STACE: Social Technical Approach
to COTS Software Evaluation

Douglas Kunda

Integrated Financial Management Information Systems (IBIS) Project
Ministry of Finance and National Planning, Lusaka, Zambia
dkunda@zamnet . zm

Abstract. COTS-Based Systems (CBS) development is a process of
building systems from pre-fabricated Commercial-Off-The Shelf (COTS)
software components. CBS success depends on successful evaluation and
selection of software components to fit customer requirements. Selecting
COTS software components to fit requirements is still a problem be-
cause of a number of problems including lack of a well-defined process,
the “black box” nature of COTS components and the rapid changes in
marketplace. This chapter reviews some existing frameworks that sup-
port COTS software selection and demonstrate that these frameworks
do not adequately address the non-technical issues. The chapter then
presents a social-technical approach for COTS software selection, how
it deals with non-technical issues, its application in an organization and
lessons learnt

1 Introduction

Modern software systems are becoming difficult and expensive to develop and
organizations are turning to Commercial-Off-Shelf (COTS) software packaged
solutions. COTS software package approach can potentially be used to reduce
software development and maintenance costs, as well as reducing software de-
velopment time by bring the system to the markets as early as possible. For
example, most organizations spend too much effort defining to the lowest level
of detail of the desired characteristics of the systems and how the contractor are
to build the system when a COTS products already exist with nearly the same
capabilities.

According to Oberndorf [27] the term “COTS” is meant to refer to things
that one can buy, ready-made, from some manufacturer’s virtual store shelf
(e.g., through a catalogue or from a price list). It carries with it a sense of
getting, at a reasonable cost, something that already does the job. The scenario
of developing unique system components is replaced by the promise of fast,
efficient acquisition of cheap (or at least cheaper) component implementations.
Examples of COTS products include Geographic Information Systems (GIS),
Graphical User Interface (GUI) builders, office automation, email and messaging
systems, databases and operating systems.

A. Cechich et al. (Eds.): Component-Based Software Quality, LNCS 2693, pp. 64-[54] 2003.
© Springer-Verlag Berlin Heidelberg 2003

STACE: Social Technical Approach to COTS Software Evaluation 65

There are two distinct ways to use COTS software. In one, a single complete
working COTS software system that satisfies most of the user requirements is
purchased and used as platform upon which to build a system [10]. For example
a database management system can be purchased and used to build a payroll
system. The second model is one which involves purchasing a number of COTS
software components (usually without the source code) each satisfying some
part of the requirements of the system and integrating these components into
the required system [35]. The second model is important because many systems
need functions in multiple orthogonal sub-domains, each of which tends to be
addressed by a different COTS software package [10].

However, successful selection of COTS software to fit requirements is still
problematic for a number of reasons. These include the lack of a well-defined
process, the “black box” nature of COTS components, misuse of data consoli-
dation method and rapid changes in market place. Kontio [19] points out that
most organizations are under pressure to perform and therefore do not use a well-
defined repeatable process. This makes planning difficult, appropriate evaluation
methods and tools are not used, lessons from previous cases are not learnt and
the evaluation process efficiency reduced. Another problem with COTS software
selection is lack of inclusion of the “soft” issues or non-technical factors such
as costs, organizational issues, vendor capability and reputation [29]. In order
to address these problems a social technical framework for COTS evaluation
(STACE) has been developed [20] and will be discussed in chapter.

2 Background

COTS software selection, also known as component qualification, is a process
of determining “fitness for use” of previously-developed components that are
being applied in a new system context [13]. Component qualification is also a
process for selecting components when a marketplace of competing products
exists. Qualification of a component can also extend to include qualification of
the development process used to create and maintain it (for example, ensuring
algorithms have been validated, and that rigorous code inspection has taken
place) [7]. This is most obvious in safety-critical applications, but can also reduce
some of the attraction of using pre-existing components.

There are three major strategies to COTS evaluation: progressive filtering,
keystone identification and puzzle assembly [28]. Progressive filtering is a strat-
egy whereby a component is selected from a larger set of potential components.
This strategy starts with a large number of candidates set of components, pro-
gressively more discriminating evaluation mechanisms are applied in order to
eliminate less “fit” components [22]. In keystone selection strategy, a keystone
characteristic such as vendor or type of technology is selected first before select-
ing the COTS products [39]. Often, interoperability with the keystone becomes
an overriding concern, effectively eliminating a large number of other products
from consideration. The puzzle assembly model begins with the premise that a
valid COTS solution will require fitting the various components of the system

66 Douglas Kunda

together as a puzzle and applies an evolutionary prototyping technique to build
versions that are progressively closer to the final system [28].

2.1 COTS Software Evaluation Process

A number of researchers and organizations have proposed process models for
evaluating COTS software (for example, [17,30]). However, most authors par-
tition it into the following phases: requirements engineering; evaluation crite-
ria definition, identification of candidate COTS products and assessment [8,19].
These phases are briefly discussed below (see Fig.1).

Systetns Component qualification
Eemquirement [~

& Criteria

Definition W

Compohent

Identificaticn \\
/ \
Component Selected COTE
COTas Evaluation ! softwrare
Products sclution

Fig.1. COTS Software Evaluation Process

Requirements engineering covers all of the activities involved in determining
requirements which will assist in establishing a basis for evaluating and select-
ing appropriate COTS software candidates. Tran, Liu and Hummel [35] argue
that the requirements should be broken down and organized into collections of
domain-specific requirements. This is important to support the early identifica-
tion of candidate COTS products for evaluation as well as early identification
of subsystems that cannot be supported by COTS products. In order to realize
the benefits of COTS software, Vigder, Gentleman and Dean [37] suggest that
a procurement process must be in place that defines requirements according to
what is available in the marketplace. This is contrarily to the traditionally pro-
curement process, which identifies strict requirements which either excludes the
use of COTS components, or requires large modifications to COTS packages in
order to satisfy the requirements. However, it is important that requirements are
not defined so specifically that only one particular COTS product is suitable.

Defining the evaluation criteria. The criteria definition process essentially de-
composes the high-level requirements for the COTS software into a hierarchical
criteria set and each branch in this hierarchy ends in an evaluation attribute [19].
The criteria is specific to each COTS evaluation case but should include compo-
nent functionality (what services are provided), other aspects of a component’s
interface, business concerns such as cost and quality aspects (e.g., reliability,
portability, and usability) [8,17,35].

