
Possibilistic Information Flow Control
in the Presence of Encrypted Communication�

Dieter Hutter and Axel Schairer

German Research Center for Artificial Intelligence (DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{hutter,schairer}@dfki.de

Abstract. Distributed systems make increasing use of encrypted channels to en-
able confidential communication. While non-interference provides suitable means
to investigate the flow of information within distributed systems, it has proved to
be rather difficult to capture the notion of encrypted channels in such a frame-
work. In this paper, we extend the framework MAKS for possibilistic information
flow in order to distinguish between the information flow due to the fact that a
message has been sent and the flow that is due to the actual content of a mes-
sage. We introduce an equivalence relation on observable events to identify those
events an observer cannot distinguish and provide reduction techniques that en-
able us to prove the security of such systems with the help of exisiting unwinding
techniques.

1 Introduction

Information flow control (e.g. [7, 16, 11, 5]) relies on the idea of modeling confiden-
tiality (and dually: privacy) of data as restrictions on the flow of information between
different domains of a system. Starting with the work of Goguen and Meseguer [2, 3],
the restrictions on information flow for deterministic systems have been formalized as
independence properties between actions and observations of domains: Alice’s actions
are confidential wrt. Charly if his observations are independent of her actions, i.e. if
Alice changes her actions this does not cause different observations for Charly. In this
case Alice is said to be non-interfering with Charly. For non-deterministic systems, the
intuition works backwards: Alice is possibilistically non-interfering with Charly if the
observations of Charly can be explained by several, different behaviors of Alice. Thus,
Charly’s observation does not reveal which actions Alice has chosen.

Consider, for example, that Alice has stored a personal identification number (PIN)
on her computer and suppose Charly is monitoring her internet connections. Alice’s PIN
is confidential for Charly if his observations of Alice’s actions are explicable with both,
Alice’s actual PIN and another arbitrary PIN. If we assume that Charly can only observe
messages going from and to Alice’s computer then Alice’s PIN is secure if no message
leaving her computer depends on the PIN. However, once Alice uses her PIN when
communicating with her bank, Charly can observe a message which depends on Alice’s
PIN; i.e. using a different PIN would result in a different observable message. Hence,

� This work was supported by the German Federal Ministry of Education and Research (BMBF)
and the German Research Foundation (DFG)

P. Samarati et al. (Eds.): ESORICS 2004, LNCS 3193, pp. 209–224, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

210 Dieter Hutter and Axel Schairer

analyzing the security of this scenario with the help of strict information flow control
techniques would reveal a leak of information. In practice however, Charly is not able
to infer the PIN if we assume perfect cryptography. There are specialized techniques to
investigate and verify properties of cryptographic protocols (e.g. [8, 1, 9]). They inves-
tigate how an attacker can deduce secret information (only) by analyzing, intercepting
or forging messages and assume fixed capabilities of an attacker (Dolev-Yao model).

In the past intransitive information flow techniques (cf. [12, 10, 13]) have been ad-
vocated to deal with modeling encrypted communications. Encryption is considered as
an explicit downgrading that renders the confidential message into a visible (encrypted)
one. However, while this approach simply assumes that Charly cannot infer the PIN by
observing visible encrypted messages, our approach will allow us to prove this prop-
erty provided that Charly cannot, in fact, distinguish different encrypted messages. In
particular, we will be able to detect security leakages arising from traffic analysis.

Encryption, or more generally one-way functions, have been studied in the context
of language based security, e.g. [4], [15]. These approaches provide assumptions about
the probabilistic properties of encryption. They give syntactic conditions for programs
that ensure there is no probabilistic information flow from the initial values of high vari-
ables to the final values of low variables, once the program has been run. In contrast, we
are interested in what an observer can learn from messages that are exchanged between
parties in the system in an ongoing computation, where the observer may or may not be
one of the parties.

We base our techniques on the framework MAKS [6] developed to specify and ver-
ify possibilistic information flow policies. In this paper we extend the framework by
techniques which enable its application also when specifying and verifying the security
of systems containing encrypted communication. They allow us to model the prop-
erty that an observer cannot distinguish different encrypted messages without knowing
the key. Regardless whether Alice sends the encrypted 4711 or the encrypted 4712 to
her bank, Charly will see a bit-stream. He might suspect to see an encrypted PIN but
(unless he knows the key) he has no information which encrypted PIN he sees. Both
events cause the same flow of information for Charly: some encrypted PIN has been
sent to the bank. In the formal analysis of such a system we will identify these events
when inspecting the security of the system from Charly’s point of view by introducing
equivalence classes of events. We assume that Charly is not able to distinguish different
representatives within an equivalence class by presuming perfect cryptography.

After a brief introduction to the framework MAKS in Sect. 2, we illustrate how
generic security predicates (defined in MAKS) are adjusted to the new setting. In Sect. 3
we exemplify this approach by translating two basic security predicates into new secu-
rity predicates and show that we can reduce these predicates to the original predicates
for a transformed system. This allows us to make use of the original verification tech-
niques, i.e. the unwinding theorems, to verify these predicates as presented in Sect. 4.

2 Preliminaries

In this section we will introduce concepts and notation and briefly present the parts of
MAKS [6] that we use in this paper. Systems are described by an event system ES =

Possibilistic Information Flow Control in the Presence of Encrypted Communication 211

(E, I,O,Tr), which consists of a set E of events, two sets I,O ⊆ E of input and output
events, respectively, and the set Tr ⊆ 2E∗

of possible system traces. The set Tr of finite
sequences of events is required to be closed under prefixes, i.e. α.β ∈ Tr implies α ∈ Tr,
where we write α.β for the sequence resulting from concatenating the sequences α and
β. We write 〈e1, . . . ,en〉 for the sequence consisting of the events e1, . . . ,en.

