Improved Linear Time Approximation
Algorithms for Weighted Matchings*

Doratha E. Drake and Stefan Hougardy

Institut fiir Informatik, Humboldt-Universitat zu Berlin, 10099 Berlin, Germany
{drake,hougardy}@informatik.hu-berlin.de

Abstract. The weighted matching problem is to find a matching in a
weighted graph that has maximum weight. The fastest known algorithm
for this problem has running time O(nm + n*logn). Many real world
problems require graphs of such large size that this running time is too
costly. We present a linear time approximation algorithm for the weighted
matching problem with a performance ratio of % — €. This improves the
previously best performance ratio of %

1 Introduction

A matching M in a graph G = (V, E) is a subset of the edges of G such that
no two edges in M are adjacent. In a graph G = (V, FE) with edge weights given
by a function w : E — Ry the weight of a matching is defined as w(M) :=
> ecar w(e). The weighted matching problem is to find a matching M in G
that has maximum weight. The first polynomial time algorithm for the weighted
matching problem is due to Edmonds [4]. A straightforward implementation of
this algorithm requires a running time of O(n?m), where n and m denote the
number of vertices and edges in the graph. Lawler [§] and Gabow [6] improved
the running time to O(n?). The fastest known algorithm to date for solving the
weighted matching problem in general graphs is due to Gabow [7] and has a
running time of O(nm + n?logn).

Many real world problems require graphs of such large size that the runtime
of Gabow’s algorithm is too costly. Examples of such problems are the refine-
ment of FEM nets [9], the partitioning problem in VLSI-Design [10], and the
gossiping problem in telecommunications [2]. There also exist applications were
the weighted matching problem has to be solved extremely often on only moder-
ately large graphs. An example of such an application is the virtual screening of
protein databases containing the three dimensional structure of the proteins [5].
The graphs appearing in such applications only have about 10,000 edges. But
the weighted matching problem has to be solved more than 100,000,000 times
for a complete database scan.

Therefore, there is considerable interest in approximation algorithms for the
weighted matching problem that are very fast, have ideally linear runtime, and
that nevertheless produce very good results even if these results are not optimal.

* supported by DFG research grant 296/6-3

S. Arora et al. (Eds.): APPROX 2003+RANDOM 2003, LNCS 2764, pp. 14-B3] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

Improved Linear Time Approximation Algorithms for Weighted Matchings 15

The quality of an approximation algorithm for solving the weighted match-
ing problem is measured by its so-called performance ratio. An approximation
algorithm has a performance ratio of ¢, if for all graphs it finds a matching with
a weight of at least ¢ times the weight of an optimal solution.

A simple approximation algorithm for the weighted matching problem with
performance ratio % is obtained by the following greedy approach [1]: Start with
an empty matching and extend it in each step by the heaviest edge currently
available. The running time of this algorithm is O(mlogn) as it requires sorting
the edges by decreasing weight. The first linear time %—approximation algorithm
for the weighted matching problem was proposed by Preis [I1] using the idea of
locally heaviest edges. Drake and Hougardy [3] obtained a simpler linear time
approximation algorithm with the same performance ratio by using a completely
different approach. In this paper we improve these results by proving the exis-
tence of linear time approximation algorithms for the weighted matching problem
which have approximation ratios arbitrarily close to %

Main Theorem. For each € > 0 there exists a linear time approzimation algo-
rithm for the weighted matching problem with a performance ratio of % —€.

The main idea of our algorithm is to start with a maximal matching M
and to increase its weight by local changes. These local changes which we call
short augmentations add in each step at most two new edges to M while up
to four edges of M will be removed. A graph can possess up to §2(n*) short
augmentations. To achieve linear running time only some part of these can be
looked at. For each edge of the maximal matching M our algorithm only looks
at all short augmentations that involve the endpoints of this edge. This way
the short augmentations considered by the algorithm are in some sense spread
evenly over the graph and their number is linearly bounded.

