
X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 414–424, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Scalable Peer-to-Peer Network with Constant Degree*

Dongsheng Li1, Xinxin Fang2, Yijie Wang1, Xicheng Lu1, Kai Lu1, and Nong Xiao1

1School of Computer,
National University of Defense Technology,

 410073 Changsha, China
leedongsh@hotmail.com

2Department of Compute science and technology,
Tongji University,

200092 Shanghai, China
sabina_xin@hotmail.com

Abstract. Recently many distributed hash table (DHT) schemas have been
proposed to build scalable peer-to-peer systems, in which degree and diameter
are two important measures. In this paper, we propose Fission, a novel DHT-
style peer-to-peer network, which is of constant degree and O(logN) diameter.
Peers in Fission form an approximate Kautz topology and the “split large and
merge small” policy is exploited to achieve load balance when peers join or
depart. The performance of Fission is evaluated using both analysis and
simulation. Formal proofs verify that the degree and the diameter of Fission are
no more than O(1) and 2*logN respectively and the join or departure of one
peer requires only O(1) peers to change their state. Simulations show that the
load balance characteristic of Fission is good and the average path length of
Fission is no more than logN.

1 Introduction

In recent years, peer-to-peer computing has emerged as a novel and popular
computation model and attracted significant attentions from both industrial and
academic fields [1,2]. The core component of many proposed peer-to-peer storage
systems [3,4,5,6,7,8] is the distributed hash table (DHT) schema that uses a hash
table-like interface to publish and lookup data objects. In DHT schemas, each peer
bears responsibility for a certain portion of the key space and uses a routing table to
forward the query for data object. To maintain the DHT, the responsibility is re-
assigned between peers when peers join or depart.

Two important measures of DHT systems are degree, the size of routing table to be
maintained on each peer, and diameter, the number of hops a query needs to travel in
the worst case. In many existing DHT schemas, such as Chord [3], Tapestry [4] and
Pastry [5], both the degree and the diameter tends to logN. In this paper, we propose

* This work was supported by National Natural Science Foundation of China under the grant

No. 69933030, 60203016 and 90104001, Excellent PHD Dissertation Foundation of China
under the grant No. 200141 and National 863 High Technology Plan of China under the
grant No. 2002AA131010.

A Scalable Peer-to-Peer Network with Constant Degree 415

Fission, a novel DHT-style peer-to-peer network with constant degree and O(logN)
diameter, which exploits Kautz topology and uses the “split large and merge small”
policy for maintenance. Fission is inspired by CAN [6], which allows peers re-
positioning the space, and D2B [9], a DHT schema based on de Bruijn graphs.
However, Fission can achieve better results than both. Proofs show that the degree
and diameter of Fission is O(1) and O(logN) respectively even in the worst case.
Compared with Fission, CAN uses a d-dimensional torus topology with 2d degree,
but the diameter of CAN is O(dN1/d) and so it doesn’t scale quite as well as Fission.
D2B, which is based on de Bruijn graphs, provides constant expected degree and
O(logN) diameter, but its degree could be at most O(logN) with high probability. That
is to say, some peers in D2B will be likely to have O(logN) degree. Chord [3] uses a
ring topology; Tapestry [4] and Pastry [5] utilize hypercube topology based on prefix-
based routing. Their diameters are O(logN), but their degrees are O(logN) which is
larger than that of Fission. Viceroy [10] is based on butterfly topology with constant
expected degree and O(logN) diameter, but its degree and diameter could be O(logN)
and O(log2N) respectively in the worst case.

The remainder of the paper is organized as follows. Section 2 introduces Kautz
graph. Section 3 describes the design and properties of Fission. Section 4 presents the
routing algorithm in Fission and proves its correctness. Section 5 evaluates the
performance of Fission. Conclusions and future work is discussed in Section 6.