In MAKS, security properties are closure properties of sets of possible system traces
(parametrized over an arbitrary set of events E) that are described by a conjunction of
basic security predicates (BSPs) and a view. A view V = (V,N,C) for E is a disjoint,
exhaustive partition of E and formalises an observer or attacker: C comprises those
events whose occurrence or non-occurrence should be confidential for the observer, V
represents those events that are directly visible for the observer, and N are all other
events. An event system satisfies a security property if each BSP holds for the view and
the set of possible system traces. BSPs that we will be using as examples in this paper
are BSD and BSIA1 defined as

BSDV (Tr) ⇐⇒ [∀α,β ∈ E∗,c ∈C. (β.〈c〉 .α ∈ Tr∧α|C = 〈〉
=⇒ ∃α′ ∈ E∗,τ′ ∈ Tr. (β.α′ = τ′ ∧α′|V = α|V ∧α′|C = 〈〉))]

(1)

BSIAρ
V (Tr) ⇐⇒ [∀α,β ∈ E∗,c ∈C. (β.α ∈ Tr∧α|C = 〈〉∧Admρ

V (Tr,β,c)
=⇒ ∃α′ ∈ E∗,τ′ ∈ Tr. (β.〈c〉 .α′ = τ′ ∧α′|V = α|V ∧α′|C = 〈〉))]

(2)

where τ|D is the projection of τ to the events in D ⊆ E . Admρ
V (Tr,β,c) holds if the

confidential event c is admissible after the trace β, when only events in the set ρ(V)
are considered, i.e. for all functions ρ from views over E to sets of events, we have
∀β ∈ E∗,c ∈C. Admρ

V (Tr,β,c) ⇐⇒ ∃γ ∈ E∗. γ.〈c〉 ∈ Tr∧ γ|ρ(V) = β|ρ(V).
A state-event system SES = (E, I,O,S,s0,T) consists of a set of events E , in- and

output events I and O, a set of states S, an initial state s0 ∈ S, and a transition relation
T ⊆ S×E ×S. T is required to be a partial function on S×E , i.e. for each given state
s and for each given event e there is at most one successor state s′ for which T (s,e,s′),
which we also write as s

e−→T s′. We also write s
α−→T s′ if α = 〈〉 and s′ = s or α = 〈e〉 .β

and there is a state s′′ such that s
e−→T s′′ and s′′ β−→T s′, and say that α is enabled in s,

that s′ is reachable from s, and write reachable(SES,s′) if s′ is reachable from s0. SES =
(E, I,O,S,s0,T) induces ES = (E, I,O,Tr) iff Tr = {α | α enabled in s0 for SES}.

MAKS provides unwinding conditions that allow the local verification of BSPs. As
examples for unwinding theorems [6], we have

– lrf V (SES,�) and oscV (SES,�) imply BSDV (Tr) and
– lrbeρ

V (SES,�) and oscV (SES,�) imply BSIAρ
V (Tr)

where � is an arbitrary relation over S×S and

oscV (SES,�) ⇐⇒ ∀s1,s
′
1,s

′
2 ∈ S,e ∈ E \C. (3)

reachable(SES,s1)∧ reachable(SES,s′1)∧ s′1
e−→T s′2 ∧ s′1 � s1

=⇒ ∃s2 ∈ S,δ ∈ (E \C)∗. δ|V = 〈e〉 |V ∧ s1
δ−→T s2 ∧ s′2 � s2

1 BSD stands for backwards-strict deletion and BSIA for backwards-strict insertion of admissi-
ble events.

212 Dieter Hutter and Axel Schairer

lrf V (SES,�) ⇐⇒ ∀s,s′ ∈ S,c ∈C. reachable(SES,s)∧ s
c−→T s′ =⇒ s′ � s (4)

lrbeρ
V (SES,�) ⇐⇒ ∀s ∈ S,c ∈C. (5)

reachable(SES,s)∧Enρ
V (SES,s,c) =⇒ ∃s′ ∈ S. s

c−→T s′ ∧ s � s′ ,

where Enρ
V , similarly to Admρ

V , models that the event c is enabled in state s:

∀s ∈ S,c ∈C. Enρ
V (SES,s,c)⇔∃β,γ ∈ E∗,s,s′ ∈ S. s0

β−→ s∧γ|ρ(V) = β|ρ(V)∧s0
γ−→

s∧ s
c−→ s′.

3 Non-interference Modulo

In MAKS a basic security predicate Θ is defined as a closure property on sets of traces.
The idea behind using closure properties is the following. Suppose an attacker observes
the visible events of a system run (while the confidential ones are invisible). We as-
sume that attackers know all possible system runs, thus they know the set of all possible
system runs which might have caused the observed behavior. In particular, an attacker
knows the confidential events occurring in these possible runs, and can try to deduce
constraints on the confidential events that must have occurred in the observed run. Infor-
mation flow happens if the attacker is able to deduce knowledge about the occurrence
or non-occurrence of confidential events beyond the knowledge already deducible from
knowing the system specification, by inspecting the set of runs that are consistent with
the observed behavior. A system is secure if this set of runs contains a sufficient variety
of different possible sequences of confidential events. Closure properties are used to de-
scribe this variety because, intuitively, they demand that if there is a possible system run
τ satisfying some precondition, then there is also another possible system run τ′ such
that the attacker cannot distinguish both. Suppose τ′ in turn satisfies the precondition.
Then we can inductively deduce the existence of another trace τ′′ and so on. To assess
the security of a system satisfying some basic security predicates we need to understand
the guaranteed variance of traces wrt. confidential events being in the transitive closure
{τ,τ′,τ′′, . . .} of an observed system run τ.

3.1 An Example

As an example suppose, Alice uses e-banking, and she is required to change her autho-
rization PIN periodically. For this purpose she uses a web interface to edit the PIN and
to send it to the bank via some encrypted channel. The bank checks the new PIN and ac-
cepts it if it has been changed and rejects it if the new PIN is identical to the old one. We
simplify this example by assuming that −1 is the old PIN. Figure 1 illustrates the pos-
sible traces of the corresponding system. The set V of visible events consists of all the
messages that Alice exchanges with her bank: V = {Send(enc(i)) | i ∈ N∪{−1}}∪
{Repl(enc(acc)),Repl(enc(rej))}. C = {SetPIN(i) | i ∈ N} is the set of confiden-
tial events that represent Alice changing her PIN to i �= −1. The set of non-visible but
deducible events N is empty. Let us now discuss three different scenarios depending on
how the bank reacts to Alice’s change requests.

Possibilistic Information Flow Control in the Presence of Encrypted Communication 213

• Send(enc(i))� • [
Repl(enc(acc))� •]

•
Send(enc(−1))

�
Se
tP
IN

(i)

�

• [
Repl(enc(rej))

� •]

Fig. 1. Traces of Examples 1, 2, and 3

Example 1. Suppose the bank responds to all attempts of Alice to change her PIN. Thus
the set of traces Tr is the smallest set with 〈SetPIN(i),Send(enc(i)),Repl(enc(acc))〉
∈ Tr for all i ∈ N, 〈Send(enc(−1)),Repl(enc(rej))〉 ∈ Tr, and Tr is closed under
prefixes. Since in all cases Charly only sees two encrypted messages between Alice and
her bank, he can never say whether Alice has changed her PIN. However, neither BSDV
nor BSIAρ

V (with ρ(V) = V) hold for the system and the view V = (V,N,C). Consider
for instance BSD: if we remove the confidential event SetPIN(5) from the admissible
trace 〈SetPIN(5),Send(enc(5))〉 we end up in a non-admissible trace 〈Send(enc(5))〉.
Example 2. Suppose now that the bank only rejects Alice’s message Send(enc(−1))
and does not answer to any other message. Then the non-occurrence of a confidential
event SetPIN(i) is leaked, even if all the messages are encrypted: when Charly sees the
second visible event, which is the encrypted reject, he knows that Alice has not changed
her PIN.