As the short augmentations are partly overlapping it can happen that after
performing one short augmentation several others are no longer available. For the
performance ratio it is therefore important to be able to reject short augmenta-
tions that achieve only minor improvements in the weight of the matching. This
is achieved by only taking short augmentations into considerations that gain
at least some constant factor [/ and that additionally yield the largest possible
gain from all these. Such augmentations will be called S-augmentations. In lin-
ear time it seems not to be possible to find the best g-augmentation. However
we will show that in linear time a constant factor approximation of the best
[-augmentation can be found.

To prove the performance ratio of our algorithm we use an amortized analysis.
The idea is that the gain that is achieved by an augmentation is not realized
immediately but part of it is stored in certain edges of the graph for later use.
This way we are able to prove that the algorithm increases the weight of the
given matching by some constant factor. By repeating the algorithm a constant
number of times and choosing (sufficiently small the resulting matching will
have a weight that comes arbitrarily close to %

The paper is organized as follows. In Section 2l we give basic definitions. In
Section 3 we define short augmentations and use these to prove the existence of

16 Doratha E. Drake and Stefan Hougardy

the set of local improvements upon which our algorithm is based. In Section
we present the algorithm and prove that its performance ratio is % — ¢ for any
e>0.

2 Preliminaries

Let G = (V, E) be a weighted graph with weight function w : E — R,. For a
subset F' C E the weight of F' is defined as w(F) := 3 ;. pw(f). A matching
M C FE is called maximal if no proper superset of M in E is a matching. By
M,pe we denote a maximum weight matching in G, i.e. a matching that satisfies
w(Mope) > w(M) for all other matchings M. A path or cycle is called M-
alternating if it uses alternately edges from M and E'\ M. Note that alternating
cycles must contain an even number of edges. Let P be an alternating path such
that if it ends in an edge not belonging to M then this endpoint of P is not
covered by an edge of M. The path P is called M -weight-augmenting if

w(E(P)N M) < w(E(P)\ M)

If P is an M-weight-augmenting path then M A P (the symmetric difference
between M and P) is again a matching with strictly larger weight than M. The
notion of M-weight-augmenting cycles is defined similarly. More generally we
call an augmentation any process that replaces some edges of a matching M by
some new edges and increases the weight of the matching.

3 Short Augmentations

A weight-augmenting path or cycle with respect to a matching M is called short
if it contains at most two edges not belonging to M. The only weight-augmenting
short cycle is by this definition an alternating cycle of length four and there exist
six different types of weight-augmenting short paths. The following result shows
that it is indeed enough to consider such short augmenting paths and cycles to
obtain a %—approximation of the maximum weight matching.

Lemma 1. For any matching M there exists a mode disjoint set of weight-
augmenting short paths and cycles such that augmenting along all these paths
and cycles results in a matching of weight at least % ~w(Mopt).

Proof. Consider the symmetric difference MAM,p,. It consists of even length
alternating cycles and of alternating paths. Order these paths and cycles arbi-
trarily and number the edges of M,,; in the order in which they appear in these
paths and cycles. Now partition M,,; into three sets by taking the edge num-
bers modulo 3. By removing any of these three sets from M AM,,; one obtains
a set of alternating paths and cycles each of which contains at most two edges of
Mpi. Removing the lightest of these three sets shows that M can be augmented
to a matching of weight at least % - w(Mopt) by paths and cycles each of which
contain at most two edges not in M. O

Improved Linear Time Approximation Algorithms for Weighted Matchings 17

In the following we need the notion of a 3-augmentation. For a constant 5 > 1
a [-augmentation of a matching M is an augmentation that has the property
that the weight of the edges that are removed from M is at least by the factor 3
smaller than the weight of the edges that are added to M by the augmentation.
The following result shows that for small enough § any matching M can be
augmented by short paths and cycles each of which is a f-augmentation to a
matching that has a weight close to 2 - w(Mop).

Lemma 2. Let M be an arbitrary matching and 3 > 1 be constant. Then there
erists a node disjoint set of weight-augmenting short paths and cycles each of
which is a B-augmentation such that augmenting along all these paths and cycles

results in a matching of weight at least % ~w(Mopt).