2 Kautz Graph

Fission exploits Kautz graph as its topology. Given two positive integers d and k, a
Kautz graph [11,12], denoted by K(d,k) is a directed graph with degree d and diameter
k. The nodes of Kautz Graph are encoded with a string of length k where each symbol
of the string is from the set Z={0,1,2,…,d} with the restriction that two consecutive
symbols of the string are always different. That is to say, node u is encoded with
u1u2…uk where ui � ui+1, 1�i�k-1, ui∈Z. Obviously there are N=dk+dk-1 nodes in the
K(d,k) graph. Each node u = u1u2…uk has d outgoing edges: for each ∈Z and �uk,
node u has one outgoing edge to node v = u2u3…uk , (denoted by u v), i.e., there is
an edge from u to v iff v is a left-shifted version of u. Therefore, each node in K(d,k)
is of in-degree d and out-degree d. Figure 1 shows K(2,3).

Routing in Kautz graph from node u to node v is accomplished by taking the string
u and shifting in the symbols of v one at a time until the string u has been replaced by
v. For instance, given two nodes u = u1u2…uk and v = v1v2…vk, the routing path from u
to v is

u = u1u2…uk u2u3…ukv1 u3u4…ukv1v2 …. ukv1v2…vk-1 v1v2…vk (1)
when uk � v1 or a path of length k-1 as below:

u = u1u2…uk u2u3…ukv2 u3u4…ukv2v3 …. ukv2…vk-1vk = v1v2…vk (2)
Compared to de Brujn graph [13] with degree d and diameter k, which has dk

nodes, Kautz graph K(d,k) has (1+1/d) times the number of nodes B(d,k), i.e., with the
same total number of nodes N and the same value of d, the diameter of Kautz graph is
smaller than that of de Brujn graph. Also it is known that there are obvious uneven
loads of edges in a de Brujn graph. Considering any node u=ii…i, 0�i�d-1, the edge

416 D. Li et al.

from ii…i to ii…iia for any 0�a�d-1 is used only when the node u is the source node,
i.e., node u never forward any query. That is because if there is a node v=bii…i
having an outgoing edge to u, it also has an outgoing edge to ii..iia. Further features
[12] show that K(d,k) is a better logical topology than B(d,k), so Kautz graph is chose
as the topology of the Fission.

012

101 121

210

010 212
021102

201
020

120
202

Fig. 1. Kautz graph K(2,3)

3 Fission Design

We use Kautz graph K(2,k) as the topology of Fission. Initially, there is a virtual 2-
dimensional Cartesian coordinate which is divided into three zones. Like CAN [6],
the entire coordinate space is dynamically partitioned among all the peers in the
system such that each peer “owns” its specific zone within the whole space. Unlike
CAN, each zone in Fission has an identifier and zones are organized as an
approximate Kautz graph K(2,k) according to their identifiers. At the beginning the
identifiers of the three initial zones are 0, 1 and 2 respectively, as showed in Figure 2.

0 1 2

Fig. 2. Initial three Zones

Edges in Fission. The neighborhood of zones is based on their identifiers. The edges
between zones can be categorized into three classes: in-edges, out-edges and brother-
edges. Suppose the identifier of zone U is u1u2…uk (we denote it as U=u1u2…uk),
0�ui�2 and ui � ui+1,1�i�k. To form a kautz graph, zone U has one out-edge to a zone
whose identifier is u2u3…ui, i�k or U has out-edges to zones whose identifier is
u2u3…ukq1…qm with m�1. From Lemma 2 proved in section 3.3, we know that the in-
edges are only come from zones whose identifiers are au1u2…ui (a�u1) with i�k to

A Scalable Peer-to-Peer Network with Constant Degree 417

zone U. For the split and mergence of the zones, each zone also has edges to its
brothers. Brother-edge will be discussed in section 3.1. At the beginning each zone of
the three initial zone has out-edges to the other two zones, and zone 0, 1, 2 are
respectively the left brothers of zone 1, 2, 0. We refer to Zone U as the neighbor of
zone V if there is any edge between U and V.

3.1 Peer Joins

When a new peer n joins in the system, it should know a peer (called access entry)
currently in the system. As in most DHT systems, we can assume that it can be done
with other mechanism, such as using some public available peers.

