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Abstract. Recently many distributed hash table (DHT) schemas have been 
proposed to build scalable peer-to-peer systems, in which degree and diameter 
are two important measures. In this paper, we propose Fission, a novel DHT-
style peer-to-peer network, which is of constant degree and O(logN) diameter. 
Peers in Fission form an approximate Kautz topology and the “split large and 
merge small” policy is exploited to achieve load balance when peers join or 
depart. The performance of Fission is evaluated using both analysis and 
simulation. Formal proofs verify that the degree and the diameter of Fission are 
no more than O(1) and 2*logN respectively and the join or departure of one 
peer requires only O(1) peers to change their state. Simulations show that the 
load balance characteristic of Fission is good and the average path length of 
Fission is no more than logN. 

1   Introduction 

In recent years, peer-to-peer computing has emerged as a novel and popular 
computation model and attracted significant attentions from both industrial and 
academic fields [1,2]. The core component of many proposed peer-to-peer storage 
systems [3,4,5,6,7,8] is the distributed hash table (DHT) schema that uses a hash 
table-like interface to publish and lookup data objects. In DHT schemas, each peer 
bears responsibility for a certain portion of the key space and uses a routing table to 
forward the query for data object. To maintain the DHT, the responsibility is re-
assigned between peers when peers join or depart. 

Two important measures of DHT systems are degree, the size of routing table to be 
maintained on each peer, and diameter, the number of hops a query needs to travel in 
the worst case. In many existing DHT schemas, such as Chord [3], Tapestry [4] and 
Pastry [5], both the degree and the diameter tends to logN. In this paper, we propose 
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Fission, a novel DHT-style peer-to-peer network with constant degree and O(logN) 
diameter, which exploits Kautz topology and uses the “split large and merge small” 
policy for maintenance. Fission is inspired by CAN [6], which allows peers re-
positioning the space, and D2B [9], a DHT schema based on de Bruijn graphs. 
However, Fission can achieve better results than both. Proofs show that the degree 
and diameter of Fission is O(1) and O(logN) respectively even in the worst case. 
Compared with Fission, CAN uses a d-dimensional torus topology with 2d degree, 
but the diameter of CAN is O(dN1/d) and so it doesn’t scale quite as well as Fission. 
D2B, which is based on de Bruijn graphs, provides constant expected degree and 
O(logN) diameter, but its degree could be at most O(logN) with high probability. That 
is to say, some peers in D2B will be likely to have O(logN) degree. Chord [3] uses a 
ring topology; Tapestry [4] and Pastry [5] utilize hypercube topology based on prefix-
based routing. Their diameters are O(logN), but their degrees are O(logN) which is 
larger than that of Fission. Viceroy [10] is based on butterfly topology with constant 
expected degree and O(logN) diameter, but its degree and diameter could be O(logN) 
and O(log2N) respectively in the worst case. 

The remainder of the paper is organized as follows. Section 2 introduces Kautz 
graph. Section 3 describes the design and properties of Fission. Section 4 presents the 
routing algorithm in Fission and proves its correctness. Section 5 evaluates the 
performance of Fission. Conclusions and future work is discussed in Section 6. 

2   Kautz Graph 

Fission exploits Kautz graph as its topology. Given two positive integers d and k, a 
Kautz graph [11,12], denoted by K(d,k) is a directed graph with degree d and diameter 
k. The nodes of Kautz Graph are encoded with a string of length k where each symbol 
of the string is from the set Z={0,1,2,…,d} with the restriction that two consecutive 
symbols of the string are always different. That is to say, node u is encoded with 
u1u2…uk where ui � ui+1, 1�i�k-1, ui∈Z. Obviously there are N=dk+dk-1 nodes in the 
K(d,k) graph. Each node u = u1u2…uk has d outgoing edges: for each ∈Z and �uk, 
node u has one outgoing edge to node v = u2u3…uk , (denoted by u v), i.e., there is 
an edge from u to v iff v is a left-shifted version of u. Therefore, each node in K(d,k) 
is of in-degree d and out-degree d. Figure 1 shows K(2,3). 