Proof. By Lemmal[ll we know that there exists a node disjoint set of augmenting
paths and cycles each of which contains at most two edges not in M such that
augmenting along all these paths and cycles results in a matching M of weight at
least % - w(Mopt). We now claim that if we take the subset of these augmenting
paths and cycles that are S-augmentations, we get a matching of the desired
weight.

Partition the set M into two sets M>g and M.z such that Mss contains
all edges of M that are obtained by [-augmentations and let ng be all other
edges of M. The set M similarly can also be partitioned into two sets Mg
and M>g according to the augmenting paths and cycles in M AM that contain
these edges. By performing only the f-augmentations one obtains the matching
Mg U Mzg. The weight of this set can be bounded from below as follows:

1 - 2

w(Mog) +w(Msp) > %W(M<ﬁ)+w(M2ﬁ) > ul) 2 (Mo

a

Let M be an arbitrary matching and let M be a matching of weight at
least % - w(Moypt) such that the symmetric difference of M and M consists of
weight-augmenting short paths and cycles. The existence of M is guaranteed by
Lemmal[I] For each cycle or path in MAM choose an edge in M that is adjacent
to all edges of M in this path or cycle. Call the set of all these chosen edges
M*. For each edge e € M* denote by S, the (at most two) edges of M that are
adjacent to e. For an arbitrary set F' of edges denote by inc(F) all edges in M
that are incident to the endpoints of edges in F'. Then inc(S.) contains at most
three edges of M and S. Uinc(S.) is the set of edges of the path or cycle in
MAM that contains the edge e.

For a given constant § > 1 we partition the set /™ into two subsets MZ ; and
Mz 5 such that MZ; contains all edges of M* such that w(S.) < 8- w(inc(S.))
and MZ 5 contains all other edges of M™.

The following result shows that if an algorithm achieves at least a constant
fraction of the value % w(Se) —w(inc(Se)) for all e € MZ 5 then it will improve
a given matching by a constant factor.

18 Doratha E. Drake and Stefan Hougardy

Lemma 3. Let M be a matching of weight w(M) > o - w(Myp). If the
matching M’ has a weight that is larger than the weight of M by at least

€ - ZeeMgﬁ (% ~w(Se) — w(inc(Se))) then

w(M') > (a+g-(i—a)) cw(Moy) -

30
Proof. By the definition of MZ; we have w(inc(S.)) > % ~w(Se) for e € MZg
and w(M) = > - w(ine(Se)). Applying these two facts we get
w(M") > w(M) +¢ - Z (l cw(Se) — w(inc(Se)))
ec M 6
>6
1
=1—-¢) - wM)+e- Z w(ine(Se)) + ¢ - Z 7 w(Se)
eeMz 4 eeM3,
1 1
>(1l—¢)-wM)+e- Z 3 ~w(Se) € - Z 3 ~w(Se)
eeM2, eeMz,
= (L=9)-w(M) + 5 3 w(se)
ﬂ ec M+
e 2
>1—e) a - wMy)+ 33 cw(Mopt)

4 The Algorithm

For the algorithm we have to extend the notion of weight-augmenting short
paths and cycles slightly. Let S C E be a set of at most two non-adjacent edges
such that there exists an edge e in E that is adjacent to all edges in S. Then
by removing all edges from a matching M’ that are adjacent with some edge
in S and by adding S one obtains a new matching M". If w(M") > w(M')
we say that S is a (short) augmenting set centered at e with respect to M’.
As S contains at most two edges there are at most four edges in M’ that will
be removed. Note that the sets S, introduced in Section [l are augmenting sets
centered at e with respect to M.

For the description of the algorithm and the proof of its performance ratio we
need the following additional definitions. Let M denote the maximal matching
that the algorithm begins with and which is the matching that defines the set
Se as described in Section Bl Let M’ denote the matching that is continuosly
updated by the algorithm by means of augmentations. Let aug(e) denote the
set of edges that the algorithm chooses for a S-augmentation at e € M. For an

Improved Linear Time Approximation Algorithms for Weighted Matchings 19

arbitrary set F' of edges denote by inc/(F') all edges in M’ that are incident to
the endpoints of edges in F.