Example 3. Finally suppose that the bank only acknowledges correct PINs by sending
only Repl(enc(acc)) but no Repl(enc(rej))-messages, then the occurrence of a con-
fidential event SetPIN(i) is leaked. If Charly sees the second visible event, he knows
that Alice has changed her PIN.

In the following we will use these three scenarios as running examples to illustrate our
approach.

3.2 Definition of BSP Modulo ≈
While MAKS allows arbitrary closure properties as BSPs, all concrete instances are
given in a more constructive way: they describe in a declarative way how to manipulate
confidential events of the system run τ in order to obtain the confidential events of the
postulated run τ′. Our examples, BSD and BSIA, simply add or remove, respectively,
a single confidential event in τ to obtain τ′ (perturbation), and they additionally allow
the adjustment of the non-visible events of τ (corrections) to obtain a new possible
trace τ′. Since we are only interested in traces which are consistent with a particular
observed system behavior, τ and τ′ have to cause the same observation for the attacker,
i.e. τ|V = τ′|V .

BSPs of this form can be represented with the help of two predicates, P and Q. P is
used to select those runs τ that imply the existence of other runs τ′. Q is used to describe
or analyze the form of the postulated τ′. We use y and z as technical means to refer to

214 Dieter Hutter and Axel Schairer

structural information about the related traces τ and τ′ obtained by the predicates P and
Q. Based on this structural information, the two functions compτ and compτ′ construct
or synthesize the traces from these substructures. Technically, all concrete BSPs in [5]
satisfy the following pattern:

ΘV (Tr) ⇐⇒ ∀y ∈ Y . compτ(y) ∈ Tr∧P(y)
=⇒ ∃z ∈ Z. compτ′(y,z) ∈ Tr∧Q(y,z)

(6)

Roughly speaking, the basic security predicates Θ requires that if there is a trace τ =
compτ(y) in Tr satisfying some precondition P(y), then there is also some trace τ′ =
compτ′(y,z) in Tr satisfying some postcondition Q(y,z).

3.3 Event Classes

We formalize the idea of non-distinguishable events by introducing an equivalence re-
lation ≈ on visible events that identifies exactly those visible events that an observer
cannot distinguish. In our examples we choose Send(enc(i)) ≈ Send(enc(j)) for all
i, j ∈ N∪{−1} and Repl(enc(acc)) ≈ Repl(enc(rej)). Furthermore, our observer is
also not able to identify two encrypted messages having the same content. Technically,
this requirement can be obtained by implementing the encryption by using a so-called
“salt”. Then, encrypting the same message twice results in different ciphertexts.

We extend ≈ to the set E of events in the canonical way and write e≈ for the
equivalence class of an event e. We also extend this notation to other sets that are
uniformly constructed in terms of the set E , e.g. if 〈e1, . . . ,en〉 ∈ E∗ we write τ≈ =
〈e1≈, . . . ,en≈〉 ∈ (E≈)∗ = E∗≈ for the sequence consisting of the equivalence classes
of the events that occurred in τ and similarly for tuples (e1, . . . ,en)≈ = (e1≈, . . . ,en≈)
and sets {e1, . . . ,en}≈ = {e1≈, . . . ,en≈}. V≈ is always a view over E≈ given by V≈ =
(V≈,C≈,N≈) because ≈ only identifies events in V . Let ω ⊆ (E≈)∗, then by abuse of
notation we write α ∈ ω for α≈ = ω.

As mentioned before, the concrete BSPs in [5] are based on a fixed semantics of
visibility. The closure property will guarantee the existence of different traces having
identical sequences of visible events. However, this semantics is too restrictive for our
purposes since we assume that an observer cannot distinguish between visible events in
the same equivalence class. Hence, we adjust the definitions of BSPs in a uniform way
to be in line with the changed semantics of visibility. First, a BSP Θ requires for all
system traces τ that some constructed sequence τ′ is also a system trace. While using
the same functions compτ and compτ′ to synthesize τ and τ′ as in the original BSP, we
weaken the requirements that τ′ be a system trace: we only require that there is a system
trace τ′′ that is equivalent to τ′ wrt. ≈. Since ≈ identifies only visible events, τ′ and τ′′
will coincide in their confidential and non-visible events. They only differ in the plain
text of encrypted messages, a difference that an observer cannot notice by assumption.
In general we also have to adjust the predicates P and Q to the changed semantics of
visibility resulting in some predicates P̃ and Q̃. For example, when translating BSIAρ

in Def. 3 we have to adjust the notion of admissibility Adm such that we do not require
the existence of a system trace α.〈c〉 but only the existence of a system trace that is
equivalent to α.〈c〉. In general, we obtain the following pattern for a BSP modulo ≈:

Possibilistic Information Flow Control in the Presence of Encrypted Communication 215

Θ̃V (Tr) ⇐⇒ ∀y ∈ Y . compτ(y) ∈ Tr∧ P̃(y)
=⇒ ∃z ∈ Z. ∃τ′′ ∈ Tr. compτ′(y,z) ≈ τ′′ ∧ Q̃(y,z) .

(7)

As a first example consider the closure property BSD, cf. (1) on page 211. Since BSD
does not involve additional pre- or postconditions, we can apply the pattern straightfor-
wardly which results in the following modified basic security property:

Definition 1.

B̃SDV (Tr) ⇐⇒ [∀α,β ∈ E∗,c ∈C. (β.〈c〉 .α ∈ Tr∧α|C = 〈〉
=⇒ ∃α′ ∈ E∗,τ′ ∈ Tr. (β.α′ ≈ τ′ ∧α′|V = α|V ∧α′|C = 〈〉))] (8)

Let us apply the definition of B̃SDV to our examples. Consider all traces β.〈c〉 .α in
which confidential events occur. This implies c = SetPIN(i) for some i ∈ N and β = 〈〉,
since a confidential event occurs only as the first event of a trace. Then, B̃SDV demands
in our example that there is a system trace equivalent to α in which the PIN is not
changed. In Example 1, Charly will observe an encrypted message from Alice to her
bank and a response of the bank to Alice, regardless of whether Alice had changed her
PIN or not. Formally, α is a prefix of 〈Send(enc(i)),Repl(enc(acc))〉. Let α′ = α and
τ′ the corresponding prefix of 〈Send(enc(−1)),Repl(enc(rej))〉 then β.α′ = τ′ and
B̃SD holds.

