
Model-Based Reinforcement Learning
for Alternating Markov Games

Drew Mellor

School of Electrical Engineering and Computer Science
The University of Newcastle
Callaghan, 2308, Australia

Telephone: (+612) 4921 6034

Facsimile: (+612) 4921 6929

dmellor@cs.newcastle.edu.au

Abstract. Online training is a promising technique for training rein-
forcement learning agents to play strategy board games over the internet
against human opponents. But the limited training experience that can
be generated by playing against real humans online means that learning
must be data-efficient. Data-efficiency has been achieved in other do-
mains by augmenting reinforcement learning with a model: model-based
reinforcement learning. In this paper the Minimax-MBTD algorithm is
presented, which extends model-based reinforcement learning to deter-
ministic alternating Markov games, a generalisation of two-player zero-
sum strategy board games like chess and Go. By using a minimax mea-
sure of optimality the strategy learnt generalises to arbitrary opponents,
unlike approaches that explicitly model specific opponents. Minimax-
MBTD is applied to Tic-Tac-Toe and found to converge faster than di-
rect reinforcement learning, but focussing planning on successors to the
current state resulted in slower convergence than unfocussed random
planning.

Keywords: Game playing, machine learning, planning, reinforcement
learning, search.

1 Introduction

The field of reinforcement learning contains a broad group of methods for find-
ing an optimal policy based on trial-and-error interaction with the problem
domain [21]. Two classes of methods are the direct (model-free) and indirect
(model-based) methods. Model-free reinforcement learning samples the prob-
lem domain directly but does not attempt to store the experience in a model.
Model-based reinforcement learning, introduced by Sutton with the Dyna frame-
work [17, 19, 20], saves the experience in a model, which it uses as another source
of input into the underlying learning mechanism. The extra processing of mod-
elled state transitions - called planning - accelerates convergence per interaction
with the problem domain, and is particularly beneficial for systems where the
cost of interacting with the environment is high relative to the computational

T.D. Gedeon and L.C.C. Fung (Eds.): AI 2003, LNAI 2903, pp. 520–531, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Model-Based Reinforcement Learning for Alternating Markov Games 521

expense. In this paper, model-based reinforcement learning is extended to de-
terministic alternating Markov games, a generalisation of two-player zero-sum
strategy board games like chess and Go.

Efficiency in reinforcement learning can be measured by the number of ob-
servations made from the environment (data-efficiency), or by the number of
applications of the learning rule (computational-efficiency). In direct reinforce-
ment learning, these measures reflect each other, but for model-based approaches
they can be very different. In systems that can be modelled well, data-efficiency
can be high as the number of observations required by the system is small. The
computational efficiency though, will be equivalent to that of a direct reinforce-
ment learning approach, since the computational requirements of the problem
have not decreased - in fact model-based systems may apply the learning rule
less optimally than direct approaches and can be less computationally efficient.

Strategy board games are a prime candidate for model-based methods be-
cause a model does not have to be learnt - the state transitions can be inferred
from the game rules, and opponent’s moves can selected by application of the
minimax heuristic. Previously, data-efficiency has not been an issue when learn-
ing strategy board games, as the typical training method, self-play, generates
training examples very cheaply. Self-play is an attractive method of training since
it requires almost no domain specific knowledge, and because it has achieved
spectacular success in the domain of backgammon [22, 4]. However, further re-
search has shown that the nature of backgammon itself facilitates the use of
self-play [14], and that the method performs poorly for deterministic games like
chess [2].

A promising alternative to self-play, is to register the program on an Internet
game server and train against real humans. This online training method has
produced a strong chess player, KnightCap [2], (and also solves the problem of
domain knowledge representation - by embodiment in human form). Interest-
ingly, incremental training was achieved naturally, since as the program’s rating
improved it attracted higher caliber opponents.

