{‘_‘) Read Less-Learn More* Denise Etheridge

Visual

Microsoft’

Excel Programming

3rd Edition

Companion Web site features usable
code from the book and sample macros

Your visual blueprint™ for
creating interactive spreadsheets

Your visual blueprint™ for creating
interactive spreadsheets, 3rd Edition

by Denise Etheridge

WILEY
Wiley Publishing, Inc.

Excel® Programming: Your visual blueprint™ for
creating interactive spreadsheets, 3rd Edition

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Published simultaneously in Canada
Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400, fax 978-646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011,
fax 201-748-6008, or online at www.wiley.com/go/permissions.

Library of Congress Control Number: 2010929410
ISBN: 978-0-470-59159-8
Manufactured in the United States of America

0 9 87 6 5 43 21

Trademark Acknowledgments

Wiley, the Wiley Publishing logo, Visual, the Visual logo, Visual Blueprint,
Read Less - Learn More and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates.
Microsoft and Excel are registered trademarks of Microsoft Corporation in
the United States and/or other countries. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER
AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE
SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES
LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

FOR PURPOSES OF ILLUSTRATING THE CONCEPTS AND TECHNIQUES
DESCRIBED IN THIS BOOK, THE AUTHOR HAS CREATED VARIOUS
NAMES, COMPANY NAMES, MAILING, E-MAIL AND INTERNET
ADDRESSES, PHONE AND FAX NUMBERS AND SIMILAR
INFORMATION, ALL OF WHICH ARE FICTITIOUS. ANY RESEMBLANCE
OF THESE FICTITIOUS NAMES, ADDRESSES, PHONE AND FAX
NUMBERS AND SIMILAR INFORMATION TO ANY ACTUAL PERSON,
COMPANY AND/OR ORGANIZATION IS UNINTENTIONAL AND
PURELY COINCIDENTAL.

Contact Us

For general information on our other products and services please contact
our Customer Care Department within the U.S. at 877-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.

For technical support please visit www.wiley.com/techsupport.

The Roman Theater of Aspendos

Built when Marcus Aurelius was Emperor of Rome (161-180
A.D.), this magnificent theater, faithful to the Greek tradition,
nestles into the side of a hill. It is among the best preserved of
its era, and concerts and operas are still performed upon its
stage today. Its acoustics are quite literally legendary. A
favorite story tells how the architect, Zeno, won the king’s
daughter by creating this masterpiece in which a word
murmured from the stage could be heard throughout the
arena.

Learn more about
Aspendos and its
artifacts in
Frommer’s Turkey,
6th Edition (ISBN
978-0-470-59366-
0), available
wherever books are
sold or at www.
Frommers.com.

Disclaimer

In order to get this information to you in a timely manner, this book was
based on a pre-release version of Microsoft Office 2010. There may be
some minor changes between the screenshots in this book and what you
see on your desktop. As always, Microsoft has the final word on how
programs look and function; if you have any questions or see any
discrepancies, consult the online help for further information about the
software.

Sales

WILEY Contact Wiley
at (877) 762-2974
or (317) 572-4002.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://www.Frommers.com
http://www.Frommers.com

Executive Editor
Jody Lefevere

Sr. Project Editor
Sarah Hellert

Technical Editor
Namir Shammas

Copy Editor
Scott Tullis

Editorial Director
Robyn Siesky

Editorial Manager
Rosemarie Graham

Business Manager
Amy Knies

Sr. Marketing Manager
Sandy Smith

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

(Credits AR TR
N

Sr. Project Coordinator
Kristie Rees

Graphics and Production Specialists
Andrea Hornberger
Jennifer Mayberry
Heather Pope

Quality Control Technician
Jessica Kramer

Proofreader
Sossity R. Smith

Indexer
Slivoskey Indexing Services

Media Development Project Manager
Laura Moss

Media Development Assistant Project
Manager
Jenny Swisher

Media Development Associate
Producer
Marilyn Hummel

Screen Artists
Ana Carrillo
Jill A. Proll
Ron Terry

Illustrator
Cheryl Grubbs

Aboutthe Author

Denise Etheridge is a certified public accountant as well as the president and founder of Baycon Group,
Inc. She publishes Web sites and authors computer related books. You can visit www.baycongroup.com to
view her online tutorials.

Writing this book was a pleasure. | would like to thank all of the people who assisted me. | give special
thanks to Jody Lefevere, for allowing me this privilege; Sarah Hellert, for keeping things on track; Namir
Shammas, for his technical review; and Scott Tullis, for his copy review.

(N]

This book is dedicated to Raquel Etheridge.

L=

Who This Book Is For @ Extra or Apply It

This book is for advanced computer users who want /An Extra section provides additional information

to take their knowledge of this particular technology / about the preceding task — insider information and

or software application to the next level. tips for ease and efficiency. An Apply It section takes
the code from the preceding task one step further

The Conventions in This Book and allows you to take full advantage of it.

@ Steps @ Bold

This book uses a step-by-step format to guide you Bold type shows text or numbers you must type.
easily through each task. Numbered steps are .

actions you must do; bulleted steps clarify a point, e Italics

step, or optional feature; and indented steps give Italic type introduces and defines a new term.

you the result.

@ Courier Font
@ Notes Courier font indicates the use of scripting

Notes give additional information — special language code such as statements, operators, or
conditions that may occur during an operation, a functions, and code such as objects, methods, or
situation that you want to avoid, or a cross properties.

reference to a related area of the book.

© Icons and Buttons

Icons and buttons show you exactly what you need
to click to perform a step.

you apply the macro.

Apply Chart Wizard { i Your chart before = ==

Settings to a Chart

hen writing VBA code, you can use the Specify a value of 1 to 10 for the Format parameter. The

Chartii zard method o format or reformat Format parameter applies one of VBA' built-in formats.

a chart quickly. The method has 11 optional The format that it uses depends on the chart type you
parameters that enable you to set chart properties. The select. The 1ot 3y parameter tells VBA whether the
following is the syntax: data series s in ows or columns. Assign the plotay
parameter x1rows if the data series is in rows. Assign

expression. Chartwizard (Source, Gallery,
. b it x1cotumns if the data series is in columns.

Format, PlotBy, CategoryLabels, SeriesLabels,

o)
=
5]

=t
<}
=
“l
s
S
2
25
&

(]
=
o
=
]
=3
@

HasLegend, Title, CategoryTitle, valueTitle, Assignan integer value to the CategoryLabels and
Extraritie) Seriestabels parameters to indicate the number of
Use the Source parameter to specify or modify the chart's TOWS or columns in the category or series that have
data source. When you are working with a chart sheet, labels. Assign the 1astegena parameter the value True Your chart after you
you must specify the name of the worksheet that contains ~if you want your chart to have a legend. apply the macro.
the data source. Use the Gal1lery parameter to specify Use the it1e parameter to assign a it to your chart, the Your macro changes N
the chart type. Assign one of the X1ChartType CONStant CategoryTitle parameter to assign a title to the axis that oo
values to indicate the desired chart type. See the appendix displays categories, and the valueritLe parameter to assign DR —
for a list of x1chartType constants. atitle to the axis that displays values. For a 3-D chart, use il
the Exrari t1e parameter to assign a tide to your depth
; TS i axis. You must set any additional properties individually. i _ a -
n_}o Greate a chast object = mnn e ——
variable, [— . .
" seieaers n cneet<—)
@ setthe chart object St Bkl 8 Theaark et Ereaet e Mastity stes D) — =,
variable to the chart you headaod = g
want to modify. el ~
® The name of the chart

“1~'When working in Excel, once you have your chart designed exactly the way you want it, you can save your design as
2 template. You can also use VBA to save your design as a template.

Q © crste === - — e
commant B Bkl e &y Chart Set SalesChart = ThisWorkbook.Charts("Monthly Sales")
@ set your parameters. v S i Sateachare. _
., SaveChartTenplate (*Sales Chart Template®)
@ Press AltsF11 to switch End sub
from the VBE to Excel,
and run the macro. -0 To apply your template to an existing chart, in Excel, click your chart. The Chart tools become available. Click the
Design tab. Click Change Chart Type in the Type group. The Change Chart Type dialog box appears. Click
Templates, click your template, and then click OK. Excel applies your template to your chart.
LT

TABLE OF CONTENTS

HOWTOUSETHISBOOK 0V

1 USING MACROS AND FORM CONTROLS 2
Introducing EXCel PrOgramming.........cccveerrvveerveerveenruresnveenseesnseessueesseesssaesssseenns 2
INEEOAUCING MACIOS ..vvvenvvenirieiieriieeieeitesitesitestteeiteeiteenteenteenseensaessaensresssesnsesssesnsenns 4
SEE MACTO SECULILY .ovvveeerurrreeeruriieerniiiteeniteeeeniieeeesiteeeestreeeesmreeesssmreeessmmueeessmneeesssne 6
Create a Digital SIZNATULEcocueruerieriieiieiieniiintterterte et eee 7
RECOTA @ MACIO ...evveeniieniieiiieiienteeiieettenttenieenteesitesateeateenueeueenbeenbeenseesueesmeeenseenneens 8
Assign a Digital Signature t0 @ MaACIO.....ccvverveerrrreerveersvrersreenveeniseesssueesueesseens 10
J 80D ¢ B T =T (o 12
Create and Launch a Keyboard SNOTTCULeeevrerrireeriieerreeniieeeriieesieenneessraennns 14
Assign a Macro to the Quick Access TOOIDArceovvveerieirieeniieinieenieerieeenne 16
DEIELE @ IMIACTO ..vvvveeeeevrreeeirieeeeirreesetreeeasasreeeansaeeessseeesssseesssssaeesessseessnssssessnsssees 18
Add a Form Control t0 @ WOTKSNEEL.........cevvverriveerieeriieeniieeniieeieeenireenreesineennnes 20
Assign Values to @ FOrm CONLIOLeeuverriierieerniieenieenieennieeenreenieessneenueenneens 22
Add a Macro to @ FOrm CONLIOL........coueruerieeieriieieenieeniienitenitenitesiresiresieeeeeneees 24

2 USING THE VISUAL BASICEDITOR 26
Introducing the Visual Basic EAItOT..........cccueeierriirriiiniiinieniienienieeieeiesie e 26
Activate the Visual Basic EQITOr......cccuvieervreerriiieeriiieeeniiieeeniieeessrieesenrreesnnees 28
Open Visual Basic EAitor WindOWSc.ceovveerieirniieeniiennieenieenieeenieeenveesveennns 30
Set PrOPerties fOr @ PTOJECE.......cveerveerieerirerireeieereereeteenieeseesseenseenseensuessesnsesnnes 32
Set Display Options for the Code WindOW..........cceevrvverrvernreeriieerriueeniveeniveeniveennns 34
Add @ NEW MOAUIEeouveeniieiieiieniieniieriteeiteeiteeteeie et enteesitesbeesbtesiteseaesaaesneeennees 36
ReMOVE @ MOAUIE ...c...eiiiiiiiiiiiiiiterierteetcetcee ettt sttt st en 38
HIA@ @ MACTO 1. uvvvveeeiiiieeiiiieeeeiireeesiteeeesitreeenaraeesnnssaeesnssseessnssseessssssessnssssessnsssees 40
UPAALE @ MACIO . .cueveeeuieieiieeniieeeiteenittesiteeeieeeniteesiteeeteeenbaeesateesnbeeensneennseesnseeensees 42

3 INTRODUCING VISUAL BASIC FOR
APPLICATIONS. ittt iieeee. .. 44

CIEALE SUD PIOCEAULIES ..vvvvvvvvvvrereireiireeieeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeseeeeeeeeenaaaens 44
CIEALE FUINCHIONIS ..vvvvvvvvvvirrerrrrireierrertrsrrsrrrrrrrrerseessssseseeseeseeeeeeeeeeseeeeseeseseesesaeesaaaees 46
COMMENE YOUL COUE...oeeeiiieenrrrieeeeeeeeeirreeeeeeeeeirrreeeeeeeeennrrreeeseesesnnrrreseeeennsnrsreeens 48
Reference Cells and RANGESceevveeriveerreerreerniieenueenueessnesnseesiseesssneesuessseens 50
Understanding Variables and Data TYPESccvveervveerveerrrreesveerveensveesssueesueesseens 52
DEClare VATADIESccvvvvvviieeeeeeiiiieeeeeeeeeeiieeeeeeeeeeetttre e e e eeeeaaereeeeeeeennaarreeeeeesennnnes 54