In Example 2, the bank only replies if Alice uses her old PIN. Observing the trace
in which Alice changes her PIN, Charly is not able to distinguish this trace from
the prefix of a trace in which Alice uses her old PIN. Formally, in this case α is
a prefix of 〈Send(enc(i))〉. Again let α′ = α and τ′ be the corresponding prefix of
〈Send(enc(−1))〉 then β.α′ = τ′ and B̃SD holds. In Example 3, the bank acknowledges
the changed PIN. Charly can observe this encrypted response and deduce that Alice
has changed her PIN. Therefore, B̃SD is not satisfied: if we choose α = 〈Send(enc(i)),
Repl(enc(acc))〉 we cannot find an appropriate α′ which satisfies the requirement of
B̃SD. The only non-empty trace would be 〈Send(enc(−1))〉 which can be easily dis-
tinguished from α by the observer. Hence, B̃SD reveals that in Example 3 information
about the occurrence of a high-level event is leaked. As expected it does not reveal the
information leak about the non-occurrence of a confidential event in Example 2. For this
purpose, the framework MAKS provides BSPs for inserting events, e.g. BSIAρ

V which
is used to detect information leakages about the non-occurrence of confidential events.
Thus, let us consider BSIAρ

V which involves a non-trivial P(Tr,β,c) = Admρ
V (Tr,β,c).

Definition 2. Let ρ be a function mapping views on E = V ∪C∪N to subsets of E and
≈ be an equivalence relation on V . ρ is compatible with ≈ iff for all views V : e1 ≈ e2

implies e1 ∈ ρ(V) ⇐⇒ e2 ∈ ρ(V). If ρ is compatible with ≈ then we write ρ≈ for the
uniquely defined function that maps views on E≈ = V≈ ∪C≈ ∪N≈ to subsets of E≈ by

ρ≈(V≈) = (ρ(V))≈. Let ρ be compatible with ≈ then Ãdm
ρ
V is defined by:

∀β ∈ E∗,c ∈C. Ãdm
ρ
V (Tr,β,c) ⇐⇒ ∃γ ∈ E∗. γ.〈c〉 ∈ Tr and γ|ρ(V) ≈ β|ρ(V)

216 Dieter Hutter and Axel Schairer

Definition 3.

B̃SIA
ρ
V (Tr) ⇐⇒ [∀α,β ∈ E∗,c ∈C. (β.α ∈ Tr∧α|C = 〈〉∧ Ãdm

ρ
V (Tr,β,c)

=⇒ ∃α′ ∈ E∗,τ′ ∈ Tr. (β.〈c〉 .α′ ≈ τ′ ∧α′|V = α|V ∧α′|C = 〈〉))] (9)

Let us discuss this definition within our examples. Roughly speaking, B̃SIA requires
that we can insert “admissible” confidential events into system traces and obtain again
system traces. In our example, we only have SetPIN(i) as confidential events, and

these are only admissible at the beginning of a trace. Thus, Ãdm
ρ
V (Tr,β,c) is true iff

β = 〈〉 and c = SetPIN(i). Hence, for all α ∈ Tr we have to find a trace τ′ ∈ Tr which
produces the same visible behavior as 〈SetPIN(i)〉 .α (since N = /0, α and α′ must be
equal). In Example 1, α is a prefix of 〈Send(enc(−1)),Repl(enc(rej))〉, and with

τ′ being the corresponding prefix of 〈Send(enc(i)),Repl(enc(acc))〉, B̃SIA
ρ
V is sat-

isfied. In Example 3, α is a prefix of 〈Send(enc(−1))〉, and with τ′ being a prefix of

〈Send(enc(i))〉, B̃SIA
ρ
V is satisfied. However in Example 2, B̃SIA

ρ
V does not hold: let

α = 〈Send(enc(−1)),Repl(enc(rej))〉 then there is no corresponding trace τ′ produc-
ing the same observable behavior, because only prefixes of 〈SetPIN(i),Send(enc(i))〉
are possible traces. Thus, B̃SIA

ρ
V reveals the information leakage in Example 2. Select-

ing the conjunction of B̃SD and B̃SIA
ρ
V as the security predicate of our example reveals

that both Examples 2 and 3 are insecure while Example 1 is secure.

3.4 Reduction of Θ Modulo ≈
In order to prove the security (in the meaning of information flow) of a given system
we specify the security predicate as a conjunction of basic security predicates and prove
each BSP, e.g., by using appropriate unwinding techniques. We can cope with encrypted
messages by defining an appropriate equivalence relation on visible events and using the
individual corresponding Θ≈ instead of Θ.

Although each property Θ≈ is itself a closure property of traces and, therefore, a
BSP, it is not a member of those BSPs presented in [5]. Thus, a priori no unwinding
result exists for Θ≈. Rather than developing our own unwinding theorems for prov-
ing Θ≈, we will reduce the problem of proving Θ≈ in a given system to the problem
of proving the related Θ in a transformed system. We obtain the transformed system
by operating on classes of events instead of operating on individual events. Hence we
define:

Definition 4. Let ES = (E, I,O,Tr) be an event system with E = V ∪C∪N and ≈ be
an equivalence relation on V . Then, ES≈, the event system ES modulo ≈ is defined by
ES≈ = {E≈, I≈,O≈,Tr≈} (with Tr≈ = {τ≈|τ ∈ Tr}).

Obviously, ES≈ is itself an event system. Note that the set of input and output events
of ES≈ might not be disjoint, even if I and O are disjoint. However, input and output
events are not required to be disjoint for event systems anyway.

Since ES≈ is an event system over the set of events E≈, we can require it to satisfy
a given BSP relative to a view for E≈. We will now investigate the relationship between

Possibilistic Information Flow Control in the Presence of Encrypted Communication 217

ES satisfying Θ̃V and ES≈ satisfying ΘV≈ . In particular we are interested in BSPs for
which the two are equivalent.

Definition 5. Let Θ and Θ′ be two closure properties of traces, ES an event system, V
a view, and ≈ an equivalence relation over V . We say that Θ′ is ≈-reducible to Θ iff
Θ′

V (Tr) ⇐⇒ ΘV≈(Tr≈).

In the rest of this section we will show that B̃SD is ≈-reducible to BSD, and similarly
for B̃SIA and BSIA with some restriction on admissible relations ≈.