Training against real opponents is more costly than training against simu-
lated opponents however, and data-efficiency is a necessity. Whereas the back-
gammon programs could afford to learn from hundreds of thousands of train-
ing matches, and sometimes even millions, KnightCap had to make equivalent
progress over only a few hundred matches. KnightCap was able to reduce con-
vergence time by employing a knowledge intensive approach, particularly by
initialising it’s linear evaluation function approximator with good weight values.
Finding a set of good initial weights is less likely to be the case for non-linear ap-
proximators, such as multi-layer perceptrons. Model-based techniques are a more
general way of achieving data-efficiency.

The remainder of this paper is organised as follows. Section 2 reviews model-
free methods for learning strategy board games, and ends with comments about
their suitability as methods for doing planning backups in model-based ap-
proaches. Section 3 discusses some issues that arise when extending model-
based methods to strategy board games, and presents a new algorithm Minimax-

522 Drew Mellor

MBTD. Section 4 describes some experiments where Minimax-MBTD was ap-
plied to Tic-Tac-Toe. The paper ends with some conclusions and ideas for further
research.

2 Model-Free Reinforcement Learning
for Strategy Board Games

The planning component of model-based reinforcement learning selects target
states from the model, which are then backed up. A backup is an application of
the underlying learning rule to a target state. Model-free methods are, in a sense,
the trivial case for model-based methods when the number of planning backups
is zero. This section presents two model-free algorithms that have been used
to learn strategy board games, then discusses their suitability as methods for
doing planning backups in model-based approaches. The first, TD(0), is based
on the framework of Markov decision processes and has become very popular.
The second and lesser known, Minimax-TD, is grounded in the framework of
alternating Markov games.

Markov Decision Processes: A Markov Decision Process (MDP) [7] consists
of a decision making agent operating within an environment. More precisely, it
is a finite discrete set of states, S, and controls, A, a state transition function, P ,
and a reward function, R. At time t, the agent finds itself in state st ∈ S, it
chooses control at ∈ A and moves to state st+1 with probability Pat

stst+1
, and is

given some “reward” Rat
stst+1

. It is the agent’s task to maximise the amount of
reward it receives, that is, to find an optimal policy mapping states to controls
that maximises the expected sum of discounted reward, E(

∑∞
t=0 γtRat

stst+1
). The

discount factor, γ ∈ [0, 1), ensures that the sum is bounded and also makes the
agent prefer to be rewarded sooner rather than later.

The optimal value function, V ∗, gives the total expected discounted reward
for each state when following the optimal policy. It satisfies the following Bellman
equation

V ∗(s) = max
a

∑
s′
Pa

s,s′ [Ra
s,s′ + γV ∗(s′)] (1)

which expresses a recursive relation between the optimal value of a state and
it’s successors. Once V ∗ is known, the optimal policy is found by choosing the
control, a, that satisfies (1) given the state, s.

Temporal Difference Learning: A widely used algorithm for finding the
optimal value function is TD(0), the method of temporal differences [18]. The
agent maintains a table, V̂ , that stores an estimate of V ∗, the optimal value
function. It samples the state space according to the estimate of the optimal
policy derived from V̂ , and at each time step, t, the algorithm shifts the estimate
of the value function for the current state, V̂ (st), to be more consistent with the

Model-Based Reinforcement Learning for Alternating Markov Games 523

sum of the immediate reward, rt, and the discounted estimate of the value of
the next state, V̂ (st+1), as expressed in the following temporal difference rule

V̂ (st)← V̂ (st) + α(rt + γV̂ (st+1)− V̂ (st)) (2)

where α ∈ [0, 1] is a learning rate. It can be shown that the TD(0) algorithm
converges to an optimal policy given that all states are visited infinitely often [18].
In order to ensure that all states are adequately explored, at every time step
a control is chosen uniformly at random with some small probability, ε, the
exploration threshold.

