
Parameterized Model Checking of Ring-Based
Message Passing Systems�

E. Allen Emerson and Vineet Kahlon

Department of Computer Sciences,
The University of Texas at Austin,

Austin, TX 78712, USA

Abstract. The Parameterized Model Checking Problem (PMCP) is to decide
whether a temporal property holds for a uniform family of systems, Un, com-
prised of finite, but arbitrarily many, copies of a template process U . Unfortu-
nately, it is undecidable in general [3]. In this paper, we consider the PMCP for
systems comprised of processes arranged in a ring that communicate by passing
messages via tokens whose values can be updated at most a bounded number
of times. Correctness properties are expressed using the stuttering-insensitive
linear time logic LTL\X. For bidirectional rings we show how to reduce rea-
soning about rings with an arbitrary number of processes to rings with up to
a certain finite cutoff number of processes. This immediately yields decidabil-
ity of the PMCP at hand. We go on to show that for unidirectional rings small
cutoffs can be achieved, making the decision procedure provably efficient. As
example applications, we consider protocols for the leader election problem.

1 Introduction

The Parameterized Model Checking Problem (PMCP) is to decide whether a temporal
property holds for a uniform family of systems Un comprised of finite, but arbitrarily
many, copies of a template process U . Unfortunately, PMCP is undecidable because a
system of size n can simulate a Turing machine for n steps [3]. The Halting problem
for Turing Machines can then be easily formulated as a PMCP for reachability of the
halting state, viz., EFhalt. This argument can be refined even in the case where the
parameterized system is a unidirectional ring [17]. It follows from a result by Shan-
non [16] that the undecidability result holds even when the head (token circulating in
the ring) can have only two possible states [16]. An essential part of the undecidabil-
ity proof of the latter is that the message token changes value an arbitrary number of
times.

We show in this paper that if there is a bound b on the number of times the token
changes value during a run of the system, then the PMCP is decidable. This boundedness
assumption can be justified by the fact that protocols for a number of ring based appli-
cations have the property that the value of each message bearing token can be changed

� Research supported in part by NSF grants CCR-020-5483 and CCR-009-8141, and SRC con-
tract 2002-TJ-1026; {emerson, kahlon}@cs.utexas.edu

J. Marcinkowski and A. Tarlecki (Eds.): CSL 2004, LNCS 3210, pp. 325–339, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

326 E.A. Emerson and V. Kahlon

only a bounded number of times in any run of the protocol. For instance, in standard
protocols for the leader election problem [15], every token makes at most one value
change during any run of each of the protocols.

We express correctness properties using the stuttering-insensitive linear temporal
logic LTL\X. The basic assertions are of the form Ah, or Eh, where formula h is built
using F “sometimes”, G “always”, U “until” but without X “next-time”; and A “for
all futures” and E “for some future” are the usual path quantifiers. Use of stuttering-
insensitive logics is natural when model checking parameterized systems as the next-
time operator X gives us the ability to count, often leading to undecidability of the PMCP
[10].

In the case of unidirectional (or certain restricted bidirectional) rings, we argue that
arbitrarily “large" systems of size n can be imitated up to stuttering by a small system of a
certain cutoff size c, where c = O(b). Thus to solve PMCP, checking correctness over all
sizes n, it is necessary and sufficient to check all sizes m up to c. In the context of rings,
this style of “cutoff" argument has been used in [11], where it was shown how to reduce
reasoning about properties expressed using the branching time temporal logic CTL∗\X
from a system with an arbitrary number of processes to systems with up to a small cutoff
number of processes. However, the results were established only for unidirectional rings
where the token could not carry values, viz., processes could not exchange messages
among themselves, resulting in a framework with limited modeling power. For example,
it is not clear how standard protocols for the Leader Election problem (see, for example,
[15]) that require tokens to change values, viz., messages to be exchanged, can be encoded
in this framework. Our unidirectional ring framework has a broader modeling power but
with an efficiently decidable PMCP.

The case of bidirectional rings is more involved. Here we find it convenient to ex-
ploit the viewpoint that a ring of many (n) similar processes is tantamount to a Turing
machine on a circular tape (CTM for short) with n tape cells. To see this, we note that
a token in a ring can be viewed as the head of the CTM, with the value of the token
representing the control state of the head. Cell i of the circular tape corresponds to Pi,
the ith process in the ring, with the tape symbol in cell i representing the local state of
Pi. This, in effect, reduces the PMCP for bidirectional rings in which the token makes
only a bounded number of value changes to the study of the PMCP for CTMs in which
the head only makes a bounded number of state changes. To analyze the behavior of
CTMs we in turn study (Linear Tape) Turing Machines with bounded state changes
to the head. For an arbitrary Turing machine, the associated PMCP again amounts to
the halting problem and is undecidable. However, we demonstrate that for a Turing
machine that can make at most a bounded number b of state changes, the halting prob-
lem is decidable, and, hence for the associated ring system where token values change
at most b times, the PMCP is decidable. The latter result is established by induction
on b. The base case b = 1 represents a Turing machine with a single (non-halting)
state.

The rest of the paper is organized as follows. The unidirectional (or restricted bidi-
rectional) ring model is introduced and the related cutoff results shown in section 2 while
the cutoff results for bidirectional rings are given in section 3. Applications are handled
in section 4 and we conclude with some remarks in section 5.

Parameterized Model Checking of Ring-Based Message Passing Systems 327

2 Unidirectional Rings

Communication in computer networks is usually carried out via message passing using
packets or value-bearing tokens in which the sender puts the data and the address of the
intended receiver. However, apart from data transfer, tokens also play a crucial role in
the implementation of network protocols. In a typical network protocol, a process sends
out a token owned by it to gather information about other processes in the network. In
leader election [15], for example, a process sends out a token bearing its identifier to find
out whether there exists another process with an identifier of greater value. In this role
tokens play a passive role in that they do not cause any state change in processes other
than the ones owning it but are used merely for information gathering. A key reason
for this might be that most protocols are data independent. In this section, we propose
a simple framework to model such protocols and show how to reduce reasoning about
linear time properties for such a system with an arbitrary number of processes to one
with a few.