STACE: Social Technical Approach to COTS Software Evaluation 67

Identification of candidate components (alternatives). The identification of can-
didate components also known as alternative identification involves the search
and screening for COTS candidate components that should be included for as-
sessment in the evaluation phase [8,30]. Many authors highlight a number of
techniques for identifying candidate COTS software including Internet search,
market surveys, attending computer fairs and shows, invitation to tender (ITT)
or request for proposals (RFP), vendor promotions and publications [19,31,35].

Assigning measure of merit to alternatives (evaluation phase). In the evaluation
phase, the properties of the candidate components are identified and assessed
according to the evaluation criteria [19,31]. Evaluation includes the acquisition
of the products to be evaluated, developing evaluation plans, installing them,
learning to use them, studying their features and assessing them against the
criteria [35]. The methods and techniques for evaluation are discussed in the
next section.

2.2 Methods and Techniques for Evaluation

Once the criteria are defined, the screened candidate products can be examined
to observe to what extent they exhibit these or other useful attributes. The
following are some of the techniques used to evaluate COTS software component:

— Paper evaluation. This is the process of evaluating the COTS products based
on supplier data in sales brochure, technical documents, telephone conver-
sations, web site information [22]. However, Beus-Dukic and Wellings [3]
suggests that vendors claims must be viewed sceptically, therefore this tech-
nique must be used in combination other evaluation techniques.

— Market survey. A market survey can be made using questionnaires and inter-
views with vendors, trade shows, user community to compile quantitative and
qualitative data about the product and vendors. Finkelstein, Spanoudakis
and Ryan [12] point out that in certain circumstances, especially if the pack-
age to be bought is expensive, a request for proposal (RFP) can be issued,
which enable the vendors to describe their packages in a uniform manner.

— FExperimentation. This is a rigorous test of the product to assess its com-
pliance with the defined criteria. The experimentation process includes the
acquisition and installation of the product, design of the appropriate pro-
totype and test plan, evaluation of product and generation of report [35].
Carney and Wallnau [8] stress the importance of conducting experimenta-
tion within the operating environment (context) in which the product will be
used. Maiden and Ncube [22] recommend the use of software prototypes to
assist in generating test cases for product evaluation. This especially impor-
tant where the evaluator do not have prior knowledge about the candidate
products or prior extensive experience generating test cases.

— Pilot study. A pilot study is an extended version of experimentation in which
“real” data from the organization is used in the evaluation. Brown and Wall-
nau [6] argue that it is important to demonstrate the product or technol-
ogy’s feasibility with a pilot project. Sledge and Carney [34] points out that

68

3

Douglas Kunda

because the potential for misinterpretation and misunderstanding when pre-
senting or discussing a commercial product is great, hands-on evaluation of
COTS products is mandatory and pilot programs are a useful way to do this.
Vendor analysis. Hokey [15] points out that the vendor must be evaluated
in terms of user services (installation assistance, training services and war-
ranty) and vendor characteristics (vendor reputation and vendor stability).
Checking vendor discontinuities, such as focus shifts and change of auditor,
would help in this process. Haines et al. [13] and McDermid [23] argue that
for safety-critical systems it is important to audit the development process
that was used to develop the software including the tests carried out, con-
formance to standards, etc.

Problems with COTS Software Selection

The success of COTS-based software systems depends on successful evaluation
and selection of COTS software components to fit customer requirements [22].
Successful selection of COTS software to fit requirements is still a problem be-
cause of a number of reasons. These include the following:

— Lack of well-defined process. Most organizations are under pressure to per-

form and therefore do not use a well-defined repeatable process [19]. The
evaluators may not have the time or experience to plan the selection process
in detail and therefore, they may not use the most appropriate methods in
the selection process [19]. The resulting urgency means that evaluation deci-
sions become pressured and a difficult decision becomes even more risky [29].
Furthermore, when the selection process is not defined, it is reinvented each
time, it is performed inconsistently and learning from previous cases is dif-
ficult [19].

“Black box” nature of COTS components. Lack of access to the COTS in-
ternals makes it difficult to understand COTS components and therefore
evaluation is harder [37]. Sometimes even the supporting documentation for
these components is incomplete or wrong. The design assumptions of the
component are unknown; there is no source code when it needs debugging;
and testing will be necessarily incomplete, since testing is only done for those
functional capabilities that the customer care about [8].

Rapid changes in the market place. The component user has little or no
control over COTS product evolution [36]. Frequent releases of COTS com-
ponents and rapid changes in the market place makes evaluation difficult [8].
For example, a new release of the COTS component may have a feature that
is not available in the component that is currently being evaluated.

Misuse of data consolidation method. A common approach to consolidating
evaluation results is to use some kind of weighted sum method (WSM) [25].
However, the WSM has been criticized because assigning weights for the
criteria sometimes can be inconsistent and lead to confusion about which is
the most essential customer requirements [22].

STACE: Social Technical Approach to COTS Software Evaluation 69

However, the major problem with COTS software evaluation is that evalua-
tors tend to focus on technical capabilities at the expense of the non-technical
or “soft” factors such as the human and business issues [9,29]. Oberndorf et al.
[28] highlight the usefulness defining the criteria to include such issues as ven-
dor’s time in business, responsiveness to customers and willingness to support
their product. Therefore, the evaluation criteria must incorporate both technical
attributes and non-technical issues such as business issues and vendor capability
variables.

4 COTS Software Evaluation
and Multi-attribute Decision Making

Carney and Wallnau [8] argue the COTS software selection is a form of decision
making. Kontio [19], Maiden and Ncube [22] support this view and further point
out that it is a Multiple Attribute Decision-Making (MADM) process. MADM
refers to making preference decisions (for example evaluation, prioritization, se-
lection) over the available alternatives that are characterized by multiple, usu-
ally conflicting attributes [41]. The goal of MADM is (a) to help the decision
maker choose the best action or alternative of those studied (a choice or selection
procedure), (b) to help sort out alternatives that seem “good” among a set of
alternatives studied (a sorting or segmentation procedure), and/or (c) to help
rank the alternatives in decreasing order of preference (an ordering or ranking
procedure) [24]. According to Yoon [41], MADM share the following character-
istics:

— Alternatives: A finite number of alternatives, from several to thousands, are

screened, prioritized, selected and/ or ranked.

