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Abstract. CoreWar is a computer simulation where two programs written in
an assembly language called redcode compete in a virtual memory array. These
programs are referred to as warriors. Over more than twenty years of develop-
ment a number of different battle strategies have emerged, making it possible to
identify different warrior types. Systems for automatic warrior creation appeared
more recently, evolvers being the dominant kind. This paper describes an attempt
to analyze the output of the CCAI evolver, and explores the possibilities for per-
forming automatic categorization by warrior type using representations based on
redcode source, as opposed to instruction execution frequency. Analysis was per-
formed using EM clustering, as well as information gain and gain ratio attribute
evaluators, and revealed which mainly brute-force types of warriors were being
generated. This, along with the observed correlation between clustering and the
workings of the evolutionary algorithm justifies our approach and calls for more
extensive experiments based on annotated warrior benchmark collections.

1 Introduction

Among the many approaches to creating artificial intelligence and life, one is concerned
with constructing computer programs which run in virtual environments. Many aspects
of these environments may be inspired by the real world, with the overall objective to
determine how well the programs adapt. In some cases different programs compete for
resources and try to eliminate the opposition.

One of the oldest and most popular venues for the development and research of pro-
grams executing in a simulated environment is CoreWar, in which programs (referred to
as warriors) attempt to survive in a looping memory array. The system was introduced
in 1984 by A. K. Dewdney in an article in the Scientific American [I]]. Basically, two
programs are placed in the array end executed until one is completely eliminated from
the process queue. The winner is determined through repeated execution of such “bat-
tles” with different initial positioning of warriors in the memory. Online competitions
are held on a regular basis, with the game being kept alive by the efforts of a small, but
devoted community.

Over the course of more than twenty years of development, a number of different
battle strategies have emerged, often combining more than one method for eliminat-
ing opponents. These strategies closely reflect programmers’ ideas about how a warrior
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should go about winning a battle. However, several attempts have been made recently to
automatically create new and better warriors, by processes of optimization and evolu-
tion. Optimized warriors are essentially human-coded, with only a choice of instruction
parameters being automatically calculated to ensure better performance. On the other
hand, evolved warriors are completely machine generated through the use of evolution-
ary algorithms.

In order to evaluate the performance of optimized and evolved warriors, the most
common method is to put them against a benchmark set of manually prepared test pro-
grams. To get reliable and stable results against every warrior from the benchmark in
the usual setting, at least 250 battles are needed, each taking a few seconds to execute.
Evolving new warriors from a set of a few thousand programs and iteratively testing
them against the benchmark is then clearly a very time demanding process.

The goal of the research presented in this paper is to examine the diversity of war-
rior pools created by one particular evolver and to test the possibilities of automatic
categorization by warrior type (employed strategies), given the information obtained
by syntax analysis of warrior source code. The amount of data created by evolver
runs usually surpasses the capabilities of human experts to examine and classify the
warrior pools. Automated categorization would, therefore, be extremely helpful in the
control of diversity levels, and dynamic modification of mutation rates for sustaining
the desirable diversity within generations. It would also significantly contribute to our
understanding of the nature of the output of evolutionary algorithms, in this case the
battle strategies of evolved warriors. Although one may be familiar with every detail
of how a particular evolutionary algorithm works, its output is still very much depen-
dent on the performance of warriors against the benchmark, leaving room for many
surprises.

There were some attempts in the past to perform automatic categorization of war-
riors, but these were based on the analysis of execution frequencies of particular in-
struction types during simulation, which requires the simulation to be run for a certain
amount of time [2]]. If the source-based approach proved fruitful, it would be possi-
ble to come to similar conclusions much quicker, which could, in turn, speed up the
whole process of warrior evolution. To the best of our knowledge, this paper presents
the first attempt to categorize warriors using static (source-based) instead of dynamic
(execution-based) methods.

The rest of the paper is organized as follows. Section [2] explains the essentials of
CoreWar and some basic strategies of human-coded warriors, while Section 3] outlines
the principles of the EM clustering algorithm. Section]describes the dataset of evolved
warriors and how it was processed into the representation suitable for analysis. The
analysis, which relies on clustering and attribute evaluation techniques, is the subject of
Section 3l The last section provides a summary of the conclusions together with plans
for future work.

