in a graphical representation – what to take
with a grain of salt, and where consistency and relevance exists.

There are plenty of graphs that can be built through Microsoft Office
products, ranging from basic pie and bar charts to more sophisticated plots.
For example, geographic mappings such as shown in Figure 4.2 (integrated
through MS MapPoint and discussed in the previous chapter) are at one
extreme.

Ultimately non-geographic plots can be just as aesthetically sophisticated
as mapped data, and are often more directly meaningful. For example, the
basic scatter plot can be used to show how a group of publicly traded firms
(e.g., by industry) compare along two performance measures or strategic
orientations. Figure 4.3 shows a plot of Inventory/Sales (X) and Earnings
per Share (EPS), (Y) plots for a set of firms in the chemical and materials
fabrication industries.

Figure 4.3 is a time shot that depicts a single instance in time. What can
we gather from this plot? If the answer is “not much,” we might want to
rethink whether or not we are depicting the right kind of information in

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.1 Value of Data Visualization 65

Figure 4.2. Sample map generated by MapPoint embedded in Excel.

Figure 4.3. First quarter 2004 numbers for a range of Chem/Mat firms.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

66 Structuring Problems and Option Visualization

Figure 4.4. All quarters from 2001–2004 linked chronologically per firm.

the right kind of format to either draw inferences or get a particular point
across.

Of course if we have more data (for example, data relating to prior periods)
we can attempt to show them as well. We might even link together the data
for a single firm to show the path taken in the pursuit of changing inventory
costs and EPS (Figure 4.4).

Again, however, something is left to be desired in such a depiction. A lot of
information is being shown in a potentially meaningful way, but the rendering
and the nature of noise incorporated in the graph as a whole is detracting.

But the right mix of info can be informative. As shown in Figure 4.5, only
the first quarter 2001 and first quarter 2004 estimates are depicted.

Here the graph starts to become useful. For example, most firms that
started with negative EPS levels decreased their average inventory positions
(increased turns). Those same firms also significantly increased their EPS into
the positive region. Similar observations are made when we limit ourselves
to only the average 2001.1-2002.4 values and average 2003.1-2004.4 values.

The critical intelligence depicted by a graph is not only contingent on the
selected form of the graph, but also on the selected subset of data presented.
Mastery of graphical attributes can only get you so far without an appropriate
understanding of the ultimate visualization goal. Fortunately, the basic logic
required to create and manipulate any graph in Excel is much the same.
Given a selected subset of data to graph, you need to specify how to use

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.1 Value of Data Visualization 67

Figure 4.5. First quarters from 2001 and 2004 linked by firm for comparison.

it (e.g., as a label, or as data to be plotted) and then specify the particular
aesthetic features of the resulting graphical presentation. For this reason we
will review the construction and manipulation of three representative types
of graphs – bar charts, scatter plots, and surface graphs – and will devote the
rest of our discussion to analytical intelligence and the dynamic enrichment
of visualizations.

4.1.1 Bar Charts

Since bar charts represent a fairly expansive range of graphing possibilities,
from the simplistic to the highly information-packed, they serve as a useful
foil for describing the various options available when developing visuals in
Excel. Here we’ll start small and build up to much more complex variants of
bar chart construction.

4.1.1.1 The Basics

Basic bar charts are useful when you have a small set of categories, each of
which describe and compare along a single measure. For example, we might
want to chart the efficiency of inventory use for a single firm across each
financial quarter starting from 2001 onward (i.e., 20 observed records).

First select the data. The AllData sheet in Chp4 QuarterlyData provides
a good starting point. If the categorical data that interests you (year.quarter,

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

68 Structuring Problems and Option Visualization

Figure 4.6. Series value editing interface.

for example) is not located adjacent to the comparison data (inventory/sales),
we can hold down the Ctrl key while selecting the appropriate cells. When
selected, choose the desired chart type from the Insert tab, such as the Column
chart type chosen here.

Next, select the type of graph we want (such as the standard graph in the
upper left of the options). At this point Excel will attempt to provide us what
it thinks we want – and often it’s wrong. It’s not uncommon for Excel to pick
the wrong way to transform selected data into a plot. We might want our
categories (X-axis for this kind of graph) to come from cells Z3882:Z3898
and our comparison data from cells T3882:T3898; however, that might not
be Excel’s first intuitive stab at depicting the data.

Fortunately, we can correct for Excel’s initial stumble and ultimately gen-
erate exactly what we want. We just need to get comfortable with how to
make the necessary requirements clear to Excel.

Once any chart is created in Excel the Chart Tools menu automatically
displays at the top of the screen. This menu will allow us to modify any part
of the chart, including the messed up data. Clicking on Select Data from the
Design tab displays the screen in which both the series of values and the series
of labels can be manipulated (i.e., corrected in this case). The value editing
interface in this case (again with the initial incorrect configuration) appears
as follows (Figure 4.6).

Click on Edit in the left hand pane to select the appropriate series values;
in our case we want the data in “AllData!T3882:T3898” as the series
values. The name of this series is defaulted to “Series1” but we could change
it at this point as well, for example, by typing in “Inventory/Sales” given our
data. Click Edit in the right hand pane to change the category axis labels.
We want to choose “=AllData!Z3882:Z3898” for our horizontal axis
labels (Figure 4.7). After making these adjustments, the following chart is

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.1 Value of Data Visualization 69

Figure 4.7. Series label editing interface.

displayed with year.quarter along the x-axis and Inventory/Sales along the
y-axis (Figure 4.8).

We may now have a chart that will work, but we can probably do better
in terms of presentation. We can use the Layout tab of Chart Tools menu
(Figure 4.9) to modify axis titles, chart title, legend, data labels, axes, gridlines,
or the entire plot area. All of that can be done after the chart is created in
Excel. Additionally, we can click on any element in the chart (such as the
gridlines or legend) to manipulate it. For example, if we don’t want gridlines
we can select them and press Delete. We can also add a chart title by selecting
Chart Title from the Layout tab.

Figure 4.8. Simple bar chart example.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

70 Structuring Problems and Option Visualization

Figure 4.9. Various options for modifying charts.

At this point we can also add additional series of data. For example, perhaps
we want to compare Firm70 to another comparable firm in its industry, such
as Firm172. We could click the Add Series button and make the appropriate
additional specifications based on the location of the series in our spreadsheet.
The graph shown in Figure 4.10 displays these modifications.

We could then continue to make additional aesthetic changes to ele-
ments such as the bars and background. Click Plot Area>More Plot Area
Options>Picture or Texture Fill to open the Format Series dialog box

Figure 4.10. Bar chart depicting two series side by side.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.1 Value of Data Visualization 71

Figure 4.11. Sampling of graphic fill options.

(Figure 4.11). From here, we can replace the existing area-fill or background
with something more visually pleasing, such as a marble texture.

Double-click the bars within the graph and then select Format Selection
from the Format tab to access graph formatting options. Here, we can modify
other elements such as the gaps between the bars and the extent to which
they overlap. We can also make color changes to them at this point using
features such as gradient fills. The Legend itself can also be transposed (made
horizontal rather than vertical) and moved around. Basically we can change
anything in the graph that we can click.

4.1.1.2 Compound (Stacked) Bar Charts

Compound bar charts are somewhat more complex. These charts are often
used to depict compound concepts. For example, rather then viewing just
inventory efficiency, we might want to look at how capital resource costs
relative to sales contribute to total expenditures. We’ll build this new variable
(Plant and Equip Costs/Sales) on the right-most column of the data table, and
select the last 20 quarters of a particular firm along with this new variable. In
this case the new chart we’ll build is called a stacked or compound bar chart.
By specifying the correct information for each axis and making some quick
modifications to the appearance of the graph, we can generate a chart for a
particular firm similar to Figure 4.12.

By copying and pasting this graph, we get a duplicate that we can then edit
to develop a comparable graph for yet another set of data. We could even
make most of the subsequent plot transparent by selecting None as an area
and line coloring option. With a little careful positioning, we could overlay it

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

72 Structuring Problems and Option Visualization

Figure 4.12. Compound (stacked) bar chart example.

on top of the original graph for comparison. Figure 4.13 shows an example
of a chart along these lines reflecting data on a couple of firms.

In contrast to the graph in Figure 4.11 that showed only inventory invest-
ments for a couple of firms, the compounded graph shows much more infor-
mation that could be comparatively valuable. In this particular case, the data
(drawn from a COMPUSTAT) suggests that Firm B has much less money
tied up in capital resources relative to its investments in inventory. This may
indicate a greater focus on productivity than on input efficiency (vis-à-vis
Firm A). Furthermore, Firm B seems to be gaining ground along this single
measure over time as compared to Firm A. This may demonstrate an overall
distinguishing strategy in place at Firm B.

Still, we need to be cautious about trying to throw too much into aesthetic
features while providing rich detail. I’d argue that the example in Figure 4.13
probably reaches the limit (if not already far over) for overcrowding. When
confusion grows faster than insight, it’s time to rethink the design and the pur-
pose behind it. The fancy background graphics in Figure 4.13 could definitely
be dropped, and higher contrast colors used. The use of gradient fills might
also be rethought. Remember that just because you can enhance multiple
aspects of graphics doesn’t mean you should.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.1 Value of Data Visualization 73

Figure 4.13. Two compound bar chart series side by side.

Note: Gantt charts, popular in project management, are another variety of stacked
bar charts. In such cases each of the Y categories (in Figure 4.13 Year.Quarter) could
be an individual activity following in chronological sequence in a project. The two
series data you would want to use to build a Gantt would be Activity Start Time and
Activity Duration. By coloring the Activity Start Time bar portions as transparent,
or the same color as the background, the Activity Duration bars gain the appearance
of hanging in place – in thin air, so to speak.

4.1.2 Scatter Plots

Scatter plots are commonly used graphical forms for data presentation and
analysis, and are often used to demonstrate the relationship (or lack thereof)
between two variables depicted along the x and y axes, respectively. To con-
struct a scatter plot, select any data available on your spreadsheet (e.g., on
Chp4 QuarterlyData.xls, PullFromPivot2 sheet) relating to two variables of
interest. For example:

1) Average inventory/sales figures for companies in the Industrial Equipment indus-
try as the X variable

2) Average earnings per share for those same companies as the Y variable

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

74 Structuring Problems and Option Visualization

Figure 4.14. Trendline options for scatter.

From the Insert tab, select Scatter and then select the desired scatter type.
Select the first type of scatter plot (unconnected points) unless you have rea-
son to believe that the data to be plotted represent a sequence of observations
(e.g., x-y pairs changing over time).

Of course a lack of direct connections between points in a series doesn’t
preclude the ability to depict an underlying relationship embedded in the
data. Such a relationship might very well be described by a line, straight or
otherwise, just not based on the current sequence and probably greatly mud-
died by the existence of multiple sources of variation in the data. Because of
this, scatter plots are often designed to consist of not only individual points,
but also general trendlines (e.g., regression lines) that attempt to depict rela-
tionships not always immediately obvious.

4.1.2.1 Adding in Trendlines and Their Stats

Right-click any data set on a scatter plot to be presented with the option of
adding a trendline – a best fit, based on the kind of relationship you believe
might exist, such as linear, quadratic (parabolic), and so on (Figure 4.14). You

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.1 Value of Data Visualization 75

Figure 4.15. Example use of plot-embedded line fits and equations (live).

have the option of also specifying what summary numbers for that best fit
should appear on that graph, such as regression coefficients, R2 values, and
so on.

In contrast to the detailed results provided by the data analysis regression,
trendline fits to a data set in a graph do remain live. This means the fit coeffi-
cients and R2 value will change as the data points change. This can be handy
when different data sets or when different levels of simulated variation in
data might be worth considering. It’s also handy when you want to duplicate
graphs for alternate variable combinations – just cut, paste, and change the
source data to which the graph is referring. The regression equations will
automatically adjust for you (Figure 4.15).

4.1.2.2 Kicking Up Scatter Plot Graphics

Scatter plots aren’t just used to depict association. They can also be used to
describe general closeness or proximity among comparable observations. For
example, we could compare multiple firms with respect to the dimensions
of Cost (x) and Quality (y) to see which firms seem to dominate various
positions, and which seem to lag behind. Or we might want to simply show

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

76 Structuring Problems and Option Visualization

Figure 4.16. Swapping basic data points for more intuitive images.

how various firms are located relative to one another in some geographically
meaningful space, such as Latitude (x) and Longitude (y).

If we we’re interested in comparing distinct entities rather than estimating
relationships, we might want more meaningful depictions of those entities.
In other words, we might want to pick something other than a dot to depict
these entities; maybe a picture of a paper airplane, for example (Figure 4.16).

These kinds of graphic substitutions are amazingly simple in Excel. If you
have a particular picture in mind, you can import it into Excel by choosing
Insert>Picture>From File to open the My Pictures dialog box. Choose the
picture you want to insert into Excel and then click OK. After your picture
appears in in Excel, you can make it smaller, combine it with a text box,
adjust color contrasts or transparency, and more. You can also copy it (right-
click and choose Copy), select any individual point in the scatter plot (or all
of the points simultaneously), and paste it (right-click and choose Paste) on
that point. The picture will then respond to any changes in the graph and
associated data the same way than any traditional point would.

4.1.3 3-D Surface Templates and Plots

Aside from looking cool, surface templates and plots are useful when you
want to depict the relationship among three variables. For now, we’ll talk
about the generic structure of surface plots and what you need to create
them. Later on in the chapter we’ll present an example that directly relates
to options faced by management decision makers.

You first need a set of X and Y values that occur multiple times, or can be
roughly categorized into a set of discrete values that seem to be meaningful
multiple times across the data set as a whole. These can still be ordinal

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.1 Value of Data Visualization 77

Figure 4.17. Example using conditional formatting to develop intensity pseudo-
graphs.

categories (e.g., increasing whole numbers, or equidistant fractions such as
0.25, 0.50, 0.75, 1.0, 1.25). The more X and Y categories you choose, the more
complex your plot, but potentially the more informative as well.

For generalization, let’s assume we have three entities; they could be firms,
machines, patents, or consumer populations. Each has two distinct attributes –
X and Y. X might be the entity’s value in the marketplace, and Y might be
some measure of associated liability. Both the X and Y attribute have a
central value (a mean), and can be described as having a certain amount of
variation over time (i.e., standard deviation). If these attributes are normally
distributed, we can describe the probability of both X and Y taking on specific
values and show how those probabilities (or intensities) decrease farther away
from central (average) attribute levels.

A simple way to describe this might be with a table that includes various X
and Y values and associated intensity levels (i.e., a third variable that might
be dependent on the other two). We could even use conditional formatting
to color cells in that table to add emphasis to the variations in intensity
(probability) levels for differing levels of X and Y. Shown in Figure 4.17,

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

78 Structuring Problems and Option Visualization

Figure 4.18. Example surface plot to depict intensity.

in rows J through AE, we have a conditionally formatted table describing
intensity levels depending on where we are in the X-Y grid.

This could be cool and informative, depending on what we’re trying to
make sense of.

On the other hand, we have all the elements we need to develop a 3-D
surface map – specific X and Y values and values of a third associate variable
(in this case probability or intensity). If we select the data in the conditionally
formatted (colored) and relatively large table shown in Figure 4.17 and then
select the 3-D surface graph option, we generate a rough form of a 3-D
image (Figure 4.18) that we can format and edit in the same way we have
other graphs.

Note: Incidentally, these graphs don’t need to be static. If we believe that values
change over time according to some meaningful dynamic or process, we could build
that into the parameters on which the graph was originally based. All of these graphs
are ostensibly live and ready for updating based on our needs. In this case a simply
press of the F9 key advances the random number generation that lends to a liv-
ing appearance of our graphs. We’ll get into the details of dynamic visualization in
Chapter 10.

4.2 Selective Pruning for Presentation and Analysis

We’ve already breezed over filtering, which is one way to limit data presen-
tation in Excel. But the Filtering tool can be somewhat limiting.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.2 Selective Pruning for Presentation and Analysis 79

Figure 4.19. General nature of a PivotTable interface.

If you plan to filter along one categorical variable, it only allows you to
pick a single value of that variable to filter along. For example, if filtering
along the variable Industry, you might select chemical, consumer electronics,
or aerospace, but never all but Chemical. If filtering along a variable such
as year, you can filter along 2003 or 2006, but not just 2003 and 2006. Also,
filtering doesn’t provide much insight into summary data relating to how
multiple categorical variables jointly impact other issues of interest.

Filtering also doesn’t have a standard mechanism for summarizing data that
takes on numerous values for the same filterable categories. For example,
if you have a categorical variable such as Industry and a large number of
firms that fall into each of it’s categories, it might be more useful to present
the average calculated across the selected set of firms on a specific year, as
opposed to every observation separately. Standard filtering won’t give that
to you. To attempt to make up for these deficits, Excel provides PivotTables,
which are alternative filtering and data presentation tools.

4.2.1 How to Build and Modify PivotTables

Consider the PivotTable that already exists on the PivotTable sheet of the
Chp4 QuarterlyData workbook. Click on the table to view available options,
shown in Figure 4.19.

The following describes the three mechanisms you can use to prune pre-
sentation and analysis data using PivotTables.

Pages (global filters): These allow you to restrict the data presented in the
table as a whole to only certain cases (e.g., firms in the industrial equipment

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

80 Structuring Problems and Option Visualization

industry and nothing else, students at the Junior rank and nothing else). Add
a page filter by using the cursor to drag and drop a variable (e.g., firm type, or
student type) from the field list (e.g., shown in the right portion of Figure 4.19)
to the Page Fields box above the PivotTable. You can also drag and drop a
variable to the Report Filter box at the bottom of the PivotTable Field List.

Row and Column filters (local filters): These allow you to restrict the data
presented in specific rows and columns of the table to only certain cases (e.g.
each row provides summaries across a single state. Fifty rows of information
would then supposedly be presented). Add a row or column filter by using
the cursor to drag and drop a variable (e.g., firm type or student type) from
the field list to the Row Fields box at the left of the PivotTable or the Column
Fields box on table header. You can also drag and drop a variable to the
Column Labels or Row Labels box at the bottom of the PivotTable Field List.

Data elements: These allow you to restrict what is actually summarized in
the meat of the table. For example, you might want to see how any number
of issues (e.g., earnings per share, spending on R&D, depending on location
and size of firms). If you divide your table by placing location categories (e.g.,
state) in the Row Field box, the size categories (e.g., 100–999 employees,
1,000–9,999 employees) in the Column Field box, and earnings per share (or
spending on R&D) in the Data Items box at the center of the table, you would
be able to see such comparisons.

By default, Excel’s PivotTables tend to pull data in as counts (i.e., how
many pieces of data exist for the row-column combination as opposed to
averages in the data selected for that combination). If you are summarizing
a single variable in the data field, you can double-click on the data header
that appears in the upper left corner of the table, and switch to average or
any other summary you want. You can change this by right-clicking on any
header and selecting Value Field Settings. You’ll have the option to specify
what kind of data summary pops up at that point.

In a PivotTable you can also generate cross-summaries for multiple vari-
ables at the same time (i.e., multiple variables in the Data field). Unfortu-
nately, the task of requesting an alternative form of the data other than the
default count becomes less intuitive here; however, it can still be done by
selecting Value Field Settings from the Values box shown in Figure 4.20, or
by right-clicking on the Data column and selecting Value Field Settings. A
dialog box permitting choice of average, max, variance, and so on will display.

4.2.2 Selective Pruning by Row and Column

Aside from limiting the entirety of the data viewed in PivotTables by what you
put in the Data Fields and Page Fields boxes, you also have the opportunity to
limit the number of rows and columns for which data are shown. For example,

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.2 Selective Pruning for Presentation and Analysis 81

Figure 4.20. Modifying field settings in PivotTables (e.g., pruning by general data
content).

if you have placed a location category (e.g., state) in the Rows Field and are
only interested in comparing specific locations (e.g., California, Oregon, and
Washington, as opposed to all 50 states) you have the ability to do so fairly
easily in a PivotTable. Such selective pruning of presented data can greatly
increase the clarity of the points you may be trying to make with the data.
Click on the category listing you want (e.g., STATE-Name) and then check
off the items for which you want data displayed (e.g., California). This is
shown in Figure 4.21.

4.2.3 Building PivotCharts

Anything created in a PivotTable can be transferred into a graphical form
using the built-in PivotChart function. With a PivotChart, you ultimately are
given a graphical interface with which to directly prune the kind of graphical
data being presented (often in bar chart form).

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

82 Structuring Problems and Option Visualization

Figure 4.21. Pruning by selective data inclusion/exclusion.

I personally find PivotCharts fairly limiting because they allow only certain
presentation styles (such as bar charts, but not scatter plots). I usually create
a separate page that duplicates the PivotTable data and develop my own
graphs based from those duplicates.

4.3 Visualizing Constraints

Up to this point, we have just been fiddling with good ways to demo the
possible impacts of one variable on another (or differences in dynamics of

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.3 Visualizing Constraints 83

Figure 4.22. 3-D pie chart depicting allocation constraints.

certain elements of a system, e.g., restaurant). Unfortunately, all of that can
be misleading if we don’t account for unavoidable limitations in the decisions
we make and the performance we attain. We also need to be familiar with
methods by which to graphically depict constraints.

Constraints come in the form of rules like:

Can’t charge below cost.
Must test enough to meet minimum safety regulations.
Must make sure responsibilities are at most shared by two workers.

Constraints can range from financially based considerations, as shown in
Figure 4.22. They can also come from geographically based considerations
(Figure 4.23).

Sometimes constraints are even more sophisticated and require us to rec-
ognize dependent relationships between various decisions and variables rel-
evant. For example:

As the price goes up by $X, expected demand will fall Y%.
Additional product tests will need additional specialists to be assigned to assess-

ment.
The more new responsibilities we create, the less focused our workforce may

become, and the less productive they may become in existing duties.

These get to the heart of the tradeoff aspect of constraints. Specifically
when constraints are active, and we always have something constraining us,
we need to consider the costs and benefits of picking specific decisions over

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

84 Structuring Problems and Option Visualization

Figure 4.23. MapPoint-generated embedded graph, depicting constraints.

others. In other words, constraints ensure that we can’t have it all, so to
speak.

The overall impact of multiple constraints and relationships may be hard to
put into a few words, which is why we often rely again on visualization in the
early phases of complex decision making. Visualization is equally important
when we first get our hands on a set of data that we believe is relevant to our
decision making.

For example, consider the classic economic trade-off example of guns vs.
butter (most people who took basic economics courses in the last 20 years
are familiar with this one). The constraint here is a relational one. We have
fixed resources and can devote them to either activity, but we can only
assign more resources to one manufacturing activity by pulling from another
(Figure 4.24).

More complex relational constraints can also be depicted using surface
graphs. For instance, in a restaurant example, the number of barstools, two-
seat tables, and four-seat tables may each be individual decisions planners
might have to make, but given limited floorspace, the managers might want
to visually depict the tradeoffs of increasing one of these kinds of seating ele-
ments over the others. Figure 4.25 shows two views (top down and center in)

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

4.3 Visualizing Constraints 85

Figure 4.24. Connected scatter plot relational constraints.

Figure 4.25. Surface plot depictions of 3-D relational constraints.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

86 Structuring Problems and Option Visualization

Figure 4.26. Connected scatter plot relational constraints and absolute limits.

of a hypothetical feasibility plot for the space use at a restaurant. The legend
to the right of each graph is used to demark quantity (e.g., four-seat tables)
possible for positioning given specific decisions regarding the quantity of the
other two variables (e.g. barstools and two-seat tables).

In the classic form of the guns vs. butter economic problem, any option
along the production possibilities frontier make full use of resources, and is
superior to more interior points (at least from a resource utilization stand-
point).

On the other hand, there may be additional constraints that limit our ability
to consider certain production options. For example, there may be some min-
imally required level of gun and butter production needed to maintain other
elements of the society. Furthermore, regulations might place an upper limit
on the number of guns manufactured (probably a good thing). As additional
limits continue to build up, our ability to choose from a variety of alternatives
becomes more and more limited (Figure 4.26), as does our ability to excel in
terms of other performance measures (e.g., police force readiness, NRA self-
esteem, international baking contests). Figure 4.27 shows the 3-D equivalent
of Figure 4.26.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

Practice Problems 87

Figure 4.27. Surface plot depictions of both relational constraints and absolute limits.

PRACTICE PROBLEMS

Practice 4.1

Develop two scatter plots based on the data in Chp4 Samplegraphdata.

1st plot – A on the X-axis; C along the Y-axis
2nd plot – B on the X-axis; C along the Y-axis

Add best-fit parabolas (also knowns as second-order polynomial firs) to each plot.

Practice 4.2

If we assume A and B both independently impact C, what would a plot of C as a
function of both A and B look like? (Graph it using a 3-D surface plot.)

Practice 4.3

Create two columns of numbers. The first column should contain integers from 0 to
20. Label this Apples. The second column should contain the following formula:

= SQRT(20∧2 − {Whatever # of Apples are in the adjacent cell } ∧2)

Call that second column Oranges. Create a line-connected scatter plot of the two,
and call the plot Production Frontier.

P1: KDD
9780521889056c04 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:5

88 Structuring Problems and Option Visualization

Pick one cell in the sheet and label it Location. Label the cell to the right of it
Direction. Use the following to define the value inside Location:

= Location + Direction

Use an IF statement within the Direction cell that makes Direction equal to 1 if
Location is 0, or equal to −1 if Location is equal to 20, or remains unchanged at all
levels in between. (I’ll let you figure that out.)

Use a lookup to set two additional cells in the sheet (below the Location cell)
equal to the number of apples and number of oranges that are given in the row
corresponding to the value of Location (e.g., the 0th row, the 1st row, the 20th row).
Add that X-Y data point as a new series to your plot. In iteration mode, F9 should
move that point back and forth along the production frontier you’ve plotted.

Note: You may want to include an IF statement in the “Location” cell tied to a
“Restart” (or “Toggle”) cell so that you can make sure that things start the way you
want them to (i.e., at Location=0) when the iterations begin.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5

Simplification Tactics

There is a clear truism in George Box’s 1979 statement that “all models are
wrong, some models are useful.” We attempt to model reality to see how
changes can affect it – hopefully for the better. But models of reality are, by
their very nature, incomplete depictions and tend to be misleading. Still worse
can be models and associated solutions that faithfully attempt to do justice
to reality by incorporating many facets of reality into their structures. Unfor-
tunately, a common result is an overemphasis of certain issues in decision
making that, although perhaps interesting, are far less practically relevant to
effective decisions than other issues that haven’t been taken into account.

Ultimately, any approach to decision making is a balancing act between
an appropriate accounting of relevant reality (i.e., the objectives, decision
variables, and constraints as discussed in Chapter 4) and not getting bogged
down in details that only obscure or mislead. When we attempt to rationalize
all of the factors that might go into a decision-making process as well as
possible solutions that might be practically viable, we often “satisfice,” a term
used to describe making a decision about a set of alternatives that respects
the limitations of human time and knowledge.

Of course, there are some decision makers who are extremely effective
at coming up with quick effective solutions to otherwise complex prob-
lems, whereas others are less so. The difference often comes down to a
familiarity with tried and true rules of thumb, applied either consciously
or unconsciously, that fit specific settings or that simply help decision mak-
ers consolidate knowledge regardless of settings. Fast and frugal heuristics
(codified approaches to developing ideas/decisions/solutions) embody this by
employing a minimum of time, knowledge, and computation to make adap-
tive choices in real environments. (The interjection Eureka! derives from the
same Latin stem as heuristics.) Fast and frugal heuristics are characterized by
consolidations and simplifications of solution-search procedures.

To the surprise of many managers and practitioners in many fields, the
simplest models and solutions are often some of the best.

89

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

90 Simplification Tactics

5.1 Heuristics in Decision-Making Practice

Given this introduction to the general benefits of simplification in decision
making it is worth providing an overview of some of the simplest and most
commonly used rules of thumb that exist in practice.

5.1.1 The Recognition Heuristic

One of the simplest examples of an effective fast and frugal heuristic is the
Recognition heuristic. Rather than assuming that people act as unbound-
edly rationale individuals (strangely, a common assumption in much of aca-
demic literature to date), the recognition heuristic assumes that human igno-
rance not only exists, but is an important factor in determining the strength
of specific decision options. In fact, the foundation of this heuristic relies
on at least some level of human ignorance to develop good solutions to
problems.

As an example, consider a study performed by Borges, et al. (1999) relating
to the ability of lay individuals to develop high-performing stock portfolios
based on their personal, albeit limited, exposure to corporate information.

Objective: Develop a portfolio with consistently high returns relative to the market
average.

Decision variables: Which publicly traded firms should be bought/shorted?
Constraints: In the case of the heuristic, the ability of individuals to recognize

companies in domestic and foreign markets (obviously differs by expertise).

Certain United States companies are widely recognized by career financial
workers and lay people overseas. Likewise, we in the United States recog-
nize only a relative handful of foreign companies by name. Does that signify
anything? The assumption of the Recognition heuristic is: Yes. That recog-
nition probably indicates the ability of a brand name to penetrate foreign
markets, as well as the resiliency of the reputation it has developed within
those markets. In most cases, we’d assume that resilient reputation to be pos-
itive because companies with negative reputations don’t last very long, thus
aren’t resilient.

But can something as simple as name recognition by lay individuals pro-
vide performance even close to the level of highly sophisticated finan-
cial techniques? More sophisticated approaches, aside from being vastly
more complex, are often proprietary in nature (not so publicly accessible);
however, more alarmingly, they often don’t do that well. In fact, the his-
tory of major U.S. investment management and mutual companies suggest
that the selections of many highly experienced financial professionals per-
form worse than the market as a whole. This suggested that sophistication

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.1 Heuristics in Decision-Making Practice 91

and experience might bias professionals toward misleading decision-making
approaches – perhaps less sophistication and experience might avoid such
biases, at least in some cases.

To compare the Recognition heuristic to more sophisticated and expert
solutions, a research team asked average people in the United States as well as
experts in financial careers to specify from a list those companies in Germany
that they recognized. They did the same thing in Germany with a list of U.S.
companies. How well did the ten most-recognized U.S. stocks do, chosen on
the basis of German recognition?

Those top ten German choices (again, based on the Recognition Heuris-
tic) beat the Dow 30 by about 10 percent along with a number of funds
supposedly based on sophisticated intelligence. They did much better than
a random portfolio method. Granted, sophisticated methods of field experts
showed better performance against random portfolio assembly as well (but,
of course, it costs to hire such professionals – one might question the value of
the incremental gain against the Recognition heuristic here). Even better was
the top-ten portfolio based on U.S. recognition of German firms. The average
Joe was able to outperform the Dax 30 by 23 percent over the 6-month test
period, and similarly over subsequent periods studied.

In subsequent studies, this phenomenon has been retested with mixed
results, largely by those financial professionals who have a clear interest in
suggesting that simple techniques have limitations relative to proprietary
expertise. This may be true in some cases, but these and other related results
certainly cast critical doubt on what it means to be a financial expert. This is
not to suggest that there may be very successful sophisticated selection proce-
dures developed in the future to consistently beat lay recognition; however,
perhaps the best approach would be to incorporate such simplistic rules into
such models.

5.1.2 Nearest Next – A Routing Heuristic

Another well-established fast and frugal heuristic can be taken from the his-
tory of the shipping and transportation industry. Before computing power
was abundant, shippers relied on professional planners to use their own
modes of judgment to develop shipping routes and schedules that econo-
mized on cost but still met the service levels their clients expected. The types
of problems about which these planners had to make decisions were highly
complex.

Imagine a central facility, a single vehicle, and seven locations to which
we need to make deliveries. Obviously, it might be in our best interest to
find the most time- and cost-effective route to carry off those deliveries.
Basically, what we want is a good sequence of stops. But how many ways can

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

92 Simplification Tactics

Figure 5.1. Heuristic versus best and worst routing solutions.

we sequence seven stops? As it turns out, quite a few (7*6*5*4*3*2*1=5040).
Do we really want to compare 5,040 stops to find the best one, and do that
every time we need to find a new route? The Nearest Next heuristic provides
a shortcut. Its rule is: “Go to the closest site next,” and repeat this rule from
there until all sites are visited.

Objective: Minimize total time or cost of transit.
Decision Variables: Sequence of sites to be visited in turn.
Constraints: Visit each site once, and in the case of the heuristic, the next site

visited is the next closest site available.

Figure 5.1 shows an example comparing the heuristic solution to the abso-
lute worst and absolute best options. It doesn’t quite hit the best solution, but
it’s closer to the best solution than it is to the worst.

The number of calculations (actually just searches) needed to determine
the Nearest Next solution is only 7+6+5+4+3+2+1 (28). In general, Nearest
Next needs n∗(n+1)/2 searches (where n is the number of sites) whereas a
comprehensive search for the absolute best needs n! (i.e., n factorial) searches
(assuming no other ancillary heuristics are applied). So if we needed to find
a decent solution for n=15 sites, the Nearest Next would give a solution after
30 searches, while a complete review of all possible solutions would require
1.3 trillion. Not a trivial task for many computers. Is it worth it? What if n=30
sites?

Routing applications today tend to use a mixture of simple heuristics and
complex, large-scale analysis to arrive at highly effective solutions. We con-
tinue to see improvements made in these applications with increases in com-
puting power (i.e., speed and memory), hence more and more elements of
reality are able to be practically included without an abandonment of funda-
mentally crucial aspects of reality. Some of the most recent additions to rout-
ing applications now attempt to account for the human aspects of shipping,
such as individual psychology, relationships between drivers and clients, and

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.1 Heuristics in Decision-Making Practice 93

morale. Fast and frugal heuristics continue to have their place in these applica-
tions. Furthermore, for managers who need to make decisions on the fly (e.g.,
immediate re-routing responses to real-time road closures), such heuristics
continue to provide benefit.

5.1.3 MinSlack and SPT – Two Project Management Heuristics

Resources (e.g., workers, machines) often constrain the processes managed
by an organization. This is common in the management of projects, regardless
of industry context. The process of deciding which activities will be given
access to potentially limited personnel first is a critical one in these settings –
and these decisions need to be made quickly. For that reason, a large number
of fast and frugal heuristics have been developed by managers in an attempt
to make these decisions simple.

Two common fast and frugal heuristics are MinSlack and SPT (Shortest
Processing Time). MinSlack assigns resources and starts competing activities
based on which activities appear to be most costly/problematic to project
completion times if otherwise delayed. The idea here is that specific activities
should be addressed as soon as possible so they don’t delay subsequent activ-
ities. SPT (Shortest Processing Time) assigns resources and starts competing
activities based on which activities can be completed quickest. If you can
get these activities done quickly, you can free up resources and assign them
elsewhere while allowing other activities to start that might not need those
resources.

5.1.4 The Punchline: Relevance to DSS Designs

I could keep giving examples of heuristics that have been used in practice
to make quick decisions in complex decision-making settings, but that’s not
really the goal here. Some may be of the mindset that they don’t want a
simple approach; they want the best solution. Aside from the perception that
a single best solution to all management settings exists, this mindset seems
to assume that simple approaches cannot be as effective as ones that require
several tools used together to deliver ideal solutions.

Each of the example heuristics I’ve provided represents a structured set
of rules that somebody came up with because they made sense in a specific
setting. For people who develop decision support systems, there are at least
three reasons to provide structured rules that are backed by explanations of
the logic behind them.

� By definition, they tend to be both easy to apply and informative.
� They can offer a great starting place for more sophisticated support.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

94 Simplification Tactics

� Perhaps most importantly, they can offer a performance benchmark with which to
gauge more sophisticated solutions, in turn helping to convince users of the support
system that the system is providing added benefit to them. The effectiveness of
decision support system designs comes largely from selling the effectiveness of the
support they are designed to provide.

For DSS designers, the question of the practical application of heuristics
comes down to how much is gained and lost through the use of such tech-
niques, and, perhaps more fundamentally, can these techniques be automated
for integration with other techniques useful in the DSS design. Supplement
A discusses an example of a rough approach to automating the Nearest Next
heuristic, although we will see that there are much better ways to implant
simple decision-making rules behind the scenes for DSS designs.

5.2 Heuristics Applied to Data Rationalization

Whereas the application of simple rules for developing solutions can be crit-
ical, another discussion of simplification relates to the nature of the data
used to define both the kinds of management problems we face and the solu-
tions provided. Increasingly, professionals are bogged down in vast amounts
of available data. The seemingly basic task of selecting which data should
be used to develop solutions often becomes a stumbling block, and slows the
development of meaningful analysis and solutions. The overwhelming nature
of large amounts of data applies to all aspects of decision making, in particular
to the ability to apply logically designed heuristics to solution development.
Can the concept behind heuristics (i.e., easily applied rules for simplification)
be applied to the rationalization of data as well?

Experience (even for lay persons) leads us to recognize that what to leave
in or what to take out isn’t always obvious. Fortunately, both DSS designers
and users don’t have to limit themselves to omitting data and issues in their
attempts to clarify the decision-making processes. They also have the option
of consolidation.

There are basically two general perspectives relevant to considering data
consolidation. The first approach is to select a set of attributes that represent
similar or associated issues, and somehow consolidate them into a smaller
set of representative characteristics for each data record. Here we are group-
ing together attributes (elements that describe records of people, places, and
things), and the consolidated result should have the same number of individ-
ual data observations but a consolidated number of characteristic attributes
(Figure 5.2).

One common form of this consolidation approach is referred to as Principle
Components Analysis (PCA), and is often preferred as a method for data

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.3 Attribute Grouping Approaches 95

Figure 5.2. Consolidating attributes of large data sets.

reduction. (Note other related methods such as Principle Factor Analysis are
also discussed in more complex structural analysis, but a discussion of PCA
will be sufficient here.)

The other approach, as you might guess, deals with grouping together data
observations (i.e., people, places, or things) of similar kind to reduce the noise
that may be inherent across individual observations. A simple example would
be to designate groups of students (e.g., by year, or major, or fraternity) and
create averages of the attributes by which they are characterized (e.g., GPA,
starting salary, summers spent as interns). What we would be left with is a
set of consolidated data with the same number of attributes, but with much
fewer observations (Figure 5.3).

Ultimately we could do both – again attempting to reduce the complexity
of the decision-making task – while avoiding the actual elimination of specific
kinds of data or descriptors.

5.3 Attribute Grouping Approaches

If you think you simply have way too many attributes describing the people,
places, or things that you have data on and feel that several of those attributes

Figure 5.3. Consolidating observations (individual records) of large data sets.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

96 Simplification Tactics

may actually represent the same issue (or very related issues), you have a
number of options available to you for consolidating your data.

5.3.1 Trivial Consolidation Approaches

One of the simplest ways to consolidate a group of attributes is by creating
an average value across them. If you create an unweighted average (i.e.,
simply add attribute X + attribute Y + attribute Z and divide by 3 to create
some new overall attribute “XYZ”), the critical point is to make sure they
are similar in units and scale so that the calculation actually makes sense.
For example, it might make sense to average the three student attributes
grade in BUS330, grade in BUS331, and grade in BUS432 to create something
general (perhaps referring to it as “average Organization and Management
area grade”). It would probably make much less sense to average “score on
330 final,” “bowling score,” and “score on breathalyzer test” (different scales
and hopefully unrelated issues).

Alternative ways to consolidate attributes may be to take advantage of
other standard functions in Excel. For example, if it makes more sense to
create something similar to “max performance in Organization and Manage-
ment,” you might use the MAX function to consolidate all final grades in
organization and management classes into a single, best attribute. Similarly,
if you’re interested less in the overall performance of students and more in
their tendency to perform inconsistently in a particular discipline, you might
calculate the STDEV across related scores. Maybe those who tend to per-
form more inconsistently in a discipline are doing so for a particular reason
that might be meaningful to you.

These are examples that hit close to home for a typical management stu-
dent, but the same kind of simplified attribute grouping techniques is used in
the marketplace:

� Maybe we don’t care what consumers spend on individual items, but rather what
they spend on groups such as all perishables, electronics, and so on.

� Maybe we don’t care about how much all stocks vary on an hourly basis, but are
concerned with their before-noon and afternoon averages.

In any case, the methods suggested put the responsibility of consolidation
decisions entirely on the shoulders of individual decision makers or DSS
designers. They are assumed to be entirely conscious of why certain attributes
should be grouped together, and why either unweighted averaging or the use
of other summary measures is appropriate. Furthermore, an unmentioned
assumption in these examples is that the these schemes are applicable regard-
less of the nature of the sample population as a whole (i.e., they would provide

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.3 Attribute Grouping Approaches 97

the same summary results per record, regardless of how many records are
involved).

5.3.2 Consolidations Using Statistically Derived Weightings

Sometimes we don’t really have a strong feeling about how attributes should
be consolidated, only that there’s probably some redundancy in the infor-
mation they provide and that our decision process would be easier if we
could crunch them down to more generalized (yet still meaningful) group-
ings. Fortunately for us, someone has already done the work here. Again,
one of the popular methods freely available to us is PCA. As mentioned ear-
lier in this chapter, PCA is a statistical technique that attempts to create a
reduced subset of attributes based on a larger set of potentially highly related
(perhaps redundant) attributes. It is not constrained to the assumption that
all attributes have equivalent relevance in such consolidation, but it does
base its statistical approach to the development of weighting schemes on the
entire sample of data as a whole (and hence can be sensitive to the size and
constituency of that sample).

As an example of the kind of results that might be derived through PCA
consolidation, consider the case of Dodecha Solutions, Ltd. Dodecha is a
small consulting firm that manages a number of information technology
implementation projects over the course of a year. It has been collecting
both pre-project selection and post-implementation data for several years,
and now wants to base its consideration of future client requests on that
data.

Dodecha had the foresight early on to recognize that many pre-project
characteristics could not be assessed by anything but subjective (opinionated)
reports of their own consultants. They developed a highly structured set of
evaluation questions for their consultants to fill out every time they were given
a potential client project request to consider. They specifically designed mul-
tiple questions aimed at revealing similar higher-level issues (e.g., potential
problems with client participation in projects, uncertainty relating to specific
technologies), knowing that the use of only a handful of potentially biased
questions could provide an extremely misleading view of project potential.
Table 5.1 provides the full list of the higher-level issues (left column) and the
associated more specific set of items/question (right column) their consultants
were asked to answer for each client project proposed.

For each of Dodecha’s 115 past projects, prior to making the decision to
accept the proposed projects, managers evaluated each of these 33 ques-
tions on a scale from 1 to 7 (1 indicating strong disagreement with the
statement, and 7 indicating strong agreement with the statement). The full

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

98 Simplification Tactics

Table 5.1. Items Thought to Reflect Higher-Level Management Issues for Dodecha

Higher-Level
Issues Row Specific Items/Questions

Ops Fit Issues

A1 : Will require redesign of many processes
A2 : Will require elimination of many processes
A3 : Will require resequencing of many processes
A4 : Will require addition of many processes
A5 : Will require changes in work assignments

Industry Instability

B1 : Tech capabilities in client industry change frequently
B2 : Process capabilities in client industry change

frequently
B3 : Market of client industry changes frequently

Inter-Org Concerns

C1 : Client demonstrates poor information sharing
C2 : Client demonstrates lack of interest in involvement
C3 : Client demonstrates poor worker-resource sharing
C4 : Client requires fairly limited time windows for

system access/change
C5 : Client requires fairly restricted access to stakeholders

New Tech Concerns

D1 : New technology untested by related firms
D2 : We lack familiarity with the nuances of the tech
D3 : Patches to new technology are forthcoming
D4 : Value of new technology to market still uncertain

Expertise Issues
E1 : Will require new training for our project staff
E2 : Will require work outsourcing to experts
E3 : Will require repeated contacts with vendor

Legacy Concerns

F1 : Much data stored in legacy systems to be replaced
F2 : Much data formatting based on noncompliant

standards
F3 : Culture of use/championship of legacy system
F4 : User skills highly tuned to legacy system need

changing
F5 : Many ties to external systems customized to legacy

Client Issues

G1 : Client has demonstrated process design and control
problems

G2 : Client has demonstrated managerial leadership
problems

G3 : Client has demonstrated poor technical know-how

Org Complexity

H1 : Involves many separate facilities of client
H2 : Involves many functional groups of client
H3 : Involves many decision makers at client
H4 : Involves many stakeholders at client

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.3 Attribute Grouping Approaches 99

Figure 5.4. Specifying data ranges to be analyzed through PCA with XLStat.

data set along with the complete set of analysis to follow is provided in the
Chp5 DodechaSolutions workbook.

Again, aware that any one of these items alone might provide a mislead-
ing impression of how managers viewed these projects prior to signing on,
Dodecha went back to the full data set and attempted to consolidate it into
the original eight factors the management highlighted as being useful in later
categorization and analysis. In doing so, they would be reducing their analysis
set from essentially 115*33 (3680) pieces of data into what they view a more
meaningful set of 115*8 (920). To do this they plan to use PCA.

To demonstrate the use of the PCA consolidation technique (as well
as other data simplification tactics), we’ll be relying on another tool that
goes beyond the typical boundaries of Excel functionality: XLStat (available
at www.xlstat.com). XLStat has become one of the industry standards for
extended spreadsheet analysis, and is particularly useful for our discussions
given the range of tools it makes available as well as the flexibility that it
provides to DSS developers (as we will see in Chapter 12).

When installed, XLStat functions similar to any other add-in in Excel. In
this particular case, we’re interested in making use its PCA function, which
is located under Add-ins>XLStat>Analyzing Data>Principle Components
Analysis (PCA). This opens the Principle Components Analysis (PCA) dia-
log box.

The application of the PCA tool can be fairly straightforward. The critical
step required by the dialog box is the selection of the data set to be con-
solidated and some impression of how to consolidate the selected attributes
(e.g., into eight components/factors). Although numerous options are made
available for professional use, and professional users of this technique are cer-
tainly encouraged to investigate their benefits, a demonstration of the basic
kinds of results to be expected is sufficient for discussion here. Figures 5.4

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

100 Simplification Tactics

Figure 5.5. Target factor specification for PCA with XLStat.

and 5.5 provide images relating to the specific settings used in the Dodecha
case.

The next steps happen largely behind the scenes; however, the output
provided by XLStat is extremely rich (beyond the scope of this text). In
the most familiar terms for our purposes, the task the PCA algorithm faces
can be viewed as the following:

Objective: Construct new factors based on the existing set of attributes such that
the new factors are as uniquely distinct from one another (e.g., uncorrelated) as
possible.

Decision Variables: The extent to which each attribute contributes to each new
factor (e.g., coefficients in each factor equation).