The method can be applied to sequential games by treating the opponent
as part of the environment, or more precisely, as part of the state transition
function P . For each training match played, the sequence of positions for the
learning player is observed, s1, s2, . . . , sN , where si is the position of the game
immediately after the learning agent has made their ith move, and N is the total
number moves that they played during the match. Starting with s1, the temporal
difference rule (2) is applied to each state in turn, with the exception of sN , when
V̂ (st+1) is replaced with zero. The reward function is usually determined by the
win-loss relation, for example, the following reward function is commonly used
for many games

rt =




1 st wins
−1 st looses

0 otherwise.

For some games, such as those that involve capturing territory, like Go and
Othello, a more expressive reward can be given at the conclusion of the match
based on the size of the territory captured or the piece difference between the
players.

Alternating Markov Games: The domain of alternating Markov games [10],
sometimes called sequential games, generalises MDPs to capture the essence of
strategy board games like chess, Go and backgammon.

The domain has a discrete, finite set of states, S, and two opponents, agent 1
and agent 2, which in each turn of the game alternately choose controls from
their respective control sets, A1,A2. The sequence of events in one complete
turn is shown by . . . s u∈A1→ x

v∈A2→ s′. . . , a portion of a trajectory through
a hypothetical match. For any turn, the probability that it ends in state s′ given
the initial state s, and the control choices u and v, is Pu,v

s,s′ =
∑

x Pu
s,xPv

x,s′

where Pu
s,x and Pv

x,s′ are the transitional probabilities for the state transitions
occurring during the turn. Let the corresponding reward for each turn be Ru,v

s,s′ ,
which one agent attempts to maximise and the other agent attempts to minimise,
resulting in diametrically opposed goals for the two agents.

Like Markov Decision Processes, the agent’s aim is maximise (minimise) the
expected sum of discounted reward, E(

∑∞
t=0 γtRut,vt

stst+1
). But this time there is

a complication, since the accrued reward depends not only on the agent’s choice
of controls, but the opponent’s strategy too. Which opponent strategy should be

524 Drew Mellor

used to determine the accumulated reward? Typically, the resolution is to use
the opponent that makes the agent’s policy look the worst. This choice leads
to a conservative measure of optimality, where strategies that consistently draw
are preferred to strategies that give big wins but give big losses too. Using this
“minimax” definition of optimality, the Bellman equation for alternating Markov
games is given by

V ∗(s) = max
u

min
v

∑
s′
Pu,v

s,s′ [Ru,v
s,s′ + γV ∗(s′)]

assuming agent 1 is the maximiser (if agent 1 is the minimiser then negate the
reward function R). For deterministic games there is only one successor for every
state, so (3) can be simplified by removing the summation, as follows

V ∗(s) = max
u

min
v

[Ru,v
s,s′ + γV ∗(s′)]. (3)

A review of solution methods for alternating Markov games can be found
in [10, 3].

Minimax Temporal Difference Learning: I now present Minimax-TD, an
algorithm for solving deterministic alternating Markov games. Like the TD(0)
algorithm, the agent maintains a table, V̂ , that stores an estimate of the optimal
value function, and is used to generate it’s policy. For simplicity, in this work the
policy will be generated by greedily selecting the successor position with the best
estimated value1, but there is nothing to prevent the use of game searches over
V̂ . The value function estimate is improved over a series of training matches as
follows. Let st be the board position directly after the agent has made their tth
move. At each turn in the game, t, the agent applies the consistency relation (3)
to V̂ (st), using the following backup rule

V̂ (st)← V̂ (st) + α(rt + γ max
u

min
v

V̂ (T (st, u, v))− V̂ (st)), (4)

where T (s, u, v) is the transition function that gives the position succeeding s
when the opponent selects control v then the agent chooses control u, with the
proviso that u can be a null move if the opponent’s move v has ended the
match. The assumption that the game is deterministic is required to ensure
that T returns a unique move. Minimax-TD has been applied to Othello [23],
and generalised for Markov Games with simultaneous turns [9, 6].

Comparison of TD(0) and Minimax-TD: This section presented two
model-free algorithms that have been used to learn strategy board games. The
first, TD(0), forms strategies that are predictive and exploit weaknesses in the
opponent’s play, but the flip side is that they are biased by the training partner
and may not generalise well to arbitrary opponents.
1 Technically, I use ε-greedy policies, which ensure that positions estimated to be
sub-optimal, perhaps incorrectly, are also occasionally visited.

