Low communication 2-prover zero-knowledge
proofs for NP

(Preliminary Version)

Cynthia Dwork! Uri Feige? Joe Kilian® Moni Naor! Muli Safra!

! IBM Research Division, Almaden Research Center
2 IBM Research Division, T. J. Watson Research Center
3 NEC Research

Abstract. We exhibit a two-prover perfect zero-knowledge proof sys-
tem for 3-SAT. In this protocol, the verifier asks a single message to each
prover, whose size grows logarithmically in the size of the 3-SAT formula.
Each prover’s answer consists of only a constant number of bits. The ver-
ifier will always accept correct proofs. Given an unsatisfiable formula S
the verifier will reject with probability at least £2((|S|—max-sat(S))/|S|,
where max-sat(S) denotes the maximum number of clauses of S that
may be simultaneously satisfied, and |S| denotes the total number of
clauses of S. Using a recent result by Arora et al [2], we can construct for
any language in NP a protocol with the property that any non-member
of the language be rejected with constant probability.

1 Introduction

In a multiple-prover interactive proof system, several provers, P;, P,,... try to
convince a verifier V' that a common input z belongs to a language L. The
verification proceeds in rounds; in each round, the verifier sends to each prover a
private message (query) and receives an answer. Each prover sees only the queries
addressed to it, and cannot communicate with the other provers (at least until
the end of the round). When the protocol ends, the verifier decides, based on
the input string and the messages received, whether or not to accept.

Multi-prover proof systems were introduced by Ben-Or, Goldwasser, Kilian
and Wigderson [7] in order to obtain zero knowledge proofs without relying on
complexity assumptions such as the existence of one-way functions. In this paper
we show another advantage of multi-prover proof systems by exhibiting a low
communication two-prover perfect zero-knowledge proof system for 3-SAT (and
thus for every language in NP). In contrast, no such low communication zero
knowledge protocol is possible in a single prover proof system, unless NP C
BPP.

Kilian [16] has provided additional motivation for striving for low commu-
nication in the two prover setting: he suggests enforcing the separation of the
two provers by keeping them (say the two provers are implemented on a smart

Copyright (c) 1998, Springer-Verlag

216

card) at some distance from each other. If the distance is long enough and the
communication complexity is low, then the two provers do not have enough time
to communicate during the execution of the protocol.

In the protocol we present, the verifier sends to each of the two provers a query
whose length is logarithmic in the length of the input string, and receives back
answers whose length is constant. If the input string is not in the language, then
the verifier detects cheating with some fixed probability & > 0. The protocol
is perfect zero-knowledge, i.e. there is a polynomial time machine, called the
simulator, that produces for every possible (possibly cheating) verifier the same
distribution of conversations as the verifier would have had with two “real”
provers.

To reduce the probability of error to 2-* (rather than 1 — &), the protocol
can be executed O(k) times sequentiaily. Lapidot and Shamir [18] have provided
an elegant zero-knowledge two prover protocol which is parallelizable, i.e. run-
ning copies of it in parallel decreases the probability of error exponentially in
the number of copies. However, it is not known whether this is true for general
protocols. Feige and Lovasz [13] (continuing [19]) have provided a method that
can be applied to any protocol in order to obtain a parallelizable protocol, how-
ever the method does not preserve zero-knowledge. Finding such a method that
preserves zero-knowledge is an open question.

In our protocol the two provers share a common random string of only log-
arithmic length. Thus, even if we consider the shared random string to be part
of the communication complexity of the protocol, then it is still logarithmic.
The existence of a shared random string is necessary, since we show that for low
communication zero-knowledge protocols, the only languages that do not require
the two provers to share a common random string are exactly those in BPP.

Our protocol is constructive in the sense that once two provers know a satis-

fying assignment to the formula, all they are required to do is some polynomial
time computation.