WOTK WIth SEINESeeuveeiieiieniienieeieeteee ettt ettt et sare et e esaeesbeeae 56

WOTK WIth NUINIDEIS. ...ceeeeeeeeeeeeeeeeeteeeeeeeeneevveee e veeeeeeeeeeeeeeeeseeeenesesenees 58

(0 (= 1 B 0] 4 1] 721 0 LY S 60
4 INTRODUCING THE EXCEL OBJECT MODEL..... 62
Discover the EXcel Object MOlcc.eevueeriienieniiniishienierieeieeieeieeieenieesiee e 62
Access the Excel Object Model Reference..........ooveeeivveeierniennieenieenieenieenieeneennnes 64
Create an ODbJect Variablec.cevvveeerieiniieriiieiniieendeerieeeieeesieeesieesieeeiaeesieeenas 66
Change the Properties of an ODJECEccvevvverrieeriieriiierieniieeteeteeteeeeereenieenieennnes 68
Compare ODJECt VariabIes........cc.veervvierieeriireriiieeniieenieenieesniaeensneenueessnesnneesneenns 70
Using an ODJject MEtNOM.vevvvvierieerireeniieeniieeieeebireesreesnresssnesnsneessaesseeenseees 72
Display a Built-in Dialog BOX........ccueervveeriueerrrreenreenieenureessueesneensseessseessseesseenns 74
S UNDERSTANDING ARRAYS 76
DECIAIE QI ATTAY ..vveeeuirrreeeirreerrirreeenireeeenureeessssaeesnssesbonsseesssssseesssssneessssseesssssees 76
Declare a Multidimensional ATTay...........cocveerveerieernieetiveenieenieeeneeesieesieeeneees 78
Convert @ LiSt 0 @ ATTAY ..ecovvveeerrureeennirieeenirreerniieeeenniuebessmeeeessmmreeessmmeeesssmeeeens 80
REdIMENSION AN ATTAY ..vvveervrrerirrerireenireennrennieeenireensueesseesstiesnseeessseesseesssueesneenns 82
Create a User-Defined Data TYPEcccvveervrerrrreenereenveerruressueisrreenueesnseessueesseenns 84
6 CONTROLLING PROGRAM FLOW. 86
Create COMPATISOISeveeerrrrrurrrireeeerrniierreeeeesannreereeeesssnsmrereeeeessnnmmeeneesiasesmmeeneees 86
Make Use 0f LOGICAl OPEIALOTSecuveruveeieeiieiieniieniieeireeienieeieeeeeneeenieeniessiaeennes 87
EMPloy DO WHle LOOPS.....c.eeieiimiiiiiiniieienieeiieieniietenteeieetesneennesuesneenesueeneenns 88
Create DO UNLl LOOPSvveevvrerieeriieeniieeniteniteeiteeniteesieeesreeenseeessseesmseesnsneessneenns 90
Create FOI NEXE LOOPS. .. uuuuuuiieiiiiiiiiiiiiiiiiiiiiiietieeireeereeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseens 92
EXecute FOr EACH TN LOOPS....ccoovverrireenireerireniireenireenireessresnsuesnsneesseessaesssueesseenns 94
Create If Then EISe StAteMENEScccueevveruerrieenieenieeniieniieniienienieeieeieenieenseennnes 96
Construct Select Case StAtEMENLScccuerverrieerieerieeniienienitenteneeeeeeieenieenseenenes 98
GOTO @ Named LOCALION ...c....eeruteeriieirieeriieenteeniieeeiteeniteeeteeebeeeneneesireesmneeeneee 100
Call @ PIOCEAUIE ...eeovvvveeeeirreeeeiieeeesiieeeeirteeeesteeeannraeesesraeessssseesssssseessssseessnsssees 102
7 USING EXCEL WORKSHEET FUNCTIONS. 104
Work with Excel Worksheet FUNCLONScc..eoververiiriernieenieeniieniieneeneeniennenne 104
Work with @ MSEBOX FUNCLONeevvveiiieeniieniieeniieeniteeniieenieeennaeenineenneesseesnns 106
Using the INPUtBOX FUNCHIOMN ...c.vvveevrerriieenieeeireenieenneeenireensreesssaesssnesnseesssaennns 108
Retrieve the Current Date and TiMecooceeveerierienienienienienieeeeeneeenieenieennee 110
Perform Date and Time Calculationscceeverieriieienieniennienieeieeneeeneeenieenee 112

Format a Date EXPIeSSION...cccouuueeerrurreeenriieerniieeeniireeeeniieeensireeeessmneeeesmneeessmnenes 114

TABLE OF CONTENTS

Format @ NUMETIC EXPIESSIONuvveerrrrririiieeeerenaiiirreeeeeennieereeeeessnnnmrnraeeeesssnnmnes 116
Change the Case 0f @ SNccevvrerrivierieeriieeiiieeireesiteeerreestreesreesreesseeenseees 118
Return a POrtion of @ StNG......c.eevvevieriirieniiiieeiieieeeeteteet e 120
8 DEBUGGING MACROSciiivenreeea.. 122
Debug a Procedure with Inserted Breakpointsccocveevveervieeeneeenveenneennne 122
Using the Watches Window to Debug a Procedureccocvevvvercuerueenueenueeneen. 124
Step through @ PrOCEAULE.c..veerveerireeniieeniieeeiieeniteenireesireeiaeenieeesreesnsnesnseees 126
Using the Immediate WINAOWeevrveerirernueenreeniieernireenueerneesnnesnseessseesnnns 128
Resume Execution When an Error Is Encountered...........ccocceeeevvenvenvenuennnenne 130
Process @ RUNGME EITOT ...cccoouviiiiniiiiimiiiiiiiiiiiiiieeeiiicc ettt 132
9 WORKING WITH WORKBOOKS AND FILES 134
Open @ WOTKDOOKceviiiriiieiiieiiieieeieeit ettt ettt ettt enaeenee 134
Open a Text File as @ WOIrKDOOKccocveviiniiniiiniiiniiiiiiiiieniienecneenresieee e 136
Open a File Requested by the USErccccueevieeriieriieenieeniieniieenieenieesieeeieees 138
SaVe @ WOTKDOOK.......cooutiriiiriiiiiieieiiceiectestcet ettt s 140
Save a Workbook in a Format Specified by the Userc.cceovveevveenireerivennnnen. 142
Determine if @ WOIrKDOOK IS OPEI.....cccveerrrerrireeririenieenireenieesiresssneensseessseesnnns 144
ClOSE @ WOTKDOOKeeniieiiiiiiiiiieiieeieeit ettt ettt st st e 146
Create @ NeW WOTKDOOKcccvvriiriiiiieriiiieeeiiieeeeiieeeeniieeeeiieeeseiveeesnnvaeeesnnnneens 148
DEIEE @ Fl@ ..eeoivviieeiiiieeeiiieeeciiee e ettt e eeiteeeeeiteeeenbaeeeennaaeessnsaeeeenbaeesensseeesnnees 150
10 WORKING WITH WORKSHEETS............. 1582
Add @ SREEL ..ottt s s 152
DELELE @ SHECEeovveeuieeniieiieiieiteiteeit ettt ettt ettt ettt seaesaeesnaeene 154
IMOVE @ SHEEE ..c.veneinieeiiieiteiteit ettt ettt ettt ettt sbae s saaesaaeene 156
COPY @ SHEEL .vveeuvvieiieeeiteeiteeriteeeteeetteesireessseessaessseessseesssaesssaeessseensseesseensseees 158
HIA@ @ SHEEL .vvvveeeeiiiieeeiiiee et e et e eeitt e e eeiiteeesebaeeseanaaeesnssbeeesnsnaesnssseeesnssees 160
Change the Name 0f @ SHEet........cc.coevviviinieiiniinieiininieieeeteieeeereteeieeenenn 162
Save a Sheet t0 ANOLher File........cccooeeriienieniiniiniinieiieceeeeeceesee e 164
Protect @ WOTKSREELc..covuieiiiiiiniiiniiiriieieeieeicccctece et 166
ProteCt @ CHATT c...eouveeiiieiieiieieeiteiteet ettt ettt 168
PrNE @ SHEEL ...cvveiiiiiiiieiieiieitet ettt ettt sttt st e 170
SOIt SNEELS DY NAINE.vveerireeeiieeiieeeiieerireerreeeseesssreenseeessaesseeessseesseesssessseees 172
11 DEFININGRANGESccivee... 174
Using the Range PrOPEILYcccuevveriiriieiiriirieeieeiieniienieeeieesresnesreeneenneeneens 174

m USING the CellS PIOPEILY.....ccovverrireeriieerireeniieeniieesieesnereesieesnsreesseeesseesnseessseeenns 176

Combine MUILIPIE RANZESvveevreervreerrrerrireenreenireenueenueesornesssneensseesseesnsseensees 178

Using the OffSet PLOPEILY....cciveevvreerireerreeeieeerireenveeniieeesdeeesueessseessneessseessseenns 180
Delete @ RANge Of CEIIScouveruiiemiieiieiieiieniierieeiteeeeee e dere ettt 182
Hide @ Range Of CellS.......cooueruieiieniieiieniienieeieeiteeieesfeeieeieesitesitesieesiresnnesaneens 184
Create @ RANGE NAIME........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeecbeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenens 186
RESIZE @ RANGE «.cooeeevivieeeeeeeiiiiieeee ettt e e eeiiiitee e b e eeiieeeeeeeeesnnnreaaeeeesennnnnnee 188
INSEIt @ RANGE «.oooeeiiieiiiiiiieeee e ettt eeeeeeeeeee 190
Set the Width of Columns in @ RANGEcccvveevvrerireeimieenieenieeerireenreesneesnsveennnes 192
Set the Height of ROWS iN @ RANGEeoveeveeiieniieniiiieeiieeieeieeieeieeieenieeieeeee 194
12 WORKINGWITHCELLS.................... 196
Cut and Paste Ranges of CellS.........cevuierieereenienieriieshienieeieeieeieeeeieeie e 196
Copy and Paste Ranges Of CellScc.eevveereenierierieesdenieeieeieeieeieeseeenieenseennns 198
Using Paste Special Options When Pasting..........cccceevctreniveenveenreeenneeniveennieennns 200
Add Comments 0 @ Cell.......coouieruieniirniienienienienieeieetc e eieente et nieestee e seneeae 202
Automatically Fill @ Range Of CElISc.eeevveerrureerieeriieeesiveenreenireeenineenveessseeenn 204
Copy a Range to MUILIPIE SHEELS.......cccverruverrrieeiieeriieenieesiereeireesreeereeenreennns 206
Add @ BOTAET ...vveeivvieeiiieeiieeeieeeieeeeieeesereeeteeeseeessreesseesssesssbeessseessseessseesseennns 208
Find Specific Cell VALUEScocvevveruieieniiriiienierieieniieienieeeee e sveeneesneenees 210
Find and Replace Values in CellScceeveerrieenieerniieenieeniieeieesieeesieeeireenees 212
13 WORKINGWITHLISTS it i it iie i i 214
Convert a Column of Text into Multiple COIUMNS........c.ccvveerveerrerrreerirerrrenrrereennss 214
PEIfOIIM @ SOTL....eeviiriiieiiiriiiriieiieeie ettt ettt sttt ettt e e b e b eee 216
PerfOrm @ FAlLETcoouiriieriirieiieeieeieeit ettt ettt ettt ebe e 220
Perform an Advanced Filterccooieviierienienieniinieeieeteeieeeeeee et 222
CIeate SUDTOTALS ...ccevvvieiriiieeeiiieeeeriteeeeiteeeeiieeeesebreeeetraeesentreeeessaaesesnsaeesnnsens 224
G2 GIFOUIES ooooocooc000000000000000000000000000000000000000ATACANOIVIVACATACACAOTVIVACAAACAN0IVIVO0AAAATT000T 226
Define @ LiSt @S @ TaDIecoueeueeiiniieiiienieienieeieienteeeesie st eaeesiesseeaesneene 228

