
L. Kalinichenko et al. (Eds.): ADBIS 2003, LNCS 2798, pp. 16–29, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Extension of Compositional Information Systems
Development for the Web Services Platform

Dmitry Briukhov, Leonid Kalinichenko, and Iliya Tyurin

Institute of Informatics Problems RAS
{brd,leonidk,turin}@synth.ipi.ac.ru

Abstract. The use of Web services on the World Wide Web is expanding rap-
idly to make applications interoperable in information systems (IS). Web serv-
ices providing interfaces to information and software components are
convenient entities for producing their compositions having Web service ap-
pearances. At the same time, most large scale enterprise solutions that are de-
ployed today are composed of a combination of different technologies that go
together to compose many diverse applications. An approach for compositional
information systems development in a multi-technological framework including
Web service components is discussed. This paper proposes to extend the
SYNTHESIS method for compositional information systems development
(CISD) to the world of Web services. The CISD method is intended for correct
composition of existing components semantically interoperable in the context
of a specific application. Originally, the CISD method has been developed for
the object-oriented platforms (like CORBA, RMI, J2EE). In the CISD, an on-
tological model and canonical object model (the SYNTHESIS language) are
used for the unified representation of the new application (specification of re-
quirements) and of the pre-existing components. Discovery of components
relevant to the application and producing their compositions is provided in
frame of the domain ontology and the canonical object model. To apply the
CISD method for Web services, the mapping of WSDL specifications into the
canonical model is required. The basic steps of the approach for the information
system compositional development applying Web services are demonstrated.

1 Introduction

As XML becomes a standard for data representation spread among various platforms,
it becomes easier to make information and software components to interoperate in in-
formation systems (IS) applying Web services. Web Services Description Language
(WSDL [19]), Universal Description, Discovery and Integration (UDDI [17]) and
Simple Object Access Protocol (SOAP [15]) provide basic facilities for technical
interoperability in the world of Web services.

Web services can be treated as components that can be re-used to build information
systems. While technical interoperability is supported by the Web service architec-
ture, semantic interoperability is to be provided by specific organization of composi-

Extension of Compositional Information Systems Development 17

tional development. This paper1 describes an approach to use the SYNTHESIS
method for compositional information systems development (CISD) [2] over Web
services. The CISD method is intended for correct composition of existing compo-
nents semantically interoperable in the context of a specific application (defined by a
specification of requirements). In contrast to technical interoperability (provided by
middleware technologies, such as CORBA, or Java RMI) in CISD the interoperability
is considered in a broader, semantic aspect.

Originally, the CISD method has been developed for the object-oriented middle-
wares (like CORBA, J2EE), but it can be extended also for other platforms. In this
paper we present an extension of the compositional IS development method for the
Web Services platform. To apply the CISD method for Web services we need to ex-
tend specifications of Web services with ontologies. Also, the mapping of WSDL
specifications into the canonical model of the CISD (SYNTHESIS language) should
be provided.

The paper is organized as follows. After brief characterization of the related work,
a short introduction into the CISD method is given. The intention of this introduction
is to make further examples in the text better readable. Section 4 presents the main
principles of mapping the WSDL specification into the SYNTHESIS specification. In
section 5 an extension of the CISD method for the Web services platform is demon-
strated. The conclusion summarizes the results obtained.

2 Related Work

Web Services is an additional middleware solution that has emerged from efforts to
perform distributed computing over the public Internet, particularly exchanges be-
tween enterprises. In spite of many of its attractive capabilities, Web Services is un-
suitable for many important operations, including rapid multi-use services (e.g.,
database transactions), or as the internal mechanism linking parts of component-based
applications. Therefore solutions are needed to enable applications in diverse tech-
nologies to interoperate using web services technology. A Web Services architecture
should seamlessly integrate with other infrastructure facilities on an “integration bro-
ker” platform [21,20]. Components from different platforms are expected to be com-
posable together with and into the web services.