1.1 Definitions

Definition 1 We say that a language L has a two prover interactive proof sys-
tem if there exists an interactive probabilistic polynomial time machine (called
the verifier) V and two interactive machines Py, P, called Prover 1 and Prover 2
respectively, satisfying the following conditions. All three machines have a com-
mon input z which may or may not be in L. The two provers once and for all
agree on a common strategy. Moreover, prior to each execution of the protocol,
they may interact in order to share random bits, Once the protocol begins, they
are assumed to be isolated from each other. The three machines follow a pre-
scribed protocol consisting of several rounds; in each round, the verifier sends
to each prover in private a message (query) and receives an answer. When the
protocol ends, the verifier decides whether or not to accept, based on the input
string and the messages received. The protocol must satisfy

Copyright (c) 1998, Springer-Verlag

217

— Vz € L there exist machines P; and P such that V accepts with probability
1 (completeness);

— there is a fixed constant o > 0 such that Vz ¢ L and YP,, P, the probability
that V' accepts on input z is at most 1 — a.

Note that this definition is not standard in that « is not required to be say 2/3.
However, by running the protocol sequentially several times (as a function of «)
one can get arbitrary small probability of accepting erroneously. Showing that
the probability goes down when the protocols are run in parallel is a major open
problem in this area.

Part of the strategy that the two provers agree on may simply be a common
random string. This is used to obtain the zero-knowledge property defined below.

Definition 2 For a given verifier V, provers P, and P,, and input z, we define
Viewy p, p,(z) be the distribution over the interaction between verifier V and
provers Py and P,. This distribution is over V’s coin tosses and the random
choices made by P; and P,

Definition 3 A two prover interactive protocol V, Py, P, is perfect zero knowl-
edge for V if there exists a probabilistic polynomial time machine S that on
input z outputs a string whose distribution is Viewy p, p,(z). A language L is
sald to have a perfect zero-knowledge protocol if it has a two-prover interactive

proof system V|, Py, P, such that for every V' the protocol V/, Py, P, is perfect
zero-knowledge for V.

The communication complexity of a protocol is composed of three parts:

1. the total length of the queries sent by the verifiers;
2. the total length of the answers given by the provers;
3. the length of the random string shared by the two provers.

The term low communication will mean that the sum of these three compo-
nents is logarithmic in the length of the input string.

1.2 Background

Multi-prover proof systems have inspired much research in Complexity The-
ory [5, 8, 9, 10, 11, 13, 14, 19]. In particular, Babai, Fortnow and Lund have
shown that the class of languages that are recognized by multiple prover proof
system where the verifier is a polynomial time machine and the communication
is restricted to be of polynomial length is exactly NEXP-Time. This was scaled
down to the NP setting [3, 4, 12], culminating in the result of Arora, Lund, Mot-
wani, Sudan and Szegedy [2] showing a two prover proof system for NP in which
the length of the queries that the verifier sends to the provers is logarithmic in

the length of the input string, and the answers are of constant length. From this
they derive:

Copyright (c) 1998, Springer-Verlag

218

Theorem 1 [2] There is a 8 > 0 such that for any language L € NP there is
a polynomial time reduction R from L to 3-CNF formulas such that for z € L
R(z) is a satisfiable 3-CNF and for allz & L, a fraction of at most 1 — 8 of the
clauses of R(z) can be satisfied simultaneously. The proof is constructive in the
sense that given a witness for z’s membership in L, there is a polynomial time
procedure that yields a satisfying assignment to R(z).

We will apply this theorem to get our protocols. This theorem (or actually its
precursor [4]) was already used by Kilian [17] to lower the communication com-
plexity of single prover zero knowledge arguments and proof systems. However,
by a simple observation, the only languages that have a single prover proof sys-
tem with logarithmic communication are those in BPP. Thus, if we are aiming
at logarithmic communication we must have two provers.

We further observe that the two provers must share a random string in order
for a low-communication protocol to be zero-knowledge; for if not, by running the
simulator enough times we can get the response on any query to each prover,
and thus can simulate each prover on-line. If the two provers do not share a
random string, then their responses are independent polynomial time samplable
distributions and thus there is a probabilistic polynomial time machine that
can compute the probability that the verifier accepts, whence L is in BPP. We
do not know whether it is possible for the two provers to share fewer than
the logarithmically many random bits required by our protocol. However, in
Section 3 we show that £2(loglog n) random bits are essential.