Routing in Kautz graph from node u to node v is accomplished by taking the string 
u and shifting in the symbols of v one at a time until the string u has been replaced by 
v. For instance, given two nodes u = u1u2…uk and v = v1v2…vk, the routing path from u 
to v is  

u = u1u2…uk  u2u3…ukv1  u3u4…ukv1v2  …. ukv1v2…vk-1 v1v2…vk (1) 
when uk � v1 or a path of length k-1 as below: 

u = u1u2…uk u2u3…ukv2 u3u4…ukv2v3 …. ukv2…vk-1vk = v1v2…vk  (2) 
Compared to de Brujn graph [13] with degree d and diameter k, which has dk 

nodes, Kautz graph K(d,k) has (1+1/d) times the number of nodes B(d,k), i.e., with the 
same total number of nodes N and the same value of d, the diameter of Kautz graph is 
smaller than that of de Brujn graph. Also it is known that there are obvious uneven 
loads of edges in a de Brujn graph. Considering any node u=ii…i, 0�i�d-1, the edge 
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from ii…i to ii…iia for any 0�a�d-1 is used only when the node u is the source node, 
i.e., node u never forward any query. That is because if there is a node v=bii…i 
having an outgoing edge to u, it also has an outgoing edge to ii..iia. Further features 
[12] show that K(d,k) is a better logical topology than B(d,k), so Kautz graph is chose 
as the topology of the Fission. 

012

101 121

210

010 212
021102

201
020

120
202

 

Fig. 1. Kautz graph K(2,3) 

3   Fission Design 

We use Kautz graph K(2,k) as the topology of Fission. Initially, there is a virtual 2-
dimensional Cartesian coordinate which is divided into three zones. Like CAN [6], 
the entire coordinate space is dynamically partitioned among all the peers in the 
system such that each peer “owns” its specific zone within the whole space. Unlike 
CAN, each zone in Fission has an identifier and zones are organized as an 
approximate Kautz graph K(2,k) according to their identifiers. At the beginning the 
identifiers of the three initial zones are 0, 1 and 2 respectively, as showed in Figure 2.  

0 1 2

 

Fig. 2. Initial three Zones 

Edges in Fission. The neighborhood of zones is based on their identifiers. The edges 
between zones can be categorized into three classes: in-edges, out-edges and brother-
edges. Suppose the identifier of zone U is u1u2…uk (we denote it as U=u1u2…uk), 
0�ui�2 and ui � ui+1,1�i�k. To form a kautz graph, zone U has one out-edge to a zone 
whose identifier is u2u3…ui, i�k or U has out-edges to zones whose identifier is 
u2u3…ukq1…qm with m�1. From Lemma 2 proved in section 3.3, we know that the in-
edges are only come from zones whose identifiers are au1u2…ui (a�u1) with i�k to 
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zone U. For the split and mergence of the zones, each zone also has edges to its 
brothers. Brother-edge will be discussed in section 3.1. At the beginning each zone of 
the three initial zone has out-edges to the other two zones, and zone 0, 1, 2 are 
respectively the left brothers of zone 1, 2, 0. We refer to Zone U as the neighbor of 
zone V if there is any edge between U and V. 

3.1   Peer Joins 

When a new peer n joins in the system, it should know a peer (called access entry) 
currently in the system. As in most DHT systems, we can assume that it can be done 
with other mechanism, such as using some public available peers. 

Spitting Large Zones. When new peer n joins in the system, it firstly chooses a 
random identifier U=u1u2…u128 with ui∈{0,1,2}, ui � ui+1, 1�i�127. Then peer n sends a 
JOIN request from the access entry to its destination u1u2…u128 according to the 
routing algorithm in section 4. From corollary 4 (also in section 4), the JOIN request 
will reach a unique zone W whose identifier is the prefix of U at last. Then start from 
zone W, if the current zone has a neighbor zone with larger area, it forwards the 
request to the neighbor (If there are more than one neighbors satisfying the condition, 
select a random one and forward the message to it). This process will not stop until 
the JOIN request reaches a zone V which has no larger neighbors and can’t be 
forwarded any more. Thus zone V splits itself into two zones V1 and V2 and the 
original zone V disappears. The owner of zone V1 is set to peer m that was originally 
the owner of zone V before the split, and the owner of zone V2 is set to peer n. 
Suppose the identifier of zone V is v1v2…vk, then the identifier of V1 is v1v2…vkx0 and 

the identifier of V2 is v1v2…vkx1 where 0�x0<x1�2, x0 � vk and x1 � vk. After splitting the 
zone V, both V1 and V2 should build brother-edges to each other: zone V1 is the left 
brother of V2, and zone V2 is the right brother of zone V1. Figure 3 shows an 
example of peer n joining into zone 01. 

