
Flash™ ActionScriptFlash
™A

ctionScript
System requirements: PC running Windows 98 or later. See “What’s on the CD-ROM” appendix for details
and complete system requirements.

Two-page lessons
break big topics into
bite-sized modules

Succinct explanations
walk you through
step by step

“Apply It” and “Extra”
sidebars highlight
useful tips

High-resolution screen
shots demonstrate
each task

Welcome to the only guidebook series that takes a visual

approach to professional-level computer topics. Open the

book and you’ll discover step-by-step screen shots that

demonstrate over 130 key Flash ActionScript

techniques, including:

• Assigning ActionScript to a frame

• Testing a movie

• Concatenating strings

• Using logical operators

• Creating arrays

• Setting volume and panning

• Creating a scrollable text box

• Working with multiple movies

• Creating smart clips

• Debugging your script

Web development tools on CD-ROM!
• Macromedia Flash, FreeHand, and Flash Player trial versions

• Plus sample graphics, a searchable e-version of the book, and more

www.hungryminds.com

$26.99 USA
$39.99 CAN
£21.99 UK incl.VAT

Category:
Web Development

*85555-BADBBf
ISBN 0-7645-3657-5

,!7IA7G4-fdgfhb!:p;m;Q;t;T

Etheridge

Visit us at www.
hungryminds.com

Your visual blueprint for creating
Flash-enhanced Web sites

Web development tools
on CD-ROM!

• Macromedia Flash, Director
Shockwave Studio,
Dreamweaver, Dreamweaver
UltraDev, and FreeHand trial
versions

• Photoshop tryout from Adobe

• Paint Shop Pro evaluation
version from JASC Software

• Plus a searchable e-version of
the book

3657-5 cover 1/16/02 1:02 PM Page 1

TM

Flash ActionScript
Your visual blueprint for

creating Flash-enhanced Web sites

by Denise Etheridge

®

From

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

New York, NY • Cleveland, OH • Indianapolis, IN

&

013657-5 FM.F 1/31/02 12:15 PM Page i

Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
Copyright © 2002 Hungry Minds, Inc.
Certain designs/text/illustrations Copyright © 1992-2002 maranGraphics, Inc.,
used with maranGraphics’ permission. All rights reserved. No part of this book,
including interior design, cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic, photocopying, recording, or
otherwise) without the prior written permission of the publisher.
maranGraphics, Inc.
5755 Coopers Avenue
Mississauga, Ontario, Canada
L4Z 1R9
Library of Congress Control Number: 2001099316
ISBN: 0-7645-3657-5
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1V/SQ/QS/QS/IN
Distributed in the United States by Hungry Minds, Inc.
Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers
Limited in the United Kingdom; by IDG Norge Books for Norway; by IDG Sweden
Books for Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for
Australia and New Zealand; by TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by Gotop Information Inc. for
Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for South Africa; by Eyrolles for
France; by International Thomson Publishing for Germany, Austria and
Switzerland; by Distribuidora Cuspide for Argentina; by LR International for Brazil;
by Galileo Libros for Chile; by Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the Philippines; by Contemporanea de
Ediciones for Venezuela; by Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.
For U.S. corporate orders, please call maranGraphics at 800-469-6616 or fax
905-890-9434.
For general information on Hungry Minds’ products and services, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S.
at 317-572-3993 or fax 317-572-4002.
For sales inquiries and reseller information, including discounts, premium and bulk
quantity sales, and foreign-language translations, please contact our Customer Care
Department at 800-434-3422, fax 317-572-4002, or write to Hungry Minds, Inc.,
Attn: Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN
46256.
For information on licensing foreign or domestic rights, please contact our Sub-
Rights Customer Care Department at 212-884-5000.
For information on using Hungry Minds’ products and services in the classroom or
for ordering examination copies, please contact our Educational Sales Department
at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other publicity information, please
contact our Public Relations department at 317-572-3168 or fax 317-572-4168.
For authorization to photocopy items for corporate, personal, or educational use,
please contact Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.
Screen shots displayed in this book are based on pre-released software and are
subject to change.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS
PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES
OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT
GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL.
NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

Trademark Acknowledgments

Permissions

Hungry Minds, the Hungry Minds logo, Visual, the Visual logo,
Read Less - Learn More and related trade dress are registered
trademarks or trademarks of Hungry Minds, Inc., in the United
States and/or other countries and may not be used without written
permission. The maranGraphics logo is a registered trademark or
trademark of maranGraphics, Inc. Flash, Director Shockwave
Studio, Freehand and Dreamweaver UltraDev Copyright ©
1994-2000. Macromedia, Inc. 600 Townsend Street, San Francisco,
CA 94103 USA. All Rights Reserved. Contains Macromedia Flash
software by Macromedia, Inc. Copyright © 1995-1999 Macromedia,
Inc. All rights reserved. Macromedia, Flash, Director Shockwave,
Freehand, Dreamweaver and UltraDev are trademarks or registered
trademarks of Macromedia, Inc. in the United States and/or other
countries. All other trademarks are the property of their respective
owners. Hungry Minds, Inc. and maranGraphics, Inc. are not
associated with any product or vendor mentioned in this book.
FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND
TECHNIQUES DESCRIBED IN THIS BOOK, THE AUTHOR HAS
CREATED VARIOUS NAMES, COMPANY NAMES, MAILING,
E-MAIL AND INTERNET ADDRESSES, PHONE AND FAX
NUMBERS AND SIMILAR INFORMATION, ALL OF WHICH ARE
FICTITIOUS. ANY RESEMBLANCE OF THESE FICTITIOUS
NAMES, ADDRESSES, PHONE AND FAX NUMBERS AND
SIMILAR INFORMATION TO ANY ACTUAL PERSON, COMPANY
AND/OR ORGANIZATION IS UNINTENTIONAL AND PURELY
COINCIDENTAL.

maranGraphics

Certain text and illustrations by maranGraphics, Inc., used
with maranGraphics’ permission.

is a trademark of
Hungry Minds, Inc.

FlashTM ActionScript: Your visual blueprint
for creating Flash-enhanced Web sites

U.S. Trade Sales

Contact Hungry Minds
at (800) 434-3422
or (317) 572-4002.

U.S. Corporate Sales

Contact maranGraphics
at (800) 469-6616 or
fax (905) 890-9434.

013657-5 FM.F 1/31/02 12:15 PM Page ii

Flash ActionScript
Your visual blueprint for

creating Flash-enhanced Web sites

013657-5 FM.F 1/31/02 12:15 PM Page iii

At maranGraphics, we believe in producing great
computer books — one book at a time.

maranGraphics has been producing high-technology
products for over 25 years, which enables us to offer the
computer book community a unique communication
process.

Our computer books use an integrated communication
process, which is very different from the approach used
in other computer books. Each spread is, in essence, a
flow chart — the text and screen shots are totally
incorporated into the layout of the spread. Introductory
text and helpful tips complete the learning experience.

maranGraphics’ approach encourages the left and right
sides of the brain to work together — resulting in faster
orientation and greater memory retention.

Above all, we are very proud of the handcrafted nature
of our books. Our carefully-chosen writers are experts
in their fields, and spend countless hours researching
and organizing the content for each topic. Our artists

rebuild every screen shot to provide the best clarity
possible, making our screen shots the most precise and
easiest to read in the industry. We strive for perfection,
and believe that the time spent handcrafting each
element results in the best computer books money
can buy.

Thank you for purchasing this book. We hope you
enjoy it!

Sincerely,

Robert Maran

President

maranGraphics

Rob@maran.com

www.maran.com

www.hungryminds.com/visual

maranGraphics is a family-run business
located near Toronto, Canada.

013657-5 FM.F 1/31/02 12:15 PM Page iv

Hungry Minds Technology Publishing Group: Bob Ipsen, Vice President & Publisher; Richard Swadley, Vice
President & Executive Group Publisher; Mary Bednarek, Vice President & Publisher, Networking; Joseph
Wikert, Vice President & Publisher, Web Development Group; Mary C. Corder, Editorial Director, Dummies
Technology; Andy Cummings, Editorial Director, Dummies Technology; Barry Pruett, Vice President &
Publisher, Visual/Graphic Design

Hungry Minds Manufacturing: Ivor Parker, Vice President, Manufacturing

Hungry Minds Marketing: John Helmus, Assistant Vice President, Director of Marketing

Hungry Minds Production for Branded Press: Debbie Stailey, Production Director

Hungry Minds Sales: Michael Violano, Vice President, International Sales and Sub Rights

Acquisitions, Editorial,
and Media Development

Project Editor
Jade L. Williams

Acquisitions Editor
Jen Dorsey

Product Development Supervisor
Lindsay Sandman

Development Editors
Dana Lesh

Kathleen McFadden
Technical Editor
Kyle D. Bowen

Editorial Manager
Rev Mengle

Media Development Manager
Laura Carpenter Van Winkle

Permissions Editor
Laura Moss

Media Development Specialist
Megan Decreane

Production

Book Design
maranGraphics®

Production Coordinator
Maridee Ennis

Layout and Graphics
Melanie DesJardins
LeAndra Johnson
Kristin McMullan

Jill Piscitelli
Betty Schulte

Screen Artists
Ronda David-Burroughs

Mark Harris
Jill A. Proll

Cover Illustration
David E. Gregory

Proofreaders
Laura L. Bowman, Susan Moritz,

Carl Pierce, Marianne Santy
Indexer

Sherry Massey
Special Help

Macromedia, Inc.,
Malinda McCain

CREDITS

ACKNOWLEDGMENTS

013657-5 FM.F 1/31/02 12:15 PM Page v

Denise Etheridge: Denise Etheridge is the president of BayCon Group
Incorporated, a consulting firm specializing in software installation,
implementation, and training. The BayCon Group Web site features online
software tutorials. You can visit http://www.baycongroup.com/flash/00_flash.htm,
for Flash tutorials.

I would like to say thank you to all of people who provided me with assistance or
support during the development of this book. Thank you to Neil Salkind and
Jennifer Dorsey for providing me with the opportunity and for encouraging me
along the way. Thank you to Jade Williams for her editing and project
management. And, thank you to all of the editors and staff at John Wiley who
assisted Jade.

I would like to give a special thanks to David Gregory for assisting with the
artwork and Malinda McCain for helping me with this and many other projects.

ABOUT THE AUTHOR

AUTHOR’S ACKNOWLEDGMENTS

013657-5 FM.F 1/31/02 12:15 PM Page vi

I dedicate this book to Frederick, Catherine, Freddie, and Erskine Etheridge.

013657-5 FM.F 1/31/02 12:15 PM Page vii

viii

HOW TO USE THIS BOOK .XIV

1) GETTING FAMILIAR WITH FLASH
Introduction to Flash and ActionScript ..2
Create a Scene ..3
Create Layers ..4
Create Graphics ..6
Create a Symbol ..8
Create an Instance ..10
Create a Button ..12
Create Animation ..14
Add Sound ..16
Create a Movie Clip ..18
Create Static Text Boxes ..20
Create Input Text Boxes ..22
Create Dynamic Text Boxes ..23
Using the Actions Panel ..24
Assign ActionScript to a Button ..28
Assign ActionScript to a Movie Clip ..29
Assign ActionScript to a Frame ..30
Publish Movies ..32

2) PROGRAMMING WITH ACTIONSCRIPT
Introduction to ActionScript Syntax ..36
Test a Movie ..38
Enter the Test Environment ..40
Add Comments ..42
Stop a Movie ..44
Play a Movie ..46
Jump to a Frame or Scene ..48
Set Movie Quality ..50
Open a Web Page ..52
Communicate with the Flash Player ..54
Create Objects Users Can Drag ..56
Print a Movie ..60
Check Frame Load ..62

TABLE OF CONTENTS

013657-5 FM.F 1/31/02 12:15 PM Page viii

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

ix

3) SETTING MOVIE CLIP PROPERTIES
Introduction to Movie Clip Properties ..64
Name an Instance ..66
Adjust Transparency..68
Make Movie Clips Invisible ..70
Rotate Movie Clips..72
Change the Width of Movie Clips ..74
Change the Height of Movie Clips..76
Scale the Width of Movie Clips ..78
Scale the Height of Movie Clips..80
Move Movie Clips Across the Stage..82
Move Movie Clips Up and Down..84
Set Movie Clip Quality ..86

4) WORKING WITH VARIABLES AND STRINGS
Introduction to Variables and Data Types ..88
Assign a Value to a Variable ..90
Assign an Object or Movie Clip to a Variable ..92
Load Variables ..94
Extract a Character from a String ..96
Extract a Substring from a String ..98
Concatenate Strings ..100
Obtain the Length of a String ..102
Search a String ..104
Change the Case of a String ..106
Convert Strings, Numbers, and Booleans ..108

5) WORKING WITH OPERATORS
Understand Precedence ..110
Add Numeric Values ..112
Subtract Numeric Values ..114
Multiply Numeric Values ..116
Divide Numeric Values ..118
Find the Modulo ..120
Set Values with the Increment Operator ..122
Set Values with the Decrement Operator ..124
Using Less Than or Greater Than ..126

013657-5 FM.F 1/31/02 12:15 PM Page ix

x

TABLE OF CONTENTS

Using Less Than or Equal to or Greater Than or Equal to ..127
Using Equality and Inequality Operators ..128
Using Compound Assignment Operators ..130
Using Logical Operators ..132

6) CHANGING THE SCRIPT FLOW
Using if to Test a Condition ..134
Using if with else ..136
Using else if ..138
Create a Conditional Loop ..140
Using for Loops ..142

7) USING THE MOVIE CLIP AND ARRAY
Introduction to Objects ..144
Using the MovieClip Object ..146
Attach a Movie Clip ..148
Get Bounds ..152
Swap Depths ..154
Check MovieClip Load ..156
Detect Collision ..158
Get the x- and y-Coordinates ..160
Create an Array ..162
Find the Length of an Array ..166
Add Elements to an Array ..168
Remove Elements from an Array ..170
Extract or Reverse an Array ..172
Convert an Array to a String ..174

8) WORKING WITH OBJECTS
Change Colors ..176
Work with Color Transform Values ..178
Using the Mouse Objects and Properties ..180
Using the Date Object ..182
Get Date and Time Values ..184
Set the Date ..186

013657-5 FM.F 1/31/02 12:15 PM Page x

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

xi

Set Date Values ..188
Set Time Values ..190
Using Mathematical Functions ..192
Raise a Power or Find A Square Root ..193
Round Numbers ..194
Generate Random Numbers ..195
Find Numeric Values ..196
Using the Key Object ..198
Using the Sound Object ..202
Set Volume and Panning ..206
Using the Selection Object ..208

9) DEMYSTIFYING FUNCTIONS
Get Properties ..210
Using Get Timer and Get Version ..212
Using Eval ..213
Convert a String to a Number ..214
Evaluate for Mathematical Errors ..216
Create a Scrollable Text Box ..218
Create a Custom Function ..220

10) WORKING WITH MULTIPLE TIMELINES
View the Hierarchy of Multiple Movies ..222
Assign Target Paths ..224
Load and Unload Movies and Movie Clips ..226
Using Tell Target ..230
Using the with Action ..232
Duplicate Movie Clips ..234

11) CREATING SMART CLIPS
Create Smart Clips ..236
Create a Smart Clip Custom Interface ..240

013657-5 FM.F 1/31/02 12:15 PM Page xi

xii

12) USING CREATIVE TECHNIQUES
Validate a String ..244
Validate a Date ..246
Search a Text Box ..248
Convert Symbols ..252
Create Rotation Effects ..254
Create a Coloring Book ..256
Emulate Panels ..258
Demystify Trigonometric Functions ..262
Create Trigonometric Special Effects ..266

13) DEBUGGING ACTIONSCRIPT
Using the Debugger ..268
Using the Output Window ..270
Using List Objects ..272
Using List Variables ..273
Debug Your Script ..274

14) FLASH ACTIONSCRIPT QUICK REFERENCE
Key Code Values ..276
URL Encoding Characters ..278
List of Keywords ..279
Actions Appended with Num ..280
Hexadecimal Color Codes ..280
Button Handlers ..283
Movie Clip Handlers ..283
Operators ..284
Functions ..285
Actions ..286
Properties ..287

TABLE OF CONTENTS

013657-5 FM.F 1/31/02 12:15 PM Page xii

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

Array Object ..288
Boolean Object ..288
Color Object ..288
Date Object ..289
Key Object ..290
Math Object ..290
Mouse Object ..291
MovieClip Object ..291
Number Object ..292
Object Object ..292
Selection Object ..292
Sound Object ..293
String Object ..293

APPENDIX
What’s on the CD-ROM ..294
Using the E-Version of the Book ..296
Hungry Minds, Inc. End-User License Agreement ..298

INDEX .300

xiii

013657-5 FM.F 1/31/02 12:15 PM Page xiii

xiv

HOW TO USE THIS BOOK

Flash ActionScript: Your visual blueprint for creating Flash-
enhanced Web sites uses straightforward examples to
teach you how to create powerful and dynamic Web sites.
The coding style and examples found in this book are
used for instructional purposes. Once you are
comfortable working with Flash ActionScript, you can use
the coding styles and methods that suit your needs.
To get the most out of this book, you should read each
chapter in order, from beginning to end. Each chapter
introduces new ideas and builds on the knowledge
learned in previous chapters. Once you become familiar
with Flash ActionScript, this book can be used as an
informative desktop reference.

Who This Book Is For
If you are looking for a resource that will help you get
started learning ActionScript, Flash ActionScript: Your
visual blueprint for creating Flash-enhanced Web sites is
the book for you. This book will walk you through the
basics that you need to get started and familiarize yourself
with the essentials of working with Flash ActionScript.
No prior experience with ActionScript is required, but
familiarity with Flash is assumed.
Experience with programming languages is also an asset,
but even if you have no programming experience, you can
use this book to learn the essentials you need to work
with Flash ActionScript.

What You Need To Use This Book
The tasks in this book were developed using Flash 5 for
Windows 98, 2000, and NT. To perform the tasks in this
book, you need Flash 5 and Flash Player installed on your
computer. You should also have a Web browser such
Internet Explorer or Netscape.

The Conventions In This Book
A number of typographic and layout styles are used
throughout Flash ActionScript: Your visual blueprint for
creating Flash-enhanced Web sites to distinguish different
types of information.

Courier Font

Indicates the use ActionScript.

Bold
Indicates information that you must type.

Italics
Indicates a new term being introduced.

An Apply It section usually contains a segment of code
that takes the lesson you just learned one step further.
Apply It sections offer inside information and pointers that
can be used to enhance the functionality of your code.

An Extra section provides additional information about the
task you just accomplished. Extra sections often contain
interesting tips and useful tricks to make working with
Flash ActionScript easier and more efficient.

The Organization Of This Book
Flash ActionScript: Your visual blueprint for creating Flash-
enhanced Web sites contains 14 chapters.
The first chapter, Getting Familiar with Flash, provides a
review of Flash introduces you to the Actions panel.
Chapter 2, Programming with ActionScript, introduces you
to ActionScript. You learn to play and stop movies, adjust
movie quality, jump to a frame or scene, jump to a URL,
check whether a frame is loaded, create draggable objects,
communicate with Flash Player, and Print Movies. This
chapter illustrates ActionScript by stepping you through
examples and explaining the syntax of several actions.
Chapter 3, Setting Movie Clip Properties, demonstrates
how you can use properties. Properties are the attributes
associated with a movie clip. For example, the _visible
property determines whether a movie clip is visible or
hidden. This chapter explains properties and steps you
through sample scripts that use properties.
Chapter 4, Working with Variables and Strings, shows you
how to use variables and manipulate string. Variables can
be viewed as containers that store information. You can
assign information to a variable or you can use a variable

013657-5 FM.F 1/31/02 12:15 PM Page xiv

xv

to collect information from the user, record what a user
has done, change values as a movie plays, or evaluate
whether a condition is true or false. A string is any
sequence of characters consisting of any combination of
letters, numbers, or punctuation marks. The ActionScript
String object has several methods that enable you to
manipulate strings. This chapter explains variables and
strings and steps you through sample scripts that use
variables and strings.
Chapter 5, Working with Operators, explains operators and
steps you through sample scripts that use operators. An
operator is a character used to specify how to combine,
compare, or modify a value in an expression. For example,
the plus (+) operator can be used to add two numbers; the
Minus (–) operator can be used to subtract two numbers.
Chapter 6, Changing the Script Flow, steps you through
actions that enable you to change the flow of script. In
ActionScript, each statement is executed in order from top
to bottom unless you change the flow of a script.
Chapter 7, Using the Movie Clip and Array Objects,
introduces the MovieClip object, which is the most
important object in ActionScript. Since each movie clip
has its own Timeline, each movie clip can be a complete
animation. Arrays enable you to group values together and
are useful when you need to store and retrieve lists of
data. The ActionScript Array object has several methods
that enable you to manipulate arrays.
Chapter 8, Working with Objects, steps you through
ActionScript examples that use objects contains several
objects that you can use to manipulate symbols and data.
For example, the Math object is used to manipulate
numbers. You can use the Math object’s round method to
round a number. The Color object is used to manipulate
color. You can use the methods of the Color object to
change the color of a movie clip.
Chapter 9, Demystifying Functions, teaches you how to
create you own custom functions. Functions are reuseable
blocks of ActionScript. You can pass values to a function or
you can use a function to obtain values. For example, you
use the getVersion function to get the version of Flash
Player. This chapter explains functions and steps you
through sample scripts that use functions.
Chapter 10, Working with Multiple Timelines, explains how
to work with multiple Timelines in a single movie. You can
lay out the sequence of a Flash movie on a Timeline. Movie
clips are mini Flash movies. They each have their own
Timeline and their own properties. You can embed a

movie clip within a Flash movie. In fact, multiple instances
of a movie clip symbol can be embedded inside of each
other. This chapter steps you through sample scripts that
work with multiple Timelines.
Chapter 11, Creating Smart Clips, teaches you how to
create smart clips. A smart clip is a movie clip with
ActionScript that can be reprogrammed without using the
Actions panel. This enables you to create ActionScripts that
people with no programming ability can modify.
Chapter 12, Using Creative Techniques, pulls all basics of
ActionScript together by combining actions and
demonstrating techniques that you can use when creating
a Flash movie.
Chapter 13, Debugging ActionScript, is on debugging
ActionScript. Flash movies that contain ActionScript can
become complex. Flash provides you with several tools
that can help you troubleshoot your movie.
The final chapter, Flash Action Script Quick Reference,
contains useful tables of reference material and a summary
of commands.

What Is On The CD-ROM
The CD-ROM in the back of this book contains the sample
code from each of the two-page lessons, as well as the
code from most of the Apply It sections. This saves you
from having to type the code and helps you quickly get
started creating Flash ActionScript programs. The CD-ROM
also contains several shareware and evaluation versions of
programs that can help you work with Flash ActionScript.
An e-version of this book is also available on the
companion disc.
Chapter 1 provides a very brief overview of how to create
text, input text boxes, dynamic text boxes, buttons, and movie
clips. Since this book assumes you know Flash, all of the text,
input text boxes, dynamic text boxes, buttons and movie clips
used in the sample files have been created for you.
The sample files all have an FLA extension. Copy the files
to the directory of your choice and click Files ➪ Open on
the Flash menu to open them.

Flash ActionScript:
Your visual blueprint for

creating Flash-enhanced Web sites

013657-5 FM.F 1/31/02 12:15 PM Page xv

400 Part IX: Appendixes

Flash is a graphics and animation software package that
enables Web developers to design and deliver low-
bandwidth animations and presentations referred to as

movies. With Flash, you can create interactive Web pages
with both motion and sound. This book is about

ActionScript, the scripting language that enables you to add
interactivity to your Flash movie. With ActionScript, you can
have your Flash movie respond to mouse clicks and key
presses, or you can request information from the user and
have your Flash movie respond to the information provided.

INTRODUCTION TO FLASH
AND ACTIONSCRIPT

FLASH ACTIONSCRIPT

When you open Flash, the screen shown here appears:

FLASH INTERFACE

2

3657-5 Ch01.F 1/31/02 12:16 PM Page 2

Using scenes enables you to separate your movie into
sections. For example, you can have a scene that
displays the title of the movie, a scene that plays the

movie, and a final scene that lists the characters. Each scene
has its own Timeline and can include its own animation.

To create a scene, click View ➪ Scene from the menu. A
new Stage and Timeline appears in which you can create
your scene. By default, Flash names scenes by assigning
them sequential numbers, for example, Scene 1 and Scene
2. You can use the Scene panel to add, remove, duplicate,
rename, and change the order of scenes. To open the Scene
panel, click Window ➪ Panels ➪ Scene from the menu.

CREATE A SCENE

To view a scene, click View ➪ Goto from the menu and
then choose the scene to which you want to go.

GETTING FAMILIAR WITH FLASH 1

3

SCENE PANEL

3657-5 Ch01.F 1/31/02 12:16 PM Page 3

Layer 3

⁄ Click Insert ➪ Layer to
create a layer above the
active layer.

� A new layer appears above
the active layer.

¤ Double-click and type to
change the layer name.

‹ Click in the Show/Hide All
Layers column to toggle
between showing () and
() hiding a layer.

› Click in the Lock/Unlock
All Layers column to toggle
between locking () and
unlocking () layers.

ˇ Click in the Show Layers
as Outlines column to toggle
between Show Normal ()
and Show As Outline ().

Layer

When creating a Flash movie, you place individual
images and animations on separate layers to
prevent them from connecting, erasing, or

segmenting each other. You should also use separate layers
for sounds, actions, frame labels, and comments. Layers are
transparent sheets on which you create the graphics and
animations you use in your movie. You can see through
each sheet to the layer beneath until you add color.

You work on the active layer. You make a layer active by
clicking in the layer, or by moving to the Stage and selecting
an object on the layer. Flash places a pencil icon next to the
layer name of the active layer. Only one layer can be active at
a time.

As you create objects, they are stacked according to layer. An
object on a lower layer will appear as if it is behind an object

on a higher layer. You can change the order of layers and the
name of a layer.

You can lock a layer to prevent changes to the layer. Flash
uses a padlock icon to indicate a locked layer. You can also
hide a layer. Hiding a layer is useful when you want to
remove certain objects on the Stage from view to make it
easier for you to create graphics. You can delete layers
when you no longer need them.

To assist you when you are drawing graphics, you can create
guide layers. You can also create motion guide layers to
assist you when creating motion tweens. You can use mask
layers to create spotlight effects. Flash also provides you
with an option that allows you to view a layer as an outline.
You can specify the outline color. Adding layers does not
increase the file size of your published movie.

CREATE LAYERS

FLASH ACTIONSCRIPT

4

CREATE LAYERS

3657-5 Ch01.F 1/31/02 12:16 PM Page 4

Layer 3Layer 3

Á Click the layer and drag to
change the order of a layer.

‡ Click to insert a layer.

° Click to add a guide
layer.

· Click to delete a layer.

‚ Click the Show/Hide,
Lock/Unlock, or Outlines
icon to affect every layer in
the column.

� The pencil icon indicates
this is the active layer.

� Items on lower layers
appear to be behind items
on higher layers.

GETTING FAMILIAR WITH FLASH 1

When you draw on an object using the Line,
Oval, Rectangle, Pencil, or Brush tool, the object
segments. Each segment is an individual object
that you can select, move, and reshape. When
you cover object A with object B, object B
connects to, segments, and erases object A. Place
objects on separate layers to prevent them from
connecting, segmenting, and erasing.

You can use the Layer Properties dialog box to change
layer properties. To open the Layers Properties dialog
box, choose Modify ➪ Layer from the menu. Use the
Name field to name the layer. Select Show to show
the layer. Select Lock to lock the layer. Select the Type
of layer. Choose from Normal, Guide, Guided, Mask,
and Masked. Use the Outline Color option to select
the color of the outline. To view a layer as an outline,
select View Layer As Outlines. Select a Layer Height.
Choose from 100 percent, 200 percent, or 300
percent.

5

3657-5 Ch01.F 1/31/02 12:16 PM Page 5

⁄ Click to select a tool. ¤ Click to select modifiers. ‹ Move to the Stage and
drag to create a shape.

� You can create rectangles
with the Rectangle tool (),
ellipses with the Oval tool
(), straight lines with the
Line tool (), paint with the
Brush tool (), or free-form
lines with the Pencil tool
(), or you can erase with
the Eraser tool ().

� You can create a square
with or a circle with by
holding down the Shift key as
you drag.

Flash provides you with several tools you can use to
create or modify graphics. You use the Line tool to
create straight lines, the Oval tool to create circles and

ellipses, and the Rectangle tool to create squares and
rectangles. You use the Paint Bucket and Brush tools to add
color to images.

The Pen tool gives you the ability to draw straight lines and
smooth curves. You use the Subselect tool to adjust those
lines. Stroke lines outline a graphic. You use the Ink Bottle
tool to change the stroke line color, width, or style. Fill
colors fill the interior of a graphic. You use the Dropper tool
to copy fill and stroke attributes from one object to another.
The Eraser tool gives you the ability to erase.

You can use the Arrow and Lasso tools to select objects on
the Flash Stage. You can group, move, copy, or delete

selected objects. Grouping enables you to manipulate
several objects as a single object. You use the Arrow tool to
select a button or movie clip when you want to associate
ActionScript with a button or movie clip.

Flash tools have modifiers you can use to set tool options.
Color boxes enable you to set the stroke and fill colors
associated with each tool. You can swap the stroke and fill
colors, set the color to no color, or set the colors to the
default colors. The Arrow tool provides you with options for
smoothing, straightening, rotating, and scaling objects. The
Rectangle tool provides an option for rounding corners. You
can set the size and shape of the Brush. The Eraser offers
several modes and a faucet that enables you to erase the
selected area. When using the Pencil, you can choose to
have straight lines, smooth lines, or free-form lines.

CREATE GRAPHICS

FLASH ACTIONSCRIPT

6

CREATE GRAPHICS

3657-5 Ch01.F 1/31/02 12:16 PM Page 6

� If you selected the Ink
Bottle (), Paint Bucket
(), or Dropper tool (),
move to the Stage and click
the mouse.

� You can click the stroke
line to change the stroke
color with , the fill color to
change the fill with , or set
a stroke or fill color with .

› Click to select the Lasso or
Arrow tool.

� The pointer changes to the
icon that represents the tool
you selected.

ˇ Move to the Stage and
drag the mouse to select an
object.

� Use to place a rectangle
around the selected area.

� Use to draw the area
you want to select.

GETTING FAMILIAR WITH FLASH 1

To hide the Toolbox, click Window ➪ Tools from
the menu. To bring the Toolbox back, click
Window ➪ Tools again.

Use the Hand tool to move the Stage. Use the
Zoom tool to zoom in on the Stage. You can also
click View ➪ Zoom In to zoom in on the Stage,
or View ➪ Zoom Out to zoom out. To change
the magnification, click View ➪ Magnification
and select a magnification level.

You can click Windows ➪ Panels ➪ Fill to open the
Fill panel. The Fill panel enables you to select color,
gradients, or bitmap fills. You can create your own
gradients. You can click any bitmap in the Library as
a bitmap fill. You can click Windows ➪ Panels ➪
Stroke to select a stroke color, style, or line weight.
Clicking Windows ➪ Panels ➪ Mixer enables you to
create colors.

7

3657-5 Ch01.F 1/31/02 12:16 PM Page 7

� Make sure nothing on the
Stage is selected.

⁄ Click Insert ➪ New
Symbol to open the Symbol
Properties dialog box.

� The Symbol Properties
dialog box appears.

¤ Type a symbol name.

‹ Click to select a behavior.

› Click OK.

� Flash changes to the
symbol-editing mode.

New Symbol... Ctrl+F8

Creating and using symbols enables you to share
graphics, movie clips, buttons, and sounds among
movies. A symbol is a reusable graphic, button, movie

clip, or sound. Every Flash movie has a Library, which stores
symbols. When you create a symbol, it automatically
becomes part of the Library.

Graphics are static images. You can place graphics on the
Timeline of a movie, but you cannot attach ActionScript to
a graphic.

Buttons are interactive graphics that can respond to user
actions. You use ActionScript to give Flash instructions on
how to respond when the user clicks, rolls the pointer over,
or performs some other action in relation to a button.
Buttons have their own Timeline.

Movie clips are reusable animations that have their own
Timeline. You can place a movie clip on a button Timeline

to create an animated button. You use ActionScript to give
Flash instructions on how to respond when the user clicks,
rolls the pointer over, or performs some other action in
relation to a movie clip.

Symbols speed up the playback of your movies, because
the browser only needs to download them once. Using
symbols enables you to share graphics, movie clips, buttons,
and sounds among movies. You can set up permanent
libraries and link to items in the permanent libraries from
any Flash movie. You can open any Flash movie as a shared
library to make the library items from that movie available
to the current movie. Flash ships with several libraries
containing buttons, graphics, and movie clips that you can
use in your own movies.

You can create a symbol, import a symbol, or convert an
object on the Stage into a symbol. You create symbols in
the symbol-editing mode.

CREATE A SYMBOL

FLASH ACTIONSCRIPT

8

CREATE A SYMBOL

3657-5 Ch01.F 1/31/02 12:16 PM Page 8

ˇ Click to select a drawing
tool and create the symbol
content.

Á Create a symbol.

‡ Click the Scene button to
exit symbol-editing mode.

� The main Timeline returns.

° Click the Show Library
icon () to open the Library.

· Click the symbol name to
see the symbol in the Item
Preview window.

� The symbol you created
appears in the preview
window.

Circle

GETTING FAMILIAR WITH FLASH 1

You can convert any selection on the Stage into a
symbol. To reduce the file size of your movies,
consider turning background images into
symbols so you can reuse them. To convert an
object on the Stage into a symbol, use the Arrow
tool to select the object. Click Insert ➪ Convert
to Symbol to open the Symbol Properties dialog
box. Click to select Movie Clip, Graphic, or
Button as the behavior. Click OK.

When you create a symbol from a selection on the
Stage, the selection becomes an instance of the
symbol. You will no longer be able to edit the
object directly. To edit the symbol, you must move
to the symbol-editing mode. To move to the
symbol-editing mode, use the Arrow tool to select
the symbol and click Edit ➪ Edit Symbols. When
you have completed editing your symbol, click
Edit ➪ Edit Movie to exit the symbol-editing mode.
When you modify a symbol, Flash updates every
instance of the symbol in the movie. When editing a
symbol, you can use all of the drawing tools and
you can import content.

9

3657-5 Ch01.F 1/31/02 12:16 PM Page 9

⁄ Click to select a keyframe. ¤ Click Window ➪ Library
to open the Library.

Library Ctrl+L

Creating and using instances of a symbol can
dramatically reduce the size of your Flash movie. An
instance is a copy of a symbol. Each symbol can have

an unlimited number of copies — or instances. You can
change the color, tint, size, shape, rotation, function, and
other properties of an instance. Changes you make to an
instance do not change the symbol itself or other instances
of the symbol.

Brightness refers to the relative lightness or darkness of an
image. Black has a brightness of -100 percent. White has a
brightness of +100 percent. Tint refers to the color or hue
of an instance, for example, red, blue, or green. Alpha refers
to the transparency of an instance. An instance with an
alpha property of 0 percent is completely transparent. An
instance with an alpha property of 100 percent is

completely opaque. You use the Effect panel to change the
brightness, tint, or alpha property of an instance.

An instance can have a behavior type of graphic, button, or
movie clip. Instances inherit their behavior type from the
symbol. To change an instance behavior type, use the arrow
tool to select the instance, then open the Instance panel. In
the Instance panel Behavior field, select from Graphic,
Button, or Movie Clip.

Using instances of a symbol dramatically reduces the file
size of your movie, because saving instances of an image
requires less space than saving a complete description of
an image each time you use it. You create an instance by
opening the Library and dragging the instance from the
Library onto the Stage.

CREATE AN INSTANCE

FLASH ACTIONSCRIPT

10

CREATE AN INSTANCE

3657-5 Ch01.F 1/31/02 12:16 PM Page 10

� The Library window
appears.

‹ Click the symbol name. › Drag the symbol from the
Library onto the Stage.

� An instance of the symbol
appears on the Stage.

Circle Circle

GETTING FAMILIAR WITH FLASH 1

You use the Effect panel to change the brightness,
tint, or alpha property of an instance. To open
the Effect panel, click Window ➪ Panels ➪ Effect.
Select Brightness and use the brightness slider to
set the brightness to a value between -100 and
100. Select tint to change color using a color
box or by setting Red, Green, and Blue values.
Select Alpha and use the Alpha slider to set the
brightness to a value between 0 and 100 percent.
Select Advanced to adjust both the color and
alpha values.

You can use the Instance panel to change the
behavior type of an instance. To open the Instance
panel, click Window ➪ Panels ➪ Instance or click
Modify ➪ Instance on the menu. Use the Arrow
Tool to select the instance for which you want to
change the behavior. Use the Behavior field to
change the behavior of your instance.

11

3657-5 Ch01.F 1/31/02 12:16 PM Page 11

⁄ Click Insert ➪ New
Symbol to open the Symbol
Properties dialog box.

� The Symbol Properties
dialog box appears.

¤ Type a symbol name.

‹ Click to select Button as
the behavior („ changes
to ´).

› Click OK.

� Flash moves to the
symbol-editing mode.

Ctrl+F8New Symbol...

Buttons enable you to add interactivity to your Flash
movie. The user clicks a button to cause an action to
occur. For example, the user can click a button to

open a Web page.

Buttons have four states: Up, Over, Down, and Hit. The Up
state is how the button appears to the user when the
pointer is not over the button. The Over state is how the
button appears to the user when the pointer is over the
button. The Down state is how the button appears to the
user when the user clicks the mouse while the pointer is
over the button. The Hit state defines the area that
responds to user actions. Make sure that your Hit state is at
least large enough to encompass the graphics used in the
other three states. You can make the Hit states larger than
the other states. The Hit state is not visible to the user.

When you create a button, Flash presents you with a four-
frame timeline, with one frame representing each of the
four button states. To define the appearance of a button
state, you can create or import a graphic for each of the
four states. You can use any graphic or movie clip when
defining the appearance of a button state. You use movie
clips to create animated buttons. You cannot use another
button to define a button state. You can enable a button to
test it.

You use ActionScript to define the action that will occur
when the user clicks the button. You can use buttons to
analyze user input, respond to user input, load or unload a
movie, or perform a myriad of other tasks.

CREATE A BUTTON

FLASH ACTIONSCRIPT

12

CREATE A BUTTON

3657-5 Ch01.F 1/31/02 12:16 PM Page 12

ˇ Define the appearance of
the Up state by drawing or
placing an instance on the
Stage.

Á Click Insert ➪ Keyframe.

� Flash inserts a keyframe
and copies the Up state
image to the Over state
frame. You can change the
image if you want.

� Repeat steps 5 and 6 for
the Down and Hit states.

‡ Click the Scene button to
exit the symbol-editing mode.

� The main Timeline returns.

° Click the Show Library
icon () to open the Library.

· Drag an instance of the
button from the Library onto
the Stage.

� An instance of the button
appears on the Stage.

F8Keyframe

GETTING FAMILIAR WITH FLASH 1

Enabling a button lets you test the button. Flash
disables buttons by default, making it easier for
you to work with them while you create your
movie. To enable a button for testing, click
Control ➪ Enable Simple Buttons. A check mark
appears next to the selection on the menu.
When you move your pointer over the button,
the Over state appears. When you click while
the pointer is over the button, the Down state
appears. To select an enabled button, use the
Arrow tool to draw a rectangle around the
button. To move an enabled button, select it with
the Arrow tool and use the arrow keys to move
the button around the Stage. To disable a button
after enabling it, click Control ➪ Enable Simple
Button again. When you are creating a movie, it
is best to leave your buttons disabled and only
enable your buttons for testing.

You can import the image you use to define a
button state. To import an image click File ➪
Import, locate the image you want to import,
and click Open.

13

3657-5 Ch01.F 1/31/02 12:16 PM Page 13

⁄ Click to select a keyframe. ¤ Draw an object on the
Stage or drag an instance
from the Library.

‹ Click to select the
Keyframe in which you
placed the object.

› Click Insert ➪ Create
Motion Tween.

� If you draw an object on
the Stage, Flash automatically
converts the object to a
symbol and names the object
Tween1.

ˇ Click in the frame in
which you want the
animation to end.

Create Motion Tween

You use Flash to create animation. You can rotate or
move objects, fade them in and out, or change their
size or shape. You can animate objects independently

or have them move and change in concert.

You create animation by changing the content of successive
frames. Flash utilizes two types of animation: frame-by-
frame and tweened. In frame-by-frame animation, you
place an image in each successive frame of the animation.
In tweened animation, you place an image in a start frame
and in an end frame. Flash then creates the images in the
frames in between by varying size, location, or other
attributes. Tweened animation utilizes significantly less file
space than frame-by-frame animation, because Flash stores
only the values for changes in the animation. With frame-
by-frame animation, Flash stores the values for each frame.

The two types of tweened animation are motion and shape.
With motion tweening, you set the position, rotation, skew,
color, or size of an object in a start frame; then you change
the position, rotation, skew, color, or size of an object in an
end frame. Flash interpolates the frames in between. With
shape tweening, you draw a shape in a start frame and then
draw another shape in an end frame. Flash again
interpolates the frames in between, causing the shape in
the start frame to turn into the shape in the end frame.

The start and end frames of a tween must be keyframes. If
you change the number of frames between the start and
end frames, Flash automatically tweens the frames again.
You can tween instances and text.

CREATE ANIMATION

FLASH ACTIONSCRIPT

14

CREATE ANIMATION

3657-5 Ch01.F 1/31/02 12:16 PM Page 14

Á Click Insert ➪ Frame. � A broken line appears on
the Timeline. The line
indicates that you have begun
a tween.

‡ Move, adjust the size,
change the properties, or
rotate the object you want to
tween.

� An arrow line appears. An
arrow line indicates that your
tween is complete.

Frame F5

GETTING FAMILIAR WITH FLASH 1

You can use the Frame panel to adjust a
tween. To open the Frame panel click
Modify ➪ Frame from the menu.

15

FIELD FUNCTION

Label Give a label name to a frame.

Tweening Select a tween type of None, Motion, or Shape.

Scale Select if tweening the size of the object.

Easing Type -1 to -100 to start the tween slowly and accelerate at the end.
Type 0 to 100 to start the tween rapidly and decelerate at the end.

Rotate Select CW to rotate the object clockwise. Select CCW to rotate the object counter
clockwise. Select Auto to rotate object once in the direction requiring the least motion.

3657-5 Ch01.F 1/31/02 12:16 PM Page 15

⁄ Click File ➪ Import.

� The Import dialog box
appears.

¤ Click to select your sound
file.

� You may need to click
to locate your sound file if it
does not appear in the Import
window.

‹ Click Open to open the
file.

� Flash sends the sound file
to the Library.

› Click to open the
Library.

ˇ Click the sound name to
select the sound.

Á Click Play () to hear the
sound.

‡ Drag the sound onto the
Stage.

� The sound appears on the
Timeline.

Import... Ctrl+R

horn.wav

You can add spice to your Flash movie by adding sound.
Flash lets you loop, edit, and compress your sound
files and create sound effects.

You can import sounds. Imported sounds are stored in
the Library. Sounds can be either event sounds or stream
sounds. Event sounds are continuous play; they continue
to play regardless of what happens in the movie. Event
sounds must download completely before they begin. You
synchronize Stream sounds with an event. Stream sounds
can begin playing before they download completely.

Flash provides compression options that enable you
to control the quality and size of sounds in your movie.
You set the compression options for individual sounds
by double-clicking the Sound icon in the Library
to open the Sound Properties dialog box. You define the
settings for all sounds in the Publish Settings dialog box.

In the Sound panel, you can choose a sound effect, a
synchronization type, and the number of times a sound
should loop. There are four synchronization types: Event,
Start, Stop, and Stream. When the playhead enters an Event
sound’s frame, the sound begins and then plays in its
entirety. If an Event sound has not completed playing when
the movie stops, the sound continues to play. The Start
synchronization is the same as the Event synchronization,
except if the sound is already playing when the playhead
enters the frame, a new instance of the sound begins. The
Stop option stops the playing of a sound. Flash synchronizes
a Stream sound with an event; a Stream sound cannot play
longer than the number of frames it occupies. A Stream
sound stops when the movie stops.

ADD SOUND

FLASH ACTIONSCRIPT

16

ADD SOUND

3657-5 Ch01.F 1/31/02 12:16 PM Page 16

° Click Window ➪ Panels ➪
Sound to open the Sound
panel.

� The Sound panel appears.

· Click to select an
effect.

‚ Click to select a
synchronization option.

— Type the number of times
the sound should loop.

� The sound is now part of
your movie.

Sound

Panels

GETTING FAMILIAR WITH FLASH 1

The Effect field of the sound panel provides
the following sound effect options:

EFFECT DESCRIPTION

None No sound effect.

Left Channel The sound plays in the left channel only.

Right Channel The sound plays in the right channel only.

Fade Left to Right The sound gradually shifts from the left channel to the right channel.

Fade Right to Left The sound gradually shifts from the right channel to the left channel.

Fade In The volume of the sound gradually increases.

Fade Out The volume of the sound gradually decreases.

Custom Lets you create channel and fade effects.

17

3657-5 Ch01.F 1/31/02 12:16 PM Page 17

⁄ Create an animation.

Note: See page 14 for information on
creating an animation.

¤ On the Timeline, select
every frame you want to
include in the movie clip.

‹ Click Edit ➪ Copy Frames
to copy the frames you
selected.

› Deselect your selection by
clicking anywhere on the
Stage.

ˇ Click Insert ➪ New
Symbol to open the Symbol
Properties dialog box.

Á Type a symbol name.

‡ Click to select Movie Clip
as the behavior („ changes
to ´).

° Click OK.

� Flash changes to the
symbol-editing mode.

Copy Frames Ctrl+Alt+C

New Symbol... Ctrl+F8

Movie clips enable you to reduce the size of your
movie by utilizing multiple instances of the same
clip. Movie clips are mini Flash movies with their

own Timeline and their own properties. You can turn any
Flash animation into a movie clip symbol and then use
multiple instances of the movie clip. To distinguish between
the multiple instances, you give each instance a name.

You can embed a movie clip symbol within a Flash movie.
Moreover, you can embed multiple instances of a movie
clip symbol within each other. You can place a movie clip
on the Timeline of the main movie or on the Timeline of
another movie clip. Creating a movie clip is easy. First, you
create your animation. Then you copy your animation and
turn it into a symbol.

To keep your file size down, use movie clips for repetitive
actions such as the spinning of a propeller on an airplane.
You can use ActionScript to manipulate movie clips to
create complex nonlinear interactive movies. See Chapter 7
for more information on working with the Movie Clip
object. You can change the position, appearance, and
other properties of a movie clip. See Chapter 3 for more
information on movie clip properties. Using a movie clip
to define the appearance of a button state enables you to
create animated buttons.

You can also change your movie clip into a smart clip. A
smart clip is a movie clip with ActionScript that designers
can reprogram without using ActionScript themselves. With
smart clips, designers who do not know ActionScript can
easily utilize its power.

CREATE A MOVIE CLIP

FLASH ACTIONSCRIPT

18

CREATE A MOVIE CLIP

3657-5 Ch01.F 1/31/02 12:16 PM Page 18

· Click in Frame 1 of Layer
1 on the Timeline.

‚ Click Edit ➪ Paste Frames. � Flash pastes the frames
you copied into the Timeline
of the movie clip symbol.

— Click the Scene button to
exit the symbol-editing mode.

� Your movie clip appears in
the Library.

Paste Frames Ctrl+Alt+V

GETTING FAMILIAR WITH FLASH 1

Creating an animated button is easy. Start by
creating your animation. Convert your animation
to a movie clip. Create a button. Use the animation
to define the Up, Over, Down, or Hit state.

To select everything on every layer, click Edit ➪
Select All on the menu. To deselect everything
on every layer, click Edit ➪ Deselect All. To select
a layer, click the layer name. To select a frame,
click in the frame. To select a block of frames,
click in the start frame, hold down the shift key,
and then click in the end frame. To add to a
selection, hold down the shift key as you make
your selection.

To distinguish between instances of a movie clip, you
must give each instance a name. To reference a
movie clip in ActionScript, in most cases the movie
clip must have a name. To name a movie clip instance,
use the Arrow tool to select the instance, click
Window ➪ Panels ➪ Instance to open the Instance
panel, and then type a name in the Name field.

19

3657-5 Ch01.F 1/31/02 12:16 PM Page 19

⁄ Click Text ➪ Options to
open the Text Options panel.

� The Text Options panel
appears.

¤ Click to select Static
Text from the drop-down list.

Options...

Text boxes enable you to include text in your movie,
accept user input, and display dynamic text. You use
static text boxes to display text that will not change,

dynamic text boxes to display text that will change, and
input text boxes to request information from the user. Your
text box can be single line, fixed width, or editable. Single
line text boxes expand as you type. A round handle in the
upper-right corner of a text box indicates that the box is a
single line text box. Fixed width text boxes wrap words as
you type. A square handle in the upper right corner of a
text box indicates that the text box is a fixed width text box.
Editable text boxes let you accept user input or dynamically
display text. A square or round handle in the bottom right
corner of the text box indicates that the text box is an
editable text box.

Flash gives you the ability to set the font, size, style, and
alignment of your text, using the Text menu options. You
can set the color of the font by using the color modifier.

You can use embedded or device fonts. When you use a
font that you have installed on your system, Flash embeds
the font in the movie. Flash does this to ensure that the font
will display properly as the movie plays. As an alternative to
an embedded font, you can use a device font. When using
device fonts, Flash uses the font on the local computer that
most closely matches the device font you chose. Because
Flash does not embed device fonts, they reduce your file
size. Also, if the point size of your font is less than 10, using
a device font can yield a crisper, sharper text. Flash supplies
you with three device fonts: _sans, _serif, and _typewriter.

CREATE STATIC TEXT BOXES

FLASH ACTIONSCRIPT

20

CREATE STATIC TEXT BOXES

3657-5 Ch01.F 1/31/02 12:16 PM Page 20

‹ Click the Text tool () to
select it.

› Click in the color box
() to select the color of
your font.

ˇ Click the Stage for a single
line text box or click the
Stage and drag for a fixed
width text box.

Note: See page 23 for information on
creating a dynamic text box, and page
22 for information on creating an input
text box.

Á Type your text.

‡ Click Text ➪ Option to set
your text options.

� The Text Options panel
appears.

° Click Use Device Fonts to
use device fonts.

· Click Selectable to make
text selectable.

� The text appears on the
Stage.

Options...

GETTING FAMILIAR WITH FLASH 1

You can make your text selectable. Making text
selectable enables the user to click and drag to
highlight text in your movie.

You antialias your text to smooth the edges. To
antialias, click View ➪ Antialias on the menu.
Antialiasing works best with larger fonts. If you
have large amounts of text, antialiasing can slow
down the playback of your movie.

You can set the alignment, margins, indents, and
spacing of your text boxes. You use alignment to
align your text with the left edge, right edge, or
center of the text box. You can also use the
alignment to justify your text. Use the margin
settings to specify the amount of space from the
edge of the text box and where the text begins or
ends. Use indent to specify where the first line of
text for each paragraph will begin. Use spacing to
set the amount of space between each line of text.
To set the alignment, margins, indents, and spacing,
click Text ➪ Paragraph from the menu.

21

3657-5 Ch01.F 1/31/02 12:16 PM Page 21

FLASH ACTIONSCRIPT

⁄ Click the Text tool ().

¤ Click to select a
font color.

‹ Click Text ➪ Options to
open the Text Options panel.

� The Text Options panel
appears.

› Click to select Input
Text from the drop-down list.

ˇ Click to select from
Single Line, Multiline, or
Password.

Á Type a variable name.

‡ Click to select HTML,
Border/Bg, or Word Wrap.

° Click the Stage for a single
line text box or click the
Stage and drag for a fixed
width text box.

� The text box appears on
the Stage.

Options...

22

CREATE INPUT TEXT BOXES

You use input text boxes to request information from
the user. You will frequently use input text boxes when
creating forms. Using the Text options panel, you

associate each input text box with a variable. Variables store
information. To learn more about variables, see Chapter 4.
Flash assigns the information the user types in an input text
box to the variable you specify. You can use ActionScript to
read the user input and respond to the user.

When creating an input text box, you can set several
options in the Text options panel. In the drop-down list,
select from Single Line, Multiline, or Password. Select Single
Line to display user input on a single line. If the text is too
long to fit in the text box, the text box will scroll. Select
Multiline and check the Word Wrap box to display the user

input on multiple lines and have the input wrap at the end
of the box. If you do not select Word Wrap, Flash will move
to a new line when the user presses Enter. Select Password
to have asterisks display as the user types. This option
enables you to create a form with password protection.

Select HTML to save the formatting with the HTML tags.
Select Border/Bg to display a background behind and a
border around the text. Type the name you want to give the
variable in the Variable field. Type the maximum number of
characters the user can enter in the Max. Chars. field. Click
one or more Embed Fonts buttons to specify which font
characters Flash should embed.

CREATE INPUT TEXT BOXES

3657-5 Ch01.F 1/31/02 12:16 PM Page 22

⁄ Click .

¤ Click to select a
font color.

‹ Click Text ➪ Options to
open the Text Options panel.

� The Text Options panel
appears.

› Click to select
Dynamic Text from the
drop-down list.

ˇ Click to select Single
Line or Multiline.

Á Type a variable name.

‡ Click to select HTML,
Border/Bg, or Selectable.

° Click the Stage for a
single line text box or click
the Stage and drag for a
fixed width text box.

� The text box appears on
the Stage.

Options...

23

You can use dynamic text boxes to display text that
updates or to display text in response to user input.
Using the Text Options panel, you associate each

dynamic text box with a variable. Variables store information.
Flash assigns the information in the box to the variable you
specify. To learn more about variables, see Chapter 4.

When creating a Dynamic text box, you can set several
options by using the Text Options panel. In the drop-down
list, you select from Single Line or Multiline. You can select
Single Line to display output on a single line. You can select
Multiline and check the Word Wrap box to display the text
on multiple lines and have the text wrap at the end of
the box.

Select HTML to save the formatting with the HTML tags.
Select Border/Bg to display a background behind and a
border around the text. Type the name you want to give the
variable in the Variable field. Click to select Selectable to
allow the user to select the text. Click one or more Embed
fonts buttons to specify which font characters Flash should
embed.

CREATE DYNAMIC TEXT BOXES

GETTING FAMILIAR WITH FLASH 1

CREATE DYNAMIC TEXT BOXES

If you select HTML when you select
Dynamic Text or Input Text in the Text
Option panel, Flash with create or save
simple HTML formatting tags. This allows
you to save the font name, style, color, and
size associated with the text. The following
HTML tags are supported by Flash:
<A>, , , ,
, <I>, <P>, <U>.

3657-5 Ch01.F 1/31/02 12:16 PM Page 23

⁄ In the Toolbox list, click
the category name to display
the statements in the
category.

¤ Double-click a statement
to select it.

‹ Click the Add a Statement
button () to display
statement categories.

› Click a statement from the
drop-down menu.

Basic Actions

gotoAndPlay (1);

Go To Esc+go

ActionScript is the scripting language that enables you
to add interactivity to your Flash movie and to control
Flash objects. You can use ActionScript statements to

instruct Flash on how to respond to the user mouse clicks
and key presses, or you can use ActionScript to have your
movie respond to information provided by the user.

You can create ActionScript in the Action panel.
ActionScript is always associated with a frame, button, or
movie clip. Using the Arrow tool, you select the frame,
button, or movie clip with which you want to associate
ActionScript; then you open the Action panel. The Action
panel has two modes: Normal and Expert. In Normal Mode,
fields in a Parameters panel prompt you for the correct
statement arguments. In Expert Mode, you write and edit
your statements in a text box. Working in Expert Mode is
similar to using a text editor.

In Normal Mode, you can select statements from the
Toolbox list on the right side of the Action panel. The
Toolbox list divides statements into the following
categories: Basic Actions, Actions, Operators, Functions,
Properties, and Objects. You can double-click statements to
select them. You can also select statements by clicking the
Add a Statement button, which categorizes statements the
same way the Toolbox list does. You use the Delete a
Statement button to delete statements. The Parameters
panel prompts you for the arguments related to the
statements you select.

After you select a statement, the statement appears in the
Actions list on the right side of the Action panel. You can
change the order of statements by clicking the Change
the Statement Order buttons. The up arrow moves the
statements up. The down arrow moves the statements down.
You can also move a statement by clicking it and dragging.

USING THE ACTIONS PANEL

FLASH ACTIONSCRIPT

24

USING THE ACTIONS PANEL

3657-5 Ch01.F 1/31/02 12:16 PM Page 24

ˇ Click the Delete a
Statement button () to
delete a statement.

Á Click to open the
Parameters panel.

� The Parameters panel
appears at the bottom of the
panel.

� The Action list displays the
script.

‡ Click this Change the
Statement Order button ()
to move a statement up.

° Click this Change the
Statement Order button ()
to move a statement down.

gotoAndPlay (1); gotoAndPlay (1);

GETTING FAMILIAR WITH FLASH 1

You can write ActionScript by using a text editor and using
the #include action to call the text file that contains your
ActionScript. The syntax for the #include action is
#include "filename.as"

You can name your file anything you want. Use AS for the file
extension. The filename.as argument represents the relative
path to the file. If the movie file and the ActionScript text file
are in the same folder, the path is filename.as. If the
ActionScript text file is in a subfolder, the path to the file is
foldername/filename.as. When you test, publish, or
export your movie, the text file must be present. ActionScript
replaces the #include statement with the contents of the file.

25

CONTINUED

3657-5 Ch01.F 1/31/02 12:16 PM Page 25

· Drag the splitter bar to
change the size of the
Toolbox list.

‚ Click to collapse the
Action list.

gotoAndPlay (1);

You can change the size of the Toolbox list by dragging
the vertical splitter bar that appears between the
Toolbox list and the Actions list. You can expand or

collapse the Toolbox list by clicking the left or right arrow
button that appears on the splitter bar.

In Expert Mode, you type your statements in the Actions list
just as you would if you were using a text editor. You can
also add statements by selecting them from the Toolbox list
or by using the Add a Statement button. In Expert Mode,
there is no Parameters panel to prompt you for arguments,
the Change the Statement Order buttons are inactive, and
the Delete a Statement button is not available. In addition,
Expert Mode does not have a Basic Actions category.

You can switch between Normal and Expert Mode.
Changing modes might change the format of your script, so
it is best to stick to a single mode per script. You cannot
convert Expert Mode scripts with errors to Normal Mode.
You can convert Normal Mode scripts with errors to Expert
Mode, but you must correct the errors before exporting the
script. When you switch from Normal Mode to Expert
Mode, Flash preserves the indentation and formatting.
When you switch from Expert Mode to Normal Mode, Flash
strips any white space you have added and any indentations
you have made.

USING THE ACTIONS PANEL (CONTINUED)

FLASH ACTIONSCRIPT

26

USING THE ACTIONS PANEL (CONTINUED)

3657-5 Ch01.F 1/31/02 12:16 PM Page 26

— Click to expand the
Action list.

± Click to change modes
or select options.

� Use the Actions panel to
add ActionScript.

gotoAndPlay (1); gotoAndPlay (1);

GETTING FAMILIAR WITH FLASH 1

In addition to Normal Mode and Expert Mode, the Options menu in the
Action panel offers several other features. Use GoTo Line to move to a
specified line in your script. Use Find to find a string of characters. Use
Find Again to continue your search. Use Replace to find and replace a
string of characters. Use Print to print your script. Choose Font Size from
the Options menu to select a small, medium, or large font.

Click Check Syntax to have Flash check your script for syntax errors.
Select Colored Syntax to have the various elements of your statements
appear in different colors. This helps you debug your code. When you
turn on Colored Syntax, keywords and predefined identifiers appear in
blue, properties appear in green, comments appear in magenta, and
quoted strings appear in gray. A check mark next to Colored Syntax
means it is on; no check mark means it is off.

Use Show Deprecated Syntax to have all deprecated syntax display in the
Toolbox list with green highlighting. This feature works only if you have
the Export Version in the Publish Settings dialog box set to Flash 5. If you
set the Export Version to Flash 4 or lower, ActionScript highlights in yellow
any syntax not available in the version you selected.

27

3657-5 Ch01.F 1/31/02 12:16 PM Page 27

FLASH ACTIONSCRIPT

⁄ Use the Arrow tool () to
select a button.

¤ Click Window ➪ Actions
to open the Object Actions
panel.

� The Object Actions panel
appears.

‹ Click Basic Actions.

› Double-click On Mouse
Event to select a handler.

� ActionScripts defaults to
on(release).

ˇ Click a check box to
select a handler.

� Use handlers to specify
when Flash should execute
ActionScript.

Actions Ctrl+Alt+A

on (release) {

28

ASSIGN ACTIONSCRIPT TO A BUTTON

Assigning actions to buttons enables you to create
objects users can drag and objects that respond to
user input or perform myriad other tasks in response

to mouse clicks or pointer movements. You should assign
actions to the instance of the button — not to the Up, Over,
Down, or Hit frames on the button Timeline. If you assign
an action to a button instance, other instances of the
symbol are not affected.

When assigning actions to buttons, you must use a handler
to determine the mouse event that will trigger the action.
All button handlers begin with the word on and end with
the event to which the handler responds enclosed in
parentheses. In Normal Mode, Flash assigns the
on(release) handler by default.

The on(release) handler performs specified actions
when the pointer is over the button and the user releases
the mouse. The on(press) handler performs specified
actions when the pointer is over the button and the user

presses the mouse. Use the on(releaseOutside)
handler to perform specified actions when the user drags
the pointer outside the button area and then releases the
mouse.

You can use the on(rollOver) handler to perform
specified actions when the user rolls the pointer over the
button. You can use the on(rollOut) handler to perform
specified actions when the user rolls the pointer over and
then outside of the button area.

Use the on(dragOver) handler to perform specified
actions when the user clicks the button, drags the pointer
away from the button, and then drags the pointer back over
the button. Use the on(dragOut) handler to perform
specified actions when the pointer is over the button and
the user presses the mouse and then drags the pointer
outside the button area.

The on(keyPress, "key") handler performs specified
actions when the user presses a specified key.