Multiple attributes: Each problem has multiple attributes or goals or criteria.

For each problem setting relevant attributes are generated, for example, to

purchase a car you may have price, gas mileage, safety and warranty period.

Incommensurable Units: Each attribute has different units of measurement.

— Attribute Weights: Almost all MADM methods require information regard-
ing the relative importance of each attribute, which is usually supplied in an
ordinal or cardinal scale.

— Decision matriz: A MADM problem can be concisely expressed in a matrix
format, where columns indicate attributes considered in a given problem and
rows list competing alternatives.

A number of MADM techniques have been applied in software selection, the
most common are weighted sum or scoring method [40], analytical hierarchy
method [15,19,22] and outranking method [1,25].

4.1 Weighted Sum Method

The Weighed Sum Method (WSM) or scoring method is one of the simplest and
probably the most popular technique for solving multi-attribute decision prob-
lems [24]. The WSM is based on the multiple attribute utility theory with the

70 Douglas Kunda

following axiom: any decision-maker attempts unconsciously (or implicitly) to
maximize some function by aggregating all the different points of view which
are taken into account [38]. A score in this method is obtained by adding con-
tributions from each alternative and since two items with different measurement
units cannot be added, a common numerical scaling system such as normaliza-
tion is required to permit addition among attributes values [41]. The total score
for each alternative then can be computed by multiplying the comparable rating
for each attribute by the importance weight assigned to the attribute and then
summing these products over all the attributes.

The main advantage of the WSM is its ease of use and helping the decision-
maker to structure and analyze the decision problem [24]. However, Mollaghasemi
and Pet-Edwards [24] criticize the WSM arguing that this method tends to in-
volve ad hoc procedures with little theoretical foundation to support it. This can
lead to confusion about the most essential customer requirements [22] and make
worst products on important attributes have the highest aggregated scores [25].
Another weakness is that it is difficult to define a set of criteria and their weights
as advocated in the WSM so that they are either independent of each other or
if they overlap, their weights are adjusted to compensate for overlapping ar-
eas [19]. This suggests that WSM might not be suitable for aggregating COTS
software evaluation attribute data because most COTS software attributes are
not independent of each other.

4.2 Outranking Method

Outranking methods are a class of multi-criteria decision-making techniques that
provide an ordinal ranking (and sometimes partial ordering) of the alterna-
tives [24]. It has been successfully applied to COTS software evaluation and
selection [1,25]. Roy [32] developed the outranking approach and a family of
evaluation methods collectively known as ELECTRE methods that are founded
on the outranking relations. Yoon [41] points out that ELECTRE methods di-
chotomizes preferred alternatives and non-preferred ones by establishing out-
ranking relationships. An outranking relationship (A outranks B) states that
even though two alternatives A and B do not dominate each other, it is realistic
to accept the risk of regarding A as almost surely better than B [41].

The advantage of this approach is the ability to consider both objective and
subjective criteria and the least amount of information required from the deci-
sion maker [24]. Morisio and Tsoukias [25] suggest that outranking methods are
appropriate when the measurement scales of criteria are of an ordinal and when
it is not possible to establish trade-offs between criteria. Mollaghasemi and Pet-
Edwards [24] point out that, although it can be expressed that alternative A is
preferred to alternative B in the outranking method, it does not indicate by how
much, for example with ELECTRE I a complete ranking of the alternatives may
not be achieved. Therefore, this method is not appropriate for COTS software
selection involving tenders that require explaining to the unsuccessful bidders
why their bid was unsuccessful and how they were ranked.

STACE: Social Technical Approach to COTS Software Evaluation 71

4.3 Analytical Hierarchy Process (AHP)

AHP was developed by [33] for multiple criteria decision making and has three
basic functions: (1) structuring complexity, (2) measuring on a ratio scale, and
(3) synthesizing. AHP has been successfully applied in software and computer
selection [42,19,22]. AHP enables decision-makers to structure a multi-criteria
decision making problem into a hierarchy [41]. A hierarchy has at least three
levels; the overall goal of the problem at the top, multiple criteria that define
alternatives in the middle and competing alternatives at the bottom.

AHP technique is based on pair-wise comparison between the alternatives.
The result of this pair-wise comparison is converted to a normalized ranking
by calculating the eigenvector from the comparison matrix’s largest eigenvalue.
Section 1.5.3 provides a worked example of the use of AHP. The advantage of
the AHP technique is that it provides a systematic approach for consolidat-
ing information about alternatives using multiple-criteria [19]. The availability
of several software packages to support the AHP has made it a popular tech-
nique [24]. AHP also provides a means for measuring the consistency of the
decision-maker’s judgements, that is, to check the quality of the results in the
comparison matrix [24,42].

AHP has been criticized regarding the rank reversal: the reversal of the
preference order of alternatives when new options are introduced in the prob-
lem [11,24]. Furthermore, that the use of a 1 to 9 measurement scale is inappro-
priate because of the ambiguity in the meaning of the relative importance of one
factor when compared to another. However, Harker and Vargas [14] argue that
rank reversal occurs in AHP because ranking of alternatives depends on the al-
ternatives considered, hence, adding or deleting alternatives can lead to changes
in the final rank and this is consistent with rational behavior. Furthermore, since
AHP facilitates group decision-making it would be suitable for COTS software
selection process that emphasizes participation. In addition, AHP would be ap-
propriate for aggregating COTS software evaluation attribute data comprising
technical and non-technical issues because it incorporates both quantitative and
qualitative data into the decision making process.

5 Social Technical Approach
to COTS Software Evaluation (STACE)

A number of frameworks for evaluating and selecting COTS software components
have been proposed in literature. Useful work includes Delta technology frame-
work that help evaluate new software technology [7] and PORE, a template based
method to support requirements acquisition for COTS product selection [22]. Al-
though the Delta technology framework is useful for evaluating new technology it
does not address the political and economic factors that often separate a winning
technology from other contenders. The weakness of PORE method is that it is
labor-intensive and vulnerable to the neglect of social issues. Another technique
the OTSO [19] addresses the complexity of component selection and provides
a decision framework that supports multi-variable component selection analysis

72 Douglas Kunda

but neglects the non-technical issues or “soft” factors. Other approaches, such
as the Software System Evaluation Framework (SSEF) [4] focuses on assessing
the software product, process and their impact on the organization but it does
not provide guidance on how to define the evaluation criteria. The following
presents a summary of characteristics, strengths and weaknesses of each of these
frameworks.