Constraints: Construct exactly eight new factors based on 32 original attributes (in
the Dodecha Solutions, Ltd., case).

Figure 5.6 provides an annotated version of the XLStat PCA results in this
case. Assisted by a little conditional formatting, we see an output table of
what are referred to as component scores, which are higher the more each
item relates to one of the eight factors derived from analysis.

Although there is no guarantee that individual attributes will naturally
group into the kinds of factors originally conceived of by the designers of
the questions (i.e., the eight factors conceptualized in the early table), in
this case there does seem to be some correspondence between what was
originally conceptualized and the PCA results. It is also clear, as is usually
the case, that the items don’t load purely on one factor alone, i.e., some
attributes provide information that is helpful in forming other factors as well.
The specific values of these coefficients are far from immediately intuitive.
This is clearly not an equal-weighting scheme as might be derived through a
simple averaging approach to attribute consolidation, and not one that could
simply be guessed.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.3 Attribute Grouping Approaches 101

Figure 5.6. Example PCA results (color coded through added conditional format-
ting).

Regardless, the major conceptual breakouts do seem to be well represented
overall, suggesting it might be reasonable to apply the original eight factor
labels to the results. In the end, Dodecha can have some faith in the inter-
pretability of the PCA data simplification. In end, the real product of PCA is
the consolidated statistically weighted factor scores as shown in Figure 5.7.
These will form the bases of further analysis by Dodecha.

Figure 5.7. The eight factor scores for each observation involved in the PCA analysis.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

102 Simplification Tactics

Figure 5.8. Rank and percentile analysis for observation grouping.

5.4 Data Grouping Approaches

Similar to the discussion of grouping attributes, we can start this discus-
sion by considering approaches that might be relevant, provided we have
a strong understanding of how we should group based on simple statistics,
and then proceed to discuss approaches where such group structures are fairly
unknown.

In some real world cases, decision makers already have a logical notion
of which kinds of records should be similar enough to group together as a
subsample (e.g., maybe we have a reason for grouping student data by major,
or companies by industry, or projects by technology type). If this is the case,
if we have a pre-existing and well-reasoned structure for grouping. On the
one hand, if this categorization scheme sufficiently reduces the complexity
of our decision process, we’re set and can then move on to other forms of
analysis and decision making. On the other hand maybe it doesn’t sufficiently
reduce complexity. Or maybe we don’t have sufficient reason for grouping
our data by some prespecified category. Or maybe we just want to group by
some numerically driven scheme such as a ranking where we divide our data
based on whether it ranks in the top quarter, bottom quarter, or one of the
quartiles in between. We can do that easily in Excel.

5.4.1 Quantile-based Categorization

Relevant here is one of the many additional features of the Analysis tool box
(brought up in Chapter 2): the Rank and Percentile tool (Figure 5.8). The
tool asks you for a set of observations (e.g., 3909 quarterly EPS figures for
various firms in a spreadsheet) and the location of the relative ranking of the
observations based on that single attribute. As would be expected, the more
data you have, the longer the ranking process.

As an example of how to use this tool in a consolidation effort, I’ve done a
simple ranking based on no other criteria other than quarterly sales across all
quarters for which we had data in the previous QuarterlyData spreadsheet
(see Chapter 4). Figure 5.9 shows an example of the results the Ranking

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.4 Data Grouping Approaches 103

Figure 5.9. Example output of rank and percentile analysis.

and Percentile tool kicks out. Note that the data had already been ranked in
ascending order prior to using the tool.

A few things to note:

Look at the rankings. Notice that some ranking numbers (e.g., 10, 16) are repeated
whereas others (e.g., 11, 17) are absent. What does that mean?

Regarding the previous point, why might this be different than simply selecting
the 1st, 2nd, 3rd, and 4th sets of 25 records out of a total of 100 originals?

We could use these rankings to help group data into those in the top 25%, bottom
25%, and so on. How could we use an IF statement to automatically generate
such groupings at this point?

5.4.2 p-level/z-score-based Categorization

Measures of standard deviation from the mean provide other meaningful
and related approaches to grouping (provided you believe the issue you are

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

104 Simplification Tactics

Table 5.2. Example Structure of Quartile Cross-Binning

EPS (earnings per share)

Bottom 3rd 25% 2nd 25% Top 25%

R&D Bottom
Investment

3rd 25% Cross-tab summaries of other
measures (eg. profitability) for
firms that fall into each
cross-bin

2nd 25%
Top 25%

grouping along is, by nature, normally distributed). There’s nothing stopping
you from calculating a mean and standard deviation for the set of values,
and determining what the z-score and associated p-level of that observation
would be; however, whether that’s statistically appropriate for the given data
set is another question,

Regardless, after you have a z-score associated with each data observa-
tion, you have the basis of designating whether that observation is a typical
(e.g., z-scores of say between –1 and 1) or (+/–) outlaying (e.g., z-scores
greater that 2 or less than –2). How you define the bounds of the outlaying
region is yet another decision to make, but in general can be as meaningful
(or more so) as the kinds of splits and groupings derived from a ranking
procedure.

5.4.3 Multidimensional Bins

If you think that there may be multiple, independent, non-categorical mea-
sures that could meaningfully distinguish subsets of your data, make use of
them.

Imagine you believe that certain firms, such as those that are simultaneously
on the fringes of both (a) EPS performance and (b) research and development
(R&D) investment, are relatively unique with regard to other aspects of
their operations or financial performance. You have the ability to designate
such groups independently, so do that and then use a tool like a PivotTable
to create cross-tabs (a table of summary measures, e.g., averages for each
grouping combination, shown in Table 5.2).

These can provide a great deal of insight into the effects of multiple fac-
tors on additional performance measures. Such insight might suggest further
investigations into specific regions of the data (e.g., those firms in the 3rd
25% in R&D but the top 25% in EPS).

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.4 Data Grouping Approaches 105

Table 5.3. Example Sub-Populations Associated with Quartile Cross-Binning

EPS (earnings per share)

Bottom 3rd 25% 2nd 25% Top 25%

R&D Bottom 2 8 9 5
Investmentment

3rd 25% 4 5 7 9
2nd 25% 8 6 5 6
Top 25% 11 6 4 4

It is also worth noting, however, that although the number of data records
that fall into each of the four categories for either the EPS or R&D splits
may be equal, there’s nothing that will guarantee the number of observations
in each cell of a cross-tab will be similar. Consider the example in Table 5.3,
where I’ve entered the number of records that fall into each cross-bin.

There are big differences in the sizes of these bins. Do they make it more dif-
ficult to compare other performance measures based on some of the smaller
groups?

5.4.4 Cluster Analysis for Multidimensional Splits

You might have the belief that your data are split across multiple dimensions,
but in ways that can’t necessarily be described by post-hoc combination of in-
dependent splits (as done with cross-tabs). That is, maybe there are more com-
plex relationships among the attributes of your data records that tend to group
observations in weird though nevertheless potentially informative ways.

To try to illustrate this, consider a bunch of points characterized by three
attributes – x, y, and z. In that 3-D space, upon visual inspection, you might
think that they tend to cluster into four rough groups. Maybe you could even
draw some dividing planes to emphasize those separations. But what if their
clustering was less clear? What if there were more points or multiple ways to
subjectively split them up? (See Figure 5.10.)

Figure 5.10. Multidimensional complexity in group distinction.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

106 Simplification Tactics

Consolidating observations through non-obvious (although perhaps statis-
tically supported and ultimately managerially meaningful) divisions of their
attribute space usually falls into the realm of what is called cluster analy-
sis. This technique for grouping data is actually popular in marketing, where
firms attempt to classify specific groups of customers based on a wide ranges
of characteristics (attributes).

But how would a somewhat complex and unintuitive approach to classify-
ing data be useful to a manager?

Suppose you collect data on individual entities such as:

� Customers of a business
� Stores of a retail chain
� Students of a university
� IT implementation projects (as in the Dodecha case)

And let’s say those individual entities can be characterized by a range of
specific attributes, or even higher-level factors such as:

� For customers – age, monthly income, loyalty, tech savvy
� For stores – geo location, sales, market presence, efficiency
� For students – grades in different courses, determination
� For projects – anticipated costs, inter-organizational concerns

To make these data useful, a decision maker/manager might want to iden-
tify smaller groups of individuals based on their similarities to one another
(i.e., the similarity of their attributes) and then make separate policy decisions
for each group, rather than trying to come up with one all-encompassing-yet-
perfect solution for everyone.

What kinds of distinct policy decisions might be realistic?

� Designing and deploying different marketing campaigns for different market seg-
ments of customers characterized by distinct interests

� Designing and deploying different business and operating strategies to promote
sales in different groups of stores facing differing challenges

� Designing different courses, programs of study, or sources of assistance based on
strengths and weaknesses of different groups of students

� Designing response plans for dealing with (or rejecting) specific projects requested
by existing or future clients

The key to applying customized strategies is in being able to know for
whom or what you are customizing (i.e., what is the nature and distinction of
the group). Conceptually, the decision maker/analyst must be able to make
these distinctions, more often than not, prior to designing customized policies.
This conceptual goal translates into the following analytical task of cluster
analysis.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.4 Data Grouping Approaches 107

Figure 5.11. Specifying K-means clustering inputs and parameters for evaluation by
XLStat.

Objective: Identify a set of fairly distinct groups of entities (records) in the data
set, based on some measure of group separation (e.g., minimizing the ratio of
within-group to between-group variation, with variation of the entire sample
based on the full set of record attributes used for grouping).

Decision Variables: Which entities/records should belong to which group.
Constraints: Often some criteria for limiting the number of groups that might be

formed (e.g., limit to the formation of four clusters of projects in the Dodecha
Solutions, Ltd., case).

That is, the algorithms used in cluster analysis are designed to locate clusters
of data records that possess similar characteristics (whatever those attributes
might be), that are distinguishable from other clusters, and ideally that have
very few records in between (where group membership is less clear).

Returning to the Dodecha example used to illustrate attribute consolida-
tion (PCA application), we might consider how a tool like XLStat could be
used to provide a consolidation of records (projects in this case) into more
generalized groupings through the use of cluster analysis. Again, we’ll be
making use of the Analyzing Data functionality under XLStat and specifi-
cally the Cluster Analysis tool.

Again I’m going to specify a few points before letting the analysis run,
specifically the range of data; in this case, the eight factor scores for all 115
projects derived earlier from PCA, and a request for the algorithm to limit
itself to the formation of four groups (see Figure 5.11).

As with PCA, many other options exist and those professionals who are
interested in the use of clustering are encouraged to look into these.

However, a critical point to stress here is that there are many possible
combinations for a clustering algorithm to consider. In this case, with 115

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

108 Simplification Tactics

Figure 5.12. Clustering results (classes/groups assigned) from K-means approach.

projects and four groups of projects, we’re talking about 1.72544*1069 for
a comprehensive search. That’s basically a 2 followed by 69 zeros – a huge
number that makes a routing example involving 15 or even 30 sites seem like
child’s play. Clustering algorithms are not going to be conducting comprehen-
sive searches; instead, they have their own heuristics built into them, driven
in part by statistical cues and in part by random guesses. For that reason,
clustering results even on the same data set are subject to variation. For pro-
fessionals faced with the realizations that results may be somewhat subject
to the luck of the draw, the best possible solution is to look at multiple runs
of a cluster analysis to see if some consistent group formations are apparent
and give greater credence to those group formations that do seem to stand
up to a variety of clustering runs.

In any event, the main take-away of cluster analysis will be the derived
group constituencies. These are what policy makers are looking for. In the
results outlined in Figure 5.12, the Observations represent each of the 115
projects that have been grouped.

Clustering results are only as good as the intelligence brought to bear in
their use. Assuming the clusters themselves are fairly robust to other clus-
tering methods that could have been applied, at least two sets of immediate
implications typically come into consideration:

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.4 Data Grouping Approaches 109

Figure 5.13. Radial plot of group distinctiveness across all factors considered by
K-means.

How do the groups differ across the set of factors upon which they were based?
Are only some of these factors critical in distinguishing these groups?

At first look, we might try to represent such differences visually. A common
visualization tool used in cluster analysis is that of a radar plot. Fortunately,
Excel again comes to our aid because radar plots are yet another type of
graph made available for representing data. Figure 5.13 shows two versions
of radar plots created for the present example.

Not all of the eight factors seem to have been very helpful in distinguishing
these groups – for example, look at the New Tech Concerns factor. Unfortu-
nately, the existence of less distinguishing factors tends to de-emphasize the
distinctiveness of the derived groups as depicted by measures such as the
ratio of within- to between-group variance levels. (This ratio will tend to

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

110 Simplification Tactics

Figure 5.14. Radial plot of group characteristics across four seemingly key distin-
guishing factors.

go up as more factors are included that don’t contribute to group distinc-
tion.)

However, we don’t need to be thrown by a single measure taken out of con-
text. Our focus should be on any distinctions that seem particularly apparent
in the data set. For example, consider a few key factors along which the
greatest differences exist. Use a similar radar plot approach to visualization
(Figure 5.14).

Although it may be that no one factor could easily distinguish each of these
groups (e.g., each of the four factors describing Group 2 reflected in Fig-
ure 5.14 seem to be similar to at least one other group), it does appear that
a multifactor story could be told relating to differentiation extracted by the
clustering protocol.

But even more relevantly, we don’t necessarily need to limit our con-
sideration of group distinctiveness to pre-project data. After all, these are

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.4 Data Grouping Approaches 111

completed projects. Post-project performance data would not be available
for categorizing future projects into such groups, but Dodecha would surely
be interested in knowing how these groups ultimately might differ in perfor-
mance as well. Which leads to the natural follow-up question for analysis:
How do the groups differ across other related outcome or performance mea-
sures that might be of interest to managers?

For the purpose of motivating this discussion, the same workbook (Chp5
DodechaSolutions) also includes performance data on the 115 projects ana-
lyzed, including ROI (%), Time-to-Completion (in weeks), and two sub-
jective scales reporting on overall customer satisfaction and perceptions of
knowledge gained by project team members. Figure 5.15 shows a variant of
high-low-close plots (common to Excel) used to summarize how each of the
four derived groups differ along these performance measures.

What kind of a story might this tell in general?

1) It seems as if projects that are deemed particularly problematic with regard to
client issues (Group 1 projects) also may be slightly more likely to perform poorly
with regards to Dodecha’s ROI, take a particularly long time to complete, not
provide much in terms of customer satisfaction, and certainly don’t appear to add
to the general knowledge of Dodecha’s teams. It might be worthwhile to avoid
such projects in the future.

2) Projects that lack client issues but pose concerns with regards to legacy and oper-
ational fit issues (Group 2) nevertheless tend to provide decent ROI ranges and
team-learning opportunities while potentially facing risks with customer satisfac-
tion. If customer satisfaction isn’t an issue for a particular client (e.g., he would
tend to complain regardless), perhaps such projects present valuable opportuni-
ties, though the issue of customer satisfaction would certainly need to be carefully
considered on a client-by-client basis.

3) Projects whose primary distinctive concern surrounds expertise issues (Group 3)
provide an interesting opportunity for shoring up expertise through knowledge
gains. They tend to be conducted in fairly short time windows, and don’t have
major shortcomings with regards to customer satisfaction. These may be quick
opportunities to gain knowledge relatively free of risk.

4) Regarding Group 4 projects, these are also quick ones, but there is not nearly as
much knowledge to be gained as with Group 3; however, there is some potential as
far as customer satisfaction and potential word of mouth is concerned. This may
all be due to a naiveté on the part of the client with regards to what he truly needs
and how to get some basic tasks done, but regardless these projects could be handy
in a pinch if testimonials are needed for marketing purposes. A more cynical view
might be that these projects are the kinds that other less-scrupulous consulting
firms might take advantage of, and perhaps represent an opportunity for Dodecha
to play an important interventional role from a market-citizenship perspective.

These are just some sample views of what Dodecha may be thinking based
on the results at this point.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

112 Simplification Tactics

Figure 5.15. Spread charts used to further consider distinction in variance as well as
group means.

5.5 Giving Form to Future Categorization

As much as past analysis might be interesting, the focus is still on the past.
To truly leverage the findings from the use of consolidation processes such
as PCA and cluster analysis, it will be particularly helpful to know if there
was some simple way to use future pre-project data to help identify where
a new project might fall, and subsequently whether it should be pursued. It
would be even more helpful if some basic rules of thumb could be developed
to quickly categorize ideal project opportunities.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.5 Giving Form to Future Categorization 113

Figure 5.16. Discriminant Analysis parameterization through XLStat.

To close this discussion with an eye on future applications of these results,
we’ll introduce yet another statistical tool made available by XLStat and the
work structure available in the Chp5 DodechSolutions workbook: Discrim-
inant Analysis. The aim of Discriminant Analysis is to make use of a select
set of predictive attributes to attempt to create some simple formulation that
places specific records/entities (characterized by those attributes) into groups
to which they are thought to belong. In this sense, Discriminant Analysis is
a nice complement to clustering, which developed group membership based
on a set of attributes/factors but typically does not provide a functional form
or equation that would formally predict such membership. As with all other
XLStat tools discussed thus far, the Discriminant Analysis option is found
under the Analyzing Data menu.

On the FullData+Clusters worksheet in the Chp5 DodechaSolutions
workbook, we can find the full set of the original 32 items along with the
designations into which each derived cluster project has been placed. The
hope is that Discriminant Analysis can make use of this or some subset of
this original attribute data to come up with a consistent categorization scheme
for future projects. Let’s first consider what it would come up with given the
full set of attributes (expecting some to be much less useful than others).
Figure 5.16 shows the settings I’ll be using, specifying the qualitative data to
predict (i.e., the groups, in this case) and the quantitative data on which I
want prediction equations based.

The task of the DA algorithm will be something like this:

Objective: Generate a set of equations that makes use of the predictive data
(attributes) to attempt to identify which of the pre-established groups each
observation already belongs to at a high level of accuracy.

Decision Variables: Coefficients of the predictive equations.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

114 Simplification Tactics

Figure 5.17. Classification function showing individual item roles on cluster pre-
diction.

Constraints: Only the specified predictive variables (could be the whole set or a
subset) should be used in the equations formed.

Figure 5.17 show what the analysis provides in this case.
These are essentially a set of coefficients for four equations (one for each

group), one coefficient for each of 32 predicting variables (attributes) in this
case, plus an intercept. Same kind of thing you’d see as an output to a

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

5.5 Giving Form to Future Categorization 115

Figure 5.18. Overview of ability of all items to categorize observations in developed
groups.

regression analysis. How are these equations used in group-membership
prediction? For any record/entity (i.e., each of the 115 projects in this case),
and for any of the four discriminant functions (in this case), simply multi-
ply coefficients to their associated attribute values and create a sum of these
multiples that includes the intercepts. Formulaically:

Value of function “k” for record “n” = Interceptk +
#attributes∑

i

βk,i · xn,i

The results of the four functions (again in this case) for a single record/entity
(project) are then compared. If the first function provides the highest sum,
that record/entity is classified into the first group. If the second function is the
highest of the set, the record/entity is classified into the second group, etc. As
is often the case with regression analysis, the hope is that a set of equations
able to accurately classify pre-existing data will also be able to accurately
classify future data. Looking at Figure 5.18, how well do the functions based
on the 32 attributes classify?

Perfectly. So the next question is: Do we really need all of these to provide
for a decent guess as to where (i.e., into what clusters) new projects might
fall? It would certainly be nice to rely on only a few key questions to figure
out where it’s worth playing ball with a client request or not.

Let’s consider the top five of these items based solely on something as
simple as the range of their role in the classification function (going with the
top five in terms of overall impact might be a better approach, but we’ll use
this just for demonstration purposes).

C1 (under Inter-org Concerns): Client demonstrates poor information sharing
E1 (under Expertise Issues): Will require new training for our project staff

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

116 Simplification Tactics

Figure 5.19. Ability of only five select items to categorize observations in developed
groups.

F3 (under Legacy Concerns): Culture of use/championship of legacy system
G2 (under Client Issues): Client has demonstrated managerial leadership problems
H3 (under Org Complexity): Involves many decision makers at client

Running an almost identical analysis except for greater constraints on the
range of attributes available to the discriminant functions, we get the summary
of classification strength shown in Figure 5.19.

Not bad for a using a five-question approach rather than 32. If this was an
acceptable level of accuracy, it might make type-assessments and subsequent
strategies/tactics for handling a heck of a lot easier and quicker.

Cited References

Borges, B., Goldstaeing, DG., Ortmann, A., Gigerenzer, “Can Ignorance Beat the
Stock Market?” in G. Gigerenzer, P. M. Todd, and the ABC Research Group
(eds.) Simple Heuristics that Make Use Smart, Oxford University Press, 1999.

Box, G. E. P., “Robustness in the strategy of scientific model building,” in
Robustness in Statistics, R. L. Launer and G. N. Wilkinson, Editors. 1979,
Academic Press: New York.

Chapter 5 Supplement: Making Heuristics Automatic
(the Non-Elegant Way)

One of the key advantages to information technologies is that they allow
you to automate rules and processes that you would otherwise not want to
perform manually, even if you could explain how to actually perform the rule
and/or process to the computer.

In decision support systems, the ability to automate tasks such as fast and
frugal heuristics can be considerably helpful, especially because it eliminates
the need to explain the heuristics to others as well as eliminating the need

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

Chapter 5 Supplement: Making Heuristics Automatic (the Non-elegant Way) 117

Figure 5.20. Starting set of inter-site distances defining the problem.

to run through them manually (which may be a relatively time-consuming
and error-prone approach). Some heuristics are best automated through the
use of computer programming, although others can be handled at some level
purely through the design of data and cell linkages within a spreadsheet. These
automations often do not appear as elegant as their programming equivalents,
but they have the advantage of being something that non-programmers can
create and understand.

Let’s go over how we might automate one of the heuristics discussed earlier
in this chapter: The Nearest-Next Heuristic (as might be applied to vehicle
routing).

Figure 5.20 is a matrix that shows the distance between any two sites, with
the starting point represented by site #1. So the distance from site #1 (row)
to site #5 (column) equals 19.87 miles.

Visually, we can tell that the site closest to our starting point (site #1) is
actually site #6 (8.05 miles). But we could also use the MIN and HLOOKUP
functions to get that result from Excel, provided we tell it to look for the MIN
value in the row of our starting point (site #1).

Figure 5.21 shows that same matrix with a few items added to it.
So in the end I have the first step in this heuristic solved (i.e., first go to

site #6). If I change the distance numbers in this matrix, my solution might
change (automatically).

Now, let’s create a second matrix of similar form just below it. In this one,
I’m no longer concerned about dealing with site #1 (been there, done that).
All I care about is moving on from the last pick (site #6) to the next site
closest to it. So I want to eliminate site #1 from consideration, as shown in
Figure 5.22.

Most of the structure here is the same as in Figure 5.21. I’m feeding the
value of the last pick (6) into the associated new start cell, but I’ve also

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

118 Simplification Tactics

Figure 5.21. Mechanism for assessing set of possible next distances (to find nearest).

excluded everything about site #1. (I’ve filled it’s cells with spaces; not 0s
because that would be misleading.) I’m doing it automatically using an IF
statement that basically says, “if the row or column header is equal to the
LastPoint designated in the previous step (i.e., site #1), put a space in this
cell; otherwise, copy the value from the previous table.” As seen in Fig-
ure 5.23, more of the same is repeated throughout the spreadsheet (essen-
tially duplicated n times; where n is the number of total sites under considera-
tion).

Admittedly, there are more elegant ways to approach this, and this demon-
strated method takes up some space (especially if the number of sites
increases considerably), but in the end what we have here is a completed

Figure 5.22. Second stage of the Nearest-Next heuristic automated.

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

Practice Problems 119

Figure 5.23. Full multistage implementation and derived solution.

routing solution that will change any time we update the original distances.
The solution itself is a decent one at that, without the need for an exhaustive
search or any formal programming. Relying on code rather than the spread-
sheet to crank out this answer would be much more elegant and efficient, but
it’s worth showing that there’s more than one way to accomplish this task,
and it doesn’t always mean relying on programming skills.

PRACTICE PROBLEMS

Practice 5.1

The file Chp5 PractPCAClust.xls contains earnings-per-share data for 144 firms in
three broad industry classifications. It also contains ratings provided by managers that
describe the extent to which they invest in each of several research and development
activities (e.g., logistics research through customer testing).

1) Use all Research and Testing variables in a Principal Components Analysis to
consolidate those attributes into two composite measures. How well do the ratings
seem to match expectations with regard to interpretations of the two factors? Does
there appear to be some conceptual consistency?

2) Use those two measures to form four clusters of your data records (remember
to account for the bug in the cluster labeling part of that program). Discard any

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

120 Simplification Tactics

Table 5.4. Classic Prisoner’s Dilemma

Prisoner 2 Squeals?

Yes No

Prisoner 1 squeals? Yes 2, 2 0, 3
No 3, 0 1, 1

clusters of size fewer than eight. Attempt to generate labels for these groups based
on how they may distinguish themselves along the two factors.

3) Use your clustering results to create a PivotTable that shows the average EPS
of for firms falling into specific Industry (as your row headers) and R&D-type
clusters (as column headers). What do the summaries in the PivotTable suggest
regarding R&D strategies (clusters) for specific industries?

4) Use Discriminant Analysis subsets of the original items to attempt to determine
whether a small number of questions can provide the similar classifications, and
hence predictive capabilities as far as EPS is concerned.

Practice 5.2

If performance differences are so critical, one might ask, “Why not just group by per-
formance to begin with and then see what premeasures might be useful in predicting
membership in such performance groups?” Aside from getting into issues relating
to potential robustness in the results derived from such an approach, the fact is that
such seemingly straightforward approaches, as simple as they may be, often don’t
yield very strong mechanisms for future prediction (and may turn out to be not all
that useful).

Using the existing Dodecha Solutions data set, give this a try. What are the apparent
differences in predictive capabilities? Outline both the pros and cons in the predictive
capabilities of this approach relative to the one reviewed in this chapter.

Practice 5.3 (Challenge)

A common mechanism for attempting to model the choices that potentially compet-
itive entities may make when faced with a variety of alternative options is provided
in the area of what has become called Game Theory (popular in sociology, poly sci,
and management).

Table 5.5. Dominance Applied to Prisoner’s Dilemma

Prisoner 2 Squeals?

Yes No

Prisoner 1 squeals? Yes 2, 2 0, 3
No 3, 0 1, 1

P1: KDD
9780521889056c05 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:40

Practice Problems 121

Table 5.6. Dominance in Gaming Example

Player 2’s Options

1 2 3 4 5

Player 1’s Options 1 5, 4 3, 7 3, 4 5, 4 4, 5
2 4, 3 2, 6 2, 3 5, 6 3, 2
3 3, 2 1, 7 3, 3 5, 6 2, 2
4 3, 1 2, 4 3, 6 5, 1 4, 1
5 4, 2 2, 8 4, 4 5, 5 6, 2

Game Theory assumes that parties competing against each other have at least
partial (if not complete) information regarding the payoff structures that each other
faces – payoff structures that are dependent not only on their own decisions, but also
on the decision of those with whom they are competing. This means that although
they may be able to understand where their best outcomes may be, they may have
no means of securing those outcomes if they are not able to form prior agreements
with their competitors (often the case).

A classic example often discussed in Game Theory is the Prisoner’s Dilemma. In
Table 5.4, we present the number of years each will get depending on what each
crook does. Obviously, the best each could do is no years of time. The worst is
three. A perhaps acceptable compromise might be one year each. But how do the
players choose the action that will benefit each the most, given that they can’t actually
communicate on the issue?

The suggested solution is to follow what might be called the Dominance heuristic.
Each individual, not knowing what the other might do, tries to figure out if there is
one best policy that will do well regardless of what the other individual decides to
do, as shown in Table 5.5.

A quick assessment suggests that the dominant policy for each party is to squeal.
If Prisoner 1 follows this policy and Prisoner 2 keeps his mouth shut, Prisoner 1 will
do not time. If Prisoner 2 follows this heuristic as well, he will do two years instead
of three. Of course, both results are worse for Prisoner 2 than would be one year of
time, but again that’s the nature of heuristics: They’re very simple, and they usually
provide semi-decent outcomes – but they’re often not the best.

Your Task: Use a method similar to that presented in the discussion of automat-
ing the Nearest-Next heuristic to automate instances of the Dominance heuristic.
Table 5.6 shows a sample matrix from which to base your structure and perform
testing.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6

The Analytics of Optimization

Excel gives us a great tool that might help us determine what specific decisions
(i.e., values of our decision variables) should be used to obtain our objectives
subject to the issues that constrain us. This tool is Solver. Generally Solver
can be accessed under the Data tab in the Analysis section (Figure 6.1).

If you do not find Solver in your Excel Data tab, it means that either
Solver was not selected for installation at the time your copy of Excel was
installed, or it is currently not activated. To activate Solver, click Office>Excel
Options>Add-Ins. Select Excel Add-Ins on the Manage drop-down and then
click Go. The Add-Ins dialog box opens, enabling you to choose Solver Add-
In (Figure 6.2).

6.1 Optimization with Solver

The general structure of Solver fits perfectly with the Chapter 4 description
of the three key elements of decision representation/structuring – objective,
decision variables, and constraint (Figure 6.3).

Solver is designed to provide the best solutions it can based on the info
we give it. It has its limits (it breaks down with extremely complex or large
problems), but for smaller problems that still present challenges to decision
makers, it does a nice job.

Rather than talk about the theory and math behind simple optimization,
we’ll take a page from some of the most successful texts on teaching the
value and use of this tool by diving right into a few examples in depth. (We’ll
pick up on how Solver succeeds or, in some cases, fails in its work in Chap-
ter 7.)

6.1.1 Example #1: Atlanta Professional Training

Atlanta has been an up-and-coming hot spot for young professionals over the
past few years. As more 20-somethings migrate to Atlanta, they are finding

122

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.1 Optimization with Solver 123

Figure 6.1. Locating Solver in the Excel menu interface.

Figure 6.2. Adding-in Solver.

Figure 6.3. Objective, decision, and constraint specification fields in Solver.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

124 The Analytics of Optimization

it more and more difficult to land that dream job. Extensive market research
with the major employers in the area indicate that these job seekers are
lacking one of two key job skills – substance (analytics, number crunching,
data analysis, etc.) or style (communication, poise, etiquette, etc.).

Dorian McAnderstein, a recent MBA graduate, jumped at the opportu-
nity to spread his expertise in both of these areas. To do so, Dorian founded
a professional training facility that caters to the needs of these clueless indi-
viduals. He has decided to charge $3,500 for each substance-lacking student
(termed “beatnik”), and $2,800 for each style-suppressed student (termed
“geek”). There are two professional training boot camps: Beatnik students
need 14 hours of number crunching and analytical training, and 7 hours
of communication and etiquette training; geeks need only 6 hours of num-
ber crunching and analytical, but 11 hours of communication and etiquette
training.

Dorian teaches the style courses, and he can work up to 114 hours per
month. Dorian’s partner handles the substance sessions and can work up to
107 hours per month. In addition, Dorian does not feel that the students
benefit from class sizes smaller than nine students per month.

The question is: What mix of geek and beatnik students should Dorian
admit?

6.1.1.1 Structuring Models for Optimization

One of the most challenging tasks for those new to optimization methods
is figuring out how to translate a story problem into something a computer
application (e.g., Solver in this case) can make sense of and assist in solving.
The three critical components to all business problems – objectives, decisions,
and constraints – are critical to the use of Solver.

Beginners need to get into the practice of asking what falls into each of
these bins for every problem they tackle. In the professional training example,
what’s the objective? Although not explicitly stated, one assumption might
be that Dorian is interested in finding a mix of students that maximizes total
profit. In lieu of cost figures, we might assume the maximization of revenue
to be an adequate proxy. Of course if Dorian has other issues in mind, such as
market growth, quality, or even civic virtue, such an objective might be short-
sighted. For the benefit of discussion at this point, let’s remain shortsighted
and go with revenue maximization as our objective. The formulaic form of
the revenue function might look like #beatniks*$3500 + #geeks*$2800.

What about the decision variables? These appear to be fairly obvious here.
Specifically, a set of decision variables needs to be defined so that we can
clearly identify how many beatniks and how many geeks are to be admitted.
Although there may be several approaches to this, it is true that there are often
better (i.e., more effective) approaches and worse (i.e., more misleading)

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.1 Optimization with Solver 125

approaches that might be applied. For example, we could define our deci-
sions directly as the number of beatniks admitted, and the number of geeks
admitted.

In contrast, a less effective way to define the decisions would be how many
students total, and what percentage should be geeks. However, if our objec-
tive function can be defined as the simple linear combination outlined a few
sentences earlier, it would require a bit of multiplication among these lat-
ter two variables to get to a similar definition. Unfortunately, Solver often
has difficulties when objectives are not linear functions of decision variables;
therefore, such a definition might provide for undesirable (i.e., sub-optimal)
results. We’ll talk more about these complications in Chapter 7, but the basic
rule for structuring the mathematical forms of story problems for the purpose
of optimization is “Keep it simple” (often translating into “Keep it linear”).

Regarding constraints, again we’ll try to keep things as direct as possible.
We know Dorian and his partner have a limited number of hours to devote
to the students, and that student training requires time. The total amount of
time required for substantive training (#beatniks*14hrs + #geeks*6hrs) must
be less than or equal to the amount of time available from Dorian’s associate
(107 hrs). A similar constraint relates the enrollment numbers to the max-
imum hours available by Dorian’s sidekick. A third constraint ensures that
total enrollment (#beatniks + #geeks) does not get below 9. As with decision
variables, the “Keep it simple” (“Keep it linear”) rule often serves the analyst
best.

In Chp6 Examples, I’ve put all of the information (and the mathematical
structure just outlined) from that story problem into some meaningful order
on a spreadsheet. I’ve also added some graphics, but more importantly I’ve
provided sufficient annotation to let you know exactly what each of the num-
bers on this page refers to. I’ve also labeled relevant cells and cell ranges
with names (e.g., TotRevenue, NofEachStudent) for easier reference (see
Figure 6.4).

6.1.1.2 Getting to the Solution

If we didn’t have any additional decision support mechanisms to help us at
this point, we might start by trying out various values of our decision variables
to attempt to meet our objectives without violating any of our constraints:

If I enter 3 Geeks and 3 Beatniks, I get total revenue of $27K
If I enter 5 Geeks students and 3 Beatniks, I get total revenue of $45K (better)
If I enter 7 Geeks students and 7 Beatniks, I get total revenue of $63K; however,

that would require more hours than either instructor has available.

Obviously a manual search for a good solution even in this case could take
some time. Solver makes it easy for us (Figure 6.5).

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

126 The Analytics of Optimization

Figure 6.4. Structuring the enrollment decision for APT.

Figure 6.5. Specifying the problem structure for APT in Solver.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.1 Optimization with Solver 127

Figure 6.6. Example solution to one specification of constraints for APT.

Because all of the information is entered in some intelligent fashion into
the spreadsheet, with decisions linked to both the objective and the issues
that are subject to constraint, we’re already set up for Solver to help us with
this one.

Note how the objective, decision variables, and constraints correspond
between the spreadsheet and fields in Solver. One solution is shown in Fig-
ure 6.6.

Are 7.56 or 4.40 students reasonable options in this problem? If partial
students are not acceptable, we’ll need to add another constraint limiting our
solution to integer-only options, as shown in Figure 6.7. A more reasonable
solution for Atlanta Professional Training is shown in Figure 6.8.

Figure 6.7. Respecification including integer constraints.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

128 The Analytics of Optimization

Figure 6.8. Solution associated with addition of integer constraints.

6.1.2 Example #2: RunFast, Inc.

RunFast manufacturers running shoes used to supply specialty running retail-
ers throughout the Southeast. RunFast currently produces three types of
running shoes: basic, track, and trail. RunFast wants to determine how many
pairs of each type to produce next month. The process of assembling each pair
is highly automated, followed by manual inspection of each individual pair
to ensure it meets the high quality standards set by RunFast. Each compo-
nent of the shoe (sole, laces, air wick, insole, and so on) is placed onto a belt
that feeds through an assembly machine called the Blazer620. After the shoe
is assembled, it passes onto the manual inspection line where it is quality
checked and tested.

Each of the three types of shoes must be processed on the Blazer620, and
each pair must be inspected. The times required for these two processes for
each shoe type are specified in Table 6.1.

There are 90 hours of Blazer620 time available for assembly of these shoes
next month. Not all of the hours must be used, but no more than 90 can be

Table 6.1. Requirements Specifications for a Production
Planning Example

Shoe Type

Basic Track Trail
Production Method (min/pair) (min/pair) (min/pair)

Blazer620 6.75 4.80 6.00
Inspection Area 15.30 17.40 14.25

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.1 Optimization with Solver 129

Table 6.2. Cost and Revenue Details for a Production
Planning Example

Shoe Type

Basic Track Trail
($/pair) ($/pair) ($/pair)

Revenue 23.85 19.88 18.00
Material cost 7.80 7.34 6.30
Direct production cost 3.03 3.14 2.79
Profit Margin 13.02 9.41 8.91

used. The inspection team has 125 hours available for testing these products
next month.

The accounting department at RunFast has provided the production cost
per hour of $9.75 for using the Blazer620. This cost should be considered in
this decision. Likewise, the direct labor cost for the inspection team is $0.23
per minute. The revenue and overall profit that each pair generates and the
cost of the materials used in each pair are specified in Table 6.2.

RunFast is known for its high-quality products and special testing of each
pair of shoes. RunFast faces tremendous demand for its products, and is
confident it can sell every pair at the given prices. There is one catch: One of
RunFast’s largest customers has already placed an order for 30 pairs of the
track shoes to be delivered next month.

The marketing department wants to ensure that RunFast maintains a full
product line to stave off the competition from encroaching on its territory,
and has requested that at least one pair of trail shoes be produced for every 10
basic pairs that are produced next month. We now formally state the decision
problem confronting RunFast:

Determine a production plan that specifies how many basic, trail, and track running
shoes to produce next month in order to maximize total monthly profit.

What constraints do we face?

a) Don’t use more than 90 hours of Blazer620 time.
b) Don’t use more than 120 hours of inspection time.
c) Do produce at least 30 pairs of track shoes.
d) Do produce at least one pair of trail shoes for every 10 basic pairs.

Figure 6.9 shows a structure that we might use to outline our decision
variables, and how they relate to the objectives and constraints we’re faced
with. Given the appropriate labeling of cells and cell ranges for reference
purposes, Figure 6.10 shows how we’d convey that information to Solver.
The solution Solver gives us is shown in Figure 6.11.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

130 The Analytics of Optimization

Figure 6.9. Structuring the production decision.

6.1.3 Example #3: Jumping Java, a Worker Staffing Problem

The Jumping Java coffee shop located on a local college campus is open 24
hours per day. The Jumping Java employs mostly students who enjoy the
flexibility of 4 hours shifts (6 per day). All shifts start at 4-hour intervals

Figure 6.10. Specification of the production objective, decisions, and constraints.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.1 Optimization with Solver 131

Figure 6.11. Solver’s suggested optimal production solution based on specification.

beginning at midnight. The minimum number of employees required in each
time interval over the 2-day cycle is given in Table 6.3. The table gives a
sample of the staffing requirements for 2 consecutive days (e.g., Monday and
Tuesday).

Note: In this example, we are assuming that these staffing requirements repeat every
two days. This is a major simplification, but useful to sufficiently demonstrate the
structure of the logic and overall nature of the model used. In reality, each day of the
week may have different staffing requirements.

Staff members can work either a 4- or 8-hour shift. Employees choosing to
work an 8-hour shift receive $13.50 per hour. Those working only a 4-hour
shift receive $12.75 per hour. The coffee shop also incurs an overhead cost
of $7.50 per person working either shift. Therefore, the total cost of having
one person work for 8 hours is (8 × 13.50) + 7.50 = $115.50. The total cost
of having one person work one 4-hour shift is (4 ×12.75) + 7.50 = $58.50. So
the question is: How many employees should be working in each time period
on each day to minimize total staffing costs (subject to minimum staffing
requirements)?

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

132 The Analytics of Optimization

Table 6.3. Details for an Employee Staffing Example

Minimum Number
of Employees

Day Shift Time Needed

Monday 1 (midnight – 4 a.m.) 4
Monday 2 (4 a.m. – 8 a.m.) 11
Monday 3 (8 a.m. – noon) 16
Monday 4 (noon – 4 p.m.) 21
Monday 5 (4 p.m. – 8 p.m.) 18
Monday 6 (8 p.m. – midnight) 8
Tuesday 1 (midnight – 4 a.m.) 3
Tuesday 2 (4 a.m. – 8 a.m.) 13
Tuesday 3 (8 a.m. – noon) 17
Tuesday 4 (noon – 4 p.m.) 22
Tuesday 5 (4 p.m. – 8 p.m.) 15
Tuesday 6 (8 p.m. – midnight) 11

In this particular problem, because there are two separate kinds of staffers
(4- and 8-hour-shift people), and because we are concerned with assigning
those staffers to specific time slots, the description of the decision variables
might seem a little more complex than in the previous examples. It would help
if we could design decision variables that would simplify the model regardless
of whether we were using a manual search or Solver.

The most straightforward definition might at first seem to be just deciding
on and keeping track of the number of people working in each of the time
intervals for each day. Unfortunately, if we only know the total number of
people (of a given shift type) working from midnight to 8 a.m., we don’t know
how many of these people are 8-hour employees and how many are four-hour
employees. Even if we kept track of 4- and 8-hour shift workers separately
for each time interval, we would not know how many 8-hour shift workers
were ending as opposed to beginning their shifts in that interval. We could
easily get confused in our policy using that approach.

To clarify the schedule and avoid this problem, we define variables that
tell us how many people of each type simply begin their shift in each time
interval. With this information, we can compute total employment costs as
well as determine the total number of people working in each of the 12 4-hour
time intervals.

Figure 6.12 shows how we might structure the problem in a spreadsheet
and in Solver. Figure 6.13 show what Solver gives us. Consider trying to come
to this solution through a manual trial-and-error approach. It’s nice to have
Solver.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 133

Figure 6.12. Spreadsheet construction and Solver set up for staffing problem.

6.2 Deeper Insights into Optimization Solutions

Although Solver can give us an optimal solution to a problem spelled out in
math form, often the specific details that we provide have some uncertainty
associated with them. Sometimes the fact is that the parameters we use in
specifying the problem are more like estimates than hard fact. To make a
problem simpler to solve, we sometimes exclude the possibility that we could
modify these parameters (albeit at some additional cost). Sometimes situa-
tions are simply subject to change – we might want to consider the implications
of such changes to the parameters assumed.

For example, in a hypothetical routing or facility location problem, on one
hand, we could start with an assumption that we have only four cities to work
with; but on the other hand we might assume we have the opportunity to con-
sider a six-city scenario to solve this problem if we’re willing to add in further
cost structure. In a different management problem, we could assume workers
work at a particular pace; or we could assume the possibility of increasing
that pace (at cost) and see how Solver’s solution to our problem changes. All
of this might alter obstacles that could be preventing us from doing better in
our objective, that is, altering certain constraints of the problem can have a
significant impact on how well we do.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

134 The Analytics of Optimization

Figure 6.13. Staffing solution suggested by Solver.

But not all issues listed as constraints end up having a major impact on
the solution that Solver provides. Those that do are referred to as binding
constraints. Those rules that are active but are less severe than binding con-
straints, and therefore don’t actually hold us back, are called non-binding.
The concept of a binding constraint is analogous to the concept of a bottle-
neck in operations management. Bottlenecks are always the key elements
that hold us back, even if other rules simultaneously apply. Managers are (or
at least should be) always trying to find ways to break down bottlenecks, and
find new ones to tackle. When bottlenecks (binding constraints) are broken,
we expect other limitations (originally non-binding constraints) to take their
place (i.e., essentially become binding in turn). Make sense?

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 135

Figure 6.14. Facts relevant to the Fashion Denim case.

Solver provides a few handy mechanisms for describing which specific con-
straints in a problem are binding, how much they can be modified (presumably
at some cost) before becoming non-binding, and to what degree other cur-
rently non-binding constraints can be modified (often at some marketable
gain) before becoming binding themselves. We’re going to focus on the inter-
pretation of the most straightforward tool: Answer Reports.

Answer Reports from Solver specifically tell us which constraints are bind-
ing. It does so by reporting specifically on cell references involved in the
problem, that is, cells containing decision variables (and implied decisions
based on those) and the cells that contain the limits to which those decisions
are subject.

6.2.1 Example #4: Fashion Denim, Inc.

Fashion Denim is a designer jeans manufacturer that currently produces all of
their goods in the United States. To cut costs, Fashion Denim is considering
sourcing some of its materials from overseas for next month’s production.
Three of the major raw materials used in jeans manufacturing (cotton, zippers,
dye) as well as how much of each material is available is shown in Figure 6.14.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

136 The Analytics of Optimization

Figure 6.15. Possible spreadsheet structuring of purchasing problem.

In addition, the procurement costs of each material from the United States
and overseas are shown.

Next month, Fashion Denim wants to produce 100,000 pairs of jeans. The
raw material requirements for this plan are as follows:

Cotton (yards): 300,000
Zippers: 100,000
Indigo dye (ounces): 25,000

Comparing this to the total amount of components available, this goal
seems generally achievable. However, given high import tariffs on certain
goods purchased overseas, Fashion Denim needs to limit the quantity of
zippers and dye imported to 50,000 and 1,500 respectively.

What portion of materials should Fashion Denim acquire from the United
States and overseas to minimize the total cost, meet production requirements,
and limit import tariffs? To find the answer, we might set up the problem
as shown in Figure 6.15. Solver gives us the solution shown in Figure 6.16
(when specified appropriately). But before it does it also asks us what kinds

Figure 6.16. Solution to purchasing problem by Solver.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 137

Figure 6.17. The Answer Report option.

of reports we might be interested in. Figure 6.17 shows what happens if we
select Answer in the Report scroll box. Figure 6.18 shows what we’d get on a
separate tab.

We could figure most of this information from the solution provided, but
it’s explicit in the report. Solver is basically telling us the only potentially
alterable constraints that critically bind our decision. Keep in mind that inte-
ger constraints are always binding. We might ask what the situation would
be if import tariffs were eased on zippers (which would essentially break the
binding nature of this constraint).

If we eliminated that constraint entirely Figure 6.16 shows what we’d get.
This is good news because our total cost drops to $41,790.