The CISD [2] is a compositional multi-platform method that is in a good corre-
spondence with the idea of the integration broker [21]. This paper shows how to ex-
tend this method to the Web Services. Web Services requires a conceptual modeling
and architectural framework on top of existing Web Service standards and architec-
tures. Current Web services standards enable publishing service descriptions and
finding services on a match based criteria such as method signatures or service cate-
gory. More promising directions include DAML-S [6] providing an ontology of serv-
ices, the service profile for advertising and discovering services; the process model,
which gives a detailed description of a service's operation.

Brief comparison of CISD with the known DAML-S based approaches follows.
The METEOR-S work [18] states that current Web service discovery mechanism is

1 The work was supported by the Russian Foundation for Basic Research (grants 01-07-90376

and 03-01-00821).

18 D. Briukhov, L. Kalinichenko, and I. Tyurin

inefficient, as it does not support discovery based on the capability of the services and
thus leading to a lot of irrelevant matches. This project [18] adds an ontology-based
approach to organize registries, enabling semantic classification of all Web services
based on domains. An approach for semantic publication and discovery using WSDL
descriptions map inputs and outputs of Web services to ontological concepts. The op-
erations themselves should be mapped to concepts, all inputs and outputs in the
WSDL description should not only be mapped to concepts in the domain specific on-
tology but also grouped according to operations. Similar mapping of operations and
their parameters to ontologies has been originally provided by CISD [2].

In [14] the semantic web initiative at W3C (such as DAML-S) and tools that may
help bridge the gap between the current standard solutions and the requirements for
advanced web service discovery are analyzed. The analysis concludes that DAML-S
is still in its infancy and a lot of work has to be done in order to overcome its limita-
tions and problems. The paper [12] reports results of DAML-S usage to describe ca-
pabilities of Web services so that they can find each other on the basis of the
information that they provide. An approach for integrated Semantic Web technology
for automating customized, dynamic discovery of Web services together with interop-
eration through semantic translation is presented in [11]. Alongside with promising
results, the paper warns that achieving automated Web service composition requires a
fundamental shift in industrial frameworks from executing predefined process models
to computing and adapting execution plans from abstract objectives.

Main differences of CISD [2] and DAML-S oriented approaches [11,12,14] consist
in the following. CISD is based on a refinement technique [1] and on an extensible
typed model for definition of services and workflows. Basic assumption of the
method is that specifications of user needs and specifications of existing services may
differ significantly. Ontological conformance is only one step in discovery of services
potentially relevant to the user requirements. Further steps include an attempt to rec-
oncile the value, structural and typing discrepancies between specifications applying
transformation functions [2,3]. Adapting of behaviors is possible to some extent due
to the features of the refinement technique that tolerates significant differences be-
tween abstract specification of requirements and pre-existing concrete implementation
of a service. Reasoning reported in [11] applies another technique - proof in a de-
scription logic.

Another difference is that the CISD method [2], instead of using a specialized
model (like DAML-S), applies quite general modeling framework suitable for
equivalent mapping into it of various existing modeling facilities. Various ontological
and process specification facilities have been experienced [10,16]. An approach for a
specific model (DAML-S) mapping into the general modeling framework of CISD
has been presented in [10].

3 Fundamentals of the CISD Method

The main distinguishing feature of the CISD method is a creation of compositions of
component specification fragments refining specifications of requirements. Refining
specifications obtained during the compositional development, according to the re-
finement theory, can be used anywhere instead of the refined specifications of re-
quirements without noticing such substitutions by the users.

Extension of Compositional Information Systems Development 19

The compositional development is a process of systematic manipulation and trans-
formation of specifications. Type specifications of the SYNTHESIS language are
chosen as the basic units for such manipulation. The manipulations required include
decomposition of type specifications into consistent fragments, identification of reus-
able fragments (patterns of reuse), composition of identified fragments into specifica-
tions refining the requirements, justification of substitutability of the results of such
transformations instead of the specifications of requirements. The compositional
specification calculus [7], intentionally designed for such manipulations uses the fol-
lowing concepts and operations.

