

01_591598-ffirs.indd iii01_591598-ffirs.indd iii 6/11/10 1:41 PM6/11/10 1:41 PM

Your visual blueprint™ for creating
interactive spreadsheets, 3rd Edition

by Denise Etheridge

Excel® Programming

01_591598-ffirs.indd i01_591598-ffirs.indd i 6/11/10 1:41 PM6/11/10 1:41 PM

Excel® Programming: Your visual blueprint™ for
creating interactive spreadsheets, 3rd Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Published simultaneously in Canada

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400, fax 978-646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011,
fax 201-748-6008, or online at www.wiley.com/go/permissions.

Library of Congress Control Number: 2010929410

ISBN: 978-0-470-59159-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Trademark Acknowledgments
Wiley, the Wiley Publishing logo, Visual, the Visual logo, Visual Blueprint,
Read Less - Learn More and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates.
Microsoft and Excel are registered trademarks of Microsoft Corporation in
the United States and/or other countries. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER
AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE
SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES
LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND TECHNIQUES
DESCRIBED IN THIS BOOK, THE AUTHOR HAS CREATED VARIOUS
NAMES, COMPANY NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR
INFORMATION, ALL OF WHICH ARE FICTITIOUS. ANY RESEMBLANCE
OF THESE FICTITIOUS NAMES, ADDRESSES, PHONE AND FAX
NUMBERS AND SIMILAR INFORMATION TO ANY ACTUAL PERSON,
COMPANY AND/OR ORGANIZATION IS UNINTENTIONAL AND
PURELY COINCIDENTAL.

Contact Us
For general information on our other products and services please contact
our Customer Care Department within the U.S. at 877-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For technical support please visit www.wiley.com/techsupport.

Sales

Contact Wiley
at (877) 762-2974
or (317) 572-4002.

The Roman Theater of Aspendos

Built when Marcus Aurelius was Emperor of Rome (161–180
A.D.), this magnificent theater, faithful to the Greek tradition,
nestles into the side of a hill. It is among the best preserved of
its era, and concerts and operas are still performed upon its
stage today. Its acoustics are quite literally legendary. A
favorite story tells how the architect, Zeno, won the king’s
daughter by creating this masterpiece in which a word
murmured from the stage could be heard throughout the
arena.

Learn more about
Aspendos and its
artifacts in
Frommer’s Turkey,
6th Edition (ISBN
978-0-470-59366-
0), available
wherever books are
sold or at www.
Frommers.com.

Disclaimer
In order to get this information to you in a timely manner, this book was
based on a pre-release version of Microsoft Office 2010. There may be
some minor changes between the screenshots in this book and what you
see on your desktop. As always, Microsoft has the final word on how
programs look and function; if you have any questions or see any
discrepancies, consult the online help for further information about the
software.

01_591598-ffirs.indd ii01_591598-ffirs.indd ii 6/11/10 1:41 PM6/11/10 1:41 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://www.Frommers.com
http://www.Frommers.com

Executive Editor
Jody Lefevere

Sr. Project Editor
Sarah Hellert

Technical Editor
Namir Shammas

Copy Editor
Scott Tullis

Editorial Director
Robyn Siesky

Editorial Manager
Rosemarie Graham

Business Manager
Amy Knies

Sr. Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher

Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Sr. Project Coordinator
Kristie Rees

Graphics and Production Specialists
Andrea Hornberger
Jennifer Mayberry

Heather Pope

Quality Control Technician
Jessica Kramer

Proofreader
Sossity R. Smith

Indexer
Slivoskey Indexing Services

Media Development Project Manager
Laura Moss

Media Development Assistant Project
Manager

Jenny Swisher

Media Development Associate
Producer

Marilyn Hummel

Screen Artists
Ana Carrillo
Jill A. Proll
Ron Terry

Illustrator
Cheryl Grubbs

Credits

01_591598-ffirs.indd iii01_591598-ffirs.indd iii 6/11/10 1:41 PM6/11/10 1:41 PM

Denise Etheridge is a certified public accountant as well as the president and founder of Baycon Group,
Inc. She publishes Web sites and authors computer related books. You can visit www.baycongroup.com to
view her online tutorials.

Writing this book was a pleasure. I would like to thank all of the people who assisted me. I give special
thanks to Jody Lefevere, for allowing me this privilege; Sarah Hellert, for keeping things on track; Namir
Shammas, for his technical review; and Scott Tullis, for his copy review.

Author’s Acknowledgments

About the Author

This book is dedicated to Raquel Etheridge.

Dedication

01_591598-ffirs.indd iv01_591598-ffirs.indd iv 6/11/10 1:41 PM6/11/10 1:41 PM

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

1
2

4

3

When working in Excel, once you have your chart designed exactly the way you want it, you can save your design as
a template. You can also use VBA to save your design as a template.

Example:
Sub CreateTemplate()

 Dim SalesChart as Chart

 Set SalesChart = ThisWorkbook.Charts(“Monthly Sales”)

 SalesChart. _

 SaveChartTemplate(“Sales Chart Template”)

End Sub

To apply your template to an existing chart, in Excel, click your chart. The Chart tools become available. Click the
Design tab. Click Change Chart Type in the Type group. The Change Chart Type dialog box appears. Click
Templates, click your template, and then click OK. Excel applies your template to your chart.

Your chart after you
apply the macro.

Your macro changes
the format of your
chart.

Your chart before
you apply the macro.

3 Create your
ChartWizard
command.

4 Set your parameters.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Create a Chart object
variable.

2 Set the Chart object
variable to the chart you
want to modify.

• The name of the chart
sheet.

Apply Chart Wizard Settings to a Chart

W hen writing VBA code, you can use the
ChartWizard method to format or reformat
a chart quickly. The method has 11 optional

parameters that enable you to set chart properties. The
following is the syntax:
expression.ChartWizard(Source, Gallery,
Format, PlotBy, CategoryLabels, SeriesLabels,
HasLegend, Title, CategoryTitle, ValueTitle,
ExtraTitle)

Use the Source parameter to specify or modify the chart’s
data source. When you are working with a chart sheet,
you must specify the name of the worksheet that contains
the data source. Use the Gallery parameter to specify
the chart type. Assign one of the XlChartType constant
values to indicate the desired chart type. See the appendix
for a list of XlChartType constants.

Specify a value of 1 to 10 for the Format parameter. The
Format parameter applies one of VBA’s built-in formats.
The format that it uses depends on the chart type you
select. The PlotBy parameter tells VBA whether the
data series is in rows or columns. Assign the PlotBy
parameter xlRows if the data series is in rows. Assign
it xlColumns if the data series is in columns.
Assign an integer value to the CategoryLabels and
SeriesLabels parameters to indicate the number of
rows or columns in the category or series that have
labels. Assign the HasLegend parameter the value True
if you want your chart to have a legend.
Use the Title parameter to assign a title to your chart, the
CategoryTitle parameter to assign a title to the axis that
displays categories, and the ValueTitle parameter to assign
a title to the axis that displays values. For a 3-D chart, use
the ExtraTitle parameter to assign a title to your depth
axis. You must set any additional properties individually.

Apply Chart Wizard
Settings to a Chart

Who This Book Is For
This book is for advanced computer users who want
to take their knowledge of this particular technology
or software application to the next level.

The Conventions in This Book
1 Steps
This book uses a step-by-step format to guide you
easily through each task. Numbered steps are
actions you must do; bulleted steps clarify a point,
step, or optional feature; and indented steps give
you the result.

2 Notes
Notes give additional information — special
conditions that may occur during an operation, a
situation that you want to avoid, or a cross
reference to a related area of the book.

3 Icons and Buttons
Icons and buttons show you exactly what you need
to click to perform a step.

4 Extra or Apply It
An Extra section provides additional information
about the preceding task — insider information and
tips for ease and efficiency. An Apply It section takes
the code from the preceding task one step further
and allows you to take full advantage of it.

5 Bold
Bold type shows text or numbers you must type.

6 Italics
Italic type introduces and defines a new term.

7 Courier Font
Courier font indicates the use of scripting
language code such as statements, operators, or
functions, and code such as objects, methods, or
properties.

How to Use This Visual Blueprint Book

4

1

7

01_591598-ffirs.indd v01_591598-ffirs.indd v 6/11/10 1:41 PM6/11/10 1:41 PM

TABLE OF CONTENTS

vi

HOW TO USE THIS BOOK . V

1 USING MACROS AND FORM CONTROLS 2
Introducing Excel Programming ...2
Introducing Macros ..4
Set Macro Security ...6
Create a Digital Signature ..7
Record a Macro ..8
Assign a Digital Signature to a Macro ..10
Run a Macro ..12
Create and Launch a Keyboard Shortcut ..14
Assign a Macro to the Quick Access Toolbar ...16
Delete a Macro ...18
Add a Form Control to a Worksheet ...20
Assign Values to a Form Control ...22
Add a Macro to a Form Control ..24

2 USING THE VISUAL BASIC EDITOR 26
Introducing the Visual Basic Editor ..26
Activate the Visual Basic Editor ...28
Open Visual Basic Editor Windows ..30
Set Properties for a Project ...32
Set Display Options for the Code Window ..34
Add a New Module ..36
Remove a Module ..38
Hide a Macro ...40
Update a Macro ..42

3 INTRODUCING VISUAL BASIC FOR
APPLICATIONS. .44

Create Sub Procedures ...44
Create Functions ..46
Comment Your Code...48
Reference Cells and Ranges ...50
Understanding Variables and Data Types ..52
Declare Variables ...54
Work with Strings ..56

02_591598-ftoc.indd vi02_591598-ftoc.indd vi 6/11/10 1:41 PM6/11/10 1:41 PM

vii

Work with Numbers ...58
Create a Constant ...60

4 INTRODUCING THE EXCEL OBJECT MODEL 62
Discover the Excel Object Model ..62
Access the Excel Object Model Reference ...64
Create an Object Variable ...66
Change the Properties of an Object ..68
Compare Object Variables...70
Using an Object Method ...72
Display a Built-in Dialog Box ...74

5 UNDERSTANDING ARRAYS 76
Declare an Array ..76
Declare a Multidimensional Array ..78
Convert a List to an Array ...80
Redimension an Array ...82
Create a User-Defined Data Type ...84

6 CONTROLLING PROGRAM FLOW. 86
Create Comparisons ...86
Make Use of Logical Operators ..87
Employ Do While Loops ...88
Create Do Until Loops ..90
Create For Next Loops ..92
Execute For Each In Loops ...94
Create If Then Else Statements ..96
Construct Select Case Statements ...98
GoTo a Named Location ...100
Call a Procedure ...102

7 USING EXCEL WORKSHEET FUNCTIONS. 104
Work with Excel Worksheet Functions ..104
Work with a MsgBox Function ..106
Using the InputBox Function ...108
Retrieve the Current Date and Time ...110
Perform Date and Time Calculations ..112
Format a Date Expression ..114

02_591598-ftoc.indd vii02_591598-ftoc.indd vii 6/11/10 1:41 PM6/11/10 1:41 PM

TABLE OF CONTENTS

viii

Format a Numeric Expression ..116
Change the Case of a String ...118
Return a Portion of a String ...120

8 DEBUGGING MACROS . 122
Debug a Procedure with Inserted Breakpoints ...122
Using the Watches Window to Debug a Procedure ..124
Step through a Procedure ...126
Using the Immediate Window ..128
Resume Execution When an Error Is Encountered ...130
Process a Runtime Error ..132

9 WORKING WITH WORKBOOKS AND FILES 134
Open a Workbook ..134
Open a Text File as a Workbook ..136
Open a File Requested by the User ..138
Save a Workbook ...140
Save a Workbook in a Format Specified by the User ...142
Determine if a Workbook Is Open ..144
Close a Workbook ..146
Create a New Workbook ..148
Delete a File ...150

10 WORKING WITH WORKSHEETS. 152
Add a Sheet ...152
Delete a Sheet ..154
Move a Sheet ...156
Copy a Sheet ..158
Hide a Sheet ..160
Change the Name of a Sheet ..162
Save a Sheet to Another File ..164
Protect a Worksheet ...166
Protect a Chart ...168
Print a Sheet ..170
Sort Sheets by Name ..172

11 DEFINING RANGES . 174
Using the Range Property ..174
Using the Cells Property ...176

02_591598-ftoc.indd viii02_591598-ftoc.indd viii 6/11/10 1:41 PM6/11/10 1:41 PM

ix

Combine Multiple Ranges ..178
Using the Offset Property ...180
Delete a Range of Cells ..182
Hide a Range of Cells ...184
Create a Range Name ...186
Resize a Range ..188
Insert a Range ...190
Set the Width of Columns in a Range ..192
Set the Height of Rows in a Range ..194

12 WORKING WITH CELLS . 196
Cut and Paste Ranges of Cells ..196
Copy and Paste Ranges of Cells ...198
Using Paste Special Options When Pasting ..200
Add Comments to a Cell ...202
Automatically Fill a Range of Cells ..204
Copy a Range to Multiple Sheets ..206
Add a Border ...208
Find Specific Cell Values ..210
Find and Replace Values in Cells ...212

13 WORKING WITH LISTS . 214
Convert a Column of Text into Multiple Columns ...214
Perform a Sort..216
Perform a Filter ..220
Perform an Advanced Filter ...222
Create Subtotals ...224
Create Groups ..226
Define a List as a Table ...228

14 CREATING DIALOG BOXES AND
CUSTOMIZING THE RIBBON 230

UserForm Basics ..230
Create a Custom Dialog Box ...232
Call a Custom Dialog Box from a Procedure ...234
Capture Input from a Custom Dialog Box ...236
Validate Input from a Dialog Box ...240
Create Custom UserForm Controls ..242

02_591598-ftoc.indd ix02_591598-ftoc.indd ix 6/11/10 1:41 PM6/11/10 1:41 PM

TABLE OF CONTENTS

x

Create a UserForm Template ..244
Customize the Ribbon ..246
Create a CustomUI.xml File ..250
Add a CustomUI.xml File to a Workbook ...252
Add Additional Options to the Ribbon ...254

15 WORKING WITH CHARTS. 258
Create a Chart Sheet ...258
Embed a Chart in a Worksheet ..260
Apply Chart Wizard Settings to a Chart..262
Add a New Data Series to a Chart ..264
Format Chart Text ..266
Create Charts with Multiple Chart Types ..268
Add a Data Table to a Chart ...270

16 WORKING WITH PIVOTTABLES 272
Create a PivotTable ..272
Add Fields to a PivotTable ...274
Display Subtotals and Grand Totals ...276
Filter a PivotTable ..278
Create Groups ..279

17 AUTOMATING PROCEDURES WITH
EXCEL EVENTS. .280

Understanding Excel Events ..280
Run a Procedure as a Workbook Opens ...284
Run a Procedure before Closing a Workbook ...286
Run a Procedure before Saving a Workbook ..288
Run a Procedure When Excel Creates a Workbook ..290
Execute a Procedure at a Specific Time ..294
Execute a Procedure When You Press Keys ...296
Monitor a Range of Cells for Changes ..298

02_591598-ftoc.indd x02_591598-ftoc.indd x 6/11/10 1:41 PM6/11/10 1:41 PM

xi

18 BUILDING ADD-INS. 300
Create an Add-In ...300
Set Add-In Properties ...302
Install Add-Ins ...304
Using VBA to Load Add-Ins ..306

19 UNDERSTANDING XML 308
Introducing XML ..308
Understanding Excel XML Files ...310
Open an XML File in Excel as a Table ...314
Create an XML Map ...316
Import and Export XML Files Using Excel ...318
Load XML Files Using VBA ...320
Import XML Files Using VBA ...322

APPENDIX: VBA QUICK REFERENCE 324

INDEX. 342

02_591598-ftoc.indd xi02_591598-ftoc.indd xi 6/11/10 1:41 PM6/11/10 1:41 PM

2

12

4

2

3

Introducing Excel
Programming

A s you probably know, Microsoft Excel is an
electronic worksheet you can use for a variety of
purposes, including the following: maintain lists;

perform mathematical, financial, and statistical
calculations; create charts; analyze your data with
PivotTables; locate data; find trends in your data; and
present your data to others.
This book is about automating the tasks you perform in
Excel by using Visual Basic for Applications (VBA). You
can use VBA to automate those repetitive tasks you
perform frequently. For example, if the layout of your
monthly report rarely changes, you can use VBA to set up
your report each month.
VBA is a programming language; however, you do not
have to be a programmer to automate the tasks you
perform in Excel. You can also automate a task by using
the macro recorder to create a macro. A macro is a

recording of the steps you want to automate. You just
click a button to turn on the macro recorder and begin
performing the steps as you normally would. Excel records
each step and creates the VBA code. When you finish, you
click the Stop Record button. When you select your macro
in the Macro dialog box and then click the Run button,
Excel plays back the steps you recorded. For example, if
you record the steps necessary to set up your monthly
report, all you have to do each month thereafter is click a
button and Excel automatically sets up your report.
With VBA, you can do more than just create macros. You
can use VBA to edit macros, create new functions, create
custom applications, and create add-ins. For these tasks,
you must learn the VBA programming language. This
book teaches VBA. It is based on Office 2010. Code you
write for Office 2010 may not be compatible with earlier
versions of Excel.

Introducing Excel Programming

1 Click the Developer tab.

Note: See the section “Introducing Macros” to learn how
to display the Developer tab.

 Use the options in the Code group to automate
your tasks.

2 Click either of these Record Macro buttons to
record a macro.

Note: See the section “Record a Macro” for more details.

3 Click Macros to run a macro.

Note: See the section “Run a Macro” for more details.

• Use the options in the Controls group to add
check boxes, fields, and other form controls
to your worksheet.

• Use the options in the XML group to work
with XML.

4 Click Visual Basic or press Alt+F11.

 Excel moves to the Visual Basic for
Applications Editor (VBE).

03_591598-ch01.indd 203_591598-ch01.indd 2 6/11/10 1:41 PM6/11/10 1:41 PM

3

5

6

You can also use Microsoft Visual Studio Tools for the Microsoft Office System (Visual Studio) to develop programs
for Microsoft Office products. With Visual Studio, you can write in languages such as Visual Basic .NET, Visual C#,
and Managed Extensions for C++. Visual Studio is not part of Microsoft Office; you must purchase it. Microsoft
supports both VBA and Visual Studio.

Visual Studio is more difficult to learn than VBA, and setting up and using Visual Studio is much more difficult than
setting up and using VBA. However, Visual Studio offers better security, a more sophisticated development
environment, and built-in Web services.

 The VBE returns you to Excel.

 Use the VBE to write and edit code.

Note: See Chapter 2 to learn more about
the VBE.

5 Click the proper module to access
your macros or the VBA code you
have written.

6 Type or edit your code here.

7 Press Alt+F11 to return to Excel.

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

03_591598-ch01.indd 303_591598-ch01.indd 3 6/11/10 1:41 PM6/11/10 1:41 PM

4

1

2

3

 The Excel Options dialog
box appears.

3 Click Customize Ribbon.

1 Click the File tab.

 A menu appears.

2 Click Options.

Introducing Macros

Y ou can use macros to automate many of the tasks
you perform in Excel. For example, if you
frequently format your data in a particular way,

you can use Excel’s macro recorder to record the steps
you use to format your data. You can then play back the
recorded steps whenever you want to apply your format.
Most of the commands you can execute in Excel, you can
also record and play back.
The commands you use to create and execute macros are
located on the Developer tab. By default, the Developer
tab does not display in Excel. To display it, you must
select Developer in the Customize the Ribbon pane in the
Excel Options dialog box.
You begin recording macros by clicking Record Macro on
the Developer tab or by clicking the Record Macro button

on the status bar. Both options open the Record Macro
dialog box. For detailed instructions on how to use the
Record Macro dialog box, see the section “Record a Macro.”
When you record a macro, you can record it using an
absolute reference or a relative reference. If you record
using an absolute reference, when Excel plays back your
macro, it plays back the exact cells you clicked when you
recorded the macro. If you record using a relative
reference, Excel plays back the relative location of the
cells you used when you recorded your macro. Click Use
Relative References on the Developer tab to record using
a relative reference. To learn more about absolute and
relative references, see the section “Record a Macro.”
When you save a workbook that has macros, you must
save it as a macro-enabled workbook. Excel gives macro-
enabled workbooks an .xlsm extension.

Introducing
Macros

03_591598-ch01.indd 403_591598-ch01.indd 4 6/11/10 1:41 PM6/11/10 1:41 PM

5

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

5

4

6

Because of problems with macro viruses, by default
Excel disables all macros when you open a workbook.
You can read the file, but you cannot execute the
macros. You can click Macro Security on the Developer
tab to change the default setting, or you can click the
Enable Content button that appears when you open the
workbook to enable the macros. To learn more about
macro security, see the sections “Set Macro Security,”
“Create a Digital Signature,” and “Assign a Digital
Signature to a Macro” in this chapter.

To save a workbook that has macros, click the File tab.
A menu appears. Click Save As. The Save As dialog box
appears. Locate the proper folder. Type a filename in
the File Name field. Select Excel Macro-Enabled
Workbook (*.xlsm) in the Save As Type field. Click
Save. Excel saves your workbook as a macro-enabled
workbook and gives the workbook an .xlsm extension.

• The Developer tab appears on the Ribbon.

• Click Record Macro to record a macro.

• Click Use Relative References to record with a
relative reference.

• Click Macro Security to change macro security.

 The Customize the Ribbon pane appears.

4 Click the down arrow and then select Main Tabs.

5 Click Developer (changes to).

6 Click OK.

03_591598-ch01.indd 503_591598-ch01.indd 5 6/11/10 1:41 PM6/11/10 1:41 PM

6

3

4

1
2

 The Trust Center dialog box appears.

3 Click a macro security setting
(changes to).

4 Click OK.

 Excel changes your macro security
setting.

1 Click the Developer tab.

Note: See the section “Introducing Macros”
to learn how to display the Developer tab.

2 Click Macro Security.

Set Macro Security

the macro but you have not opted to trust the publisher,
you can enable the macro or trust the publisher. See the
Extra section of “Assign a Digital Signature to a Macro”
in this chapter to learn how to trust a publisher.
The Enable All Macros (Not Recommended; Potentially
Dangerous Code Can Run) option enables you to run all
macros. Because potentially dangerous code can run,
Microsoft does not recommend this option.
Changes you make to macro security in Excel do not
change the macro security in other Office programs.
Macro creators use digital signatures to verify the safety
of the macros they create. You can create a digital
signature by using the Digital Certificate for VBA Projects
tool, or you can obtain a digital certificate from a
commercial certification authority. For more information
on the Digital Certificate for VBA Projects tool, see the
next section, “Create a Digital Signature.”

B ecause of increasing problems with computer
viruses, specifically macro viruses, the default
Excel macro security setting disables all macros

when you open a workbook and enables you to decide on
a case-by-case basis whether you want to enable them.
This is true whether you created the macros or someone
else created them. You can change the Excel macro
security by choosing one of four options.
The Disable All Macros without Notification option
disables all macros. This option does not provide you
with any security alerts to let you know macros exist.
The Disable All Macros with Notification option is the
default setting. It notifies you if macros are present so
you can enable them on a case-by-case basis.
The Disable All Macros except Digitally Signed Macros
option disables all macros except those digitally signed by
a trusted publisher. If the publisher has digitally signed

Set Macro
Security

03_591598-ch01.indd 603_591598-ch01.indd 6 6/11/10 1:41 PM6/11/10 1:41 PM

7

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

1

6

2

54

3

7

 The Create Digital Certificate dialog box
appears.

6 Type the name you want to give your
certificate.

7 Click OK.

 Excel creates a Personal Digital
Certificate.

1 Click the Start button.

2 Click All Programs.

3 Click Microsoft Office.

4 Click Microsoft Office Tools.

5 Click Digital Certificate for VBA Projects.

Create a Digital Signature

remains with it; if anyone alters the macro, Excel notifies
the user that the macro should not be trusted. The most
common provider of commercial digital certification is
VeriSign, Inc. To obtain a commercial certification, you
must submit an application and pay a fee. You can find
out more at www.verisign.com.
To view the certificates in your Personal Certificate store,
open Windows Internet Explorer. On the Internet Explorer
menu, click Tools and then click Internet Options. The
Internet Options dialog box appears. Click the Content
tab. Click the Certificates button. The Certificates dialog
box appears. Click the Personal tab. All of your personal
certificates appear.

I f you create a workbook that contains macros,
you should consider using a digital signature. A
digital signature provides assurance that no one

has altered the macro. You can create a personal
digital signature by using the Digital Certificate for
VBA Projects tool. Digital signatures created with the
Digital Certificate for VBA Projects tool work only on
the computer on which the digital signature was
created.
If you plan to distribute your workbook to others,
you should consider acquiring a commercial digital
signature. When you use a commercial digital
signature, the digital ID attaches to the macro and

Create a Digital
Signature

03_591598-ch01.indd 703_591598-ch01.indd 7 6/11/10 1:41 PM6/11/10 1:41 PM

8

7

12

3
4

5
6

 The Record Macro dialog box
appears.

3 Type the name you want to give
your macro.

4 Type the shortcut key you want to
assign to your macro.

 Press Shift as you type to assign
an uppercase key.

5 Click the down arrow and then
select the workbook in which you
want to store your macro.

6 Type a description of your macro.

7 Click OK.

1 Click the Developer tab.

Note: See the section “Introducing
Macros” to learn how to display the
Developer tab.

• Alternatively, click the Record
Macro button on the status bar
and skip Step 2.

2 Click Record Macro.

Record a Macro

A macro enables you to automate common tasks.
You can use a macro to record most of the series
of commands you can execute in Excel. For

example, if you frequently apply a certain format to your
worksheet, you can record the steps for creating the
format and then play them back each time you want to
apply the format.
Clicking the Macro Recorder button opens the Record
Macro dialog box. You can use the Record Macro dialog
box to name your macro, assign your macro to a shortcut
key, and tell Excel where you want to store your macro.
You can name your macro anything you want; however,
the name must start with a letter; only contain letters,
numbers, and underscores; and not contain any spaces.

You can assign any upper- or lowercase letter to act as
the shortcut key.
In the Record Macro dialog box, the Store Macro In field
tells Excel where to store your macro. You can choose to
store your macro in the Personal Macro Workbook, a New
Workbook, or This Workbook. Use the Personal Macro
Workbook option if you want to make your macro
available to all Excel files. After you have stored at least
one macro in the Personal Macro Workbook, the
workbook opens whenever you open an Excel file. Use
the New Workbook option if you have specialized macros
that you want to use with multiple files. If you store your
macro in a New Workbook, you can use the macros
whenever that workbook is open. Use the This Workbook
option if you want to store your macro in the workbook
in which you are currently working.

Record
a Macro

03_591598-ch01.indd 803_591598-ch01.indd 8 6/11/10 1:41 PM6/11/10 1:41 PM

9

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

8

90

A macro you create in Excel can have a relative, an absolute, or a mixed reference. If you use a relative reference,
Excel performs the macro based on a relative location. For example, suppose you move up two cells from cell A3 to
cell A1 when creating your macro. When you run your macro, if you are in cell C3, Excel moves up two cells from
cell C3 to cell C1. If you use an absolute reference, however, Excel performs the macro based on the exact cell
addresses. For example, suppose again that you move up two cells from cell A3 to A1. When you run your macro, if
you are in cell C3, Excel moves from there to the cells you used when you recorded your macro. That is, Excel moves
from cell A3 to cell A1.

By default, Excel creates macros with an absolute reference. To create a macro with a relative reference, click Use
Relative References in the Code group on the Developer tab to toggle the relative reference option on. To create a
macro with both a relative and an absolute reference — a mixed reference — toggle the Use Relative References
button on and off as needed as you create your macro.

9 Click the Developer tab.

• Alternatively, click the Stop Recording
button on the status bar and skip Step 10.

0 Click Stop Recording.

 Excel stops recording your macro.

 Your macro is ready for you to use.

8 Perform the steps you want to record.

Note: This example changes the number
format using the following steps. Click the
Home tab. Click the Number Group launcher.
Click Accounting. Set Decimal Place to 0.
Select $ as Symbol. Click OK.

03_591598-ch01.indd 903_591598-ch01.indd 9 6/11/10 1:41 PM6/11/10 1:41 PM

10

2

3

3

1

 The Visual Basic Editor appears.

3 Click Tools ➔ Digital Signature.

1 Click the Developer tab.

Note: See the section “Introducing Macros”
to learn how to display the Developer tab.

2 Click Visual Basic in the Code group.

Assign a Digital Signature to a Macro

A digital signature provides assurance that a
workbook file that contains macros is valid and
no one has altered the macros. There are two

types of digital signatures: personal digital signatures and
commercial digital signatures. You can create a personal
digital signature by using the Digital Certificate for VBA
Projects tool, or you can purchase a digital signature. Refer
to the section “Create a Digital Signature” to learn how to
create a personal digital signature. After you create a digital
signature, you must attach it to your workbook. Attaching
a digital signature is similar to sealing an envelope. If an
envelope arrives sealed, you have some level of assurance
that no one has tampered with its contents.
Use the Digital Signature dialog box to attach a digital
signature. The Visual Basic Editor (VBE) is a separate
Excel module that you can use to edit your macros.

Access the Digital Signature dialog box by opening the
VBE. The Digital Signature dialog box lists valid
certificates. You can use the Digital Signature dialog box
to view certificates and to select the one you want to use.
Unless you have on your computer a valid digital
signature certificate for the signature used to sign a
macro, Excel removes the digital signature when you
modify a macro and you must reattach it. If you are not
sure if a workbook has a digital signature, you can check
the signature by reviewing the Digital Signature dialog
box. If a workbook has a digital signature, the name of
the signature appears in the Certificate Name field. If you
click the Remove button in the Digital Signature dialog
box, Excel removes the digital signature.

Assign a Digital
Signature to a Macro

03_591598-ch01.indd 1003_591598-ch01.indd 10 6/11/10 1:41 PM6/11/10 1:41 PM

11

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

6

7

4

5

If you have Macro Security enabled, Excel displays the
Trust Bar below the Ribbon when you open a workbook
containing a signed macro. You can modify the
workbook, but you cannot use the macros. If you trust
that the document is safe, you can click the Enable
Content button on the Trust Bar to enable the macros
in the workbook. The workbook then becomes a trusted
document and you will not need to enable the
workbook again.

You can use the Microsoft Office Security Options
dialog box to select the security option you want. On
the Trust Bar, click Macros Have Been Disabled.
Security warning options appear. Click the Enable
Content button. A menu appears. Click Advanced
Options. The Microsoft Office Security Options dialog
box appears. Click Help Protect Me from Unknown
Content (Recommended) to disable the macros; click
Enable the Content for This Session to enable the
macros for one session; or click Trust All Documents
from This Publisher to add the macro publisher to the
Trusted Publisher list. Excel does not display a warning
when you open workbooks with macros if the publisher
is on the Trusted Publisher list.

 The Select Certificate dialog box
appears.

Note: See the section “Create a Digital
Signature” to learn how to create a
digital signature.

5 Click the signature you want to
apply.

6 Click OK to close the Select
Certificate dialog box.

 The Digital Signature dialog box
appears.

4 Click Choose.

7 Click OK to close the Digital
Signature dialog box.

 Excel attaches the digital signature
to your workbook.

Note: To return to Excel, press Alt+Q.

03_591598-ch01.indd 1103_591598-ch01.indd 11 6/11/10 1:41 PM6/11/10 1:41 PM

12

1

2
3

4

 The Macro dialog box appears.

4 If your macro does not appear
in the Macro dialog box, click
the down arrow and then
select the workbook that
contains your macro.

1 Select the cells where you
want to apply your macro.

2 Click the Developer tab.

Note: See the task “Introducing
Macros” to learn how to display the
Developer tab.

3 Click Macros.

 Alternatively, press Alt+F8.

Run a Macro

M acros enable you to quickly perform tasks that
would normally take multiple steps. When you
run a macro, Excel replays the steps you

recorded when you created the macro. You can run any
macro located in any workbook as long as the workbook
in which the macro is located is open. To run a macro,
you can press the shortcut key you assigned when you
created the macro, or you can select the macro from the
Macro dialog box.
When you create a macro, you can choose to store it in
one of three locations: the current workbook, a new
workbook, or the Personal Macro Workbook. By default,
the Macro dialog box lists all the macros in open
workbooks. If a macro is stored in the Personal Macro
Workbook, the macro opens as a hidden file each time

you open a file. By default, the files in the Personal
Macro Workbook always appear in the Macro dialog box.
You can use the Macros In field to limit the number of
macros listed in the Macro dialog box. To see the macros
in any open workbook, including the Personal Macro
Workbook, select All Open Workbooks from the Macros
In drop-down list. To see the macros from a specific
workbook, select the name of the workbook from the
Macros In drop-down list. To see global macros stored in
the Personal Macro Workbook, select PERSONAL.XLSB
from the Macros In drop-down list.
To run macros from another workbook, the macro must
be from a signed source or you must enable the macros.
You can set the security setting for macros. See the section
“Set Macro Security” to learn more about macro security.

Run a
Macro

03_591598-ch01.indd 1203_591598-ch01.indd 12 6/11/10 1:41 PM6/11/10 1:41 PM

13

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

65

Excel differentiates between macros listed in the Macro
dialog box by placing the name of the workbook that
contains the macros in front of the macro name. For
example, Excel lists a macro named Sum_Expenses in
the Personal Macro Workbook as PERSONAL.
XLSB!Sum_Expenses. If the macro Sum_Cells exists
in both the Budget.xlsm and Expenses.xlsm workbooks,
Excel treats them as two different macros. The Macro
dialog box lists them as Budget.xlsm!Sum_Cells
and Expenses.xlsm!Sum_Cells.

Unless you have your macro settings set to enable all
macros, Excel checks all documents you open for
macros. See the section “Set Macro Security” for more
information. If you have files that you do not want Excel
to check, you can store them in a trusted location. Click
the Developer tab. Click Macro Security in the Code
group. The Trust Center appears. Click Trusted
Locations. The Trust Location pane appears. Click Add
New Location. The Microsoft Office Trusted Location
dialog box appears. Enter the path to the trusted
location. Click OK.

• Excel runs the macro.

 You can also run your macro
by pressing the shortcut key
you assigned when you
created the macro.

5 Click the name of the macro
you want to run.

6 Click Run.

03_591598-ch01.indd 1303_591598-ch01.indd 13 6/11/10 1:41 PM6/11/10 1:41 PM

14

6

2

4
5

3

7

 The Macro Options dialog box
appears.

4 Type the desired shortcut key.

 Press Shift as you type to
assign an uppercase key.

5 Type a description.

6 Click OK to close the Macro
Options dialog box.

7 Click Close to close the Macro
dialog box.

Create a Keyboard Shortcut

1 Press Alt+F8.

 The Macro dialog box appears.

2 Click the desired macro.

3 Click the Options button.

Create and Launch a Keyboard Shortcut

A keyboard shortcut is a combination of keys you
press to execute a command. You can use a
keyboard shortcut to launch an Excel macro

command. You can assign an upper- or lowercase key to
a macro when you create it or assign one later by using
the Macro Options dialog box. You execute a macro
keyboard shortcut by pressing the Ctrl key along with the
assigned upper- or lowercase key. Refer to the section
“Record a Macro” to learn how to create a macro.
Keyboard shortcuts are case sensitive. For example, Excel
interprets a lowercase m and an uppercase M as two
different keys. To execute a macro you have assigned to
a lowercase letter, press Ctrl plus the letter; for example,
Ctrl+m. To execute a macro you have assigned to an

uppercase letter, press Ctrl and Shift plus the letter; for
example, Ctrl+Shift+M.
If you give the same keyboard shortcut to macros in two
different workbooks, you may execute the wrong macro if
you use the shortcut while you have both workbooks
open. Excel cannot discern from which workbook you want
the macro. You can use the Macro Options dialog box to
reassign one of the conflicting macros to a new key.
You should also be careful not to assign the macro to a
keyboard shortcut that Excel uses. If you do, Excel
executes your macro instead of the command it created.
For example, by default, Ctrl+o opens the Open dialog
box. If you assign o to a macro, your macro overrides
Excel’s assignment.

Create and Launch a
Keyboard Shortcut

03_591598-ch01.indd 1403_591598-ch01.indd 14 6/11/10 1:41 PM6/11/10 1:41 PM

15

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

1

If you do not use a macro shortcut
frequently, it is easy to forget the
keyboard shortcut you assigned
to your macro. If you forget your
keyboard shortcut, you can view it
in the Macro Options dialog box.

• The macro executes.

3 Repeat Steps 1 and 2 to execute
the macro again.

Note: In this example, the macro
removes the decimal places.

Launch a Keyboard Shortcut

1 Select the cells where you want
the macro to execute.

2 Press Ctrl and the shortcut key.

You can execute a macro by assigning the macro to a picture, clip art, a
shape, or smart art. For example, if you want to assign a macro to a
picture, you start by inserting the picture into your worksheet by clicking
the Insert tab and then clicking Picture. The Insert Picture dialog box
appears. In the Look In field, select the folder in which you stored the
picture you want to insert. The pictures in that folder appear. Click the
picture you want to insert and then click the Insert button. The picture
appears in the worksheet. Click and drag the picture to place it where you
want it and then double right-click the picture. A menu appears. Click
Assign Macro. The Assign Macro dialog box appears. Click the macro you
want to assign to the picture and then click OK. Excel assigns the macro to
the picture. Click the picture when you want to execute the macro.

03_591598-ch01.indd 1503_591598-ch01.indd 15 6/11/10 1:41 PM6/11/10 1:41 PM

16

6

1

1

2
4

5

3

 The Excel Options dialog box appears.

2 Click the down arrow and then select
Macros.

3 Click the down arrow and then select
the workbook in which the button
should appear.

4 Click the macro you want to assign to
the Quick Access toolbar.

5 Click Add.

• The macro appears in the box on the
right.

6 Click Modify.

1 Click the Customize Quick Access
Toolbar button and then select More
Commands.

Assign a Macro to the Quick Access Toolbar

Y ou can assign a macro to the Excel Quick Access
toolbar. You can execute macros assigned to the
Quick Access toolbar using a shortcut key or the

Macro dialog box; however, using the Quick Access
toolbar means you can access the macros by simply
clicking the appropriate button.
When you add a button to the Quick Access toolbar, you
can specify whether it should appear on the toolbar of all
Excel workbooks or only on the Quick Access toolbar in the
workbook you specify. By default, the button appears in all
workbooks. If you have placed your macro in the Personal
Macro Workbook, you probably want your macro button to
appear in all workbooks because the macro is available to
all workbooks. If your macro will be available only to a
single workbook, your macro button should appear only on
the Quick Access toolbar for that workbook.

You use the Customize the Quick Access Toolbar page of
the Excel Options dialog box to add a macro button to the
Quick Access toolbar. You can use the Modify button to
specify the button you want to use to represent your
macro. You can specify where on the Quick Access
toolbar your button appears and whether the Quick
Access toolbar appears above or below the Ribbon. You
can click the Reset button to return the Quick Access
toolbar to its default state.
Deleting a macro does not remove the macro button from
the Quick Access toolbar. When you press the button for
a deleted macro, you receive an error message. Use the
Remove button on the Customize the Quick Access
Toolbar page of the Excel Options dialog box to remove a
macro button.

Assign a Macro to the
Quick Access Toolbar

03_591598-ch01.indd 1603_591598-ch01.indd 16 6/11/10 1:41 PM6/11/10 1:41 PM

17

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

8

7

0

9

You can also assign a macro to a custom Ribbon tab. Right-click the Microsoft Office Ribbon. A menu appears.
Click Customize the Ribbon. The Excel Options dialog box appears with the Customize the Ribbon pane selected.
Click the down arrow () next to the Choose Commands From field and then select Macros. Click the down arrow
() next to the Customize the Ribbon field and then select Main Tabs. Click the New Tab button. Excel creates a
new tab and a new group. Click New Tab (Custom) and then click Rename. The Rename dialog box appears. Type
the name you want to give the tab and then click OK. Click New Group (Custom) and then click Rename. The
Rename dialog box appears. Type the name you want to give the group and then click OK. Click the macro you
want to add to the custom Tab and then click the Add button. Excel places the macro in the Main Tabs box. Click
Rename. The Rename dialog box appears. Click the symbol you want to use to represent the macro. Click OK to
close the Rename dialog box. Click OK to close the Excel Options dialog box. The macro appears on the new tab
you created.

• The button appears on the Quick Access
toolbar.

0 Click the button to execute your macro.

 Excel executes the macro.

 The Modify Button dialog box appears.

7 Click the button you want to use to
represent your macro.

8 Click OK to close the Modify Button
dialog box.

9 Click OK to close the Excel Options
dialog box.

03_591598-ch01.indd 1703_591598-ch01.indd 17 6/11/10 1:41 PM6/11/10 1:41 PM

18

4

1

3

2

 The Unhide dialog box appears.

3 Click the workbook you want to unhide.

4 Click OK.

 Excel unhides the workbook.

 You are now in the workbook you
selected to unhide.

Unhide a Workbook

1 Click the View tab.

2 Click Unhide.

Delete a Macro

Y ou can delete macros you no longer need by
clicking the Delete button in the Macro dialog
box. Because the Macro dialog box only displays

macros in open workbooks, the workbook that contains
the macro must be open before you can delete the macro.
The Personal Macro Workbook stores macros you want to
make available to all workbooks. Excel creates the Personal
Macro Workbook when you choose to store your first macro
in it. After Excel creates the Personal Macro Workbook, the
workbook opens as a hidden file every time you open Excel.
To learn more about storing macros in the Personal Macro
Workbook, see the section “Record a Macro.”
If your macro is in a hidden workbook such as the
Personal Macro Workbook, you must unhide the
workbook before you can delete the macro. If you try to

delete a macro from the Personal Macro Workbook prior
to unhiding it, Excel displays the following message:
“Cannot edit a macro on a hidden workbook. Unhide the
workbook using the Unhide command.” You unhide the
Personal Macro Workbook and other hidden workbooks
by executing the Unhide command on the View tab.
If you unhide the Personal Macro Workbook, make sure
you hide it again using the Hide command on the View
tab after you delete the macros. Hiding the workbook
prevents you from making inadvertent changes to it.
You cannot undo the deletion process. If you delete a
macro by mistake, you can close the workbook without
saving. Of course, if you close without saving, you will
lose all the work you have done since saving. Your only
other alternative is to re-create the macro.

Delete
a Macro

03_591598-ch01.indd 1803_591598-ch01.indd 18 6/11/10 1:41 PM6/11/10 1:41 PM

19

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

4

2

3

There are two ways to create a macro. One way is to use the macro recorder to record the steps needed to perform
the action. The other way is to create the steps by typing the Visual Basic for Applications (VBA) code into the Code
window of the Visual Basic Editor (VBE). When you use the macro recorder, Excel automatically creates the VBA
code for you. You can use the VBE to edit macros you have created with the macro recorder. Often, it is convenient
to use a combination of the two methods to create your VBA code: You record part of the VBA code, and then you
use the VBE to augment or modify your code.

To activate the VBE, you can press Alt+F11 while in Excel or click the Visual Basic button on the Developer tab. If
you create your macros using the macro recorder, Excel defines each macro you create as a procedure and stores
each procedure in a module. The VBE lists modules in the Project Explorer under the workbook in which they are
located.

 A message box appears, asking you
to confirm you want to delete the
macro.

4 Click Yes.

 Excel deletes the macro.

Delete a Macro

1 Press Alt+F8

 The Macro dialog box appears.

2 Click the macro you want to delete.

3 Click Delete.

03_591598-ch01.indd 1903_591598-ch01.indd 19 6/11/10 1:41 PM6/11/10 1:41 PM

20

2

3

5
4

1

4 Click and drag the mouse pointer to
create the control.

5 Click and drag the handles on the
sides and corners to adjust the size.

1 Click the Developer tab.

2 Click Insert.

 The Form Controls menu appears.

3 Click to select the control you want.

Add a Form Control to a Worksheet

Y ou can add controls to a worksheet to make it
easier to enter data. Form controls can aid users
who are not familiar with Excel and can increase

the accuracy of data entry by limiting the options a user
has. For example, you can add check boxes to your
worksheet so your worksheet looks like a paper form.
You can also add a combo box from which users can
select an entry.
Excel provides nine controls you can add to a worksheet.
You add controls by selecting the control you want from
the Form Controls menu. After you add a control, you can
adjust its size by dragging the side or corner handles.
When you add a control or when you right-click a control
twice and then click the control, you are in Design mode.

In Design mode, you can modify the properties and size
of the control, but you cannot test its functionality.
When you place a control on a worksheet, it sits on top of
the worksheet. You can size it so it appears to be located
in a cell, but controls are separate from cells. You can
place controls anywhere on the worksheet. A control can
cover any portion of a cell or range of cells.
After you add a control to a worksheet, you can assign it
values. See the next section, “Assign Values to a Form
Control,” to learn how. Form control options are located
on the Developer tab. See the section “Introducing
Macros” in this chapter to learn how to display the
Developer tab.

Add a Form Control
to a Worksheet

03_591598-ch01.indd 2003_591598-ch01.indd 20 6/11/10 1:41 PM6/11/10 1:41 PM

21

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

6

7

You can add the controls listed in the following table to your worksheets.

CONTROL CONTROL NAME DESCRIPTION

Button Runs an associated macro when clicked

Combo box A menu that displays a list of items

Check box Selects or deselects an option

List box Displays a list of items for selection

Radio button Selects one of a group of items

Group box Groups related controls, such as radio buttons, together

Label Provides information about an associated control

Scroll bar Increases or decreases a value when the user clicks the arrows or drags the bar

Spinner Scrolls up and down through a list of numeric values

7 Right-click the control twice and then
click it to place it in Design mode.

 To cancel Design mode, click any cell in
the worksheet.

 To remove a control, place it in Design
mode and then press Delete.

6 Place your mouse pointer on the control
and when the mouse pointer turns into a
four-sided arrow drag the control to
change the location.

03_591598-ch01.indd 2103_591598-ch01.indd 21 6/11/10 1:41 PM6/11/10 1:41 PM

22

2

3
45

1

6
7

 The Format Object dialog box appears.

3 Click the Control tab.

 The available fields depend on the control
type. This example uses a combo box.

4 Enter the range that lists the valid values.

5 Enter a cell to assign a linked cell.

6 Enter the number of items in your
drop-down list.

 The value associated with your selection
appears in the linked cell.

7 Click OK.

1 Right-click the control twice.

 A menu appears.

2 Click Format Control.

Assign Values to a Form Control

A fter you add a control to a form, you can assign
values to it. For example, if your worksheet
contains a combo box, you can assign the list of

values that appear when users access the combo box.
Some controls enable you to define a range of valid
numeric values for the control. For example, if you use a
spinner, you can define the starting value and the
maximum value for the control. For combo boxes and list
boxes, you can place the options associated with the
control in a range of cells. For example, if you use a
combo box, you tell Excel the list of values used by the
control by entering the range of cells containing the
values. The values can be located on another worksheet
or even in another workbook, as long as Excel can access
the workbook when users view the worksheet that
contains the control.

You can link a cell to a control. If you link a cell to a
control, whatever value users select when utilizing the
control becomes the value in the linked cell. If you use a
combo box control or list box control, the value in the
linked cell is a number that represents the user’s
selection. Excel assigns the number based on the position
of the selected value in your list. If the list is Computer,
Monitor, Keyboard, and the user selects Monitor, the
linked cell receives the value 2, because Monitor is
second in the list.
With a control, such as a check box, you can tell Excel
whether you want the option initially selected or
unselected. Both options — selected and unselected —
have an associated value.

Assign Values to
a Form Control

03_591598-ch01.indd 2203_591598-ch01.indd 22 6/11/10 1:41 PM6/11/10 1:41 PM

23

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

8
8

When working with a value selected from a list box or combo box control, you may want to use the value in the
linked cell to set the value of another cell. For example, assume you have the following Excel list in cells H2:I4:

Example:
Computer $1295

Monitor $995

Keyboard $55

You can use the INDEX function to determine the price based on the equipment selection. For example, if the user
selects Monitor from the control, Excel places a value of 2 in the linked cell. If you want users to find the cost of the
selection, you type a formula similar to the following, assuming that C2 is the linked cell:

Example:
=INDEX(H2:$1$4,C2,2)

When the user selects Monitor, the INDEX function returns $995. The INDEX function actually creates an array of
the Excel list and uses the control selection to determine which element in the array to return. The function uses
three arguments: Array, Row_num, and Column_num. See the file Form Control Example.xlsm, which you can
download from the Web site for this book to see an example.

• Excel selects the value and places a
numeric value representing the
control selection in the linked cell.

8 Click the down arrow and then
select the desired control value.

03_591598-ch01.indd 2303_591598-ch01.indd 23 6/11/10 1:41 PM6/11/10 1:41 PM

24

1

4

2

3

 The Record Macro dialog
box appears.

4 Click OK.

5 Record your macro.

Note: See section “Record a
Macro” to learn how to record
a macro.

1 Right-click your control
twice.

 A menu appears.

2 Click Assign Macro.

 The Assign Macro dialog
box appears.

• Excel assigns a default
macro name for the
selected control.

3 Click Record.

Add a Macro to a Form Control

Y ou can use macros to automate the tasks you
perform in Excel. You can assign a macro to any
form control on a worksheet. For example, if a

user clicks a button control, you can have Excel execute a
macro.
You can create one macro for each control on a worksheet.
You create a macro either by recording a series of
keystrokes or by writing a Visual Basic for Applications
(VBA) procedure. When you select the Assign Macro
menu option, Excel automatically creates a new macro
name by using the name of the control followed by an
underscore and an event name, such as _Click. Excel
assigns the control name to the control when you add it to
a worksheet. For example, the first OptionButton control
that you add to a worksheet is named OptionButton1. If

you create a macro for the option button, Excel gives the
macro the name OptionButton1_Click. Every time you
add a new control, Excel gives the control a unique name
by adding a sequential number to OptionButton; for
example, OptionButton2_Click, Option Button3_
Click, and so on.
The portion of the macro name following the underscore
character corresponds to an action, commonly referred to
as an event. For example, with an OptionButton control,
the user clicks the radio button to select the option, so the
event is Click. If you create a macro for a combo box
control, Excel assigns Change to the name of the event
because you want to execute the macro when the value
of the control changes. The event extension tells Excel to
monitor the control and execute the macro whenever a
user clicks the control.

Add a Macro to
a Form Control

03_591598-ch01.indd 2403_591598-ch01.indd 24 6/11/10 1:41 PM6/11/10 1:41 PM

25

Ch
apter 1: U

sin
g M

acros an
d Form

 Con
trols

6

To assign a macro to a button, create the macro, and
then click the Developer tab. Click Insert in the Controls
group. A menu appears. Select the button control and
then click and drag to create a button. The Assign Macro
dialog box appears. Click the macro you want to assign
and then click OK. Right-click the button twice and then
click Edit Text on the menu that appears. Type the name
you want to give the button. You can now click the
button to execute the macro.

If you no longer want a macro to be assigned to a control,
you can right-click the control twice and then click the
Assign Macro option. In the Assign Macro dialog box,
delete the macro name from the Macro Name field and
then click OK. Excel removes the macro assignment from
the control, but the macro remains as part of the
workbook. To remove the macro from the workbook,
click the View tab. Click Macros in the Macros group.
Click View Macros. The Macro dialog box appears. Select
the macro you want and then click Delete.

 Excel executes the associated macro.

• In the example, Excel assigns postage
to the invoice.

6 Click the control with the
assigned macro.

03_591598-ch01.indd 2503_591598-ch01.indd 25 6/11/10 1:41 PM6/11/10 1:41 PM

26

View of the Visual Basic Editor

A Project Explorer

The Project Explorer lists all projects. The VBE considers each
open workbook and each add-in a project. Microsoft Office
arranges projects in the Project Explorer in a tree-like structure.
Click plus (+) to show more information. Click minus (–) to show
less information. To display the Project Explorer, click View ➔
Project Explorer.

Introducing the
Visual Basic Editor

B Code Window

Use the Code window to write, edit, and display VBA
code. Every VBA object has a Code window that stores
the code associated with the object. In the Project
Explorer, double-click an object’s name to see the
associated code. To display the Code window, click
View ➔ Code.

E

F

H

G

B

C D
A C Object List Box

The Object list box lists the objects
associated with a form.

D Procedure List Box

The Procedure list box lists the
procedures associated with the
selected object.

E Properties Window

To select an object, click the object
name in Project Explorer. To display
the Properties window, click View ➔
Properties Window. Use the Properties
window to set the properties associated
with the selected object.

F Locals Window

Use the Locals window to monitor
declared variables. To open the Locals
window, click View ➔ Locals Window.

H Immediate Window

The Immediate window returns the
results of statements you type into
the Immediate window. To display the
Immediate window, click View ➔
Immediate Window.

G Watches Window

Use the Watches window to monitor
properties and variables. To display the
Watches window, click View ➔ Watch
Window.

04_591598-ch02.indd 2604_591598-ch02.indd 26 6/11/10 1:40 PM6/11/10 1:40 PM

27

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor
The Visual Basic Editor

Excel provides two ways to create a macro: You can
record a macro or you can type Visual Basic for
Applications (VBA) code into the Visual Basic Editor
(VBE). The VBE is a separate application you use to write
VBA code. You can access the VBE through most
Microsoft Office Applications, including Excel.

You access the VBE by clicking the Visual Basic button
on the Developer tab in the Code group, or by pressing
Alt+F11. Inside the VBE, you can reposition windows to
create the development environment you prefer. You can
use the View menu to tell Excel which windows and
toolbars you want visible.

The Project Explorer

The Project Explorer resembles the treelike structure
used by the Windows Explorer folders pane. When you
open the VBE, the VBE opens a VBA project for each
open Excel workbook. The VBE names each project
VBAProject (workbook name). Under the project name,
the VBE lists the workbook and each worksheet in the
workbook.

When you record a macro, you can choose to store it in
the Personal Macro Workbook. Once you have stored a
macro in the Personal Macro Workbook, the Personal
Macro Workbook opens as a hidden file whenever you
run Excel. If the Personal Macro Workbook is open, you
can see it listed as a project in the Project Explorer
window as VBA Project (PERSONAL.XLSB).

Modules

VBA executes procedures in response to a system action
or a user action. A module is a set of procedures that
Excel can execute. The VBE stores each macro you
create or record as a procedure in a module. The Project
Explorer lists each module a project contains. You can
add modules by using the steps outlined later in this
chapter. When you double-click a module name in the
Project Explorer, the contents of the module appear in
the Code window. Use the Procedure list box to select
the procedure you want to view.

Properties Window

You use VBA code to manipulate objects. Workbooks
and worksheets are examples of objects. A property is
an attribute of an object. VBA uses attributes to define
such things as the name, color, location, or size of an
object. The Properties window displays the properties
associated with the selected object. To select an object,
you click the object name in the Project Explorer
window. A module has only one property: its name.
Hence, if you select a module, the only property that you
see in the Properties window is the module name.
Sheets have many properties, and if you select a sheet,
you can view and modify the many sheet properties.

To change the properties associated with an object, you
simply click the field beside the property and make the
desired changes. Some property fields, such as Name,
require you to type a value. Other fields have drop-down
lists from which you can select the appropriate value.
Some properties are read-only. You cannot change
read-only properties.

04_591598-ch02.indd 2704_591598-ch02.indd 27 6/11/10 1:40 PM6/11/10 1:40 PM

28

1
2

3

 The VBE appears, with the
Window layout you last used.

3 Double-click a module name.

 Excel shows the macro in the
Code window.

• If you placed more than one
macro in the module, you can
click the down arrow and
then select the macro you
want to see.

 Press Alt+F11 to return to
Excel.

Open the VBE by Using the
Ribbon

1 Click the Developer tab.

Note: See Chapter 1 to learn how
to display the Developer tab.

2 Click Visual Basic in the
Code group.

Activate the Visual Basic Editor

T here are two ways to create a macro. One way is
to use the macro recorder to record the steps
needed to perform the action. The other way is to

create the steps by typing the VBA code into the Code
window of the VBE. When you use the macro recorder,
Excel automatically creates the VBA code for you. You
can use the VBE to edit macros you create with the macro
recorder. Often, it is convenient to use a combination of
the two methods to create your VBA code: You record
part of the VBA code and then you use the VBE to
augment or modify the recorded code.
You can use several methods to activate the VBE: You can
press Alt+F11 while in Excel; click the Visual Basic
button in the Code group on the Developer tab; or click

the Edit button in the Macro dialog box. When the VBE is
open, you can open the Code window by pressing Ctrl+R.
If you create your macros using the macro recorder, Excel
defines each macro you create as a procedure and stores
each procedure in a module. The VBE lists modules in the
Project Explorer under the workbook in which they are
located.
If the Personal Macro Workbook, Personal.xlsm, contains
macros, the project for the Personal.xlsm workbook opens
when you access the VBE. You can view and modify all of
the macros in the Personal Macro Workbook. See Chapter
1 to learn more about the Personal Macro Workbook.

Activate the Visual
Basic Editor

04_591598-ch02.indd 2804_591598-ch02.indd 28 6/11/10 1:40 PM6/11/10 1:40 PM

29

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor
2

1

4
3

To make the VBE easier to navigate, Microsoft provides shortcut keys. These shortcuts work when the VBE window
is open.

SHORTCUT KEY DESCRIPTION

F1 When you select an item in the Code window and then press F1, the VBE displays online
help for the item you selected.

F4 Press F4 to switch to the Property window and display the properties for the selected object.
If the Property window is not open, the VBE opens it in the location where you last viewed it.

F7 You select an object by clicking it in the Project Explorer. If you click an object and then press
F7, the Code window for the selected object appears on top of all other Code windows.

Ctrl+G When you press Ctrl+G, the VBE displays the Immediate window.

Ctrl+R When you press Ctrl+R, you switch to the Project Explorer. If the Project Explorer window
is not open, the VBE opens it in the location where you last viewed it.

Alt+F11 When you press Alt+F11, you toggle between the VBE and Excel.

 The VBE appears,
with the code for the
selected macro in the
Code window.

Open the VBE from the
Macro Dialog Box

1 Click the Developer tab.

2 Click Macros in the
Code group.

 The Macro dialog box
appears.

3 Click the macro you
want to edit.

4 Click Edit.

04_591598-ch02.indd 2904_591598-ch02.indd 29 6/11/10 1:40 PM6/11/10 1:40 PM

30

2

1

1

1

Display a Window

1 Click View.

2 Click the window you want to open.

 You can choose from the Immediate
Window, Locals Window, Watch
Window, Project Explorer, or
Properties Window.

 The selected window appears in the
last viewed location.

 You can click and drag the window to a
new location.

 You can close a window by clicking the
Close button () or by right-
clicking and selecting Hide.

Dock Individual Windows

1 Click Tools ➔ Options.

Open Visual Basic Editor Windows

T he VBE contains several windows you can use
when creating macros. Microsoft provides a basic
window setup; however, you can rearrange,

resize, remove, and add windows. The most commonly
used windows are the Project Explorer, the Properties
window, and the Code window. You may also find the
Immediate window useful for quickly testing a statement
before adding it to your code.
The View menu lists the available VBE windows. You can
select what windows to open and where to open them.
When you select a window from the menu, that window
appears in the location where you last placed it. For
example, if you placed the Project Explorer window in the
upper left corner during your previous session, the Project
Explorer window reopens in the upper left corner.

You can move windows by using the standard drag-and-
drop feature found in all Windows applications. You can
resize a window by dragging its edges.
You can also attach windows to specific locations in the
VBE by using the docking feature. When you dock a
window, it becomes part of another window attached at
the specified location. If you set a window to dock, Excel
docks it in the location you specified each time it opens.
You can dock windows only on the top, bottom, left edge,
or right edge of the screen, application window, or another
dockable window. Docking a window does not mean that
the window always appears in the VBE.
You can have multiple Code windows open at the same
time. You can view multiple Code windows simultaneously
by tiling or cascading them.

Open Visual Basic
Editor Windows

04_591598-ch02.indd 3004_591598-ch02.indd 30 6/11/10 1:40 PM6/11/10 1:40 PM

31

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor

4

2

3

1

1

You can move windows around in
the VBE by using the same
techniques you use with all
Microsoft Windows programs. To
move a window, click the title bar
and drag it to the desired location.
To resize a window, click a corner
of the window and drag it to the
desired size.

To free up space, you can hide any
of the VBE windows. To hide a
window, right-click anywhere in the
window. In the menu that appears,
click Hide.

When you have many lines of code,
you may not be able to see all of it.
If you click Window ➔ Split, the
VBE splits the Code window so you
can view different parts of your
code simultaneously. When you
split your window, the VBE creates
two windows with the same code.
You can manipulate each window
independent of the other.

Display Code Windows

1 Click Window and then click
a tiling option.

 You can select Tile
Horizontally, Tile Vertically,
or Cascade.

 The VBE displays your Code
windows either tiled or
cascading.

 The Options dialog box
appears.

2 Click the Docking tab.

3 Click the windows you want to
dock (changes to).

4 Click OK.

5 Dock the window by clicking
and dragging it to an edge.

 Excel moves the window to its
new location.

04_591598-ch02.indd 3104_591598-ch02.indd 31 6/11/10 1:40 PM6/11/10 1:40 PM

32

3

5

2

2

4

1

 The Project Name
Properties dialog box
appears.

3 Click the General tab.

4 Type the desired project
name.

5 Click OK.

 The project name
changes within the
Project Explorer window.

Change a Project Name

1 Click the project name
you want to change.

2 Click Tools ➔ Project
Name Properties.

Set Properties for a Project

Y ou can set the properties, such as the project name
and the lock status, for each project you can view
in the Project Explorer window. When you lock a

project, the project is password-protected so that only
people who know the password can view and modify the
contents of the project. You can set both the project name
and the password in the Project Properties dialog box.
Excel considers each open workbook a project. By default,
the VBE gives each project the name VBA Project
(WorkbookName). You can change the name of a project.
Changing the project’s name can help distinguish between
projects, especially if you have several workbooks open
simultaneously. If you have a workbook that contains
macros that perform a specific type of action; you can
give your project a name that makes its purpose readily

apparent. For example, if you have a workbook with
macros that format a sales report, you can name the
project SalesFormat.
If you plan to distribute your workbook to other users,
you may want to consider password-protecting your
project. If a project is password-protected, the user must
enter the password to view or modify any portion of the
project. Password-protecting can help protect VBA code
that you do not want others to view or modify. Password-
protection does not make your code completely secure.
There are password recovery utilities on the market that
anyone can use to recover your password. Password-
protecting the project does not lock the corresponding
Excel workbook.

Set Properties
for a Project

04_591598-ch02.indd 3204_591598-ch02.indd 32 6/11/10 1:40 PM6/11/10 1:40 PM

33

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor

7

0

6

8

6

9

4

5

You can create forms (dialog boxes) to enable users to interact with macros. If you have multiple workbooks open
in Excel, you can copy modules and forms by using the Project Explorer window. To copy an object, click the object
and drag it to another project. When you release the mouse button, the VBE creates a copy of the selected module
or form in the specified project. By default, the VBE gives the copied module the same name as the module in the
original project. When you copy an object to another project, if one already exists with that name, the VBE renames
the object by adding a number to the end of the name. For example, if you copy Module2 to a project that already
contains a Module2, the copied module name becomes Module21. If you have a Module21, the VBE names the
copied object Module22.

Lock a Project from Editing

6 Click the Protection tab.

7 Click the Lock Project for Viewing
option (changes to).

8 Type the password required to unlock
the project.

9 Type the password again.

0 Click OK.

 Excel locks your project.

 The next time you open the workbook,
you will not be able to view the code
unless you know the password.

Open a Locked Project

1 Save and close your workbook.

2 Open your workbook.

3 Press Alt+F11 to open the VBE.

4 Double-click the locked project.

 The Password dialog box appears.

5 Type the password.

6 Click OK.

 Excel opens your project.

04_591598-ch02.indd 3304_591598-ch02.indd 33 6/11/10 1:40 PM6/11/10 1:40 PM

34

1

1

2

3

4 5 6

 The Options dialog box appears.

2 Click the Editor Format tab.

3 Click the type of text for which you
want to change the settings.

4 Click the down arrow and select a
foreground color.

5 Click the down arrow and select a
background color.

6 Click the down arrow and select an
indicator color.

1 Click Tools ➔ Options.

Set Display Options for the Code Window

A s you develop your VBA code, you will spend a
lot of time interacting with the Code window.
You can use the Editor Format tab in the Options

dialog box to adjust many aspects of the Code window.
These adjustments can make it easier for you to create
and debug your VBA code.
You can enter many different categories of text into the
Code window. For example, you can use comments to
annotate your code. By using the Format Editor, you can
adjust the foreground, background, and indicator color
for each type of text listed in the Color Text list. When
you use colors, it is easier for you to locate a particular
type of text when you are creating or debugging code.
You can use the Font field to select from the fonts
installed on your computer. When working with VBA

code, you may find code easier to read if you use a fixed-
width font such as Courier New. With a fixed-width font,
the characters in the code align vertically, making it
easier to detect any spacing problems in your code. Use
the Size field to set the size of your font.
The Margin Indicator Bar check box indicates whether a
vertical indicator bar appears in the margin when you
debug your code. Make sure this option remains selected
so you can use the vertical indicator bar to spot appropriate
lines of code when you are debugging. The VBE places
symbols in the vertical indicator bar to indicate errors and
break points. See Chapter 8 for more information on
debugging.
As you make changes to the font settings for each of the
formatting types, Excel shows you a sample of the
changes in the Sample box.

Set Display Options
for the Code Window

04_591598-ch02.indd 3404_591598-ch02.indd 34 6/11/10 1:40 PM6/11/10 1:40 PM

35

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor

8

0

7
9

You can use the Editor tab in the Options dialog box to set the options shown in the table that follows. Click Tools
and then click Options to access the Options dialog box.

OPTION FUNCTION

Auto Syntax Check Allows the VBE to check the syntax of each line of code immediately after you type it.

Require Variable
Declaration

Requires explicit variable declarations within all modules. See Chapter 3 section
“Understanding Variables and Data Types” for more information.

Auto List Member As you type your code, you see a reminder of the next logical value for completing the
current statement.

Auto Quick Info Displays information about functions and their parameters as you type.

Auto Data Tips Displays the current value of a variable when you position your cursor over the variable
while in Break mode. See Chapter 8 for more information about debugging your VBA code.

Auto Indent After you set a tab location, all following lines start at the same tab location. You specify
the width of the tabs in the Tab Width field. You can set tabs from 1 to 32 spaces apart.

7 Click the down arrow
and select a font.

8 Click the down arrow
and select a font size.

9 Make sure the Margin
Indicator Bar check
box remains selected.

0 Click OK.

• The text in the Code
window changes to
reflect your
modifications.

 Excel sets the
foreground,
background, and
indicator colors for
the category you
selected.

• The selection
appears in the
Sample box.

04_591598-ch02.indd 3504_591598-ch02.indd 35 6/11/10 1:40 PM6/11/10 1:40 PM

36

2
2

1

3

 Excel creates a new
module and opens the
associated Code window.

3 Type the code for your
macro.

• This is the macro name.

1 Click the project to which
you want to add a new
module.

2 Click Insert ➔ Module.

Add a New Module

When you write code, you use variables to store
information. A string is a sequence of
characters that does not represent a numeric

value. A string can consist of letters, numbers, spaces, and
punctuation marks. A variable can hold a number, a string,
or some other type of information. When you tell VBA
exactly what type of information a variable can contain,
you are declaring the variable. A procedure is a sequence
of code that, when executed, performs an action in Excel.
When you record a macro, VBA stores it as a procedure.
VBA uses modules to store variable declarations and
procedures. Whenever you create a new macro by using the
macro recorder, VBA places the procedure in a module and
associates the module with the project. The VBE considers
every open workbook a project.