Spitting Large Zones. When new peer n joins in the system, it firstly chooses a
random identifier U=u1u2…u128 with ui∈{0,1,2}, ui � ui+1, 1�i�127. Then peer n sends a
JOIN request from the access entry to its destination u1u2…u128 according to the
routing algorithm in section 4. From corollary 4 (also in section 4), the JOIN request
will reach a unique zone W whose identifier is the prefix of U at last. Then start from
zone W, if the current zone has a neighbor zone with larger area, it forwards the
request to the neighbor (If there are more than one neighbors satisfying the condition,
select a random one and forward the message to it). This process will not stop until
the JOIN request reaches a zone V which has no larger neighbors and can’t be
forwarded any more. Thus zone V splits itself into two zones V1 and V2 and the
original zone V disappears. The owner of zone V1 is set to peer m that was originally
the owner of zone V before the split, and the owner of zone V2 is set to peer n.
Suppose the identifier of zone V is v1v2…vk, then the identifier of V1 is v1v2…vkx0 and

the identifier of V2 is v1v2…vkx1 where 0�x0<x1�2, x0 � vk and x1 � vk. After splitting the
zone V, both V1 and V2 should build brother-edges to each other: zone V1 is the left
brother of V2, and zone V2 is the right brother of zone V1. Figure 3 shows an
example of peer n joining into zone 01.

(a)Zones before peer n joins

01

02

0
1
2

0
1
0

02

(b)Zones after peer n joins

Fig. 3. Peer n joins in Fission

From the split procedure above, it’s easy to know that the area of a zone is in
proportion to 2-l when the length of its identifier is l. The longer the identifier is, the
less area the zone occupies.

418 D. Li et al.

Updating Edges. Once zone V is split, the edges between zones should be updated:

1. in-edge: For each zone U that has an out-edge to zone V=v1v2…vk before peer n
joins, (From Lemma 3, U = av1v2…vj with j�k) zone U should delete its edge to
zone V and adds one out-edge to zone V1 and one out-edge to zone V2.

2. out-edge: For each zone U to which zone V has a out-edge before peer n joins, the
area that zone U occupies is no more than that of V because the JOIN message
stops at V. Thus U=v2…vkq1…qm with m�1. Therefore zone V1 adds one out-edge to
U if q1=x0 or V2 adds one out-edge to U if q1=x1.

3. brother-edge: Suppose the left brother of zone V is U and the right brother of V is
Q. After peer n joins, the right brother of U is changed to V1 and the left brother of
Q is changed to V2. At the same time, V1 is the left brother of V2 and V2 is the
right brother of V1.

After all the related edges have been updated, the Fission network conforms to an
approximate Kautz topology again.

3.2 Peer Departs

Merging Small Zones. When a peer n departs from Fission, the zone V=v1v2…vk it
owns should be occupied by other peers. That will cause the mergence of multiple
zones. For good load balance, we try to merge the small zones and maintain the Kautz
topology at the same time. If peer n volunteers to depart from the system, it produces
a DEPART messages. Start from zone V, if current zone has neighbor zones with
smaller area, the DEPART request should be forwarded to one neighbor with smaller
zone until a zone U is reached which has no neighbors with smaller area. It is easy to
see that U has a brother W whose area is the same as that of U. Suppose U=u1u2…uk-

1uk, W=u1u2…uk-1wk, and the owners of zone U, W are peer n1 and peer n2
respectively. Then:

1. if U=V, merge zone V and W into a new zone V’= u1u2…uk-1 and assign the peer n2
as the owner of the zone V’. In this case, peer n1 and peer n are the same peer.

2. if U�V, merge zone U and W into a new zone V’= u1u2…uk-1, then change the
owner of the zone V to peer n1 and assign peer n2 as the owner of zone V’. In this
case, the edges related to zone V don’t need changing, and only the edges related
to zone V’ need to be adjusted.