14 CREATING DIALOG BOXES AND
CUSTOMIZING THERIBBON230

USEIFOIM BASICS ...vveeevveeriiiieiiiiiiieeiieeiieeeteeeiee et ettt et eeaneeenneesnneesneeenns 230
Create @ CUSLOM DIalOg BOX....cc.veerireerirerrireenreenieeeniueenineesssaesssneenseessseesnssesnsees 232
Call a Custom Dialog BoxX from a ProCedure...........cocveerveerrrverruveeniveeniveesnveennnes 234
Capture Input from a Custom Dialog BOX.......cceeervveeriveerveerireenriveenveessveesnnneennnes 236
Validate Input from a Dialog BOX......ccceeeterierieruenienierierieenieenieenieenieesnesnenns 240

Create Custom USEIFOIM CONLIOIS......uuvuuuuiieeeeeiiiiiieiieeeeeeeeeeeirieieeeeeeeeeerrnnnnnnnns 242

TABLE OF CONTENTS

Create a USErFOIm TEeMPIALEccoveervreerveerrrenireerrireenveenseesnsaeessseessseesseessseees 244
CUStOMIZE the RIDDOMcovviiviiiiiiieieiiiieee e e e e 246
Create @ CUStOMULXINL Fil€.....vvviiiiiioiiiiiiiieieeiiieeeeeeeeeeeeeeeeeeee e ee s 250
Add a CustomUILxml File to @ WOIrKDOOKcccoeeeeeeeeeeeneneieeieeerieiieviveevreennennns 252
Add Additional Options to the RIbDON......ccc.coeueeriienieniiniiniiniiricnieeieeieeieens 254
15 WORKING WITHCHARTS.................. 258
Create @ ChAIt SHEET........ccovevvvirieeeeeeeeireeee e e eeeerreeeeeeeeeernnrreeeeeeeenrnnees 258
Embed a Chart in @ WOIKSNEETvvveeeeeeiiiiiieeiieeiiiieeeee et eeeeinvrreeeeeeeaens 260
Apply Chart Wizard Settings to @ Chart.........cccveerevveerireerveeniieennreenveenveesnseeennns 262
Add a New Data SerieS t0 @ CHAIT.........ccovvvvrrrireeeeeiiiireeeeeeeeiiirreeeeeeeeonninneeeeeeens 264
FOIMAt CRAIT TEXE...covvvvvveeeeeeeeiiireeeeeeeeeittrreeeeeeessatrreeeeesessanereseessessrnrrresessennnes 266
Create Charts with Multiple Chart TYPEScccccovvervireierieenuienieneeniienienreeneenne 268
Add a Data Table t0 @ CRAIT.......cccvvveeeeeeeeiiriieeeeeeeeeirrreeeeeeeeernrrereeeeeeesnnreeeeeeens 270
16 WORKING WITH PIVOTTABLES 272
Create @ PIVOLTADIEoceeeeeeiiriiieeeeeeeiireeee ettt eeerre e e e e e eeeannrreeeeeeeenrneeens 272
Add Fields t0 @ PIVOLTADIEc.vvvvvieeeeeeeiiiireeeeeeeeeiirieeeeeeeeeitveeeeeeeeeeanvereeeeeeennnes 274
Display Subtotals and Grand TOtalS..........cveerveerveeeiireerreeniueerinreenireenveesnseesnnns 276
FIlter @ PIVOLTADIE . .coeeeeeeeeeeeeeiieiietiitttttttvetarteeeeeeeerrerreereeereeereeeseeeseeereeeaeeeens 278
(03 (= 1L € (0] 0N 279

17 AUTOMATING PROCEDURES WITH
EXCELEVENTS...........cciivieee.....280

Understanding EXCEl EVENLScc.cevverieriirieeieeieeieeieeieenitesitesieessnessnesnnesnnesnne 280
Run a Procedure as @ Workbook OpPEnS........cc.cecveveieeieeniienieneeneeniennennenneenne 284
Run a Procedure before Closing @ WorkbooK...........cccvevvverienienienvenienieennenne 286
Run a Procedure before Saving @ WorkbooK..........c.cccvevvveriveneeneenienienreennenns 288
Run a Procedure When Excel Creates @ WOrkbooKccoceeveevienienieniennenne 290
Execute a Procedure at @ SPecific TIMEeevvveerveeriieerrireeniveerrireesiveesveeniseesnnns 294
Execute a Procedure When YOu Press KEYSccvvieevverniieenveennvrennveenveennseennnns 296

Monitor a Range of Cells for Changescoceevveeruierienienienierierieeeeeieeiens 298

18 BUILDING ADD-INS.............icvee.... 300

Create an Add-TI c..oooveeveriernienieiieeieeieeseeseente st ete e ettt 300
Set Add-IN PrOPEILIES.veeruveerriieeriieiriieeiteenieenieeeieeefeveenteeeieeenineesaaeesaeeennaee 302
INSTAIl AQA-INS..cciuiieiiieiriieeiieerieeeteerite ettt s e et e sbteesabaeesbaeesabeesabeeenns 304
Using VBA t0 Load Add-TNS ...ccovrerrireiniiieniieniieeniieesdereeniieeneeenieeenineesveessseesnn 306
19 UNDERSTANDING XMLt enns 308
INEEOAUCING XML.....eevveernireenireenirrenireenineenraessaeensueamseesnsueessseessaesssnesnseessessnns 308
Understanding EXcel XML FileS......cveevvuteriieerriueeniieeineeenireenreensreeenneensseessseeenns 310
Open an XML File in Excel @S @ TabIeccovvieriveecbieeniieniieeiieenreesieeeineennes 314
(0 1 1o 0 €L U DL = o O 316
Import and Export XML Files USiNg EXCelccovcueerdeeirniieenieiniieeniieenieenieennne 318
Load XML Files USINE VBAcccceevteriieniemienienienieethenieeieenueenieesseeseesnennenns 320
Import XML Files USING VBA.......ccocveirueerieerieeenieerieedonaeesneesssaessnessseessseesnns &2
APPENDIX: VBA QUICK REFERENCE 324

Introducing Excel

Programming

s you probably know, Microsoft Excel is an

electronic worksheet you can use for a variety of

purposes, including the following: maintain lists;
perform mathematical, financial, and statistical
calculations; create charts; analyze your data with
PivotTables; locate data; find trends in your data; and
present your data to others.

This book is about automating the tasks you perform in
Excel by using Visual Basic for Applications (VBA). You
can use VBA to automate those repetitive tasks you
perform frequently. For example, if the layout of your
monthly report rarely changes, you can use VBA to set up
your report each month.

VBA is a programming language; however, you do not
have to be a programmer to automate the tasks you
perform in Excel. You can also automate a task by using
the macro recorder to create a macro. A macro is a

Introducing Excel Programming

recording of the steps you want to automate. You just
click a button to turn on the macro recorder and begin
performing the steps as you normally would. Excel records
each step and creates the VBA code. When you finish, you
click the Stop Record button. When you select your macro
in the Macro dialog box and then click the Run button,
Excel plays back the steps you recorded. For example, if
you record the steps necessary to set up your monthly
report, all you have to do each month thereafter is click a
button and Excel automatically sets up your report.

With VBA, you can do more than just create macros. You
can use VBA to edit macros, create new functions, create
custom applications, and create add-ins. For these tasks,
you must learn the VBA programming language. This
book teaches VBA. It is based on Office 2010. Code you
write for Office 2010 may not be compatible with earlier
versions of Excel.

@ Click the Developer tab.

Note: See the section “Introducing Macros” to learn how
to display the Developer tab.

Use the options in the Code group to automate
your tasks.

Q Click either of these Record Macro buttons to
record a macro.

Note: See the section “Record a Macro” for more details.
9 Click Macros to run a macro.

Note: See the section “Run a Macro” for more details.

® Use the options in the Controls group to add
check boxes, fields, and other form controls
to your worksheet.

® Use the options in the XML group to work
with XML.

e Click Visual Basic or press Alt+F11.

Excel moves to the Visual Basic for
Applications Editor (VBE).

@

Use the VBE to write and edit code. e ‘“" !
Note: See Chapter 2 to learn more about 2 - ‘Created by: Denise Etheridge | g
the VBE. '‘Purpose: Calculate annual bonus [

' o
-
(T8

_Elion Bonus(Salary, Percent)
uitiply Salary times annual percentage
Bonus = Salary * Percent "Approved by KP
End Function

@ Click the proper module to access
your macros or the VBA code you
have written.

.
.

@ Type or edit your code here.
@ Press Alt+F11 to return to Excel.

The VBE returns you to Excel. L

C
=
=
Vj}
=
o
(@]
-
(]
7,]
fs)
=
(=
s
)
=)
=
(@
o
=
(=3
-
o
p—
n

[| -

You can also use Microsoft Visual Studio Tools for the Microsoft Office System (Visual Studio) to develop programs
for Microsoft Office products. With Visual Studio, you can write in languages such as Visual Basic .NET, Visual C#,
and Managed Extensions for C++. Visual Studio is not part of Microsoft Office; you must purchase it. Microsoft
supports both VBA and Visual Studio.

Visual Studio is more difficult to learn than VBA, and setting up and using Visual Studio is much more difficult than
setting up and using VBA. However, Visual Studio offers better security, a more sophisticated development
environment, and built-in Web services.

Introducing

Macros

ou can use macros to automate many of the tasks

you perform in Excel. For example, if you

frequently format your data in a particular way,
you can use Excel’s macro recorder to record the steps
you use to format your data. You can then play back the
recorded steps whenever you want to apply your format.
Most of the commands you can execute in Excel, you can
also record and play back.

The commands you use to create and execute macros are
located on the Developer tab. By default, the Developer
tab does not display in Excel. To display it, you must
select Developer in the Customize the Ribbon pane in the
Excel Options dialog box.

You begin recording macros by clicking Record Macro on
the Developer tab or by clicking the Record Macro button

Introducing Macros

on the status bar. Both options open the Record Macro
dialog box. For detailed instructions on how to use the
Record Macro dialog box, see the section “Record a Macro.”

When you record a macro, you can record it using an
absolute reference or a relative reference. If you record
using an absolute reference, when Excel plays back your
macro, it plays back the exact cells you clicked when you
recorded the macro. If you record using a relative
reference, Excel plays back the relative location of the
cells you used when you recorded your macro. Click Use
Relative References on the Developer tab to record using
a relative reference. To learn more about absolute and
relative references, see the section “Record a Macro.”

When you save a workbook that has macros, you must
save it as a macro-enabled workbook. Excel gives macro-
enabled workbooks an .xIsm extension.

@ Click the File tab.
A menu appears.
9 Click Options.

The Excel Options dialog
box appears.

@ Click Customize Ribbon.

000

The Customize the Ribbon pane appears.

Click the down arrow and then select Main Tabs.
Click Developer ([changes to [#]).

Click OK.

® The Developer tab appears on the Ribbon.

® (lick Record Macro to record a macro.

Click Use Relative References to record with a
relative reference.

Click Macro Security to change macro security.

] -

Because of problems with macro viruses, by default
Excel disables all macros when you open a workbook.
You can read the file, but you cannot execute the
macros. You can click Macro Security on the Developer
tab to change the default setting, or you can click the
Enable Content button that appears when you open the
workbook to enable the macros. To learn more about
macro security, see the sections “Set Macro Security,”
“Create a Digital Signature,” and “Assign a Digital
Signature to a Macro” in this chapter.

To save a workbook that has macros, click the File tab.
A menu appears. Click Save As. The Save As dialog box
appears. Locate the proper folder. Type a filename in
the File Name field. Select Excel Macro-Enabled
Workbook (*.xlsm) in the Save As Type field. Click
Save. Excel saves your workbook as a macro-enabled
workbook and gives the workbook an .xIsm extension.

1 1dey)

.
.

C
=
=
Vj}
=
o
(@]
-
(]
7,]
fs)
=
(=
s
)
=)
=
(@
o
=
(=3
-
o
p—
n

Set Macro

Security

viruses, specifically macro viruses, the default

Excel macro security setting disables all macros
when you open a workbook and enables you to decide on
a case-by-case basis whether you want to enable them.
This is true whether you created the macros or someone
else created them. You can change the Excel macro
security by choosing one of four options.