2 The Interactive Proof System

We construct the interactive proof system in two steps. In the first step we use
the result of Barrington [6] to reduce checking that an assignment satisfies F' to
checking that an assignment to variables in the permutation group Sy satisfies
certain equations (over Ss). More precisely, each clause of F' gives rise to one
equation over Ss. We also provide a way for the verifier to check consistency
among distinct occurrences of each literal in F. In the second step we use the
randomizing tableaux of Kilian [15] to construct for each equation a 2-prover
interactive proof system for an assertion about a product.

The entire proof system is therefore as follows. All parties apply Barrington’s
result to obtain the set of equations over variables in Ss. The Verifier then
randomly chooses either to check consistency or to check that a randomly chosen
clause is satisfied. We now describe each of these steps and checks.

2.1 Reduction to Equations over S,

For reasons of zero-knowledge we first make F a little more “robust” by ex-
pressing each variable y, € F as the exclusive or of three new sub-variables
Ta1, Ta2, Z43. Note that information about up to three variables in the robust

formula gives no information about any variable in F'. From now on we simply
assume that F is in this robust form.

Copyright (c) 1998, Springer-Verlag

219

Following the exposition in [6], a permutation branching program of width 5
and depth d is a level graph. Each level is labeled with one of n input variables
Z1,...,&n, and contalns 5 vertices. Associated with each level £ is a pair of
permutatlons x5, 7r1 € Ss. Given a setting of the input variables, the level yields
the permutation 7r] if the variable associated with level £ has value j € {0,1} in
the assignment. On input setting x the branching program yields the product
of the permutations yielded by each of the levels. For level ¢ we let g; denote
the variable over S5 that has value either 7§ or 7 according to the value of the
(Boolean) input variable associated with level ¢.

A permutation branching program B is said to 5-cycle recognize a set A C
{0, 1}™ if there exists a five-cycle o € S5\e (called the output) such that B(x)=o0
if x € A and B(x) =eif x ¢ A, where e is the identity permutation.

Theorem 2 (Barrington [6]): Let A be recognized by a depth d fan-in 2 Boolean

circutl. Then A is five-cycle recognized by a permutation branching program of
depth 49.

We will apply Barrington’s result to a very specific type of circuit: one that
checks that the clause

(Uit D ¥i2 D ¥iys) V (a1 D Yin2 © ¥ig3) V (Wis1 D Uis2 D Yin3)

is satisfied by the input. The clause has at most 9 distinct variables.

We assume that the robust F is a conjunction of clauses of the type just
described (that is, ¥ is in a sort of robust 9- CNF), so each clause has constant
size. For each clause ¢; having variables z;, zi2, ..., zig all three parties create
a constant-depth Boolean circuit C;, which, given an assignment x; to the zyj’s,
checks that x; satisfies ¢;. Letting A; be the set of assignments to :z:,l, Tiz,...,Ti9
satisfying Cj, the parties then apply Barrington’s result to obtain a permutation
branching program B; that five-cycle recognizes A4;. Let o; € S5 be the output of
B;. Letting d be the depth of B;, the construction yields an equation g .. .gig =
o;. Here, gi; is associated with the (Boolean) variable that labels level j in B;,
taking on 7r0’J or 7r1’1 according to the value of the associated Boolean variable.
Thus, F issatisfiable if and only if (1) for all 1 < i < m, the equations ¢;1 . .. gig =
o; are satisfiable (over the #*77s), and (2) for all £,p,j,q such that the same
variable is associated with level £ of B, and level j of By, gop = 75 Lif Jiq = 7!’8"7
in this satisfying assignment to the g’s.

2.2 Checking an Equation

Consider the ith equation g;19;2...giq = 0;. Let us suppress the subscript ¢ for
ease of notation, so that we get gi1gs...94 = 0. Let h = {h;]1 < j < d,hj €
{1!"6, 77}} be an assignment to the ¢’s satlsfylng the equation. We use a sllght
modification of the randomizing tableauz of Kilian [15] to allow the Provers to
convince the verifier of the existence of h.