Lemma 1. Let D ⊆ E be a set of events. Then2

∀ω,µ ∈ E∗
≈. ω|D≈ = µ|D≈ =⇒ ∀α ∈ ω. ∃α′ ∈ µ. α|D = α′|D . (10)

Proof. By induction on the length of ω|D≈ . Base case: let ω|D≈ = 〈〉 = µ|D≈ . Thus
ω,µ ∈ (E≈ \D≈)∗ and α ∈ (E \D)∗. Let α′ ∈ µ, then α′ ∈ (E \D)∗ and α′|D = 〈〉 =
α|D. Induction step: let ω|D≈ �= 〈〉. Thus, there are ω1,ω2 ∈ E∗≈ and u ∈ D≈ such that
ω = ω1.〈u〉 .ω2 and ω1|D≈ = 〈〉. Analogously, we decompose µ by µ = µ1.〈u〉 .µ2 with
µ1|D≈ = 〈〉. Hence, α = α1.〈e〉 .α2 with α1 ∈ ω1, e ∈ u and α2 ∈ ω2. Let α′′ ∈ µ. Thus
α′′ = α′′

1 .〈e′〉 .α′′
2 with α′′

1 |D = 〈〉, e′ ∈ u and α′′
2 ∈ µ2. Since ω2|D≈ = µ2|D≈ and α2 ∈

ω2 the induction hypothesis implies that there is an α′
2 ∈ µ2 with α2|D = α′

2|D. Let
α′ = α′′

1 .〈e〉 .α′
2 then (α′′

1 .〈e〉 .α′
2)≈ = µ1.〈u〉 .µ2 = µ and α′′

1 .〈e〉 .α′
2|D = 〈〉 .〈e〉 .α′

2|D =
α1|D.〈e〉 .α2|D = α|D. ��
Theorem 1. Let ≈ be an equivalence relation on V then B̃SD is ≈-reducible to BSD.

Proof. “⇐”: Suppose, ES≈ satisfies BSDV≈ which means that for all ω,µ ∈ E∗≈ and
z ∈ C≈, (µ.〈z〉 .ω ∈ Tr≈ ∧ω|C≈ = 〈〉) implies that there is a ω′ ∈ E∗≈ such that µ.ω′ ∈
Tr≈ ∧ω′|V≈ = ω|V≈ ∧ω′|C≈ = 〈〉 holds. Let β.〈c〉 .α ∈ Tr for some α,β ∈ E∗ and c ∈C
such that α|C = 〈〉. Thus β≈.〈c≈〉 .α≈ ∈ Tr≈ and α≈|C≈ = 〈〉. Since ES≈ satisfies BSDV
there is some ω′ ∈ E∗≈ with β≈.ω′ ∈ Tr≈, ω′|V≈ = α≈|V≈ , and ω′|C≈ = 〈〉. Since ω′|V≈ =
α≈|V≈ and α ∈ α≈ Lemma 1 implies the existence of α′′ ∈ ω′ such that α|V = α′′|V .
Since β≈.ω′ ∈ Tr≈ there are also α′,β′ ∈ E∗ such that β′.α′ ∈ Tr, β′ ∈ β≈, and α′ ∈ ω′.
Thus, first β.α′′ ∈ β≈.ω′ = β′≈.α′≈ = (β′.α′)≈. Second, α′′|V = α|V and finally, α′′|C =
α≈|C≈ = 〈〉.

“⇒”: Suppose, ES satisfies B̃SDV which means for all α,β ∈ E∗ and c ∈C, (β.〈c〉 .
α ∈ Tr∧α|C = 〈〉) implies that there are α′ ∈ E∗ and τ′ ∈ Tr such that β.α′ ≈ τ′, α′|V =
α|V and α′|C = 〈〉. Let ω,µ ∈ E∗≈ and z ∈ C≈ such that µ.〈z〉 .ω ∈ Tr≈ and ω|C≈ = 〈〉.
Thus, there are α,β ∈ E∗ and c ∈ C such that β.〈c〉 .α ∈ µ.〈z〉 .ω, β.〈c〉 .α ∈ Tr and
α|C = 〈〉. Since ES satisfies B̃SDV , there is a α′ ∈ E∗ and a τ′ ∈ Tr such that β.α′ ≈ τ′,
α′|V = α|V , and α′|C = 〈〉. Therefore, β≈.α′≈ = (β.α′)≈ = τ′≈ ∈ Tr≈, α′≈|V≈ = α≈|V≈
and α′≈|C≈ = 〈〉. ��
Lemma 2. Let ρ be a function mapping views in E to subsets of E that is compatible
with an equivalence relation ≈ on V . Then, for all Tr ⊆ E∗, for all β ∈ Tr and c ∈C:

Ãdm
ρ
V (Tr,β,c) ⇐⇒ Admρ≈

V≈(Tr≈,β≈,c≈).

2 Remember that by definition D≈ = {e≈|e ∈ D} = {µ ∈ E≈|µ∩D �= /0}.

218 Dieter Hutter and Axel Schairer

Proof. Suppose Ãdm
ρ
V (Tr,β,c) holds for some Tr ⊆ E∗, β ∈ Tr, and c∈C which means

there is a γ∈E∗ such that γ.〈c〉 ∈Tr and γ|ρ(V) ≈ β|ρ(V). Then obviously, γ≈.〈c≈〉∈Tr≈
and γ≈|ρ≈(V≈) = β≈|ρ≈(V≈) such that Admρ≈

V≈(Tr≈,β≈,c≈) holds.

Suppose Admρ≈
V≈(Tr≈,β≈,c≈) holds which means there is a µ∈E∗≈ such that µ.〈c≈〉∈

Tr≈ and µ|ρ≈(V≈) = β|ρ≈(V≈). Since µ.〈c≈〉∈ Tr≈ there is some β′ ∈E∗ with β′.〈c〉 ∈ Tr
and β′ ∈ µ. Thus, β′|ρ(V)≈ = µ|ρ≈(V≈) = β≈|ρ≈(V≈) which implies β′|ρ(V) ≈ β|ρV . ��
Theorem 2. Let ≈ be an equivalence relation on V and ρ be compatible with ≈, then

B̃SIA
ρ

is ≈-reducible to BSIAρ≈ .