2 CoreWar

CoreWar is a computer simulation where programs written in an assembly language
called corewars (by the 1988 ICWS standard) or redcode (by the 1994 ICWS
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standard) compete in a virtual memory array. Those programs are referred to as war-
riors. The simulated memory array is called the core. It is wrapped around, so that the
first memory location in the address space comes right after the last one. The basic unit
of memory in the core is one instruction, instead of one bit. The memory array redcode
simulator (MARS) controls the execution of the instructions in the core. The execution
of instructions is consecutive, apart from the situations arising after executing jump in-
structions. All arithmetic is modular, depending on the size of the core. All addressing
modes are relative.

The goal of a warrior is to take complete control over the core by making the op-
ponent eliminate its own thread of execution from the process queue. There are many
ways to achieve this effect, and various different strategies of attack have emerged over
time. CoreWar warriors can copy the memory content, read from the core, perform var-
ious calculations, mutate and change their behavior, make copies of themselves, place
decoys, search for their opponents etc. The starting placement of warriors in the core
is done at random, and a predetermined number of fights are staged to decide the win-
ner (3 points are awarded for a win, 1 for a draw, O for a loss). Between rounds, the
result of the previous fight is stored in a separate memory array called P-space. In some
competitions warriors are allowed to access this memory and change their strategy, if
necessary, to ensure better performance in future rounds.

CoreWar was introduced by A. K. Dewdney in 1984, in an article published in the
Scientific American [I]]. Today, CoreWar exists as a programming game with ongo-
ing online competitions on several servers, among which are www.koth.org/| and
sal.math.ualberta.ca/. There are many competition leagues, depending on
battle parameters, and each of these is called a hill. The warrior currently holding the
first place is appropriately called the king of the hill (KOTH).

Although the competitions were originally meant as a challenge for testing human
skill in making successful CoreWar programs, there were also those who chose to create
software capable of autonomously generating or evolving and later evaluating compet-
itive CoreWar programs. On several occasions such warriors were able to outperform
warriors coded by humans. This is usually done via the implementation of evolutionary
algorithms.

2.1 The Redcode Language

Redcode is a language that is being used as a standard for making CoreWar warriors
since 1994. It consists of 19 instructions, 7 instruction modifiers and 8 addressing
modes. The warrior files are stored on the disk as WarriorName.RED.

The redcode instruction set, although not huge, allows for much creativity and di-
versity. Each command consists of an instruction name, instruction modifier, A-field
addressing mode, A-field value, B-field addressing mode, and the B-field value. The
source address is stored in the A-field and the destination address in the B-field. Table[T]
summarizes the more important redcode instructions, while Tables 2land 8] describe all
redcode modifiers and addressing modes, respectively. Figure[I(a) depicts the source of
an example warrior.
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Table 1. Overview of some redcode instructions

Instruction Description

DAT Removes the process that executes it from the process queue. It is used to
store data. The instruction modifiers play no role here.

MOV Copies the source to the destination.

ADD Adds the number in the source field to the number in the destination field.
Two additions can be done in parallel if the .F or .X modifier is used.

SUB Performs subtraction. The functionality is the same as in ADD.

MUL Performs multiplication. It is not used as frequently as ADD or SUB, however.

DIV Performs integer division. In case of division by zero, the process demanding
the execution of the instruction is removed from the process queue. This is
another way of removing enemy processes.

MOD Gives the remainder of the integer division.

IMP The unconditional jump instruction, redirecting the execution to the location
pointed at by its A-field. The B-field does not affect the jump, so it can be
used either to store data, or to modify some other values via the use of incre-
mental/decremental addressing modes.

IMZ Performs the jump, if the tested value is zero. If the modifier is .F or .X, the
jump fails if either of the fields is nonzero. As in the jump instruction, the
A-field points to the jump location. The B-field points to the test location. If
the jump fails, the instruction following the JMZ will be the next instruction
to be executed by this process.

JMN Performs the jump if the tested value is nonzero. Otherwise functions like
IMZ.

DIN Decreases the destination and jumps if the value is nonzero. The functionality
is otherwise the same as in JMZ and JMN.

SPL Creates a new process and directs its execution to the source value. The old
process, being the one that executed the SPL is moved to the next memory
location. The new process is executed right after the old process.