The Process Framework. We consider systems comprised of processes arranged in the
form of a ring communicating using multiple message-bearing tokens, each of whose
value can be modified at most a bounded number of times (see remark 2.2), say b.
All tokens move in the same direction, say clockwise. In a ring R comprised of the n
processes P0, ..., Pn−1 listed in clockwise order of occurrence around the ring, the ith
process, Pi, is given by a tuple of the form (Qi, Σi, Ti, Ri, ii), where Qi is the finite
set of states of Pi, Σi the set of labels of Pi, Ti the set of tokens owned by Pi, Ri its
transition relation and ii the initial state. Let T = ∪iTi. Each token in T can take on
values from the set V . In any global state of the ring, a token is in the possession of
exactly one process. A process may, however, possess multiple tokens.

Transitions of Pi can be classified as either internal or token dependent. An internal

transition of Pi is of the general form a
l−→ b, and can always be fired irrespective of the

current global state of the system.A token dependent transition of process Pi, on the other

hand, is of the general form tr : a
l:g→A−→ b, where g : V → {true, false} is a boolean

valued function and action A is either the expression skip or of the form t := v. Token
dependent transition tr can be fired only if P possesses a token t from the subset Ttr ⊆ T
with a value that enables guard g.We then say that transition tr involves token t.After tr is
fired, process Pi transits to local state b and t is passed on to the clockwise neighbor. If ac-
tion A is the expression skip, then the token is simply passed on with its value unchanged,
else if A is the expression t := v, then the token is passed with its value updated to v.

For each token dependent transition tr of process Pi, the set Ttr is either Ti or T\Ti.
If Ttr = Ti, viz., tr involves tokens owned by it, then tr is termed an endogenous token
dependent transition, else if Ttr = T \ Ti, viz., tr involves tokens not owned by it, then
tr is termed an exogenous token dependent transition. Exogenous transitions of process
Pi can be thought of as constituting the communication layer of Pi responsible for
handling tokens owned by other processes but causing no change in the local state of Pi.
On executing an exogenous transition involving token t, it is passed on to the clockwise
neighbor with a possible change in the value of t but without changing the local state

of Pi. Thus every exogenous transition is of the general form a
l:g→A→ a. We assume

328 E.A. Emerson and V. Kahlon

that the action A of exogenous transitions is oblivious of the current local state of Pi

and depends only on the value of the token. Thus if a
l:g→A−→ a is a exogenous transition,

then for each b ∈ Qi, there exists an exogenous transition in Ri of the form b
l:g→A−→ b.

To prevent a process from indefinitely taking possession of a token not owned by it, we
assume that from any local state of Pi, for any possible value of t �∈ Ti, there always
exists an exogenous transition of Pi that is enabled. We use R = (Sn, Σ, T, Rn, in),
to denote the ring comprised of the n processes P0, ..., Pn−1 executing asynchronously
with interleaving semantics and is defined in the usual way.

Reduction Result. We show a one way reduction for properties of the form Ah(i, j),
where h(i, j) is a LTL\X formula with atomic propositions over the local states of
processes Pi and Pj , from a ring R of arbitrary size comprised of possibly distinct
non-isomorphic processes to a ring of size at most b(|Ti| + |Tj |), where b is the bound
on the number of times the value of each token of R can be modified. We assume that
each process Pi of R is deterministic, viz., for every local state a of Pi, the following
conditions hold

(i) for every possible value of a token not owned by Pi, there is a unique exogenous
transition of Pi from a that is enabled, and

(ii) there is either an internal transition or for every possible value of token t ∈ Ti, a
unique endogenous transition that is enabled from a, but not both.

Using the fact that exogenous transitions are state oblivious and the deterministic
nature of processes it can be shown that P (t) is independent of the global computation
R executes. Thus we have the following.

Lemma 2.0. P (t) is well-defined.

For set T of tokens, we let P (T) denote
⋃

t∈T P (t). Let Pi and Pj be processes belonging
to ring R. We let R(i, j) denote the ring comprised of the processes {Pi, Pj}∪P (TPi

)∪
P (TPj) occurring in the same relative clockwise order as along R.

Proposition 2.1 (Reduction Result). Let R be a ring with processes Pi and Pj . Then
R |= Eh(i, j) implies that R(i, j) |= Eh(i, j), where h(i, j) is a LTL\X formula over
the local states of Pi and Pj .

Proof Idea. Given a computation x of R, we construct a computation y of R(i, j) such
that x[i, j], viz., x projected onto processes Pi and Pj , is a stuttering of y[i, j]. ��
Remark 2.2 (Boundedness). In general, the number of value changes for tokens of a
given ring might not be bounded and hence the above result may not yield any reduction.
However, for special cases we can deduce from merely a static analysis of the syntax
of the processes that each token undergoes only a bounded number of value changes.
One such useful case results by treating each token t as essentially a counter with an
integer value which decreases each time t is updated. This gives rise to a ring model
where we have integer-valued tokens such that for each local state a of a process the

token dependent transitions from a involving t are of the form a
l:t>c→t:=d−→ b, where

c > d, and a
l′:t≤c→skip−→ f . Thus token t can be thought of as a counter that is set

Parameterized Model Checking of Ring-Based Message Passing Systems 329

initially and each time a token dependent transition modifies the value of t there is a

decrease in its value. Once t is modified by a transition of the form tr : a
l:t>c→t:=d−→ b

of process Pk, then the next token dependent transition to modify the value of t is the

next transition of the form tr′ : a′ l′:t>c′→tk:=d′
−→ b, where c′ < d, that is encountered as

we traverse the ring in a clockwise direction from process Pk. This transition is either an
exogenous transition of a process other than Pi (which is the same for each local state
of the process) or an endogenous transition from the current local state of Pi. We call
such a pair of transitions ‘adjacent’. Thus the maximum number of times the value of
t can be updated is the maximal length of a sequence of adjacent transitions. For the
LCR protocol (section 4), the maximum length of such a sequence for each token is 1.