Let T be the following array with 3 rows and d columns. T[1,j] = h; for
all 1 < 5 < d. Note that H1<j<dT[1,j] = o. Let r11,...,71 4—1 be elements

Copyright (c) 1998, Springer-Verlag

220

of S5 chosen independently and uniformly at random. Then T(2,1] = hyry g,
T[2,d] = 7'1_,f11-1hd! and for all 1 < j < d, T[2,j] = rl"’}_lhjrl,j. Note that again
I1,<; <aT[2,j] = 0. Finally, we randomize again, choosing d -1 new random ele-
mentsry1...7r34_1 € S, and setting T'(3, 1] = T[2, ry1, T[3,d] = 7';,«11—1T[2’ d),
and for all 1 < j < 4, T[3,5] = r{,}-_lT[Q,j]rg,j. Once again HlstdT[&j] =g.
Moreover, neither the second nor the third row of T contains any information
about the assignment h.

For any i,j such that i e {1,2} and j € {1,...d}, let the i,;j rectangle
be the two entries T[, 4], Tl + 1, 7). Given the i,J rectangle and the random
elements ;4 ;_, rit1,; (if j =1 or j = d then only one of these is defined), it
is easy to check that r,-"+117j_1T[i,j]r,-+1,j = T[i + 1,4]. In addition, if T is not
a randomizing tableau for h, & then some rectangle will fail this test [15]. This
suggests the following 2-prover interactive proof system.

The Verifier interacts with each prover once. In each interaction it may make
the following requests. From Py it can request to see one of: (1) the third row
of the tableau (T[3,5],1< 5 < d); (2) the i, j rectangle, for some 1 < { < 2 and
1<j<d

From P, the Verifier can request to see one of: (1) an element from the second
and third rows of the of the tableau; (2) all the random elements ri,1<j<d;
(3) all the random elements 25,1 < J < d; (4) the assignment Xj, where z;
labels one of the levels in the branching program.

The Verifier chooses either to check that the equation is satisfied or that
the tableau is correctly constructed. To check that the equation is satisfied, the
Verifier requests the third row from Py (option (1)) and an element of the top
row from P, (option (1)). To check that the tableau is correctly constructed, the
verifier has three possible options. In all three, it requests an i, j rectangle from
P

Ifi = 1: (a) The Verifier can request the assignment to the (Boolean) variable
associated with level j. This checks consistency with P, and that the h;’s are
chosen from the right sets (the ’s). (b) The Verifier can request the randomizers
for row 2. This checks that row 2 is formed correctly from row 1. (¢) The Verifier
can request the element from 772, J]. This checks consistency with 2.

If i = 2: (a) The Verifier can request the randomizers for row 3, checking that
row 3 is formed correctly from row 2. (b) The Verifier can request an element
from the rectangle, checking consistency with P;. This completes the description
of the protocol.

Intuitively, the most information a cheating verifier can possibly obtain about
the bottom row (the assignment h) is the assignment to two of the permutations
gi- Since each of these is associated with only one variable of the robust form
of the Boolean formula F, and since the values of any two variables in the
robust form yield no information about the value of any Boolean variable in the
satisfying assignment to the original F, the procedure is truly zero-knowledge.
Finally, since the randomizing tableau is for a single clause, it is of constant

size. Thus any error in the construction of the tableau is detected with constant
probability.

Copyright (c) 1998, Springer-Verlag

221

Remark: Checking Consistency

Let z, be a variable in the robust form of F'. Clearly, z, may appear several
times, and 1t must have the same assignment each time it appears. Let z, appear
in clauses p and ¢ (p and ¢ may be equal). Then for some j, k, z, is the variable
associated with level j of B, and level k of B,. Letting 75 and x}” be the two
permutations at level j of B,, and making analogous definitions for level k of
By, the verifier must check that h,; = ™l & hg = 73* . To check this, the
Verifier asks P; for the 1, j rectangle from the tableau for By, and asks P for
the assignment x, weithout disclosing to P, the name of the clause (p or ¢) that
it is examining. This is covered by Case i = 1(a) above.