Algorithm improve_matching (G = (V, E),w : E — Ry, M)

1 make M maximal

2 M =M

3 for e € M do begin

4 if there exists a J-augmentation with center e

5 then augment M’ by a good -augmentation with center e
6 end
7 return M’

Fig. 1. Algorithm improve_matching for increasing the weight of a matching.

The algorithm, which we call improve_matching, is shown in Figure[ll Start-
ing from a maximal matching M the algorithm visits each edge e € M exactly
once. For each e € M the algorithm determines if there is any S-augmenting set
centered at e in M’. If there is none then the algorithm moves on to the next
edge in M. Otherwise, there is a S-augmenting set centered at e. The algorithm
then tries to find the best f-augmenting set centered at e. The gain of an aug-
menting set S is defined to be w(S) —w(inc'(S)) which is the amount by which
M’ increases by augmenting S. We define the best 3-augmenting set centered at
e to be the -augmenting set centered at e with the largest gain.

However, the algorithm is not guaranteed to find the best S-augmenting set
centered at e but rather it finds a good [-augmenting set at e. We define a good
B-augmenting set centered at e to be a [S-augmenting set centered at e with a
gain of at least % times the gain of the best (-augmenting set centered at
e. For technical reasons we assume from now on that 1 < g < % which is no
restriction as in the end § will turn out to be very close to 1.

Figure 2] shows our algorithm for finding a good 3-augmentation. It takes an
edge e as input and returns a good (-augmenting set centered at e if any such set
exists. We need a few more definitions to describe the algorithm. For an arbitrary
edge = let war(z) be 0, if ¢ M and define wys(z) = w(x) otherwise. Arbitrarily
label the endnodes of e as left and right. Then any edge a ¢ M’ that is incident
to left together with inc(a) \ {e} form a left arm of e. The definition of a right
arm of e is symmetrical to this. The gain of an arm of e that consists of a & M’
together with ind(a) \ {e} is defined as gain, := wy(a) — wpr(ind(a) \ {e}).
The gain of an arm of e that consists of just a ¢ M’ is defined in the obvious
way as just gaing := wps(a).

We define a left arm a U (incd'(a) \ {e}) to be allowable if there exists a
right arm b U (inc’(b) \ {e}) such that a Ub or a alone forms a [-augmenting
set at e. We calculate the left allowable arms as follows: First, we calculate
the greatest surplus from among the right arms, where we define the surplus of
the right arm b U (inc'(b) \ {e}) as was(b) — B - (war(ind (b) \ {e}) + war(e)).

20 Doratha E. Drake and Stefan Hougardy

Algorithm good-S-augmentation (G = (V,E),w: E - R;,e € E)

1 find the right and left arms of e

2 determine the gains and surpluses of the left and right arms
3 left := largest left allowable arm and its best extension

4 right := largest right allowable arm and its best extension

5 if left= 0 and right= 0

6 then return ()

7 else return max(left, right)

Fig. 2. Algorithm for finding a good [-augmentation.

One can think of the largest surplus from among all the right arms, denoted
surpy, as the maximum value that a right arm can loan to a left arm in order
to make it part of a S-augmenting set at e. A left arm is allowable if and only if
wpr(a) = B - wpr(ind(a) \ {e}) + surp, > 0. The definition of a right allowable
arm, the maximum left surplus surp;, as well as the process for calculating these
is symmetrical.

Once the algorithm has calculated the left and right allowable arms of e
it chooses from among these the one with the largest gain. Without loss of
generality let it be a left arm. Let a € M’ be the uncovered edge in this arm.
Then the algorithm returns the best S-augmenting set centered at e that contains
a.

Lemma 4. If there exists a B-augmenting set centered at e then the algorithm
good-B-augmentation (Figure[d) returns a good (3-augmenting set centered at e.
The running time is proportional to the sum of the degrees of the end-vertices of
the edge e.