ASSIGN ACTIONSCRIPT TO A BUTTON

3657-5 Ch01.F 1/31/02 12:16 PM Page 28

⁄ Use to select the
movie clip.

¤ Click Window ➪ Actions
to open the Object Actions
panel.

� The Object Actions panel
appears.

‹ Click Actions.

› Double-click onClipEvent
to select the onClipEvent
action.

ˇ Click to select a handler
(„ changes to ´).

� Use handlers to specify
when Flash should execute
ActionScript.

onClipEvent

Actions

o n C l i p E v e n t (l o a d) {

Ctrl+Alt+A

29

Assigning ActionScript to a movie clip enables you to
have your movie perform a variety of tasks when the
user clicks or rolls the pointer over the movie clip. If

you assign an action to a movie clip instance, other
instances of the symbol are not affected.

When assigning actions to movie clips, you must use a
handler to determine the mouse event that will trigger the
action. All movie clip handlers begin with the word
onClipEvent and end with the event to which the handler
responds enclosed in parentheses. In Normal Mode, Flash
assigns the onClipEvent(load) handler by default if you
select OnClipEvent from the Action list or if you select an
action without specifying a handler.

The onClipEvent(load) handler executes specified
actions the first time the movie clip appears on the
Timeline. The onClipEvent(unload) handler executes
specified actions in the first frame after you remove the
movie clip from the Timeline.

Use the onClipEvent(enterFrame) handler to perform
specified actions each time the playhead enters the frame.
Use the onClipEvent(mouseMove) handler to perform
specified actions every time the user moves the mouse.
Use the onClipEvent(mouseDown) handler to perform
specified actions when the user presses the mouse. Use the
onClipEvent(mouseUp) handler to perform the specified
actions when the user releases the mouse.

The onClipEvent(keyDown) handler performs the
specified actions when the user presses any key. The
onClipEvent(keyUp) handler performs the specified
actions when the user releases any key. The
onClipEvent(data) handler performs the
specified actions when ActionScript receives data.

You assign ActionScript to a movie clip by selecting the
movie clip and opening the Object Actions panel.

ASSIGN ACTIONSCRIPT TO A MOVIE CLIP
GETTING FAMILIAR WITH FLASH 1

ASSIGN ACTIONSCRIPT TO A MOVIE CLIP

3657-5 Ch01.F 1/31/02 12:17 PM Page 29

⁄ Click Insert ➪ Layer to
create a new layer.

� A new layer appears above
the active layers.

¤ Click to select a frame.

‹ Click Insert ➪ Keyframe to
create a keyframe.

Layer

Keyframe F6

You can associate ActionScript with a frame. The
actions execute when the playhead enters the frame.
This is useful when you want to use ActionScript to

initialize your variables, create a loop within a movie, or
perform other tasks on entry into a frame.

You must assign ActionScript to a keyframe. Keyframes
mark changes in the action and store ActionScript. By
default, the first frame in the Timeline is a keyframe. You
create additional keyframes by selecting a frame and
clicking Insert ➪ Keyframe from the menu. If you try to
assign an action to a frame that is not a keyframe, Flash

automatically assigns the ActionScript to the previous
keyframe on the Timeline.

You should place frame actions on their own layer. Frames
with actions in them display with a small a. For more on
layers, see page 4.

You can assign actions to a frame by clicking in a frame to
select it and then opening the Action panel. You use the
Action panel to enter your ActionScript. If you select
multiple keyframes, Flash dims the Action panel and you
will not be able to enter your ActionScript.

ASSIGN ACTIONSCRIPT TO A FRAME

FLASH ACTIONSCRIPT

30

ASSIGN ACTIONSCRIPT TO A FRAME

3657-5 Ch01.F 1/31/02 12:17 PM Page 30

› Click Window ➪ Actions
to open the Frame Actions
panel.

ˇ Click to select your
actions.

� Use the Frame Actions
panel to enter your
ActionScript.

Actions Ctrl+Alt+A

gotoAndPlay (1);

GETTING FAMILIAR WITH FLASH 1

Flash gives consecutive numbers to the frames in the
Timeline. When you are referring to frames in ActionScript,
labeling the frames is preferable to referring to a frame by a
frame number. If you add frames to or remove frames from
your movie, the frame numbers change, but a label
associated with a frame remains the same. Put frame labels
on their own layer. For more on layers, see page 4.

To create a frame label, select the frame to which you want to
assign a label, click Window ➪ Panels ➪ Frame to open the
Frame panel, and then type a label name in the Label field.

31

3657-5 Ch01.F 1/31/02 12:17 PM Page 31

⁄ Click File ➪ Publish
Settings to open the Publish
Settings dialog box.

� The Publish Settings dialog
box opens.

¤ Click in the Type Boxes to
select file types (changes
to).

‹ Type in the Filename field
to change the filename.

› Click Use Default Names
to use the default filenames.

ˇ Click the Flash tab to set
the options for the SWF file.

Publish Settings... Ctrl+Shift+F12

Publishing your movie enables you to present it to your
audience. You can present your movie in several
formats including a Flash movie for the Web; a GIF,

JPEG, PNG, or QuickTime animation; an HTML document;
or as a stand-alone executable for Windows or Macintosh.

You use the Publish Settings dialog box to publish your
movie. You select the formats. Flash assigns a default file
name. You can use the default name or you can assign a
filename.

When publishing your movie for the Web, you can set
several options including the order in which the layers load.
The Load Order option controls which layer Flash Player
draws first when the user plays the movie over a slow
modem or network connection. Additionally, you can select
the following options: Generate Size Report, Omit Trace
Actions, Protect from Import, and Debugging Permitted.

Selecting Generate Size Report creates a TXT file containing
detailed information on the size of each frame, scene, and
object in your movie. Omit Trace Actions causes Flash to
ignore any trace actions included your movie. For more
information on trace actions, see Chapter 13. When you
save your movie, Flash assigns the movie an FLA extension.
You can modify an FLA file. When you publish your movie
as a Flash movie for the Web, Flash assigns the movie an
SWF extension. Protect from Import prevents others from
importing your SWF file and converting it to an FLA file.
Debugging Permitted allows the activation of Debugger. If
you select this option, you can require a password for its
use. See Chapter 13 for more information on debugging.

A JPEG Quality slider is also available and enables you to
adjust the quality of JPEG graphics — the higher the quality
the larger the file size.

PUBLISH MOVIES

FLASH ACTIONSCRIPT

32

PUBLISH MOVIES

3657-5 Ch01.F 1/31/02 12:17 PM Page 32

� The Flash option screen
appears.

Á Click to set the Load
Order.

‡ Click to select the
Generate Size Report, Omit
Trace Actions, Protect from
Import, or Debugging
Permitted options.

° If you selected Debugging
Permitted, enter a password if
you want.

· Set the JPEG Quality using
the JPEG Quality slider.

‚ Click to override current
sound setting.

— Click Set to open the
Sound Setting dialog box for
Stream or Event sounds.

Bottom Up Bottom Up

GETTING FAMILIAR WITH FLASH 1

To have your Flash movies load quickly, you want
to keep your file size as small as possible. Sounds
can increase file size significantly. You can adjust
the sample rate and compression of a sound to
reduce the file size. The lower you set the sample
rate and compression, the lower the quality of
sound, and the smaller the size of your file. You
may want to experiment to obtain a suitable
tradeoff between sound quality and file size.

When creating an HTML document to display a
Flash movie, you use the object and embed
tags. Internet Explorer uses the object tag on
Windows, while the embed tag is used by
Netscape Navigator on Windows and the
Macintosh and by Internet Explorer on the
Macintosh. Internet Explorer for Windows uses
ActiveX to play Flash content, while all other
browsers use the Flash plugin.

If you change the width and height of your movie,
you can use the Scale option to place the movie
in the Web browser. Selecting default will display
your movie within the boundaries you specify,
maintaining the original aspect ratio. Selecting
No Border will display your movie within the
boundaries you specify; however, Flash will crop
the movie, if necessary. Selecting Exact Fit will
place the movie within the boundaries you specify,
but will not maintain the original aspect ratio.
Selecting this option may cause distortion.

33

CONTINUED

3657-5 Ch01.F 1/31/02 12:17 PM Page 33

� The Sound Settings dialog
box appears.

± Click to select a
Compression type.

¡ Click button to select a
Sample Rate.

™ Click OK to close the
dialog box.

£ Click to select the
version of Flash for which
you are authoring.

¢ Click the HTML tab to
display the HTML options.

Bottom Up

If you did not specify the sample rate and compression
for sound files using the Sound Properties dialog box,
you can set them in the Publish Settings dialog box or

you can use the Publish Settings dialog box to override
previous settings. Use Audio Stream to set the sample rate
and compression for stream sounds. Use Audio Event to set
the sample rate and compression for event sounds.

You can select the version of Flash for which you want to
publish your movie. Actions available in Flash 5 may not be
available in earlier versions.

To play your movie in a Web browser, the movie must be
part of an HTML document. Selecting HTML as the format
in the Publish Settings dialog box creates an HTML
document that includes your Flash movie.

Flash provides you with several templates you can use to
create your HTML document. Pressing the Info button, in

the Publish Settings dialog box, provides you with a
description of each of the templates.

In your HTML document, you can have the size of the
movie match the size of the movie you created, or you can
specify the size in pixels or as a percentage of the original
movie.

The Publish Settings dialog box contains four playback
options. You can pause the movie until the user presses a
button or selects play from the shortcut menu. You can
have the movie loop when it reaches the last frame. You can
display a shortcut menu when the user right-clicks in
Windows or control-clicks on a Macintosh. And, in
Windows, you can use device fonts if the font you selected
is not available on the system of the user.

The Publish Settings dialog box also has options that enable
you to set the quality, window mode, alignment, and scale.

PUBLISH MOVIES (CONTINUED)

FLASH ACTIONSCRIPT

34

PUBLISH MOVIES (CONTINUED)

3657-5 Ch01.F 1/31/02 12:17 PM Page 34

� The HTML options appear.

∞ Click to set the
Template and Dimensions
options.

§ Click to select the
Playback options (changes
to).

¶ Click Info for a description
of the template.

• Click OK to close the
HTML Template Info dialog
box.

� The dialog box closes.

ª Click to select the
Quality, Window Mode,
HTML Alignment, Scale, or
Flash Alignment options.

º Click Publish to publish
your movie.

� Flash creates an HTML
document that you can use to
publish your movie on the
Web.

GETTING FAMILIAR WITH FLASH 1

You can use the code shown here to manually
add a Flash Movie to an HTML document.
<OBJECT CLASSID="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" WIDTH="100"

HEIGHT="100" CODEBASE="http://active.macromedia.com/flash5/cabs/

swflash.cab#version=5,0,0,0">

<PARAM NAME="MOVIE" VALUE=”yourmovie.swf">

<PARAM NAME="LOOP" VALUE="false">

<PARAM NAME="QUALITY" VALUE="high">

<PARAM NAME="PLAY" VALUE="true">

<EMBED SRC="yourmovie.swf" WIDTH="100" HEIGHT="100" PLAY="true"

LOOP="false" QUALITY="high"

PLUGINSPAGE="http://www.macromedia.com/shockwave/
download/index.cgi?P1_Prod_Version=ShockwaveFlash">

</EMBED>

</OBJECT>

35

3657-5 Ch01.F 1/31/02 12:17 PM Page 35

ActionScript is the language used to communicate with
Flash. ActionScript can consist of a single statement
or a series of statements. Statements provide Flash

with instructions. Statements execute from top to bottom
unless you issue a statement telling Flash to execute in
another order. You can use the if action and loops to
change the normal top to bottom order of execution.

Like spoken languages, ActionScript has rules of punctuation
and grammar. These rules comprise the syntax of the
language. You must follow these rules for your script to
execute properly. For starters, each ActionScript statement
ends in a semi-colon. However, if you omit the semicolon,
the script will still compile successfully. You group
ActionScript into blocks of code. Enclose each block of
code in curly braces. Additionally, in ActionScript, only
keywords are case sensitive. For a complete list of
keywords, see Chapter 14.

An argument — also referred to as a parameter — is a value
associated with an action or function. These values clarify or
provide additional instructions to Flash. For example, you
use the gotoAndPlay action to tell flash to start playing a
movie. The gotoAndPlay action takes two arguments:
scene and frame. You use the scene argument to tell
Flash the scene you want to play. You use the frame
argument to tell Flash the frame in which you want the
movie or movie clip to begin playing. You separate the
arguments associated with an action or function with
commas and enclose them in parentheses. The values
you assign to an argument can be either a literal value
or an expression. Enclose literal values in quotes. Do not
enclose expressions in quotes. For example, gotoAndPlay
("Scene 2", 5); tells Flash to go to Scene 2 and start
playing the movie in Frame 5.

INTRODUCTION TO ACTIONSCRIPT SYNTAX

36

FLASH ACTIONSCRIPT

Actions Ctrl+Alt+A

Actions

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

� This example uses a frame.

¤ Click Window ➪ Actions
to open the Actions panel.

Note: If you associate an action with
a button or movie clip, the Object
Actions panel will open. If you
associate an action with a frame,
the Frame Actions panel will open.

‹ Click Basic Actions.

› Double-click Go To to
select the gotoAndPlay
action.

� The parameters panel
opens.

INTRODUCTION TO ACTIONSCRIPT SYNTAX

3657-5 Ch02.F 1/31/02 12:17 PM Page 36

An expression is any statement that Flash
evaluates and returns a value. For example,
with Flash you can store information in variables.
You can assign x = 2. X is the variable and 2 is
the value. Every time Flash sees the variable x, it
evaluates it and returns 2. X is an expression.
Mathmatical equations are also expressions.
The equation 2 + 3 is an expression. You can use
variables and properties to form an expression.
For example, x + 2 is an expression consisting
of the variable x and the value 2. The property
_currentframe returns frame number in
which the playhead is currently located. Both
_currentframe and _currentframe + 1 are
valid expressions. You can use expressions when
Flash asks for an argument. When using the
Action Panel in Normal Mode, if you are
entering an expression, select the expression
check box. If you are entering a literal value,
do not check the expression check box.

PROGRAMMING WITH ACTIONSCRIPT 2

37

ˇ Click to select Scene 1.

� Quotes enclose the literal
value.

� A semicolon ends the
statement.

� Parentheses enclose the
arguments and a comma
separates the arguments.

Á Double-click Tell Target.

‡ Type sampleMC in the
Target field.

° Select Expression if your
entry is an expression.

� When you select
Expression, Flash removes
the quotes.

· Double-click Stop.

� Curly braces surround the
block of code.

3657-5 Ch02.F 1/31/02 12:17 PM Page 37

sun sun

⁄ Click Control to display
the Control menu.

¤ Click Play to play your
movie.

‹ Click Rewind to return to
the first frame.

› Click Step Forward to
move forward one frame.

ˇ Click Step Backward to
move backward one frame.

Á Click Play All Scenes and
click Play to play all scenes.

‡ Click Enable Simple
Frame Actions and click Play
to test actions.

° Click Enable Simple
Buttons to test buttons.

As you create your Flash movie, you will want to test
it to ensure that animations and scripts work
properly. You can test your movie in the authoring

environment, in the test environment, or in a Web browser.

To test your movie in the authoring environment, use the
commands on the Control menu. The Play option plays
your movie. The Rewind option returns your movie to the
first frame. The Step Forward option moves your movie
forward one frame. The Step Backward option moves your
movie backward one frame. Loop Playback causes your
movie to play continuously. The Play All Scenes option
causes all scenes to play. The Mute Sounds option causes
your movie to play without sound. By default, Flash disables
buttons and actions, enabling you to manipulate buttons,
movie clips, and frames as you work. Select Enable Simple

Buttons and Enable Simple Frame Actions to test buttons
and actions in the authoring environment.

When you click File ➪ Save, Flash saves the movie you are
authoring in FLA format and appends an FLA extension to
the filename. To view your animation on the Web, your file
must be in its final format — the SWF format.

Not all animations and scripts work in the authoring
environment. You must export your movie to its final SWF
format for some animations and scripts to work. Clicking
Control ➪ Test Movie from the menu exports your movie to
its final format, creating an SWF file in accordance with the
setting you choose in the Publish Settings dialog box, and
moves you to the test environment. Clicking Control➪Test
Scene from the menu also creates a SWF file. Control, Test
Scene enables you to test the current scene.

TEST A MOVIE

FLASH ACTIONSCRIPT

38

TEST A MOVIE

3657-5 Ch02.F 1/31/02 12:17 PM Page 38

sun

· Click Mute Sounds or
Play to have your movie
play without sound.

‚ Click Test Movie or Test
Scene to move to the test
environment.

� This is the test environment. � In the test environment,
you can test your movie in
its final form.

PROGRAMMING WITH ACTIONSCRIPT 2

You can play your movie using the Controller
Toolbar. Click Window ➪ Toolbar ➪ Controller
in Windows or click Window ➪ Controller on
the Macintosh to open the Controller bar. The
Stop button will stop your movie. The Rewind
button will return your movie to frame 1. Step
Back steps your movie back one frame. Play plays
your movie. Step Forward steps you forward one
frame. Go To End takes you to the last frame.

To test your movie in a Web browser, click File ➪
Publish Preview ➪ Default from the menu. Flash
opens your movie in your default Web browser.

39

3657-5 Ch02.F 1/31/02 12:17 PM Page 39

Test Movie Ctrl+Enter

28.8 (2.3 KB/s)

⁄ Click Control ➪ Test
Movie to move to the test
environment.

� Your movie plays
automatically.

¤ Click Debug and select the
modem speed at which you
want to test your movie.

Any data in a frame not downloaded when your movie
reaches the frame will cause your movie to pause
until the data downloads. In the test environment,

you can view a graphical representation of movie
performance at various modem speeds. This enables you
to see which frames may cause your movie to pause.

You select the modem speed you want to simulate. Typically,
the stated modem speed is higher than the typical speed a
user experiences. The Bandwidth Profiler estimates typical
Internet speed and calculates performance based on that
speed. For example, Bandwidth profiler uses 2.3KB/s for a
28.8 modem. The Bandwidth Profiler also has an option,
which enables you to specify the modem speed and set the
typical performance you want to test.

The left side of the Bandwidth Profiler displays the movie
clip dimension, frame rate, size, duration in frames and
seconds, and the preloaded frames in seconds. The right
side of the Bandwidth Profiler displays a graph. Each bar in
the graph represents a frame. If the bar is below the red
line, the frame will stream in real-time. If the bar is above
the red line, the frame must wait to stream.

You can use the streaming bar to simulate the number of
frames loaded and the frame currently playing. You can
click on any bar to display information about the frame.
You can also view a graphical representation of each frame.

The test environment also has options that enable you to
play, rewind, step forward, step backward, or loop the
playback of your movie.

ENTER THE TEST ENVIRONMENT

FLASH ACTIONSCRIPT

40

ENTER THE TEST ENVIRONMENT

3657-5 Ch02.F 1/31/02 12:18 PM Page 40

Show Streaming Ctrl+Enter

‹ Click View ➪ Show
Streaming to simulate the
streaming of your movie.

� Flash simulates the
streaming of your movie
at the modem speed you
selected.

� The bandwidth profiler
provides you with information
about the dimension, size,
duration, and preload of
your movie.

PROGRAMMING WITH ACTIONSCRIPT 2

When in the test environment, you can quickly
move to the Actions panel by clicking Window ➪

Actions from the menu.

You can zoom in on your movie by clicking
View ➪ Zoom In. You can zoom out by clicking
View Zoom Out. Set your movie quality by
clicking View ➪ Quality from the menu.

You can choose to display the Status bar, Controller,
or Main toolbar by clicking Window ➪ Toolbars
from the menu. You can use the Controller to play,
rewind, step forward, step backward, or loop the
playback of your movie. You can use the Main
toolbar to open a file. The Status bar displays the
state of the Caps Lock and Num Lock keys.

41

3657-5 Ch02.F 1/31/02 12:18 PM Page 41

Actions Ctrl+Alt+A

action

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

� This example uses a frame.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click Actions.

› Double-click comment.

ˇ Type your comment.

Adding comments to your Flash movie is essential when
you are collaborating with others in its creation or
when your script is complex and you want to

document the purpose of each step. Adding comments is
also a good programming practice. The syntax for adding a
comment is

// comment or /* comment */.

You can precede single-line comments with // or you can
precede them with a /* and end them with a */. For
multiline comments, begin each comment with a /*,
precede subsequent lines with an *, and end with an */.
You cannot select the /* syntax from the Toolbox list in
Normal Mode. You can add comments to any button, frame,
or movie clip action. If you have colored syntax turned on,
comments appear in magenta in the Actions list. When you

execute your script, Flash ignores comments. When you are
debugging, it is sometimes useful to comment out sections
of code so you can execute the remaining code without the
commented section. This can help you locate problems.

You can place comments anywhere in your script.
Comments do not affect the size of your exported movie. A
frequent use of comments is documenting the writer of the
script, the date written, its purpose, and any revisions.

In Flash, you can also add comments to frames on the
Timeline. Here also, comments are useful when you are
working in a collaborative environment. Flash does not
export frame comments with the movie, so they do not
affect the size of the exported movie. You should put
comments on a separate layer.

ADD COMMENTS

FLASH ACTIONSCRIPT

42

ADD COMMENTS

3657-5 Ch02.F 1/31/02 12:18 PM Page 42

Test Movie Ctrl+Enter

action

Á Click to select the
statements you want to
execute.

‡ Click to close the
Actions panel.

° Click Control ➪ Test
Movie to move to the test
environment.

· Test your movie.

Note: See page 38 for information
on testing your movie.

� When you execute your
script, Flash ignores
comments.

PROGRAMMING WITH ACTIONSCRIPT 2

You can add comments to Timeline frames. To
create a frame comment, create a comment
layer, select the frame to which you want to add
a comment, click Windows ➪ Panel ➪ Frame to
open the Frame panel, and type // followed by
your comment in the Label field.

You can also add comments using the syntax that
follows:

/* comment

* comment

* comment

*/.

This syntax enables you to spread a comment
over several lines.

43

3657-5 Ch02.F 1/31/02 12:18 PM Page 43

Actions Ctrl+Alt+A

Actions

⁄ Click the frame, button, or
movie clip to which you want
to add ActionScript.

Note: This example uses file stop.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a frame.

� Flash movies begin playing
upon load.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click Basic Actions.

› Double-click Stop.

� The stop action appears
in the Action list.

ˇ Click to close the
Actions panel.

As soon as you load a Flash movie, it begins to play and
continues to play unless you stop it. You can use the
stop action to stop a movie. The syntax for the stop

action is

stop(); .

The stop action does not take any arguments, so it has no
parameters. You can use the stop action to stop the main
Timeline or to stop a movie clip. If you want to stop the
main Timeline, simply issue a stop action. If you want to
stop a movie clip, the movie clip must be on the Stage, it
must have an instance name, and you must target the movie
clip. You name a movie clip in the Instance panel. For more

about naming movie clips, see Chapter 1. Targeting a movie
clip means you designate the movie clip on which you want
ActionScript to perform an action. For more about targeting
movie clips, see Chapter 10.

You can stop a movie or movie clip at any point. Movies
begin playing as soon as they load. You can stop a movie in
the first frame and have users press a button when they are
ready to start it. Or you can stop a movie at the end of a
scene and create buttons to determine the next scene to
play. You can assign the stop action to any button, frame,
or movie clip; however, you will most frequently use the
stop action when you want to use buttons to control the
action in your movie.

STOP A MOVIE

FLASH ACTIONSCRIPT

44

STOP A MOVIE

3657-5 Ch02.F 1/31/02 12:18 PM Page 44

Actions

Á Click Control ➪ Test
Movie to move to the test
environment.

‡ Test your movie.

Note: See page 38 for information
on testing your movie.

� Your movie displays on the
screen. Because you added a
stop action, the movie will
not play.

Test Movie Ctrl+Enter

PROGRAMMING WITH ACTIONSCRIPT

You can use a script similar to the one shown
here to stop a movie clip. In this example, the
script is associated with a button. The
on(release) action tells Flash to begin the
action when the user releases the mouse after
clicking the button. The name of the movie clip is
smallMC. The tellTarget("smallMC")
statement tells Flash you want to perform an
action on the smallMC movie clip. The
stop()action tells Flash to stop the movie clip
identified in the tellTarget action. In this
example, Flash stops smallMC.

Example:
on (release) {

tellTarget ("smallMC") { stop ();

}

}

45

2

3657-5 Ch02.F 1/31/02 12:18 PM Page 45

Actions Ctrl+Alt+A

Basic Actions
Play Esc+pl

action

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

� This example uses a button.

Note: This example uses file play.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
Play to select the play action.

When you stop a movie or movie clip, it remains
stopped until you explicitly issue a statement to
start it. You use the play action to start a movie.

The syntax for the play action is

play(); .

The play action does not take any arguments so it has no
parameters. You can use the play action to start the main
Timeline or to start a movie clip. If you want to start the
main Timeline, simply issue a play action. If you want to
start a movie clip, the movie clip must be on the Stage, it
must have an instance name, and you must target the movie
clip. You name a movie clip in the Instance panel. For more
about naming movie clips, see Chapter 1. Targeting a movie
clip means you designate the movie clip on which you want
ActionScript to perform an action. You can use the play

action with tellTarget to start a movie clip. For more on
tellTarget, see Chapter 10. You can also use the
MovieClip object play method to start a movie clip. The
syntax for the play method is

instanceName.play();

Use the instanceName argument to specify the movie clip
you want to play. The following example starts sampleMC:

sampleMC.play();

You can start a movie or movie clip, at any point. For
example, you can start a movie or movie clip when the user
clicks a button, when the movie reaches a specified frame,
or when the user presses a key. You can assign the play
action to any button, frame, or movie clip.

PLAY A MOVIE

FLASH ACTIONSCRIPT

46

PLAY A MOVIE

3657-5 Ch02.F 1/31/02 12:18 PM Page 46

Test Movie Ctrl+Enter

� The on (release)
handler defaults.

� The play action appears
in the Action list.

› Click to close the
Actions panel.

ˇ Click Control ➪ Test
Movie to move to the test
environment.

Á Test your movie.

Note: See page 38 for information
on testing your movie.

� When you click the Start
Movie button, the movie
plays.

action

PROGRAMMING WITH ACTIONSCRIPT 2

You can use a script similar to the one shown in
this example to restart a movie clip. In this
example, the script is associated with a button.
The on(release) action tells Flash to begin the
action when the user releases the mouse after
clicking the button. The name of the movie clip is
smallMC. The tellTarget("smallMC")
statement tells Flash you want to perform an
action on the smallMC movie clip. The play()
action tells Flash to start the movie clip identified
in the tellTarget action. In this example, Flash
starts smallMC.

Example:
on (release) {

tellTarget ("smallMC") { play ();

}

}

47

3657-5 Ch02.F 1/31/02 12:18 PM Page 47

Actions Ctrl+Alt+A

Basic Actions Go To Esc+go

action

⁄ Click the frame, button, or
movie clip to which you want
to add ActionScript.

Note: This example uses file
jump.fla, which you can find on
the CD-ROM that accompanies
this book.

� This example uses a button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
Go To to select the goto
action.

� The on (release)
handler defaults.

You can use the GoTo action to create loops or to give
the user the ability to move to a desired location at
will. The GoTo action has two options: Go To and Play

and GoTo and Stop. The syntax for the Go To action is

gotoAndPlay(scene,frame);
gotoAndStop(scene,frame);

You use the scene argument to tell ActionScript the name
of the scene to which you want to send the playhead. The
scene argument is optional. If you do not enter a scene
name, the playhead goes to the specified frame in the
current scene. You use the frame argument to tell
ActionScript the frame to which you want to send the
playhead. It is best to use a label instead of a frame number
to identify the frame. Labels move with frames, but frame
numbers change if you add, remove, or change the location

of a frame. If you use a frame number to identify a frame, a
change in the frame number can cause an error in your
script. You use the Frame panel to create a frame label. For
more about frame labels, see Chapter 1.

You can use an expression to identify the frame you want to
go to, for example, gotoAndStop(_currentframe + 10).
The _current frame property retrieves the number of the
current frame. The example adds 10 to the current frame.
It tells ActionScript to move 10 frames ahead and stop
the movie.

You can use the GoTo action to create a loop by creating a
frame action that goes to a prior frame. By creating buttons
that take users to a particular frame or scene, you can
create movies in which users can jump from place to place.

JUMP TO A FRAME OR SCENE

FLASH ACTIONSCRIPT

48

JUMP TO A FRAME OR SCENE

3657-5 Ch02.F 1/31/02 12:18 PM Page 48

Test Movie Ctrl+Enter

� The GoTo action appears
in the Action list.

› Click to select the
scene to which you want
to go.

ˇ Click to select a frame
type.

Á Type a frame number or
label.

‡ Click to select Go to and
Play (changes to).

° Click to close the
Actions panel.

· Click Control ➪ Test
Movie to move to the test
environment.

‚ Test your movie.

Note: See page 38 for information
on testing your movie.

� When you click the
jump button, you move to
the scene specified in the
goto action.

action

Scene 2

PROGRAMMING WITH ACTIONSCRIPT 2

If you select the GoTo action in Normal Mode,
you can select <next scene> or <previous
scene> in the Scene field to retrieve the
nextScene() or prevScene() actions,
respectively. The nextScene() action sends the
playhead to the first frame of the next scene and
stops the playhead. The prevScene() action
sends the playhead to the first frame of the
previous scene and stops the playhead.

If you select the GoTo action in Normal Mode,
you can select Next Frame or Previous Frame in
the Type field to retrieve the nextFrame() and
prevFrame() actions, respectively. The
nextFrame() action sends the playhead to the
next frame and stops the playhead. The
prevFrame() action sends the playhead to
previous frame and stops the playhead.

49

3657-5 Ch02.F 1/31/02 12:18 PM Page 49

Actions Ctrl+Alt+A

Basic Actions

Toggle High Quality Esc+tq

Layer 1

⁄ Click the frame, button, or
movie clip to which you want
to add ActionScript.

Note: This example uses file
quality.fla, which you can find on
the CD-ROM that accompanies
this book.

� This example uses a button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
Toggle High Quality to select
the toggleHighQuality
action.

Flash uses antialiasing to smooth the edges of images.
With antialiasing, Flash displays crisp, clear images.
However, because antialiasing requires a faster

processor, it can slow down the playback of a movie. You
can use the toggleHighQuality action to enable users
to toggle antialiasing off and speed up the playback of the
movie. The syntax for toggleHighQuality is

toggleHighQuality(); .

The toggleHighQuality action does not take any
arguments, so it has no parameters. Turning off antialiasing
affects all of the movies in the player. You cannot adjust the
quality of a single movie or movie clip. If you assign
toggleHighQuality to a button, users can toggle
antialiasing on and off by clicking the button. If antialiasing
is on, clicking the button turns it off. If antialiasing is off,

clicking the button turns it on. When a Flash movie is
viewed in the stand-alone player, clicking View ➪ High
Quality from the menu toggles antialiasing on and off.

You can create an HTML file to publish your Flash movie on
the Web. You can use Flash to create your HTML file by
clicking File ➪ Publish Settings and using the Publish
Settings dialog box. If you click the HTML tab in the Publish
Settings dialog box, you can set the Flash parameters for
the HTML document. Among the parameters you can set
is the quality parameter. The quality parameter
specifies the level of antialiasing to use when your movie
plays on the Web. You choose the level you want to use.
You can also set the quality of your movie manually by
using the $QU variable. If you do not specify a quality value
when you create your HTML document, Flash uses the
default setting of High.

SET MOVIE QUALITY

FLASH ACTIONSCRIPT

50

SET MOVIE QUALITY

3657-5 Ch02.F 1/31/02 12:18 PM Page 50

Test Movie Ctrl+Enter

� The on (release)
handler defaults.

� The toggleHighQuality
action appears in the Action
list.

› Click to close the
Action panel.

ˇ Click Control ➪ Test
Movie to move to the test
environment.

Á Click the Quality button
to test your movie.

Note: See page 38 for information
on testing your movie.

� Clicking the Quality
button toggles antialiasing
on and off.

Layer 1

PROGRAMMING WITH ACTIONSCRIPT 2

When setting the quality parameter in the Publish Settings
dialog box, you can select from the following options:

51

OPTION DESCRIPTION

Low Favors playback speed over appearance. Never uses antialising.

Auto Low Begins with antialiasing turned off. If Flash Player determines
that the processor can handle antialiasing, Flash Player turns
on antialiasing.

Auto High Begins with antialiasing turned on. If the Flash Player
determines that the processor cannot handle antialiasing,
Flash Player turns off antialiasing.

Medium Uses some antialiasing. Never smooths bitmaps.

High Uses antialiasing in every instance. This setting favors
appearance over playback speed. If the movie does not
contain any animation, it smooths bitmaps. If the movie does
contain animation, if does not smooth bitmaps.

Best All output is antialiased. This option does not consider
playback speed.

3657-5 Ch02.F 1/31/02 12:18 PM Page 51

Actions Ctrl+Alt+A

Basic Actions

Get URL Esc+gu

New Web Page

⁄ Click the frame, button, or
movie clip to which you want
to add ActionScript.

Note: This example uses file url.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
Get URL to select the getURL
action.

� The getURL action
appears in the Action list.

� The on (release)
handler defaults.

You can use the getURL action to open a Web page in
a browser window and to pass variables to another
application. The getURL action is useful when you

want the user to move from your movie to another Web
page. The syntax for the getURL action is

getURL(url, window, variables); .

You use the URL argument to specify the Web address of
the page you want to open. You use the window argument
to specify the window or frame where the page will open.
Choosing _self opens the page in the current frame or
window, _blank opens the page in a new window,
_parent opens the page in the parent of the current
frame, and _top opens the page in the top-level frame of
the current window.

You can also use the getURL action to send variables to
an application at the specified URL. You can include the
variables you wish to send in your script, or you can use
dynamic and input text boxes to create your variables.
See Chapter 1 for more about dynamic and input text
boxes. See Chapter 4 for more about variables. You use
the variable argument to specify the method you wish to
use to send variables. In Normal mode, the Variable field
in the parameter pane presents you with three choices:
Send Using Get, Send Using Post, and Don’t Send. Use Send
Using Get to append a small number of variables to the end
of the URL. Use Send Using Post to send variables separate
from the URL. Send using Post enables you to send a larger
number of variables. Use Don’t Send if you do not want to
send any variables.

OPEN A WEB PAGE

FLASH ACTIONSCRIPT

52

OPEN A WEB PAGE

3657-5 Ch02.F 1/31/02 12:18 PM Page 52

Test Movie Ctrl+Enter

› Type the URL to which
you want to go.

ˇ Click to select the
window or frame in which
the page will open.

Á Click to select the
method you want to use to
send variables.

‡ Click to close the
Actions panel.

° Click Control ➪ Test
Movie to move to the test
environment.

· Click the New Web Page
button to test your movie.

Note: See page 38 for information
on testing your movie.

� You can click the New
Web Page button to open a
Web page.

New Web Page

PROGRAMMING WITH ACTIONSCRIPT 2

You can also open a Web page by creating a link
to the Web page in a text field. To create a link,
use the Arrow tool to select a Text field. Click
Text ➪ Character from the menu to open the
Character panel. In the URL field, type the URL
to which you want to link.

You can use getURL to create menus. Simply use
the getURL action with a series of buttons. You can
easily create many types of menus using Flash. For a
rollover menu use the botton on rollover
handler. Use can use the _visible property to
make menu options visible on press or on rollover.
You can also display images on the screen when the
user rolls over the menu option.

53

3657-5 Ch02.F 1/31/02 12:18 PM Page 53

Actions Ctrl+Alt+A

Basic Actions

FSCommand Esc+fs

button

⁄ Click the frame, button, or
movie clip to which you want
to add ActionScript.

Note: This example uses file fsc.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
FSCommand to select the
fscommand action.

� The parameters panel
opens.

� The on (release)
handler defaults.

Flash Player is a stand-alone projector that you can use
to view Flash movies. Flash Player enables you to view
Flash movies outside of Flash without a Web browser.

Flash Player is a stand-alone player, similar to a movie
projector. If you have Flash Player, you do not need anything
else to view your movie. You can create movies specifically
for Flash Player. Simply select Windows Projecter or
Machintosh Projector in the Publish Settings dialog box.

Flash player has a filename of FlashPla.exe in Windows
and FlashPlayer on a Macintosh computer. You can use
the fscommand to communicate with the Flash Player. The
syntax for fscommand is

fscommand(command,argument).

You can use the command argument to tell ActionScript
what command you want to execute. You can choose from

quit, exec, fullScreen, allowScale, and showMenu.
You can use argument parameters to specify the arguments
associated with the command you want to execute. The
quit option closes the projector window. The exec
command starts an application from the projector. You can
use the path to the application as the argument. The
fullScreen command controls the size of the projector
screen. You can use true as the argument for full-screen;
use false for normal view. The allowScale option
controls the scaling of the movie. You can use true as the
argument if you want the animation to scale with the size of
the screen; use false if you do not want the animation to
scale with the size of the screen. The showMenu command
controls the right-click menu and the menu bar. You can
use true as the argument to display the menus; use false
to hide the menus.

COMMUNICATE WITH THE FLASH PLAYER

FLASH ACTIONSCRIPT

54

COMMUNICATE WITH THE FLASH PLAYER

3657-5 Ch02.F 1/31/02 12:18 PM Page 54

fullscreen [true/false]

� The fscommand action
appears in the Action list.

› Click to select a
command for a standalone
player.

ˇ Type a command in the
command field.

Á Type an argument in the
argument field.

‡ Publish your movie.

° Open your Flash Player
and test your movie.

� Your movie plays.

� You can click the Full
Screen button to change your
movie to full screen mode.

You can also use the fscommand to send
messages to a scripting language such a
JavaScript. You can pass any two arguments using
the fscommand action to any JavaScript function
that handles the fscommand action. The
command and argument parameters send the
arguments to the JavaScript function Fscommand.

The fscommand action invokes the JavaScript
function moviename_Dofscommand. If you
publish your movie using the Flash with
fscommand template in the HTML Publish
Settings dialog box, the movie’s Name and ID
attributes will be the filename.

55

PROGRAMMING WITH ACTIONSCRIPT 2

3657-5 Ch02.F 1/31/02 12:18 PM Page 55

⁄ Click a button.

¤ Click ➪ Actions ➪
startDrag to select the
startDrag action.

� The startDrag action
appears in the Action list.

� The Parameters panel
opens.

‹ Type this in the Target
field.

› Click Expression.

ˇ Click on (release).

� The handlers Parameters
panel opens.

Actions

startDrag Esc+dr

You can use the startDrag action to create objects
users can drag. Any movie clip or button can be
draggable. The syntax for the startDrag action is

startDrag(target,lock,left,top,right,bottom)

Use the target argument to specify the path to the movie
clip or button you want to make draggable. You can use the
this keyword as the target argument. Using the this
keyword makes the object to which you attach ActionScript
draggable.

Use the lock argument to specify the Boolean value true
if you want Flash to lock the pointer to the center of the
object as the user drags. Use the Boolean value false if
you want Flash to lock the pointer to the point at which the
user pressed the mouse button. The lock argument is
optional.

Use the left, right, top, and bottom arguments to
specify the rectangle within which the user can drag the
object. You specify the area by using the number of pixels
from the top and left borders of the movie. The upper left
corner of the movie has a value of 0, increasing as you move
downward. The upper left corner of the movie has a value
of 0, increasing as you move across. These arguments are
optional.

Only one object can be draggable at a time. An object
remains draggable until you execute a stopDrag action or
another startDrag action. You use the stopDrag action
to stop the current drag operation.

The syntax for the stopDrag action is stopDrag(); . The
stopDrag action does not take any arguments, so it has no
parameters.

CREATE OBJECTS USERS CAN DRAG

FLASH ACTIONSCRIPT

56

CREATE OBJECTS USERS CAN DRAG

3657-5 Ch02.F 1/31/02 12:18 PM Page 56

Á Click to select Press (
changes to).

° Click ➪ Actions ➪
stopDrag.

� The stopDrag action
appears in the Action list.

· Click on (release).

� The handlers parameters
panel opens.

Actions

stopDrag Esc+sd

‡ Click to deselect Release
(changes to).

PROGRAMMING WITH ACTIONSCRIPT 2

There are many uses for draggable objects. You
can create a draggable object and use it as a
scroll bar. The user can use the scrollbar to scroll
through a block of text.

You can also use a draggabe object to increase or
decrease the volume and panning of sound. For
example, as the user drags the bar to the right,
your sound can pan to the right speaker. As the
user drags the bar to the left, your sound can pan
to the left speaker. You can increase and decrease
the volume as the user drags the scroll bar.

57

CONTINUED

3657-5 Ch02.F 1/31/02 12:18 PM Page 57

Convert to Symbol... F8

Symbol 6

Layer

‚ Click to select Roll Out
(changes to).

� On Release is preselected.

— Click to close the
Actions panel.

± Click Insert ➪ Convert to
Symbol to open the Symbol
Properties dialog box.

¡ Type a symbol name.

™ Click OK.

Frequently when creating a draggble object, you want to
create an object that is draggable when the user clicks
on it and and remains draggable until the user releases

the mouse. You must begin by creating a button. However,
because you cannot target a button, later you will turn the
button into a movie clip. Use the startDrag action with
the on (press) handler to make the object draggable
when the user clicks it. Decide the name you are going to
assign the movie clip. Use that name as the target argument,
or use the this keyword. Use the stopDrag action with
the on (release) and on (rollout) handlers to stop the
action when the user releases the mouse.

Select the button on the Stage. Use the Symbol Properties
dialog box to make the button a movie clip. If you targeted
a movie clip, name the movie clip the name you targeted in
the startDrag action.

The startDrag and stopDrag actions are used to create
sliders, scrollbars, panels, and many other draggable objects.

You use the _droptarget property to retrieve the name
on the instance on which the last draggable object was
dropped. The _droptarget property returns the absolute
path of the instance using slash notation. For more
information on absolute paths and slash notation, see
Chapter 10. The syntax for the _droptarget property is

instanceName._droptarget;

Use the instanceName argument to specify the name of
the instance that was the target of the startDrag action.
You use the _droptarget action when you want your
script to respond based on where the user placed the
draggable object.

CREATE OBJECTS USERS CAN DRAG
(CONTINUED)

FLASH ACTIONSCRIPT

58

CREATE OBJECTS USERS CAN DRAG (CONTINUED)

3657-5 Ch02.F 1/31/02 12:18 PM Page 58

Test Movie Ctrl+Enter

£ Click Control ➪ Test
Movie to move to the test
environment.

Note: See page 38 for information
on testing your movie.

¢ Click on the instance and
drag to test your movie.

� Your movie clip is
draggable.

Layer 1

PROGRAMMING WITH ACTIONSCRIPT 2

The script in this example constrains to 50 pixels over and 50 pixels
down from the upper left corner of the Stage area in which the user
can drag a button. The on (press) action tells Flash to perform an
action when the user presses the mouse while the pointer is over a
button. The startDrag action is the action Flash performs. The this
keyword tells Flash to make the object to which the script is attached
draggable. The false argument locks the pointer to the point at
which the user pressed the mouse button. The 0, 0, 50, and 50
arguments specify the area in which the object can be dragged. The
on (release) and stopDrag arguments deactivate the drag action
when the user releases the mouse.

Example:
on (press) {

startDrag (this, false, 0, 0, 50, 50);

}

on (release) {

stopDrag ();

}

59

3657-5 Ch02.F 1/31/02 12:18 PM Page 59

Actions Ctrl+Alt+A

Actions

Print Esc+pr

Layer 1

⁄ Click the frame, button, or
movie clip to which you want
to add ActionScript.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Actions ➪
Print to select the print
action.

� The on (release)
handler defaults.

� The print action appears
in the Action list.

You can use the print and printAsBitmap actions to
print a movie or a movie clip. Use the print action to
print Flash movies as vector graphics. Use the

printAsBitmap action to print Flash movies as bitmap
images. If you print a movie as a vector graphic, the artwork
scales and prints clearly at any size. If you print a movie as a
bitmap, the artwork does not scale and might not print
clearly. If you use alpha transparencies or other color effects
in your movie, you cannot use the print action. The syntax
for the print and printAsBitmap actions is

print (target, "bounding")
printAsBitmap (target, "bounding")

You can use the target argument to specify the level or
target path of the movie or movie clip you want to print.
For an explanation of levels and target paths, see Chapter 10.
Use the bounding argument to tell Flash how to print each

frame. Use bmovie to tell Flash to use the area of the
object in a specific frame as the area to print. Select the
object used to define the print area and label the frame #b.
Use bmax to have the size of the content in each printed
frame determine the print size of each frame. Use bframe
to have each printed frame fill the printed page.

By default, all frames print. If you want only specific frames
to print, give a label of #p to each frame you want to be
printable.

ActionScript sometimes needs to substitute
print and printAsBitmap with printNum and
printAsBitmapNum, respectively. If you are entering
your script in Normal Mode, ActionScript makes the
substitution automatically. For an explanation of why
ActionScript makes this substitution, see the Appendix.

PRINT A MOVIE

FLASH ACTIONSCRIPT

60

PRINT A MOVIE

3657-5 Ch02.F 1/31/02 12:18 PM Page 60

Test Movie Ctrl+Enter

› Click to select a print
method.

ˇ Click to select a print
location.

Á Click to select a
bounding method.

‡ Click to close the
actions panel.

° Click Control ➪ Test
Movie to move to the test
environment.

· Print your movie.

Note: See page 38 for information
on testing your movie.

� You can print your movie
from the test environment by
right clicking in Windows or
by Control-clicking on a
Macintosh to bring up the
context menu. Select Print
from the menu.

Layer 1

As vectors

PROGRAMMING WITH ACTIONSCRIPT 2

The user can print a Flash movie by using the Print
command on the Flash Player context menu or by
clicking File ➪ Print from the stand-alone player menu.
The user activates the Flash Player context menu by
right-clicking in Windows or by pressing Ctrl-click on a
Macintosh. By default, Flash Player prints all frames on
the main Timeline. If you use the frame label #p, Flash
prints only frames labeled #p. If you use the frame
label #b, Flash uses that frame as the print area. If you
have not labeled a frame #b, Flash Player uses the
Stage as the print area. If you do not want your movie
to be printable, label a frame !#p to dim the print
command on the Flash Player menu. Your users must
have Flash Player version 4.0.25 for Windows or version
4.0.20 for Macintosh to take advantage of any print
functionality you add to your movie.

A movie clip must be on the Stage and
have an instance name to be printable. A
movie must be fully loaded before it can
print. You can use the totalframes and
_framesloaded properties to determine
if all the frames have been loaded.

61

3657-5 Ch02.F 1/31/02 12:18 PM Page 61

Actions Ctrl+Alt+A

action

⁄ Click the frame, button, or
movie clip to which you want
to add ActionScript.

� This example uses a frame.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click Basic Actions to
open the Basic Actions
category.

› Double-click If Frame
Is Loaded to select the
ifFrameLoaded action.

ˇ Click to select a scene.

Á Click to select a frame
type.

‡ Click to select a frame.

You use the ifFrameLoaded action to make sure that
the download of movie contents to the local computer
has completed before you trigger an ActionScript

statement or series of statements. Developers frequently
use the ifFrameLoaded action to keep the movie from
beginning until the browser has downloaded the entire
movie contents. The syntax for the ifFrameLoaded
action is

ifFrameLoaded(scene, frame) {
statement;};

The scene argument is optional. Use it to specify the scene
whose download you want to check. Use the frame
argument to specify the frame number or frame label that
Flash must load before Flash executes the statement. Use
the statement argument to specify the statement or series
of statements to execute.

You can create a preloader with the ifFrameLoaded
action. A preloader is a short animation that plays while the
rest of the animation is loading. For example, you can
create a preloader that reads, Please Wait... Movie Loading.
The preloader stays on the screen until the specified frames
have downloaded completely. After the specified frames
have downloaded, the rest of the animation begins. When
using a preloader, place the preloader in the first frames on
the Timeline. You can use the gotoAndPlay command and
create a loop that executes until the necessary frames have
loaded. See page 48 for more about gotoAndPlay.

You can also use the _framesloaded property with an if
statement to make sure the download of movie contents to
the local computer has completed before you trigger an
ActionScript statement or series of statements.

CHECK FRAME LOAD

FLASH ACTIONSCRIPT

62

CHECK FRAME LOAD

3657-5 Ch02.F 1/31/02 12:18 PM Page 62

Test Movie Ctrl+Enter

° Double-click Go To.

· Click to select a scene.

‚ Click to select a frame
type.

— Click to select a frame.

� Your movie plays after the
specified number of frames
have loaded.

± Click Control ➪ Test
Movie to move to the test
environment.

¡ Test your movie.

Note: See page 38 for information
on testing your movie.

action

PROGRAMMING WITH ACTIONSCRIPT 2

You can create a preloader using the script
shown here.

Frame 1
ifFrameLoaded(60)

gotoAndPlay(3);

Frame 2
gotoAndPlay(1);

Place your preloader in frame 1. Each time the
playhead enters frame 1, it checks to see if frame
60 is loaded. If frame 60 is loaded, Flash goes to
frame 3 and begins playing the movie; otherwise,
Flash goes to frame 2, which instructs it to loop
back to frame 1.

63

3657-5 Ch02.F 1/31/02 12:18 PM Page 63

In Flash, the attributes of an object are called properties.
Movie clips have a large number of attributes — or
properties, such as height, width, location, and visibility.

Using ActionScript, you can obtain the current value of a
movie clip property and you can change the value of many
properties. Some properties are read-only, which means
that you can retrieve the value but you cannot change it.

You retrieve and change movie clip property values for a
variety of reasons. Retrieving the _x and _y properties tells
you the location of a movie clip. Retrieving the height and
width properties tells you the size of a movie clip. Changing
these properties enables you to adjust the size or move a
movie clip.

To retrieve or set the property value of a movie clip, you
must give the movie clip instance a name. You use the
Instance panel to name movie clips instances. In the Action
panel, the Toolbox list lists movie clip properties under

Properties. The basic syntax for retrieving a property is to
type the instance name followed by a dot and the property.
The basic syntax for setting the value of a property is the
instance name followed by a dot, the property, an equal
sign, and the value to which you want to set the property.

You can also use the setProperty action to set movie clip
properties. The syntax for the setProperty action is

setProperty(target, property, value).

Use the target argument to specify the instance name of the
movie clip you want to target. Use the property argument to
specify the property you want to set. Use the value argument
to specify the value to which you want to set the property.

You can use the getProperty function to retrieve the
value of properties. For more information on functions,
see Chapter 9.

INTRODUCTION TO MOVIE CLIP PROPERTIES

64

FLASH ACTIONSCRIPT

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
setprop.fla, which you can find on
the CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Actions ➪
setProperty.

Actions

setProperty Esc+sp

INTRODUCTION TO MOVIE CLIP PROPERTIES

3657-5 Ch03.F 1/31/02 12:19 PM Page 64

You can use the statement instanceName._property =
instanceName._property + value to continuously update the value
of a property. Here is how it works. You use = to assign a value to a
property. The statement instanceName.property retrieves the current
value of a property. You use the + to add to a value. For example, if the
current value of the rotation property is 90, you can use the following to
set the value to 105:
sampleMC._rotation = sampleMC._roation + 15

sampleMC._rotation = sampleMC._rotation + 15

105 = 90 + 15

If you assign the above statement to a button, each click changes the
rotation property value. So, after the first click the equation reads:
sampleMC._rotation = sampleMC._rotation + 15

120 105 + 15

SETTING MOVIE CLIP PROPERTIES 3

65

� The default handler on
(release) appears in the
Action list.

� The setProperty action
appears in the Action list.

› Click to select the
_height property.

ˇ Type the movie clip
instance name.

Á Type the height to which
you want to set the movie
clip.

‡ Click to select Expression
(changes to).

° Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

· Click the button to test
your movie.

� The height of the movie
changes to the number of
pixels you specified.

3657-5 Ch03.F 1/31/02 12:19 PM Page 65

Panels

Instance Ctrl+I

⁄ Select the movie clip
instance you want to name.

¤ Click Window ➪ Panels ➪
Instance to open the Instance
panel.

‹ Type the instance name.

› Click to close the
Instance panel.

� You have named the movie
clip instance.

Layer 1Layer 1

To change the properties, or target a movie clip, the
movie clip instance must have a unique name. Each
time you drag a movie clip from the Library onto the

Stage, you create a new instance of that movie clip. Naming
movie clips instances enables you to distinguish each
instance. Once you have named a movie clip instance, you
can use ActionScript to manipulate instances independently
of the other instances. You can move some instances while
other instances remain motionless. You can change the
color of some instances, while the other instances are
unaffected.

You use the Instance panel to name instances of your movie
clips. When you select movie clip as the behavior for a
symbol, the instance panel includes a field that enables you
to name the instance.

If you do not name a movie clip instance, Flash assigns the
instance the name instance followed by a sequential

number. You cannot view assigned names in the Instance
panel. However, assigned names are viewable in Debugger.
For more information on the Debugger, see Chapter 13. Do
not use the name assigned to the instance by Flash in your
script. Use the Instance panel to assign a name to your
movie clip and use that name in your script.

You can use the _name property to rename a movie clip
instance. The syntax for renaming a movie clip instance is

instanceName._name = newName; .

The instance name argument is used to specify the
instance for which you want to change the name. Use the
newName argument to specify the new name. The following
changes the name of a movie clip from sampleMC to
yourMC: sampleMC._name = yourMC; .

NAME AN INSTANCE

FLASH ACTIONSCRIPT

66

NAME AN INSTANCE

3657-5 Ch03.F 1/31/02 12:19 PM Page 66

RENAME AN INSTANCE

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

� This example uses a frame.

¤ Click Windows ➪ Actions
to open the Actions panel.

‹ Click Properties to open
the Properties category.

› Double-click _name.

� The _name property
appears in the Actions list.

ˇ Rename the movie clip.

� The movie clip is renamed.

Layer 1

SETTING MOVIE CLIP PROPERTIES 3

Naming a movie clip instance enables you to target the
instance. You must target a movie clip instance when you want
to perform actions on a specific instance. For example, if you
want to make a movie clip instance named aMC play, you must
target movie clip instance aMC.

You can name a movie clip instance any thing you want. You
can use underscores, letters, and numbers to name a movie clip
instance. However, you should start the instance name with a
letter. Do not include spaces, periods, or other characters that
have special meaning to Flash. Do not use a keyword to name
an instance. For a list of keywords, see Chapter 14. Do not give
two objects the same name. For example, do not name a
variable and an instance the same thing.

It is a good idea to develop a naming convention and to stick
with it. A popular convention is to capitalize the first letter of
all words after the first word, for example, birthDate or
firstName. Try to use meaningful names. Names that describe
the instance are a good choice.

67

3657-5 Ch03.F 1/31/02 12:19 PM Page 67

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
alpha.fla, which you can find on the
CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click Properties to open
the Properties category.

› Double-click _alpha to
select the _alpha property.

� The default handler on
(release) and _alpha
property appear in the
Action list.

ˇ Set the _alpha property.

� The instance name
precedes the property name.

� The value follows the
property name.

Á Click to close the
Actions panel.

Layer 1

You can use the _alpha property to set the
transparency of a movie or movie clip instance.
Changing the _alpha property allows you to create

movies and movie clips the user can see through. You can
set the _alpha property so that movies or movie clips are
anything from opaque to invisible. Setting the property to
100 makes the movie or movie clip opaque. Setting the
property to 0 makes the movie or movie clip completely
transparent or invisible.

Before you can change the _alpha property of a movie clip
instance, the movie clip instance must have a name. Use the
Instance panel to name your movie clip instance. The syntax
for the _alpha property is

instanceName._alpha = value; .

The instanceName argument is used to specify the name
of the instance for which you want to set the _alpha
property. Omit the instanceName argument if you want to
set the _alpha property for the movie. Use the value

argument to set the _alpha property to a value between 0
and 100.

A transparent movie clip is still active. If you set the
transparency of a movie clip instance associated with a
button’s up, down, and over state to 0, the user will not be
able to see the button, but the user will be able to click the
button.

You can retrieve the _alpha property of a movie clip. You
retrieve the _alpha property to determine the current
value. The syntax for retrieving the _alpha property is

instanceName._alpha; .

Use the instanceName argument to specify the instance
for which you want to retrieve the _alpha value. You may
want to retrieve the _alpha value to assign it to a variable
or you may want to retrieve the _alpha value so that you
use it in an if statement. For more information on if
statements, see Chapter 6.

ADJUST TRANSPARENCY

FLASH ACTIONSCRIPT

68

ADJUST TRANSPARENCY

3657-5 Ch03.F 1/31/02 12:19 PM Page 68

Test Movie Ctrl+Enter

� The Flash menu is
available to you.

‡ Click Control ➪ Test
Movie to move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

° Click the button to test a
movie.

� When you click the
button, the transparency of
the movie clip changes.

Layer 1

SETTING MOVIE CLIP PROPERTIES 3

You can change the _alpha property of symbols
and instances of symbols using the Effect panel.
To open the Effect panel, click Window ➪
Panel ➪ Effect on the menu. Select Alpha from
the drop-down menu. You can adjust the _alpha
property of a an instance of a symbol to any
value from 0 to 100. Changing the _alpha
property of an instance does not change the
symbol or other instances of the symbol.

You can use the _alpha property in a tween to
create a fading effect. Set the _alpha property at
the start position. Reset the _alpha property at the
end position. Flash will interpolate the values in
between causing the object to fade in or out. You
can also change the _alpha property of text.
However, you must first covert the text to a symbol.

69

3657-5 Ch03.F 1/31/02 12:19 PM Page 69

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
visible.fla, which you can find on
the CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪
_visible to select the _visible
property.

Button

Properties

_visible

You can use the _visible property to make a movie
or movie clips visible or invisible to the user. This
property is useful when you have a movie clip that you

do not want the user to see until the movie reaches a
particular frame, or a particular action has occurred.

Before you can change the _visible property of a movie
clip instance, the instance must have a name. You use the
Instance panel to name a movie clip instance. The syntax
for the _visible property is

instanceName._visible = BooleanValue; .

The instanceName argument is used to specify the
instance name for which you want to change the _visible
property. Use the BooleanValue argument to set the
_visible property to true or false. If you set the value
to true, the movie clip is visible. If you set the value to
false, the movie clip is not visible.

A movie clip instance that is not visible is not active. The
user cannot interact with a movie clip that is not active. If

you set the visibility of a movie clip associated with a
button’s up, down, and over state to false, users will not be
able to see or click the button.

You can retrieve the _visible property value. When writing
script, you may want to retrieve the _visible property
value of a movie clip to determine what action ActionScript
should perform. For example, you can create a button that
toggles the visibility of a movie clip on and off. If the
_visibility value is true, the script will set the visibility
to false. If the _visibility value is false, the script will
set the _visibility to true. The syntax for retrieving the
_visible value is

instanceName._visible; .

Use the instanceName argument to specify the name of the
instance for which you want to change the _visible
property.

MAKE MOVIE CLIPS INVISIBLE
FLASH ACTIONSCRIPT

70

MAKE MOVIE CLIPS INVISIBLE

3657-5 Ch03.F 1/31/02 12:19 PM Page 70

� The default handler on
(release) appears in the
Action list.

� The _visible property
appears in the Action list.

› Set the _visible
property.

� The instance name
precedes the property name.

� The value follows the
property name.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Click the button to test
your movie.

� When you click the
button, the movie clip
will no longer be visible.

SETTING MOVIE CLIP PROPERTIES 3

You can use the getProperty function to retrieve a property. For more
information on the getProperty function, see page 210. You can use the
setProperty action to set a property. For more information on the
setProperty action, see page 64.

The script shown here is associated with a button. When the user releases
the button, the script retrieves the _visible property for starMC. If the
_visible property is true, the script sets the _visible property to
false; if the _visible property is false, the script sets the _visible
property to true. In other words, the button toggles starMC on and off.

Example:
on (release) {

x = getProperty (starMC, _visible);

if (x == true) {

setProperty ("StarMC", _visible, false);

} else {

setProperty ("StarMC", _visible, true);

}

}

71

3657-5 Ch03.F 1/31/02 12:19 PM Page 71

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
rotate.fla, which you can find on the
CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪
_rotation.

Button

Properties

_rotation

You use the _rotation property to rotate a movie or
movie clip instance. The rotation value is the number
of degrees a movie clip has been rotated from the

original position at which it was placed on the Stage.

Before you can set the value of the _rotation property of
a movie clip instance, the movie clip instance must have a
name. Use the Instance panel to name your movie clip
instance. The syntax for setting the value of the _rotation
property is

instanceName._rotation = value; .

The instanceName argument is used to specify the
Instance name of the movie clip for which you want to set
the value of the _rotation property. Omit the
instanceName to set the rotation value for the movie. Use
the value argument to set the value of the _rotation
property.

Note that setting the rotation value to 90 rotates the movie
clip instance 90 degrees from its original location, not its

current location. If the current rotation value is 90 and you
set the rotation value to 90, the movie clip will not rotate.
To rotate the movie clip an additional 90 degrees, you must
set the rotation value to 180.

You can retrieve the current _rotation value. The syntax
for retrieving the rotation value is

instanceName. _rotation; .

Use the instanceName argument to specify the instance
name of the movie clip you want to rotate. Omit the
instanceName argument to retrieve the rotation value of
the movie.

If you want to rotate a movie clip instance a specified
number of degrees from its current location, you can
retrieve the current value and add the number of degrees
you want to rotate the movie clip instance. For example,
sampleMC._rotation = sampleMC._rotation + 90;
rotates a movie clip 90 degrees from its current location.

ROTATE MOVIE CLIPS
FLASH ACTIONSCRIPT

72

ROTATE MOVIE CLIPS

3657-5 Ch03.F 1/31/02 12:19 PM Page 72

� The default handler on
(release) appears in the
Action list.

Note: See page 28 for more
information on handlers.

� The _rotation property
appears in the Action list.

› Set the _rotation
property.

� The instance name
precedes the property name.

� The value follows the
property name.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Click the button to test
your movie.

� The movie rotates 10
degrees each time you click
the button.