Model-Based Reinforcement Learning for Alternating Markov Games 525

The second, Minimax-TD, is based on a formalisation of strategy board
games called alternating Markov games. It uses a minimax measure of opti-
mality, resulting in conservative strategies that assume the opponent will make
optimal moves irrespective of their actual behaviour. It’s advantage is that it
plays well against arbitrary opponents, therefore this rule will be used for the
planning backups of Minimax-MBTD.

3 Model-Based Reinforcement Learning
for Strategy Board Games

To extend model-based reinforcement learning to strategy board games, some
further issues must be considered. Model-based reinforcement learning relies on
a model of the environment to predict the state transitions. In strategy board
games, the state transitions depend on the behaviour of the opponent as well as
the rules of the game. The game rules are completely known to the agent, but
the behaviour of the opponent usually isn’t. So the first issue is: how should the
opponent to be modelled?

The planning component of model-based methods involves a selection pro-
cess, which chooses target states to be backed up. Careful choice of target states
can increase computational efficiency. The second issue is: which game positions
should be selected as backup targets?

The remainder of this section examines these two issues, and proposes an-
swers that will form the basis for a new algorithm Minimax-MBTD.

Modelling the Opponent: An opponent model can be acquired by model-
learning, that is, by observing the frequency of the opponent’s moves for each
state. For example, given a set of board positions, the opponent’s decision in each
position, and a feature decomposition of the game, a set of constraints can be
constructed over the co-efficient vector for the features, which can be solved using
linear programming techniques [5]. We do not pursue this approach because it
“overfits” to the training opponent - when playing against new opponent, the
model has to be re-learnt.

A more general approach would be to model the opponent as an optimal
player. Since the optimal strategy is not known it must be estimated, for exam-
ple by using the minimax heuristic [16]. If our evaluation function reflects the
true game theoretic values, then the heuristic actually gives opponent’s optimal
response. Of course, at the beginning of training, the evaluation function estimate
will be far from reflecting the true game theoretic values, leading to suboptimal
predictions for the opponent’s moves. As training continues and the evaluation
function improves, the predictions should improve. The current research focuses
on this approach.

Focussing Planning Backups: The simplest way to select target states for the
planning component would be to choose them at random. The Dyna framework

526 Drew Mellor

is an example of this approach [17, 19, 20]. Unsurprisingly, random selection does
not make best use of the model, and better performance has been reported for
methods that employ more focussed approaches to selection, such as prioritized
sweeping [11], Queue-Dyna [13] and trajectory sampling [8].

The trajectory sampling method looks forward along the trajectory given by
the current estimate of the optimal policy, and selects the next k successor states.
These successor states then form the target states for planning, and are backed up
in reverse order, i.e. furthest away first. The heuristic behind this approach is that
attention is focused on states that are likely to be encountered in the near future.
The current research generalises the trajectory sampling method by focusing on
all the k successor states, covering future possibilities more broadly. This way
of selecting target states for the planning backups is inspired by suggestions in
Sutton and Barto’s book ([21], see Section 9.7).

The Minimax-MBTD Algorithm: I now give the Minimax-MBTD algo-
rithm (see Figure 1). For each position encountered during training, the algo-
rithm generates the tree of k successors to use as targets for planning (not
counting transpositions and the opponent’s positions), then backs them up us-
ing Minimax-TD. Within a layer, sibling successors are ordered by their evalu-
ation function estimate so that positions with higher estimated importance are
selected before positions with a lower estimate (see Figure 2). The order of back-
ups is from the leaves towards the root, which propagates the leaf values towards
the root. Note that when k = 0 the algorithm reduces to a model-free version of
the algorithm, which is Minimax-TD.