Table 2. Overview of redcode instruction modifiers
Modifier Description
A This modifier states that the action is conducted on the whole instruction, and
used only when copying an instruction or comparing the content of two memory
locations.

.F Copying, or comparing two fields at the same time.

X Copying, or comparing two fields at the same time, A-field of the source to the B-

field of the destination, and B-field of the source to the A-field of the destination.

A Moving, or comparing, the A field of the source to the A-field of the destination.

.B Moving, or comparing, the B field of the source to the B-field of the destination.

.AB Moving, or comparing, the A field of the source to the B-field of the destination.
.BA Moving, or comparing, the B field of the source to the A-field of the destination.
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Table 3. Overview of redcode addressing modes

Addressing Mode Description
$ direct Points to the instruction x locations away, where x is the respec-
tive field value in the executed instruction. It can be omitted.
immediate Points to the current instruction, regardless of the field value.
*  A-field indirect Points to the instruction x + y locations away, where x is the re-

spective field value and y is the value in the A-field of the instruc-
tion x locations away.

@ B-field indirect Analogous to A-field indirect.

A-field predecrement Indirect mode, also decreasing the A-field value of the instruction
pointed to by the respective field in the executed instruction. The
decrement is done before calculating the source value of the cur-
rent instruction.

}  A-field postincrement Indirect mode, also increasing the A-field value of the instruction
pointed to by the respective field in the executed instruction. The
increment is done after calculating the source value of the current
instruction.

< B-field predecrement = Analogous to A-field predecrement.

> B-field postincrement Analogous to A-field postincrement.

—_~

2.2 Warrior Types

As mentioned before, over twenty years of CoreWar competitions had lead to a great
increase in diversity of warrior types. Some of the most important warrior categories
are given below.

Imps are the simplest kind of warriors which just copy themselves to another memory
location in each execution cycle, that way “running around” the core. Imps barely
have any offensive capabilities, and are seldom used on their own.

Coreclears attempt to rewrite the whole core with process-killing instructions, that
way ensuring a win, in a sense of being positive that the opponent is destroyed.
Stones simply copy DAT instructions over the core, trying to overwrite a part of the
enemy code. Up to this moment, many alternate approaches were devised, resulting

in warriors copying other instructions as well, not only DATs.

Replicators (papers) follow the logic that in order for the warrior to survive, it should
create many processes and let them operate on many copies of the main warrior
body, therefore ensuring that some of those copies will survive an enemy attack,
since it takes a lot of time to destroy them all. In the meantime, the warrior tries to
destroy the enemy process. The warrior in Fig.[I(a) is, in fact, a replicator, referred
to as the “black chamber paper.”

Scanners (scissors) try to discover the location of enemy code and then start an attack
at that location. Since the scanner attack has a greater probability of succeeding,
due to the intelligent choice of target location, such a warrior is usually able to
invest more time in the attack against that location.

Hybrid warriors combine two or more warrior types in their code, and are nowadays
most frequently used in CoreWar tournaments.
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Generally, each non-hybrid type of CoreWar warrior is effective over one other war-
rior type, and is at the same time especially vulnerable to another, with the relationships
between types being in line with the rock-paper-scissor metaphor (hence the naming
of some warrior types). For more information about the redcode language and warrior
types, see [3l.

3 Expectation Maximization

The research described in this paper utilizes the expectation maximization (EM) clus-
tering algorithm [4] (p. 265), implemented in the WEKA machine learning workbench.
This algorithm is probabilistic by nature, and takes the view that while every instance
belongs to only one cluster, it is almost impossible to know for certain to which one.
Thus, the basic idea is to approximate every attribute with a statistical finite mixture. A
mixture is a combination of k probability distributions that represent k clusters, that is,
the values that are most likely for the cluster members. The simplest mixture is when
it is assumed that every distribution is Gaussian (normal), but with different means and
variances. Then the clustering problem is to deduce these parameters for each cluster
based on the input data. The EM algorithm provides a solution to this problem.