Sometimes binding constraints are only slightly more severe than the non-
binding constraints that exist below them. Real added gains often require the
consideration of a series of calculated changes.

6.2.2 Example #5: Lobo’s Cantina Layout Design

Lobo’s Cantina is considering a redesign of its current layout with the interest
of generating a higher profit margin while still catering to desires of its target
market. It currently has a total area of 30 feet by 60 feet (1,800 square feet)
to work with. The owner realizes that for everything to work together, he
will need to consider a variety of implied service and operating requirements
in making a decision. The space needs to house its dining area, bar, kitchen,
wash area, restrooms, storage, and host stations that include both the greeting
station and the rear cashiers.

While the owner has considerable freedom in terms of how to specifically
layout each area to provide for an aesthetic look, he does have to follow some
rational rules in making the initial space division decisions. For example, if he
plans to devote a large area of the floor to dining, he will want to make sure
that he has enough kitchen and wash capacity to meet the implied demands

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

138 The Analytics of Optimization

Figure 6.18. Sample output of the Answer Report.

of a population seated in that area. Demands for kitchen work (and thus
requirements for kitchen space) will decrease as the size of the bar increases.
Implied storage requirements (and storage space) will change depending on
how much the restaurant is focused on bar service, as will restroom designs
and the need for host stations.

The following is a breakdown of the assumed restrictions with which the
restaurant owner is dealing.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 139

Figure 6.19. Alternate solution after eliminating a binding constraint.

Fundamental Seating Dimensions:
Tables designed to seat four take up 24 square feet of space.
Tables designed to seat two take up 8 square feet of space.
Any seat at the bar (+ bar counter space) takes up 5 square feet.

Additional Requirements:
There must be at least one greeting station that takes up a minimum of 20 square

feet. Each host station is expected to provide enough capacity for handling
24 individual tables at most. Each additional host accommodation requires an
additional 20 square feet of space.

There must be at least one rear cashier station (taking up 10 square feet of space).
Because bar customers pay at the bar, there is no need for rear cashier service. In
other words, the need for additional rear cashiers depends only on the amount
of dining volume anticipated. Each rear cashier is thought to be able to handle
work for up to 20 tables in use.

Minimum kitchen amenities begin with a required 40 square feet of space. Every
additional 20 chairs in dining translates into approximately another 5 square
feet in the kitchen. However, the current building and sewage code does not
allow for a total kitchen capacity beyond 400 square feet.

Minimum cleaning amenities require a minimum of 20 square feet of space.
Another 5 square feet of kitchen space is needed for every additional 40 chairs
in the dining area or the bar,. Building and sewage codes limit this total space
to 200 square feet.

The storage room must be at least 30 feet square. Because of inventory manage-
ment policies, the restaurant tends to buy alcohol less frequently than food,
which it obtains throughout the day from neighboring markets; therefore, each
additional seat at the bar increases the storage needs by 1 square foot, while
every four seats in the dining area does the same.

Lastly, there must be one male and one female restroom. Each must have a total
of 40 square feet to provide the minimal functionality (one sink and “cham-
ber” per restroom). Each additional chamber adds another 15 square feet.
The total number of chambers needed in each restroom should be based on
expected average need at any given point in time. The forecast the restaurant

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

140 The Analytics of Optimization

will use to derive this total is: number of chambers per restroom must be at least
equal to:

(# bar seats)/30 + (# dining seats)/60

The sewage code allows for a maximum of 5 chambers for each restroom.

Profitability and Market Issues:
The owner believes that the average profit his restaurant can generate per dining

seat over the course of a day is $340 for the two-seat tables ($400 for the four-
seat tables, which are more likely to spend on appetizers), but $560 per average
bar seat. However, he is concerned that an excessive bar space might damage
the image that it attempts to promote to its overall market segment (consisting
of customers who might be attracted to either the bar or seated dining on any
given day). With that in mind, he wants to make sure that the bar area never
takes up more than half the area specific to dining. If we want Solver to help us,
we’ll have to translate those specifications into something more formulaic.

Constraints in brief:
The number of greeting stations must be at least ((# of two- and four-seat

tables combined)/24); total greeting station space will equal (# of greeting sta-
tions × 20).

The number of cashier stations must be at least ((# of two-and four-seat tables
combined)/20); total cashier space will be equal to (# of cashier stations × 10).

The kitchen space should be at least (40 + (5 × ((two- seat tables × 2) + (four-seat
tables × 4))/20)); total cannot exceed 400.

The kitchen space should be at least (20 + (5 × ((two-seat tables × 2) + (four-seat
tables × 4)) + bar seats)/40)); total cannot exceed 300.

The storage space should be at least equal to (1 × ((two-seat tables × 2) + (four-
seat tables × 4)) + (5 × bar seats)); the minimum size of this space is 30 square
feet.

Total number of “chambers” should be at least ((2 × (bar seats/30) + ((two-seat
tables × 2)/60) + ((four-seat tables × 4)/60))); total restroom space should be
equal to ((25+25) + (15 × (number of chambers))).

Total area taken up by bar can’t be more than half the area taken up by dining.

Figure 6.20 shows an example of how we might structure the various deci-
sions and their relationships to profitability and the functional requirements
spelled out in this problem in spreadsheet form. (All constraints and rela-
tionships are built in here as in earlier examples.)

Again, if we’re using Solver, we’ll need to spell out what cells represent
decisions and what cell relationships represent constraints. With the appro-
priate, meaningful cell labeling, we might have the results shown in Figure
6.21 in Solver (lots of constraints here; only a subset is shown in the figure).
And if we use this set of constraints, Figure 6.22 show the results from Solver.

Let’s do this once again, omitting integer restrictions that can provide for
dubious solutions. (I doubt anyone would feel comfortable using a quarter

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 141

Figure 6.20. Possible spreadsheet set up for layout example.

Figure 6.21. Example Solver specification for layout example.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

142 The Analytics of Optimization

Figure 6.22. Initial solution to layout example.

side of a toilet). So we add appropriate integer specifications and get what’s
shown in Figure 6.23.

That’s more like it, but a very different solution seating-wise than that
previously suggested. Again, integer constraints can have a major impact on
the general nature of a solution.

6.2.2.1 Interpreting Results

Take another look at the Answer Report generated in Figure 6.24. Again,
Solver’s labeling in these reports leaves something to be desired, but we get
a general idea that we can make better sense of on closer investigation.

Re-phrasing and omission of variables over which we don’t have much
control (e.g., integer constraints) provides us with the results in Figure 6.25 in
which the relative slackness of constraints are ranked from least to greatest.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 143

Figure 6.23. Solution integrating meaningful integer constraints.

Now we have a better impression of what’s holding us back from doing
better, where our next greatest challenges may lay, and where excessive slack
might provide other implications on how we use resources.

Interestingly, while we come close to the limits of several of the rules,
the only one that is truly binding, aside from the integer limits, is the min-
imum chamber requirements. (We actually have a little slack on the use of
cashier stations, too.) In reality this constraint works in tandem with the total
area requirement. We have additional space, but adding even one more seat
would increase the restroom size requirements beyond the space available.
Oddly enough, coming up with some way of reducing the per-chamber size
can impact our solution; reducing it to 14 square feet allows full use of our
total space (now a binding constraint) with greater profit (about $500 more)
without major changes in our overall solution. A change to a chamber size

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

144 The Analytics of Optimization

Figure 6.24. Answer Report for layout problem.

of 12 square feet has a huge impact on our design (no more four-seat tables,
but another $1,000 or so profit; and now the binding constraint is the sewage
ordinance).

Another feature that the Answer Report provides is a summary of which
constraints seem to be the least binding in a given scenario. The two most slack
constraints in the original integer solution are those relating to the building
code limits on the kitchen and cleaning spaces. A manager might ask, “If
we’re so far below our maximum allocations, could we sell the rights to such
allocations to another neighboring firm?” (Perhaps one that finds such limits

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 145

Figure 6.25. Pareto examination of constraints (binding and non-binding).

to be currently restrictive). Furthermore the implied requirements of the
cashier station are more than fulfilled by the number of stations we have in the
original integer solution. One implication might be that of underutilization.
A manager might then ask, “Could these stations be used for other activities
as well?” (This makes sense, particularly if they are multipurpose computers
and not just mechanical cash registers.)

The use of a Pareto chart in the last example shows how we can link the
analysis provided by an automated decision generation engine (Solver) to
a graphically meaningful depiction that a variety of managers might use in
long-term planning. But there are still more striking examples of how one
might present the findings drawn from the sensitivity analysis of optimized
solutions.

6.2.3 Example #6: Strategic Focus for Investment Firms

A financial services firm currently provides six kinds of investment packages
for its clientele: Debt Payment, College Fund, Small Business, Retirement,
Second Home, and Rapid Growth. The development of any one of these
investment packages involves some level of the following activities:

needs assessment
asset specification
analysis
option construction
consultation

Based on the specializations of its workforces, number of hours needed to
complete each of these activities differs for each package offered, as shown

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

146 The Analytics of Optimization

Figure 6.26. Spreadsheet set up for financial strategy example.

in Figure 6.26. Again, based on its workforce, the firm recognizes that real-
istically (at least in the mid-term) it probably only has a limited level of
available hours for work in these various activities over the course of a year.
These limits are also provided in Figure 6.26.

At the same time, forecasts suggest that the profitability of each pack-
age could remain at the steady estimates shown during such a term. Due to
changes in the market for these packages, the firm has decided to consoli-
date and focus only on a subset of these offerings. Given the numbers, how
should the firm refocus its labor hours to maximize its total profit-generation
capability? If it were to seek out additional labor-hour availability, what kind
of skill sets should it focus on?

Let’s start with Solver’s initial solution to this problem, shown in Figure 6.27
(assuming at this point we can set it up appropriately in a spreadsheet).

Looking at the total hours used, we can already get an impression of what
labor constraints are truly binding here. But we can also ask for that info in
Answer Report form (Figure 6.28).

I’ve shaded those constraints that we really have little hope of changing
(i.e., those that ensure we don’t pursue “negative” volumes of certain ser-
vice packages). The three labor-hour constraints that seem to restrict our
profitability therefore relate to Needs Assessment, Asset Specification, and
Personal Consultation activities.

Because the three packages that Solver suggests focusing on are Small
Business, Rapid Growth, and Second Home, the firm might want to con-
sider how sensitive its profitability is to various changes in volume (perhaps

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 147

Figure 6.27. Solver’s solution for financial strategy example.

market driven), if it decides to focus on these three offerings, and what role the
constraints play in this sensitivity. I’ve used an alternative approach to graph-
ically depicting the critical impacts of constraints. Rather than demonstrating
the areas of slack/underutilization as in the Pareto chart of the restaurant
example, Figure 6.29 shows how profitability changes with different levels of
labor devoted to two of the three suggested packages (keeping the volume
of Second Home package work constant).

Ultimately it’s just a 3-D surface plot viewed from top down with lighter
shades of gray depicting greater profitability. Obviously, higher levels of work
on both types of packages would generate greater total profit, but we are

Figure 6.28. Answer Report for financial strategy example.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

148 The Analytics of Optimization

Figure 6.29. Performance landscape as a function of two key decisions.

constrained by labor. We can’t consider total workloads beyond certain limits
(depicted by the black area in all but the lower left of the graph).

The border between what’s possible (or feasible) and what isn’t essentially
shows us the impact of multiple constraints on our decision all at the same
time. Because I set up this graph so that you can turn off each constraint, we
can see how individual constraints alone impact our decision making. Fig-
ure 6.30 shows the impact of only the Needs Assessment labor constraint.

Figure 6.31 shows similar plots for the other two binding constraints, each
in isolation. It is obvious that the presence of only one of the constraints
would allow for higher profit levels (perhaps much higher).

One of the more important things that we might learn from this graphical
depiction is that although the Needs Assessment labor constraint is officially

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

6.2 Deeper Insights into Optimization Solutions 149

Figure 6.30. Impact of the Needs Assessment labor constraint.

Figure 6.31. Impact of Asset Specification and Personal Consultation labor con-
straints.

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

150 The Analytics of Optimization

Figure 6.32. Compound impact of three constraints (feasibility frontiers).

binding at the optimal solution level, it doesn’t have that much of an impact
beyond what the other two constraints already create. Figure 6.32 shows
three constraint borders superimposed on the general constraints shown in
Figure 6.29.

In this particular case, each of these frontiers intersects at the same point,
which happens to be the point of profit maximization. As suggested by the
prior plots, there are probably areas of higher profitability beyond this point,
and all three constraints could independently limit such pursuits; however,
the kinds of limitations imposed by the Needs Assessment constraint are
already defined if the other two constraints are active. Efforts to eliminate
the Needs Assessment constraint after the suggested service consolidation
(perhaps through additional training programs that allowed the firm’s staff to
conduct such activities in a more time-efficient manner), probably wouldn’t
have much of an impact on profitability. On the other hand, eliminating one
of the other constraints might have a sizeable impact. This is exactly the
kind of conclusion that’s not easy to get at by simply viewing the nature of
managerial prospects by initial reports alone.

PRACTICE PROBLEMS

Practice 6.1

A Fortune 500 company needs to hire a group of consultants from Just Right Consult-
ing to assist with a large technology rollout that will require 24-hour, 7-days-per-week

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

Practice Problems 151

Table 6.4. Details Associated with Consultant Staffing Example

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Consultants 9 18 15 18 15 15 15
needed

support. The day is divided into eight-hour shifts. The total number of consultants
required during the day shift is shown in Table 6.4.

The client would like to minimize the labor costs associated with staffing the
project. Consultants from Just Right work five days a week, and are entitled to
two consecutive days off each week. We know there are only seven ways that each
consultant can have two consecutive days off, with each break starting on a differ-
ent day of the week (staggered approach). One straightforward way to structure the
problem is to determine how many consultants of each break type to have staffed
each day.

One twist in the problem is that any consultant required to work on Saturday
receives an additional 5 percent of overtime pay (think of their current pay level as
100%), while those that require work on Sunday require an additional 7 percent of
overtime pay. This will undoubtedly result in a tendency to avoid excess weekend
scheduling whenever possible.

Determine how many consultants of each break type (i.e., beginning their two-
day break on a specific day) would be needed to at least cover the demand, while
trying the keep the total cost (again accounting for weekend premiums) as low as
possible.

Practice 6.2

Fun Viewing Inc. is a new television network that has become extremely popular
in recent months. Fun Viewing is trying to decide which TV shows to air during
the Fall lineup. The creative staff has worked tirelessly reviewing market research
reports to give Fun Viewing an idea of how profitable each show will be (based on the
number of viewers, ad sales, competing shows, and so on). Fun Viewing has allocated
$28,000 for new TV shows. The objective is to generate the highest possible return
on investment.

Eight scripts have been reviewed and deemed worthy to air on the network. Ta-
ble 6.5 specifies the estimated ROI (return on investment) for each of these shows.

If a script is chosen, at least $700 must be allocated to developing the show. To
maintain a variety of shows, the board of directors has stipulated that at most $7,000
can be invested in any project. A show’s total return is the product of its ROI and
the amount invested in the show.

Table 6.5. Details Associated with TV Script Selection Example

Show# 1 2 3 4 5 6 7 8

ROI 7% 9% 4% 25% 21% 14% 8% 16%

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

152 The Analytics of Optimization

The decision to finance some shows cannot be made independently of other funding
decisions. The following constraints must be met:

Show 2 can’t be pursued unless
Show 1 is

Show 4 can’t be pursued unless Show 3 is

Show 3 can’t be pursued unless
Show 1 is

If Show 6 is funded, so MUST Show 7 (and
vice-versa)

Show 4 can’t be pursued unless
Show 2 is

Shows 5 and 6 cannot be funded at the same
time

Determine which shows to invest in (1=yes, 0=no), and how much to invest in
each so as to maximize the total ROI of the resulting portfolio of TV shows (subject
to the rules outlined in the previous chart).

Practice 6.3

Art Share is a shipping company that specializes solely in the transportation of fine
art to and from museums around the world. The majority of the art is part of a French
Impressionist traveling exhibit (from the Louvre in Paris) that is transported from one
city to the next. Due to space issues, different museums have different requirements
for the number of paintings to be displayed in each exhibit. Unfortunately, this means
that most of the paintings in the exhibit travel in pieces and are not always at the
desired location when needed. In fact, each month, there are usually seven too many
paintings in Paris, eight in London, and four in New York. In addition, there are three
too few paintings in Prague, and six in Stockholm. Art Share wants to determine
how to redistribute paintings from those locations with an excess number to those
locations with shortages, and it wants to do this at the lowest cost possible.

Table 6.6 shows the costs to transport one painting directly from one city (in the left
column) to another (in the top row). In this table, the significantly higher cost figures
of 999 are there to reference routes that the company does not want to consider (liabil-
ity issues). The possibility of indirectly redistributing a painting should also be consid-
ered (e.g., moving from one city to another and then on to a final destination). In some
cases (Paris to London to New York vs. Paris to New York, for example), indirect

Table 6.6. Details Associated with Transportation Example

To:

Redistribution
Costs Paris Prague London Stockholm

New
York

Demand
(“Supply”
if “-”)

From: Paris 999 13 17 999 16 −7
Prague 14 999 999 19 12 3
London 18 999 999 16 999 −8
Stockholm 999 999 17 999 19 6
New York 999 13 999 18 999 −4

P1: KDD
9780521889056c06 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 15:57

Practice Problems 153

Table 6.7. Details Associated with Football Fanatics Example

Labor (hours/football)
Material Requirements

(gram/football)

Revenue Cut Assemble Rubber Leather Stitching

Pro Player 55 0.3 0.5 250 200 60
College Canon 48 0.2 0.4 225 180 50
Pee Wee 30 0.1 0.3 150 100 40

Max Available 40 100 35,000 28,000 5,000
Cost issues 15 20 0.02 0.05 0.03

[$ /hour] [$ /gram]

routing may actually make indirect transfers more cost effective (taxes, insurance,
and so on).

How many paintings should it move from one city to another to fill current deficits
and eliminate existing surpluses in the various cities, all at least cost?

Practice 6.4

Football Fanatics, Inc. makes three types of footballs – the Pee Wee, the College
Canon, and the Pro Player. The labor and materials requirements for each football
are shown in Table 6.7 with information regarding the maximum amount of labor
hours available (for a given activity) and the maximum amount of each material
available.

The firm purchases only as much of the three materials (rubber, leather, and stitch-
ing) as it uses at the prices shown in the table. It wants the Pro Player to comprise at
least 10 percent of all the footballs it produces and sells. In addition, the number of
Pro Player and College Canon footballs (in total) must not be more than 50 percent
of the total number of footballs produced and sold.

How many of each type of football should be produced to maximize its profits, sub-
ject to the availability and sales-planning constraints given? Which input constraint
appears to be most limiting? How does this result differ when integer decisions (i.e.,
whole numbers of footballs) are no longer assumed necessary for planning estimates?

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7

Complex Optimization

As an extension to the discussion of Chapter 6, it’s relevant at this point to
reconsider how a feature such as Solver comes up with a solution. Although
it’s not necessarily critical for developers to understand the detailed tech-
nicalities of these packaged programs, any developer worth his or her salt
should at least understand the limitations of these algorithms.

7.1 How Solver “Solves”

Many people use Solver with the expectation that it can find the optimal
solution for any kind of problem (of reasonable size). But even small prob-
lems can have their nuances that make the job of the standard Solver add-in
extremely difficult, and the resulting solutions prone to poor performance
(substantially less-than-optimal managerial recommendations). One of the
mechanisms that engines such as Solver commonly use to search for optimal
solutions is a hill-climbing algorithm. In reality, this is just another heuristic
(as discussed in Chapter 5). It starts with a guess for what the solution might be
and then sees if small changes to any of the decision variables of that solution
can result in better value for the objective function, subject to constraints.

Hill-climbing algorithms typically look into only one solution at a time. For
example, consider the following hypothetical performance surface (where
performance along the z-axis is some function of the two decision variables
X and Y). In Figure 7.1, a shaded dot represents a possible solution, one
that at this point appears to be less than ideal. From a local perspective, it
certainly doesn’t represent the apparent peak value of Z attainable (shown
by an ellipse).

7.1.1 Problems with Multimodality

From Figure 7.1, we get a visual impression of the objective landscape or
terrain over which possible decision options may reside. Based on our limited
view of this landscape, we might immediately conclude that the best decision

154

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.1 How Solver “Solves” 155

Figure 7.1. Hill-climbing active in a nonlinear frontier.

exists at the top of the hill. This immediacy is the result of the availability of
the graphic visualization of this terrain as well as our ability to interpret it. This
does not typically represent the starting condition of a computer algorithm
such as Solver, charged with delivering an optimal solution. Instead, such
algorithms are more or less restricted to information on the most recent
solution considered (starting with the solution it was initially provided) and
the nature of the terrain only incrementally around it. It will pursue changes
in the solution that improve upon the current objective (i.e., climb a hill) and
then stop when it gets to a point where it can’t make any more improvements
(i.e., at the peak) but it doesn’t recognize that as the best solution until it is
actually there.

This seems simple enough; however, we can get into some pretty serious
problems with this approach when performance landscapes are more com-
plex. Depending on where our first guess is, we might essentially climb the
wrong hill (one that’s not the highest overall). Even we, as visual observers
and integrators, might make such a mistake if we were limited in our overall
view of the landscape shown in Figure 7.1 as opposed to a more global view
shown in Figure 7.2.

In such cases, the algorithm provides us with what we call a local opti-
mum, whereas the global optimum (best solution, represented by the shaded
dot above the ellipse) eludes it. Because the standard Solver uses such an
approach to handle non-linear objective functions in optimization, problems
with more than one peak may be impossible for Solver to solve well – or at
least impossible for Solver to guarantee us that it has provided us with the
best option available.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

156 Complex Optimization

Figure 7.2. Hill-climbing stopped at a local peak, missing global optimum.

Is this something to be concerned with? Do difficult objectives and decision
terrains really exist in practice that would make a reliance on hill-climbing
algorithms alone problematic?

Marketing example: Demand is often dependent on price. If revenue is a multi-
plicative function of both demand and price, it’s going to be nonlinearly related
to the price decision. Beyond this, demand for one good often impacts demand
for others that are either complements or alternatives. Therefore, when faced
with multigood pricing decisions, the objective landscape for expected revenue
may have many distinct peaks.

Finance example: Think about all of the complex calculations financial planners
have to deal with on a regular basis, beginning with even some of the simplest
like NPV. Nonlinearity typically pervades their work. In cases where complex
portfolio management decisions need to be made, particularly when the perfor-
mances of options are thought to be interrelated, it is difficult to simply assume
single peak dynamics automatically apply. More to the point, making such an
assumption and relying on a hill-climbing approach cannot only result in sub-
optimal decision, but will reduce the overall value provided by such analysts.

7.1.2 Problems with Discontinuity

Complex nonlinearities in themselves aren’t the only bane of simple optimiza-
tion mechanisms. Solver’s approach also expects that the objective function
for which you are trying to develop a set of decisions is a continuous one,
not choppy, subdivided, or staggered (Figure 7.3). If your objective model
includes elements such as IF statements or LOOKUP values, or relies on

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 157

Figure 7.3. Hill-climbing efforts further complicated by discontinuity.

noisy, real-time data, Solver really has its work cut out for it; however, don’t
bet on getting a great solution in such cases!

As a simple thought experiment, consider a firm that makes and ships a
bunch of items over the course of a week (e.g., 12,500 low-end wrist watches).
Say that the total cost to run that operation is $28,125. Let’s say we want to
reduce how many watches we produce. If we produce only one watch, would
we assume it would cost us just $2.25 ($28,125/12,500) to run that kind of
operation? Of course not. We assume that there are fixed costs that don’t
diminish as a function of scale in most organizations. Furthermore, in many
cases organizations gain from nonlinear economies of scale due in part to
efficiencies gained by processing (buying, assembling, shipping, etc.) in bulk.
Whenever decision variables (e.g., how much to produce in this case) have
a nonlinear impact on objectives (e.g., maximization of profit), the task of
coming up with good solutions becomes more complex.

With multiple and distinct nonlinearities, as well as conditional dependen-
cies (e.g., often bulk purchase rates are adjusted not on a continuous scale but
on a tiered scale such as $0.5/unit for 0–99 units of raw materials, $0.35/unit
for 100–499), problems are even more complex and harder to solve.

7.2 The Benefit of Alternate Optimization Options

As a buildup to more effective approaches to complex optimization, let’s
further scrutinize the capabilities of the hill-climbing algorithm through a
full-blown numerical example.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

158 Complex Optimization

Figure 7.4. Five-city traveling salesman scenario.

7.2.1 Problems with Vehicle Routing

The classic Traveling Salesman/Vehicle Routing problem is the same one
we introduced when talking about heuristics in Chapter 5. It’s a tough one
to solve, especially when there are a large number of sites to visit. It’s worth
noting that this is essentially a “sequencing” problem, and although it is often
applied to routing, it has similar applications in work scheduling (what to
work on first), investment planning (where to transfer cash to next), training
(what sequence of skills should be taught and in what order), marketing
(what sequence of marketing activities will yield the best results), and so on.
Because we’re already familiar with this setting, we’ll stick to the routing case.
Figure 7.4 shows five cities.

As with many problems, there are multiple ways to structure the decision-
making framework. I have two approaches provided in the document
TravelingSalesman.xls. Figure 7.5 shows an image of the first approach.

I’m using both city names and reference numbers (Ref #s) to refer to the
sites along the route. I have a matrix that approximates travel distance based
on straight-line distances (I could change that, but there’s no reason to for
this example). Although appearing in gray scale in this text the available
workbook in which this is developed contains color demarkations for clarity.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 159

Figure 7.5. One approach to traveling salesman problem setup.

For example, in the worksheet in blue (gray in text) I show the decision
variables; in this case, they answer the following questions: “For a specific
city will it appear in the route first? Second? Third? Fourth? Fifth?”

Those 1s and 0s basically represent true or false. The row below those
decisions provides the sum of the (0,1) decisions above it. Because exactly
one of the cities should be visited first, and only one should be visited second,
that lower blue row should be all 1s. Similarly, the column to the right of that
table is the sum of all (0,1) decisions to the left of it. Because each city must
be visited exactly once, those sums should also be all 1s. Rather than create
a formal constraint in this case, I’m going to create a heavy penalty for any
attempted solution that breaks these rules (one that the computer will try to
avoid in minimizing total travel cost).

The numbers in shaded gray depict the actual routing sequence based on
all those (0,1) decisions. I could try to use Solver to come up with an optimal
solution, trying to minimize total travel cost (which includes that penalty
function) by changing the decisions in the blue box. The necessary constraint
is that those decisions must be (0,1) or binary in nature. Unfortunately, the
relationship between the objective and the decision variables is far from a
simple linear solution. If I try to use Solver (with target cell of P21, changing
cells I13:M17, and subject to I13:M17=binary), Figure 7.6 shows
what I get. In other words, Solver doesn’t suggest a change in the solution,
although we know visually that better solutions exist.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

160 Complex Optimization

Figure 7.6. Solution provided by Solver for traveling salesman problem (no change
from original).

Perhaps the real issue was in the way I decided to set up the problem for
Solver. Maybe I made it too tough for Solver to work with. Another approach,
although also problematic for Solver, is shown in Figure 7.7.

Here the decision variables are more direct. They answer the question
“What is the sequence of city reference numbers associated with the route?”
It’s just a sequenced list of city reference numbers. The only thing I have to
ensure is that each city appears exactly once in this five-stop sequence, which
is what I’m doing in the last column above using a COUNTIF statement.
Again I’m going to use a penalty function to help avoid situations where any
one city appears in the sequence more than once.

What do I get from Solver using this approach? Same thing as before.
Solver can’t devise how to improve the current solution.

With just five sites this really is not an extremely complex problem. Using
a heuristic (e.g., Nearest-Next), or just by visual inspection, we’d probably
be able to come up with good alternatives to the current solution. But Solver
doesn’t know how to think that way. When problems become much more
complex – for instance, 15 cities, or 30 cities, or more – we’re not going to
want to figure things out by visual inspection. And we may like to have an

Figure 7.7. Alternative approach to traveling salesman problem setup.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 161

Figure 7.8. RISKOptimizer interface access.

alternative mechanism that is more sophisticated, possibly more effective
than a heuristic to try to get to a good solution.

7.2.2 RISKOptimizer on Vehicle Routing

To get the job done we’ll be demonstrating the use of Palisades’ RISKOpti-
mizer package. As with XLStat, RISKOptimizer is a package that can func-
tion similarly to other standard add-ins in Excel. Its power in this case stems
from its capability to tackle complex optimization problems and come up
with good solutions by making use of what is referred to as a genetic algo-
rithm (discussed in greater depth in the chapter supplement). Basically, a
genetic algorithm starts by forming and considering a range of solutions to
an optimization problem, and then step by step (i.e., iteratively) expands and
discards sets of these solutions in an attempt to capitalize on the informa-
tion they each provide. New solutions for consideration are based in part on
the structure of good existing solutions (attempting to modify these towards
improvement of the objective function) and in part on some random num-
ber pulls (to help investigate areas of the solution terrain that may not have
been represented by earlier solutions). In this way, the best solution evolves
from often less prospective beginnings that would otherwise render a simple
hill-climbing algorithm useless.

Ensure first that the application is installed. To make the most out of this
application, open the program called @Risk followed by the associated pro-
gram RISKOptimizer. (These are both Palisades products that come with
an installation of the Palisades suite and should be found in the Palisades
folder.) If asked about running macros, say yes in this case. When the pro-
gram opens it should look similar to what you typically see in Excel, except
for a variety of new tool icons under the Add-ins tab (see Figure 7.8). Many
of these tools provide statistical analysis similar to the capabilities of XLStat.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

162 Complex Optimization

Figure 7.9. Specifying objectives, decision variables, and constraints in RISKOpti-
mizer.

For now, however, we are interested only in approaches to solving complex
nonlinear optimization problems, and there are only a few specific tools in
which we’re particularly interested.

To demonstrate the use of RISKOptimizer’s genetic algorithm in optimiza-
tion, we’ll use the second traveling salesman/routing setup for illustration.
Make sure this file is open and then select the RISKOptimizer settings icon
(a double helix with a red distribution curve to its upper left).

A dialog box should appear. As with Solver, we need to first say what we
want to do. In this case, we want to minimize the total cost; located in P12).
And, as with Solver, we also need to specify where the decision variables are
(See Figure 7.9).

With RISKOptimizer, however, we’re given a more sophisticated interface
that allows us to actually help the computer approach the task we’re giving it.
In this interface we can essentially describe the nature of the sets of decisions
we want it to consider. And in this case we want it simply consider alternative
sequences or orderings (see Figure 7.10). That’s actually an option here, and
specifying this will help.

Other available solution mechanisms are better suited to other kinds of
problems. A summary of these methods are provide in Table 7.1.

With the appropriate solution mechanism selected, we can now specify the
decision variables – in this case, the cells in O4:O8.

RISKOptimizer actually takes into account the possibility that our problem
might have some uncertain (e.g., random) numbers built into it. Unless we tell
it otherwise, it’ll try to evaluate each solution it comes up with numerous times

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 163

Figure 7.10. Selection of solving method when specifying decision variables.

to create some typical performance level. We don’t have random numbers in
this case, so specify 1 iteration per evaluation (under RISKOptimizer Options
shown in Figure 7.11). We’ll get back to playing with this option more in
Chapter 9.

Figure 7.11. Specification of single iteration conditions on search.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

164 Complex Optimization

Table 7.1. Types of Solutions Approaches Available through RISKOptimizer

Method Type of Decisions Special Assumptions

Recipe Typically useful for decisions
that can take on continuous or
semi-continuous range of values.
Common for decisions involving
$ invested, hours allocated, #
resources used, etc.

None. Decisions may be varied
independently (s.t. constraint
feasibility/costs, e.g., bounds on
individual decisions)

Budget Decisions may be varied
independently, provided the
sum of all values is no greater
than some specified value (and
s.t. other constraint
feasibility/costs).

Order Typically for decisions that take
on ordinal or nominal meaning.
Order is common for vehicle
routing tasks; Project would be
common for project scheduling
tasks.

Each of the initial decision
values (e.g., 1, 2, 3, and 4; or
even 3.14, 2.31, and 2.41) used
exactly once in final solution
(only order is manipulated)

Project As with Order, with the
additional assumption that
some decisions must take on
smaller values than (i.e., come
before) others.

Grouping Typically for decisions that take
on nominal meaning. Grouping
would be common to cluster
analysis for example.

Only the initial decision values
(e.g., 1, 2, 3, and 4; or even 3.14,
2.31. and 2.41) can be assigned
to the decision variables.
Multiple variables will be
assigned the same value.

Schedule Schedule would be common to
appointment or independent
course scheduling tasks.

As with Grouping with
additional assumptions relating
to the maximum number
variables that can take on each
value, and (similar to Project)
any applicable precedent
constraints.

We’re now ready to let RISKOptimizer do its thing. Click on the Start
RISKOptimizer button (a right-pointing blue triangle, akin to a Play button).

RISKOptimizer shows the various solutions it develops (using its genetic
algorithm), and that shows changes in our mapping of the route. RISKOpti-
mizer quickly comes up with better solutions, shown in Figure 7.12.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 165

Figure 7.12. Solution derived by RISKOptimizer.

The one limitation is that RISKOptimizer doesn’t always know when to
stop trying, but that’s where that little red Stop button in the RISKOptimizer
controls comes in. We could also have chosen an additional option to stop
the search after, say, five minutes; we’ll talk more about this in Chapter 9.

Another useful feature of RISKOptimizer worth noting at this point –
particularly for those interested in getting a feel for how much progress is
being made toward better and better solutions as time goes on – is the Graph
Progress option. Checking this option (Figure 7.13) provides a graphical map-
ping of the objective function as it evolves with alternative better solutions
encountered. Through such a visual representation, an analyst may be able
to assess whether it is worth continuing the search for an appreciably greater
length of time, or whether a termination of the search can be made early on.

In a post-hoc sense, a similar capability is provided by the Log Simulation
Data option, which triggers a prompt for what kinds of rich summaries of the
search an analyst might be interested in after the search has terminated. A
demonstration of the nature of those data summaries is provided in the next
example.

7.2.3 RISKOptimizer on Cluster/Group Development

As suggested, RISKOptimizer is also capable of finding solutions for clus-
tering and grouping problems. We’ve already discussed the potential value

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

166 Complex Optimization

Figure 7.13. Output options in RISKOptimizer.

of cluster analysis in Chapter 5 and the Dodecha solutions case (which we’ll
get back to in the practice set later in this chapter). However, the ability
to develop meaningful clusters often transcends standard assumptions made
by statistics programs (e.g., that the best clustering solution minimizes the
ratio of within-to between-group variance). In practice, the objective of our
clustering may be much more idiosyncratic to our context and the perceived
interpretation of managers. Let’s consider an example with a very different
sort of objective function.

Imagine a scenario where a manager is given the task of breaking a work-
force up into four groups, each of which will be responsible for one of four
projects. Before assigning workers to project groups, the manager surveys
the workers to try to assess the contribution each worker thinks he or she can
make to each project group, and the level of satisfaction he or she thinks they
will get from working in each project group. Surveys responses range from 0
(low contribution/satisfaction) to 10 (high contribution/satisfaction).

Given an interest in both high levels of contribution and satisfaction, as
well as an interest in keeping group sizes relatively equal (making sure all
groups are composed of between 18 and 22 people), how should the manager
assign the workers? The workbook Chp7 WorkGroupSelection.xls sets up
this problem for us.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 167

Figure 7.14. Specification of workgroup formation problem in RISKOptimizer.

We’ll use RISKOptimizer on this one as before. Unlike the traveling sales-
man problem, which simply required RISKOptimizer to consider several dif-
ferent sequences of numbers, the problem structure here is less defined. We’re
trying to maximize the sum of perceived contributions and satisfaction levels,
while limiting group sizes to between 18 and 22 people. All RISKOptimizer
needs to do is assign workers to group 1, 2, 3, or 4 (so 80 decision variables,
each of which is an integer from 1 to 4). Because this is not a sequencing
problem, I’m going to ask RISKOptimizer to use the Grouping approach to
a genetic search for new solutions (Figure 7.14).

An alternative approach, also set up in the example workbook, is the poten-
tial use of a penalty function for group sizes outside the 18 to 22 range. These
penalties become part of the objective function (negative contributors). If the
penalties are appropriately designed (i.e., large enough to ensure the desired
group sizes), there shouldn’t be a need to explicitly designate constraints. The
approach often makes RISKOptimizer’s search a little easier, and is similar
to designating constraints as soft in RISKOptimizer.

Allowing RISKOptimizer to run for about one minute, the algorithm is
able to develop a grouping solution with an objective value of 1024 (vs. the
original 795). After two and a half minutes we’re at 1070. After 10 minutes,
we’re at 1087. Things don’t change much after that point. We might manually

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

168 Complex Optimization

Figure 7.15. Specification of search stopping conditions in RISKOptimizer.

stop the routine, or perhaps we could have been savvy enough to preset
stopping conditions as an option of the run. For example, Figure 7.15 shows
designating the amount of maximum search time in minutes or the degree
to which the objective solution appears stable (here the run is set to stop
if either the 15-minute mark is met, or very little change is observed in the
objective function of the last 20 valid solutions).

After any run is stopped, RISKOptimizer provides the option of giving
you a summary and log of all solutions it has considered up until the point at
which the search stops. This could be useful for you if you wanted to do further
analysis on other nearly as good solutions. My recommendation to you: Ask
only for reports on best solutions (Figure 7.16) unless you have a very strong
reason otherwise. The number of solutions considered by RISKOptimizer
over the course of 10 minutes is enormous, and simply the reporting of all of
these solutions (both great ones and very poor ones) is going to take up a lot
of time and space, often with little added value in analysis.

This is quite a bit of summary data. How could we use it to interpret the
effectiveness of our investigation? At the bare minimum, we could use the log
file to get a visual impression of how progress on getting better solutions was
being made, and perhaps to project how long it would take to get a solution
that yielded a specific target objective (performance) level. For example,

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 169

Figure 7.16. Sample output reports available from RISKOptimizer.

simply selecting the Elapsed time and Result columns, I could generate a
connected scatter plot to show how much of an improvement we were getting
the last 10 of the total 15 minutes that elapsed (Figure 7.17), which isn’t
much.

Not to say that there isn’t some fantastic solution we could have arrived at
by waiting another hour, but such an improvement definitely doesn’t appear
promising at the 15-minute mark. Don’t give up too early on a search process.
Extending the length of the examination is ultimately the analyst’s call, but
there is virtue in knowing how best to use one’s time.

7.2.4 RISKOptimizer on Schedule Development

As a last example of the kind of complex problem for which RISKOpti-
mizer might provide analysis strength, consider the task of developing a
schedule that outlines the sequence and potential simultaneity of the work
required for a large-scale project. Such projects typically consist of a series
of discernable steps, many of which cannot be started before work on other
steps is completed. The availability of individual project workers is an added
complexity. In many cases, some workers cannot easily handle more than
one step of a project at a time. Because of the costs of transferring in-
project experience from one worker to another, however, it is often beneficial

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

170 Complex Optimization

Figure 7.17. Improvements in search over time.

(if not necessary) to make sure that certain sets of steps are handled by the
same individual. Aside from the implied human resource and organizational
issues, such complex constraints on the decision-making process, coupled with
potential nonlinearities in the value of getting a project done both quickly
and at a high level of quality make project management a complicated duty
(see Figure 7.18).

The spreadsheet within which these facts are applied in developing rela-
tionships between the decision variables to whom to assign project steps,
and when to start them) and the objective (how much time total should
be expected for project completion) should also contain the mathemati-
cally codified forms of all relevant constraints (i.e., both precedent and no-
double-working rules). An example workbook that captures this is provided
in Chp7 ProjectScheduling. The main decision interface with a sample start
solution is shown in Figure 7.18.

Keep in mind that even RISKOptimizer may be sensitive to the nature of
starting solutions, especially as in this case when so many possible solutions
and discontinuities exist. The more thought you put in your initial solution

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

7.2 The Benefit of Alternate Optimization Options 171

Figure 7.18. Facts and rules critical to the project scheduling problem.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

172 Complex Optimization

Figure 7.19. Setup for project scheduling optimization.

based on what you know as a planner, the more algorithms like RISKOpti-
mizer will serve you.

In this case we’re specifying two kinds of decision-variable search methods:
recipe for the worker assignment, and schedule for the start dates. In truth,
this isn’t the best example of how the schedule was designed to work – it
actually is more useful when all project steps take both a fixed and equal
amount of time. However, because that it often not a luxury in the real world,
it is probably more helpful for you to be able to see a more realistic problem
getting solved.

In any event, and even starting with a reasonably intelligent starting solu-
tion, RISKOptimizer is still able to provide an improvement – from a starting
solution’s project completion time of 40 days to a project completion time of
34 days after about 6.5 minutes of search time. To help visualize any mean-
ingful changes in the solution, I’ve also included in this workbook a couple
of bar charts that have been customized to depict resulting solutions (i.e.,
as would Gantt charts common to project management). For contrast, Fig-
ure 7.20 shows what the initial solution in Figure 7.19 looks like in graphical
form.

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

Chapter 7 Supplement: A Primer on Genetic Algorithms 173

Figure 7.20. Before RISKOptimizer vs. after 6.5 minutes of search.

Visually, the modifications to the initial schedule suggested by RISKOpti-
mizer are clear and the benefit provided rather striking (a 10 percent reduc-
tion in project completion time can provide a significant cost saving while
potentially freeing resources up for other work).

As a final reminder, as valuable as graphical depictions of solutions can be,
they can appreciably slow down processing time. If you want RISKOptimizer
(or any other routine) to quickly run through a large number of solutions/
calculations, you might consider postponing graphing only until after each
search.

Chapter 7 Supplement: A Primer on Genetic Algorithms

Genetic Algorithms in General

As mentioned, genetic algorithms represent an alternative to search tactics
such as simple hill-climbing. They are based on at least two principles funda-
mental to biological science:

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

174 Complex Optimization

Figure 7.21. Reconsideration of complex objective terrains.

� Entities, scenarios, and solutions that do well in nature also tend to be replicated
in nature (i.e., “survival and progenation of the fittest”).

� For improvements in nature to develop, there must be opportunities present for
diversity. Such diversity is typically the result of either the intermingling of suffi-
ciently large populations, or the result of perturbations (mutations) that introduce
novel changes.

These same principles can be used to help analysts develop high-
performing solutions in the professional world.

Consider one of the more complex decision landscapes depicted in Fig-
ure 7.3 (here, as before, the global optimum is designated by a gray oval) (see
Figure 7.21). This is certainly a difficult problem for a simple hill-climbing
algorithm alone to solve. On the other hand, genetic approaches to solution
searches, driven by the principles stated in the above two points, operate

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

Chapter 7 Supplement: A Primer on Genetic Algorithms 175

Figure 7.22. Possible initial solution set used by a GA.

very differently and are generally not impeded by false signals relating to
local optima and complex nonlinearities (or certainly less prone to failure
than hill-climbing in such cases).

For a genetic algorithm (GA) to start its work, it needs to begin with an
initial pool of solution possibilities, an initial population in which traits are
often simply random. Some of these solutions will certainly be better than
others vis-à-vis the performance landscape. A starting population of eight
example solutions (gray scale dots) is depicted in Figure 7.22.

The next step allows the survival-of-the-fittest concept to kick in by elimi-
nating many of the poorer solutions (perhaps half). If our initial set consisted
of eight solutions, this first cut would bring our solution set down to four. To
reinforce the potential for future diversity and development, the algorithm
would then temporarily duplicate each of the four remaining solutions, bring-
ing the number of solutions back up to eight. We say temporarily because the
nature of these solutions are about to change considerably.

Again, drawing on the first natural principle, a random pairing of each
solution with another in that set of eight (four pairs of two) provides for
the foundation of a mechanism by which new solutions can be generated for
consideration. The generation mechanism itself requires that some of the
decision-variable values get swapped with those of the other partner. In
the case illustrated in Figure 7.22, this might involve the X values only, with
the Y values retained. This swapping activity is referred to as cross-over and

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

176 Complex Optimization

Figure 7.23. Possible first evolutionary iteration by a GA.

is akin to the passing along of a mix of genetic traits to offspring in nature.
The result is not only new solutions with mixed traits (i.e., X and Y values
in the graph), but also potentially novel performance characteristics (i.e., Z
values) based on those traits (see Figure 7.23).

Overall, this process will give us a new population of possible solutions
that may be very different from the initial set. Some of the new solutions
may be much worse than their parents, some equivalent; however, some may
be better – and that’s the important point because we’re going to repeat this
procedure, cutting out worse performers and basing the next generation off
of the best. If we allow the population to evolve (eliminating the worst and
then reproducing and swapping from the best) for yet another generation,
we might find further improvements in our solution set, some of which may
be very close to a globally optimal solution.

With only a fixed initial population and the cross-over mechanism, how-
ever, we’re going to hit some limits in the extent to which we can find better
solutions (i.e., at this point our gene pool is fairly limited). However, even
small gene pools are capable of seeking out and attaining globally optimal
solutions if we throw in the element of mutation. Along with the cross-over
mechanism, we could also pick a specific attribute (X or Y) in a solution and
randomly alter it in a way that creates something that cross-over would never
achieve by itself. The subsequent solution may put us in a position much
closer to the global optimum, or further away, but in any case it’s different

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

Chapter 7 Supplement: A Primer on Genetic Algorithms 177

Figure 7.24. Specifying solution population size in RISKOptimizer.

and its strengths and weaknesses as an alternate line of investigation will
become apparent to use in future generations.

GA Options in RISKOptimizer

RISKOptimizer uses both cross-over and mutation in its search for globally
optimal solutions to complex business problems. To make use of these mech-
anisms, and in accordance with the conceptual nature of genetic algorithms
just described, it will need to have available a set of alternative solutions from
which to draw (i.e., to develop next generation solutions). Analysts can spec-
ify the size of this pool in the RISKOptimizer Options dialog box, as shown
in Figure 7.24.

The specification of the size of the retained population (i.e., the gene pool)
can have a significant impact on the effectiveness and efficiency of the search.
Too small a pool can impair the development of novel superior solutions
because only a limited set of existing ideas are available upon which to draw.
Too large a pool can relate to the retention of too many inferior solutions
that can similarly distract from effective searchers. So, what’s a good pop-
ulation size? This is likely to differ for each and every problem type. The
problem is that early on, most analysts won’t know what that size is, and only
learn through experience running similar optimizations again and again. The
makers of RISKOptimizer do, however, suggest a population size of 30 to

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

178 Complex Optimization

Figure 7.25. Specifying evolutionary dynamics in RISKOptimizer.

