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Abstract. In recent years, awareness of how software impacts safety has in-
creased rapidly. Instead of regarding software as a black box, more and more 
standards demand safety analyses of software architectures and software design. 
Due to the complexity of software-intensive embedded systems, safety analyses 
easily become very complex, time consuming, and error prone. To overcome 
these problems, safety analyses have to be integrated into the complete devel-
opment process as tightly as possible. This paper introduces an approach to  
integrating safety analyses into a component-oriented, model-based software 
engineering approach. The reasons for this are twofold: First, component- and 
model-based development have already been proven in practical use to handle 
complexity and reduce effort. Second, they easily support the integration of 
functional and non-functional properties into design, which can be used to inte-
grate safety analyses. 

1   Introduction 

Today, we are surrounded everywhere by embedded systems. For example, cars have 
more than 80 microcontrollers, which control, e.g., multimedia systems, comfort 
functions, and driver assisting functions. A lot of these systems are safety-critical, i.e., 
a failure of one or more of these systems can lead to accidents involving injury or loss 
of life. Therefore, standards for the development of safety-critical systems highly 
recommend considering safety during the complete development process [1]. Safety 
analyses are intended to be used as part of the constructive development process. 
They are very valuable for designing safe systems from the very beginning and for 
having a systematic means for assessing which parts of the system have which impact 
on safety. This is essential for the cost-efficient development of safety-critical sys-
tems. Nonetheless, safety analyses are very time-consuming and, as practical experi-
ence shows, are thus often performed only once very late in the development cycle, 
sometimes even for documentation purposes only. Applied in late phases, however, 
the analysis results have no direct impact on the development of the system, and their 
benefit as a constructive means for developing safe systems is thus not recognized. 
Consequently, from a project manager’s or developer’s point of view, these analyses 
become even less important and helpful. Yet, the application of safety analyses is 
indisputably of crucial importance for the development of safety-critical systems. 
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This problem is even more severe for software. In practice, safety analyses are 
most often limited to hardware, and software has only been regarded as a black box. 
This is also true for the automotive industry. But automotive software realizes more 
and more safety-critical functions that can harm people, such as X-by-wire and 
driving dynamic control systems. It cannot be assumed that these complex embed-
ded systems have zero faults or that their safety can be guaranteed by intensive 
testing. Besides this, mitigating weak points late in the development process is one 
of the biggest cost factors in the development of software. So, safety analyses of 
software architecture and design are as valuable as on the system or hardware level 
for the constructive development process of safety-critical systems. Furthermore, 
safety analyses are process-spanning activities, including the system, software, and 
hardware levels, which cannot be analyzed in isolation. Thus, safety analyses of 
software are particularly necessary for identifying how failure modes are propa-
gated through or caused by the software and for finding Common Cause Failures 
that violate the safety assumptions on system level. Because of this, in recent years, 
the awareness of how software impacts safety has increased rapidly. For example, 
the working draft of the ISO 26262 and the MISRA safety analysis guidelines [2] 
recommend safety analyses to also be performed on software. But in order to make 
safety analyses applicable in the constructive software design process and tap their 
full potential for the cost-efficient development of safety-critical systems, a signifi-
cant reduction in complexity and effort is essential. To achieve this, in this paper, 
we integrate three mature approaches into one design methodology for the design of 
safety-critical software: 

1. Standard safety analyses, i.e., Failure Mode and Effect Analysis (FMEA) and 
Fault Tree Analysis (FTA), because they are most intuitively applicable, wide-
spread, and accepted. 

2. Semi-automatic safety analyses of model-based design, because their tool support 
and automation reduces effort, supports the efficient evolution of models, and fa-
cilitates consistency between safety and design models. 

3. Component-based software engineering, because it uses best software engineering 
principles and supports reuse. 

Chapters 2 to 4 discuss the advantages and disadvantages of the three approaches 
and the related work in these fields, respectively. All three use different, mutually 
complementary ways to handle complexity and reduce effort. In order to benefit from 
all advantages and compensate for disadvantages in the constructive design of safety-
critical software, these approaches have to be tightly integrated into one design 
method that uses and coordinates their activities in an optimal way. This integrated 
design methodology is presented in chapter 5. The current status and future work are 
discussed in chapter 6, and chapter 7 gives a short summary and conclusion. 