In short, a procedure similar to that of k-means clustering ([4]], pp. 137-138) is used.
At the start, the parameters are guessed and the cluster probabilities calculated. These
probabilities are used to re-estimate the parameters, and the process is continued until
the difference between the overall log-likelihood at consecutive steps is small enough.
The first part of the process is “expectation,” i.e. the calculation of cluster probabilities,
and the second part — calculating the values of parameters — is the “maximization” of
the overall log-likelihood of the distributions given the data.

WEKA’s implementation of EM provides an option to automatically determine the
number of clusters £ using 10-fold cross-validation. This is done by starting with k = 1,
executing the EM algorithm independently on every fold and calculating the average
log-likelihood over the folds. As k is incremented the process is repeated until the av-
erage log-likelihood stops increasing.

4 The Dataset

The analyzed data represents a subset of warriors generated by the CCAI evolver [3],
which was written by Barkley Vowk from the University of Alberta in summer 2003.
The evolutionary approach used in this evolver was the island model [6]].

The dataset consists of 26795 warrior files, and is summarized in Tabled The data
was divided into four smaller parts in chronological order. The respective sizes of the
parts are 10544, 6889, 4973, 4389, and will be referenced in the text as “generation 1,”
“generation 2” etc. The first pool was randomly generated, and the others represent the
consecutive generations in evolving. One of the reasons why each group is smaller than
the previous one is that evolvers reduce diversity in each step, and duplicates are re-
moved before proceeding to the next generation. The benchmark used for this evolution
was Optimax [[7]].
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4.1 Selecting the Representation

Inspired by the classical bag-of-words representation for text documents, and the fact
that it works for many types of data mining and machine learning problems, we opted
for an analogous “bag-of-instructions” representation for CoreWar warriors. Since each
instruction may be accompanied by an instruction modifier, two addressing modes and
two field values, there are plenty of choices for deriving attributes, possibly leading to
a high dimensionality of the representation.

In the end, the decision was made to use a vector with just the bare instruction counts
from the warrior source code. The resulting vector has 16 coordinates (attributes), one
for each of the command types. The name of the warrior was also added as an attribute.
To transform the data into vector form a Java command line application was written,
details of which are presented in [3].

Some modifications were introduced to make the information more specific to red-
code, and the first alteration was to treat ADD and SUB as the same instruction, being
that they can perform the same operation by simply toggling the minus sign in the ad-
dress field.

The next alteration was done in order to add more information about the structure of
the warriors to the representation. For many types of warriors there are specific pairs of
commands that appear one after the other. Based on our previous experience with war-
rior types and coding practices, eight pairs of these two-command combos were added
to the representation, namely SPLMOV, MOVIMP, MOVDIJN, MOVADD, MOVSUB,
SEQSNE, SNEJMP and SEQSLT.

Finally, there are sets of commands specific to some types of imps, so a true/false
field named “Imp spec” was introduced. Examples of such commands are MOV.TI 0,1
and MOV.I #x, 1. The presence of any of the commands suggests that an imp struc-
ture could be embedded within a warrior.

Figure [[lshows the representation of an example warrior (a) as a vector of attributes
(b) described above.

4.2 Removing Duplicates

Besides choosing an appropriate representation, a method for speeding up calculations,
as well as improving results, is to remove “too similar” warriors. When clustering the
data, warriors which are close to each other in terms of distance between the appropriate
vectors in the state-space (containing all the vectors), could easily gravitate smaller
groups toward them, thus creating a larger cluster than it should be.

A decision was made to ignore the address fields, and therefore duplicates would be
any two warriors that have the same sequence of instructions with identical instruction
modifiers and address modifiers.

Table @] summarizes the results of the duplicates search. Most duplicates were re-
moved from generations 1 and 2, 12% and 8% respectively. From generation 3 only
about 1% of the files were removed as duplicates, and in set 4 about 4%. In summary, a
total of 2153 duplicates were found, which is about 8% of the initial 26795 warriors.
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boot SPL.B $1, sO DAT: 0
SPL.B $1, $O0 MOV : 5

SPL.B $1, sO0 ADD/SUB: 0

MOV.I {pl, {divide MUL: 0

divide SPL.B (p3+1+4000), }c DIV: 0
pl SPL.B @(p3+1), }psl MOD: 0
MOV.I }pl, >pl JMP: 0