Updating Edges. As discussed above, when zone U=u1u2…uk-1uk and zone
W=u1u2…uk-1wk are merged into zone V’, the edges related to zone V’=u1u2…uk-1
should be constructed to retain the approximate Kautz topology. For convenience,
suppose uk<wk, i.e., U is the left brother of W. Then:

1. in-edges: if zone Q has an out-edge to zone U or zone W or both before the
mergence, build an edge from zone Q to zone V’ to replace it(them).

2. out-edges: if there is an edge from zone U or zone W or both to a zone Q before
the mergence, build an edge from V’ to Q to replace it (them).

3. brother-edge: if there is a right brother-edge from zone Q to U, build a right
brother-edge from Q to V’. If there is a left brother-edge from W to a zone R, build
a left brother-edge from V’ to R.

A Scalable Peer-to-Peer Network with Constant Degree 419

Involuntary Departure. To deal with involuntary failure, each peer sends KeepAlive
messages to all of its neighbors periodically. The deferred absence of a KeepAlive
message from one neighbor indicates its failure. Once the failure of a peer U is
detected by its neighbor P, peer P will produce one DEPART message for U. And the
remainder procedure is the same as that in the case of voluntary departure.

3.3 Properties of Fission

In this section, we present some properties of neighborhood in Fission. Due to space
limits, we just give the brief proofs and omit the complete details.

Lemma 1. For each zone U=u1u2…uk in Fission, there are no zones V that satisfy
V=u1u2…ukx1…xj with j�1 and U�V. And each zone in Fission has no less than one
out-edge.

Proof. Initially there are three zones 0, 1, 2 and each zone has two out-edges to the
other two zones. So initially lemma 1 holds. After a split or mergence, lemma 1 still
holds. Thus lemma 1 is always true. Q.E.D.

Lemma 2. Denote the length of the identifier of zone U as |U|. For each zone
U=u1u2…uk in the Fission system, if there is one out-edge from zone U to zone
V=v1v2…vm, then ||U|-|U||�1, i.e., |k-m|�1.

Proof. Lemma 2 holds initially. We will show that if Lemma 2 holds at some time,
Lemma 2 will also hold after a split or mergence. In the case of split, the large zone is
divided into two zones. Assume after a split there are two zones U and V with ||U|-
|V||�2 and there is one out-edge from U to V. Recall that before the split for each zone
P, W in Fission, ||P|-|W||�1, thus ||U|-|V||�2. Therefore ||U|-|V||=2 and either zone U or
zone V is newly produced by the split.

If U is derived from U’ in the split, then ||U’|-|V||�1 and |U|=|U’|+1. Obviously to
achieve ||U|-|V||=2, |U’|-|V| must be 1 before the split. Recall that there is one out-edge
from U to V after the split, thus U’ must have one out-edge to V before the split. But
if |U’|-|V|=1 (which means the area of zone V is larger than that of zone U’) and U’
has one out-edge V, then the “split large” policy would cause the JOIN message to be
forwarded from U’ to V and the zone U’ would not have been split. Thus a
contradiction occurs.

If V is derived from V’ in the split, |V’|-|U| must be 1 before the split. Then zone U
is larger than zone V’, thus our “split large” policy would not have split the zone V’.
Thus a contradiction occurs.

Therefore, after a split Lemma 2 remains true.
In the case of mergence, proof is similar and we omit it for the space.
Q.E.D.

Lemma 3. For each zone U=u1u2…uk, one and only one of the following two
properties is true:
1. U has a unique out-edge to zone Q=u2…uk
2. For each x1∈{0,1,2} and x1�uk, either U has one out-edge to zone Q=u2…ukx1 or U

has two out-edges to zones whose identifiers are in the style of u2…ukx1x2 with x2�x1
and x2∈{0,1,2}.

420 D. Li et al.

Proof. From lemma 2, if there is one out-edge from Q to U, then |U|-1�|Q|�|U|+1.
And as the Fission system forms an approximate Kautz topology, thus the identifier of
Q should be in the style of u2…uk or u2…ukx1 or u2…ukx1x2. The proof is easy but long
to make when considering the split and mergence procedure of zones. We omit it for
space. Q.E.D.