A type reduct RT is a subspecification of an abstract data type T specification. The
specification of RT should be formed so that RT becomes a supertype of T.

For identification of a fragment of existing component type that may be reused in
implementation of another type, a common reduct for these types should be con-
structed. Common reduct for types T1 and T2 is such reduct RT1 of T1 that there exists
a reduct RT2 of T2 such that RT2 is a refinement of RT1. RT2 is called a conjugate of the
common reduct. Establishing a refinement ensures that RT2 can be correctly substituted
everywhere instead of RT1.

For creation of composition of identified reusable fragments into specification re-
fining the specification of requirements the type calculus operations (such as meet,
join and product) are used. The meet operation T1 & T2 produces a type T as an ’inter-
section’ of specifications of the operand types. The join operation T1 | T2 produces a
type T as a ’join’ of specifications of the operand types [7].

Briefly, the CISD method consists in the following. To make analysis of an infor-
mation system being developed, an existing object analysis and design methods [13]
extended to achieve the completeness of specifications is applied. In particular, such
method is extended with a means for ontological definitions of the application do-
mains, for definition of type invariants and predicative specifications of operations.
Then, at the design phase, using a repository of component specifications, a search of
the components relevant to the specifications of requirements is undertaken. This
search is based on the integrated ontological context of requirements and components.
Then, identification of reusable fragments of components, including reconciliation of
various conflicts between specifications, and composition of such fragments into
specifications concretizing the requirements should be made. And finally, a property
of refinement of requirements by such compositions should be justified.

4 Representation of WSDL Specifications in the SYNTHESIS
Language

Mapping the Web Services specifications into the SYNTHESIS language [8] is re-
quired to extend the CISD method to Web services.

In the CISD, the SYNTHESIS language intends to provide for uniform (canonical)
representation of heterogeneous data, programs and processes for their use as interop-
erable entities. Strongly typed, object-oriented subset of the language (that is required
in this paper) contains a universal constructor of arbitrary abstract data types, a com-
prehensive collection of the built-in types, as well as type expressions based on the
operations of type calculus.

20 D. Briukhov, L. Kalinichenko, and I. Tyurin

All operations over typed data in the SYNTHESIS language are represented by
functions. Functions are given by predicative specifications expressed by mixed pre-
and post-conditions.

In the SYNTHESIS language the type specifications are syntactically represented
by frames, their attributes - by slots of the frames. Additional information related to
attributes can be included into metaslots. Syntactically frames are embraced by figure
brackets { and }, slots are represented as pairs <slot name> : <slot value> (a frame
can be used as a slot value), slots in a frame are separated by semi-colons.

4.1 Port Type

A port type describes a set of messages that a service sends and/or receives. It does
this by grouping related messages into operations. An operation is a set of input and
output messages, a port type is a set of operations.

A port type can optionally extend one or more other port types. In such cases the
port type contains the operations of the port types it extends, along with any opera-
tions it defines.

The specification of port type is the following:

<wsdl:portType name="port_name">
 <wsdl:documentation /> ?
 <wsdl:operation name="operation_name"> *
 ...
 </wsdl:operation>
</wsdl:portType>

The port type is mapped into the SYNTHESYS type:

{port_name;
 in: type;
 <list_of_operations>;
}

4.2 Port Type Operation

A port type operation describes an operation that a given port type supports. An op-
eration is a set of message references. Message references may be to messages this
operation accepts, that is input messages, or messages this operation sends, that is
output or fault messages.

<wsdl:operation name="operation_name">
 <wsdl:documentation /> ?
 <wsdl:input message="input_message_name"> ?
 <wsdl:documentation /> ?
 </wsdl:input>
 <wsdl:output message="output_message_name"> ?
 <wsdl:documentation /> ?

Extension of Compositional Information Systems Development 21

 </wsdl:output>
 <wsdl:fault name="ncname"
 message="fault_message_name"> *
 <wsdl:documentation /> ?
 </wsdl:fault>
</wsdl:operation>

The port type operation is mapped into the SYNTHESIS function:

operation_name: {
 in: function;
 params: {<list_of_parameters>};
 [{{<predicative_specification>}}]
};

4.3 Message

A message describes the abstract format of a particular message that a Web service
sends or receives. The format of a message is typically described in terms of XML
element and attribute information items.