Remark: Reducing the Number of Shared Random Bits In the descrip-
tion above it was assumed that the random bits used by the provers were com-
pletely independent. However, a closer examination reveals that since the verifier
never sees more than a constant number of bits, they can be chosen to be c-wise
independent for some constant c¢. Thus, the size of the probability space that
generates them can be O(logn) bits (see e.g. [1]).

2.3 Putting it All Together

Without communicating, the Provers and Verifiers construct the robust form of
F and the 5-cycle permutation branching programs for each of the m clauses
of the robust form of F. Using their shared random bits, the Provers construct
randomizing tableaux for all clauses consistent with a fixed satisfying assignment
to the robust form of F'. The Verifier randomly chooses a clause and one of the
six legal pairs of questions described in the previous subsection, and proceeds
accordingly. Note that the Verifier must tell P; which clause it has chosen, while
it does not tell P; the chosen clause when it requests from P, the value of an
assignment.

We now sketch proofs that our proof system is complete, partially sound and
secure.,

Theorem 3 (completeness) If x, the assignment known to P, and P;, satis-
fies the robust form of F, then V will always accept.

Proof. (Sketch) By construction of the randomizing tableaux, a simple case anal-
ysis shows that any constraints that V' chooses to check will be satisfied.

Theorem 4 (soundness) There erists a constant ¢ > 0 such that V will reject
with probability at least
¢(|S| — max-sat(S))
|51 ’
where max-sat(S) denotes the mazimum number of clauses of S that may be

simultaneously satisfied, and |S| denotes the total number of clauses of S. This
theorem holds regardless of the strategies of the provers, P, and Ps.

Copyright (c) 1998, Springer-Verlag

222

Proof. (Sketch) First, by a standard lemma [7], there exist optimal deterministic
provers, P, and P,, that cause V to accept with the highest possible probability.
It suffices to show that even with these provers, V will reject sufficiently often.

162’8 responses to queries about x constitute an assignment. [ts responses
to queries about rows 2 and 3 of the tableaux define these rows, just as its

responses to queries about the randomizers define these objects as well. Let z;
be associated with some level ¢ of B,, for some clause cq.

Let ¢, be chosen at random. Then with probability at least

¢(|S| — max-sat(S))
|S] ’

¢p is not satisfied by x. It suffices to show that when this happens V' will reject

with some constant probability, regardless of what Py.does. In this case, B,(x) =
e, so either the product of the elements of the top row of the randomizing tableau
for B, equals ¢, or the tableau is badly formed. Because the tableau is of constant
size the error will be detected with constant probability.

Theorem 5 The proof system achieves perfect zero-knowledge.

Proof. (sketch) In order to prove this theorem, we construct a simulator M such
that for any satisfiable 3-SAT formula F , any verifier V will obtain the same
view by interacting with M as by interacting with P; and P;. Recall that in the
first step of the interactive proof system, before any communication begins, F
is made “robust” by replacing every variable in F with 3 new variables. Let x;
denote the provers’ assignment to z; in the original formula. Then the provers
may choose any random assignment to the sub-variables Zi1...ZT;3 so that the
exclusive-or of these is x;.

The verifier makes one of 2 kinds of querles to P, and 4 kinds of queries to
P, for a total of 8 kinds of pairs. The analysis is straightforward; we discuss only
the case in which V requests a rectangle from P; and an assignment to some z;
from P;.

Let the (possibly faulty) Verifier request rectangle 4,j in the randomizing
tableau for B, from P;. If i = 2 then the rectangle contains two independent
randomly chosen elements of Ss, so simulating P;’s response is trivial. If { = 1
then since the variable associated with level J of B, is from the robust form
of F, both possible assignments to this variable are equally likely. Thus, either
element of {7f7, 70/} is equally likely, so the simulator can choose T7z, j] from

this set, and T[i + 1, j] from Ss. Finally, the response from P, needs only to be
consistent with the response from P.