100 for most problems, with bigger populations relevant for bigger problems
(i.e., those with large numbers of variables and more complex relationships
between those variables, constraints and the objective function).

As for the nature by which the solutions in this population are used toward
the search for still better solutions, RISKOptimizer also provides the means
by which to specify how certain decision variables are mixed and matched by
the GA and potentially subjected to mutation during the search. For any set
of decision variables (the settings can differ for different decision variables),
these options are available when the variables are initially specified or when
users elect to edit them in the RISKOptimizer interface (see Figure 7.25).

The cross-over rate specified in RISKOptimizer can be anything between
0.01 and 1.0. For any two solutions being used in cross-over to generate new
offspring solutions, a cross-over rate of 0.85 would mandate that 15 percent
of all decisions variables involved in a composite solution will be substituted
for during cross-over using other existing decision variable values (from the
partnering parent solution). In contrast, a cross-over rate of 0.5 suggests that
only half of existing decision variable values will be retained. A cross-over
rate of 1 essentially equates to zero cross-over (supposedly the generation of
new solutions are handled predominantly through mutation instead).

Of course the mutation rate is also modifiable and can be specified as any-
thing between 0.0 and 1.0. A mutation rate of 1.0 specifies that any individual
decision variable value in a composite solution involving multiple decisions

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

Practice Problems 179

to be made is subject to random modification for the generation of new solu-
tions. A mutation rate of 0.5 suggests that half of all decisions are subject to
random mutation, while 0.0 relates to zero mutation in new solution devel-
opment. The abundant use of a mutation rate also relates back to the specific
selection of population size. If new solutions are being generated largely by
mutation rather than cross-over, the need for large populations is reduced.
(Random mutations allow even relatively small genetic pools to evolve.)

PRACTICE PROBLEMS

Practice 7.1

Recall the application of cluster analysis to the Dodecha Solutions, Ltd. case. The
clustering algorithm used was a tool made available by XLStat. One of the implied
goals of the clustering algorithm was to minimize the ratio of within- to between-
group variation, subject to the constraint that we were interested in distinguishing
a total of four groups. The criteria for grouping (and the source of variation) were
eight higher-level factors that were derived through Principle Components Analysis
(PCA) conducted on an original set of 32 items.

Recognizing the semi-random nature of the grouping process (both in XLStat and
through RiskOptimizer’s genetic algorithm), attempt to replicate the groups derived
in the XLStat example. Using the data set from the Chp5 DodechaSolutions work-
book, compare how the resulting groups compare across the performance measures.
Can a similar story be told? Given our previous discussion in this chapter regarding
the implications of random features to the grouping process, what might any sig-
nificant differences imply for an analyst attempting to discriminate among project
types?

Practice 7.2

Recall the issues of randomness brought up in the clustering discussions of Chapter
5; the same kind of randomness inherent to XLStat’s search for groups applies here.
RISKOptimizer isn’t providing a complete search over 480 = 1.46 × 1048 solutions,
just an evolving series of smart guesses.

Try to make a major manual modification to the initial solution, making sure that
group sizes are still between 18 and 22. Look at the best solutions log and then
compare it to that derived in the example solution presented in this chapter. Are
similar objective function values obtained? Does convergence seem to occur much
earlier for one start solutions?

Try to develop a plot of best solutions at each of 10 second intervals with your
solutions on the Y and the example solutions on the X axis (i.e., organize the data so
that best solutions at each 10 second interval are outlined for comparison purposes,
then line up and plot the solutions corresponding to each interval). How could this
depiction help to describe the relevance of starting solutions?

P1: KDD
9780521889056c07 CUUS195/Bendoly 978 0 521 88905 6 May 5, 2008 14:12

180 Complex Optimization

Figure 7.26. Example summarization of clustering result distinctions.

Regardless of group number, how similar are the group constituencies derived at
the end of the two initial solution approaches? An example of how to depict this
might involve the use of a scatter plot for four separate series of data (designated
by the groups derived from the first best solution). Group membership from the first
approach might be graphed against that from the second set of runs, with a little jitter
added in. Perhaps something along the lines of that shown in Figure 7.26.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

Section 3

Leveraging Dynamic Analysis

181

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

182

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8

Controlled Simulation Analysis

We’ve talked about how difficult it can be to find or construct an optimal solu-
tion to real-world management problems – where we’re faced with nonlinear
relationships and constraints that make it difficult to predict how specific
decisions work together to impact performance. But in a certain way we’ve
continued to simplify these real-world problems. There may be some short-
comings in the approaches we take to finding solutions, but what about the
approaches we use to come up with the problems that we’re trying to solve?

When we create a mathematical form to represent reality so that we can
ultimately use analytics to provide a solution that might apply to reality,
are we missing something? And how much does that impact the real-world
applicability and effectiveness of the solution we develop?

These are critical questions for managers who want additional support in
their decision making. Project managers don’t want suggestions that come
out of inappropriate assumptions.

What steps can we take to help ensure that we are, in fact, providing appro-
priate characterizations of reality when we structure problems and make
sense of solutions? Although there are a lot of good places to start, one
obvious place is an attempt to take into account the uncertainty associated
with just about everything that takes place in the real world. In the prob-
lems we’ve examined in the last few chapters, we really haven’t dealt much
with this issue; instead we’ve assumed that certain elements of our decision
context are relatively fixed or constant, such as:

� the amount of demand we need to cover in the next few days
� the amount of time it takes a worker to serve a customer
� the nature of the transportation infrastructure (e.g., traffic) on which we base cost

and time estimates in routing
� the rate of return on stocks and other options in portfolio selection
� the actual cost to complete a project or new venture we may be considering (among

a set of other options)

183

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

184 Controlled Simulation Analysis

Figure 8.1. Pervasive role of the random number generation in simulation.

But in the back of our minds, do we really believe any of these are
constant? If the answer is no, we should probably look into the potential
impact that variation in these assumptions may have on the effectiveness of
any given solution relative to other solutions from which we might be able to
pick.

If we want to incorporate variation into our models, how do we do it? We
can start with the notion that most real-world data can be described not only
by a characteristic value (e.g., a mean) but also by a measure of uncertainty
(e.g., standard deviation). The ability to simply generate random numbers
based on those two kinds of information is a first critical step towards formally
incorporating variation in our decision-making process.

Remember that in Excel, we have a building block for generating just
about any kind of random number that you can dream up – the RAND()
function, shown in Figure 8.1. All random numbers created within cells of a
spreadsheet make use of this function.

8.1 Approaches to the Use of Simulation in Analysis

Simulation-based models can take on many forms, depending on how ran-
dom numbers are used to construct various scenarios for evaluation. Two
general categories that are worth distinguishing can be referred to as simu-
lated variants and system simulations.

8.1.1 Simulated Variants

Simulated variants generally refer to a set of structured management prob-
lems or decision-making scenarios that are equivalent in structure but differ
in the actual values of the parameters (e.g., work rates, interest rates, levels of
demand) used to describe them. Simulated variants are useful in what man-
agers call what-if analysis. For example, a manager might need to know how
different the optimal solution to a problem would be if only slightly different
numbers (again e.g., work rates, interest rates, levels of demand) are applied;

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.1 Approaches to the Use of Simulation in Analysis 185

that is, would Solver or RISKOptimizer come up with a different solution if
the numbers were slightly off. We might call this a pre-construction approach
to considering variation. Alternatively, a manager might like to take a derived
optimal solution (based only on best estimates; i.e., mean values of demand)
and test how well the resulting solution set of decisions would do if the num-
bers describing the problem changed; would it always ensure profitability?
Would it always be technically feasible? We might call this a post-construction
approach to considering variation.

Still more sophisticated use of simulated variants would involve consider-
ing both issues in tandem. For example, a manager might need to come up
with a set of potential of solutions based on slightly different initial problem
parameters, and then see how each does under a range of alternative parame-
ters. The manager might find that one of the solutions (that might not appear
to be the best based simply on the average values of the problem parameters)
might be much less sensitive to variation. As a result, that option might be
much less likely to incur unacceptable costs or difficulties in applying it in an
uncertain world. That might carry a great deal more appeal than otherwise
suggested based on a simple average-driven assessment.

8.1.2 System Simulations

Many management problems require the consideration of decisions that
impact not only one point in time, but actually have repercussions across time
where later phenomena remain highly dependent on choices made early on.
For example, the decision to put in place a specific inventory ordering policy
will impact the level of inventory available to a firm for the length of time dur-
ing which the policy is in place. In fact, even the amount of inventory bought
at a single point in time can have implications for performance in many subse-
quent periods. A decision to hire additional full-time staff or restructure the
layout of a facility has similar long-term implications. In such cases, the impact
of managerial decisions are still more difficult to assess because they involve
numerous events that will take place in the future and about which we may
know very little at any level of certainty. Impact can also be affected because
these decisions may set into motion a series of events whose repercussions
may be difficult to assess in a single closed-form calculation.

A system simulation is often used in such cases to provide a description
of how a particular system operates, and how management decisions impact
that operation. Variation is built into the activities of that system at each
step through time. After the system (the set of codependent and interactive
resources, activities, and outcome measures) is allows to run in this manner,
subject to a pre-specified set of management rules for a particular length of
time, it’s overall performance is typically recorded. Additional runs of that

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

186 Controlled Simulation Analysis

Define Problem Structure
Decision Variables
Outcome Measures
Constraints

Constants, uncertainty
and all relevant
relationships linking

Initialize System
Set all changing terms to
initial values for specific
scenario to be evaluated.

Update System
Adjust all changing terms based
on any relevant past data and
new random variable draws

Record results of interest

Compile all
records and report

stopping conditions met? (e.g. ,
periods, work completed,

stability of performance

Simulation

measures, etc.)

scenarios to
Other

evaluate? No

Yes

No

Yes

Note: Could be either alternate variants
or alternate decisions to evaluate

Figure 8.2. General design structure for simulations.

system (i.e., with different random numbers in play) are then performed,
and some general picture of average and variation in system performance
is derived. Those summaries are typically compared to other summaries
generated for systems subject to alternative management policies to try
and determine which management decisions are in fact preferable. as in the
simulated-variant cases.

Because the result of a system simulation is, by its very nature, bound to
be characterized in part by the kinds of random variables drawn upon as the
system evolves, one full iteration of a system may be different than another
full iteration. System simulations are often used to generate complex versions
of the simulated variants previously discussed in this chapter, and can be used
in both pre- and post-constructive approaches to analysis.

8.1.3 Basics of Simulation Design

Regardless of the kind of simulation approach, the development and use of
any simulation model fundamentally involves a set of common steps, shown
in Figure 8.2. With this outline in place, we’re now ready to consider a codified
structure for all varieties of spreadsheet-based simulation models.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.2 Assessing Simulated Variants 187

Figure 8.3. Design structure of the reservations simulation variants.

8.2 Assessing Simulated Variants

Consider the case of Lobo’s Cantina introduced in Chapter 6. One of the
many policy decisions currently under re-evaluation is that of its reservation
policy for four-seat tables. Specifically, a standard policy for service firms
wishing to capitalize on fixed investments and facing uncertain demand is to
overbook their seating capacity. The big question is by how much.

To limit the scope of our example, let’s assume that they’ve decided to
have 15 four-seat tables. Performance will be based on two factors: expected
total profit (across all groups seated) for a particular reservation policy, and
expected implied additional costs associated with not being able to seat cus-
tomers that arrive with reservations because of overbooking (i.e., loss of good
will, future business). The decision, along with variable demand, implicitly
constitute the constraints to performance (i.e., limits in actual demand and
in reservation policies limit both revenue and costs). Also impacting profit
is uncertainty regarding the amount of money spent by each group seated
(i.e., profit is impacted both by number of people seated as well as dollars
spent per group seated). Having said this, and drawing on the previously pre-
sented generalized flow chart (Figure 8.2), we might outline an approach to
generating simulated variants as shown in Figure 8.3.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

188 Controlled Simulation Analysis

Figure 8.4. Example of the implemented simulation variant template.

With a well-designed view of what needs to be done (Figure 8.3), the struc-
ture of a spreadsheet designed to execute the simulations should be fairly
straightforward. Some additional assumptions regarding the nature of the
random variables to be drawn (e.g., what kind of distributions they follow,
means and standard deviations) will be needed, but in this case not much more
in terms of complexity of design is required. Workbook Chp8 LobosReserva-
tions and Figure 8.4 provide an example of how this might be set up.

Although this spreadsheet structure is sufficient in providing an estimate
of how well a specific policy might do given one set of random variable draws,
a single variable draw can be misleading. It shouldn’t form the basis for final
consideration by decision makers. We’d like to be able to have stable estimates
of policy performance representative of a full range of random draws, and
we will want to be able to compare these results of various policies assessed
the same way. A Data Table is a convenient tool that can be leveraged to this
end. The Data Table tool is found by selecting Data>What-If Analysis>Data
Table (Figure 8.5).

A Data Table is used to provide a series of permutations of a simulated
variant structure (i.e,. a series of variants of outcomes based on the simulation

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.2 Assessing Simulated Variants 189

Figure 8.5. Accessing Data Table functionality in Excel.

design, each independent of one another). This tool is fairly straightforward
after a spreadsheet structure such as the one demonstrated in this case is set
up. To make clear a couple of approaches to the leveraging of Data Tables,
we’ll start our work on a new worksheet.

Let’s store our Number of Reservations decision variable in cell A1 of
worksheet DataTable1 in Chp8 LobosReservationsBook. In cell A2 we can
store the assumed cost associated with overbooking. To control the simulation
outcomes from this sheet, go back to the ReservationsModel worksheet and
replace the content of these respective cells (located in G14 and G6 of that
first worksheet) with references to =DataTable1!A1 and =DataTable1!A2,
respectively. Now we need to outline the structure of the Data Table to be
filled in. If we want a table of 100 runs, we might enter the numbers 1 to 100
in the cells DataTable1!B6:B105 (mostly this is just for our own reference).
To designate the kinds of scenarios we want the Data Table to collect data,
we enter a variety of alternative reservation policies; 15 to 25 reservation
bookings in cells C5:M5 in this worksheet. Finally we need to designate what
kind of outcome measure we want summarize in the table. For now, let’s go
with the Total Adjusted Profit figure (a merger of estimated profit across
seated groups minus assumed costs due to overbooking). In the upper-left
corner of our table outline, cell B5 in this case, we want a direct reference to
that outcome measure (ReservationsModel!G24).

Now we’re ready to let the Data Table tool do its work. Select the entire
area of the table that contains the row labels (1–100), the calculation refer-
ence (here in cell B5), and the various scenario inputs (cells C5:M5). Select
the Data Table tool to generate the Data Table dialog box, shown in Fig-
ure 8.6.

In the field labeled Row input cell, select A1, which is the cell we are using
to store our decision variable and using now to control the nature of the
simulation. This tells the table generator that you will effectively want to be
substituting in the various alternative policies you’ve designated at the top of
the table into this input field for generating your results. In the Column input
cell field, select any blank cell to the left or above of the table area (a blank
cell must be designated here for the syntax to work). The result should be a

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

190 Controlled Simulation Analysis

Figure 8.6. Developing a Data Table in Excel.

table of data populated with outcome data for 100 variants of the simulation
for each of the scenarios represented in the top row of the table, shown in
Figure 8.7.

The nice thing about this table is that you can change just about any of
the features of the simulation, including both constants such as cost figures
and the nature of relationships (i.e., formulae), and the Data Table should
provide updated information more or less instantly in response to these
changes. For example, try changing the cost figure in cell A2 or replacing

Figure 8.7. Data Table content for multiscenario runs on a single outcome.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.2 Assessing Simulated Variants 191

Figure 8.8. Setting up a Data Table for multiple outcome use.

the reference in cell B5 (currently pointing to Total Adj. Profit) with a refer-
ence to ReservationsModel!G23 (implied cost of turning people away).

Somewhat less convenient is the Data Table’s general dedication to a sin-
gle outcome measure (i.e., here we can select any one outcome measure to
generate variants on, but only one at a time). We could create any entirely
separate table for another outcome, but those measures would be in no way
linked to the values in this table (i.e., the outcome in the first data cell of this
table would be based on entirely different random number pulls).

Similarly we could try to generate a single Data Table that generates vari-
ant outcomes for a set of different measures under a specific decision (policy)
scenario. The worksheet DataTable2 actually does this. The table was devel-
oped by starting with a structure similar to Figure 8.8 in which the top row
references each of the three outcomes stored in the cells on the main simu-
lation worksheet.

Selecting the table area that includes the left-most column and all three
subsequent columns for which calculations are provided, and again calling
on the Data Table tool, again the Data Table dialog box will ask for infor-
mation. This time the only information we want to provide is a reference in
the Column input field to a blank cell outside of the table, e.g., cell A4. This
indicates to Excel that we want to use the default calculations in the top row
to build the rest of the table, and we don’t want to use any information for
separate calculations. The result is shown in Figure 8.9.

The values in each individual row of this table are related, as evidenced by
the fact that the Total Adjusted Profit values really do represent the difference
between the values in the first two columns, even though they are generated
by the Data Table as opposed to a post-hoc calculation. In this case, because
we’re evaluating only a single policy scenario, each row essentially represents
a single variant (a single random number pull). This means that complex
relationships between any two outcomes (e.g., covariance structures) can

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

192 Controlled Simulation Analysis

Figure 8.9. Specification of Data Table parameters and subsequent refreshed result.

be assessed and visualized. In some cases the ability to visualize possible
interdependencies in this way proves critical in meaningful and intelligent
approaches to trade-off analysis.

8.3 Assessing System Simulations

While Data Tables can be extremely useful in providing quick results for
a variety of simulated variants, they are less useful in cases where itera-
tions of calculations need to be conducted. In such cases, more sophisticated
approaches to assessment must be used. For illustration, consider another
decision policy that Lobo’s needs to make: inventory re-ordering. Inventory
policies critically impact the availability of certain stocked items (e.g., liquor
and dry goods, in particular), but are also highly dependent on uncertain
issues such as periodic demand and fulfillment lead times. For some com-
plex policies, or those subject to complex forms of uncertainty, the use of
system simulations may be the only mechanism for assessing their overall
effectiveness.

The flowchart shown in Figure 8.10 presents a fairly simplified inventory
system, that nevertheless is sufficiently complex to warrant a demonstration
of the shortcomings of Data Tables and the value of alternate approaches to
assessment.

The primary decision variable in this case is the re-order point, or the
specific level of current inventory that triggers a call to our suppliers for a
shipment of new supply. Ostensibly the quantity of the resulting new order
is also a policy decision, but one that we’ll put aside for now in the interest
of simplicity. For now, we’ll assume that the size of each re-order is designed
to cover average expected demand over average expected lead times, and
recoup the deficit between re-order point and most recent supply level

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.3 Assessing System Simulations 193

Figure 8.10. Design Structure of the Inventory System Simulation.

(i.e., the one which triggered the re-order). This can all be formulaically
built into the spreadsheet.

As in the simulated variants example, we could have multiple outcome
measures worth noting. One would certainly be the average amount of inven-
tory held per period. This outcome would be implicitly traded off against some
measure of stock-out costs, and hence the basis for decision making (policy
selection). This other outcome measure might simply be the percentage of
periods during which we would anticipate experience stock-out conditions.
A related valuable outcome might be the average level of inventory short,
either for the timeline as a whole or specific to those stock-out periods. We’ll
keep things simple here and just focus on the first two of these – % of peri-
ods experiencing stock-outs, and average per period inventory holdings. The
workbook Chp8 LobosInventory provides an example of how this design
might be implemented (see Figure 8.11).

As mentioned in previous chapters, F9 provides a mechanism for iteration,
although admittedly F9 only progresses the simulation through a single itera-
tion of the simulation. But realistically, overall summaries of the effectiveness

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

194 Controlled Simulation Analysis

Figure 8.11. Example of the implemented system simulation.

of any policy need a much larger set of iterations for true representation. Fur-
thermore, decision makers are likely to be interested in the comparison of
multiple policies. What are the implications of all of this?

Let’s think about it. Say we want to slightly change the policy under consid-
eration so that the re-order point is 75 units. To record the summary results
for that policy we would have to first change the policy we wanted to evaluate
(i.e., typing in 75 for the reorder point value). Then we would have to carry
out the following steps at the minimum:

1) Reset the spreadsheet’s summaries (i.e., type False and True for Reset).
2) Press F9 as many times as you think is necessary; some logical stopping rule could

apply here.
3) Pick a clear spot in the workbook to save those summaries.
4) Copy and paste-special the values of those summaries.

We could do all of these steps manually, but that would add up to a lot of
work if we want to generate and store summary measures for many different
management policies.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.3 Assessing System Simulations 195

Figure 8.12. Accessing macro capabilities in Excel.

We can use the Macro function to record a set of actions so that we
could get Excel to repeat that same set of actions on command (and in
one click). Macro functionality is found under the Developer tab, as seen in
Figure 8.12.

For now we’ll start with a demonstration of one of the simplest forms of
macro recording – simulation data recordkeeping. To keep things organized
we’ll store this data in an additional sheet called MacroRuns. I’ve set up a
duplication of some of the data relevant to our assessment of this system in
another area (cells K32:K35) of the main worksheet to make all subsequent
copying easier. Selecting the Record Macro option in the Developer tab to
open the Record Macro dialog box, shown in Figure 8.13.

In this dialog box, we can name our macro, describe it in depth, and even
create a shortcut key for later execution. The default name Macro1 has been
selected by the system. If we don’t want to specify any information of our
own, we can simply click OK and the macro will start recording the actions

Figure 8.13. Initial specification interface presented for macro recording.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

196 Controlled Simulation Analysis

Figure 8.14. Using the Paste Special option during a simple macro recording.

we take in the spreadsheet (within certain limitations that we’ll discuss in
more depth in Chapter 11).

The following are the actions that the macro will record.

1) Again, as stated, I’ve got to re-initialize this system simulation to get clean
results, so I’m going to reset the spreadsheet’s summaries (i.e., type “False”
and return, then “True” and return for the Reset value in H18). For now, we’ll
just type these things in rather than use the check-box shortcut I’ve included
(Excel 2007 circa 6/12/2007 doesn’t record actions on an object, a bit of a
devolution from the Excel 2003 version).

2) To generate the kind of summary outcomes I want, I’ll hold down F9 until I
cover 200 periods worth of iterations. Tedious but we’ll talk about better ways
to get this done later as well.

3&4) I’ve already picked a clear spot in my workbook to save those summaries
(the MacroRuns worksheet), and I’ve already consolidated the critical system
parameters and outcomes I want to build my record off of (cells K32:K35 on
the main sheet), so at this point I can just copy those cells, go to the MacroRuns
spreadsheet (for instance, cell B2) and right click to perform a “paste-special
operation.” Specifically, I don’t want to paste formulas or references. Instead
I want to paste fixed “values,” and whereas they are organized vertically in
the main sheet, I’d like to paste them horizontally in the MacroRuns sheet; so
I’ll be selecting both the “values” and “transpose” options in my paste (Fig-
ures 8.14 and 8.15).

And that’s it. Now I’m just going to hit the “stop recording” button (small
square at the bottom of the screen). The square icon shown in Figure 8.16

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.3 Assessing System Simulations 197

Figure 8.15. Inserting rows during a simple macro recording.

will change at this point to represent the record button. These buttons are
usually more convenient than the menu-driven system.

The macro is now saved and available for future use. There are several
ways to activate a recorded macro, and the first is menu driven. Select the
Macros option on the Developer tab to open the Macro dialog box. Choose
the macro you want (in this case Macro1) and then click Run (Figure 8.17).
Another way to open and run a macro is through the use of the shortcut key
that you specified when you created the macro.

There also an object-based approach available for any developed macro
called Make a button. The easiest way to use this is to draw your own button
Insert>Shapes to open the Shapes drop-down (see Figure 8.18).

For any object such as a drawn circle (or even an inserted.jpg), right-click
on that object to see a number of property options including Assign Macro
(shown in Figure 8.19). Selecting that option then allows you to specify what
macro will be associated with that object.

After a macro is assigned, place the cursor over the object to change the
cursor icon from that of an arrow to that of a pointing finger (indicating that
the object can now be clicked to run the assigned macro). The use of text
to add immediate clarity regarding the role of that new button adds to its
usefulness as an intuitive and readily accessed means of executing macros

Figure 8.16. Quick stop to a macro recording.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

198 Controlled Simulation Analysis

Figure 8.17. Menu-driven activation of a macro.

(for you as well as others using your workbook). And there’s no limit to the
number of macros and buttons you can place within a workbook.

As we will discover in particular Chapter 13, there is a range of related
button approaches to interfacing with macros, although having introduced
three different approaches it’s worth emphasizing that any one of these should
work to replicate the system simulation recording procedure that we set out to
perform (provided we recording our actions correctly). The macro currently
recorded in the Chp8 LobosInventory workbook works as expected.

We could run this for any number of scenarios to try to assess which one
works best for our interests; however, if we wanted to be still more sophis-
ticated in our simulation development, we could (if we knew how) consider
making this whole process even more automated by not just recording our
actions in a macro, but also editing the recorded actions. That’s going to

Figure 8.18. Accessing drawing capabilities to generate a macro activation button.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.4 An Introduction to Stochastic System Structures 199

Figure 8.19. Assigning a macro to a drawn button.

require some knowledge of how to access how Excel recorded those actions
in the first place (i.e., in VisualBasic code), and that will be the focus of
Chapter 11.

8.4 An Introduction to Stochastic System Structures

As valuable as the approaches to simulation presented thus far may seem, it is
worth noting that most real-world systems are more complex with uncertainty
built into not just the characteristics of events (e.g., how many customers
arrive) but also whether or not certain subsequent events take place (e.g.,
upon arrival do all customers request comparable services, which ones will
require payment by credit, which of those will want to split the bill). All of
this is, of course, important to those trying to manage the kinds and amounts
of resources needed to fill all these different needs at any given point in time.

A key term used to describe the complexity associated with these real-
world systems where uncertain events are followed by still other uncertain
events is stochastic. Stochastic processes can be thought of as a series of spe-
cific steps, stages, or states where the transition from one step to another is
characterized by some amount of uncertainty. For example, although loan
processing at a bank may involve a pre-established series of steps, and

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

200 Controlled Simulation Analysis

although one might be able to describe the progress through this process
by a specific and typical ordering of these steps, mistakes or simply variations
in requirements may require certain steps to be repeated before the pro-
cess is successfully completed. If these alternative sequences through the
process cannot be predetermined prior to entry into the processes, but are
rather subject to issues that are uncertain or only made apparent in process,
a common representation of the probabilistic tendency for such sequence
variation is often adopted by analysts. This representation is referred to as a
transition matrix.

In a slightly simpler process example, let’s consider a three-state process.
Specifically, assume we have a prototype development process that can be
meaningfully broken up into three steps. At each step, a different worker
takes possession of the work; and at each step, a decision is made to either
advance the prototype for further development/testing or to send it back to
a previous stage of consideration/rework.

The Chp8 TransitionMatrices workbook depicts how the information rel-
evant to capturing the uncertain and interdependent nature of this system is
used. Specifically the boxed area of cells labeled Transition Matrix provides
a set of probabilities that describe how likely it is for a job currently in one
state (1, 2, or 3) to transition (move) next into another state. In this table,
the probability of transitioning from State 1 into State 2 is 0.7, or 70 per-
cent. Because any job in State 1 must go somewhere, the sum of transition
probabilities in each row should sum up to 1 (as demonstrated in the column
labeled Sum shown in Figure 8.20).

In the adjacent table labeled Quasi-Cumulative Transition Matrix, I’ve
used some simple addition to help indicate probability thresholds, useful in
getting a random transition between discrete states to actually work. It’s a bit
sloppier than necessary, but fairly transparent for the purpose of introducing
how such random transitions might be generated. Specifically, I’ve developed
this adjacent table with the sole intention of using it with the conveniently pro-
vided HLOOKUP function in Excel. As discussed in Chapter 2, HLOOKUP
can be used to search for a specific term (e.g., 12, or 3.14, or Mike) in the top
row of a table and return information from a lower row of the same column
in which the entry was found. However, provided entries in that top row are
sorted, VLOOKUP can also conduct a search for the last closest entry that
doesn’t exceed what’s being looked for (e.g., 3 if 3.14 is being looked for in
a sorted array of integers, or perhaps Michael in a sorted list of first names).
To ensure such a search takes place, simply make sure that the last term in
the HLOOKUP is a 1 (e.g., HLOOKUP(RAND(),J8:L13,3,1) to indicate a
sorted search).

In this case, where the next state is in part determined by a random decimal
ranging from 0 to 1, the use of HLOOKUP with a table that contains both

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

8.4 An Introduction to Stochastic System Structures 201

Figure 8.20. Example of transition matrix as a possible component of a system sim-
ulation.

these quasi-cumulative probabilities and some indication of the associated
next state works well provided we are able to consistently indicate where
those next state references are. That consistency is provided by the deliberate
indication of state references numbers (1, 2, 3) in the three rows (rows 11–13)
below each of the quasi-cumulative probability rows (rows 8–10). Think of
rows 8 to 13 as constituting the template from which appropriate sub-tables
for lookup will be formed. The use of the OFFSET function allows us to
specify which sub-table, and hence which starting row for use in a lookup,
should be focused on.

As an example, if a job is currently in State 3, we would use an OFFSET
function to shift our focus from the sub-table J8:L11 to J10:L13 (i.e., offsetting
our focus by two rows from the start of the template table to make sure the
quasi-cumulative probabilities are in the top row of the sub-table considered).
We could then use the HLOOKUP function on that OFFSET sub-table and
the RAND() function to randomly determine which state to transition to
after State 3. If the random value searched for is 0.21 based on the numbers
in this case, HLOOKUP will see the first value in the offset sub-table (0.0) as
adequate but will view the second value (0.45) as excessive; therefore, looking
three rows below the last adequate value will return a 1. Similarly, a random
value of 0.48 would return a 2, in this case. In this way, as used in the sample
spreadsheet, the transition matrix description of a 45 percent chance of 3 to

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

202 Controlled Simulation Analysis

1, and 55 percent chance of 3 to 2, is fully captured. This is a nice example of
the compound use of multiple functions in Excel; not the most elegant, but
effective and fairly straightforward.

As a final note, there’s nothing stopping us from adding in more complexity
that accounts for unique costs (and variation in costs) for being in each state,
or for having a single job stay in progress for some excessive total amount of
state visits. These structures are often commonplace in complex system simu-
lations that evolve over time. The same macro-based approaches to iteration
and recordkeeping apply with simulations where such stochastic processes
are embedded.

Chapter 8 Supplement: Simulation Control Made Friendly

Excel provides two set of mechanisms by which to develop visually appeal-
ing and user-friendly interfaces. One set is referred to as ActiveX controls;
the other as form controls. Often you can get the same task accomplished
with both. Both allow developers to add elements such as check boxes,
option buttons, drop-down menus, and so on to their spreadsheet as alter-
natives to changing values in cells. Form controls often provide a simpler
interface for developers, but ultimately I find that ActiveX controls provide
more versatility and a greater range of options for development. We’ll stick
to the ActiveX controls for this discussion (functioning examples found in
Chp8 SampleControls), starting with the basic text box.

Text boxes duplicate the contents of any individual cell in a workbook, but
because it’s an object unto itself, it can be positioned anywhere in a work-
book. This can be valuable because whereas cells in complex decision-support
environments may be difficult to relocate meaningfully (without messing up
other parts of the design), the location of these text boxes has no impact on
what’s going on behind the scenes. You could even group the text box with
other objects, such as graphs, so that when you move a set of objects in your
spreadsheet, the text box moves along with that group. To create a new text
box (or any other control for that matter), under the Developer tab, select
Insert from the Developer tab, as shown in Figure 8.21.

Click the Text Box icon in the toolbox to generate a new text box at any
point in the spreadsheet. When created, you will automatically enter Design
Mode where you have a wide range of control properties that you can edit.
Right-click on the new box and select Properties to open the Properties dialog
box, shown in Figure 8.22.

The most important properties of your new control is the Linked Cell
property. This indicates the value shared by both the text box (in this case)
and a particular reference cell on the spreadsheet (i.e., if the linked cell is
A1, whatever value A1 takes on will show up in the text box. Keep in mind

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

Chapter 8 Supplement: Simulation Control Made Friendly 203

Figure 8.21. Controls available through the Excel menu interface.

this important point: Any formatting in the linked cell will not transfer to the
text box; only the value contained).

Consider the example of setting the value in cell E9 to =NOW()
{i.e., the current date/time signature} and formatting that cell to show
hours:minutes:seconds. Linking a new text box to that cell will copy the
value of that date/time signature to the text box – for Excel, that value is
a numeric string that, while useful from a system perspective, doesn’t mean
much to a typical user. In the case of 11:56:42 on January 4, 2006, this string

Figure 8.22. Modifying the properties of a text box ActiveX control.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

204 Controlled Simulation Analysis

Figure 8.23. Numerical value translation of a date entry by a text box.

is 38721.49771 (see Figure 8.23). Again, the same value is contained in both
the cell and the text box, the only difference is in the format by which the
value is presented.

On the other hand, if we completely convert the date/time signature to
a string of characters (i.e., no longer a numeric value) whose construction
is based on a certain formatting rule (e.g., using the TEXT function, =
TEXT(NOW(),hh:mm:ss), the text within both the cell and the text box
should be consistent. They both contain the same text, as shown in Figure 8.24.

Incidentally, cell linkage with controls works in both directions. If you
change the content of that cell in the spreadsheet, that change will appear in
the text box. If you type different content into the text box, that cell will take
on that value. Keep in mind, however, that this will also erase any formulae
that might have been in the cell previously, if that’s the nature of how the cell
was used.

It is also worth noting the variety of other properties that you could use in
configuring your text box, including (refer back to Figure 8.22):

Background and font color/types
If you want the control to take on a 3-D appearance
What aspect the cursor takes on when it runs over the control
Whether the text within the box should wrap
Whether scrolling the text content is available for the box

Figure 8.24. Specified text depiction of a date entry by a text box.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

Chapter 8 Supplement: Simulation Control Made Friendly 205

Figure 8.25. Examples of check boxes active in a spreadsheet.

As with cells and other objects, you can also change the name/label of
the control for more intuitive reference (i.e., call it CurrentTime rather that
TextBox1).

Having a basic familiarity with TextBox creation, we can now discuss other
controls that can come in handy for interfacing in Excel. Buttons (under the
rubric of controls) are really no more than that – imagine that you can click to
start an existing automated set of events. You can get the same functionality
from any object (e.g., a drawn circle) to which you assign a macro in Excel.
Buttons created through the Controls menu just give you the convenience of
something that already looks like a button that should be clicked (something
you might have to work a little to create an aesthetic image of using the
standard drawing tools).

Check boxes, which you’ve already seen applied in some past examples,
are also a nice convenience control that allows users to toggle between two
settings (e.g., 1,0; Yes,No; On,Off; Restart,Stop). As with text boxes, a number
of the same standard control properties can be modified (e.g., colors, labels).
One unique difference is that check boxes also allow you to add fixed text
labels that accompany them on a page (e.g., Restart or StandardCheckBox).
Another unique feature of check boxes is the ability to use them in what’s
called a triple state. In such a case, each click on the box will move the user
through the states of True, False, and #N/A (i.e., other). This could be useful,
for example, if you had three alternative settings rather than just two that you
would like to make available through this kind of object-oriented interface
(Figure 8.25).

Option, or radio, buttons add an additional level of complexity that is not
present with check boxes. Whereas check boxes typically react independently

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

206 Controlled Simulation Analysis

Figure 8.26. Examples of radio button groups in a spreadsheet.

of one another, radio buttons (see Figure 8.26) are designed to be used as
one of a set; in other words, each radio button is used to represent specific
alternatives, only one of which may be active or relevant at a specific time. An
example would be the selection of a single candidate for a specific position
during voting, the selection of a specific shipping option for an order, or the
selection of a specific accounting classification for filing an item on an expense
report.

A critical property is the GroupName. The group name represents the set
of alternative radio buttons that each individual button works in conjunction
with. By default, new radio buttons created on a worksheet will receive the
name of that worksheet as their group name. But similar to all other proper-
ties, you can (and usually should) change that (e.g., for one set of buttons that
represent interchangeable options, you might use the group name Radios1;
for another set of buttons that are not dependent on the choice made in the

Figure 8.27. Examples of scroll bar in a spreadsheet.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

Practice Problems 207

first set, you might use the label Radios2). Specifying different groups for
independent sets of radio buttons will ensure that they don’t interfere with
each others’ functionality.

Another item to note here is that the various buttons in a group should
typically be assigned to their own individual cells to avoid confusion. So for a
set of three radio buttons, three cells in a spreadsheet would be used to capture
the state of the buttons (e.g., the second button clicked, and the others not).
IF statements are typically used to convert that information into a single
result (e.g., =IF(B24,“1stOption”,IF(C24,“2ndOption”,“3rdOption”))

Scroll bars, as shown in Figure 8.27, provide mechanisms by which to select
a continuous range of values bounded by an upper and lower limit (rather
than just a discrete set of options as described by check boxes and radio
buttons). For example you might want to allow a user to specify an interest
rate between 5 and 7 percent, a minimum average labor force IQ between
900 and 1,100 (e.g., on the SAT), or a maximal budgetary allowance between
$10,000 and $35,000.

A scroll bar might be a nice choice for an interface on such a decision.
Excel, however, currently has some annoying limitations. For example, you
can specify upper and lower bounds, but those bounds have to be integers. In
fact, all values that the scroll bar takes on have to be integers. If you specify
a range between 0 and 100 and don’t mind the fairly simple task of rescaling
to fit the range you are interested in (e.g., 5 to 7 percent), this isn’t really an
issue. It’s just annoying that this limitation is something you need to work
around.

Drop-down menus are another nice interface control for situations where
a wide range of options might exist (e.g., list boxes or combo boxes). One of
the additional properties of these controls requires the specification of a list
of alternative options (e.g., presented as a sequence of cells in a column of a
worksheet; as shown in Figure 8.28). A combo box with such a reference list
specification provides a compact form that can be expanded by the user for
item selection purposes.

PRACTICE PROBLEMS

Practice 8.1

Using the approach demonstrated in Section 8.3, build a report that shows not only
the average, but also the best (MIN) and worst (MAX) cases for the cost (holding)
and stock-out rates (as before, across 200 iterations or trials). Run this 3 times for
each of 11 reorder point policies ranging from 60 to 70. The end result should be a
table with 11 records, each describing the average, best, and worst cases of cost and
stock-out rates. Comment on how average performance might not be completely
informative with regard to “best policy” selection.

P1: KDD
9780521889056c08 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:48

208 Controlled Simulation Analysis

Figure 8.28. Examples of drop-down menu in a spreadsheet.

Practice 8.2

Reconsider the Lobo’s Reservations example simulation from the previous practice
section. We selected random numbers based on a specific level of variation, and
limited ourselves to only a few specifically structured scenarios. But we might want
to find out how different the performance of this system might be given alternative
overbooking charges and alternative levels of variation (more or less) in customer
dollar contributions.

Use three option buttons to depict different possible levels of variation charac-
teristic of the random numbers involved in the simulation (Std Dev = 10, 15 and
20).

Use drop-down menus to allow individuals to choose between the application of
three distinct overbooking charges ($220, $250, and $280).

Using a report format similar to that of the previous practice problem, summarize
the results of these 3 × 3 = 9 possible combinations. To simplify the work, limit
yourselves to only the consideration of the case in which 28 reservations are made.

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9

Scenario Generation and Optimization

A natural extension of a discussion of simulation, given our existing under-
standing of optimization, is how the two methods can be used together. The
basic question behind simulation optimization is:

What decision (if any) tends to provide relatively superior results regardless of the
uncertainty associated with the real world problems they are designed to resolve?

Simulation provides the means by which to incorporate uncertainty into
the evaluation of a specific decision, or a predetermined handful of such
decisions; however, this question implies much greater scope. It suggests a
formal search for the best decision across a very wide range of possible alter-
native decisions. For simulated variants, the term best takes into account
not just the average/expected value of parameters describing the setting (as
would be common in discrete optimization), but also the potentially extreme
performance of outliers, be that good or bad. For system simulations, the
best would necessarily need to further relate to performance as the result of
a sequence of events where the interplay of initial guiding decisions, compli-
cated by uncertainty, might be extremely difficult to assess without sufficient
simulation runs. The follow-up question then is:

How can we integrate the techniques associated with simulation and optimization in
a single solid mechanism for meaningful decision support?

Here again we gain from the robustness of Excel and the availability of addi-
tional applications that capitalize on Excel’s computational strengths. Specifi-
cally, we can return to a more in-depth and nuanced discussion of the various
features of RISKOptimizer that, along with Excel, make all of this possi-
ble. Although other packages exist that might provide similar simulation
optimization capabilities, we’ll focus on RISKOptimizer, given our famil-
iarity with its usefulness in assisting in difficult optimization problems (see
Chapter 7).

209

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

210 Scenario Generation and Optimization

Figure 9.1. Specification of simulation stopping conditions.

9.1 Basic Simulation Optimization Capabilities

There are a number of characteristics of simulation optimization procedures
that are available to users of RISKOptimizer. Two in particular are worth
mentioning in detail here (some others have already been described in the
Chapter 7 supplement).

9.1.1 Optimization Stopping Conditions

As suggested in Chapter 7, RISKOptimizer’s search for an ideal solution
(decision policy that meets the objective subject to any relevant constraints)
can be terminated manually by clicking the Stop button at any point dur-
ing evaluation. However, users are also given the opportunity to pre-specify
under what conditions the application can stop its search; for example, if an
individual doesn’t have the time to continue to monitor progress and would at
the same time like to free up system resources for doing other work on their
computer when ideal solutions are discovered. This automatic termination
is made possible through a variety of tactics available through RISKOpti-
mizer. These are available under Options when the RISKOptimizer inter-
face is being used to specify the particulars of an optimization procedure.
The RISKOptimizer Options dialog box is shown in Figure 9.1.

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.1 Basic Simulation Optimization Capabilities 211

As shown in Figure 9.1, an optimization search can stop after a given set
of decision policies have been examined. In Figure 9.1, if the analyst felt that
the assessment of 50 alternate solutions (a fairly small number in actuality)
was sufficient to draw conclusions, they might click the box marked Simula-
tions = 50 or change 50 to a more appropriate number. Note here that the
term simulations in this dialog box is used somewhat misleadingly to represent
the number of alternative solutions considered in the simulation optimiza-
tion. If an analyst wanted the search to stop after two minutes of time, they
could specify that under Minutes.

Other stopping conditions include other measures of finality in a search that
might otherwise continue for a very long period of time. Change in Last allows
the search to terminate when the changes in the performance of subsequent
solutions considered becomes less than practically significant (e.g., in the
current example, if the average performance of the last 100 decision policies
doesn’t differ by more than 0.01 percent among those solutions that are valid,
or in other words meet all required constraints). The Formula is True option
provides a mechanism through which the user can reference any customized
calculation within their spreadsheet aimed at assessing the convergence of
the search upon a desired solution. This may be used much like a goal seek
option in Excel, or may be much more nuanced to the needs of the analyst.

It is also worth noting that users need not rely on any one of these stopping
conditions alone, but can have as many simultaneously active as they want.
For example, the analyst might want to make sure that the simulation search
stops at the 10-minute mark or before, if little practical change has taken
place in the last 100 solutions assessed. The check box nature of the interface
allows for multiple stopping conditions to be applied simultaneously towards
this end.

9.1.2 Simulation Stopping Conditions

Recall from Chapter 7 (where we first introduced RISKOptimizer) that we
had specified a single iteration to be run for each solution considered (see
Figure 9.2). This, of course, made a great deal of sense because there was no
uncertainty built directly into our optimization models at the time.

However, in the case of simulations, the benefit of generating a wide range
of simulated variants as part of the complete assessment of potential poli-
cies is clear. Any one random number pull can provide a misleading pic-
ture of the effectiveness of a policy, particularly in the case of simulated
variants where single-period performance can very easily impacted by an
unusual random draw. It is therefore useful to be able to require RISKOp-
timizer to consider a set of possible outcomes in its assessments and overall
search for optimal solutions. In the case of simulated variants, increasing

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

212 Scenario Generation and Optimization

Figure 9.2. Specification of single iteration conditions on search.

the number of iterations specified provides exactly this kind of capability.
In the case of system simulations, the use of iterations needs to be thought
out much more carefully, as will be discussed later in this chapter. Neverthe-
less, specification of multiple iterations can be useful for system evaluation
as well.

As a side note on the use of multiple iterations for evaluating policy perfor-
mance that includes uncertainty, one convenient mechanism to ensure policy
comparability across even a small set of iterations is that of the Random
Number Seed field (also found in the RISKOptimizer dialog box). An ana-
lyst can specify that the same set of random numbers is ostensible drawn in
evaluating each new policy decision under consideration during the search
(see Figure 9.3).

By specifying the Use Same Seed Each Sim check box, the analyst can be
better assured that RISKOptimizer will be making apples-to-apples compar-
isons with regards to the conditions under which each possible policy solution
is being judged. This is typically a default setting, but one worth paying atten-
tion to again particularly when a relatively small set of random number draws
are being specified during solution assessments.

Alternatives to specifying a discrete number of iterations for the evaluation
of each policy considered (e.g., generate 100 possible outcomes associated

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.2 Optimization of Simulated Variants 213

Figure 9.3. Specification of random number generation conditions.

with each decision considered) include the Stop on Actual Convergence and
Stop on Projected Convergence options. In cases where you might not know
how many iterations to run to get a stable characterization (e.g., average)
of performance, you can actually let RISKOptimizer try to figure it out on
its own. This takes a little control over the optimization out of the hands of
the analyst, but can be helpful if the number of iterations needed to assess
certain policies is appreciable greater (and unknown) relative to some more
simplistic policies.

9.2 Optimization of Simulated Variants

For simulated variants, iterations relate to new random number draws that
in turn provide alternative performance results for a specific decision. This is
valuable particularly in cases either where average performance may not be
sufficiently informative for decision comparisons (i.e., high average perfor-
mance may also equate to high variance and hence high risk), or when average
performance cannot be assessed based the distribution or interdependence of

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

214 Scenario Generation and Optimization

uncertainty in performance (which is largely why simulation would be useful
over discrete assessments to begin with). In Chapter 8, we briefly described
the Data Table, a mechanism for quickly generating a large number of
iterations.