A part constituent describes a portion of a particular message that a web service
sends or receives. The format of a part is described by reference to type definition or
element declaration constituents.

<wsdl:message name="message_name">
 <wsdl:documentation /> ?
 <part name="part_name" element="element_name"?
 type="type_name"?/> *
</wsdl:message>

The message is mapped into a list of SYNTHESIS function parameters. Each part
constituent is mapped into separate parameter:

operation_name: {in: function;
 params: {<kind>part_name/type_name, ...};
};

or

operation_name: {in: function;
 params: {<kind>part_name/element_name, ...};
};

The <kind> of parameter ("+" - input, "-" - output, "" - input-output) corresponds
to message exchange pattern in WSDL.

4.4 Service

A service describes the set of port types that a service provides and the ports they are
provided over.

22 D. Briukhov, L. Kalinichenko, and I. Tyurin

<wsdl:serviceType name="service_name">
 <wsdl:portType name="port_name"/> +
</wsdl:serviceType>

The service is mapped into SYNTHESIS module which contains types corre-
sponding to WSDL port types:

{service_name;
 in: module;
 type: {
 {port_name;
 in: type;
 ...
 }
 }
}

4.5 XML Schema Types

At the abstract level, the Types Component is a container for imported and embedded
schema components. By design, WSDL supports any schema language for which the
syntax and semantics of import or embed have been defined. Support for the W3C
XML Schema Description Language is required of all processors. Principles of map-
ping the XML Schema Datatypes into the SYNTHESIS types are described in [4].

4.6 Example

To demonstrate the mapping we consider the HotelReservationService. Its specifica-
tion in WSDL looks as follows:

<wsdl:types>
 <xsd:simpleType name="SetOfHotels">
 <list itemType="HotelAndPrice" />
 </xsd:simpleType>
 <xsd:complexType name="HotelAndPrice">
 <xsd:element name="hotel" type="xsd:string" />
 <xsd:element name="city" type="xsd:string" />
 <xsd:element name="roomType" type="xsd:string" />
 <xsd:element name="price" type="xsd:integer" />
 </xsd:complexType>
</wsdl:types>

<message name="InputAsk">
 <part name="city" type="xsd:string"/>
 <part name="roomType" type="xsd:string"/>
 <part name="fromDate" type="xsd:date"/>
 <part name="toDate" type="xsd:date"/>
</message>
<message name="OutputAsk">

Extension of Compositional Information Systems Development 23

 <part name="return" type="SetOfHotels"/>
</message>
<message name="InputComments">
 <part name="comment" type="xsd:string"/>
</message>

<portType name="HotelReservation">
 <operation name="askForRoom">
 <input message="tns:InputAsk"/>
 <output message="tns:OutputAsk"/>
 </operation>
 <operation name="sendComments">
 <input message="tns:InputComments"/>
 </operation>
</portType>

<serviceType name="HotelReservationService">
 <portType name="HotelReservation" />
</serviceType>

The specification of this Web service in SYNTHESIS is:

{HotelReservationService;
 in: module;
 type: {
 {HotelReservation;
 in: type;
 askForRoom: {in:function;
 params: {+city/string, +roomType/string,
 +fromDate/time, +toDate/time,
 -return/SetOfHotels;};
 };
 sendComments: {in:function;
 params: {+comment/string};
 };
 };
 {HotelAndPrice;
 in: type;
 hotel: string;
 city: string;
 roomType: string;
 price: integer;
 };
 {SetOfHotels: {set; type_of_element:
 HotelAndPrice;};
 };
 }
}

24 D. Briukhov, L. Kalinichenko, and I. Tyurin

5 Compositional Development over the Web Services Platform

The approach for compositional IS development over the Web services platform con-
sists in an extension of the CISD [2]. Compositional design according to such ex-
tended approach includes the following steps:

• mapping the Web services specifications into the SYNTHESIS language;
• searching for relevant Web services;
• identifying fragments of existing Web services, that may be reused in IS being

developed;
• resolve conflicts between specifications;
• composition of such fragments into specification refining the specification of IS;
• implementation of IS.
To illustrate this approach the following example will be used. Consider the devel-

opment of IS type TravelService over two existing components (implemented as Web
services): AirTicketReservationService and HotelReservationService.