When you type VBA code into the VBE, you place it in a
module. You must create the module to store your VBA
code. As you add new modules to a project, VBA names
them Module#. The VBE assigns numbers to the modules,
increasing the number by one each time you add a new
module. For example, the VBE names the first module in
the project Module1, the second Module2, and so on.
The Project Explorer lists all of the modules in a project.
When you add a new module, Excel selects that module
in the Project Explorer and creates a blank Code window.
You do not have to create a new module for each procedure
you add to a workbook. You can add multiple procedures to
the same module.

Add a New
Module

04_591598-ch02.indd 3604_591598-ch02.indd 36 6/11/10 1:40 PM6/11/10 1:40 PM

37

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor
5

6

You can easily change the name of a module. When you create a new module, the VBE automatically names the
module Module#, with # representing the sequential number that follows the last module you created — for
example, Module1, Module2, and so on. If you have a project with several modules, distinguishing one module
from another without reviewing the source code can be difficult. You can rename modules with names that reflect
the actions that the contents of the module perform.

Use the Properties window to change the name of a module. In the Project Explorer window, click the name of the
module you want to rename. Press F4 to move to the Properties window. Type a new name in the Name field and
then press Enter. The name of the module changes on the corresponding node in the Project Explorer window.

• The Macro dialog
box lists existing
macros, including
the ones you create
in the VBE.

4 Press Alt+F11 to
move from the VBE
to Excel.

5 Click the Developer
tab.

6 Click Macros in the
Code Group.

04_591598-ch02.indd 3704_591598-ch02.indd 37 6/11/10 1:40 PM6/11/10 1:40 PM

38

2

1
2

3

 The VBE displays a message,
asking whether you want to
export the module before
removing it.

3 Click Yes to export the
module to a file.

 Alternatively, click No if you
want to delete the module
permanently.

1 Click the module you want to
remove.

 If the Project Explorer is not
visible, press Ctrl+R to
display it.

2 Click File ➔ Remove Module
Name, where Module Name
is the name of the selected
module.

 The Remove command
always contains the name
of the selected module.

Remove a Module

Y ou can remove modules from the VBE. Generally,
you remove modules that contain procedures you
no longer need. When you attempt to remove a

module, the VBE gives you the opportunity to export the
module to a file before removing it. If there is any
possibility that you will need to use a procedure in that
module in the future, you should export the module
before removing it.
Exporting a module creates a file with a .bas extension.
These files are text files, and you can open and read them
with any text editor.
Once you have exported a module, you can use the Import
File dialog box to import the module back into the project
from which you exported it or into another project. If you
have modules you want to share with other programmers,

you can export them so the other programmers can import
them. When you import a module file, the VBE tries to
assign it the same name as the original module. If a module
already exists with that name, the VBE adds a sequential
number to the end of the module name. Therefore, if you
named the original module Module1 and a Module1 exists
in the project, Excel names the imported module Module11.
When you remove a module that contains code used by a
macro, you can no longer access the macro. If you remove
a module that contains code referenced by a procedure in
another module, an error message appears when you run
the code.
When you delete macros within Excel, Excel removes the
corresponding VBA code. If a VBA module does not
contain any code, Excel removes the entire module.

Remove
a Module

04_591598-ch02.indd 3804_591598-ch02.indd 38 6/11/10 1:40 PM6/11/10 1:40 PM

39

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor

5 6

4

You do not need to delete a module to save it as a file. If you want to share your code with other VBA developers,
you can simply export the module to a file and then distribute the file. To export, select the module and then click
File ➔ Export File. The Export File dialog box appears. In the Save In field, select the folder in which you want to
save the file. Type a filename in the File Name field and then click Save.

After you export a module to a file, you can import it into any workbook. To import an exported file, click a project
name to select the project into which you want to import the file. Click File ➔ Import File. The Import File dialog
box appears. Use the Look In field to locate the folder in which you saved the exported module. Click the filename
and then click Open. VBA imports the file.

 The VBE removes
the module from
the project and
saves the module
in the folder and
file you specified.

• Module2 no longer
exists.

 The Export File
dialog box appears.

4 Click the down
arrow and select
the folder in which
you want to save
the module code.

5 Type a name for the
module code.

6 Click Save.

04_591598-ch02.indd 3904_591598-ch02.indd 39 6/11/10 1:40 PM6/11/10 1:40 PM

40

2

3
4

1

 The Macro dialog box
appears.

3 Click the macro you want
to hide.

4 Click Edit.

1 Click the Developer tab.

2 Click Macros in the Code
group.

Hide a Macro

Y ou can hide macros so they do not appear in the
Excel Macro dialog box. If you create workbooks
that you intend to share with others, you may

want to hide some of the macros to ensure that users do
not inadvertently delete them.
Because Excel cannot execute a hidden macro from the
Macro dialog box, you must assign the hidden macro to
the Quick Access toolbar, Ribbon, an object, such as a
shape or picture, or have another macro call the macro.
When you hide a macro, shortcut keys will no longer
execute the macro.
To hide a macro, open the module containing the macro
within the VBE and place the Private statement in front

of the Sub statement for the procedure. For example, type
the following to hide the Assign_Values procedure:
Private Sub Assign_Values().
Hiding a macro does not prevent users from viewing or
modifying the macro in the VBE. If you want to keep users
from accessing the macro, you must password-protect the
project containing the macro by changing the properties of
the project. See the section “Set Properties for a Project” for
the details on setting project properties. Locking the project
prevents users from using the VBE to view and modify the
VBA code within that project. To open the project, a user
must enter the correct password. Locking a project limits
user accessibility, but Excel can still execute any macros in
the project.

Hide a
Macro

04_591598-ch02.indd 4004_591598-ch02.indd 40 6/11/10 1:40 PM6/11/10 1:40 PM

41

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor

5

You should hide macros that are called by other macros if you do not want the
user to be able to execute the macro from the Macro dialog box. For example,
you have a macro named Change_Cells that calls another macro named Add_
Cell_Values. You can hide the Add_Cell_Values macro so users cannot
execute it from the Macro dialog box. When you mark a procedure as private by
placing the Private statement in front of the Sub statement for the procedure,
you can access the procedure only from the same code module. In other words,
the hidden macro and the procedure that contains the macro calling the hidden
macro must be in the same code module.

7 Repeat Steps 1
and 2 to open the
Macro dialog box.

• The macro no
longer appears.

 The VBE opens
to the macro you
selected.

5 Type Private
before the Sub
statement.

6 Press Alt+F11 to
return to Excel.

To make a hidden macro
visible again, you need to
access the module
containing the procedure
in the VBE and delete the
Private statement in
front of the Sub statement.

04_591598-ch02.indd 4104_591598-ch02.indd 41 6/11/10 1:40 PM6/11/10 1:40 PM

42

8

4

7

5

2
1

3

 The VBE appears, and opens to
the module that contains your
macro.

5 Click and drag to select the code
in your second macro.

6 Press Ctrl+C to copy the code.

7 Place your cursor at the end
of the last line of code in your
original macro and then press
Enter.

 The VBE creates a new line.

8 Press Ctrl+V to paste the code.

1 Click the Developer tab.

2 Click Macros in the Code group.

 The Macro dialog box appears.

3 Click your original macro.

4 Click Edit.

Update a Macro

Y ou can update a macro at any time by adding or
removing VBA code. After you record a macro,
you can record it again to replace it, but you

cannot modify it in Excel. The only way to modify your
macro is to change the procedure by using the VBE. If
you do not know how to read and write the VBA code
required for the step you want to add to the macro, this
can be quite an undertaking.
Modifying a macro — even one you create with the macro
recorder — requires manually specifying the new VBA
code you want to add to the macro. You can quickly
update an existing macro by recording the code you want
to add to the macro and then using copy and paste to add
the new steps to the old macro.

For example, you create a macro that sums the values in
a column of cells but you forget to change the formatting
of the cell that contains the column total to Currency. You
can record a second macro in Excel that formats the cell,
and then open the VBE, copy the formatting code you
created when you recorded the second macro, and paste it
into the procedure for the first macro. When you copy the
code, be sure you only copy the portion of the procedure
between the Sub and the End Sub statements.
After you copy the code from the second macro into the
first macro, you can delete the second macro. You can
find out more about deleting macros in Chapter 1.

Update
a Macro

04_591598-ch02.indd 4204_591598-ch02.indd 42 6/11/10 1:40 PM6/11/10 1:40 PM

43

Ch
apter 2: U

sin
g th

e V
isu

al B
asic E

ditor
9

!

0

9

When you view the VBA code for your macro, you may notice that an apostrophe (‘) precedes several lines. These
are called comment lines. Programmers use comments to provide information about the code, such as what the
code does, when it was created, and who coded it. When you use the macro recorder to create a macro, any
information you type in the Description box appears as a comment.

Example:
Sub Assign_Values()

 ‘Denise Etheridge

 ‘Example: VBA

 Range(“A1”).Value = 100

End Sub

 The Macro dialog
box appears.

0 Click the second
macro.

! Click Delete.

 The VBE deletes
the macro.

9 Click Tools ➔
Macros.

04_591598-ch02.indd 4304_591598-ch02.indd 43 6/11/10 1:40 PM6/11/10 1:40 PM

44

1

2

1

4

3

Create Sub
Procedures

A block of VBA code that performs a task is a
procedure. A Sub procedure is a special type of
procedure that performs a task but does not

return a value. Every time you record a macro, Excel
creates a Sub procedure. You can view the Sub procedures
in the VBE. You can also use the VBE to create Sub
procedures.
Every Sub procedure begins with the keyword Sub
followed by the name of the Sub procedure and
parentheses. If the Sub procedure does not take any
arguments, the parentheses are empty. If the Sub
procedure does take arguments, you place the arguments
between the parentheses, separated by commas. Sub
procedures end with the keywords End Sub.

Every Sub procedure must have a name. You can name
your Sub procedure anything you want as long as you
follow these naming rules: The name must start with a
letter. The name can contain only letters, numbers, and
underscores and cannot contain any spaces. The name
cannot be longer than 255 characters. The name cannot
be a cell address; for example, you cannot name your Sub
procedure A1. Procedure names in VBA are not case-
sensitive. The name of your Sub procedure should
describe the function the procedure performs. For
example, if your Sub procedure prints a sales report, you
might want to name it PrintSalesReport or
Print_Sales_Report.
You place Sub procedures inside modules. See Chapter 2
to learn more about modules.

Create Sub Procedures

1 Click Insert ➔ Module.

• The VBE creates a new module.

2 Type Sub.

3 Type your procedure’s name.

4 Type parentheses.

 Place arguments the procedure
takes between the parentheses
separated by commas.

• The VBE automatically adds the
words End Sub.

05_591598-ch03.indd 4405_591598-ch03.indd 44 6/11/10 1:40 PM6/11/10 1:40 PM

45

5

A glossary of Sub procedure terms:

TERM DEFINITION

Argument An argument can be a constant, a variable, or an expression that is passed by a calling
procedure.

Constant A value that remains the same.

Function A type of procedure. This is a block of code that performs a task (usually a calculation) and
returns a value.

Expression A combination of objects, numbers, text, operators, and variables that yield a result. A
mathematical equation is an example of an expression.

Procedure A sequence of code that, when executed, performs a task in Excel. There are several types of
procedures.

Sub procedure A procedure that performs a task but does not return a value.

Variable A named location where you store information. In the expression x=1, x is a variable that has
been assigned the value 1.

 In this example, VBA places the number 100
in cell A1.

5 Type your code.

6 Press Alt+F11 to switch from the VBE to
Excel, and then run your macro.

Note: See Chapter 1 to learn how to run a macro.

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

05_591598-ch03.indd 4505_591598-ch03.indd 45 6/11/10 1:40 PM6/11/10 1:40 PM

46

1
1

2 3 4 5 4
2 Type Function.

3 Type your procedure name.

4 Type parentheses.

5 Type arguments between the
parentheses, separated by commas.

• The VBE automatically adds the
words End Function.

1 Click Insert ➔ Module.

• The VBE creates a new module.

Create Functions

Y ou are probably already familiar with functions.
Excel has over 300 predefined functions, with SUM
being the most commonly used. You use the SUM

function to add a list of values. Like a Sub procedure, a
function is a special type of procedure. A function is a block
of code that performs a task — usually a calculation — and
returns a value. There are three types of functions: VBA
functions, worksheet functions, and custom functions.
VBA functions are functions provided by VBA for use in
your VBA code. The MsgBox function is a popular VBA
function explained in detail, along with several other VBA
functions, in Chapter 7. When executed, the MsgBox
function displays a pop-up box with your message. Other
VBA functions obtain input from users, execute another
program, return the current date, or return the current time.

If an analogous VBA function is not available, you can
use an Excel worksheet functions in your code. Chapter 7
explains how to use worksheet functions in detail.
If none of the VBA or worksheet functions suit your
needs, you can create a custom function. Every custom
function begins with the keyword Function followed by
the name of the function and parentheses. If your
function takes arguments, you place the arguments
between the parentheses, separated by commas. Every
Custom Function ends with the keywords End Function.
There are two ways to execute a custom function: by
using the function in a formula or by calling the function
from a procedure. Excel lists custom functions under User
Defined in the Insert function dialog box. See Chapter 7
for more information on custom functions.

Create
Functions

05_591598-ch03.indd 4605_591598-ch03.indd 46 6/11/10 1:40 PM6/11/10 1:40 PM

47

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

6

You can create VBA functions that you can use within Excel to perform calculations. When you create a public
function in the VBE, the function is listed in the Insert Function dialog box that appears when you click Formulas ➔
Insert Function within Excel. The VBE places the functions you create under the User Defined category in the Insert
Function dialog box. You can use these VBA functions in your worksheet to create formulas in the same way that
you use the built-in functions that are standard with Excel. The VBA functions you create are available in the Insert
Function dialog box only when the workbook containing the functions is open. Therefore, if you create a specific
function you want to use in all your workbooks, you should add the function to your Personal Macro Workbook,
Personal.xlsm, to ensure that it is always available from within Excel. The Personal Macro Workbook always opens
with Excel, so any macros and functions it contains are always available. See Chapter 1 for more information on the
Personal Macro Workbook.

• You can use your function
to perform calculations.

6 Type your code.

7 Press Alt+F11 to switch
from the VBE to Excel.

05_591598-ch03.indd 4705_591598-ch03.indd 47 6/11/10 1:40 PM6/11/10 1:40 PM

48

1

 Your code appears in the Code window.

1 Double-click the module that contains the
code you want to document.

Comment Your Code

W ith comments, you can document each step
of your code. You can use comments to
document such things as the person who

created the code, the date when the code was last
updated, the purpose of the code, and the purpose of each
step in the code. When you are working in a collaborative
environment, comments are essential.
In VBA, you start a comment by typing an apostrophe
(‘). When you execute the code, VBA ignores everything
after the apostrophe. Comments and code appear in
different colors. After you add an apostrophe, the VBE
changes the color of the commented text.
You can place an apostrophe anywhere in a line of code,
and VBA views the text after the apostrophe as a
comment. There is an exception to this rule: If you type

an apostrophe within double quotation marks, VBA does
not view it as a comment. For example, VBA would not
view the text after the apostrophe in the following
example as code: Saying = “That’s Life!”.
Comments help only if they provide enough information
to describe the code. A reader should be able to read the
comments without studying the code and still understand
the code. For example, a comment such as “Sums the
values” does not provide enough information about the
code. A comment such as “Sums the values in cells A1
and A2 and places the result in cell A3” is better because
it describes the actual process.
You can turn several lines of code into a comment by
using the Comment Block button on the Edit toolbar.
Later, if you want to make the commented lines code
again, you can click the Uncomment Block button.

Comment
Your Code

05_591598-ch03.indd 4805_591598-ch03.indd 48 6/11/10 1:40 PM6/11/10 1:40 PM

49

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

2

2
2

2

You can use comments when you are testing your code.
If you suspect a line of code is causing your code to run
improperly, you can comment it out and run your
procedure without it. The process eliminates the need
to delete the line of code. You can reactivate the
commented-out code by simply removing the
apostrophe.

In the VBE, you can use the Edit toolbar to comment
out a block of code. To access the Edit toolbar, click
View ➔ Toolbars ➔ Edit. The Edit toolbar appears.
Select the lines of code you want to comment out. Click
the Comment Block button (). The VBE comments
out your code. When you run your procedure, the lines
of code do not execute. To uncomment the lines of
code, select them and then press the Uncomment Block
button ().

 The comments do not affect your code.

2 Type an apostrophe followed by your
comments.

 You can place your comments anywhere.

3 Press Alt+F11 to switch from the VBE to
Excel, and then run the code.

05_591598-ch03.indd 4905_591598-ch03.indd 49 6/11/10 1:40 PM6/11/10 1:40 PM

50

1
1

2
3

2 Name your procedure.

Note: See the section “Create Sub Procedures”
to learn how to name a procedure.

3 Reference cells by using the Cells
method.

• This is a row reference.

• This is a column reference.

1 Click Insert ➔ Module.

• The VBE creates a new module.

Reference Cells and Ranges

A s you write your VBA code, you will frequently
need to reference cells in an Excel worksheet
either to access the information in cells or to put

information there. VBA has several methods you can use
to reference cells.
One method is the Cells method. When using the Cells
method, you use an index to reference a row and column.
For example, if you want to reference cell A1, you type
the word Cells followed by an open parenthesis, the row
reference, a comma, the column reference in quotes, a
close parenthesis, a period, and the word Value. The
period and the word Value are optional. Both of the
following assign the value 1 to cell A1: Cells(1,”A”).
Value = 1, Cells(1,”A”) = 1.

When using the Cells method, you can also use
numbers to identify the column. The first column in your
worksheet is column 1, and each column thereafter is
numbered sequentially. To assign the value 10 to cell E1,
you would type either of the following: Cells(1,5).
Value = 10, Cells(1,5) = 10. Column E is identified
by a 5 because it is the fifth column in a worksheet.
Using numbers to identify a column is preferable because
you can use loops to manipulate your row and column
references. To learn more about loops, see Chapter 6.
If you have a simple procedure and you want to access a
cell, you can enclose the cell reference in square brackets
followed by a period and the word Value. For example,
you can use the following to place the number 25 in cell
B3: [B3].Value = 25.

Reference Cells
and Ranges

05_591598-ch03.indd 5005_591598-ch03.indd 50 6/11/10 1:40 PM6/11/10 1:40 PM

51

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

4

You can also use the Range property to reference cells. The following table illustrates Range syntax:

SYNTAX REFERENCE

Range(“C4”) Cell C4

Range(“B1:B7”) Cells B1 to B7

Range(“D1:D8, F1:H2, F7:H8, G2:G6”) Cells D1 to D8, F1 to H2, F7 to H8, and G2 to G6

Range(“J:J”) Column J

Range(“11:11”) Row 11

Range(“L:M”) Columns L to M

Range(“14:16”) Rows 14 to 16

See Chapter 11 to learn more about the Range property.

 The VBA places the values in the
cells you specified.

4 Reference a cell by using the cell
address.

5 Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to run
a macro.

05_591598-ch03.indd 5105_591598-ch03.indd 51 6/11/10 1:40 PM6/11/10 1:40 PM

52

Y ou use variables to store information for later
use. The following syntax stores information to
a variable.

VariableName = Value

VariableName represents the name you give to the
variable. The equal sign is the assignment operator.
The assignment operator tells VBA you want to assign
something to a variable. Value represents what you want
to assign to the variable. Once you assign a value to a

variable, VBA retrieves the assigned value whenever you
use the variable name. For example, you might make the
following assignment:
x=2

With this assignment, every time VBA sees the variable
x, it interprets it to mean 2. You can change the value
assigned to a variable many times and at any point in
your code.

Understanding Variables
and Data Types

Variable Names

You can name your variables anything you want; however, you must follow these rules:

• The first character of the variable name must be a letter.

• Your variable name cannot include a space or any of the following: . ! @ & $ or #.

• Your variable name cannot exceed 255 characters.

• Generally, you should not use names that are the same as functions, statements, or methods.

• Your variable name must be unique within its scope.

• You do not need to start each word in your variable name with an uppercase letter; however, that is the convention used in
this book. If you develop a convention and use it consistently, you will have an easier time debugging your code.

Data Types

In VBA, a variable can store many data types, including
strings, dates, Booleans, and a variety of number types.
A string is any sequence of characters consisting of any
combination of letters, numbers, or punctuation marks. A
Boolean is a value of either True or False. A number is
a value on which you can perform mathematical operations
such as addition, subtraction, multiplication, and division.

If you do not declare a data type, VBA assigns the default data
type of variant. When a variable is a variant data type, VBA
examines the variable to determine if the value is an integer,
string, date, Boolean, or other data type. When you change the
value assigned to the variable, VBA automatically changes the
data type if needed. For example, if you assign x = True, VBA
evaluates the expression and determines that x is a Boolean. If

you later change the assignment to x = “George”, VBA
reevaluates the expression and determines x is a string. Having
VBA evaluate your variables slows down your code.

When you declare a variable in VBA, you explicitly tell VBA the
variable’s data type. In other words, if your variable contains
an integer, you declare an integer variable. Because declaring
a variable makes your code run faster and more efficiently,
you should make a habit of declaring variables. To ensure that
variables are always properly declared, type Option
Explicit as the first statement in your module. If Option
Explicit is the first statement in your module, your code
does not run if you have any undeclared variables. You must
place the Option Explicit statement at the top of each
module you create.

05_591598-ch03.indd 5205_591598-ch03.indd 52 6/11/10 1:40 PM6/11/10 1:40 PM

53

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

Scope of Variables

Each Excel workbook is a project. Each Sub procedure and function you create is a procedure. You can place multiple
procedures in a single module, and you can have many modules in a project. VBA variables can be procedure-only,
module-only, or public. Only the procedure in which the variable resides can use a procedure-only variable. Any procedure
in a module can use a module-only variable. Any procedure in a project can use a public variable.

Use the Dim statement to declare a procedure-only variable. You place the statement after the Sub statement but before
the procedure code and End Sub statement in a Sub procedure. In a custom function, you place the Dim statement after
the Function statement but before the procedure code and the End Function statement. The following example
includes several Dim statements that declare procedure-only variables:

Example:
Option Explicit

Sub ProcedureOnlyExample()

 Dim EmpLastName As String

 Dim Salary As Long

 Dim StartDate As Date

 ‘Place procedure code here

End Sub

When you want to create a module-only variable that any procedure in a module can use, you place your declarations
before the first Sub or Function statement in the module. You refer to this area of the module as the declarations area.
The example shown here includes several Dim statements used to declare module-only variables.

Example:
Option Explicit

Dim EmpLastName As String

Dim Salary As Long

Dim StartDate As Date

Sub ModuleOnlyExample()

 ‘Place procedure-only declarations here.

 ‘Place procedure code here

End Sub

When you want to create a public variable that any procedure in your project can use, you place your declarations in the
declarations area before the first Sub or Function statement in the module and precede them with the keyword
Public instead of Dim.

Example:
Option Explicit

Public EmpLastName As String

Public Salary As Long

Public StartDate As Date

‘ Place module-only declarations here

Sub PublicVariableExample()

 ‘ Place module-only declarations here.

 ‘ Place procedure code here

End Sub

05_591598-ch03.indd 5305_591598-ch03.indd 53 6/11/10 1:40 PM6/11/10 1:40 PM

54

1
1

2
3

5
6

4

2 Type Option Explicit.

Note: See the section “Understanding
Variables and Data Types” for more
information.

• This is the declarations area.

3 Declare your public variables.

4 Declare your module-only
variables.

5 Name your procedure.

6 Declare your procedure-only
variables.

1 Click Insert ➔ Module.

• The VBE creates a new module.

Declare Variables

Y ou use a variable to store information for later use.
If you are making an assignment to a variable, you
should start by declaring the variable. In its

simplest form, declaring your variable consists of telling
VBA what data type your variable will use.
You can assign one of several data types. Most are listed
in the “Extra” section of this task. Generally, if your data
consists of text or numbers you do not intend to use in a
mathematical calculation, you should declare your data as
a string. If your data is numerical data you do intend to
use in mathematical calculations, you should use one of
the many numeric data types. Use the data type that uses
the least amount of bytes but fully accommodates your
needs. If you do not declare your variables, VBA assigns
a variable type of variant. A variant data type can hold
any type of data. However, declaring your variables

makes your code run faster. You should declare your
variables.
You can declare a variable as procedure-only,
module-only, or public. To learn more, see the section,
“Understanding Variables and Data Types.” You use a
Dim statement to declare a procedure-only or module-only
variable. You type the word Dim followed by the variable
name, the As keyword, and then the variable type — for
example, Dim EmployeeName As String. If you are
declaring a public variable, you replace the Dim keyword
with Public: Public EmployeeName As String.
After you have declared a variable, you assign a value to
it. Type the variable name, followed by an equal sign and
the value you want to assign the variable — for example,
EmployeeName = “John Smith”.

Declare
Variables

05_591598-ch03.indd 5405_591598-ch03.indd 54 6/11/10 1:40 PM6/11/10 1:40 PM

55

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

7

8

You should choose the data type that uses the smallest number of bytes but can accommodate your data. Excel
provides characters you can use to set the data type for a variable. For example, you can use the following syntax to
declare a string: Dim EmployeeName$.

DATA TYPE BYTES USED RANGE OF VALUE DECLARATION CHARACTER

Boolean 2 bytes True or False

Date 8 bytes 1/1/100 to 12/31/9999

Double (negative values) 8 bytes –1.79769313486231E308 to
–4.9406564841247E–324

#

Double (positive values) 8 bytes 4.94065645841247E324 to
1.79769313486232E308

#

Integer 2 bytes –32,768 to 32,767 %

Long 4 bytes –2,147,483,648 to 2,147,483,647 &

Object 4 bytes Any defined object

Single (negative values) 4 bytes –3.402823E38 to –1.401298E-45 !

Single (positive values) 4 bytes 1.401298E-45 to 3.402823E38 !

String 1 per character Varies $

Variant Varies Varies

 VBA places the values in your
variables in the cells you specified.

7 Assign values to your variables.

Note: See the sections “Work with Strings”
and “Work with Numbers” to learn more.

8 Place the values in cells.

9 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

05_591598-ch03.indd 5505_591598-ch03.indd 55 6/11/10 1:40 PM6/11/10 1:40 PM

56

1

2

3

1

2

2 Name your procedure.

3 Declare your variables.

1 Click Insert ➔ Module.

• The VBE creates a new module.

Work with Strings

Y ou can assign strings to a variable so you can use
the string elsewhere in your code. A string is any
sequence of characters consisting of any

combination of letters, numbers, and punctuation marks.
A string can have up to two billion characters. When you
declare a string variable, you type the Dim keyword
followed by the variable name and As String — for
example, Dim SampleString As String.
You can assign a string data type to a variable by typing
the variable name followed by an equal sign and then the
value you want to assign to the variable within quotation
marks. For example, you could use the following syntax
to assign the name John Smith to the string variable
EmployeeName: EmployeeName = “John Smith”.
You can join the contents of two or more strings to create
one string. The process of joining strings is called

concatenation. Use the concatenation operator (&) or the
plus concatenation operator (+) to combine strings. Using
the concatenation operator is the better choice because
the plus concatenation operator can be confused with the
plus arithmetic operator. The expression FirstName =
“David” assigns the string David to the variable
FirstName. The expression LastName = “Jackson”
assigns the string Jackson to the variable LastName. The
expression FullName = FirstName + “ “ +
LastName and the expression FullName = FirstName
& “ “ & LastName both return David Jackson. You
include the double quotation marks separated by a space
(“ “) to leave a space between the first and last names.
You can assign a string to a cell by enclosing the string in
quotes. For example, Cells(2, 1).Value = “Old
Salary” assigns Old Salary to cell A2.

Work with
Strings

05_591598-ch03.indd 5605_591598-ch03.indd 56 6/11/10 1:40 PM6/11/10 1:40 PM

57

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

6

4
5

7

When you declare a string, you can declare it as a fixed-length or a variable-length string. A fixed-length string can
have between 1 and 65,526 characters. When declaring a fixed-length string, you specify the string’s maximum
length in characters. For example, you can use the following syntax to declare a fixed-length string with a maximum
of ten characters: Dim SampleString As String * 10.

When concatenating fixed-length strings, there is the potential for exceeding the declared or maximum length of the
string. VBA does not extend the size of a fixed-length string to store a larger string. If two joined strings form a
string larger than the space allows, VBA truncates the string to fit the allotted space. If each of the strings you want
to join is ten characters in length, you must make the variable that receives the concatenated string at least 20
characters in length, or VBA truncates the string.

 VBA places the values in your
variables in the cells you specified.

4 Assign string values to variables.

5 Concatenate the strings.

6 Assign a variable to a cell.

7 Assign strings to cells.

8 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

05_591598-ch03.indd 5705_591598-ch03.indd 57 6/11/10 1:40 PM6/11/10 1:40 PM

58

1
1

2

3

2 Name your procedure.

3 Declare your variables.

1 Click Insert ➔ Module.

• The VBE creates a new module.

Work with Numbers

T o perform mathematical calculations, you can use
VBA’s seven arithmetic operators: the plus (+),
minus (–), multiplication (*), division (/),

exponential (^), integer division (\), and Mod operators.
You use the plus operator to add, the minus operator to
subtract or negate, the multiplication operator to multiply,
the division operator to divide, and the exponential
operator to raise to a power.
The integer division operator divides two values and
returns only the integer portion of the result. VBA
discards the remainder when you use this operator. For
example, the expression X = 10\3 returns 3. The Mod
operator divides two numbers and returns only the
remainder. For example, the expression X = 10 Mod 3
returns 1. This operator works well for predetermining if

a value divides evenly. If the Mod returns a zero, the
value divides evenly.
You can assign the results of a mathematical calculation
to a variable, and you can include cells and variables in
your calculations. All of the following are valid: A = 5,
X = A + 25, X = 5 + 7, X = 9 + Cells(1,1).Value.
When you perform a mathematical calculation in VBA, you
must be careful of precedence — the order in which VBA
performs calculations. VBA performs calculations from left
to right, performing multiplication and division before
addition and subtraction. For example, the formula = 3 +
4 * 2 returns 11; VBA multiplies 4 times 2 and then adds
3. If you want to change the order of precedence, use
parentheses. Excel calculates numbers in parentheses first.
The formula = (3 + 4) * 2 returns 14; VBA adds 3 plus
4 and then multiplies the result by 2.

Work with
Numbers

05_591598-ch03.indd 5805_591598-ch03.indd 58 6/11/10 1:40 PM6/11/10 1:40 PM

59

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

4

5

The following table shows the precedence order, from highest to
lowest, that VBA uses to evaluate operators in formulas. If the
operators in the formula have the same order of precedence, Excel
evaluates the equation from left to right.

PRECEDENCE OPERATORS SYMBOL

1 Exponentiation ^

2 Minus sign – (negates a number before
any calculations)

3 Multiplication and
division

* /

4 Integer division \

5 Modulus arithmetic Mod

6 Addition and
subtraction

+ –

 VBA places the values in your
variables in the cells you specified.

4 Assign numeric values to variables.

• You can perform mathematical
calculations.

5 Assign variables to cells.

6 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

You can assign a number to a cell. For
example, Cells(2, 2).Value =
80000 assigns 80000 to cell B2.
When assigning a number to a cell,
do not enclose the number in quotes.

05_591598-ch03.indd 5905_591598-ch03.indd 59 6/11/10 1:40 PM6/11/10 1:40 PM

60

1
1

3
2

4

2 Name your procedure.

3 Create your constant.

4 Declare your variables.

1 Click Insert ➔ Module.

• The VBE creates a new module.

Create a Constant

I f you often use a value that never changes, you can
declare it as a constant. For example, there are four
quarters in a year. If, in your code, you frequently

divide an annual amount by four to allocate amounts to
quarters, you can store 4 to a constant named NbrOfQtrs
and use the constant when performing calculations. When
you review your code and see the constant name, you
instantly know you are dividing by the number of quarters,
whereas if you use the number 4, the true meaning of the
number is not as readily apparent. In short, using constants
makes your code easier to understand. After you assign a
constant a value, you cannot alter the value.
When you declare a constant, you specify the data type.
Constants use the same data types that variables use. As
with variables, if you do not specify a data type, VBA
treats the value as a variant.

If you want your constant to be available only to the
procedure in which it was created, declare your constant
after the Sub or Function statement. If you want your
constant to be available to all of the procedures in your
module, declare your constant in the declarations area. If
you want your constant to be available to any procedure
in the workbook, declare your constant in the
declarations area and use the Public keyword.
Declaration examples: Const NumOfQuarters As
Integer = 4, Public Const Region As String =
“New York”

To name your constant, you use the same naming rules
used for variables. For more information, see the section
“Understanding Variables and Data Types” earlier in this
chapter.

Create a
Constant

05_591598-ch03.indd 6005_591598-ch03.indd 60 6/11/10 1:40 PM6/11/10 1:40 PM

61

Ch
apter 3: In

trodu
cin

g V
isu

al B
asic for A

pplication
s

5
6

7

VBA provides a large number of built-in constants that you can insert into your code at any point without declaring
them. The Excel VBA object model adds many more, all of which begin with either xl or vb. Each constant has a
numeric value. You can use these constants anywhere, and you do not need to know their numeric value to use them.
Two of the most commonly used VBA constants deal with inserting carriage returns, vbCrLf, and tab characters,
vbTab, in your output. Although each of these constants has a numeric equivalent, you simply type the name of the
appropriate constant value in your code. To find a list of all VBA and Excel VBA Object Model constants, press F2 to
view the Object Browser and search for Constant. Most of the constant values are self-explanatory, based on the
name. The appendix also includes many of the constant values used in this book. You can also find a listing of
constants by typing constant in the Help text box.

 VBA places the values in the cells you
specified.

5 Assign a value to a variable.

6 Use your constant in a calculation.

• The result is stored in a variable.

7 Assign values to cells.

8 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

05_591598-ch03.indd 6105_591598-ch03.indd 61 6/11/10 1:40 PM6/11/10 1:40 PM

62

Worksheet Object

Every worksheet in Excel is a Worksheet object. Every
Worksheet object is part of the Worksheets collection.
You can use Worksheet methods to do things such as add,
delete, or copy a worksheet. See Chapter 10 for more
information about working with the Worksheet object.

Chart Object

Every chart in a workbook is a Chart object. You can embed
a chart in a worksheet or you can place a chart on a chart
sheet. The ChartObject object holds Chart objects you
embed in a worksheet. All ChartObject objects are part of
a ChartObjects object collection. Chart objects you place
on a chart sheet are part of the Charts collection. See
Chapter 15 for more information about working with charts.

Range Object

The Range object enables you to reference an individual cell
or a range of cells. Several different methods and properties
use Range objects. See Chapter 11 for more information on
the Range object. The following references cell B3:

Range(“B3”)

Application Object

You usually need to reference the parent object when
referencing the child object. For example, to access the
second worksheet in the current workbook, you would type
ThisWorkbook.Worksheets(2).

The Application object represents the entire Excel program. All
other objects are children of the Application object in the
Excel object model. The Application object has several
properties and methods. Those that return the most common
user-interface values, such as the ActiveCell property, do
not require the use of the Application object in the
statement. Both of these statements are valid:

Application.ActiveCell

ActiveCell

Workbook Object

Every workbook you open in Excel is a Workbook object.
Every Workbook object is part of the Workbooks collection.
The Workbooks collection is part of the Application
object. You can use the Workbook object methods to do
things such as save or close a workbook. See Chapter 9 for
more information on working with the Workbook object.

Excel Objects

O bjects are the individual pieces of an application.
For example, a worksheet is an object, a range
of cells is an object, and a chart is an object. You

can use the Excel object model to interact with objects.
Using the object model, you can access everything from
the entire application to an individual cell in a worksheet.
Objects can have properties and methods. You use
methods to perform actions on objects, such as move an

object. You use properties to change the characteristics of
an object, such as the color of an object.
Excel has an enormous number of objects, properties,
and methods, and remembering all of them is virtually
impossible. Luckily, the VBE provides a help system to
help you quickly locate objects and determine the
corresponding methods and properties that are available
for the object. You can learn how to work with objects by
performing the tasks in this chapter.

Discover the Excel
Object Model

The Excel object model has several hundred objects and
thousands of corresponding properties and methods. Each object
represents an element of the Excel application. For example, the
Application object refers to the entire Excel application, and
the Worksheet object refers to an individual worksheet.

Most objects have child objects. A child object is an object that
is part of a larger object. For example, a Worksheet object is a
child object to a Workbook object because worksheets are part
of a workbook. All objects in the Excel object model except the
Application object is a child of at least one other object. The
Excel Application object is the parent of all objects in Excel.

The object model groups common objects into collections. For
example, the Workbook object identifies an individual workbook,
but the Workbooks collection refers to all open workbooks.

Although the list of available objects is extensive, there are six
objects that you use frequently: Application, Workbook,
Worksheet, Chart, Range, and Dialog. Because you use
these objects frequently, it is a good idea to familiarize yourself
with them.

06_591598-ch04.indd 6206_591598-ch04.indd 62 6/11/10 1:43 PM6/11/10 1:43 PM

63

Ch
apter 4: In

trodu
cin

g th
e E

xcel O
bject M

odel

Dialog Object

The Dialog object references each of the built-in dialog boxes available in Excel. Excel stores these dialog boxes in the
Dialogs collection. VBA identifies each dialog box by assigning it a constant value. The constant value begins with
xlDialog followed by the name of the dialog box. For example, xlDialogSaveAs references the Save As dialog box. You
can use the constant value associated with a dialog box to view the dialog box. You view individual dialog boxes by using the
Show method. The Dialog object refers to existing dialog boxes. For information on creating dialog boxes, see Chapter 14.

Excel Objects (continued)
Ch

apter 4: In
trodu

cin
g th

e E
xcel O

bject M
odel

Excel Properties

Each object in the Excel object model has properties.
Properties enable you to view or change the
characteristics of an object. For example, you can use
the Value property to change the value of a cell. You
can also use properties to change other aspects of an
object. For example, you can use the Hidden property
to hide or unhide a worksheet. To change an object
property, you combine the object name with the property
name and then assign a property, as follows:

Range(“A1”).Value = 45

Excel Methods

Each object in the Excel object model has methods. You
use methods to perform actions on objects. For example,
you can use the Copy method to copy a worksheet and
place the copy in a specified location.

To use a method with an object, you combine the object
name with the method name, as in the following
example:

Worksheets(1).CopyAfter:=Worksheets(3)

Object Collections

You can have multiple objects of the same type, such as multiple worksheets in a workbook. To make these objects more
accessible, VBA groups them together in an object collection. For example, each Workbook object contains a
Worksheets collection. You access a collection in a manner similar to the way you access an array. You use an index
value to reference the desired object in the collection. The following code accesses the second worksheet in the
Worksheets collection:

Worksheets(2)

Glossary

TERM DESCRIPTION

Object An element in an application, such as a worksheet, chart, or form. You can use VBA to manipulate
objects.

Properties The characteristics of an object, such as its color, size, or location.

Methods The actions VBA can perform on an object, such as copy, save, or move. For example, you can use
methods to copy, save, or move a worksheet.

06_591598-ch04.indd 6306_591598-ch04.indd 63 6/11/10 1:43 PM6/11/10 1:43 PM

64

1 2

3

4

 A list of the objects in the
Excel object model
appears.

4 Click the object for which
you want more
information.

1 Click Help in the VBE.

 A menu appears.

2 Click Microsoft Visual
Basic for Applications
Help.

• The Excel 2010 Developer
Reference window
appears.

3 Click Excel Object Model
Reference.

Access the Excel Object Model Reference

W hen you want to know what objects are
available to you and the properties and
methods associated with those objects, you

can refer to the Excel Object Model Reference, which is
part of the VBA help system. The Excel Object Model
Reference provides documentation on every object,
method, property, and event in the Excel object model. An
event occurs in Excel whenever the user performs any
type of action. You can use events to trigger the execution
of a procedure by creating event-handling procedures. See
Chapter 17 to learn more about events.
The Excel Object Model Reference explains every object,
and provides you with sample code. You can cut and
paste the sample code into the VBE and then run it in
Excel. The Excel Object Model Reference explains each

method, provides you with the syntax for each method,
explains the parameters associated with each method,
and provides you with sample code for most methods.
The Excel Object Model Reference also explains each
object property and event and provides you with the
syntax and sample code for most properties and events.
When using the Excel Object Model Reference, you can
access the information you want in several ways. When
you type the name of an object, method, property, or
event into the Search field, the Excel Object Model
Reference brings back a list of topics. You can then click
the topic of interest to you. You also can select topics
from the Developer Reference Table of Contents, which
appears when you access help.

Access the Excel Object
Model Reference

06_591598-ch04.indd 6406_591598-ch04.indd 64 6/11/10 1:43 PM6/11/10 1:43 PM

65

Ch
apter 4: In

trodu
cin

g th
e E

xcel O
bject M

odel

5

You can use the Object Browser to access a
list of objects, properties, and methods
available for your use. You open the Object
Browser by pressing F2, or by choosing View
➔ Object Browser from the menu while in the
VBE. In the field in the upper left corner of the
browser, select Excel to access the Excel
Object Model Reference. Use the Search field
in the upper left corner to search for the object
you want to find. When you find what you are
looking for, click it and then click the question
mark at the top of the window for help.

 Information on the
topic or a menu of
additional choices
appears.

 If a menu appears,
choose an option,
Excel displays
information on the
topic you selected.

 A window with links
to the properties,
methods, and
events appears.

5 Click the
subcategory or
topic in which you
are interested.

As you type your code, the
VBE provides you with a
list of properties, methods,
and constants that you can
use with the object for
which you are creating a
command.

If you position your cursor over
a keyword in your code and
then right-click, a contextual
menu appears. Click List
Properties/Methods to see a
list of properties or methods
that you can use with the
keyword. Click List Constants
to see a list of constants that
you can use with the keyword.
Click Parameter Info to see a
list of parameters.

06_591598-ch04.indd 6506_591598-ch04.indd 65 6/11/10 1:43 PM6/11/10 1:43 PM

66

4

1

3

2

3 Use a Set statement to
assign an object to the
variable you created.

4 Assign the object
properties.

• Assigns a text to a cell.

• Places a thick border at
the bottom of the cell.

1 Name your procedure.

2 Declare your object
variable.

Create an Object Variable

Y ou can reference objects by typing the complete
object reference each time you want to reference
the object, or you can assign an object to a

variable. You assign objects to variables because variable
names are usually shorter and easier to remember, and
you can change the objects that variables refer to while
your code is running. In addition, VBA code runs faster
when you use object variables.
You declare object variables in much the same way as
you declare a standard variable. You use the Dim
statement to declare the variable and the As statement to
identify the variable as an object variable. The data type
for the variable is the corresponding object type. For
example, the statement Dim SampleVar As Worksheet
creates an object variable named SampleVar that is a
Worksheet object.

After you create an object variable, you assign an object
to the variable by using a Set statement. The following
statement assigns Sheet1 to SampleVar:
Set SampleVar = ActiveWorkbook. _

Worksheets(“Sheet1”)

When you assign an object to a variable, you are
assigning a reference to the object to the variable and not
the actual object value. For example, when you assign a
range to a variable without using a Set statement, you
are assigning the value in the cell to the variable. When
you assign a range to a variable using a Set statement,
you reference the actual cells. Assigning a range to a
variable by using the Set statement enables you to use
the variable to set properties for the range.

Create an
Object Variable

06_591598-ch04.indd 6606_591598-ch04.indd 66 6/11/10 1:43 PM6/11/10 1:43 PM

67

Ch
apter 4: In

trodu
cin

g th
e E

xcel O
bject M

odel

If you want to refer to the currently selected worksheet,
you can use the ActiveSheet property. You can use this
property in place of an object reference to the worksheet,
such as Worksheets(1), which refers to the first
worksheet in a workbook. By using the ActiveSheet
property, you reference the active worksheet at the time
your procedure executes. For example, SheetName =
ActiveSheet.Name assigns the name of the currently
active worksheet to the SheetName variable.

The ActiveSheet property can refer to any type of sheet
within a workbook. Therefore, if the currently selected
sheet is a chart sheet, the ActiveSheet property returns
a reference to the chart sheet. See Chapter 10 for more
information on working with worksheets.

When you create object variables, you are essentially
creating an object reference. Unlike a standard variable,
which is the name of a memory location containing the
variable’s value, an object variable is the memory
location that stores a reference to the object. For
example, in the following code, ObjVar stores the
reference to cell B2 in the worksheet.

Example:
Dim ObjVar As Range

Set ObjVar = ActiveSheet.Cells(2, 2)

• The macro places
the text you
specified in the cell
you specified, adds
a thick border to
the bottom of the
cell, makes the font
bold, and sets the
font color to blue.

• Makes the font
bold.

• Makes the font
color blue.

• Right-aligns the
text.

5 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

06_591598-ch04.indd 6706_591598-ch04.indd 67 6/11/10 1:43 PM6/11/10 1:43 PM

68

4

1
2

3

3 Use a Set statement to
assign an object to the
variable you created.

4 Assign the object
properties by using a
With statement.

• Assigns text to a cell.

• Places a thick border at
the bottom of the cell.

• Right-aligns a cell.

1 Name your procedure.

2 Declare your object
variable.

Change the Properties of an Object

Y ou can change the value of an object, its
appearance, and other characteristics by
modifying the properties associated with the

object. For example, when working with a cell on a
worksheet, you use the Value property to change the
value of the cell. If you want to change the font style, you
modify Font object properties, such as Bold, Italic,
Underline, and Size.
If you want to make several property changes to the same
object, you can create a statement for each property you
want to change. For example, you can enter the following
statements to change the properties of a cell:
Active Sheet.Range(“B1”).Value = “Sales”

Active Sheet.Range(“B1”).Borders _
(xlEdgeBottom).LineStyle = xlContinuous

Active Sheet.Range(“B1”).Borders _
(xlEdgeBottom).Weight = xlThick

Active Sheet.Range(“B1”).Font. _
Bold = True

Active Sheet.Range(“B1”).Font. _
Color = RGB(0, 0, 255)

You can simplify these statements by assigning
ActiveSheet.Range(“B1”) to an object variable and
then referencing the variable for each statement. For
example, you can assign ActiveSheet.Range(“B1”) to
the variable Title and type Title.Value = “Sales”.
You can simplify the statements even further by using a
With statement. Instead of typing the object variable
reference, you simply type With VariableName followed
by each property statement. When you complete your list
of property settings, you type End With to mark the end
of your With statement. You can nest your With
statements to further simplify your code.

Change the Properties
of an Object

06_591598-ch04.indd 6806_591598-ch04.indd 68 6/11/10 1:43 PM6/11/10 1:43 PM

69

Ch
apter 4: In

trodu
cin

g th
e E

xcel O
bject M

odel

Some objects, such as the Font object, have a Color property that determines the color of the object. You can use
the RGB function to set the font color. When you use this function, you select the desired color by indicating the
amount of red, green, and blue in the color. You specify the color values with an integer value between 0 and 255.
For example, you type (0,0,0) for the color black.

COLOR RED VALUE GREEN VALUE BLUE VALUE

Black 0 0 0

Blue 0 0 255

Cyan 0 255 255

Green 0 255 0

Magenta 255 0 255

Red 255 0 0

White 255 255 255

Yellow 255 255 0

• The macro places
the text you
specified in the cell
you specified, adds
a thick border to
the bottom of the
cell, makes the font
bold, and sets the
font color to blue.

• Makes the font
bold.

• Makes the font
color blue.

• With statement.

• Nested With.

5 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

06_591598-ch04.indd 6906_591598-ch04.indd 69 6/11/10 1:43 PM6/11/10 1:43 PM

70

1

2

3

3 Assign objects to your
object variables.

1 Name your procedure.

2 Declare your variables.

Compare Object Variables

Y ou can use an object comparison to determine if
two object variables reference the same object.
Unlike standard variables, which actually contain

values that you can compare, the object variable does not
contain the object, but references it. When you compare
two object variables, you are checking to see if they
reference the same object. For example, you may want to
find out if the currently active worksheet is the first
worksheet. If so, you can perform an object comparison.
When you compare standard variables, you use the
equals (=) operator to determine if they are the same. For
example, If Value1 = Value2 Then compares two
standard variables. See Chapter 3 for more information
on working with standard variables.

When comparing objects, instead of the equals operator,
you use the Is operator. For example, you write an If
Then statement to compare two object variables as
follows: If ObjVal1 Is ObjVal2 Then.
This statement looks at the object referenced by ObjVal1
and checks to see if it is the same as the object referenced
by ObjVal2.
In addition to comparing two objects, you can also use the
Is operator to determine if an object variable has an
assigned value, as shown in the following example: If
ObjVal1 Is Nothing Then. This comparison statement
returns a value of True if the object variable does not
reference an object. If the object variable references to an
object, the comparison statement returns a value of False.

Compare Object
Variables

06_591598-ch04.indd 7006_591598-ch04.indd 70 6/11/10 1:43 PM6/11/10 1:43 PM

71

Ch
apter 4: In

trodu
cin

g th
e E

xcel O
bject M

odel

4
5

You can also use the Is operator with the Nothing keyword to ensure that an object variable points to a valid
object. You can compare the value of the object variable to the Nothing keyword by using an If Then statement,
as shown in the following example. If the If Then statement returns a value of True, the object variable does not
contain a reference to a valid object.

Example:
If ObjVar Is Nothing Then

 MsgBox (“Variable does not reference a valid object.”)

End If

You can use the Nothing keyword to clear the object variable. By doing so, you free up the memory required to
store the object reference in the object variable.

Example:
Set ObjVar = Nothing

 If you are on Sheet1,
the macro returns
the value True;
otherwise, it returns
the value False.

4 Compare the objects
and assign the
result to a variable.

5 Display the result
using the MsgBox
function.

6 Press Alt+F11 to
switch from the VBE
to Excel, and run the
macro.

06_591598-ch04.indd 7106_591598-ch04.indd 71 6/11/10 1:43 PM6/11/10 1:43 PM

72

1
2

3

4

4 Use a method to perform an action
on an object.

 In this example, you use the
Delete method to delete a range.

• The Range object.

• The Delete method.

• Assigns arguments to the method.

 This argument is a constant that
tells VBA to shift cells to the left
after deleting.

5 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

1 Name your procedure.

2 Declare a Range object variable.

3 Store an object to an object
variable.

Using an Object Method

Y ou use Excel object methods to modify or perform
an action on an object. The Excel object model
contains several hundred objects, and each object

has a list of methods you can use with it. For example,
you can use the Copy method to copy a Worksheet object
and then place the copy in another location.
To use an object method, you specify the appropriate
object, followed by a period and the method you want to
use. If the selected method has arguments, you place the
arguments after the method:
Worksheet(“Sheet2”).Copy Before:=
Worksheet(“Sheet1”)

In this example, the code copies Sheet2 and places the
copy before Sheet1 in the current workbook.

Worksheet(“Sheet2”) is the object, Copy is the method,
and Before:= Worksheet(“Sheet1”) is the argument.
Most methods take arguments. Arguments tell VBA how
to modify the object. Usually, at least one argument is
required. In this example, the Copy method requires you
use either the Before or After argument to tell VBA
where to place the copied worksheet. Use the Before
argument to specify the sheet before which you want to
place the copied worksheet. Use the After argument to
specify the sheet after which you want to place the copied
worksheet. See Chapter 10 for more information about
copying Excel worksheets.

Using an
Object Method

06_591598-ch04.indd 7206_591598-ch04.indd 72 6/11/10 1:43 PM6/11/10 1:43 PM

73

Ch
apter 4: In

trodu
cin

g th
e E

xcel O
bject M

odel

You can use named arguments with functions, methods, and statements. Using named arguments is an easier way
to supply your functions, methods, and statements with the arguments, especially when a large number of
arguments are required. If you do not use a named argument, you supply arguments by placing them after the
method, enclosed in parentheses and separated by commas in the order VBA expects them. For example, the
Worksheet object’s Protect method has 16 optional arguments. If you do not use named arguments, then
calling this property requires a placeholder for each argument to specify a value for each parameter, as shown in
this example:

Example:
Worksheets(1).Protect(“Excel”, , , , , , , , , , , , , ,True,)

If you use named arguments, you can provide the arguments in any order. You assign a value to the argument by
using a colon followed by an equals sign (:=).

Example:
Worksheets(1).Protect Password:= _

 “Excel”, AllowFiltering:=True

 The worksheet after
you run the macro.

• The macro deletes
the range.

 The worksheet
before you run the
macro.

06_591598-ch04.indd 7306_591598-ch04.indd 73 6/11/10 1:43 PM6/11/10 1:43 PM

74

1

2

2 Type your command.

• The Show method.

• The title.

1 Create a new procedure.

Display a Built-in Dialog Box

Y ou can incorporate code into your procedure that
opens a built-in Excel dialog box. The Excel object
model contains a Dialog object for each Excel

dialog box. These objects are part of the Dialogs
collection. You can access each of the Excel dialog box
objects by specifying its constant value. The constant
value for each dialog box begins with xlDialog followed
by the name of the dialog box. For example, the constant
for the Excel Save As dialog box is xlDialogSaveAs.
You can find a complete list of the dialog box constants
in the help that comes with the VBE by typing
XlBuiltInDialog in the Search field and then clicking
XlBuiltInDialog Enumeration.
You use the Show method to display a built-in dialog box.
You cannot access the values that a user places in the

fields. You can only determine what the user selects by
looking at the results after the user dismisses the dialog
box. You can use arguments to assign values to a dialog
box. For example, the Properties dialog box
(xlDialogProperties) has the following arguments:
Title, Subject, Author, Keywords, and Comments. You
can enter the values for these arguments before you open
your dialog box. For a list of the arguments associated
with each dialog box, type Built-In Dialog Box
Arguments List in the Search field and then, in the list
of options that appears, click Built-In Dialog Box
Arguments Lists. If you want to use named arguments to
assign values to the arguments, use Arg1 for the first
argument, Arg2 for the second argument, and continue
in this manner. For example, if you are working with the
xlDialogProperties dialog box, you can use Arg1 for
Title and Arg2 for Subject.

Display a Built-in
Dialog Box

06_591598-ch04.indd 7406_591598-ch04.indd 74 6/11/10 1:43 PM6/11/10 1:43 PM

75

Ch
apter 4: In

trodu
cin

g th
e E

xcel O
bject M

odel

Excel has hundreds of dialog boxes that appear throughout the application. You can display them by using the
appropriate constant. The following table lists a few of the most commonly used Excel dialog boxes:

CONSTANT DISPLAYS

xlDialogFileDelete The Delete dialog box, where you select files to remove

xlDialogInsert The Insert dialog box for adding additional cells to a worksheet

xlDialogNew The New dialog box

xlDialogOpen The Open dialog box

xlDialogPrint The Print dialog box

xlDialogSaveAs The Save As dialog box

 The macro adds the
arguments to the
dialog box and then
opens the dialog box.

• The subject.

3 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

06_591598-ch04.indd 7506_591598-ch04.indd 75 6/11/10 1:43 PM6/11/10 1:43 PM

76

1
2

3

Declare
an Array

I f you have a group of related values of the same data
type, you can declare them as an array. You declare
an array in much the same way you declare other

variables and, as with other variables, you can declare
arrays as either local or global. You set the scope of an
array with the Dim or Public statements. See the section
“Understanding Variables and Data Types” in Chapter 3
for more information about setting the scope of a
variable.
You can use arrays to store a group of related data. Using
arrays simplifies your code because you can use one
variable to store several values. For example, you can
declare an array and use it to store all 12 months of the
year instead of creating a separate variable for each
month.

When you declare an array, you specify the number of
elements in the array. For example, the declaration Dim
Month(1 To 12) As String declares 12 elements
numbered sequentially 1 through 12. In the example, the
Month array has 12 elements with a lower bound of 1
and an upper bound of 12.
An element is a data value in the array. You access the
elements in an array by using the index value that
represents the desired element. Elements are sequentially
numbered. The lower bound of an array is the lowest
index value, and the upper bound of an array is the
highest index value. To access the second element of the
Month array, use the index value of 2, as in Month(2).

Declare an Array

1 Name your procedure.

2 Declare your array.

Note: For more information on
data types, see Chapter 3.

3 Assign values to the array
elements.

• A number enclosed in
parentheses identifies
each element.

07_591598-ch05.indd 7607_591598-ch05.indd 76 6/11/10 1:42 PM6/11/10 1:42 PM

77

4

When you specify the size of an array, you indicate the upper and lower bounds of the array, or the first and last
index values. In the example, Dim NewArray(1 To 45), the statement creates an array with 45 elements with a
lower bound of 1 and an upper bound of 45. You can omit the lower bound value when you declare an array, as in
the example, Dim NewArray(45). If you do not specify the lower bound, VBA assigns a lower bound value of 0.
Therefore, the array NewArray actually has 46 elements starting with the first element 0 and ending with the final
element 45.

If you want all your arrays to have a lower bound value of 1, place the following statement before any procedures in
your module: Option Base 1. Making your arrays one-based is desirable because Microsoft Excel collections are
one-based and the arrays that Excel methods and properties return are one-based. If your arrays are also one-
based, your code is easier to debug.

 Excel places the values in the
array in the specified cells.

4 Use the Cells method to assign
the values in the array to cells in
the spreadsheet.

Note: For more information, see the
section “Reference Cells and Ranges”
in Chapter 3.

5 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

Note: See Chapter 1 to learn how to
run a macro.

Ch
apter 5: U

n
derstan

din
g A

rrays

07_591598-ch05.indd 7707_591598-ch05.indd 77 6/11/10 1:42 PM6/11/10 1:42 PM

78

1

3

3

2

3 Specify the range in your
Excel worksheet in which
VBA will place the contents
of your array.

1 Name your procedure.

2 Declare your multidimensional
array.

Declare a Multidimensional Array

Y ou can use a multidimensional array to store
related values within one array. VBA allows you
to create arrays with up to 60 dimensions.

However, working with arrays that have more than two
or three dimensions is unusual.
By using multidimensional arrays, you can store related
values in one location. For example, you can store team
numbers and game scores. The first dimension of the array
can contain the team’s number, and the second dimension
can contain the team’s score. To help envision a
multidimensional array, try thinking of a two-dimensional
array as a worksheet, with rows and columns. You access
each element of the array by specifying two index values.
For example, MultiArray(1,2) accesses the value whose
first dimension index is 1 and whose second dimension
index is 2 — or first row, second column.

As you add a third dimension to an array, it gains depth.
Using the worksheet example, you can add a third dimension
to the two-dimensional array to make it resemble a cube.
Accessing an element of the array now requires three index
values, as in the example MultiArray(1,2,2) — first
row, second column, two deep.
As with other variables, you use the Dim statement to
declare procedure-only arrays and module-only arrays,
and the Public statement for arrays that are accessible
to the entire workbook.
When you declare a multidimensional array, you indicate
the size of each dimension in the array. You do not have
to make the dimensions in the array equal. In the example
Dim MultiArray(1 To 4, 1 To 5, 1 To 3), the
array contains four elements in the first dimension, five in
the second, and three in the third.

Declare a
Multidimensional Array

07_591598-ch05.indd 7807_591598-ch05.indd 78 6/11/10 1:42 PM6/11/10 1:42 PM

79

Ch
apter 5: U

n
derstan

din
g A

rrays

4

5

You can assign the contents of an array to a series of cells in a worksheet
by using the Value property of the Range object. To learn more about
the Range object, see Chapter 11. When you create a Range object, you
can specify the cells you want to include in the range by using the Set
statement. As the macro runs, VBA places any values you assign to the
Range object in the corresponding cells in your worksheet.

Example:
Dim CellRange As Range

Set CellRange = Range(Cells(2,1), Cells(4,3))

CellRange.Value = TeamScores

The Set statement assigns the range of cells to the Range object. You
specify the range by using the Cells property to determine the starting
and ending cells for the desired range. After you specify the desired range,
you assign the contents of an array to the cells in the range by using the
Value property.

 The values in the array
appear in cells in your
worksheet.

4 Assign values to the
array elements.

5 Assign the array values
to the cells you specified
in Step 3.

6 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

When you use a multidimensional
array, all elements of the array
must have the same data type. If
you plan to use the array to store
different types of values, such as
strings and numeric values, you
must declare your array as variant.

Example:
Dim MultiArray (1 To 4, 1
To 5, 1 To 3) As Variant

07_591598-ch05.indd 7907_591598-ch05.indd 79 6/11/10 1:42 PM6/11/10 1:42 PM

80

1

2

3

3 Assign values to your array.

1 Name your procedure.

2 Declare your array.

Convert a List to an Array

B y converting a list of values to an array, you can
access the individual values quickly using one
variable. You can use a variety of methods to

convert a list of values to an array.
You can assign values to your array by referencing the
index values of each element. Arrays use index values to
identify their elements. For example, if an array has ten
elements with a lower bound of 1, the third element in
the array has an index value of 3. To assign a value to an
array, you specify the index values that correspond to the
appropriate array element. For example, the following
code assigns a value of 45 to the third array element:
SampleArray(3) = 45.
With large arrays, assigning values to each element of the
array in a statement using the above method can be

cumbersome. Using a For Next loop is more efficient;
you simply create a For Next loop to cycle through the
entire array. For Next loops work best for adding values
either from a series of cells or when values are
incremental. See Chapter 6 for more information about
working with For Next loops.
You can use the Array function to add a list of values to
an array. The Array function adds values to the array by
starting at the lower bound of the array and then adding
values consecutively. For example, the following code adds
the values “One”, “Two”, and “Three” to SampleArray:
SampleArray = Array(“One”, “Two”, “Three”).
You can produce the same results by specifying each
element individually; for example, you can assign a value
to the first element of the array, as follows:
SampleArray(1) = “One”.

Convert a List
to an Array

07_591598-ch05.indd 8007_591598-ch05.indd 80 6/11/10 1:42 PM6/11/10 1:42 PM

81

Ch
apter 5: U

n
derstan

din
g A

rrays

4
5

The Array function
uses the variant data
type. As a result, you
can have different
data types in a single
array. As shown in
the example in this
section, you can add
both strings and
numeric values to the
same variable when
using the Array
function.

 The values in the array appear
in cells in your worksheet.

4 Set the Range property.

5 Assign the values in the array
to the range.

6 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

You can use the ReDim statement to change the size of the array after you create it.
You can also use the Array function more than once in the same procedure to
reassign the values in the array. See the section “Redimension an Array” for more
information on resizing an array.

You can use the following code to assign the numbers 1 to 10 to an array. See
Chapter 6 for more information on For Next loops.

Example:
Sub AssignNumbers()

 Dim X as Integer

 Dim RecNo(1 To 10) As Integer

 For X =1 To 10

 RecNo(X) = X

 Cells(X,1) = RecNo(X)

 Next

End Sub

07_591598-ch05.indd 8107_591598-ch05.indd 81 6/11/10 1:42 PM6/11/10 1:42 PM

82

3

5

7

8

1

9

0

!

@

#

2

4

6

9 Redimension the array.

0 Assign values to the variable elements.

! Place the contents of the variables into
cells.

@ Preserve the first four elements and add
space for three more.

Assign values to the three new elements.

1 Name your procedure.

2 Declare a dynamic array.

3 Set the initial dimension size.

4 Assign a value to the variable element.

5 Place the contents of the variable in a
cell.

6 Redimension the array.

7 Assign values to the variable elements.

8 Place the contents of the variables in
cells.

Redimension an Array

V BA lets you declare two types of arrays: fixed-
size and dynamic arrays. When you declare a
fixed-size array, you specify the number of

elements in the array. For example, the following code
creates a fixed-size array with seven elements: Dim
NewArray(1,7) As String.
If you do not know how large to make the array when
you declare it, you can use a dynamic array. A dynamic
array does not have a size until you use the ReDim
statement to change the array size. First, use the Dim
statement without a size to create a dynamic array — for
example: Dim NewArray() As String.
When you are ready to use the array, use the ReDim
statement to size the array so you can add values. For
example, in the code, ReDim NewArray(1 To 4), an

array that was initially declared as a dynamic array with
an unknown number of elements is redimensioned to
contain four elements.
VBA does not allow you to redimension a fixed-size
array. If you attempt to change the size of a fixed-size
array, you receive an “Array already dimensioned” error
message. However, if you declare your array as a
dynamic array, you can use the ReDim statement multiple
times within a procedure to change the size of the array.
Each time you redimension an array, you destroy the
existing elements in the array. If you want to retain the
existing values, use the Preserve statement. For
example, the statement ReDim Preserve NewArray(7)
instructs VBA to resize the array to seven elements and
maintain any existing values. If the array has four values,
those values remain the first four values.

Redimension
an Array

07_591598-ch05.indd 8207_591598-ch05.indd 82 6/11/10 1:42 PM6/11/10 1:42 PM

83

Ch
apter 5: U

n
derstan

din
g A

rrays

$

To find the upper and lower bounds of an array, VBA provides the UBound and LBound functions. The example
finds the upper and lower bounds and assigns them to variables.

Example:
UpperBound = UBound(NewArray)

LowerBound = LBound(NewArray)

Each of these functions returns a Long data type indicating the upper or lower bounds of the specified array. If the
array is multidimensional, you must specify the dimension for which you want the bounds.

Example:
UpperBounds = UBound(MultiArray, 2)

 The values in the array appear in
cells in your worksheet.

• These values were preserved.

$ Place the values for all of the
elements in the worksheet.

% Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

07_591598-ch05.indd 8307_591598-ch05.indd 83 6/11/10 1:42 PM6/11/10 1:42 PM

84

1 2

3

2

4
5

6

4 Create a new procedure.

5 Declare your user-defined
data type.

6 Assign values to your
user-defined data type.

1 Create your user-defined
data type in the
declarations area.

2 Add the Type and End
Type statements.

3 Declare the components.

Create a User-Defined Data Type

U ser-defined data types enable you to create a
single variable that records multiple pieces of
information. User-defined data types resemble

multidimensional arrays in that you can store related
values by using one variable name. However, although
all elements in the array must contain the same data type,
you can create a user-defined data type that contains
multiple data types.
You declare user-defined data types at the top of your
module in the declarations area. You specify a user-defined
data type with the Type and End Type statements. The
Type statement indicates the start of the user-defined data
type definition, and the End Type statement specifies the
end. After the Type statement, you indicate the name of
the new data type; for example, Type ItemInfo creates a
data type called ItemInfo. To create a user-defined data

type to store a price and description, you can specify a
user-defined data type with two components.
After you create the data type, you can declare variables
that use the specified data type. You can use a user-defined
data type as the data type for an array. For example, to
create an array of the ItemInfo data type, you enter Dim
NewItems(1 To 10) As ItemInfo.
To assign values to a user-defined array, you not only
specify the array element, but you also indicate the
component you want to change. For example, this code
changes the value of the first component in the array:
NewItems(1).ItemDescription = “15 inch Monitor”.
Similarly, you can copy the entire contents of one element
to another by simply referring to the array element. The
following code copies ItemDescription and ItemPrice
of the first element of the array to the second array
element: NewItems(2) = NewItems(1).

Create a User-Defined
Data Type

07_591598-ch05.indd 8407_591598-ch05.indd 84 6/11/10 1:42 PM6/11/10 1:42 PM

85

Ch
apter 5: U

n
derstan

din
g A

rrays

8

7

As you use VBA to develop macros, the complexity of your code may make it difficult to keep track of variables. To
simplify the process, many developers use a standard naming convention where the variable name reflects the variable
type. When using this type of naming convention, you preface each variable name with a standard lowercase prefix
that identifies the data type of the variable. For example, you can identify an integer variable by prefixing it with i to
create the variable name iNumVisits. The integer prefix makes it clear at any location in the code that the variable
holds an integer value. The following table lists the standard variable-naming conventions for Visual Basic and VBA.