We showed how we could develop Data Tables that either provided esti-
mates of performance associated with a range of decision policies, as well as
(in our second Reservation policy example) how to view multiple potential
results associated with multiple related yet distinct performance measures of
a single policy. Here we’ll describe how the results provided by such a table
could be used in conjunction with RISKOptimizer as an approach to simu-
lation optimization, and then follow up with an alternative approach driven
more directly through RISKOptimizer.

9.2.1 Using Averages from Data Tables in RISKOptimization

As a first example of how RISKOptimizer might be applied toward seeking
out best solutions to random variants, consider once again the Lobos Reser-
vations example, specifically the DataTable2 spreadsheet developed for that
problem. In that second Data Table, performance is tabulated for a single
overbooking policy in terms of both earned direct profit and implied costs
of ill-will from overbooking. These are broken out and summarized in Data
Table form for 100 random scenarios. If we were interested in only find-
ing a policy to maximize expected profit, subject to a service constraint (on
average, only overbooking at most by one table 80 percent of the time; i.e.,
incurring an average overbooking cost of $400 maximum), we might specify
the optimization search in RISKOptimizer as shown in Figure 9.4.

Under Options in RISKOptimizer we’ll also request a log of the progress of
the solution so we can monitor development over time. Because our iterations
are basically being covered by the DataTable, we won’t request any more than
a single RISKOptimizer-based iteration per decision policy evaluated.

After a few minutes the performance appears to have leveled off. And
the best result seems to be a reservation policy of around 20, although the
there does seem to be considerable variation between best solution perfor-
mance and other acceptable solutions (worth noting because there’s only one
decision variable being modified, in this case).

A closer inspection of the optimization summary log (at least those solu-
tions that met the service constraint) shows that the solution 20 along with
other neighboring solutions, e.g., 17 and 18 overbookings, are fairly compa-
rable, and the standard deviation of 20 performance is actually fairly high. In
some cases, analysts might look at results such as these and consider imple-
menting options that perform second best simply to avoid high levels of
performance risk.

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.2 Optimization of Simulated Variants 215

Figure 9.4. Problem specifications for simulation optimization of reservation pro-
blem.

9.2.2 Using RISKOptimizer Iterations for the Same Result
(without Data Table)

An alternative approach to generating the same result is to capitalize not
on Data Table functionality for developing simulated variants (i.e., iterations
in RISKOptimizer lingo), but instead on RISKOptimizer’s built-in iteration
mechanism. To accomplish this, we only need to modify the source of the per-
formance and constraint results in RISKOptimizer (the single calculations of
profit and cost from the main model sheet) and specify to RISKOptimizer
that we would like for it to personally run 100 iterations for each solution con-
sidered, just as the Data Table had been providing (see Figure 9.5). Because
Data Tables won’t be necessary in this approach, those associated sheets could
also be deleted from the workbook, and may actually save the processor a
lot of trouble and allow the search to proceed more swiftly.

Worth noting is that to get the constraints to apply equally in this case, we
will need to specify that we are only interested in meeting the service con-
straint “on average” (i.e., across all 100 iterations of each policy assessed).
We could be more stringent, but our search might yield different results
and wouldn’t be a fair comparison given that the Data Table approach
was basically just looking at satisfying the constraint on average across its
100 trials. We can make this modification to the service constraint by ask-
ing that the Mean service level for each policy (across all iterations) be

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

216 Scenario Generation and Optimization

Figure 9.5. Alternative specification leveraging RISKOptimizer iteration capabi-
lities.

considered rather that the final Value (i.e,. of each iteration, or the last one
viewed).

Ultimately, the result of an otherwise preferred policy of around 20 book-
ings is comparable to that derived by the other method and a close inspection
of neighboring results similar as well. However, the RISKOptimizer handling
of iterations tends to converge upon this conclusion much faster than the Data
Table approach.

9.3 Optimization of System Simulations

Before getting into the use of RISKOptimizer with system simulations, it is
worth taking a moment to consider the potential for complications associated
with relying on iterations for simultaneously both the generation of multiple
pulls of random numbers and the development of evolving systems based on
circular loop calculations.

Let’s reconsider the Lobos Inventory example from Chapter 8 (Chp8
LobosInventory.xls). We’ve already shown that we can use the F9 key to run
through a series of calculations. We’ve also demonstrated how we can record
a macro for repeating a large set of such recalculations to ultimately build a
rich and valuable history of the performance of decisions (i.e., reorder point
policies) made for the system. For 200 periods, Figure 9.6 shows the kind of
result we might generate using the macro we considered in the last chapter
(which was designed to effectively recalculate things 200 times).

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.3 Optimization of System Simulations 217

Figure 9.6. Anticipated history generated in single iteration mode.

For richness of description, also I’ve chosen to track the last 40 periods
(following the same method from the Web data acquisition discussion in
Chapter 3), and provide a graph showing the inventory positions for those
last 40 periods. The presence and impact of variations in demand and delivery
lead times is certainly apparent.

Attempting to simply increase the number of iterations conducted in quick
succession doesn’t give us what we might expect. Adjusting the number of
iterations to 200 rather than 1 gives us results similar to Figure 9.7.

Not only are the performance results vastly different than those provided
by our macro (64.9 vs. 36.8 inventory held, and 0% vs 9% stock-out rates), so
is the overall character of the inventory level depiction recorded and graphed.
So what happened? I have to honestly say that the first time I encountered
something like this, I was little thrown. In part because I didn’t expect it,
and in part because I didn’t have any immediate intuition as to why it was

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

218 Scenario Generation and Optimization

Figure 9.7. Example of unintended results of the application of multi-iteration mode.

happening. Looking carefully at the graph, it would seem as if a uniform set
of calculations was taking place in repetition without the impact of newly
(periodically) drawn random numbers. It seems as if any random number
generation that we may have started with simply did not continue as iterations
were being calculated.

But why would that happen? The answer lies with the way Excel views
the application of iteration mode. Iteration mode largely exists to update cell
calculations that are co-dependent on previous values contained within those
same cells (or on other self-referencing cells that they in turn reference). In
other words, iteration mode exists to allow for the iterative calculation of cells
that are dependent on circular loops. Other cells that are not dependent on
the system of circular referencing are simply not going to be updated multiple
times when multi-iteration settings are on.

To illustrate, let’s consider a much more simplified scenario where we simul-
taneously want to make use of both random number generation and some sort

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.3 Optimization of System Simulations 219

Figure 9.8. Previously depicted results of multiple iterations in a linked system.

of system evolution (and recordkeeping). To keep things simple we’ll look at
a variant of the first example we used back in Chapter 3 when introducing iter-
ation mode. Recall the following table shown in Figure 9.8 used to illustrate
how a simple one-point self-increment could be developed and propagated
across a set of cells above or in the same row left of a self-referencing cell
(again only when iteration mode is active).

First let’s substitute the former contents of D18 (i.e., formerly containing
=D18+1) with something that makes use of the random number generator
(for example, =D18+RANDBETWEEN(1,5)). By doing so we retain the cir-
cularity so critical to the use of iteration mode in developing living records,
while at the same time we allow for a random numbers-generating mecha-
nism. At a single iteration setting, new random numbers are pulled and the
record updated. A multi-iteration setting (10 iterations in quick succession)
will update 10 cells in the rest of an otherwise empty table upon Restart,
based on those 10 random pulls. The result is shown in Figure 9.9.

Close investigation of Figure 9.9 shows that the differences between the
cells in the order of their tabulation differ in magnitude as would be expected
with new random number draws (e.g., 21−18=2, 18−17=1, 17−13=4). So
everything seems to be working as planned.

But imagine instead of generating the random number within the self ref-
erence call itself, we used =D18+K14 and placed =RANDBETWEEN(1,5)
in cell K14. If we weren’t considering the use of a multi-iteration setting and
simply electing to use something like F9 to generate random numbers and
propagate our living record, there would be no real difference observed in
our results (10 hits of F9 in a single iteration setting would provide a table
with similar variation between cells as that provided in Figure 9.9).

However, under a multi-iteration setting (again, 10 iterations in quick suc-
cession), this structure only generates a single random number. It will make

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

220 Scenario Generation and Optimization

Figure 9.9. Demonstration of integrating random number generation into a circular
loop system.

use of that same number throughout all cell updates in the table, but lack the
kind of variation we would otherwise anticipate. We’d get the results shown
in Figure 9.10.

Close inspection of Figure 9.10, using the external random number gener-
ation and reference and a multi-iteration setting, creates a table where the
cells tabulated in order differ by exactly 4 (a single random pull between 1
and 5) throughout.

Why? Certainly cell D18 is still referencing itself, and all related cells
depending on D18 would also be part of that circular dependency and thus
subject to consideration during Excel’s iteration-mode based updates. How-
ever, as stated earlier, random number generation (in cell K14 in this case)
is not taking place in a cell that is dependent on a self-reference. It is being
used by a cell that contains a self reference, but that doesn’t matter to Excel.
As far as the application is concerned, there is no obvious need to update this

Figure 9.10. Propagation of random number whose generation is not part of a circular
loop.

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.3 Optimization of System Simulations 221

cell in accordance with the settings of iteration mode (i.e., the multi-iteration
settings don’t apply). Pressing F9 once forces 10 iterations of the cells in the
table dependent on D18, but K14 is not dependent on any self-reference
whatsoever and is updated only once (only one random number is pulled).

In part this is a nice way to distinguish the nuances of iterations (as spec-
ified in iteration mode for example) from that of recalculations in Excel (as
activated by F9, for example). At the same time, the issue encountered is
something that can easily be adjusted for. Here, if we need to make sure K14
contains a self reference to be included in the activities of iteration mode, why
not just add a self reference to that cell? Something as simple as throwing in a
+K14*0 (yes, itself times zero) would do the trick without having any impact
whatsoever on the output of that cell. It’s a simple tricking of the applica-
tion, and may seem pointless from a purely mathematical perspective, but
it is meaningful from an Excel logic perspective and the bottom line is that
it gets the job done. Using this minor addition in multi-iteration mode will,
in fact, give us exactly the kind of result we saw when the random number
generation was embedded in cell D18.

Because this is precisely the kind of problem that the original version of the
Lobos Inventory model faced when we attempted to use it in under a multi-
iteration setting, the same kind of solution should apply. It is worth noting
that because several calculations are dependent on the same randomly gen-
erated set of numbers, it does make sense that they be generated external to
other calculations (e.g., if in a given period multiple calculations rely on a ran-
domly generated lead time, they should all be referencing the same randomly
generated lead time for that period). If an appropriate dummy self-reference
term (such as K14*0 in the simpler example) is introduced into each random
number generating cell, then the Inventory model will act exactly as would
be desired under a multi-iteration setting. Chp9 LobosInventory Adjusted
includes this change (and that’s the only change). The results under a 200-
iteration setting are now comparable to the results provided by the macro
(running in single iteration mode), as shown in Figure 9.11.

The only challenge left in using RISKOptimizer for system simulations is in
ensuring that the system is Reset on the evaluation of each decision scenario
(in this case, each combination of order-up-to point and another terms that
might be viewed as potentially adjustable decisions, such as order quantity
and even lead time averages if alternate carrier options exist at cost).

Note: What we have done here to capitalize on the multi-iteration setting has impli-
cations beyond a single simulation of this system. As we are about to discuss, such a
capability can be useful in a search for optimal policy characteristics, but can also be
useful in the comparison of a specific performance measure across a small discrete
set of policies. Similar to the first example used on the Lobos Reservations case in

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

222 Scenario Generation and Optimization

Figure 9.11. Possible spreadsheet setup for inventory system simulation optimization.

Chapter 8, the adjusted Inventory workbook can be modified to allow for proper
Data Table tabulation across a discrete set of order-up-to levels. We would have to
add an additional somewhat awkward conditional statement to Reset the system
whenever iterations reached their limit (200 here), but otherwise we could use a
similar procedure to that first discussed when introducing the Data Table tool to
provide end-of-simulation values for comparison. Chp9 LIwDT Adjusted provides
an example of how this might be accomplished.

9.3.1 RISKOptimizer with Calls to a Reset Macro

To demonstrate how a Reset macro could be used in conjunction with
RISKOptimizer for simulation optimization, let’s first consider how we might
actually develop such a macro. Basically we’ll use the same approach we took
when recording a macro in Chapter 8. All we want here is a macro that will
set the value of the reset (or Restart) cell in the workbook (cell H18 in the
inventory workbook) equal to False, let the spreadsheet recalculate the num-
bers, and then equal to True. That’s all. And all we need to do to make such a
macro is to start recording a new one, enter False into cell H18, press Enter,
press F9, and then enter True into H18, again followed by pressing Enter and
another F9 (just to get things started right). Stopping the recording at that

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.3 Optimization of System Simulations 223

Figure 9.12. Specifying a macro call in RISKOptimizer before each solution is con-
sidered.

point will give use what we need to initialize each new investigation (i.e., this
is basically the initialize system step denoted in the simulation flow charts
in Chapter 8). In the discussion to follow, we’ll assume we haven’t been cre-
ative in naming the macro and have gone with the default label of Macro2
for this simple automation. (Note that this macro is already available in the
Chp9 LobosInventory Adjusted file.)

9.3.1.1 Use under a Multi-iteration Setting

To make the setup in RISKOptimizer as simple as possible, let’s define a
single objective that integrates the two costs represented in this system –
holding costs and shortage costs. Let’s just assume for now that every unit of
inventory held per period on average costs twice the amount as the goodwill
lost from each day that we are out of stock because we assume all customers
will ultimately be served, albeit not instantaneously, via backorder. That is,
let’s create a Net Implied cost in cell K36 equal to 2*C35+C31. We’ll use that
sum as the objective function we’re aiming to minimize. Because these two
components of the cost function trade off against one another and are non-
linear functions of our policy, it is likely that the combined objective function
will be nonlinear as well with considerably high costs appearing at both ends
of the reorder-point policy spectrum (another trait well suited to the use of
RISKOptimizer).

What we specify to RISKOptimizer as far as the objective, decision vari-
ables, and constraints might be something as simple as shown in Figure 9.12,

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

224 Scenario Generation and Optimization

Figure 9.13. Specifying a macro call in RISKOptimizer before each solution is
evaluated.

assuming we have reason to suspect the best policy exists somewhere between
a reorder-point of 40 and 120, and the existing automatic calculation of
reorder quantity in cell (C28) doesn’t need reconsidering.

As far as making use of the Reset macro before simulating each alternative
policy, we’ll want to specify a little extra under the Macrosbutton in the
RISKOptimizer Settings dialog box (Figure 9.12). Click this button to open
the RISKOptimizer Macros dialog box, shown in Figure 9.13. We want the
system to be reset before each new system simulation is run, so we’ll specify
exactly what is shown in the figure.

After one minute, given the objective and everything else specified in the
system model, the best reorder-point solution found was around 60 (i.e.,
inventory reorders placed whenever the inventory level reaches or goes below
60 units). A graphical inspection of the simulation output log shown in Fig-
ure 9.14 provides the same overall observation.

9.3.1.2 Using RISKOptimizer’s Built-in Iteration Mechanism

RISKOptimizer also provides an alternative mechanism for iterating us
through the 200 periods with which we’re interested. To demonstrate, our
setup will involve making sure we are running Excel in single iteration mode
(as opposed to multi-iteration mode). Instead we’ll specify these 200 itera-
tions by clicking the RISKOptimizer Options button to open the RISKOpti-
mizer Options dialog box (Figure 9.15). As shown in the figure we’ll specify
200 iterations in the Simulation Stopping Conditions section of the dialog
box.

This essentially tells RISKOptimizer to recalculate the spreadsheet
(i.e., pull random numbers, refresh totals, re-assess conditional statements,

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

9.3 Optimization of System Simulations 225

Figure 9.14. Reviewing nonlinearities inherent to the solution space encountered.

generate a new period’s worth of data) 200 times before moving on to the
consideration of an alternative solution.

At this point, our analysis approach needs to be a little tricky because
RISKOptimizer is going to view every single iteration it generates as a pos-
sible policy outcome. This isn’t exactly what we want because we know that
in reality each iteration simply represents a single period, and performance
in any one period may be extremely misleading (and highly variable). What
we’re interested in is average performance across the 200 periods. The aver-
age inventory held early on (e.g., periods 1 through 5) will tend to be very
high compared to the average account after 200 periods. Furthermore, the
number of periods of stock-out can never be more than the number of peri-
ods considered, thus early iterations by RISKOptimizer will also have much
fewer of these than the final total after 200 iterations. RISKOptimizer’s aver-
ages of the numbers it sees across all 200 of its iterations will therefore not
reflect the ending values we would otherwise be recording for this system.
Neither would the minimum or maximum values.

Although there’s no easy way to cut out the earlier iterations of RISKOp-
timizer (as is fairly common practice in simulation analysis where starting

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

226 Scenario Generation and Optimization

Figure 9.15. Specifying the use of RISKOptimizer iteration for a system simulation.

conditions are misleading), there are ways to cut out early numbers through
directly modifying Excel calculations. In this case we could capitalize on our
knowledge of how we’re calculating our objective function to modify the
averaging calculation in cell C35. We know the number of periods out-of-
stock must be a nondecreasing function of time (i.e., that number can only
increase as subsequent periods are iterated). We could, for example, substi-
tute into cell C5 =IF(C32>=199,C34/C32,0) to make sure that the positive
cost contributions of holding inventory are taken into account only in the
objective function at the end of the 200 iterations. The Maximum (not the
Average) values provided by the RISKOptimizer log will then be most rep-
resentative of the kind of system summaries we’re looking for. This doesn’t
help RISKOptimizer find best solutions for us per se, but it does help us make
sense of the RISKOptimizer log for visual inspection of where best solutions
may reside.

Note: Structuring objective functions differently than in this example could bypass
such a less-than-ideal approach to capitalizing on RISKOptimizer’s built-in iteration
capabilities. Because we are mainly interested in simply demonstrating the nuances
of RISKOptimizer her,e however, we’ll leave such a consideration up to the intrepid
reader.

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

Practice Problem 227

Figure 9.16. Alternate pre-evaluation macro call in RISKOptimizer.

9.3.2 RISKOptimizer with Calls to a Recalculation Macro

RISKOptimizer’s macro calls can also be used to prompt the Visual Basic-
driven iteration of the system across 200 periods (i.e., as made possible by the
macro written in Chapter 8). To illustrate, we should again make sure that
we are running in single iteration mode. Our setup in RISKOptimizer will be
the same as in the previous example, as far as objective, decision variables,
and constraints.

The nature of our macro calls will change. We’ll want to initialize at the
start, call our Macro1 from Chapter 8 (Figure 9.16) every time a new policy
is considered, and then call our new reset function every time a simulation
ends.

We might stop the optimization after one minute to see how we’re doing.
Figure 9.17 shows an example of the log of solutions considered during that
one minute period, along with a graph describing the nature and variabil-
ity of the relationship between the reorder-point policies considered and
the objective function (Net Implied Cost). Given the objective and every-
thing else specified in the system model, the best reorder-point solution
found was around 61 (i.e., inventory reorders placed whenever the inven-
tory level reaches or goes below 61 units). Note again that this is essentially
the same answer we got in the past two approaches, validating in Excel the
old adage . . . there’s more than one way to skin a cat.

PRACTICE PROBLEM

Recall the project scheduling problem from Chp7 ProjectScheduling. In reality, the
time to complete specific tasks can only be truly estimated and is automatically
viewed as associated with some level of uncertainty. In each of the cells where

P1: KDD
9780521889056c09 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:51

228 Scenario Generation and Optimization

Figure 9.17. Again, reviewing nonlinearities inherent to the solution space encoun-
tered.

estimated completion times are being tabulated (E6:E15), introduce an additional
term +RANDBETWEEN(1,4) to allow for the simulation of such uncertainty. Use
a RISKOptimizer procedure similar to that originally applied in Chapter 7 for this
problem, but additionally specify that 10 iterations (i.e., 10 simulated variants) are
considered for every solution considered. After five minutes of run time, use the
RISKOptimizer log to comment on the nature of the performance variability of the
final solution suggested relative to other best solutions encountered along the way.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

10

Visualizing Complex Analytical Dynamics

The visualization of analytical dynamics comes naturally to tools developed
in Excel. This is largely due to the dynamic nature of graphs constructed in
Excel. For example, if we wanted to depict the range of possible outcomes
associated with specific decisions for which outcomes had a describable level
of uncertainty or variation, it would be simple enough to introduce a random
term into tabular forms of such estimates and then graph those tabular forms.
As always, pressing the F9 key would simply draw another random number
from the built-in generator, and augment associated data tables and plots to
represent such the volatility of those outcomes.

For example, based on the Data Table generated in the Lobo’s Reservations
case, we could depict the variable nature of our results graphically using the
high-low-close plot (tricked out a bit) provided in that workbook. Every
time F9 is pressed we would see how much the variability in outcomes across
policy types was subject to change (based simply on different separate and
independent sets of random data draws). The result, as shown in Figure 10.1,
would depict an alternative array of outcomes that could be associated with
a set of decisions. Similarly with the second Data Table example in that case,
shown in Figure 10.2.

This in itself might be entirely adequate in providing insights regarding the
sufficiency of the number of variants examined. If the results don’t change
much, the best policy (or any possible relationship between associated out-
comes) is probably well represented.

In this case the system being visualized is assumed to follow dynamics that
are essentially devoid of memory; that is, systems where future conditions
are independent of past conditions. But most systems in practice do have a
memory of some kind. For that reason it is worth going over a few mechanisms
through which to build memory into system visualizations. There are many
forms of such memory, and the complexity of these forms ultimately impact
the complexity and richness of the visualization to be designed. We’ll start
out with the simplest form and work our way up to more complex forms.

229

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

230 Visualizing Complex Analytical Dynamics

Figure 10.1. Profit variation graphed in two randomized (F9) instances.

10.1 Random Walks

One form of memory concerns position, or what we might call the state of
an element within a system. Upon a single iteration, the state (or graphical
position) of the element might change slightly. Even if the magnitude of the
change is entirely independent of state, the new state represents a new starting
point for any other change to follow. When changes are entirely random and
independent but subsequent states are clearly linked to prior conditions, a
random walk occurs. This is illustrated in Chp10 RandWalk&FrctnlessBox
(Figure 10.3).

Figure 10.2. Implied cost information graphed in two randomized (F9) instances.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

10.2 Frictionless Boxes 231

Figure 10.3. Example of random walk dynamics graphed.

Although seemingly uncharacteristic of common experience, there are
many cases in which such models provide shockingly sufficient descriptions
of the kind of dynamics we might observe in the real world – feeding pat-
terns of pigeons, the physical meanderings of a drunken college student, the
socio-ethical meanderings of sober financial professionals, and so on.

10.2 Frictionless Boxes

Some systems involve much more defined mechanisms for changes in the
state of an element. This could be called directional or trajectory memory.
In such cases, both current state and directional tendencies are critical in
determining future states and trajectories. The simplest example of this is a
frictionless box where an element set in transitional motion maintains its tra-
jectory until certain boundary conditions are met. It then partially reverses
its trajectory (ricochets) based on what boundary condition is met. An illus-
tration of this is provided in Chp10 RandWalk&FrctnlessBox and shown in
Figure 10.4.

Once again, although a zero loss of energy or momentum seems unlikely as
characteristic of mechanical systems, prior trajectory dependency and deflec-
tion responses in general are common characteristics of many physical, social,
and economic systems. It wouldn’t take much to incorporate features such as
loss of momentum or additional more complex boundaries (for deflection)
into this kind of a model.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

232 Visualizing Complex Analytical Dynamics

Figure 10.4. Example of frictionless box dynamics graphed.

10.3 Path-Directed Flows

The notion of systems that retain memories of both state and direction
opens the door to still more complex and potentially meaningful graphi-
cal visualizations, including those that retain memories of progress between
states along much more nuanced trajectories. For example, consider the
visual simulation provided in the Chp10 Lobos FloorPlan workbook (see
Figure 10.5).

As in the previous examples presented in this book, opening this work-
book and holding down the F9 key will allow the visual simulation to cycle
through. Seeing this in action, an initial reaction might be to view this as
far beyond the skill of someone just getting the hang of developing tools in
Excel. But the building block and ideas on which this visualization is based
are straightforward. We’ve actually covered them all in one form or another
already.

Pasting images in place of scatter plot points (the images of the waiters and mari-
achis in Figure 10.5 are just points in a scatter plot)

Pasting a background for a plot (that’s the restaurant backdrop).
The apparent motion of the points along paths; there’s the iteration mode at work,

again used in the evolution of a living record, in conjunction with the transition
matrix concept introduced in Chapter 8 and a little bit of careful graphical
design.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

10.3 Path-Directed Flows 233

Figure 10.5. Example of multi-element path-movement by graph.

Easier said than done? There is some complexity in this last point, but
like all processes, it’s not something that can’t be broken up into a set of
logical steps.

10.3.1 An Introduction to Visualizing Path-directed Flows

Let’s take a look at a somewhat more simple illustration of how these tools
are used together. (We’ll get back to the specifics of this particular example
in a bit.) At this point let’s not attempt to take into consideration physical
proximity in the graphics. To keep it simple, let’s just represent the three
steps/states of a process as three points plotted to a graph. For structure
we’ll make use of the same transition matrix example introduced in Chap-
ter 8. In the Chp10 TransMatrixRvstd workbook, the worksheet labeled
TransMatrix+StateChangePlot (Figure 10.6) provides the same structure as
discussed in Chapter 8 with the addition of only a few new elements.

The additions include three sets of x–y coordinates (in various shades of
gray) to spatially distinguish the three states on a scatter plot, as well as a pair
of x–y coordinates based on that set of three that specifically captures what
state a job resides in at any point in time. Holding down the F9 key updates
the tabular data as before, but now also provides a visual representation of
job progress between these states.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

234 Visualizing Complex Analytical Dynamics

Figure 10.6. A simple state-to-state transition plot.

Although informative, such a visual is still somewhat limiting in its capa-
bility to depict flow. Instantaneous movement between states is generally
difficult to keep track of visually in this manner, particularly in cases where
multiple jobs may be transitioning among the same states at the same time.
More gradual progress between transitional states often proves more useful
in these kinds of system simulations.

10.3.2 Visualizing Progress along Paths

To provide a visualization of transitional progress over much more visually
complex paths, we can fall back upon the kinds of capabilities discussed when
we introduced scatter plots in Chapter 4. These plots are constructed based
on a series of data points. In many cases, the ordering of these points are
irrelevant to analysis; in other cases, such as those associated with transi-
tions between states within a process, their ordering is critical to intuitive
understanding.

Let’s start by considering a single path structure described by a set of x–y
coordinates. We’ll pick a simple path structure to begin with, for example
that of a circular or oval path. For aesthetic purposes we’ll illustrate this
with a depiction of the Earth moving in orbit around the sun (see workbook

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

10.3 Path-Directed Flows 235

Figure 10.7. Simple nonlinear path dynamics.

Chp10 SimplebutStunningPaths.) In this case the illustration is constructed
through the use of a bubble plot and further augmented through the manip-
ulation of size of bubble Earth as it moves along the path.

As shown in Figure 10.7, the path itself is nothing more than an application
of the equation of a unit circle (y=+/–sqrt(1–x2)) in iteration mode, with
the value of x changing in small increments either positively or negatively
depending on whether the right or left boundaries of the circular path have
been reached. The squashed appearance of the circular path is nothing more
than an artifact of the squashed nature of the vertical scale.

As can be seen through opening the workbook example and holding down
the F9 key, subsequent iterations provide the appearance of the Earth moving
in front of the sun and then dipping into the background as it travels to lower
and lower y-coordinates in the plot (see Figure 10.8).

Although this may be a decent illustration of technical capabilities, it is
still a fairly limited example as far as practical application is concerned.
To get more practical, we could capitalize on our knowledge of transition

Figure 10.8. Several phases of a nonlinear path dynamic graph.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

236 Visualizing Complex Analytical Dynamics

Figure 10.9. The introduction of paths to a simple transition flow graph.

matrices to merge multiple paths into a system depiction over which progress
between states can be monitored. Referring once again to the three-state
transition matrix example, the TransMatrix+ProgressPaths worksheet (Fig-
ure 10.9) provides a further extension where individual points between the
spatially represented states are specified. These points outline straight-line
paths between these states – i.e., positions of jobs along the paths represent
progress in the transition between any two states. Because progress may be
either forward (e.g., 1 to 2) or backward (2 to 1) we have six sets of x–y
coordinates (three of which are simply reversals of the other three).

Additional features include cells that keep track of which of six paths a
job is on, how many total points of progress exist along each path (eight
in all cases here), as well as how far the job has progressed along it’s path
(referenced here as CurrentPoint).

Here the x–y location of the job is dependent directly on path information;
specifically a column (path) and row (progress on path) OFFSET reference
(see associated worksheet). On each iteration, a job progresses along the
current path until it reaches the last point on that path. At that point, the same
lookup mechanism initially introduced for determining what next state will

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

10.3 Path-Directed Flows 237

Figure 10.10. Revisiting the multi-element path-movement example.

be transitioned into is used. In iteration mode this is followed immediately
by the designation of the next appropriate path and a resetting of the path
progress (CurrentPoint record) to 1. As before, F9 demonstrates the iterative
progress in this example.

10.3.3 Custom Path Visualizations: Lobo’s Floor Plan Revisited

In some cases, the graphical specification of path structures may be pre-
established or extremely straightforward in terms of laying out x and y coor-
dinates within a table. For example, perhaps changes in performance follow
the arc of a production possibilities frontier or some set of conceptually and
practically meaningful mathematical constraints. In many real world simu-
lations, however, the kind of dynamic path movement that is most telling
relates to much more complex forms that aren’t easily described by a series
of formulations. Some of these are based on spatial considerations (e.g., inter-
nal or external physical infrastructures of facilities; others may be designed
to represent transitions that are conceptually diverse and complex (e.g., rep-
resenting the processing of new design ideas as opposed to the assembly of
prototypes by design, or the retooling of staff in preparation for new work
deployment). For example, let’s consider an example from earlier in this
chapter (Figure 10.10).

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

238 Visualizing Complex Analytical Dynamics

Figure 10.11. Paths specification associated with flow depicted.

Ultimately, this is really nothing more than a more complex variant of the
path types we’ve discussed. In this particular example, to organize what would
otherwise be a fairly difficult to manage set of spreadsheet calculations, we are
making use of three sheets in a single workbook. One of these sheets simply
contains the set of x–y coordinates that specify the pathways that elements
can move along in the graph (Figure 10.11).

The visual shown in Figure 10.11 is nothing more than a scatter plot graph
containing a line-linked presentation of that tabular data, superimposed on
a graphic of a restaurant blueprint. (Approaches to massaging this set of
coordinates to fit neatly with the natural paths of a scanned blueprint are
discussed in the Chapter 10 supplement.)

On the PersonTypes worksheet shown in Figure 10.12, I specify the transi-
tion matrices relevant to this graphical simulation. In this case these matrices
specify the probability of an individual shifting onto an alternate path upon
completion of the one they are currently on. The same lookup mechanism
used to determine where to go next based on a random number pull in the

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

10.3 Path-Directed Flows 239

Figure 10.12. Paths specification associated with flow depicted.

earlier three-state example is used here with eight instead of three states.
Here we’re drawing on the concept of stochastic processes introduced at the
end of Chapter 8.

Different people may be described by different types of movement, and so
the transition matrices of the busboys are not the same as that of the manager
or the mariachi band, for example. Along with these transition matrices are
cumulative matrices that are used when Excel actually needs to look up on
what next random path the person will embark.

The main page (LiveData, shown in Figure 10.13) is the most complex, and
is therefore fully annotated, complete with red triangles on the column head-
ers. Ultimately the logic used there is no more complex than the structures
discussed in the examples of the iteration mode. The complexity comes into
play only when you consider how all of these elements and techniques come
together to form a single integrated system. Of course the caveat here is that
even the coolest (or simplest) graphics can get messy at times. When com-
plete graphical depictions limit the capability to get a point across or come
to an understanding, partial depictions of representative or critical data are
more useful.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

240 Visualizing Complex Analytical Dynamics

Figure 10.13. Pruning visuals through leveraging the ranges of graphs.

Along these lines, another handy feature of this example is the use of
controls to helps provide a graphical pruning mechanism, again with the
intent of focusing on only specific elements of the dynamic visualization.
Here we see the addition of a toggle associated with each type of entity class
(i.e., the waiters, the busboys) that can set to TRUE or FALSE (i.e., 1 or 0).
If TRUE, the entities in that class show up somewhere along their associated
paths; If FALSE their X–Y coordinates are set to (−1, −1) and therefore out
of range for the graph (they don’t appear on the portion of the graph that we
view). It’s a bit of a fake-out, but it gets the job done. Plus it allows for the
development of other more sophisticated pruning interfaces (e.g., control-
based check boxes as introduced in Chapter 8 supplement).

Chapter 10 Supplement: Visually Derived Paths

Rather than trying to change the visual depiction of these paths through mod-
ifying the coordinates in tables, we could rely on alternative visual techniques
for path adjustments and design.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

Chapter 10 Supplement: Visually Derived Paths 241

Figure 10.14. Manipulating plotted fixed-value points.

Plot-pulled Extractions

One way involves making use of the graphed-data manipulation discussed in
Chapter 4. Depending on your version of Excel, this approach may or may not
be available; it is certainly available in the 2003 version. Once again, using
the three-state example for illustration, all you need is to select a specific
path (set of data) within the graph, select a specific point to adjust, and pull
either horizontally or vertically on that point (assuming it related to fixed
data rather than a function) until it is in more visually representative location
(see Figure 10.14).

System visualizations set up the way we have outlined in this chapter need
no more changes for these plot-pulled manipulations to become effective.

In the case of the Lobo’s floor plan example, I actually used this very
technique. I started with a set of points (0,0), (1,1), (2,2) and then plotted
them in a scatter chart. At that point, they’re just a single straight line. After
choosing the restaurant layout as a background picture for the plot, I started
selecting each of those points and pulling them into positions that roughly
corresponded to what might be commonly traveled paths within the restau-
rant layout; for example, note that people don’t appear to be passing through
walls or over tables in Figure 10.15.

In truth, it takes time to make things seem well spaced. As with the three-
state example, some paths on the page are simply the same points of existing
paths placed in the opposite sequence (i.e., representing travel in the opposite

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

242 Visualizing Complex Analytical Dynamics

Figure 10.15. Revisiting the point-structure used in the floor plan example.

direction of a given path). To save time when creating these reverse paths, I
simply set the first point on the reverse path equal to the cell reference for the
last point on the forward path, the second point equal to the cell reference
for the second last point on the forward path, and so on. This soft referencing
allowed for any later changes to the original path without having to make
subsequent changes to the reverse version.

Drawn-path Extractions

A very different alternative approach is to simply draw a path using the draw-
ing objects available through Excel and then extracting coordinate informa-
tion from the drawn lines. If you have a rough idea of what you want the
path to look like, you can use the freeform, curve, or scribble options in the
Shapes drop-down menu (Insert>Shapes). If you want the path to approxi-
mate a designated blueprint of some sort, there’s no need to first insert that
blueprint into a graph. When available in Excel, you can simply draw your
path over the inserted picture.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

Chapter 10 Supplement: Visually Derived Paths 243

Figure 10.16. Path-point data extracted from a scribble.

Regardless, the real trick is in getting the structure of those drawn paths
into a tabular form of which your visual simulation can make use. Unlike
plot-pulling approaches, which require a tabular structure, no coordinate
data associated with drawn lines is automatically linked to the spread-
sheet. Fortunately there are some simple VB codes that can be used to get
the data you’ll need. The workbook labeled Chp10 VisuallyDerivedPaths
also contains a worksheet that demonstrates how coordinate data can be
extracted from a variety of drawn paths. Figures 10.16 and 10.17 provide two
examples of tabular sets of coordinates extracted from two very difference
drawn paths, along with subsequent scatter plots that validate the extraction
process.

The following code provides a mostly foolproof approach to extracting
path-point data from either of these kinds of drawn paths.

Sub ExtractPoints from DrawnLine()
Columns(“A:I”).ClearContents
Range(“E1”) = “NumNodeSpecs”
Range(“F1”) = Selection.ShapeRange.Nodes.Count ‘Number of node records

‘in in freeform record. Includes curvature data if any.
Range(“E2”) = “Units From Left”
Range(“F2”) = “Units From Top”

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

244 Visualizing Complex Analytical Dynamics

Figure 10.17. Path-point data extracted from a freeform with added curvature.

NumTruNodes = 0
For Count = 1 To Selection.ShapeRange.Nodes.Count

NumTrueNodes = NumTrueNodes + 1
If NumTrueNodes > 1 Then

If Selection.ShapeRange.Nodes.Item(Count).SegmentType = 0 Then
‘Check whether node starts a straight line segment

Range(“G3”).Offset(NumTrueNodes - 1) = “Straight Segment”
Else ‘Otherwise, “jump over” curvature data built into freeform record

Count = Count + 2 ‘Note: Not typical within a For loop, but an easy
‘solution in this case

Range(“G3”).Offset(NumTrueNodes - 1) = “Curved Segment”
End If

End If
Range(“E3:F3”).Offset(NumTrueNodes - 1) =

Selection.ShapeRange.Nodes.Item(Count).Points
Next

End Sub

For those not interested in learning how to work with Visual Basic code,
the program is available for use in Chp10 DrawnPathExtraction, and can be
executed on any line drawn in that workbook.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

Chapter 10 Supplement: Visually Derived Paths 245

For those who are interested in leveraging the full capabilities of Excel
(given that you’ve gotten this far), as we are about to see in our discussion
of the VB Editor environment (Chapter 11), the code can also be copied
and pasted into other workbooks, manipulated and expanded upon for more
advanced applications.

P1: KDD
9780521889056c10 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:2

246

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

Section 4

Advanced Automation and Interfacing

247

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

248

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11

VB Editing and Code Development

Many effective decision support systems rely not only on the ability of a
manager to present information, analysis, and meaningful dynamics (e.g.,
through graphics), but also on enabling users to realize the intended use of
those elements by themselves (without the developer holding their hand).

This is often going to mean providing sufficient documentation that might go beyond
just cell labeling and embedded comments.

It may mean coming up with some kind of a customized user-driven help or wizard
component as part of the DSS that makes use of not only automated numerical and
graphical demos, but also makes dynamic use of other objects such as the images
and .wav files that could be incorporated into the workbook.

And often this is going to mean a level of automation that stretches the limits of the
kind of work that can happen at the spreadsheet interface alone. In fact, it may be
impossible to achieve by using just the top layer of an Excel workbook.

Let’s see how macros and the Visual Basic (VB) Editor might provide us with
some new options in this regard.

11.1 The Visual Basic Editor

Let’s take a deeper look into one of the first macros we introduced. Open-
ing the Chp8 LobosInventory workbook provides us with an opportunity
here. To see the code associated with this macro, select the Developer tab
on the main menu bar and then select Visual Basic (which will open the
general VB Editor screen) or click Macros (see Figure 11.1) and from the
associated dialog box select the specific name of the program code you
are interested in viewing (in this case, generically called Macro1) and then
Edit.

The VB Editor in Excel has its own distinct structure (fairly distinct from
that of the Excel spreadsheets). Because any given macro may be specific to

249

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

250 VB Editing and Code Development

Figure 11.1. The Developer tab and associated elements.

a single workbook, worksheet, or even refer to an included add-in (such as
Solver), the VB Editor provides a mechanism to categorize the macros that
are associated with any workbook currently open in Excel. That mechanism
is the Project window that appears to the left of the VB Editor interface
(shown in Figure 11.2).

Figure 11.2. Basic elements of the VB Editor environment.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.1 The Visual Basic Editor 251

11.1.1 Confronting Code

The critical feature of the VB Editor is the code window (shown to the right of
the Project Window in Figure 11.2). In this and all cases discussed in this text,
the code we’re interested in will be stored in the Modules folder in the VBA
project window. If you don’t see any code at this point, open that folder and
double-click on Module1. The code associated with the Chapter 8 workbook
should now appear. When you record a macro, this is precisely the kind of
stuff Excel writes for future reference (i.e., for repeating or editing the actions
you’ve recorded). This is also where all ground-up code development takes
place (in lieu of macro recording). This is a useful point, in part because not
all useful code can simply be generated through macro recording alone.

Admittedly it’s probably one of the most intimidating areas for new devel-
opers, particularly those without computer programming backgrounds. But
don’t give up yet. As an experiment, let’s try to interpret the language Excel
and the VB Editor use to keep track of some of the actions we may have
recorded. Table 11.1 shows an abridged and annotated version of the code
written and used in the Chapter 8 example.

Again I’ve fully annotated the code (the text in Table 11.1 is not actually
present in the code itself), but even if you didn’t have this annotation, do you
think you could have guessed what some of these lines did? Some are fairly
obvious, or at least suggestive (e.g., Range(“H18”).Select, Selection.Copy,
or Selection.EntireRow.Insert). VB capitalizes on simple elements of the
English language, making it easy for even laypersons to navigate. Some code
is more cryptic, but in general we could get a sense of what’s happening here
by attempting to read through the code as if it were steps in a set of cooking
instructions.

The bottom line is this – you’ll find that recording and editing macros is one
of the best ways for non-computer programmers to learn to do some amazing
things with code (perhaps more so in Excel 2003, but still very handy in Excel
2007).

11.1.2 Checking for Bugs

There are resources available to help pinpoint where things go wrong in code,
and believe me they will, again and again and again. For every minute that
beginning (and even advanced) developers spend on coding, they may find
themselves spending about that same amount of time (often much more)
figuring out where they went wrong and what they can do to resolve it. There
are a few features available that can help in this process.

The first feature is the ability to “step-through” a macro line by line, as
opposed to just letting a macro run until it ends (or breaks down). In VB
Editor, after a specific macro is selected and the blinking line cursor appears

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

252 VB Editing and Code Development

Table 11.1. Annotation and Code for Chapter 8 Example

Annotation Actual Code

Name/Start of macro Sub Macro1()
‘

Notes ‘ Macro1 Macro
‘

Selection of active cell Range(“H18”).Select
Specifying “reset/reinitialize” ActiveCell.FormulaR1C1 = “FALSE”
Call to Recalc (e.g., F9) to reset Calculate
Reselection of active cell Range(“H18”).Select
Specifying “start simulation” ActiveCell.FormulaR1C1 = “TRUE”
Call to Recalc to iterate Calculate

Calculate
Calculate

∼200 of the same lines (for 200 :
periods iterated Calculate

Calculate
Select key cells Range(“K32:K35”).Select
Copy them as a set Selection.Copy
Select the “record” sheet Sheets(“MacroRuns”).Select
Select a starting cell there Range(“B2”).Select
Paste the copied cells there (note

that the “ ” is used to denote code
statement continuation on next
line)

Selection.PasteSpecial
Paste:=xlPasteValues,
Operation:=xlNone, SkipBlanks:=False,
Transpose:=True

Application.CutCopyMode = False
Insert new row in anticipation of

next record paste
Selection.EntireRow.Insert

Sheets(“StockoutDemo”).Select
End of macro End Sub

in the code (e.g., as for editing), pressing the F8 key will step the developer
through the code line by line. Each line will be highlighted in yellow, signifying
that the particular line of code has just been or is being processed. A yellow
arrow also appears at the side bar of the code window to emphasize the
current line (see Figure 11.3).

As an alternative to using F8, some developers prefer to allow larger macros
to run for a longer segment of code and stop only for checking when spe-
cific points of interest are reached. Those specific points are often chosen by
developers because there is some intuitive feeling that something around that
point is likely to cause some problem (i.e,. something has either just recently
had the possibility of going wrong, or is about to). To insert these breakpoints,
the developer can select the line of code of interest, right-click, and select
Toggle>Breakpoint (see Figure 11.4). The line then gets shaded maroon and

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.1 The Visual Basic Editor 253

Figure 11.3. Step-through code execution.

a maroon circle appears to the left of the code. Another fast way is to select
a line of code and press F9 in the VB Editor, or still more simply by toggling
breakpoints on and off by clicking on the bar area immediately to the left of
the code.

Figure 11.4. Toggling breakpoints in code.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

254 VB Editing and Code Development

There can be as many breakpoints as there are lines to a code (although
there would be little point in adding so many). When added, the developer
can start a macro run in the VB Editor (using the Play button). The macro
will run up until each breakpoint and then stop until the next breakpoint is
reached, the macro ends, or the macro breaks down because of a processing
error. At each break, the developer has the opportunity to check what the
spreadsheet looks like, and even check on the status of some of the data
maintained by the macro (which can provide a wealth of insights that we’ll
discuss later in this chapter).

11.2 Object Manipulations

At this point it should be fairly obvious that there are many other objects you
might encounter, construct, or manipulate aside from just cells in a workbook.
Objects such as graphs, buttons, and clips of various types can reside within
a workbook, and may ultimately serve as the primary vehicles for users to
interface with a DSS. Yet as with cells there’s often much more to these
objects than you might first expect.

Similar to cells, all objects have a certain set of properties that can be
manipulated. Many developers refer to the full set of properties of any object
as a record, although the structure and content of those records may be very
different depending on the objects. For example, objects such as check boxes
are specifically designed to possess properties that a simple circle drawing
would not. Check boxes contain a property that describes the cell to which
they are linked, and whether they are checked or not checked, for instance.
At the same time, simple circle drawings possess other attributes like line-
type that check boxes don’t (at least not in an identical form). Regardless of
these nuances, there are some properties that all of these objects share:

Name/Label: What the object can be referenced as
Location (x,y): Where the object is located in a spreadsheet
Visualization (e.g., size, color, and shading): What it looks like

11.2.1 Incorporating External Objects into Workbooks

Let’s see what we can expect if we decide to import a picture into our work-
book. Start by going to Insert>Picture and then browsing for an image to
import (see Figure 11.5).

For my own reference, I’m going to rename this object SampleImage (using
the same labeling/naming field I would use to name cells and cell ranges). In
doing so I’m essentially updating the name attribute of that image. The image
is shown in Figure 11.6.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.2 Object Manipulations 255

Figure 11.5. Importing pictures into Excel.

Note that when the picture is selected in Excel, the Picture toolbar displays
at the top of Excel. The items on that toolbar represent other attributes of that
object’s data record (e.g., color, brightness, orientation, size, line thickness).