SETTING MOVIE CLIP PROPERTIES 3

You can use the Flash menu to rotate an object.
Select an object, then click Modify ➪ Transform ➪
Rotate. Handles will appear around the object.
Use the mouse to grab the handles then drag to
rotate. Select an object and click Modify ➪
Transform ➪ Rotate 90 CW to rotate an object
90 degrees clockwise. Select an object and click
Modify ➪ Transform ➪ Rotate 90 CCW to rotate
an object 90 degrees counterclockwise. You can
also use the Arrow tool rotate modifier to rotate
objects.

Every symbol and instance of a symbol has a
registration point. By default, the registration point
is the center of the object. Objects rotate around
their registration point. To change the registration
point, select the object, click Modify ➪ Transform ➪
Edit Center from the menu, and drag the
registration point to a new location.

73

3657-5 Ch03.F 1/31/02 12:19 PM Page 73

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
width.fla, which you can find on the
CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪
_width.

Button

Properties

_width

You use the _width property to set the distance from
the left side of a movie or movie clip to the right side
in pixels. You can place an input field on the Stage that

allows the user to specify the size of a movie clip. When the
user types a number in the input field, the number is
assigned to the variable. That variable can be used to
determine the width of the movie clip. For more
information on variables, see pages 88 to 95.

Before you can change the _width property of a movie
clip, the movie clip must have a name. You use the Instance
panel to name a movie clip. The syntax for the _width
property is

instanceName._width = value .

The instanceName argument is used to specify the name
of the movie clip for which you want to change the _width

property. Omit the instanceName property to set the
width of a movie. Use the value argument to set the value
of the _width property in pixels.

You can retrieve the _width property to obtain its current
value. The syntax for retrieving the _width property is
instanceName._width. Use the instanceName
argument to specify the movie clip instance for which you
want to retrieve the _width property. Omit the Instance
name if you want to retrieve the width of a movie clip.

As with all properties, remember, you can use
setProperty action to set the _width property value.
You can use the getProperty function to retrieve the
current property value. For more information on
the setProperty action, see page 64. For more on
the getProperty function, see page 210.

CHANGE THE WIDTH OF MOVIE CLIPS

FLASH ACTIONSCRIPT

74

CHANGE THE WIDTH OF MOVIE CLIPS

3657-5 Ch03.F 1/31/02 12:19 PM Page 74

� The default handler on
(release) appears in the
Action list.

Note: See page 28 for more
information on handlers.

� The _width action
appears in the Action list.

› Set the width of the movie
clip instance.

� If you associate the variable
with an input text box, you
can obtain data from the user.

Note: See page 22 for more on input
text boxes, and pages 88 to 95 for
more on variables.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Type the number of pixels
to which you want to set the
width of the movie clip.

‡ Click the button to test
your movie.

� The width of the movie
clip is set to the value entered
in the input text box.

SETTING MOVIE CLIP PROPERTIES 3

You can use this script to manipulate the width of a
movie clip. This script increases the width of movie clip
named block 10 pixels each time the user presses the
left arrow. It decreases the width 10 pixels each time the
user presses the right arrow. The script is associated with
a button.

Example:
on (keyPress "<Left>") {

widthV= getProperty ("block", _width);

setProperty ("block", _width, widthV + 10);

}

on (keyPress "<Right>") {

widthV= getProperty ("block", _width);

setProperty ("block", _width, widthV - 10);

}

75

3657-5 Ch03.F 1/31/02 12:19 PM Page 75

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
height2.fla, which you can find on
the CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click Properties to open
the Properties category.

› Double-click _height to
select the _height property.

� The default handler on
(release) appears in the
Action list.

Note: See page 28 for more
information on handlers.

� The _height property
appears in the Action list.

You can use the _height property to set the distance
from the bottom of a movie or movie clip to the top in
pixels. This property is useful if you need to resize a

movie or movie clip as the movie plays. You can increase or
decrease the height of a movie or movie clip. A possible use
of the _height property is to increase or decrease the size
of a bar as the user increases or decreases the sound
volume. Alternatively, you may want to use the _height
property to give the user the ability to set the size of
objects on the Stage.

Before you can change the _height property of a movie clip
instance, the movie clip instance must have a name. You use
the Instance panel to name a movie clip instance. The syntax
for the _height property is

instanceName._height = value; .

The instanceName argument is used to specify the name of
the movie clip instance for which you want to change the

_height property. To change the height of the movie, omit
the InstanceName argument. Use the value argument to set
the value of the _height property of the movie or movie
clip in pixels.

ActionScript also gives you the ability to retrieve the current
value of the _height property. As with other properties,
you can retrieve the _height property and use the value
to determine what action to perform next. The syntax for
retrieving the _height property is

instanceName. _height; .

Use the instanceName argument to specify the name if
the movie clip for which you want to retrieve the _height
property. Omit the instanceName argument to retrieve
the height of the movie.

CHANGE THE HEIGHT OF MOVIE CLIPS

FLASH ACTIONSCRIPT

76

CHANGE THE HEIGHT OF MOVIE CLIPS

3657-5 Ch03.F 1/31/02 12:19 PM Page 76

ˇ Set the _height property
for a movie clip instance.

� The instance name
precedes the property name.

� The value follows the
property name.

Á Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

‡ Click the button to test
your movie.

� The size of the movie clip
instance changes to the
height you set.

SETTING MOVIE CLIP PROPERTIES 3

You can use this script to increase
the height of a movie clip each time
the user clips on a button. The script
retrieves the height of a movie clip
named block and assigns the value
to a variable named heightV. It
then sets the height of the block
movie clip to the value of heightV
plus 10. You can use the
setProperty action to set the
height of a movie clip. For more
information on the setProperty
action, see page 64,

77

TYPE THIS:

on (release) {
heightV = block._height;
setProperty ("block", _height, heightV + 10);

}

RESULT:

Each time the user clicks a button, the height of the movie
clip increases by 10 pixels.

3657-5 Ch03.F 1/31/02 12:19 PM Page 77

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
xscale.fla, which you can find on the
CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪
_xscale to select the _xscale
property.

Button

Properties

_xscale

You can use the _xscale property to change the width
of a movie or movie clip using a percentage. This
property is similar to the _width property. The

_width property changes the distance from the left to the
right side of a move clip using pixels, while _xscale uses a
percentage.

Before you can change the _xscale property of a movie clip
instance, the movie clip instance must have a name. You use
the Instance panel to name a movie clip instance. The syntax
for the _xscale property is

instanceName._xscale = value .

The instanceName argument is used to specify the name of
the movie clip instance. Omit the instance name argument to
set the _xscale property of a movie. Use the value
argument to specify the percent by which you want to
change the width of the movie clip instance.

If you want to reduce the width of the movie clip instance
to 50 percent of its size before any scaling, assign a value of
50. If you want to increase the width of the movie clip to
100 percent more than its size before any scaling, assign a
value of 200. To return a movie clip to its original size,
assign a value of 100. Assigning a value of zero will cause
your movie or movie clip to disappear.

You can also retrieve the current _xscale value for a
movie or movie clip. The syntax for retrieving the current
value is

instanceName.xscale .

Use the instanceName argument to specify the instance
name of the movie clip for which you want to obtain the
_xscale. Omit the instanceName argument if you are
retrieving the _xscale property of a movie.

SCALE THE WIDTH OF MOVIE CLIPS

FLASH ACTIONSCRIPT

78

SCALE THE WIDTH OF MOVIE CLIPS

3657-5 Ch03.F 1/31/02 12:19 PM Page 78

� The default handler on
(release) appears in the
Action list.

Note: See page 28 for more
information on handlers.

� The _xscale property
appears in the Action list.

› Set the _xscale property
for the movie clip instance.

� The instance name
precedes the property name.

� The value follows the
property name.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Click the button to test
your movie.

� The width of the movie
clip will increase to the
_xscale you specified.

SETTING MOVIE CLIP PROPERTIES 3

You can use the Flash menu to scale an object.
Select the object and click Modify ➪ Transform ➪
Scale. Handles will appear around the object. Use
the mouse to grab the handles then drag to scale.
You can use the Flash menu to scale an object by a
percentage. Click Modify ➪ Transform ➪ Scale and
Rotate and type the scale percentage in the Scale
field. You can also use the Arrow tool scale
modifier to scale objects.

You can scale an object in a tween to cause the
object to appear to grow or shrink over time. Set
the size of the object at the start position. Reset
the size of the object at the end position. Flash will
interpolate the values in between causing the
object to shrink or grow.

79

3657-5 Ch03.F 1/31/02 12:19 PM Page 79

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
yscale.fla, which you can find on the
CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪
_yscale to select the _yscale
property.

Button

Properties

_yscale

The _yscale property is the counter-part of the
_xscale property. You use the _yscale property to
change the height of a movie or movie clip by a

percentage. You use the _xscale property to change the
width of a movie or movie clip by a percentage. You can
use _xscale and _yscale in conjunction to change the
size of a movie or movie clip.

Before you can change the _yscale property of a movie
clip instance, the movie clip instance must have a name. You
use the Instance panel to name a movie clip. The syntax for
the _yscale property is

instanceName._yscale = value .

The instanceName argument is used to specify the name
of the move clip instance for which you want to set the
_yscale property. Omit the instance name to change the
height of a movie. Use the value argument to specify the
percent by which you want to change the height of the
movie clip.

If you want to reduce the height of the movie clip to 50
percent of the size it was before any scaling was applied,
assign a value of 50. If you want to increase the height of
the movie clip by 100 percent of the size it was before any
scaling was applied, assign a value of 200. To return a movie
clip to its size before scaling, assign a value of 100. Assigning
a value of zero will cause your movie or movie clip to
disappear.

You can also retrieve the current _yscale value for a movie
or movie clip. The syntax for retrieving the current value is

instanceName._yscale .

Use the instanceName argument to specify the name of
the movie clip for which you want to obtain the _yscale
value. Omit the instanceName argument if you are
retrieving the _yscale property of a movie.

SCALE THE HEIGHT OF MOVIE CLIPS

FLASH ACTIONSCRIPT

80

SCALE THE HEIGHT OF MOVIE CLIPS

3657-5 Ch03.F 1/31/02 12:19 PM Page 80

� The default handler on
(release) appears in the
Action list.

Note: See page 28 for more
information on handlers.

� The _yscale property
appears in the Action list.

› Set the _yscale property
for a movie clip instance.

� The instance name
precedes the property name.

� The value follows the
property name.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Click the button to test
your movie.

� The movie clip will scale
to the size you specified.

SETTING MOVIE CLIP PROPERTIES 3

This script scales a movie clip instance. When the
user presses the button, the movie clip named
block disappears. When the user releases the
button, the movie clip reappears.

Example:
on (press) {

setProperty ("block", _height, 0);

setProperty ("block", _width, 0);

}

on (release) {

block._yscale =100;

block._xscale =100;

}

81

3657-5 Ch03.F 1/31/02 12:19 PM Page 81

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file x.fla,
which you can find on the CD that
accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪ _x.

BoxButton

Properties

_x

You can use the _x property to change the location of a
movie or movie clip relative to the left side of the
Stage. The _x property enables you to move a movie

or movie clip back and forth across the Stage.

Before you can change the _x property for a movie clip
instance, you must give the movie clip an instance name.
Use the Instance panel to name your movie clip. The syntax
for the _x property is

instanceName._x = value; .

The instanceName argument is used to specify the instance
name of the movie clip for which you want to set the _x
property. Omit the instance name if you want to set the _x
property for the movie. Use the value argument to specify
the number of pixels from the left border of the Stage you
want to locate the center of the movie or movie clip. The
left border of the Stage has a value of 0.

You can retrieve the current value of the _x property. The
syntax for retrieving the current value of the _x property is

instanceName._x; .

Use the instanceName argument to specify the name of
the instance for which you want to retrieve the _x property.
Retrieving the value is useful when you want to reset the
value of the _x property relative to its current location. For
example, the following moves a movie clip 10 pixels to the
right of its current location: sampleMC._x =
sampleMC._x +10; . You can associate this syntax with a
button to move an object 10 pixels each time the user
presses a button. You can also associate this syntax with the
onClipEvent (enterFrame) handler in a single frame
movie to create continuous movement.

MOVE MOVIE CLIPS ACROSS THE STAGE

FLASH ACTIONSCRIPT

82

MOVE MOVIE CLIPS ACROSS THE STAGE

3657-5 Ch03.F 1/31/02 12:19 PM Page 82

� The default handler on
(release) appears in the
Action list.

Note: See page 28 for more
information on handlers.

� The _x property appears in
the Action list.

› Set the _x property.

� The instance name
precedes the property name.

� The value follows the
property name.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Click the button to test
your movie.

� Each time you click the
button, the movie clip
instance will move the
number of pixels you
specified.

SETTING MOVIE CLIP PROPERTIES 3

You can use the getProperty
function to retrieve a property. For
more information on the getProperty
function, see page 210. You can use the
setProperty action to set a property.
For more information on the
setProperty action, see page 64.

You can use this script to move the
movie clip across the Stage. The script is
associated with a button. Each time the
user clicks the button, a movie clip
named car moves 5 pixels to the right.

83

TYPE THIS:

on (release) {
carValue = getProperty ("car", _x);
setProperty ("car", _x, carValue + 5);

}

RESULT:

Each time the user clicks a button, the
movie clip moves 5 pixels to the right.

3657-5 Ch03.F 1/31/02 12:19 PM Page 83

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file y.fla,
which you can find on the CD that
accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪ _y
to select the _y property.

Car

Properties

_y

You can use the _y property to change the location of a
movie or movie clip relative to the top of the Stage.
The _y property enables you to move a movie or

movie clip up or down the Stage. Use the _y property in
conjunction with the _x property to specify the exact
location you want to place the movie or movie clip on
the Stage.

Before you can change the _y property of a movie clip
instance, you must give the movie clip instance a name. You
use the Instance panel to name a movie clip. The syntax for
the _y property is

instanceName._y = value; .

The instanceName argument is used to specify the
instance name of the movie clip instance for which you
want to set the _y property. Omit the instanceName

argument to set the _y property for the movie. Use the
value argument to specify the number of pixels from the
top of the Stage you want to place the center point of the
movie clip. The top border of the Stage has a value of 0.

You can retrieve the current value of the _y property. The
syntax for retrieving the current value of the _y property is

instanceName._y .

Retrieving the value is useful when you want to reset the
value of the _y property relative to its current location.

You will often use the _x and _y properties to move a
movie clip around the Stage. You can move a movie
anywhere you want by specifying the coordinates. You can
use the _x and _y coordinates to create movement.

MOVE MOVIE CLIPS UP AND DOWN

FLASH ACTIONSCRIPT

84

MOVE MOVIE CLIPS UP AND DOWN

3657-5 Ch03.F 1/31/02 12:19 PM Page 84

� The default handler on
(release) appears in the
Action list.

� The _y property appears in
the Action list.

› Assign the _y value to a
variable.

� The variable name is yV.

� The expression
yellowCarMC._y
retrieves the _y value.

� Associate the variable
with a dynamic text box. This
enables you to display the
value the variable returns to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Drag the movie clip.

‡ Click the button to test
your movie.

� The text box displays
the _y value associated
with the car.

SETTING MOVIE CLIP PROPERTIES 3

You can use the script shown here to move a
movie clip using key presses. When the user
presses the button or the down arrow key, the
movie clip named block moves down three
pixels. When the user presses the up arrow key,
the movie clip named block moves up three
pixels.

Example:
on (press, keyPress "<Down>") {

y = getProperty ("block", _y);

setProperty ("block", _y, y + 3);

}

on (keyPress "<Up>") {

y = getProperty ("block", _y);

setProperty ("block", _y, y -3);

}

85

3657-5 Ch03.F 1/31/02 12:19 PM Page 85

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
quality.fla, which you can find on the
CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Properties ➪
_quality.

Layer 1

Properties

_quality

Antialiasing is the process of smoothing the edges of
images and text. Antialiasing gives Flash the ability to
display crisp clear images. Antialiasing also slows

down the playback of a movie. You can use the _quality
property to set the level of antialiasing you want to use in
your movie or you can use the _quality property to give
the user the ability to choose the quality level they want to
use as they play back the movie.

The syntax for the _quality property is

_quality = value; .

You use the value argument to specify the quality level. You
can choose from LOW, MEDIUM, HIGH, and BEST. You
cannot set the quality level for specific elements of a movie.
You cannot set the quality for a movie clip. The quality
setting is global and applies to the entire movie.

You can also use the _highquality property to set the
level of antialiasing you want to use in your movie. As with

the _quality property, you can use the _highquality
property to give the user the ability to choose the quality
level they want to use as they play back the movie.

The syntax for the _highquality property is

_highquality = value; .

You can use the value argument to specify the quality to
which you want to set your movie clip. Choose from 2 -
best, 1 - high quality, or 0 - low quality. Like the _quality
property, the _highquality property is global and
applies to all elements of the movie. You cannot use the
_highquality property to set the quality of a movie clip
or other elements of a movie.

Flash 5 deprecated the _highquality property; if you are
authoring for a Flash 5 environment, use the _quality
property instead.

SET MOVIE CLIP QUALITY

FLASH ACTIONSCRIPT

86

SET MOVIE CLIP QUALITY

3657-5 Ch03.F 1/31/02 12:19 PM Page 86

� The default handler on
(release) appears in the
Action list.

� The _quality property
appears in the action list.

› Set the _quality value.

� This is the value.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test a movie.

Á Click the button to test
your movie.

� The movie clip quality
changes to the value you
specified.

SETTING MOVIE CLIP PROPERTIES 3

When using the _quality property, you can
choose the quality level you want. The table that
follows defines each of the quality levels
available in Flash.

87

LEVEL DEFINITION

LOW Flash does not antialias graphics or
smooth bitmaps.

MEDIUM Flash antialiases graphics, but does
not smooth bitmaps.

HIGH The default quality level. Flash
antialiases graphics and smoothes
bitmaps if the movie is static.

BEST Flash antialiases graphics and always
smoothes bitmaps.

3657-5 Ch03.F 1/31/02 12:19 PM Page 87

You use variables to store information for later use.
The syntax for creating a variable is
variableName = value;.

The variableName argument represents the name you
give to the variable. The equal sign (=) is the assignment
operator. The assignment operator tells ActionScript you
want to assign something to a variable. Value represents
what you want to assign to the variable. Once a value has

been assigned, whenever you use the variable name, the
assigned value is retrieved. For example, if you make the
following assignment:
x = 2

every time ActionScript sees the variable x, it interprets it to
mean 2. You can change the value assigned to a variable
many times and at any point in your script.

INTRODUCTION TO VARIABLES
AND DATA TYPES

FLASH ACTIONSCRIPT

88

In ActionScript, a variable can store the following data
types: string, number, Boolean, movie clip, or object. A
string is any sequence of characters consisting of any
combination of letters, numbers, or punctuation marks.
A number is a value on which you can perform
mathematical operations such as addition (+),
subtraction (–), multiplication (*), division (/), modulo
(%), increment (++), or decrement (--). A Boolean is a
value that is either true or false. A movie clip is a symbol
that can play Flash animation. Objects are used to
manipulate data, sounds, and movie clips.

You do not have to define the variable type before
assigning a value to a variable. ActionScript examines
the expression and determines whether the variable is a
number, string, Boolean, object, or movie clip. If you
change the value assigned to a variable, if necessary,
ActionScript will automatically change the variable type.
For example, when you assign x = 2;, ActionScript
evaluates the expression and determines that x is a
number. If you later change the assignment to x =
"George";, ActionScript reevaluates the expression
and determines that x is a string.

DATA TYPES

ActionScript variables can be either global or local. A
global variable can be referenced by any movie clip on
any timeline. Global variables are said to have an
unlimited scope. A local variable can be referenced only
within the curly braces that enclose its block of script.
Local variables have a limited scope. Each variable must
have a unique name within its scope. Each global
variable must be unique within the movie. Each
local variable must be unique within the curly
braces that enclose it.

Declaring a variable lets ActionScript know that a
variable exists even if no value has been assigned to it.
You use the var statement to declare a local variable. In
the example shown here, the variable x is declared as a
local variable.

Example:
var x

You use the assignment operator (=) to assign a value to
a local variable. In the example shown here, the value
25 is assigned to the local variable x.

Example:
var x = 25

You use the setVariables action or the assignment
operator (=) to declare global variables. The following
two examples set global variables and are equivalent.

Examples:
x = 25

set(x,25);

Global variables are often initialized in the first frame of
a movie. Initializing a variable consists of assigning the
initial value of the variable.

SCOPE OF VARIABLES

3657-5 Ch04.F 1/31/02 12:19 PM Page 88

WORKING WITH VARIABLES AND STRINGS 4

89

You are free to name your variables anything you like;
however, when naming your variables, you must follow
these rules:

* The first character of your variable name must be a
letter, underscore (_), or dollar sign ($).

* Each subsequent character must be a number, letter,
underscore (_), or dollar sign ($).

* Your variable name cannot be a keyword.

* Your variable name cannot be a Boolean literal.

* Your variable name must be unique within its scope.
Global variables must be unique within the movie.
Local variables must be unique within the curly
braces that enclose them.

* Your variable name does not have to be in the
format of first word beginning with a lowercase
letter and subsequent words beginning with capital
letters; however, that is the convention in this book.
If you develop a convention and use it consistently,
you will have an easier time debugging your code.

NAME VARIABLES

You can use variables to dynamically display text or to
create forms. If you want to dynamically display text,
you start by using the Text tool to create a text box.
After you have created the text box, click Window ➪
Panels ➪ Text Options on the menu. The Text Options

panel opens. Select Dynamic Text as the text type and
enter the name you want to assign to your variable in
the Variable field. If you would like a border around
your field, select Border/Bg. Any information you assign
to the variable displays on the screen.

DYNAMICALLY DISPLAY TEXT

If you want to create a form to capture user input, you
start by using the Text tool to create a text box. The box
will capture the user’s entry. After you have created the
text box, click Window ➪ Panels ➪ Text Options on the
menu. The Text Options panel opens. Select Input Text
as the text type and enter the name of your variable in

the Variable field. Any information the user types in
the field is stored in the variable you assigned. You
reference Input Text variables and Dynamic Text
variables the same way that you reference any
other variable.

CAPTURE USER INPUT

3657-5 Ch04.F 1/31/02 12:19 PM Page 89

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
variable.fla, which you can find on the
CD-ROM that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Assign values to variables.

Actions Ctrl+Alt+A

You can assign a string to a variable. A string is any
sequence of characters consisting of any combination
of letters, numbers, or punctuation marks. You use a

string variable to store string values such as text or a URL
for later use. You cannot perform mathematical operations
on a string even if the string is a number. When assigning a
string to a variable, you must enclose the string in single or
double quotation marks. This example, userName =
"John Smith";, stores a string to the variable userName.

You can assign a number to a variable and use the number
as a counter, in a mathematical calculation, or to set a
property. A number assigned to a variable can be the result
of a mathematical calculation. These examples all assign

numbers to a variable: a = 5;, x = a + 25;, and x =
5 + 7; . Any expression that returns a number that is
assigned to a variable, assigns a number to the variable.
ActionScript stores numbers as floating-point numbers. A
floating-point number is a number with no fixed number of
digits before or after the decimal point.

You use a Boolean when you want to set a condition to true
or false, evaluate whether a condition is true or false, or
compare values. Booleans are often used with logical
operators. When assigning a Boolean, the value is always
either the word true or the word false or an expression
that evaluates to true or false. This example, x =
false;, assigns a Boolean to a variable.

ASSIGN A VALUE TO A VARIABLE

FLASH ACTIONSCRIPT

90

ASSIGN A VALUE TO A VARIABLE

3657-5 Ch04.F 1/31/02 12:19 PM Page 90

› Use the variables in an
expression.

� If you associate the
variables with dynamic text
boxes, you can display the
values the variables return to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

Á Click the button to test
your movie.

� The script assigned the
values needed to execute the
script to variables. Your movie
will perform the actions the
same way it would have if
you had used literal values.

WORKING WITH VARIABLES AND STRINGS 4

Several characters cannot be included in a string
unless they are preceded with a backslash. The
table shown here lists these characters.

ESCAPE SEQUENCE CHARACTER

\” Double quotation mark

\’ Single quotation mark

\\ Backslash

\b Backspace character (ASCII 8)

\f Form feed character (ASCII 12)

\n Line feed character (ASCII 10)

\r Carriage return character (ASCII 13)

\t Tab character (ASCII 9)

\000 - \377 A byte specified in octal

\x00 - \xFF A byte specified in hexadecimal

\u0000 - \uFFFF A 16-bit Unicode character specified
in hexadecimal

91

3657-5 Ch04.F 1/31/02 12:19 PM Page 91

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file object.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an array. Note: See pages 164 to 175 for
information on working with arrays.

Actions Ctrl+Alt+A

ActionScript divides data types into two categories:
primitive and reference. Strings, numbers, and
Booleans are primitive data types. A variable that

contains a primitive data type stores the value that has been
assigned to it. Primitive data types do not update when
changes are made to the assigning value. Each time
ActionScript encounters the variable it retrieves the value
last assigned to it regardless of any subsequent updates, for
example, a = 10;,b = a;, a = 30;. In this example,
b is equal to 10. The value of b remains 10 even though the
value of a has changed to 30. This is because b contains the
value of a at the time of assignment. Changes to a do not
automatically update b.

Objects and movie clips are reference data types. When
you retrieve an object or movie clip from a variable, any

changes made subsequent to the time you originally
assigned the object to the variable are reflected. Variables
assigned objects or movie clips do not store the object or
movie clip assigned to them, but, instead, store a reference
to the object or movie clip. Each time the variable is called,
the object is retrieved. You can assign objects and movie
clips to variables and use those variables to reference the
object or movie clip.

An array is a list of values separated by commas. The
following assigns rose, lily, and daisy to the array flowers:
flowers = ["rose", "lily", "daisy"];. The
syntax flowers[0] = ["pansy"]; changes rose to
pansy. Since you have changed the value of rose to pansy,
flowers now returns pansy, lily, daisy. This is because
changes made to a reference data automatically update.

ASSIGN AN OBJECT OR
MOVIE CLIP TO A VARIABLE

FLASH ACTIONSCRIPT

92

ASSIGN AN OBJECT OR MOVIE CLIP TO A VARIABLE

3657-5 Ch04.F 1/31/02 12:19 PM Page 92

› Change the array.

� This example changes one
of the elements in the array.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

ˇ Assign the array to a
variable.

Á Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‡ Click the button to test
your movie.

� Because an array is a
reference data type, the
change you made to the array
is reflected in the output.

WORKING WITH VARIABLES AND STRINGS 4

Understanding the difference between primitive data
types and reference data types can be confusing. The
table that follows illustrates the difference by comparing
values assigned to variables with values assigned to an
array. For more information on arrays, see Chapter 7.

PRIMITIVE DATA TYPE:VARIABLES REFERENCEDATA TYPE: ARRAY

v1 = "a," v2 = "b," v3 = c

y = v1+ v2 + v3 y = ["a","b","c"];

y returns: a,b,c y returns: a,b,c

v1 = "z,"; y[0] = "z";

output = y output = y

Output returns: a, b, c output returns: z, b, c

93

3657-5 Ch04.F 1/31/02 12:19 PM Page 93

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses files load.fla
and sales.txt, which you can find on
the CD-ROM that accompanies this
book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Load the variables.

� If you associate the
variables with dynamic text
boxes, you can display the
values the variables return to
the user.

› Click to close the
Actions panel.

Actions Ctrl+Alt+A

The loadVariables action reads data from an
external file. This is useful when you need to read data
from a text file or you are working with data from a

CGI, Active Server Page (ASP), or Personal Home Page
(PHP) script. Your Flash movie and the data must be located
in the same subdomain if you are accessing the data using a
Web browser.

The syntax for load variable is
loadVariables (url, location, variables);.
The url argument is used to specify the absolute or relative
URL of the file containing the variables you want to load.
The location argument is used to specify the level or
target path that will receive the variables. For more
information on levels and target paths, see page 224. The
variables argument is used to specify the method you want
to use to send variables. Choose from get and post.

Set up the data you want to load by entering it in the
following format:
variableName=value&variableName=value&
variableName=value...

Use variableName to specify the name of the variable.
Use value to specify the value you are assigning to the
variable. Separate each variable/value pair with an &. The
variable names in your text file must match the variable
names in your movie.

Certain characters cannot be read directly from a text file.
You must use URL encoding for these characters. For
example, if your text file includes temperature=+15,
ActionScript will read it as temperature=15, dropping the
plus. The URL code for the + is %2b. To have ActionScript
read the entry correctly, type temperature=%2b15. See
Chapter 14 for the URL encoding table.

ActionScript sometimes needs to substitute loadVariable
with loadVariableNum. If you are entering your script
using the Normal mode, this substitution is done
automatically. See the appendix for more information on
loadVariable and loadVariableNum.

LOAD VARIABLES
FLASH ACTIONSCRIPT

94

LOAD VARIABLES

3657-5 Ch04.F 1/31/02 12:20 PM Page 94

ˇ Click Control ➪ Test
Movie to move to the text
environment.

Note: See page 38 for instructions on
how to test your movie.

Á Click the button to test
your movie.

� Each of these boxes is a
dynamic text box.

� When you click the
button, the variables load.

Test Movie Ctrl+Enter

WORKING WITH VARIABLES AND STRINGS 4

You can use the escape function to
convert an expression to URL-encoded
format. The syntax for the escape
function is escape(expression).
Use the expression argument to
specify the expression you want to
convert to URL-encoded format.

You can use the unescape function to
convert an expression from URL-encoded
format to ASCII characters. The syntax for
the unescape function is unescape
(expression). Use the expression
argument to specify the expression you
want to convert from URL-encoded
format to ASCII.

95

TYPE THIS:

escape("temperature=+15");

RESULT:

temperature%3D%2B15

TYPE THIS:

unescape("temperature%3D%2B15")

RESULT:

temperature=+15

3657-5 Ch04.F 1/31/02 12:20 PM Page 95

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file extract.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Assign a string to
a variable.

Actions Ctrl+Alt+A

The string.charAt method enables you to extract
the character at a specified location. Use this method
to validate entries. For example, suppose the fourth

character in an entry should be a dash. Use the
string.charAt method to extract that character for
evaluation. If the entry is not a dash, send an error message
to the user.

When using the string.charAt method, precede the
word charAt with the string or a variable that contains the
string from which you want to retrieve a character followed
by a period. Place the index position of the character you
want enclosed in parentheses after the word charAt. Here
is how you determine the index position. Starting from the
left, the first character in a string has an index value of 0,
the second character has an index value of 1, the third
character has an index position of 2, and so on. In the
example shown here, x is equal to c.

x = "abcdefg".charAt(2)

The letter a has an index of 0, the letter b has an index of
1, and the letter c has an index of 2.

When using string.charAt, if you enter an index
position that is not a number from 0 to the last index
position in the string, ActionScript will return an empty
string.

You use the string.charCodeAt method to retrieve the
code for the character at a specified location in a string. The
value returned is an integer from 0 to 65535. The
string.charAt method and the string.charCodeAt
method are the same, except the string.charCodeAt
method retrieves a code instead of the character.

The syntax for string.charCodeAt is
stringValue.charCodeAt(index);. StringValue
represents the string from which you want to retrieve a
numeric code. Index represents the index position of the
value for which you want to retrieve a code.

EXTRACT A CHARACTER FROM A STRING

FLASH ACTIONSCRIPT

96

EXTRACT A CHARACTER FROM A STRING

3657-5 Ch04.F 1/31/02 12:20 PM Page 96

› Extract a character.

� This example extracts the
character at index position 6.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

Á Click the button to test
your movie.

� ActionScript extracts the
character at index position 6.

WORKING WITH VARIABLES AND STRINGS 4

This script illustrates using charCodeAt. It
retrieves the ASCII code of a character in the
variable phrase1. The variable sampleText is
a dynamic text box.

Example:
on (release) {

phrase = "JUMP OVER THE BLUE MOON";

sampleText =phrase.charCodeAt(6);

}

You use the string.fromCharCode method to
obtain the character assigned to the ASCII code.
The string.fromCharCode method uses the
following syntax:

string.fromCharCode(code1,..., codeN);

Code1,..., CodeN represents the character code. In
this script, the user enters a code and the character
the code represents is retrieved. The variable
userEntry is an Input text box. The variable
character is a dynamic text box.

Example:
on (release) {

character = string.fromCharCode(userEntry);

}

97

3657-5 Ch04.F 1/31/02 12:20 PM Page 97

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
substring.fla, which you can find on
the CD-ROM that accompanies this
book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Assign a string to
a variable.

Actions Ctrl+Alt+A

You can use the string.substring method to
extract a string that is embedded in another string.
This is useful when you only need part of a string or

you want to validate a user’s entry. For example, if the fifth
through ninth characters of a user’s entry should always be
numbers, you can use the string.substring method to
extract those characters for evaluation. After evaluation, if
the characters are not numbers, you can send an error
message to the user. Suppose you had the data shown here:
userEntry = "PART12345-APL";.

If you want the characters in the fifth through ninth
position, use the string.substring method to extract
them. When using the string.substring method,
precede the word substring with the string or variable
from which you want to extract data followed by a period.
Follow the word substring with from and to arguments
enclosed in parentheses and separated by a comma.

The from argument represents the index position of the
first character you want. The to argument represents the

index position plus 1 of the last character you want. If you
do not specify a to value, the start position to the end of
the string will be extracted. For an explanation of index
position, see page 96. The expression shown here extracts
12345 from userEntry:

part = userEntry.substring(4,9);

When using the substring method, if the from position is
greater than the to position, ActionScript will automatically
swap the arguments. If the from position is equal to the to
position, ActionScript will return an empty string.

ActionScript provides you with several methods that you
can use to obtain a substring. The substr method uses
the syntax shown here:
stringValue.substr(start, length);.
The start argument represents the index position of the
first character of the substring to be extracted. The length
argument represents the number of characters to be
extracted.

EXTRACT A SUBSTRING FROM A STRING

FLASH ACTIONSCRIPT

98

EXTRACT A SUBSTRING FROM A STRING

3657-5 Ch04.F 1/31/02 12:20 PM Page 98

› Extract a substring.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

Á Click the button to test
your movie.

� ActionScript extracts the
substring and displays it on
screen.

WORKING WITH VARIABLES AND STRINGS 4

You can also use the slice
method to obtain a substring.
The slice method uses this
syntax:
stringValue.slice(start, end);

The start argument
represents the index position of
the first character of the
substring to be extracted. If
start is a negative number,
the count begins at the end of
the string. The end argument
represents the index position
for the last character to be
extracted. If end is a negative
number, the count begins at the
end of the string.

99

TYPE THIS:

on (release) {
nameAddress = "George Allen—-153 Kings Way—-Bronx NY";
sampleText = nameAddress.slice(-24,-11);

}

RESULT:

153 Kings Way

TYPE THIS:

on (release) {
nameAddress = "George Allen—-153 Kings Way—-Bronx NY";
sampleText = nameAddress.slice(15,28);

}

RESULT:

153 Kings Way

3657-5 Ch04.F 1/31/02 12:20 PM Page 99

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file concat.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Assign strings to variables.

Actions Ctrl+Alt+A

You can use the string.concat method to join
several strings together to form a single string. This
method is useful when you want to include data

entered by the user in your output.

When using the string.concat method, precede the
word concat with the string or variable to which you want
to concatenate, followed by a period. After the word
concat, list the values you want to concatenate, separated
by commas and enclosed in parentheses. Any spaces at the
beginning or end of the string are considered part of the
string.

You can also concatenate or join two strings using the
addition (+) operator. If one operand in an expression is a
string, the addition operator will concatenate. If all
operands in an expression are numbers, the addition

operator will add them. Here also, any spaces at the
beginning or end of the string are considered part of the
string.

In Flash 4, the + operator was only used as a numeric
operator. It did not concatenate. When Flash 4 movies are
imported into Flash 5, operands that use the addition
operator are converted to numbers.

In Flash 4, you used either the add operator or the &
operator to concatenate strings. The add operator has been
deprecated in Flash 5. You should use + to concatenate if
you are creating movies for Flash 5. In Flash 5, the &
operator is used as the bitwise AND. When Flash 4 files
that use & are brought into Flash 5, the & is automatically
converted to add.

CONCATENATE STRINGS

FLASH ACTIONSCRIPT

100

CONCATENATE STRINGS

3657-5 Ch04.F 1/31/02 12:20 PM Page 100

› Concatenate the strings.

� If you associate the
variables with dynamic text
boxes, you can display the
values the variables return to
the user.

� If you associate the
variables with input text
boxes, you can obtain input
from the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

Á Type a word or phrase.

‡ Click the button.

� ActionScript concatenates
the strings.

WORKING WITH VARIABLES AND STRINGS 4

You can use the plus operator to
concatenate strings. The script that
follows provides an example. The
variable sampleText is a dynamic
text box. The variable userEntry is
an input text box. The user enters a
color in the userEntry field. When
the user releases the mouse after
clicking a button, the color they
entered is concatenated with the
variables phrase1 and phrase2.

101

TYPE THIS:

on (release) {
phrase1 = "JUMP OVER THE ";
phrase2 = " MOON";
sampleText = phrase1 + userEntry + phrase2;

}

RESULT:

If the user enters PINK, here is the result.

JUMP OVER THE PINK MOON

3657-5 Ch04.F 1/31/02 12:20 PM Page 101

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file length.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Obtain the length of a
string.

� If you associate the
variable with an input text
box, you can obtain input
from the user.

› Assign the results to a
variable.

� If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

ˇ Click to close the
Actions panel.

Actions Ctrl+Alt+A

You can use the length property to count the number
of characters in a string. This property is useful when
validating user input. For example, if the user enters a

value that is required to be exactly 10 characters long, you
can evaluate the entry and send an error message back to
the user if the entry is more or less than 10 characters.

To use the length property, you simply precede the word
length with the string or string variable for which you want
to obtain the length.

In the example below, the string "S2498" is assigned to the
variable studentID. Then, the length property is used to
obtain the length of the value in the variable studentID.
The variable enteredLength returns 5.

studentID = S249876
enteredLength = studendID.length;

When calculating string length, spaces are included in the
count. In the following example, "Hello" would have a
length of 6.

Example:

"Hello".length

In Flash 4, the length function is used to obtain the
length of a string. The syntax for the length function is
length(expression);. Use the expression argument
to specify the expression or variable for which you want to
obtain the length.

Example:

studentID = S249876
enteredLength = length(studentID)

The variable enteredlength returns 7.

The length function has been deprecated in Flash 5. In
you are authoring for a Flash 5 environment, you should use
the length property instead.

OBTAIN THE LENGTH OF A STRING
FLASH ACTIONSCRIPT

102

OBTAIN THE LENGTH OF A STRING

3657-5 Ch04.F 1/31/02 12:20 PM Page 102

Á Click Control ➪ Test
Movie to move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‡ Type a word or phrase.

° Click the button to test
your movie.

� ActionScript returns the
number of characters in the
text you typed.

Test Movie Ctrl+Enter

WORKING WITH VARIABLES AND STRINGS 4
You can use ActionScript to check the length of an entry. The
script shown here demonstrates. In this movie, the user enters
an identification number. If the identification number is not five
characters long, the user gets an error message. The script is
attached to a button. The variable studentId is an Input Text
field. The variable errorMessage is a Dynamic Text field.

Example
/* Executes script when the user releases the button. */

on (release) {

/* Checks the length of the input text box studentID. */

if (studentID.length == 5) {

/* If the length of StudentID is fives character long, no
message is displayed in the dynamic text box errorMessage. */

errorMessage = “ “;

/* If the length of StudentId is not equal to five, a
message is displayed in the field errorMessage. */

} else {

errorMessage = “Your ID must be 5 characters long.”;

}

}

103

3657-5 Ch04.F 1/31/02 12:20 PM Page 103

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file search.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a frame.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Initialize the variable.

› Select the frame, button,
or movie clip to which you
want to add ActionScript.

� This part of this example
uses a button.

Actions Ctrl+Alt+A

Using the string.indexOf method, you can locate a
substring within a string. Use this method if you need
to search a string for a word or phrase. The

string.indexOf method returns the index value of the
first occurrence of the string. If the value is not found,
string.indexOf returns a -1.

To use the string.indexOf method, precede the word
indexOf with the string or string variable you want to
search, followed by a period. After the word indexOf,
place the value and the start arguments separated by a
comma and enclosed in parentheses. The value argument
is used to specify the string or a variable containing the
string for which you want to search. The start argument is
used to specify the index position of the character at which

you want to begin your search. For an explanation of index
position, see on page 96. If you do not specify a start,
ActionScript will begin the search at the beginning of the
string.

If you would like to do multiple searches of a string, you
need to initialize a variable to 0 in the first frame of the
movie and use that variable as the start. For the purpose of
this example, call the variable startSearch. After the
script finds the substring, have the script assign the index
value of the substring to a variable. For the purpose of this
example, call that variable indexValue. Assign
indexValue +1 to startSearch. The next search will
start at the index position to the right of the last value
found. When no value is found, ActionScript will return a -1.

SEARCH A STRING

FLASH ACTIONSCRIPT

104

SEARCH A STRING

3657-5 Ch04.F 1/31/02 12:20 PM Page 104

ˇ Assign a string to a
variable.

Á Find the index of a value.

� Associate the variable with
a dynamic text box. This
enables you to display the
value the variable returns to
the user.

‡ Reset the variable you
initialized in frame 1.

° Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

· Click the button to test
your movie.

� Each time you click the
button, ActionScript returns
the next index value for the
string for which you are
searching.

WORKING WITH VARIABLES AND STRINGS 4
The string.lastIndexOf method works exactly like the
string.indexOf method, except it returns the index value of the
last occurrence of a substring within a string. The
string.lastIndexOf method uses the following syntax.

stringValue.lastIndexOf(value, start);

The script shown here illustrates using the string.lastIndexOf
variable. The variable startSearch begins the search at index
position 36. The variable indexValue is a Dynamic Text box. It
displays the results of the search. Note that because
string.lastIndexOf searches from the end of the string to the
beginning, after each search the variable startSearch is assigned the
value indexValue-1.

Frame 1:

startSearch = 36;

Button:

on (release) {

namesList = "George Bill Paul Bill Tom Bill Peter";

indexValue = namesList.lastIndexOf("Bill", startSearch);

startSearch = indexValue -1;

}

105

3657-5 Ch04.F 1/31/02 12:20 PM Page 105

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file case.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Convert a string to
lowercase.

� Associate the variable with
a dynamic text box. This
enables you to display the
value the variable returns to
the user.

� Associate the variable with
an input text box. This
enables you to obtain input
from the user.

› Click to close the
Actions panel.

Actions Ctrl+Alt+A

You can use the string.toLowerCase and
string.toUpperCase methods to change the case
of your text. This is useful when you are formatting

output or when you want to compare strings without regard
to case. The string.toLowerCase method turns all
characters that are not already lowercase to lowercase. The
string.toUpperCase method turns all characters that
are not already uppercase to uppercase.

To use the string.toLowerCase method, simply precede
the word toLowerCase with the string or string variable
you want to convert to lowercase followed by a period.
Follow the word toLowerCase with parentheses.

Example:

userEntry = "HELLO";
sampleText = userEntry.toLowerCase();

Result:

hello

The syntax for the string.toUpperCase method is
similar to the syntax for the string.toLowerCase
method. To use the string.toUpperCase method, simply
precede the word toUpperCase with the string or string
variable you want to convert to uppercase followed by a
period. Then follow the word toUpperCase with
parentheses.

Example:

userEntry = "hello";
sampleText = userEntry.toUpperCase();

Result:

HELLO

CHANGE THE CASE OF A STRING
FLASH ACTIONSCRIPT

106

CHANGE THE CASE OF A STRING

3657-5 Ch04.F 1/31/02 12:20 PM Page 106

ˇ Click Control ➪ Test
Movie to move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

Á Type a phrase in
uppercase letters.

‡ Click the button to test
your movie.

� ActionScript converts
the uppercase letters to
lowercase letters.

Test Movie Ctrl+Enter

WORKING WITH VARIABLES AND STRINGS 4

This example concatenates the user’s entry with two phrases
generated by the script. If the user’s entry is in lowercase, the
output is inconsistent. This script converts the user’s entry to
uppercase. For more information on concatenating, see page 100.

Example:
on (release) {

phrase1 = "JUMP OVER THE";

phrase2 = "MOON";

sampleText = phrase1.concat(userEntry.toUpperCase(), phrase2);

}

107

3657-5 Ch04.F 1/31/02 12:20 PM Page 107

CONVERT STRINGS,
NUMBERS, AND BOOLEANS

FLASH ACTIONSCRIPT

108

The String function
converts a Boolean,
number, object, or
expression to a string.
This is useful when you
need the string
equivalent of a
Boolean, number,
object, or expression.
The string function uses
the syntax shown here:
String(expression)

Expression
represents the number,
Boolean, variable, or
object you want to
convert to a string.

The following table
illustrates the String
function.

CONDITION EXPRESSION RETURN

If the expression is omitted, the function string() Wrong number
returns an error message. of parameters.

If the expression is a Boolean literal, the a= false; false
function returns a string representation string(a)
of the Boolean value. b = true; true

string(b)

If the expression is a numeric, the function string(1/2) .5
returns the decimal representation of the
number.

If the expression is a string, the function a = "hello" hello
returns the expression. string(a)

If the expression is an object, the function string(Date) [type Function]
returns the string representation of the
object.

If the expression is a movie clip, the function a =(_root.sampleMC) _level0.sampleMC
returns the movie clip in dot notation. string(a)

CONVERT TO A STRING

The Boolean function
converts a number, string,
movie clip, object, or
expression to a Boolean. This
function is useful when you
need to evaluate a condition.
The Boolean function uses
the syntax shown here:

Boolean(expression)

Expression represents the
number, string, movie clip,
object, or expression you
wish to convert.

The following table illustrates
the Boolean function.

CONDITION EXPRESSION RETURN

If the expression is omitted, the function Boolean() false
returns the value false.

If the expression is any number other Boolean(-234.67) true
than 0, the function returns the value true. Boolean(10) true

If the expression is 0, the function x = 0; false
returns the value false. Boolean(x)

If the expression is a Boolean value, a = false; false
the function returns the value of the Boolean(a)
expression. b =true; true

Boolean(b)

Continued

CONVERT TO A BOOLEAN

3657-5 Ch04.F 1/31/02 12:20 PM Page 108

WORKING WITH VARIABLES AND STRINGS 4

109

CONDITION EXPRESSION RETURN

If the expression is a movie clip or an a =(_root.sampleMC); true
object, the function returns true if the Boolean(a) If the movie
movie clip or object exists, otherwise clip exists.
it returns false. false

If the movie clip
does not exist.

If the expression is the string Boolean("123") true
representation of any number other Boolean("12.34") true
than 0, the function returns true. Boolean("-123") true

If the expression is not the string Boolean("0") false
representation of any number other Boolean("abc") false
than 0, the function returns false.

CONVERT TO A BOOLEAN (CONTINUED)

The Number function
converts a string, Boolean, or
expression to a number. This
is useful when you need the
numeric equivalent of a
string, Boolean, or
expression. The number
function uses the following
syntax:
Number(expression)

Expression represents the
Boolean, string, or object you
wish to convert.

The following table illustrates
the Number function.

CONDITION EXPRESSION RETURN

If the expression is omitted, the Number() Wrong number of
function returns an error. parameters.

If the expression is a number, the x = 10; 10
function returns the value of the Number(x)
expression.

If the expression is the Boolean a = true; 1
value true, the function returns 1. Number(a)

If the expression is the Boolean a = false 0
value false, the function returns 0. Number(a)

If the expression is a number a= "10"; 10
represented as a string, the Number(a)
function returns the number.

If the expression is a string not Number(abc) 0
enclosed in quotes, the function
returns 0.

If the expression is a string variable Number("abc") NaN
or a string enclosed in quotes, the
function returns NaN. NaN stands a=abc NaN
for “not a number.” Number(a)

CONVERT TO A NUMBER

3657-5 Ch04.F 1/31/02 12:20 PM Page 109

Operators are characters that you can use to combine,
compare, or modify values. When using operators,
you must be aware of precedence. Precedence

determines the order in which ActionScript performs
calculations, for example, x = 1 + 2 * 3; .

ActionScript performs multiplication and division before
addition and subtraction, in accordance with its rules of
precedence. In the example, x is equal to 7. ActionScript
multiplies 2 times 3 to get 6 and adds the result to 1. You
can change the order of calculation by using parentheses.
Parentheses override the normal order of precedence
causing ActionScript to calculate the items enclosed in
parentheses first, for example, y = (1+2) * 3; .

In this example, x is equal to 9. ActionScript adds 1 plus 2
to get 3 and multiplies the result by 3. If you nest
parentheses, ActionScript evaluates the innermost
parentheses first. If two or more operators have the same
precedence, ActionScript uses associativity to determine the
order in which to perform the calculation. An operator can
have an associativity of either left to right or right to left. If
an operator has an associativity of left to right, ActionScript
performs the calculation from left to right, or vice versa for
right to left.

UNDERSTAND PRECEDENCE

110

FLASH ACTIONSCRIPT

Operators are characters that you use to combine,
compare, or modify values. ActionScript calls the
elements on which operators perform operands. There
are three types of operators: unary, binary, and ternary.

Unary operators accept one operand. Increment and
decrement are unary operators. Most unary operators
prefix the operand. The increment and decrement
operators, however, can either prefix or suffix the
operand, depending on the operation you want to
perform. For more about increment and decrement, see
pages 122 to 125.

Binary operators are the most common type of
operator. Binary operators accept two operands. You
place binary operators between the operands. Plus (+)
and minus (–) are binary operators.

Ternary operators accept three operands. The
conditional operator (?:) is a ternary operator.
ActionScript evaluates expression1. If expression1
is true, ActionScript returns expression2; if not
true, ActionScript returns expression3. For more on
the conditional operator, see Chapter 6.

TYPES OF OPERATORS

3657-5 Ch05.F 1/31/02 12:20 PM Page 110

WORKING WITH OPERATORS 5

111

OPERATOR PRECEDENCE AND ASSOCIATIVITY

OPERATOR DESCRIPTION ASSOCIATIVITY

HIGHEST PRECEDENCE

+ Unary plus Right to left

– Unary minus Right to left

~ Bitwise one’s Right to left
complement

! Logical NOT Right to left

not Logical NOT Right to left
(Flash 4 style)

++ Post-increment Left to right

-- Post-decrement Left to right

() Function call Left to right

[] Array element Left to right

. Structure member Left to right

++ Pre-increment Left to right

-- Pre-decrement Right to left

new Allocate object Right to left

delete Deallocate object Right to left

typeof Type of object Right to left

void Returns undefined Right to left
value

* Multiply Left to right

/ Divide Left to right

% Modulo Left to right

+ Add Left to right

add String concatenation Left to right
(formerly &)

- Subtraction Left to right

<< Bitwise left shift Left to right

> Bitwise right shift Left to right

>> Rightwise right Left to right
shift (unsigned)

OPERATOR DESCRIPTION ASSOCIATIVITY

HIGHEST PRECEDENCE

< Less than Left to right

<= Less than or equal to Left to right

> Greater than Left to right

>= Greater than Left to right
or equal to

lt Less than Left to right
(string version)

le Less than or equal Left to right
to (string version)

gt Greater than Left to right
(string version)

ge Greater than or Left to right
equal to (string
version)

== Equal Left to right

!= Not equal Left to right

eq Equal (string version) Left to right

ne Not equal Left to right
(string version)

& Bitwise AND Left to right

^ Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

and Logical AND (Flash 4) Left to right

|| Logical OR Left to right

or Logical OR (Flash 4) Left to right

?: Conditional operator Right to left

= Assignment Right to left

*=,/=,%=, Compound Right to left
+=,-=,&=, assignment
\=,^=,<<=,
>=,>>=

, Multiple evaluation Left to right

3657-5 Ch05.F 1/31/02 12:20 PM Page 111

⁄ Open file add.fla on the
CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic text
box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click ➪ Operators ➪ +.

� The Parameters panel
opens.

Operators

+

ADD NUMERIC VALUES
FLASH ACTIONSCRIPT

112

ADD NUMERIC VALUES

You can use the plus (+) operator to add numeric
values. This operator is essential when you are
performing mathematical operations. The + operator

enables you to take one numeric value, add it to another,
and obtain the sum. To use the plus operator, you place the
plus sign + between two numeric expressions;
ActionScript adds them. A numeric expression is any
expression that ActionScript can evaluate and return a
numeric value. The syntax for the plus operator action is

numericExpression1+numericExpression2

You can use the plus + operator to add numbers, numeric
variables and numbers, or numeric variables, for example:

z=x+2;
z=x+y;

Concatenating joins two or more strings together to form a
single string. You can use the plus + operator to
concatenate strings. If one operand in an expression is a

string, the plus operator concatenates. If all operands in an
expression are numbers, the plus operator adds. For more
about concatenating strings, see Chapter 4.

If a number is a string and you want to use the number to
add, use the Number function to convert the string to a
number, for example:

a="10";
x=20;
y=Number(a)+x;

You can use the plus operator with other numeric operators
to perform complex mathematical calculations. You can add,
subtract, multiply, and divide in the same expression, but
you must be careful of precedence. Precedence controls the
order of calculation. For example, ActionScript performs
multiplication and division before addition and subtraction.
For an explanation of precedence, see page 110.

3657-5 Ch05.F 1/31/02 12:20 PM Page 112

° Type the mathematical
expression.

� This example adds inputA
to inputB.

· Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

‚ Type in your values.

— Click the button to
calculate.

� ActionScript adds the two
input text boxes and displays
the results in the dynamic text
box.

output = number(inputA) + number(inputB);

WORKING WITH OPERATORS 5

This script illustrates calculating a subtotal. The user
enters a value and clicks the Calculate button to add
this entry to previous entries.

Example:
/* on (release) - tells Flash to start the
action when the user releases the mouse.*/

on (release) {

/* output - a dynamic text box. subtotal -
a dynamic text box. input - an input text box.
Number(input) - converts the value of input to
a number. */

/* The value of number(input) plus the
value of subtotal are added together and
assigned to output.*/

output = Number(input) + subtotal;

/* subotal - a dynamic text box. The
current value of Number(input) + the current
value of subtotal are added together and
assigned to subtotal. */

subtotal = Number(input) + subtotal;

/* Resets the value of input to 0.*/

input = 0;

}

113

3657-5 Ch05.F 1/31/02 12:20 PM Page 113

⁄ Open file subtract.fla on
the CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic text
box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click ➪ Operators ➪ –.

� The Parameters panel
opens.

Operators

-

You can use the minus (-) operator to subtract numeric
values or to negate a number or expression. This
operator is essential when performing mathematical

calculations. To use the minus operator to subtract, you
place the minus sign between two numeric expressions.
A numeric expression is any statement that ActionScript
can evaluate and return a numeric value. The syntax for the
minus operator is

numericExpression1–numericExpression2

You can use the minus operator to subtract numbers,
numeric variables and numbers, or numeric variables. If x=4
and y=2, all of the following examples are valid:

z=2-1;
z=x–3–2;
z=x–y;

To use the minus operator to negate, you place the minus
operator in front of a numeric expression. Negating
reverses the sign of the expression, for example:

–2,
–(x+2)

You can use the minus operator with other numeric
operators to perform complex mathematical calculations.
You can add, subtract, multiply, and divide in the same
expression, but you must be careful of precedence.
Precedence controls the order of calculation. For example,
ActionScript performs multiplication and division before
addition and subtraction. For an explanation of precedence,
see page 110.

If you use a string when subtracting, ActionScript attempts
to convert the string to a number. If ActionScript is unable
to convert the string to a number, it returns NaN, which
means not a number. You can use the Number function to
convert the string to a number. To use the Number function,
you type the word Number, followed by the expression
you want to convert, enclosed in parentheses. For more on
the Number function, see Chapter 4.

Example:

a="10";
x=5;
y=Number(10)–5;

SUBTRACT NUMERIC VALUES
FLASH ACTIONSCRIPT

114

SUBTRACT NUMERIC VALUES

3657-5 Ch05.F 1/31/02 12:20 PM Page 114

° Type the mathematical
expression.

� This example subtracts
inputB from inputA.

· Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‚ Click to calculate.

� ActionScript subtracts
using the entries in the input
text boxes and displays the
results in the dynamic text
box.

output = number(inputA) - number(inputB);

WORKING WITH OPERATORS 5

115

In this script, the user types the cost of items and clicks the calculate button
to calculate a subtotal. After the user has entered all the items, the user
enters a discount amount in dollars. ActionScript subtracts the discount
amount from the subtotal to calculate a final price.

Example:
/* on (release) - tells Flash to start the action when the user
releases the mouse button. */

on (release) {

/* output - a dynamic text box. subtotal - a dynamic text box.
input - an input text box. Number(input) - converts the value of
input to a number. */

/* The value of number(input) plus the value of subtotal are
added together and assigned to output. */

output = Number(input) + subtotal;

/* subtotal - a dynamic text box. The current value of
Number(input) + the current value of subtotal are added together and
assigned to subtotal. */

subtotal = Number(input) + subtotal;

/* finalPrice - a dynamic text box. discount - a dynamic text
box. number(discount) - converts the value of discount to a number.*/

/* The value of number(discount) is subtracted from subtotal and
the result is assigned to finalPrice. */

finalPrice = subtotal - number(discount);

/* Resets the value of input to 0.*/

input = 0;

}

3657-5 Ch05.F 1/31/02 12:20 PM Page 115

⁄ Open file multiply.fla on
the CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic text
box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click ➪ Operators ➪ *.

� The Parameters panel
opens.

Operators

*

You can use the multiplication (*) operator to multiply
numeric values. This operator is essential when you
are performing mathematical operations. To use the

multiplication operator, you place an asterisk * between the
numeric expressions you want to multiply. A numeric
expression is any statement that ActionScript can
evaluate and return a numeric value. The syntax for the
multiplication operator is

numericExpression1*numericExpression2

ActionScript multiplies numericExpression1 by
numericExpression2. If your expression contains a
series of calculations, they are performed from left to right.
For example: x = 3*2*8;. The example multiplies 3 times
2, yielding 6, and then multiplies 6 times 8, yielding 48.

You can use the multiplication operator to multiply
numbers, numeric variables and numbers, or numeric
variables. If x=4 and y=2, all of the following examples are
valid.

z=2*3;
z=x*3;
z=x*y;

You can use the multiplication operator with other numeric
operators to perform complex mathematical calculations.
You can add, subtract, multiply, and divide in the same
expression, but you must be careful of precedence.
Precedence controls the order of calculation. For example,
ActionScript performs multiplication and division before
addition and subtraction. For an explanation of precedence,
see page 110.

If you use a string in your calculation, ActionScript attempts
to convert it to a number. If ActionScript is unable to
convert it to a number, it returns NaN, which means not a
number. To convert a string to a number, use the Number
function. To use the Number function, type the word
Number, followed by the expression you want to convert,
enclosed in parentheses. For more about the Number
function, see Chapter 4.

Example:

a="10";
x=5;
y=Number(10)*5;

MULTIPLY NUMERIC VALUES
FLASH ACTIONSCRIPT

116

MULTIPLY NUMERIC VALUES

3657-5 Ch05.F 1/31/02 12:20 PM Page 116

° Type the mathematical
expression.

� This example multiplies
inputA by InputB.

· Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‚ Type in values.

— Click to calculate.

� ActionScript multiplies
using the entries in the input
text boxes and displays the
results in the dynamic text
box.

output = number(inputA) * number(inputB);

WORKING WITH OPERATORS 5

Your mathematical calculations can be as
complex as necessary, combining numbers and
variables. If you nest parentheses, ActionScript
calculates the innermost expressions first.

117

TYPE THIS:

x=25.356;

y=4 *x +10;

z=(2+4)-(30*(-5*x));

output=z+y*z+(2+4);

RESULT:

428273.9856

3657-5 Ch05.F 1/31/02 12:20 PM Page 117

⁄ Open file divide.fla on the
CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic text
box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click ➪ Operators ➪ /.

� The Parameters panel
opens.

Operators

/

You can use the division (/) operator to divide numeric
values. The division operator is essential when you are
performing mathematical calculations. To use the

division operator, you place the / operator between two
numeric expressions. A numeric expression is any
statement that ActionScript can evaluate and return a
numeric value. The syntax for the division operator is

numericExpression1/numericExpression2

ActionScript divides numericExpression1 by
numericExpression2. If your expression contains a
series of calculations, they are performed from left to right,
for example, 18/3/2. The example above divides 18 by 3,
yielding 6, and then divides 6 by 2, yielding 3.

You can use the division operator to divide numbers,
numeric variables and numbers, or numeric variables. If x=
4 and y=2, all of the following examples are valid.

6/3
x/4
x/y

You can use the division operator with other numeric
operators to perform complex mathematical calculations.
You can add, subtract, multiply, and divide in the same
expression, but you must be careful of precedence.
Precedence controls the order of calculation. For example,
ActionScript performs multiplication and division before
addition and subtraction.

If you use a string in your calculation, ActionScript attempts
to convert it to a number. If ActionScript is unable to convert
the string to a number, it returns NaN, which means “not a
number.” You can use the Number function to convert a
string to a number. To use the Number function, you type
the word Number, followed by the expression you want
to convert, enclosed in parentheses.

Example:

a="10";
x=5;
y=Number(10)/5;

If you divide by 0, ActionScript returns infinity.

DIVIDE NUMERIC VALUES
FLASH ACTIONSCRIPT

118

DIVIDE NUMERIC VALUES

3657-5 Ch05.F 1/31/02 12:20 PM Page 118

° Type the mathematical
expression.

� This example divides
inputA by inputB.

· Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‚ Type in values.

— Click to calculate.

� ActionScript divides using
the entries in the input text
boxes and displays the results
in the dynamic text box.

output = number(inputA) / number(inputB);

WORKING WITH OPERATORS 5

You can use the parseFloat function to
convert a string that begins with a number
to a floating-point number. A floating-point
number is any number with a decimal
point. This function is useful when the
number you need is in a string. The syntax
for the parseFloat function is
parseFloat(string);

Examples:

119

FUNCTION RETURN

parseFloat("-123") -123

parseFloat(123.45) 123.45

parseFloat(123abc) 123

parseFloat(abc123) NaN

FUNCTION RETURN

parseInt("-123") -123

parseInt(123.45) 123

parseInt(123abc) 123

parseInt(abc123) NaN

You can use the parseInt function to
convert a string that begins with a number
to an integer. An integer is a number that
does not contain a decimal point. This
function is useful when the number you
need is in a string. The syntax for the
parseFloat function is
parseInt(string);

Examples:

3657-5 Ch05.F 1/31/02 12:20 PM Page 119

⁄ Open file modulo.fla on
the CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic text
box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click ➪ Operators ➪ %.