2   Safety Analyses 

Safety analyses aim at identifying failure modes, their causes, and those effects that can 
have an impact on system safety. Their primary goal is not to uncover design faults or 
prove that an implementation is correct. Safety analyses uncover safety-critical weak 
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points that are theoretically possible failures that may cause hazards and argue whether 
such hazards are sufficiently improbable in the current system design or not. On the one 
hand, sufficiently improbable means the actual failure probability of random hardware 
failures and, on the other hand, the application of appropriate measures and methods for 
avoiding and mitigating random and systematic faults. Because of this, common verifi-
cation and validation techniques cannot replace safety analyses, but are prerequisites for 
developing safe systems. 

Most standards and guidelines as well as many experts recommend the combina-
tion of an inductive safety analysis, such as FMEA, with a deductive one, such as 
FTA, to identify and analyze hazards. FMEA identifies failure modes and searches 
bottom-up for their effects. FTA takes a top event and searches for its causes. In con-
trast to FMEA, FTA also determines how failure modes are related to each other 
combinatorially. Both techniques are intuitively applicable, and are the most widely 
spread and accepted ones. However, the immense effort required to apply FMEA or 
FTA to complex, software-intensive systems very often impedes their application. 
While FMEA is accepted and commonly used for hardware and mechanical systems, 
software is mainly regarded as a black box. Particularly in the automotive industry, 
FTA is still the exception rather than the rule. 

Besides these two, there exist many other techniques that are not widespread or ac-
cepted. Many of them are mathematically more powerful, but they are less intuitive, 
more complex, and therefore less applicable in industry, like Markov chains, Petri nets, 
or formal models. These can be used to complement more intuitive safety analyses. 

3   Automated Safety Analyses of Model-Based Design 

Model-based development uses design models, such as Matlab/Simulink, ASCET, or 
UML, to visually represent software on high levels of design, simulating its behavior 
and generating code from them. Because of this, model-based development directly 
helps to handle complexity and reduce effort by using tool support and automation. 
To support safety analyses, these models can also be annotated with appropriate 
safety-related information. Based on this, they can be automatically transformed into 
safety analysis models, or they can be analyzed directly. In this way, information that 
was already specified in the models is also used in safety analyses to reduce effort. 
Most of these approaches are based on data flow models, like Matlab/Simulink, AS-
CET or SCADE, and can be divided into Failure Injection (FI) and Failure Logic 
Modeling (FLM) [3]. 

FI injects failure modes into a (formal) model and uses symbolic model checking 
to identify counterexamples that violate safety requirements [4]. A counterexample is 
equivalent to a cut set of a fault tree. A cut set is a set of basic events or failure modes 
that causes the top event of a fault tree. The minimal cut sets of a fault tree are the sets 
of basic events, where every event must be true for the top event to become true. 
Because of this, if all counterexamples are identified by the symbolic model checker, 
they can be used to derive a fault tree whose top event is the disjunction of all mini-
mal cut sets. This is called a minimal cut set tree and its disadvantage is that the tree is 
completely flat, i.e., it does not show the system structure and therefore, it does not 
show the failure propagation traces through the system. This, however, is necessary 
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for finding the appropriate places in the system where safety measures need to be 
implemented. Because of this, additional tools are needed for finding these error 
traces [5]. 

The advantage of FI is that by using only formal models, the safety analyses are 
correct. But this requires the use of a formal design model. If the formal model has to 
be derived, this is a new source of faults. Additionally, the injection of failure modes 
is less intuitive than the application of standard safety analyses, resulting in another 
source of faults. This makes the application of FI more difficult in industrial practice. 

Failure Logic Modeling is the second kind of approach to automating the safety 
analyses of data flow models. Failure Logic Modeling models the local failure flow of 
modules or components on the lowest hierarchy level, i.e., it analyzes and models the 
failure modes of the inputs and outputs as well as the components themselves and 
their causal relationships. For this purpose, logic expressions [6] or finite state ma-
chines are used most often. However, there is also one approach that directly uses 
fault trees to model the local failure flow [7][8]. Based on the models of the local 
failure flow and the structure of the data flow models, fault trees are automatically 
generated by most approaches. 