You can also insert other kinds of audio-visual objects, such as sound and
video clips (generally found under the Object button through the Insert tab
in Excel 2007, see Figure 11.7). We can edit elements of a sound clip (e.g.,
where we want it to start or stop) in the same way that we could edit different
attributes of imported images. Figures 11.8 and 11.9 display the subsequent
object selection and specification steps associated with inserting a wave sound
object, for example.

Figure 11.6. Example of picture import and available editing tools.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

256 VB Editing and Code Development

Figure 11.7. Access to general object importation.

Figure 11.8. Navigating the object import selection interface.

Figure 11.9. Working with imported .wav file objects.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.2 Object Manipulations 257

Figure 11.10. Editing a picture object while recording a macro.

For future reference, I’m going to use the labeling/naming field to rename
this object as SoundClip. At this point it might also be worth inserting an
actual sound file into the newly created template, using the Edit>Insert File
option in the dialog box depicted in Figure 11.9 (to re-access the dialog box
just right-click on the newly imported object and selecting Open from the
shortcut menu).

11.2.2 Object Macros

Given our existing discussions on the development of macros for repeating
common actions, let’s use one of the new objects we’ve imported to see what
Excel will allow us to record on objects rather than just cells. Pick any random
cell on the spreadsheet. To make sure that the object is not yet selected,
we want to record the selection as well). Then start recording by selecting
Macros>Record Macro to open the Record Macro dialog box. Enter a name
for your macro, such as ImageMacro, and then click OK.

While we’re recording, let’s try some simple manipulations of the imported
image. For example, we might select the image and drag it to the right. We
might then pull on one of the corners of the image to expand it a little. Then
maybe click the Brightness button in the Picture toolbar a few times to lighten
things up. The results are shown in Figure 11.10.

Now let’s stop the recording. Try to play your macro by going to the Devel-
oper tab (in Excel 2007), selecting Macros as before. This time select the
macro of choice and hit Run. If the actions are repeated perfectly, you’re
probably using either Excel 2003 or a patched version of Excel 2007. If
nothing happens, it may be a function of the version of Excel 2007 you are
using.

Here is some good news for Excel 2007 users. If you create a macro that
manipulates objects (such as pictures) in a previous version of Excel (e.g.,
Excel 2003) and then use that file in Excel 2007, it should work. Alternatively,
if you know the code enough to create a macro that manipulates an object
from the ground up using the built-in Visual Basic Editor, you should still be

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

258 VB Editing and Code Development

able to get those actions to run in Excel 2007. We will take a look at how to
do this in the next section.

In any case, if the recording mechanisms does work, the code recorded
should look something like this:

Sub Macro1()
ActiveSheet.Shapes(“SampleImage”).Select
Selection.ShapeRange.IncrementLeft 120#
Selection.ShapeRange.ScaleWidth 2.35, msoFalse, msoScaleFromTopLeft
Selection.ShapeRange.ScaleHeight 2.34, msoFalse, msoScaleFromTopLeft
Selection.ShapeRange.PictureFormat.IncrementBrightness 0.03
Selection.ShapeRange.PictureFormat.IncrementBrightness 0.03
Selection.ShapeRange.PictureFormat.IncrementBrightness 0.03

End Sub

No annotation here, and I’m not going to spend much time walking through
this code because it’s fairly clear what each line is getting at if you just spend a
just few seconds reading through them. For example, some lines clearly have
to do with the selection of the object in question (in this case, the image);
others clearly pertain to manipulations of the location of the object, the size
of the object, and the brightness of the object.

Nevertheless it’s worth pointing out at least one less intuitive structure.
Specifically, VB actually has a range of Location(x,y) change commands for
objects, although in this particular case the VB Editor has defaulted to the
use of the command IncrementLeft for the horizontal movement recorded
(IncrementTop would be the associated command for vertical movement).
When the IncrementLeft command is used, it means that the left edge of the
object will be moved a certain horizontal distance. When moved to the right,
that distance will be positive (+); when moved to the left, it will be negative
(−). So in this case, the code would actually move the object to the right, just
like I did during the original recording in Excel 2003. This is a case where the
designed use of language-rich syntax doesn’t hit home as intuitively as one
might have hoped. Just something to get used to.

Perhaps surprisingly, in contrast the code representing the activation and
playing of the sound clip is much simpler than the graphic manipulation.
Table 11.2 shows the annotated the code clip. It’s nice to see that only two
lines are really relevant here.

It is worth pointing out that in both of the image movement and sound
clip cases, there is considerable reference to something called selection. The
IncrementLeft 120# action seems to be just a feature of the selection in the
first case, while the Verb Verb:=xlPrimary seems to be a feature associated
with the selection in the second case. Both are actually functional attributes

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.3 Syntax and Coding 259

Table 11.2. Annotation and Code for Basic Clip Play Macro

Annotation Actual Code

Name/Start of macro Sub Macro2()
‘

Notes ‘ Macro1 Macro
‘

Selection of wave object ActiveSheet.Shapes(“SoundClip”).Select
Play sound clip Selection.Verb Verb:=xlPrimary
Call to Recalc (eg. F9) to reset End Sub

that apply only to certain kinds of objects. We know they are associated
with objects selected because of the use of a period (.) to link their use
to the key term selection in all cases. The use of this period will become
increasingly familiar to you as a developer as you encounter more and more
advanced codes (either ones that you’ve recorded, been given, or write from
the ground up). In actuality this serves a little like the period in the Dewey
decimal system used at libraries to get into increasingly more specific features
of a larger category of attributes (or drawing on our Principal Components
Analysis discussion, it’s a bit like specifying how each individual item relates
to a higher level factor). This notation can be used in both constructing data
storage mechanisms in VB (i.e., items called records) as well as in other
functionality that comes standard with selections.

11.3 Syntax and Coding

Now that you’ve got a taste of what you can record using Excel macros and
VB code, we’re ready to talk about the basic standards in VB. Literally, all
macros/subroutines/programs typically start with the following in the VB
Editor.

Sub SubroutineName () ‘whatever name you want to use

And end with the following:

End Sub ‘always the same regardless of the macro

Everything between those two lines represents what will take place (or
could take place, as we’ll see in a moment) when the macro/subroutine is run.
Remember that we can start the run of any macro directly from the Excel
workbook interface by going to Macros>View Macros>Run or by assigning
a macro to an object such as a control button or image we’ve created or
imported.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

260 VB Editing and Code Development

11.3.1 Intro to VB Variables and Types

One of the first things you might want to do in developing a new subroutine to
run in Excel is define any variables that you want the VB Editor to keep track
of outside of the spreadsheets of the workbook. In other words, we’re talking
about data that isn’t actually stored in any of the cells of the workbook. There
are a number of reasons why you might want to temporarily store data this
way.

Referencing and modifying data that’s present in the cells of spreadsheets
actually takes a little longer than doing the same with data stored only by
the VB Editor during run-time. If you have a lot of data that you plan to
access and base simple calculations on, that can really make a difference in
the amount of time it takes for the program to run. You may not want to do
this for all the data you use in the workbook; it makes sense to have some
of it stored in spreadsheet form, for example if you want to make sure it’s
retained when you save the workbook. But for some data, this kind of virtual
storage comes in handy – at this point I don’t expect you to be able to make
that distinction.

Also, some data takes on a structure that may be difficult or cumbersome
to meaningfully store in spreadsheet format. For example, let’s say we want
to run some kind of a simulation that takes into account all the restaurant
franchises in a niche market that exist in each of the 48 contiguous states.
Based on historical data, some franchises open whereas others close over
time. Imagine that for the ease of certain calculations we want to make sure
our data remains sorted by state and restaurant chain. Storing and changing
this data in a spreadsheet over the time window of the simulation would
mean either inserting and deleting rows of data (and knowing where to do
such deletions and insertions based on state and chain), or adding data at the
end of a list and then resorting that list every time new data is added.

That can be a lot of work, even if fully automated. A better way might be to
store that data in some kind of an array format in the VB Editor, something
that automatically indexes data the way you want (e.g., by state, chain, and
franchise #), keeping track of which franchises are open and which are closed.
In particular, certain forms of these kinds of variables (called dynamically
linked lists) are used extensively by DSS developers.

We’ll focus on the simpler forms of arrays here. Let’s start by just outlining
some of the most basic kinds of data structures in VB: single value variables
and single variable data types. Common types include:

Integer: For whole numbers ranging from −32768 to 32767
Long: For whole numbers ranging from −2147483648 to 2147483647
Single: For all numbers ranging from as small as +/− 1.4×10–45 to as large as

+/− 3.4 × 1038

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.3 Syntax and Coding 261

Boolean: For variables that take on the value of either True or False
String: For variables that take on text values (e.g., someone’s name)

Note that each of these single variable types can be used to construct a
variety of more complex data types. For example, they could be used to build
a record, or combination of different variables each of a potentially different
type (e.g., the name {String}, student ID {Long}, and class grade {Single} for
an individual student). Alternately, they could form variable arrays, which
are lists of values for multiple instances of the same kind of variable (e.g.,
a list consisting solely of individual students’ names {An array of Strings}).
They could also be used to construct variable record arrays, or lists whose
entries are each a record that includes a student name, ID, and class grade.

To ensure that the VB Editor is handling data the way you want, define
the variables you want it to keep track of right at the beginning of your
subroutine/macro. All declarations start with the term Dim and are followed
by the name you want for your VB variable and a description of the type of
variable it is. For example,

Sub SubroutineName ()
Dim NewInteger As Integer
Dim NewStudentName As String*50

End sub

would create a new subroutine called SubroutineName in which two variables
are defined – one called NewInteger that is designed to hold integer-type
values, and another called NewStudentName that is designed to hold text-
type values 50 characters in length (max). The ‘*50’ designation specifies this,
although is often not a requirement for String declaration.

After you have declared, you can use these variables within your subroutine
without any doubt regarding how the VB Editor will interpret them. You
can now develop additional code that assigns and changes values for these
variables. Here’s the kind of syntax you might use to assign a value to the
NewStudentName variable.

NewStudentName = “Jimmilford Jonesburgson”

It’s valuable to note that the name you give a variable in VB Editor has
absolutely nothing to do with any labels/names you’ve applied in the spread-
sheets of the workbook. Regardless, you can easily copy and paste values
from VB variables to cells in a spreadsheet, or the other way around. For
example:

Range(“Sheet1!A2”) = VBvariable1
VBvariable2 = Range(“RateofReturn”)

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

262 VB Editing and Code Development

This would place the value currently in your VB variable called VBvariable1
into the cell A2 in Sheet1 of your workbook, while setting VBvariable2 to
whatever value is currently in the workbook cell labeled RateofReturn.

11.3.2 Declaring and Using More Complex Variables

To create a variable array (list) of strings for storing multiple (say, 25 max)
student names, we would use a declaration like this:

Dim NewStudentNames(25) As String*50

After such a declaration, to set the third name in that list to a name in your
workbook, for example, a name you know is in cell B30 of Sheet1, you’d use:

NewStudentNames(3) = Range(“Sheet1!B30”)

To create a variable record that represents a grouping of numerous different
variable types, you use the following syntax.

Type StudentInforRecord
Name As String * 50
ID As Long
Grade As Single

End Type

Sub Macro1()
Dim NewRecord As StudentInfoRecord

End Sub

This is obviously a much more complex declaration, but still something
we can get our hands around. The first thing that’s happening here is the
definition of a new type of variable, one that contains three components of
Name, ID, and Grade. This must be typed at the top of the VB Editor code
before the subroutine starts. The second is a declaration of a variable base
on that new type. Here how we might assign values to two fields of that new
variable.

NewRecord.Name = “Jimmilford Jonesburgson”
New Record.ID = 555442727

Note that each field of the record is designated by a period (.) followed by
the name of the field to be used.

Finally, to create an array of records, you could use the following declara-
tion (assuming you already have the new type StudentInfoRecord defined as
earlier).

Dim NewRecords(50) As StudentInfoRecord

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.3 Syntax and Coding 263

You could then modify the 15thGrade in that array (for example) to be equal
to say the value found in cell G12 in Sheet3.

NewRecords(15).Grade = 3.45

As a quick example to pull all of these ideas together, consider the following
macro code.

Type StudentInfoRecord ‘defined the new type (record)
Name As String * 50 ‘define the first attribute as a string
ID As Long ‘define the second as a whole number
Grade As Single ‘define the third as a decimal number

End Type

Sub Macro1()
Dim NewRecords(50) As StudentInfoRecord ‘define the variable array

‘assuming theres some student data in the second row . . .
‘read that data piece by piece into the first variable in the array

NewRecords(1).Name = Range(“a2”)
NewRecords(1).ID = Range(“b2”)
NewRecords(1).Grade = Range(“c2”)

‘Now copy it into the second variable in the array
NewRecords(2) = NewRecords(1)

‘Now use those two records to generate a third
NewRecords(3).Name = Range(“a2”) + “‘s Nemesis”
NewRecords(3).Grade = NewRecords(1).Grade / NewRecords(2).ID

‘And now modify the record in the second slot once again
NewRecords(2) = NewRecords(3)

End Sub

Ultimately the code outline is a bunch of seemingly random manipulations
of information storage devices, but hopefully it allows a little more familiarity
with the nature of variables and how different kinds of variable structures
interact with one another.

11.3.3 Watching for Changes in Stored Information

All of the variables and types just described are helpful because they provide
the means of storing information outside of the spreadsheet proper and the
means of storing information in forms other than the piecemeal structure
typically associated with spreadsheet records. However, the storage of infor-
mation in VB-based variables does leave one particular issue to be desired:
visibility. Generally speaking, it often appears to those starting out that what
happens behind the scenes in VB is a bit clouded in mystery, or at least much
more difficult to get a handle on than the kinds of calculations that take place
in a spreadsheet.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

264 VB Editing and Code Development

Figure 11.11. Adding a Watch to macro code monitoring.

In reality this may have more to do with the roots of those developers tran-
sitioning from spreadsheet environments where data storage units (e.g., cells)
are ever present, to VB environments where only specific data storage units
(e.g., variables) exist on a need-to-exist basis (i.e., when associated macros
are being run). Even when macros are being run and variables are called into
existence for the use of storage and calculation, the changes to the contents
of these variables may not appear immediately obvious. Fortunately the VB
Editor does provide the means of making the values stored and changed
within these variables crystal clear to developers who are interested in moni-
toring their change throughout a macro run. The tool provided to accomplish
this is simply called a Watch and is generated by right-clicking anywhere on
your code to open a shortcut menu. From there, select Add Watch (shown in
Figure 11.11). The process is facilitated if you select the variable of interest
and right-click directly on it.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.3 Syntax and Coding 265

Figure 11.12. Specifying the nature of a Watch.

Selecting Add Watch opens the Add Watch dialog box (Figure 11.12),
which enables you to specify exactly what you want to watch as you step
through the macro (e.g., using F8, or running the macro with breakpoints
active). The Watch then appears at the bottom of the screen (Figure 11.13), as
is what you’ll want to keep your eyes on for changes in the variables selected.
After stepping through to the end of this particular macro run (in Chp11
TypeVariableUse), the Watch screen should appear as shown in Figure 11.14.

11.3.4 Common Operations with (or without) Variables in VB

With all of these variable declarations, the nagging question remains: How
can we complete tasks with data stored in VB variables after we have it? Like
the long list of functions already built into Excel, a comprehensive coverage
of what we can do in VB is certainly beyond the scope of this text; however, it
is useful to at least cover a few examples to illustrate some of the differences,
and particularly some of the advantages of doing work in the VB Editor.

Figure 11.13. The initial display of variable Watches before values are assigned.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

266 VB Editing and Code Development

Figure 11.14. Change in display of variable Watches by end of macro.

11.3.5 Syntax for Basic Operators

Many arithmetic functions are the same in VB Editor because they are in the
Excel spreadsheets. For example + – / *ˆ. All of these are the same in the VB
Editor.

Others like MOD work a little differently. In a spreadsheet, we use
MOD(12,5) to find the remainder of 12 divided by 5 (remainder of 2). In
VB code we use 12 MOD 5. Why does the spreadsheet use different syntax
than the VB Editor in case like this? There’s no good reason, sufficed to say
that MS has a huge number of people working for it. Some work on develop-
ing spreadsheet functions, others work on VB. Sometimes their approaches
differ.

It can be a bit annoying, but here’s something to consider: If you really need
to know how to calculate something that you can figure out in the spreadsheet
but can’t figure out with code, you might save yourself some trouble and just
do the calculation in the spreadsheet and then simply reference the calculated
cell in the VB Editor. This can save you a lot of frustration (Help available
on VB functions is much less helpful than the help provided with functions
in the spreadsheet).

11.3.5.1 Random Numbers

In spreadsheets we can use Rand() to generate a decimal value between 0
and 1. In VB we use Rnd. No real difference aside from a loss of a vowel and
the lack of parentheses.

11.3.5.2 OFFSET

In Excel spreadsheets we use OFFSET(C5,2,4) to access the cell two rows
below and four columns to the right of C5. In VB we use Range(C5).Offset(2,
4) to access the same spreadsheet data in the VB Editor.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.3 Syntax and Coding 267

11.3.5.3 IF Statements

In the spreadsheet we type the following into a cell, for instance, cell D5, to
set it’s value to 4 when C5=1, and 3 otherwise: = IF(C5=1,4,3). In VB we
would use:

IF Range(“C5”)=1 Then
Range(“D5”)=4

Else
Range(“D5”)=3

End if

At first, this may seem more complex than what we’re familiar with in the
spreadsheet, but it actually represents a fairly robust structure into which a
wide variety of actions can conditionally take place. For instance, if C5=1, I
might also want to run Solver. I might also want a sound clip to start. I can do
that by entering more code into this framework. I couldn’t do that just using
a spreadsheet’s IF statement.

11.3.6 Date/Time Functionality

In the spreadsheet there are a number of ways to get and make use of date/
time information maintained by the system clock. For example, the Now()
command provides the date/time signature at any given moment. Like the
Rand() function, every recalculation in a sheet containing Now() updates the
value returned by that function to reflect the passage of time.

What is returned by Now() is a composite of the current data and time.
If formatted correctly it should be fairly easy to understand, but ultimately
it is just a long decimal number. If formatted like a long decimal number,
it will look like one – and one that wouldn’t at first glance seem to have a
lot of immediate intuitive meaning. Another function, TimeValue serves in a
related capacity by translating a recognizable time text string such as 3:30:15
into a long decimal value of the kind that Now() and other time functions
actually works with. DateValue serves a similar role with arguments such as
Jan 4, 1982.

In VB, multiple tools for accessing and utilizing system clock data are
also available. For example the term Now (without the parentheses) can
similarly be used to generate a consolidated decimal value that incorporates
today’s date and time. Also, the TimeValue function works just as it does in
the spreadsheet. In VB, however, the combined use of these two functions
take on particular relevance because of still more advanced functionality that
does not exist directly in the spreadsheet. The Application.Wait function, a
mechanism for generating delays during macro runs, is a prime example of
how these two can be used together.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

268 VB Editing and Code Development

Why would someone want to intentionally add a delay to a macro? Some-
times macros run too fast, at least too fast to allow for a meaningful visual
demonstration of dynamics. Sometimes it’s even desirable to make users
wait for calculations, for example because we need to wait for certain online
updates. In any event, Application.Wait serves this purpose. As an extremely
simple example, if at any point you want to force a one-minute delay in the
middle of a macro, just insert the line:

Application.Wait (Now + TimeValue(“0:01:00”))

That’s it. Easy to customize, easy to interpret – and it works.

11.3.7 Selection Attributes Revisited

We’ve already taken a couple of looks at the period (.) structure common to
what the VB Editor writes when macros are recorded, as well as common
to the use of user-defined records for information storage and reference in
VB. It’s worth taking an additional look at these structures just to reinforce
some familiarity. The Chp11 OutliersID workbook provides an example of
some fairly simple code in which both functional and descriptive attributes
are being used to do some powerful things. We’ll focus on the ScatterPlot
sheet in this workbook, shown in Figure 11.15 (which also contains examples
of the integrated use of a pivot table incidentally).

Opening the VB Editor and the associated Modules folder in this case
reveals the following two macros:

Sub CreateDatatoPlot()
‘Activated by a button assigned to the macro in this case

Dim Rangetext As String ‘need to define a storage place for a line
‘of text to be created below

Rangetext = “B8:F” + Range(“TotRecords p 7”) ‘This term and all it
‘contains must be treated entirel as text to work below

Range(“B9:G2007”).Clear ‘just clearing out the region of the worksheet
‘where we’re gettin the data to be plotted

Range(“B8:F8”).Select ‘now I’m selecting the range of formulae to copy
Selection.AutoFill Destination:=Range(Rangetext), Type:=xlFillDefault

‘using the range specified above to only fill in the necessary
‘rows with the copied formulae

End Sub

Sub GetDataLabel()
‘Shortcut Ctrl-k to activate

Range(“HasDataLabel”) = Selection.HasDataLabel ‘Just for our infor
If Selection.HasDataLabel Then ‘and as a failsafe

Range(“DataLabel”) = Selection.DataLabel.Text ‘output the point’s label
End If

End Sub

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.3 Syntax and Coding 269

Figure 11.15. Example of graph-point interaction and macro use.

The first of these routines selects a range of cells, which happens to be a
set of cells in row 8. It then conducts an autofill using the formula content of
that selection to fill in a larger range of cells below it (defined by the string
variable Rangetext and based on some specifications described in the asso-
ciated spreadsheet).

The second routine assumes the user has first selected something and then
attempts to access information on that object to return to the spreadsheet.
In this case the assumed object is a graphical point on a scatter plot, and the
information returned is the label data the point has associated with it. This is
particularly useful in this case to identify outliers in a graph and subsequently
excluding them from visualization and analysis such as line-fitting.

In both cases we are making use of selections of some sort, and drilling
down to capitalize on their attributes. The first is a selection of cells; the
second a graphical object. In the first case we are drawing on a functional
attribute of a selection (autofill, a verb essentially). In the second case we are
drawing on a descriptive attribute (datalabel.text, an adjective essentially).
Regardless, VB is able to recognize the appropriateness of our drill down
based on the starting point – that is, based on what exactly the selection
happens to be, just in the same way that it is able to make sense of the

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

270 VB Editing and Code Development

attributes of a record based on how we’ve defined the nature of the record type
definition.

11.3.8 Iteration Structures: Loops

Given a little insight into how these common elements are dealt with differ-
ently in the VB Editor, we might assume that there are different, possibly
better, ways of dealing with other tasks we’ve performed in the spreadsheet.
And we’d be right. A case in point is the use of Excel’s iteration mode as a
mechanism for getting us through a series of sequential events. Often this is
done better in the VB Editor through what are called loops.

11.3.8.1 For-Loops (fixed-finite iteration structures)

When we know how many times we want some action repeated, or we know
how many items we want the same or similar action applied to, no matter
what that action is, For-Loops can get the job done pretty quickly. Here’s an
example of what that Chapter 8 code might look like if all 200 or so of those
Calculate lines were condensed using a simple For-Loop:

Sub Macro1()
‘
‘ Macro1 Macro

Range(“H18”).Select
ActiveCell.FormulaR1C1 = “FALSE”
Calculate
Range(“H18”).Select
ActiveCell.FormulaR1C1 = “TRUE”
For Count = 1 To 200

Calculate
Next
Range(“K32:K35”).Select
Selection.Copy
Sheets(“MacroRuns”).Select
Range(“B2”).Select
Selection.PasteSpecial Paste:=xlPasteValues,

Operation:=xlNone, SkipBlanks:=False, Transpose:=True
Application.CutCopyMode = False
Selection.EntireRow.Insert
Sheets(“StockoutDemo”).Select

End Sub

A few more than 200 periods seem to get recorded, but that’s purely a result of
the rest of what’s going on in the code and fairly easy to fix. The main point is
that the code has been greatly reduced and becomes much easier to both read,

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.3 Syntax and Coding 271

Figure 11.16. Interface for example of use of a While-Loop.

manage, and edit. Furthermore, there are plenty of other actions that could
also take place within each iteration of that loop, such as complex calculations
or even multiple calls to add-ins like Solver or external applications like
MapPoint.

11.3.8.2 While-Loops (Open-ended Iterations)

In contrast, While-Loops are useful when we don’t know how many times we
want some action repeated, or we don’t know how many things we want the
same or similar action applied to, no matter what that action is. These loops
end when specific conditions are met, similar to the stopping logic used as
part of RiskOptimizer’s functionality. As an example that combines the use of
some of the date/time functions as well as GetEvents, consider a While-Loop
used to simulate a simple count-down timer. The Chp11 BasicClock work-
book provides such functionality. The main sheet appears in Figure 11.16,
allowing individuals to enter in the number of minutes to be counted down
from and a button that activates the looped count-down macro.

Before getting into the code for this one, it’s probably worth making a gen-
eral warning statement regarding the use of While-Loops: They are notorious
for causing headaches for developers. Although For-Loops have a fixed and
certain end, While-Loops may never find the condition needed for stopping.
This results in what is referred to as an infiniteloop that might stop only if the
user presses Ctrl-Alt-Delete, or when the computer dies – whichever comes
first.

Of course there are other ways to build in mechanisms that allow users
to force exits from loops of any kind, or at least maintain control during
the running of long loop processes. Generally speaking, when macros are
running, users are not given much of an opportunity to do other work in the
workbook containing these macros. That shouldn’t be a problem in many

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

272 VB Editing and Code Development

cases where macros get their work done quickly. But when macros take a
long time to run, for example when they involve a long series of repetitions
of the kind common to the use of loop structures, the cursor appearance in
the spreadsheet environment will take on the characteristic hourglass icon
until the macro has come to an end.

This can be a bit frustrating for some individuals who would like to maintain
greater control over specific aspects of a DSS during these runs. Fortunately,
certain clauses can be added to code to allow for just such control. One of
the most common of these clauses is DoEvents. Much like Calculate, it is
typically used by itself within a program. Functionally, it allows items such as
forms and controls on the spreadsheet to respond to actions taken by users
while running macros that contain this line of code.

Let’s take a look at the code working behind the scenes of the BasicClock
example just discussed. The following is a clip of the code, as fully annotated
in the file.

Sub EfficientClockSub()
MaxTime = TimeValue(“0:01:00”) * Range(“CountdownFrom”)
TimeSpent = 0 ‘Initialize this time keeping record
StartTime = Now ‘Note that ‘Now’ is a predefined term in VB and provides

‘the current system time
Do While TimeSpent < MaxTime ‘Do as long as MaxTime isn’t reached

DoEvents ‘Allows forms/controls on the spreadsheet to respond to actions
‘taken by user while clock runs. Allows general access of cells
‘but stops code upon deliberate entry of new data directly into
‘cells

‘**Below this point you might code in things that need to be calced or
‘**refreshed via VB ...
TimeSpent = Now - StartTime ‘Update the time keeping record
Range(“TimeLeft”) = MaxTime - TimeSpent ‘Here we’re just displaying the

‘amount of time left
Loop

End Sub

Leveraging a DoWhile loop structure, the macro essentially continues to
update the amount of time left in the countdown on the main spreadsheet
until the system time reaches a point equal or greater than the initial sys-
tem time plus the length of time originally requested to be counted down
from. However, notice that along with all of the date/time elements being
used there is a continued reference to DoEvents within the main While-
Loop.

As stated, the DoEvents clause allows for certain cursor activity that would
otherwise be disabled in its absence. Another interesting feature of DoEvents

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.4 User-Defined Functions 273

Figure 11.17. Interface for example of user-defined function.

is the fact that direct data entry into a spreadsheet cell while running a macro
(which it ostensibly allows) can actually offer/force a direct exit from the
running of that .acro (i.e., typing into the spreadsheet with DoEvent can shut
down the macro).

This can serve as a convenient exit, but it can also prove inconvenient if
the shutdown takes place accidentally. As a word of caution – if you want to
allow interfacing with forms/controls (as introduced in Chapter 8) during a
macro run, and if you want to use DoEvents to give you that functionality, you
might want to make sure that users are not able to accidentally shut down
the program halfway through a run. One way to prevent this is to protect
the interfacing worksheet against any most types of potentially inadvertent
selections and sheet modifications (we’ll get into the specifics of sheet pro-
tection in Chapter 13). We’ll find that we can do this while keeping any cells
unlocked for which you want to allow changes through VB or forms/controls
changes (hence allowing the specific kind of control desired during macro
runs while avoiding errors).

11.4 User-Defined Functions

A natural extension of the discussion we’ve had so far regarding the value,
capabilities, and structures of macros is to spend some time on functions,
another development mechanism made available through the VB Editor.

11.4.1 An Introduction to Functions

Figure 11.17 shows an incredibly simply example of a function that writes out
the formula content of another cell, something you would typically have to
go into a cell directly to see. You will not find this function automatically built
into Excel (e.g., not listed under Formulas>Insert Function under a typical
install). Instead I created it to provide a simple example of user-defined

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

274 VB Editing and Code Development

Table 11.3. Code and Annotation for Basic Function Structure

Annotation Actual Code

Name/start of function and arguments
(or inputs) to the function

Function formulais(cell as
Range)

Actions/calculations taken by the formulais = cell. Formula
function; output of function

End of function End Function

function that anyone could create. After a function is created or workbook
containing its code is opened, it will appear in function listings or at least
be recognized in some form by Excel. For the time being however, let’s just
see what this function is all about. Here’s a clip from the Chp11 Functions
workbook in which it was coded.

Table 11.3 shows the VB code that makes it possible to use the function
formulas in the spreadsheet. Note the structure here, one that is distinct from
that of a macro.

This distinction has to do with the purpose/role behind user-defined func-
tions. Their main purpose is to take inputs and kick out individual outputs to
the cell that references them. Although what happens within the code of a
function may be as complex as what takes place in the code of a macro, the role
of a macro in contrast is to execute a set of actions that results in something
other than a single value getting returned to a single cell (although that can
certainly take place as well, it’s usually not the main objective). User-defined
functions are just like any other function in Excel, (except they don’t come
standard – they need to be built by users). In contrast to being activated by a
button or a selection from a “macro list”, they are called directly from cells
within a spreadsheet orother programs in VB Editor, with the assumption
that a sufficient specification of inputs is provided for them to do the number
crunching they were designed to do.

And as for making sure that the right kinds of inputs are fed into a user-
defined function when being used in a spreadsheet, recall that Excel will
recognize the function when defined. In other words, you should be able
to locate it in the Insert Function dialog box shown in Figure 11.18 (note
formulais section of this dialog box) when the workbook that contains the
function is open.

Furthermore, Excel will attempt to provide assistance with the inputs
required for a user-defined function in the same way that it attempts to pro-
vide assistance for all other functions. Note specifically that in Figure 11.18,
Excel is suggesting that the key input to formulais is a cell reference. No more
help is provided, but perhaps no additional help is needed.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.4 User-Defined Functions 275

Figure 11.18. Recognition of user-defined functions by Excel.

You could always provide more help in the comments of the function code,
but that would require users to open up VB. If you were determined to make
sure something other than No help available appeared below your function
in the Insert Function dialog box, there are still some options. One way is
to start by creating a new macro recording in the spreadsheet, and designat-
ing the kind of descriptive help you might want to appear for your existing
function. Copy and paste all of the content of that function (aside from the
function header and footer) into that macro, delete the original function and
then change the header and footer info on the macro to convert it into a func-
tion instead. That description should appear whenever the function is selected
in the Insert Function dialog box. It seems like a backwards approach, but
it’s fairly foolproof and gets the job done.

11.4.2 A More Complex Example

For those who remember the queuing equations from any Operations course-
work you may have taken, you’ll recall that they are pretty hairy. For those
not familiar with these equations, consider yourselves lucky – they aren’t
exactly fun to work with. As an example, the following are some of the
formulae needed for estimating associated calculations such as line length

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

276 VB Editing and Code Development

probabilities and average wait times for situations where you have multiple
servers (c could equal cashiers, clinicians, accountants, and so on) but only
limited space (N) to accommodate people waiting.

Finite-Queue M/M/c Model:

P0 = 1
(

c∑

i=0

ρi

i!

)

+
(

1
c!

) (
N∑

i=c+1

ρi

ci−c

) Pn =

⎧
⎪⎪⎨

⎪⎪⎩

ρn

n!
P0 for 0 ≤ n ≤ c

ρn

c!cn−c
P0 for c ≤ n ≤ N

Ls = P0ρ
c+1

(c − 1)!(c − ρ)2

[

1 −
(ρ

c

)N−c
− (N − c)

(ρ

c

)N−c (
1 − ρ

c

)]

+ ρ(1 − PN)

Ws = Ls − ρ(1 − PN)
λ(1 − PN)

+ 1
μ

Here, λ is the average number of people arriving per time (e.g., minute), μ is
the average time needed by a server to complete a customer’s request, and ρ is
the ratio λ/μ. The first function, P0, then represents the probability of having
no one in the system (line plus those being served) at any given moment in
time, while Pn represents the probability of having exactly n people in the
system. The terms Ls and Ws represent the average anticipated number of
individuals in the system, and the average amount of time an individual can
expect to spend in the system (again in line and at the counter) before their
needs are filled.

Again, the calculations of these estimation terms are not trivial. In par-
ticular the summations over a range of values are not particularly fun to
do by hand. In a spreadsheet, we could do all the required summations
by setting up a table and calculating a sum of all appropriate cells in that
table, as shown in Figure 11.19. But that takes up a lot of space even in the
spreadsheet, space that we could be using for something else (the Chp11
BigQueueCalc workbook contains the extensive spreadsheet usage in Fig-
ure 11.19).

Fortunately, we can easily create a sum of sequential terms in VB through
using loop structures such as For . . . Next. Not only does that eliminate the
need to take up space in the spreadsheet, it’s actually more concisely devel-
oped in VB. In contrast to spelling all of this out in the spreadsheet alone, the
associated function codes (for all four functions) on the other hand take up
space only behind the scenes. The second spreadsheet in the Chp11 Functions
workbook, shown in Figure 11.20, gives an example of how functions are
being leveraged to provide a much more spreadsheet-frugal approach to this
model.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

11.4 User-Defined Functions 277

Figure 11.19. Example of extensive calculation space occupied on a spreadsheet.

Additional notes on the newly crafted functions and their arguments are
displayed in this sheet in columns M through P, but notice that they really are
there only for clarity purposes. The big thing is that absolutely no calculations
need to be made in these columns to let the calculations of interest take place.
Instead we have the following functions working behind the scenes in VB.

Figure 11.20. Example of function-enabled frugality in the use of spreadsheet.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

278 VB Editing and Code Development

Function P0(c ref, rho ref, N ref As Range)
firstsum = 0
secondsum = 0
c = c ref.Value
rho = rho ref.Value
N = N ref.Value
cfact = WorksheetFunction.Fact(c)
For i = 0 To c

firstsum = firstsum + (rho ∧ i) / WorksheetFunction.Fact(i)
Next
For i = (c + 1) To N

secondsum = secondsum + (rho ∧ i) / WorksheetFunction.Power(c, i - c)
Next
P0 = 1 / (firstsum + (1 / cfact) * (secondsum))

End Function

Function PN(c ref, rho ref, littlen ref, bigN ref, P0 ref As Range)
c = c ref.Value
rho = rho ref.Value
littlen = littlen ref.Value
bigN = bigN ref.Value
Pnot = P0 ref.Value
cfact = WorksheetFunction.Fact(c)
littlenfact = WorksheetFunction.Fact(littlen)
If (littlen >= 0) And (littlen <= c) Then

PN = Pnot * WorksheetFunction.Power(rho, littlen) / littlenfact
ElseIf (littlen > c) And (littlen <= bigN) Then

PN = Pnot * WorksheetFunction.Power(rho, littlen)
/(cfact * WorksheetFunction.Power(c, littlen - c))

Else
PN = “ “

End If
End Function

Function Ls(c ref, rho ref, N ref, P0 ref, PN ref As Range)
c = c ref.Value
rho = rho ref.Value
N = N ref.Value
Pnot = P0 ref.Value
PbigN = PN ref.Value
cless1fact = WorksheetFunction.Fact(c - 1)
rhocpow = WorksheetFunction.Power((rho / c), N - c)
product1 = Pnot * WorksheetFunction.Power(rho, c + 1)

/(cless1fact * ((c - rho) ∧ 2))
product2 = (N - c) * rhocpow * (1 - (rho / c))
Ls = product1 * (1 - rhocpow - product2) + rho * (1 - PbigN)

End Function

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

Practice Problems 279

Function Ws(lambda ref, mu ref, rho ref, PN ref, Ls Ref As Range)
Lambda = lambda ref.Value
Mu = mu ref.Value
rho = rho ref.Value
PbigN = PN ref.Value
Lsubs = Ls Ref.Value
Ws = (Lsubs - rho * (1 - PbigN)) / (Lambda * (1 - PbigN)) + 1 / Mu

End Function

You might think this looks complex and are not sure you want to take
this route. It’s no more complex than cranking out the calculations within the
cells of a spreadsheet. Many of the lines of code here are just referencing cells
from which to draw information. Others are absolutely critical calculations
that would be present in the spreadsheet otherwise.

And there’s still another benefit to developing functions in VB rather than
within spreadsheet cells. Building user-defined functions for complex calcu-
lations tend to be less prone to errors than a pure spreadsheet approach,
particularly when the calculations are bound to be repeatedly used in many
ways within a spreadsheet.

PRACTICE PROBLEMS

Practice 11.1

Import both an image and a .wav file of your own choosing into Excel. Create a
macro that activates that .wav clip and then use the time functions in Excel to make
an image slowly fade away over a 15-second period. Then make the image slowly
reappear, again over a 15-second period. Do this either by building the macro from
the ground up based on code similar to that showed in the example of this chapter,
or through using a version of Excel that allows for object macro recording.

Hint on making an image appear to fade away: You can use several appro-
aches, but one approach is to increase the amount of lighting provided to an image.
This is one of the options on the Picture toolbar.

Hint on time functions: For the time functions, use whichever you think are appro-
priate, but it’s actually good practice to do a little snooping around for these because
there are multiple approaches to getting this information (see the functions under
the category Data & Time). You may find, for example, the NOW() function to be
useful, as well as the HOUR, MINUTE, and SECOND calculations. Use Excel’s
function help to learn how these may help. Table 11.4 shows an example of how you
might set up your tabular output in a spreadsheet.

The one point to reiterate here is that the NOW() function will update only if you
ask it to, such as by pressing F9 or making some other change in the spreadsheet. In
this way, they act a little like the RAND() function. In the VB Editor you can also
do this using the one-line command Calculate. Anytime that is used, the workbook
is updated.

P1: KDD
9780521889056c11 CUUS195/Bendoly 978 0 521 88905 6 May 15, 2008 16:44

280 VB Editing and Code Development

Table 11.4. Example Structure for Tabular Output

Total Total Total

Now Hours Minutes Seconds
2/10/2008 13:26 13 806 48387

Practice 11.2

Create a function for calculating the Y-coordinate associated with the X-coordinate
of a circle. Your input should be the value of X, the radius of the circle, and some
binary input that designates whether you want the lower or upper half of the circle
to be referred to for your value of Y. The standard formula for a circle is:

R2 = X2 + Y2 or Y = +/ − sqrt(R2 − X2)

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12

Automating Application Calls

Many applications such as MS MapPoint and RiskOptimizer can be lever-
aged through the primary interfaces with which they were designed, but they
can also be called from behind the scenes through the same Visual Basic
(VB) developer environment discussed in Chapter 11. From a decision sup-
port development perspective, there are several advantages to making such
calls from behind the scenes. First and foremost, behind the scenes control
can eliminate the need for users to become acquainted with alternative inter-
faces in the course of using a DSS that leverages their capabilities. Another
advantage is the potential avoidance of outputs that automatically accom-
pany the use of these applications, but are nevertheless visual and information
distractions from the main point of the DSS design. The appearance of seam-
lessness in a designed DSS is also facilitated by VB-driven automated calls
to applications. This has the potential for engendering greater confidence in
the developed DSS, as well as in the developers.

This chapter covers several approaches to working with such applications
in roughly the order in which they have been introduced in this book.

12.1 Calls to MapPoint

The Chp12 MapPointCall workbook provides a template through which we
can demonstrate how Excel, through VB, can leverage some of the func-
tionality of MapPoint. As with all other demonstrations in this chapter, we’ll
present only a simple smattering of what can actually be done. To start, let’s
consider a hypothetical need to get information regarding a route starting
in Seattle and passing through four additional cities before returning. The
workbook outlines these stops, as shown in Figure 12.1.

Clicking on the Click to route button activates a macro that:

1) Activates the MapPoint application
2) Adds the specified cities to a new route

281

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

282 Automating Application Calls

Figure 12.1. Front-end for activating macro call to
MapPoint.

3) Asks MapPoint to map and calculate the distance for that route
4) Gives feedback on the covered distance and sequence of the route
5) Takes a snapshot of the MapPoint window for pasting
6) Pastes, crops, and shifts the copied picture

The result is shown in Figure 12.2.
The VB code used to deliver this result is:

Private Declare Sub keybd event Lib “user32”
(ByVal bVk As Byte, ByVal bScan As Byte,
ByVal dwFlags As Long, ByVal dwExtraInfo As Long)

Sub Route calc()

Figure 12.2. Map generation using macro and existing sequence of site visits.

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12.1 Calls to MapPoint 283

Dim objApp As MapPoint.Application
Dim objMap As MapPoint.Map
Dim objRoute As MapPoint.Route

Set objApp = CreateObject(“MapPoint.Application”)
‘Set up the Mappoint application

Set objMap = objApp.ActiveMap ‘Get the active map
Set objRoute = objMap.ActiveRoute ‘Select the active route

‘Clear, then add route stops
objRoute.Clear
objRoute.Waypoints.Add objMap.FindResults(CStr(Range(“B1”))).Item(1)
For stopnumber = 1 To 4
objRoute.Waypoints.Add objMap.FindResults(CStr(Range(“B1”).

Offset(stopnumber, 0))).Item(1)
Next
objRoute.Waypoints.Add objMap.FindResults(CStr(Range(“B1”))).Item(1)
objRoute.Calculate ‘calculate route distance covered
objApp.Visible = True ‘Make the mappoint object visible

‘ ***** Make this code active to optimize the route,
if desired and if not already optimized

‘objRoute.Waypoints.Optimize
‘objMap.ActiveRoute.Calculate ‘calculate NEW route distance covered

Range(“A11”) = “Route sequence:” ‘Outputs
For i = 1 To objRoute.Waypoints.Count
Range(“A11”).Offset(i, 0) = objRoute.Waypoints.Item(i).Name

Next
Range(“A10”) = “The route distance is:” +
CStr(Round(objRoute.Distance)) + “miles”

‘Here’s just a little extra code to implant a screen capture of the
keybd event &H12, 0, 0, 0 ‘ Plant “Alt” key
keybd event &H2C, 1, 0, 0
keybd event &H12, 0, &H2, 0 ‘ Release “Alt” key
CaptureDesktop = True
objMap.Saved = True

‘Trick MapPoint into thinking we’ve saved it (allowing auto-close)
Sheets(“Sheet1”).Range(“C1”).Select
ActiveSheet.Paste

‘And just to do a little cropping
Selection.ShapeRange.PictureFormat.CropLeft = 182
Selection.ShapeRange.PictureFormat.CropTop = 277

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

284 Automating Application Calls

Selection.ShapeRange.PictureFormat.CropRight = 4
Selection.ShapeRange.PictureFormat.CropBottom = 22
Selection.ShapeRange.IncrementLeft -180
Selection.ShapeRange.IncrementTop -270

End Sub

This is possibly a bit overwhelming for a novice, but for those who have read
through Chapter 11, there’s a lot of material here that should seem familiar.
For example, references to cell contents using the Range syntax shouldn’t be
new; nor should the use of an offset with a For-Loop and reference to any of
the picture manipulations in the later portion of this code. The two novel areas
of code involve the various calls to MapPoint and the calls associated with
screen captures of the mapped result (the first three lines of code preceding
the subroutine and the four lines of code following the output of the route
distance).

Unfortunately, most of these codes are outside of standard macro record-
ing, particularly Excel 2007’s approach to macro generation. One could
rightly ask, “So how in the world would I learn how to use this code?” For
starters, there’s nothing stopping someone from editing or copying this code
to another workbook towards a similar end. Much of this arcane material,
if not available in an advanced programming text, is also available online
through various blogs and help sites. For those interested in learning how to
get more done in MapPoint (or with screen captures) through VB, one of the
best and cheapest ways is to simply pick some of the code from this example
as search terms and see what comes up. We’ll leave that up to the intrepid
reader.

At this point, to advance the discussion of interfacing between Excel and
MapPoint a little further given the present code, let’s reconsider the result
provided. Arguably, the route depicted here seems to be a poor design from
a time management (and total distance covered) perspective. Certainly there
are better sequences that MapPoint could come up with; however, the macro
in its current form isn’t asking for MapPoint to perform any optimization. The
portion of the code that would make such a request has been commented out
by preceding it with apostrophe. It’s simple enough to activate it; just remove
the apostrophe and click on the Macro button once again.

As the augmented algorithm runs (unfortunately the optimization through
an indirect call to MapPoint is not fast as would be desired), the MapPoint
interface refreshes and suggests that the optimization protocol has provided
a more ideal solution, again based solely on time management and total
distance covered. Depending on how much time it takes, Excel may provide
the message shown in Figure 12.3.

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12.2 Calls to Solver 285

Figure 12.3. Message relating delay associated with simultaneous application activity.

This designates that Excel recognizes there is still more to be done in the
macro, but before any additional actions take place it will need to wait for
the work to be completed in MapPoint. Again, given the length of time Map-
Point needs to develop optimal routes, this could be a while. But eventually
MapPoint should be able to do its work. If all goes well, the final product in
this case appears as shown in Figure 12.4.

Note both the updated distance and route sequence as well as the updated
mapping of the route. This is certainly something on which a developer could
spend more time to make appear more aesthetically pleasing, but not bad in
terms of a rough cut at functionality with fairly limited VB code.

12.2 Calls to Solver

In contrast to MapPoint (a potentially stand-alone application), Solver is
an add-in and is almost always used only within the context of Excel. Not
all add-ins work well with macros, particularly those that are acquired from

Figure 12.4. Map generation using macro and optimized sequence of site visits.

