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Abstract. The left ventricle myocardium and chamber segmentation in
gated SPECT images is a challenging problem. Segmentation is however
the first step to geometry reconstruction and quantitative measurements
needed for clinical parameters extraction from the images. New algo-
rithms for segmenting the heart left ventricle myocardium and chamber
are proposed. The accuracy of the volumes measured from the geomet-
rical models used for segmentation is evaluated using simulated images.
The error on the computed ejection fraction is low enough for diagnosis
assistance. Experiments on real images are shown.

1 Introduction

The Left Ventricle (LV) myocardium accurate segmentation in gated SPECT
(Single Photon Emission Computed Tomography) images is a challenging prob-
lem due to the high level of noise and the signal drops resulting of insufficiently
perfused regions. The LV chamber automated segmentation is even more difficult
as the upper bound of the ventricle does not appear in the images. However, the
accurate segmentation of the LV myocardium and chamber is very important
for the estimation of the heart wall thickness and the chamber volume variation
during the heart cycle. These parameters are needed to estimate clinically well
established diagnosis indicators such as the ejection fraction.

In this paper, we propose an implicit model-based segmentation algorithm of
the LV myocardium and chamber. Our model is guided by the need of accuracy
for volumes quantitative estimation. Indeed, the coarse spatial and temporal
resolution of gated SPECT images causes large partial volume effects that can
significantly alter the volume estimation results. This paper follows an earlier
study on levelset-based segmentation of gated SPECT image [4].

To model objects and segment images, both explicit [20] and implicit [16/2]
deformable models have been proposed in the literature [15]. The levelset has
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been widely used in segmentation [L7IBI5], medical images segmentation [13|[18]
QI11//14], heart segmentation [9] and SPECT images segmentation [7]. Some are
taken into account shape priors [6]. Contrarily to many earlier approaches, our
algorithm is taking into account a complete heart cycle sequence rather than
processing volume frames independently. It is therefore better able to filter the
image noise and to take into account temporal partial volume effects.

2 Segmentation Model

2.1 LV Myocardium Model

The LV myocardium is modeled using a levelset-based method. The levelset
provides a geometrical representation of the LV as well as a deformation process
needed for extracting the myocardium shape from the image. In the levelset
framework, a surface model S is implicitly represented as the 0 isosurface of a
higher dimension function u. S deforms when u evolves according to an evolutive
equation. Most evolution criteria found in the literature are spatial [12]. In the
case of dynamic sequences, we prefer the Debreuve et al criterion [7]:

O (anl = pin,)? = Neus(B = L)+ Acrin) [Vt 1)
where I, represents the image at instant n. The whole sequence is used in order
to filter noise and determine the mean background intensity B, reestimated at
each iteration. k,, is the curvature at instant n and pu;,, the mean of image n
internal part, also reestimated at each iteration from the zero level of u,. Aip,
Aout, and A, are weight parameters. This criterion makes the hypothesis that the
image is composed of a uniform intensity region (the object to segment) and a
background B. This approximation is only roughly valid for SPECT images due
to the image noise, the inhomogeneity of the heart and the perfusion defaults
causing signal drops. A forward Euler based on finite differences is used for PDE
resolution. We note that there is no relation between iteration time (t) and
physical time (n).

2.2 LV Chamber Model

The LV chamber surface is delimited by the myocardium inner boundaries and
the valves plane on top. However, the LV myocardium has a U shape opened on
top in gated SPECT images and the valves are not visible. A method to enclose
the chamber volume is therefore needed.

User Guided Methods. Some manual or semi-manual methods have been
proposed in the literature. In [7], the authors manually set the two planes loca-
tion. The result of this method is very user dependent. Faber, Cooke et al [10]
approximate the LV valves by two fixed planes (see left of figure ). The loca-
tion and orientation of the two planes were empirically fixed on a dataset and is
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merely valid for a given acquisition protocol. Moreover, it is difficult to ensure
that the chamber volume is always closed by the two planes: the myocardium
upper part is irregular and holes are likely to appear between the myocardium
boundaries and the planes.

Fig. 1. Left: manual LV chamber closure. Center: membrane algorithm. Right: seg-
mentation error inducing a volume estimation error.