The following two corollaries are direct conclusions from Lemma 3.

Corollary 1. If zone U=u1u2…uk has more than one out-edge, then for any string
S=s1…sm, s1�uk and si�si+1 (1�i�m-1), U has an out-edge to zone u2…ukx1…xj (1�j�2)
with x1…xj as the prefix of S.

Lemma 3 and Corollary1 show that the routing algorithm in section 4 could go on
until the destination zone V is reached.

Corollary 2. The out-degree of any zone in Fission is no more than 4.

We can also prove that the in-degree of any zone is also no more than 4 in a similar
way. The following Theorem 1 is a direct consequence of Lemma 1 and Corollary 2.

Theorem 1. In an N-peer Fission system, both the in-degree and the out-degree of
each peer are between 1 and 4.

4 Routing Algorithm

Routing in Fission is somewhat similar to that in Kautz graph. Once a zone
U=u1u2…uk receives a routing message Routing(V,L,S) to destination V=v1v2…vm
(U�V) with left path length L, U sends a new routing message Routing(V,L-1, S) to Q
if U has one out-edge to zone Q=u2u3…uk, and U sends a new routing message
Routing(V,L-1,Sx1…xj) to Q if U has one out-edge to zone Q=u2…ukx1…xj (1�j�2) and
Sx1…xj is the prefix of V. The initial value of L and S is set as below: Assume there is
a message routing from source zone W=w1w2…wk to destination zone V=v1v2…vm. Find
S’ that is the longest suffix of W and also appears as a prefix of V and the length of S’
is denoted by s. Suppose W�V, then from Lemma 1, s<k. Thus S’=wk-s+1…wk and the
initial value of L is k-s and the initial value of S=S’=wk-s+1…wk. Figure 4 shows the
routing algorithm.
Procedure U.routing(dest V, pathlegth L, commonfix S)

//zone U=u1u2…uk deal with the routing

//message to destination V=v1v2…vm

{

/*reach destination V*/

if L=0 then return(true)

else {

if U has a out-edge to Q=u2u3…uk then

return(Q.routing(V, L-1,S))

A Scalable Peer-to-Peer Network with Constant Degree 421

if U has a out-edge to Q=u2…ukx1…xj (1����������
isprefix(Sx1…xj, V) then {

S �	
1…xj

return(Q.routing(V, L-1,S))

} //then

} //else

} //Procedure

Fig. 4. Routing algorithm

Now we prove the correctness of the routing algorithm.

Lemma 4. Considering routing from source zone W=w1w2…wk to any destination
V=v1v2…vm (W�V) where the length of the longest suffix of W that is also the prefix of
V is s, let the routing path from W to V is U1(=W), U2, U3, …, Uq (=V), then Ui is of the
form wi…wk-sS and the routing message that Ui deals with is in the form of routing(V,k-
s-i,S) where S is the prefix of V.

Proof. Let S0 be the longest suffix of W that is the prefix of V, S0=wk-s+1…wk=v1v2…vs,
then U1=W=w1w2…wk-swk-s+1…wk=w1w2…wk-sS0, V= v1v2…vpvp+1…vm =S0vs+1…vm. The
routing message that W deals with is routing(V,k-s,S0). Thus initially Lemma4 holds
for U1.

Let current zone Ui is of the form wi…wk-pS and the routing message that Ui deals
with is routing(V,k-s-i,S) where S is the prefix of V. From the routing algorithm in
Figure 4, if Ui has one edge to wi+1…wk-sS, then Ui+1= wi+1…wk-sS and the routing
message that Ui+1 deals with is routing(V,k-s-i-1,S); or if Ui has one edge to wi+1…wk-

sSx1…xj (1�j�2) with S’=Sx1…xj as the prefix of V, then Ui+1= wi+1…wk-sSx1…xj=
wi+1…wk-sS’ and the routing message that Ui+1 deals with is routing(V,k-s-i,S’). In both
cases Lemma 4 holds for Ui+1. So Lemma 4 holds.