Proof. “⇐”: Suppose, ES≈ satisfies BSIAρ≈
V≈ . Thus for all ω,µ ∈ E∗≈ and z ∈C≈, (µ.ω ∈

Tr≈∧ω|C≈ = 〈〉∧Admρ≈
V≈(Tr≈,µ,z)) implies that there is a ω′ ∈ E∗≈ such that µ.〈z〉 .ω′ ∈

Tr≈∧ω′|V≈ = ω|V≈ ∧ω′|C≈ = 〈〉 holds. Let β.α∈ Tr, α|C = 〈〉 and Ãdm
ρ
V (Tr,β,c). Thus,

β≈.α≈ ∈ Tr≈, α≈|C≈ = 〈〉 and Admρ≈
V≈(Tr≈,β≈,c≈) hold. Since ES≈ satisfies BSIAρ≈

V≈
there is a ω′ ∈ E∗≈ such that β≈.〈c≈〉 .ω′ ∈ Tr≈, ω′|V≈ = α≈|V≈ and ω′|C≈ = 〈〉. Hence,
we can find β′,γ ∈ E∗ with β′.〈c〉 .γ ∈ Tr such that β′ ∈ β≈ and γ ∈ ω′. This implies that
γ≈|V≈ = α≈|V≈ which guarantees the existence of some γ′ ∈ γ≈ with γ′|V = α|V . Finally,
β.〈c〉 .γ′ ≈ β′.〈c〉 .γ ∈ Tr and γ′|V = α|V and γ′|C = γ′≈|C≈ = γ≈|C≈ = ω′|C≈ = 〈〉.

“⇒”: Suppose, ES satisfies B̃SIA
ρ
V . Thus for all α,β ∈ E∗ and c ∈ C, (β.α ∈ Tr ∧

α|C = 〈〉 ∧ Ãdm
ρ
V (Tr,β,c)) implies that there is some α′ ∈ E∗ and τ′ ∈ Tr such that

β.〈c〉 .α′ ≈ τ′ with α′|V = α|V and α′|C = 〈〉. Let µ.ω∈ Tr≈, ω|C≈ = 〈〉 and Admρ≈
V≈(Tr≈,

µ,z) for some z ∈ C≈. Then there are α,β ∈ E∗ such that β.α ∈ Tr, (β.α) ∈ µ.ω and

α|C = 〈〉. Let c ∈ z. Then Lemma 3 implies Ãdm
ρ
V (Tr,β,c). Since ES satisfies B̃SIA

ρ
V

there exist α′ ∈ E∗,τ′ ∈ Tr such that β.〈c〉 .α′ ≈ τ′, α′|V = α|V and α′|C = 〈〉. Thus
(β.〈c〉 .α′)≈ = β≈.〈z〉 .α′≈ = µ.〈z〉 .α′≈, α′≈|V≈ = α≈|V≈ , and α′≈|C≈ = 〈〉. ��

Corollary 1. Let ≈ be an equivalence relation on V , then B̃SI is ≈-reducible to BSI.

Proof. Easy consequence of Theorem 2 with ρ(V) = E . ��

We believe that for each BSP Θ of MAKS a corresponding Θ̃ can be defined such that
Θ̃ is ≈-reducible to Θ for most equivalence relations ≈, but we have not checked the
details yet.

4 Unwinding

In the previous section we have given a definition of security predicates modulo an
equivalence relation ≈ on visible events. We have also shown that security predicates
modulo ≈ can equivalently be expressed as security predicates applied to an event sys-
tem transformed by ≈. This means that all results for given security predicates can be
used to reason about security predicates modulo ≈. This applies, e.g., to composition-
ality results or unwinding results. In this section we will investigate the details of how
unwinding results for a BSP Θ are used for Θ̃.

Possibilistic Information Flow Control in the Presence of Encrypted Communication 219

SES
induces � ES satisfies Θ̃V

S̃ES

?

�

induces
� ES≈

≈
�

satisfies ΘV≈

Fig. 2. Unwinding Θ modulo ≈.

Suppose, SES = (E, I,O,S,s0,T) is a state-event system that induces an event sys-
tem ES = (E, I,O,Tr). To prove that ES satisfies a BSP Θ wrt. a view V we have to
show that, for some chosen unwinding relation � on the set of states S, the unwind-
ing conditions corresponding to Θ and V hold. Now we are interested in whether ES
satisfies Θ̃, which – for ≈-reducible BSPs – can be reduced to the problem of proving
that ES≈ satisfies Θ wrt. V≈. We can show this property by unwinding if we find a
state event system S̃ES that induces ES≈ and for which we can show the unwinding
conditions corresponding to ES≈, V≈, and Θ, cf. Fig. 2 for a visualisation of this.

4.1 Unwinding for S̃ES

We are left with the construction of an appropriate state-event system S̃ES that induces
ES≈. Since the states in the original state-event system SES usually express the intuition
about the system under consideration we construct the state-event system S̃ES by using
simply the set of states introduced for SES.

Definition 6. Let SES = (E, I,O,S,s0,T) be a state-event system such that T̃ defined by
∀s1,s2 ∈ S,u ∈ E≈. T̃ (s1,u,s2) ⇐⇒ ∃e ∈ u. T (s1,e,s2) is a partial function on S×E≈.
Then, the state-event system SES modulo ≈, is defined as S̃ES = (E≈, I≈,O≈,S,s0, T̃).

Theorem 3. For each ω ∈ E∗≈, ω is enabled in S̃ES iff ω ∈ Tr≈, i.e. S̃ES induces ES≈.

To prove this we need the following lemma.

Lemma 3. For all s ∈ S and ω ∈ E∗≈, s0
ω−→T̃ s iff there is a τ ∈ E∗ with τ≈ = ω such

that s0
τ−→T s.

Proof. By induction on the length of ω. Base case: trivial since ω = 〈〉 and τ = 〈〉.
Induction step: assume that ω = µ.〈u〉. The induction hypothesis yields that for all

states s′ ∈ S, s0
µ−→T̃ s′ iff there is an α ∈ E∗ with α≈ = µ such that s0

α−→T s′. By

Def. 6, T̃ (s′,u,s) iff there is an event e ∈ u such that T (s′,e,s). Thus, s0
µ.〈u〉−→T̃ s iff there

are α,e such that e ∈ u, α≈ = µ, and s0
α.〈e〉−→T s. ��

Proof (of Theorem 3). “⇒”: ω is enabled in S̃ES, thus there is some s ∈ S such that
s0

ω−→T̃ s, which implies that there is some τ ∈ ω with s0
τ−→T s (by Lemma 3), and

220 Dieter Hutter and Axel Schairer

SES satisfies ŨCV ==========
(*) ⇒ ES satisfies Θ̃V

S̃ES satisfies UCV≈

�

�
�
�
�
�
�
�

========⇒ ES≈ satisfies ΘV≈

�
�
�
�
�
�
�
�
�

Fig. 3. Direct unwinding. Arrows represent logical implication.

because SES induces ES this implies τ ∈ Tr, and finally ω = τ≈ ∈ Tr≈ by definition of
Tr≈.

“⇐”: ω∈ Tr≈ implies there is some τ∈ω with τ∈ Tr, thus s0
τ−→T s, which implies

s0
τ≈−→T̃ s, and because of τ≈ = ω, this implies that ω is enabled in S̃ES. ��

Now, existing unwinding theorems for Θ are directly applicable and we obtain the fol-
lowing theorem.