SSEF —

Characteristics

It proposes a top-down approach that identifies the important ele-
ments that a software system must include to foster high-level un-
derstanding.

Uses knowledge world’s concepts (i.e., usage world, development
world and system world).

Multiple viewpoints approach to evaluation (user satisfaction and
economic returns).

Defines the elements (dimensions, factors, and categories) clearly
to facilitate evaluation and reduce the evaluators’ conflicting view-
points.

It is organized along three dimensions corresponding to the software’s
producers, operators, and users.

— Strengths

It provides a baseline for establishing metrics programs in organiza-
tion [4].

It offers a broad system snapshot by considering a number of different
perspectives (end users, developers, and operators) [7].

A top-down approach has the advantage of flexibility, permitting
extensions by following a predefined pattern [4].

— Weaknesses

It is not specific to COTS selection and the issues of how to define
the evaluation criteria are not addressed [19).

It gives little detailed insight into the strengths and weaknesses of a
technology in comparison with its peers [7].

OTSO — Characteristics

Provides explicit definitions of tasks in the selection process, includ-
ing entry and exit criteria [19];

Advocates incremental, hierarchical and detailed definition of evalu-
ation criteria;

Provides a model for comparing the costs and value associated with
each alternative, making them comparable with each other;

Uses appropriate decision-making methods to analyze and summa-
rize evaluation results.

— Strengths

It addresses the complexity of COTS software evaluation [7].

The systematic repeatable process can promote learning through ex-
perience and improve the COTS selection process [19].

The use of the AHP provides evaluation consistency and provides
structured information.

STACE: Social Technical Approach to COTS Software Evaluation 73

— Weaknesses

e AHP is only appropriate when there are few comparisons and when
all criteria are independent [22]
e Neglect of non-technical issues or “soft” factors [29].

Delta — Characteristics

e Evaluate a new software technology by examining its features in
relation to its peers and competitors

e [t is a systematic approach that includes modelling and experiments.

e That technology evaluation depends on understanding technology
“delta” descriptions of how a new technology’s features differ from
other technologies.

e Evaluates how these “delta” differences address the needs of specific
usage contexts.

— Strengths

e It provides techniques for evaluating the product underlying tech-
nology.

e It can also facilitates individual product evaluations that concentrate
on their distinguishing characteristics in relation to their technology
precursors and product peers [6].

— Weaknesses

e [t focuses on technology evaluation and neglect product and vendor
evaluation

e It does not address the political and economic factors that often
separate a winning technology from other contenders.

PORE — Characteristics

e [t integrates existing requirements engineering methods and other
techniques such as feature analysis and multi-criteria decision-
making.

e It is template-based (templates provide guidelines for conducting
evaluation).

e [t advocates for a parallel and an iterative requirements acquisition
and product selection/rejection.

— Strengths

e It provides guidance to model requirements for COTS software se-
lection

e The parallel requirements acquisition and COTS software selection
means requirements acquisition informs COTS software selection and
vice versa.

— Weaknesses

e Use of traditional approaches make it vulnerable to neglect of social
issues
e [t is labor-intensive.

74 Douglas Kunda

STACE — Characteristics

e It supports a systematic approach to COTS evaluation and selection

e It proposes a keystone evaluation strategy in which the underlying
technology is selected before selecting the COTS products.

e It uses social-technical techniques (i.e., social-technical criteria and
participation) to improve the COTS software selection process.

e It uses multi-criteria decision-making techniques (i.e. AHP) to con-
solidate evaluation attribute data.

— Strengths

e It addresses the non-technical issues through use of social-technical
techniques.

e [t supports evaluation of both COTS products and the underlying
technology.

e It provides for reuse of lessons learnt from previous evaluation cases.

e Use of the AHP promotes consensus, transparency and consistency
checking.

— Weaknesses

e It increases the cost of the evaluation process because of inclusion of
non-technical issues and user participation.

e Some aspects of AHP having subjective bias.

e Some users/ stakeholders may not make an effective contribution.

In general what is missing in these frameworks is how to address the “soft”
issues or the non-technical factors, such as costs, organizational issues, vendor
capability and reputation. Therefore, STACE was developed to facilitate a sys-
tematic requirements-driven COTS software selection and address this prob-
lem using social-technical techniques. Furthermore, STACE supports the eval-
uation of both COTS products and the underlying technology while the other
frameworks emphasize product or technology evaluation. Another advantage of
STACE is that it provides for reuse of lessons learnt from previous evaluation
cases by maintaining a database of evaluation results.

5.1 Objective and Principles of STACE

The STACE framework has been developed through literature survey and case
studies [20]. STACE is based on a number of important principles:

— Support for a systematic approach to COTS evaluation and selection. Most
organizations select their COTS components in an ad-hoc manner. There is
a need, for example, to reuse lessons learnt from previous evaluation cases
by maintaining a database of evaluation results.

— Support for evaluation of both COTS products and the underlying technol-
ogy. Most COTS evaluation frameworks emphasize either COTS products
evaluation or technology evaluation. This method proposes using keystone
evaluation strategy in which the underlying technology is selected before
selecting the COTS products.

STACE: Social Technical Approach to COTS Software Evaluation 75

Ivlarket Studies Swtem
documents Requirements

Dortain definition
Stakeholders
ot et o
criteria d efinition / \

Technclogy Funchorality Customer Lrvailahle
factors characteristics Participation altermatives in
marketplace
Chality Sorial-econorde .
o Techrigues such as market
chatacteristic factars research, Internet search and fairs

\ /' Alternaties

identification
Custoraer Enaluation
Participation Strategy
Evaluation
(assessment) Data Data
collection analyels
techricues te chrigues

Fig. 2. STACE Framework

— Use of social-technical techniques to improve the COTS software selection
process. This has been greatly influenced by the social-technical school and
work by [26]. STACE recommends the use of a social-technical evaluation cri-
teria and customer participation in the COTS selection process. User partic-
ipation is regarded as an effective strategy as a means of improving software
design outcomes and as a means of incorporating human and organizational
aspects such as the design of jobs, work processes and usability [5,2].

