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Abstract. Given a finite set V, and a hypergraph # C 2", the hyper-
graph transversal problem calls for enumerating all minimal hitting sets
(transversals) for H. This problem plays an important role in practi-
cal applications as many other problems were shown to be polynomially
equivalent to it. Fredman and Khachiyan (1996) gave an incremental
quasi-polynomial time algorithm for solving the hypergraph transversal
problem [9]. In this paper, we present an efficient implementation of this
algorithm. While we show that our implementation achieves the same
bound on the running time as in [9], practical experience with this im-
plementation shows that it can be substantially faster. We also show
that a slight modification of the algorithm in [9] can be used to give a
stronger bound on the running time.

1 Introduction

Let V be a finite set of cardinality |V| = n. For a hypergraph H C 2V, let
us denote by Z(H) the family of its maximal independent sets, i.e. maximal
subsets of V' not containing any hyperedge of H. The complement of a maximal
independent subset is called a minimal transversal of H (i.e. minimal subset of
V intersecting all hyperedges of H). The collection H¢ of minimal transversals is
also called the dual or transversal hypergraph for H. The hypergraph transversal
problem is the problem of generating all transversals of a given hypergraph. This
problem has important applications in combinatorics [14], artificial intelligence
8], game theory [TT12], reliability theory [7], database theory [GJSIT0], integer
programming [3], learning theory [1], and data mining [256].

The theoretically best known algorithm for solving the hypergraph transversal
problem is due to Fredman and Khachiyan [9] and works by performing [H%|+ 1
calls to the following problem, known as hypergraph dualization:
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DUAL(H,X): Given a complete list of all hyperedges of H, and a set of minimal
transversals X C H?, either prove that X = H?, or find a new transversal
X eHI\X.

Two recursive algorithms were proposed in [d] to solve the hypergraph du-
alization problem. These algorithms have incremental quasi-polynomial time
complexities of poly(n) + mOUog®m) and poly(n) + m°1°e™) respectively, where
m = |H|+|X|. Even though the second algorithm is theoretically more efficient,
the first algorithm is much simpler in terms of its implementation overhead,
making it more attractive for practical applications. In fact, as we have found
out experimentally, in many cases the most critical parts of the dualization pro-
cedure, in terms of execution time, are operations performed in each recursive
call, rather than the total number of recursive calls. With respect to this mea-
sure, the first algorithm is more efficient due to its simplicity. For that reason,
we present in this paper an implementation of the first algorithm in [9], which is
efficient with respect to the time per recursive call. We further show that this ef-
ficiency in implementation does not come at the cost of increasing the worst-case
running time substantially.

Rather than considering the hypergraph dualization problem, we shall con-
sider, in fact, the more general problem of dualization on boxes introduced in
[Bl. In this latter problem, we are given an integral box C = C; x - -+ X Cy,, where
C; is a finite set of consecutive integers, and a subset A C C. Denote by A+ =
{reC|xz>a, forsomea € A} and A~ = {z € C | z < a, for some a € A},
the ideal and filter generated by A. Any element in C\ AT is called independent
of A, and we let Z(A) denote the set of all maximal independent elements for
A. Given A C C and a subset B C Z(A) of maximal independent elements of
A, problem DUAL(C, A, B) calls for generating a new element x € Z(A) \ B, or
proving that there is no such element. By performing |Z(A)|+ 1 calls to problem
DUAL(C, A, B), we can solve the following problem

GEN(C, A): Given an integral box C, and a subset of vectors A C C, generate
all mazimal independent elements of A.

Problem GEN(C,.A) has several interesting applications in integer program-
ming and data mining, see [Bl4J5] and the references therein. Extensions of
the two hypergraph transversal algorithms mentioned above to solve problem
DUAL(C, A, B) were given in [3]. In this paper, we give an implementation of
the first dualization algorithm in [3], which achieves efficiency in two directions:

— Re-use of the recursion tree: dualization-based techniques generate all max-
imal independent elements of a given subset A C C by usually performing
|Z(A)| + 1 calls to problem DUAL(C, A, B), thus building a new recursion
tree for each call. However, as it will be illustrated, it is more efficient to
use the same recursion tree to generate all the elements of Z(.A), since the
recursion trees required to generate many elements may be nearly identical.