P2 SPL.B @0, }ps2 JIMZ : 1
MOV.I }p2, >p2 JMN : 0

MOV.I #bs2, <1 DJN: 0

SPL.B @0, {bsl SPL: 7

MOV.I {p2, {p3 SEQ: 0

p3 JMZ.A Sps3, =0 SNE : 0
SLT: 0

NOP: 0

SPLMOV : 4

MOVJMP : 0

MOVDJN : 0

MOVADD: 0

MOVSUB: 0

SEQSNE : 0

SNEJMP : 0

SEQSLT: 0

Imp spec: false
(@) (b)

Fig. 1. Example code of a warrior (a), and its attribute vector representation (b)

Table 4. Summary of datasets and results of duplicate detection

Dataset Files Duplicates Reduction
Generation 1 10544 1345 12%
Generation 2 6889 559 8%
Generation 3 4973 56 1%
Generation 4 4389 193 4%
Complete 26795 2153 8%

5 Analysis of Evolved Warriors

5.1 Clustering

First, clustering was performed independently on all warrior generations (and also on
the complete set) using the implementation of EM from the WEKA workbench. The
number of clusters was automatically determined by cross-validation (see Section [3)).
The number of discovered clusters per warrior set and the number of instances per
cluster are given in Table [3l In generation 1, only two clusters were found. After ex-
amining a portion of the warriors in this set, it appeared that the two clusters that were
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found consist mostly of various kinds of replicators and some coreclears. This was de-
termined by taking a random sample of 50 warriors from each of the clusters. The only
way to achieve absolute confirmation is to manually examine all warriors, which we
considered infeasible. However, some insights provided by attribute evaluation (Sec-
tion[3.2)) give additional support to the finding.

Table 5. Clusters per generation and number of warriors per cluster

Dataset Clusters Cluster sizes
Generation 1 2 8081 1146
Generation 2 4 3456 1857 572 468

Generation 3 12 88 2112 644 543 526 47 671 36 47 103 38 80
Generation 4 5 2364 1197 357 94 184
Complete 3 6571 2671 15469

Compared to generation 1, the number of clusters increases in generations 2 and 3,
more precisely 4 and 12 respectively, but this was expected. The warriors in each set
were evolved from the previous, and new strategies that had good results were pre-
served. This means that new groups of warriors with similar strategies should appear in
generations 2 and 3, and the clustering algorithm did notice this.

In the last generation, the fourth, the number of clusters decreased to 5. This is most
probably due to the reduction of diversity in the warriors that takes place at the end of
the process of evolution.

The clustering of the whole dataset resulted in 3 clusters. The reduction of the num-
ber may be a consequence of the island model — the larger clusters most likely “absorb-
ing” the smaller ones.

5.2 Attribute Evaluation

To analyze the effects of different attributes on cluster selection, information gain (1G)
and gain ratio (GR) attribute evaluators were used [4]]. Because of known shortcomings
of both evaluation methoddl, the approach that was utilized was to choose the attributes
with the highest gain ratio, but only if their information gain is larger that the average
information gain for all attributes ([4]], p. 105).

Since attributes in the warrior representation mostly correspond to instructions and
instruction pairs, we expected their (in)significance with regards to the clustering to
give us some idea about the types of warriors that were grouped together, and also to
shed some light on the process of warrior evolution.

Table [6] summarizes the results of attribute evaluation on the complete dataset. It
shows that the most informative feature is ‘DJN,” being that others with higher GR
values have very low information gain. It is interesting to note that the second best is
‘MOVDIJN’ and that these two are also the best two in IG values. However, the rest of
the information gain list does not follow in the same order. The ‘SPLMOV” attribute

" IG favors attributes with many distinct values, while GR may give unrealistically high scores
to attributes with a low value count.