Extensions. The results also hold for the following two extensions of our model.

(a) Adding FIFO Queues. Queues may be necessary to ensure that tokens sent to
a process are handled in the order received. This guarantees weak and strong fairness
requirements are met for the verification of liveness properties.

(b) Restricted Bidirectional Tokens. The model can also be generalized by allowing
restricted bidirectional tokens where instead of always moving in a fixed clockwise
direction we can allow a token to be able to change direction when it is assigned a new
value. For a fixed value, however, the token always moves in the same direction.

3 Bidirectional Rings

We present a generalization of the unidirectional ring model proposed in [11] by allowing
(a) bidirectional rings, and (b) the token to carry values. We consider systems comprised
of finite, but arbitrarily many, copies of a single process template P arranged in the form
of a ring executing concurrently, viz., with interleaving semantics. We only consider
the case where processes communicate using a solitary token t that is allowed to carry
values. Template process P has two types of transitions: (1) token dependent that require
P to possess t in order to fire, and (2) internal that can be fired irrespective of whether P
possesses t or not. In addition, P uses transitions labeled with the receive action to take
possession of t from its counterclockwise neighbor and transitions labeled with send
actions to relinquish possession of t to its clockwise neighbor. In any computation, the
system is allowed to change the value of the token at most a bounded number of times,
say b. Allowing an unbounded number of value changes to the token could, in general,
make a family of such systems Turing-powerful [17] and hence the corresponding PMCP
undecidable.

Formally, process P is defined to be a labeled transition system given by the tuple
(S × (V ∪ {⊥}), Σ, R, (i, ⊥)), where

– V is the finite set of values that t can take, with ⊥�∈ V .
– S × (V ∪{⊥}) is the set of states of P with pair (a, v) ∈ S × (V ∪{⊥}) indicating

that P is in local state a; and v is the value of t in case P possesses t, else v =⊥.
– (i, ⊥) is the initial state of P .
– Σ, the set of actions, is the disjoint union of the set of “internal” actions Σi, the set

of “token dependent” actions Σtd and the set of token transfer actions
⋃

v∈V {sndv,
rcvv}.

330 E.A. Emerson and V. Kahlon

– R, the transition relation, is the set of all transitions (a, v) l→ (b, v′, D), with D ∈
Dir = {counterclockwise, clockwise, undefined}, where

• l ∈ Σi implies that v = v′ and D = undefined.
• l ∈ Σtd implies that v = v′, v ∈ V and D = undefined.
• l = rcvu implies that v =⊥, v′ = u and D = undefined.
• l = sndu implies that v ∈ V , v′ =⊥ and D ∈ {clockwise, counterclockwise}.
• if a = i and v =⊥, then l = rcvu, for some u ∈ V , viz., the only possible initial

action is a receive. We also assume that along any path of P send and receive
actions alternate.

In this paper, for simplicity we consider only bidirectional rings where the processes
are deterministic.A bidirectional ring system comprised of n copies of a process template
P is denoted by Pn and is represented as (P0, ..., Pn−1) to emphasize the fact that process
Pi+1

1 has Pi as its counterclockwise and Pi+2 its clockwise neighbor. Analogously,
(s0, ..., sn−1), where for each i, si ∈ SP , represents a global ‘cyclic’ state of Pn,
with process Pi in local state si. We assume that the send and receive actions of two
neighboring processes synchronize when transferring a token.

The (Single Index) PMCP for Bidirectional Rings. To decide whether for all n,
Pn+l, (xan) |= h(m), where (xan), the initial configuration of Pn+l, is such that x
is a fixed sequence of local states of P of length l ≥ m and h(m) is a LTL\X formula
over the local states of process Pm. We assume that initially the token is in the possession
of process P0.

Linear Tape and Circular Tape Turing Machines. A (linear tape) Turing Machine M
is defined to be a tuple of the form M = (Q, Σ ∪ {�, Γ}, δ, q0) where,

– Q is the set of states of M
– q0 ∈ Q is the initial state of M
– Σ ∪ {�, Γ} is the set of tape symbols with ‘�’ being the blank symbol and ‘Γ ’ the

left end tape marker such that Σ ∩ {�, Γ} = ∅.
– δ ⊆ Q × Σ ∪ {�, Γ} × Q × Σ × {L, R} is the transition relation. Since Γ is the

left-end tape marker, we assume that if (p, Γ, q, b, D) ∈ δ, then b = Γ and D = R,
i.e., cell 0, containing Γ , always reflects back the head to the right.

In this paper, for Turing Machines with linear tapes, the cell containing Γ will be
referred to as cell 0 while the ith cell to its right is referred to as cell i.

Analogously we define a Circular Tape Turing machine (CTM), M = (Q, Σ, δ, q0)
on the tape cells 0, ..., m where, transition relation δ ⊆ Q × Σ × Q × Σ × {L, R},
has the property that on a right move from cell m the head ends up at cell 0 and on a
left move from cell 0 the head ends up at cell m. Note that in this case because of the
circular topology of the system, the left and right directions are not well defined but we
interpret them as the clockwise and counterclockwise directions, respectively.