� The Parameters panel
opens.

Operators

%

The remainder of one expression divided by another
expression is called the modulo. In ActionScript, you
can use the modulo operator (%) to find the remainder.

This operator is useful when you are working with numbers
or writing scripts. When scripting, you might want a
particular action to occur only if a number is evenly divisible
by another. The modulo operator is perfect for this. To use
the modulo operator, you place the % between two numeric
expressions. The syntax for the modulo operator is

numericExpression1%numericExpression2

ActionScript divides numericExpression1 by
numericExpression2 and returns the remainder, for
example: ActionScript divides 13 by 5 and assigns 3, the
remainder, to x.

You can use the modulo operator with numbers, variables
and numbers, and variables. The numericExpression

argument represents any number, integer, floating-point
number, or string that converts to a number.

If the numericExpression is not a number, ActionScript
attempts to convert it to a number.

In general, a leap year occurs in years that are evenly
divided by four. You can use the modulo to help you
determine if a year is a leap year. You just divide the year by
four and if the remainder is 0 the year is a leap year.

You can also use the modulo when you want to execute a
statement every nth time. For example, if you want to
execute a statement every other time the user presses a
button, increment a number — let us say x — each time the
user presses the button. Then execute your statement only
if the modulo of x divided by 2 is equal to 0.

FIND THE MODULO
FLASH ACTIONSCRIPT

120

FIND THE MODULO

3657-5 Ch05.F 1/31/02 12:20 PM Page 120

° Type the mathematical
expression.

� This example finds the
modulo of inputA divided by
inputB.

· Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‚ Type in values.

— Click to calculate.

� ActionScript finds the
modulo using the entries in
the input text boxes and
displays the results in the
dynamic text box.

output = number(inputA) % number(inputB);

WORKING WITH OPERATORS 5

When you use the subtract, multiply, divide, or
modulo operators with a string, ActionScript
tries to convert the string to a number. When
you use the plus operator with a string,
ActionScript concatenates. This can produce
interesting results when you are performing
mathematical calculations using strings. The
following script illustrates:

ActionScript finds the modulo of 24 divided by
5, which is 4, and then concatenates 10. To add
a, you must convert a to a number. Generally, if
you want to perform mathematical calculations
with strings, you should convert the strings to
numbers. You should also be aware that input
text boxes capture numbers as strings.

121

TYPE THIS:

on (release) {
x = "24";
y = "5";
a = "10";
output = x%y+a;

}

RESULT

410

TYPE THIS:

on (release) {
x = "24";
y = "5";
a = "10";
output = number(x) %Number(y)+Number(a);

}

RESULT

14

3657-5 Ch05.F 1/31/02 12:20 PM Page 121

⁄ Open file increment.fla on
the CD-ROM.

¤ Create dynamic text
boxes.

‹ Create a button.

› Click to select the button.

ˇ Open the Object Actions
panel.

Á Click ➪ Operators ➪ ++.

� The Parameters panel
opens.

Operators

++

You can use the pre-increment operator (++) to
increase the value of an expression by 1. This
operator is useful as a counter in a loop. For more

about loops, see Chapter 6. The syntax for the pre-
increment operator is

++expression

The expression argument represents any numeric,
variable, element in an array, or object property. The pre-
increment operator adds 1 to the expression, assigns 1
plus the expression to the expression, and returns 1
plus the expression. If the expression x is equal to 4,
++x is equal to 5. The variable x is assigned 5. In the
expression y=++x, y is assigned 5.

Example:

x=4;
y=++x;
Result: y is equal to 5, x is equal to 5
z=x;
Result: x is equal to 5, z is equal to 5

You can also use the post-increment operator to increase
the value of an expression. The post-increment operator
is similar to the pre-increment operator and also can be
used as a counter in a loop. The post-increment operator
adds 1 to the expression, assigns 1 plus the expression
to the expression, and returns the original value of the
expression. The syntax for the post-increment operator is

expression++

If the expression x is equal to 4, x++ is equal to 5. The
variable x is assigned 5. In the expression y = x++, y
is equal to 4.

Example:

x=4;
y=x++;
Result: y is equal to 4, x is equal to 5
z=x;
Result: x is equal to 5; z is equal to 5

SET VALUES WITH THE
INCREMENT OPERATOR

FLASH ACTIONSCRIPT

122

SET VALUES WITH THE INCREMENT OPERATOR

3657-5 Ch05.F 1/31/02 12:21 PM Page 122

‡ Type the mathematical
expression.

� This example
increments x.

° Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

· Click to calculate.

� ActionScript uses the
pre-increment operator
to set the value of x and y.
ActionScript displays the
results in the dynamic text
box.

y = ++ x ;

WORKING WITH OPERATORS 5

This script illustrates using the post-increment
operator. You attach the script to a button. The
expression x=0 assigns 0 to the variable x.
You place this statement in the first fame of the
movie to initialize the value of x. The statement
on (release) begins the action when the user
releases the mouse after clicking the button. The
variables x and y are dynamic text boxes. x++
increases the value of x by 1 and assigns the
original value of x to y.

Frame 1:

x = 0;

Button:
on (release) {

y = x ++;

}

The increment operator is a
unary operator. Unlike
arithmetic operators, it only
requires a single operand.

Example
++x;

The example represents a
complete statement.

123

3657-5 Ch05.F 1/31/02 12:21 PM Page 123

⁄ Open file decrement.fla
on the CD-ROM.

¤ Create dynamic text
boxes.

‹ Create a button.

› Click to select the button.

ˇ Open the Object Actions
panel.

Á Click ➪ Operators ➪ -- .

� The Parameters panel
opens.

Operators

--

You can use the pre-decrement operator (--) to
decrease the value of an expression by 1. This
operator is useful as a counter in a loop. For more

about loops, see Chapter 6. The syntax for the pre-
decrement operator is

--expression

The expression argument represents any numeric,
variable, element in an array, or object property. The pre-
decrement operator subtracts 1 from the expression,
assigns 1 minus the expression to the expression, and
returns 1 minus the expression. If the expression x is
equal to 4, --x is equal to 3. The variable x is assigned 3.
In the expression y=--x, y is equal to 3.

Example:

x=4;
y=--x;

Result: y is equal to 4, x is equal to 4
z=x;
Result: x is equal to 4, z is equal to 4

You can also use the post-decrement operator to decrease
the value of an expression. The post-decrement operator
is similar to the pre-decrement operator and also can be
used as a counter in a loop. The post-decrement operator
subtracts 1 from the expression, assigns 1 minus the
expression to the expression, and returns the original
value of the expression. The syntax for the post-
decrement operator is

expression--

If the expression x is equal to 4, x-- is equal to 3. The
variable x is assigned 3. In the expression y=x--, y is
equal to 4.

SET VALUES WITH THE
DECREMENT OPERATOR

FLASH ACTIONSCRIPT

124

SET VALUES WITH THE DECREMENT OPERATOR

3657-5 Ch05.F 1/31/02 12:21 PM Page 124

‡ Type the mathematical
expression.

� This example
decrements x.

° Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

· Click to calculate.

� ActionScript uses the
pre-decrement operator
to set the value of x and y.
ActionScript displays the
results in the dynamic text
box.

y = x -- ;

WORKING WITH OPERATORS 5

125

This script illustrates using the post-decrement
operator. You attach the script to a button. The
expression x=100 assigns 100 to the variable
x. You place this statement in the first fame of
the movie to initialize the value of x. The
statement on (release) begins the action
when the user releases the mouse after clicking
the button. The variables x and y are dynamic
text boxes. x-- decreases the value of x by 1
and assigns the original value of x to y.

Frame 1:
x = 100;

Button:
on (release) {

y = x--;

}

3657-5 Ch05.F 1/31/02 12:21 PM Page 125

answer = Number(x) < Number(y)

<

⁄ Open file LessThan.fla on
the CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic
text box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click Operators ➪ < to
select Less Than.

� The Parameters panel
opens.

° Type the mathematical
expression.

� This example compares
x and y.

� ActionScript compares the
entries in the input text boxes
to determine if x < y.
ActionScript displays the
Boolean result in the
dynamic text box.

You can use the less than operator (<) to compare two
expressions and determine whether the first
expression is less than the second expression. If

expression1 is less than expression2, ActionScript
returns the Boolean value true. If expression1 is greater
than or equal to expression2, Flash returns the Boolean
value false. The syntax for the less than expression is

expression1<expression2

Expression represents any number or string.

You can use the greater than operator (>) to compare
two expressions and determine whether the first
expression is greater than the second expression. If
expression1 is greater than expression2, ActionScript
returns the Boolean value true. If expression1 is less
than or equal to expression2, ActionScript returns the
Boolean value false. The syntax for the greater than
operator is

expression1>expression2

Expression represents any number or string.

When used with strings, the less than and greater than
operators determine alphabetical order. Comparing the
string value of numbers produces unusual results. Use the
Number function to convert strings to numbers before
doing a comparison. You often use these operators with
loops to repeat an action. To learn more about loops, see
Chapter 6.

Flash 4 used the lt and gt operators to compare strings
and the < and > operators to compare numbers. Flash 5
deprecates lt and gt. You should use < and > when
authoring for a Flash 5 environment.

USING LESS THAN OR GREATER THAN
FLASH ACTIONSCRIPT

126

USING LESS THAN OR GREATER THAN

3657-5 Ch05.F 1/31/02 12:21 PM Page 126

answer = x <= y;

⁄ Open file LessThanE.fla on
the CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic
text box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click Operators ➪ <= to
select Less Than Or Equal To.

� The Parameters panel
opens.

° Type the mathematical
expression.

� This example compares
two numbers.

� ActionScript compares the
entries in the input text boxes
to determine if x <= y.
ActionScript displays the
Boolean result in the
dynamic text box.

127

You can use the less than or equal to operator (<) to
compare two expressions and determine whether
the first expression is less than or equal to the

second expression. If expression1 is less than or
equal to expression2, ActionScript returns the Boolean
value true. If expression1 is greater than
expression2, Flash returns the Boolean value false. The
syntax for less than or equal to is

expression1<=expression2

Expression represents any number or string.

You can use the greater than or equal to operator (>=) to
compare two expressions and determine whether the
first expression is greater than or equal to the second
expression. If expression1 is greater than or equal to
expression2, ActionScript returns the Boolean value
true. If expression1 is less than expression2,

ActionScript returns the Boolean value false. The syntax
for the greater than or equal to operator is

expression1>=expression2

Expression represents any number or string.

When used with strings, the less than and equal to and the
greater than and equal to operators determine alphabetical
order. Comparing the string value of numbers produces
unusual results. Use the Number function to convert strings
to numbers before doing a comparison. You often use these
operators with loops to repeat an action. To learn more
about loops, see Chapter 6.

Flash 4 used the le and ge operators to compare strings
and the <= and >= operators to compare numbers. Flash 5
deprecates le and ge. You should use <= and >= when
authoring for a Flash 5 environment.

USING LESS THAN OR EQUAL TO OR
GREATER THAN OR EQUAL TO

WORKING WITH OPERATORS 5

USING LESS THAN OR EQUAL TO OR GREATER THAN OR EQUAL TO

3657-5 Ch05.F 1/31/02 12:21 PM Page 127

⁄ Open file equality.fla on
the CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic
text box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click ➪ Operators ➪ ==.

� The Parameters panel opens.

Operators

==

When writing ActionScript, you will at times want to
know whether two expressions are equal. The
equality operator (==) compares numbers, strings,

Booleans, objects, or movie clips and returns true if they
are equal and false if they are not. The equality operator
uses this syntax:

expression1 == expression2

To use the equality operator, place the operator between
the expressions you want to compare. ActionScript
compares strings, numbers, and Booleans by value. It
compares objects, movie clips, and arrays by reference.
String values are equivalent if they are identical. Both strings
must have exactly the same characters in exactly the same
position. Numbers and Booleans are equivalent if the
expression evaluates to the same value. For example, the
expression 3 + 1 returns 4, and the expression 2 +
2 returns false. Hence, in the example shown here, x and
y are equal, and z is equal to true.

Example:

x=3+1
y=2+2
z=x==y

For more on the Boolean function, see Chapter 4.

When working with objects or arrays, ActionScript
compares by reference. It examines the array, object, or
storing variable and returns true if the compared
expressions refer to the same object or array.
ActionScript never considers two separate arrays equal,
even if they contain exactly the same elements with exactly
the same values. ActionScript never considers two separate
objects equal, even if they are exactly alike.

The inequality operator != has the same characteristics as
the equality operator except it returns true if the
expressions are not equal and false if they are equal.
The inequality operator uses the syntax shown here:

expression1 != expression2

USING EQUALITY AND
INEQUALITY OPERATORS

FLASH ACTIONSCRIPT

128

USING EQUALITY AND INEQUALITY OPERATORS

3657-5 Ch05.F 1/31/02 12:21 PM Page 128

answer = guess == 7;

° Type the mathematical
expression.

� This example compares
two values.

· Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‚ Type a response.

— Click to get a response.

� ActionScript compares
your entry to the value it has
and displays in the dynamic
text box the Boolean true if
they are equal, false if they
are not equal.

WORKING WITH OPERATORS 5

Flash 4 used <> as the inequality operator. The
characteristics of the <> operator and the !=
operator are the same. The <> operator uses this
syntax:

expression1<>expression2

Flash 5 deprecates <>. You should use != if you
are authoring for a Flash 5 environment.

You will frequently use the equality and
inequality operators with the if action. Together,
the if action and the equality operators give you
the ability to evaluate whether a condition is
true or false and to perform an action based
on the results. For more on the if action, see
Chapter 6.

You should not confuse the ==
operator with the = operator. The
= operator assigns the expression
on the right side of the operator
to the variable on the left side of
the operator. The == operator
compares two values and returns
true if they are equal, false if they
are not.

129

3657-5 Ch05.F 1/31/02 12:21 PM Page 129

⁄ Open file compound.fla
on the CD-ROM.

¤ Create a dynamic text
box.

‹ Create a button.

› Click to select the button.

ˇ Open the Object Actions
panel.

Á Click ➪ Operators ➪
Compound Assignment ➪ +=.

� The Parameters panel
opens.

Operators

Compound Assignment

+=

Compound assignment operators provide you with
another method to assign a value to a variable.
Compound assignment operators are frequently used

in loops to increase the value of the loop. Compound
assignment operators use the value of the operand on the
left side of the expression in the calculation. The syntax
for compound assignment operators is

operator=

The plus assignment operator adds the expression
on the right of the operator, to the expression on the
left. For example, x+=5 adds 5 to x. The expression x+=5
also assigns 5+x to x.

The minus assignment operator subtracts the
expression on the right, from the expression on the
left and assigns the result to the expression on the left.
All of the other compound assignment operators work in a
similar fashion.

This example uses the compound plus assignment operator:

x=20
x+=10
y=x

ActionScript adds 10 to x, which yields 30. ActionScript
assigns 30 to x. ActionScript assigns x to y. So, y is equal
to 30.

ActionScript supports all of the compound assignment
operators listed on the next page. When using a compound
assignment operator, the process is always the same: Use
the value of the operand on the right side of the assignment
operator, and perform the operation indicated on the
expression on the left side of the assignment operator.

USING COMPOUND
ASSIGNMENT OPERATORS

FLASH ACTIONSCRIPT

130

USING COMPOUND ASSIGNMENT OPERATORS

3657-5 Ch05.F 1/31/02 12:21 PM Page 130

output += 5;

‡ Type the mathematical
expression.

� This example uses the
assignment operator.

° Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

· Click to calculate.

� ActionScript adds 5 to
output each time you click
the button and displays the
result in the dynamic
text box.

WORKING WITH OPERATORS 5
There are several compound operators. Each of them works like
the addition assignment operator. They use the value on the left
side of the expression and the value on the right side of the
expression to calculate the assigned value. The addition
operator adds the values, the subtraction operator subtracts the
values, and so on for each of the values listed. The following lists
compound operators:

131

OPERATOR FUNCTION

+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and assignment

/= Division and assignment

%= Modulo and assignment

<<= Bitwise shift right and assignment

>>= Shift right zero fill and assignment

^= Bitwise Xor and assignment

|= Bitwise Or and assignment

&= Bitwise And and assignment

3657-5 Ch05.F 1/31/02 12:21 PM Page 131

⁄ Open file logical.fla on
the CD-ROM.

¤ Create input text boxes.

‹ Create a dynamic text
box.

› Create a button.

ˇ Click to select the button.

Á Open the Object Actions
panel.

‡ Click Actions.

° Double-click Evaluate.

� The Parameters panel
opens.

· Type the conditions to be
evaluated.

y = N u m b e r (e) + N u m b e r (f) = = N u m b e r (g) + N u m b e r (h) ;

You can use the logical operators logical AND and
logical OR to compare two Boolean values and return
a third Boolean value. Logical operators enable you to

evaluate multiple conditions. They are often used with if
statements. ActionScript uses && as the logical AND
operator and || as the logical OR operator. To use the logical
AND or logical OR operator, place the operator between
two expressions that can evaluate to either true or false.
The syntax for the logical operators is

Logical AND

expression1 && expression2

Logical OR

expression1 || expression2

An expression is any statement that can evaluate to true
or false.

When you use the logical AND, if expression1 evaluates
to true and expression2 evaluates to true, the logical
AND returns true. If expression1 or expression2
evaluates to false, the logical AND returns false. When
you use logical OR, if expression1 or expression2
evaluates to true, the logical OR returns true. If
expression1 and expression2 evaluate to false, the
logical OR returns false.

ActionScript uses the logical NOT to reverse the value of an
expression. If an expression evaluates to true, placing an! in
front of the expression causes it to evaluate to false. If an
expression evaluates to false, placing a ! in front of the
expression causes it to evaluate to true. The syntax for the
logical NOT expression is

! expression

USING LOGICAL OPERATORS

FLASH ACTIONSCRIPT

132

USING LOGICAL OPERATORS

3657-5 Ch05.F 1/31/02 12:21 PM Page 132

‚ Click Operators.

— Double-click &&.

� The parameters panel
opens.

± Type the logical
operation.

¡ Move to the test
environment.

Note: See Chapter 1 for instructions on
how to create a button.

™ Type equations.

£ Click to get a response.

� ActionScript evaluates the
values and displays Boolean
true if they are true, false if
they are not true.

o u t p u t = X & & Y;

WORKING WITH OPERATORS 5

The following table provides a handy reference. It
lists how ActionScript evaluates logical operators.

EXPRESSION RETURN

true && true true

true && false false

false && true false

false && false false

true || true true

true || false true

false || true true

false || false false

!true false

!false true

133

3657-5 Ch05.F 1/31/02 12:21 PM Page 133

When driving, each time you reach a stoplight you
must make a decision. If the light is green, go. If
the light is yellow, proceed with caution. If the light

is red, stop. The ActionScript if, else if, and else
actions give you the ability to have your script make similar
decisions.

Say you need an ActionScript that requires the user to guess
a number. If the user guesses the correct number, the script
should send a message to the user that says, You are
amazing! You can use the if action to create your script.
The syntax for the if action is

if (condition){
statement;
}

The if action takes two arguments, a condition and a
statement. The condition is an expression that
evaluates to either true or false. The statement is the
instruction to be executed if the condition is true. The if
action evaluates the condition. If the condition is

true, ActionScript executes the statement. If the
condition is not true, ActionScript executes the next
statement outside of its block of code, for example:

on (release) {
if (guess == "7") {
message = "You are amazing!";
}
}

The user makes an entry in the input text box called guess.
ActionScript compares the value of guess with 7. If guess
is equal to 7, ActionScript displays the message "You are
amazing."

You use the if statement anytime you want to execute a
statement only if a specific condition is met. In the above
example the script executes when guess is equal to 7. It
could be set to execute when guess is greater than 7, less
than 7, or some other condition.

USING IF TO TEST A CONDITION

134

FLASH ACTIONSCRIPT

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file if.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a button.

¤ Open the Object Actions
panel.

‹ Click Actions.

› Double-click if.

ˇ Type the condition
ActionScript will evaluate.

Layer 1

USING IF TO TEST A CONDITION

3657-5 Ch06.F 1/31/02 12:21 PM Page 134

When you are working with if statements, the
operators shown in this table are extremely
helpful. For more about operators, see Chapter 5.

CHANGING THE SCRIPT FLOW 6

135

Á Click Actions.

‡ Double-click set variable.

° Assign a value to the
variable.

� Associating a variable with
a dynamic text box enables
you to display the value the
variable returns to the user.

· Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

‚ Type a number.

— Click to get a response.

� ActionScript uses the if
action to evaluate your entry
and responds with a message
if the value you enter is the
value for which it is looking.

OPERATOR USE

> Less than

< Greater than

== Equal to

>= Greater than or equal to

<= Less than or equal to

!= Not equal

3657-5 Ch06.F 1/31/02 12:21 PM Page 135

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
ifelse.fla, which you can find on
the CD-ROM that accompanies
this book.

� This example uses a button.

¤ Open the Object Actions
panel.

‹ Set the if conditions.

Layer 1

If you have a movie that requires the user to enter a
number that is exactly five characters long, you can write
a script that uses the if action with the else action to

evaluate the entry. If the entry is five characters long, the
movie can send a message to the user that says, Good job.
If the entry is not five characters long, the movie can send a
message that says, Try again.

The if action takes two arguments, a condition and a
statement. The condition is an expression that
evaluates to either true or false. The statement is an
instruction to execute if the condition is true. The syntax
for the if action is

if (condition) {
statement(s);
}

The else action takes one argument: statement. The
statement specifies the actions or other conditionals to
run if all the other if statements return false.

You can use the if with else in you code to create a
toggle button. With a toggle button you press the button to
turn something on and then you press the button again to
turn something off. You can create a sound toggle button.
You press the button once and the sound starts, you press
the button again and the sound stops.

Your code would work something like this. You would set a
value to false if the music is off. Then you would use an
if statement to test the value. If the value is false you
would turn the sound on and set the value to true. Your
else statement would turn the music off whenever the
value is not equal to false.

USING IF WITH ELSE

FLASH ACTIONSCRIPT

136

USING IF WITH ELSE

3657-5 Ch06.F 1/31/02 12:21 PM Page 136

› Set the else conditions. � Associating a variable with
a dynamic text box enables
you to display the value the
variable returns to the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Test your movie by typing
a number.

‡ Click to get a response.

� ActionScript evaluates
your entry to see if it is five
characters long and responds
with Good job if it is, or Try
again if it is not.

CHANGING THE SCRIPT FLOW 6

You can use the conditional operator to perform
an if else evaluation. The conditional operator
evaluates expression1. If expression1
evaluates to true, the conditional operator
executes expression2. If expression1
evaluates to false, the conditional operator
executes expression3. The syntax for the
conditional operator is

expression1?expression2:expression3

Example:
id.length == 5?message = "Good
job":message = "Try again";

In the example, if the length of id is equal to 5,
the message field is assigned Good job. If the
length of id is not equal to 5, the message
field is assigned Try again.

137

3657-5 Ch06.F 1/31/02 12:21 PM Page 137

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
elseif.fla, which you can find on
the CD-ROM that accompanies
this book.

� This example uses a button.

¤ Open the Object Actions
panel.

‹ Type the statement you
want to evaluate using if.

Layer 1

If you have a situation with multiple possibilities and you
want a different action to execute, depending on the
condition, use else if. You use else if when you

want your script to respond one way if the condition is A,
another way if the condition is B, and another way if the
condition is C.

For example, you need a script that requires the user to
guess a number. If the user entry is higher than the correct
number, the script sends a message to the user that says
Lower. If the entry is lower than the correct number, the
script sends a message to the user that says Higher. If the
entry is correct, the script sends a message to the user that
says, You are amazing!

You can use the else if action to create your script. The
else if action evaluates the first condition and executes
the statement if the condition is true. If the condition is

false, it evaluates the next condition and executes it if it is
true. It continues to evaluate statements until it finds a
condition that is true or there are no more conditions to
evaluate. The syntax for the else if action is

if (condition) {
statement(s);
}else if (condition) {
statement(s);
}

You can can use else if whenever you provide the user
with several options. For example, you provide the user
with options red, green, yellow, and blue. If the user selects
red, you can have an object on the Stage turn red. If the
user select green, you can have an object on the Stage turn
green, and so forth.

USING ELSE IF

FLASH ACTIONSCRIPT

138

USING ELSE IF

3657-5 Ch06.F 1/31/02 12:21 PM Page 138

› Type your else
statements.

� Associating a variable with
a dynamic text box enables
you to display the value the
variable returns to the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Type a number to test
your movie.

‡ Click to get a response.

� ActionScript evaluates
your entry and responds with
a message.

CHANGING THE SCRIPT FLOW 6

You can nest your if statements. Nesting your
if statement causes ActionScript to evaluate
each nested statement to see if it is true. The
following would be true if guess is equal to 7,
tries is equal to 10, and correct is equal to
10.

Example:
on (release) {

if (guess == "7") {

if (tries == 10) {

if (correct == 10) {

}

}

message = "AMAZING!";

}

}}

139

3657-5 Ch06.F 1/31/02 12:21 PM Page 139

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
while.fla, which you can find on
the CD-ROM that accompanies
this book.

� This example uses a button.

¤ Open the Object Actions
panel.

‹ Type your while
condition.

Layer 1

When you need to execute ActionScript statement
or a series of ActionScript statements several
times, you can use the while action. The while

action enables you to run statements repeatedly. The
syntax for the while action is

while(condition) {
statement(s);
}

The condition is an expression that evaluates to either
true or false. The statement is an instruction to
execute if the condition is true. When ActionScript
encounters the while action, it evaluates the condition.
If the condition is true, it executes the statements. After
all the statements have been executed, ActionScript
returns to the while and evaluates the condition again.
If the condition is still true, it executes the statements. If
the condition is false, ActionScript executes the first
statement after the while action.

The while loop must include a statement that changes
the condition and the condition must eventually
evaluate to false, or the loop will continue infinitely.
Programmers refer to this situation as an infinite loop.
Often, you use a counter with a loop. For example, you can
use the increment operator with a loop and have the loop
continue for as long as a value is less than the specified
amount. The example that follows uses the increment
operator to increase the value of x after each execution of
the statements. For more on the increment operator, see
Chapter 5.

x = 0
while (x < 10;) {
your statements;
++x;
}

CREATE A CONDITIONAL LOOP

FLASH ACTIONSCRIPT

140

CREATE A CONDITIONAL LOOP

3657-5 Ch06.F 1/31/02 12:21 PM Page 140

› Type your statements. � Associating a variable with
a dynamic text box enables
you to display the value the
variable returns to the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button.

� ActionScript concatenates
the word Hi four times.

CHANGING THE SCRIPT FLOW 6

You can also use the do...while action to
create a loop. The do...while action creates a
loop like the while action except the condition
is evaluated at the end of the block of code so
that the loop always runs at least once. The
syntax for the do...while loop is

do {
statement;
while (condition);

You can place loops inside of loops or use if
statements in loops. Your scripts can become
extremely complex. If you need to break out of
a loop, use the break action. The break action
instructs ActionScript to stop executing the loop
and go to the next statement.

You can also use the continue action. With while
and do...while statements, the continue action
causes ActionScript to go to the condition
argument and test whether the condition is still
true.

141

3657-5 Ch06.F 1/31/02 12:21 PM Page 141

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file for.fla,
which you can find on the CD-ROM
that accompanies this book.

� This example uses a button.

¤ Open the Object Actions
panel.

‹ Type your for condition.

Layer 1

If you have a statement or series of statements that you
want to execute repeatedly, let us say ten times, you can
write that line of code ten times in a row, and it will

executes ten times in a row. Or, you can use a for action to
execute a statement or series of statements repeatedly.
When using the for action, you use a counter to specify
the number of times the loop will execute. The syntax for
the for action is

for (init; condition; next);{
statement;
}

You use the init argument to set the initial value of the
counter. You use the condition argument to set a
condition that evaluates to either true or false.
ActionScript evaluates the condition on each iteration of
the loop. If the condition is true, the loop continues. If the
condition is false, ActionScript goes to the next block of
code. You use the next argument to reset the counter

after each iteration. The statement argument is an
instruction to execute if the condition is true, for example:

for(i=0; i<10, ++i) {
your statements;
]

In the example, the expression i=0 starts the counter with
a value of 0. The expression i<10 continues executing the
statements as long as i is less than 10. The expression
++i adds one to the value of i. The expression ++i
uses the pre-increment operator. For more on the
pre-increment operator, see Chapter 5.

You can use the for action when you are making several
copies of a movie clip. Just use the code for duplicating a
movie clip in the your statements section. Use the condition
to specify the number of times you want the movie clip
duplicated.

USING FOR LOOPS

FLASH ACTIONSCRIPT

142

USING FOR LOOPS

3657-5 Ch06.F 1/31/02 12:21 PM Page 142

› Type your statements. � Associating a variable with
a dynamic text box enables
you to display the value the
variable returns to the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button.

� ActionScript concatenates
the word Bye four times.

CHANGING THE SCRIPT FLOW 6

When using a for loop, the init, condition,
and next arguments are optional. However, if
you do not include them in the for statement,
you must set them somewhere else in your
script. If you omit the init argument, you must
still include the semicolon.

Example
i = 1
for(; i<10, ++i) {

your statements;

]

Failing to include a condition argument in your
script can cause an infinite loop because
ActionScript will assume that the condition is
always true.

Your script can become extremely complex and you
may be resetting the condition within the loop. You
can use the continue operator to break out of the
loop, go to the condition operator and determine
if the loop should continue.

143

3657-5 Ch06.F 1/31/02 12:21 PM Page 143

Objects enable you to access information, or they
graphically represent movie clips on the Stage. Flash
predefines objects and you can create your own

objects. Most of the objects predefined by Flash have
methods. Methods allow you to obtain values or perform
actions. Objects can also have properties.

ActionScript predefines the following objects: Array,
Boolean, Color, Date, Key, Math, MovieClip, Number,
Object, Selection, Sound, String, XML, and XML
socket. Each object enables you to access certain types of
information or perform specific actions. For example, the
Math object has methods that help you perform
mathematical calculations. The MovieClip object has
methods that enable you to perform actions on movie clips.

You can create a new object using the new operator. A
constructor function is a function used to create objects.
You can use the new operator to create an object for a
predefined object class. When using the new operator you
must use it with a constructor function. Every object
predefined by Flash is also a constructor function.

The syntax for the new operator is

new constructor().

Use the constructor argument to specify the constructor
function or the type of object to be constructed. Examples
include Color, Sound, and Date. You pass arguments by
placing them between the parentheses. The syntax that
follows creates a Color object:

newColor = new Color(sampleMC); .

Color is the constructor. The variable newColor holds the
object. The instance sampleMC is the movie clip you want
to target. Creating an object with the new operator
instantiates the object or creates an instance of the object.

An instantiated object has all of the properties and methods
of the object from which it was constructed. Some of the
objects predefined by Flash require you to instantiate the
object before you can access the methods and properties of
the object.

INTRODUCTION TO OBJECTS

144

FLASH ACTIONSCRIPT

Movie Explorer Ctrl+Alt+M

⁄ Select the frame, button,
or move clip to which you
want to add ActionScript.

Note: This example uses file
object.fla, which you can find on the
CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click Objects to open the
Objects category.

› Click Object to open the
Object category.

ˇ Double-click new Object.

� The new Object
constructor appears in
the Action list.

Layer 1

INTRODUCTION TO OBJECTS

3657-5 Ch07.F 1/31/02 12:22 PM Page 144

The MovieClip object is the most
important object in ActionScript.
Because each movie clip has its own
Timeline, each movie clip can be a
complete animation. You can give
each instance of a movie clip a
unique name. This enables you to
target or perform on each movie
clip instance.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

145

Á Assign the new object to
a variable.

‡ Assign a property to the
object.

° Assign a property to a
variable.

· Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

‚ Test your movie. � You have created a generic
object with a temperature
property. The temperature
property automatically
displays on the screen
when you enter the test
environment.

You can create generic objects. In Normal mode, you can
create a generic object using the new Object in the Object
category. The following syntax creates a generic object:
genericObject = new Object();. The variable
genericObject holds the object.

Objects can have properties. You can access the properties
and you can assign values to the properties. To access an
object property, precede the property name with the
objectName followed by a dot. For example, if
genericObject has a weight property, you can use the
syntax that follows to access the weight property and assign
it to a variable:

Example:
propertyValue = genericObject.weight;

In the example, propertyValue is a variable.

To assign a value to a property, use the syntax that follows:

Example:
genericObject.weight = 32

The example assigns 32 to the genericObject weight
property.

3657-5 Ch07.F 1/31/02 12:22 PM Page 145

The methods of the MovieClip object give you the
ability to perform an action on a movie clip instance
or to retrieve a value associated with a movie clip. By

giving a unique name to each movie clip instance, you
can target instances of a movie clip. You do not need a
constructor to call MovieClip object methods; instead,

precede each method with an instance name followed by a
dot, for example:

movieClipName.method(arguments); .

The MovieClip object methods in the table below give
you the same functionality as standard actions.

USING THE MOVIECLIP OBJECT

FLASH ACTIONSCRIPT

146

MOVIECLIP OBJECT METHOD FUNCTION

DuplicateMovieClips Creates a new instance of the specified movie clip. The duplicated movie clip
begin playing in frame 1. If you delete the parent movie clip, Flash will delete the
duplicate movie clip. Flash does not copy variables in the parent movie clip to the
duplicated movie clip.

getURL Opens a Web page in a browser. You can also use the getURL method to pass
variables by using either the get or post method.

gotoAndPlay Moves to a specified frame within a specified scene and begins the movie clip.

gotoAndStop Moves to a specified frame within a specified scene and stops the movie clip.

loadMovie Loads the specified movie into the movie clip.

loadVariables Loads variables into a movie clip from an external file.

nextFrame Sends the playhead to the next frame in the specified movie clip and stops the
movie clip.

play Starts the specified movie clip.

prevFrame Sends the playhead to the previous frame in the specified movie clip and stops the
movie clip.

removeMovieClip Removes a movie clip created by the duplicateMovieClip action,
duplicateMovieClip method, or attachMovie method.

startDrag Makes the specified movie clip draggable.

stop Stops a specified movie clip.

stopDrag Stops the dragging of the currently draggable movie clip.

unloadMovie Unloads a movie loaded with the loadMovie method.

3657-5 Ch07.F 1/31/02 12:22 PM Page 146

USING OBJECTS 7

147

The movie clip object includes several methods that enable you to perform actions
that are not standard actions on movie clips. You can apply many objects to a
movie by not specifying an instance name. The table that follows lists these actions:

MOVIE CLIP OBJECTS

Action Function

attachMovie Adds an instance of a symbol located in the Library to the Stage.

getBounds Retrieves the boundaries of the specified movie clip.

getBytesLoaded Retrieves the number of bytes loaded for the specified movie clip.

getBytesTotal Retrieves the total number of bytes for the specified movie clip.

globalToLocal Retrieves the coordinates of the specified Timeline.

hitTest Detects when two objects overlap or intersect one another.

localToGlobal Retrieves the coordinates of the main Timeline.

swapDepths Enables you to specify the depth level on which a movie clip will appear.

The table that follows lists an example of each
of the movie clip methods that provide the same
functionality as standard actions.

ACTION EXAMPLE

MovieClip.duplicateMovieClip sampleMC.duplicateMovieClip(newSampleMC,1);

MovieClip.get.getURL sampleMC.getURL ("http://www.baycongroup.com",
"_blank", "GET");

MovieClip.gotoAndPlay sampleMC.gotoAndPlay (1);

MovieClip.gotoAndStop sampleMC.gotoAndStop (1);

MovieClip.loadMovie sampleMC.loadMovieNum ("load.swf", 1);

MovieClip.loadVariable sampleMC.loadVariablesNum ("sales.txt", 0);

MovieClip.nextFrame sampleMC.nextFrame();

MovieClip.play sampleMC.play();

MovieClip.prevFrame sampleMC.prevFrame();

MovieClip.removeMovieClip sampleMC.removeMovieClip();

MovieClip.startDrag sampleMC.startDrag();

MovieClip.stopDrag sampleMC.stopDrag();

MovieCip.unloadMovie sampleMC.unloadMovie();

3657-5 Ch07.F 1/31/02 12:22 PM Page 147

Library Ctrl+L

Linkage...

⁄ Click Window ➪ Library
to open the Library.

Note: This example uses file
attachMC.fla, which you can find on
the CD that accompanies this book.

¤ Click the item in the
Library you want to attach.

‹ Click to select the
Options menu.

› Click Linkage on the
Options menu.

Layer 5 Layer 5

You can use the attachMovie method to add an
instance of a symbol located in the Library to a movie
clip located on the Stage. Use this method when you

want to place an instance of a symbol that is not already on
the Stage. You may find this method useful when you want
to start your movie with a blank Stage and add movie clips
as the movie plays.

Before you can attach a movie, you must assign an identifier
name and linkage type to the symbol. Use the Symbol
Linkage dialog box to assign the identifier name and linkage
type.

The syntax for the MovieClip.attachMovie method is

MovieClip.attachMovie("id","name",depth); .

Use the MovieClip argument to specify the movie clip you
want to attach. Use the id argument to specify the name of

the symbol in the Library to place on the Stage. The name
you specify should correspond to the name given to the
symbol in the Identifier field of the Symbol Linkage
Properties dialog box. Also, you must set the symbol to
Export in the Symbol Linkage Properties box. Use the name
argument to specify the instance name you want to give the
new instance. Use the depth argument to specify an
integer that represents the level on which you want to place
the new instance. Omit the MovieClip argument if you
want to attach the movie.

You can use the attachMovie method to create multiple
instances of the same movie clip and place them on the
Stage. You can use the _x and/or _y properties to set the
location of the movie clip.

ATTACH A MOVIE CLIP

FLASH ACTIONSCRIPT

148

ATTACH A MOVIE CLIP

3657-5 Ch07.F 1/31/02 12:22 PM Page 148

star

Save Ctrl+S

� The Symbol Linkage
Properties dialog box
appears.

ˇ Select Export This Symbol
as the Linkage type.

Á Type a name in the
Identifier field.

‡ Click OK.

° Click File ➪ Save to save
your file.

� You must save your file
after you set the Symbol
Linkage property.

Layer 5

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

Attaching a movie clip enables you to place an
instance of a movie clip located in the Library on
the Stage as the movie plays.

149

TYPE THIS:

sampleMC.attachMovie("addMC","addMC2", 2);

RESULT:

An instance of addMC is taken from that
library and added to the Stage.

To remove a movie clip, you type the
following:

TYPE THIS:

removeMovieClip("addMC2");

RESULT:

The instance addMC2 is
removed from the Stage.

CONTINUED

3657-5 Ch07.F 1/31/02 12:22 PM Page 149

Actions Ctrl+Alt+A

· Select the frame, button,
or movie clip to which you
want to add ActionScript.

‚ Click Window ➪ Actions
to open the Actions panel.

— Attach the movie. ± Click to close the
Actions panel.

Layer 5

If you attach several movie clips without setting the
location, the movie clips stack on top of each other. You
will not be able to discern the new instances from the

old instances.

Each instance of an attached movie clip must have a unique
name. You can append a unique number to the end of the
movie clip name to make each instance unique. If you are
making several instances of the same movie clip at once,
use a loop to create the instances. You can have each
increment of the loop append a unique number to the
instance name and place the instance on the Stage at the
location you specify.

You use the removeMovieClip action to remove instances
created with the attachMovieClip action. The syntax for
the removeMovieClip action is

removeMoveClip(target);.

Use the target argument to specify the movie clip that
you want to remove.

Shared libraries enable you to use assets from one Library
in multiple Flash movies. However, you cannot use the
attachMovie method to create an instance of a symbol
imported from a shared Library because you must set
attached symbols to Export in the Symbol Linkage
Properties dialog box. Flash automatically sets imported
symbols to Import in the Symbol Linkage Properties
dialog box.

You can also control when an instance appears on the Stage
by first placing the instance on the Stage with its _visible
property set to false. When you want the instance to
appear, set the _visible property to true. Use this
method when working with symbols imported from shared
libraries.

ATTACH A MOVIE CLIP (CONTINUED)

FLASH ACTIONSCRIPT

150

ATTACH A MOVIE CLIP (CONTINUED)

3657-5 Ch07.F 1/31/02 12:22 PM Page 150

Test Movie Ctrl+Enter

¡ Click Control ➪ Test
Movie to move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

™ Click the button to test
your movie.

� ActionScript attaches the
movie clip when you click
the button.

Layer 5

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You can use attachMovie to place several instances of
a movie clip on the Stage. The script that follows places
three instances of a movie clip on the Stage and sets
their location. The script is associated with a Frame.

Example:
xlocation = 250;

ylocation = 150;

max = 4;

attachMovie("star","star0", 1);

setProperty ("star0", _x, xlocation);

setProperty ("star0", _y, ylocation);

for (i=2; i<max; i++) {

attachMovie("star","star" + i, i);

nameMC = "star"+i;

setProperty (nameMC, _x, xlocation + 100);

setProperty (nameMC, _y, ylocation + 50);

xlocation = xlocation + 100;

ylocation = ylocation + 50;

}

151

3657-5 Ch07.F 1/31/02 12:22 PM Page 151

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
getbounds.fla, which you can find on
the CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Retrieve the bounds of a
movie clip.

Layer 1

Let us say you have placed a movie clip on the Stage or
you have added a movie clip to the Stage using the
duplicateMovieClip action or the

attachMovieClip method. You now want to place
another movie clip to the left, right, above, or below that
movie clip. You can use the getbounds method to obtain
the coordinates of the boundary of a movie clip that is on
the Stage. You can then position another movie clip on the
Stage in a position relative to the original movie clip. The
getbounds method retrieves the boundaries of a movie
clip and it enables you to position objects on the Stage.

You may also want to know the boundaries of a movie clip
so that you can trigger an action when the mouse comes
within a certain distance of a movie clip. For example, you
could make a pumpkin glow if the mouse comes within 10
pixels of the pumpkin.

The syntax for the MovieClip.getbounds method is

MovieClip.getbounds(targetCoordinateSpace); .

Use the MovieClip argument to specify the movie clip
whose coordinates you want to obtain. Use the
targetCoordinateSpace argument to specify the target
path of the timeline whose coordinates you want to use as
a point of reference. The getbounds method returns an
object with xMin, xMax, yMin, and yMax properties. The
xMin property represents the left edge of the movie clip,
the xMax property represents the right edge, the yMin
property represents the top edge, and the yMax property
represents the bottom edge.

To obtain the xMin, xMax, yMin, and yMax properties,
assign the results of the getbounds method to a variable.
Then precede the property with the variable name followed
by a dot.

GET BOUNDS

FLASH ACTIONSCRIPT

152

GET BOUNDS

3657-5 Ch07.F 1/31/02 12:22 PM Page 152

› Assign each property to a
variable.

� If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button to test
your movie.

� When you click the button
the xMin, xMax, yMin, and
yMax properties display on
the screen.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You can use getbounds to help you place an attached movie clip
on the Stage. The example that follows attaches the star movie clip
and places two instances of the star movie clip on the Stage side
by side.

Example:
on (release) {

backMC.attachMovie("star","star1", 2);

border=_root.backMC.star1.getBounds(_root.backMC.star1);

xright = border.yMax;

backMC.attachMovie("star","star2", 3);

setProperty (_root.backMC.star2, _x, xright);

}

153

3657-5 Ch07.F 1/31/02 12:22 PM Page 153

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
swap.fla, which you can find on the
CD that accompanies this book.

Note: The script is associated with
the button that has been converted
to a movie clip. To see the script in
the example file, double-click the
movie clip and open the Actions
panel.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set the handler to
on (press).

› Swap the depth of the
movie clip.

ˇ Increase the size of the
movie clip.

Picture 1

When you place objects on the Stage, Flash gives
them a depth level and stacks them. Movie clips
with a higher depth level appear to be in front of

movie clips with a lower depth level. For example, if you
place two thumbnail photographs on the Stage and the user
clicks on the photograph, the image changes to a full screen
view. The problem is that the image with the lower depth
level will appear to be behind the image with the higher
depth level when you increase its size. A similar problem
can occur when you create a number of draggable objects.
Each object is on its own level. You may want the object the
user is dragging to always be on top or always be on
bottom. You can use the swapDepths method to change
the stacking order of the movie clips so that the images
always appear on the level that you desire.

The syntax for MovieClip.swapDepths is

movieClipName.swapDepths(depth/target) .

Use the movieClipName argument to specify the name of
the movie clip for which you what to swap the depth. Use
the target argument to specify the movie clip with which
you want to swap the depth. In other words, if you want to
swap the depth of movie clip A with movie clip B, use the
syntax that follows: A.swaptDepths(B);. Alternatively,
you use the depth argument to specify the depth number
instead of using the target argument.

When using the swapDepths method, both movie clips
must have the same parent. If a movie clip is tweening
when you call the swapDepths method, the tweening
stops.

SWAP DEPTHS

FLASH ACTIONSCRIPT

154

SWAP DEPTHS

3657-5 Ch07.F 1/31/02 12:22 PM Page 154

Á Set the handler to
on (release).

‡ Reduce the size of the
movie clip to its original size.

� If you want to adjust the
depth of several symbols,
repeat steps 1 through 7 for
each symbol.

° Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

· Click an image to test
your movie.

� When you click the image,
the depth level swaps to the
top level and the image
enlarges.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You can use swapDepths to swap the depth of
movie clip A with movie clip B. The script that
follows is associated with a button and swaps the
dept of pictureA with pictureB.

Alternatively, you can use a depth
number to change the depth of a movie
clip. The script that follows is associated
with a button.

155

TYPE THIS:

on (release) {
pictureA.swapDepths(pictureB);

}

RESULT:

Each time the user clicks the
button ActionScript swaps the
depth of pictureA with pictureB.

TYPE THIS:

on (release) {
pictureA.swapDepths(100);

}

RESULT:

Each time the user releases the
mouse after clicking the button,
pictureA moves to depth 100.

3657-5 Ch07.F 1/31/02 12:22 PM Page 155

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

� This example uses a frame.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Get the bytes loaded. � If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

Layer 1

You have created movie clips A and B. Movie clip B is a
large movie clip. You want to load movie clip B into
movie clip A. You do not want movie clip B to begin

playing until it is completely loaded. Use the getBytesTotal
method to determine the size of movie clip B in bytes. Then
use the getBytesLoaded method to obtain the number of
bytes loaded for movie clip B. When getBytesTotal equals
getBytesLoaded, start movie clip B.

The syntax for the MovieClip.getBytesLoaded method is

MovieClip.getBytesLoaded(); .

The syntax for the getBytesTotal method is

MovieClip.getBytesTotal() .

When using MovieClip.getBytesLoaded or
MovieClip.getBytesTotal, use the MovieClip
argument to specify the movie clip for which you want to

obtain the bytes loaded or the total number of bytes.
Together, getBytesTotal and getBytesLoaded enable
you to monitor the progress of the loading of a movie clip.
Note that it is not always necessary to wait for a movie clip
to load completely before it starts. You can specify the
exact number of bytes that need to load before starting a
movie clip.

Use the getBytesLoaded and getBytesTotal methods
with movie clips that have been loaded — not with movie
clips that are internal to the movie. If you use these methods
with movie clips that are internal to the movie, the value for
getBytesLoaded and getBytesTotal will be identical,
because internal movies clips load automatically.

Preloaders are movies that run while ActionScript waits for
a movie or movie clip to load. You can create a preloader
movie clip that runs until a movie clip loads.

CHECK MOVIECLIP LOAD

FLASH ACTIONSCRIPT

156

CHECK MOVIECLIP LOAD

3657-5 Ch07.F 1/31/02 12:22 PM Page 156

› Get the total bytes.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Test your movie. � When the movie plays, the
bytes loaded and the total
bytes automatically display
on the screen.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

Use the getBytesLoaded method with
getBytesTotal to determine the percent of a
movie clip that has been loaded. This is useful if
you want to run a preloader while another movie
clip loads.

Example Frame 1
loaded = sailMC.getBytesLoaded();

total = sailMC.getBytesTotal();

percent = (loaded/total) * 100;

157

3657-5 Ch07.F 1/31/02 12:22 PM Page 157

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses hittest.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set the handler to
enterFrame.

› Determine if the movie
clips are in collision.

You use the hitTest method to detect when two
objects are in collision. When one object overlaps or
intersects another object, ActionScript considers the

objects to be in collision. When programming, use
hitTest to determine if one object touches or overlaps
with another object. The syntax for the
MovieClip.hitTest method is

MovieClip.hitTest(target);
MovieClip.hitTest(x,y,shapeFlag)

The hitTest method has two uses. You use the syntax
MoveiClip.hitTest(target); to determine when the
object specified in the target argument has collided with
the instance specified in the MovieClip argument. You use
the target argument to specify the path of the object that
might collide with the movie clip in the MovieClip
argument.

You use the syntax MovieClip.hitTest(x,y,shapeFlag)
to determine when the instance specified in the MovieClip
argument has collided with the specified x- and y-

coordinates. Use the MovieClip argument to specify the
target path of the instance you are testing.

Set the shapeFlag to the Boolean value true if you want
ActionScript to use the object specified in the MovieClip
argument to determine whether a collision has occurred.
Set the shapeFlag to the Boolean value false if you want
ActionScript to use the bounding box of the object
specified in the MoveClip argument to determine whether
a collision has occurred. The bounding box is the
rectangular area that surrounds the movie clip when you
select it. ActionScript returns the Boolean value true when
the objects are in collision and the Boolean value false
when the objects are not in collision.

You can use the _xmouse and _ymouse properties as the
x- and y-coordinates to determine whether the pointer is
over a movie clip. The _xmouse and _ymouse properties
return the x- and y-coordinates of the pointer.

DETECT COLLISION

FLASH ACTIONSCRIPT

158

DETECT COLLISION

3657-5 Ch07.F 1/31/02 12:22 PM Page 158

ˇ Set the messageMC visible
property to true if the movie
clips are in collision.

Á Set the messageMC visible
property to false if the movie
clips are not in collision.

‡ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

° Test your movie by
dragging a car so that it
touches the other car.

� When one car touches the
other car, a message appears
on the screen.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7
You can use hitTest to determine if two objects overlap. The script in this example returns
the Boolean value true to the variable collision when the user drags a blue dot and
causes it to collide with a red box. The example assigns the variable collision to a
dynamic text box. The blueDot is a draggable movie clip. The redBox is a movie clip. You
assign the action to redBox.

Example
onClipEvent (enterFrame) {

_root.collision =_root.redBox.hitTest(_root.blueDot);

}

You can use hitTest to determine if two objects are in collision. The script in this example
returns the Boolean value true to the variable collision when the user drags a blue dot
and causes it to collide with the x- and y-coordinates of a red dot. The example assigns the
variable collision to a dynamic text box. The blueDot is a draggable movie clip. The
redDot is a movie clip that motion-tweens across the Stage. The variables a and b are
assigned to dynamic text boxes. They capture and display the x- and y-coordinates of
redDot. You assign the action to blueDot.

Example
onClipEvent (enterFrame) {

_root.a = getProperty (_root.redDot, _x);

_root.b = getProperty (_root.redDot, _y);

_root.collision = _root.blueDot.hitTest(_root.a, _root.b, false);

}

159

3657-5 Ch07.F 1/31/02 12:22 PM Page 159

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
localtoglobal.fla, which you can
find on the CD that accompanies
this book.

� This example uses a movie
clip.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set the event handler to
mouseMove.

� This causes the script to
execute every time the user
moves the mouse.

Layer 1

You can use the x- and y-coordinates to assist you when
placing or locating objects on the Stage. Every timeline
has x- and y-coordinates. The x-coordinate marks the

distance from the left side of the movie or movie clip to the
right side of the movie or movie clip. The y-coordinate
marks the distance from the top of the movie or movie clip
to the bottom of the movie or movie clip. On the main
timeline, the zero x-coordinate is on the left side of the
movie. The x-coordinate increases as you move to the right.
The zero y-coordinate is at the top of the movie. The y-
coordinate increases as you move downward.

The zero points of both the x- and y-coordinates of a movie
clip are located in the center of the movie clip. As you move
to the left of the center, the x-coordinate values decrease as
negative values. As you move to the right of the center, the
x-coordinate values increase as positive values. As you move
up from the center, the y-coordinate values decrease as
negative values. As you move down from the center, the y-
coordinate values increase as positive values.

When retrieving coordinates, use the globalToLocal
method to retrieve the coordinates of the movie clip. Use
the localToGlobal method to retrieve the Stage
coordinates.

The syntax for the MovieClip.globalToLocal
and MovieClip.localToGlobal methods is

movieClipName.globalToLocal(point), .
movieClipName.localToGlobal(point); .

Use the new object() constructor to create an object. Use
the movieClipName argument to specify the movie whose
coordinates you want to use. Use the point argument to
identify the object you created with the new object()
constructor. The globalToLocal and localToGlobal
methods create an object with x-coordinate and y-
coordinate properties. You can retrieve and use the
properties in your script.

GET THE X- AND Y-COORDINATES

FLASH ACTIONSCRIPT

160

GET THE X- AND Y-COORDINATES

3657-5 Ch07.F 1/31/02 12:22 PM Page 160

› Create a new object.

ˇ Assign the _xmouse and
_ymouse properties to the
x- and y- properties of the
new object.

Á Use the current timeline
as the object whose
coordinates you retrieve.

‡ Assign the coordinates to
a variable.

� If you associate the
variables with dynamic text
boxes, you can display the
values the variables return to
the user.

° Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

· Test your movie by
dragging you mouse around
the screen.

� The x and y coordinates of
the mouse display on-screen.
As you drag the mouse, the
coordinates change.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7
You can retrieve the _xmouse and _ymouse
coordinates. In the script that follows, each time
the user moves the mouse, this script displays the
local coordinates of the mouse. The variables
_root.a and _root.b are dynamic text boxes.
The script creates a new object named position
and then assigns the _xmouse and _ymouse
properties to the x- and y- properties of the
position object. The script converts the x- and
y-properties to local coordinates and displays
the coordinates on the screen. The Keyword this
refers to is the current Timeline.

Example
onClipEvent (mouseMove) {

position = new object();

position.x = _root._xmouse;

position.y = _root._ymouse;

this.globalToLocal(position);

_root.a = position.x;

_root.b = position.y;

}

161

3657-5 Ch07.F 1/31/02 12:22 PM Page 161

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
createarray.fla, which you can
find on the CD that accompanies
this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an array. � If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

Layer 1

An array is a list of values separated by commas. Arrays
enable you to group values together and are useful
when you need to store and retrieve lists of data. An

array can contain strings, numbers, or Boolean values.
When working with an array, enclose string values in
quotes.

The following example assigns the name George, the
number 23, and the Boolean value false as an array to the
variable nameAge: nameAge =["George",23, false];.

Each value in an array is an element. ActionScript assigns each
element a unique consecutive number called an index. The
first item in an array has an index of [0], the second an index
of [1], and so forth. In the example, George has an index of
[0], 23 has an index of [1], and false has an index of [2].

You can use the constructor new Array to create an array.
The syntax for the constructor new Array is

arrayName = new Array(e0,e1,...eN) .

Use the arrayName argument to specify the variable that
names the array. Use arguments e0 to eN to specify the
elements in the array.

You can also use the array access operator [] to create an
array. The syntax for creating an array with the array access
operator is

arrayName = [a0, a1,... aN]; .

Use the arrayName argument to specify the variable that
names the array. Use arguments a0 to aN to specify the
elements in the array.

CREATE AN ARRAY

FLASH ACTIONSCRIPT

162

CREATE AN ARRAY

3657-5 Ch07.F 1/31/02 12:22 PM Page 162

Test Movie Ctrl+Enter

› Click Control ➪ Test
Movie to move to the test
environment.

ˇ Click the button to test
your movie.

� Clicking the button
retrieves the array.

Layer 1

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You can create an array using the access
operator. The script that follows is an example. It
includes strings, numbers, and Boolean values.

You can add elements to the array.

163

TYPE THIS:

nameAge = ["George",23,false,"Jane",45,true];

RESULT:

The variable nameAge returns:
George,23,false,Jane,45,true.

TYPE THIS:

nameAge[6] = "Jen";
Name[7] = 13;
nameAge[8] = false;

RESULT:

The variable nameAge returns:
George,23,false,Jane,45,true,Jen,13,false

CONTINUED

3657-5 Ch07.F 1/31/02 12:22 PM Page 163

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
createarray1.fla, which you can
find on the CD that accompanies
this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Use the new Array
method to create your array.

› Use the set variables
action to assign values to your
array.

� If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

After you create an array, you can add elements to it. In
fact, you can create an empty array and add the
elements later. The syntax for creating an empty array

using the new array constructor is arrayName = new
Array ();. The syntax for creating an empty array using
the array access operator is arrayName = [];.

To access or assign elements to an array, refer to the
element by using the syntax variableName[N];. Use
variableName to specify the variable to which you assigned
the array. Use the N argument to specify the index position of
the element you want to access or assign. To add values to
the array, specify the array name, followed by the index value
enclosed in the array access operator, and assign a value.

This example creates a new array: trees = new Array(); .

This example assigns pine, maple, and birch to elements [0],
[1], and [2] in the array trees:

trees[0] = "pine";
trees[1] = "maple";
trees[2] = "birch";

You can change the value of an element in an array by
assigning it a new value. This example assigns the value
birch to the element trees[1]: trees[1] = "birch";

You can access elements in an array. This example accesses
element 1 of the trees array and assigns it to the variable
wood. In other words, it assigns maple to the variable
wood:

trees = ["pine","maple","birch"];
wood = trees[1];

CREATE AN ARRAY (CONTINUED)

FLASH ACTIONSCRIPT

164

CREATE AN ARRAY (CONTINUED)

3657-5 Ch07.F 1/31/02 12:22 PM Page 164

Test Movie Ctrl+Enter

ˇ Click Control ➪ Test
Movie to move to the test
environment.

Á Click the button to test
your movie.

� Clicking the button
retrieves the current values
assigned to the array.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You can change the values of the element
in an array. The array nameAge contains
George,23,false,Jane,45,true,Jen,13,false.

You can create an empty array:
colors = new Array ();

You can assign values to the empty array.

165

TYPE THIS:

nameAge[3] = "Tom";
nameAge[4] = 56;
NameAge[5] = false;

RESULT:

The Array nameAge returns:
George,23,false,Tom,56,false,Jen,13,false

RESULT:

pink,yellow,blue

TYPE THIS:

colors[0] = "pink";
colors[1] = "yellow"
colors[2] = "blue"

3657-5 Ch07.F 1/31/02 12:22 PM Page 165

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
length.fla, which you can find on the
CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an array. � If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

Layer 1

Knowing the length of an array can be useful,
particularly if you are looping through the data.
Knowing the length helps you determine how many

times you need to loop. The length of an array is equal to
the highest index value plus 1. If the highest index value
in an array is nine, the array has a length of ten. The
Array.length property returns the length of an array.

The syntax for the Array.length property is

arrayName. length; .

Use the arrayName argument to specify the name of the
array whose length you want to obtain.

You can create an empty array of a specified length by using
the constructor new Array. The syntax for creating an
empty array of a specified length is

arrayName = new Array(length); .

Use the arrayName argument to specify the name of the
array. Use the length argument to specify an integer that
represents the length of the array. For example, in trees =
new Array(6), note that even though you have not
assigned any elements to the array, the array has a length of
6. The array has a length of 6 because ActionScript reserves
the space for the elements.

Flash updates the length property automatically as you add
elements to an array. For example, if you use the new
Array constructor to create an empty array, the array has
a length of 0. If you add index position [1], the array has
a length of 1. If you add index position [2], the array has a
length of 2. If you then add index position [10], the array
has a length of 10. Positions [3] through [9] do not have
values assigned to them; however, ActionScript reserves
space for these elements.

FIND THE LENGTH OF AN ARRAY

FLASH ACTIONSCRIPT

166

FIND THE LENGTH OF AN ARRAY

3657-5 Ch07.F 1/31/02 12:22 PM Page 166

› Find the length of the
array.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button to test
your movie.

� Clicking the button
retrieves the array and the
array length.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

If you are not ready to add elements to an array,
you can create an empty array.

If you create an empty array with a length of 3,
ActionScript reserves space for the elements

You can assign a value to index position [1].

167

TYPE THIS:

nameAge = new Array();

RESULT:

The length property will return : 0

TYPE THIS:

nameAge[1] = 23;

RESULTS:

The array will return: ,23,

And the length property will return: 3

TYPE THIS:

nameAge = new Array(3);

RESULT:

The array will return: ,,

And the length property will return: 3

3657-5 Ch07.F 1/31/02 12:22 PM Page 167

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
pusharray.fla, which you can find on
the CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an array. � If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

After you create an array, you might need to add
additional elements. You can add them by assigning
elements to an index position; however, the push,

unshift, and concat methods provide more efficient
ways to add a large number of elements to an array.

You use the push method to add elements to the end of an
array. The push method adds one or more elements to the
end of the array and returns the new length.

The syntax for the push method is

arrayName.push(v1,v2,...vN) .

Use the arrayName argument to specify the name of the
array to which you want to add elements. Use arguments
v1 to vN to specify the elements you want to add.

You can also use the unshift method to add elements to
an array. The unshift method adds one or more elements

to the beginning of the array and returns the new length.
The syntax for the unshift method is

arrayName.push(v1, v2,...vN) .

Here, also, use the arrayName argument to specify the
name of the array. Use arguments v1 to vN to specify the
elements you want to add.

You can use the concat method to create a new array
by concatenating two or more arrays. The syntax for
the concat method is newArray = arrayName.
concat(v1,v2,...vN). Use newArray to specify the
name of the array you want to create by using the concat
method. Use arrayName to specify the array to which you
want to concatenate. Use arguments v1 to vN to specify the
arrays you want to concatenate to the array in the
arrayName argument.