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

286 Automating Application Calls

Figure 12.5. Message due to non-referencing.

third parties that did not develop such applications with VB developers in
mind. Fortunately for us, Solver is a gleaming exception. In Solver’s case we
just need to make sure we have our specifications set up the right way (e.g.,
we need Solver to actually be active in our version of Excel) and know just a
little more syntax to get Solver to actually do things by itself.

The following is the kind of code we would get if we simply took a workbook
that contained an existing math-programming problem structure and started
recording a macro right before we asked Solver to come up with a solution
(at least in Excel 2003).

Sub Macro1()
SolverOK SetCell:=“D4”, MaxMinVal:=1, ValueOf:=“0”,

ByChange:=“b2:c2”
SolverSolve

End Sub

Even though the VB Editor created this code, it is not likely to be able to
repeat this procedure without us giving it a little more information. In fact,
oddly it may not even seem to recognize elements of the code it has just
written. If you’re able to record the same action into code comparable to that
just presented, the results might look like Figure 12.5 when you try to run the
newly record macro.

The problem here is that although the VB Editor was told how to turn
those actions into code, it wasn’t told what to use when executing that code.
The Editor needs to know that it should be referencing Solver in running this
code. To make the VB Editor aware of this, we need to formally add Solver
as a reference, similar to how we added in Solver as a tool for the Excel
workbook the first place. In the VB Editor go to Tools>References to open
the References – VBA Project dialog box shown in Figure 12.6.

Check the SOLVER box in the Available References list and then click
OK. Solver is now formally a reference for the VB Editor, and we should
be able to run a macro that uses Solver. NOTE: Adding code similar to the
following may provide a mechanism to forego adding the reference manually:

ThisWorkbook.VBProject.References.AddFromFile Application.LibraryPath &
“\solver\solver.xla”

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12.2 Calls to Solver 287

Figure 12.6. Referencing associated applications in VB Editor.

However, depending on how your applications are set up, this may not
work for all developers, so don’t place all bets on it. The list of Solver-related
commands that can be called through VB is as extensive as the number of
options made available by Solver. The following is a subset of the more useful
commands from a standard DSS standpoint:

SolverSolve UserFinish:=True

This command allows Solver to accept the final solution it comes up with and
save the associated values of the solution decisions in the associated cells. This
way you don’t have to click OK every time a macro running Solver comes up
with a solution.

SolverReset

This command clears all Solver contents (e.g., deletes all constraints, objec-
tives, and decision variable references that would typically be retained after
each Solver run). Could be useful if you decide to create a program that uses
different kinds of constraints in alternative iterations.

SolverDelete CellRef:=“B2:C2”, Relation:=4

This command deletes a specific constraint; in this example, one that con-
strains two cells to be integers (that’s what Relation:=4 refers to).

SolverAdd commands

In general, Solver allows for five kinds of relationships to be depicted by
constraints as shown in Figure 12.7.

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

288 Automating Application Calls

Figure 12.7. Menu interface for editing constraints.

As a result, the following two commands can be used to add individual
constraint for the <= (ie. Relation:=1) or integer (Relation:=4) types.

SolverAdd CellRef:=“B2”, Relation:=1, FormulaText:=“10”
SolverAdd CellRef:=“B2:C2”, Relation:=4, FormulaText:=“integer”

12.3 Calls to RiskOptimizer

For problems with more complex structures, or those that involve forms of
uncertainty that don’t lend themselves to the kind of closed form analysis
with which basic Solver’s hill-climbing algorithm works well, we’ve seen that
other approaches may be necessary. The use of genetic algorithms, as made
available through additional tools such as RiskOptimizer, has already been
discussed as an option. It can also be called from behind the scenes using VB
code, again perhaps as one of many steps involved in a larger analysis around
which a decision support tool is designed. Let’s consider a couple of the past
examples discussed in the book and how we might more seamlessly automate
their interface with Excel.

12.3.1 Work-Group Selection Revisited

Let’s again consider the form of the work-group selection problem last for-
mally discussed in Chapter 7. We showed how RISKOptimizer could be used
to derive group constituencies subject to criteria that might be outside the
bounds of a typical XLStat clustering. (We’ll get back to calling XLStat in
VB shortly.) To call RISKOptimizer to run its routine behind the scenes, we’ll
want to have RISKOptimizer formally loaded (much in the same way that we
might pre-load Solver, if not already present, before running macros that call
it). In addition, as with Solver, a formal reference to RISKOptimizer needs
to be made through the VB Editor before the Editor can recognize the code
being referenced in any macro calling the application. (Here you’re looking
for something like RiskOpt.xla to be added in as a reference.)

With that done, we can start to develop some simple code just to get
RISKOptimizer to do its thing. Assuming we’re using the original Chapter 7

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12.3 Calls to RiskOptimizer 289

version, perhaps with an additional stipulation that the search stops after one
minute (again just to illustrate how this works), the following code would be
more than sufficient (taken from Chp12 WorkGroupSelection VB1).

Sub AutoCluster()
EvOptimize ActiveWorkbook, “myStopRoutine”

‘Note that EvOptimize is a function
‘that expects a string for its second argument . . . that string entry
‘itself may be another user defined function

End Sub

Public Function myStopRoutine(stopReason As Integer) As Integer
myStopRoutine = EvBest + EvLogWorkbook +

EvLogWorkbookShowOnlyNewBest
‘an addititve specification that basically states we would like to have:
‘ 1) The Best solution found to be saved to the workbook

‘In contrast to EvBest, EvOriginal would keep the original solution
‘ 2) The a log of the search presented in a new workbook
‘ 3) The log should contain ONLY the best solutions discovered during

the search
End Function

In actuality, the code could be still more simplified, but the structure pre-
sented, in which a function is used to specify the nature of the results pro-
vided, is a particularly convenient means of suggesting possible extensions of
its use. For example, there’s nothing stopping a developer from further spec-
ifying whether the best solution found should overwrite the original, based
on inputs provided by their users in a customized interface. Or whether all
solutions encountered should be saved in the logbook (even poor ones or
those that might fundamentally violate assumed constraints). Here a few
references to designated cells in a workbook interface (or a dialog box
along with the use of IF-THEN structures within the function would do the
trick.

Aside from manipulating the nature of the output, developers also have the
option of manipulating the nature of the problem to be solved by RISKOpti-
mizer as well as the approach taken in doing so. Rather than taking a piece-
meal approach to explaining each of the various items useful in develop-
ing code that can build optimization problems in RISKOptimizer from the
ground up, at this point we’ll simply consider a complete set of integrated
code. Rich annotation will serve in place of a formalized discussion of the
role of each element of code.

Ultimately the kinds of specifications made here are comparable to those
that would be made with Solver specifications. To assist in understand-
ing, the following code (from Chp12 WorkGroupSelectionVB2) has been

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

290 Automating Application Calls

organized in the way we have discussed problem structures already. It starts
with a specification of the problem’s objective and approach to optimiza-
tion (e.g., GA stopping rules), the nature of the decision variables, and the
potential nature of constraints (if not otherwise built into the objective and/or
bounds on decision variables). It concludes with the specification of output
interfaces desired and finally the commencement of the optimization protocol
(as introduced in the earlier example).

Sub RunIt()
Dim returnCode%

If SetupModel() Then
‘if setup takes place without error. . .

EvOptimize ActiveWorkbook, “myStopRoutine”
‘Note that EvOptimize is a function

‘that expects a string for its second argument . . . that string entry
‘itself may be another user defined function

End If
End Sub

Function SetupModel()
Dim mySettings As EvSettingsType
Dim returnCode%

returnCode = EvReadSettingsDefaults(ThisWorkbook, mySettings)
‘creates blank template

With mySettings
‘A statement letting VB editor know that much of the following

‘will provide specifications to the existing RISKOptimizer settings
‘everything to follow that is preceded by a “.” describes an attribute
‘of “mySettings”

.CellToOptimize = “sheet1!P22” ’

.OutputFunction = EvRiskFuncMean ‘What is the nature of the output to
‘be maximized. In optimizations that don’t involve simulation, using
‘the parameter EvRiskFuncMean

(ie. focusin on the mean performance of
‘a decision policy option) is sufficient. It’s usually also the statistic
‘of performance used in simulation optimization. However in simulation
‘optimization, other measures of performance will be different. These
‘include but are not limited to:
‘ EvRiskFuncStdDev:

The standard deviation of performance across variants
‘ EvRiskFuncRange: The range of performance across simulated variants
‘ EvRiskFuncPercentile: The value of the approximated P-percentile of

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12.3 Calls to RiskOptimizer 291

‘ variants seen. Here the P-percentile would also need to be specified
‘ in code such as mySettings.OutputFunction Parameter=0.13

.OptimizationGoal = EvMaximize ‘What kind of optimization on above
‘EvMinimize and EvTargetValue are other options. In the latter case the
‘ target would also need specification -.TargetValue=412 for eg.

.PopulationSize = 10 ‘This relates to how the genetic algorithm works. . . ie.
‘how many past solutions are considered in constructing new solutions

moving
‘forward. Relevant for both non-simulation and simulation optimization.
‘See earlier notes from Chapter 7 supplement on GA population size

.StopOnMinutes = True ‘Should the search stop after some amount of time?
‘Additive so could simultaneously use mySettings.

StopOnTrials=True for eg.
‘or.StopOnChange=True
‘or.StopOnFormula=True

.StopMinutes = 1 ‘For trials - .StopTrials=40 for eg.
‘or.StopChangeTrials=100,.StopChangeMagnitude=5,
‘ .StopChangeIsPercent=True would all need to be specified if you
‘ wanted to stop the search after no changes by >=5% in last 100 trials
‘For “StopOnFormula” - .StopFormula = “sheet1!P32>1200”

for example.
.SimStopMode = EvSimStopIterations ‘Combined with below. . .
.SimMaxIters = 5 ‘For non-simulation optimization, should be as small as

possible
‘ (ie. 5) since nothing is essentially being simulated. For either the
‘ optimization of simulation variants or system simulations,

depending on the
‘ approach taken this number may be much larger.
‘ See the detailed discussion of iterations in Chapter 9 to get a better
‘ feeling for how this might need to be set for different approaches.

.numAdjustableGroups = 1 ‘Here we outline our decision variables
ReDim.AdjustableGroups(1 To 1) ‘Need to define how many variable

‘groups’ exist
With.AdjustableGroups(1)

.crossoverRate = 0.5 ‘As noted in Chp7,
this and the mutation rate need to be

.mutationRate = 0.1
‘specified, otherwise new/better solutions can’t be found

.solvingMethod = “GROUPING” ‘or “RECIPE”,
“ORDER” etc. depending on need

.numInputRanges = 1 ‘see below
ReDim.InputRanges(1 To 1)

‘Need to define how many variable cell-ranges feed in

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

292 Automating Application Calls

.InputRanges(1).Reference = “sheet1!$a7:$a86” ’ “WorkerAssignments”
‘ or something like “sheet1!$a7:$a86”
.InputRanges(1).IsInteger = True
.InputRanges(1).MinValue = 1
.InputRanges(1).MaxValue = 4

End With

‘Hard constraints can also be specified for example:
‘.numConstraints = 3 ’if 3 hard constraints applied
‘ReDim.Constraints(1 To 3)
‘.Constraints(1).ConstrainType = EvConstraintHard
‘.Constraints(1).EntryMode = EvEtryModeFormula
‘.Constraints(1).Formula = “ActualSize=20”
‘ . . . contraints 2 and 3 would then also need specification

.GraphProgress = True
‘Activate the RISKOptimizer watcher during the search

.GenerateLog = True ‘Make sure a log of the search is being kept

‘Other possible settings for embedded Macro Calls DURING
RISKOptimizer search

‘ .RunBeforeSimMacro = True
‘ .BeforeSimMacro = “SomeSuperMacro”
‘ The above lines would call “SomeSuperMacro”

before each new decision policy is
‘ evaluated. Particularly useful for simulation optimization (again see Chp9)
‘ Related timing variants include BeforeRecalcMacro, AfterRecalcMacro,
‘ AfterSimMacro, AfterStorageMacro, StartMacro and FinishMacro. . .
‘ all associated with the standard RISKOptimizer Macro call interface
‘ discussed earlier

End With ‘Needed to tell VB editor you are done specifying attributes
‘of mySettings in general

returnCode = EvWriteSettings(mySettings) ‘Need to
“write” the specifics to RISKOptimizer

SetupModel = True
‘More relevant if we had been checking for errors along the way here

End Function

Used in conjunction with code that initiates and stops the actual opti-
mization process, these kinds of specification protocols provide the conve-
nience switching between various optimization problem structures in turn

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12.3 Calls to RiskOptimizer 293

without going through the hassle of restructuring them manually (see exam-
ple Chp12 WorkGroupSelection VB2 for the full implementation).

12.3.2 Inventory System Simulation Revisited

Because RISKOptimizer is useful in simulation optimization settings, it is
worth reviewing how the code for building and executing an example of
such optimization might be structured. For illustration, consider again the
Lobos Inventory optimization example from Chapter 9. The same kinds of
elements used in the annotated code in section 12.3.1 apply here. With this
in mind, and with the interest of providing a contrast in implementation, it
is both sufficient and appropriate to present the code that would apply to
this case in a similar fashion. A copy of the workbook containing this code
is provided in Chp12 LobosInventory VB. The following is the structure of
the setup function (consolidated and free of annotation that has already been
provided in the previous examples).

Function SetupModel()
Dim mySettings As EvSettingsType
Dim returnCode%
returnCode = EvReadSettingsDefaults(ThisWorkbook, mySettings)
With mySettings

.CellToOptimize = “StockoutDemo!K36”

.OutputFunction = EvRiskFuncMean

.OptimizationGoal = EvMinimize

.PopulationSize = 10

.StopOnMinutes = True

.StopMinutes = 5

.SimStopMode = EvSimStopIterations

.SimMaxIters = 5

.numAdjustableGroups = 1
ReDim.AdjustableGroups(1 To 1)
With.AdjustableGroups(1)

.crossoverRate = 0.5

.mutationRate = 0.1

.solvingMethod = “RECIPE”

.numInputRanges = 1
ReDim.InputRanges(1 To 1)
.InputRanges(1).Reference = “StockoutDemo!$c18”
.InputRanges(1).IsInteger = True
.InputRanges(1).MinValue = 40
.InputRanges(1).MaxValue = 120

End With
GraphProgress = True

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

294 Automating Application Calls

GenerateLog = True
.RunBeforeSimMacro = True ‘NOTE that as in Chapter 9 we need to sim
.BeforeSimMacro = “Macro1” ‘several periods to truly assess a “trial”

End With
returnCode = EvWriteSettings(mySettings)
SetupModel = True

End Function

Public Function myStopRoutine(stopReason As Integer) As Integer
myStopRoutine = EvBest + EvLogWorkbook +
EvLogWorkbookShowOnlyNewBest

End Function

Although the previous examples are designed to illustrate how various VB
commands can be used to suite the needs of DSS developers, it is far from
comprehensive. Other references, such as Palisade’s guide to RISKOptimizer
(which accompanies a purchase of their software), provide decent coverage
of the various syntax options available for manipulating the optimization pro-
tocols through VB. The alternative references are often in dictionary format,
but if you plan to be spending a great deal of time automating RISKOptimizer
behind the scenes, they may also be helpful down the road.

Note: If you encounter unexpected error messages relating to references to outdated
versions of RISKOptimizer or other older settings after you’ve saved a workbook
that references Palisades applications, simply unload all such add-ins and VB Editor
references and save the document as reference free. Re-opening and reloading the
add-ins and references should restore functionality.

12.4 Calls to XLStat

As we’ve seen in the previous discussion of XLStat’s capabilities, many of the
kinds of analysis it provides work naturally very well together. Notably, it is
not uncommon for analysis to begin with variable reduction techniques such
as PCA, use developed factors as a part of subsequent cluster analysis, and
then a follow up with discriminant analysis. Although the re-examination of
a specific set of data through these methods may not be needed in many con-
texts, firms that regularly make it their business to do this kind of sequential
analysis with a wide variety of incoming data sets (e.g., information inter-
mediaries, marketing research firms) could find the ability to glean the take-
aways from a consistent combined approach all at the click of a single button
extremely convenient (and perhaps less prone to errors in data management
that can be made between steps).

Fortunately, to accommodate such applications, the developers of XLStat
have made it compatible with calls from VB macros, and with fairly

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

12.4 Calls to XLStat 295

straightforward scripting. The following are examples, applicable to the
Dodecha case from Chapter 5, for each of the three data consolidation
approaches we’ve discussed.

Principal Components

Sub Run PCA()
‘Must have reference to XLStat-MCA.dll to run
Call LoadRunPCA(Range(“FullData!$B1:$AG116”), 1, True,

Range(“FullData!$A1:$A116”), NoScreenupdating:=True)
‘The first term above outlines where your data is located
‘The second term, “1”, specifies that the data is arranged in attribute
‘ columns and observation rows
‘The third term, “True”, specifies that the first row contains attribute labels
‘The fourth specifies where observation labels (eg. ref #s) can be found
‘The last specifies that you want to skip additional prompts and only want
‘ to see the final results
‘Additional optional specifications include PCA Type

(eg. other than Peason(n-1), etc.)
End Sub

Cluster Analysis

Sub Run Kmeans()
‘Must have reference to XLStat-CLU.dll to run
Call LoadRunKMN(Range(“PCA!$C943:$J1058”), False, 4,

WithColLabels:=True, ObsRange:=Range(“FullData!$A1:$A116”),
NoScreenupdating:=True)

‘The first term above outlines where your data is located
(recall it is on PCA sheet)

‘The second term, “False”, specifies that the columns of data do not
‘ represent observations but rather represent factors (hence observations

are by row)
‘The third term, “4”, specifies the “K” or number of groups to be derived
‘The fourth “True”, specifies that the first row contains attribute labels
‘The fifth specifies where observation labels (eg. ref #s) can be found
‘Additional optional specs include Clustering criteria

(eg. other than Determinant(W), etc.)
End Sub

Discriminant Analysis

Sub Run Discriminant()
‘Must have reference to XLStat-LOG.dll to run
Call LoadRunDisc(Range(“FullData+Clusters!$b1:$b116”),

Range(“FullData+Clusters!$c1:$ah116”),

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

296 Automating Application Calls

Range(“FullData+Clusters!$a1:$a116”), NoScreenupdating:=True)
‘The first term above outlines where your “group” data is located
‘The second term outlines where your predictive data (ie. attribute data here)

is located
‘The third term specifies where observation labels (eg. ref #s) can be found

End Sub

As suggested by the comments, the code must be run with XLStat loaded
and specifically the associated library files referenced as needed (e.g., XLStat-
CLU, XLStat-KMN and XLStat-LOG). Functioning code can be found in the
Chp12 Dodecha VB file under the CodeforRuns module. Additional specifi-
cations not outlined here, but of interest to developers, can be made through
the menu-driven interface. When specified there, they should be remembered
by the application and should exist along with any other specifications made
in the code.

As a note on automated calls to Discriminant Analysis, errors in execution
may be caused by the presence of the Form19.txt file (typically founding the
Addinsoft/XLStat folder). Removing that file prior to run should resolve the
issue. Other run-time issues may also occur in workbooks where multiple
runs of these tools have taken place. For general assistance with XLStat calls,
refer to http://forum.xlstat.com.

12.5 A Final Note on the Value of Linguistics

As a closing personal comment, it is necessary to reinforce that although
knowledge of the specific syntax needed to automate via VB is obviously use-
ful, still more critical will always be an understanding of why it should be used.
Any well-trained syntax expert doesn’t have a ghost of a chance developing
something useful in practice unless they also understand what is truly needed
in practice, and be able to distinguish that from what is superfluous. Expert
programmers can be found. Work can be delegated to them. The most effec-
tive professionals analysts aren’t those that know all of the code that exists
out there, but rather know what can be done (e.g., by hired programmers, if
need be), what needs to get done (to benefit real-world practice), and how to
integrate and delegate abilities towards that end. It’s this general awareness
of “the possible,” and a specific understanding of how integration can deliver
novel, meaningful, and practical results that is the real message here.

PRACTICE PROBLEMS

Practice 12.1

Recall the Atlanta Professional Training example we first brought up in Chap-
ter 6. We used Solver to find an optimal solution to this problem given a single

P1: JsY
9780521889056c12 CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 20:56

Practice Problems 297

Table 12.1. Scenarios for Automated Analysis and Summary

Revenue Maximizing Total # of hours of communication
Enrollments training for “Geeks”

7 11 13

Total # of Analytic 2 {#Geeks} {#Beatniks}
hours for “Geeks” {$Revenue}

6
10

set of parameters (e.g., revenue numbers, hours required per student per curriculum
for both the Geek and Beatnik types).

Now imagine that APT was reconsidering the number hours the Geek students
should be required to take in the two categories of Etiquette and Analytics. The
director would like to see how much his revenue-maximizing enrollment would vary
under nine different scenarios. Each scenario is represented in Table 12.1.

Set up a table similar to this in Excel. It doesn’t need to be exact; I’ve used the
Merge cell option under Home>Alignment to combine some cells and make the
table look neat.

Now create a macro that does the following:

1) Copy a new set of Geek curriculum parameters (i.e., hours needed) outlined by
one of the row and column combinations of Tabled 12.2 (e.g., 6 hours of analytics
and 11 hours of tact/diplomacy) into the template we originally used when solving
this problem.

2) Run Solver to generate the revenue maximizing enrollment (assuming integer
constraints on the number of students).

3) Record the revenue maximizing enrollment (i.e., number of Geek and Beatnik
students) and the associated revenue level generated by Solver for that set of
parameters in the associated cells of your table.

4) Design your macro so that it does this for all nine scenarios, one after another,
so that you generate a completely filled table with only one activation (e.g., one
click) of the macro.

Practice 12.2

Use VB calls to MapPoint to get every point-to-point distance between five locations
(of your chosing) in the United States. Use that data similarly to the straight line data
used in the Chapter 7 routing example, and use VB calls to RISKOptimizer to find
the minimum total roundtrip sequence. Assume a single excursion that hits each
point in turn. Chose a fixed starting/ending point if you desire to facilitate the search.
Limit RISKOptimizer search time to five minutes.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13

Guided and User-friendly Interfaces

As you’ve probably guessed by now, as we build up the number of variables
on which we feel we need to make decisions and continue to add in more con-
straints to maintain reality and practicality in our decision-making process,
decisions themselves can become increasingly complex. Similarly the abil-
ity to concisely provide visualizations of what is possible and what is ideal
(and, conversely, what isn’t) becomes increasingly challenging. Given this
complexity and the perceived need in industry to nevertheless pursue means
of visually assisting people in decision making, the concept of the dashboard
has come into being and continues to gain popularity.

A dashboard, from a general decision-making perspective, is basically a
computer interface that allows individual users to simultaneously view vari-
ous depictions (i.e., presented structure) of data and information as well as
various subsets of data (i.e., content) relevant to a particular task and user
context. For illustration, Figure 13.1 shows four dashboards that I’ve per-
sonally put into use for research and/or consulting purposes in the recent
past.

Two of these are highly oriented toward geographic (specifically logistics)
tasks; the other two are designed with project management tasks in mind.
You’ll notice that each of these consists of multiple frames and multiple con-
trol/form-based interfaces. Some make use of parameterization forms more
so than others. Some make use of graphs and charts predominantly, whereas
others make rich use of tables with key indices summarized. All of them were
designed as applications that could function through the use of Excel alone,
and are highly mobile from a distributional perspective.

Of course, there are obvious advantages to integrating the wide range of
capabilities made available through associated packages such as MapPoint,
XLStat, and RISKOptimizer into DSS designs. In reality, high mobility is
often not a key requirement of decision support systems and can easily be
overshadowed by the need for advanced application integration. The most
critical issue, of course, is practical usability paired with honest and ethical

298

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

Guided and User-friendly Interfaces 299

Figure 13.1. Several examples of dashboard developed in Excel.

rigor on the part of developers. Most critical to ensuring these attributes is a
detailed understanding of user needs from both a strategic-value perspective
(driven by real business goals and decision requirements) as well as from
a tactical-use perspective (appropriate context-specific metric depiction and
user-oriented visualization/control).

Unfortunately in many cases, it may be impractical to assume that one dash-
board design applies to the myriad of users that a DSS is designed to assist. For
this reason, still more advanced dashboard designs are increasingly the mark
of excellence, allowing individual users to independently choose and alter
these depictions and subsets. PivotTables and the use of check-box-triggered
pruning mechanisms can be instrumental in providing such flexibility to users.
Recall the examples in Chp10 LobosFloorPlan (making use of check boxes)
and Chp11 OutlierID (making use of PivotTable capabilities), each of which
were designed with such pruning capabilities in mind (see Figure 13.2).

Excel’s Change Chart Type and QuickLayout options are a rough approx-
imation of the kind of user customization possible in the structuring of
graphical depictions, but nevertheless may be extremely helpful in at least
thinking about dashboard flexibility opportunities. Similarly the ability to

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

300 Guided and User-friendly Interfaces

Figure 13.2. Two examples of visualization customization via pruning.

simply adjust the scale of axes in graphs, built and easily accessed through
Excel, are also valid avenues of consideration in designing customizable
depictions.

Ultimately still greater flexibility comes into play through the full leverag-
ing of macros to reveal customized visualizations on an as-needed basis. The
avenues made available through the leveraging of behind-the-scene Visual
Basic (VB) coding provide the ability to avoid superfluous data, graphics,
and controls that presented in an untimely fashion can lend to confusion,
misuse, and fatal professional decision making. Granted, the art of managing
access is often one of the last issues considered in DSS design, particularly for
those just starting to hone their skills in development; however, it remains a
critical element of DSS excellence overall. With this in mind, the following
final sections outline approaches to augmenting DSS interfacing along these
very lines.

13.1 Interface Locking and Protecting

Under the Home tab of the main Excel menu you’ll find the general Format
drop-down menu (Figure 13.3) that includes various options meaningful to
security measures you might want to capitalize on in your DSS design.

One of the elements subject to consideration when adding protection to
workbooks is which cells, if any, should be locked. Locking cells can have
multiple implications when spreadsheets and workbooks within which they
reside are protected. One is the inability to make modifications to cells that
are locked, either manually or through VB without first unlocking or unpro-
tecting in some way through the code. At the same time, calculations and
functions present within locked cells can still be updated automatically when
sheets are protected, as can graphs based on these calculations. Cells can be

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13.1 Interface Locking and Protecting 301

Figure 13.3. Access to interface locking and protecting mechanisms.

toggled between locked and unlocked states through either right-clicking and
modifying their properties, or through the Format drop-down menu shown
in Figure 13.3.

The same drop-down menu allows for the protection of a spreadsheet
in Excel 2007. The Protect Sheet dialog box generated for detailing sheet
protection is shown in Figure 13.4.

Note the variety of options that are contained in this dialog box. In general
the option to protect (i.e., prevent changes) to locked cells should seem a nat-
ural one; however, developers are also given the option to assign a password
to the protection mechanism (i.e., so that the sheet cannot be unprotected
by those who don’t know the password). Developers are also given a slate
of check boxes to customize the nature of the protection. These are basi-
cally aimed at lessening the severity of the protection (i.e., allowing unlocked
cells to be selected, or allowing objects to be edited but blocking most other
activities). Chp13 BasicClockProtected provides a follow-up to our previous
discussion of the benefits and caveats to the DoEvents syntax in VB. Another
mechanism by which to indirectly protect sheets of your DSS from tampering
with is simply by hiding them, as shown in Figure 13.5.

The hide and unhide options for rows, columns, and entire sheets are
found in the Format drop-down menu. After a sheet is protected, all rows

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

302 Guided and User-friendly Interfaces

Figure 13.4. Customized specifications for sheet protection.

or columns that had been hidden prior (but nevertheless might hold vital
data and calculations) cannot be unhidden or expanded. It’s a way to quickly
hide spreadsheet structure without going overboard on interface refinement
activities.

Figure 13.5. Hiding and unhiding interface.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13.2 Dynamic Interfacing: Pop-ups/Dialogs 303

Figure 13.6. Workbook protection options.

If developers are seriously interested in ensuring that hidden sheets remain
hidden, an additional level of protection needs to be applied. This can be
found under Review>Protect Workbook, as seen in Figure 13.6. Protecting
the structure of the workbook with or without a password prevents hidden
sheets from being manually unhidden.

13.2 Dynamic Interfacing: Pop-ups/Dialogs

The ability to call up forms and controls on an as-needed basis can be highly
effective in the structuring of a DSS interface. It ensures that these controls
don’t get in the way of other more critical elements of your interface when
they are not needed. Also, the ability to withdraw access to these controls can
be critical in fool-proofing your DSS against inadvertent changes that these
controls could generate.

To start the development of a user-defined pop-up or dialog, enter the
VB Editor and select Insert>UserForm. This will generate a new user form.
The form toolbox may also appear; if it doesn’t, select View>Toolbox from
the main header (see Figure 13.7). You’ll use this toolbox for a variety of
tasks.

In Chp13 FunctionPopup, I provide an example where I’ve designed a
dialog box using a number of basic forms you’ve already seen (i.e., from
Chapter 8). Figure 13.8 outlines/summarizes how most of the various controls
were dragged and dropped onto the a newly generated user form, as well
as how incidental changes such as name-property changes were made to
fit the existing terminology of the QueueEstimator function developed in
Chapter 11.

With the dialog box form showing in the VB Editor, double-click on any
form component of choice to get access to specifying code for that particular
item. Specifically, double-clicking on the Calc button would create a new

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

304 Guided and User-friendly Interfaces

Figure 13.7. User-defined forms and control options toolbox.

Figure 13.8. In-form control applications and names/labels used for VB reference.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13.2 Dynamic Interfacing: Pop-ups/Dialogs 305

private subroutine for you to edit to your needs (its privacy refers to its
designed use specifically in reference to the dialog box interface).

Private Sub Calc button Click()
End Sub

Thankfully these subroutines are coded the same as anything else in VB.
The following is what I’ve developed as a subroutine for the Calc button
(functioning code available in Chp13 FunctionPopup)

Private Sub Calc button Click()
Dim Lambda, mu As Double
Dim rho, c, N As Double
Dim Pnot As Double
Dim Pn As Double
Dim Ls As Double
Dim Ws As Double
Lambda = Lambda in.Value
mu = Mu in.Value

If Lambda <> 0 And mu <> 0 Then
rho = Lambda in.Value / Mu in.Value
N = N in.Value
c = c in.Value
Pnot = Calc P0(c, rho, N)
Pn = Calc Pn(c, rho, N, N, Pnot)
Ls = Calc Ls(c, rho, N, Pnot, Pn)
Ws = Calc Ws(Lambda, mu, rho, Pn, Ls)
P0 val.Caption = WorksheetFunction.Round(Pnot, 3)
PN val.Caption = WorksheetFunction.Round(Pn, 3)
Ls val.Caption = WorksheetFunction.Round(Ls, 3)
Ws val.Caption = WorksheetFunction.Round(Ws, 3)
Cellposition = Start cell.Value

If Cellposition <> “” Then
If Give P0.Value Then

Range(Cellposition) = Pnot
Cellposition = Range(Cellposition).Offset(1, 0).Address

End If
If Give PN.Value Then

Range(Cellposition) = Pn
Cellposition = Range(Cellposition).Offset(1, 0).Address

End If
If Give Ls.Value Then

Range(Cellposition) = Ls
Cellposition = Range(Cellposition).Offset(1, 0).Address

End If

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

306 Guided and User-friendly Interfaces

If Give Ws.Value Then
Range(Cellposition) = Ws

End If
End If

End If
‘Unload Queue Estimator
‘If active, the above line would hide the dialogue after a one time use

End Sub

Close inspection reveals that I’ve intended to use this single button to
activate the full array of calculations specified in the original QueueEstimator
(from Chapter 11) but in this case only output those calculations requested by
the user, and output the results only specifically where the user has indicated
by the StartCell entry form.

To activate this form (i.e., to actually get it to display on request from
someone working through the Excel interface), I’ll need something to call it
into existence. Specifically I’ll need another macro defined under Modules,
structured such as the following.

Sub Call Estimator()
Queue Estimator.Show vbModeless

End Sub

If I assign that macro to a simple image I’ve created or imported (to serve
as an activation button), the clean version of the interactive dialog box will
appear. Entering the appropriate parameters into the text fields and clicking
Calc should give me exactly the kind of output I designed for. And it does. I’ll
get some summaries of results built into this version of the dialog box, and,
depending on what outputs I asked to be copied, I’ll get their values written
to the spreadsheet.

One note on syntax: The vbModeless term used in the dialog box call is
an addition that allows a little more mobility by the user while the dialog
box is showing (e.g., allows the user to view other sheets and interact to
some extent through the main Excel toolbars). Another interesting feature
of vbModeless is that I can move the entire Excel interface out of site while
still interacting with the interface. Figure 13.9 shows a clip of the dialog box
on my computer desktop. To this extent, dialog boxes can serve as handy
and compact specialty calculators when you may want to deal with numerous
applications at the same time (aside from Excel).

13.3 Customizing Primary Excel Interfaces

Along with being able to generate pop-up control panels on an as-needed
basis, there is also the potential for actually customizing the primary interfaces

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13.3 Customizing Primary Excel Interfaces 307

Figure 13.9. User-defined dialog box called
and hovering off workbook.

with which Excel users otherwise normally interact. In other words, instead of
having a button (which activates a macro or dialog box) residing somewhere
among the cells of a spreadsheet, you could place that button where all other
buttons already built into Excel reside, such as within the command bar,
Quick Access bar, or among the drop-down menus (see Figure 13.10).

It’s yet another tactic for keeping work and other items out of the way of
the premium space available in the spreadsheet environment. And frankly we
can create these kinds of customized additions to the Excel command button
and menu environment fairly quickly, both through manual and automated
approaches.

13.3.1 Manual Additions in Excel 2007

If the primary development environment is Excel 2007, there is a fairly
straightforward approach to adding customized buttons. You can use the

Figure 13.10. Embedded macro button vs. macro buttons integrated with control/
menu interface.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

308 Guided and User-friendly Interfaces

Figure 13.11. Adding macro buttons to the Quick Access Toolbar (Excel 2007).

Office button to access to the Customize screen where any existing tool
(including user-developed macros) can be added to the Quick Access Tool-
bar. The Modify Button dialog box, accessed upon selecting the Modify . . .
option shown in Figure 13.11, enables you select a button picture that suits
your needs (see Figure 13.12).

Figure 13.12. Selecting button icons for user-defined buttons in Excel 2007.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13.3 Customizing Primary Excel Interfaces 309

Figure 13.13. Adding user-defined buttons in Excel 2003.

13.3.2 Manual Additions in Excel 2003

Menu bar customization in Excel 2003 is different than in Excel 2007, in
part because users seem to have more flexibility in how added elements
will appear. The approach involves right-clicking anywhere on the existing
command bar and then selecting Customize from the shortcut menu to open
the Customize dialog box (Figure 13.13).

Choose the Commands tab, and then select Macros from the Catagories
section. Custom Menu Item and Custom Button display in the Commands
section of the dialog box, both of which can be utilized to generate changes to
the existing toolbar interface; for example, the Custom Button option allows
you to place a new button within that interface.

The button doesn’t do anything when first added, unlike the manual Quick
Access approach in Excel 2007; similar to any button we create in the spread-
sheet, we’ll need to assign it to a macro or subroutine that we’ve developed in
VB. Not only can we change the icon for this new button, but we can change
its name as well. To make these kinds of changes, you’ll need to be in the Com-
mand Bar Edit mode. Start in the Customize dialog box. In this Command Bar
Edit mode, right-click on the newly placed button (in this mode) to access to a
range of options, including Assign Macro, Change Button Image, and Name.

It’s critical to note that all newly minted buttons must have a name starting
with the an ampersand (&). The & won’t appear to users, but is critical in
ensuring that Excel recognizes the new object. Forgetting or erasing the & can
eliminate any work you’ve done in editing the button, and can be frustrating.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

310 Guided and User-friendly Interfaces

Figure 13.14. Pasting in button icons in Excel
2003.

Another feature present in Excel 2003 but not in Excel 2007 is the ability to
edit the appearance of the button icon at the pixel level in the Button Editor
dialog box (Figure 13.15).

If you don’t have time to be a pixel artist, the Paste Button Image option
(shown in Figure 13.14) allows you to take any image or graphic item available

Figure 13.15. Editing button icons in Excel 2003.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13.3 Customizing Primary Excel Interfaces 311

and then copy and paste it into that 16 × 16 square area. You loose some
resolution, but the work is quick.

13.3.3 Fully Automating Button/Menu Setups

Aside from their presence in the menu bar, user-designed buttons have a
particular nuance to them that distinguish them from buttons that would
otherwise be embedded in a spreadsheet. When created, these command
bar buttons become registered in a file called Excel.xlb (or something sim-
ilar, depending on your system configuration), usually in your C:\Windows
directory. This allows them to appear in your command bar no matter what
workbook you open in the future as long as that workbook is on the same
computer. For example, if I reboot my computer and then open a fresh work-
book in Excel, that command button should be there. It should have all the
properties I assigned it when I last edited it. It’ll even know enough to find
the macro to which it was assigned, unless the workbook containing the code
for the macro has been moved.

The downside is that because the button is defined in that Excel.xlb file and
not in a workbook, simply transferring the workbook file (e.g., via e-mail)
won’t bring that button along for the ride. There are at least two ways around
this. You could insist that clients use the specific Excel.xlb file that you use
(which seems an unlikely option in most situations), or you could write a
macro that creates a set of menu command buttons for your specific DSS
(and maybe handles updates in cases where code files are moved around).

For illustration, I’ll use a variant of the dialog box generator file discussed
earlier in this chapter. The following is how you might structure that kind of
installation code in that particular case (functional in Chp13 CustomSetup).

Sub AddNewMenuItem()
Dim CmdBar As CommandBar
Dim CmdBarMenu As CommandBarControl
Dim CmdBarMenuItem As CommandBarControl
Set CmdBar = Application.CommandBars(“Worksheet Menu Bar”)

‘ Point to the Worksheet Menu Bar
Set CmdBarMenu = CmdBar.Controls(“Tools”)

‘ Point to the Tools menu on the menu bar
Set CmdBarMenuItem = CmdBarMenu.Controls.Add

‘ Add a new menu item to the Tools menu
CmdBarMenuItem.Caption = “QueueEstimator”

‘ Set the properties for the new control
CmdBarMenuItem.OnAction = “‘” & ThisWorkbook.Name & “‘!Call Estimator”

End Sub

Sub AddNewButton()
Application.CommandBars(“Standard”).Controls.Add Type:=msoControlButton,

ID:=2950, Before:=25

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

312 Guided and User-friendly Interfaces

Figure 13.16. Appearance of menu implanted
macro call in Excel 2003.

Application.CommandBars(“Standard”).Controls(25).Caption = “QueueEstimator”
Application.CommandBars(“Standard”).Controls(25).OnAction = “‘” &

ThisWorkbook.Name & “‘!Call Estimator”
End Sub

Sub SetupBoth()
AddNewMenuItem
AddNewButton

End Sub

Running the SetupBoth macro calls the AddNewMenuItem and AddNew-
Button macros in turn. The AddNewMenuItem routine adds a new item
called QueueEstimator to the Tools drop-down menu, and assigns the
Call Estimator macro (also included in this workbook, regardless of whether
we’ve renamed the workbook) to that menu item. Similarly, the AddNew-
Button routine adds a button called QueueEstimator to the command bar.
Figure 13.16 shows the final result when this code is run in Excel 2003. Along
with the item’s presence on the pull-down menu, we also get the smiley face
button on our tool bar (not shown in the above clip but present if the code is
run in 2003), and we know we can fairly easily modify it.

Interestingly, this code also work if you run it in Excel 2007. The buttons and
drop-down menus will appear under the Add-ins tab, under Menu Commands
(for the menu item loads) and under Toolbar Commands (for button loads),
as shown in Figure 13.17.

Unfortunately, changing the appearance of buttons forced this way into the
toolbar in Excel 2007 is not straightforward (at least at this point). You might
be stuck with living with that smiley face if you need it to be under Toolbar

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

13.3 Customizing Primary Excel Interfaces 313

Figure 13.17. Appearance of forced menu and command button implants in
Excel 2007.

Commands, but given that you could opt either for the menu item form (text)
or the Quick Access form (where you have at least some graphical choices),
there’s little reason to feel penned in here.

13.3.4 Fully Automating Button/Menu Cleanup

Customized buttons and menu items can also easily be removed manually
from use in Excel 2003 by dragging them “out” of toolbars and menus after
right-clicking and getting into “Customize . . .”. Similarly, buttons can be
removed from Excel 2007 by right-clicking and selecting Delete Custom Com-
mand from the shortcut menu. Alternatively, if you are interested in provid-
ing an automatic cleanup of added customized items and buttons, something
similar to the following code could be used in either version.

Sub RemoveMenuItem()
Dim CmdBar As CommandBar
Dim CmdBarMenu As CommandBarControl
Set CmdBar = Application.CommandBars(“Worksheet Menu Bar”)
Set CmdBarMenu = CmdBar.Controls(“Tools”)
CmdBarMenu.Controls(“QueueEstimator”).Delete

End Sub

Sub RemoveButton()
Application.CommandBars(“Standard”).Controls(25).Delete

End Sub

Sub RemoveBoth()
RemoveMenuItem
RemoveButton

End Sub

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

314 Guided and User-friendly Interfaces

Here both menu item deletion and button deletion are described, along
with a single macro that might be used to remove both customized elements
if present in the workbook (also functional in Chp13 CustomSetup).

13.4 Don’t Give Up on the Spreadsheet

If we can build interfaces that reduce user interactions to menu buttons and
dialog boxes, why would we create elements such as user-defined functions
that are callable through the spreadsheet? If we could get the same result
with a dialog box, isn’t that preferable?

There’s a significant drawback to limiting user interfaces to dialog box
menus. The spreadsheet landscape is still a great arena for laying out mul-
tiple calculations that are can be updated in real time as other parameters
and calculations change, and whose updates can be visualized (i.e., changes
depicted graphically) in real time. Replicating that kind of an environment
strictly through the use of dialog box is both cumbersome and unnecessary for
developers. Similarly, given the fantastic integration between live spreadsheet
updates and live graphical updates in Excel, the ability to make abundant use
of functions (as opposed to dialog box and button-activated macro-based cal-
culations) should not be underappreciated.

As developers it’s increasingly beneficial to be able to offer the best of
both worlds in interface designs – allowing routine calculations to be menu
driven and providing a function infrastructure that permits a wide range of
user creativity and experimentation in the spreadsheet environment.

PRACTICE PROBLEM

Population distributions are often assumed to be normal or bell curved in their shape,
with the most common membership of those populations taking place at the center.
In statistical terms, this location of greatest frequency is referred to as the MODE.

Often in management we are faced with multiple populations that have some over-
lap (e.g., clusters of demographically related customers that geographically overlap
to some degree). Managers interested in dealing with multiple populations simulta-
neously may be interest in the associated points of greatest frequency (i.e., where
the greatest number of people in the combined population live). However, several
forms can arise when combining two normally distributed populations. Figure 13.18
show a couple of simple examples generated in the Ch13 2dists.xls workbook. The
first shows a bi-modal structure (one peak representing the global mode); the second
with a single composite mode structure. (Numerically the two pictures only differ in
the location of the mean of the second distribution: 1 vs. –0.5).

Build your own function for determining the MODE of a distribution resulting
from the merger of two normal distributions. Your inputs should be the means and
standard deviations for the two distributions, as well as a cell location to dump any

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

Practice Problem 315

Figure 13.18. Examples of two compound distributions and associated modes.

resulting output. The output should be the global mode of the composite distribution,
and whether a second local peak exists (just give a yes or no response).

Create a dialog box that prompts users to enter the input information into dialog
text boxes, and a button that makes VB go through some kind of loop to determine
the outputs required. Use a fresh workbook (i.e., not a version of 2dist.xls) for your
work. Do not use any portion of the workbook’s spreadsheet to store numbers or do
the calculations. This exercise should all be done in VB.

To help you, the following is the code needed to calculate the frequency of a single
distribution given a mean and standard deviation.

f1 = WorksheetFunction.NormDist (x, mean1, stddev1, 0)

Remember, you’ll want to calculated a frequency for each and then add the fre-
quencies together. You can conduct your search by constructing each composite
frequency in turn (on 0.01 intervals of X; –3.0, –2.99, –2.98, and so on) and checking
whether each new composite has a greater composite frequency than the maximum
previously encountered.

P1: JsY
9780521889056c13 CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 15:59

316

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

Glossary of Key Terms

Cluster analysis [5.4.4]: A computational technique used to identify a set
of fairly distinct groups of observations (entities, records) in a data set. It
operates by attempting to place individual observations in groups whose
attribute values are most similar, while simultaneously attempting to ensure
that general character of all groups formed are significantly different from
one another.

Conditional formatting [2.2.2]: A mechanism enabled by Excel by which cells
in a spreadsheet take on various visual formats based solely on the nature of
their content, and ostensibly the content of the range of cells with which that
they were co-formatted.

Conditional logic [See Decision Trees]

Constraints [4]: Those issues that restrain decision making and the pursuit
of objectives; technically they prevent decision variables from taking on cer-
tain values either in isolation or in tandem with other decision variables (e.g.,
relational constraints). Binding constraints in particular work to prevent cer-
tain kinds of changes to the best of decision sets (i.e., objective-optimizing
decisions) that might otherwise lead to still greater levels of achievement in
the objective.

Controls [8.Supplement]: A range of mechanisms in Excel through which to
develop visually appealing and user-friendly object interfaces for modifying
and/or displaying content within a workbook. Controls (and forms) can reside
entirely as embedded objects in a workbook, or can appear as needed through
the use of dialog boxes/pop-up forms callable through Visual Basic code. In
many cases also capable and ideally used in referenced calls to user-developed
macros.

Dashboard [13]: From a general decision-making perspective, a com-
puter interface that allows individual users to simultaneously view various

317

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

318 Glossary

depictions of data and information as well as various subsets of data relevant
to a particular task and user context.

Decision Support System (DSS) [1]: An application designed to support,
not replace, decision making. Often characterized as providing eased access,
facilitated analysis and rich communication, all of which is greatly augmented
through intelligent and effective use of visualization.

Decision trees [2.Supplement]: Structures that outline sequential systems of
compound logic. Useful in mapping the course of decision-making processes,
the course of questions to be asked to determine identity or state, or the
course of likely events to assess the value/cost of early decisions.