PREFIX DATA TYPE

b Boolean

c or cur Currency

dt Date/Time

d Double

i or int Integer

l or lng Long

obj Object

s or sng Single

str String

u User-defined

v or var Variant

 The values from the user-
defined data type appear in
cells in your worksheet.

• VBA copies the values from
the first element to the
second element.

7 Copy the contents of one
element to another element.

8 Place the contents of both
elements in worksheet cells.

9 Press Alt+F11 to switch
from the VBE to Excel, and
run the macro.

07_591598-ch05.indd 8507_591598-ch05.indd 85 6/11/10 1:42 PM6/11/10 1:42 PM

86

C omparison operators allow you to compare two
expressions. Comparison expressions always
return either True or False. For example, the

expression, A = B, compares the variable A to the variable
B. It then returns True if the value stored in variable A is
equal to the value stored in variable B, or False if the
value stored in variable A is not equal to the value stored
in variable B.
When writing a comparison expression, you use a
comparison operator. You place the comparison operator
between the expressions you want to compare. For
example, you can use the equal (=) sign to determine if
two values are equal or you can use the not equal (<>)
sign to determine if values are not equal.

The following table is a summary of the comparison
operators:

OPERATOR FUNCTION

= Equal to

<> Not equal

> Greater than

< Less than

<= Less than or equal to

>= Greater than or equal to

Create
Comparisons

2

2

1

2

2 Add a comparison
operator to your If and
ElseIf statements.

Note: See the section “Create
If Then Else Statements” in
this chapter to learn more
about If Then statements.

1 Add a comparison
operator to your Do
While loop.

 In this example, if
Counter is less than 11,
VBA executes the code
inside the loop.

Note: See the section “Employ
Do While Loops” in this
chapter to learn more about
Do While loops.

Create Comparisons

08_591598-ch06.indd 8608_591598-ch06.indd 86 6/11/10 1:43 PM6/11/10 1:43 PM

87

Ch
apter 6: Con

trollin
g Program

 Flow

W hen writing VBA code, you can use logical
operators to link together comparison
expressions to create complex comparison

expressions. There are six logical operators: Or, And,
Xor, Eqv, Imp, and Not.

Make Use of
Logical Operators

Using Logical Or

The logical operator Or returns the value True if
expression A is true or expression B is true.

EXPRESSION A EXPRESSION B RESULT

True True True

True False True

False True True

False False False

Example:
Sub LogicalOr()

 Dim Result As Boolean

 Result = 10 < 20 Or 30 < 20 ‘Returns True

 MsgBox (Result)

End Sub

Using Logical And

The logical operator And returns the value True if
expression A is true and expression B is true.

EXPRESSION A EXPRESSION B RESULT

True True True

True False False

False True False

False False False

Using Logical Xor

The logical value Xor returns the value True if
expression A is true and expression B is false, or if
expression A is false and expression B is true.

EXPRESSION A EXPRESSION B RESULT

True True False

True False True

False True True

False False False

Using Logical Eqv

The Eqv operator returns the value True if expression A
is true and expression B is true, or if expression A is
false and expression B is false.

EXPRESSION A EXPRESSION B RESULT

True True True

True False False

False True False

False False True

Using Logical Imp

The Imp operator returns True unless expression A is
true and expression B is false.

EXPRESSION A EXPRESSION B RESULT

True True True

True False False

False True True

False False True

Using Logical Not

The Not logical operator negates an expression. If the
expression would normally return True, using a Not
operator causes it to return False and vice versa.

Example:
Sub LogicalNot()

 Dim Result As Boolean

 Result = Not (10 = 10) ‘Returns False

 MsgBox (Result)

End Sub

08_591598-ch06.indd 8708_591598-ch06.indd 87 6/11/10 1:44 PM6/11/10 1:44 PM

88

2

4
5

3

1

4 Use a Do While statement to
evaluate whether a condition is
True.

 In this example, the code looks
at the value assigned to the
variable Counter and performs
the statements inside the loop if
Counter is less than 11.

5 Place the value of Counter in
the specified cell.

 In this example, the cell row
starts at 1 and increases with
each loop. The cell column is
column 1 (column A).

1 Name your procedure.

2 Declare your variables.

3 Assign values to your variables.

 This example assigns the
number 1 to the variable
Counter and then uses the
variable as a counter. It also
assigns the number 1 to the
variable RowNum and then uses
the variable as the row number.

Employ Do While Loops

Y ou can execute a VBA statement or a series of
VBA statements as long as a condition is True by
using a Do While loop. The following is the

syntax for a Do While loop:
Do [While condition]

 [statements]

Loop

A condition is an expression that evaluates to either True
or False. When VBA encounters a Do While loop, it
evaluates the condition. If the condition is True, it
executes the statements. After it executes all of the
statements, VBA returns to the Do While statement and
evaluates the condition again. If the condition is still True,
it executes the statements again. If the condition is False,
VBA executes the first statement after the Loop statement.

A Do While loop consists of four basic parts: The Do
statement initiates the loop. The While statement
evaluates the condition that must be met. The body of the
loop contains a series of statements to perform as long as
the condition is True. Finally, the Loop statement marks
the end of the loop.
You also use the following syntax to create a Do-Loop
While loop:
Do

 [statements]

Loop [While condition]

A Do-Loop While loop is similar to a Do While loop.
The primary difference is VBA evaluates the condition at
the end of the block of statements so the loop always
executes at least once.

Employ Do
While Loops

08_591598-ch06.indd 8808_591598-ch06.indd 88 6/11/10 1:44 PM6/11/10 1:44 PM

89

Ch
apter 6: Con

trollin
g Program

 Flow

7

6

A loop must contain a statement that changes the condition, and the condition must eventually evaluate to False,
or the loop continues endlessly. Programmers refer to this condition as an infinite loop.

To avoid an infinite loop, you can use a counter. In the following example, the procedure assigns the variable
Counter an initial value of 1. The Do While loop verifies that it is less than 5, and then executes the loop. The
loop assigns a value of 1 to the first cell on the worksheet, cell A1. The variable Counter increments by 1, and the
loop retests the condition. The looping continues until the condition is False. In this example, the loop repeats
four times. When Counter equals 5, the looping stops.

Example:
Dim Counter As Integer

Counter = 1

Do While Counter < 5

 Cells(Counter, 1) = Counter

 Counter = Counter + 1

Loop

6 Increase the value of the counter.

 In this example, VBA adds 1 to the
current value of Counter.

• This example also adds 1 to the
current value of the row number.

7 Add the Loop statement.

 VBA returns to the Do While
statement and continues looping until
your code no longer meets the
condition.

8 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

Note: See Chapter 1 to learn how to run
a macro.

 The macro places the numbers 1 to
10 in column A, rows 1 to 10.

08_591598-ch06.indd 8908_591598-ch06.indd 89 6/11/10 1:44 PM6/11/10 1:44 PM

90

1

4

2
3

4 Add a Do Until
statement.

 In this example, the loop
continues until it reaches
an empty cell.

1 Name your procedure.

2 Declare your variable.

3 Assign a value to your
variable.

 In this example, the
variable RowNum is used
to set the row number.

Create Do Until Loops

I f you need to execute a statement or a series of
statements until a condition is met, you can use a Do
Until loop. For example, you can use a Do Until

loop to apply changes to a series of cells until you
encounter an empty cell.
When you use the Do Until loop, the statements you
place between the Do Until and Loop statements execute
until the specified condition is met. As soon as the looping
structure determines that the condition is True, control
moves to the next statement outside the loop.
A Do Until loop consists of four basic parts: The Do
statement initiates the loop. The Until condition
specifies the condition that must be met. The body of the
loop contains a series of statements that execute until the

value of the statement meets the condition of the loop.
Finally, the Loop statement marks the end of the loop.
When the Until condition follows the Do statement, the
Do Until loop checks to see if the condition is True
before executing. If the condition is not True, the loop
executes. If the condition is True, the loop does not
execute. When you use this structure for a Do Until
loop, the code inside the loop may never execute.
You can also place the Until condition at the end of the
loop. When you place the Until condition at the end of
the loop, the Do Until loop always executes at least
once before checking the condition. If the condition is
True, the Do Until loop stops execution, and control
passes to the next VBA statement in your procedure.

Create Do
Until Loops

08_591598-ch06.indd 9008_591598-ch06.indd 90 6/11/10 1:44 PM6/11/10 1:44 PM

91

Ch
apter 6: Con

trollin
g Program

 Flow

6

5

When working with loops, you may have situations where you want to jump out of a loop before executing the
remaining statements in the loop. You can use an Exit Do statement. You can place an Exit Do statement
anywhere within the body of your loop, and you can have multiple Exit Do statements. When VBA encounters an
Exit Do statement, the control immediately transfers out of the current loop to the next statement outside the loop.

Typically, a conditional statement such as If Then appears before the Exit Do statement. The conditional
statement looks for a condition to meet and then executes the Exit Do statement when your code meets the
condition.

Example:
Do While Condition1 = True

 If Condition2 = True

 Exit Do

 End If

Loop

 The procedure places 7 percent of
column A in column B.

5 Type the statements you want to execute.

 In this example, VBA multiplies the value
in column A by 0.07 and places the result
in column B.

6 Add the Loop statement.

 VBA returns to the Do Until statement
and continues looping until the condition
is met.

7 Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a
macro.

08_591598-ch06.indd 9108_591598-ch06.indd 91 6/11/10 1:44 PM6/11/10 1:44 PM

92

1
2

3

4

3 Add a For statement.

• Counter variable.

• Initial value.

• Maximum value.

4 Type the statement you want
to execute.

 This example places the text
Region 1 through Region 4 in
four consecutive cells starting
at the active cell. See Chapter
11 to learn more about the
Offset property.

1 Name your procedure.

2 Declare your variable.

Create For Next Loops

Y ou can use a For Next loop to execute a
statement or a series of statements a specific
number of times. For example, by using a For

Next loop, you can place text in a specified number
of cells.
When you use a For Next loop, you must create a
counter variable. The statements you place between the
For and Next statements execute until the counter
variable exceeds the maximum value. As soon as the
looping structure determines that the current value of the
counter is greater than the maximum value, control
moves to the first statement after the loop.
For Next loops consist of three basic parts: The For
statement initiates the loop. The For statement includes a
counter variable with an initial and maximum value, such

as X = 1 To 5. The body of the loop consists of a series
of statements that perform until the counter exceeds the
maximum value of the loop. Finally, you mark the end of
the loop with the Next statement.
When the For Next loop starts, it checks to make sure
the value of the counter variable does not exceed the
maximum value. If the variable is less than or equal to
the maximum, the loop executes. The counter variable is
a numeric value that increments by default by one each
time the loop executes. The loop continues to execute as
long as the initial value is less than or equal to the
maximum value specified for the counter variable. If the
initial value starts out greater than the maximum value,
the body of the loop never executes.

Create For
Next Loops

08_591598-ch06.indd 9208_591598-ch06.indd 92 6/11/10 1:44 PM6/11/10 1:44 PM

93

Ch
apter 6: Con

trollin
g Program

 Flow

5

You can use any value to increment your counter variable. By default, the counter variable for a For Next loop
increments by one each time the loop executes. If you want to increment or decrement the counter variable by a
different value, you can use the Step statement to specify the value. If you specify a positive value, the counter
variable increments by that value each time the loop cycles. If you specify a negative value, the counter variable
decrements by that value each time the loop cycles. In the following example, the For loop starts with an initial
counter variable of 2 and a maximum value of 20. Each time the loop cycles, the counter variable increments by
two. The TotalVal variable increments by the value of the loop. The loop executes ten times. When the initial and
maximum values of the counter are equal, the loop executes a final time before it passes control to the next
statement after the loop.

Example:
For J = 2 To 20 Step 2

 TotalVal = TotalVal + J

Next

 The procedure places the text
Region 1 through Region 4 in a
column in four consecutive cells.

5 Add a Next statement.

 VBA returns to the For statement
and if the counter exceeds the
maximum value, VBA moves to the
first line of code after the Next
statement; otherwise, it executes
the statements inside the loop.

6 Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to run
a macro.

08_591598-ch06.indd 9308_591598-ch06.indd 93 6/11/10 1:44 PM6/11/10 1:44 PM

94

1
2

3

4

4 Assign values to your
array.

 In this example, the value
in the active cell and
three subsequent cells
in the same column are
assigned to the array.

1 Name your procedure.

2 Declare your array.

Note: See Chapter 5 to learn
more about arrays.

3 Declare your variables.

Execute For Each In Loops

Y ou can use a For Each In loop to execute a
series of statements for each element in an array
or each object in a collection. When you use a For

Each In loop, the statements you place between the For
and Next statements execute for each element in the array
or collection. After the statements execute for the last
element, control moves to the next statement outside the
loop. The following is the syntax for a For Each In loop:
For Each element In group

 [statements]

Next [element]

A For Each In loop consists of three parts. The For
Each element In group statement initiates the loop.
An element is a variable used to hold an array or
collection as you cycle through the For Each In loop.
Group is the name of the array or collection you want to
cycle through. The body of the loop contains a series of
statements to perform for each element. Finally, the Next
statement marks the end of the loop.
If you are looping through an array, the variable you
use as the element in the For Each element In group
statement must be defined as a variant data type. If you
are working with a collection, you can define the variable
as a variant, generic object, or specific object.

Execute For
Each In Loops

08_591598-ch06.indd 9408_591598-ch06.indd 94 6/11/10 1:44 PM6/11/10 1:44 PM

95

Ch
apter 6: Con

trollin
g Program

 Flow

5

6
7

You can nest loops to populate a multidimensional array. When you nest loops, you place one loop inside
another loop. To work with a multidimensional array, you create a separate loop for each dimension of the array.
The following code uses two nested For Next loops to access elements of the array. Notice that the inside loop,
with the Column counter variable, completely cycles each time the loop with Row counter variable runs once.
Each Next statement has a variable following it. You must exit the inside loop before you can exit the outside
loop. Please note that this macro is incomplete. See the file Execute For Each In Loops.xlsm, which is on the
Web site for this book for the complete macro.

5 Add your For Each In statements.

• Variable that holds each element.

• Array or collection name.

• Statements to execute.

6 Add the Next statement.

 This example totals the elements in the array.

7 Type any statements you want to execute
when the For Each In loop completes.

8 Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a macro.

• In this example, VBA totals the elements in
the array and places the total in the cell that
follows the array.

TYPE THIS:

Sub BuildArray()
 Dim NewArray(1 To 3, 1 To 4) As Integer
 Dim Row As Integer
 Dim Column As Integer
 Dim CellValue As Integer
 CellValue = 1
 For Row = 1 To 3
 For Column = 1 To 4
 NewArray(Row, Column) = CellValue
 CellValue = CellValue + 1
 Next Column
 Next Row
End Sub

➔

RESULT:

The code creates a two-dimensional
array with the values shown in the
following table:

1 2 3 4

5 6 7 8

9 10 11 12

08_591598-ch06.indd 9508_591598-ch06.indd 95 6/11/10 1:44 PM6/11/10 1:44 PM

96

1

2

3

22

If Then Else

1 Add your If Then statement.

• Condition.

• Statement to execute.

2 Add your Else statement.

• Statement to execute.

3 Type End If.

4 Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to
run a macro.

 In this example, if the Sales
column is over 50,000, VBA
calculates a bonus of 4 percent
of sales; otherwise, it prints the
words “No Bonus.”

Create If Then Else Statements

Y ou can conditionally execute a group of
statements by using an If Then Else statement.
For example, you can calculate a bonus of 5

percent of sales if an employee’s sales are greater than
$50,000, or enter the text “No Bonus” if an employee’s
sales are less than or equal to $50,000. The following is
the syntax for an If Then Else statement:
If condition Then

 [statements]

Else

 [statements]

End If

An If Then Else statement evaluates a condition. A
condition is any expression that evaluates to either True

or False. For example: The expression If Sales >
50000 Then evaluates the variable Sales. If the variable
Sales is greater than 50,000, the expression returns
True; otherwise, it returns False. If the condition is True,
the statements that follow the Then statement execute.
If the condition is False, the statements that follow the
Else statement execute. A null condition evaluates to
False. An End If statement marks the end of an
If Then Else statement.
If you have multiple conditions that you want to evaluate,
you can use ElseIf. For example, you can use ElseIf
when you want to calculate tax at a rate of 5 percent if
the state is Texas, 8 percent if the state is Florida, and
no tax for all other states. When using ElseIf, a single
If Then statement is followed by several ElseIf
statements and a final Else statement.

Create If Then
Else Statements

08_591598-ch06.indd 9608_591598-ch06.indd 96 6/11/10 1:44 PM6/11/10 1:44 PM

97

Ch
apter 6: Con

trollin
g Program

 Flow

2

2

3

4

1

Although VBA does not require you to indent your code, you can use indentation to improve readability. Indenting
enables you to analyze the structure of the code without reading each line. When working with conditional
statements, such as If Then statements and looping statements, most programmers indent the statements that
execute. The following example shows how you can indent the code for a For Next loop so you can easily locate
the loop’s beginning and end. The example also indents an If Then statement.

Example:
For I = 1 To 5

 If J < 10 Then

 J = J + 1

 End If

Next

If you have an If Then statement that consists of only one statement, you can combine the If statement with the
Then statement and eliminate the End If statement.

ElseIf

1 Add your If Then statement.

• Condition.

• Statement to execute.

2 Add your ElseIf statements.

• Statement to execute.

3 Add your Else statement.

• Statement to execute.

4 Type End If.

5 Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

 In this example, the procedure
calculates the sales price plus tax,
based on the state tax amount.

THIS CODE:

If Sum < 10 Then Sum = Sum + 1

IS EQUIVALENT TO:

If Sum < 10 Then
 Sum = Sum + 1
End If

➔

08_591598-ch06.indd 9708_591598-ch06.indd 97 6/11/10 1:44 PM6/11/10 1:44 PM

98

5

1
2

3

4

6

6

6

4

4 Create a Do While loop.

Note: See the section “Employ Do While
Loops” in this chapter to learn how to
create a Do While loop.

5 Type your Select Case statement.

• Each Case statement value is
compared to this value.

6 Type your Case statements.

• If the value in the Select Case
statement is equal to the value in the
Case statement, the statements that
follow the Case statement execute.

1 Name your procedure.

2 Declare your variable.

3 Initialize your variable.

Construct Select Case Statements

Y ou can execute a specific block of code based on a
value by using a Select Case statement. Using
a Select Case statement is similar to using

ElseIf. You can use Select Case when you have
different statements to execute and the statements that
execute depend upon the value of a cell, variable,
number, or string. For example, you can base the
calculation of sales tax on the state. You can calculate a
tax rate of 5 percent if the state is Texas, 8 percent if the
state is Florida, and no tax for all other states. The
following is the syntax for Select Case statements.
Select Case testexpression

 [Case expressionlist -n

 [statements-n]]

 [Case Else

 [elsestatements]]

End Select

The Select Case statement identifies the expression
against which you want to test each Case statement.
Each Case statement contains a value to test and the
statements to execute if the case statement is True. For
example:
Select Case UserVal

 Case 4

 Statements

...

End Select

The example determines whether UserVal = 4 is True.
Under each Case statement are statements that execute if
the expression evaluates to True. The End Select
statement marks the end of the Select Case statement.
You can also add a Case Else statement that supplies
the statement to run if none of the Case statements
evaluate to True.

Construct Select
Case Statements

08_591598-ch06.indd 9808_591598-ch06.indd 98 6/11/10 1:44 PM6/11/10 1:44 PM

99

Ch
apter 6: Con

trollin
g Program

 Flow

7

8

With the Select Case statement, you can use comparison statements to compare a range of values, or multiple
values.

 In this example, the procedure
calculates the sales price plus
tax, based on the state tax
amount.

7 Add your Case Else statement.

 The statements after the Case
Else statement execute if none
of the other Case statements
match the Select Case value.

8 Add an End Select statement.

9 Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to
run a macro.

TYPE THIS:

Select Case NumSales
 Case 1 To 5
 Commission = Total * .05
 Case 6 To 15
 Commission = Total * .1
End Select

RESULT:

The Select Case statement checks the value of
NumSales to see whether it falls into one of the
two specified ranges.

➔

TYPE THIS:

Select Case NumStudents
 Case Is < 10
 MsgBox(“Not enough students
enrolled.”)

End Select

RESULT:

The Select Case statement displays the
message box if the value of NumStudents is less
than 10.

➔

TYPE THIS:

Select Case State
 Case “TX”, “CA”
 Total = Total * 1.085
End Select

RESULT:

If the value of State equals TX or CA, the total is
calculated using 8.5 percent for the sales tax.

➔

08_591598-ch06.indd 9908_591598-ch06.indd 99 6/11/10 1:44 PM6/11/10 1:44 PM

100

3

3

3

3

1

2

3

3

3 Add your GoTo statements.

1 Create a new procedure.

2 Add your code.

GoTo a Named Location

Y ou can jump to a named location within your
macro by using a GoTo statement. However,
before you can use a GoTo statement, you must

label the line in your procedure to which you want to
move. A label is a text string followed by a colon. The
GoTo command moves to the label, thereby passing
control from the current location in the procedure to the
label. The following is the syntax for the GoTo command:
GoTo label

As you can see, there are two parts to a GoTo command:
the GoTo statement and the label. You can place a label
anywhere in your procedure. The GoTo command can
jump only to labels within the same procedure. They
cannot jump to a label in another procedure, even if both

procedures are in the same module. You can add multiple
GoTo commands to the same procedure, and each GoTo
command can jump to the same or different labels.
You should use GoTo commands only in situations where
you cannot obtain the desired results using conditional
statements or looping structures. GoTo commands date
back to when each line of code had a specific line
number, and GoTo commands jumped to the specified line
of code. Although GoTo commands are often used for
trapping errors in VBA, many programmers consider it
bad programming to use GoTo commands too frequently.
See Chapter 8 for more information on using a GoTo
statement when debugging your code.

GoTo a Named
Location

08_591598-ch06.indd 10008_591598-ch06.indd 100 6/11/10 1:44 PM6/11/10 1:44 PM

101

Ch
apter 6: Con

trollin
g Program

 Flow

4

4

You place labels in a procedure to mark the location of code. Labeling code does not change how it executes. Code
within a loop or conditional statement executes only when the condition is met. Labeled code executes when a
GoTo statement jumps to it, or when the program reaches that line of code.

If you have multiple areas of labeled code, you may not want it all to execute. To avoid execution of code that
follows a labeled section, you can use another GoTo statement or an Exit Sub statement to terminate the current
procedure.

The following example uses the Exit Sub command before the label procedure to avoid execution of the T = 50
statement.

Example:
Sub TestGoTo()

 Dim T As Integer

 T = Cells(1,1)

 If T < 5 Then GoTo IncreaseValue

 T = T * 5

 Exit Sub

 IncreaseValue:

 T = 50

End Sub

 In this example, the
procedure calculates a
shipping charge if the
cost with tax is less
than $50.00.

4 Add your GoTo label.

• Label names are
followed by a colon.

5 Add any additional code.

6 Press Alt+F11 to switch
from the VBE to Excel,
and then run the macro.

Note: See Chapter 1 to learn
how to run a macro.

08_591598-ch06.indd 10108_591598-ch06.indd 101 6/11/10 1:44 PM6/11/10 1:44 PM

102

1
2

2

4

4

4

3

3 Create an If Then condition.

4 Call another procedure.

1 Name your procedure.

2 Declare and initialize any
variables.

 You may need to make your
variable public.

Note: See Chapter 3 to learn more
about public variables.

Call a Procedure

I f you are in one procedure and you want to execute
another procedure, you can use a Call statement.
You simply type the word Call followed by the name

of the procedure you want to execute, as well as any
arguments the procedure requires, in parentheses and
separated by commas. When you call a procedure, VBA
moves to the first line of code in the called procedure and
begins processing. After the called procedure completes
processing, VBA returns to the next line of code after the
call and continues processing the original procedure.
You can conditionally call a procedure by using a
conditional VBA statement, such as an If Then statement
with a Call statement. When you combine the Call
statement with a conditional statement, VBA executes the
called procedure only if the specified condition is met. The

If Then statement checks the specified condition. If the
value of the condition is True, the control passes to the
called procedure or function and then, upon the called
procedure’s completion, returns to the original procedure.
If you do not want to continue processing the first
procedure after calling the second, you can use an Exit
Sub statement to exit the procedure.
The keyword Call is optional when executing a Call
statement. You can call a procedure simply by typing the
procedure name. If you omit the Call keyword, do not
place your arguments in parentheses. Simply type the
procedure name followed by its arguments, separated by
commas. You can call Sub procedures, Function
procedures, or Dynamic-Link Library (DLL)
procedures.

Call a
Procedure

08_591598-ch06.indd 10208_591598-ch06.indd 102 6/11/10 1:44 PM6/11/10 1:44 PM

103

Ch
apter 6: Con

trollin
g Program

 Flow

6

6
5

5

You do not need to use the Call keyword when you call another procedure or function. However, using the Call
keyword eliminates confusion by clearly indicating that you are calling a function or Sub procedure. When you use
the Call keyword, you must enclose any arguments passed in parentheses. If you call a procedure without the
Call keyword, you must omit the parentheses around the argument list, as follows:

Note: See Chapter 1 to learn
how to run a macro.

 When the condition is
met, the If Then
statement calls the
appropriate procedure.

5 Create called procedures.

6 Type code to run when
the procedure is called.

7 Press Alt+F11 to switch
from the VBE to Excel,
and then run the macro.

THIS CODE:

Call NewProc(Var1, Var2)

IS EQUIVALENT TO:

NewProc Var1, Var2➔

08_591598-ch06.indd 10308_591598-ch06.indd 103 6/11/10 1:44 PM6/11/10 1:44 PM

104

6

6

6

2

1

3

5

5

5

4

Work with Excel
Worksheet Functions

A function is a block of code that performs a task
and returns a value. There are three types of
functions: VBA functions, Excel worksheet

functions, and custom functions. A VBA function is a
function supplied by VBA. An Excel worksheet function
is a formula that Excel has predefined. You can use them
to do things such as add numbers, find an average, or
find the highest number in a list. Excel provides you with
more than 300 worksheet functions. Custom functions
work like worksheet functions; however, you define the
formula the function uses.
Use the WorksheetFunction property to place an Excel
worksheet function in your VBA procedure. The
WorksheetFunction property is available through the
Application object. To access a function in the
WorksheetFunction object, you type Application.
WorksheetFunction. followed by the function you want

to use and the function arguments enclosed in
parentheses. If you want, you can omit Application.
from the expression. For example, if you want to sum a
range of cells and store the result to a variable, both of
these expressions are valid:
SumVal = Application.WorksheetFunction _

.Sum(Range(“A1:A4”))

SumVal = WorksheetFunction.Sum _

(Range(“A1:A4”))

Generally, you cannot use an Excel worksheet function
that has an equivalent VBA function. For example, both
VBA and Excel have a COS function that returns a
numeric value that represents the cosine of an angle. If
you try to use the Excel worksheet function COS in your
VBA procedure, you receive an error message.

Work with Excel Worksheet Functions

1 Name your procedure.

2 Declare the variables you
want to use to store the
results of your worksheet
functions.

3 Declare any other variables
you will use.

4 Activate the worksheet that
uses this procedure by
typing .Activate after the
worksheet reference.

5 Create your worksheet
functions.

• The underscore indicates that
the statement is continued on
the next line.

• The name of the function.

• Arguments.

• A VBA function.

6 Store the result to a variable.

09_591598-ch07.indd 10409_591598-ch07.indd 104 6/11/10 1:43 PM6/11/10 1:43 PM

105

7

The Object Browser lists the
functions that are part of
the WorksheetFunction
object. To view this list, use
WorksheetFunction as the
search criterion in the Object
Browser. Press F2 to open
the Object Browser.
See Chapter 4 for more
information on the Object
Browser.

7 Use a message box to display
the result.

Note: See the section “Work with a
MsgBox Function” to learn more
about message boxes.

• The variable.

• This code creates a blank line.

8 Press Alt+F11 to switch from
the VBE to Excel, and then run
the macro.

Note: See Chapter 1 to learn how to
run a macro.

• The results of the worksheet
functions appear in the
message box.

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

If a VBA statement does
not fit on a single line, you
can use the underscore (_)
character to tell Excel you
want to continue the
statement on another line.
The example in this section
uses the underscore
character as a continue
statement indicator.

The remainder of this chapter discusses and
illustrates VBA functions. The Round function
used in the following example is a VBA function.
The Round function takes two arguments: an
expression and the number of decimal places to
which you want to round the number. If you do
not specify the number of decimal places, the
Round function rounds to an integer.

Example:
Result = Round(124.4589, 2) ‘Returns
124.46

You can also use the Excel worksheet function
ROUND when writing a VBA procedure.

09_591598-ch07.indd 10509_591598-ch07.indd 105 6/11/10 1:43 PM6/11/10 1:43 PM

106

3

2

1

4

6
5

7

1

5 Store your message to a variable.

6 Store the values that represent the
buttons you want to use to a variable.

 Place a plus sign between each button
you want represented.

7 Store the title you want your message box
to have to a variable.

1 Name your procedure.

2 Declare the variables you want to use as
arguments in the MsgBox function.

 Alternatively, you can type the arguments
directly into the MsgBox function.

3 Declare the variable you want to use to
store the value returned by the MsgBox
function.

4 Activate the worksheet that uses this
procedure by typing .Activate after
the worksheet reference.

Work with a MsgBox Function

T he MsgBox function is a VBA function that makes
writing code easier. See Chapter 3 to learn more
about functions. You can use the MsgBox function

to display a dialog box that provides information to the
user and, if you want, returns a value to VBA that
represents the user’s response. The MsgBox function has
a preset list of values it can return. For example, you can
use the MsgBox function to prompt the user for a Yes or
No response; VBA returns 6 if the user clicks Yes and 7 if
the user clicks No.
When using the MsgBox function, you use arguments to
designate the prompts, buttons, and title that appear in
your message box. The Button and Title arguments are
optional. Use the Prompt argument to specify the text

that appears in the message box. You can use a text
string enclosed in quotes or you can use a variable. You
can combine strings and variables by using the
concatenation operator (&), as in this example:
MsgBox(“Total Sum: “ & TotalSum).
Use the Button argument to specify a constant that
indicates the buttons and icons that appear in the
message box. If you do not specify a button constant, the
MsgBox function uses the default vbOKOnly and displays
only the OK button. Use the Title argument to display
the title that appears on the title bar of the message box.
If you omit this argument, Excel displays the default title,
Microsoft Excel.

Work with a
MsgBox Function

09_591598-ch07.indd 10609_591598-ch07.indd 106 6/11/10 1:43 PM6/11/10 1:43 PM

107

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

9

0

8

You can use 20 different constant values as the Buttons value for the MsgBox function. You can use these values
separately, or combine them by placing a plus (+) sign between each constant value. The following code creates a
message box containing Yes, No, and Cancel buttons, as well as the Question icon.

Example:
Response = MsgBox(“Select button.”, vbYesNoCancel + vbQuestion)

The MsgBox function returns an integer value between 1 and 7, which represents the button the user clicked. You
can interpret the value the MsgBox function returns by looking at the integer value. The following table shows the
integer values returned by the MsgBox function and their associated constant values.

MSGBOX RETURN VALUE CONSTANT DESCRIPTION

1 vbOK OK button clicked

2 vbCancel Cancel button clicked

3 vbAbort Abort button clicked

4 vbRetry Retry button clicked

5 vbIgnore Ignore button clicked

6 vbYes Yes button clicked

7 vbNo No button clicked

 The message box appears when you run
the macro.

• The title.

• The prompt.

• The vbYesNo buttons.

• The vbQuestion button.

8 Create the MsgBox function.

• Your message.

• The buttons you want to display.

• The title.

9 Assign the value returned by the message
box to a variable.

0 Write code to execute an action based on
the value returned by the message box.

! Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a macro.

09_591598-ch07.indd 10709_591598-ch07.indd 107 6/11/10 1:43 PM6/11/10 1:43 PM

108

6

9

3

5

7
8

2
1

4

1 Name your procedure.

2 Declare the variable you want to
use to store the value returned by
the InputBox function.

3 Declare the variables you want to
use as arguments in the
InputBox function.

 Alternatively, you can type the
arguments directly into the
InputBox function.

4 Activate the worksheet that uses
this procedure by typing
.Activate after the workbook
reference.

5 Store your prompt to a variable.

6 Store the title you want your
message box to have to a
variable.

7 Store the default value you want
your input box to display to a
variable.

8 Create your InputBox function.

9 Assign the value returned by the
InputBox function to a variable.

Using the InputBox Function

L ike MsgBox, the InputBox function is a VBA
function. You can use the InputBox function to
prompt the user for information during the

execution of a procedure. The InputBox function displays
a dialog box that requests information from the user and
returns the user response to your procedure. You capture
the user response by assigning the results of the
InputBox function to a variable. The following is the
syntax for the InputBox function:
InputBox(Prompt[,Title][,Default] [,xPos]
[,yPos])

Use the Prompt argument to specify the text that appears
in the input box. You can combine strings and variables
by using the concatenation operator (&). The Title
argument is optional. You can use it to specify the title of

your input dialog box. You can use either a text string
enclosed in quotes or a variable. If you omit the Title
argument, Excel displays the default title, Microsoft Excel.
The Default argument is optional. You can use it to
specify the default value that displays when your text box
appears.
You can specify the display position of the dialog box by
using the optional xPos and yPos arguments. If you omit
these arguments, the dialog box appears in the center of
the screen. These arguments use units of measurement
called twips. One twip equals 1/20 of a point, or 1/1,440
of an inch. The xPos argument indicates the distance
from the left side of the screen to the left side of the
dialog box. The yPos argument indicates the position
from the top of the screen to the top of the dialog box.

Using the
InputBox Function

09_591598-ch07.indd 10809_591598-ch07.indd 108 6/11/10 1:43 PM6/11/10 1:43 PM

109

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

0

You can use named arguments to simplify your functions. Many VBA functions have optional arguments. For
example, although the InputBox function has several arguments, only the first one is required. If you want to
include additional arguments, you specify the argument values in order, leaving a space between two commas as a
placeholder for any arguments you do not want to use.

Example:
UserInput = InputBox(“Type a value:”, ,”5”)

Instead of specifying a placeholder for each value, you can use named arguments with the VBA functions. When
using a named argument, you specify the name of the argument along with the corresponding value. You type the
name of the argument followed by a colon, an equal sign, and the value of that particular argument. You can place
named arguments in any order, and you do not have to specify a value for every argument.

Example:
UserInput = InputBox(Prompt:=”Type a value:”, Default:=”5”)

 The input box appears when you
run the macro.

• The title.

• The prompt.

• The default value.

0 Write code that executes based on
the value returned by the input
box.

Note: See Chapter 6 to learn more
about If Then Else statements.

! Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to run
a macro.

09_591598-ch07.indd 10909_591598-ch07.indd 109 6/11/10 1:43 PM6/11/10 1:43 PM

110

1

2

Retrieve the Current Date

1 Name your procedure.

2 Type the Date function.

 In this example, the Date function
is part of the prompt argument for
the MsgBox function.

Note: See the section “Work with a
MsgBox Function” in this chapter to
learn more about the MsgBox function.

3 Press Alt+F11 to switch from
the VBE to Excel, and then
run the macro.

Note: See Chapter 1 to learn how to run
a macro.

 The current system date appears in
the message box.

Retrieve the Current Date and Time

V BA includes several date-related, built-in
functions that you can add to the procedures and
functions you create. You can use these functions

to return a system date and/or time, perform date
calculations, set a date, or even time a process.
If you want to display the current date or time, you can
select from three different functions. The Date VBA
function returns the current system date, the Time VBA
function returns the current system time, and the Now
VBA function returns both the date and time. VBA
formats the date and time information in your system’s
short date format. You can modify the date and time
formats by using the Control Panel.
When working with dates, you can avoid displaying a
date outside of range by remembering the date range that

Excel accepts. Excel accepts dates between January 1,
1900, and December 31, 9999. If you use Excel on a
Macintosh, the date range is even smaller. The acceptable
date range begins January 1, 1904. If you need to display
a date outside the range, you can do so by placing the
date in a string variable. VBA accommodates a much
larger date range than Excel. It accepts dates between
January 1, 0100, and December 31, 9999.
You can assign the results of the Date or Time function
to a variable, a worksheet cell, or another function. The
following example stores the Now function to a message
box: MsgBox(“Current Date and Time: “ & Now()).

Retrieve the Current
Date and Time

09_591598-ch07.indd 11009_591598-ch07.indd 110 6/11/10 1:43 PM6/11/10 1:43 PM

111

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

1
2

In Excel, you can convert dates and times into a serial value that Excel can add or subtract and then convert back
into a recognizable date or time. Excel calculates a date’s serial value as the number of days after January 1, 1900,
and represents each date with a whole number. Excel calculates a time’s serial value in units of 1/60 of a second.
Each time can be represented as a serial value between 0 and 1. A date and time, such as January 1, 2000, at noon,
consists of the date to the left of the decimal and a time to the right. In the example August 25, 2011, 5:46 p.m.,
the date and time serial value is 40780.74028.

VBA uses the same serial number system for dates and times as Excel. Each date and time is stored as a numeric
value. Because VBA stores dates and times as numeric values, you can add and subtract to perform date
calculations.

Retrieve the Current Time

1 Name your procedure.

2 Type the Time function.

 In this example, the Time function is part of
the prompt argument for the MsgBox
function.

Note: See the section “Work with a MsgBox
Function” in this chapter to learn more about the
MsgBox function.

3 Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a macro.

 The current system time appears in the
message box.

09_591598-ch07.indd 11109_591598-ch07.indd 111 6/11/10 1:43 PM6/11/10 1:43 PM

112

2

4

6

1

3

55

 This example uses a Do While loop
and an If Then Else statement.

Note: See Chapter 6 to learn more about
loops and If Then Else statements.

• This example evaluates two columns of
cells, starting at row 2.

4 Store the cell values to variables.

5 Use the IsDate VBA function to make
sure the cells contain valid dates.

6 Use the MsgBox function to display an
error message if the dates are not valid.

1 Name your procedure.

2 Declare the variables you want to use to
store your dates.

3 Declare any other variables you need.

Perform Date and Time Calculations

Y ou can determine the amount of time between two
dates by using the DateDiff VBA function. With
this function, you can obtain time intervals

between two date values, such as the number of months,
days, hours, minutes, or seconds.
The DateDiff function takes five arguments: Interval,
Date1, Date2, Firstdayofweek, and Firstweekofyear.
The first three arguments are required. Use the Interval
argument to specify the unit of time to use when
returning the difference between the two dates. Use a
constant value to specify the interval.
Use the Date1 and Date2 arguments to specify the dates
you want to compare. You can use a date string, a value
returned by a function, or the contents of a cell, as long
as you use a valid date. To ensure the date is valid, you

can use the IsDate VBA function, which returns the
value True if an expression is a date. Use the CDate
function to coerce a date data type.
You can use the optional Firstdayofweek argument if
you want to use a day other than Sunday as the first day
of the week. To create the constant value you use as this
argument, type vb before the appropriate day of the
week. For example, to use Monday as the first day of the
week, type vbMonday as the argument value.
You can use the optional Firstweekofyear argument to
indicate what you want to treat as the first week of the year.
If you omit this argument, VBA considers the week that
contains the date January 1 as the first week of the year. If
you want to have the first week contain at least the first
four days, specify a value of vbFirstFourDays. See the
appendix for a list of Firstweekofyear constant values.

Perform Date and
Time Calculations

09_591598-ch07.indd 11209_591598-ch07.indd 112 6/11/10 1:43 PM6/11/10 1:43 PM

113

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

8
7

You can use one of ten constant values to specify the Interval argument and the type of date interval to return.

INTERVAL VALUE DESCRIPTION

yyyy Year Only compares the year portion of both dates. The dates 12/31/1999 and
1/1/2000 return a value of 1 year.

q Quarter Divides the year into four quarters and returns the number of quarters between dates.

m Month Compares only the month portion of both dates. The dates 12/31/1999 and
1/1/2000 return a value of 1 month.

d Day The number of days between two dates.

y Day of Year The same results as using d.

w Weekday Determines the day of the week of the first date — for example, Wednesday — and
then counts the number of Wednesdays between the dates.

ww Week Relies on the value specified as the Firstdayofweek argument to determine the
number of weeks between two dates.

h Hour The number of hours between two times. If a time is not specified, it uses midnight
or 00:00:00.

n Minute The number of minutes between two times.

s Second The number of seconds between two times.

7 Use the DateDiff function
to determine the amount of
time between two dates.

• The Interval.

• Date1.

• Date2.

8 Place the results in a cell.

9 Press Alt+F11 to switch from
the VBE to Excel, and then
run the macro.

Note: See Chapter 1 to learn how
to run a macro.

 The procedure calculates the
difference between two times.

09_591598-ch07.indd 11309_591598-ch07.indd 113 6/11/10 1:43 PM6/11/10 1:43 PM

114

1

2

3

3 Store the contents of the
cells with unformatted
dates to variables.

1 Name your procedure.

2 Declare the variables you
want to use to store your
unformatted dates.

Format a Date Expression

Y ou can format an expression that uses a date or
time by using the FormatDateTime VBA
function. The FormatDateTime function takes

two arguments: Date and NamedFormat. The Date
argument is required. It identifies the date expression that
you want to format and accepts cell references, variable
references, string expressions, or numeric values. You
can reference a cell using any of the cell range reference
options discussed in Chapter 11. For example, if the date
you want to format is located in cell A1, you can use the
following code to reference that cell:
X = FormatDateTime(Range(“A1”))

You use the NamedFormat argument to specify the
formatting you want to use. You can use any of the
predefined formatting constants. If you omit the

NamedFormat argument, the FormatDateTime function
uses the vbGeneralDate constant.
The vbGeneralDate constant instructs Excel to format the
date portion of the expression in the system short date
format, and to format the time portion of the date in the
system long time format. Windows maintains your
default date and time settings in the Regional and
Language Options dialog box, which you can access
through the Control Panel. When you use a constant as
the NamedFormat argument, you specify which of these
settings you want to use to format your date and time
values. By changing the values in the Regional and
Language Options dialog box, you affect how the dates
and times appear when you use the FormatDateTime
function.

Format a Date
Expression

09_591598-ch07.indd 11409_591598-ch07.indd 114 6/11/10 1:43 PM6/11/10 1:43 PM

115

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

5 4

You can specify the formatting for a date and time by using the NamedFormat argument. If it is omitted, Excel uses
the vbGeneralDate constant. When you use the NamedFormat argument, you can pass it a constant value or the
numeric value that corresponds to the constant, as outlined in the following table. The actual formats used as a
result of specifying these constant values are based upon the system date and time settings in the Regional and
Language Options dialog box.

CONSTANT VALUE DESCRIPTION

vbGeneralDate 0 The default value if the NamedFormat argument is omitted. This value displays
the date using the short date format and the time using the long time format.

vbLongDate 1 Displays the date using the system long date format.

vbShortDate 2 Displays the date using the system short date format.

vbLongTime 3 Displays the time using the system long time format.

 The procedure formats the
dates in column A and places
the results in column B.

4 Use the FormatDateTime
function to format the variables
in which you stored the dates.

• The variable containing the date.

• The format you want to apply.

5 Assign the results to cells.

6 Press Alt+F11 to switch from
the VBE to Excel, and then run
the macro.

Note: See Chapter 1 to learn how to
run a macro.

09_591598-ch07.indd 11509_591598-ch07.indd 115 6/11/10 1:43 PM6/11/10 1:43 PM

116

1

2

3

4

4 Store the numeric values
you want to format to
variables.

1 Name your procedure.

2 Declare the variables you
want to use to store your
formatted numbers.

3 Declare any other variable
you need.

Format a Numeric Expression

Y ou can format a numeric expression by using the
FormatNumber, FormatCurrency, or
FormatPercentage function. These functions all

take a numeric value and return the value formatted in
the format you specify. The FormatNumber function
returns a formatted number, the FormatCurrency
function returns a formatted number preceded by a
currency symbol, and the FormatPercentage function
returns a number followed by a percentage sign.
Each function takes the same five arguments:
Expression, NumDigitsAfterDecimal, Include,
LeadingDigit, UseParensForNegativeNumbers, and
GroupDigits. The Expression argument is required.
The Expression argument specifies the numeric value to
format. The NumDigitsAfterDecimal argument indicates

the number of decimal places to display on the right side
of the decimal. The IncludeLeadingDigit argument
determines whether a zero appears before fractional
values. The UseParensForNegativeNumbers argument
specifies whether to place parentheses around negative
numbers. Finally, the GroupDigits argument determines
whether Excel groups numbers to make them more
readable. With this argument, you can specify whether to
display fifty thousand as 50,000 or 50000.
The last three arguments, IncludeLeadingDigit,
UseParensForNegativeNumbers, and GroupDigits, all
use the same three constant values. Use vbTrue as the
argument if you want to use the formatting, and vbFalse
if you do not want to use the formatting. If you do not
specify a value, or if you specify vbUseDefault, the
function uses your computer’s regional settings.

Format a Numeric
Expression

09_591598-ch07.indd 11609_591598-ch07.indd 116 6/11/10 1:43 PM6/11/10 1:43 PM

117

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

5

5

5

If you want to customize the way a number appears, you can use the Format function. You can create your own
number formats by combining specific characters along with symbols that represent the numbers, as in the
following example: Format(NumVal, “##.##”).

NUMERIC
CHARACTERS

DISPLAYS

0 A numeric digit or a zero if the number does not have a digit in that place. Use this character
to ensure that a digit appears in a specific place. For example, 0000 always displays a four-
digit number. If there are fewer digits, a 0 appears for the non-specified digits.

A numeric digit if the number has a digit in that place. If there is no digit, a value does not
appear in that place.

. A decimal-point placeholder.

% An expression as a percentage by multiplying by 100 and adding a percent sign.

, A thousands separator.

E-, E+, e-, e+ A numeric expression in scientific format. The number of digits on the right side of the symbol
indicates the number of digits in the exponent.

\ The character that follows a backslash or is enclosed in quotes. For example, to place a plus
sign (+) in the number string, you would type \+ in the desired location.

 In this example, the procedure
formats the numbers and displays
the results in a message box.

5 Apply a format to the variables.

 In this example, the formatted
numbers are part of the message
box prompt.

6 Press Alt+F11 to switch from
the VBE to Excel, and then run
the macro.

Note: See Chapter 1 to learn how to
run a macro.

09_591598-ch07.indd 11709_591598-ch07.indd 117 6/11/10 1:43 PM6/11/10 1:43 PM

118

4
3

1
2

5

5 Use a message box to display the
entry.

6 Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to run
a macro.

1 Name your procedure.

2 Declare your variable.

3 Use an InputBox function to
retrieve a user entry.

4 Use the UCase function to change
the entry to uppercase.

 Alternatively, you can use the LCase
function to change the entry to
lowercase.

Change the Case of a String

Y ou can use the LCase and UCase VBA functions
to change the case of your text. This is useful
when you are formatting output or when you

want to compare strings without regard to case. The
LCase function changes all characters that are not already
lowercase to lowercase. The UCase function changes all
characters that are not already uppercase to uppercase.
To use the LCase function, simply type LCase followed
by the expression you want to convert to lowercase in
parentheses.

Example:
MyVariable = “HELLO”

SampleText = LCase(MyVariable)

Result:
hello

The syntax for the UCase function is similar to the syntax
for the LCase function. To use the UCase function, you
type UCase followed by the expression you want to
convert to uppercase in parentheses.

Example:
MyVariable = “hello”

SampleText = UCase(MyVariable)

Result:
HELLO

Both the LCase and the UCase functions ignore numbers
and symbols. The expression can be an actual string
enclosed in quotes, or a reference to a string such as a
cell or variable name. If the string contains no data, both
functions return Null.

Change the
Case of a String

09_591598-ch07.indd 11809_591598-ch07.indd 118 6/11/10 1:43 PM6/11/10 1:43 PM

119

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

7

The example used in the section “Using the InputBox Function,” earlier in this chapter, converts the user’s entry to
lowercase and then compares the entry to a string. Converting the entry to lowercase allows you to make a
comparison without regard to case. For example, if the user types GREEN, green, or GrEen, the procedure returns
the value True when it compares the user input to green.

Example:
If LCase(UserInput) = “blue” Then

 Inventory = Cells(2, 3)

 ElseIf LCase(UserInput) = “green” Then

 Inventory = Cells(3, 3)

 ElseIf LCase(UserInput) = “red” Then

 Inventory = Cells(4, 3)

 ElseIf LCase(UserInput) = “silver” Then

 Inventory = Cells(5, 3)

 Else

 Inventory = 0

End If

To see this function in action, refer to the Chapter 7 example file, “Using the InputBox Function,” which is on the
Web site for this book.

• The message box displays the text in
uppercase.

7 Make an entry using lowercase text.

09_591598-ch07.indd 11909_591598-ch07.indd 119 6/11/10 1:43 PM6/11/10 1:43 PM

120

4

1

2

3

4 Use the Left function to retrieve
the left portion of a user entry.

• The variable that you want to
examine.

• The number of characters from
the left you want to retrieve.

 In this example, if the first two
characters of the user entry are
not “OS”, then the user receives
an error message.

1 Name your procedure.

2 Declare your variables.

3 Use an InputBox function to
capture a user entry.

Return a Portion of a String

I nstead of an entire string, you can use the built-in
functions available in VBA to return a portion of a
string. You can use three different functions: Left,

Right, and Mid. The Left function returns the specified
number of characters starting at the left side, or
beginning, of the string. The Right function returns the
specified number of characters starting at the right side,
or end, of the string. These functions use similar syntax:
Left(string, length) and Right(string, length).
The string argument specifies the string from which you
want to return the specified number of characters. You
can make the argument an actual string enclosed in
quotes, a variable that contains a string, or a cell
reference. The length argument indicates the number of
characters to return from the string.

The third built-in function for returning a portion of a
string is the Mid function. Use this function to retrieve
characters from the center of a string. When you use this
function, you indicate the character with which to start
and how many characters to return. There are three Mid
function arguments: Mid(string, start, [length]).
Similar to the Left and Right functions, the Mid
function String argument specifies the string to use with
the function. The start argument indicates the position
of the first character in the string to return. The length
argument is the only optional argument when using the
Mid function. If you omit the length argument, the
function returns the remaining portion of the string.
Otherwise, the length argument indicates the number of
characters to return.

Return a Portion
of a String

09_591598-ch07.indd 12009_591598-ch07.indd 120 6/11/10 1:43 PM6/11/10 1:43 PM

121

Ch
apter 7: U

sin
g E

xcel W
orksh

eet Fu
n

ction
s

5

6

You can use the
IsNumeric VBA function
to determine if a value is a
number. The IsNumeric
function takes one
argument, the value you
want to examine. The
IsNumeric function
returns True when the
value is a number, and
False when the value is
not a number.

6 Use the Right function to
retrieve the right portion of the
user entry.

• The variable that you want to
examine.

• The number of characters from
the right you want to retrieve.

• This example uses the
IsNumeric function.

 In this example, if the last four
characters of the user entry are
not numbers, then the user
receives an error message.

5 Use the Mid function to retrieve
a portion of a string.

• The variable you want to
examine.

• The position of the first character
you want to return.

• The number of characters you
want to return.

 In this example, if the third
character of the user entry is not
a “-”, then the user receives an
error message.

You can determine the length of a string with the Len function, Len(string),
which takes one argument, string. You can make the string argument an actual
string, or the name of a variable that contains a string. The following example
checks to see if the length of the string is not equal to 7. If the length of the string
is not equal to 7, the procedure displays an error message.

Example:
Dim ProductID As String

ProductID = InputBox(“Enter a ProductID:”)

If Len(ProductID) <> 7 Then

 MsgBox(“The Product ID must be 7 characters long.”)

 Exit Sub

End If

09_591598-ch07.indd 12109_591598-ch07.indd 121 6/11/10 1:43 PM6/11/10 1:43 PM

122

22

1

3

Debug a Procedure with
Inserted Breakpoints

C orrecting errors, often referred to as debugging, is
a normal part of writing a program. VBA has
several tools you can use to debug your

procedures. For example, you can insert breakpoints in
your procedures. Breakpoints suspend the execution of a
procedure at the points you specify. Once the program
stops, you can examine the results and then continue the
execution of the program.
You set a breakpoint by clicking the margin of the Code
window next to the line where you want to insert the
breakpoint. The VBE places a circle in the margin and
highlights the line of code using the display options you
set for the Code window. See Chapter 2 for more
information on setting the display options for the Code
window. While in the Break mode, if you position your

cursor over a variable name, the value of the variable
appears.
The VBE has a Locals window, which displays the
expressions in your procedure, their current value, and
their type. When you are debugging your code, you
should dock the Locals window at the bottom of the VBE.
You can then use the Locals window to view the value of
expressions and variables at each breakpoint. See Chapter
2 for more information on using the VBE windows.
When your procedure stops at a specified breakpoint,
VBA places you in Break mode and stops the procedure.
You can then choose to continue running the procedure
until it encounters another breakpoint or the procedure
ends. Each time VBA encounters a breakpoint, the current
value of the local variables appear in the Locals window.

Debug a Procedure with Inserted Breakpoints

1 In Project Explorer, double-click the
module name to open the module.

2 Click View ➔ Locals Window.

• You can click the Close button to
close the Project Explorer.

• The Locals window appears.

3 Click in the margin where you want to
add a breakpoint.

• You can add additional breakpoints as
needed.

10_591598-ch08.indd 12210_591598-ch08.indd 122 6/11/10 1:44 PM6/11/10 1:44 PM

123

5

4

4

The VBE has three different modes: Design, Run, and Break. You use the Design mode to create new VBA
procedures. You use the Run mode to execute a procedure. To activate the Run mode, click Run ➔ Run Sub/
UserForm, or press F5. The VBE runs your procedure.

The VBE places you in the Break mode whenever a procedure stops running due to a breakpoint, a Stop statement,
or a Watch statement, or when it encounters an error during execution. When the VBE places you in the Break
mode, it highlights the line of code that caused the error and places the word break in the caption of the title bar.
To exit the Break mode, click Run ➔ Reset.

You can toggle breakpoints on and off by selecting a line of code and then pressing F9 or by clicking Debug ➔
Toggle Breakpoint. You can remove a breakpoint by clicking it with your mouse. You can clear all breakpoints from
your code by pressing Ctrl+Shift+F9 or by clicking Debug ➔ Clear All Breakpoints. Remember to clear all
breakpoints after you finish debugging your code.

 The values for the locally declared
variables appear in the Locals
window.

5 Position your cursor over a variable
name to see the current value.

• The value for the variable appears.

6 Press F5 to run the procedure.

 Click Run ➔ Reset to stop.

 Click Debug ➔ Clear All Breakpoints
to clear all breakpoints.

4 Click Run ➔ Run Sub/UserForm.

 Alternatively, press F5.

 If the Macros dialog box appears,
click the macro you want to run
and then click Run.

Ch
apter 8: D

ebu
ggin

g M
acros

10_591598-ch08.indd 12310_591598-ch08.indd 123 6/11/10 1:44 PM6/11/10 1:44 PM

124

2

3

3

2

1

• The Watches window appears.

3 Click Debug ➔ Add Watch.

1 In Project Explorer, double-click
the module name to open the
module.

2 Click View ➔Watch Window.

• You can click the Close button to
close the Project Explorer.

Using the Watches Window to Debug a Procedure

I f you suspect an error occurs at a particular
breakpoint, when a variable or expression reaches a
certain value, or when the value of a variable or

expression changes, the Watches window can be of use to
you.
You can use the Add Watch dialog box to set up a watch.
You start by entering an expression in the Expression
field. For example, if you suspect that an error occurs
when the variable RowNum is equal to 2, you can enter the
expression RowNum = 2 to have your procedure break
when the variable RowNum is equal to 2. In the Procedure
field of the Add Watch dialog box, select the proper
procedure. In the Module field, select the proper module.
If you have multiple procedures or modules that call one
another and you are not sure which procedure is causing

the error, you can opt to monitor all procedures and/or all
modules.
The Add Watch dialog box offers three watch types: Watch
Expression, Break When Value Is True, and Break When
Value Changes. You can set a breakpoint and then select
Watch Expression to display the expression you are
evaluating and its current value in the Watches window
when your procedure breaks. You can select Break When
Value Is True to have your procedure break when an
expression evaluates to True. For example, by using this
option, you can break when the variable RowNum is equal to
2. You can select Break When Value Changes to have your
procedure break when the value of an expression changes.
For example, if you are using a counter, you can break
every time the variable you are using to count changes.

Using the Watches Window
to Debug a Procedure

10_591598-ch08.indd 12410_591598-ch08.indd 124 6/11/10 1:44 PM6/11/10 1:44 PM

125

Ch
apter 8: D

ebu
ggin

g M
acros

7

5
4

6

8

When you are in the Break mode,
you can find the current value of a
variable or expression by using
VBA’s Quick Watch feature. Select
the variable or expression for which
you want to find the value. Click
Debug ➔ Quick Watch or press
Shift+F9. The current value of the
expression appears in the Quick
Watch dialog box. If you want to
continue to monitor the variable or
expression value, click Add to add
the item to the Watches window.

To delete a watch, right-click the
watch you want to delete and then
click Delete Watch on the context
menu that appears. To edit a watch,
right-click the watch you want to
edit and then click Edit Watch on
the context menu. The Edit Watch
dialog box appears. Use it to edit
your watch.

When evaluating an expression,
such as X > 5, the value in the
Watches window is either True or
False, indicating whether the
expression is valid. For example, if
the current value of X is 6, the
expression X > 5 has a value of
True because 6 is greater than 5.

 The Add Watch dialog box
appears.

4 Type the expression to watch
in the Expression field.

5 Click the down arrow and
select a procedure.

6 Click the down arrow and
select a module.

7 Click to select a watch type
(changes to).

8 Click OK.

• The Watches window lists
each watch.

9 Press F5 to run your
procedure.

 If the Macros dialog box
appears, click the macro you
want to run and then click
Run.

• The procedure breaks when
the expression you entered
evaluates to True.

10_591598-ch08.indd 12510_591598-ch08.indd 125 6/11/10 1:44 PM6/11/10 1:44 PM

126

2 3

2 3

1

• The Locals and Watches windows appear.

4 Set up a watch.

Note: See the section “Using the Watches
Window to Debug a Procedure” to learn how.

5 Press F8.

 Alternatively, click Debug ➔ Step Into.

• As you begin stepping into the code, VBA
highlights the first line of code.

Step through a Procedure

P rogrammers call the process of stepping through
code one line at a time tracing. With breakpoints,
VBA executes the code until it encounters a

breakpoint. With tracing, VBA executes one line of code
and waits for you to indicate that you want to execute the
next line of code. Tracing is an excellent way to debug
your code when you do not know where your error is
located.
As you step through your code, you can use the Watches
and Locals windows to monitor the value of variables and
expressions. See the section “Using the Watches Window
to Debug a Procedure” to learn more about the Watches
window. See the section “Debug a Procedure with
Inserted Breakpoints” to learn more about the Locals
window.

You start tracing by executing the Step Into command on
the Debug menu, or by pressing F8. When you are ready
to move to the next statement, you execute the Step Into
command or press F8 again. You can continue executing
the Step Into command or pressing F8 for each line of
code you want to execute.
Each time you execute the Step Into command or press
F8, the VBE highlights the next line of code. The Locals
window updates the value of the local variables, and the
Watches window monitors the values of any watch
expressions created for the procedure.
As you step through a procedure, if a code statement calls
another procedure, the VBE also steps through the called
procedure. After that procedure runs, the control returns
to the original procedure.

Step through
a Procedure

1 In Project Explorer, double-click the
module name to open the module.

2 Click View ➔ Watch Window.

3 Click View ➔ Locals Window.

• You can click the Close button to
close the Project Explorer.

10_591598-ch08.indd 12610_591598-ch08.indd 126 6/11/10 1:44 PM6/11/10 1:44 PM

127

Ch
apter 8: D

ebu
ggin

g M
acros

6

You step into procedures by pressing F8 or by clicking Debug ➔ Step Into. If your
procedure contains calls to other procedures, you can step through those procedures
by using the Step Into command. VBA executes the entire called procedure without
stopping and then returns control to the next line in the original procedure. If you
do not want to step through called procedures, you can step over them. To step
over a called procedure, click Debug ➔ Step Over or press Shift+F8.

If you decide to step through the called procedure, you still have the option of
stepping out of it at any time. To step out of a called procedure, click Debug ➔
Step Out or press Ctrl+Shift+F8. The remainder of the called procedure runs, and
then control returns to the next line of code after the called procedure in the
original procedure.

• As you step through the code, local
variable values appear in the Locals
window, and any watches that are
set appear in the Watches window.

6 Continue pressing F8 to step
through the entire procedure.

If your code is running
and you need to break,
press Ctrl+Break. This
feature is useful when you
find yourself in an infinite
loop.

10_591598-ch08.indd 12710_591598-ch08.indd 127 6/11/10 1:44 PM6/11/10 1:44 PM

128

1

1

3

5

1

1

Use Debug Print

1 Add the Debug.Print command to your code.

2 Press Ctrl+G.

 Alternatively, click View ➔ Immediate Window.

• The Immediate window appears.

3 Press F8 to step through your code.

 As you step through your code, the values you
requested with the Debug.Print command
appear in the Immediate window.

• The Val1 value.

• The Val2 value.

• The TotalVal value.

Use Print

1 Create a breakpoint.

2 Press F5 to run your code.

3 Type Print followed by the variable you want to
retrieve.

4 Press Enter.

• The Immediate window retrieves the value.

5 Type ? followed by the value you want to retrieve.

• The Immediate window retrieves the value.

Using the Immediate Window

T he Immediate window is useful when you want to
evaluate expressions, find out the value of a
variable, or quickly test a procedure. You can

open the Immediate window by pressing Ctrl+G.
You can print values to the Immediate window by placing
a Debug.Print command in your code. When VBA
executes the Debug.Print command, it prints the value
you indicate to the Immediate window. For example, if
you place Debug.Print Val1 in your code, and then you
step through your code, when VBA executes the Debug.
Print Val1 command, the value of the variable Val1
appears in the Immediate window.
You can use the Immediate window to return a value. Use
the Print statement or a question mark (?) to return the

value of a variable or expression. For example, if you
want to display the value of the variable Val1, you can
go to the Immediate window and type:
Print Val1

or
? Val1

You can also use the Immediate window to execute
commands. Type the command in the Immediate window.
As soon as you press Enter, VBA executes the command.
When using the Immediate window, control statements
must appear on a single line. For example, you would use
the following code for a For Next loop:
For X = 1 to 4: Print X: Next X

Using the Immediate
Window

10_591598-ch08.indd 12810_591598-ch08.indd 128 6/11/10 1:44 PM6/11/10 1:44 PM

129

Ch
apter 8: D

ebu
ggin

g M
acros

1

1

1

1

1

1

The VBE has a toolbar you can use when debugging your code. To view the toolbar, click View ➔ Toolbars ➔ Debug.
The toolbar appears below the menu. The following table lists the functions that the buttons on the toolbar perform.

BUTTON FUNCTION

Run Macro

Break

Reset

Toggle Breakpoint

Step Into

Step Over

Step Out

Open Locals Window

Open Immediate Window

Open Watches Window

Open Quick Watch

Evaluate a For Next Loop

1 Type your For Next loop.

 All of the statements must
be on one line.

• The results appear in the
Immediate window.

Evaluate an Expression

1 Type your expressions.

• The Immediate window
evaluates the expressions.

10_591598-ch08.indd 12910_591598-ch08.indd 129 6/11/10 1:44 PM6/11/10 1:44 PM

130

2

3

4
5

1

4 Type Exit Sub at the
end of the main
procedure code.

 The Exit Sub
statement causes the
procedure to exit without
running the error code.

5 Create a label.

 VBA moves to the label
when a runtime error
occurs.

1 Name your procedure.

2 Type your On Error
GoTo command.

• This is the label.

3 Type the VBA code for
the procedure.

Resume Execution When an Error Is Encountered

A runtime error is an error that occurs when your
code attempts to perform an invalid operation,
such as trying to access a value that does not

exist. If you do not provide a way for VBA to handle
runtime errors, when VBA encounters them, it stops
running your code and displays an error message to the
user, or it acts in an unpredictable way.
VBA has special code you can use to handle runtime
errors. You can instruct VBA to continue the execution of
a procedure when it encounters an error by using the On
Error GoTo statement. The following is the syntax for
the On Error GoTo command:
On Error GoTo label

When you use this command, control jumps to a labeled
section of code whenever VBA encounters a runtime
error. A label is a text string followed by a colon. The On
Error GoTo command moves to the label, thereby
passing control from the current location in the procedure
to the label. Usually, you place your labeled code at the
end of your procedure. For example, you can use
ErrorFound: as a label for the code you want to run if
VBA encounters an error.
An Exit Sub or Exit Function statement causes VBA
to end the execution of your procedure. You can place an
Exit Sub or Exit Function statement prior to the
labeled section of your code to keep the procedure from
executing the labeled code when VBA does not encounter
an error.

Resume Execution When
an Error Is Encountered

10_591598-ch08.indd 13010_591598-ch08.indd 130 6/11/10 1:44 PM6/11/10 1:44 PM

131

Ch
apter 8: D

ebu
ggin

g M
acros

6

If you place a Resume statement at the end of your labeled code, control returns to the line of code that caused the
runtime error, and the line of code executes again. If the code produces an error, the error-handling code executes
again. This option enables you to recheck for the error.

If you place a Resume Next statement at the end of your labeled code, control returns to the next line of code in
the procedure after the location that produced the runtime error. Your code continues execution without the line of
code that produced the error. This option enables you to complete the procedure.

If you place a Resume label statement followed by a label name at the end of your block of code, you can
transfer control to the labeled line of code.

 If a runtime error
occurs, the appropriate
VBA code executes.

6 Type the VBA code
to execute when an
error occurs.

7 Press Alt+F11 to
switch from the
VBE to Excel, and
then run the macro.

10_591598-ch08.indd 13110_591598-ch08.indd 131 6/11/10 1:44 PM6/11/10 1:44 PM

132

2

3

1

4

5

4 Create a label.

5 Create a conditional statement
to check the value of the Err.
Number object property.

1 Name your procedure.

2 Type the On Error GoTo
command.

• This is the label.

3 Type Exit Sub at the end
of the main body of code.

Process a Runtime Error

W henever VBA encounters a runtime error, it
places the error information, which includes
an error code and description, in the Err

object. You can use this information to correct the error.
To capture the error without halting the execution of your
code, you can place the On Error Resume Next
statement immediately after the Sub statement for your
procedure. This statement instructs VBA to capture the
error and continue processing.
The Err.Number property contains the most recent
runtime error code. The error codes for runtime errors are
always numbers. Essentially, if the Err.Number property
has a value greater than 0, then an error has occurred.
You can quickly check to see if an error exists by checking
the Number property of the Err object. If an error exists,
you can use If Then statements or Case statements to
respond to the error, as in the following code: If Err.
Number = 13 Then.

You can design your error-processing code to react to the
specific runtime error encountered. For example, if the
Err.Number property has a value of 13, the value passed
to a variable is not the correct data type; the user may
have entered a string for a variable that requires a
number. You can write code that examines the runtime
error and prompts the user for the correct data type.
If you want to see the error description, use the Err.
Description property. The following code creates a
Division by Zero error and then displays the error number
and code in a message box:
On Error Resume Next

X = 1/0

MsgBox (Err.Number & “ “ & Err.Description)

Process a
Runtime Error

10_591598-ch08.indd 13210_591598-ch08.indd 132 6/11/10 1:44 PM6/11/10 1:44 PM

133

Ch
apter 8: D

ebu
ggin

g M
acros

6

6

6

The following table lists some of the most common errors that VBA returns when it encounters a runtime error.
Each error code has a description message you can display using the Err.Description property. You can also
capture the code and display your own custom messages.