— Efficient implementation at each recursion tree node: Straight forward imple-
mentation of the algorithm in [3] requires O(n|A| + n|B|) time per recursive
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call. However, this can be improved to O(n|A|+|B|+nlog(|B|)) by maintaing
a binary search tree on the elements of B, and using randomization. Since
|B] is usually much larger than |A|, this gives a significant improvement.
Several heuristics are also used to improve the running time. For instance, we
use random sampling to find the branching variable and its value, required
to divide the problem at the current recursion node. We also estimate the
numbers of elements of A and B that are active at the current node, and
only actually compute these active elements when their numbers drop by
a certain factor. As our experiments indicate, such heuristics can be very
effective in practically improving the running time of the algorithm.

The rest of this paper is organized as follows. In section Zlwe introduce some
basic terminology used throughout the paper, and briefly outline the Fredman-
Khachiyan algorithm (or more precisely, its generalization to boxes). Section Bl
describes the data structure used in our implementation, and Section [ presents
the algorithm. In Section B, we show that the new version of the algorithm has,
on the expected, the same quasi-polynomial bound on the running time as that
of [3], and we also show how to get a slightly stronger bound on the running
time. Section [@ briefly outlines our preliminary experimental findings with the
new implementation for generating hypergraph transversals. Finally, we draw
some conclusions in Section [7.

2 Terminology and Outline of the Algorithm

Throughout the paper, we assume that we are given an integer box C* = C} x
... X Cr, where Cf = [IF : u}], and I} < uf, are integers, and a subset A* C C* of
vectors for which it is required to generate all maximal independent elements.
The algorithm of [3], considered in this paper, solves problem DUAL(C, A, B), by
decomposing it into a number of smaller subproblems and solving each of them
recursively. The input to each such subproblem is a sub-box C of the original box
C* and two subsets A C A* and B C B* of integral vectors, where B* C Z(.A*)
denotes the subfamily of maximal independent elements that the algorithm has
generated so far. Note that, by definition, the following condition holds for the
original problem and all subsequent subproblems:

a£b, forallaec AbeB. (1)

Given an element a € A (b € B), we say that a coordinate i € [n] o {1,...,n}
is essential for a (respectively, b), in the box C = [l; : wi] X -+ X [l : wy], if
a; > l; (respectively, if b; < wu;). Let us denote by Ess(z) the set of essential
coordinates of an element x € AU B. Finally, given a sub-box C C C*, and two
subsets A C A* and B C B*, we shall say that B is dual to Ain C if ATUB~ D C.

A key lemma, on which the algorithm in [3] is based, is that either (i) there
is an element * € AU B with at most 1/e essential coordinates, where € def

1/(1 4+ logm) and m def |A| + |B|, or (ii) one can easily find a new maximal
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independent element z € C, by picking each element z; independently at random
from {l;,u;} for i = 1,... ,n; see subroutine Random solution(-, -, -) in the next
section. In case (i), one can decompose the problem into two strictly smaller
subproblems as follows. Assume, without loss of generality, that = € A has
at most 1/e essential coordinates. Then, by (I, there is an ¢ € [n] such that
{b € B : b; < x;}| > €|B|. This allows us to decompose the original problem
into two subproblems DUAL(C’, A, B') and DUAL(C”, A", B), where C' = Cy x
><Ci_1 X [mi:ui] XCZ‘_H Xoee ch, BIZBQC+,C//=(/’1 Xoeee xCi_l X [lz
x; — 1] X Cigpq X+ - X Cp, and A" = ANC~. This way, the algorithm is guaranteed
to reduce the cardinality of one of the sets A or B by a factor of at least 1 — € at
each recursive step. For efficiency reasons, we do two modifications to this basic
approach. First, we use sampling to estimate the sizes of the sets B’, A" (see
subroutine Est(-,-) below). Second, once we have determined the new sub-boxes
C’,C" above, we do not compute the active families B’ and A" at each recursion
step (this is called the Cleanup step in the next section). Instead, we perform the
cleanup step only when the number of vectors reduces by a certain factor f, say
1/2, for two reasons: First, this improves the running time since the elimination
of vectors is done less frequently. Second, the expected total memory required
by all the nodes of the path from the root of the recursion tree to a leaf is at
most O(nm +m/(1 — f)), which is linear in m for constant f.