— Use of multi-criteria decision-making techniques to consolidate evaluation
attribute data. The STACE proposes the use of Analytic Hierarchy Process
(AHP) as developed by Saaty [33] and successfully used in software selec-
tion [19,42].

5.2 STACE Method

The STACE method (see Fig. 2) comprises four interrelated processes: 1) re-
quirements definition; 2) social-technical criteria definition; 3) alternatives iden-
tification; and 4) evaluation or assessment.

In the requirements definition process, the high-level customer and systems
requirements are discovered through consultation with stakeholders, from system
documents, domain knowledge and market studies. The traditional requirements
engineering methods emphasize the technical issues while neglecting the equally
important social issues [18]. Therefore, the STACE framework recommends the
use of the social-technical approach to systems development. Customer partici-
pation is one of the strategies used in social-technical approaches to incorporate

76 Douglas Kunda

the social issues in the development of the system. The STACE framework rec-
ommends the use of Joint Application Development (JAD) sessions and review
meetings with top management to elicit and validate requirements from stake-
holders. The use of JAD or stakeholder workshops is an important strategy that
operationalizes customer participation.

In the social-technical criteria definition process, the high-level requirements
from the requirements definition phase are decomposed into a hierarchical crite-
ria set and each branch in this hierarchy ends in an evaluation attribute [19]. The
STACE framework uses a decomposition approach that is based on social techni-
cal analysis and the AHP criteria decomposition method. The STACE framework
recommends decomposition of the high level requirements into a hierarchy of
social-technical criteria comprising functionality characteristics, technology fac-
tors, product quality characteristics, and social-economic factors. Socio-economic
factors are non-technical factors that should be included in the evaluation and
selection of COT'S components such as costs, business issues, vendor performance
and reliability.

The objective of the alternatives identification process is to identify COTS
components that meet the high level requirements, so that they can be con-
sidered for a more rigorous evaluation. In the STACE framework, this phase
begins with identifying the domains relevant to the problem and understand-
ing the types of packages available in those domains. The STACE framework
recommends a number of techniques and tools for identifying candidate COTS
products. These include networking, mailing list and user community, Inter-
net search, market surveys, invitation to tender (ITT) or request for proposals
(RFP), vendor promotions and publications.

The evaluation or assessment phase involves contacting vendor technical sup-
port for evaluation information, reviewing vendor documentation and product
testing for quality and functionality. It also includes evaluating COTS perfor-
mance, interfaces and ease of integration, comparing short-term and long-term
licensing costs against integration costs. STACE recommends the keystone se-
lection strategy with the technology as the keystone issue. The separation of
COTS underlying technology from COTS products during evaluation allows fair
comparisons between products.

The STACE framework also recommends separating the data collection and
data analysis of the evaluation. Kontio [19] argues that the advantage of separat-
ing the data collection from analysis is to allow the use of appropriate decision
making techniques in the data analysis stage. There are a number of data collec-
tion techniques such as examining the products and vendor supplied documen-
tation, vendor analysis, viewing demonstration and interviewing demonstrators,
executing test cases and applying the products in pilot projects. STACE pro-
poses selecting appropriate techniques depending on resources and experience.
STACE framework recommends the use of the AHP to consolidate evaluation
data because of a number of advantages discussed in section 1.4.3.

STACE: Social Technical Approach to COTS Software Evaluation

Table 1. Social-technical criteria for GIS software selection

FUNCTIONALITY QUALITY ATTRIBUTES
Data Capture (digitize) Interoperability

Data Integration Efficiency/Resource utilization
Projection and registration. Usability

Data restructuring

NON-TECHNICAL FACTORS

Data and topological modelling

Vendor reputation

Information retrieval

User experience

Map overlays

Local support

Data Output

COSTS ISSUES

Internet support

Product cost

7

ODBC support

5.3 Application of STACE Method

The STACE method was used by a public organization mandated to protect the
environment and control pollution. The organization was established in 1992
with an annual budget of about $1million and employs over sixty persons, seven
of which are in the IT department. The main application of IT in this orga-
nization is Geographic Information Systems (GIS). The organization was using
standalone ArcInfo 4.2D and ArcView software while some of the users were
trained in Idrisi. The organization installed a Local Area Network (LAN) and
STACE method was used to select new GIS software in a multi-user LAN envi-
ronment.

The workbook to operationalize the STACE framework was developed and
used to guide the organization in evaluating and selecting COTS software. The
workbook explicitly describes each stage of the STACE framework. The organi-
zation was invited to attend a workshop at which the STACE framework and
workbook were presented and discussed.

STACE Process in Selecting a GIS Software. The following are the step by
step description of the procedures used to evaluate and select the GIS software.

Step 1: Requirements definition. The sponsor and stakeholders from the organiza-
tion were identified. It was agreed with the sponsor regarding the composition of
the evaluation team and the resources required for the evaluation work. The high
level user requirements were elicited from system documents, domain knowledge,
and interviews with stakeholders.

Step 2: Social-technical criteria definition. The high level requirements were de-
composed in social technical criteria. According to the STACE method the social-
technical criteria include: 1) technology factors, 2) functionality characteristics,
3) product quality characteristics, and 4) social-economic factors. The technology
criteria was not used in the hierarchy priority because technology was adopted
as the keystone and therefore all the software to be selected must be compat-
ible with the keystone in this case Windows 2000. The social-economic factors
were divided into non-technical issues and cost issues because of the importance

78 Douglas Kunda

Table 2. Relative importance of criteria

Functionality| Quality | Non- |Costs| Relative
attributes |attributes|technical|issues|importance
Functionality attributes 1 3 4 5 0.550
Quality attributes 1/3 1 2 2 0.214
Non-technical 1/4 1/2 1 2 0.142
Costs issues 1/5 1/2 1/2 1 0.094
Total 1.000

Overall Select the "best" GIS

Cloal: software product
Criteria & Functionality Chialitsy Costissues N otr-techti cal
ranking:

) ArcV iew ArcView ArcView ArcView
Tdentified Waplnfo M aplnfo Maplnfo Waplnfo
Froducts: Arclofo Ardrfo Arclnfo Arclnfo

[irisi Idrisi Tdrisi Idrisi

Fig. 3. Hierarchy of Criteria and GIS Products

separating cost issues from other attributes. The outcome of this process is the
social-technical criteria presented in table 1.