ADD ELEMENTS TO AN ARRAY

FLASH ACTIONSCRIPT

168

ADD ELEMENTS TO AN ARRAY

3657-5 Ch07.F 1/31/02 12:22 PM Page 168

› Add elements.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button to test
your movie.

� Clicking the button
retrieves the elements of the
array and the array length.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7
You can create an array.

Example:
trees = ["pine","maple","birch"];

You can add elements to the beginning of the array using the unshift method.

lengthV = trees.unshift("pear","apple");

The trees array will return:

pear,apple,pine,maple,birch

The unshift method will return:

5

You can concatenate two or more arrays.

Example:
trees = ["pine","maple","birch"];

fruit = ["apple","pear","peach"];

fruitTrees = trees.concat(fruit);

The fruitTrees array will return:

pine,maple,birch,apple,pear,peach

169

3657-5 Ch07.F 1/31/02 12:22 PM Page 169

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
poparray.fla, which you can find on
the CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an array. � If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

Layer 1

As you process information, you might need to retrieve
an element value and remove it from the array at the
same time. The pop and shift methods remove

elements from an array. You use the Array.pop method
to remove the last element from an array and retrieve its
value.

The pop method uses the following Syntax:

arrayName.pop() .

Use the arrayName argument to specify the name of the
array.

You use the shift method to remove the first element
from an array and return its value. The shift method uses
the following Syntax:

arrayName.shift() .

You can use the splice method to add, remove, or replace
elements in an array. The splice method uses the
following Syntax:

arrayName.splice(start,count,v1,v2,...vN); .

Use the arrayName argument to specify the array in which
you want to add, remove, or replace elements. Use the
start argument to specify the index value of the element
where the insertion or deletion begins. Use the count
argument to specify the number of elements to delete. The
deletion includes the elements specified in the start
argument. If you do not want to delete any elements, use 0
as the count argument. Use v1 to vN to specify the values
to insert at the point specified in the start argument. The
splice method returns the deleted elements.

REMOVE ELEMENTS FROM AN ARRAY

FLASH ACTIONSCRIPT

170

REMOVE ELEMENTS FROM AN ARRAY

3657-5 Ch07.F 1/31/02 12:22 PM Page 170

› Remove an element.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button to test
your movie.

� Clicking the button
retrieves the current elements
in the array and the deleted
element.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You can use the splice method to add,
remove, or replace elements in an array. In
the example shown here, you delete and
add elements. The deletion begins at index
position 1. The script deletes one element, and
then adds the values apple and pear to the array.

171

TYPE THIS:

trees = ["pine", "maple", "birch"];
trees.splice(1, 1, "apple", "pear");

RESULT:

The variable trees returns
pine,apple,pear,birch.

You can use the shift method to remove
and return the first element in an array.

TYPE THIS:

trees = ["pine","maple","birch"];
deleteV = trees.shift();

RESULT:

The variable deleteV returns pine, and
the variable trees returns maple,birch.

3657-5 Ch07.F 1/31/02 12:22 PM Page 171

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
slicearray.fla, which you can find on
the CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an array. � If you associate the
variables with dynamic text
boxes, you can display the
values the variables return to
the user.

Layer 1

If you need to create an array from an existing array, you
can use the slice method. The slice method extracts
a section of an array and uses that section to create a

new array.

The syntax for the Array.slice method is

newArray = arrayName.slice(start, end); .

Use the newArray argument to specify the name of the
array you want to create. Use the arrayName argument to
specify the name of the array from which you want to
extract a section. Use the start argument to specify the
index position for the point at which you want the
extraction to start. Use a negative number if you want the
count to begin at the final element. The final element has a
value of -1. Use the end argument to specify the index
position for the point at which you want the splice to end.
If you do not include an end argument, ActionScript
extracts all of the elements from the start position to the

end of the array. Use a negative number if you want the
count for the end argument to begin at the final element.
The resulting array does not include the end argument
element. For example, if you have the array:

colors = ["green","yellow","red","white",
"pink","orange"]

and you want to extract red, white, and pink and create an
array called myColors, you use the syntax mycolors =
colors.slice(2,5);.

You can use the reverse method to reverse the order of
an array. The syntax for the Array.reverse method is

arrayName.reverse() .

Use the arrayName argument to specify the array you want
to reverse. If an array includes the values 1, 2, 3 in that
order, the reverse method returns 3, 2, 1.

EXTRACT OR REVERSE AN ARRAY

FLASH ACTIONSCRIPT

172

EXTRACT OR REVERSE AN ARRAY

3657-5 Ch07.F 1/31/02 12:22 PM Page 172

› Extract a section of the
array.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button to test
your movie.

� Clicking the button
displays the original array
and the array created by the
slice.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You use the slice method to extract a section of an
existing array and use it to create a new array. If you
find it easier to begin your count from the end of the
array and work backwards, use negative numbers. If
you have the array shown here.
trees = ["pine","maple","birch","apple","pear",
"peach","chestnut"];

Use this syntax to extract apple, pear, and peach and
create an array named fruit.

fruit = trees.slice(-4,-1); .

The variable fruit will return: apple,pear,peach.

You use the reverse method to reverse the order of an
array. If you have the array shown here.
numbers = [100, 200, 300, 400, 500];

Use the following syntax to reverse the array.
numbers.reverse (); 500,400,300,200,100.

The variable numbers will return 500, 400, 300, 200, 100.

173

3657-5 Ch07.F 1/31/02 12:22 PM Page 173

Actions Ctrl+Alt+A

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
joinarray.fla, which you can find on
the CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an array. � If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

Layer 1

An array can contain strings, numbers, or Boolean
values. At times, you might need to convert an array
to a string to make manipulating or reading the

contents of the array easier. After you convert an array to a
string, you can use all the string methods to manipulate
your data. That means that you can do things like convert
the array to upper or lower case, find a substring, retrieve a
character, or find the index value of a string. You can also
concatenate the sting or assign the string to a variable.

You use the toString method to return every element in
an array as a string. The toString method separates each
element with commas. The syntax for the
Array.toString method is

arrayName.toString(); .

Use the arrayName argument to specify the name of the
array whose elements you want to convert to a string.

You can also use the join method to concatenate elements
in an array and return a string. When you use the join
method, you can specify the character or string you want to
use to separate the elements in the array.

The syntax for the Array.join method is

ArrayName.join(separator) .

Use the arrayName argument to specify the name of the
array whose elements you want to concatenate. Use the
separator argument to specify a character or string you
want to use to separate the elements in the array. You can
use any character or string of characters you want. If you do
not specify a separator, ActionScript uses a comma.

CONVERT AN ARRAY TO A STRING

FLASH ACTIONSCRIPT

174

CONVERT AN ARRAY TO A STRING

3657-5 Ch07.F 1/31/02 12:22 PM Page 174

› Convert the array to a
string.

� Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

ˇ Click the button to test
your movie.

� Clicking the button
displays the original array
and the new string.

USING THE MOVIE CLIP AND ARRAY OBJECTS 7

You can use the Array.toString method to return
every element in an array as a string. If you have the
array shown here:

Example
nameAge = ["George", 23, false,"Jane", 45, true];

You can use this syntax to return the array as a string:

nameAge.tostring (); .

175

RESULT:

George,23,false,Jane,45,true.

3657-5 Ch07.F 1/31/02 12:22 PM Page 175

You can use Color object methods to change the color
of movie clips located on the Stage. The Color object
method enables you to change the color of movie

clips as the movie plays.

Changing the color of a movie clip is a two-step process.
First you use the constructor new Color() to create an
instance of the Color object. Then you use the
Color.setRGB method to specify the color to which you
want to change the movie clip.

The syntax for the new Color() constructor is

objectName = new Color(target); .

Use the objectName argument to name the Color object.
Use the target argument to specify the instance name of
the movie clip for which you want to change the color.

The syntax for the Color.setRGB method is

objectName.setRBG(0xRRGGBB); .

Use the objectName argument to specify the Color object.
Each color has a hexadecimal value. Use RRGGBB to specify
the hexadecimal value that represents the color to which
you want to change the movie clip. There is a list of
hexadecimal values in the Appendix of this book. Flash
displays hexadecimal values next to the selected color in
the Stroke and Fill panels.

The following example changes the color of a movie clip:
newColor = new Color(sampleMC);. newColor.
setRGB(0xFF0000);.

You use the getRGB method to retrieve the numeric value
of the most recent setRBG call. The syntax for the
Color.getRGB method is

objectName.getRGB(); .

Use the objectName argument to specify the Color object.
The setRGB method returns the color value in base 10.

CHANGE COLORS

176

FLASH ACTIONSCRIPT

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file color.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an instance of the
Color object using the new
Color constructor.

› Set the color using
setRGB.

Actions Ctrl+Alt+A

CHANGE COLORS

3657-5 Ch08.F 1/31/02 12:23 PM Page 176

Usually, you count in base 10. Hexadecimal numbers are numbers in base
16. Understanding base 16 is easy. You count from 0 to 9, and then you
add a column and make 10. When counting in hexadecimal, counting
goes from 0 to F before adding a column. Instead of counting
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32

you count
1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b
1c 1d 1e 1f 20 21 22 23 24

The getRGB method returns the color value in base 10. You can use the
Number.toString method to convert a base 10 number to base 16.

The syntax for the Number.toString method is

number.toString(radix) .

Use the number argument to specify the number you want to convert to
a string. Use the radix argument to specify the numeric base. You can
specify any base from 2 to 36. If you do not specify a base, ActionScript
uses base 10. This example converts the results of a getRGB call to base
16 or hexadecimal: (newColor.getRGB()).toString(16); .

WORKING WITH OBJECTS 8

177

ˇ Get the hexadecimal code
using getRGB.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

Á Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

‡ Click the button to test
your movie.

� Clicking the button
changes the color of the
movie clip and displays the
hexadecimal code.

3657-5 Ch08.F 1/31/02 12:23 PM Page 177

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
colortransform.fla, which you can find
on the CD-ROM that accompanies this
book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create a new Color object
using the new Color
constructor.

› Create a new generic
object using new Object.

Actions Ctrl+Alt+A

If you want a greener green, a deeper purple, or a rosier
red, you want to use the setTransform method. The
setTransform method enables you to make subtle

adjustments to color and change the alpha value. You can
adjust the percentage of red, green, blue, or alpha from
+100 to –100 percent. You can also adjust the red, green,
blue, or alpha offset values by an amount ranging from –255
to +255. Flash combines the adjustments you make to
produce a new color.

The parameters for making color adjustments are ra, rb,
ga, gb, ba, bb, aa, and ab. Parameters beginning with r
adjust the red value, parameters beginning with g adjust the
green value, parameters beginning with b adjust the blue
value, and parameters beginning with a adjust the alpha
value. Parameters ending with a adjust the percentage.
Parameters ending with b adjust the offset value.

Setting a color transform is a four-step process: 1) Use the
constructor new Color() to create an instance of the Color
object. Refer to Chapter 7 for more information on creating
objects. 2) Create a generic object. Refer to Chapter 7 for

more information on creating generic objects. 3) Assign
values to the Color.setTransform properties. 4) Set the
color transform.

You use the Color.setTransform method to set the
color transform. The syntax for the Color.setTransform
method is

objectName.setTransform(transformObject); .

Use the objectName argument to specify the
variable to which you stored the Color object. Use
the transformObject argument to specify the variable
to which you assigned the new object.

You use the Color.getTransform() method to retrieve
the transform values set by the most recent setTransform
call. The syntax for the Color.getTransform() method is

objectName.getTransform().

Use the objectName argument to specify the variable to
which you stored the Color object.

WORK WITH COLOR TRANSFORM VALUES
FLASH ACTIONSCRIPT

178

WORK WITH COLOR TRANSFORM VALUES

3657-5 Ch08.F 1/31/02 12:24 PM Page 178

ˇ Assign color.setTransform
values to the properties.

Á Set the color transform.

‡ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

° Click the button to test
your movie.

� Clicking the button applies
the color transform.

WORKING WITH OBJECTS 8

If you need to find the value of color
transform properties, you can retrieve them.

179

TYPE THIS:

// Gets the transform properties
colorCode = change.getTransform():
raV = colorCode.ra;
rbV = ColorCode.rb;
gaV = colorCode.ga;
gbV = colorCode.gb;
baV = colorCode.ba;
bbV = colorCode.bb;
aaV = colorCode.aa;
abV = colorCode.ab;

RESULT:

Flash retrieves the
color transform
values.

ra=50, r=225, ga=95,
gb=125, ba =-70, bb =
240, aa = 40, ab = 85

Values retrieved may
not be exact.

3657-5 Ch08.F 1/31/02 12:24 PM Page 179

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
mouse.fla, which you can find on the
CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set the clip event to
mouseMove.

� This will cause the script
to execute each time the
mouse moves.

Actions Ctrl+Alt+A

The mouse pointer is usually a small arrow. You can
make it a dog, or perhaps you want a wand, a pencil, or
a heart. Whatever you want, you can have it. You use

the Mouse object to show or hide the mouse pointer. Hiding
the mouse pointer enables you to create a custom pointer.
You can make any movie clip a custom pointer. Because
movie clip pointers are so flexible, you can create special
effects with custom pointers.

Use the Mouse.hide method to hide the mouse pointer.
The syntax for the Mouse.hide method is

Mouse.hide(); .

The Mouse.hide method does not take any arguments.

After you have hidden the mouse, you use the Mouse.show
method to make the pointer visible again. The syntax for
the Mouse.show method is

Mouse.show(); .

The Mouse.show method does not take any arguments.

If you need to know the x and y coordinates of the mouse,
use the _xmouse and _ymouse properties to retrieve them.
The _xmouse and _ymouse properties are read-only, which
means you can retrieve the properties but you cannot
set them. The _xmouse property returns the x-coordinate
of the mouse location. The _ymouse property returns the
y-coordinate of the mouse location.

The syntax for the _xmouse and _ymouse properties is
instanceName._property; . Use the instanceName
argument to specify the name of the movie clip for which
you want to retrieve the _xmouse or _ymouse property. Use
the _property argument to specify the property you want
to retrieve.

USING THE MOUSE
OBJECTS AND PROPERTIES

FLASH ACTIONSCRIPT

180

USING THE MOUSE OBJECTS AND PROPERTIES

3657-5 Ch08.F 1/31/02 12:24 PM Page 180

› Assign _xmouse and
_ymouse to variables.

� If you associate the
variables with dynamic text
boxes, you can display the
values the variables return to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

Á Drag your mouse to test
your movie.

� As you drag your mouse,
you will see the _xmouse
and _ymouse values change.

WORKING WITH OBJECTS 8

Use the script shown here to create a custom pointer.
You can associate it with any movie clip. The script
hides the default mouse pointer when the movie clip to
which it is attached loads. The script then makes the
movie clip draggable, thereby turning the movie clip
into a custom pointer. You should place a custom
pointer on the top layer of the timeline so that it
appears in front of all other objects on the Stage.

181

TYPE THIS:

onClipEvent (load) {
Mouse.hide();
startDrag (this, true);
}

RESULT:

The movie clip to
which you attached
the script becomes
the pointer.

3657-5 Ch08.F 1/31/02 12:24 PM Page 181

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file date.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set the event to
enterFrame.

� This causes the script to
execute each time the cursor
enters the frame.

Actions Ctrl+Alt+A

Flashplayer uses the system clock on the computer
running Flashplayer to determine the date and time.
You can use the information retrieved to perform many

types of date arithmetic, including the calculation of
elapsed time and the calculation of the amount of time
between two dates.

Before calling date methods, you must use the new Date
constructor to create an instance of the Date object. Use
the syntax objectName = new Date(); . Use the
objectName argument to name the Date object.

ActionScript provides several methods you can use
to retrieve date and time values using the syntax
objectName.method(); . Use the objectName argument
to specify the name you assigned to the Date object. Use the
method argument to specify the method you want to use.

Some date and time methods retrieve the local date and
time. Other date and time methods retrieve the date and
time based on Greenwich Mean Time — also referred to as
Universal Coordinated Time.

Use the getMonth() method to retrieve the current month
based on local time. Use the getUTCMonth() method to
retrieve the current month based on Universal Coordinated
Time. The getMonth() and getUTCMonth() methods
return an integer from 0 to 11. The value 0 represents
January, the value 1 represents February, and so forth.

Use the getDate() method to retrieve the day of the
month based on local time. Use the getUTCDate()
method to retrieve the current day based on Universal
Coordinated Time. The getDate() and the
getUTCDate() methods return an integer from 1 to 31,
representing the day of the month.

Use the getFullYear() method to retrieve a four-digit
number representing the year based on local time. Use the
getUTCFullYear() method to retrieve a four-digit
number representing the year based on Universal
Coordinated Time.

USING THE DATE OBJECT
FLASH ACTIONSCRIPT

182

USING THE DATE OBJECT

3657-5 Ch08.F 1/31/02 12:24 PM Page 182

› Create an instance of the
Date object.

ˇ Get the current month,
date, and full year.

� Add +1 to the month value
because the month value
returns 0 for January and 1
for February and so forth.

Á Concatenate the values
and assign them to a variable.

� This puts the date in a
standard date format. If you
associate the variable with a
dynamic text box, you can
display the value the variable
returns to the user.

‡ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

° Test your movie.

� When you enter the test
environment, the screen will
automatically display the
current date.

WORKING WITH OBJECTS 8
Flash queries the system clock of the computer
that is running Flashplayer and uses the
information returned to determine date and time
values. If the system clock is incorrect, the
retrieved values will be incorrect.

You can use the new Date constructor to
retrieve the current date.

You can use the getMonth method to return the
current month.

The getFullYear() and getUTCFullYear()
methods return a four-digit year. They return 2002
to represent the year 2002. You can use the
getYear() method to retrieve the year based on
local time. The getYear() method returns the full
year minus 1900. The getYear() method returns
102 to represent the year 2002.

183

TYPE THIS:

currentDate = new Date();

RESULT:

The new Date constructor returns the current
date in the format shown here.:
Sun Oct 7 08:39:05 GMT-0400 2002.

TYPE THIS:

currentDate = new Date();
month = currentDate.getMonth();

RESULT

If February is the current month, ActionScript
will return 1.

3657-5 Ch08.F 1/31/02 12:24 PM Page 183

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file clock.fla,
which you can find on the CD that
accompanies this book.

¤ Click Windows ➪ Actions
to open the Actions panel.

‹ Set the event to
enterFrame.

� This causes the script to
execute each time the cursor
enters the frame.

Actions Ctrl+Alt+A

ActionScript date and time values make it easy to
create a clock. Just retrieve the hour, minute, and
second and display them on the screen and you have

a real time system clock.

Use the getDay() method to retrieve the day of the week
based on local time. Use the getUTCDay() method to
retrieve the day of the week based on Universal
Coordinated Time. The getDay() and getUTCDay()
methods return 0 to represent Sunday, 1 to represent
Monday, and so forth.

Use the getHours() method to retrieve the hour of the
day based on local time. Use the getUTCHours() method
to retrieve the hour of the day based on Universal
Coordinated Time. The getHours() and getUTCHours()
methods return an integer from 0 to 23. The value 0
represents midnight and the value 23 represents 11 p.m.

Use the getMinutes() method to retrieve the number of
minutes that have elapsed in the current hour based on
local time. Use the getUTCMinutes() method to retrieve

the number of minutes that have elapsed in the current
hour based on Universal Coordinated Time. The
getMinutes() and getUTCMinutes() methods return
an integer from 0 to 59.

Use the getSeconds() method to retrieve the number of
seconds that have elapsed in the current minute based on
local time. Use the getUTCSeconds() method to retrieve
the number of seconds that have elapsed in the current
minute based on Universal Coordinated Time. The
getSeconds() and the getUTCSeconds() methods
return an integer from 0 to 59.

Use the getMilliseconds() method to retrieve the
number of milliseconds that have elapsed in the current
second based on local time. Use the
getUTCMilliseconds() method to retrieve the number
of milliseconds that have elapsed in the current second
based on Universal Coordinated Time. The
getMilliseconds() and getUTCMilliseconds()
methods return an integer from 0 to 999.

GET DATE AND TIME VALUES

FLASH ACTIONSCRIPT

184

GET DATE AND TIME VALUES

3657-5 Ch08.F 1/31/02 12:24 PM Page 184

› Create an instance of the
Date object.

ˇ Assign the date values to
variables.

Á Concatenate the values.

� This gives the values the
appearance of a clock.

‡ Assign concatenated
values to a variable.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

° Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

· Test your movie.

� When you enter the test
environment, the screen will
automatically display the
time.

_ r o o t . t i m e = _ r o o t . h o u r + " : " + _ r o o t . m i n u t e + " : " + _ r . . .

WORKING WITH OBJECTS 8

A Web page user can be in any time zone. When
displaying information that is time specific, you
can display the information in universal time and
provide the user with the difference between
universal time and local time. Use the
getTimezoneOffset method to retrieve
the difference in minutes between local
time and Universal Coordinated Time. The
getTimezoneOffset method does not
need to make adjustments for daylight savings
time because the computer system clock makes
the adjustments.

Use the date.getTime method to retrieve the
number of milliseconds since midnight January 1,
1970, universal time. This method is useful when
you need to compare an instant in time across two
or more time zones. You may want to use this
method if you create a game for players in different
time zones. Using this method, you can calculate
the elapsed time for each player using the same
base.

185

3657-5 Ch08.F 1/31/02 12:24 PM Page 185

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file date.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create an instance of the
Date object.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

Actions Ctrl+Alt+A

The set date methods are useful when you want to
obtain date information from the user and when you
want to perform date arithmetic. The set date methods

enable you to set a date.

Use the new Date constructor to create a Date object with
a specific date and time, using the syntax

objectName = new Date(year,month,date,
hour,minute,second); .

Use the objectName argument to name the object. Use
the year argument to specify the year. You can use 00 to 99
to indicate a year between 1900 and 1999. Otherwise, use
four digits to indicate the year. Use the month argument to
indicate the month. Use 0 to represent January, 1 to
represent February, and so forth. Use the date argument to
specify the day of the month. Use an integer from 1 to 31.
The date argument is optional. Use the hour argument to

specify the hour. Use an integer from 0 to 23. Use 0 to
represent midnight and 23 to represent 11 p.m. The hour
argument is optional. Use the minute argument to specify
the minute. Use an integer between 0 and 59. The minute
argument is optional. Use the second argument to specify
the second. Again, use an integer between 0 and 59. The
second argument is also optional.

Some date methods set date and time by using the local
time. Other date and time methods set the date and time
based on Universal Coordinated Time.

Use the Date.toString method to convert a Date object
to a string. The Date.toString method uses the syntax

objectName.toString(); .

Use the objectName argument to specify the Date object
you want to convert to a string.

SET THE DATE

FLASH ACTIONSCRIPT

186

SET THE DATE

3657-5 Ch08.F 1/31/02 12:24 PM Page 186

› Get the milliseconds.

� By default, the Date object
does not display
milliseconds.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

Á Click the button to test
your movie.

� The screen displays the
Date object.

WORKING WITH OBJECTS 8

ActionScript stores dates as the number of milliseconds since January 1,
1970, 00:00:00. The Date object range is -100,000,000 days to
100,000,000 days relative to January 1, 1970 UTC.

If you need to calculate age, use the script that follows. In this script,
the user inputs his birth date, and the script calculates his age. The
variables monthV, DayV, and YearV are input text fields used to collect
the date of birth of the user. The script subtracts the current date from
the birth data and converts milliseconds to years to determine the age.

187

TYPE THIS:

Button
on (release) {

monthU = monthV-1;

birth = new Date(yearV,MonthU, DayV);

today = new Date();

age = Math.floor ((((((today-birth)/1000)/60)/60)/24)/365);

result = "You are " + age + " years old.”;

}

RESULT:

The script calculates
an age based on the
data entered.

3657-5 Ch08.F 1/31/02 12:24 PM Page 187

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
setdate.fla, which you can find on the
CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create instances of the
Date object.

� If you associate the
variables with a dynamic text
box, your can display the
value the variables return to
the user.

Actions Ctrl+Alt+A

With ActionScript, you can set the date in local time or
in universal time. You can set a birthdate, the date a
project is due, or any other date you want to set.

Use the setMonth method to set the month in local time.
Use the setUTCMonth method to set the month in
Universal Coordinated Time. The syntax for the setMonth
method is

objectName.setMonth(month,date); .

The syntax for the setUTCMonth method is

objectName.setUTCMonth(month,date); .

Use the month argument to specify the month. Use 0 to
represent January, 1 to represent February, and so forth. Use
the date argument to specify the day of the month. Use an
integer from 1 to 31. The date argument is optional.

Use the setDate method to set the day of the month in
local time. Use the setUTCDate method to set the day of
the month in Universal Coordinated Time. The syntax for
the setDate method is

objectName.setDate(date); .

The syntax for the setUTCDate method is

objectName.setUTCDate(date); .

Use the date argument to specify an integer from 1 to 31
representing the appropriate day of the month.

Use the setFullYear method to set a four-digit number
representing the year in local time. Use the
setUTCFullYear method to set a four-digit number
representing the year in Universal Coordinated Time. The
syntax for the setFullYear method is

objectName. setFullYear(year,month,date); .

The syntax for the setUTCFullYear method is

objectName. setUTCFullYear(year,month,date); .

Use the year argument to specify a four-digit year. Use the
month argument to specify an integer from 0 to 11 that
represents the month. Use 0 to represent January, 1 to
represent February, and so forth. Use the date argument
to specify an integer from 1 to 31 to represent a day of
the month.

SET DATE VALUES
FLASH ACTIONSCRIPT

188

SET DATE VALUES

3657-5 Ch08.F 1/31/02 12:24 PM Page 188

› Change the date values. ˇ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

Á Click the button to test
your movie.

� The screen displays the
changes you made to the
Date objects.

WORKING WITH OBJECTS 8

You can update the date. For example, if you set
the date to January 18, 2003 and you later want
to set the date to January 12, 2003, you can use
the setDate method to change the day without
affecting the month and the year.

You can use the setYear method to
set a four-digit year in local time. The
syntax for the setYear method is
objectName.setYear(year); .
Use the year argument to specify a
four-digit year.

189

TYPE THIS:

dateV = new Date(2003, 0, 18)

RESULT:

The date is set to
January 18, 2003.

TYPE THIS:

dateV.setDate(12)

RESULT:

The date is reset to
January 12, 2003.

3657-5 Ch08.F 1/31/02 12:24 PM Page 189

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
settime.fla, which you can find on the
CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create instances of the
Date object.

› Change the time values.

� If you associate the
variables with dynamic text
boxes, you can display the
values the variables return to
the user.

Actions Ctrl+Alt+A

You can use time values to record time. Using
ActionScript you can set the time down to the
millisecond. Use the setHours method to set the

hour in local time. Use the setUTCHours method to set
the hour in Universal Coordinated Time. The syntax for the
setHours method is objectName.setHours(hour); .

The syntax for the setUTCHours method is

objectName.setUTCHours(hour); .

Use the hour argument to specify an integer from 0 to 23. The
value 0 represents midnight; the value 23 represents 11 p.m.

Use the setMinutes method to set the number of minutes
that have elapsed in local time. Use the setUTCMinutes
method to set the number of minutes that have elapsed
in Universal Coordinated Time. The syntax for
the setMinutes method is
objectName.setMinutes(minute); .

The setUTCMinutes method syntax is

objectName.setUTCMinutes(minute); .

Use the minute argument to specify an integer from 0 to
59 that represents the number of minutes.

Use the setSeconds method to set the number of
seconds that have elapsed in a minute in local time. Use
the setUTCSeconds method to set the number of seconds
that have elapsed in a minute in Universal Coordinated
Time. The syntax for the setSeconds method is

objectName.setSeconds(second); .

The syntax for the setUTCSeconds method is
objectName.setUTCSeconds(second); . Use the
second argument to specify an integer from 0 to 59 that
represents the number of seconds.

Use the setMilliseconds method to set the number of
milliseconds that have elapsed in a second in local time.
Use the setUTCMilliseconds method to set the number
of milliseconds that have elapsed in Universal Coordinated
Time. The syntax for the setMilliseconds method is
objectName.setMilliseconds(millisecond); .
The syntax for the setUTCMilliseconds method is
objectName.setUTCMilliseconds(millisecond); .
Use the millisecond argument to specify an integer from
0 to 999 that represents the number of milliseconds.

SET TIME VALUES
FLASH ACTIONSCRIPT

190

SET TIME VALUES

3657-5 Ch08.F 1/31/02 12:24 PM Page 190

ˇ Get the milliseconds. Á Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

‡ Click the button to test
your movie.

� The screen displays the
changes you made to the
Date objects.

WORKING WITH OBJECTS 8

Use the Date.UTC method to retrieve the number of milliseconds
between January 1, 1970, universal time and the date and time
specified in the Date.UTC arguments. The syntax for the
Date.UTC method is Date.UTC(year,month,date,hour,
minute,second,millisecond); .

Use the year argument to specify a four-digit year. Use the month
argument to indicate the month. Use 0 to represent January, 1 to
represent February, and so forth. The month argument is optional.
Use the date argument to specify the day of the month. Use an
integer from 1 to 31. The date argument is optional. Use the hour
argument to specify the hour. Use an integer from 0 to 23. Use 0 to
represent midnight; use 23 to represent 11 p.m. The hour argument
is optional. Use the minute argument to specify the minute. Use
an integer between 0 and 59. The minute argument is optional.
Use the second argument to specify the second. Again, use an
integer between 0 and 59. The second argument is also optional.

When displaying dates in text
boxes, make the box long
enough to display the entire
date. If Flash cannot display a
date element in its entirety, it
truncates.

191

3657-5 Ch08.F 1/31/02 12:24 PM Page 191

FLASH ACTIONSCRIPT

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file trig.fla,
which you can find on the CD that
accompanies this book.

¤ Click to open the
Actions panel.

‹ Convert degrees to
radians.

› Calculate the sine.

� If you associate the
variable with a dynamic text
box, you can display the
value the variable returns to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

Á Type a number.

‡ Click the button to test
your movie.

� The screen displays the
results of the calculation.

192

USING MATHEMATICAL FUNCTIONS

The Math object has methods that enable you to
perform trigonometric functions. The functions
supported include sine, cosine, tangent, arc sine, arc

cosine, and arc tangent. The methods for these functions
are sin(), cos(), tangent(), asin(), acos(), and
atan(), respectively. The Math object also includes the
method atan2. The method atan2 computes the angle
from the x-axis to the point. The cos, sin, and tan
methods take the radian of an angle as an argument.
Radians are used to measure an angle; 360 degrees are
equal to 2 Pi radians. You can pass the functions of a
measurement in radians, or you can you use the formula
shown here to calculate radians: radian = Math.PI/180 *
number of degrees.

The Math object also includes functions for working with
logarithms and exponentials based on Euler’s constant. The
log() method returns the natural logarithm of a number.
The exp method returns Euler’s constant raised to the
power of the number specified.

USING MATHEMATICAL FUNCTIONS

A constant is a value that does not change. The
Math object includes several properties. All of
the Math object properties are constants. You
can use these constants to perform
mathematical calculations.

PROPERTY VALUE

E —Euler’s constant 2.718

LN2 —The natural logarithm of 2 .0693

LOG2E —The base 2 logarithm of e 1.442

LN10 —The natural logarithm of 10 2.302

LOG10E —The base 10 logarithm of e .434

PI —The ratio of the circumference 3.14159
of a circle to its diameter

SQRT1_2 — The reciprocal of the .707
square root of 1/2

SQRT2 —The square root of 2 1.414

3657-5 Ch08.F 1/31/02 12:24 PM Page 192

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file sqr.fla,
which you can find on the CD that
accompanies this book.

¤ Click to open the
Actions panel.

‹ Find the square root.

� Associating the variable
results with a dynamic text
box enables you to display
the value the variable returns
to the user.

› Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

ˇ Type a value.

Á Click the button to test
your movie.

� The screen displays the
square root.

193

When performing mathematical calculations,
you may need to raise a number to a
power using the Math.pow method. The

syntax for the Math.pow method is Math.
pow(x, y); .

Use the x argument to specify the number you
want to raise to a power. Use the y argument to
specify the power to which you want to raise the
number. The statement Math.pow(3,2); raises 3
to the second power. The statement returns 9.

If you want to find the square root of a number,
use the Math.sqrt method. The syntax for the
Math.sqrt method is Math.sqrt(x); .

Use the x argument to specify the value for which
you want to find the square root. The value must
be greater than or equal to zero. The statement
Math.sqrt(9); finds the square root of 9. The
statement returns 3.

RAISE A POWER OR FIND A SQUARE ROOT

WORKING WITH OBJECTS 8

WORK WITH POWERS

You can raise a number to a power using the
script that follows. The variables inputV and
inputpowV are input text boxes in which the
user types the number and the power to which
to raise the number. The variable result is a
dynamic text box. It displays the results of the
calculation on the screen. You attach this script
to a button.

TYPE THIS:

on (release) {
result = Math.pow (inputV, inputpowV);

}

RESULT:

ActionScript raises the number you
entered to the power you specified.

3657-5 Ch08.F 1/31/02 12:24 PM Page 193

FLASH ACTIONSCRIPT

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file round.fla,
which you can find on the CD that
accompanies this book.

¤ Click to open the
Actions panel.

‹ Type the formula for
rounding a number.

› Assign the formula to a
variable.

� Associating the variable
with a dynamic text box
enables you to display the
value the variable returns to
the user.

ˇ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

Á Type a number with more
than 2 digits after the decimal
point.

‡ Click the button to test
your movie.

� The screen displays the
number rounded to two
digits.

194

ROUND NUMBERS

You can use the Math.round method to round a
number to an integer. The syntax for the
Math.round method is Math.round(x); . Use the

argument x to specify the number you want to round. If the
value after the decimal point is 0.5 or higher, the round
method rounds up. If the value after the decimal point is
lower than 0.5, the round method rounds down.

If you want to round up regardless of the value after the
decimal point, use the Math.ceil method. The syntax
for the Math.ceil method is Math.ceil(x); . Use the
x argument to specify the number you want to round.
The statement ceilNumber = math.ceil(123.01);
returns 124.

If you want to round down regardless of the value after the
decimal point, use the Math.floor method. The syntax for
the Math.floor method is Math.floor(x); . Use the
x argument to specify the number you want to round. The
statement floorNumber = math.floor(123.99);
returns 123.

The Math.round, Math.ceil, and Math.floor methods
all round your number to the nearest integer. You might
want to round your number to one, two, three, or more
decimal places. To round to one decimal place, multiply the
number you want to round by 10, round the number, and
then divide the result by 10. If you want two decimal places,
multiply by 100 and divide by 100. If you want three
decimal places, multiply by 1000 and divide by 1000.

ROUND NUMBERS

Math round returns the following values:

TYPE THIS:

roundNumber = math.round(123.50);

RESULT:

124

TYPE THIS:

roundNumber = math.round(123.49);

RESULT:

123

3657-5 Ch08.F 1/31/02 12:24 PM Page 194

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
random.fla, which you can find on the
CD that accompanies this book.

¤ Click to open the
Actions panel.

‹ Type the formula for
generating a random number
between 1 and 10.

› Assign the result to a
variable.

ˇ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

Á Click the button to test
your movie.

� The screen displays a
random number between 1
and 10 each time you click
the button.

195

You can use random numbers for a variety of
purposes, such as displaying a movie clip at random
locations on the Stage. You can use the Math.random

method to generate random numbers. The syntax for the
Math.random method is Math.random(); . The
Math.random method returns a random number between
0 and 1. If you want to generate a number between 0 and
another value, multiply Math.random by the value you
want to set as the limit. For example, if you want to
generate a random number between 0 and 10, multiply
Math.random by 10.

The number generated might not be a whole number. You
can use the Math.round method to round the number to
an integer. This example returns random integers between
1 and 10: Math.round(Math.random() * 10); .

You might want to generate random numbers between two
numbers. This example generates integers between 50 and
60: 50 + Math.round(Math.random()*10); .

GENERATE RANDOM NUMBERS
WORKING WITH OBJECTS 8

GENERATE RANDOM NUMBERS

The random function provides you with an
alternate way to generate a random number.
The random function returns integers between 0
and a specified value. The syntax for the random
function is random(value); .

Use the value argument to set the highest
value the random function should return. The
random function will return any value between
0 and the value you specify minus 1.

Flash 5 deprecated the random function. If
you are authoring for a Flash 5 environment,
use Math.random instead.

TYPE THIS:

Random(5);

RESULT:

0, 1, 2, 3, or 4

3657-5 Ch08.F 1/31/02 12:24 PM Page 195

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
maxmin.fla, which you can find on the
CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Determine the maximum
value.

› Determine the minimum
value.

� Associating the variables
highNo and lowNo with
dynamic text boxes enables
you to display the value the
variable returns to the user.

� Associating the variables x
and y with input text boxes
allows you to store the values
the user enters.

Actions Ctrl+Alt+A

The Math.max method enables you to compare two
numbers to determine which is larger. The Math.min
method enables you to compare two numbers to

determine which is smaller. When an expression returns a
number and you need to know the larger or the smaller of
the two, use Math.max or Math.min.

The syntax for the Math.max method is Math.max(x, y); .
The syntax for the Math.min method is Math.min(x, y); .

Use the x and y arguments to specify the values or expressions
you want to compare. For example, Math.max(23, 4);
compares 23 and 4 and returns 23; Math.min(23, 4);
compares 23 and 4 and returns 4. If you send two equal
values to Math.max and Math.min, the method returns the
value sent. You cannot use Math.max and Math.min to
compare non-numeric characters. If you send a non-numeric
value to Math.max or Math.min, the method will return
NaN, which means not a number.

If you need to know the positive value of a number
regardless of the sign of the value, use the Math.abs
method. If you send a negative number to the Math.abs
method, Math.abs returns a positve number. The
Math.abs method always returns a positive number
regardless of the value sent to it. The syntax for the
Math.abs method is

Math.abs(x); .

Use the x argument to specify the number or expression
whose absolute value you want to find. The statement
Math.abs(–15) returns 15.

You can use the Math.abs method with integers or
floating-point numbers. If you assign a non-numeric value
to Math.abs, Math.abs will return NaN.

FIND NUMERIC VALUES

FLASH ACTIONSCRIPT

196

FIND NUMERIC VALUES

3657-5 Ch08.F 1/31/02 12:24 PM Page 196

ˇ Determine the absolute
values.

� Associating the variables
ax and ay with dynamic text
boxes allows you to display
the value the variable returns
to the user.

Á Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

‡ Type numbers in the text
boxes.

° Click the button to test
your movie.

� The minimum, maximum,
and absolute values display.

WORKING WITH OBJECTS 8

You can use this script to compare two values. The user enters
numeric values in the input text boxes that are associated with
variables x and y. The script compares the values. The variable
result is a dynamic text box. It displays the results of the
comparison. The script uses an if statement to determine if the
numbers input are equal. If the numbers are equal, the script
does not compare numbers. Instead, the script returns a message
to the user informing the user that the numbers are equal.

Example:
on (release) {

if (x != y) {

highNo = Math.max (x, y);

lowNo = Math.min (x, y);

result = highNo + " > " + lowNo;

} else {

result = "x = y";

}

}

197

3657-5 Ch08.F 1/31/02 12:24 PM Page 197

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file 1key.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set the event to KeyDown. � This causes the script to
execute every time the user
presses a key.

Actions Ctrl+Alt+A

The methods of the Key object enable you to detect the
last key pressed. You can use the Key object to create
keyboard controls for Flash movies. The methods of

the Key object are essential if you are programming games.
Use the Key object to give the user the ability to maneuver
objects around the screen using the keyboard. Use the Key
object to give the user the ability to change the size or
shape of objects using the keyboard. Alternatively, use the
Key object to respond to the user based on the key pressed.
You do not use a constructor to access the Key object.

ActionScript assigns a virtual key code to every physical key
on the keyboard. Chapter 14 provides a list of virtual key
codes. Virtual key codes are the same across all platforms
and languages. You use virtual key codes to ensure that
your movie key controls are the same across all platforms
and languages.

The getCode method returns the virtual key code of the
last key pressed. The syntax for the getCode method is

Key.getCode(); .

The getCode method does not take any arguments. The
virtual key code for k is 75. If the user presses k, the
getCode method returns 75. Using the getCode method,
you can have your movie perform actions based on the key
pressed.

The first 127 characters of every character set have ASCII
values. The getAscii method returns the ASCII value for
the last key pressed. The ASCII value for k is 107. If the user
presses k, getAscii returns 107.

USING THE KEY OBJECT

FLASH ACTIONSCRIPT

198

ASSIGN A KEY CODE

3657-5 Ch08.F 1/31/02 12:24 PM Page 198

› Get the ASCII code.

ˇ Get the virtual key code.

Á Evaluate the key pressed.

� The value 76 is the virtual
key code for the letter L.

� Associating the variables
with dynamic text boxes
enables you to display the
values the variables return to
the user.

‡ Evaluate to see if the Num
Lock key is on.

° Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

· Test your movie by
pressing keys on the
keyboard.

� The screen displays the
ASCII code, the virtual key
code, whether you pressed L,
and the status of the Num
Lock.

WORKING WITH OBJECTS 8
You can use arrow keys to move a movie clip around the
Stage. This script uses the arrow keys to move a smiley face.

Example:
onClipEvent (keyDown) {

if (Key.isDown(Key.RIGHT)) {

_x = _x + 10;

}

}

onClipEvent (keyDown) {

if (Key.isDown(Key.LEFT)) {

_x = _x - 10;

}

}

onClipEvent (keyDown) {

if (Key.isDown(Key.UP)) {

_y = _y - 10;

}

}

onClipEvent (keyDown) {

if (Key.isDown(Key.Down)) {

_y = _y + 10;

}

}

199CONTINUED

3657-5 Ch08.F 1/31/02 12:24 PM Page 199

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file 2Key.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Use an if statement to set
a condition.

� If the virtual key code for
the key pressed equals the
key code specified, the
condition is true.

› Assign a value to a
variable if the condition
is true.

� Associating the variable
with a dynamic text box
enables you to display the
value the variable returns to
the user.

ˇ Repeat steps 3 and 4 for
each virtual key code you
want to test.

Actions Ctrl+Alt+A

You may at times want to use ASCII values instead of
virtual key codes because capital and small letters
have different ASCII values. For example, the letter A

and the letter a do not have the same ASCII value. The
syntax for the getAscii method is

Key.getAscii(); .

The getAscii method does not take any arguments.

You use the Key.isDown method to determine if the user
pressed a specified key. The Key.isDown method returns
true if the user pressed the key and false if the user did
not press the key. The syntax for the Key.isDown method is

Key.isDown(keycode); .

Use the keycode argument to specify the virtual key code
value assigned to the value or the Key object property
assigned to the key. The properties of the Key object
represent the keys most commonly used to control games.

The virtual keycode for the Up arrow key is 38. The
statement Key.isDown(38); returns true if the user
presses the Up key. The Key object property for the Up key
is Key.UP. The statement Key.isDown(Key.UP); returns
true if the user presses the Up key.

Use the Key.isToggled method to determine
whether the Caps Lock or Num Lock key is on or off.
The syntax for the Key.isToggled method is Key.
isToggled(keycode). Use the keycode argument
to specify the key you want to test. Use 20 for the
Caps Lock key and 144 for the Num Lock key. The
Key.isToggle(keycode) method returns true if
the Caps Lock key or Num Lock key is on and false if
the Caps Lock key or Num Lock key is off.

The onClip Event (keyDown) and the onClip Event
(keyUp) events respond each time the user presses a key.
When using the Key object, you may want to associate your
script with one of these events.

USING THE KEY OBJECT (CONTINUED)

FLASH ACTIONSCRIPT

200

USING THE KEY OBJECT (CONTINUED)

3657-5 Ch08.F 1/31/02 12:24 PM Page 200

Test Movie Ctrl+Enter

Á Click Control ➪ Test
Movie to move to the test
environment.

‡ Type a word to test your
movie.

� The word appears on
screen.

WORKING WITH OBJECTS 8

The properties of the Key object represent the keys
most commonly used to control games. You can use
properties of the keycode method as the keycode
argument when using the Key.isDown method.

PROPERTY REPRESENTS VALUE PROPERTY REPRESENTS VALUE

BACKSPACE Backspace Key 9 INSERT Insert Key 45

CAPSLOCK Caps Lock Key 20 LEFT Left Key 37

CONTROL Control Key 17 PGDN Page Down Key 34

DELETE KEY Delete Key 46 PGUP Page Up Key 33

DOWN Down Arrow 40 RIGHT Right Key 39

END End Key 35 SHIFT Shift Key 16

ENTER Enter Key 13 SPACE Space Key 32

ESCAPE Esc Key 27 TAB Tab Key 9

HOME Home Key 36 UP Up Key 38

201

3657-5 Ch08.F 1/31/02 12:24 PM Page 201

SET THE SYMBOL LINKAGE
PROPERTY

⁄ Click Window ➪ Library
to open the Library.

Note: This example uses file sound.fla,
which you can find on the CD that
accompanies this book.

¤ Select the sound symbol.

‹ Click to open the
Options menu.

› Click Linkage to open the
Symbol Linkage Properties
dialog box.

ˇ Click Export this symbol
for the Linkage type
(„ changes to ´).

Á Type a name in the
Identifier field.

‡ Click OK.

° Save your .FLA file.

� After setting the Symbol
Linkage Property, you must
save your file.

Library Ctrl+L

Linkage...

music

You can use sound to create characters that talk,
narrate a movie, or play background music. Sound
methods enable you to turn sounds on and off,

increase or decrease volume, or determine which speaker
plays the sound. There are four steps to creating sound
using ActionScript. You name the sound and set the sound
to export, create a Sound object, attach the sound, and
then start the sound.

You name a sound and set the sound to export using the
Symbol Linkage Properties dialog box. You access the
Symbol Linkage Properties dialog box through the Options
menu of the Library. In the Symbol Linkage Properties
dialog box, set the Linkage to Export this Symbol, and use
the Identifier field to name the sound.

You use the constructor new Sound to create a Sound
object. The syntax for the new Sound constructor is

soundName = new Sound (target); .

Use the target argument to specify the movie clip
instance to which the Sound object applies. If you do not
specify a target, the Sound object controls all of the sounds
on the global Timeline. If you want to control each sound
independently, place each sound in a separate movie clip.
Use the soundName argument to specify the name of the
Sound object.

You use the attachSound method to create an instance of
the sound. The syntax for the attachSound method is

soundName.attachSound("idName"); .

Use the soundName argument to specify the name of the
Sound object. Use the idName argument to specify the
name of the new instance of the sound. Enclose the idName
in quotes. The name you specify should be the same name
you gave to the sound in the Identifier field of the Symbol
Linkage Properties dialog box.

USING THE SOUND OBJECT
FLASH ACTIONSCRIPT

202

USING THE SOUND OBJECT

3657-5 Ch08.F 1/31/02 12:24 PM Page 202

ADD SOUND

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set a variable to false. � You are initializing the
variable. Frequently, you
initialize variables in frame 1.
Subsequent statements reset
the value. In this case, false
means no sound is playing.

Actions Ctrl+Alt+A

WORKING WITH OBJECTS 8
When the user presses a button, this script toggles the music on. When
the user presses the button again, the script toggles the music off. The
variable onOff is a dynamic text box that displays Click for Music when
the music is off and Click to Stop when the music is on.

Frame 1
status = false;

Button
on (release) {

if (status == false) {

beat = new Sound();

beat.attachSound("music");

beat.start(0,10);

status = true;

onOff = "Click to Stop";

} else {

beat.stop();

status = false;

onOff = "Click for Music";

}

}

203

CONTINUED

3657-5 Ch08.F 1/31/02 12:24 PM Page 203

› Select the frame, button,
or movie clip to which you
want to add ActionScript.

ˇ Use an if statement to
test the variable you set
in frame 1.

� If the variable is equal to
false, the statements execute.

Á Create a Sound object.

‡ Attach the sound.

� You use the instance name
you gave the sound in the
Symbol Linkage Properties
dialog box.

° Start the sound.

You use the start method to play your sound. The
syntax for the Sound.start method is

soundName.start(secondOffset,loop); .

Use the soundName argument to specify the name of the
Sound object. Use the secondOffset argument to specify
the point at which you want the sound to start. If you have
a 20-second sound and you specify a secondOffset of 10,
the sound will start playing in the middle of the sound.
Note that this argument does not delay the start of the
sound 10 seconds, but instead starts the sound at the 10-
second mark. The secondOffset argument is optional.
Use the loop argument to specify the number of times the
sound should loop. The loop argument is also optional.

Once you have started your sound, you use the stop
argument to stop it. The syntax for the stop argument is

soundName.stop("idName"); .

Use the idName argument to specify the name of the sound
you want to stop. Enclose the idName in quotes. The
idName argument is optional. If you do not specify an
idName, all sounds will stop.

You can also use the stopAllSounds action to stop the
sounds. Sounds set to streaming will resume playing when
the playhead moves over them. The syntax for the
stopAllSounds action is

stopAllSound(); .

The stopAllSounds action does not take any arguments.

In Flash, you can play multiple sounds at the same time. You
can play background music, while a narrator narrates your
movie. You can start sound in a frame or using any of the
button or movie clip handlers. That means you can start
sound with the press of a button, when the user rolls over
an object, or upon entry into a frame.

USING THE SOUND OBJECT (CONTINUED)

FLASH ACTIONSCRIPT

204

USING THE SOUND OBJECT (CONTINUED)

3657-5 Ch08.F 1/31/02 12:24 PM Page 204

· Reset the value of the
variable.

� The sound is now playing
so you set the status to true.

‚ Create an else statement.

� If the status is not equal to
false, these statements will
execute.

— Stop the sound.

± Reset the value of the
variable.

� The sound is no longer
executing so you set the
status to false.

¡ Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

™ Click the button to test
your movie.

� Clicking the button toggles
sound on and off.

WORKING WITH OBJECTS 8

You can use a script similar to this one to increase the volume
of a sound. In this script, if the volume is less than 95, the
script increases the volume by 5 each time the user releases
the mouse after clicking a button. If the volume is greater
than or equal to 95, the script sets the volume to 100. You can
create a separate button to decrease the volume in much the
same way.

Button
on (release) {

vol = beat.getVolume();

if (vol < 95) {

beat.setVolume(vol + 5);

vol = beat.getVolume();

} else {

beat.setVolume(100);

vol = beat.getVolume();

}

205

3657-5 Ch08.F 1/31/02 12:24 PM Page 205

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
volppan.fla, which you can find on the
CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Create and start a sound.

› Get the pan value.

� Associating the variable
with a dynamic text box,
enables you to display the
value the variable returns to
the user.

ˇ Get the volume value.

� Associating the variable
with a dynamic text box
enables you to display the
value the variable returns to
the user.

Actions Ctrl+Alt+A

ActionScript provides methods that enable you to
adjust sound volume and panning or to give your
users the ability to adjust the volume and panning.

You use the setVolume method to adjust sound volume.
The syntax for the setVolume method is

soundName.setVolume(volume); .

Use the soundName argument to specify the name of the
Sound object. Use the volume argument to specify an
integer between 0 and 100 that represents the volume level.
A value of 100 represents full volume. A value of 0
represents no volume. The default is 100.

To obtain the value of the current volume level, use the
getVolume method. The syntax for the getvolume
method is

soundName.getVolume(); .

The getVolume method returns a value between 1 and 100
that represents the current volume level.

You use the setPan method to control how sound is played
in each speaker. The syntax for the setPan method is

soundName.setPan(pan); .

Use the soundName argument to specify the name of the
Sound object. Use the pan argument to specify an integer
between –100 and 100. A pan of –100 only uses the left
speaker. A pan of 100 only uses the right speaker. A value of
0 balances the sound equally between the two speakers.
You can use setPan to fade sound from one speaker to the
other.

Use the getPan method to obtain the current pan
value. The syntax for the getPan method is

soundName.getPan() .

The getPan method returns a value between –100 and 100,
which represents the current pan level.

ActionScript includes a _soundbuftime action. Use the
_soundbuftime action to establish the number of seconds
of streaming sound to prebuffer. The default is 5 seconds.
The syntax for the _soundbuttime action is
_soundbuftime = integer; . Use the integer
argument to specify the number of seconds to buffer.

SET VOLUME AND PANNING
FLASH ACTIONSCRIPT

206

SET VOLUME AND PANNING

3657-5 Ch08.F 1/31/02 12:24 PM Page 206

Á Select the frame, button,
or movie clip to which you
want to add ActionScript.

‡ Reset the volume and pan
values.

° Get the new pan and
volume values.

· Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

‚ Click the button to test
your movie.

� Clicking the button resets
the pan and volume values.

WORKING WITH OBJECTS 8

You can use a script similar to this one to set the pan. In
this script, if the pan is less than 95, the script increases the
pan by 5 each time the user releases the mouse after
clicking on a button. If the pan is greater than or equal to
95, the script sets the pan to 100. You can create a separate
button to decrease the pan in much the same way.

Button
on (release) {

pan = beat.getpan();

if (pan < 95) {

beat.setPan(pan + 5);

pan = beat.getPan();

} else {

beat.setPan(100);

pan = beat.getPan();

}

}

207

3657-5 Ch08.F 1/31/02 12:24 PM Page 207

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
selections.fla, which you can find on
the CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Set the event to Mouse
move.

� This causes the script to
execute every time the mouse
moves.

Actions Ctrl+Alt+A

If you make your dynamic text boxes or input text boxes
selectable, the user can click and drag to select text
located in the text boxes. You use the selection

methods to obtain the beginning and ending points of user
selections. This is useful when you want your movie to
respond to or display information in response to a user
selection. You use the getBeginIndex method and the
getEndIndex to retrieve the index position of selected
text. The syntax for getBeginIndex is

Selection.getBeginIndex(); .

The syntax for getEndIndex is

Selection.getEndIndex(); .

The Selection.getBeginIndex and the
Selection.getEndIndex methods do not take
arguments. The Selection.getBeginIndex method
returns the index position of the beginning of the selection.
The selection.getEndIndex method returns the index
position of the end of the selection. The first position in a
text box has an index position of 0, the second an index
position of 1, and so forth. When the cursor is not located

in a text box, the Selection.getBeginIndex and
Selection.getEndIndex methods return –1.

When working with text boxes, if you need to
know the location of the blinking cursor, use the
Selection.getCaretIndex method. The syntax
for the Selection.getCaretIndex method is

Selection.getCaretIndex();.

The selection.getCaretIndex method does not take
any arguments. If the cursor is not located in a text box,
selection.getCaretIndex returns a –1.

If you need the variable name of the field in which the
cursor is currently located, use the Selection.getFocus
method. The syntax for the Selection.getFocus
method is

Selection.getFocus(); .

The Selection.getFocus method does not take any
arguments. It returns the name of the variable in which the
cursor is currently located. If the cursor is not located in the
text box, selection.getFocus returns null.

USING THE SELECTION OBJECT
FLASH ACTIONSCRIPT

208

USING THE SELECTION OBJECT

3657-5 Ch08.F 1/31/02 12:24 PM Page 208

› Get the BeginIndex
value.

ˇ Get the EndIndex value.

Á Get the CaretIndex
value.

‡ Get the Focus value.

° Move to the test
environment.

Note: See page 38 for instruction on
how to test your movie.

· Test your movie by
clicking and dragging to
select text.

� The BeginIndex,
EndIndex, CaretIndex,
and Focus values display
on-screen.

WORKING WITH OBJECTS 8
You can use the selection methods to determine what the user
has selected. In this script, two words appear on the screen.
Flash displays one word spelled correctly and one word
spelled incorrectly. The user is instructed to select the word
that is spelled incorrectly. If the user is successful, the script
responds, correct. Otherwise, the script responds, wrong.

Frame 1
setProperty (codeMC, _visible, false);

MovieClip
onClipEvent (mouseMove) {

_root.begin = Selection.getBeginIndex();

_root.end = Selection.getEndIndex();

if (_root.begin == 0 && _root.end == 9) {

_root.response = "Correct!";

} else if (_root.begin ==10 && _root.end ==19) {

_root.response = "Wrong";

} else {

_root.response = "";

}

}

209

3657-5 Ch08.F 1/31/02 12:24 PM Page 209

Movie clips have a number of properties, including
height, width, location, and visibility. You can
retrieve the properties of a movie clip using the

getProperty function.

Retrieving movie clip properties enables you to perform
actions based on the property value retrieved. For example,
you can create a button that enables the user to toggle the
size of an object between small, medium, and large. You
retrieve the current _height and _width values and reset
the values based on the value retrieved. You can retrieve
the _x and _y properties of a movie clip to determine the
location of the movie clip. The _x property gives you the
x coordinate of a movie clip and the _y property gives
the y coordinate of a movie clip. You can add 5 to the
x coordinate to move the movie clip 5 pixels to the right.
You can subtract 5 from the x coordinate to move a movie
clip five pixels to the left.

You can use the getProperty function to retrieve any
movie clip property. The syntax for the getProperty

function is
getProperty(instanceName, property);.

Use the instanceName argument to specify the instance
for which you want to retrieve a property. Use the
property argument to specify the property you want to
retrieve. This example retrieves the height property of a
movie clip named sampleMC: getproperty(sampleMC,
_height); .

You can also retrieve movie clip properties by placing the
instance name followed by a dot in front of the property.
Here is the syntax: instanceName._property; .

Use the instanceName argument to specify the name of
the instance for which you want to retrieve a property. Use
the property argument to specify the property you want
to retrieve. This example retrieves the height property of a
movie clip named sampleMC: sampleMC._height; .

GET PROPERTIES

210

FLASH ACTIONSCRIPT

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
getproperties.fla, which you can find
on the CD that accompanies this book.

� This example uses a
button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Get the movie clip
property values using the
getProperty function.

� You can use the
getProperty function to
retrieve a property, or you
can precede the property
with the movie clip name
followed by a dot.

Actions Ctrl+Alt+A

GET PROPERTIES

3657-5 Ch09.F 1/31/02 12:24 PM Page 210

You can use the script that follows to toggle the size
of a movie clip. The script is associated with a button.

DEMYSTIFYING FUNCTIONS 9

211

TYPE THIS:

on (release) {
if (getProperty (_root.blockMC, _height) == 50 && getProperty (_root.blockMC, _width) == 50) {

setProperty (_root.blockMC, _height, 100);
setProperty (_root.blockMC, _width, 100);

} else if (getProperty (_root.blockMC, _height) == 100 && getProperty (_root.blockMC, _width) ==100) {
setProperty (_root.blockMC, _width, 150);
setProperty (_root.blockMC, _height, 150);

} else if (getProperty (_root.blockMC, _height) == 150 && getProperty (_root.blockMC, _width) ==150) {
setProperty (_root.blockMC, _width, 50);
setProperty (_root.blockMC, _height, 50);

}
}

RESULT:

Each click of the button toggles the size of the movie clip blockMC from 50 pixels x 50 pixels, to 100 pixels
x 100 pixels, to 150 pixels x 150 pixels, back to 50 pixels x 50 pixels.

› Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

ˇ Click the button to test
your movie.

� Clicking the button
displays the blueMC
properties.

Á Drag the blueMC over the
redMC.

‡ Click the button to get the
dropTarget property.

� The screen displays the
movie clip properties
including dropTarget.

3657-5 Ch09.F 1/31/02 12:24 PM Page 211

You use the getTimer function to retrieve the number
of milliseconds that have elapsed since a movie started
playing. This function is useful when writing games.

For example, you can write a game that gives the user 10
seconds to perform an action. You can retrieve the number
of milliseconds that have elapsed when the user starts and
you can stop the game 10 seconds later.

The syntax for the getTimer function is getTimer(); .
The getTimer function does not take any arguments.

You use the getVersion function to retrieve the version of
Flash Player the user is using and the platform on which the
user is working. The getVersion function only returns
information if the user is using version 5 of Flash Player or
higher. The getVersion function is useful when you want
to display a different set of instructions to each user,
dependent on their platform, or you want to ensure that
the version of Flash Player the user is using is compatible
with your movie.

The syntax for the getVersion function is getVersion(); .
The getVersion function does not take any arguments. The
following is an example of what the getVersion function
returns: WIN 5,0,17,0. The WIN indicates the user is using
Windows. The 5,0,17,0 indicates the version of Flash Player
the user is using.

FLASH ACTIONSCRIPT

212

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
vertimer.fla, which you can find on
the CD that accompanies this book.

¤ Click to open the
Actions panel.

‹ Get the timer using the
getTimer function.

› Get the version using the
getVersion function.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

� The screen displays the
timer and version.

USING GET TIMER AND GET VERSION

USING GET TIMER AND GET VERSION

You can use getTimer to specify when a movie
clip appears on the screen. The example that
follows uses getTimer to display a movie clip
on the Stage after 5 seconds have elapsed.

Example:
onClipEvent (enterFrame) {

_root.timeV = getTimer ();

if (_root.timeV >= 5000) {

setProperty (_root.stopMC, _visible,
true);

}

}

3657-5 Ch09.F 1/31/02 12:24 PM Page 212

213

You use the ActionScript eval function to
retrieve a variable, property, object, or
movie clip from a string. This function is

particularly useful when you have concatenated
strings to form the variable, property, object, or
movie clip name.

The syntax for the eval function is
eval(expression); . Use the expression
argument to specify the variable property,
object, or movie clip you want to retrieve. If the
expression argument represents a variable or
property, eval returns a value. If the expression
argument represents an object or movie clip,
eval returns a reference to the object or movie
clip. If ActionScript cannot find the expression
the argument represents, eval returns
undefined.

Flash 4 used the eval function to simulate arrays.
If you are authoring for a Flash 5 environment,
use the Array object to create arrays.

USING EVAL
DEMYSTIFYING FUNCTIONS

USING EVAL

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file eval.fla,
which you can find on the CD that
accompanies this book.

¤ Click to open the Actions
panel.

‹ Increment the value of x
by one.

› Assign a random number
to a variable.

ˇ Retrieve the values.

Á Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

‡ Click the button to test
your movie.

� Clicking the button
retrieves the value assigned to
the variable and the variable
name.

9

The table that follows illustrates the eval function.