(a)Zones before peer n joins
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02
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2

0
1
0

02

(b)Zones after peer n joins
 

Fig. 3. Peer n joins in Fission 

From the split procedure above, it’s easy to know that the area of a zone is in 
proportion to 2-l when the length of its identifier is l. The longer the identifier is, the 
less area the zone occupies.  
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Updating Edges. Once zone V is split, the edges between zones should be updated: 

1. in-edge: For each zone U that has an out-edge to zone V=v1v2…vk before peer n 
joins, ( From Lemma 3, U = av1v2…vj with j�k) zone U should delete its edge to 
zone V and adds one out-edge to zone V1 and one out-edge to zone V2. 

2. out-edge: For each zone U to which zone V has a out-edge before peer n joins, the 
area that zone U occupies is no more than that of V because the JOIN message 
stops at V. Thus U=v2…vkq1…qm with m�1. Therefore zone V1 adds one out-edge to 
U if q1=x0  or V2 adds one out-edge to U if q1=x1. 

3. brother-edge: Suppose the left brother of zone V is U and the right brother of V is 
Q. After peer n joins, the right brother of U is changed to V1 and the left brother of 
Q is changed to V2. At the same time, V1 is the left brother of V2 and V2 is the 
right brother of V1. 

After all the related edges have been updated, the Fission network conforms to an 
approximate Kautz topology again. 

3.2   Peer Departs 

Merging Small Zones. When a peer n departs from Fission, the zone V=v1v2…vk it 
owns should be occupied by other peers. That will cause the mergence of multiple 
zones. For good load balance, we try to merge the small zones and maintain the Kautz 
topology at the same time. If peer n volunteers to depart from the system, it produces 
a DEPART messages. Start from zone V, if current zone has neighbor zones with 
smaller area, the DEPART request should be forwarded to one neighbor with smaller 
zone until a zone U is reached which has no neighbors with smaller area. It is easy to 
see that U has a brother W whose area is the same as that of U. Suppose U=u1u2…uk-

1uk, W=u1u2…uk-1wk, and the owners of zone U, W are peer n1 and peer n2 
respectively. Then: 

1. if U=V, merge zone V and W into a new zone V’= u1u2…uk-1 and assign the peer n2 
as the owner of the zone V’. In this case, peer n1 and peer n are the same peer. 

2. if U�V, merge zone U and W into a new zone V’= u1u2…uk-1, then change the 
owner of the zone V to peer n1 and assign peer n2 as the owner of zone V’. In this 
case, the edges related to zone V don’t need changing, and only the edges related 
to zone V’ need to be adjusted. 

Updating Edges. As discussed above, when zone U=u1u2…uk-1uk and zone 
W=u1u2…uk-1wk are merged into zone V’, the edges related to zone V’=u1u2…uk-1 
should be constructed to retain the approximate Kautz topology. For convenience, 
suppose uk<wk, i.e., U is the left brother of W. Then: 

1. in-edges: if zone Q has an out-edge to zone U or zone W or both before the 
mergence, build an edge from zone Q to zone V’ to replace it(them). 

2. out-edges: if there is an edge from zone U or zone W or both to a zone Q before 
the mergence, build an edge from V’ to Q to replace it (them). 

3. brother-edge: if there is a right brother-edge from zone Q to U, build a right 
brother-edge from Q to V’. If there is a left brother-edge from W to a zone R, build 
a left brother-edge from V’ to R. 
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Involuntary Departure. To deal with involuntary failure, each peer sends KeepAlive 
messages to all of its neighbors periodically. The deferred absence of a KeepAlive 
message from one neighbor indicates its failure. Once the failure of a peer U is 
detected by its neighbor P, peer P will produce one DEPART message for U. And the 
remainder procedure is the same as that in the case of voluntary departure. 