Proof. Sketch of proof: If the largest possible gain of an arm is larger than twice
the weight of e then one easily gets that the algorithm finds a -augmentation
that achieves at least % of the largest possible gain. This is because then the
best [-augmentation gains at most 3 times the weight of e and the algorithm
finds a S-augmentation that gains at least the weight of e.

In the other case, using the fact that the algorithm finds a G-augmentation
that does not share an arm with the best possible G-augmentation, one can show
that 6 — 1 must be sufficiently small such that % is big enough to scale the

gain found by the algorithm. For g < % the latter is larger.]

Lemma 5. The algorithm improve_matching improves the matching M by at

least
7@_1)2- l-w —w(inc

Proof. Define § := %. The algorithm visits every e € M and hence every

e € M, If it finds any S-augmenting set for e it also finds and augments a (-

Improved Linear Time Approximation Algorithms for Weighted Matchings 21

augmenting set aug(e) which yields at least § of the gain of the currently best (-
augmenting set at e. Even though the algorithm cannot distinguish between the
edges of M>z and M. or know the previously defined 3-augmenting sets S. we
show by means of amortization that for each of these sets S, it finds a constant
proportion of % ~w(Se) — w(inc(Se)). The idea is that for each e € MZ; the
algorithm can either find an augmenting set as good as S, in M or the matching
M’ has increased by enough weight to already assign a constant proportion of
this gained weight to e.

The idea of the amortized analysis is that when the algorithm augments at e €
MZ 5 then M’ either gains a constant proportion of % ~w(Se) — w(ine(S,)) right
away or M’ can additionally make a withdrawal of weight that has been added
to M”’s savings in the past in a way that brings a total win of some constant
proportion of % ‘w(Se)—w(ine(Se)) to M’. One builds up M"’s savings as follows.
For each e € MZ 5 the matching M " gets charged all of the augmentation that the
algorithm finds at e and this amount gets put in savings. This is not a problem
because there are no sets Se associated with these edges anyway. If e € M2,

then M’ keeps % of the augmentation that the algorithm finds at e and M’ gets
charged the other half to savings. If this is done for all e € M then M’ can
later make withdrawals from savings when necessary. This is necessary when
for instance one needs to augment at e € MZ ; but the edges incident to Se all
have greater weight in M’ than they had in M. Let E C (M’ \ M) denote the
set of new edges incident with the nodes of Se for some such e € MZ ;. Then a

withdrawal from M"’s savings of 1 - % -w(E) can be made for the augmentation
at e. The factor % comes from the fact that the edges in the set E were added
to M’ during SB-augmentations that occured in the past and so there must have
been at least this much put in savings in the past. The factor % comes from the
fact that each edge in E has two endnodes and therefore each e in E can be
involved in at most two withdrawals since each of the S, are node disjoint.

More concretely, when the algorithm visits e € MZ; there are three pos-
sibilities for the set Se: The first is that S, is still S-augmenting in M’ with
w(ind (Se)) < w(ine(Se)), the second is that S is still S-augmenting in M’ with
w(ind (Se)) > w(ine(Se)), and the third is that S. is no longer S-augmenting in
M.

For the first possibility for e € MZ; we have S, is still S-augmenting with
w(ind (Se)) < w(inc(S,)) when the algorithm visits it. Since the algorithm al-
ways finds a [-augmentation aug(e) of at least § the gain of the largest /-
augmentation at e in M’ it follows that after M’ has been charged % of the

augmentation found at e the amount of weight that M’ increases by is

S waug(e)) — wline (aug(e)))) > Fw(S.) w(ine'(5.)
> S(w(S.) — wline(s.))
0,1)
> 55 w(S.) — w(ine(s.))