Membrane Algorithm To face the difficulty to accurately close the ventricle
using planes, a new convex envelope algorithm was developed. This membrane
method, depicted in center of figure[] is completely automatic. The membrane is
a deformable surface initialized from the result of the myocardium segmentation
and deformed using the following evolution equation:

o
a%t = (M 2+ Mo k)| V| (2)

where I is a binary image resulting from the myocardium segmentation. The
drawback of the membrane method is its sensitivity to the correct LV segmen-
tation: for example when the visible bright region shape is not a U-shape. The
membrane encloses the outliers and the inside volume is poorly estimated as
illustrated in right of figure .

Once the membrane has been deformed, the LV chamber is obtained by
binary image processing: a binary myocardium image is produced from the my-
ocardium segmentation and the chamber is filled up to the membrane boundary.
An isosurface of the resulting inner volume is computed as illustrated in figure
From the LV chamber volume, we can estimate the heart ejection fraction (EF).
The EF is computed as the ratio between the volume of blood ejected at each
heart beat (the difference of volumes between the chamber at end of dilation
phase, or diastole, and contraction phase, or systole) over the chamber maximal
volume: EF = (Vy;—V;)/Vy x 100% where Vg and V are the end of diastole and
end of systole volumes, respectively.

2.3 Challenging the Homogeneous Intensity Region Hypothesis

The criterion [[ used in this study is based on the hypothesis that the image is
composed of an homogeneous object on an homogeneous background. This is
only roughly true in real images due to two partial volume effects and temporal
blurring.
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Partial Volume Effects. The partial volume effect is responsible for myocardium
intensity variations during the cardiac cycle: the myocardium appears brighter
at end of systole and darker at end of diastole. When the thickness of the my-
ocardium is only a few voxels wide (at the end of diastole), many voxels do
not contain only myocardium but also part of the outside region, lowering their
intensity. Conversely, at end of systole, the thickening of the muscle leads to
brighter muscle voxels. This artefact is used as an index of wall thickenning [1].
We can observe this phenomena on figure 2l

Fig. 2. Time frames 0 to 7, from left to right and top to bottom, showing one short
axis slice. The intensity is higher in frames 2 and 3 (end of systole) than in the others.

Temporal Blurring. Due to the images reconstruction process, a blurring appears
in the image sequences. This temporal blurring is mostly visible at the base (top)
of the myocardium while the more static apex part is unaffected. The visual
consequences are that (i) during diastole, extremities of the ventricle muscle are
darker than the apex and (ii) during systole, borders of the muscle near the apex
are darker.

Consequences of Segmentation Errors on Volume FEstimation. Partial volume
effects and temporal blurring combine their effects, leading to different segmen-
tation errors during the systole and diastole phases. At end of diastole, the
myocardium extremities are darker and tend to be truncated. The temporal
blurring, will also cause the myocardium to appear slightly thicker than it is in
reality. This leads to underestimating the chamber volume. Conversely at end
of systole, the myocardium extremities are overestimated while the myocardium
appears slightly thinner than it should be. This leads to overestimating the
chamber volume. The EF estimation is significantly affected by the combination
of these segmentation errors. Figure ] shows the erroneous estimated volumes
using the segmentation algorithm for different weights of the internal force term
Ain. Although they appear visually insignificant, these segmentation errors have
a drastic impact on the volume estimations. Due to the coarse resolution of gated
SPECT images and the small size of the LV, even an error of only one voxel all
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along the LV chamber surface leads to an error of about 50% of the chamber
volume, making the computed EF absolutely meaningless.

3 Segmentation and Quantification Experiments

To validate the algorithm accuracy, experiments on simulated images were first
performed. With simulated images, a ground truth (the actual volumes of the
virtual objects used for simulation) is known and the algorithm can be quan-
titatively evaluated. Experiments were then lead on real images for which no
ground truth is available.

3.1 Experiments on Simulated Images

Simulating Images Using the NCAT Phantom. W.P. Segars [19] has de-
veloped a four-dimensional NURBS-based CArdiac-Torso (NCAT) phantom for
simulating nuclear medicine images. The organ models are based on non-uniform
rational B-splines which define continuous surfaces. The phantom can thus be
used at any spatial resolution. An important innovation is the extension of
NURBS to a fourth dimension, time, to model the cardiac beat and the res-
piratory motion. Given a model of the physics of the nuclear imaging process,
simulated images of the numerical phantom can be computed by the NCAT
simulator. The main advantage of using computerized organ models in medical
studies is that the exact anatomy and physiological functions of the phantom
are known, thus providing a gold standard against which the image processing
and reconstruction algorithms can be evaluated quantitatively.