CODE ERROR REASON

3 Return without GoSub The Return statement exists without a corresponding GoSub statement.

5 Invalid procedure call The call to another procedure or function cannot be made. This is usually
due to a problem with the arguments; either not calling with a valid number
of arguments, or the value of an argument is not valid for the procedure.

9 Subscript out of range An attempt was made to access an array element that does not exist.

10 The array is fixed or
temporarily locked

This occurs when you try to redimension a fixed-length array.

11 Division by zero This occurs when the divisor is zero.

13 Type mismatch The value passed to a variable is not the correct data type.

35 Sub, Function, or
Property not defined

This occurs when you attempt to call a procedure, function, or property
that does not exist.

 If a runtime error occurs, the
appropriate VBA code executes.

 In this example, an error occurs if
you enter a 0 into the input box.

6 Type the code to execute if a
specific error occurs.

7 Press Alt+F11 to switch from
the VBE to Excel, and then
run the macro.

10_591598-ch08.indd 13310_591598-ch08.indd 133 6/11/10 1:44 PM6/11/10 1:44 PM

134

2

1

Open a
Workbook

Y ou can use the Open method with the WorkBooks
object to open a workbook. This is similar to
clicking the File tab and using the menu to open a

workbook. Each time you open a new workbook, Excel
adds the workbook to the Workbooks collection.
The Open method has 16 parameters. This section
discusses the FileName, WriteResPassword, Password,
ReadOnly, IgnoreReadOnlyRecommended, and
AddToMru parameters. Refer to VBA help for a discussion
of the remaining parameters.
Use the FileName parameter to specify the workbook you
want to open. You can use the name of the workbook if
the workbook is located in the current folder. If the
workbook is located in another folder, enter the path to

the workbook. You must enclose the workbook name or
path in quotes.
If you want users to enter a password before they can
modify the workbook, set the WriteResPassword
parameter to the password you want them to enter. If you
want users to enter a password before they can open a
protected workbook, set the Password parameter to the
password you want them to enter.
Set the ReadOnly parameter to True to make a workbook
read-only. If the workbook is Read-Only Recommended,
Excel prompts users to open the file as read-only each
time the workbook opens. To eliminate the prompt, set
the IgnoreReadOnlyRecommended parameter to True.
Set the AddToMru parameter to True to add the workbook
to the Recent Workbooks list.

Open a Workbook

1 Name your procedure.

2 Create your Open
command.

• The workbook you want
to open.

• Adds the file to the
Recent Workbooks list.

• Sets the file to read-only.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

11_591598-ch09.indd 13411_591598-ch09.indd 134 6/11/10 1:57 PM6/11/10 1:57 PM

135

When working in Excel, you can use the Save As dialog box to set a password for your file, to set your file to read-
only recommended, or to set your file to read-only. To open the Save As dialog box, click the File tab and then click
Save As. The Save As dialog box appears. In the lower right corner of the Save As dialog box, click the Tools button.
The Tools menu appears. Click General Options. The General Options dialog box appears. Enter a password in the
Password to Open or Password to Modify field to password-protect your file. Select the Read-Only Recommended
option to set your file to read-only recommended. Click OK to close the dialog box.

 If users make a change and
then try to save the file,
Excel warns that the file is
read-only.

• The macro opens the file
and adds the filename to
the Recent Workbooks list.

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

11_591598-ch09.indd 13511_591598-ch09.indd 135 6/11/10 1:57 PM6/11/10 1:57 PM

136

2

1

2 Create your OpenText
command.

• The file you want to open.

• The file type. Type
xlDelimited or
xlFixedWidth.

• The delimiter. In this
example, a comma
separates each column.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

Open a Text File as a Workbook

M any software applications have an option for
exporting the application’s data to a text file.
You can use VBA’s OpenText method with

the Workbooks object to import a text file. You can then
use all of Excel’s data-analysis capabilities to analyze the
file. With the OpenText method, Excel opens the text file
as a single worksheet in a new workbook. The file
remains a text file. Users can modify the workbook and
save it as a text file or as an Excel worksheet.
The list of parameters for the OpenText method is
extensive. Only the FileName parameter is required. Use
the FileName parameter to tell VBA the name of the file
to open. You can enter the name of a file as the parameter
if the workbook is located in the current folder. If the file
is located in another folder, enter the path to the file.

Make sure you enclose the name of the file or path in
quotes.
The OpenText method can handle any delimited or fixed-
width file. A delimited file uses a comma, space,
semicolon, tab, or other character to mark the end of each
column. A fixed-width file aligns the columns and gives
each column a defined width. Use the DataType
parameter to tell VBA whether your file is a delimited file
or a fixed-width file. Use the constant xlDelimited for
delimited files, and the constant xlFixedWidth for fixed-
width files.
If your file is delimited, you specify what the delimiter is.
For example, if the delimiter is a comma, then you set the
Comma parameter to True.

Open a Text File
as a Workbook

11_591598-ch09.indd 13611_591598-ch09.indd 136 6/11/10 1:57 PM6/11/10 1:57 PM

137

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

Use the following parameters with the OpenText method to open a text file in a workbook.

PARAMETERS DESCRIPTION

FileName The name and location of the text file.

Origin Indicates the original file platform: xlMacintosh or xlWindows.

StartRow The first row to import.

DataType The format of the text file, either xlFixedWidth or xlDelimited.

TextQualifier The character that identifies text.

ConsecutiveDelimiter Set to True to treat consecutive delimiters as one delimiter.

Tab, Semicolon, Comma, Space Set each of these parameters to True if they are a delimiter.

Other Set to True to specify the delimiter.

OtherChar If Other is set to True, use this parameter to specify the character to use as
a delimiter.

FieldInfo The column number followed by an XlColumnDataType constant.

DecimalSeparator The character VBA recognizes as a decimal separator.

ThousandsSeparator The character VBA recognizes as a thousands separator.

TrailingMinusNumbers Set to True to designate trailing minus signs as negative numbers.

Local Set to True to use the computer’s regional settings.

 You can open the
file in Excel.

• The macro opens
the text file as a
worksheet in Excel.

 The file remains a
text file.

 The text file.

11_591598-ch09.indd 13711_591598-ch09.indd 137 6/11/10 1:57 PM6/11/10 1:57 PM

138

3

1
2

4

3 Create your GetOpenFilename
command.

• Types of files the user can open.

• The title of the Open dialog box.

4 Create a command to open the
workbook.

5 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

1 Name your procedure.

2 Create a variable to store the
filename returned by the
GetOpenFilename method.

Open a File Requested by the User

Y ou can retrieve the name of the file a user wants
to open by prompting the user with the Open
dialog box and then using a method to open

the file.
To display the Open dialog box from an Excel procedure,
use the GetOpenFilename method. This method does not
open the file when the user clicks OK. Instead, the
method passes the name of the file the user selects to a
variable you assign to the statement. If you want to open
the selected file, you must use either the Workbooks.
Open method or the Workbooks.OpenText method. If the
user does not select a file, the statement returns False.
The GetOpenFilename method has several optional
parameters. The FileFilter parameter lets users select
the type of file they want to open. You can create a list of

values for the Files of Type drop-down menu in the Open
dialog box. For example, “XML Files (*.xml), *.xml” tells
VBA that Excel should open only XML files. You can specify
multiple file types by separating the file types with commas.
Users can then select the file type they want to use.
Use the FilterIndex parameter to indicate the default
FileFilter option. You can specify a filter value
between 1 and the number of filters you selected. If you
omit this parameter, VBA uses the first filter specified as
the default value.
Use the Title parameter to place a title on the Open
dialog box. For example, for a dialog box that opens text
files, you can make the title “Open Text Files.”
To enable users to select and open multiple files at once,
set the MultiSelect parameter to True.

Open a File Requested
by the User

11_591598-ch09.indd 13811_591598-ch09.indd 138 6/11/10 1:57 PM6/11/10 1:57 PM

139

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

The FileFilter parameter enables you to create a list of files users can select in the Open dialog box. You
describe the file and follow the description with a comma and a wildcard file specification. If you do not set this
parameter, VBA lists all of the file types Excel can open.

Example:
Text Files (*.txt), *.txt

An asterisk (*) is a wildcard character that represents any string of characters, and a question mark (?) is a wildcard
character that represents a single character. The notation *.txt means any filename that ends with .txt.

FILE TYPE DESCRIPTION

*.txt, *.prn, *.csv Text files

*.xls, *.xlm, *.xl, *.xlc, *.xlsx, *.xlsm Microsoft Excel files

*.htm Web pages

*.xml XML files

*.odc, *.udl, *.dsn Data sources

*.mdb, *.mde Access databases

*.wk? Lotus files

*.wks Microsoft Works 2.0 files

*.dbf dBase files

 The macro opens the file.

 The macro opens the Open
dialog box.

• The list of file types the
user can open.

• The title of the dialog box.

6 Double-click the file you
want to open.

11_591598-ch09.indd 13911_591598-ch09.indd 139 6/11/10 1:57 PM6/11/10 1:57 PM

140

2

1

2 Create your SaveAs
command.

• The name you want to
give the saved file.

• The file format.

• Adds the file to the
Recent Workbooks list.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

Save a Workbook

T o save an Excel workbook, you can use the Save
or SaveAs methods of the Workbook object. VBA
creates a workbook object for each workbook you

open. You can reference a specific workbook object by
name. For example, Workbooks(“Sample.xlsx”) refers
to the Sample.xlsx workbook.
If you do not know the name of the workbook you want
to save, you can make the workbook you want to save
the active workbook, and then use the ActiveWorkbook
property to save the workbook. For example, the code
ActiveWorkbook.Save saves the active workbook.
If the workbook you want to save contains the macro that is
currently running, you can use the ThisWorkbook property.
For example, the code ThisWorkbook.Save saves the
workbook in which the macro is located. The workbook that
contains the macro is often the active workbook. However,
if you open a new workbook during the execution of a
macro, the new workbook can become the active workbook.

To set save specifications for a workbook, use the
Workbook.SaveAs method, which has the following
parameters: FileName, FileFormat, Password,
WriteResPassword, ReadOnlyRecommended,
CreateBackup, AccessMode, ConflictResolution,
AddToMru, and Local.
Use the FileName parameter to specify the name of the
workbook and the folder in which to save the workbook.
If you do not set this parameter, Excel uses the
workbook’s current name.
Use the FileFormat parameter to specify a format for the
saved file. You can use any of the file formats that Excel
supports by entering one of the XlFileFormat constant
values. See the appendix for a list of the XlFileFormat
constant values. Set the AddToMru parameter to True if
you want to add the workbook to the Recent Workbooks
list.

Save a
Workbook

11_591598-ch09.indd 14011_591598-ch09.indd 140 6/11/10 1:57 PM6/11/10 1:57 PM

141

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

The Workbook.SaveAs method has several optional parameters that determine how the file is saved.

SAVEAS PARAMETER DESCRIPTION

FileName Indicates the name and location to save the file.

FileFormat The XlFileFormat constant that indicates the format of the saved file. See the
appendix for a list of XlFileFormat constant values.

Password The up to 15-character password required to open the file.

WriteResPassword The password for write-restricting the file.

ReadOnlyRecommended Set to True to display a message that recommends that the user open the file as
read-only.

CreateBackup Set to True to create a backup file.

AccessMode A constant value of xlExclusive, xlNoChange, or xlShared. Indicate the access
mode.

ConflictResolution A constant that indicates how to resolve conflicts. A value of xlUserResolution
displays a Conflict Resolution box, xlLocalSessionChanges accepts a local user’s
changes, and xlOtherSessionChanges accepts changes from other users.

AddToMru Set to True to add a workbook to the Recent Workbooks list.

Local Set to True to save files in the language used by Excel; set to False to save files in
the language used by VBA.

• The macro adds your
file to the Recent
Workbooks list.

• The macro saves
your file.

11_591598-ch09.indd 14111_591598-ch09.indd 141 6/11/10 1:57 PM6/11/10 1:57 PM

142

3

1
2

3 Create a GetSaveAsFilename
command.

• The filter list.

• The dialog box title.

1 Name your procedure.

2 Declare your variables.

Save a Workbook in a Format Specified by the User

Y ou can use the GetSaveAsFilename method to
request the name, location, and format to use
when saving a workbook file. This method

displays the Save As dialog from which users select the
file they want to save. The GetSaveAsFilename method
does not save the file; instead, VBA returns the user’s
selection to the variable you assign to the
GetSaveAsFilename statement. If the user does not
make an entry, the variable returns False. To save the
file, use the SaveAs method. See the section “Save a
Workbook” for more information.
The GetSaveAsFilename method has the following
optional parameters: InitialFilename, FileFilter,
FilterIndex, and Title. Use the InitialFilename
parameter to suggest a name for the file. If you do not
suggest a name, Excel uses the name of the active

workbook. Use the FileFilter parameter to create a list
of file formats users can use to save the file. If you do not
include this parameter, Excel lists all available formats.
To create the list, describe the file type, place a comma
after the description, and then place a wildcard
specification after the comma. For example:
Text Files (*.text), *.txt

An asterisk (*) is a wildcard character that means any
string of characters. The notation *.txt means any file that
ends with .txt.
Use the FilterIndex parameter to select a default file-
filtering option from the FileFilter parameter options.
You can use a filter value between 1 and the total number
of filters. If you omit this parameter, VBA uses the first
filter as the default value. Use the Title parameter to
place a title on the dialog box.

Save a Workbook in a Format
Specified by the User

11_591598-ch09.indd 14211_591598-ch09.indd 142 6/11/10 1:57 PM6/11/10 1:57 PM

143

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

4

Instead of saving an individual workbook, you can save the entire workspace. Saving workspaces enables you to
save all open workbooks as a group. When you open a workspace, all of the workbooks open. Workspace files have
an .xlw filename extension.

To save a workspace, use the SaveWorkspace method of the Application object. The SaveWorkspace
method has one parameter: FileName. To save your file in the current folder, enter the name of the file as the
FileName parameter. To save to another folder, enter the path to the file as the FileName parameter. Enclose the
filename or path quotes.

Examples:
Application.SaveWorkspace(“Sample”)

Application.SaveWorkspace(“C:\Workbooks\Sample”)

 The macro opens
the Save Workbook
As dialog box and
then saves the file
using the name you
specify.

4 Create a command
to save the file.

5 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

11_591598-ch09.indd 14311_591598-ch09.indd 143 6/11/10 1:57 PM6/11/10 1:57 PM

144

1

2

3
4

5
6

5

1 Name your procedure.

2 Declare your variables.

• Handles errors. See Chapter 8.

3 Assign False to a Boolean variable.

 You set this variable to True if the active
workbook is the workbook that you want
to activate.

4 Assign the file you are looking for to a
variable.

5 Create a For Each In loop.

 This statement enables you to review
every open workbook.

6 Create an If Then statement.

 The code looks at every open workbook;
if it finds the workbook you requested, it
activates the workbook and displays a
message.

• If the macro does not find the workbook,
it looks in the current folder and opens
the workbook.

• Handles errors. See Chapter 8.

7 Press Alt+F11 to switch from the VBE to
Excel, and run the macro.

Determine if a Workbook Is Open

T he Workbooks collection contains all of the
workbooks that are open in Excel. You can
determine if a workbook is open by examining

the workbooks in the Workbooks collection. Every time
you open a workbook, it becomes a Workbook object and
Excel adds it to the Workbooks collection. Excel stores
workbooks in the Workbooks collection sequentially and
assigns each workbook an index value based on its
sequence. For example, the first workbook opened is the
first workbook in the collection, and VBA assigns it an
index value of 1; the next workbook opened is the second
workbook, and VBA assigns it an index value of 2. If you
know the order in which a workbook opened, you can
access the workbook by using the associated index value.
The code MyWorkbook = Workbook(1).Name uses the
Name property to return the name of the first workbook in

the collection to the MyWorkbook variable. The Name
property is read-only. You can use it to return the name
of a workbook, but you cannot use it to change the name
of a workbook. To learn how to change the name of a
workbook, see the section “Save a Workbook.”
To locate a workbook, look at each workbook in the
Workbooks collection. With a For Each Next loop
statement, you can cycle through all open workbooks. See
Chapter 6 for more information about using a For Each
Next loop statement.
Within a looping structure, you can compare the name of
each workbook with the name of the desired workbook.
With an If Then statement, you can check the name of
each workbook and then execute a series of statements
when the workbook you want is found. See Chapter 6 for
more information on using an If Then statement.

Determine if a
Workbook Is Open

11_591598-ch09.indd 14411_591598-ch09.indd 144 6/11/10 1:57 PM6/11/10 1:57 PM

145

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

If a workbook is open, you can activate it by using the
Activate method of the Workbook object. The
activated workbook becomes the currently selected
workbook in Excel. The Activate method has no
parameters. Specify the workbook to activate, followed
by the method.

Example:
Workbooks(“Budget.xlsx”).Activate

Using Application.Workbooks returns all
workbooks, including hidden workbooks, but it does
not return any open add-ins. To return a specific add-in,
reference the add-in by name.

Example:
Workbooks(“OpenAddin.xla”).

The Open method opens the specified add-in file. If you
do not specify the path, Excel looks for the workbook in
the current folder. See Chapter 18 for more information
on add-ins.

 If the file is already
open, the macro
displays the message
“Workbook is already
open.”

 The macro opens the
file you specified and
activates it.

11_591598-ch09.indd 14511_591598-ch09.indd 145 6/11/10 1:57 PM6/11/10 1:57 PM

146

2

1

2 Create your Close
command.

• The workbook that you
want to close.

• Saves any changes.

• The new filename.

1 Name your procedure.

Close a Workbook

Y ou can close a workbook by using the Close
method and referencing the Workbook object that
contains the workbook you want to close. When

you open a workbook, VBA assigns the workbook an
index value. For example, VBA assigns the first workbook
you open an index value of 1, and the next workbook you
open an index value of 2. The Workbooks collection
contains all open workbooks as individual Workbook
objects. You can reference a workbook by using an index
value, the name of the workbook, the ActiveWorkbook
property, or the ThisWorkbook property. If you close a
workbook that is running the macro and you have code
after the Close statement, Excel may ignore the code. The
following examples close a workbook:
Workbooks(1).Close

Workbooks(“Budget.xlsx”).Close

ActiveWorkbook.Close

ThisWorkbook.Close

The Close method has three optional parameters:
SaveChanges, Filename, and RouteWorkbook. Set the
SaveChanges parameter to True to save changes to a
workbook as it closes. A SaveChanges value of False
closes the workbook without saving, and you lose any
changes you have made since your last save. Use the
FileName parameter to tell VBA the name you want to
give your file when you save it.
If you set up the workbook to route, you can use the
RouteWorkbook parameter to route the workbook to the
next recipient on the routing list. You specify a value of
True to route the workbook; you specify a value of False
if you do not want route the workbook to the next
recipient.

Close a
Workbook

11_591598-ch09.indd 14611_591598-ch09.indd 146 6/11/10 1:57 PM6/11/10 1:57 PM

147

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

3

By using the Close method with the Workbooks object, you can close all workbooks that you have open in Excel.
If the SaveChanges parameter does not have a value specified, Excel checks to ensure that you have saved each
workbook since its last modification. If a workbook contains modifications, Excel prompts you to save the
workbook. The following example closes all open workbooks.

Example:
Workbooks.Close

When you close all workbooks, Excel remains open. If you want Excel to close, use the Quit method with the
Application object.

Example:
Application.Quit

Before closing Excel, the Quit method first closes the open workbooks. If any of the workbooks contain changes,
Excel prompts you to save the changes. If you do not want to save modified worksheets and you do not want the
dialog box to ask you to save changes, set the DisplayAlerts property to False. This property determines
whether the alert message appears when Excel performs a task.

Example:
Application.DisplayAlerts = False

 The macro closes
the file specified in
the macro, saves it
under the name
specified in the
macro, and then
displays a message
to the user.

3 Create a message
for the user.

Note: This procedure
assumes that Budget.
xlsx is open.

4 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

11_591598-ch09.indd 14711_591598-ch09.indd 147 6/11/10 1:57 PM6/11/10 1:57 PM

148

3

4
5

2
1

4 Assign a title to your
workbook.

5 Name and save your
workbook.

6 Press Alt+F11 to switch from
the VBE to Excel, and run
the macro.

1 Name your procedure.

2 Declare a new Workbook
object.

3 Create your Add command.

• The workbook that you
want to use as a template.

Create a New Workbook

T o create a new Excel workbook, use the Add
method with the Workbooks collection. The Add
method has one optional parameter: Template.

The following is the syntax for the Add method:
Workbooks.Add(Template)

To tell VBA how to create a workbook, use the Template
parameter. You can use one of the four XlWBATemplate
constant values or another workbook as the template
parameter. Use xlWBATWorksheet to create a workbook
containing one worksheet; xlWBATChart to create a
workbook containing one chart sheet;
xlWBATExcel4MacroSheet to create an Excel 4.0 macro
sheet; and xlWBATExcel4IntMacroSheet to create an
international macro sheet.

When you use a workbook as the template, Excel copies
the workbook into a new workbook. You can use the
name of the workbook as the parameter if the workbook
is located in the current folder. If the workbook is located
in another folder, use the path to the workbook.
When you use the Add method without the template
parameter, Excel creates a new workbook with the name
Book1.xlsx. If a workbook already exists with that name,
Excel assigns the name Book2.xlsx. You can use the Title
property to specify the title of the workbook. To name
and save the new workbook, you can use the SaveAs
method. See the section “Save a Workbook” for more
information on the SaveAs method.

Create a New
Workbook

11_591598-ch09.indd 14811_591598-ch09.indd 148 6/11/10 1:57 PM6/11/10 1:57 PM

149

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

You can use the following properties with the Workbook object.

PROPERTY DESCRIPTION

ActiveSheet A string indicating the name of the active sheet in the workbook.

FileFormat A read-only value indicating the format of the workbook. This value returns an
XlFileFormat constant; see the appendix for more information.

FullName A read-only string indicating the name and complete path to the workbook.

HasPassword A read-only Boolean value indicating whether the workbook is password-protected.

Name A string indicating the name of the workbook.

Password Returns or sets the password string for the workbook.

Path Returns the complete Excel application path.

ProtectStructure A read-only Boolean value indicating whether the order of the sheets in the
workbook is protected. If True, you cannot move, delete, or add worksheets.

ReadOnly A read-only Boolean value indicating whether the workbook was opened as read-only.

ReadOnlyRecommended A read-only Boolean value indicating whether the workbook was saved as read-only.

Saved Contains a Boolean value indicating whether changes were made since the workbook
was saved.

• The macro adds the
title to the Document
Properties pane.

• The macro creates
and saves the new
workbook.

11_591598-ch09.indd 14911_591598-ch09.indd 149 6/11/10 1:57 PM6/11/10 1:57 PM

150

1
2

3

3 Use the GetSaveAsFilename
method to request from the user
the file that the user wants to
delete.

Note: See the section “Save a
Workbook in a Format Specified by
the User” to learn more about the
GetSaveAsFilename method.

1 Name your procedure.

2 Declare your variables.

 This example uses the
DeleteWB variable to store
the name of the file to delete.

Delete a File

The VBA Kill statement deletes a workbook or file. You
can use this statement to have VBA delete any file that
the user has permission to delete. The following is the
syntax for the Kill statement:
Kill(Pathname)

The Kill statement has one parameter: Pathname. The
Pathname parameter is a string referencing the files you
want to delete. You can use the name of a workbook as
the parameter if the workbook is located in the current
folder. If the workbook is located in another folder, use
the path to the workbook. Make sure you enclose the
filename or path in quotes.
You can specify the name of a single file by typing the
complete filename, including the extension. You can

remove multiple files at once by using wildcard symbols
to specify multiple characters. An asterisk (*) represents
multiple characters, and a question mark (?) represents a
single character. For example, you can remove the entire
contents of a folder by using the *.* specification. The
statement Kill “C:\Excel Files*.*” deletes every
file in the Excel Files folder. If you only want to remove
the Excel workbooks, you can use Kill “C:\Excel
Files*.xls?”.
You cannot delete open files. If you attempt to delete an
open file, a Permission Denied error appears. You also
cannot delete read-only files. If you attempt to delete a
read-only file, Excel displays a Path/File access error
message.

Delete
a File

11_591598-ch09.indd 15011_591598-ch09.indd 150 6/11/10 1:57 PM6/11/10 1:57 PM

151

Ch
apter 9: W

orkin
g w

ith
 W

orkbooks an
d Files

4

The Kill statement removes files; it does not remove folders. To delete a folder, use the RmDir statement. The
RmDir statement has one parameter: Path. If you omit the parameter, VBA tries to delete the current folder. For
the path parameter, specify the location of the folder that you want to remove. For example, the code
RmDir(“Excel Files”) removes the Excel Files folder. The RmDir statement removes only folders; it does not
remove any files. If the folder you are deleting contains any files, an error appears telling you that Excel cannot
remove the folder.

When working with folders, you may need to know the current path. To determine the path to the current folder,
use the CurDir function. The CurDir function returns a string containing the path to the current folder. You can
assign the value returned by the function to a variable, as shown in following example.

Example:
CurrentFolder = CurDir

 The macro requests
a filename and then
deletes the file.

4 Delete the file.

5 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

11_591598-ch09.indd 15111_591598-ch09.indd 151 6/11/10 1:57 PM6/11/10 1:57 PM

152

2

1

Add a
Sheet

T o add a new sheet to a workbook, you can use the
Add method with the Sheets object. You can use
this method to add a worksheet, chart sheet, or

macro sheet. The Add method has four optional parameters
that specify where in the workbook to place the sheet, the
number of sheets to add, and the type of sheet to create.
The following is the syntax for the Add method:
expression.Add(Before, After, Count, Type)

Use the expression portion of the statement to identify
the workbook to which you want to add sheets. Use the
Before parameter to tell VBA the sheet before which you
want to place the new sheet, or use the After parameter to
tell VBA the sheet after which you want to place the new
sheet. You can use the Sheets collection to reference a
sheet. Excel uses an index value to refer to sheets in the

Sheets collection. In a workbook, the first sheet on the left
has an index value of 1 and is referred to as Sheets(1).
To reference a sheet, you can use the sheet name or the
Sheets collection with an index value, as in this example:
ThisWorkbook.Sheets.Add Before:= Sheets(1).
Use the Count parameter to add multiple sheets to a
workbook. If you do not specify a value for the Count
parameter, Excel adds one sheet.
By default, the Add method creates a worksheet. You can
also use this method to create chart or macro sheets. You
specify the type of sheet you want to create by using one
of the four XlSheetType constant values: You use
xlWorksheet to add a new worksheet, xlChart to add a
chart sheet, xlExcel4MacroSheet to add a macro sheet,
and xlExcel4IntMacroSheet to add an international
macro sheet.

Add a Sheet

1 Name your procedure.

2 Create your Add
command.

• The sheet before which
you want to add the new
sheets.

• The number of sheets
you want to add.

• The type of sheet you
want to add.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

12_591598-ch10.indd 15212_591598-ch10.indd 152 6/11/10 1:58 PM6/11/10 1:58 PM

153

If you know that you want Excel to add new sheets before the first sheet in the workbook or after the last sheet,
reference an element of the Sheets collection. Excel always makes the first sheet in the workbook the first element
in the Sheets collection. You can refer to it as Sheets(1). You can use the Count method with the Sheets
object to determine the last sheet in the workbook. The expression Sheets.Count returns the total number of
Sheets in the Sheets collection. The following example places a Sheet after the last sheet in the workbook.

Example:
ThisWorkbook.Sheets.Add _

 After:=Sheets(Sheets.Count)

You can also reference a sheet by name. For example, by default, Excel names worksheets Sheet1, Sheet2, and so
on. If you want to place new sheets before Sheet1, use the following as the Before parameter: Before:=
Sheets(“Sheet1”).

• The workbook after
you run the macro.

 The macro adds
two worksheets
before the first
worksheet in the
workbook.

• The workbook
before you run the
macro.

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

12_591598-ch10.indd 15312_591598-ch10.indd 153 6/11/10 1:58 PM6/11/10 1:58 PM

154

1

4

2

• Handles Errors.

3 Create an input box.

 Users enter the name of
the sheet they want to
delete into the input box,
and VBA stores the name
to a variable.

4 Create a Delete
command.

• The variable containing
the worksheet that the
user wants to delete.

5 Press Alt+F11 to switch
from the VBE to Excel
and then run the macro.

1 Name your procedure.

2 Declare your variables.

Delete a Sheet

Y ou can delete or remove from a workbook any
sheet you can modify. If you open the workbook
in read-only mode or if a sheet is protected, you

may not be able to delete a sheet.
To delete sheets, use the Delete method with the Sheets
object. You can delete worksheets, chart sheets, and
macro sheets. To use the Delete method, you simply
specify the sheet you want to remove. The following
example removes the first sheet in a workbook:
Sheets(1).Delete

Every sheet has an index value. This example deletes the
sheet with the index value of 1. Excel numbers worksheets
and charts as you add them to the workbook as follows:
Sheet1, Sheet2, and so on (or Chart1, Chart2, and so on).
However, the VBA index number does not always
correspond with the number given to the sheet by Excel.

VBA assigns index values numerically, starting with the
first sheet on the left. If you move sheets within your
workbook, Excel reorders them in the Sheets object. The
first sheet on the left always has an index value of 1.
You can also use the sheet name to reference the sheet
you want to delete. You must enclose the name of the
sheet in quotes, as in the following example:
Sheets(“Sheet3”).Delete

When a Delete statement executes, Excel displays an
alert and asks you to verify that you really want to delete
the sheet. Click Yes to remove the specified sheet from
the workbook. If you do not want Excel to display an
alert, use the following code to set the DisplayAlerts
property to False: Application.DisplayAlerts =
False. Remember that if the sheet contains any data,
when you delete Excel permanently removes the data.

Delete
a Sheet

12_591598-ch10.indd 15412_591598-ch10.indd 154 6/11/10 1:58 PM6/11/10 1:58 PM

155

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

If you want to create a procedure that removes only
worksheets from the workbook, you can use the
Delete method with a Worksheets object instead of
the Sheets object. The Sheets object contains all
worksheets, chart sheets, and macro sheets that are
open in a workbook, whereas the Worksheets object
only keeps track of the open worksheets. If you use the
Worksheets object to remove the first worksheet in
the workbook, Excel ignores any chart sheets before the
first worksheet. The following statement deletes the first
worksheet in the workbook and ignores any other sheet
types.

Example:
Worksheets(1).Delete

If you want to create a procedure that removes only
chart sheets from a workbook, you can use the Delete
method with the Charts object. The Charts object
contains all of the chart sheets that are contained in a
workbook. This method works only with chart sheets,
not charts embedded in worksheets. When you use the
Charts object with the Delete method, Excel
considers only actual chart sheets and ignores any
worksheets, even if they exist before the specified chart
sheet. The following statement deletes the first chart
sheet in the workbook and ignores any other sheet
types.

Example:
Charts(1).Delete

• The macro deletes
the sheet.

 The macro displays
the message box
requesting the
sheet the user
wants to delete.

12_591598-ch10.indd 15512_591598-ch10.indd 155 6/11/10 1:58 PM6/11/10 1:58 PM

156

4

1
2

3

4 Create your Move
command.

• The sheet you want to
move.

• The location where you
want to move your sheet.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare your variables.

3 Count the number of
sheets in your workbook
and store the result to a
variable.

Move a Sheet

Y ou can use the Move method with the Sheets
object to rearrange sheets within a workbook.
When you move a sheet, you indicate the new

location by specifying the name of the sheet before or
after which you want to place the sheet you are moving.
The Move method has two optional parameters: Before
and After. Although both parameters are optional, you
can use only one of them at a time. Use the Before
parameter to specify the sheet in front of which you want
to place a sheet, and the After parameter to specify the
sheet after which you want to place a sheet. For example,
the following statement moves the first sheet in a
workbook and places it after the third sheet:
Sheets(1).Move After:=Sheets(3)

If you do not specify a Before or After parameter value,
Excel creates a new workbook and places the worksheet
in that workbook. The worksheet becomes the only
worksheet in the new workbook.
The Sheets object references all sheets in the workbook,
including all worksheets, chart sheets, and macro sheets.
As shown in the example, you can use index values to
reference sheets based on their order in the workbook.
You can also reference a sheet by using the name on the
sheet tab.
Moving a sheet before or after a nonexistent sheet causes
VBA to display a “Subscript out of range” error. To avoid
this error, you can use the Count method to determine
the number of sheets in the workbook before you attempt
to move sheets.

Move
a Sheet

12_591598-ch10.indd 15612_591598-ch10.indd 156 6/11/10 1:58 PM6/11/10 1:58 PM

157

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

When you work with Excel objects in VBA, especially collection objects that contain several objects, you frequently
must determine the number of objects in the collection. Because the number of objects in a collection can vary, you
may need to determine the number of objects as your code runs. The best way to do this is by using the Count
property, which works with virtually all VBA collection objects and returns the number of items in the collection.

Example:
NumWrkSheets = Worksheets.Count

The Count property is read-only, meaning you can use it to obtain the number of sheets in a workbook, but you
cannot use it to change the number of sheets in a workbook.

• The worksheet after
the move.

• The worksheet
before the move.

12_591598-ch10.indd 15712_591598-ch10.indd 157 6/11/10 1:58 PM6/11/10 1:58 PM

158

4

1
2

3

4 Create your Copy
command.

• The sheet you want to
copy.

• Where you want to place
the copy.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare your variables.

3 Count the number of
sheets in your workbook
and store the result to a
variable.

Copy a Sheet

I f you want to copy a sheet, you can use the Copy
method with the Sheets object. When you copy a
sheet, you indicate where you want to place the copy

by specifying the name of the sheet before or after which
you want the copy to appear.
The Copy method has two optional parameters: Before
and After. Although both parameters are optional, you
can use only one of them at a time. Use the Before
parameter to specify the sheet in front of which you want
to place the copy of the sheet, or use the After parameter
to specify the sheet after which you want to place the
copy of the sheet. The following statement copies the first
sheet in a workbook and places the copy after the third
sheet: Sheets(1).Copy After:=Sheets(3). If you do

not specify a Before or After value, Excel creates a new
workbook and places the copy in the new workbook.
When you use the Sheets object, you can reference all
sheets within a workbook, including worksheets, chart
sheets, and macro sheets. You can use index values to
reference sheets based on their order in the workbook, or
you can reference sheets by using their sheet names.
Be careful with the sheet references you use. If you try to
place a copy of a sheet before or after a nonexistent
sheet, VBA displays a “Subscript out of range” error. To
avoid this error, consider using the Count method to
determine exactly how many sheets you have in a
workbook before you copy a sheet.

Copy a
Sheet

12_591598-ch10.indd 15812_591598-ch10.indd 158 6/11/10 1:58 PM6/11/10 1:58 PM

159

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

The Copy method produces the same results when you use it with a Chart
object, Charts collection object, Worksheet object, or Worksheets
collection object instead of the Sheets object. You can use these other
objects when you want to work with a specific type of sheet. For example, to
make a worksheet the first worksheet in a workbook, you can type
Worksheet(3).Copy Before:=Worksheets(1). This code places a
copy of the third worksheet in front of the first worksheet. If the first sheet
in the workbook is a chart, the copied sheet comes after the chart but
before the first worksheet. You can copy chart sheets the same way, by using
the Charts collection object to specify the chart sheet to copy. You can
combine your object references within a Copy statement. For example, you
can place a copy of the first worksheet before the first chart sheet.

Example:
Worksheets(1).Copy Before:=Charts(1)

• The workbook after
you run the macro.

• The workbook
before you run the
macro.

When you copy a sheet in a
workbook, Excel indicates
the sheet is a copy by placing
a number in parentheses
after the sheet name. For
example, for Sheet3, Excel
indicates the copied sheet as
Sheet3 (2), with the number
in parentheses indicating that
the sheet is the second
version. Copying the
worksheet again creates
Sheet3 (3).

12_591598-ch10.indd 15912_591598-ch10.indd 159 6/11/10 1:58 PM6/11/10 1:58 PM

160

1
2
3

4

1

4 Set the Visible
property to False.

• This example uses a For
Next loop to hide every
worksheet except the first
one.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare your variables.

3 Count the number of
sheets in your workbook
and store the result to a
variable.

Hide a Sheet

I f you want to hide sheets, use the Visible property
with the Sheets object. You may want to hide sheets
to prevent users from viewing them. These sheets

might contain the raw values that you use to calculate
data.
Hiding a sheet does not always keep users from accessing
it. Users can unhide sheets in Excel by using the Unhide
option on the Format menu. If you want others to be able
to unhide a sheet but not be able to change a sheet,
protect the sheet. See the section “Protect a Worksheet”
for more information about protecting sheets.
Using the Visible property, you can determine the
current state of a sheet — visible or not visible — or you
can change the state of a sheet. To determine the current

state of a sheet, you assign the Visible property to a
variable as follows: SheetProps = Sheets(1).
Visible. If you declare the SheetProps variable as a
Boolean value, the variable receives a value of True if the
specified sheet is visible; otherwise, it receives a value of
False. If you do not declare the variable as Boolean,
Excel assigns a numeric value of –1 if the sheet is visible
and 0 if the sheet is not visible.
To change the visibility of a sheet, you can assign a
Boolean value of True or False to the sheet’s Visible
property. You can hide all but one sheet in a workbook,
because Excel requires that a workbook have at least one
visible sheet. The following example hides a sheet:
Sheets(2).Visible = False

Hide a
Sheet

12_591598-ch10.indd 16012_591598-ch10.indd 160 6/11/10 1:58 PM6/11/10 1:58 PM

161

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

Sheets that you hide by setting the Visible property
to False are still accessible to users from within Excel.
To see hidden sheets, on the Home tab click Format ➔
Hide & Unhide ➔ Unhide Sheet. The Unhide dialog box
appears, listing all of the sheets that you have hidden.
To unhide a sheet, click the sheet and then click OK.
This is equivalent to setting the Visible property for
a sheet to True.

There are three XlSheetVisibility constant values.
You can use them to set the visibility status of a sheet.

CONSTANT VALUE FUNCTION

xlSheetHidden Hides a sheet. The
Ribbon can be used to
unhide the sheet.

xlSheetVeryHidden Hides a sheet. The
Ribbon cannot be used
to unhide the sheet.

xlSheetVisible Displays a sheet.

Example:
Sheets(“Formulas”).Visible =
xlSheetVeryHidden

• The workbook after
you execute the
macro.

• The workbook
before you execute
the macro.

12_591598-ch10.indd 16112_591598-ch10.indd 161 6/11/10 1:58 PM6/11/10 1:58 PM

162

4

1
2

3

• Handles Errors.

3 Create an input box.

 In the input box, users
enter the name they want
to change the active sheet
to, and VBA stores the
name to a variable.

4 Create a Name command
to rename the sheet.

• The variable containing
the name the user wants
to give to the worksheet.

• The sheet to be renamed.

 In this example, the code
is renaming the active
sheet.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare your variables.

Change the Name of a Sheet

I f you have a number of sheets in a workbook,
naming your sheets enables your users to easily
determine which sheet they want to access. For

example, if you keep your budget on a sheet named
Budget and your sales figures on a sheet named Sales,
when users open your workbook, they can quickly
determine the sheet they want to access.
To change the name of a sheet in a workbook, use the
Name property of the Sheets object. By default, Excel
names all worksheets Sheet#, replacing # with the order
in which you add the sheet to your workbook. For
example, a typical workbook contains three worksheets:
Sheet1, Sheet2, and Sheet3. If you add a worksheet,
Excel names it Sheet4. Excel uses the name Chart# for
chart sheets. Again, Excel assigns chart sheets numbers,

based on the order in which you add them, with the first
chart sheet being Chart1.
You can change the name of a sheet by assigning a name
to the Name property of the Sheet object. For example,
the following code changes the name of Sheet1 to Budget:
Sheets(1).Name = “Budget”

You can assign a string or a variable to the Name
property.
You can determine what the current name of a sheet is by
assigning the Name property to a variable, as in the
following example:
SheetName = Sheets(1).Name

This example returns the name of Sheet(1) to the variable
SheetName.

Change the
Name of a Sheet

12_591598-ch10.indd 16212_591598-ch10.indd 162 6/11/10 1:58 PM6/11/10 1:58 PM

163

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

You can manually change the name of a sheet in Excel by clicking the Home tab and then selecting Format ➔
Rename Sheet. Excel highlights the sheet’s name tab. You click the tab and then type the new name. After you
modify the name, click elsewhere on the sheet and Excel updates the sheet name.

Because users can easily modify the name of a worksheet, be careful when referencing sheet names in your macros.
If you reference a sheet name that Excel cannot find, Excel returns an error message.

Regardless of what sheets are named, Excel keeps track of them based on the order in which they exist within the
Sheets collection.

You can also use the Name property in conjunction with the Parent property to determine the name of the
workbook that contains the current sheet. To determine the name of the corresponding workbook, use the code
CurrentWB = ActiveSheet.Parent.Name.

• The macro renames
the sheet.

 The macro displays
a input box
requesting the
name the user
wants to give the
active sheet.

12_591598-ch10.indd 16312_591598-ch10.indd 163 6/11/10 1:58 PM6/11/10 1:58 PM

164

2

1

2 Create your SaveAs
command.

• The name of the new file.

• The format in which you
want to save the file.

 This example saves the
file in HTML format.

• Creates a backup.

• Adds the file to the
Recent Workbooks list
when the file is saved.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

Save a Sheet to Another File

Y ou can save any sheet to another file by using the
SaveAs method with a Sheets collection object.
The SaveAs method has several parameters that

tell VBA how to save the sheet: FileName, FileFormat,
Password, WriteResPassword, ReadOnlyRecommended,
CreateBackup, AddToMru, and Local.
The FileName parameter is required. Use the FileName
parameter to specify the name of the file you want to
save the sheet to, and the folder in which you want to
save the sheet. If you do not specify a path, Excel saves
the file to the current folder.
Use the FileFormat parameter to specify the file format
in which you want to save the file. You can save in any
file format supported by Excel, by using one of the
XlFileFormat constant values. See the appendix for a
list of the XlFileFormat constant values. If you do not
specify a file format, Excel uses the format that was

previously used to save the file if the file was previously
saved, or the file format used by the current version of
Excel if the file has never been saved. Use the Password
parameter to set a password of up to 15 characters for
opening the file. Use the WriteResPassword parameter
to restrict the file to open as read-only, unless the user
has the password.
The remaining parameters accept the Boolean values
True or False. You set ReadOnlyRecommended to True
to display a message to users when the file opens,
suggesting that they open the file as read-only. You set
CreateBackup to True to create a backup file; AddToMru
to True to add the file to the Recent Workbooks list;
Local to True if you want to save the file in the
language used by Excel; and Local to False if you want
to save the file in the language used by VBA.

Save a Sheet
to Another File

12_591598-ch10.indd 16412_591598-ch10.indd 164 6/11/10 1:58 PM6/11/10 1:58 PM

165

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

The FileFormat parameter accepts any of the XlFileFormat constant values that are listed in the appendix.
The list of available file formats is rather extensive. You can save a worksheet to another workbook by specifying
the xlWorkbookNormal constant. This constant creates a new workbook based on the default workbook
format for the current version of Excel. If you need to save the workbook in a format used by an earlier version
of Excel, you need to specify the appropriate format parameter. For example, xlExcel5 saves the workbook
in a format that you can open in Excel 5.0 or later. To save an Excel 2010 file in a macro-enabled format, use
xlOpenXMLWorkbookMacroEnabled.

 The HTML file that
the macro created,
open in a browser.

• The macro saves
the file in HTML
format, adds the
file to the Recent
Workbooks list, and
creates a backup.

12_591598-ch10.indd 16512_591598-ch10.indd 165 6/11/10 1:58 PM6/11/10 1:58 PM

166

1
2

 If the user tries to change
a cell, Excel does not
permit the change.

1 Name your procedure.

2 Create your Protect
command.

• Sets the password.

• Protects the user
interface only.

• Allows format changes.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

Protect a Worksheet

P rotecting your worksheets enables users to make
certain types of changes while disallowing others.
For example, you can allow users to make changes

to formats; insert or delete columns, rows, or hyperlinks;
sort; filter; use PivotTables; and edit objects or scenarios.
You use the Worksheet.Protect method to protect a
worksheet. The Worksheet.Protect method has several
parameters, all of which are optional. With the exception
of the Password parameter, you use the Boolean value
True to activate a parameter and the Boolean value
False to deactivate a parameter. The parameters are
Password, DrawingObjects, Contents, Scenarios,
UserInterfaceOnly, AllowFormattingCells,
AllowFormattingColumns, AllowFormattingRows,
AllowInsertingColumns, AllowInsertingRows,
AllowInsertingHyperlinks, AllowDeletingColumns,
AllowDeletingRows, AllowSorting, AllowFiltering,
and AllowUsingPivotTables.

If you want to password-protect your worksheet, set the
Password parameter to the password you want to use.
You can use any string as a password, but remember
passwords are case-sensitive. In other words, Excel
interprets “password” and “PASSWORD” differently.
Set the DrawingObjects parameter to False if you want
the user to be able to modify shapes. The default value is
True. By default, Excel protects locked cells; to remove
this protection, set the Contents parameter to False. To
unprotect scenarios, set the Scenarios parameter to
False. If you set the UserInterfaceOnly parameter to
False, Excel applies protection to macros and to the user
interface. If you want only the user interface protected,
set the UserInterfaceOnly parameter to True.
The remaining parameters are self-explanatory and they
all have a default value of False. To allow any of these
options, set the parameter to True.

Protect a
Worksheet

12_591598-ch10.indd 16612_591598-ch10.indd 166 6/11/10 1:58 PM6/11/10 1:58 PM

167

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

After you password-protect a worksheet, a user can unprotect the worksheet by clicking the Review tab, clicking
Unprotect Sheet in the Changes group, and then typing the correct password in the Unprotect Sheet dialog box that
appears.

You can unprotect the worksheet from within a procedure by using the Unprotect method. The only parameter
the Unprotect method takes is the Password parameter. You set the parameter to the worksheet password.

Example:
ActiveSheet.Unprotect Password:=”excel”

This example unprotects the active worksheet by passing it the correct password. Remember to keep track of the
passwords that you have assigned to worksheets. If you lose your password, you cannot access the password-
protected document.

 If users know the
password, they can
enter the password
to unprotect the
worksheet.

 The user can make
permitted changes.

• In this example, the
user can change the
formats.

12_591598-ch10.indd 16712_591598-ch10.indd 167 6/11/10 1:58 PM6/11/10 1:58 PM

168

2
1

• Excel grays out the
Ribbon options to
indicate that they are
not available.

1 Name your procedure.

2 Create your Protect
command.

• Sets the password.

• Protects the user
interface only.

• Allows the user to draw
objects.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

Protect a Chart

Y ou can use the Chart.Protect method to protect
a chart so that a user cannot modify it. The
Chart.Protect method takes several parameters

that you can use to select the type of protection you want
to assign to the chart. All of the parameters are optional.
With the exception of the Password parameter, you use
the Boolean value True to activate a parameter and the
Boolean value False to deactivate a parameter. The
following is the syntax for the Chart.Protect method:
expression.Protect(Password, DrawingObjects,
Contents, UserInterfaceOnly)

Use the expression portion of the statement to identify
the chart you want to protect. If you want to password-
protect your chart, set the Password parameter to the
password you want to use. You can use any string as a

password, but remember that passwords are case-
sensitive. In other words, Excel interprets “password”
and “PASSWORD” differently.
If you set the DrawingObjects parameter to False, the
user can add shapes to the chart and modify the shapes
in the chart. The default value is True. If you set the
Contents parameter to False, the user can modify the
chart. If you set the UserInterfaceOnly parameter to
False, Excel applies protection to macros and to the user
interface. If you want only the user interface protected,
set the UserInterfaceOnly parameter to True.
To unprotect a chart using a procedure, use the Unprotect
method. You must include the password if the chart is
password-protected, as follows:
Charts(1).Unprotect Password:=”excel”

Protect
a Chart

12_591598-ch10.indd 16812_591598-ch10.indd 168 6/11/10 1:58 PM6/11/10 1:58 PM

169

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

VBA provides properties that you can use with Worksheet and Chart objects to determine if parts of a sheet are
protected. This helps eliminate errors caused by attempting to modify a protected sheet. Each of these properties is
read-only.

PROPERTY DESCRIPTION

ProtectContents Returns a value of True if the sheet is protected. For a chart, the property looks
to see if the entire chart is protected. For a worksheet, the property looks to see if
the cells are protected. To turn off this property, set the Contents parameter of
the Protect method to False.

ProtectDrawingObjects Returns a value of True if the shapes in the sheet are protected. To turn off this
property, set the DrawingObjects parameter of the Protect method to False.

ProtectScenarios Returns a value of True if the scenarios are protected. To turn off this property,
set the Scenarios parameter of the Protect method to False.

ProtectionMode Returns a value of True if the user interface is protected.

• If users know the
password, they can
enter the password
to unprotect the
worksheet.

 The user can make
permitted changes.

• In this example, the
user can add shapes.

12_591598-ch10.indd 16912_591598-ch10.indd 169 6/11/10 1:58 PM6/11/10 1:58 PM

170

2

3

1

3 Create your PrintOut
command.

• The number of copies to
print.

• Displays the Print
Preview before printing.

1 Name your procedure.

2 Set up your page.

• Sets the orientation to
landscape.

• Sets the print area.

Print a Sheet

Y ou can use the PrintOut method to create a
procedure to print the contents of a sheet. The
PrintOut method has several parameters for

specifying how Excel prints the sheet: From, To, Copies,
Preview, ActivePrinter, PrintToFile, Collate, and
PrToFileName.
Use the From and To parameters to indicate the range of
pages within the specified sheet that you want to print.
Indicate the page number of the first page to print as the
value of the From parameter, and the page number of the
last page as the value of the To parameter. If you omit
these parameters, Excel prints the entire sheet.
By default, Excel prints one copy of the sheet. For
multiple copies, use the Copies parameter to specify the
desired number. You can specify a value of True for the

Collate parameter to have Excel collate the copies.
If you want the Excel preview window to show the
contents of the print selection, set the value of the
Preview parameter to True. The Print button on the Print
Preview screen prints the copy, and the Close button
cancels the print.
To specify a printer, use the ActivePrinter parameter.
If you do not set the ActivePrinter parameter, VBA
uses the computer’s default printer.
You can send the printout to a file instead of a printer
by setting the PrintToFile parameter to True, and
specifying the name of the file to which you want to send
the printout by setting the PrToFileName parameter. If
you do not specify a filename, Excel prompts you for one
when your procedure runs.

Print a
Sheet

12_591598-ch10.indd 17012_591598-ch10.indd 170 6/11/10 1:58 PM6/11/10 1:58 PM

171

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

You can set a print area for a
worksheet by using the PageSetup
object with the PrintArea
property. Assign the PrintArea
property a range of cells as the print
area. For example, ActiveSheet.
PageSetup.PrintArea =
“A1:D13” sets the range of
cells in the print area to A1 to D13.
If cells outside that range contain
data, Excel does not print them.

When you use the PrintArea
property to set the range of cells to
print, you can omit the From and
To parameters of the PrintOut
method.

To clear the print area, assign the
PrintArea property a value of
False or an empty string. Both of
the following lines of code clear the
print area:

Examples:
ActiveSheet.PageSetup _
PrintArea = False

ActiveSheet.PageSetup _
PrintArea = “ “

When printing, you can set the
orientation by using the PageSetup
object with the Orientation
property. Use the xlLandscape
constant value to set the orientation
to landscape. Use the xlPortrait
constant value to set the orientation
to portrait.

 The macro displays
the Print Preview
screen.

• The Print button
prints the file.

• The Close button
cancels the printing.

• The printer to which
you want to send
the report.

4 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

12_591598-ch10.indd 17112_591598-ch10.indd 171 6/11/10 1:58 PM6/11/10 1:58 PM

172

4
5

6

6

4

2

1

3

7

1 Name your procedure.

2 Declare your variables.

3 Count the number of sheets and
store the result to a variable.

4 Create a For Next loop to loop
through each index position.

 IndexNum1 starts at 1 and
increments with each loop.

5 Store the name of the sheet with
the index value of IndexNum1 to
the variable SheetName.

6 Create a For Next loop within
the previous loop, assign the value
of IndexNum1 to IndexNum2,
and loop through the total number
of sheets, starting at the value of
IndexNum2.

7 If the name of the sheet with an
index value of IndexNum2 is less
than SheetName, store the name
of the sheet with an index value of
IndexNum2 to the variable
SheetName and then keep
looping; otherwise, do nothing
and keep looping.

Sort Sheets by Name

Y ou can use VBA to sort worksheets in a workbook
based on the worksheet names. When you first
create a new workbook, Excel lists the sheets in

order: Sheet1, Sheet2, Sheet3. However, as you add
sheets, the order of the sheets can change dramatically.
For example, if your active sheet is Sheet2 and you
instruct Excel to add a new sheet, Excel adds it before
Sheet2 and names it Sheet4, making the order of your
sheets Sheet1, Sheet4, Sheet2, Sheet3.
You can easily resolve this problem by manually
renaming or moving the sheets within the workbook.
Alternatively, you can create a procedure that sorts the
worksheets and lists them in alphabetical order. You start
by using the Count property to determine the number of

sheets in the workbook. When you know the number of
sheets in a workbook, you can use a For Next loop to
cycle through the sheets so that Excel can compare the
names and place the sheets in order. You use nested
looping, which is the process of placing one loop inside
another loop. The inside loop executes completely, and
then control returns to the outside loop. See Chapter 6 for
more information on using For Next loops.
Within the second For Next loop, use an If Then
statement to compare the name of a sheet to the sheet
currently considered the alphabetically lowest sheet name. If
the compared name is alphabetically lower, it becomes the
new alphabetically lowest name. Excel does an alphabetical
comparison when you are working with strings.

Sort Sheets
by Name

12_591598-ch10.indd 17212_591598-ch10.indd 172 6/11/10 1:58 PM6/11/10 1:58 PM

173

Ch
apter 10: W

orkin
g w

ith
 W

orksh
eets

8
9

The steps in this section determine the sheet with the lowest name in the inside loop and places that sheet before
the index value that it is evaluating. Although this code works correctly, it is not the most efficient method for
sorting a large list of items. The code attempts to move the sheet without first checking to see if the lowest name is
also the current sheet. To make the execution of the code more efficient, add a conditional If Then statement that
compares the two sheets and performs the move only if they are not the same sheet. The code runs more effectively
because it determines that no move is required if the sheets are already in the correct order.

• The macro sorts the sheets.

 When the loop has finished,
SheetName contains the
lowest value.

8 Move the sheet identified by
the variable SheetName
before the sheet with an
index value of IndexNum1.

9 Move to the next index value
and perform the loop again.

0 Press Alt+F11 to switch
from the VBE to Excel, and
run the macro.

TYPE THIS:

If Sheets(SheetName) <> Sheets(N) Then
 Sheets(SheetName). Move Before:=Sheets(N)
End If

RESULT:

This code checks that the sheet you are
moving and the sheet before which you
intend to move it are not the same sheet. If
the sheets are the same, Excel ignores the
Move statement and continues with the
looping statements.

➔

12_591598-ch10.indd 17312_591598-ch10.indd 173 6/11/10 1:58 PM6/11/10 1:58 PM

174

1
2

3

4

Using the
Range Property

W hen working in Excel, a lot of the work that
you do involves ranges. You can define a
range by using the Range property. Defining

a range creates a Range object, which can be a single cell,
a column, a row, or a group of cells.
If you use the range property without an object qualifier,
Excel assumes you are referencing the active sheet. If
you apply the Range property to a range object, the
property is relative to the object. For example, the code
Range(“B11:D11”).Formula = “=Sum(B6:B10)”
sums in a relative fashion.
You can use two syntax forms with the Range property.
The first form requires two parameters: Cell1 and
Cell2. This form references the upper left corner of the
desired range with the Cell1 parameter, and the lower

right corner of the range with the Cell2 parameter. For
example, to specify a range of cells between A1 and E15,
you would use the code Range(“A1”, “E15”).
The other form of the Range property requires a Name
parameter. This required parameter indicates a range.
You place a colon between two cells to specify a range.
For example, Range(”A3:F5”) refers to the range of cells
from A3 to F5. You place a comma between the range
definitions to refer to two or more noncontiguous ranges.
For example, Range(“A3, A1, B4:C10”) specifies the
range of cells A3, A1, and B4 to C10. You leave a space
between the two range definitions to specify the location
where two ranges intersect. For example, Range(“A3:F3
D2:G5”).Select selects the cells where the range A3 to
F3 intersect with the range D2 to G5, which happens to be
cells D3 to F3.

Using the Range Property

1 Name your procedure.

2 Define a range and select it.

• The range.

3 Ask users if they want to
calculate a total.

4 If the user responds
“Yes,” then calculate the
total.

• This same range was
selected in Step 2 using
a different syntax.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

13_591598-ch11.indd 17413_591598-ch11.indd 174 6/11/10 1:57 PM6/11/10 1:57 PM

175

To select a cell or range of cells in a worksheet, use the Select method with a Range object. For example, to select
the range of cells from A3 to A6, you would type Range(“A3:A6”).Select.

When you use the Select method with a Range object, the first cell in the specified range becomes the active cell.
If you specify individual cells with the Select method, the first cell specified becomes the active cell. For example,
Range(“A3, A1, A5”).Select makes cell A3 the active cell.

You can use the Activate method to highlight a cell or range of cells. With the Activate method, the first cell
referenced in the range becomes the active cell, but VBA highlights all of the other cells in the range to indicate that
VBA has selected them as well. For example, the code Range(“B4:C6”).Activate makes B4 the active cell and
highlights cells B4 to C6. The Select method and the Activate method are often interchangeable.

• If the user clicks
the Yes button, the
macro totals the
columns.

• The macro selects
the range and then
displays a message
box.

Ch
apter 11: D

efin
in

g R
an

ges

13_591598-ch11.indd 17513_591598-ch11.indd 175 6/11/10 1:57 PM6/11/10 1:57 PM

176

4

1
2

3
5

333

3 Create a For Next loop.

4 Use the Cells property
to indicate the cells you
want to format.

5 Format the cells.

6 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare your variable.

Using the Cells Property

Y ou can use the Cells property to reference
specific cells in a worksheet and make changes to
the values or properties of the cells, such as the

font settings. The Excel object model does not contain a
Cells object. To reference specific cells, use either the
Cells property or the Range property, each of which
returns a Range object with the specified cells. See the
section “Using the Range Property” for more information
about the Range property.
You can use the Cells property with the Application,
Range, and Worksheet objects. Using the Cells property
with the Application and Worksheet objects returns
the same result. For example, you can type X =
Application.Cells(1,1) or X = ActiveSheet.
Cells(1,1) to obtain the content of cell A1.

The Cells property has two parameters. The first
parameter, Row, contains a value indicating the row
index. The second parameter, Column, contains a value
indicating the column index. For example, to reference
cell B5, you assign a value of 5 for the row parameter,
because you want row 5, and a value of 2 for the column
parameter, because you want column 2.
Cells(5,2).
One advantage of using the Cells property over using
the Range property is that you can use variables to
change the values. For example, you can use a variable to
represent either the row or column, as shown in the code
Cells(RowNum,1) = 5, which sets the value of a cell in
column A and a row specified by RowNum to 5.

Using the Cells
Property

13_591598-ch11.indd 17613_591598-ch11.indd 176 6/11/10 1:57 PM6/11/10 1:57 PM

177

Ch
apter 11: D

efin
in

g R
an

ges

To set the font attributes for objects in Excel, use the Font object. You typically use the Font object to modify the
attributes of a cell or a range of cells. The Font object has several properties for obtaining or modifying the
attributes of a specified object. Some of these properties are listed in the following table.

FONT PROPERTY DESCRIPTION

Bold A Boolean value indicating whether the font for the object is bold.

Color Indicates the color of the font. Use the RGB function to set the font color.

FontStyle Indicates the font style. For example, to set both a bold and an underline font style, specify
Font.FontStyle = “Bold Underline”.

Italic A Boolean value indicating whether the font for the object is italic.

Shadow A Boolean value indicating whether the font is a shadow font.

Size Indicates the size of the font.

Strikethrough A Boolean value indicating whether to use a strikethrough font to draw a horizontal line
through each character.

Subscript A Boolean value indicating whether the font is subscript.

Superscript A Boolean value indicating whether the font is superscript.

Underline A Boolean value indicating whether the font is underlined.

 The worksheet after
you run your macro.

• The macro moves
down the first column
and adds bold and italic
formatting to each cell.

 The worksheet before
you run your macro.

13_591598-ch11.indd 17713_591598-ch11.indd 177 6/11/10 1:57 PM6/11/10 1:57 PM

178

1

2

3

4

5

5 Apply formats to multiple
ranges using one Range
object.

6 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare the Range object
variables that you will use
to store your ranges.

3 Store each range to a
variable.

4 Use the Union method
to create a single range
object that contains
multiple ranges.

Combine Multiple Ranges

T o create a multiple area range, you can use the
Union method. A multiple area range contains
more than one block of cells, and the blocks of

cells are noncontiguous. For example, you can use the
Union method to create a Range object containing the
cells A1 to B5 and D1 to E5.
When you use the Range property in conjunction with the
Union method, you can specify up to 30 ranges. You
must specify at least two ranges. You assign the ranges
by using any option that returns a valid Range object,
such as the Range property or the Cells property. See
the sections “Using the Range Property” and “Using the
Cells Property” for more information. The following
example specifies two ranges:

Dim RangeVar As Range

Set RangeVar = Union (Range(“A1:A3”), _

Range(“A5:A15”))

The code Set RangeVar = Union (Range(“A1:A3”),
Range(“A5:A15”)) uses the Union method to combine
two Range objects created with the Range property and
assigns the result to a Range object variable. The new
range contains the cells A1 to A3 and A5 to A15. Notice
that the two blocks of cells are noncontiguous.
Because you must declare the variable to which you
assign the multi-area range as a Range object, you use
the Set statement when creating the assignment
statement. You must use the Set statement whenever
you assign an object to an object variable. See Chapter 4
for more information on assigning objects to variables.

Combine
Multiple Ranges

13_591598-ch11.indd 17813_591598-ch11.indd 178 6/11/10 1:57 PM6/11/10 1:57 PM

179

Ch
apter 11: D

efin
in

g R
an

ges

When you use the Union method, you combine multiple ranges. Each range is a Range object and is part of the
Areas collection. Each member of the Areas collection represents a contiguous block of cells, with one Range
object representing each contiguous block of cells.

You cannot apply some VBA operations to ranges that contain multiple areas; for that reason, you may need to
determine the number of areas in a range. The Count property counts the number of areas in the range; if the
Count property returns a value greater than 1, the range contains more than one area. The following example uses
the Count property to determine the number of areas in the range RAll:

Example:
NumOfRanges = RAll.Areas.Count

Each range in an Areas collection has an index value. The first range added to the collection has an index value of
1, the next 2, and so on. You can reference an area by its index value.

 The worksheet after
you run your macro.

 The macro uses a
Union range to
apply a format to
multiple ranges.

 The worksheet before
you run your macro.

13_591598-ch11.indd 17913_591598-ch11.indd 179 6/11/10 1:57 PM6/11/10 1:57 PM

180

1
2

3

4
5

4 Use the Offset property
to define the range.

• The same row.

• Four columns to the right.

5 Place a formula in the
offset range.

6 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare the Range object
variables that you will use
to store your ranges.

3 Store your range to an
object variable.

Using the Offset Property

U sing the Offset property is another way to
specify a range of cells. The Offset property
defines a range as an offset from another range,

with the offset being the distance in rows and columns
from the existing range to the new range.
The Offset property has two parameters. Although both
are optional, if you do not specify at least one parameter,
the Offset property returns the current range. Use the
RowOffset parameter to indicate the number of rows to
offset the new range from the current range. A positive
number offsets the range downward. A negative number
offsets the range upward. The Offset property bases the
offset on the upper left cell in the active range. For
example, if the active range is cells A1 to B4, the Offset
property bases the offset values on the number of rows

and columns from cell A1. Use the ColumnOffset
parameter to specify the number of columns to offset the
range from the current range. A positive number offsets
the range to the right. A negative number offsets the range
to the left. The default value for both parameters is 0.
If you assign a value to only one of the parameters, Excel
gives the other parameter a value of 0. For example, with
a value of 5 for the RowOffset and no ColumnOffset
parameter value, the property returns the range that is
five rows down from the current range selection.
If you specify a value outside the valid number of rows
and columns in a worksheet (for example, if you specify
Offset(-1, -1) and the current cell is A1, VBA returns
an error.

Using the
Offset Property

13_591598-ch11.indd 18013_591598-ch11.indd 180 6/11/10 1:57 PM6/11/10 1:57 PM

181

Ch
apter 11: D

efin
in

g R
an

ges

You can use the Offset property in a For Next loop to cycle through a range of cells.

Example:
Dim Counter As Integer

For Counter = 1 To 4

 ActiveCell.Offset(Counter -1, 0) = “Region” & Counter

Next Counter

The initial value of Counter is 1. Counter -1 is equal to 0. The code starts executing from the active cell because
ActiveCell.Offset(Counter -1, 0), resolves to ActiveCell.Offset(0,0). With each loop, the value of
Counter increases by 1, and so VBA stays in the same column, but moves down one row. See Chapter 6 to learn
more about using a For Next loop and to see this code in action.

 The worksheet after
you run the macro.

• The macro uses the
Offset property
to create the values
under the Total
column.

 The worksheet before
you run the macro.

13_591598-ch11.indd 18113_591598-ch11.indd 181 6/11/10 1:57 PM6/11/10 1:57 PM

182

4

1
2

3

4 Delete your range.

• The range you want to
delete.

• The instruction to shift up.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare a Range object
variable.

3 Store your range to an
object variable.

Delete a Range of Cells

T o remove a range of cells from a worksheet, use
the Delete method. Excel completely removes the
cells and adjusts the remaining values in the

worksheet to fill the gap left by the deletion. For example,
if you remove column B, Excel shifts the values in
column C to the left to become the new column B values,
and all remaining column values shift to the left as well.
Conversely, if you delete a row, Excel shifts all values up
one row. You can reference an entire column by using the
syntax Columns(ColumnNumber). You can reference an
entire row by using the syntax Rows(RowNumber). The
following examples delete column B and row 3,
respectively:
Columns(2).Delete

Rows(3).Delete

Excel easily determines how to shift the cells when you
remove entire rows and columns, but if you remove a
block of cells, you must specify how the remaining values
fill by using the Shift parameter with the Delete method.
When you use the Shift parameter, you assign it one of
the XlDeleteShiftDirection constant values. The
xlShiftToLeft constant value tells Excel to shift values
to the left to fill the gap created by the deletion. The
xlShiftUp constant value tells Excel to shift values up to
fill the gap. For best results, specify how to shift the cells.
Excel ignores the parameter value if it is not a valid shift
direction for the deleted range. For example, the code
Columns(2).Delete Shift:=xlShiftUp deletes a
column, but Excel shifts the cells to the left because there
are no cells to shift up.

Delete a Range
of Cells

13_591598-ch11.indd 18213_591598-ch11.indd 182 6/11/10 1:57 PM6/11/10 1:57 PM

183

Ch
apter 11: D

efin
in

g R
an

ges

If a workbook is protected, you may not be able to modify a range by adding or removing cells. You can use the
AllowEdit property to determine if you can modify a range. The AllowEdit property returns a Boolean value of
True if you can modify the specified range. In the example code, the AllowEdit property checks a range to make
sure you can modify the range before it calls the Delete method.

Example:
If Columns(6).AllowEdit Then

 Columns(6).Delete

End If

The code checks the AllowEdit property for column F and then deletes column F if you can modify it. If you
cannot modify column F, the code ignores the Delete statement.