Step 3: Using AHP to determine the relative importance of the criteria. Using
pairwise comparisons, the relative importance of one criterion over another was
computed. A total number of six pairwise comparisons were made to calculate
the AHP’s eigen vector values and these are shown in Table 2. The result in
Table 2 shows that the functionality attributes is the most preferred criterion
and cost issues is the least preferred criterion. Pairwise comparisons were also
computed for the sub criteria to determine the relative importance of the sub
criteria relative to the criteria. These are presented later in the chapter.

Step 4: Identify candidate software (vendors). The search for candidate products
was conducted using the GIS user community; Internet search; vendor publica-
tions and sales promotions. The identified products were screened to reduce them
to ArcView, MapInfo, ArcInfo and Idrisi (see Fig. 3). The basis of screening was
the technology criteria and user experience with the products. It was required
that the product must run on Windows 2000 and at least one user from within
the organization must be familiar with the product.

Step 5: FEvaluation and priority ranking of the candidate product. Evaluation
copies of the candidate software were obtained. The evaluation involved con-

STACE: Social Technical Approach to COTS Software Evaluation 79

Table 3. Priority ranking of candidate product

Relative |ArcView|MaplInfo|ArcInfo|Idrisi
importance
Functionality
Data Capture 0.100 0.038 0.060 0.712 |0.190
Integrate 0.100 0.222 0.057 0.681 |0.040
Projection and registration. 0.100 0.109 0.042 0.666 |0.182
Data restructuring 0.100 0.050 0.081 0.510 [0.359
Data and topological modelling| 0.100 0.050 0.081 0.510 |0.359
Powerful information retrieval 0.100 0.597 0.251 0.061 | 0.090
Map overlays 0.100 0.034 0.063 0.684 |0.219
Data Output 0.100 0.089 0.029 0.607 [0.275
Internet 0.100 0.715 0.176 0.046 |0.062
ODBC 0.100 0.090 0.295 0.567 |0.048
Quality attributes
Interoperability 0.540 0.169 0.451 0.261 |0.119
Efficiency/Resource utilization 0.163 0.123 0.346 0.358 [0.173
Usability 0.297 0.487 0.311 0.084 |0.118
Non-technical factors
Vendor reputation 0.250 0.286 0.286 0.286 |0.143
User experience 0.500 0.472 0.108 0.256 |0.164
Local support 0.250 0.372 0.150 0.372 | 0.106
Costs issues
Product Cost 1.000 0.174 0.104 0.098 |0.625

tacting vendor technical support for evaluation information, review of vendor
documentation and experimenting with the product to assess its quality and
functionality. It included evaluating product performance, interfaces and ease
of integration, comparing short-term and long-term licensing costs. In addition
data collection included interviewing actual users of the products, and examining
sample outputs from projects that have used the products.

Having experimented with the software and reviewed documentation the al-
ternatives were assessed against criteria, for example in terms of quality char-
acteristics, pairwise comparisons are made to determine the preference of each
alternative over another. The eigenvector were then calculated from these ma-
trices and the result is shown in the Table 3. The table also provides the relative
ranking of each sub criteria, for example each functionality sub criteria is of
equal importance (0.100).

From table 3 above it can be concluded that regarding data capture Arclnfo
is the most preferred product (preference=0.712) while ArcView is the least
preferred (preference=0.038). The results also shows that ArcInfo is preferred in
almost all the functionality except support for Information retrieval and support
for Internet in which ArcView was preferred.

Step 6: Using AHP to synthesize the evaluation results and select the product.
The priority ranking were then synthesized with the help of ExpertChoice, a

80 Douglas Kunda

Table 4. Results of evaluation exercise

Priority |ArcView|MaplInfo|ArcInfo|Idrisi
ranking
of criteria

Functionality 0.550 0.274 0.110 0.480 |0.136
Quality attributes 0.214 0.256 0.392 0.224 |0.128
Non-technical factors 0.142 0.400 0.293 0.163 |0.144
Costs issues 0.094 0.174 0.104 0.098 |0.625
Overall of GIS software 0.279 0.196 0.344 |0.181

software tool that supports AHP process and the results shown in Table 4.
The table shows that ArcInfo is the recommended GIS software package for the
organization. It can be noted from this table that although Idrisi scored highly
regarding costs issues it did not emerge as the winning package because according
to the organization cost issues had low ranking compared to functionality issues.

Experience in Using STACE. The organization pointed out that they found
STACE framework useful because it addresses the non-technical issues and
brought about decision support satisfaction. They argued that the use of AHP
brought about confidence in the evaluation results and also promoted consensus
in evaluation process. In addition, because the AHP provides an audit trial, it
made the whole evaluation process transparent. However, the organization indi-
cated that the AHP involved too many pairwise comparisons when the criteria
increased, in their case they made over 100 pairwise comparisons for what they
considered to be simple software selection process. Furthermore, they indicated
that some aspects of AHP were subjective.

The organization indicated that stakeholder participation as advocated in the
STACE framework is very important in COTS software evaluation and selection
as it facilitates dialogue and consensus building with stakeholders. However, the
organization indicated that the inclusion of stakeholder participation increases
the cost of the software evaluation process.

6 Future Research

The STACE framework provides a classification of important processes (includ-
ing traditional and soft factors) that support COTS software selection. The
framework also allows the classification of a set of techniques and tools within
each process. It highlights relationships between processes (and factors within
each process) and thus facilitates the examination of relationships between fac-
tors in different processes and their impact on the success of COTS software
selection process. The identification of important processes and factors support-
ing COTS software evaluation and selection has highlighted a number of areas
that require further research. For example, future work can focus on the exam-
ination of each of the identified factor and its impact on the COTS software

STACE: Social Technical Approach to COTS Software Evaluation 81

selection process. Further work can also investigate the relationships between
the factors and the organizations, or draw conclusions about COTS component
selection in different organizations.