Modeling Bidirectional Token Rings as Circular Tape Turing Machines. Consider

the sequence of transitions of a0
sndu−→ a1

l1−→ ...
lk−1−→ ak

rcvv−→ ak+1 of process P where

1 Here ‘+’ denotes addition modulo n.

Parameterized Model Checking of Ring-Based Message Passing Systems 331

for each i ∈ [1 : k − 1], li is an internal or a token dependent transition. Note that since
we consider only deterministic systems, it is clear that after firing the send transition

a0
sndu−→ a1, a process has to execute all the actions l1, ..., lk−1, rcvv in the order listed to

receive the token again. Thus we can, in effect, replace the firing of the above sequence

of transitions with the firing of just one receive transition a1
l1...lk−1rcvv−→ ak+1. A similar

observation holds for all internal and token dependent transitions sandwiched between
a receive and a send transition in which case we can replace all these transitions with
a single send transition. Thus, it suffices to consider processes P where each transition
of P is either a send or a receive transition with send and receive transitions alternating
along any path in the transition diagram of P .

Using this assumption, we can now readily see that the ring Pn = (P0...Pn−1)
with token t comprised of n copies of process template P = (S × (V ∪ {⊥}), Σ, R,
(i, ⊥)) can be looked upon as the CTM, Cn = (V, S, δ, i) with one head and tape cells
0, ..., n− 1. Here cell i corresponds to process Pi with the local state of Pi being looked
upon as the tape symbol in cell i. The token t can be thought of as the head of the CTM
with the value of t being the state of the head. Transition (p, a) → (q, c, D) ∈ δ iff

for some b ∈ S, both the transitions (a,⊥)
rcvp→ (b, p) and (b, p)

sndq→ (c,⊥, D) are in
R.

Thus the PMCP defined before can now be reformulated as follows: To decide
whether for all n, Cn+l, (xan) |= h(m), where x is a sequence of tape symbols of
S of length l and h(m) is a LTL\X formula over the tape alphabet of cell m, with m ≤ l.
We assume that for each n, in the initial cyclic configurations (xan), the head is placed
at cell 0.

3.1 Linear Tape Turing Machines

We begin by showing that the behavior of a given deterministic one state Turing Machine
M can be deduced from an analysis of the structure of the transition diagram of the control
state of M .

Let M = (Q, Σ ∪ {Γ, �}, δ, q0) be a given deterministic Linear Tape Turing Ma-
chine. We assume that M has just one control state, say q, and that the head of M is
initially placed at cell 0 with the rest of the tape cells each containing the empty symbol
‘�’.

We define the transition graph of M as the directed graph G = (V, E), where V =
Σ∪{�} and E = {(a, b)|a, b ∈ Σ∪{�}, δ(q, a) = (q, b, D), with D ∈ {L, R}}. Since
we are considering a Turing machine with a solitary control state, in any configuration,
the direction in which the head of M moves depends only on the symbol it is currently
reading. Thus each tape symbol in Σ∪{Γ, �} can be characterized as either a left-symbol
or a right-symbol depending on whether the head moves left or right upon reading it.
Given symbol a ∈ Σ ∪ {�}, let Ga denote the subgraph of G induced by the set of
symbols reachable from a in G. We say that symbol a ∈ Σ is writable iff M starting at
cell 0 on the empty input, with each non-zero cell containing �, writes a in some tape cell
in finitely many moves. Symbol a ∈ Σ ∪ {�} is readable iff M , starting on the empty
input, reaches a configuration in finitely many steps in which the head is positioned at a
cell containing a.

332 E.A. Emerson and V. Kahlon

Since M is a deterministic Turing Machine, each node of G has out-degree at most
one. To start with, each non-zero tape cell contains � and so for a symbol to be writable
it has to be reachable from � in G. We may therefore assume, without loss of generality,
that all symbols are reachable from � in G. Thus G is either a simple path starting at �
or a ‘lollipop’ of the form a0 → ... → ak → ... → ad → ak, where a0 = �. We begin
by considering the case where G is the simple path a0 → ... → ak starting at �. Later
we show how to reduce the analysis for the case where G is a lollipop to this case.

Definitions and Notation. Let a, b ∈ Σ ∪ {�} be such that there is a path from a to b
in G. We define the depth of b with respect to a, denoted by d(b, a), to be the number
of states, not including b, in the unique path from a to b. Analogously, the left-depth
(right-depth) of symbol b with respect to a, denoted by dL(b, a) (dR(b, a)), are defined
to be the number of left (right) symbols, not including b, along the path from a to b in G.
We abbreviate d(a,�) as d(a) and refer to it simply as the depth of a. Similarly, dL(a,�)
(dR(a,�)) is abbreviated by dL(a) (dR(a)) and called the left-depth (right-depth) of a.
We write a < b to mean d(a) < d(b).

The content of the ith tape cell after the nth move of M is denoted by t(i, n). For
j ≥ 1, we call the portion of the tape comprised of cells numbered greater than or equal
to j, the interval starting with j and denote it as I(j). For each interval I(j), we define
the traversal number of I(j) after move n of M , denoted by trav(j, n), as the ordered
pair (k, l), where k is the number of times the head moved from cell j − 1 to j, viz.,
entered interval I(j), among the first n moves of M , and l is the number of moves made
by the head from a cell inside the interval, viz., the cells j, j + 1, ..., after it entered the
interval for the kth (last) time.

Key Results. The analysis of the behavior of a single state deterministic Turing machine
rests on the following two facts:

1. If in the initial configuration of M , the head is placed at cell 0 and each cell of the
tape contains the empty symbol �, then after finitely many steps of M the contents of
the tape form a non-increasing (depth wise) sequence of tape symbols.