Volume Estimation. Figure [3 shows an example of volume estimation after
segmentation of an image produced by the NCAT simulator and extraction of
the chamber by the membrane algorithm. The volume estimation error is small
compared to the spatial resolution of the simulated images (less than 6% in the
worst case) and the error on the computed EF is lower than 2%. The membrane
algorithm therefore estimates a realistic closure of the LV boundary.

Variation of the left ventricle cavity volume

Real volume ——
volume (spatio—temporal critefion)

/M

/

/

Volume (ml)

4 x
Instant in the cardiac cvcle

Fig. 3. Comparison of the LV chamber volume estimation on simulated NCAT images
against the ground truth.
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Realistic Images. Raw images produced by the NCAT simulator are not re-
alistic since they are not noisy and they do not introduce temporal blurring
as described in section R3] For further evaluating our algorithm, an artificial
temporal blurring was introduced by convolving the longitudinal sequences with
a Gaussian kernel in the time direction (0 = 6), and a spatial Gaussian noise
(0 = 4) was added in each image. Straight segmentation of blurred and noisy
images is not satisfying. A high level of noise requires increasing the internal
force weight. However, this also causes less precise location of the myocardium
boundaries.

Different internal weight values have been tested in the criterion [[l Fixing
dout = 1 and A, = 1, figure [l shows the segmentation results for different
values of A;,. For low values of the internal force weight (\;; = 1 and X;}, = 2),
the region near the apex is poorly segmented: the myocardium surface is too
thick. For a higher value (\;;, = 3), the thickness is correct but a significant
part of the extremities is truncated. A small part of the extremities is also
truncated for \;; = 1, due to the temporal blurring (for better visualization,
we superimposed the segmentation results on the original NCAT images but the
segmentation is computed on blurred and noisy images). Figure Bl shows that
the estimated volume of the LV chamber is indeed under-evaluated except at
the end of systole. Both myocardium extremities troncature (for high values of
Ain) and myocardium thickness overestimates (for low values of \;,) lead to
underestimating the chamber volume.

Cavity volume

110

100

oo\
=1\ /
e A\ /
2
S 6of

SO i - A

40

30

S
Frame

Fig. 4. LV chamber volume after segmentation of NCAT simulated data for different
values of \;, and ground truth.

3.2 A New Adaptive Algorithm

Since the accurate segmentation of the different parts of the myocardium requires
different tunings of the relative weights of the internal and external objects and
no satisfying trade-off can be found for the complete image, we propose an
adaptive algorithm described by the following steps:

— Normal segmentation of the end of systole volume. The temporal
blurring is minimum and the myocardium intensity is maximum at end of
systole.
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Xin = 2 9
T
Ce el
- GOOe e 14

Fig. 5. Segmentation results for A, = 1 (top), A, = 2 (center), and A;, = 3 (bottom).

— LV barycenter and principal axis estimation. The principal axis com-
puted from the segmented image roughly corresponds to the heart long axis.

— Image volume splitting. The volume space is split by several short axis
planes. Different parameters can be attributed to each space region.

Locating the Heart Long Axis. The end of systole volume presents the lowest tem-
poral blurring and the highest myocardium contrast. It is therefore the easiest
frame to segment. Moreover, this stage is not very sensitive to small segmenta-
tion errors. The myocardium is first extracted in this frame. The resulting model
is used to produce a binary image. Only the largest connex component is kept
from this image to remove outliers. The LV barycenter (Z, ) and the principal
axis are estimated. The principal axis is the eigenvector corresponding to the
highest eigenvalue of the inertia matrix:

map i1
mi1 mMo2

M = l: :| with mij = Z(x _ j)l(y . Zj)J(S(CB,y) (3)

Estimation of the Different Planes. The image volume is split by planes normal
to the heart long axis estimated in the previous step. The first volume region
contains the heart apex. This region is delimited by a plane orthogonal to the
principal axis and close enough to the LV barycenter to cut the myocardium
extremities segmented at the end of systole with A;,, = 1 (see figure [d]). The last
region will fall outside the ventricle, beyond the myocardium extremities. It is
determined by a plane parallel to the first one, and outside the segmentation
obtained at the end of diastole with A;;, = 3. Two other planes, equally spaced
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Fig. 6. Splitting the image volume by planes normal to the heart long axis.

between the two previous ones, finish to split the image volume in 5 regions (see
figure [d).