EXAMPLE RETURNS
eval("sampleMC"); _level0.sampleMC

set ("x" + 1, 100); 100
b = eval ("x" + 1);

eval("sampleMC._visible"); true

soundObj = new Sound(); [object Object]
soundObj.attachSound("music");
soundObj.start();
d = eval("soundObj");

3657-5 Ch09.F 1/31/02 12:24 PM Page 213

USING THE NUMBER FUNCTION

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
tonumber.fla, which you can find on
the CD that accompanies this book.

¤ Click to open the
Actions panel.

‹ Convert a string to a
number using the number
function.

USING THE PARSEFLOAT
FUNCTION

› Select the frame, button,
or movie clip to which you
want to add ActionScript.

ˇ Convert a string to a
number using the
parseFloat function.

� Associating the variable
with a dynamic text box
enables you to display the
value the variable returns to
the user.

� Associating the variable
with an input text box
enables you to accept user
input.

You cannot perform mathematical calculations using a
string even if the value contained in the string is a
number. If you need to perform a mathematical

calculation using a value contained in a string, you must
convert the string to a number.

You can use the number function to convert a string to a
number. You can also use the number function to convert a
Boolean to a number. The Boolean true returns 1 and the
Boolean false returns 0. The syntax for the number
function is Number(expression); .

Use the expression argument to specify the string or
Boolean you want to convert. For more information on the
number function, see Chapter 4.

You can also use the parseFloat function to convert a
string to a number. The parseFloat function converts a
string to a floating-point number. A floating-point number is
a number that contains decimal places. If the string contains
both numeric and non-numeric characters, the parseFloat
function starts at the left and converts each character until
it reaches the first non-numeric character. The parseFloat

function ignores blank spaces preceding a string. If the first
character in the string is not a number, parseFloat
returns NaN, which stands for not a number.

The syntax for the parseFloat function is

parseFloat(string); .

Use the string argument to
specify the string you want to convert.

In addition to the parseFloat and number functions, you
can also use the parseInt function to convert a string to a
number. The parseInt function converts a string to an
integer. An integer is a number that does not contain
decimal places. The syntax for the parseInt function is

parseInt(expression, radix); .

Use the expression argument to specify the string you
want to convert. Use the radix argument to specify the base
from which you want to convert the string. Valid values are 2
to 36. The parseFloat function returns the value in base 10.

CONVERT A STRING TO A NUMBER
FLASH ACTIONSCRIPT

214

CONVERT A STRING TO A NUMBER

3657-5 Ch09.F 1/31/02 12:24 PM Page 214

USING THE PARSEINT FUNCTION

Á Select the frame, button,
or movie clip to which you
want to add ActionScript.

‡ Convert the string to a
number using the parseInt
function.

� Associating the variables
with a dynamic text box
enables you to display the
value the variable returns to
the user.

� Associating the variables
with an input text box
enables you to accept user
input.

° Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

· Type values in the text
boxes.

‚ Click the buttons to test
your movie.

� The script applies the
number, parseFloat, and
parseInt functions to your
entries.

DEMYSTIFYING FUNCTIONS 9
You normally count 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and then you add a new column to
form the number 10. You count in base 10. You work with 10 digits. You can
count in other bases. For example, you can count in base 2. When you count in
base 2, you only have two digits with which to work — 0 and 1. You start a new
column after you use the second digit. The table shown here illustrates:

BASE TEN BASE TWO COMMENTS

0 0

1 1

2 10 Using base two, you are out of digits. Form a new
column.

3 11

4 100 You are out of digits again. Form a new column.

5 101

6 110

7 111

215

You can use the parseInt function to enter a number in a base other than 10 and
return a base 10 value. Use the radix argument to specify the base of the number
you are entering.

3657-5 Ch09.F 1/31/02 12:24 PM Page 215

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
tonumber.fla, which you can find on
the CD that accompanies this book.

¤ Click to open the
Actions panel.

‹ Determine if the values
are numbers using the isNAN
function.

� Associating the variables
with input text boxes enables
you to accept user input.

› Send an error message to
the user if a value is not a
number.

ˇ Set the results of the
calculation to a blank space
if a value is not a number.

� Associating the variables
with dynamic text boxes
enables you to display the
values the variables return to
the user.

Á Test for infinity using the
isFinite function.

You cannot perform mathematical calculations using
non-numeric values. If you try to perform a
mathematical calculation using a non-numeric value,

ActionScript will return an error message. When you
request information from the user, the user may enter a
non-numeric value when a numeric value is required. You
can use the isNAN function to test whether a value is
numeric or non-numeric. If a value entered by the user is
non-numeric, when a numeric value is required, you can
send a message requesting that the user enter a number.

The syntax for the isNAN function is isNaN(expression);.
Use the expression argument to enter the expression you
want to evaluate to determine if it is a number. The isNAN
function returns true if the expression is not a number and
it returns false if the expression is a number.

When an expression returns infinity, that can be an
indication of a mathematical error. For example, when you
divide by 0, the result is infinity. You can use the

isFinite function to test whether an expression returns
infinity.

The syntax for the isfinite function is
isFinite(expression). Use the expression
argument to specify the expression you want to test. The
isFinite function returns true if the expression is not
equal to infinity and false if the expression is equal to
infinity.

The isFinite expression also returns false if the
expression is equal to negative infinity or positive infinity.
ActionScript defines negative infinity as any value that is
smaller than the smallest value ActionScript can represent.
Positive infinity is any value that is larger than the largest
value that ActionScript can represent. The smallest value
ActionScript can represent is approximately 5e324. The
largest value ActionScript can represent is approximately
1.7976931348623158e+308.

EVALUATE FOR MATHEMATICAL ERRORS
FLASH ACTIONSCRIPT

216

EVALUATE FOR MATHEMATICAL ERRORS

3657-5 Ch09.F 1/31/02 12:24 PM Page 216

‡ Send an error message to
the user if the expression
returns infinity.

° Set the results of the
calculation to a blank space
if the expression returns
infinity.

· Perform the calculations if
there are no errors.

‚ Set the error message to a
blank space if there are no
errors.

— Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

± Type the value in the input
text boxes.

¡ Click the button to test
your movie.

� ActionScript will display
an error message if your entry
in not a number or if the
calculation evaluates to
infinity.

DEMYSTIFYING FUNCTIONS 9

217

You can test user entries to determine if they are numbers. In the example
that follows, if all entries are not numbers, the script returns an error
message. If all entries are numbers, the script calculates an age based on
the entries made.

Example:
on (release) {

if (isNaN(monthV) || isNaN(yearV) ||isNaN(DayV)) {

errorMessage = “Please enter numbers.”;

result = “ “;

} else {

monthU = monthV-1;

birth = new Date(yearV,MonthU, DayV);

today = new Date();

age = Math.floor ((((((today-birth)/1000)/60)/60)/24)/365);

result = “You are “ + age + “ years old.”;

errorMessage = “”;

}

}

3657-5 Ch09.F 1/31/02 12:24 PM Page 217

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file scroll.fla,
which you can find on the CD that
accompanies this book.

¤ Click to open the
Actions panel.

‹ Assign text to an input or
dynamic text field.

� In this example, text is the
variable name and the
variable is associated with an
input text box.

› Select the frame, button,
or movie clip to which you
want to add ActionScript.

� The Actions panel will
become active.

� This part of this example
uses a button.

ˇ Set the scroll value to its
current value plus one.

� Each time the user releases
the mouse after clicking the
button, the text box will scroll
down one line.

When working with dynamic or input text boxes, you
may have more text than will fit in the visible area
of the text box. You can use ActionScript to create

buttons or scroll bars that enable the user to scroll up or
down the text box or move to a specified line.

ActionScript numbers each line in a text box sequentially.
The first line is line number one. Variables that are
associated with dynamic or input text boxes have a scroll
and maxscroll property. The scroll property returns the
topmost visible line number in the text box. You can set or
retrieve this value. The maxscroll property returns the
topmost visible line in the text box when the last line of text
is visible. You can retrieve the maxscroll value, but you
cannot set the maxscroll value.

The syntax for the scroll property is
variableName.scroll = x; . Use the variableName
argument to specify the variable name associated with the
text box. Use the x argument to specify the line number
you want to assign to the scroll property. For example, if

you want the user to move to line one on the release of the
mouse after pressing a button, use the syntax shown here:

on (release) {
text.scroll = 1;

}

To retrieve the scroll value, use the syntax scrollValue =
variableName.scroll; . As the user scrolls through a
text box, the Flash Player updates the variable
scrollValue.

The syntax for the maxscroll property is
variableName.maxscroll; . Use the variableName
argument to specify the variable name associated with the
text box. The example shown here displays the last lines of
text when the user releases the mouse after pressing a
button:

on (release) {
text.scroll = text.maxscroll;

}

CREATE A SCROLLABLE TEXT BOX
FLASH ACTIONSCRIPT

218

CREATE A SCROLLABLE TEXT BOX

3657-5 Ch09.F 1/31/02 12:24 PM Page 218

Á Select the frame, button,
or movie clip to which you
want to add ActionScript.

� The Actions panel will
become active.

‡ Set the scroll value to its
current value minus one.

� Each time the user releases
the mouse after clicking the
button, the text box will scroll
up one line.

° Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

· Click the buttons to test
your movie.

� When you click the down
button the text scrolls down.
When you click the up button
the test scrolls up.

DEMYSTIFYING FUNCTIONS 9
You can use the script shown here to create a
continuous scroll button. When you press the button,
the text box scrolls until you release the button. Start by
creating a button and attach the script shown here.

Example:
on (press) {

var press = true;

}

on (release) {

var press = false;

Convert the button to a movie clip. Select the button
and click Insert ➪ Convert to Symbol to open the
Symbol Properties dialog box. Type a symbol name in
the Name field and select Movie Clip as the Behavior.
Attach the script shown here to the movie clip. In this
example, the variable text is the name of the text box.

Example:
onClipEvent (enterFrame) {

if (press == true) {

_root.text.scroll = _root.text.scroll + 1;

}

}

219

3657-5 Ch09.F 1/31/02 12:25 PM Page 219

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
function.fla, which you can find on the
CD that accompanies this book.

¤ Click to open the
Actions panel.

‹ Create a function.

› Select the frame, button,
or movie clip to which you
want to add ActionScript.

ˇ Use the function you
created.

� Associating the variable
with a dynamic text box
enables you to display the
value the variable returns to
the user.

� Associating the variable
with an input text box
enables you to receive input
from the user.

CREATE A CUSTOM FUNCTION

FLASH ACTIONSCRIPT

220

CREATE A CUSTOM FUNCTION

Afunction is a reusable block of code. You use
arguments to pass values to a function. The function
performs operations on the values passed to it and

returns the results. ActionSctipt comes with several
predefined functions. For example, the functions
getProperty, getTimer, random, and getVersion are
all predefined by ActionScript.

You can create your own custom functions using the
function action. The syntax for the function action is

function functionName (a1, a2, ...aN){
statement(s)
};

Use the functionName argument to name your function.
Use a1 to aN to specify the arguments to pass to the
function. Arguments are optional. Use the statement
argument to define the operation the function performs.

When creating a custom function, you use the return
action to specify the value the function should return. The

syntax for the return action is return expression; .
Use the expression argument to define the value to
return. The expression argument is optional.

The following is an example of a custom function that you
can use to round a floating-point number to two digits and
return the value

function twoDigit (number) {
return math.round(number * 100)/100;

}

The name of the function is twoDigit. It takes one
argument — number — and it returns the value of the
number rounded to two digits after the decimal point.

When using Normal mode, you use the evaluate action to
include a custom function to your script. The evaluate
action creates an empty line with a semicolon.

3657-5 Ch09.F 1/31/02 12:25 PM Page 220

Á Click Control ➪ Test
Movie to move to the test
environment.

‡ Type a floating point
number with more than two
digits after the decimal point.

° Click the button to test
your movie.

� The function rounds the
number you entered to two
digits.

Test Movie Ctrl+Enter

DEMYSTIFYING FUNCTIONS 9

You can call a function from any Timeline,
including the Timelines of loaded movies. To call
a function from another Timelime, precede the
function with the target path using dot syntax.

Example:

_root.sampleMC.twoDigit(123.456);

It is a good practice to document your functions
with comments. Include the input, outputs, and
purpose of the function in your comments.

When creating a function, it is a good idea to use
local variables. The scope of a local variable is
limited to the curly braces that enclose it. Using
local variables in a function prevents other
scripts in the movie from reading the variables.
ActionScript treats arguments passed to a
function as local variables.

If you omit arguments during a function call,
ActionScript passes the argument to the function as
undefined. This can cause errors when you export
your movie. If you send extra arguments during a
function call, ActionScript ignores them.

A function does not have to return a value. For
example, you can create a function that initializes
values.

221

3657-5 Ch09.F 1/31/02 12:25 PM Page 221

You create Flash movies on a Timeline. ActionScript
refers to the main Timeline as _level0. You create
other levels when you use the loadMovie command

to load SWF files. You assign newly created levels a level
number. You can use any level number you want, but only
one movie can be on a given level at a time.

You can turn any Flash movie into a movie clip. You can
embed a movie clip symbol within a Flash movie, and you
can embed multiple instances of a movie clip symbol inside
itself or other movie clips. Loaded movies can have movie
clips on their Timeline. In addition, those movie clips can
have movie clips on their Timelines.

Flash Player organizes the movies and movie clips in your
movie into a hierarchy, called the display list. Movie

Explorer enables you to view the display list while you are
authoring a Flash movie. You can also view the display list in
Debugger. The display list graphically represents the
relationship between Timelines. If you make a change to a
Timeline, your change will affect all of the Timelines on the
Timeline that you change. Timelines can send messages to
other Timelines. For example, one Timeline can tell another
Timeline to stop playing, begin playing, or perform any
other action.

When you place a movie or movie clip on the Timeline of
another movie or movie clip, they form a relationship. The
movie or movie clip that you place on the Timeline is the
child. The Timeline on which you place the movie or movie
clip is the parent. Any change that you make to the parent
will affect the child.

VIEW THE HIERARCHY OF MULTIPLE MOVIES

222

FLASH ACTIONSCRIPT

⁄ Click Window ➪ Movie
Explorer.

� Movie Explorer opens, and
the display list appears.

¤ Click to view nested
Timelines.

Movie Explorer Ctrl+Alt+M

Layer 1

Symbol Definition(s)

VIEW THE HIERARCHY OF MULTIPLE MOVIES

3657-5 Ch10.F 1/31/02 12:25 PM Page 222

The display list in Movie Explorer shows the
hierarchy of the movie. You can use the display
list to see a graphical representation of a movie
and all the objects included in the movie. You
will find Movie Explorer particularly useful when
you are examining a movie developed by
someone else. Movie Explorer provides you with
a mechanisn that allows you to easily understand
how a movie is put together.

When using Debugger, you can view the display list.
When viewing the display list in Debugger, the
addition and removal of movies and movie clips
display instantly. The display list in Debugger also
presents a hierarchical representation of the movie.

WORKING WITH MULTIPLE TIMELINES 10

223

CircleCircle

� The path to the selected
item appears on the
Status bar.

� You can use the Find text
box to search for items.

� You can use the Filtering
buttons to limit the categories
of items Movie Explorer
displays.

‹ Click to display the
pop-up menu.

� The pop-up menu appears. Note: You can use the menu to
navigate Movie Explorer, edit
objects, or print the hierarchy.

3657-5 Ch10.F 1/31/02 12:25 PM Page 223

Actions Ctrl+Alt+A

Get Path

Functions

targetPath

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file path.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Functions ➪
targetPath to select the
targetPath Action.

Flash defines a target path as the address of the
Timeline you want to target. There are two types of
target paths: absolute and relative. An absolutepath is a

fixed address; it is always the same. A relativepath is not
fixed. You determine the relative path based on the
Timeline that calls the action.

ActionScript bases both absolute and relative target paths
on the movie hierarchy. You can view the movie hierarchy
using the Movie Explorer display list. An absolute path
address begins with the name of the level the targeted
movie clip was loaded into and includes the name of each
instance until it reaches the target instance. For example, if
you place a movie clip with an instance name of redMC on
the main Timeline, the absolute path to redMC would be
_level0.redMC. If you add an instance named

triangleMC to the Timeline of the movie clip redMC,
the absolute path to triangleMC would be _level0.
redMC.triangleMC.

There are two methods used to specify a target path: dot
syntax and slash syntax. Dot syntax separates each item in
the path with a dot — for example, _level0.redMC.
triangleMC. Slash syntax separates each item in the path
with a slash — for example, _level0/redMC/triangleMC.

ActionScipt bases a relative path on the relationship
between the controller Timeline and the target Timeline.
You can only use a relative path to target objects on the
same level. Use the alias _parent to refer to the parent of
the current Timeline. When using slash syntax, you use ..
to move up the hierarchy.

ASSIGN TARGET PATHS

FLASH ACTIONSCRIPT

224

ASSIGN TARGET PATHS

3657-5 Ch10.F 1/31/02 12:25 PM Page 224

› Type your expression.

� This expression retrieves
the target path and assigns it
to the variable path.

� If you associate the variable
with a dynamic text box, you
can display the value the
variable returns to the user.

ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button to test
your movie.

� The targetPath function
retrieves the target path.

WORKING WITH MULTIPLE TIMELINES 10

When using dot syntax, you can use the keyword
this to refer to the current Timeline.

You can use the _target property to return the
target path in slash notation. The syntax for the
_target property is

instanceName._target;

Use the instance name argument to specify
the movie clip for which you want the target
path.

You can use the targetPath function to return
the target path in dot notation. The syntax for
the target path functions is

targetpath(instanceName);

Here also, use the instanceName argument to
specify the movie clip for which you want the
target path.

You use _level followed by the level number to
refer to the main timeline for a level. If you want to
reference the main Timeline for level 5, you use
_level5. If you want to reference to the main
Timeline for level 0, you use _level0.

You can also use _root to refer to the main
Timeline. You use the _root property to refer to
the main Timeline for the current level. For
example, if you are on level 5 _root refers to the
main Timeline for level 5. If you are on level 0,
_root refers to the main Timelime for level 0.

225

3657-5 Ch10.F 1/31/02 12:25 PM Page 225

Actions Ctrl+Alt+A

Layer 1

Basic Actions

Load Movie Esc+lm

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file load.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
Load Movie to select the
loadMovie Action.

The loadMovie action enables you to play several
movies or movie clips in concert or in sequence
without closing Flash Player. Using the loadMovie

action, you can easily change movies without opening a
new Web page. The syntax for the loadMovie action is

loadMovie(URL , target/location, variable);

Use the URL argument to specify the absolute or relative
URL of the SWF file that you want to load. Relative paths
must be based on the location of the SWF file, and the URL
must be in a subdomain of the current movie. When you
are testing Flash movies, all SWF files must be stored in the
same folder.

You can use the loadMovie action to replace a movie clip
with a Flash movie. The targeted movie clip must have a

unique instance name. The loaded movie will inherit the
position, scale, and rotation properties of the targeted
movie clip. If you want to replace a movie clip, use the
target argument to specify the movie clip that the loaded
movie clip replaces. The target argument is optional.

Flash organizes movies into a hierarchy called levels. You
use the _level property to specify the level. The syntax for
the _level property is _levelN; . Use the N argument to
specify the level number. The movie loaded at _level0
sets the frame rate, background color, and frame size for all
other movies.

LOAD AND UNLOAD MOVIES AND MOVIE CLIPS

FLASH ACTIONSCRIPT

226

LOAD AND UNLOAD MOVIES AND MOVIE CLIPS

3657-5 Ch10.F 1/31/02 12:25 PM Page 226

› Type the URL of the
movie that you want to load.

ˇ Click and select the
location where the movie
will load.

� To load a movie, select
Level. To load a movie clip,
select Target.

Á Type a level number.

� If you are replacing a
movie clip, type the target
path instead of performing
step 6.

‡ Click and select how
you want to send variables.

� You can choose from Don’t
Send, Send Using Get, or
Send Using Post.

° Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

· Click the button to load
your movie.

� Your movie loads.

WORKING WITH MULTIPLE TIMELINES 10

The loadMovie action enables you to break a
large project down into its component parts and
load each movie when needed. Several small
movies play faster and use memory more
efficiently than one large movie.

You can use this script to replace a movie clip
with a movie when the user releases the mouse
after clicking a button. Note the location at
which the loaded movie appears. Also note that
if you rotate or scale the movie clip, the loaded
movie inherits the properties.

Example:
on (release) {

loadMovie ("redstar.swf", "blueStarMC");

}

You can use this script to load a movie and send
variables using the post method.

Example:
loadMovieNum ("sample.swf", 1, "POST");

227CONTINUED

3657-5 Ch10.F 1/31/02 12:25 PM Page 227

Actions Ctrl+Alt+A

Basic Actions

Unload Movie Esc+um

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file load.fla,
which you can find on the CD that
accompanies this book.

� This example uses a button.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
Unload Movie to select the
unloadMovie Action.

The main Timeline for every movie is located on
_level0. When loading a movie, you can specify a
level. You can use any level number that you want, but

only one movie can be on a given level at a time. When
loading a movie, use the location argument to specify the
level into which you want to load the movie. When you
load a movie into level 0, the new movie will replace the
current movie, and all other levels will be unloaded. When
you load a movie into a level occupied by another movie,
the new movie will replace the movie at that level. When
you load a movie into an unoccupied level, all existing
movies will remain, and the new movie will be loaded.

You can send variables to the CGI scripts using the
loadMovie action. The Variable parameter in Normal
Mode presents you with three choices: Send Using Get,
Send Using Post, and Don’t Send. Use Send Using Get to
append a small number of variables to the end of the URL.

Use Send Using Post to send variables separate from the
URL. Send Using Post enables you to send a larger number
of variables. Use Don’t Send if you do not want to send any
variables. Use the variable argument to specify the
method that you want to use to send associated variables.

You use the unloadMovie action to remove a movie
loaded using the loadMovie action. The syntax for the
unloadMovie action is

unloadMove(location);

Use the location argument to specify the level of the
target movie that you want to unload.

When you select loadMovie in Normal Mode, Flash may
substitute LoadMovieNum. For an explantion of
LoadMovie and LoadMovieNum, see the appendix.

LOAD AND UNLOAD MOVIES
AND MOVIE CLIPS (CONTINUED)

FLASH ACTIONSCRIPT

228

LOAD AND UNLOAD MOVIES AND MOVIE CLIPS (CONTINUED)

3657-5 Ch10.F 1/31/02 12:25 PM Page 228

› Type a Level number. ˇ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

Á Click the button to load
your movie.

� Your movie loads.

‡ Click the button to unload
your movie

� Your movie unloads.

WORKING WITH MULTIPLE TIMELINES 10

229

The following example loads a movie.

Example:
loadMovieNum ("sample.swf", 1);

The following example unloads a previously
loaded movie.

Example:
unloadMovieNum (1);

The following example replaces a movie clip with
a movie.

Example:
loadMovie ("sample.swf", "sampleMC");

When you load a movie on another movie, the
loaded move is aligned with the upper left corner of
the movie into which it is loaded. To ensure proper
alignment, it is a good idea to make both movies
the same size.

3657-5 Ch10.F 1/31/02 12:25 PM Page 229

Actions Ctrl+Alt+A

Basic Actions

Tell Target Esc+tt

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
telltarget.fla, which you can find on
the CD that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Basic Actions ➪
Tell Target to select the
tellTarget Action.

� If you want to open the
Target Path dialog box, click
the Insert Target Path
dialog box.

Start Movie

You can use the tellTarget action to send
statements to a movie clip. You can also use
tellTarget to send statements to a movie that

was loaded using the loadMovie action. You assign the
actions that you want the target movie or movie clip to
perform to a frame, button, or movie clip. The frame,
button, or movie clip to which you assign the actions is the
controller. The movie or movie clip that receives the actions
is the target. A targeted movie clip must have a unique
instance name and must be on the Timeline of the movie
on which you create the controller. The syntax for the
tellTarget action is

tellTarget(target){
statement;
}

Use the target argument to specify the target path to be
controlled. Use the statement argument to specify the
statements that you want to send. You can use the Insert

Target Path dialog box to specify the target movie clip. To
open the Insert Target Path dialog box, click the Insert
Target Path button in the lower-right corner of the Actions
panel.

When using the Target Path dialog box, use the Notation
radio buttons to specify the type of notation that you want
to use. You can choose from dot and slash. The default
notation type is dot. You use the Mode radio buttons to
specify the mode; you can choose Relative or Absolute. The
default mode is Relative. If you choose the Relative mode,
the tree view displays only movie and movie clip instances
that are located on the controller Timeline and their
children. You can use the keyword this to refer to the
current Timeline.

If you choose the Absolute mode, the tree view displays all
the loaded movies and movie clips and uses _level or
_root to designate their location.

USING TELL TARGET

FLASH ACTIONSCRIPT

230

USING TELL TARGET

3657-5 Ch10.F 1/31/02 12:25 PM Page 230

› Type a Level number.

ˇ Type your statements.

� Type the actions you want
to execute.

Á Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

‡ Click the button to load
your movie.

� Your movie will load.

° Click the button to start
your movie

� Your movie will start.

WORKING WITH MULTIPLE TIMELINES 10

Before you can tartget a a Timeline, the Timeline
must be in Flash Player. You cannot target the
Timeline of a movie or movie clip that is not
loaded. If you are targeting a movie clip, the
playhead must be located in one of the frames of
the movie clip. If the movie clip is in frames 1 to
10 and the playhead is in frame 11, you cannot
target the movie clip.

Flash 5 deprecated the tellTarget action. You
should use the with action when you are authoring
for a Flash 5 environment.

231

3657-5 Ch10.F 1/31/02 12:25 PM Page 231

Actions Ctrl+Alt+A

Actions

with Esc+wt

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file with.fla,
which you can find on the CD that
accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Click ➪ Actions ➪
with to select the with
Action.

Start Movie

You can use the with action instead of the
tellTarget action to send statements to movie clips
and to movies that have been loaded with the

loadMovie command. As when using the tellTarget
action, you assign the actions that you want the target
movie to perform to a frame, button, or movie clip. The
frame, button, or movie clip to which you assign the actions
is the controller. The movie or movie clip that receives the
actions is the target. The with action is preferable to the
tellTarget action because Flash 5 deprecated the
tellTarget action. In addition, the with action has a few
advantages over the tellTarget action. For example, the
with action can take a movie clip or other object as a
target. When you use the tellTarget action, you must
specify a target path, and the tellTarget action cannot
target objects. As with the tellTarget action, you can use
the with action to perform multiple actions on the same
target. The syntax for the with action is

with(object) {
statement(s);
}

Use the object argument to specify the movie, movie clip,
or object on which you want to execute the statements. Use
the statement argument to specify the statements that
you want to execute.

ActionScript uses the following order to determine the
scope of the with action: 1) the objects under the
innermost with action, 2) the objects under the outermost
with action, 3) the activation object (the activation object
is an object that ActionScript creates automatically when
you call a function; it holds the local variable called by the
function), 4) the movie clip that contains the script that you
are executing, and 5) global objects such as Math and
String.

USING THE WITH ACTION

FLASH ACTIONSCRIPT

232

USING THE WITH ACTION

3657-5 Ch10.F 1/31/02 12:25 PM Page 232

› Type a level number if
you are targeting a movie
loaded with the loadMovie
action or type a target path if
you are targeting a movie
clip.

ˇ Type your statement(s).

� Type the statements you
want to execute.

Á Move to the test
environment

Note: See page 38 for instructions
on how to test your movie.

‡ Click the button to load
your movie.

� The movie will load.

° Click the button to start
your movie

� The movie will start.

WORKING WITH MULTIPLE TIMELINES 10
Using the with action, the following script adjusts the
_xscale, yscale, and _alpha properties of the block
movie clip when the user releases the mouse after
clicking a button.

Example:
on (release) {

with (block) {
_xscale = 50;
_yscale = 75;
_alpha = 40;

}
}

Using the tellTarget action, the following script
adjusts the _xscale, yscale, and _alpha properties
of the block movie clip when the user releases the
mouse after clicking a button:

Example:
on (release) {

tellTarget ("block") {
_yscale = 75;
_xscale = 50;
_alpha = 40;

}
}

Using standard syntax, the following script
adjusts the _xscale, yscale, and _alpha
properties of the block movie clip when the
user releases the mouse after clicking a
button.

Example:
on (release) {

block._xscale = 50;

block._yscale = 75;

block._alpha = 40;

}

233

3657-5 Ch10.F 1/31/02 12:25 PM Page 233

⁄ Click to open the
Action panel.

¤ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
duplicate.fla, which you can find on
the CD that accompanies this book.

� This part of this example
uses a button.

‹ Duplicate the movie clip.

› Reset the _x property for
the new instance so that the
new instance does not appear
on top of the existing
instance.

� Each time the user clicks
the Duplicate button, the
new duplicate instance
replaces any existing
duplicate instance.

ˇ Select the frame, button,
or movie clip to which you
want to add ActionScript.

If you want to make a copy of a movie clip that is
currently on the Stage, use the duplicateMovieClip
action. The duplicateMovieClip action enables you

to create a new instance of a movie clip while the movie is
playing. The syntax for the duplicateMovieClip action is

duplicateMovieClip(target, newName, depth);

Use the target argument to specify the name of the
instance that you want to duplicate. Use the newName
argument to specify the name that you want to give to the
new instance. The depth argument is used to specify
stacking order. Stacking order determines how objects
appear on the Stage when objects overlap. Objects with a
higher depth number appear to be in front of objects with a
lower number. Assign each object that you duplicate a
depth number. If you place a new instance on the same
depth level as an existing instance, the new instance
replaces the existing instance.

Duplicated movie clips always begin playing in frame 1.

ActionScript does not copy the variables in the parent
movie clip to the child movie clip. If you delete the parent
movie clip, ActionScript will automatically delete the child.

ActionScript places the child movie clip directly on top of
the parent. You can use the _x and/or _y properties to
change the location of the duplicated movie clip. Each
instance of the duplicated movie clip must have a unique
name. You can append an incrementing number to the end
of the movie clip name to make each instance unique.

You use the removeMovieClip action to remove instances
created with the duplicateMovieClip action. The syntax
for the removeMovieClip action is

removeMovieClip(target);

Use the target argument to specify the movie clip that
you want to remove. You can also use the
removeMovieClip action to remove movie clips created
with the attachMovie and duplicateMovie methods.

DUPLICATE MOVIE CLIPS
FLASH ACTIONSCRIPT

234

DUPLICATE MOVIE CLIPS

3657-5 Ch10.F 1/31/02 12:25 PM Page 234

Á Remove the movie clip.

‡ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

° Click the button to
duplicate your movie clip.

� A duplicate of your movie
clip will be created.

· Click the button to
remove the duplicate movie
clip.

� The duplicate of your
movie clip will be removed.

WORKING WITH MULTIPLE TIMELINES 10
Using the following script, you make the movie
clip that you are going to duplicate draggable.
You start by attaching the script shown here to a
button to make the button draggable, and then
you click Insert➪Convert to Symbol to convert
the button to a movie clip. You name the movie
clip redDotMC.

Example:
on (press) {

startDrag (redDotMC);

}

on (release) {

stopDrag ();

}

You can use the script that follows to duplicate a
movie clip. Assign the following code to frame 1
to initialize i to 1. You use i to set the depth and
to ensure that each instance of the duplicated
movie clip has a unique name:
i = 1;

Assign the following code to a button. The
statement copyMC = "newDot" + i;
concatenates the current value of i with newDot
and assigns the result to the variable copyMC. The
statement i = i + 1 increments the value of i by 1.
This ensures that each instance of the duplicated
movie clip has a unique name. You use the set
property action to place the duplicate next to the
original. Unless the user drags the duplicate to a
new location, each new copy will be stacked on the
previous copy.

Example:
on (release) {

copyMC = "newDot" + i;

duplicateMovieClip (redDotMC, copyMC, i);

setProperty (copyMC, _x, redDotMC._x +100);

i = i + 1;

}

235

3657-5 Ch10.F 1/31/02 12:25 PM Page 235

Asmart clip is ActionScript that designers can
reprogram without using the Action panel. Smart
clips enable you to create ActionScript that people

with no programming ability can modify. You define a list
of options that affect the movie clip look or behavior.
Designers select from those options.

You start the creation of a smart clip by creating a movie
clip. Include any values you want the smart clip to pass to
the movie clip as variables in the movie clip.

You define smart clips in the Define Clip Parameters dialog
box, which you can find by selecting Define Clip Parameters
from the Options menu of the Library. In the Define Clip
Parameters dialog box, you use the button to add
new parameters and values. You use the button to

remove parameters and values. You use the and
buttons to change the order of parameters.

The Define Clip Parameters dialog box enables you to add
the values from which the designer can choose. You specify
a value type of Default, Array ,List, or Object. Default
enables you to default the value the designer can select to a
string or number. Array enables you to provide the designer
with a list of values from which he can choose. The designer
can add or remove values from the list. List enables you to
create a list of values that the designer can choose from but
cannot modify. The Object type enables you to declare
several related elements and specify the names and values.
For example, you can use the Object type to specify the
elements in an array.

CREATE SMART CLIPS

236

FLASH ACTIONSCRIPT

Library Ctrl+L

⁄ Create a movie clip.

Note: This example uses file
smartclip.fla, which you can find on
the CD that accompanies this book.

¤ Include variables that the
user can set in your script.

Note: A parameter is a variable.

‹ Click Window ➪ Library
to open the Library panel.

› Click to select the movie
clip in the Library.

Background

CREATE SMART CLIPS

3657-5 Ch11.F 1/31/02 12:26 PM Page 236

When you place a movie clip in the Library, it is
available only to that movie. You can use the
common library to make a movie clip available
to all movies. Because smart clips are reusable
code, it is a good idea to place them in the
common library.

To add a file to the common library, copy
the file to the Libraries folder under the
Flash application folder. To use the file, click
Window ➪ Common Libraries and select the
file from the submenu. Drag the file from
the common library onto the Stage.

You use smart clip parameters to change the
behavior or appearance of a movie clip. Smart clip
parameters are passed to the movie clip when the
movie clip loads. Smart clips display a unique icon
in the Library window.

CREATING SMART CLIPS 11

237

Define Clip Parameters...

ˇ Click Options ➪ Define
Clip Parameters to open the
Define Clip Parameters
dialog box.

Á Click to add a
parameter.

‡ Double-click here and
type a variable name.

° Double-click Value to
open the Values panel.

· Double-click here and
select a type.

CONTINUED

3657-5 Ch11.F 1/31/02 12:26 PM Page 237

Panels

Clip Parameters

‚ Click to add a value.

— Double-click here and
type a value.

± Click OK.

¡ Click OK.

™ Select the movie clip.

� Select the black
background.

£ Click Window ➪ Panels ➪
Clip Parameters to open the
Clip Parameters panel.

Background

0x000000

You enter notes in the Description field of the Clip
Parameters panel. You can enter any information you
want in this field. The Clip Parameters panel has a

Lock in Instance box. The Lock in Instance field prevents
the user from renaming parameters. It is a good idea to
check this box.

A smart clip parameter is a variable. When you create or
modify your movie, you define the variables. The designer
uses the Clip Parameters panel to select parameter values.
Selecting a parameter value assigns a value to the variable.

You can use smart clips for any repetitive programming
tasks. For example, you can create menus, buttons, list
boxes, logos, games, or other types of movie clips and use
smart clips to change or modify them.

Let us say you have a movie clip. Sometimes the designer
wants the movie clip to play with a blue background. At
other times, he wants the movie clip to play with an orange
or black background. You can create a smart clip that allows
the designer to select the hexadecimal code for the
background color he wants to use.

You start by creating ActionScript that will change the
background color, including a variable that defines the
color. Enter the name of the variable that defines the color
in the Name field of the Define Clip Parameters box. Use
the Value field to list the possible values.

When the designer opens the Clip Parameters panel, he
will be able to select the hexadecimal code he wants to
use from the list you provide.

CREATE SMART CLIPS (CONTINUED)

FLASH ACTIONSCRIPT

238

CREATE A SMART CLIP (CONTINUED)

3657-5 Ch11.F 1/31/02 12:26 PM Page 238

¢ Click to select a value.

� You can use your smart
clip to select a background
color for your movie.

∞ Move to the test
environment.

Note: See page 38 for instructions
on how to test your movie.

§ Your movie plays
automatically when you
enter the test environment.

� The background of the
movie appears in the color
you selected in the Clip
Parameters panel.

Background

0xff9966

CREATING SMART CLIPS 11

A smart clip custom interface enables you to pass
values to a movie clip using a movie instead of
the Clip Parameters panel. If you create a custom
interface, when the designer selects Window ➪

Panels ➪ Clip Parameters from the menu, Flash
presents the custom interface instead on the Clip
Parameters panel. The designer makes selections
from the custom interface.

It is a good practice to save the custom interface
SWF file and the FLA for the smart clip that uses it
in the same directory. If you use your smart clip in
multiple files, the SWF file for the custom interface
and the FLA for the smart clip should always be in
the same relative location.

If you place your custom smart clip in the common
library, you must copy the SWF to the Libraries
folder with the same relative path that you specified
in the Define Clip Parameters dialog box.

239

3657-5 Ch11.F 1/31/02 12:26 PM Page 239

New Symbol... Ctrl+F8

⁄ Create a movie to use as a
custom interface.

Note: This example uses file
colorsc.fla, which you can find on
the CD that accompanies this book.

¤ Add statements that pass
parameters to the xch movie
clip.

� You must create the
intermediary movie clip
with an instance name of
xch. Do not place any
graphics, buttons, movie
clips, or ActionScript in the
intermediary movie clip.

‹ Click Insert ➪ New
Symbol to open the Symbol
Properties dialog box.

› Type a name.

ˇ Click Movie Clip to
select it („ changes to ´).

Á Click OK.

Custom Interfac Custom Interfac

Asmart clip enables you to create ActionScript that a
designer can reprogram without using the Actions
panel. The designer uses the Clip Parameters panel to

select from a list of options you set up. You can create a
custom interface for a smart clip. A custom interface
enables you to pass values to a movie clip using a movie
instead of the Clip Parameters panel. Using a custom
interface, you can create smart clips that are user friendly
and aesthetically pleasing.

You start by creating a movie that will act as the interface.
The movie should provide the user with options that can be
used to select the values the user wants to set.

You pass the values to the smart clip using an intermediary,
or exchange, movie clip. An intermediary movie clip
contains nothing. It is completely blank. You do not place
any graphics, buttons, movie clips, or ActionScript in an
intermediary movie clip.

You use the Symbol Properties dialog box to create an
intermediary movie clip. Simply specify a Name in the name
field and select movie clip as the behavior.

Intermediary movie clips have an instance name of xch.
You must place an instance of the exchange movie clip on
the main Timeline of the custom interface movie. Create a
layer and name the layer Exchange Clip. See Chapter 1 for
more information on creating layers. Place the intermediary
movie clip in frame 1 of the Exchange Clip layer. The
intermediary movie clip appears on the Stage as a small
dot. Use the Instance panel to name the movie clip instance
xch. The xch movie clip instance must always be loaded.
You can pass arrays and objects through the xch movie clip,
but you cannot pass nested arrays or objects.

CREATE A SMART CLIP CUSTOM INTERFACE

FLASH ACTIONSCRIPT

240

CREATE A SMART CLIP CUSTOM INTERFACE

3657-5 Ch11.F 1/31/02 12:26 PM Page 240

Library Ctrl+L

‡ Click to create a new
layer.

° Double-click and type
to name the layer Exchange
Clip.

Note: See page 4 for more
information on layers.

· Click Window ➪ Library
to open the Library.

‚ Click to select frame 1 of
the Exchange Clip layer.

— Drag the intermediary
movie clip from the Library
onto the Stage.

± Select the instance that
you just dragged onto the
Stage.

Exchange Clip Exchange Clip

CREATING SMART CLIPS 11
Flash ships with smart clips that you can use to
create interactive learning applications. To find
these smart clips, click Window ➪ Common
Libraries ➪ Learning Interactions. The Learning
Interactions smart clips enable you to create
true/false, multiple choice, fill-in-the-blank,
drag-and-drop, hot spot, and hot object learning
applications.

With the true/false smart clip, you can create
applications with an either/or option. The
multiple-choice smart clip enables you to create
applications that allow the user to select from a
list of options. The fill-in-the-blank smart clip
enables you to create applications that allow the
user to type in one or more responses. You can
use the drag-and-drop smart clip to create
applications that require the user to drag objects
to a defined area. Use the hot-spot smart clip
when you want the user to select one or more of
the defined areas. Use hot object when you want
the user to select one or more predefined
objects.

241

CONTINUED

3657-5 Ch11.F 1/31/02 12:26 PM Page 241

Panels

Instance Ctrl+I

¡ Click Window ➪ Panels ➪
Instance to open the Instance
panel.

™ Type xch to name the
instance.

£ Publish your movie as an
SWF file.

Note: See page 32 for information on
how to publish your movie.

¢ Open the movie with
which you want to associate
the smart clip.

Note: This example uses
smartclip2.fla, which you can find
on the CD that accompanies this
book.

∞ Click Window ➪ Library
to open the Library.

§ Click to select the movie
with which you want to
associate the custom movie
clip.

¶ Click Options.

Exchange Clip

Library Ctrl+L

Parameters are variables that are included in statements
in your custom interface movie. You use parameters to
pass values to the xch movie clip. In Normal mode,

you can use the set variable action to set the variable. The
following is an example:

_root.xch.colorV = parseInt(0x000000);

The example sets the value of a variable named colorV.
Note that the intermediary movie clip is included in the
path name. Place your statements that pass parameters in
the custom interface movie. When you complete your
custom interface movie, publish it as an SWF file.

In the movie that uses the custom interface, you link the
smart clip to the movie using the Define Clip Parameters
dialog box. Place the path to the smart clip in the Link to
Custom UI field.

If you want a smart clip that can change the background
color of a movie clip, you can create a smart clip that allows
the user to select the hexadecimal code for the background
color from a list in the Clip Parameters panel. Unfortunately,
hexadecimal codes are not user friendly. You can create a
custom smart clip that enables the user to click on the
background color they want to use.

Start by creating a movie that will act as the custom
interface. The movie should include options that allow the
user to select a color. Use a variable to pass the selection to
the xch movie clip. Place the exchange movie clip on the
Stage. In the movie that uses the custom smart clip, use the
UI field of the Define Clip Parameters dialog box to link to
the custom smart clip.

CREATE A SMART CLIP CUSTOM
INTERFACE (CONTINUED)

FLASH ACTIONSCRIPT

242

CREATE A SMART CLIP CUSTOM INTERFACE (CONTINUED)

3657-5 Ch11.F 1/31/02 12:26 PM Page 242

Define Clip Parameters...

• Click Define Clip
Parameters to open the
Define Clip Parameters
dialog box.

ª Associate the smart clip
with the movie.

º Click OK.

– Select the movie clip with
which you associated the
custom smart clip.

≠ Click Window ➪ Panels ➪
Clip Parameter to open the
Clip Parameters dialog box.

‘ Click a color to select an
option.

� When the Clip Parameters
panel opens, you can select
options using the custom
smart clip.

Background Panels Clip Parameters

CREATING SMART CLIPS 11

Learning Interactions includes a feature called
Knowledge Track. Knowledge Track allows you to
send data to a learning management system. You
can use Lotus LearningSpace, or another tracking
system. Knowledge Track uses AICC (Aviation
Industry CBT Committee) specification version
2.0, an industry standard protocol for
courseware-to-tracking system communications.
You can set the following values: interactionID,
ObjectiveID, and Weighting.

To include Learning Interactions Library smart
clips in your movie, select a keyframe. Then
click Window ➪ Common Libraries ➪ Learning
Interactions and drag a Learning Interactions
smart clip onto the Stage.

Then click Window ➪ Panels ➪ Clip Parameters
to open the clip parameters panel. If you select
TrueFalse, you can use the clip parameters panel to
define your question, select the correct answer, and
specify the feedback you want to send to the user. A
navigation tab enables you to specify how you want
Flash to navigate.

243

3657-5 Ch11.F 1/31/02 12:26 PM Page 243

An important part of collecting information from the
user is validating the data. Strings may need to be of
a specific length or contain specific characters. For

example, say that you require a user to enter a product
code. In your organization, all product codes begin with the
letter p, followed by a 10, 20, or 30, a dash, and a digit. The
following is a valid product code: p20-1.

In this situation, if the user submits an invalid product code,
you have to contact the user to determine the correct code.
You can instead validate user entries at entry to ensure that
you do not receive any invalid codes. Many of the string
functions are useful when validating data, and you can use
them in coordination with one another to validate user
entries.

The product code in the preceding example must be
exactly five characters long. You can use the String
length method to determine the length of the string. The
first character of the product code must be a p. You can use
the substring method to retrieve the value to determine
if the user entered the letter p. The next four characters
must be 10, 20, or 30, a dash, and a digit. Again, you can
use the substring method this time used with an or to
determine if the user entry is valid. You can retrieve the last
character of the entry and use the isNaN function to
determine if it is a number.

After you evaluate whether an entry is valid, if the user
enters an invalid entry, you can use a dynamic text box to
send a message that tells the user what the valid entries are
and instructs the user to enter a valid entry.

VALIDATE A STRING

244

FLASH ACTIONSCRIPT

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
valstring.fla, which you can find on the
CD-ROM that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Use the length function
to determine if the user has
made an entry.

› Check the value of a
substring, convert the input
to lowercase, and compare it
to a lowercase value.

� This makes the input check
insensitive to case.

ˇ Check the length of the
input.

Actions Ctrl+Alt+A

VALIDATE A STRING

3657-5 Ch12.F 1/31/02 12:26 PM Page 244

When validating data, you may need to determine
whether the user made an entry. You can make
this determination by checking the length of the
input field. If the length of the field is 0, the user
has not made an entry.

Example:
if (length(input) == 0) {

errorMessage = "Please enter a product
code.";

If you do not want to take case into consideration
when you evaluate an entry made by the user,
use the toLowerCase or toUpperCase function
to convert the input value before you make your
comparison. The example shown here converts
the input to lowercase and then compares the
input to a lowercase value.

Example:
if (input.toLowerCase().substring(0, 1) != "p")

If the user is required to enter a code with a
delimiter such as a dash, for example, product
code p10-9, you can have the user make the entry
without the delimiter, and you can use code similar
to the following to add the delimiter later.

Example:
input = input.substring(0,3) + "-" +
input.substring(3,4);

When validating a list of values, you may want to
use a custom function. See Chapter 9 for more
information on custom functions.

USING CREATIVE TECHNIQUES 12

245

Á Check a substring to
ensure that the input value is
in a valid list of values.

‡ Check a substring to
ensure that the value is a
number.

° Send error messages to the
user.

� Associate the variable with
a dynamic text box. This
enables you to display the
value that the variable returns
to the user.

· Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‚ Test your movie by first
entering a product code.

— Click the Submit button.

� The script validates user
entries.

3657-5 Ch12.F 1/31/02 12:26 PM Page 245

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file birth.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Validate the month.

› Validate the day.

ˇ Check whether the user
made an entry.

Actions Ctrl+Alt+A

The 12 months of the year are usually numbered from 1
through 12, starting with January. With ActionScript, if
you enter 20 as the month, it will accept your entry as

a valid entry. It will also accept an invalid number for the
number of days in a month, and years are not limited to
four digits. You can enter more than the 24 hours in a day,
the 60 minutes in an hour, the 60 seconds in a minute, and
so on. Therefore, when a user enters a date or time value,
you may want to validate the value to ensure that the user
has entered valid data.

You want to make sure that the value the user enters for the
month is a number between 1 and 12 and that the number
of days entered for the months April, June, September, and

November do not exceed 30. February is limited to 28 days,
and you want to account for Leap Year. The remaining
months cannot have more that 31 days. If the user is
entering a time, you want to do similar time validations.

These validations require conditional checking. If the month
is equal to 1 (January), the day must be greater than 0 but
less than 32, but if the month is equal to 4 (April), the day
must be greater than 0 but less than 31. It is even more
complicated for February; the day cannot be greater than
28 unless the year is a Leap Year. You can use the modulo
operator to help you determine whether the year is a Leap
Year.

VALIDATE A DATE

FLASH ACTIONSCRIPT

246

VALIDATE A DATE

3657-5 Ch12.F 1/31/02 12:26 PM Page 246

Á Send error messages. ‡ Perform a calculation. ° Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

· Test your movie by
entering your birthday.

‚ Click the Submit button.

� The script will validate
your entry before calculating
your age.

USING CREATIVE TECHNIQUES 12

When validating dates, you must keep the
following in mind: A Leap Year occurs whenever
the year is evenly divisible by four, unless the
year is also divisible by 100. However, if the year
is evenly divisible by 100 and evenly divisible by
400, it is a Leap Year.

The modulo operator returns the remainder
of one number divided by another number.
Because you begin determining whether a year
is a Leap Year by finding out if the year is evenly
divided by four, you should use the modulo
function. Your expression will look similar to the
one shown here.

Example:
year % 4 ==0

The operator divides the number 4 into the value
in the variable year and returns the remainder.
The expression shown tests to determine if the
remainder is equal to 0.

If you do a lot of date checking, you will definitely
want to develop custom date-checking functions,
such as the following. The function returns true if
the month argument is between 1 and 12 and
false if it is not. See Chapter 9 for more
information on custom functions.

Example:
function validateMonth (month) {

if (month < 1 || month > 12) {

return false;

} else {

return true;

}

}

247

3657-5 Ch12.F 1/31/02 12:26 PM Page 247

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file search.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Assign text to a variable.

› Associate the variable
with a text box.

ˇ Initialize the variable.

� This example uses the
startV variable to specify
where the search should start.
The variable StartV is used
as the indexOf start
argument.

Actions

text = "George Bill Tom Peter Bill George Allen Fred Bill Fred Peter George

Ctrl+Alt+A

You can use the Selection.setFocus method
with the Selection.setSelection method,
String.indexOf method, and length property to

add a search feature to a text box. A search feature enables
the user to search a text box for a word or phrase. The user
types the word or phrase into an input text box and clicks
a button, and ActionScript finds and selects the word or
phrase entered, or it sends a message to the user stating the
entry cannot be found. You can search a text box from top
to bottom or from bottom to top.

The Selection.setFocus method sets the focus to a
specified text box. You must set the focus before you can
use the Selection.setSelection method. The syntax
for the Selection.setFocus method is

Selection.setFocus(string)

Use the string argument to specify a string that names the
variable associated with the text box to which you want to
set the focus.

The Selection.setSelection method selects an area
in the text box that currently has focus. The syntax for
the Selection.setSelection method is

Selection.setSelection(start,end);

Use the start argument to indicate the index position
at which you want to start the selection. Use the end
argument to indicate the index position at which you want
to end the selection. The first position in the text box has an
index position of 0.

The String.indexOf method searches a string for a
specified value and returns the index position for that value.
The syntax for the String.indexOf method is

string.indexOf(value, start)

Use the string argument to specify the string you want
to search. Use the value argument to specify the value
for which you want to search. Use the start argument to
specify the index position at which you want your search
to begin. If the String.indexOf method does not find
the value specified, it returns -1.

SEARCH A TEXT BOX
FLASH ACTIONSCRIPT

248

SEARCH A TEXT BOX

3657-5 Ch12.F 1/31/02 12:26 PM Page 248

Á Select the frame, button,
or movie clip to which you
want to add ActionScript.

‡ Get the indexOf search
value and associate the
variable with an input text
box.

� Use searchv to get the
value for which the user is
searching.

° Check to determine if the
value of searchv is found.

· If ActionScript finds the
search value, set the focus.

USING CREATIVE TECHNIQUES 12

If you do not want your search to be case sensitive,
use a script similar to the one shown here. Apply the
String.toLowerCase methods to the value for
which you are searching and to the text you are
searching.

Example:
on (release) {

valueV =
text.toLowerCase().indexOf(searchV.toLowerCase(),
startV) ;

if (ValueV != -1) {

Selection.setFocus("text");

Selection.setSelection(valueV,valueV +
length(searchV.toLowerCase()));

startV = valueV + 1;

messageV = "";

} else {

startV = 0;

messageV = "End of text. Entry not found. Click
again to start at beginning.";

}

}

249
CONTINUED

3657-5 Ch12.F 1/31/02 12:26 PM Page 249

‚ Define the selection
criteria.

— Use IndexV as the start
argument for Selection
.setSelection.

± Use indexV plus the
length of the search criteria
as the end argument for
Selection
.setSelection.

¡ Add 1 to the indexV
value.

� This causes the next
search to begin one character
to the right of the last value
found.

™ Clear any messages
previously issued.

£ If ActionScript cannot find
the search value, reset the
variable.

� This causes startV to
begin the next search at the
top of the text box.

If you use the String.indexOf method as the start
argument for the Selection.setSelection method,
ActionScript will find the value that you specify and start

a selection beginning where the value you are searching for
begins. If you set the end argument to the start position
plus the length of the value for which you are searching,
ActionScript will select the value for which you are
searching.

You can use an if statement to determine whether the
search will find a value. If the search will find a value,
execute the search. Start the next search at the value
returned by indexOf +1. This causes your script to

continue searching the text box until it does not find the
value. If the search does not return a value, you can send a
message to the user stating value not found. You then set
the indexOf start value to 0. This will cause the next
search to begin at the beginning of the text box.

The search is case sensitive. If you type bill, the search will
not find Bill. If you do not want your search to be case
sensitive, either apply the String.toLowerCase or
String.toUpperCase methods to the value for which
you are searching and to the text you are searching. This
forces the comparison of two values of the same case,
regardless of what the user enters.

SEARCH A TEXT BOX (CONTINUED)

FLASH ACTIONSCRIPT

250

SEARCH A TEXT BOX (CONTINUED)

3657-5 Ch12.F 1/31/02 12:26 PM Page 250

¢ Send a message to the
user.

∞ Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

§ Test your movie by first
entering a name.

¶ Click the Search button.

� ActionScript searches for
the value you entered.

USING CREATIVE TECHNIQUES 12
The String.lastIndexOf method searches a
string for a specified value and returns the index
position for the last occurrence of that value. You
can use the lastIndexOf method to search a
text box starting from the bottom, as shown in
the following.

Example:
on (release) {

if (text.lastIndexOf(searchV, startV) != -1)
{

Selection.setFocus("text");

Selection.setSelection(text.lastIndexOf(search
V, startV),text.lastIndexOf(searchV, startV) +
length(searchV));

startV = text.lastIndexOf(searchV, startV)
- 1;

messageV = "";

} else {

startV = 0;

startV = length(text);

messageV = "Begining of text. Entry not
found. Click button to start again.";

}

}

251

3657-5 Ch12.F 1/31/02 12:26 PM Page 251

Convert to Symbol... F8

⁄ Create a button.

Note: This example uses file chick.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Add ActionScript.

Note: See page 12 for information
on creating a button.

‹ Click Insert ➪ Convert to
Symbol to open the Symbol
Properties dialog box.

Buttons have several handlers that you can use to
trigger actions. Movie clips also have handlers that
you can use to trigger actions. However, there are

times when you need to use both movie clip and button
handlers. In such cases, you must convert a button to a
movie clip or vice versa.

Creating a button that executes a continuous action is a
good example of when you need to convert a button to a
movie clip. If you want to create a button that executes a
continuous action, such as rotating an object when the user
clicks the object and continuing to rotate the object as long
as the user holds down the mouse, you need to use the
button on(press) and on(release) handlers and the
movie clip onClipEvent(enterFrame) handler.

The on(press) handler triggers actions when the user
clicks the object. The on(release) handler triggers
actions when the user releases the mouse. You use
on(press) to start a continuous action and on(release)
to stop a continuous action.

A handy technique for creating continuous play actions
is to create a one-frame movie or movie clip with the
onClipEvent(enterFrame) handler. When you use the
onClipEvent(enterFrame) handler with a one-frame
movie, the actions in the frame execute continuously,
thereby creating a continuous action.

To use these actions in combination with one another, you
must create the button that starts and stops the action, and
then you must convert the button to a movie clip. You use
the Symbol Properties dialog box to convert a button to a
movie clip.

Creating an object that users can click and drag is another
common example of when you need to convert a button
into a movie clip. For more information on creating a
draggable object, see Chapter 2.

CONVERT SYMBOLS
FLASH ACTIONSCRIPT

252

CONVERT SYMBOLS

3657-5 Ch12.F 1/31/02 12:26 PM Page 252

› Type a symbol name.

ˇ Click Movie Clip.

Á Click OK.

� The button is now a movie
clip.

‡ Select the movie clip. ° Add ActionScript.

USING CREATIVE TECHNIQUES 12

After you convert a button to a movie clip, you
must select the movie clip, click Edit ➪ Edit
Symbols, and open the Actions panels to edit the
script associated with the button. After editing
the script, click Edit ➪ Edit Symbols to return to
the main Timeline. You can also edit the script by
double-clicking the movie clip and then opening
the Actions panel.

253

3657-5 Ch12.F 1/31/02 12:26 PM Page 253

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file rotate.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Click Window ➪ Actions
to open the Actions panel.

‹ Select the event handler.

Actions Ctrl+Alt+A

onClipEvent (enterFrame) {

It is obvious that you can use movie clip properties to
create special effects. What may not be as obvious is how
easy it is to create certain effects. For example, you can

use the _rotation property to set the rotation value of an
object. When you place an object on the Stage, it has a
rotation value of 0. To rotate the object clockwise, increase
the value. To rotate the object counterclockwise, decrease
the value.

You can create many interesting effects using the expression
_rotation = _rotation + x, where x is equal to the
speed at which you want the object to rotate. The higher
the value of x, the faster the object will rotate. Negative x
values rotate the object counterclockwise.

Use _rotation = _rotation + x with
onClipEvent(enterFrame) to create an object that
rotates continually. Use it with mouse move to rotate the
object when you move your mouse. Use it with mouse
down to rotate the object when you click the mouse. In

fact, you should try it with each of the movie clip and
button states.

If you add some additional script to the _rotation =
_rotation + x expression, you can create an object that
rotates when you roll over it and stops rotating when you
release the mouse.

If you use the _rotation = _rotation + x expression
along with the _x property or the _y property, you can
rotate an object and move it at the same time. However,
you will have to add some additional code to limit the area
in which the object can move, or your object may move off
the Stage. You can also use the expression _rotation =
_xmouse to create an interesting effect.

Keep in mind that a rotating object rotates around its
registration point. You can change the registration point to
change the rotation angle.

CREATE ROTATION EFFECTS

FLASH ACTIONSCRIPT

254

CREATE ROTATION EFFECTS

3657-5 Ch12.F 1/31/02 12:27 PM Page 254

› Set the rotation. ˇ Repeat steps 3 and 4 for
additional handlers.

Á Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‡ Test your movie by
clicking the mouse, moving
the mouse, and rolling the
cursor over the button to test
the mouse handlers.

USING CREATIVE TECHNIQUES 12
To make a button rotate continuously, you can attach the
script shown here to it. When you roll over the object, it
rotates continuously until you roll out.

Example:
on (rollOver) {

press = true;

}

on (rollOut) {

press = false;

}

Then convert the button to a movie clip and attach the
script shown here to it. The variable text is the name of the
text box. In this example, frogMC is the movie clip name.

Example:
onClipEvent (enterFrame) {

if (press == true) {

_root.frogMC._rotation =_root.frogMC._rotation + 10;

}

}

255

3657-5 Ch12.F 1/31/02 12:27 PM Page 255

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file color.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Click to open the
Actions panel.

‹ Assign a color to a color
variable.

Note: This step initializes the color.
ActionScript applies this color if the
user does not select a color.

› Select the frame, button,
or movie clip to which you
want to add ActionScript.

ˇ Assign the color of the
button to a variable.

Using the Color object, you can create an electronic
coloring book. There are many different techniques
that you can use. You can place color selections on

the Stage; when the user clicks a color, ActionScript assigns
the selection to a variable. When the user clicks an object,
ActionScript applies the color. Alternatively, you can create
a color slider and have the user create the color and then
apply the color to objects. You can also code color changes
into the object and have the object change color each time
the user clicks the mouse.

If you use the color selection method, start creating your
coloring book by creating buttons to represent each possible
color selection. Make the button the same color as the
color that it represents. Store the hexadecimal color code to
a variable when the user releases the mouse after clicking

the button. Use the parseInt function to tell ActionScript
that the number you are assigning the variable is a
hexadecimal number. For example, in newColor =
parseInt(0x00ccff); any value that starts with 0x is
read by the parseInt function as a hexadecimal number.

Assigning a color when the user clicks an object is tricky.
The new Color method requires you to enter a target. In
order for you to be able to assign a color when an object
is clicked, the object must be a button. You cannot target
buttons. You must create the button, add the script that
makes the color change, convert the instance to a movie
clip, and assign the movie clip the name that you specified
when you created the button. For more information on
converting a button to a movie clip, see the section
“Convert Symbols.”

CREATE A COLORING BOOK

FLASH ACTIONSCRIPT

256

CREATE A COLORING BOOK

3657-5 Ch12.F 1/31/02 12:27 PM Page 256

Á Select the frame, button,
or movie clip to which you
want to add ActionScript.

‡ Create a Color object.

° Target a movie clip.

· Use the variable that you
created to assign a color to
the Color object.

‚ Convert the button to a
movie clip.

— Name the movie clip,
using the name that you
specified in step 8.

± Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

¡ Test your movie by first
clicking the color palette.

™ Click the object.

� The script enables the user
to click a color palette to set
a color and then make an
object that color.

USING CREATIVE TECHNIQUES 12
You can have each click of the mouse change the color of an object. Start by creating
a color object and assigning it a color. Place the following script in frame 1.

Frame 1
colorChanger = new Color(_root.circleMC);

colorChanger.setRGB(0xff0000);

Then create a button and assign the following script.

Button
on (release) {

if (colorChanger.getRGB() == parseInt(0xff0000)) {

colorChanger.setRGB(0x0000FF);

} else if (colorChanger.getRGB() == parseInt(0x0000ff)) {

colorChanger.setRGB(0xFFFF00);

} else if (colorChanger.getRGB() == parseInt(0xffff00)) {

colorChanger.setRGB(0x009900);

} else if (colorChanger.getRGB() == parseInt(0x009900)) {

colorChanger.setRGB(0xff0000);

}

}

Convert the button to a movie clip. Give the movie clip the name that you targeted
in frame 1. In this example, the name is circleMC.

257

3657-5 Ch12.F 1/31/02 12:27 PM Page 257

⁄ Create the button that will
act as the panel.