Theorem 4. Let S̃ES be a state-event system SES modulo ≈ and Θ be a ≈-reducible
BSP with associated unwinding conditions UCΘ. If S̃ES satisfies UCΘ wrt. V≈ then ES
satisfies Θ̃ wrt. V .

The theorem allows us to lift all unwinding results for BSPs in MAKS to unwinding
results for BSPs modulo ≈ provided the transition relation T̃ of S̃ES is functional. Sup-
pose T̃ is (in contrast to T) not a partial function. Thus, there is a state s that has several
successor states wrt. a (visible) event v≈. This represents a spontaneous choice that is,
on one hand, independent of the confidential behavior of the system but, on the other
hand, hidden from the observer by the encryption. If the choice is not confidential,
then there is no need to encrypt the event. But if the choice is confidential there should
be a confidential event representing the choice and resolving the indeterminism. Thus
we claim that the restriction of T̃ being a partial function is not a serious restriction
in practice. Nethertheless, if there should be realistic examples which require a non-
functional T̃ , there is still the possibility to lift the approach to state-event systems with
non-functional transition relations.

4.2 Direct Unwinding of Θ Modulo ≈
Given a state-event system SES, a view V , an equivalence relation ≈ on V , and a ≈-
reducible BSP Θ, Theorem 4 allows us to show that SES satisfies the security property
Θ modulo ≈ wrt. V by unwinding. However, the unwinding conditions are proper-
ties of the state-event system S̃ES involving universal quantifications over equivalence
classes of events. For practical reasons, we would like to use unwinding conditions ŨC
formulated on the original state event system SES as it is indicated by the arrow (*) in
Fig. 3. In this case, we do not need to explicitly specify or construct ES≈ or S̃ES. Also,
we do not even need to be able to express the construction of ES≈ or S̃ES from SES
in the specification language or mechanism we use. Furthermore, we can reason within

Possibilistic Information Flow Control in the Presence of Encrypted Communication 221

the system that we have specified and, presumably, have some intuition about. Similarly
to the argument in Sect. 3.4 we show for BSD and BSIA how direct unwinding relations
are derived for specific BSPs. An analogous construction can be done for other BSPs.

We can show that a given system SES satisfies BSDV modulo ≈ using Theorem 4,
which is applicable if ≈ is an equivalence relation over V and S̃ES is well-defined
(i.e. T is such that T̃ is functional according to Def. 6). The unwinding conditions that
we have to show for BSD are lrf V≈(S̃ES,�1) and oscV≈(S̃ES,�1) for some arbitrary
relation �1 ⊆ S× S (cf. Sect. 2). Similarly, for BSIAρ

V , we need to show that ≈ is an

equivalence relation, that T̃ is functional, that ρ is compatible with ≈ (cf. Theorem 2),
and that the unwinding conditions lrbeρ≈

V≈(S̃ES,�2) and oscV≈(S̃ES,�2) hold for some
arbitrary relation �2 ⊆ S×S.

We can expand the definition of SES≈ in these conditions, and rewrite them so
that they are formulated entirely in terms of SES and the equivalence relation ≈. As
sufficient conditions for BSDV we then get:

1. ≈ is an equivalence relation over V .
2. T̃ is a partial function:

∀s,s1,s2 ∈ S,e1,e2 ∈ E. e1 ≈ e2 ∧T (s,e1,s1)∧T (s,e2,s2) =⇒ s1 = s2 .

3. The unwinding conditions osc (11) and lrf (12) hold:

∀s1,s′1,s
′
2 ∈ S,e ∈ E \C.

reachable(SES,s1)∧ reachable(SES,s′1)∧ s′1
e−→T s′2 ∧ s′1 �1 s1

=⇒ ∃s2 ∈ S,δ ∈ (E \C)∗. δ|V ≈ 〈e〉 |V ∧ s1
δ−→T s2 ∧ s′2 �1 s2 and

(11)

∀s,s′ ∈ S,c ∈C. reachable(SES,s)∧ s
c−→T s′ =⇒ s′ �1 s . (12)

Similarly, for BSIAρ
V , we get Conditions 1. and 2. as above, and additionally we get:

3’. The unwinding conditions osc (11) with �1 replaced by �2, and lrbe (13) hold:

∀s ∈ S,c ∈C. reachable(SES,s)∧ Ẽn
ρ
V (SES,s,c) =⇒

∃s′ ∈ S. s
c−→T̃ s′ ∧ s � s′

(13)

with

Ẽn
ρ
V (SES,s,c) ⇐⇒
∃β,γ ∈ E∗,s1,s2 ∈ S. s0

β−→T s∧ γ|ρ(V) ≈ β|ρ(V)∧ s0
γ−→T s1 ∧ s1

c−→T s2

All these conditions do no longer refer to the equivalence classes and can directly be
formulated in the language and formalism in which the original state-event system was
formulated.

4.3 An Example

We return to Example 1 presented in Sect 3.1, for which a specification in form of a
state-event system can be given as follows. Let S = (N∪ {−1})× (N∪ {−1,⊥})×

222 Dieter Hutter and Axel Schairer

{0,1,⊥}, and write {pin = i;sent= j;answered= k} for (i, j,k) ∈ S. The start state
is s0 = (−1,⊥,⊥) = {pin= −1;sent= ⊥;answered= ⊥}. The transition relation T
is given by the following pre-/postcondition (PP) statements [6], where, e.g., the first
one means that T (s,SetPIN(i),s′) iff s = (−1, j,k) and s′ = (i, j,k) (for i ∈ N and any
j,k).

– SetPIN(i : N): modifies pin; pre: pin= −1; post: pin′ = i.
– Send(enc(i : N∪{−1})): modifies sent;

pre: sent= ⊥∧pin= i; post: sent′ = i.
– Repl(enc(acc)): modifies answered;

pre: sent ∈ N; post: answered= 1.
– Repl(enc(rej)): modifies answered;

pre: sent= −1; post: answered= 0.

It is easy to check that T is a partial function and that this SES induces the ES given in
Example 1. Define≈ to be the smallest relation such that Send(enc(x))≈ Send(enc(y))
for all x,y and Repl(enc(acc)) ≈ Repl(enc(rej)).

We now show conditions 1.–3. and 3’ given in the preceding section. ≈ is trivially
an equivalence relation, so Condition 1. holds. T̃ is a partial function provided that
the successor states s′ are uniquely determined by the relations T̃ (s,Send(. . .)≈,s′) and
T̃ (s,Repl(enc(acc))≈,s′). Since two events Send(enc(i)) and Send(enc(j)) with i �=
j are never both enabled in the same state (which also holds for Repl(enc(acc)) and
Repl(enc(rej))), also T̃ is a partial function, and Condition 2 holds.