Deformation with Variable Weights. Once the splitting planes have been located,
all frames of the cardiac sequence are segmented. Different values are set for the
Ain, weight in each frame and each volume region. The criterion equation [ is
modified for a new criterion with varying weights \;;,:

O e Ns.nlln — ping, ) = Aoue(B = 1) = Ae) [Vl (4)
where S; is a 3D region delimited by planes (see figure[d): Sy corresponds to the
region containing the apex, Sy to the region beyond the base.

The different weights were determined empirically on an image dataset. Fol-
lowing the observations made in paragraph B.l, we choose the \;,, weights grow-
ing from Sy to S; near the diastole, and growing from S to Sy near the systole.
The weights used for NCAT simulated sequences are shown in left of figure [71

0|1 |12 |3 |4 |5 |6 |7 0 (1 (2 (3 4|5 |6 |7
Sold |5 ]0.5|0.2]0.2|10.2|5 |5 Sol3  |2.5]1.5|1.5]2.513 |3 |3
Si14 |4 |3 |8 8 |3 |4 |4 Si2 12 14 14 (2 (2 |2 |2
S2(2.5|12.5(3 |8 |8 |3 |2.5)2.5] |S2|1 |1.5]4 |4 [1.5(1.5 |1 |1
S3(1.2|1 [2.5(8 8 |2 |1 |1.2| [S5(0.1 [0.5]4 |4 |0.5/0.12]0.2]0.1
S54|0.4/0.62 |8 |8 |2 ]0.6/0.4] |S4|0.05|0.3]4 |4 [0.2|0.1 |0.1]0.05

Fig. 7. Adaptive weights. On the left, values for NCAT sequences. On the rigth, values
used for the real gated SPECT data.
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LV chamber volume
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Fig. 8. LV chamber volume variations along the cardiac cycle using NCAT data: real
values and computed values.

For other sequences, a different weights tuning might be needed. This pa-
rameterization is constant for a given image acquisition protocol. Manual tuning
is only needed when changing the acquisition device or protocol.

Segmentation Results with the Adaptive Algorithm. The adaptive algorithm seg-
mentation, leads to a good profile for the LV chamber volume variations during
the cardiac cycle as shown in figure [§] The values are close to the real ones with
an error of about 15 ml (about 13%). This is sufficient to compute accurate EF
values (with an error of 8%).

3.3 Experiments on Real Images from Healthy Patients

Segmentation experiments were made on real images provided by the Centre
Antoine Lacassagne nuclear medicine department in Nice. The images were ac-
quired and filtered by a Butterworth low-pass filter before 3D reconstruction.
The voxels dimension is 3.46 x 3.46 x 7.12 mm.

Figure[@shows a segmentation example. The myocardium segmentation (left),
the convex envelope extracted by the membrane algorithm (center), and the LV
chamber surface (right) are shown for 4 out of the 8 images of a complete se-
quence.

The weights used for \;,, are shown in right of figure[7. Figure [[0lcompares the
evolution of the LV chamber volume obtained using basic segmentation and the
adaptive algorithm. With the later method, the profile of the curve is improved
and the EF value (75.5% instead of 56.5%) is more realistic.

4 Conclusion

The accurate estimation of the LV myocardium and chamber volumes is very
sensitive to segmentation errors in gated SPECT images. In this paper, we pro-
posed a novel adaptive algorithm taking into account the temporal nature of
the image sequences to more precisely locate the heart wall boundaries. Our al-
gorithm uses the whole image sequence to estimate the background intensity in
the deformation criterion[d. Furthermore, the temporal blurring of the sequences
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CAR
00117

Fig. 9. LV chamber estimation: meshes (computed using Marching Cubes algorithm)
of the myocardium segmentation (left), membrane with Gouraud shading (center), and
chamber estimation with Gouraud shading (right).

Volume (m)

Fig. 10. Comparison of LV chamber volume variations during the cardiac cycle, on
real SPECT data, from a healthy patient.

is compensated through the spatial and temporal adaptation of the algorithm
parameters. A membrane algorithm was developed to automatically extract the
LV chamber from the myocardium segmentation.

We could validate the accuracy of the method on simulated images. The er-
ror in the LV chamber volume computation do not exceed 15 ml. The resulting
variability of the EF is about 8% which is low enough for a practical use. First
results on real images are encouraging although a clinical study is needed to com-
pare the results to established gold standards. Setting the adaptive parameters
automatically is highly desirable from the user point of view. Some work also
need to be done in the case of pathological images showing severe signal drops
due to myocardium perfusion defaults: holes then appear in the myocardium
wall that need to be taken into account for volumes estimation.
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