2. Symbol a ∈ Σ is readable iff for each b ≤ a, dR(b) ≤ dL(b).

Proposition 3.1 (Monotonicity Result). For i ≥ 1, we have t(i, n) ≥ t(i + 1, n).
Furthermore, if after n moves the head is positioned at cell h < i and t(i, n) �= �, then
t(i, n) > t(i + 1, n).

An immediate consequence is the following.

Corollary 3.2 For i < j, we have t(i, n) ≥ t(j, n).

Using the above results, we next show that a necessary and sufficient condition for
a tape symbol a to be readable is that for all b ≤ a, we have dR(b) ≤ dL(b).

Proposition 3.3 If a ∈ Σ is readable then for all b ≤ a, dR(b) ≤ dL(b).

Proposition 3.4 Let ai ∈ Σ. If for all j ≤ i, dR(aj) ≤ dL(aj), then ai is readable.

Predicting the Behavior of Linear Tape Turing Machines. Let aj be written in cell
k in move mjk

and in cell k + 1 in move mjk+1 . Consider the configuration of the
tape between moves mjk

and mjk+1 . All the cells from 0 to k have aj written in them.

Parameterized Model Checking of Ring-Based Message Passing Systems 333

Since cell k + 1 gets written by aj in finitely many steps, only finitely many, say k + l,
cells of the tape are visited in mjk+1 moves. Then t(j, n) = � for all j ≥ k + l + 1.
Consider now the configuration of the tape after execution of step mjk+1 − 1. Since in
the very next step aj is written in cell k + 1, the head is currently at cell k + 1. Then
using proposition 3.1, we have that aj = t(k, mjk

) > t(k +1, mjk
) ≥ t(k +2, mjk

) >
t(k +3, mjk

) > ... > t(k + l, mjk
). Therefore it follows that l ≤ k +1 = |G|. Thus we

see that configuration of the tape forms a non-increasing sequence of length k + l with
the remaining cells containing the blank symbol. We consider two cases.

(a) Simple Paths. First assume that G is the simple path a0 → ... → ak. There are two
sub-cases to consider:

Assume first that ak is readable. By definition of readability, there is a reachable
configuration c of M wherein the head after, say n moves, is at tape cell i ≥ 1 containing
ak. Since the tape configuration forms a non-increasing sequence, it follows that if ak

is readable, then it will be read first in cell 1. Clearly, after reading ak, the head cannot
make any more moves and so M deadlocks in cell 1. Thus by the above comment, in
this case only k + 1 tape cells were visited during the computation before M deadlocks
in cell 1 and the visited tape cells contain a non-increasing sequence of non-empty tape
symbols of length at most k + 1 = |G|.

Next assume that ak is not readable. In this case M cannot deadlock, for otherwise
symbol ak would be readable. Let aj be the symbol of least depth, j, such that dR(aj) >
dL(aj). Clearly, aj−1 is a right symbol and dR(aj−1) = dL(aj−1) and so dR(aj) =
dL(aj) + 1. Then using propositions 3.3 and 3.4, we have that all symbols less than
or equal to aj−1 are readable but aj is not. Thus aj is writable but aj+1 is not. Since
by corollary 3.2, for all n, i ≥ 1, we have that t(i, n) ≥ t(i + 1, n), we have, using
the same argument as in the previous case, that the first cell into which aj is written is
cell 1. Since aj is a right symbol, after writing aj the head move to the right to cell 2
and then never visits cell 1 again, for otherwise aj+1 would be writable. Thus from the
above comments we have that when aj+1 is written into cell k all cells 0, ..., k contain
aj+1, all cells k + l + 1, ... contains the blank symbols and cell k + 1, ..., k + l form a
non-increasing sequence with l ≤ j + 1. Thus we can liken the computation to a wave
front that moves along the tape from left to right such that to the right of the front all
cells have the symbol � while to the left all cell have the symbol aj . Thus, in this case
the computation is unbounded, viz., every cell of the tape is visited at least once. We say
that the computation diverges.

(b) Lollipops. We now consider the case when G is a lollipop, say L = a0 → ... →
ak → ... → ad → ak. Note that in this case the machine never deadlocks because no
matter what symbol the head is currently reading, there is always a move it can make.
Let Lω be the ‘unrolling’{a′

i}∞
i=0 = a0...ak(ak+1...adak)ω of L. From the discussion in

the previous section, it follows that we all we need to do is decide whether there exists an
i such that dR(a′

i) > dL(a′
i) and, if yes, find the least such i. Let CL and CR denote the

number of left and right symbols, respectively, in the cycle ak...ad and lC = d − k + 1
denote the length of the cycle. Then we can show that if for some i, dR(a′

i) > dL(a′
i)

then there exists such an i ∈ [0 : k(d − k + 2)] and hence such an i can be determined
efficiently in time O(|G|2log(|G|)).

334 E.A. Emerson and V. Kahlon

Using the result for the case when G is a simple path we see that if there exists an
i such that dR(a′

i) > dL(a′
i), then a front develops writing a′

j to its left, where j is the
least i with the above mentioned property. If no such i exists then no front develops
and thus cell 1 is visited infinitely often during the computation. In this case if the
cycle of the lollipop contains a right symbol then the computation of M on the empty
string is unbounded. On the other hand, if all symbols in the cycle are left symbols then
since ak is readable and all symbols appearing after ak in the lollipop are left symbols,
so after reading ak the head shuttles between cells 0 and 1 without visiting any other
cell thereafter with tape symbols being written repeatedly in following cyclic fashion
ak+1 → ... → ad → ak in cell 1.

The above discussion can be summed up as follows.

Proposition 3.5 (Behavior Lemma). Let M be a given linear tape Turing machine with
only one control state. Then one of the following holds.

– the head of M eventually deadlocks in cell 1
– the head of M diverges
– the head of M eventually shuttles between cells 0 and 1 indefinitely.

Furthermore, if G is the transition graph of M , then the behavior of M can be
decided in time O(|G|2log|G|).