The Disable All Macros without Notification option
disables all macros. This option does not provide you
with any security alerts to let you know macros exist.
The Disable All Macros with Notification option is the
default setting. It notifies you if macros are present so
you can enable them on a case-by-case basis.

The Disable All Macros except Digitally Signed Macros
option disables all macros except those digitally signed by
a trusted publisher. If the publisher has digitally signed

Set Macro Security

B ecause of increasing problems with computer

the macro but you have not opted to trust the publisher,
you can enable the macro or trust the publisher. See the
Extra section of “Assign a Digital Signature to a Macro”
in this chapter to learn how to trust a publisher.

The Enable All Macros (Not Recommended; Potentially
Dangerous Code Can Run) option enables you to run all
macros. Because potentially dangerous code can run,
Microsoft does not recommend this option.

Changes you make to macro security in Excel do not
change the macro security in other Office programs.

Macro creators use digital signatures to verify the safety
of the macros they create. You can create a digital
signature by using the Digital Certificate for VBA Projects
tool, or you can obtain a digital certificate from a
commercial certification authority. For more information
on the Digital Certificate for VBA Projects tool, see the
next section, “Create a Digital Signature.”

@ Click the Developer tab.

Note: See the section “Introducing Macros”
to learn how to display the Developer tab.

@ Click Macro Security.

The Trust Center dialog box appears.

@ Click a macro security setting
(© changes to @).

@ Click OK.

Excel changes your macro security
setting.

-

R

[

o

et et e

Create a Digital

Signature

you should consider using a digital signature. A
digital signature provides assurance that no one
has altered the macro. You can create a personal
digital signature by using the Digital Certificate for
VBA Projects tool. Digital signatures created with the
Digital Certificate for VBA Projects tool work only on
the computer on which the digital signature was
created.

If you plan to distribute your workbook to others,
you should consider acquiring a commercial digital
signature. When you use a commercial digital
signature, the digital ID attaches to the macro and

I fyou create a workbook that contains macros,

Create a Digital Signature

1 1dey)

.
.

remains with it; if anyone alters the macro, Excel notifies
the user that the macro should not be trusted. The most
common provider of commercial digital certification is
VeriSign, Inc. To obtain a commercial certification, you
must submit an application and pay a fee. You can find
out more at www.verisign.com.

To view the certificates in your Personal Certificate store,
open Windows Internet Explorer. On the Internet Explorer
menu, click Tools and then click Internet Options. The
Internet Options dialog box appears. Click the Content
tab. Click the Certificates button. The Certificates dialog
box appears. Click the Personal tab. All of your personal
certificates appear.

Click the Start button.

Click All Programs.

Click Microsoft Office.

Click Microsoft Office Tools.

Click Digital Certificate for VBA Projects.

0000

The Create Digital Certificate dialog box
appears.

Type the name you want to give your
certificate.

Click OK.

Excel creates a Personal Digital
Certificate.

S[ONU0) W0 pue solew Suisn

Record

a Macro

macro enables you to automate common tasks.

You can use a macro to record most of the series

of commands you can execute in Excel. For
example, if you frequently apply a certain format to your
worksheet, you can record the steps for creating the

format and then play them back each time you want to
apply the format.

Clicking the Macro Recorder button opens the Record
Macro dialog box. You can use the Record Macro dialog
box to name your macro, assign your macro to a shortcut
key, and tell Excel where you want to store your macro.
You can name your macro anything you want; however,
the name must start with a letter; only contain letters,
numbers, and underscores; and not contain any spaces.

Record a Macro

You can assign any upper- or lowercase letter to act as
the shortcut key.

In the Record Macro dialog box, the Store Macro In field
tells Excel where to store your macro. You can choose to
store your macro in the Personal Macro Workbook, a New
Workbook, or This Workbook. Use the Personal Macro
Workbook option if you want to make your macro
available to all Excel files. After you have stored at least
one macro in the Personal Macro Workbook, the
workbook opens whenever you open an Excel file. Use
the New Workbook option if you have specialized macros
that you want to use with multiple files. If you store your
macro in a New Workbook, you can use the macros
whenever that workbook is open. Use the This Workbook
option if you want to store your macro in the workbook
in which you are currently working.

0 Click the Developer tab.

Note: See the section “Introducing
Macros” to learn how to display the
Developer tab.

® Alternatively, click the Record
Macro button on the status bar
and skip Step 2.

@ Click Record Macro.

The Record Macro dialog box
appears.

®

Type the name you want to give
your macro.

@ Type the shortcut key you want to
assign to your macro.

Press Shift as you type to assign
an uppercase key.

6 Click the down arrow and then
select the workbook in which you
want to store your macro.

@ Type a description of your macro.
@ Click OK.

G

[-

= Torir 4_‘9[__ R s

ol |

B | 0000

Income

Year 1 Year 2 Year 3 Year 4
s |Net sales 200,000.00 250,000.00 325.000.00 450,000.00
+ Cost of goods sold 150,000.00 150,000.00 150,000.00 150,000.00
s Gross profit on sales 50,000.00 100,000,00 175,000,00 300,000.00
» Expenses 25.000.00 35.000.00 50,000.00 45,000.00
» Met income 25,000.00 65,000.00 125,000.00 255,000.00
u
=
)
=
AR " -
e
- - °
| — 1 e)
| 3 @ ¥ Ll

“ d =
5| 20000
a ' [
Income

i Year 1 Year 2 Year 3 Year 4
» |Net sales 200,000.00 250,000.00 325,000.00 450,000.00
+ Cost of goods sold 150,000.00 | SN 150,000.00
+ Gross profit on sales - 4_9 300,000.00
» Expenses 45,000.00

» Netincome

155,%

i
5

0 Perform the steps you want to record.

Note: This example changes the number
format using the following steps. Click the
Home tab. Click the Number Group launcher.
Click Accounting. Set Decimal Place to 0.
Select $ as Symbol. Click OK.

0 Click the Developer tab.
® Alternatively, click the Stop Recording

button on the status bar and skip Step 10.

@ Click Stop Recording.
Excel stops recording your macro.

Your macro is ready for you to use.

- - = — aRas
o A K =- . E S & |
e 4 W g W woA EEWRE G 40 e S, ekt
5| 200000
a ' [
Income
i Year 1 Year2 Year 3 Year 4
» |Net sales 5 200,000 == 8 325,000.00 450,000.00
« Cost of goods sald 15000000 15000000 150,000.00 150,000.00
r |Gross profit on sales 50,000.00 100,000.00 175,000.00 300,000.00
» Expenses 25.000.00 35,000.00 50,000.00 45,000.00
» Met income 25,000.00 65,000.00 125,000.00 255,000.00
u
5]
"
)
0
i -
2o
% 200000
A ' [
Income
i Year 1 Year 2 Year 3 Year 4
» |Net sales 5 200,000 250,000.00 325,000.00 450,000.00
+ Cost of goods sald 15000000 15000000 150,000.00 150.000.00
r Gross profit on sales 50,000.00 100,000.00 175,000.00 300,000.00
» Expenses 25.000.00 35,000.00 50,000.00 45,000.00
» Met income 25,000.00 65,000.00 125,000.00 255,000.00

from cell A3 to cell A1.

A macro you create in Excel can have a relative, an absolute, or a mixed reference. If you use a relative reference,
Excel performs the macro based on a relative location. For example, suppose you move up two cells from cell A3 to
cell A1 when creating your macro. When you run your macro, if you are in cell C3, Excel moves up two cells from
cell C3 to cell C1. If you use an absolute reference, however, Excel performs the macro based on the exact cell
addresses. For example, suppose again that you move up two cells from cell A3 to A1. When you run your macro, if
you are in cell C3, Excel moves from there to the cells you used when you recorded your macro. That is, Excel moves

By default, Excel creates macros with an absolute reference. To create a macro with a relative reference, click Use
Relative References in the Code group on the Developer tab to toggle the relative reference option on. To create a
macro with both a relative and an absolute reference — a mixed reference — toggle the Use Relative References
button on and off as needed as you create your macro.

1 1dey)

.
.

C
=
=
Vj}
=
o
(@]
-
(]
7,]
fs)
=
(=
s
)
=)
=
(@
o
=
(=3
-
o
p—
n

Assign a Digital

Signature to a Macro

digital signature provides assurance that a

workbook file that contains macros is valid and

no one has altered the macros. There are two
types of digital signatures: personal digital signatures and
commercial digital signatures. You can create a personal
digital signature by using the Digital Certificate for VBA
Projects tool, or you can purchase a digital signature. Refer
to the section “Create a Digital Signature” to learn how to
create a personal digital signature. After you create a digital
signature, you must attach it to your workbook. Attaching
a digital signature is similar to sealing an envelope. If an
envelope arrives sealed, you have some level of assurance
that no one has tampered with its contents.

Use the Digital Signature dialog box to attach a digital
signature. The Visual Basic Editor (VBE) is a separate
Excel module that you can use to edit your macros.

Assign a Digital Signature to a Macro

Access the Digital Signature dialog box by opening the
VBE. The Digital Signature dialog box lists valid
certificates. You can use the Digital Signature dialog box
to view certificates and to select the one you want to use.

Unless you have on your computer a valid digital
signature certificate for the signature used to sign a
macro, Excel removes the digital signature when you
modify a macro and you must reattach it. If you are not
sure if a workbook has a digital signature, you can check
the signature by reviewing the Digital Signature dialog
box. If a workbook has a digital signature, the name of
the signature appears in the Certificate Name field. If you
click the Remove button in the Digital Signature dialog
box, Excel removes the digital signature.

o Click the Developer tab.

Note: See the section “Introducing Macros”
to learn how to display the Developer tab.

9 Click Visual Basic in the Code group.

The Visual Basic Editor appears.
@ Click Tools - Digital Signature.

Income

i Year 1 Year 2 Year 3 Year 4

» |Net sales 250,000.00 325,000.00 450,000.00
+ Cost of goods sold 150,000.00 150,000.00 15000000 150,000.00
r Gross profit on sales 50,000.00 100,000,00 175,000,00 300,000.00
» Expenses 25.000.00 35.000.00 50,000.00 45,000.00
» |Met income 25,000.00 65,000.00 125,000.00 255,000.00

L | -

| sub DollarsignFon .

' DollarSignFormat .. .22 4_9

' Accounting format no decimal places with dollar sign.

' Keyboard Shortcut: Ctrl+m

Selection.NumberFormat = " ($* #,##0); ($* (#,##0); (8" "
End Sub

The Digital Signature dialog box Digital Signature. =]
appears. The VBA project s currently signed as

Cerbficate name: [Mo certificate]
@ Click Choose.

Sign as
Certificate name: Denise Ethendge

1 1dey)

.
.

(=)
)
o
o | [cacs =
V)e}
The Select Certificate dialog box Select Certificate = %
appears. Select the certificate you want to use. Q
Note: See the section “Create a Digital 8
Signature” to learn how to create a f“' tswsdby __inerded..._ Py nome_Crpkaton...| g
.. . Derise E... DenmeEth... Code Sgning None 1/1/2016

digital signature. a
6 Click the signature you want to s |
)
apply. 5

@ Click OK to close the Select L j L
Certificate dialog box. [T e oo o
_ =
@ Click OK to close the Digital Digital Signature [Ea<) S,
Signature dialog box. The VBA project is currently signed as (7}

Cerbficate name: [Mo certficate]
Excel attaches the digital signature

to your workbook. e
Certificate name: UDenise Ethendge

Note: To return to Excel, press Alt+Q.