To protect worksheets, use the Protect method. See Chapter 10 for more information on using the Protect
method.

 The worksheet after
you run your macro.

 The worksheet before
you run your macro.

• The rows that the
macro will delete.

13_591598-ch11.indd 18313_591598-ch11.indd 183 6/11/10 1:57 PM6/11/10 1:57 PM

184

2

2

3

3

2
1

3 Set the Hidden property
to True to hide the
columns.

 You can set the Hidden
property to False to
unhide the columns.

4 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Create For Next loops.

 In this example, the For
Next loop enables you to
hide multiple columns —
columns 2 to 4 in the first
loop and columns 6 to 8
in the second loop.

Hide a Range of Cells

Y ou can use the Hidden property with the Range
object to hide a range of cells. Generally, you hide
portions of a worksheet so that you can focus in

on other data. For example, a worksheet may contain
monthly data and quarterly summaries. You can hide the
monthly data so you can focus on the quarterly
summaries.
With the Hidden property, the range of cells you hide
must consist of an entire row or column. You hide a
column or row by assigning True to the Hidden property.
You make the column or row visible again by assigning
False to the Hidden property. The following examples
hide row 2 and column C respectively:
Rows(2).Hidden = True

Columns(3).Hidden = True

You can also hide column C by using the following
syntax:
Columns(“C”).Hidden = True

When you hide a column or row, Excel sets either the
width of the columns or height of the rows to 0. You can
use the Hidden property to determine if a range is hidden.
For example, you can check to see if column A is hidden
by typing HiddenRange = Columns(1).Hidden. If you
declare the HiddenRange variable as a Boolean value, the
variable receives a value of True if the specified range is
hidden; otherwise, it receives a value of False. If you do
not declare the variable as Boolean, Excel assigns a
numeric value of –1 if the range is hidden and 0 if the
range is visible.

Hide a Range
of Cells

13_591598-ch11.indd 18413_591598-ch11.indd 184 6/11/10 1:57 PM6/11/10 1:57 PM

185

Ch
apter 11: D

efin
in

g R
an

ges

When you hide a row or column in Excel, you can still access the values contained in the cells by referencing them in
functions and macros. Excel indicates the existence of hidden rows and columns by skipping over the hidden rows
and columns in the row and column headings. For example, if you hide columns C and D, you see the column labels
for columns A, B, E, F, and so on. To unhide a row or column in a worksheet, set the Hidden property to False.

You can use the following code to unhide all of the columns in a worksheet.

Example:
Columns.Hidden = False

You can use the following code to unhide all of the rows in a worksheet.

Example:
Rows.Hidden = False

 The worksheet after
you run the macro.

 The macro hides
the columns you
specified.

 The worksheet before
you run the macro.

• The columns that the
macro will hide.

13_591598-ch11.indd 18513_591598-ch11.indd 185 6/11/10 1:57 PM6/11/10 1:57 PM

186

1
2

3

4
5

4 Use the range name.

 In this example, the
worksheet function Sum
totals the range.

5 Assign the result of the
worksheet function to
a cell.

6 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Declare your variable.

3 Assign a name to a range.

• The range to which you
want to assign a name.

• The name that you want
to assign the range.

Create a Range Name

I n Excel, you can name ranges. Range names are
easier to remember than cell addresses. When you
name a range, you can refer to the range using the

range name when creating formulas or performing other
tasks. When you move a range to a new location, Excel
automatically updates any formulas that refer to it.
When you use a named range in a procedure, you do not
need to know the location of the cells that contain the
desired values. For example, if cell B3 contains the sales
tax rate, assign the name Tax_Rate to the cell so you can
reference the cell by name when you want to use it.
In VBA, you use the Name property to assign a name to a
range of cells, as follows:
Columns(3).Name = “May_Sales”

This example assigns the name May_Sales to Column C
in the active worksheet. To view the assigned name in
Excel, you can select the range, and the name will appear
in the Name box on the Formula bar.
Whenever you need to reference the range in your
procedure, you can use its range name. You can reference
range names created by your procedure and range names
created manually in Excel. You can use Excel to modify
and delete the range names you define in VBA.
You can use the Delete method to delete a range name.
The following example deletes the range name
May_Sales:
ActiveWorkbook.Names(“May_Sales”).Delete

Create a
Range Name

13_591598-ch11.indd 18613_591598-ch11.indd 186 6/11/10 1:57 PM6/11/10 1:57 PM

187

Ch
apter 11: D

efin
in

g R
an

ges

To create a named range in Excel, select the range, click the Formulas tab on the Ribbon, and then click Define
Name in the Defined Names group. The New Name dialog box appears. Type a name in the Name field, and then
click OK.

Click Name Manager on the Formulas tab to open the Name Manager. The Name Manager contains a list of all
named ranges. To see which cells a named range includes, select the range name in the Name Manager; the
corresponding range appears in the Refers To field. If you want to delete a named range, highlight the range name
and then click Delete. If you delete a named range, any macros that reference the named range will not work.

You can also use the Name Manager to modify a named range. In the Name Manager, click the Edit button. The
Edit Name dialog box appears. Use the Refers To field to define the range of cells to which the range name refers.

 The worksheet after
you run your macro.

• The macro uses the
named range to sum
a range of cells.

 The worksheet before
you run your macro.

13_591598-ch11.indd 18713_591598-ch11.indd 187 6/11/10 1:57 PM6/11/10 1:57 PM

188

1
2

3
4

5

5 Add 2 to the values
stored in your variables.

1 Name your procedure.

2 Declare your variables.

3 Count the number of
rows in a range and
assign the result to a
variable.

4 Count the number of
columns in a range and
assign the result to a
variable.

Resize a Range

Y ou can use the Resize property to change the
size of a range. When you resize a range, you
change the number of rows and/or columns

included in the range. You can specify either more or
fewer rows or columns.
The Resize property has two optional parameters. You
should set at least one of the two parameters. If you do
not set either parameter, Excel returns the original range.
The first parameter, RowSize, sets the number of rows in
the new range. The second parameter, ColumnSize, sets
the number of columns in the new range.
When you resize the range, the upper left corner of the
original range remains the same. For example, if the
original range is B1 to C4 and you resize the range to
contain only two rows and two columns, then B1 remains
the upper left cell value. VBA adjusts the range based on

that cell, creating a new range of cells from B1 to C2.
You may need to know how many rows and columns
currently exist in a range before you resize it. If you are
working with a range that is defined elsewhere, such as a
named range, use the Count property to determine the
number of rows and columns in the range, as shown in
the following code:
NumberOfRows = _

 Range(“Named_Range”).Rows.Count.
The Count property counts the number of rows in
Named_Range and assigns the result to the
NumberOfRows variable. You use the same syntax with
the Columns property to count the number of columns in
a range. Once you know the size of the range, you can
use the Resize property to modify the number of rows
and/or columns.

Resize
a Range

13_591598-ch11.indd 18813_591598-ch11.indd 188 6/11/10 1:57 PM6/11/10 1:57 PM

189

Ch
apter 11: D

efin
in

g R
an

ges

6

Besides determining the number of rows and columns in a range, you may need to know the exact row or column
that begins the range. To find this, use either the Row property or the Column property. The following code
determines the number of the first row in a range:

Example:
FirstRowNum = Range(“EmpInfo”).Row

The code assigns the integer value representing the first row in the specified range to the FirstRowNum variable.
You can also determine the first column in the range by using the Column property, as shown in this code:

Example:
FirstColNum = Range(“EmpInfo”).Column

 The macro resizes
the range.

• The original size of
the range.

• The current size of
the range.

6 Resize your range.

• The range you want to
resize.

• Sets the number of
rows to the value in
your NumRow variable.

• Sets the number of
columns to the value in
your NumCol variable.

7 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

13_591598-ch11.indd 18913_591598-ch11.indd 189 6/11/10 1:57 PM6/11/10 1:57 PM

190

3

1
2

3 Insert the range.

• The point at which to
begin the insertion.

• The shift direction.

4 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Name your procedure.

2 Copy a range.

Insert a Range

Y ou can use the Insert method to insert a range
of cells into a worksheet. When you insert a
range of cells, VBA adjusts the values in the

existing cells by moving them either down or to the right
so that it can insert the new cells into the specified
location. For example, if you insert a new range of cells
in row 3, VBA shifts the existing values in row 3 down to
row 4 and shifts all of the values in cells below row 3
down as well. If you add a new column, Excel shifts all
existing values to the right. The following examples insert
a column and a row, respectively:
Columns(2).Insert

Rows(3).Insert

How the cell values in the worksheet should shift when
you add an entire row or column is obvious. With a

smaller block of cells, you must use the InsertShift
parameter to tell VBA how the cells shift. To make sure
the cells shift correctly, assign the parameter one of the
XlInsertShiftDirection constant values. You can use
the xlShiftToRight constant value to shift the cell values
to the right. You can use the xlShiftDown constant value
to shift the cell values down. The following example shifts
cells to the right:
Range(“B5:B7”).Insert:=xlShiftToRight

You use the Copy method to paste data to the Office
Clipboard. You can insert data that is on the Office
Clipboard into your worksheet by placing a Copy
command before the Insert command in your procedure.
See Chapter 12 to learn more about the Copy method.

Insert
a Range

13_591598-ch11.indd 19013_591598-ch11.indd 190 6/11/10 1:57 PM6/11/10 1:57 PM

191

Ch
apter 11: D

efin
in

g R
an

ges

You can also use the Insert method to insert a value in a cell. To insert a value in a cell, use the Insert method
with the Characters object. You can insert a string of characters at the beginning of a cell or at any location in the
cell. For example, to insert the words “New String” in cell B1 and replace the contents, type the following code:

Example:
Range(“B1”).Characters.Insert(“New String”)

To place new characters within the existing string of characters, indicate the location and the number of characters.
For example, in the string “Excel 2011 Worksheet,” you can replace the “2011” with “2012” by using the Insert
method. The following code illustrates how to make the replacement when the string is located in cell A1.

Example:
Range(“A1”).Characters(7,4).Insert(“2012”)

The Characters object has two parameters, Start and Length. The Start parameter indicates the number of
the character at which to start the insert — in this case, character 7. The Length parameter indicates the number of
characters to replace.

 The worksheet after
you run the macro.

• The macro places
the copied data in
the insert location.

 The worksheet before
you run the macro.

13_591598-ch11.indd 19113_591598-ch11.indd 191 6/11/10 1:57 PM6/11/10 1:57 PM

192

1

2

1

2

2

2

Set Columns to a Standard Width

1 Name your procedure.

2 Create a For Next loop.

3 Create a ColumnWidth
command.

• The column for which you want to
set the column width.

• The amount to which you want to
set the column width.

4 Press Alt+F11 to switch from the
VBE to Excel, and run the macros.

Set a Column Width

1 Name your procedure.

2 Create a For Next loop.

3 Create a ColumnWidth
command.

• The column for which you want
to set the column width.

• The amount to which you want
to set the column width.

Set the Width of Columns in a Range

B y default, Excel assigns a width of 8.43 characters
to each column. Excel bases this width size on the
number of zeros it can place in the cell using the

Normal style. One unit is equal to one character.
To set the width of a column, use the ColumnWidth
property. In the following example Excel sets column 1
to 15 characters in the Normal style:
Columns(1).ColumnWidth = 15

You can also use the ColumnWidth property to determine
the width of the columns in a range. If all columns in the
range have the same width, the ColumnWidth property
returns the number of characters that can appear in each
column using the Normal style. If the column widths in

the selected range vary, the ColumnWidth property
returns Null. The following example, returns the width
of column 1.
ColWidth = Columns(1).ColumnWidth

Every worksheet has a default width, commonly referred
to as the standard width. You can use the StandardWidth
property to set the columns in a worksheet to the standard
width. The following example sets every column in a
worksheet to the standard width:
Columns.ColumnWidth = _

 ActiveSheet.StandardWidth

Set the Width of
Columns in a Range

13_591598-ch11.indd 19213_591598-ch11.indd 192 6/11/10 1:57 PM6/11/10 1:57 PM

193

Ch
apter 11: D

efin
in

g R
an

ges

You can also use the Width property to obtain the width of a column. The Width property returns the
measurement of the column width in points, unlike the ColumnWidth property, which returns characters. You
typically use points to reference font sizes (1 point is equivalent to 1/72 of an inch).

The Width property is read-only, meaning that you can use it only to obtain the width of a column. To obtain the
Width property of a column, assign the value to a variable, as shown in the following code.

Example:
ColWidth = Column(4).Width

The Width property is useful when you want to compare a column width to a row height because Excel stores row
heights in points.

 When you run the
SetColumnsToStdWidth
macro, the macro sets
columns 1, 2, and 3 to the
standard width.

 When you run the
SetColumnWidth
macro, the macro
sets columns 1, 2,
and 3 to 35.

13_591598-ch11.indd 19313_591598-ch11.indd 193 6/11/10 1:57 PM6/11/10 1:57 PM

194

1

2

1

2

2

2

Set Rows to the Standard Height

1 Name your procedure.

2 Create a For Next loop.

3 Create a RowHeight command.

• The row for which you want to set
the height.

• The amount to which you want to
set the row height.

4 Press Alt+F11 to switch from the
VBE to Excel, and run the macros.

Set the Row Height

1 Name your procedure.

2 Create a For Next loop.

3 Create a RowHeight command.

• The rows for which you want to
set the height.

• The amount to which you want to
set the row height.

Set the Height of Rows in a Range

T o modify the height of rows in a range, you can
use the RowHeight property. By default, Excel
assigns a height of 15.75 points to each row.

Excel measures font sizes in points, with each point equal
to approximately 1/72 of an inch. Because the default font
size in Excel is 12 points, the default row size of 15.75
points is usually adequate for displaying text. For a larger
font size or for text that wraps in a cell, you can specify a
larger row height by using the RowHeight property.
You can set the height of the row by assigning a numeric
value to the RowHeight property. For example, to change
the height of row 2 to 25 points, use the following code:
Rows(2).RowHeight=25

If the row height you specify is not high enough to
display the entire font, the text appears cut off when you
view it in Excel.

You can also use the RowHeight property to obtain the
height of the rows in a range. If all rows in the range have
the same height, the height is returned as the number of
points. If all the rows in the selected range do not have
the same height, the RowHeight property returns Null.
The following example demonstrates how to use the
RowHeight property to obtain the height of a row:
RowHeight = Rows(1).RowHeight

Every worksheet has a default height, commonly referred
to as the standard height. You can use the
StandardHeight property to set the standard height for
a worksheet or to set a range of rows in a worksheet to
the standard height. The following example sets every
row in a worksheet to the standard height:
Rows.RowHeight = ActiveSheet.StandardHeight

Set the Height of
Rows in a Range

13_591598-ch11.indd 19413_591598-ch11.indd 194 6/11/10 1:57 PM6/11/10 1:57 PM

195

Ch
apter 11: D

efin
in

g R
an

ges

You can also use the UseStandardHeight property to set a row to the standard height. The following example
sets row 1 of the active sheet to the standard height.

Example:
ActiveSheet.Rows(1).UseStandardHeight = True

You can use the Height property to determine the total height of a range of cells. Excel returns the height of the
range in points. The Height property is read-only. You can obtain the range height by assigning the height value to
a variable, as shown here.

 When you run the
SetRowstoStdHeight
macro, the macro sets
rows 1 to 23 to the
standard height.

 When you run the
SetRowsHeight
macro, the macro sets
rows 1 to 23 to 25.

TYPE THIS:

HeightOfRange = Range(“A1:A10”).Height

RESULT:

The code assigns the height of all the
rows specified by the Range object to
the HeightOfRange variable.

➔

13_591598-ch11.indd 19513_591598-ch11.indd 195 6/11/10 1:57 PM6/11/10 1:57 PM

196

1

1

Cut and Paste
Ranges of Cells

C ut, Copy, and Paste are among the most
commonly used commands, and you can find
them in almost every application. When writing

VBA code, you can use the Cut and Copy methods to cut,
copy, and paste a range of cells. The following is the
syntax for the Cut method (see “Copy and Paste Ranges
of Cells” for an explanation of the Copy method):
expression.Cut(Destination)

The Cut method enables you to cut a range of cells and
paste them either to the Windows Clipboard or to another
range of cells. You can use the Cut method’s optional
Destination parameter to tell VBA where you want to
paste. If you do not include a destination, VBA pastes to
the Windows Clipboard.

If you include a destination, you can use a Range object
to specify the location to which you want to paste. The
following example uses the Cut method to cut and paste
a range of cells:
Range(“A1:A5”).Cut Range(“C1:C5”)

When using this syntax, you must make the cut range
and the destination range the same size or VBA returns
an error. Alternatively, you can specify a single cell as the
destination range. VBA makes the cell you specify the
upper left corner of the paste range.

Cut and Paste Ranges of Cells

Cut and Paste by Using a
Single Cell

1 Create your Cut statement.

• The range you are cutting.

• The upper left corner of the
range where you are
pasting.

• This code resizes columns
to ensure that the contents
appear in the cells.

Cut and Paste by Using a
Range of Cells

1 Create your Cut statement.

• The range you are cutting.

• The range where you are
pasting.

Note: The range you cut must
be the same size as the range
where you paste.

2 Press Alt+F11 to switch
from the VBE to Excel, and
run the macro.

14_591598-ch12.indd 19614_591598-ch12.indd 196 6/11/10 1:56 PM6/11/10 1:56 PM

197

When you paste values in cells, the cells may not be able to hold the new content. If the values you paste are
numeric and the cells are not wide enough for the numbers, Excel displays pound signs (####) in the cells. When
you write a VBA procedure, VBA provides formatting options you can use to resize cells so that your values fit into
the cells to which you paste them. For example, you can use the AutoFit method to resize the rows and columns
in a range automatically to allow the contents to appear. The AutoFit method uses the following syntax:

Example:
Range(“C1:D14”).Columns.AutoFit

You can use the ShrinkToFit property to reduce the font size of the text so the entire contents of the cell appear.
You set the ShrinkToFit property by assigning the Range property the value of True, as shown in the following
example:

Example:
Range(“C1:D14”).ShrinkToFit = True

You can also use the WrapText property to ensure text appears properly. Assigning a value of True to the
WrapText property causes text to wrap within the cell.

Example:
Range(“C1:D14”).WrapText = True

 The worksheet after
the cut-and-paste
macro has executed.

 Both of the macros
shown in this
example yield the
same result.

 The original worksheet.

• The macro cuts and
pastes this information.

Ch
apter 12: W

orkin
g w

ith
 Cells

14_591598-ch12.indd 19714_591598-ch12.indd 197 6/11/10 1:56 PM6/11/10 1:56 PM

198

1

 The macro copies and pastes the
information.

• The range you copied.

• The pasted data.

Copy and Paste by Using a
Single Cell

1 Create your Copy statement.

• The range you are copying.

• The CurrentRegion property
enables you to manipulate a
range of cells without specifying
the entire range.

• The upper left corner of the
range where you are pasting.

2 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

Copy and Paste Ranges of Cells

I n this section, you learn how to copy and paste a range
of cells. You can copy and paste cell ranges by using
the Copy method. The Copy method is essentially the

same as the Copy and Paste commands within Excel. The
following is the syntax for the Copy method:
expression.Copy(Destination)

The Copy method enables you to copy a range of cells and
paste them either to the Windows Clipboard or to another
range of cells. You can use the Copy method’s optional
Destination parameter to tell VBA where you want to
paste the cells. If you do not include a destination, VBA
pastes the cells to the Windows Clipboard.
If you include a destination, you can use a Range object
to specify the location to which you want to paste. The

following code illustrates using the Copy method to copy
and paste a range of cells:
Range(“A1:A5”).Copy Range(“C1:C5”)

When using this syntax, you must make the copy range
and the destination range the same size or VBA returns
an error. Alternatively, you can specify a single cell as the
destination range. VBA makes the cell you specify the
upper left corner of the paste range.
A block of cells surrounded by blank cells is called the
current region. You can use the CurrentRegion property
to copy and paste or to cut and paste when using VBA.
When entering the range, you specify any cell within the
block of cells you want to cut or copy as the range, and
then follow the range specification with .CurrentRegion.

Copy and Paste
Ranges of Cells

14_591598-ch12.indd 19814_591598-ch12.indd 198 6/11/10 1:56 PM6/11/10 1:56 PM

199

Ch
apter 12: W

orkin
g w

ith
 Cells

1

You can use the ColorIndex property with the Interior, Borders, and Font objects to change the color of the
interior of cells, the border that surrounds cells, and the font. You can assign an index value of 1 to 56 to the
ColorIndex property. The following example demonstrates the ColorIndex property.

Examples:
Range(“F1:I14”).Interior.ColorIndex = (1)

Range(“F1:I14”).Borders.ColorIndex = (2)

Range(“F1:I14”).Font.ColorIndex = (2)

The following table lists 16 of the possible colors you can use with the ColorIndex property. Refer to VBA help for
a complete list.

INDEX COLOR INDEX COLOR

1 Black 9 Brown

2 White 10 Forest Green

3 Red 11 Navy Blue

4 Green 12 Yellow-Brown

5 Blue 13 Maroon

6 Yellow 14 Blue-Green

7 Fuchsia 15 Light Gray

8 Light Blue 16 Gray

Copy and Paste by Using a
Range of Cells

1 Create your Copy statement.

• The range you are copying.

• The range where you are
pasting.

 The range you copy must be
the same size as the range
where you are pasting.

• Formats the range.

 This example changes the
color of the interior of cells,
the border that surrounds
cells, and the font.

2 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

 The macro copies and pastes
the information.

• The range you copied.

• The pasted data.

14_591598-ch12.indd 19914_591598-ch12.indd 199 6/11/10 1:56 PM6/11/10 1:56 PM

200

2

2

2

1

1

Paste Parameter

1 Copy a range of cells to the Clipboard.

 Do not include the Destination parameter.

2 Type your PasteSpecial command.

• The range where you are pasting.

• This statement pastes the column widths,
thereby making sure that the source column
widths match the destination column widths.

• This statement pastes the data.

Operation Parameter

1 Copy a cell to the Clipboard.

 In this example, cell B1 contains the number
needed to calculate an annual salary increase.

2 Type your PasteSpecial command.

• The range where you are pasting.

 In this example, range B5 to B10 contains the
salaries you want to increase.

• The Operation parameter.

3 Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

Using Paste Special Options When Pasting

C ells can contain a lot of information. When you
use the PasteSpecial method, you decide
exactly what information you want to paste. You

can choose to paste everything, or you can choose to
paste just one element of the cell’s contents, such as the
formula, value, or column width. You can also use the
PasteSpecial method to perform simple arithmetic
operations on each cell in a range. For example, in a list
of salaries, you may want to increase every salary by five
percent. You can use the PasteSpecial method to make
the change quickly. Just copy the value by which you
want to multiply to the Clipboard and then use
xlPasteSpecialOperationMultiply when you paste
with the PasteSpecial method.
You can use the PasteSpecial method with values
you have added to the Windows Clipboard using the
Copy method. The following is the syntax for the
PasteSpecial method:

expression.PasteSpecial(Paste, Operation,
SkipBlanks, Transpose)

Use the Paste parameter to indicate how you want to
paste the information into the new range. By default,
Excel uses the xlPasteAll constant value for this
parameter, which pastes the entire contents of the copied
cells into the new range.
Use the Operation parameter to perform a mathematical
operation, such as multiplying the current value of a cell
by the pasted value. The default constant value used by
Excel is xlPasteSpecialOperationNone, which does
not perform any mathematical operations.
Set the SkipBlanks parameter to True if you do not
want to overwrite a destination cell with a blank cell if
the destination cell has data in it and the copied cell does
not. If you want to transpose the data values from rows
to columns or vice versa, set the Transpose parameter to
True.

Using Paste Special
Options When Pasting

14_591598-ch12.indd 20014_591598-ch12.indd 200 6/11/10 1:56 PM6/11/10 1:56 PM

201

Ch
apter 12: W

orkin
g w

ith
 Cells

The Paste parameter requires one of the following constant values.

NAME DESCRIPTION

xlPasteAll The default value, which pastes the entire contents of the cells.

xlPasteAllExceptBorders Pastes everything except border settings.

xlPasteAllUsingSourceTheme Pastes everything using the source theme.

xlPasteColumnWidths Pastes the column widths.

xlPasteComments Pastes the cell comments only.

xlPasteFormats Pastes the formats only.

xlPasteFormulas Pastes the formulas only.

xlPasteFormulasAndNumberFormats Pastes the formulas and number formats.

xlPasteValidation Pastes the cell validation only.

xlPasteValues Pastes the cell values only.

xlPasteValuesAndNumberFormats Pastes the cell values and number formats.

The Operation parameter requires an XlPasteSpecialOperation constant value. See the appendix for a list.

 The worksheet after
you run the macro.

• The PasteSpecial
range.

 The macro multiplies
each cell in the
PasteSpecial
range by the value in
the cell you copied.

 The worksheet before
you run the macro.

• The cell you copied.

14_591598-ch12.indd 20114_591598-ch12.indd 201 6/11/10 1:56 PM6/11/10 1:56 PM

202

1

2

2

3
4

1

3 Add a ClearComments statement.

• The range.

 The ClearComments statement
clears any comments that are already
in the cell.

4 Add an AddComment statement.

• The range.

• The comment.

 The AddComment statement adds
comments to your worksheet.

5 Press Alt+F11 to switch from the VBE
to Excel, and run the macro.

1 Add a loop, if you are going to
loop through a series of cells.

2 Add Case statements, if you are
going to add comments
selectively.

Note: See Chapter 6 to learn more
about loops and Case statements.

Add Comments to a Cell

W hen several people work on a single
workbook, comments can provide useful
information. Excel associates a comment

with an individual cell and indicates its presence with a
small, red triangle in the cell’s upper right corner. You
can view a comment by clicking in the cell or by
positioning your mouse pointer over the cell. In VBA, by
using the AddComment method with the Range object,
you can add a comment to any cell in your worksheet.
When the user creates a comment, Excel adds the user’s
name to the comment. When you create a comment by
using the AddComment method, VBA does not automatically
include a username. The following is the syntax for the
AddComment method:
expression.AddComment(Text)

The expression is the variable or range object that
represents the cell to which you want to add a comment.
The following code adds a comment to cell A1:
Cells(1,1).AddComment “Sample Comment Text”

If you want to add the same comment to multiple cells,
you can use a looping statement, such as a Do Until
loop, to cycle through a range of cells. See Chapter 6 to
learn more about loops.
If you attempt to add a comment to a cell that already
contains a comment, Excel returns an error message. To
avoid errors, you can use the ClearComments method to
clear existing comments. The following is an example of
the ClearComments method:
Cells(1,1).ClearComments

Add Comments
to a Cell

14_591598-ch12.indd 20214_591598-ch12.indd 202 6/11/10 1:56 PM6/11/10 1:56 PM

203

Ch
apter 12: W

orkin
g w

ith
 Cells

When you add a comment to a cell, Excel creates a Comment object for that cell. The Comment object is part of the
Comments collection, which contains all comments in a worksheet. You can reference comments using an index
value. For example, to access the second comment in a worksheet, you would type the following:

Example:
SecondComment=ActiveSheet.Comments(2).Text

You may want to delete comments that a particular author created. The Comment object provides an Author
property that you can use to return the author. Excel adds the author when it creates a comment. The following
example deletes a comment by a particular author:

Example:
CountComments = ActiveSheet.Comments.Count

For N = 1 To CountComments

 If Comment(N).Author = “John Smith” Then

 Comment(N).Delete

 End If

Next

 The worksheet after
you run the macro.

 The macro adds the
comments to your
worksheet.

 The worksheet before
you run the macro.

14_591598-ch12.indd 20314_591598-ch12.indd 203 6/11/10 1:56 PM6/11/10 1:56 PM

204

1

Fill a Range

1 Type your AutoFill
command.

• The range you want to
use as the source.

• The cells you want to fill.

• The fill type.

 This example uses
months.

2 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

 The worksheet after you
run the macro.

• The source cells.

• The destination cells.

Automatically Fill a Range of Cells

I n Excel, AutoFill helps you quickly enter data when a
data series has an intrinsic order such as days of the
week, months of the year, or numeric increments. You

can use the AutoFill method to create an AutoFill using
VBA. The following is the syntax for the AutoFill method:
expression.AutoFill(Destination, Type)

The expression is the variable or range object that
represents the cell or cells you want to use when you
create an AutoFill. VBA uses the values in this source
range to determine the type of values to add to the cells
in the destination range. For example, if the source range
is cells A1 and A2 and the cells contain the values
January and February, respectively, Excel fills the cells in
the destination range with the months of the year starting
with March.

The AutoFill method has two parameters, Destination
and Type. The Destination parameter, which is
required, must contain a range indicating which cells to
fill. The Destination range must encompass the source
range. For example, if the source range is A1 and A2,
these cells must be included in the destination range, as
shown in the following example:
Range(“A1:A2”).AutoFill _
 Destination:=Range(“A1:A12”).

VBA uses the values in the source range to determine the
pattern you want to use when adding values to the cells
in the destination. If you want to tell VBA the pattern to
use to add values to the destination, you must include
the Type parameter. The Type parameter accepts an
XlAutoFillType constant, which specifies the type
of fill.

Automatically Fill
a Range of Cells

14_591598-ch12.indd 20414_591598-ch12.indd 204 6/11/10 1:56 PM6/11/10 1:56 PM

205

Ch
apter 12: W

orkin
g w

ith
 Cells

1

The XlAutoFillType constant values specify how Excel fills the range of cells for the Destination parameter.
The following table describes each of the XlAutoFillType constant values.

CONSTANT DESCRIPTION

xlFillDays Increments the values by days. If only one date is specified for the source, it increments by
one day. If multiple dates are specified, it uses those dates to determine the increment value.

xlFillFormats Applies the formats of the source cells to the destination cells.

xlFillSeries Creates a series based upon the contents of the source range.

xlFillWeekdays Increments based on weekdays, omitting dates that fall on Saturday or Sunday.

xlGrowthTrend Fills cells based on a growth trend.

xlFillCopy Copies the formatting and values, and increments based on source values.

xlFillDefault The default value. Excel determines the fill type based upon values in the source cells.

xlFillMonths Increments by month.

xlFillValues Copies the values in the source cells.

xlFillYears Increments the year portion of the date.

xlLinearTrend Fills cells based on a linear trend.

Create an AutoFill

1 Create your AutoFill
command.

• The range you want to
use as the source.

• The cells you want to fill.

 No fill type is given
because VBA bases the
fill type on the cell you
use as the source.

2 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

 The worksheet after you
run the macro.

 The macro fills the cells.

• The source cell.

• The fill.

14_591598-ch12.indd 20514_591598-ch12.indd 205 6/11/10 1:56 PM6/11/10 1:56 PM

206

4

1
2

3

4 Add your FillAcrossSheets
command.

• The sheets to which you want
to copy.

• The range you want to copy.

• What you want to copy.

 Use xlFillWithAll to copy
everything.

 Use xlFillWithContents
to copy the contents only.

 Use xlFillWithFormats to
copy the formats only.

1 Declare a variable to store your
array.

 You use an array to store the
list of worksheets to which you
want to copy.

2 Create your array and store it
to the variable you created.

3 Activate the sheet you want to
copy.

Note: See Chapter 5 to learn more
about arrays.

Copy a Range to Multiple Sheets

Y ou can copy a range of cells and place the
contents in the same location on multiple sheets
with the FillAcrossSheets method. When you

use this method, Excel copies the cells you specify to each
worksheet you specify. You can copy everything in the
range of cells, just the values in the cells, or just the
formatting. The following is the syntax for the
FillAcrossSheets method:
expression.FillAcrossSheets(Range, Type)

The expression is the variable or object that represents
the worksheets to which VBA copies the range of cells. The
worksheets must exist within the current workbook and
you must include the worksheet that you are copying
from in the list.
The FillAcrossSheets method has two parameters:
Range and Type. The Range parameter, which is

required, specifies the range of cells you want to copy to
the other worksheets. You can specify the range of cells
using any valid range statement. See Chapter 11 for more
information on specifying ranges.
The Type parameter is optional. Use this parameter to tell
VBA what you want to copy. The Type parameter accepts
one of the three XlFillWith constant values. If you do
not specify a Type parameter, VBA uses the default value
of xlFillWithAll, which copies the entire contents of
the range of cells, including the formatting. If you want to
copy only the cell contents, use the xlFillWithContents
constant value. This constant value instructs Excel to copy
everything but the cell formatting. If you want to copy
only the formatting, use the xlFillWithFormats
constant value. When you use xlFillWithFormats,
Excel ignores the values and applies the formatting only.

Copy a Range to
Multiple Sheets

14_591598-ch12.indd 20614_591598-ch12.indd 206 6/11/10 1:56 PM6/11/10 1:56 PM

207

Ch
apter 12: W

orkin
g w

ith
 Cells

5

6

You can fill a range of cells in a specific direction within a worksheet using one of the fill methods. For example, you
may want to fill across a worksheet with the first value in the left corner of the range. VBA offers four Range object
methods for filling in a specific direction: FillUp, FillDown, FillRight, and FillLeft.

You can use the FillUp method to fill a range of cells with the value in the last cell of the range. For example, if you
have the range A1:A10 and you apply the FillUp method, as shown here, the value in cell A10 copies and pastes
to cells A1:A9.

Example:
Range(“A1:A10”).FillUp

The FillDown method works opposite to the FillUp method. This method takes the value in the first cell of the
range and copies it to all other cells.

You can use the FillRight method to fill across rows. For example, if you use this method with the range A1:G1,
Excel takes the value in cell A1 and pastes it into cells B1 to G1. The FillLeft method works opposite to the
FillRight method. This method takes the value in cell G1 and pastes it into cells A1 to F1.

• Your macro copies
the range you
specified to the
worksheets you
specified.

5 Move to one of the
sheets to which you
copied.

6 Select range A1.

7 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

14_591598-ch12.indd 20714_591598-ch12.indd 207 6/11/10 1:56 PM6/11/10 1:56 PM

208

1

• The theme color.

• The tint and shade.

1 Create a border.

• The range.

• The line style.

• The weight.

Add a Border

W hen creating an Excel worksheet, you can
highlight important information by adding a
border. In VBA, you can add borders to a

range of cells by using the Range.Borders property. Use
an XlBordersIndex constant to specify where you want
to place the border. The following is a list of
XlBordersIndex constant values: xlEdgeTop,
xlEdgeBottom, xlEdgeRight, xlEdgeLeft,
xlInsideHorizontal, xlDiagonalDown, and
xlDiagonalUp. If you do not specify an XlBordersIndex
constant, Excel places a border around the outside edge
of every cell in the range.
You can set the line style, weight, and color of a border.
Use an XlLineStyle constant value to set the style of
the line. Use an XlBorderWeight constant value to set
the Weight of the line. See the appendix for a list of

XlLineStyle and XlBorderWeight constant values. You
can use a ColorIndex, RGB function, or theme color to
set the color of a border.
Use a ColorIndex value between 1 and 64. See the section
“Copy and Paste Ranges of Cells” for a partial list of
ColorIndex values. Set the ColorIndex to
xlColorIndexAutomatic to use the default line color. If
you want to use an RGB color value, use the RGB function.
To assign a theme color, use the Border.ThemeColor
property with an XlThemeColor constant. See the “Extra”
portion of this section for a list of XlThemeColor
constants. Use the Border.TintAndShade property to
lighten or darken a color. The Border.TintAndShade
property can be set to any value between -1 and 1. A value
of -1 produces the darkest color, a value of 0 produces a
neutral color, and a value of 1 produces the lightest color.

Add a
Border

14_591598-ch12.indd 20814_591598-ch12.indd 208 6/11/10 1:57 PM6/11/10 1:57 PM

209

Ch
apter 12: W

orkin
g w

ith
 Cells

You can set the color of your border to a theme color. In Excel, whenever you choose an option that gives you the
ability to apply a color, theme colors appear at the top of the gallery. For example, if you click the Home tab, click
the down arrow next to the Borders button, and then click Line Color, a gallery appears with Theme Colors at the
top. You can use XlThemeColor constants to apply these colors to your borders. When you position your mouse
pointer over a color below the first row, a Lighter Value appears. To match these colors, set the TintAndShade
value to the Lighter Value. For example, if the Lighter Value is 25%, set the TintAndShade to .25.

The following is a partial list of XlThemeColors.

VALUE DESCRIPTION

xlThemeColorAccent1 The 5th column in the theme color gallery

xlThemeColorAccent2 The 6th column in the theme color gallery

xlThemeColorAccent3 The 7th column in the theme color gallery

xlThemeColorAccent4 The 8th column in the theme color gallery

xlThemeColorAccent5 The 9th column in the theme color gallery

xlThemeColorAccent6 The 10th column in the theme color gallery

xlThemeColorLight1 The 1st column of the theme color gallery

xlThemeColorDark1 The 2nd column of the theme color gallery

xlThemeColorLight2 The 3rd column of the theme color gallery

xlThemeColorDark2 The 4th column of the theme color gallery

 The worksheet after
you run your macro.

 VBA places a border
around the ranges
you specified.

• Color index.

• RGB color.

2 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

14_591598-ch12.indd 20914_591598-ch12.indd 209 6/11/10 1:57 PM6/11/10 1:57 PM

210

1
2

3
4

3 Activate the relevant worksheet.

 If a procedure works only with a
particular worksheet, you
should activate the worksheet.

4 Store to a variable the contents
of the cell in which the user
enters the search criteria.

 In this example, the user enters
a value in a cell and VBA
searches a range for the value.

1 Declare the variable VBA uses
to store the search criteria.

2 Type On Error Resume
Next.

 This statement tells VBA to
continue processing if an error
occurs.

Note: See Chapter 8 to learn more
about handling errors.

Find Specific Cell Values

Y ou can use the Find method to search for a value
within a range of cells. This method is similar to
the Find command in Excel. The following is the

syntax for the Find method:
expression.Find(What, After, LookIn, LookAt,
SearchOrder, SearchDirection, MatchCase)

The What parameter is the only required parameter. Use
the What parameter to tell VBA what you want to find.
You can use the After parameter to specify the cell after
which you want to start searching. If you omit this
parameter, Excel starts the search after the top left cell in
the range. The LookIn parameter tells VBA what you
want to search. You can assign one of the XlFindLookIn
constants: xlValues searches cell values, xlComments
searches comments, and xlFormulas searches formulas.

The LookAt parameter tells VBA how to match your
search criteria. Assign the LookAt parameter xlWhole if
you want your search criteria to match the contents of the
cell exactly; assign xlPart if you want VBA to return a
match if your search criteria is found anywhere in the cell.
The SearchOrder parameter tells VBA the order in which
you want to search. Assign the value xlByRows if you
want to search by rows, or assign the value xlByColumns
if you want to search by columns.
Use the SearchDirection parameter to indicate the
direction you want to search. A value of xlNext finds the
next matching value. A value of xlPrevious finds the
previous matching value.
Assign True to the MatchCase parameter if you want
your search to be case-sensitive.

Find Specific
Cell Values

14_591598-ch12.indd 21014_591598-ch12.indd 210 6/11/10 1:57 PM6/11/10 1:57 PM

211

Ch
apter 12: W

orkin
g w

ith
 Cells

5

The introduction to this task does
not mention two Find method
parameters: MatchByte and
SearchFormat. If you have
installed double-byte language
support on your computer, assign
the value True to the MatchByte
parameter.

The SearchFormat parameter
enables you to match formats. If
you assign the value True to this
parameter, you must specify the
format for the Application.
FindFormat object.

VBA remembers the values specified
for the What, LookIn, LookAt,
SearchOrder, and MatchByte
parameters. If you run a search
again without setting these
parameter values, Excel uses the
settings from the previous Find or
Replace method execution. These
values are also set when you run a
Find or Replace from within Excel.
To avoid running searches that have
unexpected results, you should set
these parameters each time you run
the Find method.

You can continue a search and find
the next match using the FindNext
or FindPrevious methods. When
using these methods, you must
specify an After parameter. The
After parameter tells Excel the cell
after which you want to execute the
next search.

Example:
SearchRange.FindNext(After)

SearchRange. _
FindPrevious(After)

5 Type your Find command.

• The range you want to search.

• The data for which you are
searching.

 In this example, the data is
stored in the FindData
variable.

• What you want to search.

• How you want to match your
search criteria.

• The search order.

• Your instruction as to what
VBA should do when it finds
the item.

6 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

• The cell in which the user
places the search criteria.

• When you execute the macro,
if VBA finds the item, Excel
moves to the first instance of
the item.

14_591598-ch12.indd 21114_591598-ch12.indd 211 6/11/10 1:57 PM6/11/10 1:57 PM

212

4

1
2

3

1 Type On Error Resume Next.

 This statement tells VBA to continue
processing if an error occurs.

Note: See Chapter 8 to learn more about handling
errors.

2 Activate the relevant worksheet.

 If a procedure works only with a particular
worksheet, activate the worksheet.

3 Type your ReplaceFormat or
FindFormat command.

 In this example, you make the replacement
text bold and italic.

4 Type your Replace command.

• The range you want to search.

• The data for which you are searching.

• Your replacement.

• Set your ReplaceFormat object to True.

 VBA uses your ReplaceFormat command.

• How you want to match your search criteria.

5 Press Alt+F11 to switch from the VBE to
Excel, and run the macro.

Find and Replace Values in Cells

Y ou can use the Replace method to search for and
replace values within a range of cells. This method
is similar to the Find and Replace command in

Excel. The following is the syntax for the Replace method:
expression.Replace(What, Replacement, LookAt,
SearchOrder, MatchCase, SearchFormat,
ReplaceFormat)

The Replace method has two required parameters: What
and Replacement. The What parameter tells VBA what
you want to find. The Replacement parameter tells VBA
with what you want to replace the data you find.
The LookAt parameter tells VBA how to match your
search criteria. You can assign the LookAt parameter
xlWhole if you want your search criteria to match the
contents of the cell exactly. You can assign xlPart if you
want VBA to return a match if your search criteria is
found anywhere in the cell.

The xlSearchOrder parameter tells VBA the order in
which you want to search. You can assign the value
xlByRows if you want to search rows, or assign the value
xlByColumns if you want to search by columns.
You can assign True to the MatchCase parameter if you
want your search to be case-sensitive.
The SearchFormat and the ReplaceFormat parameters
tell VBA the format you want to search for or replace. If
you want to search for or replace a format, then you must
set the appropriate parameter to True and specify the
format properties for the Application.FindFormat
object or the ReplaceFormat object, or both. For
example, to replace text with a bold format, you can use
the following code:
Application.ReplaceFormat.Font.FontStyle = _
 “Bold”

Find and Replace
Values in Cells

14_591598-ch12.indd 21214_591598-ch12.indd 212 6/11/10 1:57 PM6/11/10 1:57 PM

213

Ch
apter 12: W

orkin
g w

ith
 Cells

When you specify a value of True for the SearchFormat parameter or for the ReplaceFormat parameter, VBA
looks for the search and replacement format settings. If you want to use formatting as part of the search criteria,
you need to specify the format settings by using the FindFormat property of the Application object. With the
ReplaceFormat parameter, you need to specify the replacement format settings by using the ReplaceFormat
property. Set these properties at the top of the procedure, before the code that sets the associated parameter. You
can use these properties to set the Font object properties for searching and replacing text. You can use the With
statement to set the property values. For example, to set replacement text properties, you can type code similar to
the following:

Example:
With Application.ReplaceFormat.Font

 .Name = “Arial”

 .FontStyle = “Bold”

 .Size = 12

End With

 Your worksheet after you
execute your macro.

 The macro replaces the
Region 1 text with North
and applies bold and italics.

 Your worksheet before
you execute your macro.

14_591598-ch12.indd 21314_591598-ch12.indd 213 6/11/10 1:57 PM6/11/10 1:57 PM

214

4

1
2

3

Convert a Column of Text
into Multiple Columns

W hen you need to break a column of text into
multiple columns, you can use the
TextToColumns method. For example, if a

list contains both first and last names in one column, you
can use the TextToColumns method to break the list into
two columns — one for the first name and one for the
last name. When using the TextToColumns method, use
the Range object to specify the column you want to parse
into multiple columns.
The TextToColumns method provides several optional
parameters you can use to specify how to separate the
text. Use the Destination parameter to specify the range
where VBA should place the results.
A delimiter is a character, such as a comma or space, which
indicates a separation between strings. Use the DataType
parameter to specify a constant value of xlDelimited if
the text has a delimiter. Use the constant value of
xlFixedWidth if each column of text is a fixed width.

Use one of the XlTextQualifier constants,
xlTextQualifierDoubleQuote, xlTextQualifierNone,
or xlTextQualifierSingleQuote, to indicate the text
qualifier character.
Specify a value of True for the ConsecutiveDelimiter
parameter to have consecutive delimiters treated as one.
For the Tab, Semicolon, Comma, Space, and Other
parameters, set the value to True for each delimiter that
is used in the specified range. If you specify Other as the
delimiter, set the value for the OtherChar parameter to
the delimiter character.
The FileInfo parameter contains information pertaining
to parsing individual columns in the range, with the first
element being the column number, and the second
element being one of the XlColumnDataType constants.
Specify the character used to separate decimals with the
DecimalSeparator parameter, and the character used to
separate thousands with the ThousandsSeparator
parameter.

Convert a Column of Text into Multiple Columns

1 Name your procedure.

2 Declare a Range object
variable.

3 Store the column you
want separate to the
Range object variable.

4 Create your
TextToColumns
command.

• Where you want to place
the separated text.

• The type of data.

• The delimiter.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

15_591598-ch13.indd 21415_591598-ch13.indd 214 6/11/10 1:58 PM6/11/10 1:58 PM

215

You can use the Parse method to separate data values into multiple columns. When using the Parse method, you
specify how the string should break. The Parse method has two optional parameters. The first parameter,
ParseLine, is a string containing left and right brackets, indicating where the columns should split. For example,
[xx][xxxx] breaks each string so that the first two characters are placed in the first column and the second four
characters are placed in the second column. VBA ignores any other characters. For example, for the string
“OS1024Y26,” Excel would place the first two characters (OS) in the first column and the second four characters
(1024) in the second column. Excel would ignore the remaining characters. The second parameter, Destination,
specifies the range where the Parse method places the data. If the range has more than one cell, Excel uses the
upper left corner of the range as the first cell.

Example:
Worksheets(1).Range(“A1”).Parse _

 ParseLine:=”[xx][xxxx]”, _

 Destination:=Range(“B1”)

 The worksheet after you
run your macro.

 The macro separates
one column of data into
two columns of data.

 The worksheet before
you run your macro.

Ch
apter 13: W

orkin
g w

ith
 L

ists

15_591598-ch13.indd 21515_591598-ch13.indd 215 6/11/10 1:58 PM6/11/10 1:58 PM

216

1
2

3
4

5

5 Assign a range name to
each field.

1 Declare a Range object.

2 Activate the worksheet
containing the data you
want to sort.

3 Activate a cell in the
range you want to sort.

4 Assign the data range to
the Range object you
declared.

Perform a Sort

Y ou can use VBA to sort your data, and you can
have several levels of sort. For example, you can
sort a list by last name and within last name by

first name.
If you have imported your data or if you constantly
update your data, you may not know the exact range the
data encompasses. If you know the location of any cell in
the range, you can use Selection.CurrentRegion to
determine the range. Activate any cell in the range and
use Selection.CurrentRegion to select the block of
cells that surround the active cell. VBA selects everything
above, below, to the left, and to the right until it reaches
a blank column or row.
Use the Add method to add each level of sort. Create your
highest level first and then create each additional level in

the order you want to sort. For example, if you want to sort
by last name, then within last name by first name, create
the last name sort, and then create the first name sort. You
may want to assign a range name to each column.
The Add method has five parameters: Key, SortOn,
Order, CustomOrder, and DataOption. Use the Key
parameter to specify the sort field. You can use a range
name or a range object. Use the SortOn parameter to
specify the attribute to sort on. You can sort on values,
cell color, font color or icons by specifying the proper
XlSortOn constant value. See the “Extra” portion of this
section for a list of XlSortOn constant values. Use the
Order parameter to specify the sort order. Set the Order
parameter to xlAscending to sort in ascending order or
xlDescending to sort in descending order.

Perform
a Sort

15_591598-ch13.indd 21615_591598-ch13.indd 216 6/11/10 1:58 PM6/11/10 1:58 PM

217

Ch
apter 13: W

orkin
g w

ith
 L

ists

7

8

6

You can use the SortField.SortOn property to
retrieve or set the sort attribute. The syntax for the
SortField.SortOn property is expression.SortOn.
The expression can be any variable that represents the
SortField object. Use an XlSortOn constant value to
tell Excel the attribute to sort on.

XLSORTON CONSTANT VALUE ATTRIBUTE

xlSortOnValues 0 Values

xlSortOnCellColor 1 Cell Color

xlSortOnFontColor 2 Font Color

xlSortOnIcon 3 Icon

You can use an XlSortDataOption constant to
specify how to treat numeric data when you perform
a sort.

XLSORTDATAOPTION
CONSTANT

DESCRIPTION

xlSortNormal Sort text and numeric
data separately.

xlSortTextAsNumbers Treat text as numeric
data for sort.

7 Add the first sort level.

• Field you want to sort.

• The attribute you want to sort on.

• The sort direction.

• The data option.

8 Add any additional sort levels.

6 Clear any Sorts on the range.

continued ➔

15_591598-ch13.indd 21715_591598-ch13.indd 217 6/11/10 1:58 PM6/11/10 1:58 PM

218

9

@

9

0

#
$

!

Specify the orientation.

$ Apply the sort.

% Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

9 Use a With statement to
set the methods and
properties.

0 Set the range you want to
sort.

! Specify whether the range
has headers.

@ Specify whether the sort
should be case-sensitive.

Perform a Sort (continued)

U se the CustomOrder parameter if you want to
sort by a custom order such as days of the week
or months of the year. Use the DataOption

parameter with one of the XlSortDataOption constants
to specify how to treat numeric data. See the Extra
section for a list of XlSortDataOption constant values.
You can use a With statement to set the methods and
properties associated with a sort. See the Chapter 4 section
“Change the Properties of an Object” to learn more about
the With statement. Use the Sort.SetRange method to
set the range of the sort. Use the Sort.Header property to
specify whether the sort range has headers. Set the Sort.
Header property to xlGuess to have Excel determine if
there is a header, xlNo if the range does not have headers,

or xlYes if the range has headers. The default value is
xlNo. Use the Sort.MatchCase property to specify
whether the sort is case sensitive. Set the property to True
for a case-sensitive sort or False for a non-case-sensitive
sort. Use the Sort.Orientation property to set the
orientation of the sort. Set the Sort.Orientation to
xlSortColumns to sort by columns or to xlSortRows to
sort by rows. The Sort.SortMethod property sets the sort
method for Chinese languages; xlPinYin is the default
and works with the English language. Use xlStroke to
sort by the quantity of stokes for each character. Use
xlPinYin for a phonetic Chinese sort order. Use the Sort.
Apply method to apply the sort. VBA does not sort if you
do not include the Sort.Apply method.

Perform a
Sort (continued)

15_591598-ch13.indd 21815_591598-ch13.indd 218 6/11/10 1:58 PM6/11/10 1:58 PM

219

Ch
apter 13: W

orkin
g w

ith
 L

ists

If you want to add a custom sort, you must list each of the sort values in the order you want to sort as shown in the
following code, which sorts by months in a year:

Example:
ActiveWorkbook.Worksheets(“Sheet1”).Sort.SortFields.Add _

 Key:=Range(“Month”), _ ‘ Month is a named range

 SortOn:=xlSortOnValues, _

 Order:=xlAscending, _

 CustomOrder:= _

 “Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec”, _

 DataOption:=xlSortNormal

 The worksheet after you
run the macro.

 The macro sorts the data.

 The worksheet before
you run the macro.

15_591598-ch13.indd 21915_591598-ch13.indd 219 6/11/10 1:58 PM6/11/10 1:58 PM

220

5

6

1
2

4
3

5 Create a column filter.

• The field you want to filter.

• Filter Criteria1.

• The Operator.

• Filter Criteria2.

6 Add additional column filters.

Note: This filter uses an array and
the xlFilterValues constant.

7 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

1 Declare a Range object.

2 Activate the worksheet
containing the data you
want to filter.

3 Activate a cell in the
range you want to filter.

4 Assign the data range for
the list to the Range
object you declared.

Perform a Filter

Y ou can use the Range.AutoFilter method to
filter the data in your worksheet. For example, if
you have four quarters of data for regions one to

four and you want to look at regions one and two and
quarters one, two, and three, you can use the Range.
AutoFilter method. The following is the syntax for the
Range.AutoFilter method:
Range.AutoFilter(Field,Criteria1, Operation,
Criteria2, VisibleDropDown)

Use the Field parameter to specify the column you want
to filter. VBA numbers the columns in your list. The
leftmost column is column 1, the next column is column 2,
and so on.
Use the Criteria1 parameter to specify the criteria you
want to use to filter a column. Use the Operator parameter

to specify an XlAutoFilterOperator. These operators
tell VBA the type of filter to apply. For example, the xlOr
operator causes VBA to use a logical Or, and the xlAnd
operator causes VBA to use a logical And. See the Chapter 6
section “Make Use of Logical Operators” to learn more about
logical operators. You can use an XlAutofilterOperator
such as xlTop10Items or xlFilterCellColor to find
the highest values or the cell color, respectively. Use the
Criteria2 parameter with a logical operator to construct
multiple criteria.
Use the VisibleDropDown parameter to tell VBA whether
to display an AutoFilter drop-down arrow for the filtered
field. Set the parameter to True to display the drop-down
arrow. Set the parameter to False to hide the drop-down
arrow. The default is True.

Perform
a Filter

15_591598-ch13.indd 22015_591598-ch13.indd 220 6/11/10 1:58 PM6/11/10 1:58 PM

221

Ch
apter 13: W

orkin
g w

ith
 L

ists

You can use XlAutoFilterOperators to specify the type of filter to apply. The following is a list of
XlAutoFilterOperators.

CONSTANT VALUE DESCRIPTION

xlAnd 1 Logical And

xlOr 2 Logical Or

xlTop10Items 3 Items with highest value. Use the criteria parameter to specify the number
of items.

xlBottom10Items 4 Items with lowest value. Use the criteria parameter to specify the number
of items.

xlTop10Percent 5 Items with highest value. Use the criteria parameter to specify the
percentage.

xlBottom10Percent 6 Items with lowest value. Use the criteria parameter to specify the
percentage.

xlFilterValues 7 Filter values

xlFilterCellColor 8 Color of the cell

xlFilterFontColor 9 Color of the font

xlFilterIcon 10 Filter icon

xlFilterDynamic 11 Dynamic filter

 The worksheet after you
run the macro.

 The macro filters the data.

 The worksheet before
you run the macro.

15_591598-ch13.indd 22115_591598-ch13.indd 221 6/11/10 1:58 PM6/11/10 1:58 PM

222

3
4

1

2

3 Activate the sheet where the
results will appear.

4 Create an AdvancedFilter.

• Set the Action parameter.

• Set the CriteriaRange.

• Set the CopyToRange.

• Set the Unique parameter.

5 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

1 Declare your ranges.

2 Set your ranges.

Perform an Advanced Filter

Y ou can use the Range.AdvancedFilter method to
filter your data. With the Range.AdvancedFilter
method, you can create two or more filters and

easily coordinate filters within and among columns. For
example, you can filter a list to find all females with an
income more than $100,000 and all males with an income
less than $100,000. The syntax for the Range.
AdvancedFilter method is:
expression.AdvancedFilter(Action,
CriteriaRange, CopyToRange, Unique)

You have two options when you create a filtered list using
the Range.AdvancedFilter method.You can have your
filtered list appear in place — under the column heads of
your unfiltered list — thereby hiding the unfiltered list.
Or, you can have your filtered list appear in another
location, thereby enabling you to keep your original list in
your worksheet. If you want to filter your list in place, set

the Action parameter to xlFilterInPlace. If you want
to keep your unfiltered list in your worksheet, set the
Action parameter to xlFilterCopy.
When using the Range.AdvancedFilter method, you
must have a criteria range. To create a criteria range,
copy one or more column labels from a list. In the cell
below each label, type the criteria by which to filter each
column, such as >100000 to find people with an income
greater than $100,000 and M to find all males. Use the
CriteriaRange parameter to specify the criteria range.
If you specified xlFilterCopy as the action, use the
CopyToRange parameter to specify where you want to
place the filtered data. Make sure your copy to range has
enough room below it to include all the values in the
filtered list.
If you want to include only unique records set the Unique
parameter to True. The default is False.

Perform an
Advanced Filter

15_591598-ch13.indd 22215_591598-ch13.indd 222 6/11/10 1:58 PM6/11/10 1:58 PM

223

Ch
apter 13: W

orkin
g w

ith
 L

ists

At any time after you create a procedure that performs an advanced filter, you can change the criteria. The example
finds all females with an income more than $100,000 and all males with an income less than $100,000. You can
change the criteria to find, for example, all females. In the example, the criteria appear on two rows. If you want to
find all females, the criterion would appear on one row. For that reason, your code for finding the criteria range
must be flexible. You can create a flexible criteria range by activating any cell in the region and then using a
Selection.CurrentRegion statement.

Example:
Range(“D5”).Activate

Set DatabaseRangeDefined = Selection.CurrentRegion

If you include a blank row in your criteria range, Excel returns all the records in the list.

 The results.

 The macro filters the data.

 The worksheet before
you run the macro.

15_591598-ch13.indd 22315_591598-ch13.indd 223 6/11/10 1:58 PM6/11/10 1:58 PM

224

1
2

• An array that identifies the
columns you want to
summarize.

• Indicates whether you want to
replace the existing subtotal.

• Determines whether a page
break is created after each
summary.

• Places summary data below
the category. Set to False to
place summary data above the
category.

3 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

1 Activate the worksheet
where you want to create a
subtotal.

2 Create a Subtotal.

• The column you want to
group.

• The function you want to use
to summarize your data.

Create Subtotals

A fter you sort, you can group your data into
categories, such as quarters, and you can perform
calculations so that you can compare one category

with another. If you have a sort defined for at least one
column, you can find the average, sum, min, max, number
of items, and more for that column and/or other columns.
Excel calls this feature subtotaling. In VBA, you can use
the Range.Subtotal method to subtotal. The following is
the syntax for the Range.Subtotal method:
Range.Subtotal(Groupby, Function, TotalList,
Replace, PageBreaks, SummaryBelowData)

The Range portion of the statement can be any expression
that returns a range object. Use the Groupby parameter to
specify the column you want to group. VBA numbers each
column in your list. The leftmost column is column 1, the
next column is column 2, and so on.

Use the Function parameter to specify an
XlConsolidationFunction. XlConsolidationFunctions
tell VBA how to subtotal. For example, if you want to
calculate a sum, use the xlSum function.
Use the TotalList parameter to create an array that
identifies the columns you want to subtotal. Set the Replace
parameter to True to replace any existing subtotals with the
newly defined subtotal, or set the parameter to False to add
an additional subtotal to the existing subtotals. The default
is True. If you want every subtotal to appear on a separate
page when you print, set the PageBreaks parameter to
True. The default setting is False.
Your subtotals and grand totals can appear below or
above each category. If you want them to appear below
each category, set the SummaryBelowData parameter to
True. If you want them to appear above each category,
set the parameter to False.

Create
Subtotals

15_591598-ch13.indd 22415_591598-ch13.indd 224 6/11/10 1:58 PM6/11/10 1:58 PM

225

Ch
apter 13: W

orkin
g w

ith
 L

ists

You can use XlConsolidationFunctions
to specify the type of function to use when
summarizing data. See Chapter 16 section
“Add Fields to a PivotTable” for a list of
XlConsolidationFunctions.

 The results.

 The macro subtotals the data.

 The worksheet before
you run the macro.

After you create a subtotal, you can use code similar to the
following to remove it.

Example:
Sub RemoveSubtotals()

 ActiveWorkbook.Worksheets(“Subtotal”).Activate

 Range(“A1”).CurrentRegion.RemoveSubtotal

End Sub

15_591598-ch13.indd 22515_591598-ch13.indd 225 6/11/10 1:58 PM6/11/10 1:58 PM

226

1

3

4

2

3 Group rows.

• The rows you want to
group.

• You can create several
levels.

4 Specify the level you want
to display.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Remove any existing
groups.

• A cell anywhere in the
grouped range.

2 Group columns.

• The columns you want
to group.

Create Groups

W ith the Range.Subtotal method, you can
create groups based on sorted data. If you
want to group data that you have not sorted,

use the Group method. When using the group method,
you must specify the rows and/or columns that you want
to group. For example, you can group the details related
to cash receipts and cash disbursements so that you can
compare total cash receipts with total cash disbursements.
When you create a group, Excel places Collapse and
Expand buttons to the left side of the worksheet row
labels if you group rows, or above the worksheet column
labels if you group columns. When you click a Collapse
button, Excel hides the columns or rows and the Collapse
button turns into an Expand button. When you click an
Expand button, Excel reveals the columns or rows and
the Expand button turns into a Collapse button.

When you create a group, Excel places it on a level.
Excel places the group that encompasses the most data
on Level 1; it places any groups that fall within Level 1
on Level 2, and any groups that fall within groups on
Level 2 on Level 3, and so on. Each time you run a macro
that creates groups, Excel attempts to add the groups to
the existing groups. To avoid this, you may want to
include code that removes any existing groups to the
beginning of your Sub procedure.
When creating a group, you can use the Range property
to identify the columns or rows you want to group. For
example, if you want to group columns A through C, you
can use the syntax Range(“A:C”).Group. If you want to
group rows 1 through 3, you can use the syntax
Range(“1:3”).Group.

Create
Groups

15_591598-ch13.indd 22615_591598-ch13.indd 226 6/11/10 1:58 PM6/11/10 1:58 PM

227

Ch
apter 13: W

orkin
g w

ith
 L

ists

You can use the Range.ClearOutline method
to remove groups from your data. The Range.
ClearOutline method consists of a range object
followed by ClearOutline. The range object can
be any range within the grouped data. The following
statement removes the groups created by the sample
code.

Example:
Range(“A6”).ClearOutline

Excel places grouped data on levels. You can use the
Outline.ShowLevels method to specify the level you
want to display. The Outline.ShowLevels method
has two parameters: RowLevels and ColumnLevels.
Use the RowLevels parameter to specify the row level
you want to display. Use the ColumnLevels parameter
to specify the column level you want to display. If the
group has fewer levels than you specify, Excel displays
all levels.

Example:
Worksheets(1).Outline.ShowLevels RowLevels:=2

 The results.

 The macro groups the
data and displays the
level you indicated.

 The worksheet before
you run the macro.

15_591598-ch13.indd 22715_591598-ch13.indd 227 6/11/10 1:58 PM6/11/10 1:58 PM

228

3

1

2

3 Set the ListObject
properties.

• The name.

• Display a totals row.

• Set the table style.

4 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Declare a ListObject.

2 Add the ListObject.

• The SourceType.

• The Source.

Define a List as a Table

I n Excel, a table is a special type of list. Like all lists, a
table is a set of columns and rows where each column
represents a single type of data. When you define a list

as a table, Excel adds AutoFilter buttons to each column
label, enabling you to readily sort and filter your data. To
create a table, you use the ListObjects.Add method.
The ListObjects.Add method has five optional parameters:
SourceType, Source, LinkSource, TableStyleName, and
Destination. Use the SourceType parameter to specify
your data’s source type. The source type can be a SharePoint
Services site, a query, a range, or an XML file. Use the
Source parameter to specify your data source. If your
SourceType is a range, specify a Range object. If you do not
specify a Range object, Excel uses internal code to detect
the range. If the SourceType is a SharePoint Services site,
you must use an array to specify the URL to the SharePoint
site, the ListName, and the ViewGUID.

Use the LinkSource parameter to specify a Boolean value
indicating whether you want to link the data source to the
ListObject object. If the data source is a SharePoint
Services site, the default is True. Use a XlYesNoGuess
constant with the TableStyleName parameter to indicate
whether imported data has headers. Do not set the
LinkSource or the TableStyleName parameter if the
SourceType is a range. Use the Destination parameter
to specify a Range object that is a single cell, indicating the
upper left corner of where you want to place the new table.
If your source is a SharePoint Services site, you must
specify a destination. If your source is a range, VBA
ignores this parameter.
You can use a With statement to set the properties for a
ListObject object.

Define a List
as a Table

15_591598-ch13.indd 22815_591598-ch13.indd 228 6/11/10 1:58 PM6/11/10 1:58 PM

229

Ch
apter 13: W

orkin
g w

ith
 L

ists

You can use the TableStyle
property to assign a style to a
ListObject. To find a
style’s name, click the Home
tab. Click Format as Table in
the Styles group. A gallery of
styles appears. When you
position your mouse pointer
over a style, the style’s name
appears. You can assign the
name to a ListObject by
assigning the name, without
spaces between the words, to
the TableStyle property.

 The results.

• The name.

• The totals row.

 The worksheet before
you run the macro.

In Excel, tables have
names. The default name
is Table #. You can use the
Name property to assign a
name to a table.

If you add a totals row
to your table, Excel can
automatically calculate the
sum, count, max, min, or
other value for a column.
Set the ShowTotals
property to True to add a
totals row.

Use an XlListObjectSourceType constant
to specify the SourceType.

CONSTANT VALUE DESCRIPTION

xlSrcExternal 0 SharePoint
Services site

xlSrcRange 1 Range

xlSrcXml 2 XML

xlSrcQuery 3 Query

15_591598-ch13.indd 22915_591598-ch13.indd 229 6/11/10 1:58 PM6/11/10 1:58 PM

230

By using the VBE, you can create custom dialog boxes to use with
your Excel procedures. The VBE refers to these custom dialog

boxes as UserForms. When you create a UserForm, you design
it by using the various controls available in the UserForm Toolbox.

Use the Visual Basic Editor to Create Custom Dialog Boxes

E very Windows application uses dialog boxes to
gather information from the user, and Excel is no
exception. For example, you can use the Open

dialog box in Excel to select a file to open. VBA has two

ready-made dialog boxes, MsgBox and InputBox, that
you can use with your code. In addition, you can create
your own custom dialog boxes. See Chapter 7 for more
information on the MsgBox and InputBox dialog boxes.

UserForm
Basics

Select Objects Label Button TextBox Button ComboBox Button

ListBox Button CheckBox Button Option Button Toggle Button

Frame Button Command Button TabStrip Button MultiPage Button

Scrollbar Button Spin Button Image Button RefEdit Button

16_591598-ch14.indd 23016_591598-ch14.indd 230 6/11/10 1:59 PM6/11/10 1:59 PM

231

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

CommandButton

A user clicks the button to perform a specific action. When
you create a CommandButton control, you specify the
text that appears on the button by setting a control
property.

TabStrip

A multiple-page area for a section of your UserForm.

MultiPage

Tabbed dialog boxes a user can use to switch between
pages of options.

By default, when you add the MultiPage control to your
UserForm, it creates two pages. To add additional pages,
right-click one of the page tabs and then select the New
Page option.

ScrollBar

A user can scroll through information that is not shown on
the screen, or indicate a position on a scale.

SpinButton

A user can specify a value by clicking one of the arrow
buttons to increment or decrement the value.

Image

Use this control to add a graphic to the UserForm. Excel
stores the graphic in the worksheet. If you distribute the
worksheet, Excel includes the graphic. You can use a
graphic that is in any of the following file formats: BMP,
CUR, GIF, ICO, JPEG, and WMF.

RefEdit

A text field and a button with which a user can select a
range of cells from a worksheet. When the user clicks a
button, the corresponding dialog box minimizes so that the
user can drag the pointer across the worksheet to select
the desired range of cells.

Select Objects

For resizing and moving controls that have been drawn on
a user form.