3.2 The PMCP for Bidirectional Rings

We now show how the results for linear tape Turing machines with a solitary state can
be leveraged to give decision procedures for the PMCP for bidirectional rings. The
connection between Turing machines and rings is established via the Ring Traversal
Lemma using the notion of crossing numbers discussed below. The PMCP for rings
can equivalently be formulated as follows: given a LTL\X formula h(m) with atomic
propositions over the local states of process Pm, where m ∈ [0 : l − 1], does there
exist n such that Cl+n, (xan) |= Eh(m) ? We assume that in each of the initial cyclic
configurations (xan), the head is placed at cell 0.

Notation. We refer to the counterclockwise and clockwise directions along the circular
tape of Cn+l as right and left directions, respectively. We assume that tape cells 0, ..., n+
l − 1 of Cn+l are arranged in a counterclockwise direction in the order listed. For any
interval, viz., a finite set of adjacent cells along the circular tape, when traversing the
cells of the interval in the counterclockwise direction, the cell encountered first is called
the left end of the interval whereas the cell encountered last is called the right end of
the interval. For Cn+l, cells 0, ..., l − 1 containing the input sequence x is designated
as interval X while the set of remaining cells, each containing the tape symbol a, is
designated the outer ring. As for Turing machines with linear tapes, we let G denote the
transition graph of Cn+l and Ga the subgraph of G induced by the set of all symbols
reachable from a in G.

Strategy. We begin by outlining our strategy. For a ring of size n+l, starting at the initial
cyclic configuration (xan), we construct a transition diagram GX(n) on the configura-
tions of interval X , where each configuration is given by the contents of the tape cells

Parameterized Model Checking of Ring-Based Message Passing Systems 335

constituting X along with the cell number of X on which the head is currently placed.
If from a configuration c of X , the head moves outside interval X , then if the head does
not re-enter X , then c has no successor in GX(n), else the successor is the configuration
that results when the head re-enters X . In the second case, the transition that results is
called an external transition of GX(n). All transitions of GX(n) that are not external
are called internal and correspond to movements of the head within interval X . Since
M is a deterministic Turing machine, GX(n) is either a simple path or a lollipop. Note
that since we are interested in the ‘behaviour’ of cell m belonging to interval X , there
exists n such that M, (xan) |= Eh(m) iff there exists n such that GX(n) |= Eh(m),
where in both cases the formula h(m) is interpreted over the tape alphabets in cell m.
We show the existence of a cutoff c ≥ l such that for all j ≥ c, the transition diagram
GX(j) is the same as GX(c). This reduces the PMCP to determining whether there
exists i ∈ [l : c] such that M, (xai) |= Eh(m), i.e., model checking at most c finite
state systems, which is clearly decidable. We point out that we do not actually construct
GX(n) but merely use it to prove our cutoff result. Towards that end, however, we need
to elucidate the structure of GX(n). Note that the internal transitions of GX(n) are easy
to figure out as they correspond to movements of the head within interval X . But for the
external transition, the key question that needs to be answered is that in case the head
leaves interval X whether it re-enters X again and, if yes, then the direction from which
it re-enters X and the configurations of both interval X and the outer ring on re-entry
in relation to the configuration of the outer ring on the last exit. We address this issue
next.

Ring Traversals. Let (xa∗) denote the set of cyclic configurations wherein all cells
other than the one containing sequence x contain the tape symbol a. We now show that
if M starts at the configuration (xa∗) with the head positioned inside interval X , then
the above result says that if the head exits X for the kth time, then it cannot shuttle in
the outer ring forever, but (a) it either re-enters X , or (b) it deadlocks outside X , and
in both cases when that happens the configuration of the ring is of the form (yx′zb∗)
where |x′| = |x| and y and z constitute the ‘out-growth’ of the sequence in interval X
during the kth ‘excursion’ of the head outside X . The ring traversal lemma given below
allows us to quantify the length of this outgrowth. The key idea is that starting from a
cyclic configuration of the form (yxzan) with interval X containing the sequence x, if
the head exits X on the right, then the head may re-enter X on the right thus completing
an external transition or deadlock outside X without diverging in the outer ring. The
interesting case occurs when the head diverges in the outer ring, say from the right end
of interval Z (containing z) in the counterclockwise direction. Because of the circular
nature of the tape, the head enters interval Y (containing sequence y) from the left end.
There are three possibilities now. The head may in finitely many moves either (1) re-
enter X from the left without diverging again in the outer ring again, thus completing the
external transition, or (2) deadlock without re-entering interval X and without diverging
again in the outer ring, or (3) diverge in the outer ring again, this time in the clockwise
direction. In this fashion, we see that the head may keep on diverging back and forth in
the outer ring till it either re-enters X from either the right or the left end, or it deadlocks
without re-entering X . This is formalized in the ring traversal lemma, the statement of
which requires the notion of crossing numbers defined next.

336 E.A. Emerson and V. Kahlon

Crossing Numbers. Let y be a given finite string of tape symbols and let interval Y
comprised of cells 1, ..., n of a linear tape, contain y. Let cell n + 1 contain ∆, where δ,
the transition relation for M has the property that δ(q, ∆) = (q, ∆, L). Thus ∆ merely
‘reflects’ back the head to the left into Y .

Then the left-right crossing number of y, denoted by CLR(y), is intended to capture
the number of moves made by the head on the left end of interval Y , viz., from cell 1 to
0, after the head enters interval Y at the left end and before it exits Y at the right end
for the first time. Formally, CLR(y) is defined as follows. Starting at cell 0 (containing
Γ), if the head ever exits interval Y on the right, viz., makes a right move from cell n to
n + 1, then we define CLR(y) as the number of moves made by the head from cell 1 to
0 before it exits Y to the right for the first time. If the head never exits Y on the right,
there are three possible cases (1) the head either deadlocks in Y in which case CLR(Y)
is defined to the number of moves made by the head from cell 1 to cell 0, viz., at the
left end of interval X , before it deadlocks, or (2) the interval Y is exited to the left an
unbounded number of times in which case we define CLR(y) as ∞, or (3) after finitely
steps the head keeps on shuttling in Y without exiting Y on either side thereafter. In that
case, we define CLR(y) as ⊥.