Q.E.D.

From Lemma 4, when i=k-s (L=0), the routing messages reach a zone Ui and the
routing process stops. And there is some S that is the prefix of V and Ui=S. If
destination V is a zone identifier, then from Lemma 1 we can infer that Ui=S=V and
the routing reaches the destination zone correctly. The path length of routing from W
to V is k-s hops. Thus we get the following corollaries.

Corollary 3. The path length of routing initiated by any source zone U=u1u2…uk is no
more than k hops.

From the proof of Lemma 4, we can get the following corollary 4 easily.

Corollary 4. For any identifier U=u1u2…u128 with ui∈{0,1,2}, ui � ui+1, 1�i�127, the
routing from any source zone to destination U will arrive and stop at a unique zone V
whose identifier is the prefix of U.

Lemma 5. In an N-peer Fission system, the largest zone U satisfies that |U|<logN.

422 D. Li et al.

Proof. Let |U|=k, then k is the smallest among the length of identifiers of zones in
Fission. Peers in Fission form an approximate Kautz topology, thus 2k+ 2k-1 �N. Then k

�logN-log3+1<log N. Q.E.D.

Lemma 6. In an N-peer Fission system, the smallest zone V satisfies |V| < 2*logN.

Proof. Suppose U is the largest zone in Fission system. Consider the routing path
from U to V. From Corollary 3, we know that the path length is no more than |U|.
From Lemma2, we can infer that ||V|-|U||�|U|. Because |V|�|U|, thus |V|-|U|�|U|,
|V|�2|U|<2log N. Q.E.D.

The following can be derived from Lemma 6 and Corollary 3 directly.

Corollary 5. In an N-peer Fission system, Let U and V be the smallest and largest
zones in the system, then |U|-|V|�|V|<log N.

The following Theorem 2 is a direct consequence of Corollary 3 and Lemma 6.

Theorem 2. The diameter of Fission systems is less than 2*log N.

Theorem 3. When a peer joins in or departs from an N-peer Fission system, the JOIN
and DEPART messages are propagated at most 3*logN and logN hops respectively,
and only constant peers need to update their edges.

Proof. Take the split procedure as an example: the JOIN message is first forwarded to
the zone determined by hashing. From Theorem 2, in this phase the message is
propagated less than 2*logN hops. Then the JOIN message is forwarded to neighbors
whose identifiers are at least one less than that of current zone. From Corollary 5, in
the phase the message is propagated at most logN hops. Therefore, the JOIN message
is propagated at most 3*logN hops. When the JOIN message stops at one zone, from
Theorem 1 the number of neighbors that should update edges due to the split is
constant. Q.E.D.

5 Performance Evaluations

Firstly we analyze the performance of Fission by the measures below:
Degree: From Theorem 1, Fission system is of constant-degree, i.e., is O(1).
Diameter: From Theorem 2, the diameter of Fission is less than 2*logN, i.e.,

O(logN).
Scalability: Fission can support arbitrary number of peers. Peer can join in the

system and depart from the system at its will.
Maintenance cost: From Theorem 3, the events of a peer joining in or departing

from the Fission system induce O(logN) messages and require O(1) peers to change
their state.

We also built a simulator to evaluate the Fission algorithm. The simulator
implements the joining and departing procedure in Section 3 and uses the routing
algorithm in Section 4. We evaluate the average path length of Fission systems of
different scales (from 256 peers up to 256K peers). For each scale, we build the
network by adding nodes one by one. We select two random points from the 2-

A Scalable Peer-to-Peer Network with Constant Degree 423

dimention coordinate space and route a message from one point to the other, and get
the average path length over 5000 such routings. Figure 5 shows the simulation
results compared with CAN with d=2 or d=3. From Figure 5, we can infer that the
average path length of Fission is about logN.