3.3   Properties of Fission 

In this section, we present some properties of neighborhood in Fission. Due to space 
limits, we just give the brief proofs and omit the complete details. 

Lemma 1. For each zone U=u1u2…uk in Fission, there are no zones V that satisfy 
V=u1u2…ukx1…xj with j�1 and U�V. And each zone in Fission has no less than one 
out-edge. 

Proof. Initially there are three zones 0, 1, 2 and each zone has two out-edges to the 
other two zones. So initially lemma 1 holds. After a split or mergence, lemma 1 still 
holds. Thus lemma 1 is always true. Q.E.D. 

Lemma 2. Denote the length of the identifier of zone U as |U|. For each zone 
U=u1u2…uk in the Fission system, if there is one out-edge from zone U to zone 
V=v1v2…vm, then ||U|-|U||�1, i.e., |k-m|�1. 

Proof. Lemma 2 holds initially. We will show that if Lemma 2 holds at some time, 
Lemma 2 will also hold after a split or mergence. In the case of split, the large zone is 
divided into two zones. Assume after a split there are two zones U and V with ||U|-
|V||�2 and there is one out-edge from U to V. Recall that before the split for each zone 
P, W in Fission, ||P|-|W||�1, thus ||U|-|V||�2. Therefore ||U|-|V||=2 and either zone U or 
zone V is newly produced by the split. 

If U is derived from U’ in the split, then ||U’|-|V||�1 and |U|=|U’|+1. Obviously to 
achieve ||U|-|V||=2, |U’|-|V| must be 1 before the split. Recall that there is one out-edge 
from U to V after the split, thus U’ must have one out-edge to V before the split. But 
if |U’|-|V|=1 (which means the area of zone V is larger than that of zone U’) and U’ 
has one out-edge V, then the “split large” policy would cause the JOIN message to be 
forwarded from U’ to V and the zone U’ would not have been split. Thus a 
contradiction occurs. 

If V is derived from V’ in the split, |V’|-|U| must be 1 before the split. Then zone U 
is larger than zone V’, thus our “split large” policy would not have split the zone V’. 
Thus a contradiction occurs. 

Therefore, after a split Lemma 2 remains true. 
In the case of mergence, proof is similar and we omit it for the space. 
Q.E.D. 

Lemma 3. For each zone U=u1u2…uk, one and only one of the following two 
properties is true: 
1. U has a unique out-edge to zone Q=u2…uk 
2. For each x1∈{0,1,2} and x1�uk, either U has one out-edge to zone Q=u2…ukx1 or U 

has two out-edges to zones whose identifiers are in the style of u2…ukx1x2 with x2�x1 
and x2∈{0,1,2}. 
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Proof. From lemma 2, if there is one out-edge from Q to U, then |U|-1�|Q|�|U|+1. 
And as the Fission system forms an approximate Kautz topology, thus the identifier of 
Q should be in the style of u2…uk or u2…ukx1 or u2…ukx1x2. The proof is easy but long 
to make when considering the split and mergence procedure of zones. We omit it for 
space. Q.E.D. 

The following two corollaries are direct conclusions from Lemma 3.  

Corollary 1. If zone U=u1u2…uk has more than one out-edge, then for any string 
S=s1…sm, s1�uk and si�si+1 (1�i�m-1), U has an out-edge to zone u2…ukx1…xj (1�j�2) 
with x1…xj as the prefix of S. 

Lemma 3 and Corollary1 show that the routing algorithm in section 4 could go on 
until the destination zone V is reached. 

Corollary 2. The out-degree of any zone in Fission is no more than 4. 

We can also prove that the in-degree of any zone is also no more than 4 in a similar 
way. The following Theorem 1 is a direct consequence of Lemma 1 and Corollary 2. 

Theorem 1. In an N-peer Fission system, both the in-degree and the out-degree of 
each peer are between 1 and 4. 