22 Doratha E. Drake and Stefan Hougardy

For the second possibility for e € MZ ; we have that Se is still S-augmenting
with w(inc' (Se)) > w(inc(S,)) when the algorithm visits it. Let A denote the
set inc(S.) \ inc(Se). The set A contains only new edges, i.e., edges that were in

augmentations, therefore M’’s has increased in the past by at least % -w(A) of

which at least half can be withdrawn by M’. This together with the augmentation
that the algorithm will find at e, one half of which M’ gets to keep, means that
M"’s total win at e is at least

18-1

5 (wlaug(e) = wlin (aug(e)) + 57— - w(4)
> Sw(S.) = wlind/(S0)) + 57 (w(ine'(8.) ~ w(ine(S.)))
> g%(w(se) —wind (8.)) + wlinc(S.)) — w(ine(S.)))
0pg—-11 .
> ET(Bw(Se) —w(inc(Se))).

For the third and final possibility for e € MZ 5 we have that S is no longer (-
augmenting when the algorithm visits it, i.e., w(inc'(S.)) > % -w(S,). Therefore,
the set of edges A = inc(S.) \inc(S,) has weight w(A4) > % -w(Se) —w(ine(Se)).
Then M’"’s savings must have increased by at least % -w(A) of which at least
% can be withdrawn by M’. So independently of wether the algorithm finds a
B-augmenting set at e in M’, M’ gets a total win in this step of at least

15-1 18—-1,1 .
———w(A) > - ——(=w(S,) — Se))).
The minimum weight that M’ increases by at each e € MZ 5 over all three

cases is %%(%w(é‘e) —w(inc(Se))) which proves the lemma since we defined §
as B=1
T

O

Theorem 1. If M is any matching with w(M) > a-w(Mop) then after applying
the algorithm improve_matching one obtains a matching M' with weight at least

Proof. This is an immediate consequence of Lemma[3 and Lemma]

We are now able to prove the main theorem.

Main Theorem. For each € > 0 there exists a linear time approzimation algo-
rithm for the weighted matching problem with a performance ratio of % — €.

Improved Linear Time Approximation Algorithms for Weighted Matchings 23

Proof. Theorem[Ilshows that by repeating algorithm improve_matching one gets
a matching with weight arbitrarily close to % -w(Mopt). Now by choosing 3 > 1

small enough one gets a matching with weight arbitrarily close to % cw(Mopt).
Note that 8 and the number of repeats of algorithm improve_matching are con-
stants depending on e. As the algorithm improve_matching has linear running

time the total running time stays linear. O

References

1. D. Avis, A Survey of Heuristics for the Weighted Matching Problem, Networks,
Vol. 13 (1983), 475-493

2. R. Beier, J.F. Sibeyn, A Powerful Heuristic for Telephone Gossiping, Proc. 7th
Colloquium on Structural Information and Communication Complexity, Carleton
Scientific (2000), 17-35

3. D.E. Drake, S. Hougardy, A Simple Approximation Algorithm for the Weighted
Matching Problem, Information Processing Letters 85 (2003), 211-213

4. J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices,
J. Res. Nat. Bur. Standards 69B (1965), 125-130

5. C. Frommel, C. Gille, A. Goede, C. Gropl, S. Hougardy, T. Nierhoff, R. Preifiner,
M. Thimm, Accelerating screening of 3D protein data with a graph theoretical
approach, to appear in Bioinformatics

6. H.N. Gabow, An efficient implementation of Edmond’s algorithm for maximum
matching on graphs, Journal of the ACM 23 (1976), 221-234

7. H.N. Gabow, Data Structures for Weighted Matching and Nearest Common An-
cestors with Linking, SODA 1990, 434-443

8. E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston, New York, 1976

9. R.H. Mohring, M. Miiller-Hannemann, Complexity and Modeling Aspects of Mesh
Refinement into Quadrilaterals, Algorithmica 26 (2000), 148-171

10. B. Monien, R. Preis, R. Diekmann, Quality Matching and Local Improvement for
Multilevel Graph-Partitioning, Parallel Computing, 26(12), 2000, 1609-1634

11. R. Preis, Linear Time 1/2-Approximation Algorithm for Maximum Weighted
Matching in General Graphs, Symposium on Theoretical Aspects of Computer
Science, STACS 99, C. Meinel, S. Tison (eds.), Springer, LNCS 1563, 1999, 259
269

	Introduction
	Preliminaries
	Short Augmentations
	The Algorithm