One problem and disadvantage of FLM compared to FI that can be found very of-
ten in the literature is correctness [3], because FLM is modeled manually. Of course, 
this can be a source of errors, but it is the strength of safety analyses to use expert 
knowledge and human intuition to also find problems that are not specified. So, the 
problem in automating safety analyses is to find the right ratio between human tasks 
and automation. At least the process of using safety analyses constructively in the top-
down development process requires a lot of human thinking. This is why FLM has to 
be preferred to FI for this purpose. However, FI can be used to verify the correctness 
of the FLM later in the development process. 

Another problem of FLM is the lack of abstraction and refinement [3], which are 
of major importance in a top-down development process. In FLM, only one hierarchy 
level can be analyzed, and no relations are defined between the safety analyses of 
different hierarchy levels. So, most of the time, the entire current system is considered 
and it is hard to focus only on one hierarchy level. Because of this, solutions for han-
dling complexity in this dimension also have to be found. 

4   Component-Based Software Engineering 

Abstraction and refinement are inherent parts of component-based software engineer-
ing (CBSE), which is already a mature approach to handling complexity in the devel-
opment of IT systems. But for embedded systems, and particularly for safety-critical 
systems, only proprietary approaches exist until now. Most of them rather address 
safety-related, non-functional properties, such as real-time behavior and correctness. 
For example, the Prediction-Enabled Component Technology (PECT) of the Predict-
able Assembly of Certified Components (PACC) [9] provides analytical interfaces, 
which can be used by model checkers to verify properties related to the safety of the 
system. This use of model checking is equivalent to the Fault Injection mentioned 
above and also proposed in the Rich Component Model (RCM) [10]. Of course,  
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correct real-time behavior and the formal verification of safety-relevant properties are 
necessary to guarantee safety, but they are not sufficient for developing safe systems. 

However, CBSE is highly likely to further reduce the complexity of constructive 
safety analyses during the development of safety-critical systems. The main reason 
for this is separation of concerns, which is the basic principle of CBSE [11] and 
which is applied in three dimensions: 

1. Divide and conquer. 
2. Rigorous separation between specification and realization. 
3. Separation of different functional and non-functional properties by views. 

The first two dimensions are illustrated in Figure 1a. Every box is a component, 
consisting of a specification and a realization. The component specification specifies 
the black-box behavior of the component, i.e., all externally visible properties or the 
requirements on the component. This includes the interfaces of the component as well 
as all externally visible functional and non-functional properties. In contrast to this, 
the realization shows the component as a gray box, i.e., it shows the black-box speci-
fications of the subcomponents the component consists of and their collaboration. For 
example, the top component in Figure 1a consists of three subcomponents and the 
realization of the top component only knows the specifications of the subcomponents 
and specifies their collaboration. In a top-down development process, this means that 
the specifications of the subcomponents are derived from the specification of the 
component based on the component realization. When doing so, a complex system or 
component is recursively divided into subcomponents until the components are sim-
ple enough to be implemented directly. Additionally, the realization of every compo-
nent is simple, because only the collaboration of appropriate subcomponents has to be 
defined based on the specifications of the subcomponents. Their inner details are 
hidden in their realizations. In this way, the development of system and software is 
recursively separated into many simple and controllable tasks. 

The third dimension is illustrated in Figure 1b, which shows the Safe Component 
Model, an adaptation of the KobrA component model [11]. Both the specification and 
the realization of a component consist of views. Each view describes another func-
tional or non-functional property of the component. The advantage of the view con-
cept is that different properties of the components are considered separately and clear 
internal interfaces between the different views are defined. In this way, CBSE not 
only helps to focus only on one system element on one hierarchy level at any one 
point in time, but, additionally, on only one property of this element. In this way, the 
complexity of systems and software is controlled by separating the system into differ-
ent views of hierarchical components. This is possible because of two reasons: First, 
for every view, composition rules, which specify how views of different components 
can be connected with each other, are defined by domain experts. Second, rules for 
abstraction and refinement between the views of the specification and the realization 
are defined. Thus, the system is not only divided into components and views, but is 
also composed of these. Finished components and all their views can be reused, which 
again reduces effort. 
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Fig. 1. a) System structure of hierarchical components. b) Safe Component Model. 