D. Pracner et al.

Table 6. Gain ratio and information gain for the complete dataset

Gain Ratio Information Gain
0.40350 MUL 0.49217 DJN
0.38200 SLT 0.43917 MOVDJN
0.37550 SEQSNE 0.31378 MOV
0.34570 MOVSUB 0.22883 SPLMOV
0.33690 MOD 0.20510 SPL
0.31520 SNEJMP 0.17605 Imp spec
0.26310 DJN 0.17025 DAT
0.24970  SEQSLT 0.15134 ADD/SUB
0.24820 IMZ 0.14137 MOVIMP
0.24070 MOVDJN 0.09816 SEQ
0.18620 NOP 0.09345 MOVSUB
0.18270  ADD/SUB 0.07179 JMP
0.18040  Imp spec 0.06768 MOVADD
0.17430 DIV 0.06380 SNE
0.15190 MOVADD 0.06001 IMZ
0.11840 JMN 0.03642 MUL
0.11630 SNE 0.02582 SLT
0.10140  SEQ 0.02370 NOP
0.09350 MOVIMP 0.02184 SEQSNE
0.08930 MOV 0.02126 JMN
0.08240 SPLMOV 0.01484 DIV
0.05780  SPL 0.01138 MOD
0.05420 JMP 0.00730 SNEJMP
0.05110  DAT 0.00117 SEQSLT
0.192436 AVERAGE 0.1191416 AVERAGE

also has high information gain, but shows less in terms of gain ratio. Looking from
the CoreWar perspective, ‘SPLMOV’ and ‘MOVDIJN’ are instruction pairs appearing
frequently in both coreclears and replicators, so this result is not surprising. It also
suggests that the results might have been significantly different if these attributes had
not been used, and an ordinary bag-of-instructions was employed instead.

After the analysis of the complete dataset, an attempt was made to get more informa-
tion on the actual evolution process by examining the individual generations, keeping
in mind that the first generation is (in big part) random.

Table[Zllists the most informative attributes for generations 1-4, with their GR and IG
scores. On generation 1, analysis showed that the most informative attribute is ‘JMN,’
being the first selection or both information gain and gain ratio. ‘SLT’ is also close,
followed by ‘MOVSUB’ and ‘MOVADD’ after a large gap.

An interesting observation is that the best attributes for the complete dataset, ‘DIN’
and ‘SPLDIJN, are at the very bottom of the list in generation 1. An interpretation
for this is that there was greater variety in the original pool, which did not affect the
global dataset at a greater measure, especially when considering the fact that subsequent
generations increasingly resemble the complete dataset, as demonstrated below.
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Table 7. Most informative attributes for generations 1-4, together with GR and IG scores

Generation 1 Generation 2
Attribute GR I1G Attribute GR 1G
JMN 0.47461  0.11450 MOVADD  0.48960  0.34157
SLT 0.41082  0.04551 ADD/SUB  0.37800  0.34566
MOVSUB  0.13870  0.05287 MOVDIN  0.22310 0.43554
MOVADD 0.12117 0.04122 SPLMOV 0.22280  0.56428

DIN 0.20880  0.43173

SPL 0.20350  0.54848

Generation 3 Generation 4

Attribute GR IG Attribute GR IG
SPLMOV  0.36100 0.47913 SPLMOV  0.52450 0.56816
MOVDIN  0.33800 0.31149 MOVIMP  0.43380  0.44600
DIN 0.31500  0.32649 MOVDIN  0.42800 0.33516
Imp spec 0.26400  0.18135 DIN 0.41400 0.33717
SPL 0.22700  0.49328

In the second warrior set the situation was significantly different compared to gen-
eration 1, with ‘JMZ’ and ‘DIV’ leading the GR scores, but with low IG. After filter-
ing with the average IG, the list is as follows: ‘MOVADD, ‘ADD/SUB, ‘MOVDIN,
‘SPLMOV,” ‘DIN, and ‘SPL’. Here ‘MOVDIJN’ and ‘DJN,” which were important for
the complete dataset, do appear in the list. Also, most of the best attributes from gener-
ation 1 do not show, or are a lot lower in the list, except ‘MOVADD’ and *ADD/SUB’.
This all indicates that much code from generation 1 was discarded during evolution.
This is also evident in the reduction of size by 40% between generations 1 and 2.

In the third group, analysis shows that ‘SPLMOV, ‘MOVDIJN,” ‘DJN,” ‘ImpSpec,’
and ‘SPL’ had most impact on the clustering process. Compared to the second genera-
tion, ‘ADD/SUB’ and ‘MOVADD’ which were “inherited” from generation 1 are now
gone, leaving a result much closer to the complete set.