In the final version of the paper we will show how the number of bits that the
provers send can be reduced to three - two by one prover and a single bit by the
other. Note that this is the best possible, unless P = N P, since the existence of
a two bit proof system can be translated to a 2-SAT problem.

Copyright (c) 1998, Springer-Verlag

223

3 Lower Bound on the Number of Shared Random Bits

In this section we show that the two provers must share f2(loglogn) random
bits.

Let r be the number of shared random bits. We make several simplifying
assumptions: let the total number of possible queries to each prover be polyno-
mial in n; let the protocol be one round, i.e. the verifier sends the queries to the
provers and they respond; let the provers responses be limited to ¢ < 2" possi-
bilities (in this section we do not require ¢ to be constant); let the two provers
have no random bits other than the r shared random bits. Some of the above
assumptions can be relaxed (see remarks at the end of this section).

We will show that if 3-SAT is recognized by a 2-prover zero-knowledge inter-
active proof system obeying these constraints and r € o(loglogn), then 3-SAT
€ BPP. The main idea is to first show that a small number of random bits
impiies that the two provers have only a small number of different strategies for
answering the queries. We then show that this implies that on inputs of 3-SAT
of any length n, in polynomial time it is possible, using the simulator whose exis-
tence is guaranteed by the zero-knowledge property, to reduce the problem to an
instance of 3-SAT of size strictly less than n. By repeating this at most n times
(a more careful analysis shows that loglogn times suffice), we can therefore, in
polynomial time, reduce the problem to one that can be efficiently solved by
brute force.

Fix a satisfiable input formula F of n variables for the remainder of the
discussion.

Let uy,..., um (v1,...,vn) be all the possible queries, over all random choices
of the verifier, that the verifier could send to P, (P2). The first step in the
reduction is to split the u’s (v’s) into a (relatively) small number of equivalence
classes. We describe the procedure for splitting the u’s. The v’s are handled
similarly.

Intuitively, u; and 4y will be in the same class if P, does not distinguish
between them. However, for any random string s shared by the two provers, even
using the simulator, there is no way to compare the behavior of Py on query u;
with its behavior on query us, since each invocation of the simulator queries Py
exactly once and on different invocations of the simulator the simulated P, may
have different random strings. We must therefore define the equivalence classes
in a slightly more roundabout fashion, so that we can compute them using the
simulator.

Let (u,v) be an arbitrary pair of queries to P, and P5, respectively. Let
Answers((u, v), s) denote the pair of responses on this pair of queries when the
provers share s. Let Pairs(u,v) = {Answers((u,v), s)|s € {0,1}"}. Then

uy ~ uz & Yu(Pairs(uy, v) = Pairs(uz, v)).

Intuitively, although the verifier might distinguish between similar queries, P;
does not.

At a high level, we will proceed as follows. To reduce the size of the problem
we use the simulator to compute the equivalence classes, arguing that there

Copyright (c) 1998, Springer-Verlag

224

are not too many of them. The entire strategy of the two provers can then be
described by the number of pairs of classes times the number of pairs of responses
(¢?, assuming each prover sends one of only ¢ possible answers on each query).
But the description of the strategy is just a string, so we have reduced the
problem to one of finding a string of at most this length that causes the verifier
to accept. We now give more details.

By assumption, the number of u’s is at most polynomial in n. We now show
that, using the simulator, we can compute Pairs(u,v) for all pairs of queries
u,v, In BPP. For each u we proceed as follows. For each v; run the simulator
many times with a verifier that asks the pair of queries (u, v;), to obtain the set
Pairs(u, v;). (It may be that the honest verifier never asks this particular pair
of queries. However, some cheating verifier must do so.) Note that as long as
the number of shared random bits s at most O(logn) every element of this set
will be discovered with arbitrarily high probability in polynomial time. The sets
Pairs(u, v) are then used to determine the equivalence classes.