3 The Data Structure

We use the following data structures in our implementation:

— Two arrays of vectors, A and B containing the elements of A* and B* re-
spectively.

— Two (dynamic) arrays of indices, index(A) and index(B), containing the
indices of vectors from A* and B* (i.e. containing pointers to elements of
the arrays A and B), that appear in the current subproblem. These arrays
are used to enable sampling from the sets A and B, and also to keep track
of which vectors are currently active, i.e, intersect the current box.

— A balanced binary search tree T(B*), built on the elements of B* using
lexicographic ordering. Each node of the tree contains an index of an element
in the array B. This way, checking whether a given vector x € C belongs to
B* or not, takes only O(nlog|B*|) time.

4 The Algorithm

In the sequel, we let m = | A| + |B| and € = 1/(1 + logm). We assume further
that operations of the form A” < A and B’ < B are actually performed on
the index arrays index(A), index(B), so that they only take O(m) rather than
O(nm) time. We use the following subroutines in our implementation:

— max_4(2). It takes as input a vector z ¢ A" and returns a maximal vector z*
in (C*N{z}*)\ AT. This can be done in O(n|A|) by initializing c(a) = |{i €
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[n] : a; > z;}| for all a € A, and repeating, for ¢ = 1,... ,n, the following
two steps: (i) 2z} + min(uf,min{a; — 1 : a € A, c(a) = 1 and a; > z})
(where we assume min(f)) = o0); (ii) c(a) < c¢(a) — 1 for each a € A such
that z; < a; < 27

— Exhaustive duality(C, A, B). Assuming |A||B|] < 1, check duality in
O(n(]A*| + log|BJ)) as follows: First, if |A| = |B| = 1 then find an i € [n]
such that a; > b;, where A = {a} and B = {b}. (Such a coordinate is guar-
anteed to exist by (d).) If there is a j # 4 such that b; < u; then return

max - (U1, ... ,%—1,b;,Uig1, ... ,Uy,). If there is a j # ¢ such that a; > ;
then return (ui,...,u;-1,a; — 1, %j41,... ,up). If b; < a; — 1 then return
(u1,...  ui—1,a; — 1, ui41,... ,up). Otherwise return FALSE (meaning that

A and B are dual in C). Second, if |A| = 0 then let z = max4~(u), and
return either FALSE or z depending on whether z € B* or not (this check
can be done in O(nlog |B*|) using the search tree T(B*)). Finally, if |B| =0
then return either FALSE or z = max4«(l) depending on whether | € AT
or not (this check requires O(n|.A|) time).

— Random solution(C,.A*, B). Repeat the following for k = 1,... ¢ times,
where t; is a constant (say 10): Find a random point 2* € C, by picking each
coordinate zF randomly from {l;,u;}, i = 1,... ,n. Let (2F)* < max-(2*).
If (2%)* ¢ B* then return (2F)*. If {(z1)*,...,(2")*} C B* then return
FALSE. This step takes O(n(]A*| + log|B*|)) time, and is is used to check
whether A" U B~ covers a large portion of C.

— Count estimation. For a subset X C A (or X C B), use sampling to estimate
the number Est(X,C) of elements of X C A (or X C B) that are active

with respect to the current box C, i.e. the elements of the set X’ o {a €

X |atNnC#0} (X & {be X | b= NC #0}). This can be done as follows.
For t = O(log(|A| + |B|)/€), pick elements z',... 22 € A at random, and
let the random variable Y = % x| {z* € &' : i =1,....t2}|. Repeat
this step independently for a total of t3 = O(log(|.A| + |B])) times to obtain
t3 estimates Y'!,... Y% and let Est(X,C) = min{Y!,... Y%} This step
requires O(nlog® m) time.