In general, for D1, D2 ∈ {L, R}, we may define CD1D2(y), to capture the number
of moves made by the head on the D′

2th end of interval Y , where D′
2 ∈ {L, R} \ {D2},

viz., the opposite end from which the head is supposed to exit Y , after the head enters
interval Y at the D1th end.

Proposition 4.1 (Ring Traversal Lemma). Starting at the initial configuration (xan)
of Cl+n, suppose that when the head exits interval X for the kth time, the ring configu-
ration is of the form (yx′zb∗), where x′ is the content of X . If n is greater than the max-
imum of the minimum of CLL(z)|G| and CLR(y)|G|, and the minimum of CRL(z)|G|
and CRR(y)|G|, viz., the ring is of sufficiently large size, then one of the following
holds.

1. the head deadlocks before entering interval X again.
2. the head re-enters interval X after finitely many steps.

In both cases, the resulting configuration is of one of the two forms: (y′′y′x′′z′c∗)
or (y′x′′z′z′′c∗), where |x′′| = |x|, |y′| = |y|, |z′| = |z| and |y′′|, |z′′| are less than or
equal to the minimum of CRL(z)|G| and CRR(y)|G| or the minimum of CLR(y)|G| and
CLL(z)|G| accordingly as the head exits X to the left or to the right.

A crucial consequence is that the behavior of the head (as far as interval X is con-
cerned) after exiting X for the kth time is the same for all n greater than a threshold
value, viz., the minimum of CRL(z)|G| and CRR(y)|G| or the minimum of CLR(y)|G|
and CLL(z)|G|, the only difference being the number of cells in the outer ring containing
the symbol c. This observation gives us the cutoff which we derive next.

Generating the Cutoff. Using the above result, we next show the existence of cutoff
c ≥ l such that for all j ≥ c, the transition graphs GX(j) is the same as GX(c). Let
(xan) be the initial tape configuration with the head at cell 0. Recall that Ga is the
subgraph of G induced by the set of all tape symbols reachable from a in G. Here we

Parameterized Model Checking of Ring-Based Message Passing Systems 337

consider only one case where Ga is a simple path with the other being handled in a
similar fashion.

Let Ga be the simple path a0 → ... → ad. In this case, we have that the head can
make at most d + 1 moves from any cell of the ring without deadlocking. Then, from
the definition of crossing numbers, it follows that CDD′(w) ≤ d + 1, for any sequence
w of tape symbols and any D, D′ ∈ {L, R}. Hence from the Ring Traversal Lemma
4.1, it follows that after the head exits X in configuration (yx′zb∗) the length of the
newly added intervals Y ′ and Z ′ containing respectively y′′ and z′′ is at most (d + 1)2.
Since the head can exit interval X at most d + 1 times (without deadlocking), at most
d + 1 external transitions can be fired in GX(n) for any n. Then, using proposition 4.1
repeatedly, we have that in all exits and re-entries of X , the total length of the newly
added intervals is at most (d + 1)3. Thus in this case, for each j ≥ c = l + (d + 1)3,
GX(j) is the same as GX(c) and so the value of the cutoff is c = l + (d + 1)3.

Multiple but Bounded Number of States. Using the fact that M is deterministic, we
can reduce the analysis of the case where b ≥ 1 changes are allowed to the control state
to the repeated application of the case with one control case. Starting from the initial
configuration (xa∗) in state q0, the first step is to decide whether a state change occurs
to the head and if, yes, then the resulting configuration c0 after the move in which the
change occurs. If a state change does occurs then we repeat the above step but starting
in c0 as the initial configuration. But this is just an instance of the original problem but
with one lesser state change allowed. Thus to study the behavior of M we need to carry
out this procedure at most b times.

Proposition 4.2 (Decidability Result). The PMCP for LTL\X properties is decidable
for bidirectional rings with a token that is allowed to change value a bounded number
of times.

4 Applications

The framework(s) presented in this paper are broad enough to model a variety of ring
based applications. Our framework can model the Leader Election Problem and Token
Ring LANs, neither of which could be handled by [11]. Examples that require bidirec-
tional rings include bidirectional variants of all applications considered in [11]. However
for lack of space, we consider only the Leader Election Problem.

Leader Election Protocols. In local area token networks, a single token circulates around
the ring giving it owner the sole right to initiate communication. If the token is lost, then
the Leader Election Problem [15], is to elect a new unique leader to act as the new owner
of the regenerated token.

The LCR Leader Election Protocol. The Le Lann, Chang and Roberts (LCR) protocol
assumes that each process Pi in a given unidirectional ring has an integer idi > 0 as
a unique identifier not necessarily in increasing or decreasing order around the ring.
The protocol works as follows: Each process Pi sends token ti with its identifier value
idi around the ring. We model this by letting Pi own ti. When a process receives a token,
it compares the value of the token to its own identifier. If the value is greater than its

338 E.A. Emerson and V. Kahlon

t = idi → skip

t = idi → skip

t > idi → skip

t = idi → skip

t > idi → skip

initial

t < idi → t := 0t < idi → t := 0

leader

Fig. 1. The LCR Protocol

identifier, it passes the token unchanged. If the value is less than its own it changes its
value to 0. If the value is equal to its own, the process declares itself leader. The transition
diagram for process Pi is shown in figure 1. Then from the discussion in section 2, it
follows that P (ti) is the first (in case there exists one) process occurring along the ring
in the clockwise direction with identifier greater than idi.