– Let s1, s2, . . . , sN be the N positions occurring during the match after each of
the agent’s moves. For t = 1, 2, . . . , N let rt be the reward corresponding to
position st.

– Let H(st) be the game tree rooted at st after all transpositions are removed,
and siblings are ordered s.t. if x and y are siblings and they are positions after
the agent has moved and V̂ (x) > V̂ (y), then x is to the left of y; else if x and y
are siblings and they positions after the opponent has moved and V̂ (x) < V̂ (y),
then x is to the left of y.

– Let sl
t be the lth node in H(st), where nodes are numbered in the same order

as visited by a breath-first search, the opponent’s positions are not counted,
and s0

t = st.
– For t = 1 to N do

Generate H(st) to depth(s
k
t)

For l = k downto 0 do

V̂ (sl
t)← V̂ (sl

t) + α(rt + γmaxuminv V̂ (T (sl
t, u, v))− V̂ (sl

t))

Fig. 1. The Minimax-MBTD algorithm

Model-Based Reinforcement Learning for Alternating Markov Games 527

73 −2 1 6 5 −6 1 8 5 −7 9 −5 4 −3 −1 −4 3 −8 −9 7 520

6 2 3 1 34

1 4 4

Fig. 2. A partial game tree generated by Minimax-MBTD when k = 5. The
target positions for planning are shown as filled black circles and the backups
are indicated by dashed arrows. The values next to the nodes are returned by
the value function estimate, that is, they have not been propagated up the tree
from the leaves like a minimax search would do

4 Experiments

In this section I apply Minimax-MBTD to Tic-Tac-Toe, also called noughts and
crosses. The aim is firstly to see if the model-based approach will converge faster
than direct reinforcement learning in a strategy board game domain, and sec-
ondly to see if there is an advantage to focussing the planning steps on successors
to the current state. In all experiments, the learning rate, α, was set at 0.2 and
annealed during training; the discount factor, γ, was set at 1 (no discounting);
the exploration threshold, ε, was set at 5%; and the table entries were initialised
to random values drawn uniformly from the interval [0.1,-0.1].

Generalisation techniques (such as neural networks) were not used because
Minimax-TD is an off-policy rule. On-policy rules sample the problem domain
according to the current estimation policy, whereas off-policy rules sample using
a different distribution. TD(0) is an on-policy rule, and is frequently combined
with neural networks when learning board games, but off-policy rules are not
guaranteed to converge when used with function approximation [15], in fact
simple problems exist for which they never converge [1]. Tic-Tac-Toe has 6045
unique legal positions which is easily small enough to store in memory, and to
explore without using a generalisation method, so using tables avoided compli-
cations arising from the combined use of function approximation and off-policy
backups.

Training and Evaluation: Training was by self-play, with the two opponents
alternating as the first player every match. Every 1,000 matches a set of 100
evaluation matches were played against two fixed strategy challengers, during
which learning was switched off, and no exploratory moves were made. After

528 Drew Mellor

each evaluation set is played, a match equity score is computed as follows

equity(ei) =
wins(p, ei)− wins(c, ei)

total(ei)

where ei is the ith evaluation set, total(ei) is the total number of games played
during ei - always 100 in the current experiments, wins(x, ei) is the number of
wins counted during ei for player x ∈ {p, c}, and p and c are the learning player
and the challenger respectively.

Challengers: The first challenger is a semi-random player, who firstly tries to
complete a winning line, then secondly to block the opponent from winning on
the next turn; or if neither of these options are possible, it chooses a move from
all legal candidates uniformly at random. The semi-random challenger will cover
the state space broadly due to the randomness in its decision making.

The other challenger is an heuristic player, who selects from all the im-
mediate legal candidate moves, that which maximises the following max-lines
heuristic [12]. All of the eight groupings of three cells lying in a straight line are
examined, and the number of friendly singlets, Sf , and doublets, Df ; and enemy
singlets, Se, and doublets, De, are counted. A singlet contains one marker only,
a doublet contains two by the same player only. In addition, if a Tic-Tac-Toe is
found a flag is set. An evaluation for the board position, s, is computed as

V (s) =




1 Tic-Tac-Toe made
−1 De > 0

2Df +Sf−Se

6 otherwise

If more than one move has the greatest evaluation, then one of those moves is
made at random. The heuristic challenger plays a strong game, although it can
be beaten as the second player by constructing a fork.