— Cleanup(A,C) (Cleanup(B,C)). Set A" + {a € A | a™ NC # 0} (respectively,
B <~ {beB|b-NC #0}), and return A" (respectively, B'). This step takes
O(n|A|) (respectively, O(n|B|)).

Now, we describe the implementation of procedure GEN-DUAL(A, B,C)
which is called initially using C < C*, A + A* and B < (. At the return
of this call, B is extended by the elements in Z(A*). Below we assume that
f€(0,1) is a constant.

! Note that these sample sizes were chosen to theoretically get a guarantee on the ex-
pected running time of the algorithm. However, as our experiments indicate, smaller
(usually constant) sample sizes are enough to provide practically good performance.
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Procedure GEN-DUAL(C, A, B):
Input: A box C =Cy X -+ X Cp, and subsets A C A" CC, and B C Z(A").
Output: A subset N C Z(A*) \ B.

1. N« 0.
2. While |A||B] < 1

2.1. 2z + Exhaustive duality(C, A, B).
2.2. If z = FALSE then return(\N).
23. B+ BU{z}, N « NU{z}.

end while
3. z + Random Solution(C, A", B).
4. While (z # FALSE) do

4.1. B+ BU{z}, N < N U{z}.
4.2. z + Random Solution(C, A", B).

end while
5. 2% + argmin{|Ess(y)| : y € (ANCT)u(BNCH)}.
6. If z* € A then

7. else

6.1. ¢ < argmax{Est({b € B : b; < x}},C) : j € Ess(z")}.
6.2. C':(','l Xoeee Xci_1 X [{E: ’U,l] XCH_l X oo ch.
6.3. If Est(B,C’) < f = |B| then
6.3.1. B’ < Cleanup(B,(C").
6.4. else
6.4.1. B + B.
6.5. N/ + GEN-DUAL(C’, A, B).
6.6. N < NUN', B+ BUN'.
6.7. CN:C1 X oo XCifl X [lzl‘f —1] ><Cz‘+1 Xoeee ch.
6.8. If Est(A,C") < f * |A| then
6.8.1. A” + Cleanup(A4,C").
6.9. else
6.9.1. A" « A.
6.10. N + GEN-DUAL(C", A", B).
6.11. N < NUN", B+ BUN".

7.1-7.11. Symmetric versions for Steps 6.1-6.11 above (details omitted).

end if
8. Return (V).

5 Analysis of the Expected Running Time

Let C(v) be the expected number of recursive calls on a subproblem GEN-

DUAL(C, A, B) of volume v ef |A||B|. Consider a particular recursive call of
the algorithm and let A, B and C be the current inputs to this call. Let z* be
the element with minimum number of essential coordinates found in Step 5, and
assume without loss of generality that * € A. As mentioned before, we assume
also that the factor f used in Steps 6.3 and 6.8 is 1/2. For i = 1,... ,n, let

def

B Y bheB

b; < z}}, and denote by B = BNCT and B; = B; NC* the
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subsets of B and B; that are active with respect to the current box C. In this
section, we show that our implementation has, with high probability, almost the
same quasi-polynomial bound on the running time as the algorithm of [3].

Lemma 1. Suppose that k € Ess(x*) satisfies |Bx| > €|B|. Let i € [n] be the
coordinate obtained in Step 6.1 of the algorithm, and v = |A||B|. Then

Pr{|l’>’>e€|]>ll 2)

€v
Proof. For j =1,... ,n,let Y] def Est(B;,C). Then the random variable X def
t2Y;/|B| is Binomially distributed with parameters to and |B;|/|B|, and thUb by
Chernoff Bound

E[Y;]