Finding a viable unwinding relation is relatively easy in this case: for proving BSD,
since s0 is reachable and SetPIN(i) enabled, lrf requires that for i ∈ N

{pin = i,sent = ⊥,answered= ⊥}�1 {pin = −1,sent= ⊥,answered= ⊥}

and similar consideration with osc yield that we also have (i, i,⊥)�1 (−1,−1,⊥) and
(i, i,1)�1 (−1,−1,0). In the specific case, we can make � symmetric and include un-
reachable state-pairs in the relation – this will later allow us to reuse the relation for
proving BSIA. We will therefore use the following symmetric definition of �� for �1

and �2 (and write � instead of �i).

(i1, j1,k1) �� (i2, j2,k2) ⇐⇒
(j1 = j2 = ⊥) or (k1 = k2 = ⊥∧ j1 �= ⊥∧ j2 �= ⊥) or (k1 �= ⊥∧ k2 �= ⊥) .

The unwinding conditions can now be shown to hold for the �� that we have defined.

– lrf : Let c be a confidential event, and let s be a reachable state, in which c is enabled.
This fixes c to be of the form SetPIN(i) and s = s0. In the result state s′, we have
sent and answered unchanged equal to ⊥, so s′ � s0, and lrf holds.

– lrbeρ: Similarly, the only state in which a confidential event is enabled is s0, and
the successor state s′ again has sent and answered unchanged equal to ⊥, i.e. we
have s0 � s′ and lrbeρ holds.

– osc: We have to look at all states and all non-confidential events that are enabled.
Case distinction over non-confidential events:

Possibilistic Information Flow Control in the Presence of Encrypted Communication 223

– e = Send(enc(i)) is enabled in s′1 only if sent= ⊥, and in the successor state
s′2 we will have sent �= ⊥ but answered= ⊥ unchanged. For any other state
s1 �� s′1 we also have sent = ⊥, and in the successor state s2 we thus have
sent �= ⊥ but answered= ⊥ unchanged, and this yields s′2 �� s2.

– e = Repl(enc(acc)) is enabled if sent= i (for i ∈ N) and answered= ⊥ (by
reachability). Any reachable state in relation �� will also have answered= ⊥
but might have sent = −1, in which case Repl(enc(rej)) ≈ e is enabled. In
any case, the successor states will both have answered �= ⊥ and will therefore
be in relation ��.

– e = Repl(enc(rej)) is similar, except that Repl(enc(acc)) and Repl(enc
(rej)) are exchanged.

Note that for Example 2 (without the Repl(enc(acc))-event) or Example 3 (without
Repl(enc(rej))), we fail to prove osc. This is consistent with the earlier observation
that Example 1 is secure while Examples 2 and 3 are not.

5 Conclusion

We presented an approach to investigate possibilistic information flow security for sys-
tems that include the exchange of encrypted messages. The work was motivated by open
problems arising in an investigation [14] of information flow security for a scenario of
comparison shopping agents. The idea of the approach is to identify events correspond-
ing to messages that an observer cannot distinguish because of the encryption. It has
been integrated into an existing framework for possibilistic information flow control
which now allows its application to a wider range of scenarios.

Compared to modeling encrypted channels using intransitive information flow poli-
cies, we can investigate whether the encryption actually prevents confidential informa-
tion from leaking, or whether the occurrence of encrypted messages provides a covert
channel. In the future we intend to apply our approach to further examples. Also we are
interested in a combination of our approach with security protocol analysis, in partic-
ular in how our assumptions about confidential keys relates to the results of the other
technique.

Acknowledgements

We would like to thank Serge Autexier, Heiko Mantel, and the anonymous reviewers
for helpful comments on previous versions of this paper.

References

1. R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the analysis of security
protocols. In Proceedings of the DIMACS Workshop on Design and Formal Verification of
Security Protocols, Rutgers University, 1997.

2. J. A. Goguen and J. Meseguer. Security policies and security models. In Proceedings of the
IEEE Symposium on Security and Privacy. IEEE Computer Society, 1982.

224 Dieter Hutter and Axel Schairer

3. J. A. Goguen and J. Meseguer. Inference control and unwinding. In Proceedings of the IEEE
Symposium on Security and Privacy. IEEE Computer Society, 1984.

4. P. Laud. Handling encryption in an analysis for secure information flow. In Proceedings of
the 12th European Symposium on Programming, volume 2618 of LNCS. Springer, 2003.

5. H. Mantel. Possibilistic definitions of security – an assembly kit. In Proceedings of the IEEE
Computer Security Foundations Workshop. IEEE Computer Society, 2000.

6. H. Mantel. A Uniform Framework for the Formal Specification and Verification of Informa-
tion Flow Security. PhD thesis, Universität des Saarlandes, 2003. Published as a manuscript.

7. J. D. McLean. Proving noninterference and functional correctness using traces. Journal of
Computer Security, 1(1):37–57, 1992.

8. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming,
26(2):113–131, 1996.

9. L. C. Paulson. Proving security protocols correct. In Proceedings the 14th Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer Society, 1999.

10. S. Pinsky. Absorbing covers and intransitive non-interference. In Proceedings of IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, 1995.

11. A.W. Roscoe and M.H. Goldsmith. What is intransitive noninterference. In Proceedings of
the 12th IEEE Computer Security Foundations Workshop. IEEE Computer Society, 1999.

12. J. Rushby. Noninterference, transitivity, and channel-control security policies. Technical Re-
port CSL-92-02, SRI International, Menlo Park, CA, 1992.

13. P.Y.A. Ryan and S.A Schneider. Process algebra and non-interference. Journal of Computer
Security, 9(1/2):75–103, 2001.

14. I. Schaefer. Information flow control for multiagent systems - a case study on comparison
shopping. Master’s thesis, Universität Rostock / DFKI, September 2003.

15. D. M. Volpano. Secure introduction of one-way functions. In Proceedings of the 13th IEEE
Computer Security Foundations Workshop,. IEEE Computer Society, 2000.

16. A. Zakinthinos and E. S. Lee. A general theory of security properties. In Proceedings of the
IEEE Symposium on Security and Privacy. IEEE Computer Society, 1997.

	1 Introduction
	2 Preliminaries
	3 Non-interference Modulo
	3.1 An Example
	3.2 Definition of BSP Modulo
	3.3 Event Classes
	3.4 Reduction of Θ Modulo

	4 Unwinding
	4.1 Unwinding for SES
	4.2 Direct Unwinding of Θ Modulo
	4.3 An Example

	5 Conclusion
	Acknowledgements
	References