Results: The first experiment compares the model-based approach (k > 0) with
the model-free (k = 0). The results of the experiment are shown in Figure 3.
Against both challengers all model-based approaches converge by about 5,000
training matches, whereas for the model-free case it is closer to 10,000 matches.
Interestingly, better strategies were also found as the number of planning steps
increases.

To test whether focused backups are better than unfocused, the previous
experiment was repeated, only this time the target positions for the planning
steps were selected uniformly at random from all legal positions. The results are
shown in Figure 4. In all cases convergence occurs by 1000 training matches,
much faster than the focused case. In addition, the strategies learnt are also
more optimal than those found using focussed planning.

The strong performance of the unfocussed approach is due to the size of
the problem domain relative to number of planning backups. The state space
of Tic-Tac-Toe is smaller than the total number of planning backups, therefore

Model-Based Reinforcement Learning for Alternating Markov Games 529

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Thousands of Matches

E
qu

ity
Semi−random Challenger

k=0
k=10
k=25
k=50

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Thousands of Matches

E
qu

ity

Heuristic challenger

k=0
k=10
k=25
k=50

Fig. 3. Learning curves for model-based Minimax-MBTD (k > 0) versus model-
free Minimax-TD (k = 0). Each curve is the average of 100 training episodes

a random distribution of states will cover it more completely than the distribu-
tion focused on successors to the current state. However, focussed approaches
are likely to scale better, because the state space cannot be covered completely
for larger games, and a heuristic is needed to restrict attention to the more
“interesting” states.

5 Conclusions

This paper outlines a way of extending model-based reinforcement learning to
strategy board games, and presents Minimax-MBTD, an algorithm based on
these ideas. A key finding is that it converges faster than direct methods per
observation, which is consistent with other studies of model-based methods.
More interestingly, as the number of planning steps increased, the final strategy
improved too. Unfocussed backups were found to perform better than focused,
nevertheless focussed approaches may scale better to larger games.

Future work could concentrate on scaling up to larger games. The compar-
atively small state space of Tic-Tac-Toe meant that the entire value function
could be stored in a lookup table, however, most games have too many states for
a table based approach to work. The issue is deeper than the limit that physical
memory places on the size of the evaluation function; more importantly, it is the
need to recognise when new situations resemble previously encountered ones,
so that best use can be made of limited training experience. Therefore, when
scaling up to games with larger state spaces it is typical to use a generalisation
technique, such as a neural network.

Minimax-TD is off-policy and therefore could be susceptible to the divergence
frequently observed for the combination of off-policy methods and function ap-
proximation [1]. An intuitive explanation for the divergence is that approximator
error is compounded by the min and max operators of Minimax-TD (or just max

530 Drew Mellor

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Thousands of Matches

E
qu

ity

Semi−random Challenger

k=0
k=10
k=25
k=50

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Thousands of Matches
E

qu
ity

Heuristic challenger

k=0
k=10
k=25
k=50

Fig. 4. Learning curves when the k target positions for planning are selected
at random. Each curve is the average of 100 training episodes

in the case of Q-Learning), propagated back to the approximator in the training
signal, where it causes further approximation error, and so on, ultimately leading
to divergence. More optimistically, Minimax-TD has been combined with non-
linear gradient descent RBF networks to train an Othello playing program [23],
though my preliminary efforts at combining Minimax-TD with backpropagation
MLP networks for Tic-Tac-Toe have been discouraging.