Note: This example uses file panel.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Click to open the
Actions panel.

‹ Make the panel draggable.

Note: See page 56 for more
information on making an
object draggable.

› Create options and place
them on the panel.

Note: The options can be anything that
you want.

� This example places a
color bar on the panel.

Many programs use panels to provide users with
options and tools that enable them to perform
tasks. Panels appear on-screen at user request and

are draggable, and the user can hide them from view when
they are not needed.

Emulating a panel using ActionScript is easy. You create an
object that is draggable, visible when needed, invisible
when not needed, and contains a set of options.

The startDrag and stopDrag actions enable you to
create objects that the user can drag. Both movie clips and
buttons can be draggable. However, you want an object that
is draggable when you click the mouse while the mouse is
located over the object and for which the drag action stops
when you release the mouse. Movie clips can be draggable
when clicked, and you can stop the drag action when the

mouse is released, but the action is not limited to when the
cursor is over the object.

With buttons, you can start the drag action when the user
clicks the object using the On Press handler. You can stop
the drag action with the user releases the mouse or the
pointer rolls out of the area of the object by using the
Release and Roll Out handlers. Therefore, you start
creating your panel by creating a draggable button that will
act as a panel.

Panels provide the user with options or tools that you
develop. The options can be anything that you want.
They can be buttons or movie clips that enable the user to
perform an action. Create the options or tools and position
them on the panel.

EMULATE PANELS
FLASH ACTIONSCRIPT

258

EMULATE PANELS

3657-5 Ch12.F 1/31/02 12:27 PM Page 258

ˇ Create a Close button.

Note: See page 12 for information on
creating a Close button.

Á Select the button.

‡ Set the movie clip
_visible property to
false on release.

° Convert the panel button,
Close button, and options to
a movie clip.

Note: See page 252 for more
information on converting a button
to a movie clip.

USING CREATIVE TECHNIQUES 12

Panels are objects that you may want to use in
many of your movies. The common library
enables you to easily access objects that you use
repeatedly, so you may want to place your panel
in the common library. You may also want to turn
your panel into a smart clip. Turning your panel
into a smart clip enables you to use the same
panel in many movies and enables you to adjust
the features each time you use the panel.

Flash 5 ships with smart clips that enable you to
create menus, radio buttons, and check boxes.
You may find these useful when adding features
to your panel. They are located in the common
library.

When placing tools and options on a panel, make
sure that your path names are correct. If you do not
specify the correct paths, the panel will not function
properly.

There are a number of standard features that you
may want to add to your panel. For example, you
may want your panel to be resizable or reappear on
the screen at a specified location.

259

CONTINUED

3657-5 Ch12.F 1/31/02 12:27 PM Page 259

· Name the movie clip
instance, using the name that
you specified in step 7.

‚ Select the movie clip.

— Click to open the
Actions panel.

± Set the _visible
property to true when the
user presses the Home key.

The user needs to be able to hide the panel from view
when the user does not need the panel. You can use
either the _visible property or the _alpha property

to make an object invisible. However, when you use the
_alpha property to make an object invisible, the object
remains active. If the user clicks in the area in which the
object is located, the object responds. If you use the
_visible property, the object is inactive when it is not
visible and does not respond when the user clicks in the
area in which the object is located. When creating a panel,
use the _visible property to hide the panel from view
when the user does not need the panel.

The object that you create to use as a panel is a draggable
button. You need to change the _visible property of the
object. Unfortunately, you cannot change the _visible
property of a button. You can only change the properties of
movies and movie clips. Therefore, you must convert the
button and all the options to a movie clip. But first,

determine the instance name that you want to give the
movie clip. Create a button that sets the _visible
property of a movie clip to false when the user clicks the
button. Use the movie clip name that you intend to give to
the panel. Position the button on the panel. Group all the
objects on the panel and convert everything to a movie clip.
Then name the instance.

You now have a draggable panel that the user can hide.
Once hidden, the user needs to be able to return the object
to the Stage when needed. You can create a button that
returns the panel to the screen and place the button on the
Stage. Or instead, if you use a Key method, you can add an
action to the panel that returns the panel to the Stage when
the user presses a key. Using a key instead of a button
makes your panel self-contained and reusable. You can of
course use both a key and a button.

EMULATE PANELS (CONTINUED)

FLASH ACTIONSCRIPT

260

EMULATE PANELS (CONTINUED)

3657-5 Ch12.F 1/31/02 12:27 PM Page 260

¡ Click Control ➪ Test
Movie to move to the test
environment.

™ Test your movie by first
dragging the panel.

£ Click to close the
panel.

¢ Press the Home key to
open the panel.

Test Movie Ctrl+Enter

onClipEvent (enterFrame) {

USING CREATIVE TECHNIQUES 12
You can use code similar to the code shown here
to change the size of a panel. When the user
presses Page Up, the script increases the size of
the panel by 25 percent. When the user presses
Page Down, the script decreases the size of the
panel by 25 percent. When the user presses End,
the script returns the panel to standard size.

Example:
onClipEvent (keyDown) {

if (Key.isDown(Key.PGUP)) {

setProperty (_root.panelMC, _xscale, 125);

setProperty (_root.panelMC, _yscale, 125);

}

}

onClipEvent (keyDown) {

if (Key.isDown(Key.PGDN)) {

setProperty (_root.panelMC, _xscale, 75);

setProperty (_root.panelMC, _yscale, 75);

}

}

onClipEvent (keyDown) {

if (Key.isDown(Key.END)) {

setProperty (_root.panelMC, _xscale, 100);

setProperty (_root.panelMC, _yscale, 100);

}

}

261

3657-5 Ch12.F 1/31/02 12:27 PM Page 261

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file trig_1.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Name a movie clip
instance.

‹ Click to open the
Actions panel.

› Use the enterFrame
handler.

ˇ Move the object
clockwise.

Á Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‡ Test your movie.

� The movie clip moves in a
clockwise direction.

You can use the Math object sin and cos methods to
manipulate objects. These trigonometric functions find
the sine or cosine of a value. You can use them with

the _x and _y properties to move objects. Explaining
trigonometry is beyond the scope of this book; however,
the following is a formula that you can use to move objects
located on the Stage: movieClip._x = l + Math.cos(s)*d
movieClip._y = l + Math.sin(s)*a

The l represents location, s speed, and a area. Use
movieClip to specify the movie clip that you want to
move. Use l to adjust the coordinate at which the movie
clip is located. Use s to adjust the speed at which the
object moves. The higher the value of s, the faster the object
will move. Use a to adjust the area in which the object
moves. The higher the value of a, the larger the area in
which the object will move.

In trigonometry, you use radians to measure the size of
angles. You use the formula Math.PI/180 * degrees to
convert degrees to radians. Although not essential, you may

find the formula Math.PI/180 * 2 a good base from
which you can adjust the speed of your object. For the sake
of the examples that follow, Math.PI/180 * 2 is assigned
to the variable s, as shown in the following:

s = Math.PI/180 * 2;

You can move an object in a clockwise circle by setting
each of the variables in both formulas to the same value.
The following is an example:

_sampleMC._x = 200 + Math.cos(s)*100;

_sampleMC._y = 200 + Math.sin(s)*100;

To cause the object to move in a counterclockwise
direction, negate the speed value, as shown in the
following:

_sampleMC._x = 200 + Math.cos(-s)*100;

_sampleMC._y = 200 + Math.sin(-s)*100;

DEMYSTIFY TRIGONOMETRIC FUNCTIONS
FLASH ACTIONSCRIPT

262

MOVE AN OBJECT CLOCKWISE

3657-5 Ch12.F 1/31/02 12:27 PM Page 262

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file trig_2.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Name a movie clip
instance.

‹ Click to open the
Actions panel.

› Use the enterFrame
handler.

ˇ Move the object back
and forth.

Á Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‡ Test your movie.

� The movie clip moves
back and forth.

USING CREATIVE TECHNIQUES 12

You can add the scripts shown here to movie clips to
create a simple but interesting design.

Example:

redMC
onClipEvent (enterFrame) {

radianV += Math.PI/180*2;

_root.redMC._y = 200 + Math.sin(radianV* 5)*50;

_root.redMC._x = 200 + Math.cos(radianV* 1)*200;

}

Example:

yellowMC
onClipEvent (enterFrame) {

radianV += Math.PI/180*2;

_root.yellowMC._y = 200 + Math.sin(radianV* 5)* 50;

_root.yellowMC._x = 200 + Math.cos(radianV* 2)* 200;

}

263

MOVE AN OBJECT BACK AND FORTH

CONTINUED

3657-5 Ch12.F 1/31/02 12:27 PM Page 263

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file trig_3.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Name a movie clip
instance.

‹ Click to open the
Actions panel.

› Use the enterFrame
handler.

ˇ Move the object
diagonally.

Á Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‡ Test your movie.

� The movie clip moves
diagonally.

DEMYSTIFY TRIGONOMETRIC
FUNCTIONS (CONTINUED)

FLASH ACTIONSCRIPT

264

MOVE AN OBJECT DIAGONALLY

To move the object back and forth, use the formula for
the _x coordinate but do not use the formula for the
_y coordinate, as shown in the following:

_sampleMC._x = 200 + Math.cos(s)*100;

To move the object up and down, use the formula for the
_y coordinate, but do not use the formula for the _x
coordinate — for example:

_sampleMC._y = 200 + Math.sin(s)*100;

To have the object move diagonally, use the same
trigonometric function for both the _x and the _y
coordinates, as shown here:

_sampleMC._x = 200 + Math.cos(s)*100;

_sampleMC._y = 200 + Math.cos(s)*100;

To increase the speed, multiply s by the factor by which you
want to increase the speed. To decrease the speed, divide s
by the factor by which you want to decrease the speed:

_sampleMC._y = 200 + Math.sin(s *10)*100;

To cause the object to move across the stage in a wave-like
motion, increase the area value of _x and the speed of _y:

sampleMC._x = 200 + Math.cos(s)*300;

sampleMC._y = 200 + Math.sin(s*10)*100;

To cause the object to move up and down the Stage in a
wave-like motion, increase the area value of _y and the
speed of _x, as shown in the following:

sampleMC._x = 200 + Math.cos(s * 10)*100;

sampleMC._y = 200 + Math.sin(s)*300;

3657-5 Ch12.F 1/31/02 12:27 PM Page 264

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file trig_4.fla,
which you can find on the CD-ROM
that accompanies this book.

¤ Name a movie clip
instance.

‹ Click to open the
Actions panel.

› Use the enterFrame
handler.

ˇ Move the object in a
wave-like motion.

Á Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

‡ Test your movie.

� The movie clip moves in a
wave-like motion.

USING CREATIVE TECHNIQUES 12

These scripts produce a very simple design.

Example:

redMC
onClipEvent (enterFrame) {

radianV += Math.PI/180*2;

_root.redMC._x = 200 + Math.cos(radianV)*100;

}

Example:

yellowMC
onClipEvent (enterFrame) {

radianV += Math.PI/180*2;

_root.yellowMC._y = 200 + Math.sin(radianV)* 100;

_root.yellowMC._x = 200 + Math.cos(radianV)* 100;

}

265

MOVE AN OBJECT IN A WAVE-LIKE MOTION

3657-5 Ch12.F 1/31/02 12:27 PM Page 265

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

¤ Name the instance.

Note: See page 10 for more
information on naming an instance.

‹ Click to open the
Actions panel.

› Use the enterFrame
handler.

ˇ Set the base speed.

You can use the Math object sin or cos methods
with the _xscale, _yscale, _height, _width,
_rotation, and _alpha properties to create special

effects. The _height and _width properties change the
height and width of a movie clip using pixels. The _xscale
and _yscale properties change the height and width of a
movie clip using a percentage. Because these two methods
change the size of a movie clip using two different methods,
they produce slightly different results.

The _xscale property can produce the illusion of an
object flipping from left to right. The _yscale property
can produce the illusion of an object flipping up and down.
The _height and _width properties shrink and grow an
object. The _rotation property produces a spinning
effect. The object spins in one direction and then spins in
the opposite direction. The _alpha property fades color in
and out.

You can use the following formulas when using sin or cos
with these properties:

movieClip._property = Math.sin(s)*a

movieClip._property = Math.cos(s)*a

The s represents speed. The a represents area. Use
movieClip to specify the name of the movie clip whose
property you want to change. Use s to adjust the speed at
which the property changes. The higher the value of s, the
faster the property will change. Use a with the _height,
_width, _xscale, and _yscale properties to determine
the maximum size of the object. Remember, _height and
_width use pixels, and _xscale and _yscale use a
percentage. Use a with the rotation to adjust the number
of rotations the object spins clockwise before spinning
counterclockwise.

You may use the formula Math.PI/180 * 2 as a base
from which you adjust the speed of your object.

CREATE TRIGONOMETRIC SPECIAL EFFECTS

FLASH ACTIONSCRIPT

266

CREATE TRIGONOMETRIC SPECIAL EFFECTS

3657-5 Ch12.F 1/31/02 12:27 PM Page 266

Á Use sin to set the
_xscale.

‡ Use sin to set the
_rotation.

° Move to the test
environment.

Note: See page 38 for instructions on
how to test your movie.

· Test your movie. � Your movie clip will scale
and rotate.

USING CREATIVE TECHNIQUES 12

You attach the script that follows to three separate movie
clips to create a design. It uses sin with the _height,
_width, _rotation, and _alpha properties.

Example:
onClipEvent (enterFrame) {

speedV += Math.PI/180 *2;

_root.blockMC._height = Math.cos(speedV * 3)* 100;

_root.blockMC._width = Math.sin(speedV * 3)* 100;

_root.blockMC._rotation = Math.sin(speedV * 3)* 100;

_root.blockMC._alpha = Math.sin(speedV * 3)* 100;

}

267

3657-5 Ch12.F 1/31/02 12:27 PM Page 267

Correcting errors — often referred to as debugging —
is a normal part of writing a program. Flash provides
several tools that can help you debug ActionScript.

Use the Debugger to display a list of loaded movies, movie
clips, properties, and variables. The Debugger enables you
to view and adjust the properties and variables as the
movie plays. Using the Debugger, you can experiment with
values until you find the one that you need. You can then
return to your script and make the necessary changes.

The Debugger consists of a status bar, display list, Properties
tab, Variables tab, and Watch list. The status bar displays the
URL or path to a movie or movie clip.

The display list displays all levels and instances that are
currently loaded. As you add or remove movies and movie
clips from the Stage, the display list automatically updates.
A splitter bar enables you to open, close, or resize the
display list.

The Properties tab displays all the properties associated
with a movie clip. You can change a property value by
double-clicking the property value and typing a new value.
You cannot use an expression to change a value when using
the Debugger. You must enter a string, Boolean, or number.
When you change a property value, Flash reflects the
change on the Stage immediately. You cannot change
read-only values.

The Variables tab displays all the variables and the current
values of the variables. You can change the value of a
variable by double-clicking the variable and typing a new
value. Object and array values are displayed, but you cannot
change them.

If you have specific variables that you want to track, you can
place them on the Watch list. The Watch list enables you to
track a specified list of variables.

USING THE DEBUGGER

268

FLASH ACTIONSCRIPT

⁄ Click Window ➪
Debugger to open the
Debugger.

¤ Click Control ➪ Debug
Movie to activate the
Debugger.

Debugger

Debug Movie Ctrl+Shift+Enter

USING THE DEBUGGER

3657-5 Ch13.F 1/31/02 12:27 PM Page 268

The Debugger uses a special version of Flash Player — the Flash
Debug Player — that installs automatically when you install
Flash 5. To activate the Flash Debug Player, click Control ➪
Debug Movie.

You can use the Flash Debug Player as a standalone player. If
you choose Debugging Permitted under the Flash tab of the
Publish Settings dialog box, when you publish your Flash movie,
you can use the Debugger as you play your movie. Just click
Control ➪ Debugger in the Flash Debug Player menu. When
using Debugger with the Flash Debug Player, Flash must be
open. You may want to password-protect your movie because
anyone viewing your movie using the Flash Debug Player will
also be able to view your property and variable settings. The
Flash tab of the Publish Settings dialog box provides an option
that enables you to password-protect the Debugger option.

You can download the latest version of the Flash Debug Player
from the Macromedia Web site. A link to the site is included on
the CD-ROM that accompanies this book.

To add a variable to the Watch list,
select the variable, click in
the upper-right corner of the
Debugger panel to open the
menu, and then click Add Watch.
To remove a variable from the
Watch list, select the variable,
click , and then click Remove
Watch.

DEBUGGING ACTIONSCRIPT 13

269

_level0 _level0

"Olive and Emerald the Pogo Jumping Frogs"

_alpha 100

‹ Click a level or instance
to select it.

› Click the Properties tab to
view properties.

ˇ Double-click a value and
type to change a property.

Á Click the Variables tab to
view the variables.

‡ Double-click a value and
type to change a variable.

� You can use Debugger to
troubleshoot your movies.

3657-5 Ch13.F 1/31/02 12:27 PM Page 269

Layer 1

USING THE TRACE ACTION

⁄ Select the frame, button,
or movie clip to which you
want to add ActionScript.

Note: This example uses file
trace.fla, which you can find on
the CD-ROM that accompanies
this book.

¤ Click to open the
Actions panel.

‹ Use the trace action to
evaluate an expression.

› Move to the test
environment.

ˇ Click Window ➪ Output
to open the Output window.

Output

The Output window is part of the test environment.
The Output window displays information to help you
troubleshoot your movie. If you have syntax errors

in your movie, error messages automatically display in the
Output window when you enter the test environment. Error
messages help you locate problems with your script.

The Output window’s Options menu provides you with
options that enable you to copy the contents of the Output
window to the clipboard, clear the Output window, save
the contents of the Output window to a file, or print the
contents of the Output window. Choosing the Save to File
option on the menu enables you to save the contents of the
Output window as a TXT or LOG file.

The Options menu also enables you to select how in-depth
you want the error messages that you receive to be. Choose
from None, Errors, Warnings, and Verbose. Choosing None
turns off the display of error messages.

You can use the trace action to evaluate an expression.
This is useful when you are debugging your movie and you
need to know the value that an expression returns. The
results of the trace action display in the Output window.
The syntax for the trace action is

trace(expression);

Use the expression argument to specify the expression
that you want to evaluate. For example, the following script
increments the value of x each time the user clicks a button
and sends the results to the Output window:

on (release) {
trace(++x);
}

You can also use the trace action to display messages to
anyone who views your movie using the test environment.
For example, trace("hello"); displays "hello" in the
Output window.

USING THE OUTPUT WINDOW

FLASH ACTIONSCRIPT

270

USING THE OUTPUT WINDOW

3657-5 Ch13.F 1/31/02 12:27 PM Page 270

Á Click the button to test
your movie.

� Each time you click the
button, the ouput window
will display the results of
the trace.

THE OPTIONS MENU

⁄ Click Options to open the
Options menu.

¤ Select an option.

� You can use the options
menu to copy the contents
of the Output window to the
clipboard, clear the Output
window, save the contents of
the Output window to a file,
or print the contents of the
output window.

Options

DEBUGGING ACTIONSCRIPT 13

271

The script shown here uses the trace action to
display changes made to an array.

Script:
on (release) {

name = ["George”, "John", "James"];

trace (name);

name[1] = "Chris";

trace (name);

name.push("Gene", "Charles", "Sue");

trace (name);

}

Results of the First Trace:
George,John,James

Results of the Second Trace:
George,Chris,James

Results of the Third Trace:
George,Chris,James,Gene,Charles,Sue

3657-5 Ch13.F 1/31/02 12:27 PM Page 271

Test Movie Ctrl+Enter

List Objects Ctrl+L

⁄ Create your movie. ¤ Click Control ➪ Test
Movie to move to the test
environment.

‹ Click Debug ➪ List
Objects.

� The results display in the
Output window.

Actions

In the test environment, you can use the menu choice
Debug ➪ List Objects to display levels, object types, and
target paths for the current frame in the Output window.

Object types include shape, movie clip, text, and button.
The information provided by the Debug ➪ List Object
menu choice is useful when you want to find a target path
or what text is assigned to a text field.

When you use Debug ➪ List Objects, the Output window
does not update automatically as the Debugger does. You
must make the menu choice each time you want to retrieve
information.

USING LIST OBJECTS

FLASH ACTIONSCRIPT

272

USING LIST OBJECTS

The following is an example of output from
the Debug ➪ List Objects menu selection.

Example:
Level #0: Frame=1

Edit Text: Variable=_level0.titleV
Text=""

Movie Clip: Frame=1
Target="_level0.Olive”

Shape:

Movie Clip: Frame=1
Target="_level0.Emerald"

Shape:

Button:

Shape:

Shape:

Edit Text: Variable= Text="Start
Movie\r"

3657-5 Ch13.F 1/31/02 12:27 PM Page 272

USING LIST VARIABLES

Test Movie Ctrl+Enter

List Variables Ctrl+Alt+V

⁄ Create your movie. ¤ Click Control ➪ Test
Movie to move to the test
environment.

‹ Click Debug ➪ List
Variables.

� The results display in the
Output window.

Actions

DEBUGGING ACTIONSCRIPT 13

273

In the test environment, you can use the menu choice
Debug ➪ List Variables to display all the movie variables
in the Output window. The information provided by the

Debug ➪ List Variables menu choice is useful when you
want to find a variable name or the value assigned to a
variable. All the values assigned to an array are displayed in
the Output window.

When you use Debug ➪ List Variables, the Output window
does not update automatically as the Debugger does. You
must make the menu choice each time that you want to
retrieve information.

USING LIST VARIABLES
The following is an example of output from the
Debug ➪ Lists Variables menu selection.
namesA is an array.

Example:
Level #0:

Variable _level0.$version = "WIN 5,0,30,0"

Variable _level0.namesA = [object #1] [

0:"Emerald",

1:"Jade"

]

Variable _level0.nameV = "Emerald the
Pogo Jumping Frog"

3657-5 Ch13.F 1/31/02 12:27 PM Page 273

Colored Syntax

⁄ Add comments. ¤ Add meaningful names.

‹ Add a naming convention.

› Click ➪ Colored Syntax
to use colored syntax.

ˇ Click ➪ Check Syntax
to perform a syntax check.

There are techniques that you can use to effectively
create and debug ActionScript. For starters, you should
build your movie in a modular fashion, testing each

section as you develop it. This enables you to identify
problems as they arise.

As you create your scripts, you should save often, giving
each save a different version number. If your script gets
extremely complex and stops working, this enables you to
go back to the last working version of the script.

If a portion of script does not work, try breaking the script
down into component parts. This enables you to narrow
things down so that you can determine which portion of
the script is not working. You can also comment out
portions of the script and test it. Again, this helps narrow
down where the error is located.

Use comments to document your code. This is very
important if you are working with other developers. Even if

you do not work with other developers, comments are
important. You may need to revise your code weeks,
months, or years later. It is very easy to forget the logic that
you used to develop your code. Use comments to explain
what you are doing and why you are doing it.

Give the variables, arrays, functions, and objects that you
create meaningful names. This will make it easier for you
and others who view your code to understand your code.

Develop a naming convention and stick with it. For
example, you can type the first word in a variable name in
small letters, and subsequent words can start with capital
letters. The variable name playerFirstName is an
example of this convention.

When trying to understand a movie written by someone
else, use Movie Explorer to find and view ActionScript.

DEBUG YOUR SCRIPT

FLASH ACTIONSCRIPT

274

DEBUG YOUR SCRIPT

3657-5 Ch13.F 1/31/02 12:27 PM Page 274

Movie Explorer Ctrl+Alt+M

Á Click Window ➪ Movie
Explorer to open Movie
Explorer.

‡ Click to contract the
hierarchy.

° Click to expand the
hierarchy.

· View the ActionScript.

� You can develop your
scripts in a way that makes it
easy for you to debug them.

DEBUGGING ACTIONSCRIPT 13

When using the Action panel,
use Colored Syntax.

Perform syntax checks. This is
particularly important if you
are working in the Expert
Mode.

Give every variable, function,
object, and array a unique
name.

COMMON ERRORS

ERROR SOLUTION

Misspelled variable or Make sure that you spell
array name variable and array names the same each time

that you use them.

Expression box If you are working in
not checked Normal Mode, make sure that you check the

Expression box when you enter an
expression.

Using = to perform The operator = is the
a comparison assignment operator. If you want to perform

a comparison, such as if name ==
"George", use ==, the equality operator.

275

3657-5 Ch13.F 1/31/02 12:27 PM Page 275

The tables that follow list all of the keys on a standard
keyboard and the corresponding key code values.

KEY CODE VALUES

FLASH ACTIONSCRIPT

276

LETTER OR KEY
NUMBER CODE

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

LETTER OR KEY
NUMBER CODE

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81

R 82

LETTER OR KEY
NUMBER CODE

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

0 48

LETTER OR KEY
NUMBER CODE

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

KEY KEYCODE

Number Pad 0 96

Number Pad 1 97

Number Pad 2 98

Number Pad 3 99

Number Pad 4 100

Number Pad 5 101

KEY KEYCODE

Number Pad 6 102

Number Pad 7 103

Number Pad 8 104

Number Pad 9 105

Multiply 106

KEY KEYCODE

Add 107

Enter 108

Subtract 109

Decimal 110

Divide 111

KEYS ON THE NUMERIC KEYPAD

LETTERS A TO Z AND NUMBERS 0 TO 9

3657-5 Ch14.F 1/31/02 12:27 PM Page 276

FLASH ACTIONSCRIPT QUICK REFERENCE 14

277

KEY KEYCODE

Backspace 8

Tab 9

Clear 12

Enter 13

Shift 16

Control 17

Alt 18

Cap Lock 20

KEY KEYCODE

Esc 27

Spacebar 32

Page Up 33

Page Down 34

End 35

Home 36

Left Arrow 37

Up Arrow 38

KEY KEYCODE

Right Arrow 39

Down Arrow 40

Insert 45

Delete 46

Help 47

Num Lock 144

;: 186

=+ 187

KEY KEYCODE

-_ 189

/? 191

`~ 192

[{ 219

\| 220

]} 221

‘’’ 222

OTHER KEYS

KEY KEYCODE

F1 112

F2 113

F3 114

F4 115

KEY KEYCODE

F5 116

F6 117

F7 118

F8 119

KEY KEYCODE

F9 120

F10 121

F11 122

F12 123

FUNCTION KEYS

3657-5 Ch14.F 1/31/02 12:27 PM Page 277

The loadVariables action reads data from an
external file. You cannot read certain characters
directly. You must use URL encoding for these

characters. For example, if your text file includes
temperature=+15, ActionScript will read it as

temperature=15, dropping the plus. The URL code for the
+ is %2b. To have ActionScript read the entry correctly, enter
this: temperature=%2b15. The following is a complete list
of URL codes.

URL ENCODING CHARACTERS

FLASH ACTIONSCRIPT

278

URL
CHARACTER CODE

backspace %08

tab %09

linefeed %0A

return %0D

space %20

! %21

" %22

%23

$ %24

% %25

& %26

‘ %27

(%28

) %29

* %2A

+ %2B

, %2C

- %2D

. %2E

/ %2F

0 %30

1 %31

2 %32

URL
CHARACTER CODE

3 %33

4 %34

5 %35

6 %36

7 %37

8 %38

9 %39

: %3A

; %3B

< %3C

= %3D

> %3E

? %3F

@ %40

A %41

B %42

C %43

D %44

E %45

F %46

G %47

H %48

I %49

URL
CHARACTER CODE

J %4A

K %4B

L %4C

M %4D

N %4E

O %4F

P %50

Q %51

R %52

S %53

T %54

U %55

V %56

W %57

X %58

Y %59

Z %5A

[%5B

\ %5C

] %5D

^ %5E

_ %5F

` %60

URL
CHARACTER CODE

a %61

b %62

c %63

d %64

e %65

f %66

g %67

h %68

i %69

j %6A

k %6B

l %6C

m %6D

n %6E

o %6F

p %70

q %71

r %72

s %73

t %74

u %75

v %76

w %77

3657-5 Ch14.F 1/31/02 12:27 PM Page 278

FLASH ACTIONSCRIPT QUICK REFERENCE 14

279

URL
CHARACTER CODE

x %78

y %79

z %7A

{ %7B

| %7C

} %7D

~ %7E

¢ %A2

£ %A3

¥ %A5

| %A6

§ %A7

« %AB

¬ %AC

¯ %AD

º %B0

± %B1

ª %B2

, %B4

µ %B5

» %BB

1/4 %BC

1/2 %BD

URL
CHARACTER CODE

¿ %BF

À %C0

Á %C1

Â %C2

Ã %C3

Ä %C4

Å %C5

Æ %C6

Ç %C7

È %C8

É %C9

Ê %CA

Ë %CB

Ì %CC

Í %CD

Î %CE

Ï %CF

_ %D0

Ñ %D1

Ò %D2

Ó %D3

Ô %D4

Õ %D5

URL
CHARACTER CODE

Ö %D6

Ø %D8

Ù %D9

Ú %DA

Û %DB

Ü %DC

_ %DD

_ %DE

ß %DF

à %E0

á %E1

â %E2

ã %E3

ä %E4

å %E5

æ %E6

ç %E7

è %E8

é %E9

ê %EA

ë %EB

ì %EC

í %ED

URL
CHARACTER CODE

î %EE

ï %EF

_ %F0

ñ %F1

ò %F2

ó %F3

ô %F4

õ %F5

ö %F6

÷ %F7

ø %F8

ù %F9

ú %FA

û %FB

ü %FC

_ %FD

_ %FE

ÿ %FF

LIST OF KEYWORDS
Keywords are words that
ActionScript reserves for
specific use within the
language. You cannot use
keywords to name
variables, functions, or
labels. The following is a list
of ActionScript keywords.

break continue delete else

for function if in

new return this typeof

var void while with

3657-5 Ch14.F 1/31/02 12:27 PM Page 279

FLASH ACTIONSCRIPT

280

When you use loadMovie, unLoadMovie,
loadVariables, print, or printAsBitmap in
Normal Mode, ActionScript may substitute those

actions with loadMovieNum, unLoadMovieNum,
loadVariablesNum, printNum, or printAsBitmapNum.

In Normal Mode, when using the loadMovie,
unLoadMovie, loadVariables, print, or
printAsBitmap actions you use the location parameter to
specify either a level number or target path. A level number
is an integer. A target path is a string. Flash Player needs to
know if the location is a string or a number. Therefore,
ActionScript uses two versions of the actions: the action
name and the action name appended with Num.
ActionScript uses the action name with strings and the
action name appended with Num with numbers. When in
Normal Mode, if you select Target in the Location field,
ActionScript uses the action name. If you select a Level in
the Location field, ActionScript uses the action name
appended with Num. ActionScript makes the selection

automatically. In fact, Normal Mode does not list action
names appended with Num in the Toolbox list. In the Expert
mode, the programmer must decide whether to use the
action name or the action name appended with Num. The
Toolbox list lists them both. The programmer should use the
action if specifying a target path and the action appended
with Num if specifying a level using an integer.

Examples:

loadVariableNum ("http://www.
entercompanyhere.com/anymovie.swf", 3)

loadVariable ("http://www.entercompanyhere.
com /anymovie.swf", "_root.targetClip")

Note: If you specify the level using a string, use
loadVariable.

loadVariable ("http://www.entercompanyhere.
com/anymovie.swf", "_level1")

ACTIONS APPENDED WITH NUM

You can specify color using the red, green, and blue
hexadecimal values shown in the following table. This
table is not a complete list of hexadecimal values.

HEXADECIMAL COLOR CODES

COLOR RED GREEN BLUE

aliceblue F0 F8 FF

antiquewhite FA EB D7

aqua 00 FF FF

aquamarine 7F FF D4

azure F0 FF FF

beige F5 F5 DC

bisque FF E4 C4

black 00 00 00

blanchedalmond FF EB CD

blue 00 00 FF

blueviolet 8A 2B E2

COLOR RED GREEN BLUE

brown A5 2A 2A

burlywood DE B8 87

cadetblue 5F 9E A0

chartreuse 7F FF 00

chocolate D2 69 1E

coral FF 7F 50

cornflowerblue 64 95 ED

cornsilk FF F8 DC

crimson DC 14 3C

cyan 00 FF FF

darkblue 00 00 8B

3657-5 Ch14.F 1/31/02 12:27 PM Page 280

281

FLASH ACTIONSCRIPT QUICK REFERENCE 14

COLOR RED GREEN BLUE

darkcyan 00 8B 8B

darkgoldenrod B8 86 0B

darkgray A9 A9 A9

darkgreen 00 64 00

darkkhaki BD B7 6B

darkmagenta 8B 00 8B

darkolivegreen 55 6B 2F

darkorange FF 8C 00

darkorchid 99 32 CC

darkred 8B 00 00

darksalmon E9 96 7A

darkseagreen 8F BC 8F

darkslateblue 48 3D 8B

darkslategray 2F 4F 4F

darkturquoise 00 CE D1

darkviolet 94 00 D3

deeppink FF 14 93

deepskyblue 00 BF FF

dimgray 69 69 69

dodgerblue 1E 90 FF

firebrick B2 22 22

floralwhite FF FA F0

forestgreen 22 8B 22

fuchsia FF 00 FF

gainsboro DC DC DC

ghostwhite F8 F8 FF

gold FF D7 00

goldenrod DA A5 20

gray 80 80 80

green 00 80 00

greenyellow AD FF 2F

honeydew F0 FF F0

hotpink FF 69 B4

indianred CD 5C 5C

COLOR RED GREEN BLUE

indigo 4B 00 82

ivory FF FF F0

khaki F0 E6 8C

lavender E6 E6 FA

lavenderblush FF F0 F5

lawngreen 7C FC 00

lemonchiffon FF FA CD

lightblue AD D8 E6

lightcoral F0 80 80

lightcyan E0 FF FF

lightgoldenrodyellow FA FA D2

lightgreen 90 EE 90

lightgray D3 D3 D3

lightpink FF B6 C1

lightsalmon FF A0 7A

lightseagreen 20 B2 AA

lightskyblue 87 CE FA

lightslategray 77 88 99

lightsteelblue B0 C4 DE

lightyellow FF FF E0

lime 00 FF 00

limegreen 32 CD 32

linen FA F0 E6

magenta FF 00 FF

maroon 80 00 00

mediumaquamarine 66 CD AA

mediumblue 00 00 CD

mediumorchid BA 55 D3

mediumpurple 93 70 DB

mediumseagreen 3C B3 71

mediumslateblue 7B 68 EE

mediumspringgreen 00 FA 9A

mediumturquoise 48 D1 CC

Continued

3657-5 Ch14.F 1/31/02 12:27 PM Page 281

FLASH ACTIONSCRIPT

282

COLOR RED GREEN BLUE

mediumvioletred C7 15 85

midnightblue 19 19 70

mintcream F5 FF FA

mistyrose FF E4 E1

moccasin FF E4 B5

navajowhite FF DE AD

navy 00 00 80

oldlace FD F5 E6

olive 80 80 00

olivedrab 6B 8E 23

orange FF A5 00

orangered FF 45 00

orchid DA 70 D6

palegoldenrod EE E8 AA

palegreen 98 FB 98

paleturquoise AF EE EE

palevioletred DB 70 93

papayawhip FF EF D5

peachpuff FF DA B9

peru CD 85 3F

pink FF C0 CB

plum DD A0 DD

powderblue B0 E0 E6

purple 80 00 80

red FF 00 00

rosybrown BC 8F 8F

COLOR RED GREEN BLUE

royalblue 41 69 E1

saddlebrown 8B 45 13

salmon FA 80 72

sandybrown F4 A4 60

seagreen 2E 8B 57

seashell FF F5 EE

sienna A0 52 2D

silver C0 C0 C0

skyblue 87 CE EB

slateblue 6A 5A CD

slategray 70 80 90

snow FF FA FA

springgreen 00 FF 7F

steelblue 46 82 B4

tan D2 B4 8C

teal 00 80 80

thistle D8 BF D8

tomato FF 63 47

turquoise 40 E0 D0

violet EE 82 EE

wheat F5 DE B3

white FF FF FF

whitesmoke F5 F5 F5

yellow FF FF 00

yellowgreen 9A CD 32

HEXADECIMAL COLOR CODES (CONTINUED)

3657-5 Ch14.F 1/31/02 12:27 PM Page 282

FLASH ACTIONSCRIPT QUICK REFERENCE

283

HANDLER PURPOSE

on(release) Performs specified actions when the pointer is over the button and the
user releases the mouse. This is the default handler.

on(press) Performs specified actions when the pointer is over the button and
the user presses the mouse.

on(releaseOutside) Performs specified actions when the user drags the pointer outside the
button area and releases the mouse.

on(rollOver) Performs specified actions when the user rolls the pointer over the
button.

on(rollOut) Performs specified actions when the user rolls the pointer over and
then outside of the button area.

on(dragOver) Performs specified actions when the user clicks the button, drags the
pointer away from the button, and then drags the pointer back over
the button.

on(dragOut) Performs specified actions when the pointer is over the button and the
user presses the mouse and then drags the pointer outside the button
area.

on(keyPress, "key") Performs specified actions when the user presses a specified key.

You use
button
handlers to

instruct Flash on
how to respond
when the user
clicks, moves the
mouse over, or
interacts in some
other way with a
button. The table
that follows lists
button handlers
and their
purpose.

BUTTON HANDLERS

You use
movie clip
handlers to

instruct Flash on
how to respond
when the user
loads or unloads
a movie clip,
enters a frame,
moves the
mouse, presses a
key, or interacts
in some other
way with a movie
clip. The table
that follows lists
movie clip
handlers and
their function.

MOVIE CLIP HANDLERS

14

HANDLER PURPOSE

onClipEvent(load) Performs the specified actions when the movie clip appears on the
Timeline. This is the default handler.

onClipEvent(unload) Performs the specified actions in the first frame after you remove the
movie clip from the Timeline.

onClipEvent(enterFrame) Performs the specified actions as a frame plays.

onClipEvent(mouseMove) Performs the specified actions every time the user moves the mouse.

onClipEvent(mouseDown) Performs the specified actions when the user presses the mouse.

onClipEvent(mouseUp) Performs the specified actions when the user releases the mouse.

onClipEvent(keyDown) Performs the specified actions when the user presses any key.

onClipEvent(keyUp) Performs the specified actions when the user releases any key.

onClipEvent(data) Performs the specified actions when ActionScript receives data.

3657-5 Ch14.F 1/31/02 12:27 PM Page 283

You use operators to combine, compare, or modify
values. The table that follows lists operators and
their purpose.

OPERATORS

FLASH ACTIONSCRIPT

284

OPERATOR NAME PURPOSE

! Logical Not Converts an expression that returns true to false and an expression that returns false
to true.

!= Inequality Used to compare to values. Returns true if two values are not equal. Returns false if
two values are equal.

"" Quotes Used to enclose strings.

% Modulo Returns the remainder of one expression divided by another expression.

&& Short-Circuit AND Evaluates two expressions. Returns true if expression 1 and expression 2 return true.

() Parenthesis Groups expressions to control precedence. Encloses arguments.

* Multiplication Multiplies expression1 by expression 2.

+ Addition Adds expression 1 to expression 2.

++ Increment Adds 1 to a value and returns the original value.

- Minus Negates a number or substracts expression 2 from expression 1.

-- Decrement Substract 1 from a value and returns the original value.

/ Division Divides expression 1 by expression 2.

< Less than Compares two expressions. Returns true if expression 1 is less than expression 2.
Returns false if expression 1 is not less than expression 2.

<= Less than or Compares two expressions. Returns true if expression 1 is less than or equal to
equal to expression 2. Returns false if expression 1 is not less than or equal to expression 2.

<> Inequality Used to compare two expressions. Returns true if the values are not equal and false
if the values are equal.

== Equality Compares two expressions. Returns true if the expressions are equal; returns false if
the expressions are not equal.

> Greater than Compares two expressions. Returns true if expression 1 is greater than expression 2.
Returns false if expression 1 is not greater than or equal to expression 2.

>= Greater than Compares two expressions. Returns true if expression 1 is greater than or equal to
or equal to expression 2. Returns false if expression 1 is not greater than or equal to expression 2.

and Evaluates two expressions. Returns true if expression 1 and expression 2 return true.
Deprecated in Flash 5.

not Converts an expression that returns true to false and an expression that returns false
to true. Deprecated in Flash 5.

or Compares two expressions. Returns true if expression 1 returns true or expression 2
returns true. Deprecated in Flash 5.

3657-5 Ch14.F 1/31/02 12:27 PM Page 284

FLASH ACTIONSCRIPT QUICK REFERENCE 14

285

Afunction is a block of script that can be reused. The
table that follows lists functions and their purpose.

FUNCTIONS

OPERATOR NAME PURPOSE

typeof Returns whether an expression is a movie clip, object, or function.

void Returns a null value for an expression.

|| OR Compares two expressions. Returns true if expression 1 returns true or expression 2
returns true.

FUNCTION PURPOSE

Boolean Converts a variable, number, or string
to a Boolean.

escape Converts an expression to
URL-encoded format.

eval Returns the value of a variable,
property, value, or the reference to an
object or movie clip.

false The Boolean value false.

getProperty Retrieves properties.

getTimer Retrieves the number of milliseconds
that have elapsed.

getVersion Retrieves the version of Flash Player
on the local computer.

int Rounds a number to an integer.

isFinite Returns true if a value is equal to
infinity. Returns false if it is not.

isNaN Returns true if an expression is not a
number.

maxscroll Finds the highest value allowed for the
scroll property.

FUNCTION PURPOSE

newline Inserts a blank line in ActionScript
code.

Number Converts a string or Boolean to a
number.

parseFloat Converts a string to a floating point
number.

parseInt Converts a string to an integer.

random Returns a random number.

scroll Returns the line number of the top
line in a text box.

String Converts a number, Boolean,
variable, or object to a string.

targetPath Returns the target path of a
MovieClip object.

true The Booloean value true.

unescape Converts an expression in URL-
encoded format to ASCII format.

updateAfterEvent Updates the display after the clip
event.

3657-5 Ch14.F 1/31/02 12:27 PM Page 285

You use actions to send commands in ActionsScript.
You can use actions to start or stop a movie, load or

unload a movie, or perform myriad other tasks. The
following table lists the actions available to you in
ActionScript.

ACTIONS
FLASH ACTIONSCRIPT

ACTION PURPOSE

break Used with the for, for...in, do
while, and while actions. The
break action instructs
ActionSript to break out of a
loop.

comment Enables you to add text to your
script. Comments have no effect
on your script. Use comments to
document your script.

continue Used with while and do...while
loops. With while loops, causes
ActionScript to return to the top
of the loop. With do...while
loops, causes ActionScript to go
to the bottom of the loop.

delete Deletes an object or variable.

duplicateMovieClip Copies of a movie clip instance.

else Used with if statements.
Executes statements if all other
conditions are not met.

evaluate Creates a blank line with a
semi-colon.

for Used to execute a statement or
series of statements repeatedly.

for...in Loops through object properties
or elements in an array.

FSCommand Sends commands to Flash
Player.

function Defines custom functions.

getUrl Opens a Web page.

goto Stops or plays a movie.

if Evaluates a condition. If the
condition is true, executes
statements.

ifFrameLoaded Checks the status of a movie
download.

include Includes script written with a
text editor in your Flash movie.

ACTION PURPOSE

loadMovie Load and displays several movies
at once or switches movies
without closing Flash Player.

loadVariables Loads variables from an external
file.

onClipEvent Enables you to select a movie clip
handler.

play Plays a movie.

print Prints a movie.

removeMovieClip Removes a movie clip from the
Stage.

return Specifies the value returned by a
function.

set variable Enables you to assign a value to a
variable.

setProperty Enables you to set the property of
a movie clip.

startDrag Makes an object draggable.

stop Stops a movie from playing.

stopAllSounds Stop all sounds that are currently
playing.

stopDrag Stops a drag action.

tellTarget Sends statements to a Timeline.

toggleHighQuality Toggles antialiasing on and off.

trace Displays messages in the Output
window.

unloadMovie Unloads a movie.

var Declares a local variable.

while Runs a statement or series of
statements repeatedly.

with Enables you to execute a
statement or series of statements
on an object or movie clip.

286

3657-5 Ch14.F 1/31/02 12:27 PM Page 286

This table lists movie clip properties. You can use the
setProperty action to set many of these properties.
You can use the getProperty function to retrieve the

value of these properties. However, if a property is read-
only, you can retrieve but not set the property. Read-only
properties are marked with an asterisk.

PROPERTIES

FLASH ACTIONSCRIPT QUICK REFERENCE 14

287

PROPERTY PURPOSE

_alpha Returns a value between 0 and 100.
A transparent movie clip has a value
of 0. An opaque movie clip has a
value of 100.

_currentframe* Returns the frame in which the
playhead is located.

_droptarget* Returns the absolute path of the
movie clip on which the user
dropped a draggable instance.

_focusrect Returns true if a yellow rectangle
will appear around the button or
text box that has focus when the
user presses the tab key.
Otherwise, it returns false.

_framesloaded* Returns the number of frames
loaded.

_height Returns the height of a movie clip
in pixels.

_highquality Returns the movie clip quality.

_name Returns the name of a movie clip.

_quality Returns the movie clip quality.

_rotation Returns the rotation value.

_soundbuftime Returns the number of seconds of
streaming sound buffered before
the movie starts to stream.

_target* Returns the target path of a movie
clip instance.

PROPERTY PURPOSE

_totalframes* Returns the total number of frames
in a movie clip.

_url* Returns the URL from which the
movie clip was downloaded.

_visible Returns the visibility status. Returns
true if the movie clip is visible.
Returns false if the movie clip is
not visible.

_width Returns the width of the movie clip.

_x Returns the x coordinate of a movie
clip, using global coordinates.

_xmouse* Returns the x coordinate of the
mouse position.

_xscale Returns the amount of horizontal
scaling that the script or the user has
applied to a movie clip.

_y Returns the y coordinate of a movie
clip, using global coordinates.

_ymouse* Returns the y coordinate of the
mouse position.

_yscale Returns the amount of vertical
scaling that the script or the user has
applied to a movie clip.

3657-5 Ch14.F 1/31/02 12:27 PM Page 287

OBJECTS

FLASH ACTIONSCRIPT

288

METHOD PURPOSE

concat Concatenates and returns an array.

join Joins elements in an array to form a string.

pop Removes the last element from an array.

push Adds elements to the end of an array.

reverse Reverses an array.

shift Removes the first element from an array.

METHOD PURPOSE

slice Extracts elements from an array.

sort Sorts an array.

splice Adds or removes elements from an array.

toString Converts an array to a string.

unshift Adds elements to the beginning of the array.

length Returns the length of an array.

METHOD PURPOSE

toString Returns the string value of a Boolean object.

valueOf Returns the primitive value of a Boolean object.

METHOD PURPOSE

getRGB Returns the value of the last setRGB call.

getTransform Returns the value of the last setTansform call.

setRGB Sets the hexadecimal value for a Color object.

setTransform Sets the color transform for a Color object.

You can use the Boolean object to find the
string value of a Boolean or to return the
primitive value of the Boolean object. The
following table lists the methods of the
Boolean object.

BOOLEAN OBJECT

ARRAY OBJECT

COLOR OBJECT

You can use the Color object methods to
retrieve and set the color values. The table
that follows lists the methods of the Color
object and their purpose.

You can use an array to group related data. The table that
follows lists the methods you can use with the Array object.

3657-5 Ch14.F 1/31/02 12:27 PM Page 288

FLASH ACTIONSCRIPT QUICK REFERENCE 14

289

METHOD PURPOSE

getDate Returns the day of the month in
local time.

getDay Returns the day of the week in
local time.

getFullYear Returns the four-digit year in
local time.

getHours Returns the hour in local time.

getMilliseconds Returns the millisecond in local
time.

getMinutes Returns the minute in local time.

getMonth Returns the month in local time.

getSeconds Returns the second in local time.

getTimer Returns the number of
milliseconds since midnight
January 1, 1970 universal time.

getTimezoneOffset Returns the difference between
local time and universal time.

getUTCDate Returns the day of the month in
universal time.

getUTCDay Returns the day of the week in
universal time.

getUTCFullYear Returns the four-digit year in
universal time.

getUTCHours Returns the hour in universal
time.

getUTCMilliseconds Returns the millisecond in
universal time.

getUTCMinutes Returns the minute in universal
time.

getUTCMonth Returns the month in universal
time.

METHOD PURPOSE

getUTCSeconds Returns the second in
universal time.

getYear Returns the year in local time.

setDate Sets the day of the month in
local time.

setFullYear Sets the year in local time.

setHours Sets the hour in local time.

setMilliseconds Sets the millisecond in local
time.

setMinutes Sets the minute in local time.

setMonth Sets the month in local time.

setSeconds Sets the second in local time.

setTime Sets the time in milliseconds.

setUTCDate Sets the date in universal time.

setUTCFullYear Sets the year in universal time.

setUTCHours Sets the hour in universal time.

setUTCMilliseconds Sets the milliseconds in
universal time.

setUTCMinutes Sets the minute in universal
time.

setUTCMonth Sets the month in universal
time.

setUTCSeconds Sets the second in universal
time.

setYear Sets the year in local time.

toString Returns the date and time as
a string.

Date.UTC Returns the number of
milliseconds between
midnight January 1, 1970,
universal time, and a specified
time.

DATE OBJECT

You can use the Date object to retrieve and set the date.
The table that follows lists the methods and purposes
of the Date object.

3657-5 Ch14.F 1/31/02 12:27 PM Page 289

FLASH ACTIONSCRIPT

290

METHOD PURPOSE

getAscii Returns the ASCII code for the last key pressed.

getCode Returns the virtual key code for the last key pressed.

isDown Returns true if a specified key is pressed.

isToggled Returns true if Num Lock or Caps Lock are on.

METHOD PURPOSE

abs Returns the absolute value of a value.

acos Returns the arc cosine of a value.

asin Returns the arc sine of a value.

atan Returns the arc tangent of a value.

atan2 Computes the angle from the x-axis to the
point.

ceil Rounds a number up.

cos Returns the cosine of a value.

exp Computes an exponential value.

floor Rounds a number down.

log Returns the natural logarithm of a value.

METHOD PURPOSE

max Compares two numbers and returns the
larger.

min Compares two numbers and returns the
smaller.

pow Raises a number to a power.

random Returns a random number.

round Rounds a number.

sin Returns the sine of a value.

sqrt Returns the square root of a value.

tan Returns the tangent of a value.

KEY OBJECT

You can use the methods of the Key
object to enable users to manipulate
objects with keys or to respond to
key presses. The following table lists
the methods of the Key object and
their purpose.

MATH OBJECT

You can use the methods of the Math object to
manipulate numbers and perform mathematical

calculations. The following table lists the methods of the
Math object and their purpose.

3657-5 Ch14.F 1/31/02 12:27 PM Page 290

METHOD PURPOSE

hide Hides the cursor.

show Shows the cursor.

METHOD PURPOSE

attachMovie Attaches a movie clip in the
Library and places it on the
Stage.

duplicateMovieClip Duplicates a movie clip.

getBounds Returns the boundaries of a
movie clip.

getBytesLoaded Returns the number of bytes
loaded.

getBytesTotal Returns the size of a movie clip.

getURL Opens a Web page.

globalToLocal Converts the Stage
coordinates to local
coordinates.

gotoAndPlay Begins to play a movie clip in
the frame specified.

gotoAndStop Sends the playhead to a frame
and stops the movie.

hitTest Returns true if a movie clip
touches or overlaps with
another movie clip.

loadMovie Loads a movie into a movie clip.

METHOD PURPOSE

loadVariables Loads variables.

localToGlobal Converts the Stage coordinates to
global coordinates.

nextFrame Sends the playhead to the next
frame in the movie clip.

prevFrame Sends the playhead to the
previous frame in the movie clip.

removeMovieclip Removes movie clips created with
duplicateMovieClip and
attachMovie from the Timeline.

startDrag Makes a movie clip draggable.

stop Stops a movie clip.

stopDrag Stops the drag actions.

swapDepths Swaps the depth level of a movie
clip.

unloadMovie Removes a movie that was loaded
using loadMovie.

FLASH ACTIONSCRIPT QUICK REFERENCE 14

291

MOUSE OBJECT

You can use the methods of the
Mouse object to show or hide the
mouse. The table that follows lists the
methods of the Mouse object and
their purpose.

MOVIECLIP OBJECT

You can use the methods of the MovieClip object to
manipulate movie clips. The table that follows lists the
methods of the Mouse object and their purpose.

3657-5 Ch14.F 1/31/02 12:27 PM Page 291

FLASH ACTIONSCRIPT

292

METHOD PURPOSE

toString Returns a number as a number.

valueOf Returns the primative value of a number.

METHOD PURPOSE

toString Returns the object as a string.

valueOf Returns the primative value of an Object object.

METHOD PURPOSE

getBeginIndex Returns the index value of the beginning of a
selection pan.

getCaretIndex Returns the index value of the blinking cursor.

getEndIndex Returns the index of the end of a selection pan.

getFocus Returns the name of the variable for the text box
that currently has focus.

setFocus Sets the focus to specified text box.

setSelection Sets the selection span.

NUMBER OBJECT

You can use the Number object to find
the string value of a number or to return
the primitive value of the Number
object. The following table lists the
methods of the Number object.

OBJECT OBJECT

You can use the Object object to find
the string value of an object or to
return the primitive value of the
Object object. The following table
lists the methods of the Object
object.

SELECTION OBJECT

You can use the methods of the
Selection object to control the
text box that currently has focus. The
following table lists the methods of the
Selection object and their purpose.

3657-5 Ch14.F 1/31/02 12:27 PM Page 292

METHOD PURPOSE

attachSound Attaches a sound.

getPan Returns the pan value.

getTransform Returns the sound transform value.

getVolume Returns the volume value.

setPan Sets the pan value.

setTransform Sets the transform value.

setVolume Sets the volume.

start Starts a sound.

stop Stops a sound.

METHOD PURPOSE

charAt Returns the character at a specified index position.

charCodeAt Returns the numeric value of a character at a specified index position.

concat Concatenates strings.

fromCharCode Returns the character assigned to a code.

indexOf Returns the first occurrence of the index value of a substring.

lastIndexOf Returns the last occurrence of the index value of a substring.

slice Returns a substring of a string.

substr Returns a substring of a string. You specify the starting position and length.

substring Returns a substring of a string. You specify the starting and ending position.

toLowerCase Converts a string to lowercase.

toUpperCase Converts a string to uppercase.

FLASH ACTIONSCRIPT QUICK REFERENCE 14

293

SOUND OBJECT

You can use the methods of the
Sound object to control sound. The
table that follows lists the Sound
methods and their purpose.

STRING OBJECT

You can use the String object to manipulate
strings. The table that follows lists the methods
of the String object and their purpose.

3657-5 Ch14.F 1/31/02 12:27 PM Page 293

APPENDIX

The CD-ROM disc included in this book contains
many useful files and programs that can be used
when working with Flash. You will find files that

contain all the sample code used in this book, as well as
several popular programs you can install on your computer.
Before installing any of the programs on the disc, make sure
that a newer version of the program is not already installed
on your computer. For information on installing different
versions of the same program, contact the program’s
manufacturer.

WHAT’S ON THE CD-ROM

294

APPENDIX

SYSTEM REQUIREMENTS
While most programs on the CD-ROM disc have minimal
system requirements, your computer should be equipped
with the following hardware and software to make the best
use of all the contents of the CD-ROM disc:

• A Pentium processor running Windows 95 or later or
Windows NT 4 or later

• At least 32 MB of available RAM

• At least 40 MB of available disk space

• Microsoft Internet Explorer 4.0 or later, or Netscape
Navigator 4.0 or later recommended

• 800 x 600 color display

• CD-ROM drive

AUTHOR’S SOURCE CODE
For Windows 2000. The CD provides files that contain all
the sample code used throughout this book. You can browse
these files directly from the CD-ROM, or you can copy
them to your hard drive and use them as the basis for your
own projects. To find the files on the CD-ROM, open the
D:\RESOURCES\CODE folder. To copy the files to your hard
drive, just run the installation program D:\RESOURCES\
CODE.EXE. The files will be placed on your hard drive at
C:\ProgramFiles\FlashActionScript. After installing, you can
access the files from the Start menu. You will need Flash 5
installed on the machine to run the samples. Please see Using
Creative Techniques in Chapter 12 for more information.

ACROBAT VERSION
The CD-ROM contains an e-version of this book that you
can view and search using Adobe Acrobat Reader. You can
also use the hyperlinks provided in the text to access all
Web pages and Internet references in the book. You cannot
print the pages or copy text from the Acrobat files. If you do

not currently have Adobe Acrobat Reader 5 installed, the
computer will prompt you to install the software Acrobat
files. A freeware version of Adobe Acrobat Reader is also
included on the disc.

INSTALLING AND USING THE SOFTWARE
This CD-ROM disc contains several useful programs. Before
installing a program from the CD, you should exit all other
programs. In order to use most of the programs, you must
accept the license agreement provided with the program.
Make sure you read any ReadMe files provided with each
program.

Program Versions
Shareware programs are fully functional, free trial versions
of copyrighted programs. If you like a particular program,
you can register with its author for a nominal fee and
receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications,
and utilities. You can copy them to as many computers as
you like, but they have no technical support.

GNU software is governed by its own license, which is
included inside the folder of the GNU software. There are
no restrictions on distribution of this software. See the GNU
license for more details.

Trial, demo, or evaluation versions are usually limited either
by time of functionality. For example, you may not be able
to save projects using these versions.

For your convenience, the software titles on the CD are
listed in alphabetic order.

Acrobat Reader
For Mac and Windows. Freeware. Acrobat Reader lets you
view the online version of this book. For more information

43657-5 AppEULA.F 1/31/02 12:28 PM Page 294

295

on using Adobe Acrobat Reader, see page 296. From Adobe
Systems, Inc., www.adobe.com.

Adobe Photoshop
For Mac and Windows. Trial Version. Enables you to create,
edit, or retouch images. From Adobe Systems, Inc.,
www.adobe.com.

Dreamweaver 4
For Mac and Windows. Trial version. Enables you to quickly
and easily develop HTML-based Web pages. From
Macromedia, Inc., www.macromedia.com.

Dreamweaver UltraDev 4
For Mac and Windows. Trial Version. Enables you to develop
Web pages that include ASP, JSP, or ColdFusion. From
Macromedia, Inc., www.macromedia.com.

Flash 5
For Mac and Windows. Trial Version. Enables you to create
interactive multimedia Web pages. From Macromedia, Inc.,
www.macromedia.com.

Flash Player
For Mac and Windows. Commercial version. Enables you to
view Macromedia Flash content. From Macromedia, Inc.,
www.macromedia.com.

FreeHand 10
For Mac and Windows. Trial Version. Enables you to create
vector-based illustrations for Flash and for print. From
Macromedia, Inc., www.macromedia.com.

Paint Shop Pro
For Windows. Evaluation Version. Enables you to create, edit,
or retouch images. From JASC Software, Inc., www.jasc.com/.

Director 8.5 Shockwave Studio
For Mac and Windows. Commercial version. Enables you to
create multimedia content, including advanced 3D games.
From Macromedia, Inc., www.macromedia.com.

Shockwave
For Mac and Windows. Trial Version. Enables you to create
multimedia content, including advanced 3D games. From
Macromedia, Inc., www.macromedia.com.

Stuffit Expander
For Mac. Commercial version. Enables users to access all
downloads and attachments. From Aladdin Systems,
www.aladdinsys.com.

Stuffit Lite
For Mac. Shareware. Enables you to compress files and open
compressed files. From Aladdin Systems,
www.aladdinsys.com/.

WinZip
For Windows. Shareware. Enables you to compress files and
open compressed files. From Nico Mak Computing, Inc.,
www.winzip.com/.

TROUBLESHOOTING
We tried our best to compile programs that work on most
computers with the minimum system requirements. Your
computer, however, may differ and some programs may not
work properly for some reason.

The two most likely problems are that you don’t have enough
memory (RAM) for the programs you want to use, or you
have other programs running that are affecting installation
or running of a program. If you get error messages like Not
enough memory or Setup cannot continue, try one
or more of these methods and then try using the software
again:

• Close all running programs.

• Restart your computer.

• Turn off any anti-virus software.

• Close the CD-ROM interface and run demos or
installations directly from Windows Explorer.

• Add more RAM to your computer.

If you still have trouble installing the items from the
CD-ROM, please call the Hungry Minds Customer Service
phone number: 800-762-2974 (outside the U.S.: 317-
572-3994), or e-mail techsupdum@hungryminds.com.

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

43657-5 AppEULA.F 1/31/02 12:28 PM Page 295

+

FLIP THROUGH PAGES

⁄ Click one of these options
to flip through the pages of a
section.

 First page

 Previous page

 Next page

 Last page

ZOOM IN

⁄ Click to magnify an
area of the page.

¤ Click the area of the page
you want to magnify.

� Click one of these options
to display the page at 100%
magnification () or to fit
the entire page inside the
window ().

You can view Flash ActionScript: Your visual blueprint
for creating Flash-enhanced Web sites on your screen
using the CD-ROM included at the back of this book.

The CD-ROM allows you to search the contents of each
chapter of the book for a specific word or phrase. The
CD-ROM also provides a convenient way of keeping the
book handy while traveling.

You must install Adobe Acrobat Reader on your computer
before you can view the book on the CD-ROM. This
program is provided on the disc. Acrobat Reader allows you
to view Portable Document Format (PDF) files, which can

display books and magazines on your screen exactly as they
appear in printed form.

To view the contents of the book using Acrobat Reader,
insert the CD-ROM into your drive. The autorun interface
will appear. Navigate to the eBook, and open the book.pdf
file. You may be required to install Acrobat Reader 5.0 on
your computer, which you can do by following the simple
installation instructions. If you choose to disable the
autorun interface, you can open the CD root menu and
open the Resources folder, then open the eBook folder. In
the window that appears, double-click the eBook.pdf icon.

USING THE E-VERSION OF THE BOOK

296

USING THE E-VERSION OF THE BOOK

APPENDIX

43657-5 AppEULA.F 1/31/02 12:28 PM Page 296

297

FIND TEXT

⁄ Click to search for text
in the section.

� The Find dialog box
appears.

¤ Type the text you want to
find.