Decision variables [4]: The elements of a decision-making process over which
a decision maker has either direct or indirect control (e.g., change as a con-
sequence of other decisions made). These variables in turn impact the value
taken on by the objective function and thus the relationship between these
variables and that function mitigates the pursuit of the overall objective of the
decision-making process subject also to the presence of additional constraints
on these variables.

Dialog boxes [13.2]: Compound user forms that present numerous input and
output options on an as-needed basis, appearing only when called for as by
the user or as a portion of a macro run sequence. These new form windows
are not embedded in the spreadsheets in the same way that many fixed and
standard controls may be, and can be designed to float out of the way of
the spreadsheet or exist visually apart from the spreadsheet entirely, while
simultaneously allowing for continuous interaction with the Excel workbook
that generates them.

Discriminant Analysis [5.5]: A statistical method aimed at making use of a
select set of predictive attributes to attempt to create some simple formula-
tion that places specific observations/records/entities (characterized by those
attributes) into groups (e.g., clusters) to which they are though to belong.

DoEvents [See Loops]

Drawn-path extraction [10.Supplement]: A technique through which devel-
opers can leverage standard object drawing capabilities to derive graphical
paths and path coordinates that can subsequently be used to develop path-
direct flow graphics as a feature of a system simulation visualization.

Filtering [See PivotTable and section 4.2 in general]

Forms [See Controls]

Formulae [See Functions]

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

Glossary 319

Functions [2.6]: Built-in formulae that can be executed within cells of spread-
sheets. Under most scenarios functions (similar to most graphs built in Excel)
are automatically updated when changes take place in the content of work-
books or when forced updates occur, e.g., through the use of F9 in the spread-
sheet or Calculate in VB code. These functions can also be automatically
updated in conjunction with Web query and iteration mode functionality
(also see User-Defined Functions).

Genetic algorithm [See RISKOptimizer and Chapter 7 Supplement in
general]

Heuristic [5]: Codified approaches to developing ideas, decisions, and/or
solutions to problems. Fast and frugal heuristics employ a minimum of time,
knowledge, and computation to make adaptive choices in real environments.
Heuristics in general typically do not guarantee optimal solutions, but can
be extremely capable in developing high-performing solutions (relative to
random decision making).

Hill climbing [See Solver]

Iteration mode [3.5]: A calculation mode in Excel that allows for the step-
wise calculation of functions within a spreadsheet that are based on previous
calculations, even if the calculation referenced is stored in the same cell in
which the called function resides (i.e., circular loop calculations). In Excel,
the sequence of cell calculations under iteration mode is very specific, and
needs to be understood before accurately used.

Labels [2.3]: Text that can be associated with cells, cell ranges, worksheets,
or objects embedded within an Excel workbook, for use in referencing these
items in an intuitively meaningful fashion. Labels are also useful in both
locating items in workbooks with considerable added content, as well as
referencing these items from behind the scenes through Visual Basic code.

Link Data Wizard [See MapPoint]

Living data records [3.5]: Data records that typically consist of a range of
cells containing data that are updated on an iterative basis. These records
typically represent sequences of calculations or observations, and typically
have some temporal meaning associated with them.

Locking [See Protecting]

Loops [11.3.5]: VB code structures designed to allow for iteration as a part of
a subroutine’s (i.e., macro) run. Two commonly used loop structures include
fixed-finite repetition loops (For-Loops) and condition dependent repetition
loops (While-Loops). Given that loop structures are often associated with

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

320 Glossary

lengthy run times, the availability of flexibility and auto-exit mechanisms
such as DoEvents script can become highly useful to DSS developers.

Macros [8.3]: Subroutines coded in Visual Basic, often generated through
the recording of changes within the spreadsheet environment, that enable
specific changes to the workbook content, structure, and associated elements
(e.g., dialog boxes) to take place. Only a limited set of activities can actually
be directly recorded and translated into VB code; however, a wide range
of actions can be coded for directly through use of the VB Editor. External
calls to applications and add-ins are also possible through the use of macros.
Activation of macros typically take place through the use of either embed-
ded buttons, customized menu items, or control-key shortcuts (or indirectly
through calls by other macros).

MapPoint [3.2]: A Microsoft application that provides geographic visualiza-
tion as well as mapping and routing capabilities. Although typically associated
with a purchased database of geographic data, the use of tools such as the
Link Data Wizard allows for regular imports of data from Excel spreadsheets.
MapPoint graphs can also be imported to function as Embedded Maps in an
Excel workbook.

Names [See Labels]

Objective [4]: The main pursuit of a decision-making process. Entirely con-
text and orientation specific, and often unique in form depending on the
nature of the problem faced by the decision maker. Also entirely depen-
dent upon the range of decisions available for consideration, as well as the
constraints placed upon the decision-making process. Typically viewed as
compound calculation (e.g., expected total satisfaction, average total risk) to
be maximized, minimized, or set as close to a particular value as possible.

Objects [2, 11.2]: In general, non-cell elements imported or created in the
Excel spreadsheet environment. Objects can include elements from imported
images and sound clips to MapPoint embedded map graphics. All objects have
a unique set of attributes that may differ largely from those available to other
kinds of objects; however, all can be characterized by position, reference
label/name, and specific visualization. Such attributes and many more can be
manipulated either through menu-driven interfaces or VB code.

Optimization [6]: The process by which values of decision variables are
altered computationally (or derived mathematically) to obtain the best pos-
sible results in an objective function, subject to constraints on both decisions
variables and the objective (as well as on any computational method used to
drive the process).

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

Glossary 321

Path-directed flow [10.3]: The flow of elements through a system based on a
structured network of paths and interpath flow dynamics (logic and stochastic
mechanisms). Graphically, the mechanism through which entities travel along
meaningful attribute space in their transitions between interpretable states
(points on a graph).

PivotTable [4.2]: A compound filtering mechanism available in Excel that
enables the summarizations of multiple related records based on similarities
across specific attributes. These attributes can be organized along rows and
columns, and specific values of attributes associated with specific blocks of
data can be filtered to allow focus and comparison on key subsets of data. As
with other tools in Excel, PivotTables do not automatically update themselves
when input data changes (manual or coded refreshing is needed).

Plot-pulled extraction [10.Supplement]: A technique through which devel-
opers can leverage graphical plotting capabilities (e.g., those of Excel 2003)
to derive graphical paths and path coordinates that can subsequently be
used to develop path-direct flow graphics as a feature of a system simulation
visualization.

Principle Components Analysis (PCA) [5.3.2]: A statistical technique that
attempts to create a reduced subset of attributes based on a larger set of
potentially highly related (and perhaps redundant) attributes. The result is
typically a condensed set of higher-level concepts that can ideally be used to
more efficiently distinguish the nature of observations in a data set.

Protecting [13.1]: In general, a means of preventing certain kinds of changes
from taking placed in a developed spreadsheet or workbook as a whole.
A critical part of the protection mechanism involves specifying the extent
to which actions are limited under protection, and whether or not certain
cells are locked from modification. Password protection is an option in both
spreadsheet and workbook protection cases.

RISKOptimizer [7]: An application developed to search out solutions to
highly complex problems, often characterized by features such as nonlinear-
ity and discontinuity in the objective function (as well as within relational
constraints that involve decision variables under consideration). Moreover,
the tool is designed to enable searches across simulated scenarios of com-
plex problems where various attributes of these problems are subject to
uncertainty. To tackle these problems, the application makes abundant use of
genetic algorithms as a robust globalized search method (see Chapter 7 Sup-
plement), thus avoiding some of the difficulties that hill-climbing procedures
might encounter. Callable both through menu interaction and/or through
VB code.

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

322 Glossary

Simulated variants [8.1.1]: Generally a set of structured problems or decision
making scenarios that are equivalent in structure but differ in the actual values
of the parameters used to describe them. Extremely useful in what-if analysis,
where the conditions of a problem-solving context (thus the value of decisions
constructed) are highly dependent on certain elements of uncertainty.

Simulation optimization [9.1]: The task of seeking out optimal solutions to
complex problems involving either critical elements that are known to be
characterized by uncertainty and/or sequentially dependent across time (e.g.,
as in system simulations). Generally speaking, simulation optimization is an
iterative process that involves multiple randomized assessments of a range
of decision policies. RISKOptimizer provides an example of an application
designed to conduct such searches.

Solver [6]: The standard mechanism provided through Excel to conduct a
search for optimal solutions (values of decision variables) to an objective
function, subject to constraints. Solver is technically an add-in tool, subject
to the same strengths and limitations of many other tools in Excel. In its most
typical use it pursues optimization by means of a hill-climbing mechanism
(local sensitivity search). It provides rich details regarding the nature of its
final solution with respect to its view of the search through elements such as
Answer Reports.

Stochastic processes [8.4]: Processes in which key elements (e.g., workers,
jobs, patients) have the potential for passing through multiple states prior
to completion/exit. Each state is associated with a particular probability of
being visited in turn depending specifically on what the state the element has
most recently been in (among other factors). System simulations often make
abundant use of stochastic processes in an attempt to capture real-world
dynamics. The visualization of changes within simulated systems can also
leverage stochastic structures to provide rich depictions of these dynamics.

System simulation [8.1.2]: Generally the computational representation of
a complex set of sequential interactions, designed in an attempt to more
realistically capture the inter-temporal (across time) dependencies of the
processes and resources involved in real-world settings. The performance
impact of decisions applied to these systems typically are assessed across
multiple periods; therefore, such multiperiod computations must be built into
any search for ideal or at least improved decision making for the modeled
settings.

Tools [2.6]: Additional mechanisms that are often built into Excel to facilitate
the organization and analysis of information in workbooks. These include
mechanisms by which to sort information and conduct complex statistical

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

Glossary 323

computations, among others. Unlike other features of Excel, however (such
as most functions and graphs), the functionality of these tools are typically
not characterized by live updating (i.e., changes in the content of workbooks,
including the data that they are intended to operate on, do not typically alter
their results automatically). Although other means by which to automate
updates of their results exist, this is a necessary caveat to consider when
relying on their use.

Types [See VB Editor]

User-defined functions [11.4]: VB code that allows inputs to be specified,
complex calculations made, or information derived, and individual results to
be posted to cells or other macros that make calls to the code. In spread-
sheet usage these can operate more or less like any other function built into
Excel, including providing automatic updated to results as data relevant to
it’s calculations are modified (also see Functions).

Visual Basic (VB) Editor [11]: The fundamental interface that allows devel-
opers to view, edit, and generate code (e.g., macros and user-defined func-
tions) for use in Excel-based DSS. A critical key to leveraging the various
capabilities of Excel and linked applications in a seamless and integrated man-
ner. The VB Editor includes multiple mechanisms through which to facilitate
development include debugging tools, help mechanisms, and step-through
execution (as needed). Key to the leveraging of complex code structures is
an understanding of the role of user-defined variables and variable types that
can make the best use of data resources and calculations toward a particular
programming goal.

P1: JsY
9780521889056glo CUUS195/Bendoly 978 0 521 88905 6 May 3, 2008 21:18

324

P1: JsY
9780521889056apx CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 16:26

Appendix – Shortcut (Hot Key) Reference

Popular Function Keys (F#)

F1 Key Help F7 Key Spell Check

F2 Key Edit cell content F9 Key Recalculate

F4 Key Toggles hard references ($) F12 Key Open Save As dialog box

F5 Key Find and Replace dialog
box/Go To tab

F6 Key Press twice – Activates key-driven menu (provides guide to F6-#
shortcut commands; e.g., F6-f opens the Office Button menu)

Some Popular CTRL-# shortcuts
(assuming not overwritten by user-defined macro shortcuts)

CTRL-A Select entire worksheet

CTRL-B Toggle bold text (CTRL-2
does same)

CTRL-C Copies the item or items selected to the Office Clipboard (can be
pasted elsewhere using CTRL-V)

CTRL-D Copies down the top cell in a range of selected cells to rest of range

CTRL-F Displays the Find dialog
box

CTRL-G Find and Replace dialog
box/Go To tab (as does F5)

CTRL-1 Displays Format Cells
dialog box

CTRL-H Displays the Replace
dialog box

CTRL-2 Toggles bold text (CTRL-B
does same)

CTRL-I Toggles italic text CTRL-3 Toggles italics (CTRL-I
does same)

CTRL-K Insert/dit Hyperlink dialog
box

CTRL-4 Toggles underline
(CTRL-U does same)

CTRL-L Displays the Create List
dialog box

CTRL-5 Toggles strikethrough text

CTRL-N New File CTRL-6 Toggles display of objects

325

P1: JsY
9780521889056apx CUUS195/Bendoly 978 0 521 88905 6 May 17, 2008 16:26

326 Appendix

CTRL-O Open File CTRL-7 Toggles display of Standard
toolbar (2003)

CTRL-P Print CTRL-8 Toggles symbol outline
display (2003)

CTRL-R Copies right the left-most
cell in a range of cells to the
rest of range

CTRL-9 Hides the selected rows

CTRL-S Save file

CTRL-0 Hides the selected columns

CTRL-U Toggles underlined text CTRL-
LeftArrow

Go to end of column

CTRL-V Paste the contents of the
Office Clipboard

CTRL-
Home

Go to top of worksheet
(A1)

CTRL-W Closes selected workbook
window

CTRL-
End

Go to end of worksheet

CTRL-X Cut the selected item CTRL-
PageDown

Go to next worksheet

CTRL-Y Redo the last undone
action

CTRL-
Spacebar

Select the entire column

CTRL-Z Undoes the last action

CTRL-; Insert current date CTRL-& Applies the outline border

CTRL-: Insert current time CTRL- Removes the outline border

CTRL-∼ Applies the general
number format

CTRL-ˆ Exponential format (two
decimals)

CTRL-$ Currency format (two
decimals)

CTRL-# Date format

CTRL-% Percentage format (no
decimals)

CTRL-@ Time format

CTRL-! Number format (two
decimals)

CTRL-’ Copies formula from cell
above into active cell

CTRL-` Toggles display of cell
values vs. display of
formulas in the worksheet

CTRL-” Copies the value from cell
above into active cell

Some Popular ALT-# shortcuts

ALT-= Autosum ALT-F11 Opens Visual Basic Editor

ALT-F8 Opens Macros dialog box

P1: JsY
9780521889056ind CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 18:9

Index

ActiveX controls, creating
check boxes, 205, 254
overview, 202–207
pull-down menus, 24, 207, 208
radio buttons, 205–206, 207, 311–312, 313, 315
scroll bars, 206, 207
text boxes, 202–203, 204, 205

Add-ins tools, 24–25, 27
Alignment, formatting, 13
Alternating text-values, recognition of, 9
Analysis ToolPak, 24–27
Analytical dynamics visualization

frictionless boxes, 231, 232
overview, 229, 230
path-directed flows (See Path-directed flows)
random walks, 230–231

Answer Reports
investment firm strategy focus model, 145–146,

147, 148, 149, 150
layout/design models, 137–141, 142, 143, 144,

145
overview, 133–135, 137, 138
purchasing models, 135–136, 137

Application associations, referencing, 285–286,
287, 288

Application calls, automating
button/menu cleanups, 313–314
button/menu setups, 311–312, 313, 315
MapPoint, 281–282, 285
overview, 281
RISKOptimizer, 288–294
Solver, 285–286, 287, 288
XLStat, 294–296

Application.Wait(“. . .”) command, 267–269, 270
Ascending values, recognition of, 9
Atlanta Professional Training, 122–127
Attribute grouping approaches

overview, 95–96
statistically-derived weighting consolidation,

97–101
trivial consolidation, 96–97

Autofilling, 24

Bar charts
compound/stacked, 71–72, 73
Gantt charts, 73

overview, 67–68, 69, 70, 71
project management, 172–173

Borders, formatting, 13–14
Borges, B., 90
Bottlenecks, 133–135
Box, George, 89
Breakpoints, toggling, 251, 253
Budget method solution mechanism, 162
Business strategy focus model, 145–146, 147, 148,

149, 150
Buttons

cleanup, 313–314
creating, 198, 199, 205
customizing, 311–312, 313, 315

Causality, importance of, 4
Cells

alignment, formatting, 13
content, copying, 10, 23
hard/soft-references, copying and, 23, 33
locking, 300–303
multiple, formatting, 13, 15
ranges, labeling, 17

Change in Last option, 211
Chart Tools menu, 68–70
Check boxes, creating, 205, 254
Circular loops, 53–56, 220
Cluster analysis

RISKOptimizer, 165–167, 169, 170, 294–296
XLStat, 105–107, 108, 111, 112

Cluster Analysis tool, 107–108
Command Bar Edit mode, 309–311
Comments

defined, 8
overview, 18–19

Comparisons, benefits of, 4
Conditional statements, logic/structure in, 27–30,

33, 156–157
Constraints

3-D surface plots, 85, 87
binding vs non-binding, 133–137, 139
business strategy focus model, 145–146, 147,

148, 149, 150
editing, 288
layout/design models, 137–141, 142, 143, 144,

145

327

P1: JsY
9780521889056ind CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 18:9

328 Index

Constraints (cont.)
MapPoint embedded graph, 84
Needs Assessment, 148–149, 150
overview, 63
personnel training, 124–125, 126, 127
pie chart, 83
product production management, 128–130, 131
project management schedule development,

169–173
purchasing models, 135–136, 137
RISKOptimizer iteration mechanism, 215–216
scatter plots, 85, 86
staffing issues, 130–132, 133, 134
visualizing, 82–86

Content, copying, 10, 23
Copying

cell formatting, 13, 15
content/formats, 10, 23
formulae, 33
hard/soft-references and, 23, 33
overview, 8–11

COUNTIF statement, 158–161
Customize Button, 309–311
Customize Menu Item, 309–311

Dashboards, 298–299, 300
Data acquisition

online, 47–48, 49
overview, 34
text files, 34–35, 36

Data Analysis tool, 24–25, 26, 27
Data consolidation

overview, 94–95
statistically derived weighting, 97–101
trivial, 96–97

Data elements filters, 80
Data entry, 8–9, 11
Data grouping approaches

cluster analysis, multidimensional splits,
105–107, 108, 111, 112

multidimensional bins, 104–105
overview, 102
p-level/z-score-based categorization, 103–104
quantile-based categorization, 102–103

Data Mapping Wizard, 36–39
Data simulation

overview, 49
random numbers

Bernoulli discrete, 52
custom discrete, 52–53
generation/circular loop, 220
generation/no circular loop, 220
normally distributed, 51–52
triangularly distributed, 50
uniform discrete, 52, 53
uniformly distributed, 49–50

Data tab tools overview, 23–27
Data Tables

optimizations using, 214, 215
in simulation models, 187–189, 190, 191, 192

Data visualization
bar charts (See Bar charts)
overview, 64–65, 66, 67
scatter plots (See Scatter plots)

Database list, 22
Date/time formulae toolbox, 20
Date/time functionality, VB, 267–269, 270
DateValue(“. . .”) command, 267–269, 270
Decision process

discriminant analysis, 112–113, 114, 115, 116
heuristics (See Heuristics)
overview, 63

Decision support systems (DSS)
Decision Tree structures in, 27–29, 30, 31, 33
elements, 4
heuristics (See Heuristics)
overview, 3–6, 249
protection measures, 300–301, 302, 303
user-friendly interfaces (See User-friendly

interfaces, creating)
Decision Tree structures, 27–29, 30, 31, 33
Decision variables

assessment of, 183–184
investment firm strategy focus model, 145–146,

147, 148, 150
layout/design models, 137–141, 142, 143, 144,

145
overview, 63
personnel training, 124–125, 126, 127
product production management, 128–130, 131
project management schedule development,

169–171, 173
purchasing models, 135–136, 137
RISKOptimizer, 162
staffing issues, 130–132, 133, 134

Design/layout models, 137–141, 142, 143, 144, 145,
241–242

Developer tab, 250
Development environment

elements, basic, 9
overview, 8

Dialog boxes/pop-ups, 303–304, 306, 307
Discriminant analysis

application calls, automating, 294–296
overview, 112–113, 114, 115, 116

Displays, multivariate design of, 4
Dodecha Solutions, Ltd., 97–101, 107–108,

109–111
DoEvents clause, 271–273
Drawn-path extractions, 242–243, 244, 245
Drop-down menus, creating, 24, 202–207, 208
DSS. See Decision support systems (DSS)
Dynamically linked lists, 260–262

Economics of scale issues, 156–157
Edit Custom Lists

interface, 12
overview, 11, 12

Engineering functions, 22
Excel2003

macro recording in, 196, 251
object manipulation via macro, 257–259
primary interfaces, customizing, 309–310, 311,

312
Excel2007

macro recording in, 196, 251
object manipulation via macro, 257–259
primary interfaces, customizing, 307–308, 313

P1: JsY
9780521889056ind CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 18:9

Index 329

Extractions
drawn-path, 242–243, 244, 245
plot-pulled, 241–242

Fashion Denim, Inc., 135–137
Files, delimited/comma delimited, 34–35, 36
Fill command defined, 14
Filtering tool, 24, 78–79
Filters

data elements, 80
global (pages), 79–80
local (row/column), 80

Financial formulae toolbox, 20
Fixed data, 8–11
Fonts, formatting, 13
For-loops, in VB, 270–271
Format tab, 71
Formats, copying, 23
Formatting

alignment, 13
borders, 13–14
conditional, 14–15, 23
fonts, 13
multiple cells, 13, 15
numbers, 13
overview, 8, 12
static, 13–15

Formula is True option, 211
Formulae

copying, 33
defined, 8
overview, 19–20, 23

Formulas menu, Name Manager, 16–17
Formulas→Insert Function menu path, 19–23
Frictionless boxes, 231, 232
Functions, user-defined, 273–275, 279
Future variables, predicting, 112–116, 118, 119

Gantt charts, 73, 172–173
Garbage in, garbage out (GIGO), 5
Genetic algorithms

cross-over in, 175–176
mutation in, 176–177
overview, 161–165, 173–174, 175, 176, 177
RISKOptimizer options, 177–178, 179, 180

Geographic mappings, 64, 65.See also MapPoint
Get Directions tool, 45–46
GIGO (garbage in, garbage out), 5
Graphic substitutions, 76.See also Images
Grouping method solution mechanism, 162
GroupName property, 205–207

Hard-references, copying and, 23, 33
Heuristics

automation of, 116–118, 119
benefits of, 93–94
data rationalization applications, 94–95
MinSlack, 93
nearest-next (routing), 91–93, 116–117, 118, 119
recognition, 90–91
SPT, 93

Hill-Climbing Algorithm
discontinuity issues, 156–157
multimodality issues, 154–156

overview, 154, 155
vehicle routing issues, 158–159, 160, 161

Histogram tool, 24–26, 27
HLOOKUP function, 200–202
Hyperlinks, 19

IF statements
Hill-Climbing Algorithm issues, 156–157
overview, 29–31, 32
random numbers and, 50
visual basic, 266–267

Images. See also Objects; Surface templates/plots,
3-D

integration of, 4–5, 232–233, 249
manipulation, via VB, 255, 256, 257–259
substitutions, 76

IncrementLeft command, 257–259
INDIRECT tool, 20–21
Information functions, 22
Insert Comment command, 18–19
Integration, importance of, 4–5
Inventory control

application calls, automating, 293–294
iteration mode, 56–57, 58, 216–219, 220, 222
system simulations, 56–57, 58, 216–227

Investment firm strategy focus model, 145–146,
147, 148, 149, 150

Iteration mode
analytical dynamics visualization, 236–237, 239
inventory control, 56–57, 58, 216–219, 220, 222
multi-iteration operation, 216–218, 219, 220, 222
overview, 53–54, 55, 56
web query example, 57–59

Jumping Java coffee shop, 130–132, 133, 134

Labeling (naming)
cell ranges, 17
defined, 8
objects, 18
overview, 15–16
typos/changes, 16–17, 18
worksheets, 17–18

Layout/design models, 137–141, 142, 143, 144, 145,
241–242

Layout tab, Chart Tools menu, 69–70
Link Data Wizard, 40–41, 43
Live data links, 8
Living data records

inventory control, 56–57, 58
overview, 53–55, 56, 57
web query example, 57–59

Lobo’s Cantina
application calls, automating, 293–294
layout/design models, 137–141, 142, 143, 144,

145, 241–242
path-directed flows,
simulated variant assessment, 187–192,

215–216
simulation/optimization, Data Tables, 214
systems simulation assessment, 192–193, 194,

199
Location sensor, 36–38, 39
Logical functions, 22

P1: JsY
9780521889056ind CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 18:9

330 Index

Lookup/reference formulae toolbox, 20–21,
156–157

Loops
circular, 53–56, 220
in VB, 270–271, 273

Macros
activating, 197–198, 199
code, viewing, 249–250, 251
debugging, 251
delays, adding, 267–269, 270
DoEvents clause, 271–273
loops, 270–271, 273
object, 257–259
recalculation, 227, 228
recording, 194–195, 196, 197
reset, 222–223, 224, 225–226

Manage Rules window, 14
MapPoint

application calls, automating, 281–282, 285
constraints, visualizing, 84
data acquisition from, 36–46
Data Mapping Wizard, 36–37, 38, 39
elements, 36
embedded maps, 37, 43–44, 64, 65
exporting, to Excel, 39–40, 43
importing, from Excel, 40–41, 42, 43
information, routing, 45–46, 47
route planning in, 45–46, 47
toolbar, 43

MATCH tool, 21–22
Math/trig formulae toolbox, 20
MinSlack heuristic, 93
Multi-iteration operation

overview, 216–218, 219, 220, 222
recalculation macro, 227, 228
reset macro, 223–224, 225–226

Name Manager, 16–17
Naming. See Labeling (naming)
Nearest-Next heuristic (routing), 91–93, 116–117,

118, 119
Needs Assessment, 148–149, 150
Now() command, 267–269, 270
Numbers

entering as text, 11
formatting, 13
random

Bernoulli discrete, 52
custom discrete, 52–53
generation/circular loop, 220
generation/no circular loop, 220
normally distributed, 51–52
triangularly distributed, 50
uniform discrete, 52, 53
uniformly distributed, 49–50
visual basic, 266–267

Objectives
investment firm strategy focus model, 145–146,

147, 148, 150
layout/design models, 137–141, 142, 143, 144,

145
overview, 63
personnel training, 124–125, 126, 127

product production management, 128–130, 131
project management schedule development,

169–173
purchasing models, 135–136, 137
staffing issues, 130–132, 133, 134

Objects
incorporation, into workbooks, 254–255, 256,

257
labeling, 18
macros, 257–259
manipulating, in VB, 254–259
MapPoint embedded maps, 43–44
text boxes, creating, 202–203, 204, 205

Office button, 24–25, 27
OFFSET function, 21, 22, 201–202, 266–267
Online data acquisition, 47–48, 49
Optimization

Data Tables, 215
investment firm strategy focus model, 145–146,

147, 148, 150
overview, 122
personnel training, 124–126, 127, 128–130,

131
restaurant design model, 137–141, 142, 143, 144,

145
RISKOptimizer (See RISKOptimizer)
simulation and (See Simulation/optimization)
staffing issues, 130–132, 133, 134
stopping conditions, 210–211

Order method solution mechanism, 162

P-level/z-score-based categorization, 103–104
Pareto charts, layout/design models, 137–145
Path-directed flows

custom visualizations, 237–238, 239, 240
drawn-path extractions, 242–243, 244, 245
overview, 232–233
plot-pulled extractions, 241–242
progress, visualizing, 234–235, 236, 237
visualizing basics, 233–234

Pattern recognition in data entry, 8–11
PCA (Principle Components Analysis), 94–95,

97–99, 100, 101, 107–108
Personnel training model

optimization methods, 122–127
solutions, obtaining, 125–127, 128
structuring, 124–125, 126, 127

Pictures, importing, 76
Pivot Charts, building, 81–82
Pivot Tables

building/modifying, 79–80, 81
dashboards, 298–299, 300
row/column pruning, 80–81, 82

Plot Area menu, 70–71
Plot-pulled extractions, 241–242
Pop-ups/dialog boxes, 303–304, 306, 307
Principle Components Analysis (PCA), 94–95,

97–99, 100, 101, 107–108
Project management models

application calls, automating, 294–296
bar charts, 172–173
constraints, 169–173
decision variables, 169–171, 173
objectives, 169–173
project method solution mechanism, 162

P1: JsY
9780521889056ind CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 18:9

Index 331

RISKOptimizer schedule development,
169–171, 172, 173

Solver, 128–130, 131
SPT/MinSlack, 93
statistically-derived weighting consolidation,

97–101
Project method solution mechanism, 162
Protection measures, 300–301, 302, 303
Protections command defined, 14
Purchasing models

Answer Reports, 135–136, 137
constraints, 135–136, 137
decision variables, 135–136, 137
objectives, 135–136, 137
Solver ToolPak, 135–136, 137
systems simulation assessment, 192–193, 194,

199

Quantile-based categorization, 102–103
Queuing equations, 275–277, 279

Radar plots, 109–110, 111
Radio buttons

cleanup, 313–314
creating, 205–206, 207
customizing, 311–312, 313, 315

Radius selection, 39–40
Rand() function

custom discrete random numbers, 52–53
random number creation, 49–50
in simulation analysis models, 184, 201–202

Random number generation/circular loop, 220
Random number generation/no circular loop,

220
Random Number Seed field, 212
Random walks, 230–231
Rank and Percentile tool, 102–103
Recalculation macro, 227, 228
Recipe method solution mechanism, 162
Recognition heuristic, 90–91
Regression tool, 27, 28
Relationships, estimating

scatter plots, 75–76 (See also Scatter plots)
surface templates, 76–78

Reset macro, 222–223, 224, 225–226
Restaurant model

application calls, automating, 293–294
design/layout, 137–141, 142, 143, 144, 145,

241–242
path-directed flows,
simulated variant assessment, 187–192, 215–216
simulation/optimization, 214
systems simulation assessment, 192–193, 194,

199
Risk calculations, Decision Tree structures, 27–33
RISKOptimizer

application calls, automating, 288–294
cluster analysis, 165–167, 169, 170, 294–296
cross-over in, 178
Data Tables, 214, 215
decision variables, 162, 163
genetic algorithm options in, 177–178, 179, 180
Graph Progess option, 164, 165
interface access, 161
iteration conditions, selecting, 163

iteration mechanism, 215–216, 224–226
Log Simulation Data option, 165
multi-iteration operation, 216–218, 219, 220, 222
mutation in, 178–179
output options, 166
project management schedule development,

169–171, 172, 173
recalculation macro, 227, 228
reset macro, 222–223, 224, 225–226
route planning, 161–165
schedule development, 169–171, 172, 173
simulation optimization

capabilities, basic, 210–213
optimization stopping conditions, 210–211
random number generation conditions, 213
simulation stopping conditions, 211–212,

213
stop button, 164–165, 168, 210–211
summary data reports, 168–169
variables, specifying, 162
variation assessment, pre-construction

approach, 185
Route Planner tool, 45–46
Route planning

issues, Hill Climbing Algorithm, 158–159, 160,
161

in MapPoint, 45–46, 47
MapPoint application calls, automating,

281–282, 285
in RISKOptimizer, 161–165

Routing heuristic (nearest-next), 91–93, 116–117,
118, 119

RunFast Inc., 128–130

Scatter plots
applications, 64–66
constraints, 85, 86
overview, 73–74
proximity testing, 75–76
trend lines/stats, adding, 74–75

Schedule development via RISKOptimizer,
169–171, 172, 173

Schedule method solution mechanism, 162
Scroll bars, creating, 206, 207
Shortest Processing Time (SPT) heuristic, 93
Simplification

heuristics
automation of, 116–118, 119
benefits of, 93–94
data rationalization applications, 94–95
MinSlack, 93
Nearest-Next (routing), 91–93, 116–117, 118,

119
recognition, 90–91
SPT, 93

overview, 89, 92
Simulated variants

assessments, restaurant model, 187–192,
215–216

best defined, 209
Data Table tool, 187–189, 190, 191, 192, 215
optimization, 213–214 (See also Optimization)
overview, 184–185, 187, 188
RISKOptimizer simulation stopping conditions,

211–213

P1: JsY
9780521889056ind CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 18:9

332 Index

Simulation-based models
design basics, 186
overview, 183–184, 186
simulated variants

assessments, restaurant model, 187–192,
215–216

best defined, 209
Data Table tool, 187–189, 190, 191, 192
overview, 184–185, 187, 188
RISKOptimizer simulation stopping

conditions, 211–213
stochastic structures overview, 199–202
system simulations

assessment, 192–193, 194, 199
best defined, 209
inventory control, 56–57, 58, 216–227
macro activation, 197–198, 199
macro recording, 194–195, 196, 197
multi-iteration operation, 216–218, 219, 220,

222
overview, 185–186
recalculation macro, 227, 228
reset macro, 222–223, 224, 225–226
RISKOptimizer simulation stopping

conditions, 211–213
transition matrix, 199–201, 202

user-friendly interfaces, creating (See
User-friendly interfaces, creating)

Simulation/optimization
capabilities, basic, 210–213
Data Tables, 214
optimization stopping conditions, 210–211
overview, 209
random number generation conditions, 213
simulation stopping conditions, 211–212, 213

Soft-references, copying and, 23
Solution mechanism by problem type, 162
Solver ToolPak

activation, 24–27, 122, 123
algorithm function

discontinuity issues, 156–157
multimodality issues, 154–156
overview, 154, 155
vehicle routing issues, 158–159, 160, 161

Answer Reports (See Answer Reports)
application calls, automating, 285–286, 287,

288
business strategy focus model, 145–146, 147,

148, 150
layout/design models, 137–141, 142, 143, 144,

145
models, structuring

personnel training, 124–125, 126, 127
product production management, 128–130,

131
staffing issues, 130–132, 133, 134

optimization (See Optimization)
project management, 128–130, 131
purchasing models, 135–136, 137
solutions, obtaining, 125–127, 128
specification fields, 123
variation assessment, pre-construction

approach, 185
Sorting, procedure, 24

Sound clips
insertion, 255, 266–267
manipulation, 256, 257–259

Space allocation model, 137–141, 142, 143, 144,
145, 241–242

Spreadsheets
benefits of, 314
cell structure, 8
IF statements in, 29–32
labeling, 17–18
protecting, 300–301, 302, 303

SPT (Shortest Processing Time) heuristic, 93
Staffing issues model, 130–132, 133, 134
Standard deviations, 103–104
Statistical formulae toolbox, 20
Stochastic structures, 199–202
Stop on Actual Convergence option, 212–213
Stop on Projected Convergence option, 212–213
Strategy focus model, 145–146, 147, 148, 149, 150
Surface templates/plots, 3-D

constraints, 85, 87
investment firm strategy focus model, 145–148,

150
overview, 76–77, 78

System simulations
assessment, 192–193, 194, 199
best defined, 209
inventory control, 56–57, 58, 216–227
macros

activating, 197–198, 199
recording, 194–195, 196, 197
reset, 222–223, 224, 225–226

multi-iteration operation, 216–218, 219, 220, 222
overview, 185–186
recalculation macro, 227, 228
RISKOptimizer

process overview, 216–217, 218, 227
simulation stopping conditions, 211–213

transition matrix, 199–201, 202
web query example, 57–59

Tables
autofilling, 24
data elements filters, 80
pivot, building/modifying, 79–80
transfers, 34–36

Text boxes, creating, 202–203, 204, 205
Text files, importing, 34–35, 36
Text functions, 22
3-D surface templates/plots

constraints, 85, 87
investment firm strategy focus model, 145–148,

150
overview, 76–77, 78

TimeValue(“. . .”) command, 267–269, 270
Tools, built-in overview, 23–27
Transition matrices, 199–201, 202, 235–236,

238–239
Tufte, Edward, 4–5

User-friendly interfaces, creating
check boxes, 205, 254
dashboards, 298–299, 300
overview, 202–207

P1: JsY
9780521889056ind CUUS195/Bendoly 978 0 521 88905 6 June 14, 2008 18:9

Index 333

pop-ups/dialog boxes, 303–304, 306, 307
primary, customizing, 306–307, 308, 309, 310,

314
protection measures, 300–301, 302, 303
pull-down menus, 24, 207, 208
radio buttons, 205–206, 207, 311–312, 313–314,

315
scroll bars, 206, 207
text boxes, 202–203, 204, 205

Value Field Settings, 80
Variable records/arrays/record arrays, 260–263
Variables, assessment of, 183–184
Variation assessment. See also Decision variables;

Simulation-based models
post-construction approach, 185
pre-construction approach, 185

vbModeless, 306–307
Video clips, insertion, 255
Visual Basic Editor

application associations, referencing, 285–286,
287, 288

basic operator syntax, 266–267
code, reading, 251
complex variable declaration/use, 262–263
control clauses, 271–273
date/time functionality, 267–269, 270
debugging, 251, 253
drawn-path extractions, 242–243, 244, 245
functions, user-defined, 273–275, 279
information storage changes, monitoring,

263–264, 265, 266
loops, 270–271, 273
MapPoint application calls, automating,

281–282, 285
object incorporation, into workbooks, 254–255,

256, 257

object macros, 257–259
objects, manipulating, 254–259
overview, 249–250
pop-ups/dialog boxes, 303–304, 306, 307
queuing equations, 275–277, 279
Solver application calls, automating, 285–286,

287, 288
syntax/coding, 259
variables/types, 260–262

VLOOKUP function, 21, 22, 52–53, 200

Watch tool, 263–264, 265, 266
Web queries, 47–48, 49, 59
While-loops, in VB, 271
Work-group selection

application calls, automating, 288–293
discriminant analysis, 112–113, 114, 115,

116
RISKOptimizer cluster analysis, 165–167, 169,

170, 294–296
Workbooks

defined, 8
names, managing, 17 (See also Labeling

(naming))
object incorporation, 254–255, 256, 257
protecting, 300–303
text boxes, creating, 202–203, 204, 205

Worker training. See Personnel training model
Worksheets. See Spreadsheets

XLStat
application calls, automating, 294–296
cluster analysis, multidimensional splits,

105–107, 108, 111, 112
discriminant analysis, 112–113, 114, 115, 116
PCA consolidation technique, 94–95, 99–100,

101, 107–108

	Cover
	Half-title
	Title
	Copyright
	Contents
	Section 1: Getting Oriented
	1 Necessary Foundations for Decision Support
	2 The Development Environment
	2.1 Fixed Data
	2.2 Formatting
	2.2.1 Static Formatting for Cells
	2.2.2 Conditional Formatting

	2.3 Labeling (Naming)
	2.3.1 Handling Label Typos/Changes
	2.3.2 Cell Range Labels
	2.3.3 Worksheet Labels
	2.3.4 Object Names

	2.4 Comments
	2.5 Hyperlinks
	2.6 Formulae
	2.7 Copying Content and Formats
	2.8 Built-In Tools
	Chapter 2 Supplement: Logic and Structure in Conditional Statements

	PRACTICE PROBLEMS

	3 Getting Data – Acquisition, Linkage, and Generation
	3.1 Text File Imports and Basic Table Transfers
	3.2 More Sophisticated Application Transfers
	3.2.1 MapPoint Data Sources
	3.2.2 From MapPoint to Excel
	3.2.3 From Excel to MapPoint
	3.2.4 Excel (MapPoint): Embedded Maps
	3.2.5 Routing Information and Insights through MapPoint

	3.3 Online Data Acquisition
	3.4 Simulating Data: The Basics
	3.4.1 Uniformly Distributed Randoms
	3.4.2 Triangularly Distributed Randoms
	3.4.3 Normally Distributed Randoms
	3.4.4 Uniform Discrete Randoms
	3.4.5 Bernoulli Discrete Randoms
	3.4.6 Custom Discrete Randoms

	3.5 Living Data Records: The Basics
	3.6 Living Records in Practice
	3.6.1 Example 1: Simulated Histories (A Preview of System Simulations)
	3.6.2 Example 2: Web-Import Histories

	PRACTICE PROBLEMS

	Section 2: Harvesting Intelligence
	4 Structuring Problems and Option Visualization
	4.1 Value of Data Visualization
	4.1.1 Bar Charts
	4.1.1.1 The Basics
	4.1.1.2 Compound (Stacked) Bar Charts

	4.1.2 Scatter Plots
	4.1.2.1 Adding in Trendlines and Their Stats
	4.1.2.2 Kicking Up Scatter Plot Graphics

	4.1.3 3-D Surface Templates and Plots

	4.2 Selective Pruning for Presentation and Analysis
	4.2.1 How to Build and Modify PivotTables
	4.2.2 Selective Pruning by Row and Column
	4.2.3 Building PivotCharts

	4.3 Visualizing Constraints
	PRACTICE PROBLEMS

	5 Simplification Tactics
	5.1 Heuristics in Decision-Making Practice
	5.1.1 The Recognition Heuristic
	5.1.2 Nearest Next – A Routing Heuristic
	5.1.3 MinSlack and SPT – Two Project Management Heuristics
	5.1.4 The Punchline: Relevance to DSS Designs

	5.2 Heuristics Applied to Data Rationalization
	5.3 Attribute Grouping Approaches
	5.3.1 Trivial Consolidation Approaches
	5.3.2 Consolidations Using Statistically Derived Weightings

	5.4 Data Grouping Approaches
	5.4.1 Quantile-based Categorization
	5.4.2 p-level/z-score-based Categorization
	5.4.3 Multidimensional Bins
	5.4.4 Cluster Analysis for Multidimensional Splits

	5.5 Giving Form to Future Categorization
	Cited References

	Chapter 5 Supplement: Making Heuristics Automatic (the Non-Elegant Way)
	PRACTICE PROBLEMS

	6 The Analytics of Optimization
	6.1 Optimization with Solver
	6.1.1 Example #1: Atlanta Professional Training
	6.1.1.1 Structuring Models for Optimization
	6.1.1.2 Getting to the Solution

	6.1.2 Example #2: RunFast, Inc.
	6.1.3 Example #3: Jumping Java, a Worker Staffing Problem

	6.2 Deeper Insights into Optimization Solutions
	6.2.1 Example #4: Fashion Denim, Inc.
	6.2.2 Example #5: Lobo’s Cantina Layout Design
	6.2.2.1 Interpreting Results

	6.2.3 Example #6: Strategic Focus for Investment Firms
	PRACTICE PROBLEMS

	7 Complex Optimization
	7.1 How Solver “Solves”
	7.1.1 Problems with Multimodality
	7.1.2 Problems with Discontinuity

	7.2 The Benefit of Alternate Optimization Options
	7.2.1 Problems with Vehicle Routing
	7.2.2 RISKOptimizer on Vehicle Routing
	7.2.3 RISKOptimizer on Cluster/Group Development
	7.2.4 RISKOptimizer on Schedule Development
	Chapter 7 Supplement: A Primer on Genetic Algorithms
	Genetic Algorithms in General
	GA Options in RISKOptimizer

	PRACTICE PROBLEMS

	Section 3 Leveraging Dynamic Analysis
	8 Controlled Simulation Analysis
	8.1 Approaches to the Use of Simulation in Analysis
	8.1.1 Simulated Variants
	8.1.2 System Simulations
	8.1.3 Basics of Simulation Design

	8.2 Assessing Simulated Variants
	8.3 Assessing System Simulations
	8.4 An Introduction to Stochastic System Structures
	Chapter 8 Supplement: Simulation Control Made Friendly

	PRACTICE PROBLEMS

	9 Scenario Generation and Optimization
	9.1 Basic Simulation Optimization Capabilities
	9.1.1 Optimization Stopping Conditions
	9.1.2 Simulation Stopping Conditions

	9.2 Optimization of Simulated Variants
	9.2.1 Using Averages from Data Tables in RISKOptimization
	9.2.2 Using RISKOptimizer Iterations for the Same Result (without Data Table)

	9.3 Optimization of System Simulations
	9.3.1 RISKOptimizer with Calls to a Reset Macro
	9.3.1.1 Use under a Multi-iteration Setting
	9.3.1.2 Using RISKOptimizer’s Built-in Iteration Mechanism

	9.3.2 RISKOptimizer with Calls to a Recalculation Macro

	PRACTICE PROBLEM

	10 Visualizing Complex Analytical Dynamics
	10.1 Random Walks
	10.2 Frictionless Boxes
	10.3 Path-Directed Flows
	10.3.1 An Introduction to Visualizing Path-directed Flows
	10.3.2 Visualizing Progress along Paths
	10.3.3 Custom Path Visualizations: Lobo’s Floor Plan Revisited
	Chapter 10 Supplement: Visually Derived Paths
	Plot-pulled Extractions
	Drawn-path Extractions

	Section 4: Advanced Automation and Interfacing
	11 VB Editing and Code Development
	11.1 The Visual Basic Editor
	11.1.1 Confronting Code
	11.1.2 Checking for Bugs

	11.2 Object Manipulations
	11.2.1 Incorporating External Objects into Workbooks
	11.2.2 Object Macros

	11.3 Syntax and Coding
	11.3.1 Intro to VB Variables and Types
	11.3.2 Declaring and Using More Complex Variables
	11.3.3 Watching for Changes in Stored Information
	11.3.4 Common Operations with (or without) Variables in VB
	11.3.5 Syntax for Basic Operators
	11.3.5.1 Random Numbers
	11.3.5.2 OFFSET
	11.3.5.3 IF Statements

	11.3.6 Date/Time Functionality
	11.3.7 Selection Attributes Revisited
	11.3.8 Iteration Structures: Loops
	11.3.8.1 For-Loops (.xed-.nite iteration structures)
	11.3.8.2 While-Loops (Open-ended Iterations)

	11.4 User-Defined Functions
	11.4.1 An Introduction to Functions
	11.4.2 A More Complex Example

	PRACTICE PROBLEMS

	12 Automating Application Calls
	12.1 Calls to MapPoint
	12.2 Calls to Solver
	12.3 Calls to RiskOptimizer
	12.3.1 Work-Group Selection Revisited
	12.3.2 Inventory System Simulation Revisited

	12.4 Calls to XLStat
	12.5 A Final Note on the Value of Linguistics
	PRACTICE PROBLEMS

	13 Guided and User-friendly Interfaces
	13.1 Interface Locking and Protecting
	13.2 Dynamic Interfacing: Pop-ups/Dialogs
	13.3 Customizing Primary Excel Interfaces
	13.3.1 Manual Additions in Excel 2007
	13.3.2 Manual Additions in Excel 2003
	13.3.3 Fully Automating Button/Menu Setups
	13.3.4 Fully Automating Button/Menu Cleanup

	13.4 Don’t Give Up on the Spreadsheet
	PRACTICE PROBLEM

	Glossary of Key Terms
	Appendix – Shortcut (Hot Key) Reference
	Index