Label

For adding text to a UserForm. This control does not
interact with the UserForm; you add labels for
informational purposes only.

TextBox

Enables the user to type text.

ComboBox

A user can either click an item from the list or type the
appropriate value.

ListBox

Presents a list of items from which a user can select the
desired item.

CheckBox

A user can select or deselect options. Typically, a CheckBox
control returns a value of True if it is selected, and False
if it is not selected.

OptionButton

A user can select from a list of items. You place Option
Button controls in a group. When the user selects a
control, the other controls are automatically deselected.

ToggleButton

The button appears to be either pressed or unpressed.
When pressed, the button returns a value of True; when
unpressed the button returns a value of False.

Frame

This control is a container for grouped controls.

UserForm Toolbox
Ch

apter 14: Creatin
g D

ialog B
oxes an

d Cu
stom

izin
g th

e R
ibbon

The UserForm Toolbox appears when you select a
UserForm in the VBE. The Toolbox contains controls that
you can add to your custom UserForm. See the section
“Create a Custom Dialog Box” for more information about
adding Toolbox controls.

The Toolbox contains several standard controls. You can
also create custom controls and add them to the Toolbox.
See the section “Create Custom UserForm Controls” for
more information on adding custom controls.

16_591598-ch14.indd 23116_591598-ch14.indd 231 6/11/10 1:59 PM6/11/10 1:59 PM

232

1

4

5

2

2

3 Press F4.

• The Properties window
appears.

4 Type a form name in the
Name field of the
Properties window.

5 Click the UserForm.

• The Toolbox reappears.

1 In the Project Explorer
window, click the project
to which you want to add
a UserForm.

2 Click Insert ➔ UserForm.

• The VBE creates a blank
UserForm with a default
name of UserForm1, and
the Toolbox appears.

Create a Custom Dialog Box

Y ou can use VBA to create custom dialog boxes to
use with your macros. Dialog boxes are user
interfaces that enable users do such things as

click buttons to indicate a desired selection or type
appropriate values in a field. VBA refers to these dialog
boxes as Forms or UserForms.
To create a custom dialog box, in the VBE select the
UserForm option on the View menu. The VBE creates a
new UserForm called UserForm# and creates a Forms
folder in the Project Explorer window. The Forms folder
appears only if you have created UserForms. See Chapter 2
for more information about the Project Explorer window.
You can use the Properties window to make changes to
the properties associated with a UserForm. For example,
you can change the name of a UserForm to make it

easier to identify when you look at the UserForms list in
the Project Explorer window. To open the Properties
window, press F4.
After you create a UserForm, you can custom design it by
using the Toolbox controls, which appear only when you
select the UserForm. You add controls to the UserForm
by dragging them from the Toolbox to the appropriate
location on the UserForm. For example, to create a list
box to request a value from the user, you drag the
ListBox control onto the UserForm. After you add a
control, you can resize it as needed. The VBE assigns
default values to the control’s properties. You can change
the assigned values in the Properties window for the
control. You must select the control before you can
change its properties.

Create a Custom
Dialog Box

16_591598-ch14.indd 23216_591598-ch14.indd 232 6/11/10 1:59 PM6/11/10 1:59 PM

233

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

9

!

8
6

7

For each control you add to a UserForm, you can set several properties. Although each control type has unique
properties, most of the properties are common to all controls. To change the value of a control property, either
type a new value or select a value from the drop-down list. The following table describes some common control
properties.

CONTROL PROPERTY DESCRIPTION

(Name) The name of the control.

BackColor The background color of the control.

Caption The text that appears on the control, such as the button or label text.

Font The font used to display the text on the control.

Height The height of the control in pixels.

Text The text on the control.

TextAlign The way text aligns on the control.

Width The width of the control in pixels.

6 Click a control.

7 Click and drag to create the
control on the UserForm.

 Repeat Steps 6 and 7 and
to add additional controls.

8 Click the UserForm or a
control on the form.

9 Use the Properties window
to modify any properties
you want to change.

• This example changed the
Caption on the UserForm.

0 Press F5.

 The VBE moves you to
Excel and provides you
with a preview of the
dialog box.

! To return to the VBE, click
the Close button.

16_591598-ch14.indd 23316_591598-ch14.indd 233 6/11/10 1:59 PM6/11/10 1:59 PM

234

2

1

2 Create a new Sub
procedure.

1 Create a UserForm.

Note: See the section “Create a
Custom Dialog Box” to learn
how to create a UserForm.

Call a Custom Dialog Box from a Procedure

Y ou can call, display, and use custom dialog boxes
to obtain user input. For example, you can use a
custom dialog box to request the values you need

to perform a calculation from the user.
To display a custom dialog box, use the Show method of
the UserForm object. The Show method instructs Excel to
display the specified UserForm. The following is the
syntax for the Show method:
UserForm.Show modal

The Show method has one optional parameter, Modal.
The Modal parameter determines whether the UserForm
appears as a modal or modeless dialog box in Excel. The
default value of vbModal makes the dialog box modal,
which means that users must either close or hide the
dialog box before selecting any other options in Excel.

When Excel opens a modal dialog box, Excel passes
control to the dialog box, and the user can interact only
with the dialog box. A value of vbModeless means that
although the dialog box remains open until a user closes
it, the user can perform other actions.
Dialog boxes contain a Close or Cancel button a user can
click to close the dialog box. In a procedure, you can also
close a dialog box by using the Unload method. You
must use a Click event with CommandButton controls to
create a procedure that calls the Unload method. See the
section “Capture Input from a Custom Dialog Box” for
more information about specifying the code to run when
a user clicks a button.

Call a Custom Dialog
Box from a Procedure

16_591598-ch14.indd 23416_591598-ch14.indd 234 6/11/10 1:59 PM6/11/10 1:59 PM

235

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

5

3

You can use the Unload statement to remove the
UserForm from memory. When you call the Unload
statement, VBA resets all the controls on the UserForm
to their default values; as a result, you cannot access the
options specified by the user after the UserForm
unloads from memory. To maintain access to the
values, you can either store the values in public variables
or hide the UserForm until your procedure terminates.
To unload a UserForm, use the Unload statement
followed by the name of the UserForm that you want
to unload, or use the code Unload Me:

 Excel displays the
dialog box.

5 Click the Close
button to close
the dialog box.

3 Create a Show
command.

4 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

THIS CODE:

Unload UserForm1

IS EQUIVALENT TO:

Unload Me

You can use the Hide method to hide a UserForm so
that it is no longer visible. When you hide a UserForm,
you can still access it from your procedure.

TYPE THIS:

UserForm1.Hide

RESULT:

Excel hides the form.

After hiding a form, Excel may appear to freeze as your
code continues to access the UserForm. This condition
clears as soon as the code that accesses the UserForm
finishes processing.

➔

➔

16_591598-ch14.indd 23516_591598-ch14.indd 235 6/11/10 1:59 PM6/11/10 1:59 PM

236

2

1

2 Double-click a control.

 In this example, you write
code for the OK button, and
so you double-click OK.

1 Create a UserForm.

Note: See the section “Create a
Custom Dialog Box” to learn
how to create a UserForm.

Capture Input from a Custom Dialog Box

D ialog boxes in Excel gather input from the user.
The input can be anything, from what button
the user clicks to text the user types into a field.

You can capture user input by using UserForm events.
For example, when the user clicks an OK CommandButton
control, you can use a CommandButton_Click Sub
procedure to tell Excel what to do next.
Excel considers every user interaction that occurs in a
dialog box an event. For example, scrolling through a list
of items, clicking an OK button, and typing text in a text
box are all events. Each UserForm control has several
events that you can capture. The most common event is
the Click event, which occurs each time a user clicks a
control. To make UserForms interactive, you can create
procedures that execute when specific events occur.

Each UserForm has two views: a graphical layout
window and a code window. The graphical layout window
is where you add controls that appear in the dialog box.
See the section “Create a Custom Dialog Box” for more
information on designing custom dialog boxes. The code
window contains the code associated with the UserForm.
You can use the code window to create event procedures
for each control. To create event code, you double-click
the control. By default, the VBE creates a private click
event for a control when you double-click it. If a Click
event already exists, the VBE simply displays the code
window. Users cannot execute private click event
procedures by using the Macro dialog box. The only way
execute a private click event procedure is to click the
appropriate control.

Capture Input from
a Custom Dialog Box

16_591598-ch14.indd 23616_591598-ch14.indd 236 6/11/10 1:59 PM6/11/10 1:59 PM

237

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

3
4

A Click event occurs when the user
clicks a control or a value in a
control. For most controls, you can
write a procedure to handle the
Click event, by simply placing _
Click after the control name.

Example:
Sub CommandButton1_Click()

If you need to capture the Click
event to determine the page or tab
selected with a MultiPage or
TabStrip control, you can use an
index parameter value to specify the
index value of the page or tab.

Example:
Sub MultiPageQtr_Click(1)

When working with MultiPage
and TabStrip controls, create a
separate procedure to handle the
selection of each page or tab by
using the proper index value.

A Click event also occurs when the
user presses Enter while a control
has focus, when the user presses the
accelerator key that corresponds to
the control, or when the user
presses the spacebar while a
CommandButton has focus.

3 Assign the user
selection to a variable.

• Name of the control.

 You can find the name
of the control in the
Properties window’s
Name field.

4 Close the dialog box.

• Name of the form.

 You can find the name
of the form in the
Properties window’s
Name field.

• VBA creates a Sub
procedure.

continued ➔

16_591598-ch14.indd 23716_591598-ch14.indd 237 6/11/10 1:59 PM6/11/10 1:59 PM

238

8

6

5

7

8 Add items to the list box.

5 Create a new module.

Note: See Chapter 2 to learn
how to create a new module.

6 Declare a public variable
to hold the user selection.

7 Create a Sub procedure.

Capture Input from a Custom Dialog Box (continued)

Y ou can create code to monitor events and execute
code when a specific event occurs. Each control has
its own events, and the VBE lists them for you in

the Procedure list box. You can quickly create an event
procedure in the code window by selecting the appropriate
control name in the Object list box and then selecting the
corresponding event from the Procedure list box. When
you select an event, the VBE creates a procedure with the
name of the control followed by the event name.
Control values on a UserForm are active only as long as
the dialog box is open. If you close the dialog box prior to
saving user input values, you lose the user input. To
avoid potential problems related to lost data, consider
saving user responses to public variables that can pass
into other procedures. For example, you can call a

UserForm from a procedure to capture user responses
and then pass the values back to the main procedure.
You declare public variables at the top of your module,
before any procedure code, by using the Public
statement. Declaring public variables enables you to
declare variables that all procedures in a project can
access. See Chapter 3 for more information on declaring
variables.
When working with a single-column list box or combo
box, you can use the AddItem method to create the list
of choices that appears in the box. The following is the
syntax for the AddItem method:
object.AddItem Item

You can use the With statement to shorten the code
required to create the list. See Chapter 4 for more
information on using the With statement.

Capture Input from a Custom
Dialog Box (continued)

16_591598-ch14.indd 23816_591598-ch14.indd 238 6/11/10 1:59 PM6/11/10 1:59 PM

239

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

9

You use control events to determine when to execute specific code. The following list identifies the most common
events that occur with the various controls placed on UserForms. Not all events are available for each control. In
the code window, check the Procedure list box to see the events that are associated with the selected control.

CONTROL EVENT OCCURRENCE

BeforeDragOver The user is dragging-and-dropping data onto a control.

BeforeUpdate Before data on a control is changed.

Change The Value property of the control changes.

Click The user clicks the control.

DblClick The user clicks the control twice.

Enter Before a control receives focus.

KeyDown The user presses a key.

MouseDown The user presses the left mouse button.

 The dialog box displays
and returns the data
you requested.

9 Show the dialog box.

0 Press Alt+F11 to
switch from the VBE
to Excel, and run the
ShowUserForm
macro.

16_591598-ch14.indd 23916_591598-ch14.indd 239 6/11/10 1:59 PM6/11/10 1:59 PM

240

1

 The code window opens.

1 Double-click the control
to which you want to add
validation code.

Validate Input from a Dialog Box

Y ou can validate the values returned by controls in
a dialog box before passing them to your
procedure. You validate the data values for two

reasons: First to ensure that the user enters a value.
Second, and probably more important, to ensure that
errors do not occur in your code because the wrong data
passes to a procedure.
You can create code that validates the user input for any
event that occurs in a UserForm. The best time to
validate is prior to closing the dialog box. For example, if
a CommandButton control, such as an OK button, passes
values to variables and closes the dialog box, the OK
button is the ideal place to validate your data. When you
create the validation code, you can use a conditional
statement, such as an If Then statement, to check the

properties of each control. For example, to make sure the
user typed a string in the Name text field of a dialog box,
you can add the following If Then statement to your
procedure: If TextBox1.Text = “” Then.
The If Then statement checks the Text property for the
specified TextBox control to ensure that it contains a
value. If the TextBox control does not contain a value,
your VBA code can call the MsgBox function and display
a message telling users that they must enter a value.
When working with a list box, you can use the ListIndex
property to find out if the user typed a value. The
ListIndex property returns -1 if the user did not type in
a value, 0 if the user selected the first value in the list, 1 if
the user selected the second value in the list, and so on.

Validate Input from
a Dialog Box

16_591598-ch14.indd 24016_591598-ch14.indd 240 6/11/10 1:59 PM6/11/10 1:59 PM

241

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

2

The QueryClose event takes two arguments, Cancel and CloseMode. The Cancel argument accepts an integer
value. If the value of the argument is anything other than 0, the QueryClose event stops and the associated dialog box
remains open. The CloseMode argument contains a constant value indicating the cause of the QueryClose event, as
shown in the following table.

CONSTANT VALUE DESCRIPTION

vbFormControlMenu 0 The user selected the Close button in the dialog box.

vbFormCode 1 The code initiated an Unload statement.

vbAppWindows 2 The Windows operating session is ending.

vbAppTaskManager 3 The Windows Task Manager is closing Excel.

 If the user does not
make a selection, a
message box appears.

2 Add the validation code.

 In this example, if the
user does not make a
selection, a message
box appears.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

16_591598-ch14.indd 24116_591598-ch14.indd 241 6/11/10 1:59 PM6/11/10 1:59 PM

242

4

3

5

12

4 In the Toolbox, right-click the
Controls tab.

5 Click New Page.

1 In the Toolbox, click the control
you want to customize.

2 Drag the control to the
UserForm.

3 Set the control properties.

• In the Properties window, type the
control name in the Name field.

• Type the text you want to appear
on the control in the Caption field.

• Enter the tip that appears when the
user drags across the control in
the ControlTipText field.

Create Custom UserForm Controls

Y ou can customize the Toolbox to suit your needs.
The Toolbox that appears when you select a
UserForm in the Visual Basic Editor contains all

of the standard controls you can add to a UserForm.
These controls appear on a single tabbed page called
Controls. By using the Properties window, you can
change the tip text that appears when a user drags across
the icon, the color of the control, and many other
features. You can also create new controls and add them
to the Toolbox.
To create new controls, you customize and combine the
existing controls. For example, if you add an OK button to
all of your UserForms, you can create a custom button
and set the appropriate properties, such as Caption, Width,
Height, and Default. If you place the button in the

Toolbox, the VBE adds it as a new control. Alternatively,
you can create new controls by combining multiple
controls. For example, you can create a new control that
consists of an OK and a Cancel button.
To keep your custom controls separate from the existing
controls in the Toolbox, you can add a new page to the
Toolbox. You add a new page to the Toolbox by using the
New Page option. You can assign a name to the new page
by using the Rename option.
When you create a custom control by dragging a control
from a form to the Toolbox, you transfer only the
properties. Code that you have added to the control does
not transfer. Each time you use a custom control you
must add the necessary code.

Create Custom
UserForm Controls

16_591598-ch14.indd 24216_591598-ch14.indd 242 6/11/10 1:59 PM6/11/10 1:59 PM

243

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

76

You can add multiple pages to the Toolbox. To change the order of the pages, right-click the page tab and then
click the Move option on the menu to display the Move dialog box. Click the desired page to select it, and then click
the Move Up or Move Down buttons to reorder your pages.

If you want to rename a tab, right-click the tab, and then click Rename. The Rename dialog box appears. Type the
name you want to give the tab in the Caption field.

Creating a separate page in the Toolbox to store your custom controls gives you the ability to export the page for
loading on another computer. To export a page, right-click the page tab and then click the Export Page option. In
the Export Page dialog box, specify the name and location for the page file. The VBE assigns the page file an
extension of .pag.

To import a page file into the Toolbox, right-click a tab menu and then click the Import Page option. In the Import
Page dialog box, specify the name and location of the page file to import.

• The control appears
on the new page of
the Toolbox.

• The VBE adds a
new page to the
Toolbox.

6 Click the control on
the UserForm and
drag the control to
the Toolbox.

16_591598-ch14.indd 24316_591598-ch14.indd 243 6/11/10 1:59 PM6/11/10 1:59 PM

244

3

54

12

2

3 Locate the folder in which
you want to save the file.

4 Type the filename.

5 Click Save.

 VBA exports the file.

Create a Template

1 Create a UserForm.

Note: See the section “Create
a Custom Dialog Box” to learn
how to create a UserForm.

2 Click File ➔ Export File.

Create a UserForm Template

I f you find that you create the same basic UserForm
repeatedly, you can create a UserForm template and
use that template as a basis for creating new forms.

When you create UserForms, the Visual Basic Editor
attaches them to the project in which you create them.
Each time you create a new project, you must re-create
the UserForm.
With a UserForm template, you design a basic UserForm
and save it as a template. You can then import the
template to add the UserForm to any other project you
create. You create a template by using the Export File
command on the File menu. In the Export File dialog box,
you specify the name and location for saving the template.
You may want to create a special folder in which to save
all your templates.

When you create a UserForm for use as a template, you
should keep it generic so you can customize it for each
new project. For example, if you frequently create a
UserForm that contains a TextBox control for gathering
user input, as well as two CommandButton controls, OK
and Cancel, you can create a generic version of the form
with the three controls on it. If you do not place the Label
control for the text box in the template version, you can
import the form and add a label that reflects the type of
data you want to gather from the user.
To add a UserForm template to a project, you use the
Import option on the File menu. The VBE imports the file
into your project.

Create a UserForm
Template

16_591598-ch14.indd 24416_591598-ch14.indd 244 6/11/10 1:59 PM6/11/10 1:59 PM

245

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

4

1
2

3

2

5

You can specify the order that Excel uses to move between controls on a UserForm by setting each controls’ tab
order. Tab order is the order in which the VBE selects the control to move to when a user presses Tab. By default,
the tab order is the order in which you add controls to a UserForm.

Each control has two properties that relate to tab order. You can use the Properties window to set these properties.
The first property, TabStop, determines whether focus stops on the control when the user presses Tab. If you set
the TabStop property to False, when the user tabs through the controls, Excel skips the control. The second
property, TabIndex, is a value between 0 and the number of controls, and sets the order in which Excel moves
from control to control when the user presses Tab. You can use the Tab Order dialog box to set the tab order. This
dialog box appears when you right-click the UserForm and then click Tab Order.

 The Import File dialog
box appears.

3 Locate the folder in
which you saved the
template.

4 Click the file containing
the template.

5 Click Open.

 The VBE adds the
template to the project.

Import a Template

1 Click the project to which
you want to add a template.

2 Click File ➔ Import File.

16_591598-ch14.indd 24516_591598-ch14.indd 245 6/11/10 1:59 PM6/11/10 1:59 PM

246

4

5

3

2

1

• The Customize the Ribbon
pane appears.

3 Click the down arrow and
then select the type of tab
you want to customize.

4 Click to select or deselect
the tabs you want to
display or not display
(changes to or

 changes to).

• To display the Developer
tab, make sure you select
the Developer check box.

5 Click OK.

1 Right-click the Ribbon.

 A menu appears.

2 Click Customize the
Ribbon.

Customize the Ribbon

S tarting with Office 2007, Microsoft introduced a
new user interface for many of its Office products,
including Excel. Earlier versions of Excel used

toolbars and menus to provide access to Excel commands;
Office 2007 and later use the Ribbon. You can customize
the Ribbon. You can add tabs, groups, commands, and
buttons. You can also delete tabs, delete groups,
rearrange commands, and rearrange buttons.
You can add command groups and commands to existing
Ribbon tabs. For example, if you frequently use the
Format Cells dialog box, you can add it to the Home tab
next to the Styles group. You can rename tabs and
groups. For example, if you do not like the name Home
tab, you can change the name to Basic Commands or
some other name. You can also choose what tabs appear

and the order in which they appear. For example, if you
never use the Review tab, you can remove it from view. If
you frequently use the Formulas tab, you can have it
display first.
Excel divides commands into the following categories to
make it easier for you to find the commands you want:
Popular Commands, Commands Not in the Ribbon, All
Commands, Macros, Office Menu, All Tabs, Main Tabs,
Tool Tabs, and Custom Tabs and Groups. Main Tabs are
the tabs that you see when you use Excel without any
customizations. Tool tabs are the context-sensitive tabs
that appear when you work on objects such as charts or
PivotTables. You select a command category from the
Choose Command From drop-down list.

Customize
the Ribbon

16_591598-ch14.indd 24616_591598-ch14.indd 246 6/11/10 1:59 PM6/11/10 1:59 PM

247

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

7

8

6

9

Tabs, groups, and commands
display in the order they appear in
the Customize the Ribbon pane.
To change the order, open the
Customize the Ribbon pane. Click a
tab, group, or command and then
use the Move Up () or Move
Down () buttons to change the
location. Move Up moves the tab,
group, or command up, and Move
Down moves the tab, group, or
command down.

If you no longer want a tab, group,
or command to appear, you can
remove it. Open the Customize the
Ribbon pane. Click the tab, group,
or command you want to remove
and then click the Remove button.
Excel removes the tab, group, or
command.

You can restore the Excel Ribbon
back to the way it was before you
made any customizations. To
remove all customizations, click the
Reset button. A menu appears.
Click Reset All Customizations. A
prompt appears. Click Yes. Note
that the Quick Access toolbar
customizations are also removed.
To restore a specific tab, click the
tab. Click the Reset button. A menu
appears. Click Reset Only Selected
Ribbon Tab. Excel restores the tab.

• The Customize the Ribbon
pane appears.

8 Click the down arrow and
then select Macros.

• All the macros in open
workbooks appear.

 To add a command, click the
down arrow and then select
the category from which you
want to select commands.

9 Click New Tab.

• Only selected tabs appear.

6 Right-click the Ribbon.

 A menu appears.

7 Click Customize the Ribbon.

continued ➔

16_591598-ch14.indd 24716_591598-ch14.indd 247 6/11/10 1:59 PM6/11/10 1:59 PM

248

!

@

#

$

0

%

@ Click a tab or group name.

Click Rename.

 The Rename dialog box appears.

$ Type a new name.

% Click OK to close the Rename
dialog box.

 Excel renames the tab or group.

 Repeat Steps 8 to 11 for every tab
and group you want to rename.

• A new tab and a new group appear.

 If a new group does not appear, click
New Group.

0 Click a macro.

 To add a command, click the
command

! Click Add.

 Repeat Steps 10 and 11 for every
macro or command you want to add.

• Excel adds the macro or command to
the new group.

Customize the Ribbon (continued)

Y ou can place buttons on the Ribbon to execute
your macros. To access the macros you have
created, choose Macros from the Choose

Commands From drop-down list. All of the macros in
open workbooks appear. You click a macro and then click
Add to add the macro to the Ribbon.
You can use the Customize the Ribbon drop-down list to
tell Excel the type of tab you want to a modify. Choose
from All Tabs, Main Tabs, or Tool Tabs. Once you choose
a tab type, the options appear in the box below the
Customize the Ribbon field. A check box appears next to
each tab listed. Only the selected tabs appear in the
Ribbon. To access the VBE, you must display the
Developer tab, which is unselected by default and does

not appear. You can find the Developer tab under Main
Tabs. To display the Developer tab, select the Developer
tab check box.
You can click the New Tab button to add a new tab. You
can click the New Group button to add a new group.
When you click the New Tab button or the New Group
button, Excel usually places the new tab or group under
the highlighted tab or group. Tabs and groups appear in
the order listed on the Customize the Ribbon pane. You
can change the order of tabs and groups.
You can use the Rename button to rename any tab or
group. You can also use the Rename button to assign a
button to a macro.

Customize the
Ribbon (continued)

16_591598-ch14.indd 24816_591598-ch14.indd 248 6/11/10 1:59 PM6/11/10 1:59 PM

249

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

q

&

^

(

w

)
*

To add a new group to a standard Excel tab, follow these steps: Open the Customize the Ribbon pane. Click the
down arrow next to the Choose Commands From field and then choose the category from which you want to
choose commands. Click the down arrow next to the Customize the Ribbon command and then choose the type of
tab you want to customize. Click the tab to which you want to add the new group. Click New Group. Excel adds the
new group. Click Rename. The Rename dialog box appears. Type the name you want to give the new group and
then click OK. Excel renames the group.

Click the command you want to add. Click the Add button. Excel adds the command. Repeat the process to add
additional commands. Groups display in the order they appear in the Customize the Ribbon pane. Click the new
group’s name. Click the Move Up button () to move the group up. Click the Move Down button () to move
the group down. Click OK. The group and the commands appear on the Ribbon on the tab you selected.

• The new tab and group
appear.

w Click a button to run a macro.

 If you added a command,
you can click the command
to run it.

^ Click a macro.

& Click Rename.

 The Rename dialog box
appears.

* Click the button you want to
use to represent your macro.

(Type a name for your macro.

) Click OK to close the Rename
dialog box.

q Click OK to close the Excel
Options pane.

16_591598-ch14.indd 24916_591598-ch14.indd 249 6/11/10 1:59 PM6/11/10 1:59 PM

250

4

4
3

5

5
3

2

1

3 Create a ribbon control
markup.

4 Create a tabs control
markup.

5 Create a tab control
markup, include attributes.

1 Create a file named
customUI.xml.

 You can use Notepad or
another text editor to create
the file.

2 Type <customUI xmlns=
”http://schemas.
microsoft.com/
office/2006/01/
customui”>.

 You start every customUI.
xml file with this code.

Create a CustomUI.xml File

Y ou can use XML to customize the Ribbon. Using
XML is a bit more difficult than using the
Customize the Ribbon pane, but it offers some

features that are not available there. For example, using
XML you can add drop-down lists and check boxes to the
Ribbon. Microsoft refers to the XML markup system as
RibbonX. You create and use a file named customUI.xml
to modify the Ribbon. Because you write XML in plain
text, you can use any text editor to create a customUI.xml
file. To learn more about XML, see Chapter 19.
Creating a basic Ribbon modification requires that you use
control markups. The ribbon control markup represents
the Ribbon. The tab control markups represent the tabs
on the Ribbon. All tab control markups are contained
within the tabs control markup.

The tabs control markup does not have any attributes.
You can set an id attribute and a label attribute for a
tab control. An id attribute uniquely identifies a control.
A label attribute assigns a label to a control.
The group control markup identifies a group on a tab.
You can set an id attribute and a label attribute for the
group markup.
The button control markup creates a button on a tab. You
can set id, label, imageMso, size, onAction, and
screenTip attributes for a button control. The imageMso
attribute identifies the built-in image you want to use as
the button. The size attribute determines the size of the
button. You can set the size attribute to either normal or
large. The customUI.xml file can call the onAction
attribute when the user clicks a control. The screenTip
attribute specifies the screen tip that appears when the
user positions the mouse pointer over the button.

Create a
CustomUI.xml File

16_591598-ch14.indd 25016_591598-ch14.indd 250 6/11/10 1:59 PM6/11/10 1:59 PM

251

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

7

6

6

7

You use the imageMso attributes to identify the built-in
image you want to appear on the Ribbon by using the
following syntax:

Example:
imageMso = “ImageName”

To obtain the name of the image, click the File tab and
then Options. The Excel Options dialog box appears.
Click Customize Ribbon. In the Choose Commands From
field, select All Commands. Position the mouse pointer
over the command with the button that you want to use.
A screen tip appears. The name of the image appears at
the end of the screen tip in parentheses.

You can also download the 2007 Icons Gallery from
the Microsoft Web site. The Icons Gallery is an Excel
workbook. When you open the workbook, galleries
containing built-in images appear on the Developer tab.
When you position your mouse pointer over an image
or click an image, the name of the image appears. You
can specify the size of the image by using the size
attribute. Set the size attribute to large to display
a large button. Set the size attribute to normal to
display a normal size button.

 After you add your file to
a workbook, your Ribbon
should look like the one
shown here.

• A new tab. The tab label
appears on the tab.

• Two buttons with button
labels.

• The group label.

 This is how the file
appears after you perform
the steps outlined in “Add
a CustomUI.xml File to a
Workbook.”

6 Create a group, include
attributes.

7 Create buttons, include
attributes.

• A button.

• A label.

• Executes the procedure.

• Name of the procedure

8 Save your file with the
filename customUI.xml.

16_591598-ch14.indd 25116_591598-ch14.indd 251 6/11/10 1:59 PM6/11/10 1:59 PM

252

5

5

6

6

3

4

2

1

1 Create a folder on your
desktop and name it
customUI.

2 Place your customUI.xml file
in the folder.

Note: See the section “Create a
CustomUI.xml File” to learn how
to create a customUI file.

3 Open the file that will contain
the macros you want to
execute.

4 In the Project Explorer,
double-click
ThisWorkbook.

 The workbook module
opens.

5 Name your Sub procedures
and type ByVal control
As IRibbonControl in
parentheses.

6 Type your Sub procedures.

7 Save and close your file.

Add a CustomUI.xml File to a Workbook

T o integrate the procedures that you create with
VBA into the Excel Ribbon, you can use a
customUI.xml file to place buttons on the Ribbon

that execute your macros when the user clicks them. You
place the customUI.xml file in your workbook file, and
then create a relationship between the workbook and the
customUI.xml file. See the section “Create a CustomUI.xml
File” to learn more about creating a customization file.
You can open an Excel workbook file by changing the
filename extension to .zip and then double-clicking the
file. When the file opens, you will see several files and
folders. You refer to this Zip file as a package, and the
files in the Zip file as parts. To modify the Ribbon, you
place your customUI.xml file in a folder named customUI
and then place the folder and file in the package.
Relationships define how the parts of a document come
together to form the document. To modify the Ribbon,

you must create a relationship between the workbook and
the customization file by adding a relationship to the
RELS file under _rels in the root directory. You create the
relationship by placing the following code between the
last Relationship tag and the Relationships tag.
<Relationship Id=”AnyIDYouWant” Type=”http://
schemas.microsoft.com/office/2006/
relationships/ui/extensibility”
Target=”CustomUI/customUI.xml”/>

If you are going to execute a procedure by using a Ribbon
button, you can use the onAction attribute. Assign the
onAction attribute the name of the procedure you want
to execute. Place the procedure in a module and place
(ByVal control As IRibbonControl) after the
procedure name and between the parentheses, as follows:
Sub SubName (ByVal control As _
IRibbonControl)

Add a CustomUI.xml
File to a Workbook

16_591598-ch14.indd 25216_591598-ch14.indd 252 6/11/10 1:59 PM6/11/10 1:59 PM

253

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

#

8

$

9

!

%

@

0

The process outlined in the steps modifies the Ribbon
for an individual workbook. If you want to modify the
Ribbon for multiple workbooks using VBA, you can use
an add-in. You create an add-in by saving a workbook in
add-in format. Add-ins enable you to integrate additional
functionality into Microsoft Excel. You can create an add-
in and distribute it to others. See Chapter 18 to learn
more about add-ins.

If you are planning to convert a workbook with a
modified Ribbon to an add-in, do not place your code in
ThisWorkbook. Place you code in standard modules.

The examples in this book introduce modifying the
Ribbon with XML. For complete coverage of the topic,
refer to a book dedicated to the topic. There are many
more things that you can do in addition to what is
presented here.

 The RELS file appears.

$ Open the RELS file in Notepad
or another text editor.

% Create a relationship.

^ Save and close the file.

& Delete the RELS file in the Zip
file and replace it with the new
RELS file.

* Rename the Zip file back to its
original name.

 A new tab appears in the file.

8 Locate your file in Windows
Explorer.

9 Change the extension on the
filename to .zip.

0 Double-click the file to open it.

! Drag the customUI folder from
the desktop to the Zip file.

@ Drag the _rels folder from the
Zip file to the desktop.

Double-click the _rels folder to
open it.

16_591598-ch14.indd 25316_591598-ch14.indd 253 6/11/10 1:59 PM6/11/10 1:59 PM

254

3

1

2 Open the VBE.

3 Add the code that will
execute to ThisWorkbook.

• Opens an input box.

Add a Launcher

1 Add a launcher.

 This example adds additional
code to the file started in
“Create a CustomUI.xml File.”

• The dialogBoxLauncher
tag.

• The required button tag.

Add Additional Options to the Ribbon

Y ou can create a customUI.xml file, use that file to
create a new Ribbon tab, add buttons to the tab,
and use the buttons to execute your procedures.

You can also add control markups to your customUI.xml
file that will create launchers, drop-down lists, toggle
buttons, check boxes, and more.
When creating your Ribbon modification, you use
callbacks to run procedures based on the information
returned when the user interacts with a control. For
example, check boxes return a Boolean value of either
True or False when you use the onAction callback. Your
procedure can perform one action if the value returned is
True, and another action if the value returned is False.
Excel uses dialog boxes to enable users to access
advanced features. The user is able to open the dialog

box by clicking a launcher located in the lower right
corner of the group. You can create launchers to open the
dialog boxes you create for your custom applications.
Dialog boxes are useful when you want to obtain
information from the user. Use the dialogBoxLauncher
element to create a launcher. Each group can have one
launcher. The launcher element must be the last element
in the group and must contain a button attribute. You can
use the onAction callback to tell VBA what procedure to
execute when the user clicks the launcher.
Use the dropDown element to present the user with a list
of options. When you present the user with a list, the
procedure that executes depends on the option the user
selects. You typically use conditional statements with a
drop-down list.

Add Additional Options
to the Ribbon

16_591598-ch14.indd 25416_591598-ch14.indd 254 6/11/10 1:59 PM6/11/10 1:59 PM

255

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon

3

2
3

1

2

5

Prior to Office 2007, developers used command bars to
modify the user interface. In most cases, this code works
in Office 2007 and higher without any modification.
The changes appear on the Add-ins tab. If the developer
added an item to a menu in Office 2003, then Office
2007 and higher creates a Menu Commands group and
places the information there. If the information was
assigned to a toolbar, then Office 2007 and higher
places the information in a Toolbar Commands group.

When the user checks a check box, the Boolean value
True is returned to the variable pressed; when the user
unchecks the check box, the Boolean value False is
returned to the variable pressed. You can use a check
box to set a property to True or False. For example,
you can use a check box to set the Hidden property for
a worksheet column. If the Hidden property is False,
the column is visible. If the Hidden property is set to
True, the column is not visible.

Example:
Sub PressCheckBox(control As IRibbonControl,
 pressed as Boolean)

 Columns(2).Hidden = pressed

End Sub

4 Open the VBE.

5 Add the code that
will execute to
ThisWorkbook.

Add a Drop-down List

1 Add a tag to end the
previous group.

2 Add tags for the new
group.

• This label will appear
at bottom of the group.

3 Create your drop-down
list tags.

• List of options.

continued ➔

16_591598-ch14.indd 25516_591598-ch14.indd 255 6/11/10 1:59 PM6/11/10 1:59 PM

256

1

• The dialog box adds a
title to your worksheet
when the user clicks OK.

• Click this button to add a
format to your worksheet.

View Changes to the
Ribbon

1 Click the launcher to open
a dialog box.

 The dialog box appears.

• Notice that there are
multiple groups.

• Notice the custom tab.

Add Additional Options to the Ribbon (continued)

Y ou can use the toggleButton element to add a
toggle button to the Ribbon. Toggle buttons are
useful when you want to enable the user to turn

an option on and off with a single mouse click. For
example, if your worksheet has detail and summary data,
you can use a toggle button to hide the detail data so that
you can focus on the summary data. Use an onAction
callback to specify the procedure to execute. Use the label
attribute to label the button. In Excel, enter VBA code
similar to the following:
Sub ToggleMeD1(Control As IRibbonControl, _
 pressed As Boolean)
 Dim RowNum As Integer
 Dim Counter As Integer
 RowNum = 4
 For Counter = RowNum To 7

 Rows(Counter).Hidden = pressed
 Next
End Sub

When used with a toggle button, the onAction callback
returns True when a toggle button is pressed, and False
when it is not. The value is returned to the variable
pressed. The code hides the detail when the button is in
a pressed state, and unhides the detail when the button is
in an unpressed state. Toggle buttons are always in one
of two states, pressed or unpressed. In Excel, bold is an
example of a toggle button.
You can use the checkBox element to add check boxes.
For example, if your data consists of three columns with
data for Region 1, Region 2, and Region 3, then you can
create a check box that hides and unhides the
information for each of the regions.

Add Additional Options
to the Ribbon (continued)

16_591598-ch14.indd 25616_591598-ch14.indd 256 6/11/10 1:59 PM6/11/10 1:59 PM

257

Ch
apter 14: Creatin

g D
ialog B

oxes an
d Cu

stom
izin

g th
e R

ibbon
3

The following XML script creates a toggle button:

Example:
<toggleButton id=”toggleButton1”

 label=”Show/Hide Product Detail”

 size=”normal”

 onAction=”ToggleMeD1”/>

The following XML script creates a check box:

Example:
<checkBox id=”checkBox1”

 label=”Hide Region 1”

 onAction=”CheckBoxR1”/>

 The Bar Chart option
displays a bar chart.

3 Click the drop-down list
to see a list of options.

16_591598-ch14.indd 25716_591598-ch14.indd 257 6/11/10 1:59 PM6/11/10 1:59 PM

258

3

5

7

1
2

6

4

8

3

Create a
Chart Sheet

Y ou can use VBA to create a chart. When you
create a chart, VBA creates a new Chart object.
You can then set the properties such as the title,

name, font, type, and style.
You can create a new chart sheet or embed a chart in a
worksheet. When you create a new chart sheet, you use
the Chart object directly. When you create an embedded
chart, you use a ChartObjects object. See the section
“Embed a Chart in a Worksheet” for more information on
creating embedded charts.
To create a new chart sheet, use the Add method with the
Charts object. After you create the chart, you can use a
With statement to set chart properties such as chart type,
the name you want to place on the chart’s tab, the title of

the chart, and the chart style. You select a chart type
by assigning an XlChartType constant value to the
ChartType property. You use the Name property to assign
a name to the chart tab. If you want to place a title on the
chart, set the HasTitle property to True and then use
the ChartTitle property to assign the title. If you want
to apply a style, assign a style number to the ChartStyle
property. Every style in the Excel style gallery has a
number. Position your mouse pointer over the style to
find out what the number is.
Use the SetSourceData method to tell VBA where the
data is located. The SetSourceData method has two
parameters: Source and PlotBy.

Create a Chart Sheet

1 Create a Chart object
variable.

2 Set the Chart object
variable.

• Use the Add method to
add the new chart.

3 Create a With statement.

4 Use the ChartType property
to specify a chart type.

5 Name the chart sheet tab.

6 Set HasTitle to True and
then assign a title to the chart.

7 Assign a chart style.

8 Specify your data source.

• The worksheet tab name.

9 Press Alt+F11 to switch from
the VBE to Excel, and run your
macro.

17_591598-ch15.indd 25817_591598-ch15.indd 258 6/11/10 2:00 PM6/11/10 2:00 PM

259

When creating a chart, you should specify the chart’s data source. Use the SetSourceData method. The following
is the syntax:

Example:
NewChart.SetSourceData(Source, PlotBy)

Use the Source parameter to specify the actual data range your chart will use. The Source parameter can
reference any valid data range. See Chapter 11 for more information on defining a range of values. When working
with a chart sheet, you must indicate the name of the worksheet containing the data as part of the range reference.
For example, the following code references the range of cells contained in Sheet1 in the same workbook.

Example:
NewChart.SetSourceData Source:=Worksheets(“Sheet1”).Range(“A1:B15”)

With the SetSourceData method, you can use the PlotBy parameter to tell VBA how to plot the data in the
specified range. You assign PlotBy one of the XlRowCol constant values.

 The macro creates a chart.

• The tab name.

• The title.

• Your source data.

• The worksheet tab name.

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

17_591598-ch15.indd 25917_591598-ch15.indd 259 6/11/10 2:00 PM6/11/10 2:00 PM

260

3

6

3

1
2

5
4

3 Create a With statement.

4 Use the ChartType
property to specify a
chart type.

5 Set HasTitle to True
and then assign a title to
the chart.

6 Assign a chart style.

1 Create a Chart object
variable.

2 Set the Chart object
variable to the new chart.

• The name of the
worksheet in which you
want to place the chart.

• Sets the chart position
and size.

Embed a Chart in a Worksheet

Y ou can use VBA to embed a chart in a worksheet.
When you embed a chart, Excel creates a new
Chart object. You can then set the properties

such as the title, name, font, type, and style.
When you embed a chart in a worksheet, the
corresponding Chart object that Excel creates becomes a
part of the Worksheet object. Because you can embed
multiple charts in one worksheet, the Worksheet object
contains a ChartObjects collection object that contains
all Chart objects on the worksheet. When you add or
remove embedded charts, you must use the
ChartObjects collection object.
To add a chart to a worksheet, use the Add method with
the ChartObjects object. The Add method has four

parameters you can use to set the location and size of the
chart in points: Left, Top, Width, and Height. Use the
Left parameter to specify the location of the chart in
relation to the left edge of column A. Use the Top
parameter to specify the location of the chart in relation
to the top edge of row 1. Use the Width and Height
parameters to specify the initial width and the height of
the Chart object.
You specify the type of chart that Excel creates by using
the ChartType property with one of the XlChartType
constant values. For example, to create a line chart, you
use the constant xlLine. See the appendix for a list of
the XlChartType constants.

Embed a Chart
in a Worksheet

17_591598-ch15.indd 26017_591598-ch15.indd 260 6/11/10 2:00 PM6/11/10 2:00 PM

261

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

7

The only real difference between embedded charts and chart sheets is that the Chart object for an embedded chart
is part of the ChartObjects collection for the worksheet, whereas the Chart object for a chart sheet is part of the
Workbook object. If you compare the code that creates an embedded chart to the code that adds a chart sheet, you
will notice that with an embedded chart, specifying chart methods and properties requires reference to the Chart
object. This is because when you create a new chart sheet, you create a new Chart object, but when you create an
embedded chart, you add a Chart object to the ChartObjects collection for the worksheet; therefore, the Chart
object becomes a child of the ChartObjects collection object. To set the chart type of an embedded chart, you
can use the following code:

Example:
Worksheets(“Sheet1”).ChartObject(1).Chart.ChartType = xlColumnStacked

This code sets the chart type of the first Chart object in the worksheet named Sheet1 to a stacked column chart.
If you compare this code to the code required for changing the chart type of a chart sheet, you can see the
similarities.

Example:
Sheets(“Chart1”).ChartType = xlColumnStacked

 The macro creates your chart.

• Your source data.

• The tab name.

• The title.

7 Specify your data source.

8 Press Alt+F11 to switch
from the VBE to Excel, and
run your macro.

17_591598-ch15.indd 26117_591598-ch15.indd 261 6/11/10 2:00 PM6/11/10 2:00 PM

262

1
2

4

3

3 Create your
ChartWizard
command.

4 Set your parameters.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Create a Chart object
variable.

2 Set the Chart object
variable to the chart you
want to modify.

• The name of the chart
sheet.

Apply Chart Wizard Settings to a Chart

W hen writing VBA code, you can use the
ChartWizard method to format or reformat
a chart quickly. The method has 11 optional

parameters that enable you to set chart properties. The
following is the syntax:
expression.ChartWizard(Source, Gallery,
Format, PlotBy, CategoryLabels, SeriesLabels,
HasLegend, Title, CategoryTitle, ValueTitle,
ExtraTitle)

Use the Source parameter to specify or modify the chart’s
data source. When you are working with a chart sheet,
you must specify the name of the worksheet that contains
the data source. Use the Gallery parameter to specify
the chart type. Assign one of the XlChartType constant
values to indicate the desired chart type. See the appendix
for a list of XlChartType constants.

Specify a value of 1 to 10 for the Format parameter. The
Format parameter applies one of VBA’s built-in formats.
The format that it uses depends on the chart type you
select. The PlotBy parameter tells VBA whether the
data series is in rows or columns. Assign the PlotBy
parameter xlRows if the data series is in rows. Assign
it xlColumns if the data series is in columns.
Assign an integer value to the CategoryLabels and
SeriesLabels parameters to indicate the number of
rows or columns in the category or series that have
labels. Assign the HasLegend parameter the value True
if you want your chart to have a legend.
Use the Title parameter to assign a title to your chart, the
CategoryTitle parameter to assign a title to the axis that
displays categories, and the ValueTitle parameter to assign
a title to the axis that displays values. For a 3-D chart, use
the ExtraTitle parameter to assign a title to your depth
axis. You must set any additional properties individually.

Apply Chart Wizard
Settings to a Chart

17_591598-ch15.indd 26217_591598-ch15.indd 262 6/11/10 2:00 PM6/11/10 2:00 PM

263

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

When working in Excel, once you have your chart designed exactly the way you want it, you can save your design as
a template. You can also use VBA to save your design as a template.

Example:
Sub CreateTemplate()

 Dim SalesChart as Chart

 Set SalesChart = ThisWorkbook.Charts(“Monthly Sales”)

 SalesChart. _

 SaveChartTemplate(“Sales Chart Template”)

End Sub

To apply your template to an existing chart, in Excel, click your chart. The Chart tools become available. Click the
Design tab. Click Change Chart Type in the Type group. The Change Chart Type dialog box appears. Click
Templates, click your template, and then click OK. Excel applies your template to your chart.

 Your chart after you
apply the macro.

 Your macro changes
the format of your
chart.

 Your chart before
you apply the macro.

17_591598-ch15.indd 26317_591598-ch15.indd 263 6/11/10 2:00 PM6/11/10 2:00 PM

264

1

• The data series you want
to add.

• Tells VBA that the series
has labels.

• Tells VBA the data is
organized in columns.

2 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Create your
SeriesCollection
Add statement.

• The worksheet name.

• Identifies the chart.

Add a New Data Series to a Chart

A data series is a group of data values that Excel
displays in your chart. Each data series appears
as a legend item. After you create a chart, you

can redefine the range of data Excel uses to display
values in your chart by adding a new data series. For
example, if you have a bar chart showing the sales in
Regions 1, 2, and 3 for January, February, and March,
you can add another data series that contains the sales
data for April.
The SeriesCollection collection object contains all of
the data series that Excel plots on a specific chart, with
each data series representing a Series object. To define
a new data series, create a new Series object and add it to
the SeriesCollection collection object by using the Add
method.

When used with the SeriesCollection object, the
Add method has five parameters: Source, Rowcol,
SeriesLabels, CategoryLabels, and Replace. Use the
Source parameter to specify the data series you want to
add to the chart. Use the Rowcol parameter to tell VBA
whether the new series is in a row or a column. Use
xlRows if the data series is in a row, or use xlColumns
if the data series is in a column.
Set the SeriesLabels to True if the first row or column
of the data series contains a label. Set the CategoryLabels
to True if the first row or column of the data series
contains a category label. If you specify a value of True
for the CategoryLabels parameter and for the Replace
parameter, VBA replaces the current category labels with
the labels from the new range.

Add a New Data
Series to a Chart

17_591598-ch15.indd 26417_591598-ch15.indd 264 6/11/10 2:00 PM6/11/10 2:00 PM

265

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

Each chart embedded in a worksheet is a member of the
worksheet’s ChartObjects collection. Each chart in the
worksheet’s ChartObjects collection has an index
number. The first chart is ChartObjects(1), the
second chart is ChartObjects(2), and so on. You can
refer to a chart by its index number. You can also refer to
a chart by its name. To find a chart’s name, in Excel, click
your chart. The Chart tools appear. Click the Layout tab.
The chart name appears in the Properties group.

Each chart sheet in a workbook is part of the Charts
collection. Each member of the Charts collection has
an index number. The leftmost chart is Chart(1), the
next chart is Chart(2), and so on. You can refer to
Chart objects by their index number.

You can remove a series from a chart by using the
Delete method. The following code removes the series
that was added in the example.

Example:
Worksheets(“Monthly Sales Data”)._

 ChartObjects(1)._

 Chart.SeriesCollection(“Apr”) _

 .Delete

 Your chart after you
apply the macro.

• The macro adds a
new data series.

 Your chart before
you apply the macro.

17_591598-ch15.indd 26517_591598-ch15.indd 265 6/11/10 2:00 PM6/11/10 2:00 PM

266

2
1

3

4

3 Format the text in the
chart area.

4 Format the chart title.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

1 Create a Chart object
variable.

2 Set the Chart object
variable to the chart you
want to format.

• The name of the chart
sheet tab.

Format Chart Text

A s with all text elements in a workbook, you can
format the text that appears in your chart by
changing the Font properties. When Excel adds

text to a chart, such as a chart title, axis label, or even
data label, it applies default formatting. You can reformat
the text by using the Font object properties. By setting
the Font properties, you can make your chart easier
to read.
The chart area encompasses everything in your chart. By
applying Font object properties to the ChartArea object,
you can set the font attributes for all of the text in the
chart. For example, if you want to change the font color
for the entire chart, you apply the Font object Color
property to the ChartArea object.

Excel also enables you to format individual elements of
text that appear in your chart. For example, if you use the
Font object properties with the ChartTitle object, you
can modify the chart title. To change how Excel displays
legend text, use the Font object properties with the
Legend object.
You can use the ChartArea object to set the font settings
for the entire chart and then use the individual objects to
customize various portions of the chart. You can set the
properties for any of the following objects by using the
Font object: ChartTitle, DataTable, Legend,
Characters, AxisTitle, DataLabel, and TickLabels.
See the Chapter 11 section “Using the Cells Property” to
see a partial list of the Font properties you can set.

Format
Chart Text

17_591598-ch15.indd 26617_591598-ch15.indd 266 6/11/10 2:00 PM6/11/10 2:00 PM

267

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

You may not want to apply the same font settings to an entire Chart object. For example, you may want to
underline the first character in the chart title. With the ChartTitle, AxisTitle, and DataLabel objects, you
can use the Characters object to specify the character within the text string where formatting should start, as well
as the number of characters to format. For example, to underline the first two characters in a chart title, type code
similar to that shown in the example. The Characters object has two parameters: Start and Length. Use the
Start parameter to indicate the character in the text string at which VBA should begin applying the format. Use
the Length parameter to indicate the number of characters to which VBA should apply the format.

 The macro formats the data.

 The chart with formatting.

 The chart without formatting.

TYPE THIS:

ThisWorkbook.Charts(1).ChartTitle.
Characters(1,2).Font.Underline = True

RESULT:

Excel underlines the first and second characters
in the chart title, but all remaining characters
maintain their original font settings.

➔

17_591598-ch15.indd 26717_591598-ch15.indd 267 6/11/10 2:00 PM6/11/10 2:00 PM

268

2

4

6

1

3

5

7

8

3 Set your data source.

4 Assign a chart type to your chart.

5 Assign a chart style to your chart.

6 Tell VBA whether your data is in
columns or rows.

7 Assign a new chart type to a data
series.

 In this example, you assign
a new chart type to
SeriesCollection(1).

8 Format your chart.

9 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

1 Create a Chart object variable.

2 Set the Chart object variable.

• Use the Add method to add a new
chart.

Create Charts with Multiple Chart Types

I f you show more than one type of data in your chart,
you may want to create a chart that uses a different
chart type for each data series. For example, if your

chart displays the population of various cities and the
average income in those cities, you may want to create a
column chart to display population, and a line chart to
display average income. A chart that uses more than one
chart type is called a combination chart.
To set the chart type for a data series, you use the Series
Collection collection object. The SeriesCollection
collection object contains each of the data series in the
range of data shown in your chart as an individual
SeriesCollection object. You reference an individual
object by using an index value. VBA numbers each data

series. The first data series is SeriesCollection(1),
the second is SeriesCollection(2), and so on.
To set the chart type for a data series, you set the
ChartType property for the SeriesCollection object.
When you initially create your chart, you can set the
chart type for each individual data series, or you can set
the chart type for the entire chart, and then modify the
ChartType property for the individual data series you
want to change. You assign the ChartType property, an
XlChartType constant value that represents the chart
type you want to use for the data series. See the appendix
for a list of the XlChartType constant values that you
can assign to the ChartType property.

Create Charts with
Multiple Chart Types

17_591598-ch15.indd 26817_591598-ch15.indd 268 6/11/10 2:00 PM6/11/10 2:00 PM

269

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

You can use a different chart type for each data series. Excel keeps track of the data series chart types, and groups
the common types together as ChartGroup objects. Each ChartGroup object contains one or more data series
with the same chart type. Excel stores all ChartGroup objects within the ChartGroups collection object, which
you can access through the ChartGroup property.

The ChartGroups object provides methods for returning the collection of the ChartGroup objects that
correspond to a particular type. For example, if you want to access the line chart type ChartGroup objects, you
can use the LineGroups method. The example that follows illustrates how to count the number of column chart
types in a chart.

Example:
DataSeriesCount = ThisWorkbook.Charts(1).ColumnGroups.Count

METHOD DESCRIPTION

AreaGroups Determines the number of series with an area data type

BarGroups Determines the number of series with a bar chart data type

ColumnGroups Determines the number of series with a column chart data type

DoughnutGroups Determines the number of series with a doughnut chart data type

LineGroups Determines the number of series with a line chart data type

PieGroups Determines the number of series with a pie chart data type

 The macro creates
a combination chart.

 Your data source.

• Series 1.

• Series 2.

17_591598-ch15.indd 26917_591598-ch15.indd 269 6/11/10 2:00 PM6/11/10 2:00 PM

270

3

3

1
2

4
5

6
7

3 Create a With statement.

4 Set the HasDataTable
property to True.

5 Assign a font to your data
table.

6 Assign a border color.

7 Set the ShowLegendKey
property for the data table
to True.

 This code shows a legend
in the data table.

1 Create a Chart object
variable.

2 Set the Chart object
variable to the chart to
which you want to add
a data table.

Add a Data Table to a Chart

A data table displays the values in your chart. You
can add data tables to any chart you create. VBA
stores the data table associated with a chart in

the DataTable object.
Use the HasDataTable property to tell VBA whether you
want to include a data table in your chart. This property
accepts the Boolean values True and False. If you want
to display a data table, set this property to True.
Conversely, if you do not want to display a data table, set
this property to False.
After you set the HasDataTable property, you can format
your data table by using the methods and properties
associated with the DataTable object. You specify the
font by using the Font properties. For example,
DataTable.Font.Name = “Arial” tells VBA to use an

Arial font in the data table. See the section “Format Chart
Text” for more information on working with the Font
object in a chart.
You can choose to display or not display borders in and
around your data table by using the HasBorderHorizontal,
HasBorderOutline, and HasBorderVertical properties.
By default, Excel displays all borders on a data table. If you
do not want to display one or more of these borders, set their
value to False. For example, the following code removes the
horizontal border from a data table: DataTable.
HasBorderHorizontal = False.
A legend key tells the user what each data series
represents. You can use the ShowLegendKey property to
tell VBA whether you want to show a legend key in your
data table.

Add a Data Table
to a Chart

17_591598-ch15.indd 27017_591598-ch15.indd 270 6/11/10 2:00 PM6/11/10 2:00 PM

271

Ch
apter 15: W

orkin
g w

ith
 Ch

arts

8

9

When you add a data table to a chart, you can include the chart legend with the data table. To create a data table
that contains a chart legend, set the ShowLegendKey property to True for the DataTable object. The following
example sets the value of the ShowLegendKey property.

Example:
ThisWorkbook.Charts(1).DataTable.ShowLegendKey = True

If you display the legend as part of your data table, you typically do not want the legend to appear separately on
your chart. To hide the chart legend, set the HasLegend property for the Chart object to False.

Example:
ThisWorkbook.Charts(1).HasLegend = False

 The macro creates
a chart with a data
table.

8 Set the HasLegend
property for the chart
to False.

 This code suppresses
the chart legend.

9 Set the chart area
properties.

0 Press Alt+F11 to
switch from the VBE
to Excel, and run the
macro.

17_591598-ch15.indd 27117_591598-ch15.indd 271 6/11/10 2:00 PM6/11/10 2:00 PM

272

4

1

3

2

33

Create a
PivotTable

P ivotTables help you answer questions about your
data. A PivotTable shows how data is distributed
across categories. For example, you can use a

PivotTable to see how different products sell by region or
by quarter. You base PivotTables on lists. You can use a
worksheet list or you can connect to a list from another
data source, such as Access.
A PivotCache object represents the memory cache for a
PivotTable report. You must create a PivotCache object
for your PivotTable. Use the PivotCaches.Create
method. The PivotCaches.Create method has three
parameters: SourceType, SourceData, and Version. Use
an XlPivotTableSourceType to specify the SourceType.
Use xlconsolidation if the source is a consolidation, use
xlDatabase if the source is a list in your workbook, or
use xlExternal if the source is another application. The
SourceType parameter is required.

Use the SourceData parameter to specify the location of
the data. If your SourceType is xlconsolidation or
xlDatabase, the SourceData can be a Range object and is
required. If your SourceType is xlExternal, the
SourceData can be an Excel Workbook Connection object.
Use the optional Version parameter to specify the version
of Excel by using an XlPivotTableVersionList constant.
Use the PivotCache.CreatePivotTable method to
create a PivotTable. The PivotCache.CreatePivotTable
method has four parameters: TableDestination,
TableName, ReadData, and DefaultVersion. Use the
Table Destination parameter to specify a cell that
represents the upper left corner of the range where you
want to place the PivotTable. Use the TableName
parameter to name the PivotTable. Use the ReadData
parameter to specify whether records from an external
database are held in cache. Use the optional
DestinationVersion parameter to specify the version of
Excel by using an XlPivotTableVersionList constant.

Create a PivotTable

1 Declare your variables.

2 Store the location of the
data to a Range object.

3 Add the worksheet on
which you want to place
the PivotTable.

4 Create a PivotTable
cache.

• The SourceType.

• Where the data is located.

18_591598-ch16.indd 27218_591598-ch16.indd 272 6/11/10 2:00 PM6/11/10 2:00 PM

273

5

You can set the
CreatePivotTable
ReadData parameter to
True to create a
PivotTable cache that
holds all of the records
from an external database.
This, however, can create
a large cache. If you set
the ReadData parameter
to False, you can set
some of the fields to
server-based fields.

 The macro creates
a PivotTable.

5 Create a PivotTable.

• Where you want to
place the PivotTable.

• The name you want to
give the PivotTable.

6 Press Alt+F11 to
switch from the VBE
to Excel, and run the
macro.

Ch
apter 16: W

orkin
g w

ith
 PivotTables

To construct a
PivotTable manually,
you choose the fields
you want to include in
your report and then
drag the fields from the
PivotTable Field List
into the Report Filter,
Column Labels, Row
Labels, and Σ Values
boxes. You can click
and drag more than
one field into an area.

You can also use the PivotTables.Add method to
create a PivotTable.

Example:
ActiveSheet.PivotTables.Add _

 PivotCache:=PivotTableCache, _

 TableDestination:=Worksheets(“Table”). _
 Range(“A3”), _

 TableName:=”PTSales”

18_591598-ch16.indd 27318_591598-ch16.indd 273 6/11/10 2:00 PM6/11/10 2:00 PM

274

2

3

4

5

1

3 Create a column.

4 Create a row.

5 Create a filter.

1 Declare a PivotTable
object variable.

2 Assign a PivotTable to the
object variable.

Add Fields to a PivotTable

W hen you manually create a PivotTable, you
choose the fields you want to include in your
report from the Choose Fields to Add list box

and then you drag the fields into the Report Filter,
Column Labels, Row Labels, and Σ Values boxes to create
report filters, columns, rows, and data fields.
When using VBA, you can create report filters, columns,
rows and data fields by using the PivotFields object
with the Orientation property. Use an
XlPivotFieldOrientation constant to make the
assignments. Use xlColumnField to add a column label,
xlRowField to add a row label, xlPageField to add a
report filter, and xlDataField to add a data field. You
can refer to each field by using the field name or by using
an index value. The first field in the Choose Fields to Add

to Report box has an index value of 1, the next field has
an index value of 2, and so on. The following examples
are equivalent and use a field name and an index value
respectively:
With PivotTableSales.PivotFields(2)
 .Orientation = xlColumnField
End With

With PivotTableSales.PivotFields(“Quarter”)
 .Orientation = xlColumnField
End With

When creating a data field, you can use the Function
property to specify the XlConsolidationFunction the
field should use. For example, you can specify xlSum to
sum values.

Add Fields to
a PivotTable

18_591598-ch16.indd 27418_591598-ch16.indd 274 6/11/10 2:00 PM6/11/10 2:00 PM

275

Ch
apter 16: W

orkin
g w

ith
 PivotT

ables

6

You can use an XlConsolidationFunction to tell Excel which calculation to perform on data fields. The
following is a list of XlConsolidationFunctions.

CONSTANT VALUE DESCRIPTION

xlAverage –4106 Calculate the average.

xlCount –4112 Count.

xlCountNums –4113 Count numerical values.

xlMax –4136 Display the highest value.

xlMin –4139 Display the lowest value.

xlProduct –4149 Multiply.

xlStDev –4155 Calculate the standard deviation based on a sample.

xlStDevP –4156 Calculate the standard deviation, based on the whole population.

xlSum –4157 Calculate the sum.

xlUnknown 1000 No subtotal function specified.

xlVar –4164 Calculate the variation based on a sample.

xlVarP –4165 Calculate the variation based on the whole population.

 The macro creates
a PivotTable report.

6 Create a data field.

7 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

18_591598-ch16.indd 27518_591598-ch16.indd 275 6/11/10 2:00 PM6/11/10 2:00 PM

276

2
1

4
3

5

3 Specify the Subtotal
location.

4 Do not display a column
grand total.

5 Display a row grand total.

1 Declare a PivotTable
object variable.

2 Assign a PivotTable to the
object variable.

Display Subtotals and Grand Totals

W hen you create a PivotTable, Excel groups
the data for you. Excel groups all items with
the same row label together and all items

with the same column label together. You can add
subtotals to your PivotTable. For example, if you sell
apples, oranges, and peaches, in Regions 1, 2, and 3 you
can subtotal by product to find the total number of
apples, oranges, and peaches sold in each region.
You should structure your data so that Excel groups by
product, shows the number of products sold in Region 1,
the number of products sold in Region 2, and the number
of products sold in Region 3.
Subtotals can be a sum, count, or average, or display
some other value. You can use an index value with the
PivotField.Subtotals property to specify the type of

subtotal you want. See the “Extra” portion of this section
for a list of index values.
To add a subtotal to your PivotTable, use the
SubtotalLocation method. You can place subtotals at
the top or the bottom of each group. To place subtotals at
the top of each group, assign the SubtotalLocation
method a constant value of xlAtTop. To place subtotals
at the bottom of each group, assign a constant value of
xlAtBottom.
By default, when you create a PivotTable, Excel creates
grand totals for both rows and columns. You can create
grand totals just for rows, just for columns, or for neither
rows nor columns by assigning a Boolean value of either
True to display a row or column subtotal, or False to not
display a column or row subtotal, to the RowGrand and
ColumnGrand properties.

Display Subtotals
and Grand Totals

18_591598-ch16.indd 27618_591598-ch16.indd 276 6/11/10 2:00 PM6/11/10 2:00 PM

277

Ch
apter 16: W

orkin
g w

ith
 PivotT

ables

6

INDEX VALUE CALCULATED VALUE

1 Automatic

2 Sum

3 Count

4 Average

5 Highest value

6 Lowest value

7 Product

8 Count Numbers

9 StdDev

10 StdDevp

11 Var

12 Varp

 The macro displays
subtotals and grand
totals.

6 Create Subtotals.

• Sum.

• Highest value.

7 Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

In the example, there are two Row Labels: Region
and Product. In VBA, when you create more than
one label for a column, row, data, or filter field, you
can specify the order in which they appear by using
the PivotFields.Position property. Assign a
value of 1 for the first position, 2 for the second
position, and so on.

Example:
With PivotTableSales

 .PivotFields(“Region”).Position = 1

 .PivotFields(“Product”).Position = 2

End With

18_591598-ch16.indd 27718_591598-ch16.indd 277 6/11/10 2:00 PM6/11/10 2:00 PM

278

2

3

1

 The macro filters
Quarters 2, 3, and 4.

1 Declare a PivotTable
object variable.

2 Assign a PivotTable to the
object variable.

3 Set the Visible
property to False to
filter.

4 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

Filter a PivotTable

When you add two or more fields to a column or row,
Excel adds expand/collapse buttons. You click the
buttons to view or hide detail items. In VBA, you can
hide detail items by setting the PivotItem.
ShowDetail property to False and show detail items
by setting the ShowDetail value to True.

Example:
PivotTableSales.PivotFields(“Region”) _

 .PivotItems(“Region 1”) _

 .ShowDetail = False

Y ou can filter your PivotTable data. Filtering
enables you to view only the data relevant to you.
For example, if your data consists of Quarters 1

through 4 and you want to focus on Quarter 1, you can
filter your PivotTable so only Quarter 1 data appears.
Each field’s column label is a pivot item. In VBA, you can
use the PivotItems.Item method to filter. You simply
set the item’s visible property to False. To make the item
visible again, set the property to True. You can identify
each item by its label or by an index value. The first
column or row is column 1 or row 1, the second is
column 2 or row 2, and so on.

Filter a
PivotTable

18_591598-ch16.indd 27818_591598-ch16.indd 278 6/11/10 2:00 PM6/11/10 2:00 PM

279

Ch
apter 16: W

orkin
g w

ith
 PivotT

ables

1
2

3

4

 The macro creates four
groups and expands
Group 1. It collapses
Groups 2, 3, and 4.

1 Declare a PivotTable
object variable.

2 Assign a PivotTable to
the object variable.

3 Group ranges.

4 Specify whether each
group should be
expanded or collapsed.

5 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

Create Groups

When you create groups, Excel adds a new column or
row label and creates a PivotItems collection that
contains the groups. You can use the ShowDetail
property to expand or collapse the groups. You can
refer to groups by their index number or their name.

Example:
PivotTableSales.PivotFields(“Month2”)_

 .PivotItems(1)_

 .ShowDetail = True

C reating groups enables you to compare data.
For example, if your PivotTable shows each
month as a column, you can group the

months so that you can compare quarters. When
you group columns or rows, Excel totals the data,
creates a field header, and creates a field with an
expand/collapse button. If the expand/collapse
button displays a plus (+), you can click it to expand
the group. If the expand/collapse button displays a
minus (–), you can click it to collapse the group.
In VBA, you can use the Group method to group.
You can use the Range property to specify the rows
or columns you want to group. For example, if you
want to group rows 1 through 3, you can use the
syntax Range(“1:3”).Group.

Create
Groups

18_591598-ch16.indd 27918_591598-ch16.indd 279 6/11/10 2:00 PM6/11/10 2:00 PM

280

Understanding
Excel Events

A n event occurs in Excel whenever the user
performs any type of action. For example, an
event occurs when the user closes a workbook.

You can use events to trigger the execution of procedures
by creating event procedures. Event procedures are
exactly what the name describes: procedures that execute
when a particular event occurs.
To trap or capture an event with an event procedure, you
must place the procedure code in the correct type of

module. For example, workbook-related events must be
in the ThisWorkbook object standard module.
There are several categories of events. Each event
category has a set of events associated with it. For
example, the BeforeClose event is a workbook event
that Excel activates when the user chooses to close a
workbook, before the workbook closes.