If you have Macro Security enabled, Excel displays the You can use the Microsoft Office Security Options
Trust Bar below the Ribbon when you open a workbook | dialog box to select the security option you want. On
containing a signed macro. You can modify the the Trust Bar, click Macros Have Been Disabled.
workbook, but you cannot use the macros. If you trust Security warning options appear. Click the Enable
that the document is safe, you can click the Enable Content button. A menu appears. Click Advanced
Content button on the Trust Bar to enable the macros Options. The Microsoft Office Security Options dialog
in the workbook. The workbook then becomes a trusted | box appears. Click Help Protect Me from Unknown
document and you will not need to enable the Content (Recommended) to disable the macros; click
workbook again. Enable the Content for This Session to enable the
macros for one session; or click Trust All Documents
from This Publisher to add the macro publisher to the
Trusted Publisher list. Excel does not display a warning
when you open workbooks with macros if the publisher
is on the Trusted Publisher list.

acros enable you to quickly perform tasks that

would normally take multiple steps. When you

run a macro, Excel replays the steps you
recorded when you created the macro. You can run any
macro located in any workbook as long as the workbook
in which the macro is located is open. To run a macro,
you can press the shortcut key you assigned when you
created the macro, or you can select the macro from the
Macro dialog box.

When you create a macro, you can choose to store it in
one of three locations: the current workbook, a new
workbook, or the Personal Macro Workbook. By default,
the Macro dialog box lists all the macros in open
workbooks. If a macro is stored in the Personal Macro
Workbook, the macro opens as a hidden file each time

Run a Macro

you open a file. By default, the files in the Personal
Macro Workbook always appear in the Macro dialog box.

You can use the Macros In field to limit the number of
macros listed in the Macro dialog box. To see the macros
in any open workbook, including the Personal Macro
Workbook, select All Open Workbooks from the Macros
In drop-down list. To see the macros from a specific
workbook, select the name of the workbook from the
Macros In drop-down list. To see global macros stored in
the Personal Macro Workbook, select PERSONAL.XLSB
from the Macros In drop-down list.

To run macros from another workbook, the macro must
be from a signed source or you must enable the macros.
You can set the security setting for macros. See the section
“Set Macro Security” to learn more about macro security.

0 Select the cells where you
want to apply your macro.

9 Click the Developer tab.

Note: See the task “Introducing
Macros” to learn how to display the
Developer tab.

© Click Macros.
Alternatively, press Alt+F8.

The Macro dialog box appears.

9 If your macro does not appear
in the Macro dialog box, click
the down arrow and then
select the workbook that
contains your macro.

[-

o

1
5| 25000
a 0 [
Income

i Year 1 Year 2 Year 3 Year 4 -I
» |Net sales -] 200,000 250,000.00 325,000.00 450,000.00
+ Cost of goods sold 150,000.00 150,000.00 150,000.00 150,000.00
* Gross profit on sales 50,000.00 100,000,00 175,000,00 300,000.00
» Expenses 25.000.00 35.000.00 50,000.00 45,000.00
» Met income 25,000.00 65,000.00 125,000.00 255,000.00
u
=
)

o] v i TR
[-

= e

% m 2 2 ; &

- - o

| 25000
i 0 [
Income

i Year 1 Year 2 Year 3 Year 4
s |Net sales -] 200,000 250,000.00 325,000.00 450,000.00
+ Cost of goods sold 150,000.00 150,000.00 15000000 150,000.00
» Gross profit on sales E — "Tﬂﬂm 300,000.00
& Expenses 2 = = 00 45,000.00
» MNetincome 2 [P v | P00 255,000.00
u
- -
)

] ey bk it AR s

@ Click the name of the macro
you want to run.

O Click Run.

+ Cost of goods sold

ey e (@)
. 5 o :
5| 25000 (o
f " i i (¢)
-
Income
P
.o
i Year 1 Year 2 Year 3 Year 4
» |Net sales -] 200,000 250,000.00 325,000.00 450,000.00

__150,000.00__15000000 15000000

® Excel runs the macro.

You can also run your macro
by pressing the shortcut key
you assigned when you
created the macro.

¢ Gross profit on sales 000,00

» Expensec 000.00

» Netincome — 5,000.00

" =

u

5] e

0 e

"

)

o G

i | - et] S e
a@os

i Year 1 Year 2 Year 3 Year 4

» |Net sales -] 200,000 | § 250,000 5 325000 5 450,@_.
s Costofgoodssold 15000000 150,00000 _ 150,000.00 _ 150,000.00

r |Gross profit on sales 50,000.00 100,000.00 175,000.00 300,000.00

» Expenses 25.000.00 35.000.00 50,000.00 45,000.00

» Met income 25,000.00 65,000.00 125,000.00 255,000.00

i | rags LSS (ewt) dem JLAAME | g -

Income

C
=
=
Vj}
=
o
(@]
-
(]
7,]
fs)
=
(=
s
)
=)
=
(@
o
=
(=3
-
o
p—
n

Excel differentiates between macros listed in the Macro
dialog box by placing the name of the workbook that
contains the macros in front of the macro name. For
example, Excel lists a macro named Sum_Expenses in
the Personal Macro Workbook as PERSONAL .

XLSB! Sum_Expenses. If the macro Sum_Cells exists
in both the Budget.xlsm and Expenses.xlsm workbooks,
Excel treats them as two different macros. The Macro
dialog box lists them as Budget .x1lsm!Sum_Cells
and Expenses.xlsm!Sum_Cells.

Unless you have your macro settings set to enable all
macros, Excel checks all documents you open for
macros. See the section “Set Macro Security” for more
information. If you have files that you do not want Excel
to check, you can store them in a trusted location. Click
the Developer tab. Click Macro Security in the Code
group. The Trust Center appears. Click Trusted
Locations. The Trust Location pane appears. Click Add
New Location. The Microsoft Office Trusted Location
dialog box appears. Enter the path to the trusted
location. Click OK.

Create and Launch a

Keyboard Shortcut

keyboard shortcut is a combination of keys you

press to execute a command. You can use a

keyboard shortcut to launch an Excel macro
command. You can assign an upper- or lowercase key to
a macro when you create it or assign one later by using
the Macro Options dialog box. You execute a macro
keyboard shortcut by pressing the Ctrl key along with the
assigned upper- or lowercase key. Refer to the section
“Record a Macro” to learn how to create a macro.

Keyboard shortcuts are case sensitive. For example, Excel
interprets a lowercase m and an uppercase M as two
different keys. To execute a macro you have assigned to
a lowercase letter, press Ctrl plus the letter; for example,
Ctrl+m. To execute a macro you have assigned to an

Create and Launch a Keyboard Shortcut

uppercase letter, press Ctrl and Shift plus the letter; for
example, Ctrl+Shift+M.

If you give the same keyboard shortcut to macros in two
different workbooks, you may execute the wrong macro if
you use the shortcut while you have both workbooks
open. Excel cannot discern from which workbook you want
the macro. You can use the Macro Options dialog box to
reassign one of the conflicting macros to a new key.

You should also be careful not to assign the macro to a
keyboard shortcut that Excel uses. If you do, Excel
executes your macro instead of the command it created.
For example, by default, Ctrl+o opens the Open dialog
box. If you assign o to a macro, your macro overrides
Excel’s assignment.

Create a Keyhoard Shortcut
@ Press Alt+F8.

The Macro dialog box appears.
Click the desired macro.

Click the Options button.

(2]
(3]

The Macro Options dialog box
appears.

Type the desired shortcut key.

Press Shift as you type to
assign an uppercase key.

Type a description.

Click OK to close the Macro
Options dialog box.

o)

Click Close to close the Macro
dialog box.

ﬂ

[Macro. e

Maau name:

HalirrmaFeemat [B

t alr 1

M i lnto
e]
oo |

Maousin: This Workbook E

Descripton

Accounting format, noe decmal places, no dollar sign.
[concs |

COM T Trierd Deaign o CTTa -
Adddng mode 8 FunDislog ¢ Refresn
d ins Controls

Shortaat key:
Cirl4

== r5)
INCOMeE Sta] acuuning fomat, oo decimal places, no dokar sign =ty

Year1 Year 2 —
$ 200000 $ 250,000 § S, e] [|
n.non 150 000 NN 15 N0
150.000.00 n 0,000, 150,000.00
- 300,000.00
HoDedmalFomat 5] | 45,000.00

,DﬂaEﬁm«k 7 [

255,000.00

- | [Setons..
Macrosin: | Tha Workbook [=]
Deaption
Accounting format, no deamal places, no dolar 5.
| Concel

Launch a Keyboard Shortcut

@ Sclect the cells where you want
the macro to execute.

9 Press Ctrl and the shortcut key.

® The macro executes.

9 Repeat Steps 1 and 2 to execute
the macro again.

Note: In this example, the macro
removes the decimal places.

c@as
it)
| 15000
. 0 : [
Income

i Year 1 Year 2 Year 3 Year 4
s MNet sales] 200,000 § 250,000 & 325,000 S 450,000
+ |Cost of goods sold 150,000.00 150,000.00 150,000.00 150,000.00
* (Gross profit on sales 50,000,00 100,000.00 175,000.00 300,000.00
& Expenzes 25,000.00 35.000.00 50,000.00 45,000.00 |
» Metincome 25,000.00 65,000.00 125,000.00 255,000.00
o
)
"
)
w
e s M e T

- - c@as

- o
| 15000
. 0 : [
Income

i Year 1 Year 2 Year 3 Year 4
s Met sales] 200,000 § 250,000 § 325000 S 450,000
+ |Cost of goods sold 150,000 150,000 150,000 150,000
s Gross profit on sales 50,000 100,000 175,000 300,000 ‘—.
. 25,000 35,000 50,000 45,000 |
» Met income 25,000.00 65,000.00 125,000.00 255,000.00
u
)
"
8
w
ry T AR i K L

If you do not use a macro shortcut
frequently, it is easy to forget the
keyboard shortcut you assigned

to your macro. If you forget your
keyboard shortcut, you can view it
in the Macro Options dialog box.

You can execute a macro by assigning the macro to a picture, clip art, a
shape, or smart art. For example, if you want to assign a macro to a
picture, you start by inserting the picture into your worksheet by clicking
the Insert tab and then clicking Picture. The Insert Picture dialog box
appears. In the Look In field, select the folder in which you stored the
picture you want to insert. The pictures in that folder appear. Click the
picture you want to insert and then click the Insert button. The picture
appears in the worksheet. Click and drag the picture to place it where you
want it and then double right-click the picture. A menu appears. Click
Assign Macro. The Assign Macro dialog box appears. Click the macro you
want to assign to the picture and then click OK. Excel assigns the macro to
the picture. Click the picture when you want to execute the macro.

1 1dey)

.
.

C
=
=
Vj}
=
o
(@]
-
(]
7,]
fs)
=
(=
s
)
=)
=
(@
o
=
(=3
-
o
p—
n

Assign a Macro to the

Quick Access Toolbar

ou can assign a macro to the Excel Quick Access

toolbar. You can execute macros assigned to the

Quick Access toolbar using a shortcut key or the
Macro dialog box; however, using the Quick Access

toolbar means you can access the macros by simply
clicking the appropriate button.

When you add a button to the Quick Access toolbar, you
can specify whether it should appear on the toolbar of all
Excel workbooks or only on the Quick Access toolbar in the
workbook you specify. By default, the button appears in all
workbooks. If you have placed your macro in the Personal
Macro Workbook, you probably want your macro button to
appear in all workbooks because the macro is available to
all workbooks. If your macro will be available only to a
single workbook, your macro button should appear only on
the Quick Access toolbar for that workbook.

Assign a Macro to the Quick Access Toolbar

You use the Customize the Quick Access Toolbar page of
the Excel Options dialog box to add a macro button to the
Quick Access toolbar. You can use the Modify button to
specify the button you want to use to represent your
macro. You can specify where on the Quick Access
toolbar your button appears and whether the Quick
Access toolbar appears above or below the Ribbon. You
can click the Reset button to return the Quick Access
toolbar to its default state.

Deleting a macro does not remove the macro button from
the Quick Access toolbar. When you press the button for
a deleted macro, you receive an error message. Use the
Remove button on the Customize the Quick Access
Toolbar page of the Excel Options dialog box to remove a
macro button.

@ Click the Customize Quick Access
Toolbar button and then select More
Commands.

The Excel Options dialog box appears.

Click the down arrow and then select
Macros.

Click the down arrow and then select
the workbook in which the button
should appear.

Click the macro you want to assign to
the Quick Access toolbar.

Click Add.

The macro appears in the box on the
right.

Click Modify.