TravelService as a specification of requirements contains operations: getHotelInfo,
getAirTicketInfo and sendComments. The specification of TravelService type in
SYNTHESIS looks as follows:

{TravelService;
 in: type;
 getHotelInfo: {in:function;
 params: {+info/Travel,
 -returns/{set; type_of_element: Hotel;}
 };
 };
 getAirTicketInfo: {in:function;
 params: {+info/Travel,
 -returns/{set; type_of_element: Ticket;}
 };
 sendComments: {in:function;
 params: {+comment/string}
 };
};
{Travel;
 in: type;
 fromCity: string;
 toCity: string;
 fromDate: time;
 toDate: time;
 roomType: string;
 flightClass: string;
 person: Person;
};

AirTicketReservationService contains the AirTicketReservation port type, which
contains getAvailableTickets and sendComments operations. HotelReservationService

Extension of Compositional Information Systems Development 25

contains the HotelReservation port type, which contains askForRoom and sendCom-
ments operations. The mapping of WSDL specification of HotelReservationService
Web service into the SYNTHESIS language is given in section 4.6.

5.1 Searching for Relevant Web Services

Specifications of requirements and pre-existing components must be associated with
ontological contexts defining concepts of the respective subject areas. Ontological
concepts are described with their verbal definitions similar to definitions of words in
an explanatory dictionary. Fuzzy relationships between concepts of different contexts
are established by calculating correlation coefficients between concepts on the basis
of their verbal definitions. The correlation coefficients are calculated using the vector-
space approach [2].

For each constituent (service type, port type, message) defined in WSDL, the cor-
responding ontological concept is defined. Its verbal definition is taken from the
documentation element that should be defined inside each WSDL constituent. Due to
the correlation established, ontologically relevant service components can be found.

5.2 Identifying Relevant Fragments

This step consists in identifying among probably relevant types (corresponding to ex-
isting Web services) those that may be used for the concretization of the types of
specification of requirements.

For identification of a fragment of existing component type that may be reused in
implementation of another type, the common reduct for these types should be con-
structed. The specification of common reduct for types TravelService and HotelRe-
servation is the following:

{R_TS_HR;
 in: reduct;
 metaslot
 of: TravelService;
 taking: {getHotelInfo, sendComments};
 c_reduct: CR_TS_HR;
 end;
};

A slot of refers to the reduced type TravelService. A list of attributes of the reduced
type in the slot taking contains names of its attributes and functions that are to be in-
cluded into the reduct. In our case the reduct includes functions getHotelInfo and
sendComments.

Its conjugate is specified as a concretizing reduct that incorporates the correspon-
dence between attributes and functions of a reduct being refined and its refinement, as
well as the required functions reconciling conflicts between specifications of these re-
ducts:

26 D. Briukhov, L. Kalinichenko, and I. Tyurin

{CR_TS_HR;
 in: c_reduct;
 metaslot
 of: HotelReservation;
 taking: {askForRoom};
 reduct: CR_TS_HR;
 end;
 simulating: {
 R_TS_HR.getHotelInfo(info) ~
 CR_TS_HR.askForRoom(info.toCity, info.roomType,
 info.fromDate,info.toDate),
 R_TS_HR.sendComments(comment) ~
 CR_TS_HR.sendComments(comment)
 };
};

Slot reduct refers to the respective common reduct. A slot of refers to the reduced
type HotelReservation. A list of attributes of the reduced type in the slot taking con-
tains names of its attributes and functions that are to be included into the concretizing
reduct. In our case it includes functions askForRoom and sendComments. Predicate
simulating shows how the common reduct state is interpreted by an instance of the
collection. E.g., it defines that function getHotelInfo of reduct R_TS_HR is refined by
function askForRoom of concretizing reduct CR_TS_HR and shows the correspon-
dence of their parameters. The concretizing reduct may also contain functions re-
solving various conflicts between specifications of the considered types.