5   Safe Component Model 

In the Safe Component Model (SCM), the principle of CBSE is realized and adapted 
to the model-based design of safety-critical embedded systems. For model-based 
design, the basic views are data flow models. These are the functional views of speci-
fication and realization in Figure 1b. In order to make safety analyses efficiently and 
constructively applicable during top-down development, safety analysis views and 
appropriate automations are needed. Besides these, views for other non-functional 
properties can be used dependent on the application domain. But in this paper, we are 
focusing on the functional and safety views. 

For the top-down design of safety-critical software, the functional views and the 
safety views have to be tightly integrated. The first step is to specify the intended 
functional behavior of the component in the functional specification. Based on this, 
the failure behavior of the component has to be assessed directly and the results are 
modeled in the failure specification. After this, the component specification can al-
ready be used in analyses on superordinate levels. The specification is described in 
section 5.1. 

In the next step, which is described in section 5.2, the specification is realized by 
collaborating subcomponents. The subcomponents used and their collaboration are 
specified in the functional realization. Because every subcomponent has a failure 
specification, Failure Logic Modeling can be used to semi-automatically generate the 
failure realization. In this top-down process, the specification can be seen as the re-
quirements on the realization. Because of this, it has to be checked whether the reali-
zation fulfills the specification or not. The relationship between failure specification 
and realization is described in section 5.3. 

5.1   Specification 

A functional specification is a simple functional block with input and output inter-
faces. Therefore, the functional specification is equivalent to a SubSystem in Mat-
lab/Simulink and many other model-based development approaches. Additionally, the 
syntax and semantic of the interfaces have to be specified in order to describe the 
functionality of the block, make it reusable and analyzable. 



64 D. Domis and M. Trapp 

 

Fig. 2. Functional Specification of the Brake Controller 

Figure 2 shows the functional specification of the Brake Controller (BC) compo-
nent, which is part of the traction control and anti-lock braking system of the IESE 
concept car. BC has four input interfaces (inputs) and three output interfaces (out-
puts). The inputs are:  

• I1 steering_angle_driverInput, which has the type integer, a value range from 0 to 
180, and describes the steering angle in degrees that is set by the driver.  

• I2 v_carRef, which is of the type double with a value range between 0 and 100 
describing the speed of the car in kilometers per hour. 

• I3 brake_driverInput, which is an integer with the value range 0-100 that specifies 
the braking power that is set by the driver. 

• I4 v_yaw, which is of the type int with a value range from 0-360 and describes the 
rotation of the car in degrees per second around its y-axis (vertical axis). 

All four inputs are used to calculate the braking power at the individual wheels that is 
required to maintain the driving stability of the car and to steer and decelerate it as in-
tended by the driver. Both rear wheels are affected by the same brake, which is con-
trolled by the output O3 corrected_rearBrake. O1 corrected_brake_FL controls the 
brake at the front left wheel and O2 corrected_brake_FR that at the front right wheel. 
All three outputs are integer values between 0-100 and describe the power at the brakes. 
Additional information includes the exact physical functions and assumptions, when the 
component can be used, and how. This syntactical and semantic information can be 
described, e.g., by type systems, invariants, preconditions, or post-conditions. But for 
this simplified example, it is unimportant how the information is specified and what the 
exact functionality is. The important point is that SCM can be applied on any model that 
makes minimal use of interfaces in this way. 

After specifying the functional requirements of the component in the functional 
specification, its failure behavior, which might have an impact on safety, has to be 
assessed. This early safety assessment can be used in the safety analyses of a super 
component and as safety requirements on the realization of the component. In this 
way, the failure specification makes safety-critical components reusable, because the 
safety model is part of the component specification. Besides this, by analyzing safety 
immediately, no information is lost, because the engineer still remembers what he/she 
assumed. 