7] < e_]Elz‘XVj]/S7

forj=1,...,n

In particular, for j = k, we get Pr[Y;, < e8] < e EX:/8 gince E[Y;] > ¢|B|.
Note that, since Est(B,C) is the minimum over ¢3 independent trials, it follows
by Markov Inequality that if |B| < |B|/4, then Pr[Est(B,C) < |B|/2] > 1—27t,
and the cleanup step will be performed with high probability. On the other hand,
if |B| > |B|/4 then E[Xy] = t2|Byi|/|B| > eta/4. Thus, it follows that Pr[Y) <

|B‘] < e~“%2/32 4 273 Moreover, for any j € Ess(x*) for which |B;|/|B| < ¢/4,

we have Pr[Y; > elB‘] 27%s. Consequently,

Pr Y, > @ and Y < @ for all j € Ess(z*) such that||lz||
1
>1—27%|BEss(a")| —e /32 > 1 - —
€v

where the last inequality follows by our selection of ¢5 and t3. Since, in Step
6.1, we select the index i € [n] maximizing Y;, we have Y; > Y}, and thus, with
probability at least 1 — 1/(ev), we have |B;|/|B| > €/4. O

Lemma 2. The expected number of recursive calls until a new mazximal in-

dependent element is output, or procedure GEN-DUAL(C,A,B) terminates is
O(log?m)
m .

Proof. For a node N of the recursion tree, denote by A = A(N), B = B(N)
the subsets of A and B intersecting the box specified by node N, and let
v(N) = |A(N)||B(N)|. Now consider the node N at which the lastest max-
. . def ss(a

imal independent element was generated. If s = Zan(N)(l/m‘ Bss(a)l 4
ZbeE(N)(l/Q)‘ESS(b)‘ < 1/2, then the probability that the point z € C, picked
randomly in Steps 3 or 4.2 of the procedure, belongs to A(N)* UB(N)~ is at
most o1 (1/2)t. Thus, in this case, with probability at least 1 — o1, we find
a new maximal independent element. Assume therefore that s > 1/2, let z* be
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the element with | Ess(z*)| < 1/e found in Step 5, and assume without loss of
generality that z* € A. Then, by (), there exists a coordinate k € Ess(z*) such
that |Bg| > ¢|B|. By Lemma [I, with probability at least oo ety 1/(ev), we
can reduce the volume of one of the subproblems, of the current problem, by
a factor of at least 1 — e/4. Thus for the expected number of recursive calls at
node N, we get the following recurrence

0w < = [L -1+ o - ). (3)
g9 4
where v = v(N). This recurrence gives C(v) < v°1°¢’?) Now consider the path
Ny = N,Ny,...,N, from node N to the root of the recursion tree N,.. Since
a large number of new maximal independent elements may have been added
at node N (and of course to all its ancestors in the tree), recurrence (3) may
no longer hold at nodes Ni,...,N,.. However, since we count the number of
recursive calls from the time of the last generation that happened at node N,
each node N;, that has N;_; as a right child in the tree, does not contribute to
this number. Furthermore, the number of recursive calls resulting from the right
child of each node N;, that has N;_; as a left child, is at most C'(v(N,)). Since
the number of such nodes does not exceed the depth of the tree, which is at
most nm, the expected total number of recursive calls is at most nmC/(v(N,.))
and the lemma follows. O
We show further that, if |B| >> |A|, i.e. if the output size is much bigger
than the input size, then the number of recursive calls required for termination,
after the last dual element is generated by GEN-DUAL(A, B,C), is nmetes®m)
Lemma 3. Suppose that A are B are dual in C, then the expected number of
recursive calls until GEN-DUAL(C, A, B) terminates is nm©®©1°8™) " ywhere m =
|A| + |B| and 6 = min{log a, ic(’i(g//zg, IO% 3%;} +1, a = |A]l, 8 = |B], and
¢ = ¢(a,b) is the unique positive Toot of the equation

9 (ac/ logb _ 1) =1 (4)

1 —1
Proof. Let 7 = mind[ Bss)] 5 v € AUBLp = (14 (%)) andierz e
be a random element obtained by picking each coordinate independently with
Pr[z; = ;] = p and Pr[z; = w;] = 1 — p. Then the probability that z € AT U B~
is at most 3, 4(1—p)IEs@I 457 plEsO < o(1—p)" + Bp" = Bp" 1. Since
A and B are dual in C, it follows that Sp"~! > 1, and thus
1
r—1< 085 —.
log(1+ (8/a)7™T)