@

«c® 06 O ©

©

Ye Year 2 Year 3 Year 4

» Netsales 0 250,000 % 325000 $ 450,000
4| CO8t Of Bl eums 150,000 150,000 150,000 150,000
¢ Gross profit on sales 50,000 100,000 175,000 300,000
» Expenses 25,000 35,000 50,000 45,000
» Met income 25,000.00 65,000.00 125,000.00 255,000.00
L |

The Modify Button dialog box appears.

Click the button you want to use to
represent your macro.

Click OK to close the Modify Button

co)

i Deswigeteme

1 1dey)

dialog box. c
© Click OK to close the Excel Options @,
dialog box. 0%
()
QO
-
E il o
o o
o Camem :
o
® The button appears on the Quick Access e i T 1]
toolbar. M o o
(D Click the button to execute your macro. . , i
Excel executes the macro. Income g
a Year 1 Year2 Year3 Year 4 H
» Met sales 5 200,000 5 250,000 5 325000 5 450,000 8
+ Cost of goods sold 150,000 150,000 150,000 150,000 Y
r | Gross profit on sales 50,000 100,000 175,000 300,000 m
» Expenses 25,000 35,000 50,000 45,000
‘N;mcnme s 25,000 § 65000 § 125000 § us.mu|<—®

Lot tom MRS 0%

You can also assign a macro to a custom Ribbon tab. Right-click the Microsoft Office Ribbon. A menu appears.
Click Customize the Ribbon. The Excel Options dialog box appears with the Customize the Ribbon pane selected.
Click the down arrow (E|) next to the Choose Commands From field and then select Macros. Click the down arrow
([=]) next to the Customize the Ribbon field and then select Main Tabs. Click the New Tab button. Excel creates a
new tab and a new group. Click New Tab (Custom) and then click Rename. The Rename dialog box appears. Type
the name you want to give the tab and then click OK. Click New Group (Custom) and then click Rename. The
Rename dialog box appears. Type the name you want to give the group and then click OK. Click the macro you
want to add to the custom Tab and then click the Add button. Excel places the macro in the Main Tabs box. Click
Rename. The Rename dialog box appears. Click the symbol you want to use to represent the macro. Click OK to
close the Rename dialog box. Click OK to close the Excel Options dialog box. The macro appears on the new tab
you created.

Delete

a Macro

ou can delete macros you no longer need by
clicking the Delete button in the Macro dialog
box. Because the Macro dialog box only displays

macros in open workbooks, the workbook that contains
the macro must be open before you can delete the macro.

The Personal Macro Workbook stores macros you want to
make available to all workbooks. Excel creates the Personal
Macro Workbook when you choose to store your first macro
in it. After Excel creates the Personal Macro Workbook, the
workbook opens as a hidden file every time you open Excel.
To learn more about storing macros in the Personal Macro
Workbook, see the section “Record a Macro.”

If your macro is in a hidden workbook such as the
Personal Macro Workbook, you must unhide the
workbook before you can delete the macro. If you try to

Delete a Macro

delete a macro from the Personal Macro Workbook prior
to unhiding it, Excel displays the following message:
“Cannot edit a macro on a hidden workbook. Unhide the
workbook using the Unhide command.” You unhide the
Personal Macro Workbook and other hidden workbooks
by executing the Unhide command on the View tab.

If you unhide the Personal Macro Workbook, make sure
you hide it again using the Hide command on the View
tab after you delete the macros. Hiding the workbook
prevents you from making inadvertent changes to it.

You cannot undo the deletion process. If you delete a
macro by mistake, you can close the workbook without
saving. Of course, if you close without saving, you will
lose all the work you have done since saving. Your only
other alternative is to re-create the macro.

Unhide a Workbook
@ Click the View tab.
@ Click Unhide.

The Unhide dialog box appears.
9 Click the workbook you want to unhide.
@ Click OK.

Excel unhides the workbook.

You are now in the workbook you
selected to unhide.

G

[

_n Hewr et Pupied e D e 4—6 (]
M - »
A 0 c o
Income
i Year 1 Year 2 Year 3 Year 4
s |Net sales 5 200,000 5 250,000 5 325000 5 450,000
+ Cost of goods sold 150,000 150,000 150,000 150,000
r Gross profit on sales 50,000 100,000 175,000 300,000
» Expensec 25,000 35,000 50,000 45,000
» Metincome 5 25000 § 65,000 § 125000 § 255,000
=
)
)
i | = -
| .
[[—— = @
[T e :] s = 2 F m
m - »
: Income
i Year 1 Year 2 Year 3 Year 4
» |Net sales 5 200,000 5 250,000 5 325000 5 450,000
+ Cost of goods sold 150,000 150,000 150,000 150,000
r Gross profit on sales 50,000 100,000 175,000 300,000
» Expenses 25,000 35,000 50,000 45,000
» Met income 5 25,000 § 65,000 § 125000 § 255,000
u
-
)
s
ey e

Delete a Macro Macro g
0 Press Alt+F8 Macro name: %
. InsertRegions 55 [Run J o=t

The Macro dialog box appears. 'Delete a Macro, xlsm'! DollarSignFor - 9;

| A el D

9 Click the macro you want to delete. 'Delete a Macro. xlsm'INoDedmalFormat [-.‘
. Edit c

@ Click Delete. | | 7
Create =

=]

Delete _9 0;

! :

(@)

-

Macrosin: | All Open Workbooks El 8

Description {<V)

Insert regions. a

"1

Cancel g

A message box appears, asking you Microsoft Excel = (@]

to confirm you want to delete the g
macro. @ Do you want to delete macro InsertRegions? g
Click Yes. 5

e e—* Yes | [No] n

Excel deletes the macro.

There are two ways to create a macro. One way is to use the macro recorder to record the steps needed to perform
the action. The other way is to create the steps by typing the Visual Basic for Applications (VBA) code into the Code
window of the Visual Basic Editor (VBE). When you use the macro recorder, Excel automatically creates the VBA
code for you. You can use the VBE to edit macros you have created with the macro recorder. Often, it is convenient
to use a combination of the two methods to create your VBA code: You record part of the VBA code, and then you
use the VBE to augment or modify your code.

To activate the VBE, you can press Alt+F11 while in Excel or click the Visual Basic button on the Developer tab. If
you create your macros using the macro recorder, Excel defines each macro you create as a procedure and stores
each procedure in a module. The VBE lists modules in the Project Explorer under the workbook in which they are
located.

Add a Form Control

to a Worksheet

ou can add controls to a worksheet to make it

easier to enter data. Form controls can aid users

who are not familiar with Excel and can increase
the accuracy of data entry by limiting the options a user
has. For example, you can add check boxes to your
worksheet so your worksheet looks like a paper form.
You can also add a combo box from which users can
select an entry.

Excel provides nine controls you can add to a worksheet.
You add controls by selecting the control you want from
the Form Controls menu. After you add a control, you can
adjust its size by dragging the side or corner handles.
When you add a control or when you right-click a control
twice and then click the control, you are in Design mode.

Add a Form Control to a Worksheet

In Design mode, you can modify the properties and size
of the control, but you cannot test its functionality.

When you place a control on a worksheet, it sits on top of
the worksheet. You can size it so it appears to be located
in a cell, but controls are separate from cells. You can
place controls anywhere on the worksheet. A control can
cover any portion of a cell or range of cells.

After you add a control to a worksheet, you can assign it
values. See the next section, “Assign Values to a Form
Control,” to learn how. Form control options are located
on the Developer tab. See the section “Introducing
Macros” in this chapter to learn how to display the
Developer tab.

0 Click the Developer tab.
Q Click Insert.
The Form Controls menu appears.

9 Click to select the control you want.

Click and drag the mouse pointer to
create the control.

@ Click and drag the handles on the
sides and corners to adjust the size.

o

e [1 P
+ Ouantity item # Description Unit Price Taotal

1

e~ .o

"
[l

1
1

0 Place your mouse pointer on the control =S e 9
and when the mouse pointer turns into a 2 s | o s e - S (S}
four-sided arrow drag the control to T =1
change the location. : q..:nm\E tem# Deseription . unit o) Total E

_, / g
;)
y | 0
: =)
» UQ
o
. QO
-
s ()
77

—t o
—— - =)
o

0 Right-click the control twice and then = e S 9L, T
click it to place it in Design mode. _ ~ s -meifl" e
To cancel Design mode, click any cell in S ; : ; i
the Worksheet Quenﬂll Item i IDescripliun - Linit Prij Total o
To remove a control, place it in Design . S
mode and then press Delete. %

You can add the controls listed in the following table to your worksheets.
CONTROL CONTROLNAME DESCRIPTION
(= Button Runs an associated macro when clicked
B Combo box A menu that displays a list of items
Check box Selects or deselects an option
B List box Displays a list of items for selection
® Radio button Selects one of a group of items
] Group box Groups related controls, such as radio buttons, together
[az Label Provides information about an associated control
El Scroll bar Increases or decreases a value when the user clicks the arrows or drags the bar
Spinner Scrolls up and down through a list of numeric values

Assign Values to

a Form Control

fter you add a control to a form, you can assign

values to it. For example, if your worksheet

contains a combo box, you can assign the list of
values that appear when users access the combo box.
Some controls enable you to define a range of valid
numeric values for the control. For example, if you use a
spinner, you can define the starting value and the
maximum value for the control. For combo boxes and list
boxes, you can place the options associated with the
control in a range of cells. For example, if you use a
combo box, you tell Excel the list of values used by the
control by entering the range of cells containing the
values. The values can be located on another worksheet
or even in another workbook, as long as Excel can access
the workbook when users view the worksheet that
contains the control.

Assign Values to a Form Control

You can link a cell to a control. If you link a cell to a
control, whatever value users select when utilizing the
control becomes the value in the linked cell. If you use a
combo box control or list box control, the value in the
linked cell is a number that represents the user’s
selection. Excel assigns the number based on the position
of the selected value in your list. If the list is Computer,
Monitor, Keyboard, and the user selects Monitor, the
linked cell receives the value 2, because Monitor is
second in the list.

With a control, such as a check box, you can tell Excel
whether you want the option initially selected or
unselected. Both options — selected and unselected —
have an associated value.

0 Right-click the control twice.
A menu appears.
9 Click Format Control.

The Format Object dialog box appears.
@ Click the Control tab.

The available fields depend on the control
type. This example uses a combo box.

Enter the range that lists the valid values.

Enter a cell to assign a linked cell.

000

Enter the number of items in your
drop-down list.

The value associated with your selection
appears in the linked cell.

@ Click OK.

@

[TEEE

T T A e s————— - c@=s
[= :
| B g i@ e Proontes | T B inar

Doop Do 18 * »
e [i P : " P
¢+ Ouantity Item # Description Unit Price Total Item Price
k=4 : - Computer 1,295.00
" Maonitor 260.00
8 s Keyboard 55.00
" Mouse 30.00
Speakers 75.00

e o i C " P
+ Ouantity item # Description Unit Price Total Item Price
1 = - Computer 1,29500
Maonitor 260.00
Keyboard 55.00
Mouse 30.00
Speakers 75.00

@ Click the down arrow and then B S
select the desired control value. % (]

k=

o=t

W i 'e)

Item Price -

Computer 1,29500 H

Maonitor 260.00
Keyboard 55.00
Mouse 30.00
Speakers 75.00

.
.

® Excel selects the value and places a e i = -8
numeric value representing the amg -l
control selection in the linked cell. _ -
t Qu:nm\: n!l;ﬂ! Descriplil;n Llnill Price I Total ; m.-fn“ P‘rlce
= 2 | - Computer 1,295.00

' @ — 3> onior 26000

1 Keyboard 55.00
Mouse 30.00
Speakers 75.00

C
=
=
Vj}
=
o
(@]
-
(]
7,]
fs)
=
(=
s
)
=)
=
(@
o
=
(=3
-
o
p—
n

When working with a value selected from a list box or combo box control, you may want to use the value in the
linked cell to set the value of another cell. For example, assume you have the following Excel list in cells H2:14:

Example:

Computer $1295
Monitor $995
Keyboard $55

You can use the INDEX function to determine the price based on the equipment selection. For example, if the user
selects Monitor from the control, Excel places a value of 2 in the linked cell. If you want users to find the cost of the
selection, you type a formula similar to the following, assuming that C2 is the linked cell:

Example:
=INDEX (H2:$1$4,C2,2)

When the user selects Monitor, the INDEX function returns $995. The INDEX function actually creates an array of
the Excel list and uses the control selection to determine which element in the array to return. The function uses
three arguments: Array, Row_num, and Column_num. See the file Form Control Example.xlsm, which you can
download from the Web site for this book to see an example.