In the same way the common reduct R_TS_ATR and concretizing reduct
CR_TS_ATR for types TravelService and AirTicketReservation are specified. Reduct
R_TS_ATR contains operations: getAirTicketInfo and sendComments.

Fig. 1. CISD Tool Structure

Extension of Compositional Information Systems Development 27

5.3 Composition of Relevant Fragments

For creation of composition of identified fragments into specification refining the
specification of requirements the type calculus operations (such as meet, join and
product) [7] are used.

In our example for implementing the TravelService type the join of reducts of Air-
TicketReservation and HotelReservation types is used. The specification of concre-
tizing type CT_TS_HR_ATR is constructed as join of reducts R_TS_HR and
R_TS_ATR:

CT_TS_HR_ATR = R_TS_HR[getHotelInfo, sendComments] |
 R_TS_ATR[getAirTicketInfo, sendComments]

Resulting type CT_TS_HR_ATR contains functions: getHotelInfo, getAirTicketInfo
and sendComments. The concretizing type refines the TravelService type.

5.4 Implementation of the Developing IS

During implementation the results obtained at previous steps are transformed into the
form of source files in the programming language. Implementation of the IS being
developed includes the code generation for constructed reducts and concretizing
types. Each reduct and concretizing type is implemented as a separate class. Code
generation is performed using special macro language. Programs written in the macro
language may be customized to meet particular needs of specific implementation plat-
forms.

5.5 CISD Tool

Figure 1 shows a general structure of the tool supporting compositional IS develop-
ment. The tool is being developed reusing the SYNTHESIS compositional IS design
method prototype [2]. The tool is based on Oracle 8i and Java 2 under Windows envi-
ronment.

In figure 2 an example of CISD Tool GUI is presented. It shows the GUI for con-
firmation of relevance between the specification of requirements element (function
getHotelInfo) and the component element (function askForRoom).

6 Conclusion

The paper presents an approach for information systems development as a process of
composition of existing Web services. It is based on the compositional information
systems development method described in [2]. To extend this method to Web serv-
ices, the mapping of WSDL specifications into SYNTHESIS specifications was intro-
duced. The basic steps of constructing Web services composition refining a
specification of requirements were demonstrated. The approach proposed makes pos-
sible composition of components developed in frame of different technologies (Web

28 D. Briukhov, L. Kalinichenko, and I. Tyurin

Services, CORBA, J2EE) that work together to compose many diverse applications.
Specific integration architecture [20,21] is assumed for the implementation.

In the future we plan to extend presented approach with process specifications of
Web services (in spirit of process reuse [9] represented similarly to WS-BPEL [5] or
DAML-S [6], but based on the refinement and bisimulation technique).

Fig. 2. An Example of CISD Tool GUI

References

[1] Abrial J.-R. The B Book: assigning programs to meaning. Cambridge University Press,
1996

[2] Briukhov D.O., Kalinichenko L.A. Component-Based Information Systems Development
Tool Supporting the SYNTHESIS Design Method. In Proc. of the East European Sym-
posium on "Advances in Databases and Information Systems", Poland, Springer, LNCS
No.1475, 1998

[3] Briukhov D.O., Kalinichenko L.A., Skvortsov N.A., Stupnikov S.A. Value Reconcilia-
tion. Mediators of Heterogeneous Information Collections Applying Well-Structured
Context Specifications In Proceedings of the Fifth International Baltic Conference on
Databases and Information Systems BalticDB&IS’2002, Tallinn, Estonia, June 3-6, 2002

[4] Briukhov D.O., Tyurin I.N. Mapping XML Schema Data Types into SYNTHESIS Types
(in Russian). In Proc. of the Russian Conference “Digital Libraries: Advanced Methods
And Technologies, Digital Collections” (RCDL’2002), Dubna, 2002