Workbook Events

Excel associates workbook-level events with the workbook in which they reside. You place workbook-level event procedures in
the ThisWorkbook object module. You create workbook event procedures by naming them Workbook_event name. The
following table lists the workbook events.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates the workbook, worksheet, chartsheet, or embedded chart sheet.

AddinInstall Occurs when an add-in installs a workbook.

AddinUninstall Occurs when an add-in uninstalls a workbook.

AfterXmlExportEvent Occurs after saves or export of XML data.

AfterXMLImportEvent Occurs after XML data is refreshed or imported.

BeforeClose Occurs before a workbook closes. See the section “Run a Procedure before Closing a
Workbook.”

BeforePrint Occurs before Excel prints a workbook or a portion of a workbook.

BeforeSave Occurs before Excel saves a workbook. See the section “Run a Procedure before Saving a
Workbook.”

BeforeXmlExportEvent Occurs before saves or export of XML data.

BeforeXMLImportEvent Occurs before XML data refreshed or imported.

Deactivate Occurs when Excel deactivates a workbook.

NewSheet Occurs when Excel adds a new sheet to a workbook.

Open Occurs when Excel opens a workbook. See the section “Run a Procedure as a Workbook Opens.”

PivotTableCloseConnection Occurs after a PivotTable report closes the data source connection.

PivotTableOpenConnection Occurs after a PivotTable report opens the data source connection.

Rowset Complete Occurs when a user drills through a recordset.

SheetActivate Occurs when Excel activates a sheet in the workbook.

SheetBeforeDoubleClick Occurs when a user double-clicks a sheet.

SheetBeforeRightClick Occurs when a user right-clicks.

SheetCalculate Occurs after Excel calculates a sheet.

SheetChange Occurs when cells in a worksheet change.

SheetDeactivate Occurs when Excel deactivates a sheet.

SheetFollowHyperlink Occurs when a user clicks a hyperlink on a sheet.

19_591598-ch17.indd 28019_591598-ch17.indd 280 6/11/10 2:03 PM6/11/10 2:03 PM

281

Worksheet Events

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

Excel associates worksheet-level events with the selected worksheet. Event-handling procedures related to a worksheet
should be in the standard module for the worksheet object. The following table lists the worksheet events.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates the worksheet.

BeforeDoubleClick Occurs when the user double-clicks the worksheet.

BeforeRightClick Occurs when the user right-clicks the worksheet.

Calculate Occurs after Excel calculates the worksheet.

Change Occurs when a user or external link modifies cells on the worksheet.

Deactivate Occurs when Excel deactivates the worksheet.

FollowHyperlink Occurs when a user clicks a hyperlink on the worksheet.

PivotTableUpdate Occurs after a PivotTable report is updated on the worksheet.

SelectionChange Occurs when a selection changes on the worksheet.

Workbook Events (continued)

EVENT WHEN THE EVENT OCCURS

SheetPivotTableUpdate Occurs after Excel updates a sheet of a PivotTable report.

SheetSelectionChange Occurs when a selection changes in a worksheet.

Sync Occurs when a local copy of a worksheet is synchronized with a copy on the server.

WindowActivate Occurs when Excel activates a workbook window.

WindowDeactivate Occurs when Excel deactivates a workbook window.

WindowResize Occurs when Excel resizes a workbook window.

Chart Events

Excel associates chart-level events with the currently selected chart sheet. Event-handling procedures related to a chart
should be in the standard module for the chart object. The following table lists the chart events for which you can create
event-handling procedures.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates the chart sheet.

BeforeDoubleClick Occurs when the user double-clicks a chart element.

BeforeRightClick Occurs when the user right-clicks a chart element.

Calculate Occurs after Excel plots the chart.

Deactivate Occurs when Excel deactivates the chart, worksheet, or workbook.

DragOver Occurs when the user drags a range of cells over a chart.

DragPlot Occur when the user drags and drops a range of cells onto the chart.

MouseDown Occurs when the user presses a mouse button while over a chart.

MouseMove Occurs when the position of the pointer changes over a chart.

MouseUp Occurs when the user releases the mouse button over the chart.

Resize Occurs when the user resizes the chart.

Select Occurs when the user selects a chart element.

SeriesChange Occurs when the user changes the value of a chart data point. continued ➔

19_591598-ch17.indd 28119_591598-ch17.indd 281 6/11/10 2:03 PM6/11/10 2:03 PM

282

Excel associates control and dialog box events with a UserForm or the controls that exist on a UserForm. Event-handling
procedures related to a UserForm should be in the standard module for the UserForm object. The following table lists the
UserForm events.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates a UserForm.

AddControl Occurs when Excel adds a control at runtime to a UserForm.

BeforeDragOver Occurs when the user performs a drag-and-drop operation.

BeforeDropOrPaste Occurs when the user is about to paste the data from the drag-and-drop operation.

BeforeUpdate Occurs before data in a control is changed.

Change Occurs when the value property changes.

Click Occurs when the user clicks a UserForm object.

DblClick Occurs when the user double-clicks a UserForm object.

Deactivate Occurs when the user deactivates the UserForm.

Error Occurs when Excel detects a UserForm control error.

KeyDown Occurs when the user presses a key.

KeyPress Occurs when the user presses an ANSI key. ANSI keys produce visible characters.

KeyUp Occurs when the user releases a key.

MouseDown Occurs when the user presses a mouse button.

MouseMove Occurs when the user moves the pointer on the UserForm.

MouseUp Occurs when the user releases the pointer.

QueryClose Occurs when Excel closes the UserForm.

RemoveControl Occurs when Excel removes a control from the UserForm at runtime.

Scroll Occurs when the user repositions a scroll box on a control.

Terminate Occurs when Excel terminates the UserForm.

Zoom Occurs when the user zooms the UserForm.

Control and Dialog Box Events

Understanding
Excel Events (continued)

19_591598-ch17.indd 28219_591598-ch17.indd 282 6/11/10 2:03 PM6/11/10 2:03 PM

283

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

Application Events

Application events include all events recognized by the Application object. To access an application event, create a
class module to contain your application event-handling procedure code. See the section “Run a Procedure When Excel
Creates a Workbook” for more information on placing event-handling code in a class module.

The following table lists the application-level events that occur in Excel.

EVENT TYPE DESCRIPTION

Application An event that occurs for the application. For example, Excel triggers the
NewWorkbook event when it creates a new workbook.

NewWorkbook Occurs when Excel creates a new workbook. See the section “Run a
Procedure When Excel Creates a Workbook.”

SheetActivate Excel activates any sheet in any workbook.

SheetBeforeDoubleClick Occurs when the user double-clicks any sheet.

SheetBeforeRightClick Occurs when the user right-clicks any sheet.

SheetCalculate Excel calculates any worksheet.

SheetChange Cells on a worksheet are changed by a user or an external link.

SheetFollowHyperlink A user clicks a hyperlink on a sheet.

SheetPivotTableUpdate Excel updates a worksheet of a PivotTable report.

SheetSelectionChange The selection changes on any worksheet.

WindowActivate Excel activates a worksheet window.

WindowDeactivate Excel deactivates a worksheet window.

WindowResize The user resizes a worksheet window.

WorkbookActivate The user activates a workbook.

WorkbookAddInInstall An add-in installs a workbook.

WorkbookAddInUninstall An add-in uninstalls a workbook.

WorkbookBeforePrint Excel prints an open workbook.

WorkbookBeforeSave Excel saves an open workbook.

WorkbookDeactivate Excel deactivates a workbook.

WorkbookNewSheet Excel adds a new sheet to an open workbook.

WorkbookOpen Excel opens a workbook.

WorkbookPivotTableCloseConnection Occurs after a PivotTable report closes the data source connection.

WorkbookPivotTableOpenConnection Occurs after a PivotTable report opens the data source connection.

19_591598-ch17.indd 28319_591598-ch17.indd 283 6/11/10 2:03 PM6/11/10 2:03 PM

284

1

2

3• The standard module for
the ThisWorkbook
object opens.

3 Click the down arrow and
then select the Workbook
option.

1 Open Project Explorer.

2 Double-click the
ThisWorkbook node
under the workbook to
which you want to add a
Workbook_Open event.

Run a Procedure as a Workbook Opens

Y ou can create a procedure that runs automatically
each time a workbook opens. Because this type of
procedure executes only when a workbook opens,

it works well for opening other workbooks, determining if
specific conditions are met, and displaying welcome
messages.
To have a procedure execute when a workbook opens,
create the procedure using the Workbook_Open event and
add it to the ThisWorkbook object standard module. All
event-handling procedures for monitoring workbook
events must reside in the ThisWorkbook object standard
module if you want Excel to execute them automatically.
If you want a procedure to execute when a workbook
opens, you must name the procedure Workbook_Open.
Although the procedure resides in the ThisWorkbook
object standard module, it can access other procedures in

the same workbook. Therefore, you can create a
Workbook_Open procedure that calls procedures in other
modules.
If you want a procedure to execute whenever Excel opens,
you can place the procedure in the ThisWorkbook object
for the Personal Macro Workbook - Personal.xlsb.
Because the Personal Macro Workbook always loads as a
hidden workbook in Excel, any procedures in this
workbook execute when Excel opens. Keep in mind,
however, that Excel associates the Personal Macro
Workbook with an individual user.
You can keep a Workbook_Open procedure from
executing for a particular workbook by pressing and
holding Shift as the workbook opens. Because workbooks
open quickly, make sure you press and hold Shift as you
select the workbook.

Run a Procedure as a
Workbook Opens

19_591598-ch17.indd 28419_591598-ch17.indd 284 6/11/10 2:03 PM6/11/10 2:03 PM

285

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

4

You can use the Workbooks collection object Open
method to specify the workbook that Excel should open
along with the current workbook. For example, if your
workbook relies on data values in another workbook,
you can open the workbook your workbook relies on,
whenever your workbook opens. See Chapter 9 for more
information on using the Open method.

You can use the Object drop-down list in the Code
window to create your Workbook_Open Sub
procedure. The Object drop-down list contains the
objects for which you can create Sub procedures in the
current standard module. If you access the
ThisWorkbook standard module, the only available
object is Workbook.

When you select the Workbook object from the Objects
drop-down list, the VBE automatically creates a
Private Sub procedure called Workbook_Open
because the default event for the Workbook object is
the Open event.

7 Open the workbook you just
closed.

 The Workbook_Open
procedure executes.

 In this example, a welcome
message appears.

• The Visual Basic Editor
creates a Private Sub
procedure and names it
Workbook_Open.

4 Type the VBA code to run
when the workbook opens.

 The example displays the
user’s name.

5 Press Ctrl+S to save your
workbook.

6 Close your workbook.

19_591598-ch17.indd 28519_591598-ch17.indd 285 6/11/10 2:03 PM6/11/10 2:03 PM

286

2

3

1

4

• The standard module for the
ThisWorkbook object opens.

3 Click the down arrow and then select
Workbook.

4 Click the down arrow and then select
BeforeClose.

• The Visual Basic Editor creates a
new Private Sub procedure
named Workbook_BeforeClose.

 Delete the Workbook_Open Sub
procedure if it appears.

1 Open Project Explorer.

2 Double-click the ThisWorkbook
node under the workbook to which
you want to add a Workbook_Open
event.

Run a Procedure before Closing a Workbook

Y ou can create a BeforeClose event procedure
that runs automatically before a particular
workbook closes. If the user has made changes to

the workbook, the event executes before Excel asks users
if they want to save their changes. Because this type of
procedure executes only as the workbook closes, it works
well for recalculating, resetting the workbook back to
default values, and even automatically saving the
workbook. The procedure executes when the workbook
closes by executing the BeforeClose event, which is
triggered by the closing workbook.
To produce a procedure that executes when a workbook
closes, create a new procedure and add it to the
ThisWorkbook object standard module for the particular
workbook. All event-handling procedures that you create
for monitoring workbook events must reside in the

ThisWorkbook object for Excel to execute them
automatically. You must name the procedure
Workbook_BeforeClose.
Although the procedure resides in the ThisWorkbook
object standard module, it can access other procedures in
the same workbook. Therefore, you can create a
Workbook_BeforeClose procedure that calls procedures
in another module.
The BeforeClose event takes one argument, Cancel.
You can use the Cancel argument to change what Excel
does after the BeforeClose event completes. If the
Cancel argument has a value of False, which is the
default, the workbook closes normally. If your procedure
sets the value to True, Excel cancels the closing process
and does not close the workbook. You can set the Cancel
argument to True and then prompt the user for additional
information before closing.

Run a Procedure before
Closing a Workbook

19_591598-ch17.indd 28619_591598-ch17.indd 286 6/11/10 2:03 PM6/11/10 2:03 PM

287

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

5

You can use the Me keyword in standard modules for
Excel objects. The Me keyword references the object
associated with the module. For example, code created
in the ThisWorkbook object module links to the
workbook object. When you use the Me keyword, you
reference the workbook object. Therefore, when you
add the code Me.Close to a module, Excel closes the
workbook. The code Me.Close is equivalent to using
the ThisWorkbook object reference. You can use the
Me keyword when working with UserForm modules.
When used with a user form, the Me keyword references
the corresponding UserForm and not the controls that
you have added to the UserForm.

If your procedure has made a change that affects all
workbooks, you can use a BeforeClose event
procedure to undo the change before the workbook
closes. For example, if you have a procedure that loads
and add-in, you can use the BeforeClose event
procedure to unload the add-in before the workbook
closes.

 The Workbook_
BeforeClose
procedure executes.

 In this example,
Excel asks if you
printed a report.

5 Type the VBA code
that will run before
the workbook closes.

6 Press Ctrl+S to save
the workbook.

7 Close the workbook.

19_591598-ch17.indd 28719_591598-ch17.indd 287 6/11/10 2:03 PM6/11/10 2:03 PM

288

1

2

5

3 4

 The module for the ThisWorkbook object
opens.

3 Click the down arrow and select Workbook.

4 Click the down arrow and select BeforeSave.

• The Visual Basic Editor creates a new
Private Sub procedure named
Workbook_BeforeSave.

 Delete the Workbook_Open Sub
procedure if it appears.

5 Click the Close button to close Project
Explorer.

1 Open Project Explorer.

2 Double-click the ThisWorkbook node
under the workbook to which you want to
add a Workbook_BeforeSave event.

Run a Procedure before Saving a Workbook

Y ou can create a BeforeSave event procedure that
runs automatically before Excel saves a
workbook. By creating a BeforeSave procedure,

you can customize the save process. For example, when
users select the Save or Save As option, you may want to
ask if they have performed all required tasks.
To create a procedure that executes before saving a
workbook, create a new procedure using the BeforeSave
event and add it to the ThisWorkbook object standard
module for the workbook. All event-handling procedures
that you create for monitoring workbook events must
reside in the ThisWorkbook object. To create a procedure
that executes before Excel saves the workbook, you must
name the procedure Workbook_BeforeSave.
Although the procedure resides in the ThisWorkbook
object standard module, it can access other procedures in
the same workbook. Therefore, you can create a

Workbook_BeforeSave procedure that calls procedures
in another module in the same workbook.
The BeforeSave event takes two arguments that VBA
passes to your procedure when the event triggers —
SaveAsUI and Cancel. Use the SaveAsUI argument to
indicate whether the Save As dialog box appears during
the Save command. Set the value of the SaveUI argument
to True to always display the Save As dialog box.
Use the Cancel argument to indicate whether the
workbook should save. If the Cancel argument has a
value of False, Excel saves the workbook. The default
value is False. If the Cancel argument has a value of
True, Excel does not save the workbook. From within the
Workbook_BeforeSave procedure, you can set the value
of the Cancel argument to specify whether the workbook
actually saves.

Run a Procedure before
Saving a Workbook

19_591598-ch17.indd 28819_591598-ch17.indd 288 6/11/10 2:04 PM6/11/10 2:04 PM

289

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

6

8

When you want to make sure that a variable in a procedure does not change the value of variables in other
procedures, use the ByVal keyword. For example, the Workbook_BeforeSave Sub procedure includes a ByVal,
SaveAsUI argument. To aid in your understanding of ByVal, consider the following example, where the message
box displays a value of 10 because the value of TestVal in the Test2 Sub procedure is ByVal. Any changes made
to TestVal in the Test2 Sub procedure do not pass back to Test1.

Example:
Sub Test1()

 Dim TestVal As Integer

 TestVal = 10

 Call Test2(TestVal)

 MsgBox TestVal

End Sub

Sub Test2(ByVal TestVal)

 TestVal = 55555

End Sub

8 Click the Save button to save the
workbook.

 The Workbook_BeforeSave
procedure executes.

• In this example, the procedure
prompts you, “Do you want to
date stamp this workbook?”

• Click Yes if you want to date-
stamp your file.

6 Type the VBA code that will run
when the workbook saves.

7 Press Alt+F11 to switch from the
VBE to Excel.

19_591598-ch17.indd 28919_591598-ch17.indd 289 6/11/10 2:04 PM6/11/10 2:04 PM

290

5

2

4

2

1

 The Properties window
opens.

4 Type a name for your
class module in the Name
field.

5 Declare a public
Application object
using the WithEvents
keyword.

1 Click the workbook to
which you want to add a
NewWorkbook event.

2 Click Insert ➔ Class
Module.

 VBA creates a blank class
module.

3 Press F4.

Run a Procedure When Excel Creates a Workbook

I f you have settings you apply to every workbook,
you can use the NewWorkbook application event to
set those settings every time you open a workbook.

For example, when you open an Excel workbook, by
default it contains three worksheets. If you always need
five worksheets, you can create a NewWorkbook
application event to create two additional worksheets.
The NewWorkbook application event executes whenever
Excel opens a new workbook. Because the event comes
from the application and not from an individual object
such as a workbook or chart, the process for creating an
application event is complex.
When working with application events, first create a class
module. Excel only makes code in a standard module
available to other modules in the same project or

workbook. When you create a procedure for an
application event, you want all open projects to be able to
access the code; therefore, you use a class module.
Because Excel does not recognize your application event
code until the workbook containing the code opens, open
the workbook containing the code first. You may want to
add the code to the Personal.xlsb workbook. The
Personal.xlsb workbook opens whenever you open Excel,
and application event code activates as a workbook
opens. See Chapter 1 for more information about the
Personal.xlsb workbook.
In the class module, use the WithEvents keyword to
declare a public Application object variable. Make the
variable public because you want all open projects to
access this object variable. See Chapter 3 for more
information on public variables.

Run a Procedure When
Excel Creates a Workbook

19_591598-ch17.indd 29019_591598-ch17.indd 290 6/11/10 2:04 PM6/11/10 2:04 PM

291

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

6

7

8

When you use the WithEvents keyword to declare a public Application object, the VBE creates a new object
and adds it to the Object drop-down list. When you select the object, the Procedure drop-down list lists of all
corresponding application events. To create a new event procedure, select the object from the Object drop-down
list and the appropriate event from the Procedure drop-down list. The VBE creates a new Sub procedure with the
appropriate arguments. For example, if your object is AppEvent and you select the WindowActivate procedure,
the Editor adds the following code to the class module:

Example:
Private Sub AppEvent_WindowActivate(ByVal Wb As Workbook, ByVal Wn As Window)

You can use the Object Browser to find out more about a particular event by pressing F2 while in the VBE. Type the
event you want to know about in the Search field and then click Search. A list of matching items appears. Excel
indicates the events with a small lightning bolt. If you click an event, the event syntax appears at the bottom of the
Object Browser window.

• VBA creates a
Private
AppEvent_
NewWorkbook
Sub procedure.

7 Type the code you
want to execute
when a new
workbook opens.

8 In Project Explorer,
double-click the
ThisWorkbook
node.

6 Click the down
arrow and then
select the name you
typed in Step 5.

continued ➔

19_591598-ch17.indd 29119_591598-ch17.indd 291 6/11/10 2:04 PM6/11/10 2:04 PM

292

0

9

!

0 Create a Private
Workbook_Open Sub
procedure.

! Use a Set statement to
activate your event.

@ Save, close, and reopen
Excel.

 The standard module
opens for the
ThisWorkbook object.

9 Declare an object variable
using the Application
object you created.

Run a Procedure When Excel Creates a Workbook (continued)

A fter you declare a public Application object
variable by using the WithEvents keyword, use
the NewWorkbook event to specify that the event

executes when Excel creates a new workbook. The
NewWorkbook event has one argument, Wb, which passes
to the Sub procedure. The Wb argument contains the
newly created workbook. You can access any of the
methods and properties of the new workbook by using
the Wb argument. For example, you can use the Name
property to return the name of the new workbook. See
Chapter 9 for more information on working with the
Workbook object.
Creating the NewWorkbook Sub procedure in the class
module defines the code to run for the event but does not
activate the Sub procedure. To activate the Sub procedure,
add code to a Workbook_Open procedure that activates
the Application event procedure. Because the

Application event code is meant to work with all events
generated by the application, you want to add a class
module and the activation code to a workbook you open
frequently, such as the Personal Macro Workbook. See
Chapter 1 to learn more about the Personal Macro
Workbook.
To activate the class module code, the module containing
the activation procedure must contain a Dim statement,
which declares an object of the type defined in the class
module. Place the Dim statement at the top of the
standard module. For example, Dim NewSheets As New
AppEvent creates a new object variable of the type
created in the class module. In a procedure, a Set
statement actually activates the event. To make the Set
statement execute automatically, place the Set statement
in the Workbook_Open procedure.

Run a Procedure When Excel
Creates a Workbook (continued)

19_591598-ch17.indd 29219_591598-ch17.indd 292 6/11/10 2:04 PM6/11/10 2:04 PM

293

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

$

%

#

When you open the workbook containing the code that activates an application event, the code executes each time
you trigger the event. There may be times when you need to deactivate an event so that it no longer triggers. You
can create a separate Sub procedure that you can call from within Excel at any point to cancel an event. Essentially,
you set the property of the Application object to Nothing, as shown in the following example:

 The event-handling procedure
executes the code.

• In this example, the procedure adds
two sheets to the new workbook.

Open the workbook containing the
Workbook_open Sub procedure.

$ Click the File tab and then click New.

% Click Create.

TYPE THIS:

Sub CancelEvent()
 Set OpenAppEvent.AppEvent = Nothing
End Sub

RESULT:

The code cancels the event for the current session of
Excel. The next time you start Excel, the event is
reactivated.

➔

Creating this type of Sub procedure so you can disable an event-handling procedure at any time is a good idea. You
can also set the EnableEvents property to False for the Application object, as shown in this code:

TYPE THIS:

Sub CancelEvents()
 Application.EnableEvents = False
End Sub

RESULT:

This code disables all event-handling procedures for
the current session of Excel. The next time you start
Excel, the event-handling procedures are reactivated.

➔

19_591598-ch17.indd 29319_591598-ch17.indd 293 6/11/10 2:04 PM6/11/10 2:04 PM

294

2

2
1

1

Create an OnTime Event Using VBA’s
TimeValue Function

1 Name your procedure.

2 Create an OnTime event.

• This is the time the procedure will execute.

 This will execute a procedure at 11:25 AM.

• This is the procedure that will execute.

Create an OnTime Event Using Excel’s
Time-Numbering System

1 Name your procedure.

2 Create an OnTime event.

• This is the time the procedure will execute.

 This will execute a procedure at 11:25 AM.

 See the next screenshot for an alternative
way to set the time.

Execute a Procedure at a Specific Time

Y ou can create a procedure that executes at a
specific time by using the OnTime event. For
example, you can create a MsgBox that reminds

the user of an event 5 minutes before the event starts.
Unlike most other events, the OnTime event is not
associated with a specific object. You must access this
event by using the OnTime method with the
Application object.
The OnTime method has four parameters; only the first
two are required: EarliestTime, Procedure,
LatestTime, and Schedule. Use the EarliestTime
parameter to specify the time at which the procedure
executes. Use the Procedure parameter to indicate the
procedure to execute at the specified time. Enclose the
procedure name in quotes.
Use the optional LatestTime parameter to indicate the
latest time when the procedure can run. If the procedure

has not run by the time specified by this parameter, it
does not run. The other optional parameter, Schedule,
has a default value of True to schedule the OnTime
procedure to run again at the specified time or False to
clear a previously set procedure.
Because the OnTime event is not associated with a
specific object, you can place a procedure containing the
method for accessing the event in any standard module.
If you place the OnTime method procedure in a standard
module, you must run that module to activate the OnTime
event code. You can also place the OnTime method in the
Workbook_Open procedure so that it loads the event code
as the workbook opens. See the section “Run a Procedure
as a Workbook Opens” for more information.
When using the OnTime event, you can use Excel’s time-
numbering system or you can use VBA’s TimeValue
function. Using VBA’s TimeValue function simplifies the
process.

Execute a Procedure
at a Specific Time

19_591598-ch17.indd 29419_591598-ch17.indd 294 6/11/10 2:04 PM6/11/10 2:04 PM

295

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

1

The EarliestTime and LatestTime parameters
expect time values based on Excel’s time-numbering
system, which stores all times as decimal values ranging
from 0.0 to 0.99999999. For example, Excel stores
12:00 noon as 0.5 and 6:00 PM as 0.75. Because
fractional times can be mind-boggling, VBA provides
the TimeValue function with which you can convert a
standard time into the decimal equivalent required. To
use the TimeValue function, enclose the time you want
to convert in quotes. For example, TimeValue(“5:45
PM”) converts 5:45 PM to the appropriate decimal
value.

Another useful VBA time function is the Now function,
which returns the current date and time. When you use
the Now function in combination with a TimeValue
function, you can specify how long before an event
occurs. For example, to have an event take place in 30
minutes, express the time as follows:

Example:
Now + TimeValue(“00:30:00”)

 Excel executes the procedure at
the designated time.

Create a Procedure

1 Name your procedure.

2 Type the code that you want to
execute.

• This causes the computer to beep.

• This displays a message box.

3 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

19_591598-ch17.indd 29519_591598-ch17.indd 295 6/11/10 2:04 PM6/11/10 2:04 PM

296

1

2

3

• The module for the ThisWorkbook
object opens.

2 Click the down arrow and then select the
Workbook option.

• The Visual Basic Editor creates a
Private Sub procedure and names it
Workbook_Open.

Note: See the section “Run a Procedure as
a Workbook Opens” for information on the
Workbook_Open procedure.

3 Create your OnKey command.

• This is the Alt key.

 See the Extra section for more
information.

• This is the name of the procedure you
want to run.

1 Double-click the ThisWorkbook node
under the workbook to which you want to
add a Workbook_Open event.

Execute a Procedure When You Press Keys

Y ou can use the OnKey event to create a procedure
that executes when you press a specific key or
combination of keys. For example, you can press

Alt+S to sign and date a worksheet. You define the keys
you want to use to execute a procedure. If you specify a
key combination that Excel already uses, your new
definition overrides the Excel combination.
Unlike most other events, the OnKey event is not
associated with a specific object. For that reason, you
access this event by using the OnKey method with the
Application object.
The OnKey method has two parameters, Key and
Procedure. Use the Key parameter to specify the key
combination, which you express as a string consisting of
the combined keys you capture. Represent standard keys,

such as a and 5, by simply typing the character for the
key. Specify nonstandard keys, such as Delete and Insert,
by placing the key name in curly braces: {DELETE} or
{INSERT}.
Use the Procedure parameter to indicate the name of the
procedure to execute. Enclose the procedure name in
quotes.
Because the OnKey event is not associated with a specific
object, you can place the procedure containing the method
for accessing the event in any standard module. However,
if you place the OnKey method procedure in a standard
module, you need to run the macro to activate the code.
You can place the OnKey method in the Workbook_Open
procedure so that it loads as the workbook opens. See the
section “Run a Procedure as a Workbook Opens” for
more information.

Execute a Procedure
When You Press Keys

19_591598-ch17.indd 29619_591598-ch17.indd 296 6/11/10 2:04 PM6/11/10 2:04 PM

297

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

4

5

44

 When you press the
designated keys. Excel
executes the macro.

• In this example, Excel places
the username and the date in
cell A1 when you press Alt+S.

4 Create a Sub procedure with
the same name you specified
in Step 3.

5 Type the code that you want
to execute.

6 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

When specifying keys that do
not create a character, such as
Delete or Down Arrow,
enclose the name of the key in
curly braces: {Delete} or
{Down}. For some keys, Excel
provides special characters to
represent the key when you
combine it with other
characters:

Character Represents

+ Shift
^ Ctrl
% Alt
~ Enter

To reassign a particular key combination to its original meaning, omit the
Procedure parameter:

TYPE THIS:

Application.OnKey “+^{LEFT}”

RESULT:

The custom key combination
assignment is removed, and
Excel executes the default
command for that key
combination, if one exists.

➔

TYPE THIS:

Application.OnKey “{%}”, _
 “ExecutePercent”

RESULT:

Whenever the user presses
%, the ExecutePercent
procedure executes.

➔

To use one of the special characters in your key combination, enclose the
character in braces. For example, to specify a procedure to execute when you
press the percent sign, type the following code:

19_591598-ch17.indd 29719_591598-ch17.indd 297 6/11/10 2:04 PM6/11/10 2:04 PM

298

1

2 3

2 Click the down arrow and then
select Worksheet.

3 Click the down arrow and then
select Change.

• The VBE creates a new
Private Sub procedure
named Worksheet_Change.

1 Double-click the sheet
you want to monitor for
change.

 The code module for the
sheet opens.

• You can click the Close
button to close Project
Explorer.

Monitor a Range of Cells for Changes

B y using the Change event, you can create a
procedure that monitors a range of cells and
notifies you when a change occurs. Excel triggers

this event when the user or an external link changes a
value in the selected worksheet. When Excel triggers the
event, it sends your event-handling function a Range
object containing the cells that changed. You design your
procedure to check the range of cells returned and
determine if they are in the range of cells you are
monitoring.
Because the monitored event relates to an individual
worksheet, place the event-handling procedure in the
object module that corresponds to that worksheet. For
example, to monitor changes to Sheet1, place the code in
the standard module for Sheet1. To capture the Change
event, name the procedure Worksheet_Change.

The Change event has one argument, Target, whose
value Excel passes when it triggers the Change event.
The Target argument receives the range of cells that
changed. This value passes to your procedure by value
and as a result, your procedure cannot change the value
of the Target argument.
Although the Worksheet_Change procedure resides in a
sheet object standard module, it can access other
procedures in the same workbook. Therefore, you can
create a Worksheet_Change procedure that calls
procedures in another module.
Excel triggers this event only when cell values change
due to modifications made by the user or an external
link. It does not trigger if a formula or procedure performs
a calculation that changes the value or if you add an
object.

Monitor a Range of
Cells for Changes

19_591598-ch17.indd 29819_591598-ch17.indd 298 6/11/10 2:04 PM6/11/10 2:04 PM

299

Ch
apter 17: A

u
tom

atin
g Procedu

res w
ith

 E
xcel E

ven
ts

4

Because Excel triggers the Change event only when a user or external link changes a value in a cell, there may be
instances where Excel does not trigger a Change event when you expect it to. The following table lists instances
when Excel triggers a Change event and instances when it does not.

Triggers Change Event

Typing values in cells
Clearing formats
Pressing Delete
Using the Ribbon to delete
Making changes with spell-check
Using Find and Replace

Does Not Trigger Change Event

Calculating new formula values
Changing cell formatting
Using a form
Performing a sort
Making changes from a procedure (macro)
Inserting a comment

 Each time you make a change the
procedure tells you if you are in
range or out of range.

4 Type the VBA code that will run
when the worksheet changes.

 The Intersect method
determines where ranges overlap.
In this example, it determines if
the Target is in the
WatchRange.

5 Press Alt+F11 to switch from the
VBE to Excel and run the macro.

19_591598-ch17.indd 29919_591598-ch17.indd 299 6/11/10 2:04 PM6/11/10 2:04 PM

300

1

2
3

Create an
Add-In

W ith add-ins, you can integrate additional
functionality into Microsoft Excel. You can
create an add-in and use it to add user

defined functions, custom dialog boxes, Sub procedures,
and custom Ribbon tabs to workbooks. Add-ins are a great
way to integrate your procedures into any Excel workbook.
You create an add-in by saving a workbook in the add-in
format. By default, Excel places add-ins in a special
AddIns folder.
After you save a workbook in the add-in format, the
worksheets in the workbook are no longer visible and
you cannot make them visible by using the Unhide
command. You cannot see or edit the sheets in an add-in
workbook. In addition, an add-in workbook does not
become a part of the Workbooks collection. You create an
add-in when you want to use defined functions, custom
dialog boxes, Sub procedures, or custom Ribbon tabs in

multiple workbooks. You cannot use an add-in to share
worksheets.
You must install an add-in or open another workbook
while the add-in workbook is open to access an add-in’s
features. See the section “Install Add-Ins” to learn how to
install an add-in. If functions created by an add-in are
available, when you open the Insert Function dialog box,
they appear in the User Defined category. You can select
and use them just as you would any other functions. See
Chapter 3 to learn more about user-defined functions.
When you install an add-in, any key combinations you
assign to a Sub procedure become available to the user.
Before you convert a workbook to add-in format, you
should thoroughly test it. You can simulate how the
macros will function by opening another workbook while
the workbook you want to install as an add-in (the
XLAM file) is open and executing the procedures.

Create an Add-In

1 Create the workbook you
want to use as an add-in.

 Make sure it is completely
debugged.

2 Click the File tab.

3 Click Save As.

20_591598-ch18.indd 30020_591598-ch18.indd 300 6/11/10 2:03 PM6/11/10 2:03 PM

301

5
4

6

To distribute your add-in to others, give them a copy of
your XLAM file and tell them the proper directory in
which to install it. You should password-protect your
file. See the section “Set Add-In Properties” to learn
how to password-protect an add-in file. You do not
need to distribute copies of your XLSM macro file.

You can open an add-in file by clicking the File tab,
clicking Open, locating the add-in, and then clicking
Open. The add-in opens; however, the name of the file
does not appear on the title bar and no worksheet
appears. You can open another workbook and use the
add-in. This is a great way to test your macro before
making it available to the Add-Ins manager. When you
save your add-in to the Office library or to a user’s
AddIns directory, the add-in becomes available in the
Add-ins section of the Excel Options dialog box for you
to load.

7 Open the add-in file.

 When you open the add-in
file, no worksheets appear.

 The Save As dialog box
appears.

4 Click the down arrow and
then select Excel Add-In
(*.xlam) in the Save As
Type field.

5 Type a name for your file.

6 Click Save.

• Note the folder in which
Excel is saving the file.

 Excel creates the add-in file.

Ch
apter 18: B

u
ildin

g A
dd-In

s

20_591598-ch18.indd 30120_591598-ch18.indd 301 6/11/10 2:03 PM6/11/10 2:03 PM

302

1

1

4
3

5

7
8

2

6

9

5 Click the Protection tab.

6 Select the Lock Project
for Viewing option
(changes to).

7 Type a password.

8 Type the password again.

9 Click OK.

 VBA password-protects
and adds a name and
description to your
project.

Name and Password
Protect

1 Click Tools ➔ VBAProject
Properties.

 The VBAProject
Properties dialog box
appears.

2 Click the General tab.

3 Type a project name.

4 Type a project
description.

Set Add-In Properties

W hen you create an add-in, the sheets included
in the add-in file are not visible to users;
however, if users click the Visual Basic

button on the Developer tab of the Ribbon, they move to
the VBE where they can view and modify your code. If
you do not want users to modify your code, you must use
the Project Properties dialog box to password-protect it.
Although password-protecting provides some level of
security, you should be aware that there are products on
the market that can recover your password.
Use the General tab in the Project Properties dialog box to
name and describe your add-in. The project name and
description appear at the bottom of the View and Manage
Microsoft Office add-ins pane and provide the user with a
brief introduction to your add-in before installing.

The sheets associated with an add-in workbook are not
visible. If you want to view the sheets, open the
Properties window in the VBE by pressing F4. If you then
click ThisWorkbook in the Project Explorer, the properties
for the workbook become available. If you set the
IsAddin property to False, the sheets in your workbook
become available.
All functions you create in an add-in file are normally
available to users through the Insert Function dialog box
whenever the add-in is available. If you create functions
you intend to be available only to other functions or
procedures, use the Private keyword when you create
them. To learn more about the Private keyword, see
Chapter 2.

Set Add-In
Properties

20_591598-ch18.indd 30220_591598-ch18.indd 302 6/11/10 2:03 PM6/11/10 2:03 PM

303

Ch
apter 18: B

u
ildin

g A
dd-In

s

3

4

Before creating your add-in, it is a
good idea to add information to the
Properties pane. Click the File tab,
click Info, and then click Properties.
A menu appears. Click Show
Document Panel. The Properties
pane appears. Type a title in the
Title field, type a description in the
Comments field, and then close the
Properties pane.

In addition to the add-ins you
create, you can obtain add-ins from
third parties. To learn about special-
purpose Excel add-ins in your field,
perform a Google search by going
to www.google.com. Your search
terms should include Excel; the field
of knowledge — for example,
chemistry; and other information
you might have, such as vendor
name. Third-party vendors are
responsible for supporting their own
products.

As with macros, add-ins can spread
viruses. For Excel to consider an
add-in safe, the add-in must have a
current valid digital signature issued
by a certificate authority, and the
developer of the add-in must be a
trusted publisher. If the Excel Trust
Center considers an add-in unsafe,
it disables the add-in and displays a
message bar to alert you to the
potentially unsafe add-in. You can
click the Options button on the
message bar to enable the add-in.

Set IsAddin to False

1 Press F4.

 Alternatively, click View ➔
Properties Window.

 The Properties window appears.

2 Press Ctrl+R

 Alternatively, click View ➔ Project
Explorer.

 The Project Explorer appears.

3 Click ThisWorkbook.

 The workbook properties appear.

4 Set IsAddin to False.

5 Press Alt+F11 to switch from the
VBE to Excel.

• The worksheets appear in the
add-in.

20_591598-ch18.indd 30320_591598-ch18.indd 303 6/11/10 2:03 PM6/11/10 2:03 PM

304

1

2

4

5

3

 The Excel Options dialog box
appears.

3 Click Add-Ins.

• The View and Manage Microsoft
Office Add-ins screen appears.

4 Click an add-in.

 The example uses the Create an
Add-In add-in created earlier in
this chapter.

5 Click Go.

1 Click the File tab.

 A menu appears.

2 Click Options.

Install Add-Ins

B undled add-in software is included with Excel,
but Excel does not automatically install the
software when you install Excel. The following

are among the add-ins that come standard with Excel:
The Conditional Sum Wizard enables you to create a
formula that sums only the values that meet the criteria
you specify. The Euro Currency Tools add-in enables you
to calculate exchange rates between the Euro and other
currencies. The Data Analysis Toolpak provides a number
of tools you can use for statistical analysis. Solver
enables you to produce the formula result you want by
directly or indirectly adjusting cells related to the cell that
contains the formula.
You install bundled add-ins and the add-ins you create
by using the Excel Options dialog box. You can find all
add-ins in the Add-Ins section. When you save an add-in
to the Microsoft AddIns folder or to the Library folder

under the Office program, it becomes available for
installation in the Excel Options dialog box. Once installed,
the add-in is available right away. You can download
additional Excel add-ins from the Microsoft download site.
For example, for Excel 2010, you can download the
Microsoft SQL Server PowerPivot add-in. The add-in is
useful if you use PivotTables with large amounts of data
from multiple data sources. This add-in produces a fast
response time even if you are working with millions of
rows of data.
You can also take advantage of third-party add-ins. This
type of software adds functionality in support of
advanced work in chemistry, risk analysis, modeling,
project management, statistics, and other fields. Third-
party add-ins usually have their own installation and
usage procedures. Consult the developer of these
programs for documentation.

Install
Add-Ins

20_591598-ch18.indd 30420_591598-ch18.indd 304 6/11/10 2:03 PM6/11/10 2:03 PM

305

Ch
apter 18: B

u
ildin

g A
dd-In

s

76

Removing an add-in from Excel is
easy. Click the File tab, click
Options, click Add-ins, click the
add-in you want to remove, and
then click Go. The Add-Ins dialog
box appears. Click to deselect the
add-in you want to remove and then
click OK. Excel removes the add-in.

The only way to remove an add-in
from the Add-Ins section of the
Excel Options dialog box is to delete
the file from the folder in which it is
stored.

In Excel 2003, you could click a data
point in a column chart twice and
you would then be able to resize the
columns. This feature was
deprecated in Excel 2007. However,
Microsoft received a lot of feedback
indicating that people liked the
feature, so they developed an add-in
that can be used with Excel 2007
and Excel 2010. The add-in is called
Manipulate Point on Chart. You can
download it from the Microsoft
download site.

 Excel installs the
add-in.

• In this example, you
know Excel installed
the add-in because
you can see the
custom Ribbon tab.

 The Add-Ins dialog
box appears and
provides access to
several options.

6 Click to select the
add-in you want to
install (changes
to).

7 Click OK.

20_591598-ch18.indd 30520_591598-ch18.indd 305 6/11/10 2:03 PM6/11/10 2:03 PM

306

1
2

3

4

3 Add the add-in.

• This is the add-in file you
want to add.

4 Install the add-in.

1 Name your procedure.

2 Declare a variable as an
AddIn object.

Using VBA to Load Add-Ins

I f you want to add an add-in by using a procedure,
use the Add method with an AddIn object. The Add
method adds an add-in to the Excel Options dialog

box. The following is the syntax for the Add method:
expression.Add(Filename, Open)

Use the expression to identify the add-in or a variable
that represents the add-in. Use the Filename parameter
to specify the location of the add-in you want to add. If
the file is located in the current folder, type the filename,
enclosed in quotes. If the file is located in another folder,
type the path to the file enclosed in quotes. If your add-in
is located on a removable disk such as a compact disc
and you want to move the file from the removable disk to

the Library folder under the Office program, set the Open
parameter to True. If you want the file to remain on the
removable disk, set the Open parameter to False. If you
do not include this parameter and your add-in is located
on a removable disk, Excel displays a prompt asking the
user if he or she wants to move the file to the hard drive.
If your add-in is not located on a removable disk, VBA
ignores the Open parameter.
The Add method does not install an add-in. To install an
add-in, you must set the Install property to True. You
can add an add-in and install it in a single step by using
the following syntax:
AddIns.Add(“Sample.xlam”).Installed = True

Using VBA to
Load Add-Ins

20_591598-ch18.indd 30620_591598-ch18.indd 306 6/11/10 2:03 PM6/11/10 2:03 PM

307

Ch
apter 18: B

u
ildin

g A
dd-In

s

6

6

5

The Add-Ins dialog box tells you a lot about add-ins. To open the Add-Ins dialog box, click the File tab, click
Options, click Add-Ins, and then click Go. The Add-Ins dialog box appears. All of the add-ins available in Excel
appear in the Add-Ins dialog box. Each add-in listed is part of the AddIns collection. You can reference Add-ins in
the AddIns collection by their title or by their index value. You determine the index value by the order in which Excel
lists the add-ins in the Add-Ins dialog box. The first add-in has an index value of 1, the second 2, and so on. The
title of an add-in is the name listed in the Add-Ins dialog box.

You can reference the index value of an add-in or its title to uninstall the add-in. To uninstall an add-in, set the
Installed property to False. The following example uninstalls an add-in.

Example:
Addins.(“Sample”).Installed = False

• The macro installs the
add-in and displays a
message box.

5 Display a MsgBox letting
you know the add-in has
been installed.

6 Handle Errors.

7 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

20_591598-ch18.indd 30720_591598-ch18.indd 307 6/11/10 2:03 PM6/11/10 2:03 PM

308

Introducing
XML

T he default file format for Office 2007 and Office
2010 is EXtensible Markup Language (XML). For
this reason, as a VBA programmer, you should

have a basic understanding of XML.
The appeal of XML is that it makes exchanging data
between different software applications and different
computer systems easier. After you mark up your data
using XML, it is available to be processed by a variety of
different systems, without regard to hardware or operating
system. You can use the same XML data in Word, Excel,
and Access, and other programs. Prior to Office 2007, Office
files were in a proprietary format. Manipulating and sharing
the data with other applications and systems was difficult.
XML is similar to HyperText Markup Language (HTML),
the language used to format data displayed in a Web
page. If you are familiar with HTML, learning XML will
be easy. Both HTML and XML are markup languages

and, as such, they both use tags. In HTML, the tags are
predefined; in XML, you define the tags.
XML and HTML have different purposes. You use HTML
to format data so you can display your data in a Web
page. You use XML to describe your data. Your XML tags
can be anything you want them to be, but they should
describe your data. Each XML tag describes the data
contained in the tag.
You do not need to purchase any software to create an XML
file; you can create XML in any text editor. For example,
you can use Notepad to create an XML file. However, you
must give your XML files an .xml file extension.
A complete explanation of XML is beyond the scope of
this book. However, the brief overview of XML that
follows provides a basic understanding of the examples
provided in this book.

Declaration Statement

You start each XML file with a declaration. The declaration
lets the program processing your file know that your file is
an XML file. The following is an example of a declaration
statement:

<?xml version=”1.0” encoding=”UTF-8
“standalone=”yes” ?>

Xml identifies the file as an XML file, 1.0 is the version of
XML used, UTF-8 is the character set used to encode the
data, and standalone tells the processing program whether
the document contains references to other documents.

In XML, you call a unit of data an element. You use tags to
describe each element. Angle brackets surround tags: < and
>. In the following example, <CustomerName>Royal
Inc.</CustomerName>, <CustomerName>, and
</CustomerName> are the opening and closing tags for
the element. They tell you that Royal Inc. is the name of the
customer. The opening tag marks the beginning of the
element. The closing tag marks the end of the element. The
closing tag always includes a forward slash. And be aware
that XML is case-sensitive. The tag <UnitPrice> is not
the same as <unitprice>. Your opening tag and closing
tag must be in the same case. You place your data between
the opening tag and the closing tag. Every tag must include
a closing tag.

Empty tags are tags that do not have any content. Empty
tags do not require a closing tag. However, empty tags
must include a forward slash as part of the tag. The
following is an example of an empty tag.

<button id=”Button1”
imageMso=”AccessFormWizard”

size=”large” label = “Report Format”

onAction= “ThisWorkbook.SignAndDate” />

In the example, the element has attributes but no content.
You use the element to pass information to the reading
program.

Empty Tags

Tags

Attributes

You can include attributes within an XML tag. Attributes
provide information to the program that is manipulating
the data. The following is an example of a tag that includes
a FileType attribute.

<CustomerName FileType =”J5793” > Royal Inc.</
CustomerName>

You must enclose attributes in quotes. You can use single
quotes or double quotes. An element can have multiple
attributes.

21_591598-ch19.indd 30821_591598-ch19.indd 308 6/11/10 2:04 PM6/11/10 2:04 PM

309

Ch
apter 19: U

n
derstan

din
g X

M
L

Element Names

You can name elements anything you want; however,
element names should describe your data. Also, element
names must conform to the following rules:

• Names can contain letters, numbers, and other
characters.

• Names cannot contain spaces.

• Names cannot start with the letters XML, a number,
or a punctuation character.

• You can use an underscore to separate the words in
a name, as in Customer_Information.

You should try to keep your element names short and,
although it is allowed, avoid using the “-” and the “.” in
your element names. If you create an element name
such as Customer-Info, the reading program may try to
subtract Customer from Info; if you create a name such
as Customer.Info, the reading program may think Info is
a property of Customer.

Schemas

Schemas are another important component of XML.
Schemas contain the rules that help the processing
program validate your data. For example, a schema tells
the processing program whether a tag should contain
text or a number. In that way, the schema prevents the
entry of invalid data. For example, if data between your
LastName tags should always be a string, a schema
prevents the entry of numbers.

If you are importing an XML file into Excel, and your
XML file does not have a schema, Excel creates one.
Excel maps the items in the schema. Mapping allows
you to display in your worksheet only the data you want
to see. It also allows you to refresh your data and save
your data in XML format.

Structure

You structure XML hierarchically. Consider the following
example:

<CustomerInfo>

 <CustId>C001</CustId>

 <CustomerName>Royal Inc.</CustomerName>

 <TransDate>2011-06-01</TransDate>

 <PurchaseInfo>

 <Quantity>12</Quantity>

 <ItemNo>OS-001</ItemNo>

 <Description>Pencils</Description>

 <UnitPrice>3.99</UnitPrice>

 </PurchaseInfo>

 <PurchaseInfo>

 <Quantity>6</Quantity>

 <ItemNo>OS-004</ItemNo>

 <Description>Paper</Description>

 <UnitPrice>25.98</UnitPrice>

 </PurchaseInfo>

</CustomerInfo>

The data between the CustomerInfo tags contains
information about a single customer. The file can contain
multiple customers. The information between the
PurchaseInfo tags contains information about an
individual purchase. In the example, a single customer
made two purchases, so the PurchaseInfo tags are
inside the CustomerInfo tags. Shown graphically, you
can structure data as follows:

CustInfo

 Customer 1

 Purchase 1

 Purchase 2

 Customer 2

 Purchase 1

CustInfo

Every XML file must have a set of root tags. The root tags
describe the document and surround the child tags. Every
document ends with a root tag. In the example,
<CustomerInfo> and </CustomerInfo> are root
tags. All of the tags between the <CustomerInfo> tags
are child tags.

When structuring your XML file, you must properly nest
your tags. In the example, you must close each purchase
before you start a new purchase, and you must close each
customer before you start a new customer.

If you want to exchange your data with other systems, your
XML file must be well-formed. If your data is not well-
formed, your XML file will not work. Well-formed XML files
comply with the following rules:

• They begin with a declaration.

• They contain a root tag.

• Every tag either has a closing tag or is an empty tag.

• Opening and closing tags use the same case.

• Tags are properly nested.

• Attributes are enclosed in either single or double quotes.

21_591598-ch19.indd 30921_591598-ch19.indd 309 6/11/10 2:04 PM6/11/10 2:04 PM

310

2

1

3

2

Understanding
Excel XML Files

P rior to Office 2007, by default, Office files were
saved as binary files in a proprietary format. You
can still save your files in binary format by

saving them as Excel 97-2003 files if you need to share
files with users who do not have Office 2007 or higher.
However, the binary file type is no longer the default.
Moreover, when you save your file as an Excel 97-2003
file, Office 2007 or higher features that are not supported
in earlier versions are lost.
Starting with Office 2007, the default file type is based on
XML. The XML file format has several advantages:

• XML files are smaller. The XML file format uses Zip
technology, which compresses the files. As a result,
when you compare XML files to binary files, the
XML files can be up to 75 percent smaller. This

means they take up less space and are easier to
transfer via mechanisms such as e-mail.

• XML files are more secure. In the default XLSX
format, you cannot include macros. This gives you
assurance that your XLSX files do not include any
malicious macro viruses. If you want to save macros
in your Excel file, you must save the file with an
.xlsm extension. Excel places the macros in a
separate part of the file that is more secure.

• Data is easier to recover in XML files. XML files are
human-readable. You can open the files and read
the contents by using a text editor such as Notepad.
If part of the file becomes corrupted, you can open
the file and recover the uncorrupted part.

Understanding Excel XML Files

Create and Save an Excel
File

1 Create an Excel file.

• Include an image.

• Include a comment.

• Include data.

• Include properties.

2 Click the Save button and
then close the file.

Open an Excel File

1 In Windows Explorer,
move to the folder where
you saved your file.

2 Right-click the filename.

 A menu appears.

3 Click Rename.

21_591598-ch19.indd 31021_591598-ch19.indd 310 6/11/10 2:04 PM6/11/10 2:04 PM

311

Ch
apter 19: U

n
derstan

din
g X

M
L

5

4

To assign properties to a file, click
the File tab, click Info, and then
click Properties. A menu appears.
Click Show Document Panel. The
Document Properties pane appears
in your workbook. Enter the
properties you want to enter. In the
upper left corner of the Properties
pane, click Document Properties,
and then click Advanced Properties.
The Properties dialog box appears.
You can use the Properties dialog
box to review properties and add
custom properties.

If you have a computer with Excel
97-2003 installed, you can go to the
Office Update Web site and
download the Microsoft Office
system Compatibility Pack for Excel.
After you install the Compatibility
Pack, you can open Excel 2007 and
2010 files in Excel 97-2003. Excel
2007 or Excel 2010 features and
formatting may not appear in the
earlier version, but they are still
available when you open the file
again in Excel 2007 or 2010.

To view the contents of an Excel
workbook file, change the file
extension to .zip and then double-
click the file. To use the file again,
change the extension back to the
extension the file originally had.

 The file opens.

• The _rels folder stores
information about
relationships.

• The [Content_Types].xml
part stores information
about what is in the
package.

• The xl folder stores the
workbook component
files.

• The docProps folder
stores information about
the document properties.

4 Change the file extension
to .zip.

 Windows asks if you are
sure you want to change
the file extension. Click
Yes.

5 Double-click the file.

continued ➔

21_591598-ch19.indd 31121_591598-ch19.indd 311 6/11/10 2:04 PM6/11/10 2:04 PM

312

_rels

1 Double-click the _rels
folder to open it.

 The .rels file appears.

2 Double-click the .rels file to
open it.

 The file sets relationships.

Content Type.xml

1 Double-click Content_
Type.xml.

 The file opens in your
default XML editor.

Understanding Excel XML Files (continued)

I f you want to see the XML layout for an Excel 2007
or 2010 file, change the file extension on the Excel
file to .zip and then double-click the file. The file

opens and several folders and files appear.
Office 2007 and 2010 files are in a compressed Zip
format; each Zip file is called a package. A package has
three major components: Part Items, Content Type Items,
and Relationship Items.
Each file inside a package is called a part. When you
open an Excel file, a workbook.xlm file is in the xl folder.
You may also find a styles.xlm file. These files are “parts”
of the package. Most parts are XML files that describe the
data contained in the Excel workbook.

Relationships define how the parts of a document come
together to form a document. The relationships are stored
in the /_rels folders in .rels files in the root and in
subdirectories of the file.
Excel divides a workbook package into several parts.
Some of the parts you may see in a package are charts,
comments, themes, styles, and workbook drawings. You
can manually modify and replace document parts, and
you can write programs to modify and replace document
parts.
If your document includes images, the actual images are
stored in the file. For security proposes, the images are
named image1, image2, and so on.

Understanding Excel
XML Files (continued)

21_591598-ch19.indd 31221_591598-ch19.indd 312 6/11/10 2:04 PM6/11/10 2:04 PM

313

Ch
apter 19: U

n
derstan

din
g X

M
L

For a detailed explanation of the concepts presented in
this section, download “Introducing the Office (2007)
Open XML File Formats” (http://msdn2.microsoft.
com/en-us/library/aa338205.aspx) from the Microsoft
Web site.

You can modify the contents of an Excel package. In the
example, you opened the media folder and viewed the
image in your Excel document. If you want to change
the image, you can take out the image that is in the file
and replace it with a new image, manually or by using a
program. You can also change the text in the document
manually or by using a program. For example, if you
open a comment file, you see comments. If you change
a comment, the new comment appears when you open
your workbook in Excel again.

As you can see, the XML file format gives you a great
deal of flexibility by making your files easy to modify.

docProps

1 Double-click the
docProps folder.

2 Double-click the
parts and examine
them.

 The document
properties appear.

 This example opens
the core.xml file.

xl

1 Double-click the xl
folder to open it.

 A number of files
and folders appear.

2 Double-click each
part and examine it.

 This example opens
the media folder
and then opens the
image file.

21_591598-ch19.indd 31321_591598-ch19.indd 313 6/11/10 2:04 PM6/11/10 2:04 PM

314

1

3

4

2

5

 The Open dialog box
appears.

3 Locate the folder that
contains your XML file.

4 Click the file.

5 Click Open.

1 Click the File tab.

2 Click Open.

Open an XML File in Excel as a Table

I f your Excel data consists of columns and rows, you
can convert your data to a table. In Excel, tables
allow you to manipulate your data easily. Each

column heading in a table contains a down arrow. You
can use the down arrow to sort, filter, and otherwise
manipulate your data. Having your data in an Excel table
greatly enhances your ability to work with your data.
If you have data that is in well-formed XML format, you
can easily open the XML file in Excel as a table and then
use Excel to manipulate the data. To find out more about
well-formed XML format, see the section “Introducing
XML.”
Excel needs a schema to import your XML data. Schemas
enable processing programs such as Excel to validate
your data. For example, a schema tells the processing

program whether a particular element should contain text
or a number. When you open an XML file, if your data
does not have a schema, Excel creates one. Excel infers
the schema from the data that is contained in the XML
file.
When you open an XML file as a table, Excel also creates
an XML map. Excel uses the map to relate the schema to
the data in the worksheet. A single workbook can contain
several XML maps, and several maps can refer to the
same schema.
Excel creates a graphical hierarchical representation of
your data in the XML Source pane when it opens your
XML file as a table. Open the Source pane to see the
representation.

Open an XML File in
Excel as a Table

21_591598-ch19.indd 31421_591598-ch19.indd 314 6/11/10 2:04 PM6/11/10 2:04 PM

315

Ch
apter 19: U

n
derstan

din
g X

M
L

9

6
7

8

The Open XML dialog box presents three choices. You
can open the file as an XML table or as a read-only file,
or you can use the XML Source task pane. The As an
XML Table option is explained in this section. The As a
Read-Only Workbook option opens the file as read-only
and does not create a map to your data. The Use the
XML Source Task Pane option creates a map but does
not place any elements in your worksheet. For details on
how to work with an XML map, see the section “Create
an XML Map.”

When you import or open an XML file, if the file does
not have a schema, Excel creates one for you. To view
the schema, click the Developer tab and then click
Visual Basic to open the VBE. Once in the VBE, press
Ctrl+G to open the Immediate window. In the
Immediate window, type Print activeworkbook.
XmlMaps(1).Schemas(1).xml. VBA prints the
schema to the Immediate window. You can copy and
paste it into a text or XML editor.

 The file appears in
Excel as an Excel
table.

8 Click the Developer
tab.

9 Click Source.

• The map to your
data appears.

 The Open XML
dialog box appears.

6 Click As an XML
Table (changes
to).

7 Click OK.

 If Excel asks if you
want to create a
schema, click OK.

21_591598-ch19.indd 31521_591598-ch19.indd 315 6/11/10 2:04 PM6/11/10 2:04 PM

316

2

3

5

6

1

7

4

 The XML Maps dialog box appears.

4 Click Add.

 The Select XML Source dialog box
appears.

5 Locate the folder that contains the
file you want to map.

6 Click the file.

7 Click Open.

 If Excel asks if you want to create a
schema, click Yes.

1 Click the Developer tab.

2 Click Source.

 The XML Source pane appears.

3 Click XML Maps.

Create an XML Map

W hen you open your XML file as an Excel
table, Excel places all of your data in your
worksheet, and you can use the table

features in Excel to manipulate your data. Alternatively,
you can create a map and place just the elements you
want to use in your worksheet. You complete the process
in three steps: create a map, move the elements you want
to use to your worksheet, and then refresh your data.
When you use the mapping method, you choose what
elements you want to appear in your worksheet. This
method is useful when your XML file has a large number
of elements and you only want to work with a subset of
those elements. Click on an element in the XML Source
pane and then drag the element onto your worksheet.

Excel calls the list of data elements in the XML Source
pane a map, and the process of clicking and dragging
elements to your worksheet mapping. Excel creates a
connection between the element in the Source pane and
your data. If you want to see the connection, after you
place an element in your worksheet, click the element in
the XML Source pane and Excel highlights the data in
your worksheet. Or, click data in your worksheet, and
Excel highlights the element name in the XML Source
pane.
When you create a map and then bring your data into
Excel, you gain the same benefits as when you open a
file in XML format. You can use all of Excel’s table
features to sort and filter your data.

Create an
XML Map

21_591598-ch19.indd 31621_591598-ch19.indd 316 6/11/10 2:04 PM6/11/10 2:04 PM

317

Ch
apter 19: U

n
derstan

din
g X

M
L

!

9

0

8

After you add an element from your XML file to your Excel worksheet, you may want to delete it. If so, right-click
the field heading, click Delete, and then click Delete Columns. Excel deletes the column. If you want to remove the
connection between the XML map and your worksheet, right-click the item in the XML Source pane and then click
Remove Element. If you want to restore a connection, right-click the item in the XML Source pane and then click
Map Element. The Map XML Elements dialog box appears. Type the cell address where you want to place the field
heading and then click OK.

You can copy and paste your mapped table, but your copy will not have a connection to your map. However, if you
move your mapped table by cutting and pasting, your table maintains its connection to the XML map.

• Excel adds a map to the
XML Source pane.

9 Click and drag elements
from the XML Source
pane to your worksheet.

0 Click the Developer tab.

! Click Refresh Data.

• Excel adds the data in
your XML file to your
worksheet.

• Excel creates your map.

8 Click OK.

21_591598-ch19.indd 31721_591598-ch19.indd 317 6/11/10 2:04 PM6/11/10 2:04 PM

318

21

3

4

5

 The Import XML dialog
box appears.

3 Locate the folder where
the file you want to
import is located.

4 Click the file you want to
import.

5 Click Import.

Import an XML File

1 Click the Developer tab.

2 Click Import.

Import and Export XML Files Using Excel

W hen working with XML data, the data in the
XML file may change or you may want to
import the additional data. Conversely, you

may make changes to the data and want to export the
changes to an XML file. If you want to import and export
XML data into and out of Excel, use the Import and
Export features on the Developer tab. The Import feature
opens the Import dialog box, where you can choose the
file you want to import. The Export feature opens the
Export dialog box, where you can name the file you are
exporting.
Importing data enables you to either overwrite your
current data or append data to your table. You can use
the XML Map Properties dialog box to specify which you
want to do. The default is to overwrite existing data with

new data. If the system outputting the data has corrected
the data or if your old data is no longer relevant,
overwriting your data is the better choice. If the system
outputting the data outputs data periodically, appending
data is the better choice. Appending data enables you to
keep your database up-to-date.
You can export data in XML format by using the Export
feature on the Developer tab. When you export data, all of
the data must be from a single node in your XML map. If
you want to verify that Excel can export your data, click
Verify Map for Export on the XML Source pane before
exporting. Excel exports your data as a well-formed XML
file. A well-formed XML file adheres to all the rules for
creating XML files. For more information about well-
formed files, see the section “Introducing XML.”

Import and Export
XML Files Using Excel

21_591598-ch19.indd 31821_591598-ch19.indd 318 6/11/10 2:04 PM6/11/10 2:04 PM

319

Ch
apter 19: U

n
derstan

din
g X

M
L

2
1

3
4

5

When you import or refresh data, you can either
overwrite your current data or append data. Use the
XML Map properties dialog box to specify which you
want to do. To open the XML Map properties dialog
box, click the Developer tab, and then click Map
Properties in the XML group. The overwrite and append
options are at the bottom of the dialog box.

The XML Source task pane has several options you can
set by clicking the Options button in the lower left
corner. Select the Preview Data in Task Pane option to
see a sample of the data elements in your XML file in the
task pane. Select the Hide Help Text in the Task Pane
option to prevent help from appearing at the bottom of
the task pane. Select Automatically Merge Elements
When Mapping to create a single table when you place
elements side by side in a single row in the worksheet.

Export an XML File

1 Click the Developer tab.

2 Click Export.

 The Export XML dialog
box appears.

3 Locate the folder where
you want to save the file.

4 Type a filename.

5 Click Export.

 Excel exports the file.

 Excel imports the XML data.

21_591598-ch19.indd 31921_591598-ch19.indd 319 6/11/10 2:04 PM6/11/10 2:04 PM

320

1

2

2 Create your OpenXML
command.

• This is the file you want
to load.

1 Name your procedure.

Load XML Files Using VBA

I f you want to automate the process of loading XML
data, use the OpenXML method. OpenXML is the VBA
equivalent to opening an XML file as a table. As

when you open an XML file as a table, OpenXML provides
several choices. Make your choice by specifying one of
the following XlXmlLoadOption options:
xlXmlLoadImportToList, xlXmlLoadMapXml, or
xlXmlLoadPromptUser.
If you select the xlXmlLoadImportToList option, VBA
creates a map of your data, places the map in the XML
Source pane, and then places all of your XML data in a
worksheet formatted as a table.
If you select the xlXmlLoadMapXml option, VBA creates a
map of your data and places the map in the XML Source
pane. Excel does not place any data in a worksheet.

If you select the xlXmlLoadPromptUser option, VBA
displays the Open XML dialog box. The user can choose
to open the XML file as a table or as a read-only
workbook, or use the XML Source task pane.
Opening the file as a table is equivalent to the
xlXmlLoadImportToList option. Using the XML Source
task pane is equivalent to the xlXmlLoadMapXml option.
The following is an example of the OpenXML method:
Sub OpenXMLPromptUser()
 Application.Workbooks.OpenXML _
 Filename:”invoices.xml”, _
 LoadOption:=xlXmlLoadPromptUser
End Sub

Use the FileName parameter to specify the name of the
file you want to load. If the file is not located in the
current folder, specify the path to the folder.

Load XML Files
Using VBA

21_591598-ch19.indd 32021_591598-ch19.indd 320 6/11/10 2:04 PM6/11/10 2:04 PM

321

Ch
apter 19: U

n
derstan

din
g X

M
L

If you want to use VBA to create a document map, use code similar to the following:

Example:
Sub CreateMap()

 ‘Create an XmlMap object

 Dim InvMap As XmlMap

 ‘Add a map and assign the map to the XmlMap Object

 Set InvMap = Application _

 .ActiveWorkbook _

 .XmlMaps.Add(“invoices.xml”)

 ‘Name the Map

 InvMap.Name = “Invoices_Map”

End Sub

After you run the macro, click the Developer tab and then click Source to see the map.

 The macro loads the
XML file.

• This is the load option
you want to use.

3 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

21_591598-ch19.indd 32121_591598-ch19.indd 321 6/11/10 2:04 PM6/11/10 2:04 PM

322

3
4

5

 Excel moves you to
the VBE.

3 Name your procedure.

4 Declare a variable as an
XmlMap object.

5 Assign your map the
XmlMap object variable.

• This is the map name.

1 Create a map and place
the elements in your
worksheet.

Note: To learn how to create a
map, see the section “Create
an XML Map.”

• This is the name of your
map.

2 Press Alt+F11.

Import XML Files Using VBA

Y ou can use the XmlImport method to load data
into a map that already exists. This process is
similar to clicking the Import button on the

Developer tab. You can refresh your data or import new
data into your worksheet. The XmlImport method has
the following parameters: Url, ImportMap, Overwrite,
and Destination.
The Url parameter is required. Use this parameter to
target a URL as a data source. Insert the URL as a string
enclosed in double quotes. You can also use this
parameter to target a file on your local computer. If the
file is located in the current directory, type the filename;
otherwise, type the path.
The ImportMap parameter is also required. For this
parameter, supply the schema map you want VBA to use.

You can identify the map by name. When you create a
map, Excel assigns it a name. The name appears in the
drop-down list at the top of the XML Source pane. You
can also view the list of XML maps in your workbook by
clicking the XML Maps button in the XML Source pane. If
you want Excel to create the map, assign Nothing to the
parameter, as in ImportMap:=Nothing.
Use the Overwrite parameter to specify whether you
want to overwrite the existing data. Set the parameter to
True if you want to overwrite the data. Set the parameter
to False if you want to append to the existing data. True
is the default value.
Use the Destination parameter to specify the top left
corner of the range where you want to create the table. If
you are importing data into a map that already exists, do
not set this parameter.

Import XML Files
Using VBA

21_591598-ch19.indd 32221_591598-ch19.indd 322 6/11/10 2:04 PM6/11/10 2:04 PM

323

Ch
apter 19: U

n
derstan

din
g X

M
L

6

As an alternative to the syntax in the example, you can use the following syntax to import an XML file. This syntax
uses the XMLMap.Import method. The first parameter is Url. Use this parameter to specify the path to the data.
The second parameter is Overwrite. Setting the Overwrite parameter to False causes the command to append
instead of overwriting data.