4   Routing Algorithm 

Routing in Fission is somewhat similar to that in Kautz graph. Once a zone 
U=u1u2…uk receives a routing message Routing(V,L,S) to destination V=v1v2…vm 
(U�V) with left path length L,  U sends a new routing message Routing(V,L-1, S) to Q 
if U has one out-edge to zone Q=u2u3…uk, and U sends a new routing message 
Routing(V,L-1,Sx1…xj) to Q if U has one out-edge to zone Q=u2…ukx1…xj (1�j�2) and 
Sx1…xj is the prefix of V. The initial value of L and S is set as below: Assume there is 
a message routing from source zone W=w1w2…wk to destination zone V=v1v2…vm. Find 
S’ that is the longest suffix of W and also appears as a prefix of V and the length of S’ 
is denoted by s. Suppose W�V, then from Lemma 1, s<k. Thus S’=wk-s+1…wk and the 
initial value of L is k-s and the initial value of S=S’=wk-s+1…wk. Figure 4 shows the 
routing algorithm. 
Procedure U.routing(dest V, pathlegth L, commonfix S) 

//zone U=u1u2…uk deal with the routing  

//message to destination V=v1v2…vm 

{ 

/*reach destination V*/ 

if L=0 then return(true)   

else { 

if U has a out-edge to Q=u2u3…uk then 

return(Q.routing(V, L-1,S)) 
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if U has a out-edge to Q=u2…ukx1…xj (1����������
isprefix(Sx1…xj, V) then { 

S �	
1…xj  

return(Q.routing(V, L-1,S)) 

} //then 

} //else 

} //Procedure 

Fig. 4. Routing algorithm 

Now we prove the correctness of the routing algorithm.  

Lemma 4. Considering routing from source zone W=w1w2…wk to any destination 
V=v1v2…vm (W�V) where the length of the longest suffix of W that is also the prefix of 
V is s, let the routing path from W to V is U1(=W), U2, U3, …, Uq (=V), then Ui is of the 
form wi…wk-sS and the routing message that Ui deals with is in the form of routing(V,k-
s-i,S) where S is the prefix of V. 

Proof. Let S0 be the longest suffix of W that is the prefix of V, S0=wk-s+1…wk=v1v2…vs, 
then U1=W=w1w2…wk-swk-s+1…wk=w1w2…wk-sS0, V= v1v2…vpvp+1…vm =S0vs+1…vm. The 
routing message that W deals with is routing(V,k-s,S0). Thus initially Lemma4 holds 
for U1. 

Let current zone Ui is of the form wi…wk-pS and the routing message that Ui deals 
with is routing(V,k-s-i,S) where S is the prefix of V. From the routing algorithm in 
Figure 4, if Ui has one edge to wi+1…wk-sS, then Ui+1= wi+1…wk-sS and the routing 
message that Ui+1 deals with is routing(V,k-s-i-1,S); or if Ui has one edge to wi+1…wk-

sSx1…xj (1�j�2) with S’=Sx1…xj as the prefix of V, then Ui+1= wi+1…wk-sSx1…xj= 
wi+1…wk-sS’ and the routing message that Ui+1 deals with is routing(V,k-s-i,S’). In both 
cases Lemma 4 holds for Ui+1. So Lemma 4 holds. 

Q.E.D. 

From Lemma 4, when i=k-s (L=0), the routing messages reach a zone Ui and the 
routing process stops. And there is some S that is the prefix of V and Ui=S. If 
destination V is a zone identifier, then from Lemma 1 we can infer that Ui=S=V and 
the routing reaches the destination zone correctly. The path length of routing from W 
to V is k-s hops. Thus we get the following corollaries. 

Corollary 3. The path length of routing initiated by any source zone U=u1u2…uk is no 
more than k hops. 

From the proof of Lemma 4, we can get the following corollary 4 easily. 

Corollary 4. For any identifier U=u1u2…u128 with ui∈{0,1,2}, ui � ui+1, 1�i�127, the 
routing from any source zone to destination U will arrive and stop at a unique zone V 
whose identifier is the prefix of U. 