‹ Click Find to start the
search.

� The first instance of the
text is highlighted.

› Click Find Again to find
the next instance of the text.

Acrobat Reader is a popular and useful program.
There are many files available on the Web that are
designed to be viewed using Acrobat Reader.
Look for files with the .pdf extension. For more
information about Acrobat Reader, visit the
Web site at www.adobe.com/products/
acrobat/readermain.html.

To install Acrobat Reader, insert the CD-ROM
disc into a drive. In the screen that appears, click
Software. Click Acrobat Reader and then click
Install at the bottom of the screen. Then follow
the instructions on your screen to install the
program.

You can make searching the book more
convenient by copying the .pdf files to your own
computer. Display the contents of the CD-ROM
disc and then copy the PDFs folder from the CD
to your hard drive. This allows you to easily
access the contents of the book at any time.

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

43657-5 AppEULA.F 1/31/02 12:28 PM Page 297

APPENDIX

298

HUNGRY MINDS, INC.
END-USER LICENSE AGREEMENT

READ THIS. You should carefully read these terms and
conditions before opening the software packet(s) included
with this book ("Book"). This is a license agreement
("Agreement") between you and Hungry Minds, Inc.
("HMI"). By opening the accompanying software packet(s),
you acknowledge that you have read and accept the
following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions,
promptly return the Book and the unopened software
packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual
or entity) a nonexclusive license to use one copy of the
enclosed software program(s) (collectively, the "Software")
solely for your own personal or business purposes on a
single computer (whether a standard computer or a
workstation component of a multi-user network). The
Software is in use on a computer when it is loaded into
temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device).
HMI reserves all rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and
interest, including copyright, in and to the compilation of
the Software recorded on the disk(s) or CD-ROM
("Software Media"). Copyright to the individual programs
recorded on the Software Media is owned by the author or
other authorized copyright owner of each program.
Ownership of the Software and all proprietary rights
relating thereto remain with HMI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software to
a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease
the Software, (ii) copy or reproduce the Software through a
LAN or other network system or through any computer
subscriber system or bulletin-board system, or (iii) modify,
adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or
disassemble the Software. You may transfer the Software
and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer
must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must
follow the individual requirements and restrictions detailed
for each individual program in the What’s on the CD-ROM
appendix of this Book. These limitations are also contained
in the individual license agreements recorded on the
Software Media. These limitations may include a
requirement that after using the program for a specified
period of time, the user must pay a registration fee or
discontinue use. By opening the Software packet(s), you will
be agreeing to abide by the licenses and restrictions for
these individual programs that are detailed in the What’s on
the CD-ROM appendix and on the Software Media. None
of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for
commercial purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media
are free from defects in materials and workmanship under
normal use for a period of sixty (60) days from the date of
purchase of this Book. If HMI receives notification within
the warranty period of defects in materials or workmanship,
HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM
ALL OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE
CONTAINED THEREIN, AND/OR THE TECHNIQUES
DESCRIBED IN THIS BOOK. HMI DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE
WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

43657-5 AppEULA.F 1/31/02 12:28 PM Page 298

299

(c) This limited warranty gives you specific legal rights, and
you may have other rights that vary from jurisdiction to
jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for
defects in materials and workmanship shall be limited to
replacement of the Software Media, which may be returned
to HMI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: Flash
ActionScript: Your visual blueprint for creating Flash-
enhanced Web sites, Hungry Minds, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please
allow four to six weeks for delivery. This Limited Warranty is
void if failure of the Software Media has resulted from
accident, abuse, or misapplication. Any replacement
Software Media will be warranted for the remainder of the
original warranty period or thirty (30) days, whichever is
longer.

(b) In no event shall HMI or the author be liable for any
damages whatsoever (including without limitation damages
for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising
from the use of or inability to use the Book or the Software,
even if HMI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion
or limitation of liability for consequential or incidental
damages, the above limitation or exclusion may not apply
to you.

7. U.S. Government Restricted Rights. Use, duplication,
or disclosure of the Software for or on behalf of the United
States of America, its agencies and/or instrumentalities (the
"U.S. Government") is subject to restrictions as stated in
paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or
subparagraphs (c) (1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, and in
similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire
understanding of the parties and revokes and supersedes all
prior agreements, oral or written, between them and may
not be modified or amended except in a writing signed by
both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any
other documents that may be in conflict herewith. If any
one or more provisions contained in this Agreement are
held by any court or tribunal to be invalid, illegal, or
otherwise unenforceable, each and every other provision
shall remain in full force and effect.

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

43657-5 AppEULA.F 1/31/02 12:28 PM Page 299

300

A
absolute target path, 224–225
access [] operator, arrays, 162–163
Actions panel

Colored Syntax colors, 27
comments, adding, 42–43
Expert mode, 24–27
fonts, sizing, 27
#include statement, 25
line, moving to, 27
modes, switching between, 26
movies, quality settings, 50–51
Normal mode, 24–27
open, 270
playhead, positioning, 48–49
scripts, printing, 27
Show Deprecated Syntax, 27
statements, 24–25, 27, 37
string characters, find/replace, 27
strings, search, 27
syntax errors, checking, 27
Toolbox list, 24–27

actions reference, 286
Actions statement, 24
actions

appended with NUM, 280
argument association, 36
buttons, ActionScript definitions, 12
test, 38

ActionScript
Actions panel, 24–27
argument, 36–37
AS file extension, 25
buttons

action definitions, 12
assignment, 28
association, 6

code blocks, curly braces {and} characters, 36–37
comments, 42–43
expressions, 37
frames, assignment, 30–31
handlers, 28–29
#include statement, 25
keywords, case sensitive, 36

movie clips
association, 6
assignment, 29
referencing by name, 19

movies, adding, 244
predefined objects, 144
smart clips, 18, 236–239
statements, 24–27, 36–37
static images, non-support, 8
view, 275

active layer, 4–5
Add a Statement button, 24, 26
Add Scene icon, 3
add

comments, 42–43
numeric values, 112–113
scenes, 3
sounds, 16–17

addition (+) operator, 88, 100, 110
adjust, transparency, 68–69
alignments, 20–21
alpha, instances, 10–11
ampersand (&) character, bitwise AND, 100
AND (&&) operator, 132–133
animated buttons, 12, 19
animations

buttons, 8
frame-by-frame, 14
movie clips

conversion, 19
reusable, 8

preloader, 62
QuickTime, 32
start/end keyframes, 14
tween adjustments, 15
tweened, 14

antialiasing
movie clip quality, 86–87
movie quality, 50–51
smoothing text, 21

arguments
comma (,) character as separator, 36
defined, 36
parentheses (and) characters, 36
statements, 24
value assignments, 36

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 300

301

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

arrays
access operator [], 162–163
comma (,) character as separator, 92
conversions, string, 174–175
create, 162–165
data types, 93
described, 162
display

changes, 13
values, 273

elements
adding, 168–169
assigning, 164–165
number (index), 162–163
removing, 170–171
value changes, 164–165

empty, 164–165
extract, 172–173
length, finding, 166–167
reverse, 172–173

arrow line, tween complete indicator, 15
Arrow tool, 6–7, 9, 11
AS file extension, 25
ASCII characters, URL-encoded conversion, 95
ASCII values, 198–200
assign, target paths, 224–225
assignments

ActionScript, 28–31
variable values, 90–93

associations
buttons, ActionScript, 6
dynamic text box/variables, 23
input text box/variables, 22
movie clips, ActionScript, 6
operator precedence, 111

asterisk (*) character, 22, 88, 116–117
asterisk (*) slash (/) characters, comments, 42
attach, movie clips, 148–151

B
background images, symbol advantages, 9
backgrounds, 22–23
backslash (\) character, escape sequences, 91
Bandwidth Profiler, movie information display, 40–41
base 16, hexadecimal numbers, 177
base, numbers, 215
Basic Actions statement, 24

behaviors
instances, 11
movie clips, selecting, 18
symbols, 9

BEST quality, movie clips, 86–87
binary operators, operands, 110
bitmap images, movies, printing as, 60
Boolean

conversions, 108–109
data type, 88
primitive data type, 92
values, false, 56

borders, 22–23
boundary

movie clip, 152–153
movie display, 33

brackets [and] characters, array access operator, 162–163
brightness, instances, 10–11
broken line, tween start indicator, 15
Brush tool, size/shape, 6
buttons

ActionScript, 28
animated, create, 19
antialiasing on/off, 50–51
associations, ActionScript, 6
check mark beside, 13
convert to movie clip, 252
enable/disable, 13
execute continuous action, 252
four-frame Timeline, 12
handlers, 252, 283
images, importing, 13
instance behavior type, 11
interactive graphics, 8–9
keyframe, inserting, 13
movie clips, converting to panels, 260
movie startup point, 46
objects, dragging, 259
rotate continuously, 255
states, 12–13
stop action assignment, 44
tests, 13, 38
Timeline, 8–9

C
Caps Lock key, Status bar display, 41
case sensitive, search limitation, 249

43657-5 Index.F 1/31/02 12:28 PM Page 301

302

case, strings, changing, 106–107
CGI scripts, load/unload movies, 228–229
Change the Statement Order button, 24–25
change, colors, 176–177
characters

string, extracting, 96–97
URL encoding, 278–279

check, frame load, 62–63
check mark, 13, , 27
child movie clips, parent placement, 234
circles, Oval tool, 6
Clip Parameters dialog box, 243
Clip Parameters panel, smart clips, 238–241
clocks, 184–185
code

blocks
comments, 42–43
curly braces {and} characters, 36–37

document with comments, 274
hexadecimal color, 280–282
panel size changes, 261

collision, detection, 158–159
color boxes, tools, stroke/fill, 6–7
Color object, movie clips, color change, 176–177
Colored Syntax, 27, 274
coloring book, create, 256–257
colors

add to objects, 256–257
Colored Syntax, 27
comments, 27
deprecated syntax, 27
fill, 7
fonts, 20–21
hexadecimal codes, 280–282
hexadecimal values, 176–177
instances, 10–11
keywords, 27
magenta, comments, 42
mouse, change, 257
movie clips, changing, 176–177
predefined identifiers, 27
properties, 27
quoted strings, 27
statements, 27
stroke, 7
transform values, 178–179

columns, 5
comma (,) character

argument separator, 36
array separator, 92

commands
Control

Debug Movie, 268
Loop Playback, 38
Mute Sounds, 38–39
Play, 38
Play All Scenes, 38
Rewind, 38
Step Backward, 38
Step Forward, 38
Test Movie, 38–40, 43, 261, 272–273
Test Scene, 38–39

Debug
List Objects, 272
List Variables, 273

Edit
Copy Frames, 18
Deselect All, 19
Edit Movie, 9
Edit Symbols, 9, 253
Paste Frames, 19
Select All, 19

File
Import, 13, 16
Print, 61
Publish Preview, Default, 39
Publish Settings, 32, 50
Save, 38, 149

Insert
Convert to Symbol, 9, 12, 219
Create Motion Tween, 14
Frame, 15
Keyframe, 13, 30
Layer, 4, 30
New Symbol, 8, 12–13, 18, 240

Modify
Frame, 15
Instance, 11
Layer, 5
Transform, Edit Center, 73
Transform, Rotate, 73
Transform, Scale, 79

Options, Define Clip Parameters, 237

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 302

303

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

Text
Character, 53
Options, 20–21
Paragraph, 21

View
Antialias, 21
GoTo, 3
High Quality, 50
Magnification, 7
Quality, 41
Scene, 3
Show Streaming, 41
Zoom In, 7, 41
Zoom Out, 7, 41

Window
Actions, 28–29, 31, 36, 41, 244, 246
Common Libraries, 237
Common Libraries, Learning Interactions, 241, 243
Controller (Mac), 39
Debug, 268
Library, 11, 237, 241–242
Movie Explorer, 222, 275
Output, 270
Panels,

Clip Parameters, 239, 243
Effect, 11, 69
Fill, 7
Frame, 43
Instance, 11, 19, 66, 242
Mixer, 7
Scene, 3
Sound, 16
Stroke, 7
Text Options, 88

Toolbar, 41
Toolbar, Controller (PC), 39
Tools, 7

comments
colors, 27
document code, 274
magenta color, 42
multiline, 42–43
single-line, 42–43

common library, smart clips, 259
communicate, Flash Player, 54–55
compound assignment operators, 130–131
compression, 16, 34

concatenate, strings, 100–101
conditional (?) operator, ternary type, 110
conditional checking, date validation, 246–247
conditional loops, 140–141
conditions, test, 134–135
constructors

new Color, 176
new Date, 182–183, 186
new Sound, 202
newArray, 162, 166

continuous actions, start/stop, 252
Control menu, movies, testing, 38–39
Controller Toolbar, access methods, 39
convert

array to string, 174–175
Booleans, 108–109
numbers, 108–109
string to number, 214–215
strings, 108–109
symbols, 252

coordinates, 160–161, 180
copy, selected objects, 6
counters, loops, 122
create

animated buttons, 19
animations, 14–15
array, 162–165
buttons, trigger actions, 252–253
clocks, 184–185
coloring book, 256–257
colors, 7
custom functions, 220–221
draggable objects, 56–59
dynamic text box, 23
forms, 22
frame label, 31
gradients, 7
graphics, 6
input text boxes, 22
instance, 10–11
keyframes, 30
layers, 4–5, 30
menus, getURL action, 53
motion guide layers, 4
motion tween, 4
movie clips, 18–19
movies, one-frame, 252

43657-5 Index.F 1/31/02 12:28 PM Page 303

304

objects, draggable, 258
rotation effects, 254–255
scenes, 2–3
scrollable text box, 218–219
smart clips, described, 236
sounds, 202–203
static text boxes, 20–21
symbol, 8–9
trigonometric special effects, 266–267

crop, movies, 33
curly braces {and} characters, code blocks, 36–37
curves, Pen tool, 6
custom functions, create, 220–221
custom interface, smart clips, 239–243

D
data types

array, 93
Boolean, 88
movie clip, 88
number, 88
object, 88
primitive, 92
reference, 92
string, 88

data, validate, 244–245
dates

current, retrieving, 183
set, 186–187
update, 189
validate, 246–247
values, 188–189

retrieving, 184–185
days, validation, 246–247
debug, script, 274–275
Debugger

display list, 223, 268
error correction, 268–269
movies, activating, 32
password protect movies, 269
Properties tab, changing property values, 268–269
status bar, 268
Variables tab, 268–269
Watch list, add/remove variables, 268–269

decimal places, round numbers, 194

decimal point (.), floating point numbers, 119
decrement (—) operator

mathematical data type, 88
unary type, 110
set values, 124–125

Define Clip Parameters dialog box, 236–239, 243
delete

layers, 4–5
selected objects, 6
statements, 24–25

Delete a Statement button, 25
Delete Scene icon, 3
deprecated syntax, display color, 27
depths, swap, 154–155
detect, collision, 158–159
device fonts

movies, 34
static text boxes, 20–21

display list
Debugger, levels/instances, 268
Flash Player, 222–223

divide, numeric values, 118–119
division (/) operator

mathematical data type, 88
numeric values, dividing, 118–119

dot syntax, target path, 224–225
double hyphen (—) character, decrement operator, 88, 110,
124–125
double plus sign (++), increment operator, 88
double slashes (//) characters, single-line comments, 42
Down state, buttons, 12–13
downloads, frames, checking, 62–63
draggable objects

create, 56–59
handlers, 58–59
scroll bars, 57
sound volume/pan, 57

Dropper tool, fill/stroke attributes, 6–7
duplicate

movie clips, 234–235
scenes, 3

Duplicate Scene icon, 3
dynamic text

invalid data entry, 244
variables, 88

dynamic text boxes, 23, 208–209

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 304

305

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

E
editable text boxes, 20–21
Effect panels, instances

adjustments, 11
_alpha property changes, 69

effects
sounds, 16
spotlight, mask layers, 4
tweens, fading, 69

electronic coloring book, create, 256–257
elements, array

adding, 168–169
assigning, 164–165

removing, 170–171
ellipses, Oval tool, 6
embedded fonts, static text boxes, 20–21
emulate panels, 258–261
Enable Simple Buttons, 38
Enable Simple Frame Actions, 38
equal sign (=) character, 65, 88
equality (==) operator, 128–129
equations, mathematical, 37
Eraser tool, 6
error messages

date validation, 247
Options menu, Output Window, 270
to user, 245

errors, mathematical evaluation, 216–217
escape sequence characters, strings, 91
event sounds, 16
Event synchronization, sounds, 16
Events, ActionScript, handlers, 28–29
Expert mode

Actions panel, 24–27
syntax checks, 275

exponentials, mathematical functions, 192
expression argument, 270
expressions

argument, 36
convert, 108–109
defined, 37, 228
jumps, 48
mathematical equations, 37
operators

AND (&&), 132–133
compound assignment, 130–131
equality (==), 128–129

greater than (>), 126
greater than or equal to (>=), 127
inequality (!=), 128–129
less than (<), 126
less than or equal to (<=), 127
logical, 132–133
NOT (!), 132–133
OR (||), 132–133
post-decrement (—), 124–125
post-increment (++), 122–123
pre-decrement (—), 124–125
pre-increment (++), 122–123

property, 37
_rotation = _rotation + x, 254
_rotation = _xmouse, 254
variable, 37
variable assignments, 88

external file, loadVariables action, 94
extract

arrays, 172–173
string

characters, 96–97
substring, 97–98

F
fades, tween effect, 69
faucet, Eraser tool, 6
fields, determining user use, 245
file extensions, 25, 39
file formats, movie supported types, 32
files

CD-ROM
1key.fla, 198
2Key.fla, 200
add.fla, 112
alpha.fla, 68
attachMC.fla, 148
birth.fla, 246
case.fla, 106
chick.fla, 252
clock.fla, 184
color.fla, 176, 256
colorsc.fla, 240
colortransform.fla, 178
compound.fla, 130
concat.fla, 100
createarray.fla, 162

43657-5 Index.F 1/31/02 12:28 PM Page 305

306

createarray1.fla, 164
date.fla, 182, 186
decrement.fla, 124
divide.fla, 118
duplicate.fla, 234
elseif.fla, 138
equality.fla, 128
eval.fla, 213
extract.fla, 96
for.fla, 142
fsc.fla, 54
function.fla, 220
getbounds.fla, 152
getproperties.fla, 210
height2.fla, 76
hittest.fla, 158
if.fla, 134
ifelse.fla, 136
increment.fla, 122
joinarray.fla, 174
jump.fla, 49
length.fla, 102, 166
LessThan.fla, 126
LessThanE.fla, 127
load.fla, 226, 228
localtoglobal.fla, 160
logical.fla, 132
maxmin.fla, 196
modulo.fla, 121
mouse.fla, 180
multiply.fla, 116
object.fla, 92, 144
panel.fla, 258
path.fla, 224
poparray.fla, 170
pusharray.fla, 168
quality.fla, 50, 86
random.fla, 195
rotate.fla, 72, 254
round.fla, 194
sales.txt, 94
scroll.fla, 218
search.fla, 104, 248
selections.fla, 208
setdate.fla, 188
settime.fla, 190
slicearray.fla, 172

smartclip.fla, 236
smartclip2.fla, 242
sound.fla, 202
sqr.fla, 193
substring.fla, 97
subtract.fla, 114
swap.fla, 154
telltarget.fla, 230
tonumber.fla, 214, 216
trig.fla, 192
trig_1.fla, 262
trig_2.fla, 263
trig_3.fla, 264
trig_4.fla, 265
url.fla, 52
valstring.fla, 244
variable.fla, 90
vertimer.fla, 212
visible.fla, 70
volppan.fla, 206
while.fla, 140
width.fla, 74
with.fla, 232
x.fla, 82
xscale.fla, 78
y.fla, 84
yscale.fla, 80

FlashPla.exe (PC), 54
FlashPlayer (Mac), 54
text, URL encoding, 94

Fill panel, 7
fills, bitmap, 7
find

array length, 166–167
modulo, 120–121
numeric values, 196–197
square root, 193

fixed width text boxes
create, 20–21
square handle indicator, 20

FLA extension, movies, 32, 39
Flash, HTML tag support, 23
Flash 5, smart clips, 259
Flash Debug Player, password use, 269
Flash Player

display list, 222–223
fscommand action arguments, 54

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 306

307

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

movies, printing, 61
system clock, date/time determination, 182–183
version return, 212

floating-point numbers, 119
fonts

antialias, 21
colors selections, 20–21
device, 20, 34
embedded, 20
scripts, sizing, 27
styles, 20

for loops, 142–143
forms

input text boxes, 22
user input, capturing, 89
variables, 88

four-frame Timeline, buttons, 12
Frame Actions panel, frame labels, 31
Frame panel

comments, adding, 43
tween adjustments, 15

frame-by-frame animations, 14
frames

ActionScript, assignment, 30–31
comments, adding, 42–43
downloads, checking, 62–63
Frame Actions panel, 31
interface element, 2
jumps, 48
keyframes, 14
labels, 31, 48
layer placement, 31
move backward, 38–39
move forward, 38–39
movie clips, selecting, 18
movie startup point, 46
playhead, positioning, 48–49
preloader animations, 62
rewind, 38–39
select, 19
stop action assignment, 44
tweens, start/end, 14

free-form lines, Pencil tool, 6
functions

argument association, 36
custom, 220–221
trigonometric, 192, 262–265

functions reference, 285
Functions statement, 24

G
generate, random numbers, 195
generic objects, create, 145
global variables, 88
gradients, fill, 7
graphics, 6, 11–12, 32, 60
graphs, Bandwidth Profiler display, 40–41
greater than (>) operator, 126
greater than or equal to (>=) operator, 127
group, selected objects, 6
guide layer, create, 4–5
guided layer, create, 4–5

H
Hand tool, 7
handlers

button, 252
draggable objects, 58–59
enterFrame, 262, 264, 266
event, selecting, 254
mouse, testing, 255
on (press), 28, 58–59
on (rollout), 58
on (dragOut), 28
on (dragOver), 28
on (keyPress, "key"), 28
on (release), 28
on (releaseOutside), 28
on (rollOver), 28
On Press, 258
on rollover, 53
onClipEvent (data), 29
onClipEvent (enterFrame), 29
onClipEvent (keyDown), 29
onClipEvent (keyUp), 29
onClipEvent (load), 29
onClipEvent (mouseDown), 29
onClipEvent (mouseMove), 29
onClipEvent (mouseUp), 29
onClipEvent (unload), 29
onClipEvent, 29

handles, objects, 73, 79
heights, movie clips, 75–76
hexadecimal color codes, 280–282

43657-5 Index.F 1/31/02 12:28 PM Page 307

308

hexadecimal numbers, color selection, 256
hexadecimal values, colors, 176–177
hide

layers, 4–5
mouse, 180
status bar,
toolbox, 7

hierarchy, movies, 222–223
HIGH quality, movie clips, 86–87
HTML documents, templates, 34
HTML tags, 33
HTML Template Info dialog box, 34
hues, instances, 10–11
hyphen (-) character

numeric values, subtracting, 114–115
subtraction operator, 88

I
identifiers

colors, 27
movie clip attachment, 148

images
antialiasing, 50–51
background, 9
bitmap, printing movie as, 60
frame-by-frame animations, 14
static, 8
tweened frame animations, 14

import
files, sounds, 16–17
images, buttons, 13

increment (++) operator
mathematical data type, 88
unary type, 110
value setting, 122–123

indents, static text boxes, 21
index, array element number, 162–163
index position

character string extraction, 96
substring extraction, 98

inequality (!=) operator, 128–129
infinity, mathematical error evaluation, 216–217
Ink Bottle tool, stroke line color/style, 6
input text boxes

asterisk character password display, 22
backgrounds, 22
borders, 22

create, 22
forms, 22
HTML tag format, 22
multiline, 22
password, 22
single line, 22
text selections, 208–209
user input, 22
variable associations, 22
Word Wrap box, 22

insert, layers, 5
Insert Target Path dialog box, 230
Instance panel, movie clips, naming/renaming, 19, 66–67
instances

behaviors, 11
movie clips

naming, 19
targeting, 67

names, 66–67
symbols, 9–11

registration point, 73
instantiated objects, 144
integer numbers, 119
integers, numbers, rounding, 194
interactive graphics, ActionScript support, 8–9
interface, 2–3, 239–243
Internet Explorer, object tag, 33
Item Preview window, symbol preview, 9

J
JavaScript, messages, passing with fscommand action, 55
JPEG graphics, quality adjustments, 32
jumps, 48

K
key code vales, 276–277
keyboards, Key object, 198–201
keyframes, 13–14, 30
keys, movie startup point, 46
keywords

case sensitive, 36
colors, 27
list, 279
this, 56, 225

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 308

309

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

L
labels, frames, 31, 48
Lasso tool, object selection, 6–7
Layer Properties dialog box, 5
layers, 2, 4–5, 19, 30–31
Leap Year

date validation, 246–247
modulo (%) operator determination, 120
occurrences, 247

Learning Interactions, Knowledge Tracks, 243
lengths, array, 166–167
less than (<) operator, 126
less than or equal to (<=) operator, 127
lettercase, input value, 244
levels

defined, 226
depth, 154–155
movie clips, quality, 86–87
movies, specification, 228

Library
bitmap fill, 7
instances, create, 10–11
movie clips, sharing, 8
sounds, imported, 16
store panels, 259
symbols, automatic storage, 8–9
versus common library, 237

Line tool, 6
line weight, stroke, 7
lines, 6–7
linkages, movie clips, attachment, 148–149
links, Web pages, opening, 53
List Objects, test environment, 272
List Variables, test environment, 273
literal values, quote (“) character, 36–37
load

movie clips, 156–157, 226–229
movies, 226–229
variables, 94–95

local variables, 88
lock, layers, 4–5
Lock/Unlock All Layers column, 5
Lock/Unlock icon, 5
logarithms, mathematical functions, 192
logical operators, 132–133

loops
compound assignment operators, 130–131
conditional, 140–141
counters, 122
for action, 142–143
Go To action, 49
movie playback, 34
sounds, 16–17

LOW quality, movie clips, 86–87

M
Macintosh

Controller Toolbar access, 39
FlashPlayer file, 54

margins, static text boxes, 21
mask layer, 4–5
masked layer, create, 4–5
mathematical calculations

convert a string to a number, 214–215
error evaluation, 216–217
numeric values, 196–197
raise a power, 193
round numbers, 194
square root, 193

mathematical equations, expressions, 37
mathematical functions, 192
mathematical operators, data types, 88
MEDIUM quality, movie clips, 86–87
menus, 53
messages, 55, 62
methods

acos, 192
asin, 192
atan, 192
attachMovie, 148–151, 234
attachSound, 202
concat, 168
cos, 192, 262
dot syntax, 224–225
duplicateMovie, 234
getAscii, 198, 200
getBeginIndex, 208
getbounds, 152–153
getBytesLoaded, 156–157
getBytesTotal, 156–157
getCode, 198
getDay, 184

43657-5 Index.F 1/31/02 12:28 PM Page 309

310

getEndIndex, 208
getFullYear, 182–183
getHours, 184
getMilliseconds, 184
getMinutes, 184
getMonth, 182–183
getPan, 206
getRGB, 176–177
getSeconds, 184
getTimezoneOffset, 185
getUTCDate, 182–183
getUTCDay, 184
getUTCFullYear, 182–183
getUTCHours, 184
getUTCMilliseconds, 184
getUTCminutes, 184
getUTCMonth, 182–183
getUTCSeconds, 184
getYear, 183
globalToLocal, 160–161
hitTest, 158–159
join, 174
Key, 260
Key.isDown, 200
Key.isToggled, 200
localToGlobal, 160–161
log, 192
Math.abs, 196
Math.cell, 194
Math.floor, 194
Math.max, 196–197
Math.min*mf, 196–197
Math.pow, 193
Math.random, 195
Math.round, 194
Math.sqrt, 193
Mouse.hide, 180
Mouse.show, 180
MovieClip object, 146–147
new Color, 256
play, 46
pop, 170
push, 168
reverse, 172
Selection.getBeginIndex, 208
Selection.getCaretIndex, 208
Selection.getEndIndex, 208

Selection.getFocus, 208, 246
Selection.setSelcection, 246, 250
setDate, 188–189
setFullYear, 188
setHours, 190
setMilliseconds, 190
setMinutes, 190
setMonth, 188
setRGB, 176
setSeconds, 190
setTransform, 178
setUTCDate, 188

setUTCFullYear,, 188
setUTCHours, 190
setUTCMilliseconds, 190
setUTCMinutes, 190
setUTCMonth, 188
setUTCSeconds, 190
setVolume, 206
setYear, 189
shift, 170–171
sin, 192, 262
slash syntax, 224–225
slice, 99, 172–173
splice, 170–171
start, 204
string.charAt, 96
string.concat, 100
string.fromCharCode, 97
string.indexOf, 104, 248, 250
string.lastIndexOf, 105, 251
String length, 244
string.substring, 97
string.toLowerCase, 106, 249–250
string.toUpperCase, 106, 250
substring, 244
swapDepths, 154–155
tangent, 192
toString, 174–175
unshift, 168

minus (-) operator, numeric values, subtracting, 114–115
mixer, colors, creating, 7
modems, speed selection, 40
modes

Actions panel, 24–27
symbol-editing, 9, 19

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 310

311

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

modifiers
interface element, 2
tools, 6–7

modulo (%) operator
Leap Year, 246–247
mathematical data type, 88
remainder, finding, 120–121

months, current, retrieving, 183
motion guide layers, motion tween, 4
motion tween, create, 4, 14
mouse

coordinates, retrieve, 161
hide/display, 180
objects

change color, 257
roll over actions, 254–255

pointers, 180–181
x and y coordinates, 180

mouse handlers, testing, 255
move

movie clips
across the Stage, 82–83
up/down, 84–85

objects
diagonally, 264
trigonometric functions, 262

script line, 27
selected objects, 6
Stage, 7
statements, 24–25

movie clips
ActionScript, 29
animation conversion, 19
antialiasing, 86–87
associations, ActionScript, 6
attach, 148–151
attachment identifiers, 148
boundary, 152–153
buttons, 12
change height/width, 266
child/parent relationship, 234
colors, changing, 176–177
convert

Boolean, 108–109
buttons, 252–253

coordinates, retrieving, 160–161
create, 18–19

data type, 88
Debugger, 268
depth level, 154–155
duplicate, 234–235
exchange, 240
frames

pasting, 19
selecting, 18

handlers, 252, 283
heights

adjusting, 76–77
scaling, 80–81

instance behavior type, 11
instances

naming, 19
naming/renaming, 66–67
targeting, 67

intermediary, 240
load, 226–229
load check, 156–157
mouse, custom cursor, 180–181
move, across the Stage, 82–83
names, attached, 150–151
playback, symbol advantages, 8
preloader, 156
properties, 64–65
properties, retrieving, 210–211
quality levels, 86–87
reference data types, 92
reusable animations, 8
rotate, 72–73
scripts, create designs, 263, 265, 267
shared library, 8
smart clip, 18
statements, sending, 230–231
stop action, 44
stop script, 45
targeting, 46
transparency, adjustments, 68–69
unload, 226–229
variables, assignment, 92–93
visible/invisible, 70–71
widths

adjusting, 74–75
scaling, 78–79

Movie Explorer, display list, 222–223
movie projectors, Flash Player, 54–55

43657-5 Index.F 1/31/02 12:28 PM Page 311

312

MovieClip object, methods, 146–147
movies

antialiasing, 50–51
boundary, 33
comments, adding, 42–43
compression, 34
crop, 33
Debugger

activation, 32
troubleshooting, 269

device fonts, 34
display list, 222–223
display quality, 41
display variables, 273
elapsed time, 212
FLA extension, 32, 39
Flash Player, 54–55
fonts, embedded, 20
height adjustments, 65
hierarchy, 222–223
HTML document templates, 34
ignore trace actions, 32
JPEG graphics quality adjustments, 32
load, 226–229
load order, 32
location, adjustments, 65
loop playback, 34
loops, continuous playback, 38
modems, speed selection, 40
names, 32
one-frame, 252
Output Window, syntax errors, 270–271
pause, 34
play action, 46–47
playback, 34
playhead, positioning, 48–49
preloader animations, 62
preloaders, 156
print, 60–61
publish, 32–35
rewind, 39
scenes, testing current, 38–39
scripts, debug, 274–275
shortcut menu, 34
size report, 32
smart clips, custom interface, 240–243
sounds, 33–34, 38–39

stop action, 44
stop playback, 39
streaming, 41
supported file formats, 32
SWF extension, 32, 39
targeting, 46
test environment, 39–41
testing, 38–39, 245, 271
transparency, adjustments, 68–69
unload, 226–229
width adjustment, 33, 65
zoom in/out, 41

multiline comments, 42–43
multiline dynamic text box, 23
multiline input text box, 22
multiplication (*) operator, 88, 116–117
multiply, numeric values, 116–117

N
names

instance, 66–67
layers, 4–5
movie, 32
movie clips

attached, 150–151
instance, 19

scenes, 3
symbols, 9
tweens, 14
variables, conventions, 88–89

Netscape Navigator, embed tag, 33
non-numeric (NaN) values, 196
normal layer, create, 4–5
Normal mode, 24–27, 48–49
NOT (!) operator, 132–133
Num Lock key, Status bar display, 41
NUM, appended actions, 280
numbers

array element, 162–163
base ten, 215
base two, 215
conversions, 108–109
data type, 88
floating-point, 119
integer, 119
random, generating, 195

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 312

313

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

round, 194
strings, convert, 214–215

numeric values
add, 112–113
divide, 118–119
find, 196–197
multiply, 116–117
NaN (non-numeric), 196
subtract, 114–115

O
Object Actions panel, handlers, 28–29
objects

activate layer, 4
collision detection, 158–159
Color, 176–177, 256–257
convert, 108–109
create, 56–59
data type, 88
Date, 182–183, 186–187
described, 144
draggable

creating, 56–59
handlers, 58–59
scroll bars, 57
sound volume/pan, 57

generic, 145
group, 6
handles

rotation, 73
scaling, 79

instantiated, 144
Key, 198–201
layers, separate, 5
Math, 192, 262
Mouse, 180–161, 257
move

back and forth, 263–264
clockwise, 262
counterclockwise, 262
diagonally, 264

MovieClip, 46
predefined, 144–147
properties, 145
reference data types, 92
registration point, 73, 254
rotation, speed, 254

select, 6–7, 9
Selection, 208–209
set rotation value, 254
Sound, 202–205
symbol conversion, 9
tweens

naming, 14
scaling, 79

variables, assignment, 92–93
objects reference, 288–293
Objects statement, 24
obtain, string length, 102–103
open, Web page, 52–53
operands, 110
operators

addition (+), 88, 100
AND (&&), 132–133
array access [], 162–163
assignment (=), 88
binary, 110
compound assignment, 130–131
conditional (?), 110
decrement (—), 88, 124–125
division (/), 88, 118–119
equal sign (=) character, 88
equality (==), 128–129
greater than (>), 126
greater than or equal to (>=), 127
if statement, 135
increment (++), 88, 122–123
inequality (!=), 128–129
less than (<), 126
less than or equal to (<=), 127
logical, 132–133
mathematical, 88
minus (-), subtracting numeric values, 114–115
modulo (%), 88, 246–247
multiplication (*), 88, 116–117
new, 144
NOT (!), 132–133
OR (||), 132–133
plus (+), adding numeric values, 112–113
post-decrement (—), 124–125
post-increment (++), 122–123
precedence order, 110–111, 117
pre-decrement (—), 124–125
pre-increment (++), 122–123

43657-5 Index.F 1/31/02 12:28 PM Page 313

314

subtraction (-), 88
ternary, 110
unary, 110

operators reference, 284–285
Operators statement, 24
Options menu, Output Window, 270–271
OR (||) operator, 132–133
order

layers, changing, 4–5
scenes, changing, 3

outline view, layers, 5
outlines, graphic stroke lines, 6–7
Outlines icon, 5
Output Window, 270–273
Oval tool, 6
Over state, buttons, 12–13

P
padlock icon, locked layer indicator, 4–5
panels

Actions, 24–27
change size, 261
create, 258–261
described, 258
emulate, 258–261
Frame Actions, 31
hiding, 260
keys versus button use, 260
Parameters, 24–25
Scene, opening, 3
Text Options, 20–23

pans, sound volume, 206–207
parameter values, add/remove from smart clips, 236–239
Parameters panel, statements, arguments, 24–25
parameters, 51, 178, 228
parent movie clips, child placement, 234
parentheses (and) characters, arguments, 36
passwords, 22
paste, frames into movie clip, 19
path names, importance of accuracy, 259
pause, movies, 34
Pen tool, 6
pencil icon, active layer indicator, 4
Pencil tool, 6
percent sign (%) character, modulo operator, 88, 120–121
period (.) character, floating point number decimal
point, 119

play, movie, 46–47
playback

movies, 34
sounds, 16, 204–205

playhead, 2, 48–49
plus (+) operator, numeric values, adding, 112–113
plus sign (+) character

addition operator, 88, 100
numeric values, adding, 112–113

PNG graphics, movie support, 32
pointers, mouse, 180–181
post-decrement (—) operator, 124–125
post-increment (++) operator, 122–123
power, raise, 193
precedence, operators, 110–111, 117
predefined identifiers, colors, 27
pre-increment (++) operator, 122–123
preloader animations, 62
preloader movies, 156
primitive data types, 92
print, 27, 60–61
projectors, Flash Player, 54–55
properties

color transform, 179
colors, 27
continuous update statement, 65
Debugger, changing, 268–269
equal sign (=) value assignment, 65
Key object, 201
movie clip, 64–65

retrieving, 210–211
special effects, 254–255

objects, 145
retrieve, 210–211
symbols, 8–11
variables, 37

properties reference, 287
Properties statement, 24
Properties tab, Debugger, movie clip, 268
Publish Settings dialog box, 16, 32–35, 50
publish, movies, 32–35

Q
quality, movie clips, levels, 86–87
queries, system clock, 183
question mark (?) character, conditional operator, 110
QuickTime animations, movie support, 32

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 314

315

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

quote (“) characters, literal values, 36–37
quoted strings, colors, 27

R
random numbers, generate, 195
read-only values, 268
Rectangle tool, 6
reference data types, 92
registration point

rotation angle change, 254
symbols, 73

relative target path, 224–225
remainder, modulo operator (%), 120–121
remove, scenes, 3
rename, scenes, 3
reports, movie size, 32
retrieve

coordinates, 160–161
mouse coordinates, 161
movies, elapsed time, 212
properties, 210–211

reverse, arrays, 172–173
rollover menu, create with getURL action, 53
rotation

effects, create, 254–255
movie clips, 72–73
registration point, 73

round handle, 20
round, numbers, 194
rounded corners, Rectangle tool, 6
rules, variables, naming conventions, 89

S
Scale, movie clips, 78–81
Scene panel, 3
scenes, 3, 38–39, 48
scope, variables, 88
scripts

age, calculation base on date entered, 187
array access [] operator, 163
arrays, removing elements, 171
ASCII code retrieval, 97
buttons, rotate continuously, 255
CGI, 228–229
colored syntax use, 274
concatenate strings, 101
continuous action, 253

continuous scroll button, 219
debug, 274–275
develop in parts, 274
document with code, 274
draggable objects, 59
error message, 217
fonts, sizing, 27
mouse

custom pointer, 181
retrieving coordinates, 161

movie clips
create design, 263, 265
depth swap, 155
draggable duplicate, 235
duplicating, 235
height adjustment, 77
instance scaling, 81
move up/down with key press, 85
moving across the Stage, 83
placing attached movie clip on Stage, 153
placing multiple instances on Stage, 151
property adjustments, 232
replacing, 227
restarting, 47
stopping, 45
toggle size, 211
width adjustment, 75

movies, length checking, 103
music, toggle on/off, 203
naming conventions, 274
numbers, raise a power, 193
numeric values

comparing two values, 197
discount subtraction, 115
subtotal calculation, 113

objects
change color, 257
collision detection, 159

post-decrement (—) operator, 125
post-increment operator, 123
preloader, 63
printing, 27
smiley face, moving, 199
sounds

increasing volume, 205
volume panning, 207

string search, 27

43657-5 Index.F 1/31/02 12:28 PM Page 315

316

strings
last substring occurrence search, 105
lowercase to uppercase conversion, 106

syntax check, 274
syntax errors, checking, 27
text, selections, 209
use meaningful names for parts, 274
visible/invisible movie clips, 71

scroll bars, draggable objects, 57
scrollable text box, create, 218–219
search

strings, 27, 104–105
text box, 248–251

select
enabled button, 13
frames, 19
instances, 11
keyframes, 14
layers, 19
Stage objects, 6–7, 9
statements, 24

semi-colon (;) character, statements, 36–37
set

date, 186–187
date values, 188–189
movie clip quality, 86–87
movie quality, 50–51
volume and panning, 206–207

shape, tweened animation type, 14
Shift key

draw, graphics, 6
frame block selection, 19

shortcut menu, movies, 34
Show Deprecated Syntax, 27
Show Layers as Outlines column, 5
Show Library icon, 9, 13
Show/Hide All Layers column, 5
Show/Hide icon, 5
single line dynamic text box, 23
single line input text box, 22
single line text boxes, 20–21
single-line comments, 42–43
size report, movies, 32
slash (/) asterisk (*) characters, comments, 42
slash (/) character

division operator, 88
numeric values, dividing, 118–119

slash syntax, target path, 224–225
smart clips

create, 236–239
custom interface, 239–243
described, 18
Learning Interactions Library, 243
panels, 259
parameters, defined, 243

Smart Clips icon, 237
smile face, moving, 199
smooth curves, Pen tool, 6
smooth lines, Pencil tool, 6
Sound Panel, effects, 16
Sound Properties dialog box, 16
Sound Setting dialog box, 33–34
sounds

add, 16–17
compression, 16, 34
create, 202–203
draggable objects, 57
event, 16
Library, imported sound storage, 16
loops, 16–17
movies, settings, 33–34
mute, 38–39
panning, 206–207
playback, 16, 204–205
Sound Panel, effects, 16
stream, 16
synchronization types, 16
volume, setting, 206–207

spaces, static text boxes, 21
special effects, trigonometric functions to create, 266–267
splitter bar, Toolbox list, sizing, 26
spotlight effects, mask layers, 4
square handle, 20
square root, 193
squares, Rectangle tool, 6
Stage

coloring book, color selection, 256
Debugger, show changes, 268
Hand tool, moving the Stage, 7
instance of a symbol, 11
interface element, 2
layers, making active, 4

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 316

317

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

movie clips
boundary, 152–153
moving across, 82–83
placing, 150–151

movies
playing, 46
stopping, 44

objects
moving, 262–263
rotation value, 254
selecting, 6–7
symbol conversion, 9

Start synchronization, sounds, 16
statements

ActionScript, 24–27
arguments, 24
color selections, 27
conditions, testing, 134–135
continuous property update, 65
delete, 24–25
if, 250
instanceName.property, 65
modulo (%) operator execution, 120
movie clips, sending, 230–231
nested, 138–139
semi-colon (;) character, 36–37

states, buttons, 12–13
static images, ActionScript non-support, 8
static text boxes, create, 20–21
Status bar, hide/display, 41
Stop synchronization, sounds, 16
stop, movie, 44–45
straight lines, 6
stream sounds, 16
Stream synchronization, sounds, 16
streaming bar, test environment, 41–42
string functions, validate data, 244–245
strings

arrays, converting, 174–175
case, changing, 106–107
characters, extracting, 96–97
concatenate, 100–101
conversions, 108–109, 174–175, 214–215
convert to number, 214–215
data type, 88
escape sequence characters, 91
length, obtaining, 102–103

modulo (%) operator, 120
quoted, color, 27
search, 104–105
search specifications, 244
substring extraction, 97–99
validate, 244–245

stroke, adjustments, 7
stroke lines, graphic outlines, 6–7
Subselect tool, line adjustments, 6
substring

check value, 244
extracting, 97–98

subtract, numeric values, 114–115
subtraction (-) operator, 88, 110
swap, depths, 154–155
SWF extension, movies, 32, 39
SWF file, custom interface movie, 242
Symbol Linkage Properties dialog box, 148–149, 202
Symbol Properties dialog box, 8–9, 12–13, 240–241, 252
symbol-editing mode, movie clips, pasting frames, 19
symbols, 8–11, 73, 252–253
syntax

ActionScript, 36–37
dot, 224–225
methods, 246
slash, 224–225
variables, 88–89

syntax check, scripts, 274
syntax errors, 27, , 270–271
system clock, date/time determination, 182–183

T
target path, 224–225
templates, HTML documents, 34
ternary operators, operands, 110
test environment

access methods, 39
Bandwidth Profiler, 40–41
color changes, 257
List Objects, 272
List Variables, 273
modems, speed selection, 40
mouse handlers, 255
movies, 272

script to validate user entries, 245
testing, 40–41

43657-5 Index.F 1/31/02 12:28 PM Page 317

318

scripts, 274–275
Status bar, hide/display, 41
streaming bar, 41–42
validate, dates, 246–247

text
assigning to variable, 248
dynamic, variables, 88
layout, 21
make selectable, 21
selections, 208–209

text boxes
associate variable, 248
dates, displaying, 191
dynamic, 23
input, 22
scrollable, 218–219
search, 248–251
search from bottom, 251
static, 20–21
text selections, 208–209

text editors, ActionScript, writing, 25
text files, URL encode, 94
text formats, Text Option panel, 20
Text Options panel, 20, 22–23
Text tool, 88–89
time zones, offsets, 185
Timeline

buttons, 8–9
comments, adding, 42–43
four-frame buttons, 12
frames, preloader animations, 62
functions, calling, 220
interface element, 2
movie clips, selecting, 18
play action, 46
stop action, 44
target path, 224–225
target requirements, 231
tweens, 15

times
movies, elapsed time, 212
time zones, offsets, 185
values, setting, 190–191

tint, instances, 10–11
Toolbox, 2, 7
Toolbox list, 24, 26–27

tools, 6–7
trace actions, ignore, 32
trace action, evaluate expression, 270
transform, color values, 178–179
transparency, movies/movie clips, 68–69
trigger actions, 252
trigonometric functions, 192, 262–265
trigonometric special effects, create, 266–267
troubleshoot

Debugger, 268–269
Output Window, 270–271

tweened animations, 14
tweened frames, 14
tweens

fading effect, 69
motion, 4
objects, scaling, 79
start/end frames, 14

U
unary operators, operands, 110
unhide

layers, 4–5
toolbox, 7

Universal Coordinated Time, 182–191
unload, movie clips, 226–229
unlock, layers, 4–5
Up state, buttons, 12–13
URL encode, text files, 94
URL encoding characters, 278–279
use, Actions panel, 24–27
user input, 22, 89
users, 56–59, 244

V
validate

dates, 246–247
strings, 244–245

values
arrays, comma (,) character separator, 92
arrays, elements, 164–165
ASCII, 198–200
Boolean variables, 90
Boolean, false, 56
colors, hexadecimal, 176–177
colors, transform, 178–179

INDEX

43657-5 Index.F 1/31/02 12:28 PM Page 318

319

FLASH ACTIONSCRIPT:
Your visual blueprint for

creating Flash-enhanced Web sites

date, 184–185, 188–189
dates, updating, 189
Debugger, changing, 268
decrement (—) operator, 124–125
equal sign (=) character, 65
expression, 36
false, 90
increment (++) operator, 122–123
indexOf, 248
literal, 36
non-numeric (NaN), 196
numeric

add, 112–113
divide, 118–119
multiply, 116–117
subtract, 114–115

times, setting, 190–191
true, 90
variable assignment, 88, 90–91

Variables tab, Debugger, 268–269
variables

$QU, 50
add/remove from Watch list, 269
arguments, sending application to specified URL, 52
assigning text, 248
associate text box, 248
associate with dynamic text box, 245
color, 256
dynamic text box associations, 23
dynamic text display, 88–89
equal sign (+=) operator, 88
expressions, 37
forms, 88
global scope, 88
input text box associations, 22
inputpowV, 193
inputV, 193
load, 94–95
local scope, 88
movie clips, assignment, 92–93
names, conventions, 88–89
objects, assignment, 92–93
onOff, 203
result, 193
scope, 88
startSearch, 104

StartV, 248
syntax, 88–89
user input forms, 89
values, assigning, 88–91

vector graphics, movies, printing, 60
versions, Flash Player, return, 212
vertical splitter bar, Toolbox list size, 26
view, 3, 5, 222–223
virtual key codes, 198
visibility, movie clips, 70–71

W
Web browsers, movies, testing, 39
Web pages, 52–53
Web sites, Macromedia, 269
widths, movie clips, 74–75
Windows PC, 39, 54
Word Wrap box, 22–23

X
x-coordinates, 160–161, 180

Y
y-coordinates, 160–161, 180
year, current, retrieving, 183

Z
zero x-coordinate, 160
zero y-coordinate, 160
Zoom tool, 7
zoom, Stage, 7

43657-5 Index.F 1/31/02 12:28 PM Page 319

The visual alternative to learning
complex computer topics

Over 10 million Visual books in print!

For experienced computer

users, developers,

network professionals

who learn best visually.

Read Less – Learn More™

Title ISBN Price

Active Server™ Pages 3.0: Your visual blueprint for developing interactive Web sites 0-7645-3472-6 $26.99

HTML: Your visual blueprint for designing effective Web pages 0-7645-3471-8 $26.99

Java™: Your visual blueprint for building portable Java programs 0-7645-3543-9 $26.99

JavaScript™: Your visual blueprint for building dynamic Web pages 0-7645-4730-5 $26.99

JavaServer™ Pages: Your visual blueprint for designing dynamic content with JSP 0-7645-3542-0 $26.99

Linux®: Your visual blueprint to the Linux platform 0-7645-3481-5 $26.99

Perl: Your visual blueprint for building Perl scripts 0-7645-3478-5 $26.99

PHP: Your visual blueprint for creating open source, server-side content 0-7645-3561-7 $26.99

Unix®: Your visual blueprint to the universe of Unix 0-7645-3480-7 $26.99

XML: Your visual blueprint for building expert Web pages 0-7645-3477-7 $26.99

“Apply It” and “Extra” provide ready-to-run code and useful tips.

New Series!

53657-5 BOB.F 1/31/02 12:28 PM Page 320

The Complete Visual Reference

The Visual™

series is available

wherever books are

sold, or call

1-800-762-2974.
Outside the US, call

317-572-3993

Title ISBN Price
Master Active Directory™ VISUALLY™ 0-7645-3425-4 $39.99
Master Microsoft® Access 2000 VISUALLY™ 0-7645-6048-4 $39.99
Master Microsoft® Office 2000 VISUALLY™ 0-7645-6050-6 $39.99
Master Microsoft® Word 2000 VISUALLY™ 0-7645-6046-8 $39.99
Master Office 97 VISUALLY™ 0-7645-6036-0 $39.99
Master Photoshop® 5.5 VISUALLY™ 0-7645-6045-X $39.99
Master Red Hat® Linux® VISUALLY™ 0-7645-3436-X $39.99
Master VISUALLY™ Dreamweaver® 4 and Flash™ 5 0-7645-0855-5 $39.99
Master VISUALLY™ FrontPage® 2002 0-7645-3580-3 $39.99
Master VISUALLY™ HTML 4 & XHTML™ 1 0-7645-3454-8 $39.99
Master VISUALLY™ Microsoft® Windows® Me Millennium Edition 0-7645-3496-3 $39.99
Master VISUALLY™ Office XP 0-7645-3599-4 $39.99
Master VISUALLY™ Photoshop® 6 0-7645-3541-2 $39.99
Master VISUALLY™ Windows® 2000 Server 0-7645-3426-2 $39.99
Master Windows® 95 VISUALLY™ 0-7645-6024-7 $39.99
Master Windows® 98 VISUALLY™ 0-7645-6034-4 $39.99
Master Windows® 2000 Professional VISUALLY™ 0-7645-3421-1 $39.99

For visual learners

who want an all-in-one

reference/tutorial that

delivers more in-depth

information about a

technology topic.

“Master It” tips provide additional topic coverage.

with these two-color Visual™ guides

53657-5 BOB.F 1/31/02 12:28 PM Page 321

®

D U M M I E S P R E S S

Qty ISBN Title Price Total

Subtotal ______________________

CA residents add
applicable sales tax ___________________

IN, MA and MD
residents add
5% sales tax ______________________

IL residents add
6.25% sales tax __________________________

RI residents add
7% sales tax __________________________

TX residents add
8.25% sales tax __________________________

Shipping__________________________

Total ______________________

O R D E R F O R M

Payment: �� Check to Hungry Minds (US Funds Only)
�� Visa �� MasterCard �� American Express

Card # ____________________________ Exp. ____________ Signature_____________________________________

TRADE & INDIVIDUAL ORDERS
Phone: (800) 762-2974
or (317) 572-3993
(8 a.m.–6 p.m., CST, weekdays)
FAX : (800) 550-2747
or (317) 572-4002

EDUCATIONAL ORDERS & DISCOUNTS
Phone: (800) 434-2086
(8:30 a.m.–5:00 p.m., CST, weekdays)
FAX : (317) 572-4005

Shipping & Handling Charges

Each
Description First book add’l. book Total

Domestic Normal $4.50 $1.50 $
Two Day Air $8.50 $2.50 $
Overnight $18.00 $3.00 $

International Surface $8.00 $8.00 $
Airmail $16.00 $16.00 $
DHL Air $17.00 $17.00 $

Ship to:

Name__

Address __

Company __

City/State/Zip ___

Daytime Phone__

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

CORPORATE ORDERS FOR VISUALTM SERIES
Phone: (800) 469-6616
(8 a.m.–5 p.m., EST, weekdays)
FAX : (905) 890-9434

53657-5 BOB.F 1/31/02 12:28 PM Page 322

	Flash™ ActionScript
	Front of Book
	General Info
	about maranGraphics
	Credits & Acknowledgments
	About the Author & Author's Acknowledgements
	Dedication
	Table of Contents
	How to Use This Book

	Chapter 1: Getting Familiar with Flash
	INTRODUCTION TO FLASH AND ACTIONSCRIPT
	FLASH INTERFACE

	CREATE A SCENE
	SCENE PANEL

	CREATE LAYERS
	CREATE GRAPHICS
	CREATE A SYMBOL
	CREATE AN INSTANCE
	CREATE A BUTTON
	CREATE ANIMATION
	ADD SOUND
	CREATE A MOVIE CLIP
	CREATE STATIC TEXT BOXES
	CREATE INPUT TEXT BOXES
	CREATE DYNAMIC TEXT BOXES
	USING THE ACTIONS PANEL
	ASSIGN ACTIONSCRIPT TO A BUTTON
	ASSIGN ACTIONSCRIPT TO A MOVIE CLIP
	ASSIGN ACTIONSCRIPT TO A FRAME
	PUBLISH MOVIES

	Chapter 2: Programming with Actionscript
	INTRODUCTION TO ACTIONSCRIPT SYNTAX
	TEST A MOVIE
	ENTER THE TEST ENVIRONMENT
	ADD COMMENTS
	STOP A MOVIE
	PLAY A MOVIE
	JUMP TO A FRAME OR SCENE
	SET MOVIE QUALITY
	OPEN A WEB PAGE
	COMMUNICATE WITH THE FLASH PLAYER
	CREATE OBJECTS USERS CAN DRAG
	PRINT A MOVIE
	CHECK FRAME LOAD

	Chapter 3: Setting Movie Clip Properties
	INTRODUCTION TO MOVIE CLIP PROPERTIES
	NAME AN INSTANCE
	NAME AN INSTANCE
	RENAME AN INSTANCE

	ADJUST TRANSPARENCY
	MAKE MOVIE CLIPS INVISIBLE
	ROTATE MOVIE CLIPS
	CHANGE THE WIDTH OF MOVIE CLIPS
	CHANGE THE HEIGHT OF MOVIE CLIPS
	SCALE THE WIDTH OF MOVIE CLIPS
	SCALE THE HEIGHT OF MOVIE CLIPS
	MOVE MOVIE CLIPS ACROSS THE STAGE
	MOVE MOVIE CLIPS UP AND DOWN
	SET MOVIE CLIP QUALITY

	Chapter 4: Working with Variables and Strings
	INTRODUCTION TO VARIABLES AND DATA TYPES
	DATA TYPES
	SCOPE OF VARIABLES
	NAME VARIABLES
	DYNAMICALLY DISPLAY TEXT
	CAPTURE USER INPUT

	ASSIGN A VALUE TO A VARIABLE
	ASSIGN AN OBJECT OR MOVIE CLIP TO A VARIABLE
	LOAD VARIABLES
	EXTRACT A CHARACTER FROM A STRING
	EXTRACT A SUBSTRING FROM A STRING
	CONCATENATE STRINGS
	OBTAIN THE LENGTH OF A STRING
	SEARCH A STRING
	CHANGE THE CASE OF A STRING
	CONVERT STRINGS, NUMBERS, AND BOOLEANS
	CONVERT TO A STRING
	CONVERT TO A BOOLEAN
	CONVERT TO A NUMBER

	Chapter 5: Working with Operators
	UNDERSTAND PRECEDENCE
	TYPES OF OPERATORS
	OPERATOR PRECEDENCE AND ASSOCIATIVITY

	ADD NUMERIC VALUES
	SUBTRACT NUMERIC VALUES
	MULTIPLY NUMERIC VALUES
	DIVIDE NUMERIC VALUES
	FIND THE MODULO
	SET VALUES WITH THE INCREMENT OPERATOR
	SET VALUES WITH THE DECREMENT OPERATOR
	USING LESS THAN OR GREATER THAN
	USING LESS THAN OR EQUAL TO OR GREATER THAN OR EQUAL TO
	USING EQUALITY AND INEQUALITY OPERATORS
	USING COMPOUND ASSIGNMENT OPERATORS
	USING LOGICAL OPERATORS

	Chapter 6: Changing the Script Flow
	USING IF TO TEST A CONDITION
	USING IF WITH ELSE
	USING ELSE IF
	CREATE A CONDITIONAL LOOP
	USING FOR LOOPS

	Chapter 7: Using the Movie Clip and Array Objects
	INTRODUCTION TO OBJECTS
	USING THE MOVIECLIP OBJECT
	ATTACH A MOVIE CLIP
	GET BOUNDS
	SWAP DEPTHS
	CHECK MOVIECLIP LOAD
	DETECT COLLISION
	GET THE X- AND Y-COORDINATES
	CREATE AN ARRAY
	FIND THE LENGTH OF AN ARRAY
	ADD ELEMENTS TO AN ARRAY
	REMOVE ELEMENTS FROM AN ARRAY
	EXTRACT OR REVERSE AN ARRAY
	CONVERT AN ARRAY TO A STRING

	Chapter 8: Working with Objects
	CHANGE COLORS
	WORK WITH COLOR TRANSFORM VALUES
	USING THE MOUSE OBJECTS AND PROPERTIES
	USING THE DATE OBJECT
	GET DATE AND TIME VALUES
	SET THE DATE
	SET DATE VALUES
	SET TIME VALUES
	USING MATHEMATICAL FUNCTIONS
	RAISE A POWER OR FIND A SQUARE ROOT
	WORK WITH POWERS

	ROUND NUMBERS
	GENERATE RANDOM NUMBERS
	FIND NUMERIC VALUES
	USING THE KEY OBJECT
	USING THE SOUND OBJECT
	SET VOLUME AND PANNING
	USING THE SELECTION OBJECT

	Chapter 9: Demystifying Functions
	GET PROPERTIES
	USING GET TIMER AND GET VERSION
	USING EVAL
	CONVERT A STRING TO A NUMBER
	EVALUATE FOR MATHEMATICAL ERRORS
	CREATE A SCROLLABLE TEXT BOX
	CREATE A CUSTOM FUNCTION

	Chapter 10: Working with Multiple Timelines
	VIEW THE HIERARCHY OF MULTIPLE MOVIES
	ASSIGN TARGET PATHS
	LOAD AND UNLOAD MOVIES AND MOVIE CLIPS
	USING TELL TARGET
	USING THE WITH ACTION
	DUPLICATE MOVIE CLIPS

	Chapter 11: Creating Smart Clips
	CREATE SMART CLIPS
	CREATE A SMART CLIP CUSTOM INTERFACE

	Chapter 12: Using Creative Techniques
	VALIDATE A STRING
	VALIDATE A DATE
	SEARCH A TEXT BOX
	CONVERT SYMBOLS
	CREATE ROTATION EFFECTS
	CREATE A COLORING BOOK
	EMULATE PANELS
	DEMYSTIFY TRIGONOMETRIC FUNCTIONS
	MOVE AN OBJECT CLOCKWISE
	MOVE AN OBJECT BACK AND FORTH
	MOVE AN OBJECT DIAGONALLY
	MOVE AN OBJECT IN A WAVE-LIKE MOTION

	CREATE TRIGONOMETRIC SPECIAL EFFECTS

	Chapter 13: Debugging Actionscript
	USING THE DEBUGGER
	USING THE OUTPUT WINDOW
	USING LIST OBJECTS
	USING LIST VARIABLES
	DEBUG YOUR SCRIPT

	Chapter 14: Flash Actionscript Quick Reference
	KEY CODE VALUES
	LETTERS A TO Z AND NUMBERS 0 TO 9
	KEYS ON THE NUMERIC KEYPAD
	FUNCTION KEYS
	OTHER KEYS

	URL ENCODING CHARACTERS
	LIST OF KEYWORDS
	ACTIONS APPENDED WITH NUM
	HEXADECIMAL COLOR CODES
	BUTTON HANDLERS
	MOVIE CLIP HANDLERS
	OPERATORS
	FUNCTIONS
	ACTIONS
	PROPERTIES
	OBJECTS
	ARRAY OBJECT
	BOOLEAN OBJECT
	COLOR OBJECT
	DATE OBJECT
	KEY OBJECT
	MATH OBJECT
	MOUSE OBJECT
	MOVIECLIP OBJECT
	NUMBER OBJECT
	OBJECT OBJECT
	SELECTION OBJECT
	SOUND OBJECT
	STRING OBJECT

	Back of Book
	Appendix
	WHAT’S ON THE CD-ROM
	USING THE E-VERSION OF THE BOOK

	End-User License Agreement
	Index
	Other Visual Titles
	Order Form