References

[1] Leemon C. Baird. Residual algorithms: Reinforcement learning with function
approximation. In Proceedings of the 12th International Conference on Machine
Learning, pages 30–37. Morgan Kaufmann, 1995. 527, 529

[2] Jonathan Baxter, Andrew Tridgell, and Lex Weaver. TDLeaf(λ): Combining tem-
poral difference learning with game-tree search. Australian Journal of Intelligent
Information Processing Systems ISSN 1321-2133, 5(1):39–43, 1998. 521

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Sci-
entific, 1996. 524

[4] Justin A. Boyan. Modular neural networks for learning context-dependent game
strategies. Master’s thesis, University of Cambridge, 1992. 521

[5] David Carmel and Shaul Markovitch. Model-based learning of interaction strate-
gies in multiagent systems. Journal of Experimental and Theoretical Artificial
Intelligence, 10(3):309–332, 1998. 525

[6] Fredrik A. Dahl and Ole Martin Halck. Minimax TD-learning with neural nets in a
markov game. In Ramon López de Mántaras and Enric Plaza, editors, Proceedings
of the 11th European Conference on Machine Learning, pages 117–128. Springer-
Verlag, 2000. 524

[7] Ronald A. Howard. Dynamic Programming and Markov Processes. The MIT
Press, Cambridge, MA, 1960. 522

[8] L. Kuvayev and R. Sutton. Model-based reinforcement learning with an approxi-
mate, learned model. In Proceedings of the Ninth Yale Workshop on Adaptive and
Learning Systems, pages 101–105, 1996. 526

Model-Based Reinforcement Learning for Alternating Markov Games 531

[9] Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of the 11th International Conference on Machine Learning
(ML-94), pages 157–163, New Brunswick, NJ, 1994. Morgan Kaufmann. 524

[10] Michael L. Littman. Algorithms for Sequential Decision Making. PhD thesis,
Brown University, 1996. 523, 524

[11] Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforce-
ment learning with less data and less time. Machine Learning, 13:103–130, 1993.
526

[12] Daniel Kenneth Olson. Learning to play games from experience: An application
of artificial neural networks and temporal difference learning. Master’s thesis,
Pacific Lutheran University, Washington, 1993. 528

[13] J. Peng and R. J. Williams. Efficient learning and planning within the dyna
framework. In Proceedings of the 2nd International Conference on Simulation of
Adaptive Behavior, Hawaii, 1993. 526

[14] Jordan B. Pollack and Alan D. Blair. Co-evolution in the successful learning of
backgammon strategy. Machine Learning, 32(1):225–240, 1998. 521

[15] Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-policy temporal-
difference learning with function approximation. In Proc. 18th International Conf.
on Machine Learning, pages 417–424. Morgan Kaufmann, San Francisco, CA,
2001. 527

[16] C. Shannon. Programming a computer for playing chess. Philosophical Magazine,
41(4):256–275, 1950. 525

[17] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, pages 216–224. Morgan Kaufmann, 1990. 520,
526

[18] Richard S. Sutton. Learning to predict by the method of temporal differences.
Science, 3(1):9–44, 1988. 522, 523

[19] Richard S. Sutton. DYNA, an Integrated Architecture for Learning, Planning
and Reacting. In Working Notes of the AAAI Spring Symposium on Integrated
Intelligent Architectures, pages 151–155, 1991. 520, 526

[20] Richard S. Sutton. Planning by incremental dynamic programming. In Proceed-
ings of the Eighth International Workshop on Machine Learning, pages 353–357.
Morgan Kaufmann, 1991. 520, 526

[21] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, 1998. 520, 526

[22] G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves mas-
terlevel play. Neural Computation, 6(2):215–219, 1994. 521

[23] Taku Yoshioka, Shin Ishii, and Minoru Ito. Strategy acquisition for the game
“Othello” based on reinforcement learning. IEICE Transactions on Information
and Systems E82-D, 12:1618–1626, 1999. 524, 530

	Model-Based Reinforcement Learning for Alternating Markov Games
	Introduction
	Model-Free Reinforcement Learning for Strategy Board Games
	Model-Based Reinforcement Learning for Strategy Board Games
	Experiments
	Conclusions
	References