Note that for every query u there is a vector of possible replies, each an
element in {1, ..., ¢}, and indexed by the shared random string s. Let this vector
of reply be the color of the query. There are only ¢? possible colors. Moreover,
if two queries have the same color then they are in the same equivalence class
(an equivalence class may include queries of different colors). Thus, the number
of equivalence classes is at most ¢2" If r is sufficiently small, then we can obtain
a representative from each equivalence class on the u’s and on the v’s. Using the
simulator with the real verifier we can obtain, with arbitrarily high probability,
for all pairs of representatives (u,v) such that on some execution the verifier
actually asks this pair of querles, the set Pairs(u, v). Call this set a constraint.
Note that |Pairs(u, v)| < ¢2,

To reduce the size of the problem, we make the following definitions. Let
U1, ..., us be representatives of the classes of queries to Py, and let vy,..., v be
representatives of the classes of queries to Ps; note that £, k <c¢?.Let S; be a
function from the representatives ui to {1,...,c}, and let S, be a function from
the representatives v; to {1,...,¢}. The problem now reduces to finding S; and
Sz satisfying the following condition. For all pairs of representatives u;, v; such
that in some execution of the interactive proof system, V' sends a member of the
class represented by u; to P1 and a member of the class represented by v; to Py,

(S1(wi), Sa(v;)) € Pairs(u,, v;).

Thus, the problem of proving that F € 3 — SAT can be reduced to the
problem of finding a strategy for the provers that satisfies these constraints.
It follows that the question of whether a strategy exists can be defined by a
string that is at most the square of the number of classes times the square of
the number of possible responses. That is, the length of the description of the
constraints that the strategy must satisfy is at most (¢2)2 . ¢2 = 227*°% Gince
this question is clearly in NP, it follows from the Cook-Levin Theorem that
there exists a polynomial p such that a string « is such a strategy if and only
if some (effectively computable) formula F, of length p(|z|) is satisfiable. Thus,

Copyright (c) 1998, Springer-Verlag

225

if p(22r+o(1)) < n then the original problem of size n can be reduced, in BPP,
to a problem of strictly smaller size. This happens when r = o(loglogn). We
therefore have the following theorem.

- Theorem 6 Let L be an N P-complete language recognizable by a perfectly com-

plete perfect zero-knowledge two prover interactive proof system in which the ver-
ifier poses a single query to each prover, the reply from each prover is restricted
to a single element from a set of size ¢ < 27, and the provers have no random
bits other than the shared random bits. Then if the number of shared random bits
is o(loglogn) then L € BPP.

Note that we have not used the fact that the probability of acceptance in
case the formula is not satisfiable is less than & < 1 and that the provers are
polynomial time machines (with access to a satisfying assignment).

Remarks:

(1) Virtually the same proof shows that the provers must share §2(loglogn)
random bits also in statistical zero knowledge proofs for NP.

(2) If the provers do not use private random bits, we can assume that the range
of possibilities of the provers’ replies (denoted by c) is at most of size 27. Given
that there are only r shared random bits and no private random bits, then on
every possible query there are at most 2" answers that the prover may give.
Using the simulator these answers can be enumerated. The protocol can then
be changed with the prover giving a pointer of r bits into this list, instead of
sending the full answer. The resulting protocol would be only statistical zero
knowledge, and would not have perfect completeness. Nevertheless, the proof of
the lower bound would still hold with minor modifications.

(3) If the number of possible queries is not polynomial in n then it is still possible,
in polynomial time, to find all the equivalence classes that are “likely” to be asked
and all the constraints that are likely to influence. The construction proceeds
the same way, only we simply ignore “unlikely” queries.

(4) The protocol may contain several rounds instead of one round. The concate-
nation of a prover’s answers plays the role of the prover’s answer in the single
round case. The only difficulty is in implementing remark 2. However this can
be solved by making ¢ no larger than 22", which does not affect the lower bound.
(5) We can allow the provers to have an arbitrary number r of private random
bits, provided logc + r € o(loglogn). The main difference is in the definition of
the color of a query. In the new definition, each entry in the vector is replaced
by a list of possible responses, which vary according to the private random bits
of the prover.