Because SCM uses standard safety analyses, the analysis is very intuitive and 
guided by mature techniques. In the first step, an Interface Focused-FMEA (IF-
FMEA) [6] is applied on the functional specification. First, the IF-FMEA searches for 
failure modes at the inputs and outputs of the component as well as those of the com-
ponent itself. To identify failure modes, the concept of HAZOP guidewords is used, 
which have also been adapted for software [12]. This method is called SHARD and 
proposes the following guidewords: Omission, Comission, Value, Early, Late. A 
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standard set of guidewords is a useful basis, but has to be adapted to the domain and 
application being analyzed. For this purpose, an object-oriented Failure Type System 
[13] is used (Figure 3). Each failure mode of an input, output, and component gets an 
unambiguous failure type, such as FM_Omission or FM_Value. The Failure Type 
System can be adapted to every application; failure modes can be defined and attrib-
utes can be used to refine the semantics of the failure modes. For example, for the 
failure type FM_High_Deviation in Figure 3, it has to be specified which deviation is 
tolerable before it is considered a failure. 

 

Fig. 3. Example of a Failure Type System 

In the second step, the IF-FMEA searches for causes and effects of failure modes. 
Causes of output failure modes may be internal failure modes of the components, or 
failure modes of inputs. Vice versa, the effects of input failure modes and internal 
failure modes are output failure modes. These relationships are defined during the 
second step of the IF-FMEA. In the next step, the information of the IF-FMEA is 
refined by a Component Fault Tree (CFT) [14], i.e., the combinatorial relationships 
between output, input, and internal failure modes are investigated and further failure 
modes are identified. The output failure modes thus become the top events of the 
CFT, the internal and input failure modes become basic events. CFTs directly support 
the component concept by enabling the definition of output and input events. The 
output failure modes can thus be defined as output events (filled triangles in Figure 4) 
and the input failure modes as input events (triangles, open at the bottom). In this 
way, the CFT can be easily used in the FTA of a superordinate component. 

In the BC example, the input BC.I1 has the failure types FM_Low, BC.I2 FM_High, 
and BC.I3 as well as BC.I4 FM_Value in the CFT of Figure 4. BC itself can have an 
internal FM, BC.Int1 FM, and the failure detection of the input signals can fail, BC.Int2 
FM_Detection_Fails. These failure modes are part of the specification, because their 
effects are externally visible, they are requirements on the realization, and they do not 
show inner details of the component. Because of this, information hiding is also guaran-
teed in the failure specification. All input and internal failure modes can cause the cor-
rected brake value at the output BC.O3 to be wrong, which is represented by the failure 
types FM_Value . All input FMs except BC.I3 FM_Value can only cause FM_Value if 
the internal failure detection of BC fails. Because of this, BC.Int2 FM_Detection_Fails 
is combined with these input failure modes by an AND-gate. Additionally, BC.Int1 FM 
can delay the corrected rearBrake, which is represented by BC.O3 FM_Late. BC.Int1 
FM and BC.I3 FM_Value are single points of failures. 
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Fig. 4. Failure Specification of the Brake Controller 

In this way, all failure modes of the current component specification are easily identi-
fied and the failure behavior is assessed. If the analysis shows that the specification is 
not suitable for achieving safety in the context of the supercomponent, the specification 
can be changed immediately and alternatives can be compared. For example, one may 
decide that further inputs are needed to increase the efficiency of error detection and 
handling. For this purpose, no quantitative analyses are needed, only qualitative and 
sensitivity analyses assessing the impact of events. In this way, the functional and safety 
requirements of the component are derived from the super component and are directly 
considered in the subsequent realization of the component. 

5.2   Realization 

The functional realization is a gray box specification of the component, which defines 
or reuses appropriate subcomponent specifications to realize the requirements speci-
fied in the component specification. This is done by trial and error or by using expert 
knowledge or design patterns. Many model-based approaches have similar hierarchi-
cal model elements, like the definition of a SubSystem in Matlab/Simulink [15]. So, 
both the specification and the realization of SCM can be applied to most model-based 
approaches. 

Figure 5 shows the final functional realization of BC. BC consists of the steering an-
gle delimiter (SAD) and the yaw rate corrector (YRC). SAD uses the inputs BC.I1 and 
BC.I2 of BC. With these inputs, the YAC 
calculates the delimited_steering_angle at 
the output SAD.O1, which is connected 
with YRC.I1, because YRC requires this 
input. The other two inputs of YRC, YRC.I2 
and YRC.I3, require v_yaw and brake_ 
driverInput, which are the other two inputs 
of BC. All three outputs of YRC are di-
rectly connected with the corresponding 
outputs of BC because they provide the 
necessary signals. 