Add a Macro to

a Form Control

ou can use macros to automate the tasks you

perform in Excel. You can assign a macro to any

form control on a worksheet. For example, if a
user clicks a button control, you can have Excel execute a
macro.

You can create one macro for each control on a worksheet.
You create a macro either by recording a series of
keystrokes or by writing a Visual Basic for Applications
(VBA) procedure. When you select the Assign Macro
menu option, Excel automatically creates a new macro
name by using the name of the control followed by an
underscore and an event name, such as _click. Excel
assigns the control name to the control when you add it to
a worksheet. For example, the first optionButton control
that you add to a worksheet is named optionButtoni. If

Add a Macro to a Form Control

you create a macro for the option button, Excel gives the
macro the name optionButtonl_click. Every time you
add a new control, Excel gives the control a unique name
by adding a sequential number to optionButton; for
example, OptionButton2_Click, Option Button3_
Cclick, and so on.

The portion of the macro name following the underscore
character corresponds to an action, commonly referred to
as an event. For example, with an optionButton control,
the user clicks the radio button to select the option, so the
event is click. If you create a macro for a combo box
control, Excel assigns change to the name of the event
because you want to execute the macro when the value
of the control changes. The event extension tells Excel to
monitor the control and execute the macro whenever a
user clicks the control.

0 Right-click your control
twice.

A menu appears.
@ Click Assign Macro.

The Assign Macro dialog
box appears.

® Excel assigns a default
macro name for the
selected control.

@ Click Record.

The Record Macro dialog
box appears.

@ Click OK.
@ Record your macro.

Note: See section “Record a
Macro” to learn how to record
a macro.

@

7 - &
| L ¥ " i
Unit Price Total ltem Price
260.00 260.00 Computer 1,295.00
30.00 60.00 Monitor 260.00
. 1,295.00 12,950.00 Keyboard 55.00
ez | 55.00 275.00 Mouse 30.00
| - - Speakers 75.00
o .
1 5
" i
0 _— ¢
L | ! g"s-m
n | i . e
ELEH 2 - sy ‘ =
|
| ("]
TEE|
[® [
t+ Ouantity Item # Dy Price
e 2 e | 1,295.00
28 L 260.00
X 102 1 o s 55.00
s F sy 30.00
= Speakers 75.00

Subtotal
Shipping
Total 13,545.00

13,545.00

@ Click the control with the
assigned macro.

Excel executes the associated macro.

® |n the example, Excel assigns postage
to the invoice.

e)
= o
s
*] c] C ¥ 3 " i
+ Ouantity Item # Dy Unit Price Total Item Price
1 i 2/ s = 260,00 260,00 Computer 1,295.00
1 B Liree 30.00 60.00 Monitor 260.00
] 1. towam 1,295.00 12,950.00 Keyboard 55.00
L) e 55.00 275.00 Mouse 30.00
* - - Speakers 75.00
N
[
0 . "
u | Subtotal 13,545.00
u | Rl Shipging
s 2 196 13,545,00
u | ki)
i | il -
...... T
e &
[| 1o
*] c] [" 0
+ Ouantity Item # Dy Unit Price Total Item Price

2 e
-
1 compi

-]
g

9] <|1||1([1
%
2

Subtotal
Shipping
Total

i |

260.00
60.00
12,950.00
275.00

13,545.00

13,557.95

Computer 1,295.00
Monitor 260,00
Keyboard 55.00
Mouse 30.00
Speakers 75.00

To assign a macro to a button, create the macro, and
then click the Developer tab. Click Insert in the Controls
group. A menu appears. Select the button control and
then click and drag to create a button. The Assign Macro
dialog box appears. Click the macro you want to assign
and then click OK. Right-click the button twice and then
click Edit Text on the menu that appears. Type the name
you want to give the button. You can now click the
button to execute the macro.

If you no longer want a macro to be assigned to a control,

you can right-click the control twice and then click the
Assign Macro option. In the Assign Macro dialog box,
delete the macro name from the Macro Name field and
then click OK. Excel removes the macro assignment from
the control, but the macro remains as part of the
workbook. To remove the macro from the workbook,
click the View tab. Click Macros in the Macros group.
Click View Macros. The Macro dialog box appears. Select

the macro you want and then click Delete.

1 1dey)

.
.

C
=
=
Vj}
=
o
(@]
-
(]
7,]
fs)
=
(=
s
)
=)
=
(@
o
=
(=3
-
o
p—
n

Introducing the

Visual Basic Editor |

View of the Visual Basic Editor

@ Project Explorer © Code Window
The Project Explorer lists all projects. The VBE considers each Use the Code window to write, edit, and display VBA
open workbook and each add-in a project. Microsoft Office code. Every VBA object has a Code window that stores
arranges projects in the Project Explorer in a tree-like structure. the code associated with the object. In the Project
Click plus (+) to show more information. Click minus (=) to show Explorer, double-click an object’s name to see the
less information. To display the Project Explorer, click View = associated code. To display the Code window, click
Project Explorer. View = Code.
ig*n::un g ;,. g '*dw - " .:Tz_?f_f? O Ob]ect LISt Box
E““% LoRRTT ey ‘””Q l) - The Object list box lists the objects
el [T AssignValue() = associated with a form.
'‘Denise Etheridge 9
EAample: VRA ® Procedure List Box
Range("A1") = 100 -
. L — End Sub The Procedure list box lists the
ey e procedures associated with the
A selected object.
o ok
[= g . i
oy o @ Properties Window

To select an object, click the object
name in Project Explorer. To display
the Properties window, click View =
Properties Window. Use the Properties
window to set the properties associated
with the selected object.

@ Locals Window ®© Watches Window @ Immediate Window

Use the Locals window to monitor Use the Watches window to monitor The Immediate window returns the

declared variables. To open the Locals properties and variables. To display the results of statements you type into

window, click View = Locals Window. Watches window, click View = Watch the Immediate window. To display the
Window. Immediate window, click View =

Immediate Window.

@

The Visual Basic Editor

The Project Explorer

Excel provides two ways to create a macro: You can
record a macro or you can type Visual Basic for
Applications (VBA) code into the Visual Basic Editor
(VBE). The VBE is a separate application you use to write
VBA code. You can access the VBE through most
Microsoft Office Applications, including Excel.

You access the VBE by clicking the Visual Basic button
on the Developer tab in the Code group, or by pressing
Alt+F11. Inside the VBE, you can reposition windows to
create the development environment you prefer. You can
use the View menu to tell Excel which windows and
toolbars you want visible.

The Project Explorer resembles the treelike structure
used by the Windows Explorer folders pane. When you
open the VBE, the VBE opens a VBA project for each
open Excel workbook. The VBE names each project
VBAProject (workbook name). Under the project name,
the VBE lists the workbook and each worksheet in the
workbook.

When you record a macro, you can choose to store it in
the Personal Macro Workbook. Once you have stored a
macro in the Personal Macro Workbook, the Personal
Macro Workbook opens as a hidden file whenever you
run Excel. If the Personal Macro Workbook is open, you
can see it listed as a project in the Project Explorer
window as VBA Project (PERSONAL.XLSB).

Properties Window

VBA executes procedures in response to a system action
or a user action. A module is a set of procedures that
Excel can execute. The VBE stores each macro you
create or record as a procedure in a module. The Project
Explorer lists each module a project contains. You can
add modules by using the steps outlined later in this
chapter. When you double-click a module name in the
Project Explorer, the contents of the module appear in
the Code window. Use the Procedure list box to select
the procedure you want to view.

You use VBA code to manipulate objects. Workbooks
and worksheets are examples of objects. A property is
an attribute of an object. VBA uses attributes to define
such things as the name, color, location, or size of an
object. The Properties window displays the properties
associated with the selected object. To select an object,
you click the object name in the Project Explorer
window. A module has only one property: its name.
Hence, if you select a module, the only property that you
see in the Properties window is the module name.
Sheets have many properties, and if you select a sheet,
you can view and modify the many sheet properties.

To change the properties associated with an object, you
simply click the field beside the property and make the
desired changes. Some property fields, such as Name,
require you to type a value. Other fields have drop-down
lists from which you can select the appropriate value.
Some properties are read-only. You cannot change
read-only properties.

¢ Idey)

.
.

C
=
=
Vj}
(=
=
(¢
=
72]
s
<))
=
o}
)]
2.
a
M
(=N
;‘
o
o

Activate the Visual

Basic Editor

here are two ways to create a macro. One way is

to use the macro recorder to record the steps

needed to perform the action. The other way is to
create the steps by typing the VBA code into the Code
window of the VBE. When you use the macro recorder,
Excel automatically creates the VBA code for you. You
can use the VBE to edit macros you create with the macro
recorder. Often, it is convenient to use a combination of
the two methods to create your VBA code: You record
part of the VBA code and then you use the VBE to
augment or modify the recorded code.

You can use several methods to activate the VBE: You can
press Alt+F11 while in Excel; click the Visual Basic
button in the Code group on the Developer tab; or click

Activate the Visual Basic Editor

the Edit button in the Macro dialog box. When the VBE is
open, you can open the Code window by pressing Ctrl+R.

If you create your macros using the macro recorder, Excel
defines each macro you create as a procedure and stores
each procedure in a module. The VBE lists modules in the
Project Explorer under the workbook in which they are
located.

If the Personal Macro Workbook, Personal.xlsm, contains

macros, the project for the Personal.xIsm workbook opens
when you access the VBE. You can view and modify all of
the macros in the Personal Macro Workbook. See Chapter

1 to learn more about the Personal Macro Workbook.

Open the VBE by Using the
Ribbon

0 Click the Developer tab.

Note: See Chapter 1 to learn how
to display the Developer tab.

@ Click Visual Basic in the
Code group.

The VBE appears, with the
Window layout you last used.

@ Double-click a module name.

Excel shows the macro in the
Code window.

® |f you placed more than one
macro in the module, you can
click the down arrow and
then select the macro you
want to see.

Press Alt+F11 to return to
Excel.

@

| Sub AssignValues()
‘Denise Etheridge
'Example: VBA

| ange("A1") = 100

| End Sub

Open the VBE from the
Macro Dialog Box

@ Click the Developer tab.

9 Click Macros in the
Code group.

The Macro dialog box
appears.

@ Click the macro you
want to edit.

@ Click Edit.

The VBE appears,
with the code for the
selected macro in the
Code window.

L
|
1
]
5
.
]
'
8
1
E]
14 =
"
5
1
1
BTN gty " =
] —
Eapr——
R T L = L l ol L
- L) Ny 0 na]
S ket 7] g — i
o3 0 r—
& | Sub v ()

g

‘Denise Etheridge
'‘Example: VBA
| Range("A1") = 100
| End Sub

is open.

SHORTCUT KEY

To make the VBE easier to navigate, Microsoft provides shortcut keys. These shortcuts work when the VBE window

DESCRIPTION

F1 When you select an item in the Code window and then press F1, the VBE displays online
help for the item you selected.

F4 Press F4 to switch to the Property window and display the properties for the selected object.
If the Property window is not open, the VBE opens it in the location where you last viewed it.

F7 You select an object by clicking it in the Project Explorer. If you click an object and then press
F7, the Code window for the selected object appears on top of all other Code windows.

Ctrl+G When you press Ctrl+G, the VBE displays the Immediate window.

Ctrl+R When you press Ctrl+R, you switch to the Project Explorer. If the Project Explorer window
is not open, the VBE opens it in the location where you last viewed it.

Ale+F11 When you press Alt+F11, you toggle between the VBE and Excel.

¢ Idey)

.
.

C
=
=
Vj}
(=
=
(¢
=
72]
s
<))
=
o}
)]
2.
a
M
(=N
;‘
o
o

Open Visual Basic

Editor Windows

he VBE contains several windows you can use

when creating macros. Microsoft provides a basic

window setup; however, you can rearrange,
resize, remove, and add windows. The most commonly
used windows are the Project Explorer, the Properties
window, and the Code window. You may also find the
Immediate window useful for quickly testing a statement
before adding it to your code.