(6) Under most assumptions, the lower bound on the number of random bits
shared by the provers can be pushed up to loglogn — 3.

(7) While the lower bound shows that £2(loglog n) shared random bits are nec-
essary, the proof relies on the fact that the protocol must be zero-knowledge for
all verifiers. Indeed, our protocol can be easily modified to use only O(1) shared
random bits if zero-knowledge is only required against the honest Verifier.

Copyright (c) 1998, Springer-Verlag

226

References

10.

11.

12.

13.

14.

15.

16.

17.

. N. Alon, J. H. Spencer, The Probabilistic Method, John Wiley & Sons, New-
York, 1992.

. S. Arora, C. Lund, R. Motwani, M. Szegedy and M. Sudan, Proof Verification

and the Hardness of Approzimations, Proc. 33" IEEE Symp. on Foundation of

Computer Science, 1992, to appear.

S. Arora and M. Safra Probabilistic Checking of Proofs Proc. 33"¢ IEEE Symp. on

Foundation of Computer Science, 1992, to appear.

. L. Babai, L. Fortnow, L. Levin and M. Szegedy Checking Computations in Poly-

logarithmic Time Proc. 237 ACM Symposium on Theory of Computing, 1991, pp.

21-31.

L. Babai, L. Fortnow, C. Lund, Non-Deterministic, Ezponential Time has Two-

Prover Interactive Protocols, Proc. 31°t IEEE Symp. on Foundation of Computer

Science, 1990, pp. 16-25.

D. A. Barrington, Bounded- Width Polynomial-Size Branching Programs Recognize

Ezactly Those Languages in NC*', ICSS (38), 1989, pp. 150-164.

M. Ben-or, S. Goldwasser, J. Kilian, A. Wigderson, Multi Prover Interactive Proofs:

How to Remove Intractability, Proc. 20t" ACM Symposium on Theory of Comput-

ing, 1988, pp. 113-131.

J. Cai, A. Condon, R. Lipton, On Bounded Round Multi- Prover Interactive Proof

Systems, Proc. of Structure in Complexity, 1990, pp. 45-54.

J. Cai, A. Condon, R. Lipton, Playing Games of Incomplete Information, STACS

1990.

J. Cai, A. Condon, R. Lipton, PSPACE is Provable by Two Provers in One Round,

Proc. Structure in Complexity, 1991, pp. 110-115.

U. Feige, On the Success Probability of the Two Provers in One Round Proof Sys-

tems, Proc. Structure in Complexity, 1991, pp. 116-123.

U. Feige, S. Goldwasser, L. Lovasz, M. Safra, M. Szegedy, ” Approximating Clique

is Almost NP-Complete”, Proc. 327¢ IEEE Symp. on Foundation of Computer

Science, 1991, pp. 2-12.

U. Feige and L. Lovasz, Two-Provers One Round Proof Systems: Their Power and

Their Problems, Proc. 24" ACM Symposium on Theory of Computing, 1992,

L. Fortnow, J. Rompel, M.Sipser, On the Power of Multi- Prover Interactive Proto-

cols, Proc. of Structure in Complexity 1988, pp. 156-161. Erratum in Proc. Struc-

ture in Complexity, 1990, pp. 318-319.

J. Kilian, Use of Randomness in Algorithms and Protocols, MIT Press,

1990.

J. Kilian, Strong Separation Models of Multi Prover Interactive Proofs, DIMACS

Workshop on Cryptography, October 1990.

J. Kilian, A Note on Efficient Zero-Knowledge Proofs and Arguments, Proc. 24'h

ACM Symposium on Theory of Computing, 1992,

Copyright (c) 1998, Springer-Verlag

227

18. D. Lapidot, A. Shamir, A One-Round, Two-Prover, Zero-Knowledge Protocol for
NP, Crypto’91 abstracts.

19. D. Lapidot, A. Shamir, Fully Parallelized Multi Prover Protocols for NEXP-time
Proc. 32" IEEE Symp. on Foundation of Computer Science, 1991, pp. 13-18.

Copyright (c) 1998, Springer-Verlag