 

Fig. 5. Functional Realization of the Brake 
Controller 
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Fig. 6. Failure Realization of the Brake Controller 

Thus, BC is composed of YRC and SAD based on their specifications. In order to 
avoid interface problems or the composition of unsuitable components, interfaces can 
only be connected with each other if they are syntactically and semantically compati-
ble. For this purpose, appropriate composition rules have to be defined. For SCM, it is 
only important to mention that these composition rules do not only include the func-
tional views, but also the failure views. This reduces effort and helps to define or 
identify appropriate subcomponents. It is automatically checked whether two compo-
nent interfaces can be connected with each other. For this purpose, in addition to the 
functional syntax and semantic, it is checked whether the failure types of each inter-
face are compatible: The ports of components and subcomponents can only be con-
nected if they have the same failure type or the failure type of the required interface is a 
super failure type of the provided interface. In case the failure types have attributes, 
these also have to be considered in the compatibility check. If many provided interfaces 
have to be connected with a single required interface, an OR-gate has to be used. This 
guarantees that the failure realization contains a properly connected CFT and corre-
sponds to the semi-automatic safety analyses done by Failure Logic Modeling.  

The CFT of the failure realization of BC is shown in Figure 6. Equivalent to the 
functional realization, the failure realization is composed of the specifications of its 
subcomponents, but here the failure specifications are used instead of the functional 
realizations. So, the gray box in the lower left part of the picture, which is labeled 
SAD, shows the instantiated failure specification of the SAD. 
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The top event of the SAD failure specification is SAD.O1 FM_LOW. This is con-
nected with the input failure mode YRC.I1 FM_Value, which is an input failure mode 
of the failure specification of SAD because the ports are connected in the functional 
realization and FM_Value is a super failure type of FM_Low. The other input and 
output failure modes of SAD and YRC are directly connected with the corresponding 
output and input failure modes of BC. Besides the input and output Failure Modes, 
SAD has the internal failure modes SAD.Int1 FM and SAD.Int2 FM_Detection_Fails 
and YRC has the internal failure modes YRC.Int1 FM and YRC.Int2 FM_ 
Detection_Fails. 

In this way, the failure realization is automatically derived based on the failure 
specifications of the subcomponents and the functional realization of the component. 
In a bottom-up approach, the reuse of existing subcomponents results in a significant 
decrease in the effort needed for performing safety analyses on a component. In a top-
down approach, this directly supports the constructive design process of safe systems. 
For the defined subcomponents, it is initially sufficient to define their failure specifi-
cations. Based on these subcomponent specifications, it is already possible to analyze 
whether the current realization of the component will meet the requirements. In this 
way, the failure specifications of the subcomponents can be optimized before they are 
realized. 

The failure realization can be reviewed manually in order to identify failure modes 
that have not been considered in the model until now. These have to be added manu-
ally at the appropriate point, but the failure specification of the subcomponent and the 
instance used in the realization are automatically kept consistent. Thus, manual steps 
are also necessary in the failure realization, but because most steps are automated, the 
effort is low. 

5.3   Relation between Specification and Realization 

In this top-down design process, the functional realization is used to derive the safety 
specification of the subcomponents from the safety or failure specification of the 
component. After the specification and the realization of the component are finished, 
it has to be checked whether the realization fulfills the specification or not. For this 
purpose, appropriate and application-specific rules have to be defined. This includes, 
for example, that both have the same input and output failure modes and that the out-
put failure modes have the same MCS. The internal failure modes of the specification 
can summarize internal failure modes of the realization. For example, the failure re-
alization of BC has six MCS: YRC.Int1 FM, SAD.Int1 FM, SAD.Int2 
FM_Detection_Fails & BC.I1 FM_Low, SAD.Int2 FM_Detection_Fails & BC.I2 
FM_High, YRC.Int2 FM_Detection_Fails & BC.I4 FM_Value, and BC.I3 FM_Value. 
When YRC.Int1 FM and SAD.Int1 FM are summarized to BC.Int1 FM and SAD.Int2 
FM_Detection_Fails is summarized together with YRC.Int2 FM_Detection_Fails to 
BC.Int2 FM_Detection_Fails, they constitute all MCS of the BC failure specification. 
Here, all internal failure modes with the same failure type were summarized, but other 
rules may also be defined. Failure probabilities might also be used for this purpose 
when this seems suitable, but the results of qualitative analyses should be preferred in 
the analysis of software. 