Lemma 5. In an N-peer Fission system, the largest zone U satisfies that |U|<logN. 
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Proof. Let |U|=k, then k is the smallest among the length of identifiers of zones in 
Fission. Peers in Fission form an approximate Kautz topology, thus 2k+ 2k-1 �N. Then k 

�logN-log3+1<log N. Q.E.D. 

Lemma 6. In an N-peer Fission system, the smallest zone V satisfies |V| < 2*logN. 

Proof. Suppose U is the largest zone in Fission system. Consider the routing path 
from U to V. From Corollary 3, we know that the path length is no more than |U|. 
From Lemma2, we can infer that ||V|-|U||�|U|. Because |V|�|U|, thus |V|-|U|�|U|, 
|V|�2|U|<2log N. Q.E.D. 

The following can be derived from Lemma 6 and Corollary 3 directly.  

Corollary 5. In an N-peer Fission system, Let U and V be the smallest and largest 
zones in the system, then |U|-|V|�|V|<log N. 

The following Theorem 2 is a direct consequence of Corollary 3 and Lemma 6. 

Theorem 2. The diameter of Fission systems is less than 2*log N. 

Theorem 3. When a peer joins in or departs from an N-peer Fission system, the JOIN 
and DEPART messages are propagated at most 3*logN and logN hops respectively, 
and only constant peers need to update their edges. 

Proof. Take the split procedure as an example: the JOIN message is first forwarded to 
the zone determined by hashing. From Theorem 2, in this phase the message is 
propagated less than 2*logN hops. Then the JOIN message is forwarded to neighbors 
whose identifiers are at least one less than that of current zone. From Corollary 5, in 
the phase the message is propagated at most logN hops. Therefore, the JOIN message 
is propagated at most 3*logN hops. When the JOIN message stops at one zone, from 
Theorem 1 the number of neighbors that should update edges due to the split is 
constant. Q.E.D. 

5   Performance Evaluations 

Firstly we analyze the performance of Fission by the measures below: 
Degree: From Theorem 1, Fission system is of constant-degree, i.e., is O(1). 
Diameter: From Theorem 2, the diameter of Fission is less than 2*logN, i.e., 

O(logN). 
Scalability: Fission can support arbitrary number of peers. Peer can join in the 

system and depart from the system at its will.  
Maintenance cost: From Theorem 3, the events of a peer joining in or departing 

from the Fission system induce O(logN) messages and require O(1) peers to change 
their state. 

We also built a simulator to evaluate the Fission algorithm. The simulator 
implements the joining and departing procedure in Section 3 and uses the routing 
algorithm in Section 4. We evaluate the average path length of Fission systems of 
different scales (from 256 peers up to 256K peers). For each scale, we build the 
network by adding nodes one by one. We select two random points from the 2-
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dimention coordinate space and route a message from one point to the other, and get 
the average path length over 5000 such routings. Figure 5 shows the simulation 
results compared with CAN with d=2 or d=3. From Figure 5, we can infer that the 
average path length of Fission is about logN. 
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Fig. 5. Average path length of Fission 

Then we observe the load balance characteristic of Fission. Let the total area of the 
entire 2-dimensition coordinate space is ST. We simulate Fission system with N=4096 
peers and calculate the area each peer owns. Let S=ST/N, Figure 6 shows the 
percentage of peers that own a particular area. From Figure 6, about 45% peers own 
the same area S and the percentage that owns area more than 4S or less than S/4 is 
almost zero. The number of keys stored on each peer is in direct proportion to the area 
the peer owns, thus the distribution of keys over peers is almost uniform. 
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Fig. 6. Load balance characteristic of Fission 

6   Conclusions and Future Work 

Fission is a novel scalable DHT-style peer-to-peer network that can achieve O(logN) 
diameter with only O(1) degrees. Beside its simplicity and low diameter as well as 
constant degree, Fission also has good load balance characteristic. These 
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characteristics of Fission suggest that Fission is a very promising peer-to-peer 
network. In our further work, physical topological information will be exploited in 
Fission to reduce latency. And the current design of Fission is based on Kautz graph 
K(2,k) and will be extended to general K(d,k) topology for flexibility.  
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