Example:
Sub ImportXMLFile()

 ActiveWorkbook _

 .XmlMaps(“Invoice_Map”) _

 .Import URL:=”invoices.xml”, _

 Overwrite:=False

End Sub

 VBA imports your data.

6 Create your XmlImport
command.

7 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

21_591598-ch19.indd 32321_591598-ch19.indd 323 6/11/10 2:04 PM6/11/10 2:04 PM

324

File and Folder Handling

STATEMENT DESCRIPTION

ChDir path Changes to the specified folder location.

ChDrive drive Changes to the specified drive.

Close [filenumber] Closes a file opened by using an Open statement.

FileCopy source, destination Copies a file from the source to the specified destination.

FreeFile[(rangenumber)] Each open file is represented by an integer value. Returns the next
available integer value for use by the Open statement.

Kill pathname Deletes files from a disk. Use wildcards (*) for multiple characters
and (?) for single characters.

Lock [#]filenumber[, recordrange] Locks all or a portion of an open file to prevent access by other
processes.

MkDir path Creates a new directory or folder.

Open pathname For mode [Access access]
[lock] As [#]filenumber [Len=reclength]

Opens the specified file to allow input/output operations.

Print #filenumber[, outputlist] Writes display-formatted data sequentially to a file.

Put [#]filenumber, [recnumber,] varname Writes data contained in a variable to a disk file.

Reset Closes all files opened using the Open statement.

RmDir path Removes the specified folder.

SetAttr pathname, attributes Sets the attribute information for the specified file.

Unlock [#]filenumber[, recordrange] Unlocks a file to allow access by other processes.

Width #filenumber, width Assigns the output line width for a file opened using the Open
statement.

Write #filenumber[, outputlist] Writes data to a sequential text file.

Interaction

STATEMENT DESCRIPTION

AppActivate title[, wait] Activates an application window.

DeleteSetting appname, section[, key] Deletes a section or key setting from an application’s entry in the
Windows Registry.

SaveSetting appname, section, key,
setting

Saves an application entry in the application’s entry in the Windows
Registry.

SendKeys string[, wait] Sends one or more keystrokes to the active window as if they were
typed on the keyboard.

VBA Statements Quick Reference

VBA and Excel Object
Model Quick Reference

Legend:
Plain courier text = required

Italics = user-defined

[] = optional

. . . = list of items

| = or

22_591598-bapp01.indd 32422_591598-bapp01.indd 324 6/11/10 2:03 PM6/11/10 2:03 PM

325

VBA Statements Quick Reference (continued)
A

ppen
dix: V

B
A

 Q
u

ick R
eferen

ce

Program Flow

STATEMENT DESCRIPTION

[Public | Private] Declare Sub name Lib
“libname” [Alias “aliasname”] [([arglist])]

Declares a reference to an external DLL library
function.

Do [{While | Until} condition] [statements]
Loop

Repeats a block of statements while or until a
condition is true. The condition is checked at the
beginning of the loop.

Do [statements] Loop [{While | Until}
condition]

Repeats a block of statements while or until a
condition is true. Because the condition is checked at
the end of the loop, the block of statements always
executes at least once.

Exit Do | For | Function | Property | Sub Exits the specified Do Loop, For Next, Function,
Sub, or Property code.

For Each element In group [statements] Next
[element]

Repeats a block of statements for each element in an
array or collection.

For counter = start To end [Step step]
[statements] Next [counter]

Repeats a section of code the specified number of
times.

[Public | Private | Friend] [Static] Function
name [(arglist)] [As type] [statements] [name =
expression] End Function

Defines a procedure that returns a value.

If condition Then [statements] [ElseIf
condition-n Then] [elseifstatements]] [Else
[elsestatements]] End If

Conditionally executes a block of statements based
upon the value of an expression.

[Public | Private | Friend] [Static] Property
Get name [(arglist)] [As type] [statements]
[name = expression] End Property

Declares the name and arguments associated with a
procedure.

[Public | Private | Friend] [Static] Property
Let name ([arglist,] value) [statements] End
Property

Declares the name and arguments of a procedure that
assigns a value to a property.

[Public | Private | Friend] [Static]
Property Set name ([arglist,] reference)
[statements] End Property

Declares the name and arguments of a procedure that
sets a reference to an object.

Select Case testexpression [Case
expressionlist-n [statements-n]] [Case Else
[elsestatements]] End Select

Executes one block out of a series of statement blocks
depending upon the value of an expression.

[Private | Public | Friend] [Static] Sub name
[(arglist)] [statements] End Sub

Declares the name, arguments, and code that form a
Sub procedure.

While condition [statements] Wend Executes a block of statements as long as the specified
condition is true.

With object [statements] End With Executes a block of statements on a single object or on
a user-defined data type.

continued ➔

22_591598-bapp01.indd 32522_591598-bapp01.indd 325 6/11/10 2:03 PM6/11/10 2:03 PM

326

VBA Function Quick Reference

Array Functions

FUNCTION DESCRIPTION RETURNS

Array(arg1,arg2, arg3, ...) Creates a variant array containing the specified elements. Variant

LBound(arrayname[, dimension]) Returns the smallest subscript for the specified array. Long

UBound(arrayname[, dimension]) Returns the largest subscript for the specified array. Long

Variable Declaration

STATEMENT DESCRIPTION

[Public | Private] Const constname [As type]
= expression

Declares a constant value.

Dim [WithEvents] varname[([subscripts])] [As
[New] type]

Declares variables and allocates the appropriate storage space.

Friend [WithEvents] varname[([subscripts])]
[As [New] type]

Declares a procedure or variable to only have scope in the
project where it is defined.

Option Compare {Binary | Text | Database} Specifies the default comparison method to use when
comparing strings.

Option Explicit Forces declaration of all variables within the module.

Option Private Indicates that all code within the entire module is Private. VBA
uses this option by default. You can overwrite the effects of this
option by declaring a specific procedure Public.

Private [WithEvents] varname[([subscripts])]
[As [New] type]

Declares variables and procedures to only have scope within the
current module.

Public [WithEvents] varname[([subscripts])]
[As [New] type]

Declares variables and procedures to have scope within the
entire project.

ReDim [Preserve] varname(subscripts) [As
type]

Changes the dimensions of a dynamic array.

[Private | Public] Type varname
elementname [([subscripts])] As type
[elementname [([subscripts])] As type] ...
End Type

Defines a custom data type.

VBA Statements Quick Reference (continued)

VBA and Excel Object Model
Quick Reference (continued)

Legend:
Plain courier text = required

Italics = user-defined

[] = optional

. . . = list of items

| = or

22_591598-bapp01.indd 32622_591598-bapp01.indd 326 6/11/10 2:03 PM6/11/10 2:03 PM

327

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

VBA Function Quick Reference (continued)

Data Type Conversion Functions

FUNCTION DESCRIPTION RETURNS

Asc(string) Returns the character code of the first letter in a string. Integer

CBool(expression) Converts an expression to Boolean data type (True or
False).

Boolean

CByte(expression) Converts an expression to Byte data type. Byte

CCur(expression) Converts an expression to Currency data type. Currency

CDate(expression) Converts an expression to a Date data type. Date

CDbl(expression) Converts an expression to Double data type. Double

CDec(expression) Converts an expression to a decimal value. Variant
(Decimal)

Chr(charactercode) Converts the character code to the corresponding
character. Chr(9) returns a tab, Chr(34) returns
quotation marks, and so on.

Variant

CInt(expression) Converts an expression to Integer data type, rounding any
fractional parts.

Integer

CLng(expression) Converts an expression to Long data type. Long

CSng(expression) Converts an expression to Single data type. Single

CStr(expression) Returns a string containing the specified expression. String

CVar(expression) Converts any data type to Variant data type. All numeric
values are treated as Double data types and string
expressions are treated as String data types.

Variant

Format(expression[, format[,
firstdayofweek[,
firstweekofyear]]])

Formats the expression using either predefined or user-
defined formats.

Variant

FormatCurrency(Expression[,
NumDigitsAfterDecimal [,
IncludeLeadingDigit
[,UseParensForNegativeNumbers [,
GroupDigits]]]])

Formats the expression as a currency value using the
system-defined currency symbol.

Currency

FormatDateTime(Date[,
NamedFormat])

Formats an expression as a date and time. Date

FormatNumber(Expression [,
NumDigitsAfterDecimal [,
IncludeLeadingDigit [,
UseParensForNegativeNumbers [,
GroupDigits]]]])

Formats the expression as a number. Mixed

FormatPercent(Expression
[,NumDigitsAfterDecimal
[,IncludeLeadingDigit
[,UseParensForNegativeNumbers
[,GroupDigits]]]])

Returns the expression formatted as a percentage with a
trailing % character.

String

Hex(number) Converts a number to a hexadecimal value. Rounds
numbers to nearest whole number before converting.

String

continued

continued ➔

22_591598-bapp01.indd 32722_591598-bapp01.indd 327 6/11/10 2:03 PM6/11/10 2:03 PM

328

Data Type Conversion Functions (continued)

FUNCTION DESCRIPTION RETURNS

Oct(number) Converts a number to an octal value. Rounds numbers to
nearest whole number before converting.

Variant
(String)

Str(number) Converts a number to a string using Variant data type. Variant
(String)

Val(string) Returns the numeric portion of a string formatted as a
number of the appropriate data type.

Mixed

Date and Time Functions

FUNCTION DESCRIPTION RETURNS

Date Returns the current system date. Date

DateAdd(interval, number, date) Returns a date that is the specified interval of time from the
original date.

Date

DateDiff(interval, date1, date2[, Long
firstdayofweek[, firstweekofyear]])

Determines the time interval between two dates. Long

DatePart(interval, date[,
firstdayofweek[, firstweekofyear]])

Returns the specified part of a date. Integer

DateSerial(year, month, day) Converts the specified date to a serial number. Date

DateValue(date) Converts a string to a date. Date

Day(date) Returns a whole number between 1 and 31 representing the
day of the month.

Integer

Hour(time) Returns a whole number between 0 and 23 representing the
hour of the day.

Integer

Minute(time) Returns a whole number between 0 and 59 representing the
minute of the hour.

Integer

Month(date) Returns a whole number between 1 and 12 representing the
month of the year.

Integer

Now Returns the current system date and time. Date

Second(time) Returns a whole number between 0 and 59 representing the
second of the minute.

Integer

Time Returns the current system time. Date

Timer Indicates the number of seconds that have elapsed since
midnight.

Single

TimeSerial(hour, minute, second) Creates a time using the specified hour, minute, and second
values.

Date

TimeValue(time) Converts a time to the serial number used to store time. Date

WeekDay(date, [firstdayofweek]) Returns a whole number representing the first day of the week. Integer

Year(date) Returns a whole number representing the year portion of a
date.

Integer

VBA Function Quick Reference (continued)

VBA and Excel Object Model
Quick Reference (continued)

22_591598-bapp01.indd 32822_591598-bapp01.indd 328 6/11/10 2:03 PM6/11/10 2:03 PM

329

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

VBA Function Quick Reference (continued)

File and Folder Handling Functions

FUNCTION DESCRIPTION RETURNS

CurDir(drive) Returns the current path. String

Dir[(pathname[, attributes])] Returns the name of the file, directory, or folder that matches
the specified pattern.

String

EOF(filenumber) Returns –1 when the end of a file has been reached. Integer

FileAttr(filenumber,
returntype)

Indicates the file mode used for files opened with the Open
statement.

Long

FileDateTime(pathname) Indicates the date and time when a file was last modified. Date

FileLen(pathname) Indicates the length of a file in bytes. Long

FreeFile(rangenumber) Returns the next file number available for use by the Open
statement.

Integer

GetAttr(pathname) Returns a whole number representing the attributes of a file,
directory, or folder.

Integer

Input(number, [#]filenumber) Returns a string containing the indicated number of characters
from the specified file.

String

Loc(filenumber) Indicates the current read/write position in an open file. Long

LOF(filenumber) Returns the size in bytes of a file opened using the Long Open
statement.

Long

Seek(filenumber) Specifies the current read/write position with a file opened with
the Open statement.

Long

Financial Functions

FUNCTION DESCRIPTION RETURNS

DDB(cost, salvage, life,
period[, factor])

Specifies the depreciation value for an asset during a specific
time frame.

Double

FV(rate, nper, pmt[, pv[,
type]])

Determines the future value of an annuity based on periodic
fixed payments.

Double

IPmt(rate, per, nper, pv[,
fv[, type]])

Determines the interest payment on an annuity for a specific
period of time.

Double

IRR(values(), [, guess]) Determines the internal rate of returns for a series of cash flows. Double

MIRR(values(), finance_rate,
reinvest_rate)

Returns the modified interest rate of returns for a series of
periodic cash flows.

Double

NPer(rate, pmt, pv[, fv[,
type]])

Returns the number of periods for an annuity. Double

NPV(rate, values()) Returns the net present value of an investment. Double

Pmt(rate, nper, pv[, fv[,
type]])

Returns the payment amount for an annuity based on fixed
payments.

Double

PPmt(rate, per, nper, pv[,
fv[, type]])

Returns the principal payment amount for an annuity. Double

PV(rate, nper, pmt[, fv[,
type]])

Returns the present value of an annuity. Double

continued

continued ➔

22_591598-bapp01.indd 32922_591598-bapp01.indd 329 6/11/10 2:03 PM6/11/10 2:03 PM

330

Financial Functions (continued)

FUNCTION DESCRIPTION RETURNS

Rate(nper, pmt, pv[, fv[,
type[, guess]]])

Returns the interest rate per period for an annuity. Double

SLN(cost, salvage, life) Determines the straight-line depreciation of an asset for a single
period.

Double

SYD(cost, salvage, life,
period)

Determines the sum-of-years’ digits depreciation of an asset for
a specified period.

Double

Information Functions

FUNCTION DESCRIPTION RETURNS

CVErr(errornumber) Returns a user-defined error number. Variant

Error[(errornumber)] Returns the error message for the specified error number. String

IsArray(varname) Indicates whether a variable contains an array. Boolean

IsDate(expression) Indicates whether an expression contains a date. Boolean

IsEmpty(expression) Indicates whether a variable has been initialized. Boolean

IsError(expression) Indicates whether an expression is an error value. Boolean

IsMissing(argname) Indicates whether an optional argument was passed to a
procedure.

Boolean

IsNull(expression) Indicates whether an expression contains no valid data. Boolean

IsNumeric(expression) Indicates whether an expression is a number. Boolean

IsObject(identifier) Indicates whether a variable references an object. Boolean

TypeName(varname) Returns the variable type. String

VarType(varname) Returns the subtype of a variable. Integer

VBA Function Quick Reference (continued)

VBA and Excel Object Model
Quick Reference (continued)

22_591598-bapp01.indd 33022_591598-bapp01.indd 330 6/11/10 2:03 PM6/11/10 2:03 PM

331

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

VBA Function Quick Reference (continued)

Interaction Functions

FUNCTION DESCRIPTION RETURNS

Choose(index, choice-1,
[choice-2, ...])

Selects and returns a value from a list of choices. Mixed

DoEvents() Passes control to the operating system so the operation system
can process other events.

Integer

Iif(expr, truepart,
falsepart)

Evaluates the expression and returns either the truepart or
falsepart parameter value.

Mixed

InputBox(prompt[, title] [,
default] [, xpos] [, ypos]
[, helpfile, context])

Displays a dialog box prompting the user for input. String

GetAllSettings(appname,
section)

Returns a list of key settings and their values from the Windows
Registry.

Variant

GetObject([pathname][,
class])

Returns a reference to an object provided by an ActiveX
component.

Variant

GetSetting(appname,
section, key[, default])

Returns a key setting value from an application’s entry in the
Windows Registry.

Variant

MsgBox(prompt[, buttons] [,
title] [, helpfile,
context])

Displays a message box and returns a value representing the
button pressed by the user.

Integer

Partition(number, start,
stop, interval)

Indicates where a number occurs within a series of ranges. String

QBColor(color) Returns the RGB color code for the specified color. Long

Switch(expr-1, value-1[,
expr-2, value-2 ...])

Evaluates a list of expressions and returns the value associated
with the first True expression.

Variant

RGB(red, green, blue) Returns a number representing the RGB color value. Long

Mathematical Functions

FUNCTION DESCRIPTION RETURNS

Abs(number) Returns the absolute value of a number. Mixed

Atn(number) Returns the arctangent of a number. Double

Cos(number) Returns the cosine of an angle. Double

Exp(number) Returns the base of the natural logarithms raised to a power. Double

continued

continued ➔

22_591598-bapp01.indd 33122_591598-bapp01.indd 331 6/11/10 2:03 PM6/11/10 2:03 PM

332

Mathematical Functions (continued)

FUNCTION DESCRIPTION RETURNS

Fix(number) Returns the integer portion of a number. With negative values,
returns first negative value greater than or a power equal to
number.

Integer

Int(number) Returns the integer portion of a number. With negative values,
returns the first negative number less than or equal to the number.

Integer

Log(number) Returns the natural logarithm of a number. Double

Round(expression [,
numdecimalplaces])

Rounds a number to the specified number of decimal places. Mixed

Rnd[(number)] Returns a random number between 0 and 1. Single

Sgn(number) Returns 1 for a number greater than 0, 0 for a value of 0, and –1
number less than 0.

Integer

Sin(number) Returns the sine of an angle. Double

Sqr(number) Returns the square root of a number. Double

Tan(number) Returns the tangent of an angle. Double

String Manipulation Functions

FUNCTION DESCRIPTION RETURNS

InStr([start,]string1,
string2 [, compare])

Specifies the position of one string within another string. Long

InStrRev(stringcheck,
stringmatch[,
start[,compare]])

Specifies the position of one string within another starting at the
end of the string.

Long

LCase(string) Converts a string to lowercase. String

Left(string, length) Returns the specified number of characters from the left side of a
string.

String

Len(string | varname) Determines the number of characters in a string. Long

LTrim(string) Trims spaces from the left side of a string. String

Mid(string, start[,
length])

Returns the specified number of characters from the center of a
string.

String

Right(string, length) Returns the specified number of characters from the right side of
a string.

String

RTrim(string) Trims spaces from the right side of a string. String

Space(number) Creates a string with the specified number of spaces. String

VBA Function Quick Reference (continued)

VBA and Excel Object Model
Quick Reference (continued)

22_591598-bapp01.indd 33222_591598-bapp01.indd 332 6/11/10 2:03 PM6/11/10 2:03 PM

333

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

VBA Function Quick Reference (continued)

String Manipulation Functions (continued)

FUNCTION DESCRIPTION RETURNS

Spc(n) Positions output when printing to a file. String

Str(number) Returns a string representation of a number. String

StrComp(string1, string2[,
compare])

Returns a value indicating the result of a string comparison. Integer

StrConv(string, conversion,
LCID)

Converts a string to the specified format. String

String(number, character) Creates a string by repeating a character the specified number of
times.

String

Tab[(n)] Positions output when printing to a file. String

Trim(string) Trims spaces from left and right of a string. String

UCase(string) Converts a string to uppercase. String

VBA Function Constants and Characters

vbMsgBoxStyle Constants (MsgBox Function)

CONSTANT VALUE DESCRIPTION

vbAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.

vbApplicationModal 0 Creates application modal message box.

vbCritical 16 Displays Critical Message icon.

vbDefaultButton1 0 Makes first button default.

vbDefaultButton2 256 Makes second button default.

vbDefaultButton3 512 Makes third button default.

vbDefaultButton4 768 Makes fourth button default.

vbExclamation 48 Displays Warning Message icon.

vbInformation 64 Displays Information Message icon.

vbMsgBoxHelpButton 16384 Adds a Help button.

vbMsgBoxRight 524288 Right-aligns text in the box.

vbMsgBoxRtlReading 1048576 Used only with Hebrew and Arabic systems for right-to-left reading.

vbMsgBoxSetForeground 65536 Makes message box the foreground window.

vbOKCancel 1 Displays OK and Cancel buttons.

vbOKOnly 0 Displays only the OK button.

vbQuestion 32 Displays Warning Query icon.

vbRetryCancel 5 Displays Retry and Cancel buttons.

vbSystemModal 4096 Creates a system modal message box.

vbYesNo 4 Displays Yes and No buttons.

vbYesNoCancel 3 Displays Yes, No, and Cancel buttons.

continued ➔

22_591598-bapp01.indd 33322_591598-bapp01.indd 333 6/11/10 2:03 PM6/11/10 2:03 PM

334

vbDayOfWeek Constants

CONSTANT VALUE DESCRIPTION

vbUseSystemDayofWeek 0 Uses the system-defined first day of week

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbFirstWeekOfYear Constants

CONSTANT VALUE DESCRIPTION

vbUseSystem 0 Uses system-defined first week of year.

vbFirstJan1 1 Starts with week in which January 1 occurs (default).

vbFirstFourDays 2 Starts with the first week that has at least four days in the new year.

vbFirstFullWeek 3 Starts with first full week of the year.

Format Function Characters

DATE/TIME CHARACTERS DISPLAYS

d Day with no leading zero.

ddd Three-letter abbreviation of day (Sun – Sat).

dddd Full day name (Sunday).

ddddd Complete date using short date format.

dddddd Complete date using long date format.

w Day of week as number (1 for Sunday).

ww Week of year as number.

m Month with no leading zero.

mmm Three-letter abbreviation of month (Jan – Dec).

mmmm Complete month name.

q Quarter of year.

y Day of year as number.

yy Year as two-digit number.

yyyy Year as four-digit number.

h Hour with no leading zero.

VBA Function Constants and Characters (continued)

VBA and Excel Object Model
Quick Reference (continued)

22_591598-bapp01.indd 33422_591598-bapp01.indd 334 6/11/10 2:03 PM6/11/10 2:03 PM

335

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

VBA Function Constants and Characters (continued)

Format Function Characters (continued)

DATE/TIME CHARACTERS DISPLAYS

n Minutes with no leading zero.

s Seconds with no leading zero.

ttttt Complete time using system time format.

c Date as dddddd and time as ttttt.

Format Function Predefined Formats

FORMAT DESCRIPTION

General Date Uses general date format.

Long Date Uses system-defined long date, such as Tuesday, August 7, 2011.

Medium Date Uses the medium date format, such as 07-Aug-11.

Short Date Uses system-defined short date, such as 8/7/2011.

Medium Time Uses the medium time format, such as 05:45 P.M.

Short Time Uses the short time format, such as 17:45.

General Number Uses the general number format.

Currency Places the appropriate currency symbol in front of the number.

Fixed Uses a fixed decimal format.

Standard Uses standard formatting.

Percent Converts the expression to a percentage.

Scientific Displays the expression using scientific notation.

Yes/No Converts the expression to a Yes or No value.

True/False Converts the expression to a True or False value.

On/Off Converts the expression to an On or Off value.

Excel Object Model Constants

XlColumnDataType Constants

CONSTANT VALUE DESCRIPTION

xlDMYFormat 4 DMY format date.

xlDYMFormat 7 DYM format date.

xlEMDFormat 10 EMD format date.

xlGeneralFormat 1 General format.

xlMDYFormat 3 MDY format date.

xlMYDFormat 6 MYD format date.

xlSkipColumn 9 Skip Column.

xlTextFormat 2 Text format.

xlYDMFormat 8 YDM format date.

xlYMDFormat 5 YMD format date.

continued ➔

22_591598-bapp01.indd 33522_591598-bapp01.indd 335 6/11/10 2:03 PM6/11/10 2:03 PM

336

XlFileFormat Constants

CONSTANT VALUE DESCRIPTION

xlAddIn 18 Excel add-in 2007.

xlAddIn8 18 Excel 97-2003 add-in.

xlCSV 6 Comma-separated values format.

xlCSVMac 22 Macintosh comma-separated values format.

xlCSVMSDOS 24 MSDOS comma-separated values format.

xlCSVWindows 23 MS Windows comma-separated values format.

xlCurrentPlatformText –4158 Text file based on current operating system.

xlDBF2 7 DBase II format.

xlDBF3 8 DBase III format.

xlDBF4 11 DBase IV format.

xlDIF 9 Data interchange format.

xlExcel12 50 Excel 12 format.

xlExcel2 16 Excel 2.

xlExcel2FarEast 27 Excel 2.0 format — Far East version.

xlExcel3 29 Excel 3.0 format.

xlExcel4 33 Excel 4.0 format.

xlExcel4Workbook 35 Excel 4.0 workbook format.

xlExcel5 39 Excel 5.0 format.

xlExcel7 39 Excel 97 format.

xlExcel8 56 Excel 97-2003 format.

xlExcel9795 43 Excel 95-97 format.

xlHtml 44 HTML format.

xlIntlAddIn 26 Excel international add-in.

xlIntlMacro 25 Excel international macro.

xlOpenXMLAddin 55 Open XML add-in.

Excel Object Model Constants

VBA and Excel Object Model
Quick Reference (continued)

22_591598-bapp01.indd 33622_591598-bapp01.indd 336 6/11/10 2:03 PM6/11/10 2:03 PM

337

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

Excel Object Model Constants (continued)

XlFileFormat Constants (continued)

CONSTANT VALUE DESCRIPTION

xlOpenXMLTemplate 54 Open XML Template.

xlOpemXMLTemplateMacroEnabled 53 OpenXML Template Macro Enabled.

xlOpenXMLWorkbook 51 OpenXMLWorkbook.

xlOpenXMLWorkbookMacroEnabled 52 OpenXMLWorkbook Enabled.

xlSYLK 2 Symbolic link format.

xlTemplate 17 Template file format.

xlTemplate8 17 Template.

xlTextMac 19 Macintosh text file format.

xlTextMSDOS 21 MSDOS text file format.

xlTextPrinter 36 Text file created for a printer (.prn).

xlTextWindows 20 MS Window text file format.

xlUnicodeText 42 Unicode text file format.

xlWebArchive 45 Web archive format (.mht).

xlWJ2WD1 14 WJ2WD1.

xlWJ3 40 WJ3.

xlWJ3FM3 41 WJ3FJ3.

xlWK1 5 Lotus 2.x format.

xlWK1ALL 31 Lotus 2.x .all format.

xlWK1FMT 30 Lotus 2.x .fmt format.

xlWK3 15 Lotus 3.x format.

xlWK3FM3 32 Lotus 3.x and Lotus 1-2-3 for Windows format.

xlWK4 38 Lotus 4.0 format.

xlWKS 4 MS Works file format.

xlWorkBookDefault 51 Workbook default.

xlWorkbookNormal –4143 Excel workbook format.

xlWorks2FarEast 28 MS Works file — Far East format.

xlWQ1 34 Quattro Pro for MSDOS format.

xlXMLSpreadsheet 46 XML format.

continued ➔

22_591598-bapp01.indd 33722_591598-bapp01.indd 337 6/11/10 2:03 PM6/11/10 2:03 PM

338

XlChartType Constants

CONSTANT VALUE CHART TYPE

xl3DArea –4098 3D Area.

xl3DAreaStacked 78 3D Stacked Area.

xl3DAreaStacked100 79 100% Stacked Area.

xl3DBarClustered 60 3D Clustered Bar.

xl3DBarStacked 61 3D Stacked Bar.

xl3DBarStacked100 62 3D 100% Stacked Bar.

xl3DColumn –4100 3D Column.

xl3DColumnClustered 54 3D Clustered Column.

xl3DColumnStacked 55 3D Stacked Column.

xl3DColumnStacked100 56 3D 100% Stacked Column.

xl3DLine –4101 3D Line.

xl3DPie –4102 3D Pie.

xl3DPieExploded 70 Exploded 3D Pie.

xlArea 1 Area.

xlAreaStacked 76 Stacked Area.

xlAreaStacked100 77 100% Stacked Area.

xlBarClustered 57 Clustered Bar.

xlBarOfPie 71 Bar of Pie.

xlBarStacked 58 Stacked Bar.

xlBarStacked100 59 100% Stacked Bar.

xlBubble 15 Bubble.

xlBubble3DEffect 87 Bubble with 3D effects.

xlColumnClustered 51 Clustered Column.

xlColumnStacked 52 Stacked Column.

xlColumnStacked100 53 100% Stacked Column.

xlConeBarClustered 102 Clustered Cone Bar.

xlConeBarStacked 103 Stacked Cone Bar.

xlConeBarStacked100 104 100% Stacked Cone Bar.

xlConeCol 105 3D Cone Column.

Excel Object Model Constants (continued)

VBA and Excel Object Model
Quick Reference (continued)

22_591598-bapp01.indd 33822_591598-bapp01.indd 338 6/11/10 2:03 PM6/11/10 2:03 PM

339

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

Excel Object Model Constants (continued)

XlChartType Constants (continued)

CONSTANT VALUE CHART TYPE

xlConeColClustered 99 Clustered Cone Column.

xlConeColStacked 100 Stacked Cone Column.

xlConeColStacked100 101 100% Stacked Cone Column.

xlCylinderBarClustered 95 Clustered Cylinder Bar.

xlCylinderBarStacked 96 Stacked Cylinder Bar.

xlCylinderBarStacked100 97 100% Stacked Cylinder Bar.

xlCylinderCol 98 3D Cylinder Column.

xlCylinderColClustered 92 Clustered Cone Column.

xlCylinderColStacked 93 Stacked Cone Column.

xlCylinderColStacked100 94 100% Stacked Cylinder Column.

xlDoughnut –4120 Doughnut.

xlDoughnutExploded 80 Exploded Doughnut.

xlLine 4 Line.

xlLineMarkers 65 Line with Markers.

xlLineMarkersStacked 66 Stacked Line with Markers.

xlLineMarkersStacked100 67 100% Stacked Line with Markers.

xlLineStacked 63 Stacked Line.

xlLineStacked100 64 100% Stacked Line.

xlPie 5 Pie.

xlPieExploded 69 Exploded Pie.

xlPieOfPie 68 Pie of Pie.

xlPyramidBarClustered 109 Clustered Pyramid Bar.

xlPyramidBarStacked 110 Stacked Pyramid Bar.

xlPyramidBarStacked100 111 100% Stacked Pyramid Bar.

xlPyramidCol 112 3D Pyramid Column.

xlPyramidColClustered 106 Clustered Pyramid Column.

xlPyramidColStacked 107 Stacked Pyramid Column.

xlPyramidColStacked100 108 100% Stacked Pyramid Column.

xlRadar –4151 Radar.

xlRadarFilled 82 Filled Radar.

xlRadarMarkers 81 Radar with Data Markers.

xlStockHLC 88 High-Low-Close.

xlStockOHLC 89 Open-High-Low-Close.

xlStockVHLC 90 Volume-High-Low-Close.

continued

continued ➔

22_591598-bapp01.indd 33922_591598-bapp01.indd 339 6/11/10 2:03 PM6/11/10 2:03 PM

340

XlChartType Constants (continued)

CONSTANT VALUE CHART TYPE

xlStockVOHLC 91 Volume-Open-High-Low-Close.

xlSurface 83 3D Surface.

xlSurfaceTopView 85 Top View Surface.

xlSurfaceTopViewWireframe 86 Top View Wireframe Surface.

xlSurfaceWireframe 84 3D Surface Wireframe.

xlXYScatter –4169 Scatter.

xlXYScatterLines 74 Scatter with Lines.

xlXYScatterLinesNoMarkers 75 Scatter with Lines and No Data Markers.

xlXYScatterSmooth 72 Scatter with Smoothed Lines.

xlXYScatterSmoothNoMarkers 73 Scatter with Smoothed Lines and No Data Markers.

XlLineStyle Constants

CONSTANT VALUE DESCRIPTION

xlContinuous 1 Continuous solid line.

xlDash –4155 Dashed line.

xlDashDot 4 Line with the pattern dash dot.

xlDashDotDot 5 Line with the pattern dash dot dot.

xlDot –4118 Dotted line.

xlDouble –4119 Double solid line.

xlSlantDashDot 13 Slanted line with the pattern dash dot.

xlLineStyleNone –4142 No line.

XlBorderWeight Constants

CONSTANT VALUE DESCRIPTION

xlHairline 1 Creates a very thin line.

xlMedium –4138 Creates a medium width line.

xlThick 4 Creates a thick line.

xlThin 2 Creates a thin line.

Excel Object Model Constants (continued)

VBA and Excel Object Model
Quick Reference (continued)

22_591598-bapp01.indd 34022_591598-bapp01.indd 340 6/11/10 2:03 PM6/11/10 2:03 PM

341

A
ppen

dix: V
B

A
 Q

u
ick R

eferen
ce

Excel Object Model Constants (continued)

XlPattern Constants

CONSTANT VALUE DESCRIPTION

xlPatternAutomatic –4105 System default.

xlPatternChecker 9 Checkered pattern.

xlPatternCrissCross 16 Criss-cross pattern.

xlPatternDown –4121 Downward pattern.

xlPatternGray25 –4124 25% gray pattern.

xlPatternGray50 –4125 50% gray pattern.

xlPatternGray75 –4126 75% gray pattern.

xlPatternGrid 15 Grid pattern.

xlPatternHorizontal –4128 Horizontal pattern.

xlPatternLightHorizontal 11 Light horizontal pattern.

xlPatternLightVertical 12 Light vertical pattern.

xlPatternLightDown 13 Light downward pattern.

xlPatternLightUp 14 Light upward pattern.

xlPatternNone –4142 No pattern.

xlPatternSemiGray75 10 75% semi-gray pattern.

xlPatternSolid 1 Solid color, no pattern.

xlPatternUp –4162 Upward pattern.

xlPatternVertical –4166 Vertical pattern.

XlYesNoGuess Constants

CONSTANT VALUE DESCRIPTION

xlGuess 0 Allows Excel to determine whether data has a header.

xlNo 2 The data does not have a header.

xlYes 1 The data has a header.

XlPasteSpecialOperation Constants

CONSTANT VALUE DESCRIPTION

xlPasteSpecialOperationAdd 2 Adds.

xlPasteSpecialOperationDivide 5 Divides.

xlPasteSpecialOperationMultiply 4 Multiplies.

xlPasteSpecialOperationNone –4142 Does not perform a mathematical operation.

xlPasteSpecialOperationSubtract 3 Subtracts.

22_591598-bapp01.indd 34122_591598-bapp01.indd 341 6/11/10 2:03 PM6/11/10 2:03 PM

INDEX

342

SYMBOLS
& (ampersand), as concatenation operator, 56
‘ (apostrophe), 43, 48
* (asterisk) wildcard character, 139
/ (division), as arithmetic operator, 58–59
= (equals) operator, 70–71, 86
^ (exponential), as arithmetic operator, 58–59
> (greater than) operator, 86
>= (greater than or equal to) operator, 86
\ (integer division), as arithmetic operator, 58–59
< (less than) operator, 86
<= (less than or equal to) operator, 86
- (minus sign), as arithmetic operator, 58–59
* (multiplication), as arithmetic operator, 58–59
<> (not equal) operator, 86
+ (plus sign), 56, 58–59, 107
(pound signs) in cells, 197
? (question mark) wildcard character, 139
_ (underscore), 105

A
absolute reference, 9
accessing

Edit toolbar, 49
Excel Object Model Reference, 64–65
Options dialog box, 35
Visual Basic Editor (VBE), 27

activating
Visual Basic Editor (VBE), 19, 28–29
workbooks, 145

Add Watch dialog box, 124–125
adding

borders, 208–209
comments to cells, 202–203
customUI.xml file to workbook, 252–253
data series to charts, 264–265
data tables to charts, 270–271
fields to PivotTables, 274–275
Form Controls to worksheets, 20–21
groups to tabs, 249
macros to Form Controls, 24–25
modules, 36–37

options to Ribbon, 254–257
pages to toolbox, 243
sheets, 152–153

add-ins
creating, 300–301
installing, 304–305
loading with VBA, 306–307
removing, 305
setting properties, 302–303
third-party, 303

Add-Ins dialog box, 307
ampersand (&), as concatenation operator, 56
And logical operator, 87
apostrophe (‘), 43, 48
application events, 283
applying

Chart Wizard settings to charts, 262–263
templates to charts, 263

Areas collection, 179
arguments, 45, 72
arrays

assigning content to cells, 79
converting lists to, 80–81
declaring, 76–79
functions, 80–81, 326–333
redimensioning, 82–83
resizing, 81

Assign Macro dialog box, 25
assigning

array contents to cells, 79
digital signatures to macros, 10–11
file properties, 311
macros

to buttons, 25
to pictures, 15
to Quick Access toolbar, 16–17
to Ribbon tab, 17

numbers to cells, 59
values

to Form Controls, 22–23
to user-defined arrays, 84

asterisk (*) wildcard character, 139
attributes

font, 177
XML, 308

23_591598-bindex.indd 34223_591598-bindex.indd 342 6/11/10 2:03 PM6/11/10 2:03 PM

343

B
Boolean, 52
borders, adding, 208–209
Break mode (VBE), 123
breakpoints, debugging procedures with inserted, 122–123
Button control, 21
buttons, assigning macros to, 25
ByVal keyword, 289

C
Call keyword, 102–103
calling

custom dialog boxes from procedures, 234–235
procedures, 102–103

capturing input from custom dialog boxes, 236–239
case sensitivity (keyboard shortcuts), 14
cell ranges

combining multiple, 178–179
copying and pasting, 198–199
copying to multiple sheets, 206–207
cutting and pasting, 196–197
deleting, 182–183
filling automatically, 204–205
hiding, 184–185
inserting, 190–191
monitoring, 298–299
referencing, 50–51
resizing, 188–189
setting

column width, 192–193
row height, 194–195

cells
adding comments to, 202–203
assigning

array contents to, 79
numbers to, 59

inserting values in, 191
linking to controls, 22
referencing, 50–51
selecting, 175
values

finding, 210–211
finding and replacing, 212–213

Change Chart Type dialog box, 263
changing

case of strings, 118–119
control property values, 233
object properties, 27, 68–69
object properties with With statement, 68–69
project names, 32

chart sheets, 258–259, 261
chart text, formatting, 266–267
Chart Wizard, 262–263
charts

adding
data series to, 264–265
data tables to, 270–271

applying
Chart Wizard settings to, 262–263
templates to, 263

creating multiple chart type charts, 268–269
embedding in worksheets, 260–261
events, 281
protecting, 168–169
saving designs as templates, 263

Check Box control, 21
check boxes, 257
clearing print area, 171
closing workbooks, 146–147
code

commenting, 48–49
indenting, 97
labeling, 101
stepping through, 126–127

Code window (VBE), 26, 31, 34–35
color (font), 69
columns

converting, 214–215
setting width, 192–193

combination chart, 268
combining multiple ranges, 178–179
comment lines, 43
commenting (code), 48–49
comments, adding to cells, 202–203
comparisons, creating, 86
concatenation, 56
Conditional Sum Wizard, 304
constants. See also specific constants

creating, 60–61
defined, 45

23_591598-bindex.indd 34323_591598-bindex.indd 343 6/11/10 2:03 PM6/11/10 2:03 PM

INDEX

344

customUI.xml file
adding to workbook, 252–253
creating, 250–251

cutting and pasting cell ranges, 196–197

D
Data Analysis Toolpak, 304
data series, 264–265
data tables, 270–271
data types, 52, 55, 84–85, 327–328
date

calculations, 112–113
formatting expressions of, 114–115
functions, 328
retrieving, 110–111

deactivating events, 293
debugging procedures

with inserted breakpoints, 122–123
with Watches window, 124–125

declaration statement, 308
declaring

arrays, 76–79
variables, 52, 54–55

decrementing counter variables, 93
defining lists as tables, 228–229
deleting

cell ranges, 182–183
elements from XML files, 317
files, 150–151
folders, 151
macro assignments, 25
macros, 16, 18–19, 38
sheets, 154–155
watches, 125

delimiter, 214
Design mode (VBE), 123
dialog boxes. See also specific dialog boxes

common, 75
custom

calling from procedures, 234–235
capturing input from, 236–237
creating, 230, 232–233

Content Type.xml file, 312
controls. See also specific controls

events, 282
linking cells to, 22
properties of, 233

converting
columns, 214–215
lists to arrays, 80–81

copying
ranges to multiple sheets, 206–207
sheets, 158–159

copying and pasting cell ranges, 198–199
creating

add-ins, 300–301
chart sheets, 258–259
charts with multiple chart types, 268–269
check boxes, 257
comparisons, 86
constants, 60–61
customUI.xml file, 250–251
dialog boxes, custom, 230, 232–233
digital signatures, 7
Do Until loops, 90–91
files, 310
For Next loops, 92–93
forms, 33
functions, 46–47
groups, 226–227, 279
If Then Else statements, 96–97
keyboard shortcuts, 14
macros, 19
object variables, 66–67
PivotTables, 272–273
range names, 186–187
Select Case statements, 98–99
Sub procedures, 44–45
subtotals, 224–225
toggle buttons, 257
user-defined data types, 84–85
UserForm controls, custom, 242–243
UserForm templates, 244–245
workbooks, 148–149
XML maps, 316–317

current region, 198

23_591598-bindex.indd 34423_591598-bindex.indd 344 6/11/10 2:03 PM6/11/10 2:03 PM

345

displaying built-in dialog boxes, 74–75
object methods, 72–73
overview, 62–63

Excel Object Model Reference, 64–65
Excel Options dialog box, 17, 304–305
executing
For In Each loops, 94–95
macros, 15
procedures

at specific times, 294–295
when keys are pressed, 296–297

exponential (^), as arithmetic operator, 58–59
Export File dialog box, 39
exporting

modules, 39
XML files using Excel, 318–319

expression, 45, 128–129
Extensible Markup Language. See XML (Extensible Markup

Language)

F
fields, adding to PivotTables, 274–275
file handling functions, 329
file handling statements, 324
files. See also specific files

add-in, 301
assigning properties, 311
creating, 310
customUI.xml

adding to workbook, 252–253
creating, 250–251

deleting, 150–151
opening, 138–139, 310–311
saving, 310
saving sheets to, 164–165
text, 136–137
viewing content of, 311
XML (Extensible Markup Language)

exporting using Excel, 318–319
importing using Excel, 318–319
importing using VBA, 322–323
loading using VBA, 320–321
opening as tables, 314–315
overview, 310–313

displaying built-in, 74–75
events, 282
validating input from, 240–241

Digital Signature dialog box, 10
digital signatures

assigning to macros, 10–11
creating, 7

display options, 34–35
displaying

built-in dialog boxes, 74–75
Code windows, 31
subtotals and grand totals, 276–277
VBE windows, 30–31

distributing add-ins, 301
division (/), as arithmetic operator, 58–59
Do Until loops, 90–91
Do While loops, 88–89
docking feature (VBE), 30
docProps file, 313

E
Edit Name dialog box, 187
Edit toolbar, 49
element names, 309
embedding charts in worksheets, 260–261
equals (=) operator, 70–71, 86
errors, runtime, 130–133
Euro Currency Tools add-in, 304
evaluating expressions with Immediate window, 128–129
events

application, 283
chart, 281
control, 282
deactivating, 293
defined, 24, 64
dialog box, 282
UserForms, 239
workbook, 280–281
worksheet, 281

Excel Object model
changing object properties, 68–69
changing object properties with With statement, 68–69
comparing object variables, 70–71
creating object variables, 66–67

23_591598-bindex.indd 34523_591598-bindex.indd 345 6/11/10 2:03 PM6/11/10 2:03 PM

INDEX

346

H
hiding

cell ranges, 184–185
macros, 40–41
sheets, 160–161
UserForms, 235
VBE windows, 31

HTML (HyperText Markup Language), 308

I
Icons Gallery, 251
identifying integer variables, 85
imageMSO attributes, 251
Immediate window (VBE), 26, 128–129
Imp logical operator, 87
Import File dialog box, 39
importing

page files to toolbox, 243
XML files

using Excel, 318–319
using VBA, 322–323

incrementing counter variables, 93
indenting code, 97
infinite loop, 89
information functions, 330
input

capturing from custom dialog boxes, 236–239
validating from dialog boxes, 240–241

Insert Function dialog box, 47
inserting

cell ranges, 190–191
values in cells, 191

installing add-ins, 304–305
integer division (\), as arithmetic operator, 58–59
integer variables, 85
interaction functions, 331
interaction statements, 324
“Introducing the Office (2007) Open XML File Formats”

(Microsoft), 313
Is operator, 70–71

filling cell ranges, 204–205
filters, 220–223, 278
financial functions, 329–330
finding and replacing cell values, 210–213
fixed-length string, 57
folder handling functions, 329
folder handling statements, 324
folders, deleting, 151
font attributes, 177
font color, 69
For In Each loops, 94–95
For Next loops, 92–93
Form Controls

adding
macros to, 24–25
to worksheets, 20–21

assigning values to, 22–23
format function characters, 334–335
format function predefined formats, 335
formatting

chart text, 266–267
date expressions, 114–115
numeric expressions, 116–117

forms, creating, 33
functions

constants and characters, 333–335
creating, 46–47
date, 328
defined, 45, 104
VBA (Visual Basic for Applications), 80–81, 326–333

G
General Options dialog box, 135
grand totals, 276–277
greater than (>) operator, 86
greater than or equal to (>=) operator, 86
Group Box control, 21
groups

adding to tabs, 249
creating, 226–227, 279

23_591598-bindex.indd 34623_591598-bindex.indd 346 6/11/10 2:03 PM6/11/10 2:03 PM

347

hiding, 40–41
overview, 4–5
recording, 4, 8–9
running, 12–13
security, 5, 6, 13
setting security, 6
showing hidden, 41
updating, 42–43

Map XML Elements dialog box, 317
mapping, 316
Margin Indicator Bar (VBE), 34
mathematical functions, 331–332
Me keyword, 287
methods. See also VBA (Visual Basic for Applications)

defined, 63
object, 72–73

Microsoft Office Security Options dialog box, 11
Microsoft Visual Studio Tools, 3
minus sign (-), as arithmetic operator, 58–59
modifying macros, 42–43
modules

adding, 36–37
exporting, 39
removing, 38–39
renaming, 37
VBE, 27

monitoring cell ranges, 298–299
moving

sheets, 156–157
windows in VBE, 31

multidimensional arrays, 78–79
multiplication (*), as arithmetic operator, 58–59

N
navigating VBE with keyboard shortcuts, 29
nesting loops, 95
New Name dialog box, 187
not equal (<>) operator, 86
Not logical operator, 87
Nothing keyword, 71
numbers, 58–59
numeric expressions, formatting, 116–117

K
key combinations, 297
keyboard shortcuts

creating, 14
launching, 15
VBE navigation, 29

L
labeling code, 101
launching keyboard shortcuts, 15
less than (<) operator, 86
less than or equal to (<=) operator, 86
linking cells to controls, 22
lists

converting to arrays, 80–81
defining as tables, 228–229

loading
add-ins with VBA, 306–307
XML files using VBA, 320–321

Locals window (VBE), 26
locating workbooks, 144–145
locking projects from editing, 33
logical operators, 87
loops, nesting, 95. See also specific loops

M
Macro dialog box, 29
Macro Options dialog box, 14
Macro Security, 11
macros

adding to Form Controls, 24–25
assigning

to buttons, 25
digital signatures to, 10–11
to pictures, 15
to Quick Access toolbar, 16–17
to Ribbon tab, 17

creating, 19
deleting, 16, 18–19, 38
executing, 15

23_591598-bindex.indd 34723_591598-bindex.indd 347 6/11/10 2:03 PM6/11/10 2:03 PM

INDEX

348

performing
filters, 220–223
sorts, 172–173, 216–219

pictures, assigning macros to, 15
PivotTables

adding fields, 274–275
creating, 272–273
filtering, 278

plus sign (+), 56, 58–59, 107
pound signs (###) in cells, 197
precedence, order of, 59
printing sheets, 170–171
Procedure List Box (VBE), 26
procedures

calling, 102–103, 234–235
debugging, 122–125
defined, 36, 44, 45
executing

at specific times, 294–295
when keys are pressed, 296–297

running
before saving workbooks, 288–289
as workbook closes, 286–287
on workbook creation, 290–293
as workbook opens, 284–285

stepping through, 126–127
Sub, 44–45

processing runtime errors, 132–133
program flow statements, 325
Project Explorer (VBE), 26, 27
project properties, 32–33
Project Properties dialog box, 302–303
properties

add-in, 302–303
control, 233
defined, 63
file, 311
object, 27, 68–69
project, 32–33

Properties window (VBE), 26, 27, 37
protecting. See also security

charts, 168–169
worksheets, 166–167

O
Object Browser, 65
Object List Box (VBE), 26
object methods, 72–73
Object Model constants, 335–341
object properties, 27, 68–69
object variables, 66–67, 70–71
objects. See also Excel Object model

defined, 63
selecting, 231
setting font attributes for, 177

Open dialog box, 139
Open XML dialog box, 315
opening

add-in files, 301
files, 138–139, 310–311
locked projects, 33
Save As dialog box, 135
text files as workbooks, 136–137
VBE

with Macro dialog box, 29
Ribbon with, 28
windows, 30–31

workbooks, 134–135
XML files as tables, 314–315

operators
logical, 87
Mod, 58–59

options
adding to Ribbon, 254–257
display, 34–35

Options dialog box, 35
Or logical operator, 87
order of precedence, 59

P
package, 312
pages, adding to toolbox, 243
part, 312
password-protection, 32
pasting. See copying and pasting; cutting and pasting

23_591598-bindex.indd 34823_591598-bindex.indd 348 6/11/10 2:03 PM6/11/10 2:03 PM

349

replacing. See finding and replacing
resizing

arrays, 81
cell ranges, 188–189

retrieving date and time, 110–111
returning string portions, 120–121
Ribbon

adding options to, 254–257
customizing, 246–249
opening with VBE, 28
tab, 17

rows, setting height in cell ranges, 194–195
Run mode (VBE), 123
running

macros, 12–13
procedures

before saving workbooks, 288–289
as workbook closes, 286–287
on workbook creation, 290–293
as workbook opens, 284–285

runtime errors, 130–133

S
Save As dialog box, 135
saving

chart designs as templates, 263
files, 310
sheets to files, 164–165
workbooks, 5, 140–143

schemas (XML), 309
security (macro), 5, 6, 13. See also protecting
selecting

cells, 175
objects, 231

setting
add-in properties, 302–303
Chart Wizard, 262–263
display options for Code window, 34–35
font

attributes for objects, 177
color, 69

height of rows in cell ranges, 194–195
macro security, 6
print orientation, 171

Q
question mark (?) wildcard character, 139
Quick Access toolbar, 16–17
Quick Watch feature, 125

R
Radio Button control, 21
range names, 186–187
ranges (cell)

combining multiple, 178–179
copying and pasting, 198–199
copying to multiple sheets, 206–207
cutting and pasting, 196–197
deleting, 182–183
filling automatically, 204–205
hiding, 184–185
inserting, 190–191
monitoring, 298–299
referencing, 50–51
resizing, 188–189
setting

column width, 192–193
row height, 194–195

reassigning key combinations, 297
Record Macro dialog box, 8
recording macros, 4, 8–9
redimensioning arrays, 82–83
references, absolute compared with relative, 9
referencing cells and ranges, 50–51
relative reference, 9
_rels file, 312
removing

add-ins, 305
breakpoints, 123
data series, 265
modules, 38–39
UserForms from memory, 235

Rename dialog box, 17, 249
renaming

modules, 37
projects, 32
sheets, 162–163
tabs, 243

23_591598-bindex.indd 34923_591598-bindex.indd 349 6/11/10 2:03 PM6/11/10 2:03 PM

INDEX

350

tabs
adding groups to, 249
renaming, 243
Ribbon, 17

tags
empty, 308
XML, 308

templates
applying to charts, 263
creating UserForm, 244–245
saving chart designs as, 263

text (chart), 266–267
text files, opening as workbooks, 136–137
third-party add-ins, 303
time

calculations, 112–113
functions, 328
retrieving, 110–111
tracing, 126

toggle buttons, 257
toggling breakpoints, 123
toolbars

Edit, 49
Quick Access, 16–17
VBE, 129

toolbox, adding pages to, 243
tracing (time), 126
Trust Bar, 11
Trust Center, 303

U
underscore (_), 105
Unhide dialog box, 161
unhiding workbooks, 18
Unprotect Sheet dialog box, 167
updating macros, 42–43
user-defined data types, 84–85
UserForms

calling custom dialog boxes from procedures, 234–235
capturing input from custom dialog boxes, 236–239
creating

custom controls, 242–243
custom dialog boxes, 232–233
templates, 244–245

properties for projects, 32–33
width of columns in ranges, 192–193

sheets (worksheets)
adding, 152–153
adding Form Controls to, 20–21
chart, 258–259, 261
copying, 158–159
copying cell ranges to multiple, 206–207
deleting, 154–155
embedding charts in, 260–261
events, 281
hiding, 160–161
moving, 156–157
printing, 170–171
protecting, 166–167
renaming, 162–163
saving to files, 164–165
sorting by name, 172–173

showing hidden macros, 41
sorting, 172–173, 216–219
special characters, 297
Spinner control, 21
splitting Code windows, 31
statements, VBA (Visual Basic for Applications), 324–326
stepping through code, 126–127
strings

changing case of, 118–119
defined, 36
fixed-length, 57
manipulation functions, 332–333
returning portions, 120–121
working with, 56–57

structure (XML), 309
subtotals

creating, 224–225
displaying, 276–277

T
Tab Order dialog box, 245
tables

defining lists as, 228–229
opening XML files as, 314–315

23_591598-bindex.indd 35023_591598-bindex.indd 350 6/11/10 2:03 PM6/11/10 2:03 PM

351

removing modules, 38–39
renaming modules, 37
toolbar, 129

vbFirstWeekOfYear constants, 334
vbMsgBoxStyle constants, 333
VeriSign, Inc., 7
viewing

file contents, 311
VBE toolbar, 129

Visual Basic Editor. See VBE (Visual Basic Editor)
Visual Basic for Applications. See VBA (Visual Basic for

Applications)
Visual Studio Tools (Microsoft), 3

W
Watches window (VBE), 26, 124–125
With statement, 68–69
WithEvents keyword, 290–291
workbooks

activating, 145
adding customUI.xml file to, 252–253
closing, 146–147
creating, 148–149
events, 280–281
locating, 144–145
opening, 134–135
opening text files as, 136–137
running

procedures before saving, 288–289
procedures on closing, 286–287
procedures on creation of, 290–293
procedures on opening, 284–285

saving, 5, 140–143
unhiding, 18

worksheet functions. See functions
worksheets

adding, 152–153
adding Form Controls to, 20–21
chart, 258–259, 261
copying, 158–159
copying cell ranges to multiple, 206–207
deleting, 154–155
embedding charts in, 260–261
events, 281
hiding, 160–161

events, 239
hiding, 235
overview, 230–231
toolbox, 231
validating input from dialog boxes, 240–241

V
validating input from dialog boxes, 240–241
values

assigning
to Form Controls, 22–23
to user-defined arrays, 84

control property, 233
finding, 210–211
finding and replacing, 212–213
inserting in cells, 191

variable declaration statements, 326
variables

declaring, 52, 54–55, 326
defined, 45
names, 52
object

comparing, 70–71
creating, 66–67

scope of, 53
VBA (Visual Basic for Applications)

function constants and characters, 333–335
functions, 326–333
importing XML files with, 322–323
loading

add-ins with, 306–307
XML files using, 320–321

overview, 2–3
statements, 324–326

vbDayOfWeek constants, 334
VBE (Visual Basic Editor)

accessing, 27
activating, 19, 28–29
adding modules, 36–37
creating macros with, 19
Edit toolbar, 49
hiding windows, 31
opening windows, 30–31
overview, 10, 26–27

23_591598-bindex.indd 35123_591598-bindex.indd 351 6/11/10 2:03 PM6/11/10 2:03 PM

INDEX

352

XlSheetVisibility constant values, 161
XlSortDataOption constant, 217–219
XlThemeColor constants, 209
XlYesNoGuess constants, 341
XML (Extensible Markup Language)

attributes, 308
exporting files using Excel, 318–319
files, 310–313
importing

files using Excel, 318–319
files using VBA, 322–323

loading files using VBA, 320–321
opening files as tables, 314–315
overview, 308–309
schemas, 309
tags, 308

XML maps, 316–317
XML script, 257
XML Source task pane, 319
Xor logical operator, 87

moving, 156–157
printing, 170–171
protecting, 166–167
renaming, 162–163
saving to files, 164–165
sorting by name, 172–173

X
xl file, 313
XlAautoFillType constant values, 205
XlBorderWeight constants, 340
XlChartType constants, 338–340
XlColumnDataType constants, 335
XlFileFormat constants, 336–337
XlLineStyle constants, 340
XlListObjectSourceType constant, 229
XlPasteSpecialOperation constants, 341
XlPattern constants, 341

23_591598-bindex.indd 35223_591598-bindex.indd 352 6/11/10 2:03 PM6/11/10 2:03 PM

23_591598-bindex.indd 35323_591598-bindex.indd 353 6/11/10 2:03 PM6/11/10 2:03 PM

23_591598-bindex.indd 35423_591598-bindex.indd 354 6/11/10 2:03 PM6/11/10 2:03 PM

23_591598-bindex.indd 35523_591598-bindex.indd 355 6/11/10 2:03 PM6/11/10 2:03 PM

There’s a Visual book
for every learning level. . .

Simplified
®

The place to start if you’re new to computers. Full color.

Teach Yourself VISUALLY™

Top 100 Simplified
®

 Tips & Tricks
Tips and techniques to take your skills beyond the basics. Full color.

Read Less–Learn More®

Get beginning to intermediate-level training in a variety of topics. Full color.

Wiley, the Wiley logo, the Visual logo, Master Visually, Read Less-Learn More, Simplified, Teach Yourself Visually, Visual Blueprint, and Visual Encyclopedia are trademarks or registered trademarks
of John Wiley & Sons, Inc. and or its affiliates. All other trademarks are the property of their respective owners.

• Computers
• Creating Web Pages
• Digital Photography

• Internet
• Mac OS

• Office
• Windows

• Digital Photography
• eBay
• Excel
• Google

• Internet
• Mac OS
• Office
• Photoshop

• Photoshop Elements
• PowerPoint
• Windows

• Access
• Bridge
• Chess
• Computers
• Crocheting
• Digital Photography
• Dog training
• Dreamweaver
• Excel
• Flash
• Golf

• Guitar
• Handspinning
• HTML
• iLife
• iPhoto
• Jewelry Making & Beading
• Knitting
• Mac OS
• Office
• Photoshop
• Photoshop Elements

• Piano
• Poker
• PowerPoint
• Quilting
• Scrapbooking
• Sewing
• Windows
• Wireless Networking
• Word

24_591598-badvert01.indd 35624_591598-badvert01.indd 356 6/11/10 2:03 PM6/11/10 2:03 PM

Master VISUALLY®

Your complete visual reference. Two-color interior.

. . .all designed for visual
learners—just like you!

Visual Blueprint™

Where to go for professional-level programming instruction. Two-color interior.

Visual Encyclopedia™

Your A to Z reference of tools and techniques. Full color.

Visual Quick Tips
Shortcuts, tricks, and techniques for getting more done in less time.
Full color.

For a complete listing of Visual books, go to wiley.com/go/visual

• 3ds Max
• Creating Web Pages
• Dreamweaver and Flash
• Excel
• Excel VBA Programming

• iPod and iTunes
• Mac OS
• Office
• Optimizing PC Performance
• Photoshop Elements

• QuickBooks
• Quicken
• Windows
• Windows Mobile
• Windows Server

• Ajax
• ASP.NET 2.0
• Excel Data Analysis
• Excel Pivot Tables
• Excel Programming

• HTML
• JavaScript
• Mambo
• PHP & MySQL
• SEO

• Ubuntu Linux
• Vista Sidebar
• Visual Basic
• XML

• Dreamweaver
• Excel
• Mac OS

• Photoshop
• Windows

• Crochet
• Digital

Photography
• Excel
• Internet

• iPod & iTunes
• Knitting
• Mac OS
• MySpace
• Office

• PowerPoint
• Windows
• Wireless

Networking

24_591598-badvert01.indd 35724_591598-badvert01.indd 357 6/11/10 2:03 PM6/11/10 2:03 PM

For more professional
instruction in a visual

format, try these.

For a complete listing of Visual Blueprint™ titles and other
Visual books, go to wiley.com/go/visual
Wiley, the Wiley logo, the Visual logo, Read Less-Learn More, and Visual Blueprint are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates.
All other trademarks are the property of their respective owners.

All designed for visual learners—just like you!

978-0-470-59161-1 978-0-470-55651-1

978-0-470-34520-7

Read Less–Learn More®

24_591598-badvert01.indd 35824_591598-badvert01.indd 358 6/11/10 2:03 PM6/11/10 2:03 PM

E
xcel

® Program
m

ing

Visual
Blueprint

Programming/Microsoft Programming

$29.99 USA
$35.99 CAN
£21.99 UK www.wiley.com/go/excel2010programmingvb

Excel® Programming 3rd Edition

• High-resolution screen shots
demonstrate each task

• Succinct explanations walk you
through step by step

• Two-page lessons break big topics
into bite-sized modules

• “Apply It” and “Extra” sidebars
highlight useful tips

Your visual blueprint™ for
creating interactive spreadsheetsEtheridge

Welcome to the only guidebook series that takes a visual approach to professional-level computer
topics. Open the book and you’ll discover step-by-step screen shots that demonstrate over 140 key
Excel programming techniques, including:

• Assigning digital signatures to macros

• Using the Visual Basic Editor

• Understanding variable and data types

• Declaring a multidimensional array

• Creating If Then Else statements

• Working with workbooks and files

• Adding comments to a cell

• Creating and filtering PivotTables

• Automating procedures with Excel events

• Importing and exporting XML files

Excel
®

 Programming
3rd Edition

Microsoft®

M
icrosoft

®

3rd Edition

Denise Etheridge
Microsoft®

Companion Web site features usable
code from the book and sample macros

http://www.wiley.com/go/excel2010programmingvb

	Excel® Programming: Your visual blueprint™ for creating interactive spreadsheets, 3rd Edition
	TABLE OF CONTENTS
	Chapter 1: USING MACROS AND FORM CONTROLS
	Introducing Excel Programming
	Introducing Macros
	Set Macro Security
	Create a Digital Signature
	Record a Macro
	Assign a Digital Signature to a Macro
	Run a Macro
	Create and Launch a Keyboard Shortcut
	Assign a Macro to the Quick Access Toolbar
	Delete a Macro
	Add a Form Control to a Worksheet
	Assign Values to a Form Control
	Add a Macro to a Form Control

	Chapter 2: USING THE VISUAL BASIC EDITOR
	Introducing the Visual Basic Editor
	Activate the Visual Basic Editor
	Open Visual Basic Editor Windows
	Set Properties for a Project
	Set Display Options for the Code Window
	Add a New Module
	Remove a Module
	Hide a Macro
	Update a Macro

	Chapter 3: INTRODUCING VISUAL BASIC FOR APPLICATIONS
	Create Sub Procedures
	Create Functions
	Comment Your Code
	Reference Cells and Ranges
	Understanding Variables and Data Types
	Declare Variables
	Work with Strings
	Work with Numbers
	Create a Constant

	Chapter 4: INTRODUCING THE EXCEL OBJECT MODEL
	Discover the Excel Object Model
	Access the Excel Object Model Reference
	Create an Object Variable
	Change the Properties of an Object
	Compare Object Variables
	Using an Object Method
	Display a Built-in Dialog Box

	Chapter 5: UNDERSTANDING ARRAYS
	Declare an Array
	Declare a Multidimensional Array
	Convert a List to an Array
	Redimension an Array
	Create a User-Defined Data Type

	Chapter 6: CONTROLLING PROGRAM FLOW
	Create Comparisons
	Make Use of Logical Operators
	Employ Do While Loops
	Create Do Until Loops
	Create For Next Loops
	Execute For Each In Loops
	Create If Then Else Statements
	Construct Select Case Statements
	GoTo a Named Location
	Call a Procedure

	Chapter 7: USING EXCEL WORKSHEET FUNCTIONS
	Work with Excel Worksheet Functions
	Work with a MsgBox Function
	Using the InputBox Function
	Retrieve the Current Date and Time
	Perform Date and Time Calculations
	Format a Date Expression
	Format a Numeric Expression
	Change the Case of a String
	Return a Portion of a String

	Chapter 8: DEBUGGING MACROS
	Debug a Procedure with Inserted Breakpoints
	Using the Watches Window to Debug a Procedure
	Step through a Procedure
	Using the Immediate Window
	Resume Execution When an Error Is Encountered
	Process a Runtime Error

	Chapter 9: WORKING WITH WORKBOOKS AND FILES
	Open a Workbook
	Open a Text File as a Workbook
	Open a File Requested by the User
	Save a Workbook
	Save a Workbook in a Format Specified by the User
	Determine if a Workbook Is Open
	Close a Workbook
	Create a New Workbook
	Delete a File

	Chapter 10: WORKING WITH WORKSHEETS
	Add a Sheet
	Delete a Sheet
	Move a Sheet
	Copy a Sheet
	Hide a Sheet
	Change the Name of a Sheet
	Save a Sheet to Another File
	Protect a Worksheet
	Protect a Chart
	Print a Sheet
	Sort Sheets by Name

	Chapter 11: DEFINING RANGES
	Using the Range Property
	Using the Cells Property
	Combine Multiple Ranges
	Using the Offset Property
	Delete a Range of Cells
	Hide a Range of Cells
	Create a Range Name
	Resize a Range
	Insert a Range
	Set the Width of Columns in a Range
	Set the Height of Rows in a Range

	Chapter 12: WORKING WITH CELLS
	Cut and Paste Ranges of Cells
	Copy and Paste Ranges of Cells
	Using Paste Special Options When Pasting
	Add Comments to a Cell
	Automatically Fill a Range of Cells
	Copy a Range to Multiple Sheets
	Add a Border
	Find Specific Cell Values
	Find and Replace Values in Cells

	Chapter 13: WORKING WITH LISTS
	Convert a Column of Text into Multiple Columns
	Perform a Sort
	Perform a Filter
	Perform an Advanced Filter
	Create Subtotals
	Create Groups
	Define a List as a Table

	Chapter 14: CREATING DIALOG BOXES AND CUSTOMIZING THE RIBBON
	UserForm Basics
	Create a Custom Dialog Box
	Call a Custom Dialog Box from a Procedure
	Capture Input from a Custom Dialog Box
	Validate Input from a Dialog Box
	Create Custom UserForm Controls
	Create a UserForm Template
	Customize the Ribbon
	Create a CustomUI.xml File
	Add a CustomUI.xml File to a Workbook
	Add Additional Options to the Ribbon

	Chapter 15: WORKING WITH CHARTS
	Create a Chart Sheet
	Embed a Chart in a Worksheet
	Apply Chart Wizard Settings to a Chart
	Add a New Data Series to a Chart
	Format Chart Text
	Create Charts with Multiple Chart Types
	Add a Data Table to a Chart

	Chapter 16: WORKING WITH PIVOTTABLES
	Create a PivotTable
	Add Fields to a PivotTable
	Display Subtotals and Grand Totals
	Filter a PivotTable
	Create Groups

	Chapter 17: AUTOMATING PROCEDURES WITH EXCEL EVENTS
	Understanding Excel Events
	Run a Procedure as a Workbook Opens
	Run a Procedure before Closing a Workbook
	Run a Procedure before Saving a Workbook
	Run a Procedure When Excel Creates a Workbook
	Execute a Procedure at a Specific Time
	Execute a Procedure When You Press Keys
	Monitor a Range of Cells for Changes

	Chapter 18: BUILDING ADD-INS
	Create an Add-In
	Set Add-In Properties
	Install Add-Ins
	Using VBA to Load Add-Ins

	Chapter 19: UNDERSTANDING XML
	Introducing XML
	Understanding Excel XML Files
	Open an XML File in Excel as a Table
	Create an XML Map
	Import and Export XML Files Using Excel
	Load XML Files Using VBA
	Import XML Files Using VBA

	Appendix
	VBA and Excel Object Model Quick Reference

	INDEX