The evaluation of the STACE framework revealed the problem of additional
costs introduced by the inclusion of non-technical issues in the evaluation cri-
teria and customer participation [21]. Furthermore, that the evaluation process
takes a longer time because of additional work. A number of templates were
provided to speed up the process and reduce the additional work of reinventing
for evaluation criteria, each time the evaluation is done. However, the problem
was not completely solved. Therefore, future work can focus on the development
of a software tool to support all the processes in the STACE framework. The
software tool would automate the evaluation process; suggest techniques and
criteria according to the type of evaluation problem; management of past eval-
uation results in order to inform future evaluation cases; and support the use
of a multi-criteria decision method. This would initially involve developing the
prototype and then testing it in a number of organizations.

In the STACE framework, the AHP was proposed for consolidation of evalu-
ation data because it incorporates both objective and subjective measures into
decision making process. However, the AHP has a number of problems, for ex-
ample that AHP has a potential for bias and subjectivity especially when dealing
with non-technical issues. Furthermore, that the AHP is time consuming because
of the mathematical calculations and the number of pairwise comparisons that
increases as the number of alternatives and criteria increases. Therefore, further
work can focus on developing a software tool that supports the AHP and ad-
dresses some of these problems. Future work can also investigate the use of other
multi-criteria techniques, such as outranking.

This chapter focussed on COTS software evaluation and selection support-
ing the Component-based software development. However, this has implications
for the other stages of the software development cycle. For example, systems
built using COTS packages will require maintenance and enhancements, some
prompted by vendor updates and changing customer requirements. Therefore,
determining procedures or guidelines for deciding when to accept upgrades would
be an interesting research area.

7 Conclusion

Component-based development is a process of building software systems by in-
tegrating multiple software that are ready “off-the-the shelf” whether from a
commercial source (such as COTS) or re-used from another system. Building
systems from COTS software components offers the opportunity to lower costs
by sharing them with other users and has potential for reduced training and in-
frastructure costs. Therefore, by employing this strategy, organizations will not
spend too much time on developing expensive systems, with only one customer
to bear the development and maintenance costs over the life of the system.
Building of systems from COTS software depends on successful evaluation
and selection of COTS software to meet customer requirements. COTS soft-

82 Douglas Kunda

ware evaluation and selection ensures that a candidate component will perform
the functionality required and will exhibit the quality characteristics (e.g. per-
formance, reliability, usability) that are required. A number of problems associ-
ated with COTS software evaluation and selection have been identified including
rapid changes in market place; lack of well-defined process; “black box” nature
of COTS components; and misuse of data consolidation method. COTS software
evaluation and selection frameworks have been developed aimed at addressing
these problems, for example the OTSO framework; Delta technology framework
and PORE framework.

However, what is missing in these frameworks is the “soft” issues or the
non-technical issues such as costs, organizational issues, vendor capability and
reputation. Furthermore, these frameworks do not provide a means for identify-
ing and classifying important processes and factors supporting COTS software
selection for practical use. Therefore, the STACE framework was developed. The
STACE framework addresses the weaknesses of the existing evaluation models by
attempting to ensure that all issues (including non-technical) are structured and
addressed. This is achieved by integrating social-technical criteria as well as cus-
tomer participation in the COTS software evaluation process. Customer partic-
ipation provides for consensus building during evaluation by allowing evaluators
and stakeholders to discuss and agree on evaluation parameters. The framework
also provides a structured evaluation model; thus allowing the designation of a
hierarchy of selection criteria based on organizational needs. The evaluation and
selection process is clearly defined, in terms of processes, techniques to be used
and activities to be performed.

The STACE framework provides a classification of important processes (in-
cluding traditional and soft factors) that support COTS software selection. The
framework also allows the classification of a set of techniques and tools within
each process. It highlights relationships between processes (and factors within
each process) and thus facilitates the examination of relationships between fac-
tors in different processes and their impact on COTS-based systems success.
Therefore, the framework could be used for research purposes not only in COTS
software evaluation research but also in the wider software engineering research
field.

References

1. Anderson E., “A heuristic for software evaluation and selection,” Software Practice
and Experience, Vol. 19, No. 8, pp. 707-717, August 1989.

2. Axtell C. M., Waterson P. E. and Clegg C. W. (1997), “Problems integrating
user participation into software development,” International Journal of Human-
Computer Studies, Academic Press Limited, Vol. 47, pp 323-345.

3. Beus-Dukic, L. and Wellings A., “Requirements for a COTS software compo-
nent: a case study,” Conference on European Industrial Requirements Engineering
(CEIRE ’98), Requirements Engineering, Springer-Verlag, Vol.3, No.2, pp. 115
120, October 1998.

4. Boloix, G. and Robillard, P. (1995), “A Software System Evaluation Framework,”
IEEE Computer, Vol. 28, No. 12, pp. 17-26.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

STACE: Social Technical Approach to COTS Software Evaluation 83

Bravo E., “The Hazards of leaving out users,” In Participatory Design: Principles
and Practices, Schuler D. and Namioka A. (eds.), Lawrence Erlbaum Associates,
Hillsdale, NJ, pp. 3—12, 1993.

Brown A. W. and Wallnau K. C.,; “A Framework for Systematic Evaluation of
Software Technologies,” IEEE Software, Vol. 13, No. 5, pp. 39-49, 1996a.

Brown A. W. and Wallnau K. C., “Engineering of Component-Based Systems,” in
Brown A. W. (ed.), “Component-based Software Engineering: Selected papers from
Software Engineering Institute,” IEEE Computer Society Press, Los Alamitos,
California, pp. 7-15, 1996b.

Carney D. J. and Wallnau K. C., “A basis for evaluation of commercial software,”
Information and Software Technology, Vol. 40, pp. 851-860, 1998.

Clements P. C. (1995) From Subroutines to Subsystems: Component-Based Soft-
ware Development, American Programmer 8(11), Cutter Information Corp.
Coppit D. and Sullivan K. J., “Multiple mass-market applications as components,”
Proceedings of the International conference of Software Engineering (ICSE), IEEE
computer society, Los Alamitos, California, pp. 273-282, 2000.

Dyer J. S., “Remarks on the Analytical Hierarchy Process,” Management Science,
Vol. 36, No. 3, pp. 249-259, 1990.

Finkelstein A., Spanoudakis G. and Ryan M. (1996), “Software Package Require-
ments and Procurements,” Proceedings 8th International Workshop on Software
Specification and Design, IEEE Computer Society Press, pp. 141-145.