�

��

��

��

��

��

256 512 1024 2k 4k 8k 16k 32k 64k 128k 256k

No. of peers

N
o.

 o
f

 H
op

s

Fission CAN,d=2 CAN,d=3 logN

Fig. 5. Average path length of Fission

Then we observe the load balance characteristic of Fission. Let the total area of the
entire 2-dimensition coordinate space is ST. We simulate Fission system with N=4096
peers and calculate the area each peer owns. Let S=ST/N, Figure 6 shows the
percentage of peers that own a particular area. From Figure 6, about 45% peers own
the same area S and the percentage that owns area more than 4S or less than S/4 is
almost zero. The number of keys stored on each peer is in direct proportion to the area
the peer owns, thus the distribution of keys over peers is almost uniform.

0
10
20
30
40
50

S/8 S/4 S/2 S 2S 4S 8S
Area peers own

Pe
rc

en
ta

ge
 o

f
Pe

er
s

Fig. 6. Load balance characteristic of Fission

6 Conclusions and Future Work

Fission is a novel scalable DHT-style peer-to-peer network that can achieve O(logN)
diameter with only O(1) degrees. Beside its simplicity and low diameter as well as
constant degree, Fission also has good load balance characteristic. These

424 D. Li et al.

characteristics of Fission suggest that Fission is a very promising peer-to-peer
network. In our further work, physical topological information will be exploited in
Fission to reduce latency. And the current design of Fission is based on Kautz graph
K(2,k) and will be extended to general K(d,k) topology for flexibility.

References

1. Clark, D.: Face-to-face with peer-to-peer networking. IEEE Computer, Vol. 34, No.1,
IEEE press (2001) 18–21

2. Schoder, D., Fischbach, K.: peer-to-peer prospects. Communications of the ACM, Vol.46,
No.2, (2003) 27–29

3. Stoica, I., Morris, R., Karger. D. et al.: Chord: a scalable peer-to-peer lookup service for
Internet applications. Proc. of ACM SIGCOMM 2001, ACM Press, New York (2001)
160–177

4. Hildrum, K., Kubiatowicz, J. D., Rao, S., and Zhao, B. Y.: Distributed object location in a
dynamic network. Proc. of 14th ACM Symp. on Parallel Algorithms and Architectures
(SPAA) (2002)

5. Rowstron, A. and Druschel, P.: Pastry: scalable, distributed object location and routing for
large-scale peer-to-peer systems. Proc. of IFIP/ACM Middleware’2001, Heidelberg,
Germany (2001) 329–350.

6. Ratnasamy, S., Francis, P., Handley, M. et al.: A scalable content-addressable network.
Proc. of ACM SIGCOMM 2001, ACM Press, New York (2001) 149–160

7. Plaxton, C., Rajaraman, R., and Richa, A.: Accessing nearby copies of replicated objects in
a distributed environment. Proc. of ACM Symp. on Parallel Algorithms and Architectures
(SPAA), Newport, Rhode Island (1997).

8. Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I.: Looking up data
in P2P systems. Communication of the ACM, Vol. 46, No.2, (2003) 43–48

9. Fraigniaud, P., Gauron, P.: The Content-Addressable Network D2B. Tech Rept. 1349,
CNRS University paris-Sud, France (2003)

10. Malkhi, D., Naor, M., and Ratajczak, D.: Viceroy: a scalable and dynamic lookup network.
Proc. of 21st AC M Symp. on Principles of Distributed Computing (PODC), Monterey,
CA (2002)

11. Kautz, W. H.: The design of optimum interconnection networks for multiprocessors.
Architecture and design of Digital computer. NATO advances summer Institute, (1969)
249–277

12. Panchapakesan, G. and Sengupta, A.: On a lightwave Network Topology using Kautz
Digraphs. IEEE Transaction on computers, Vol. 48, No. 10, (1999) 1131–1138

13. Sivarajan, K. N. and Ramaswami, R.: Lightwave Networks based on de Bruijn Graphs.
IEEE/ACM Trans. Networking, Vol.2 (1994) 70–79

	Introduction
	Kautz Graph
	Fission Design
	Peer Joins
	Peer Departs
	Properties of Fission

	Routing Algorithm
	Performance Evaluations
	Conclusions and Future Work