We need to verify that for any arbitrarily large ring it is never the case that two distinct
processes Pi and Pj declare themselves leaders, viz., f = EF(leaderi ∧ leaderj) is not
satisfied. Since |P (ti)|, |P (tj)| ≤ 1, R(i, j) has at most 4 processes. Then, we see using
proposition 2.1, that we can reduce the reasoning of the leader election protocols for all
rings containing processes Pi and Pj irrespective of their size to 6 canonical ring systems
each with at most 4 processes. Since i and j were arbitrarily chosen, we have that since
the LCR protocol is correct for the 6 canonical systems it is correct for any arbitrary ring.

5 Concluding Remarks

The generally undecidable PMCP has received a good deal of attention in the literature.
A number of interesting proposals have been put forth, and successfully applied to
certain examples (e.g., [1, 2, 5, 6, 14, 18]). However a lot of these methods suffer from the
following drawbacks: much human ingenuity may be required to develop, e.g., network
invariants; the method may not terminate; the complexity may be intractably high; and
the underlying abstraction may only be conservative rather than exact.

However for frameworks that handle specialized application domains decision pro-
cedures can be given that are both sound and complete, fully automatic and in some cases
efficient ([4, 7, 8, 11, 12])). In this paper, we have considered the PMCP for LTL\X prop-
erties for parameterized families of rings wherein processes communicate using message
passing via tokens. Previous work, to the best of our knowledge, has only considered
unidirectional rings with a solitary token that could not carry any values [11] and so mes-
sages could not be exchanged between processes. Such systems have limited expressive
power and cannot model, for instance, standard solutions for the leader election problem.
We have extended the known envelope of decidability of the PMCP for ring systems
to bidirectional token rings wherein the token can carry messages but only a bounded
number of value changes to the token are permitted. Our reduction technique involves
showing how to reduce reasoning about a ring with an arbitrary number of processes to
a ring with up to a cutoff number of processes. In this paper, the reduction results were
established for a bidirectional ring with a single token. A possible direction for future
research is to study bidirectional rings with multiple tokens.

Parameterized Model Checking of Ring-Based Message Passing Systems 339

We have also identified a broad unidirectional ring framework which allows multiple
tokens with each token being allowed a bounded number of value changes. For this
framework, we have shown that small cutoffs can indeed be obtained making our tech-
nique truly efficient. For bidirectional rings, our methods are exact, viz., both sound and
complete, and fully automated and for unidirectional rings provably efficient. Moreover
the use of cutoffs has the added advantage that the reduced system is a replica of the
original system but with a fewer number of processes. This is beneficial for several rea-
sons. First it gives us a clean reduction as there is no need, e.g., to construct an abstract
graph which may have a complex, non-obvious structure very different from the original
system. Secondly, it caters to automatic error trace recovery.

References

1. P. Abdulla, A. Boujjani, B. Jonsson and M. Nilsson. Handling global conditions in parame-
terized systems verification. CAV 1999.

2. P. Abdulla and B. Jonsson. On the existence of network invariants for verifying parameterized
systems. In Correct System Design - Recent Insights and Advances, 1710, LNCS, pp 180-197,
1999.

3. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 15, pages 307-309, 1986.

4. T.Arons,A. Pnueli, S. Ruah, J, Xu and L. Zuck. ParameterizedVerification withAutomatically
Computed Inductive Assertions. CAV 2001, LNCS 2102, 2001.

5. M.C. Browne, E.M. Clarke and O. Grumberg. Reasoning about Networks with Many Identical
Finite State Processes. Information and Control, 81(1), pages 13-31, April 1989.

6. E.M. Clarke, O. Grumberg and S. Jha. Verifying Parameterized Networks using Abstraction
and Regular Languages. CONCUR 95. LNCS 962, pages 395-407, Springer-Verlag, 1995.

7. E.A. Emerson and V. Kahlon. Reducing Model Checking of the Many to the Few. CADE-17.
LNCS , Springer-Verlag, 2000.

8. E.A. Emerson and V. Kahlon. Model Checking Large-Scale and Parameterized Resource
Allocation Systems. TACAS, 2002.

9. E.A. Emerson and V. Kahlon. Rapid Parameterized Model Checking of Snoopy Cache Co-
herence Protocols. TACAS, 2003.

10. E.A. Emerson and V. Kahlon. Model Checking Guarded Protocols. LICS, 2003.
11. E.A. Emerson and K.S. Namjoshi. Reasoning about Rings. POPL. pages 85-94, 1995.
12. E.A. Emerson and K.S. Namjoshi. Automatic Verification of Parameterized Synchronous

Systems. CAV. LNCS, Springer-Verlag, 1996.
13. S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes. J. ACM,39(3),

July 1992.
14. R.P. Khurshan and L. McMillan. A Structural Induction Theorem for Processes. PODC. pages

239-247, 1989.
15. N. Lynch. Distributed Algorithms, Morgan-Kaufmann, 1996.
16. C.E. Shannon, A Universal Turing Machine with Two Internal States. Automata Studies.

Princeton, NJ: Princeton University Press, pp. 157-165, 1956.
17. I. Suzuki. Proving properties of a ring of finite state systems. IPL, 28, pages 213-314,1988.
18. P. Wolper and V. Lovinfosse. Verifying Properties of Large Sets of Processes with Network

Invariants. In J. Sifakis(ed) Automatic Verification Methods for Finite State Systems, Springer-
Verlag, LNCS 407, 1989.

	Introduction
	Unidirectional Rings
	Bidirectional Rings
	Linear Tape Turing Machines
	 The PMCP for Bidirectional Rings

	Applications
	Concluding Remarks