The same ideas can be used to automatically derive the failure specification from 
the failure realization when a preliminary failure specification should be substituted 
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by one that is closer to the realization or when no failure specification exists. In gen-
eral, the important point of the failure specification is that only externally visible 
properties of the component are shown and all inner details are hidden. Because of 
this, the BC failure specification does not show any information about YRC or SAD. 
All internal failure modes of BC are failure modes of BC itself. So, when a failure 
specification is generated from a failure realization, all internal events must be re-
named. Additionally, they can be summarized and the tree is transformed into an 
MCS tree, which does not show any details about the inner structure of BC. In this 
way, no inner details of a component are betrayed by the failure specification. First, 
this helps to abstract from details and to focus on the relevant things on the current 
component level. Second, this information hiding is of major importance for the pro-
tection of intellectual properties in a distributed development. If a supplier delivers a 
component that has to fulfill a safety-critical functionality, this component has to be 
considered in the safety analysis of the system, but without betraying any intellectual 
properties regarding the component. Because of this, rigorous information hiding is 
necessary in the failure specification. 

6   Current Status 

The SCM has already been implemented as part of the ComposeR tool for the com-
ponent-oriented, model-based development of safety-critical embedded systems. The 
tool makes it possible to extend SubSystems in Matlab/Simulink with complete com-
ponent specifications and realizations and to analyze the extended Simulink models. 
For safety, this includes connectability and safety analyses. The safety analyses can 
be performed with ESSaRel [16] or Fault Tree + [17]. ESSaRel is easier to use, since 
it directly supports CFTs, but Fault Tree + is one of the most widely used fault tree 
tools in industry. Because of this, ComposeR also supports the generation of fault 
trees of the entire system in Fault Tree+ for certification purposes. Besides safety, 
ComposeR already supports views for graceful degradation/adaptation and further 
views are currently being implemented. Moreover, the INProVe tool was developed 
based on ComposeR for the architectural analysis of dataflow models. The results of 
this tool are used to support model-based safety analyses. 

The SCM methodology and the ComposeR tool were used in the development of 
the traction control and anti-lock braking system of the IESE concept car. This is a 
radio controlled model car with a combustion engine equipped with sensors, actua-
tors, and ECUs for implementing the intended functionality. Thus, it is a real practical 
example. In the next step, we will validate the methodology and the tool in an indus-
trial case study and develop them further based on the results. 

7   Summary and Conclusion 

This paper has explained that safety analyses should be used as part of the construc-
tive development process of safety-critical systems and software, in order to develop 
safe systems and avoid the costs of late analyses and changes. Particularly for soft-
ware, however, safety analyses are too complex for many companies to apply. To 



70 D. Domis and M. Trapp 

better handle the complexity of software safety analyses, we developed a method for 
tightly integrating standard safety analyses, like FMEA and FTA, into a component-
oriented, model-based software design method. In this way, the safety analyses  
benefit from the separation of concerns provided by component-based software engi-
neering. The system is divided into controllable subcomponents and the safety analy-
ses either focus on the specification or the realization of the current component. 
Safety analyses on higher component levels abstract from details that are refined on 
lower component levels. So, there is a clearly defined scope for every step of the 
analysis. The impact on safety of every component is automatically analyzable at each 
component level. The refinement is absolutely traceable across the different compo-
nent levels and particularly includes the safety analyses. Moreover, through the rigor-
ous separation between specification and realization, information hiding and protec-
tion of intellectual properties are guaranteed in distributed development between 
different companies. Besides this, the method actively supports the reuse of compo-
nents, because the safety analysis model becomes an inherent part of the component 
model. The approach is tool-supported and applicable to model-based designs like 
Matlab/Simulink. Because of this, SCM helps to handle the complexity of safety 
analyses and makes them constructively applicable during the software design proc-
ess, where they achieve the greatest benefit. 
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