The maximum value that r can achieve is when both sides of (B) are equal, i.e. r
is bounded by the root r’ of the equation A%/("'~1 =1+ (ﬁ/a)l/(”"l). If a = 33,
then 7/ =loga + 1. If > , then letting (3/a)'/ (" =1 = 2¢ we get
log(8/a)

cla, B/a)’

()

=1+ (6)
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where c(+,-) is as defined in (). The case for a > 3 is similar and the lemma
follows from ([IJ) and Lemma 2 O
Note that, if 8 is much larger than «, then the root ' in (@) is approximately

. log(6/)
' 1og(log (/) log a)

and thus the expected running time of procedure GEN-DUAL(A, B,C), from the
time of last output till termination, is nmetes™m) In fact, one can use Lemma,
together with the method of conditional expectations to obtain an incremental
deterministic algorithm for solving problem GEN(C,.A), whose delay between
any two successive outputs is of the order given by Lemma 2l

6 Experimental Results

We performed a number of experiments to evaluate our implementation. Five
types of hypergraphs were used in the experiments:

— Random (denoted henceforth by R(n,«,d)): this is a hypergraph with «
hyperedges, each of which is picked randomly by first selecting its size k
uniformly from [2 : d] and then randomly selecting k elements of [n] (in fact,
in some experiments, we fix k = d for all hyperedges).

— Matching (M (n)): this is a graph on n vertices (n is even) with n/2 edges
forming an induced matching.

— Matching Dual (M D(n)): this is just M (n)?, the transversal hypergraph of
M (n). In particular, it has 27/2 hyperedges on n vertices.

— Threshold graph (T'H(n)): this is a graph on n vertices numbered from 1 to
n (where n is even), with edge set {{i,j}:1 <i < j <mn, jiseven} (i.e., for
j=2,4,... ,n, there is an edge between i and j for all i < j). The reason
we are interested in such kind of graphs is that they are known to have both
a small number of edges (namely, n?/4) and a small number of transversals
(namely, n/2 + 1 for even n).

— Self-dualized threshold graph (SDTH (n)): this is a self-dual hypergraph H
on n vertices obtained from the threshold graph and its dual TH(n — 2),
TH(n —2)* C 2"~ as follows:

H={{n-1,n}} | J{{n—1}UH | H e TH(n—2)}| J{{n}UH | H € TH(n—2)"}.

This gives a family of hypergraphs with polynomially bounded input and
output sizes |[SDTH(n)| = |[SDTH (n)? = (n —2)?/4+n/2 + 1.

— Self-dualized Fano-plane product (SDFP(n)): this is constructed by start-
ing with the hypergraph Ho = {{1,2,3},{1,5,6},{1,7,4},{2,4,5},{2,6, 7},
{3,4,6},{3,5,7}} (which represents the set of lines in a Fano plane and is
self-dual), taking k = (n—2)/7 disjoint copies Hi, ..., Hi of Hp, and letting
H = HiU...UHy. The dual hypergraph H? is just the hypergraph of all
7% unions obtained by taking one hyperedge from each of the hypergraphs
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Hi,...,Hi. Finally, we define the hypergraph SDFP(k) to be the hyper-
graph of 1 + 7k + 7F hyperedges on n vertices, obtained by self-dualizing H
as we did for threshold graphs.

Table 1. Performance of the algorithm for different classes of hypergraphs. Num-
bers below parameters indicate the total CPU time, in seconds, taken to generate all
transversals.