Haines G., Carney D. and Foreman J., “Component-Based Software Development/
COTS Integration,” Software Technology Review, Software Engineering Institute,
http://www.sei.cmu.edu/str/descriptions/cbsd_body.html, 1997.

Harker P. T. and Vargas L. G., “Reply to — Remarks on the Analytical Hierarchy
Process — by J. S. Dyer,” Management Science, Vol. 36, No. 3, pp. 269-273, 1990.
Hokey M., “Selection of Software: The Analytic Hierarchy Process,” International
Journal of Physical Distribution and Logistics Management, Vol. 22, No. 1, pp.
42-52, 1992.

IEEE std 1209-1992 (1993), IEEE Recommended Practice for the Evaluation and
Selection of Case Tools, IEEE, New York.

ISO/IEC 9126: 1991, “Information technology-Software product evaluation-
Quality characteristics and guidelines for their use,” ISO/IEC, Geneva, 1991.
Jirotka M. and Goguen J. A. (eds.) (1994), “Requirements Engineering social and
technical issues,” Academic Press Limited, London.

Kontio, J. (1996), “A Case Study in Applying a Systematic Method for COTS Se-
lection,” Proceedings of the 18th International Conference on Software Engineering
(ICSE), IEEE Computer Society.

Kunda, D. and Brooks L. (2000), “Identifying and Classifying Processes (tradi-
tional and soft factors) that Support COTS Component Selection: A Case Study,”
European Journal of Information Systems, Vol. 9, No. 4, pp. 226-234, 2000.
Kunda, D. (2002), “A social-technical approach to selecting software supporting
COTS-Based Systems,” PhD dissertation, University of York.

Maiden N. A. and Ncube C. (1998), “Acquiring COTS Software Selection Require-
ments,” IEEE Software, pp. 46—-56.

McDermid J. A.; “The Cost of COTS”, IEEE Computer, Vol. 31, No. 6, pp. 46-52,
1998

Mollaghasemi M. and Pet-Edwards J., “Technical briefing: making multiple-
objective decisions”, IEEE computer society press, Los Alamitos, California, 1997.

http://www.sei.cmu.edu/str/descriptions/cbsd_body.html

84

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

Douglas Kunda

Morisio M., and Tsoukis A., “IusWare: a methodology for the evaluation and se-
lection of software products,” IEEE Proceedings of Software Engineering, Vol. 144,
No. 3, pp. 162-174, June 1997.

Mumford E. (1995), Effective Systems Design and Requirements Analysis: The
ETHICS Approach, Macmillan Press Ltd, Hampshire.

Oberndorf P. (1997) Facilitating Component-Based software Engineering: COTS
and Open Systems, Proceedings of the Fifth International Symposium on Assess-
ment of Software Tools, IEEE Computer Society, Los Alamitos, California.
Oberndorf P. A., Brownsword L. and Morris E., “Workshop on COTS-Based Sys-
tems,” Software Engineering Institute, Carnegie Mellon University, Special Report
CMU/SEI-97-SR-019, November 1997.

Powell, A., Vickers, A. and Lam, W. (1997), “Evaluating Tools to support Com-
ponent Based Software Engineering,” Proceedings of the Fifth International Sym-
posium on Assessment of Software Tools, IEEE Computer Society, Los Alamitos,
pp. 80-89.

Puma Systems, Inc., “Commercial-Off-The-Shelf System FEvaluation Technique
(COSSET),” http://www.pumasys.com/cosset.htm, March 1999.

Rowley J. E. “Selection and Evaluation of Software,” Aslib Proceedings, Vol. 45,
pp. 77-81, 1993.

Roy, B., “The Outranking Approach and the Foundations of ELECTRE Methods,”
Theory and Decision, Vol. 31, pp. 49-73, Kluwer Academic Publishers, Nether-
lands, 1991.

Saaty, T. L. (1990), The Analytic Hierarchy Process, McGraw-Hill, New York.
Sledge C. and Carney D., “Case Study: Evaluating COTS Products for DoD Infor-
mation Systems,” SEI Monographs, http:www.sei.cmu.edu/cbs/ monographs.html,
July 1998.

Tran, V., Liu D. and Hummel B., “Component-based systems development: chal-
lenges and lessons learned,” Proceedings of the Eighth IEEE International Work-
shop on Software Technology and Engineering Practice incorporating Computer
Aided Software Engineering, IEEE Computer Society, Los Alamitos, California,
pp- 452-462, 1997.

Vigder M. R. and Dean J. (1997), Architectural Approach to Building Systems from
COTS Software, Proceedings of the 1997 Center for Advanced Studies Conference
(CASCON 97), Toronto, Ontario.

Vigder M. R., Gentleman W. M. and Dean J. (1996) COTS Software Integration:
State of the art, National Research Council, Canada, NRC Report Number 39198.
Vincke P.; “Multicriteria decision-aid,” Wiley publishing, Chichester, 1992.
Walters N., “Systems Architecture and COTS Integration,” Proceedings of
SEI/MCC Symposium on the use of COTS in systems Integration, Software En-
gineering Institute Special Report CMU/SEI-95-SR-007, June 1995.

Williams F., “Appraisal and evaluation of software products,” Journal of Informa-
tion Science, Principles and Practice, Vol. 18, pp. 121-125, 1992.

Yoon, K. and Hwang C. (1995), “Multiple Attribute Decision-Making: an Intro-
duction,” Sage Publisher.

Zviran, M. (1993), “A Comprehensive Methodology for Computer Family Selec-
tion,” Journal of Systems Software, Vol. 22, pp 17-26.

	1 Introduction
	2 Background
	2.1 COTS Software Evaluation Process
	2.2 Methods and Techniques for Evaluation

	3 Problems with COTS Software Selection
	4 COTS Software Evaluation and Multi-attribute Decision Making
	4.1 Weighted Sum Method
	4.2 Outranking Method
	4.3 Analytical Hierarchy Process (AHP)

	5 Social Technical Approach to COTS Software Evaluation (STACE)
	5.1 Objective and Principles of STACE
	5.2 STACE Method
	5.3 Application of STACE Method

	6 Future Research
	7 Conclusion
	References