Extension of Compositional Information Systems Development 29

[5] Business Process Execution Language for Web Services, Version 1.0.
http://www-106.ibm.com/developerworks/library/ws-bpel/

[6] DAML-S 0.7 Draft Release. http://www.daml.org/services/daml-s/0.7/
[7] Kalinichenko L. A. Compositional Specification Calculus for Information Systems De-

velopment. In Proc. of the East-West Symposium on Advances in Databases and Infor-
mation Systems (ADBIS’99), Maribor, Slovenia, September 1999, Springer Verlag,
LNCS, 1999

[8] Kalinichenko L. A. SYNTHESIS: the language for description, design and programming
of the heterogeneous interoperable information resource environment. Institute for Prob-
lems of informatics, Russian Academy of Sciences, Moscow, 1995

[9] Kalinichenko L.A. Workflow Reuse and Semantic Interoperation Issues. Advances in
workflow management systems and interoperability. A.Dogac, L.Kalinichenko, M.T.
Ozsu, A.Sheth (Eds.),. NATO Advanced Study Institute, Istanbul, August 1997

[10] L.A. Kalinichenko, N.A. Skvortsov Extensible Ontological Modeling Framework for
Subject Mediation . Proceedings of the Fourth All-Russian Conference on Digital Li-
braries, RCDL’2002, Dubna, October 15–17, 2002

[11] Daniel J. Mandell, Sheila A. McIlraith. A Bottom-Up Approach to Automating Web
Service Discovery, Customization, and Semantic Translation. WWW 2003 Workshop on
E-Services and the Semantic Web (ESSW'03), Budapest, May 2003

[12] Massimo Paolucci, Katia Sycara, Takuya Nishimura, Naveen Srinivasan. Toward Se-
mantic Web Services. WWW 2003 Workshop on E-Services and the Semantic Web
(ESSW'03), Budapest, May 2003

[13] Paradigm Plus Reference Manual. Protosoft, 1997
[14] Thomi Pilioura, Aphrodite Tsalgatidou , Alexandros Batsakis. Using WSDL/UDDI and

DAML-S in Web Service Discovery. WWW 2003 Workshop on E-Services and the Se-
mantic Web (ESSW'03), Budapest, May 2003

[15] Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2000.
http://www.w3.org/TR/SOAP/

[16] Stupnikov S.A., Kalinichenko L.A., Jin Song DONG Applying CSP-like Workflow Pro-
cess Specifications for their Refinement in AMN by Pre-existing Workflows In Pro-
ceedings of the Sixth East-European Conference on Advances in Databases and
Information Systems ADBIS'2002, September 8-11, 2002, Bratislava, Slovakia

[17] UDDI Version 3.0 Specification. http://uddi.org/pubs/uddi_v3.htm
[18] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S. and Miller, J.

METEOR–S WSDI: A Scalable Infrastructure of Registries for Semantic Publication and
Discovery of Web Services, Journal of Information Technology and Management (to be
published)

[19] Web Services Description Language (WSDL) Version 1.2. http://www.w3.org/TR/wsdl12
[20] Web Services Software Architecture (WSSA), RFI, OMG Document # bei/2003-01-04,

January 6, 2003
[21] White Paper on Web Services Integration Architecture, October 28, 2002, OMG Docu-

ment Numbers:bei/2002-10-02

	1 Introduction
	2 Related Work
	3 Fundamentals of the CISD Method
	4 Representation of WSDL Specifications in the SYNTHESIS Language
	4.1 Port Type
	4.2 Port Type Operation
	4.3 Message
	4.4 Service
	4.5 XML Schema Types
	4.6 Example

	5 Compositional Development over the Web Services Platform
	5.1 Searching for Relevant Web Services
	5.2 Identifying Relevant Fragments
	5.3 Composition of Relevant Fragments
	5.4 Implementation of the Developing IS
	5.5 CISD Tool

	6 Conclusion