In generation 4, ‘SPLMOV, ‘MOVJMP, ‘MOVDIN, and ‘DJN’ were the most sig-
nificant attributes with regards to clustering. The only big difference between this and
generation 3 is the “climbing” of ‘MOVIMP’. This lack of differences is also consistent
with the earlier explained way the CCAI evolver works, in the sense that when there are
no great improvements to the warriors in the next generation the process is stopped.

6 Conclusions and Future Work

Exploration and generation of CoreWar warriors, assisted by computers, has become in-
creasingly popular in the recent years. Majority of work, however, has concentrated on
warrior parameter optimization [[7]] and the evolution of competitive warriors [SI519].
Exploratory analysis (albeit motivated by warrior evolution), by means of automatic
categorization based on the analysis of execution frequencies of certain instruction
types during simulation, was performed, with some results available in [2]], but with no
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published findings. In the research described in this paper, on the other hand, we at-
tempted to utilize a static (source-based) instead of a dynamic (execution-based) ap-
proach to the analysis and categorization of a set of warriors. The used dataset was the
result of warrior evolution conducted by the CCAI evolver [3].

The clustering of the CCAI evolver output was done using the EM algorithm incor-
porated in the WEKA workbench. Three clusters were detected in the complete dataset.
This indicates that the overall diversity of the complete dataset was rather low, which
can be explained by the fact that it is difficult for evolutionary algorithms to gener-
ate complex structures within the warriors in the evolved population, because small
changes and mutations usually render good complex warriors useless, and there is a
huge gap between different warrior strategies. Therefore, the most mutation resistant
forms prevailed, namely replicators and coreclears.

The complete dataset was divided into 4 subsets, in chronological generational order.
After processing, 2, 4, 12 and 5 clusters had been found in generations 1, 2, 3 and 4,
respectively (see Table [3l). The general tendency of this result was expected, because
of varying mutation rates which were decreased at the end of the evolution process,
producing a general decrease of diversity in the evolved population.

Information gain and gain ratio analysis showed that ‘DJN’ and ‘MOVDJN’ were
the most significant attributes in the clustering of the whole dataset (see Table [6).
‘SPLMOV’ and ‘MOVIJMP’ were also important in clustering of some of the subgroups.
This can be explained by the fact that most of the warriors in the dataset were either
replicators or coreclears, and these instructions and instruction pairs are seen quite fre-
quently in such warriors.

Attribute analysis generation by generation also showed consistency with the way
the evolver works. The greatest changes were exhibited between the original pool and
the next generation, and attribute evaluation did register large differences in the infor-
mativeness of attributes.

It is also possible to cluster warrior sets according to the scores of evolved warriors
against a predetermined benchmark. A diverse benchmark of human-coded warriors
manually annotated with their types was created for this purpose, and the score tables
have already been generated. The clustering according to the score tables will be con-
ducted and the results compared to those obtained via source-based clustering described
in this paper.

An issue with the static source-based warrior representation used in the presented
work may be the “garbage” often left over in the source code of evolved warriors —
instructions which never actually execute, but effectively introduce noise to the repre-
sentation. Warriors written by humans, on the other hand, are usually “clean” in this
sense. Dynamic representations based on counts of instruction execution are able to
deal with this kind of noise, but at the expense of a considerable increase in warrior
preprocessing time.

The noted correspondences between the workings of the evolutionary algorithm and
clustering indicate that our choice of static warrior representation was to some extent
appropriate. However, in order to determine exactly to what extent, and whether the syn-
tax analysis can produce good categorization of evolved warriors, precise measurements
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are necessary. This may be done through comparison of source-based and score-table-
based clusterings, and additionally by training classifiers and comparing classification
results with the clusters.

The warrior population evolved by the CCAI evolver was not as diverse in a strategic
sense as any human coded warrior group. To see how well clustering and classification
algorithms can cope with more diverse datasets, and also to see if the data represen-
tation chosen in this project does well in such situations, the whole process will be
repeated on some human coded warrior set. Being that human coded warriors often mix
several strategies, it would be especially interesting to use probabilistic methods to gain
insight into the probabilities of a warrior belonging to classes which were previously
identified and annotated. A comparison of static and dynamic representations, on both
human-coded and evolved warrior datasets, should then give more definitive answers
concerning the feasibility and applicability of automatic warrior categorization.
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