R(n,a,d) n = 30 n = 50 n = 60
2<d<n-—1|[a=275[a = 213[a = 114]a = 507[a = 441]a = 342|a = 731[a = 594]a = 520
0.1] 03] 31| 43.3] 165.6] T746.8] 322.2] 22204 133295
M(n) [n=20] n=24] n=28] n=30[ n=232] n=234] n=36] n=38] n=40|
[ 03] 14 7i] 178 339 809 177.5] 418.2] 8I3.1]
MD(n) [[mn=20] n=24] n=28] n=30] n=232] n=234] n=236] n=38] n=40]
[ 0d5] 1.3] 13.3] 42.2] 132.7] 421.0] 1330.3] 4377.3] 14010.5]
TH(n) | n=40] n=60] n=80]n = 100][n = 120]n = 140[n = 160[n = 180[n = 200]
[ 04 19 60 184 402 782 1422] 2325 365.0]
SDTH(n) [[ n=42] n=62] n=82[n = 102[n = 122[n = 142[n = 162[n = 182[n = 202|
[ 09 50 23.2] 104.0] 388.3] 1164.2] 2634.0] 4820.6] 8720.0]
SDFP(n) ] k=16 | n =23 | n = 30 | n =37 |
I 0.1 [ 4.8 [ 198.1 [ 11885.1 ]

The experiments were performed on a Pentium 4 processor with 2.2 GHz of
speed and 512M bytes of memory. Table [I] summarizes our results for several
instances of the different classes of hypergraphs listed above. In the table, we
show the total CPU time, in seconds, required to generate all transversals for the
specified hypergraphs, with the specified parameters. For random hypergraphs,
the time reported is the average over 30 experiments. The average sizes of the
transversal hypergraphs, corresponding to the random hypergraphs in Table [
are (from left to right): 150, 450, 5.7+ 103, 1.7 % 10%, 6.4 % 10, 4.7%10%, 7.5 % 104,
4.7 % 10°, and 1.7 * 105, respectively. The output sizes for the other classes of
hypergraphs can be computed using the formulas given above. For instance, for
SDTH (n), with n = 202 vertices, the number of hyperedges is a« = 10102.
For random hypergraphs, we only show results for n < 60 vertices. For larger
numbers of vertices, the number of transversals becomes very large (although
the delay between successive transversals is still acceptable).

We also performed some experiments to compare different implementations
of the algorithm and to study the effect of increasing the number of vertices and
the number of hyperedges on the performance. In particular, Figure [[lshows the
effect of rebuilding the tree each time a transversal is generated on the output
rate. From this figure we see that the average time per transversal is almost
constant if we do not rebuild the tree. In Figure 2] we show that the random-
ized implementation of the algorithm offers substantial improvement over the
deterministic one. Figures B and [, respectively, show how the average CPU
time/transversal changes as the number of vertices n and the number of hyper-
edges a are increased. The plots show that the average CPU time/transversal
does not increase more than linearly with increasing a or n.
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Fig. 1. Effect of rebuilding the recur- Fig. 2. Comparing deterministic versus
sion tree. Each plot shows the average randomized implementations. Each plot
CPU time (in milli-seconds) per gen- shows the average CPU time/transversal
erated transversal versus the number versus the number of transversals, for hy-

of transversals, for hypergraphs of type pergraphs of type R(50, 100, 10).
R(30,100,5).

Avg. time per transversal {msec)

o 20 40 60 80 100 120 140 160 180 200 o
Number of vertices n

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of hyeperedges a

Fig. 3. Average CPU time/transversal Fig.4. Average CPU time/transversal

versus the number of vertices n for ran- versus the number of hyperedges a for
dom hypergraphs R(n,a,d), where d = random hypergraphs R(50, a,d), for d =
n/4, and a = 200, 300, 400. 10, 20.

7 Conclusion

We have presented an efficient implementation of an algorithm for generating
maximal independent elements for a family of vectors in an integer box. Ex-
periments show that this implementation performs well in practice. We are not
aware of any experimental evaluation of algorithms for generating hypergraph
transversals except for [I3] in which a heuristic for solving this problem was
described and experimentally evaluated. However, the results in [I3] show the
performance for relatively small instances which are easy cases for our implemen-
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tation. On the other hand, the method described in this paper can handle much
larger instances due to the fact that it scales nicely with the size of the prob-
lem. In particular, our code can produce, in a few hours, millions of transversals
even for hypergraphs with hundreds of vertices and thousands of hyperedges.
Furthermore, the experiments also indicate that the delay per transversal scales
almost linearly with the number of vertices and number of hyperedges.

Acknowledgements. We thank the referees for the helpful remarks.
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