The View menu lists the available VBE windows. You can
select what windows to open and where to open them.
When you select a window from the menu, that window
appears in the location where you last placed it. For
example, if you placed the Project Explorer window in the
upper left corner during your previous session, the Project
Explorer window reopens in the upper left corner.

Open Visual Basic Editor Windows

You can move windows by using the standard drag-and-
drop feature found in all Windows applications. You can
resize a window by dragging its edges.

You can also attach windows to specific locations in the
VBE by using the docking feature. When you dock a
window, it becomes part of another window attached at
the specified location. If you set a window to dock, Excel
docks it in the location you specified each time it opens.
You can dock windows only on the top, bottom, left edge,
or right edge of the screen, application window, or another
dockable window. Docking a window does not mean that
the window always appears in the VBE.

You can have multiple Code windows open at the same
time. You can view multiple Code windows simultaneously
by tiling or cascading them.

Display a Window
@ Click View.
9 Click the window you want to open.

You can choose from the Immediate
Window, Locals Window, Watch
Window, Project Explorer, or
Properties Window.

The selected window appears in the
last viewed location.

You can click and drag the window to a
new location.

You can close a window by clicking the
Close button ([E==8) or by right-
clicking and selecting Hide.

Dock Individual Windows
o Click Tools = Options.

@

1 AssignValues()

fss 49 Etheridge
o E ple: VBA

, tange("A1") = 100
« | Sub

At Yo e b Ay s s sl e e W b bt]
L R T e

| Range("A1") = 100
| End Sub

The Options dialog box
appears.

Click the Docking tab.

Click the windows you want to
dock (CJ changes to).

Click OK.

Dock the window by clicking
and dragging it to an edge.

©0 OO

Excel moves the window to its
new location.

Display Code Windows
@ Click Window and then click
a tiling option.

You can select Tile
Horizontally, Tile Vertically,
or Cascade.

The VBE displays your Code
windows either tiled or
cascading.

] o Vit B Lt Wi i Mt L]
T O Vot B i W e - M| el
1 roesen = - Aasag—

|| | sub AssignNumbers|
Dim X As Integer
Dim RecNo(1 To 10) As Integer
ForX=1To 10

={E
.~|-.-_r..

RecNo(X) = X
Cells(X, 1) = RecNo(X)
Next X
End Sub

You can move windows around in
the VBE by using the same
techniques you use with all
Microsoft Windows programs. To
move a window, click the title bar

To resize a window, click a corner
of the window and drag it to the
desired size.

and drag it to the desired location.

To free up space, you can hide any
of the VBE windows. To hide a
window, right-click anywhere in the
window. In the menu that appears,
click Hide.

When you have many lines of code,
you may not be able to see all of it.
If you click Window => Split, the
VBE splits the Code window so you
can view different parts of your
code simultaneously. When you
split your window, the VBE creates
two windows with the same code.
You can manipulate each window
independent of the other.

¢ Idey)

.
.

J1031pd dIsed JensIA Y} Suisn

Set Properties

for a Project

ou can set the properties, such as the project name

and the lock status, for each project you can view

in the Project Explorer window. When you lock a
project, the project is password-protected so that only
people who know the password can view and modify the

contents of the project. You can set both the project name
and the password in the Project Properties dialog box.

Excel considers each open workbook a project. By default,
the VBE gives each project the name VBA Project
(WorkbookName). You can change the name of a project.
Changing the project’s name can help distinguish between
projects, especially if you have several workbooks open
simultaneously. If you have a workbook that contains
macros that perform a specific type of action; you can
give your project a name that makes its purpose readily

Set Properties for a Project

apparent. For example, if you have a workbook with
macros that format a sales report, you can name the
project SalesFormat.

If you plan to distribute your workbook to other users,
you may want to consider password-protecting your
project. If a project is password-protected, the user must
enter the password to view or modify any portion of the
project. Password-protecting can help protect VBA code
that you do not want others to view or modify. Password-
protection does not make your code completely secure.
There are password recovery utilities on the market that
anyone can use to recover your password. Password-
protecting the project does not lock the corresponding
Excel workbook.

Change a Project Name

@ Click the project name
you want to change.

@ Click Tools > Project
Name Properties.

The Project Name
Properties dialog box
appears.

Click the General tab.

(>)]

Type the desired project
name.

Click OK.

The project name
changes within the
Project Explorer window.

@

®

Valugf)
e " T Etheridfe
'‘Example: VBA

Range("A1") = 100
End Sub

¢ Idey)

l

Lock a Project from Editing i edingsnig o :
@ Click the Protection tab.

2 _I
o Click the Lock Project for Viewing ' -
option (L] changes to). o 7 T

@ Type the password required to unlock e e 0
the project. - ——0

© Type the password again. O . .
(10)

Click OK.

Excel locks your project.

.
.

The next time you open the workbook,
you will not be able to view the code
unless you know the password.

Wou et Bgreat Qebey B Jush bbbl e bl
LAR e L s EXYL 0

Open a Locked Project e

@ save and close your workbook.

@ Open your workbook.

@ Press Alt+F11 to open the VBE.

9 Double-click the locked project.
The Password dialog box appears.

@ Type the password.

O Click OK.

Excel opens your project.

1031pd dIseq [ensiA a3 Suisn

You can create forms (dialog boxes) to enable users to interact with macros. If you have multiple workbooks open
in Excel, you can copy modules and forms by using the Project Explorer window. To copy an object, click the object
and drag it to another project. When you release the mouse button, the VBE creates a copy of the selected module
or form in the specified project. By default, the VBE gives the copied module the same name as the module in the
original project. When you copy an object to another project, if one already exists with that name, the VBE renames
the object by adding a number to the end of the name. For example, if you copy Module2 to a project that already
contains a Module2, the copied module name becomes Module21. If you have a Module21, the VBE names the
copied object Module22.

T+

Set Display Options

for the Code Window

s you develop your VBA code, you will spend a

lot of time interacting with the Code window.

You can use the Editor Format tab in the Options
dialog box to adjust many aspects of the Code window.

These adjustments can make it easier for you to create
and debug your VBA code.

You can enter many different categories of text into the
Code window. For example, you can use comments to
annotate your code. By using the Format Editor, you can
adjust the foreground, background, and indicator color
for each type of text listed in the Color Text list. When
you use colors, it is easier for you to locate a particular
type of text when you are creating or debugging code.

You can use the Font field to select from the fonts
installed on your computer. When working with VBA

Set Display Options for the Code Window

code, you may find code easier to read if you use a fixed-
width font such as Courier New. With a fixed-width font,
the characters in the code align vertically, making it
easier to detect any spacing problems in your code. Use
the Size field to set the size of your font.

The Margin Indicator Bar check box indicates whether a
vertical indicator bar appears in the margin when you
debug your code. Make sure this option remains selected
so you can use the vertical indicator bar to spot appropriate
lines of code when you are debugging. The VBE places
symbols in the vertical indicator bar to indicate errors and
break points. See Chapter 8 for more information on
debugging.

As you make changes to the font settings for each of the
formatting types, Excel shows you a sample of the
changes in the Sample box.

0 Click Tools = Options.

The Options dialog box appears.
@ Click the Editor Format tab.

9 Click the type of text for which you
want to change the settings.

6 Click the down arrow and select a
foreground color.

6 Click the down arrow and select a
background color.

@ Click the down arrow and select an
indicator color.

@

Sub A:
Dol st e
‘Example: VBA
Range("A1") = 100

End Sub

o e &t
P |

.

|suba (
‘Denise Etheridge

gnV

«® © 0 ©

Excel sets the
foreground,
background, and
indicator colors for
the category you
selected.

The selection
appears in the
Sample box.

Click the down arrow
and select a font.

Click the down arrow
and select a font size.

Make sure the Margin
Indicator Bar check
box remains selected.

Click OK.

The text in the Code
window changes to
reflect your
modifications.

Y et Vil B o Ay S il G e e il [P —
M e et Ty Dy B Daek adhe ket
HE-d

S P

‘Denise Etheridge
‘Exarem= 7
R!I‘g =53 = e | Debrn

End Sul

o =g

1Mo et Vo B o st - e oy s
2 et et g B Tt e

ABCKYZ

You can use the Editor tab in the Options dialog box to set the options shown in the table that follows. Click Tools

and then click Options to access the Options dialog box.

OPTION FUNCTION

Auto Syntax Check

Allows the VBE to check the syntax of each line of code immediately after you type it.

Require Variable
Declaration

Requires explicit variable declarations within all modules. See Chapter 3 section
“Understanding Variables and Data Types” for more information.

Auto List Member

As you type your code, you see a reminder of the next logical value for completing the
current statement.

Auto Quick Info

Displays information about functions and their parameters as you type.

Auto Data Tips

Displays the current value of a variable when you position your cursor over the variable

while in Break mode. See Chapter 8 for more information about debugging your VBA code.

Auto Indent

After you set a tab location, all following lines start at the same tab location. You specify
the width of the tabs in the Tab Width field. You can set tabs from 1 to 32 spaces apart.

¢ Idey)

.
.

C
=
=
Vj}
(=
=
(¢
=
72]
s
<))
=
o}
)]
2.
a
M
(=N
;‘
o
o

Add a New

Module

en you write code, you use variables to store
information. A string is a sequence of
characters that does not represent a numeric

value. A string can consist of letters, numbers, spaces, and
punctuation marks. A variable can hold a number, a string,
or some other type of information. When you tell VBA
exactly what type of information a variable can contain,
you are declaring the variable. A procedure is a sequence
of code that, when executed, performs an action in Excel.
When you record a macro, VBA stores it as a procedure.
VBA uses modules to store variable declarations and
procedures. Whenever you create a new macro by using the
macro recorder, VBA places the procedure in a module and
associates the module with the project. The VBE considers
every open workbook a project.

Add a New Module

When you type VBA code into the VBE, you place it in a
module. You must create the module to store your VBA
code. As you add new modules to a project, VBA names
them Module#. The VBE assigns numbers to the modules,
increasing the number by one each time you add a new
module. For example, the VBE names the first module in
the project Module1, the second Module2, and so on.

The Project Explorer lists all of the modules in a project.
When you add a new module, Excel selects that module
in the Project Explorer and creates a blank Code window.

You do not have to create a new module for each procedure
you add to a workbook. You can add multiple procedures to
the same module.

0 Click the project to which
you want to add a new
module.

@ Click Insert > Module.

Excel creates a new
module and opens the
associated Code window.

@ Type the code for your
macro.

® This is the macro name.

Sub As® o es()
‘Denise ewneridge
‘Example: VBA
Range("A1") = 100

End Sub

Dim X As Integer
Dim RecNo(1 To 10) As Integer
For X=1To 10
RecNo(X) = X
Cells(X, 1) = RecNo(X)
Next X
End Sub

@ Press Alt+Fi1 to
move from the VBE
to Excel.

@ Click the Developer l:l S e e e i
tab. g

@ Click Macros in the :
Code Group.

[| ou -

® The Macro dialog
box lists existing
macros, including
the ones you create
in the VBE.

You can easily change the name of a module. When you create a new module, the VBE automatically names the
module Module#, with # representing the sequential number that follows the last module you created — for
example, Module1, Module2, and so on. If you have a project with several modules, distinguishing one module
from another without reviewing the source code can be difficult. You can rename modules with names that reflect
the actions that the contents of the module perform.

Use the Properties window to change the name of a module. In the Project Explorer window, click the name of the
module you want to rename. Press F4 to move to the Properties window. Type a new name in the Name field and
then press Enter. The name of the module changes on the corresponding node in the Project Explorer window.

¢ Idey)

.
.

C
=
=
Vj}
(=
=
(¢
=
72]
s
<))
=
o}
)]
2.
a
M
(=N
;‘
o
o

Remove

a Module

ou can remove modules from the VBE. Generally,

you remove modules that contain procedures you

no longer need. When you attempt to remove a
module, the VBE gives you the opportunity to export the
module to a file before removing it. If there is any
possibility that you will need to use a procedure in that
module in the future, you should export the module
before removing it.

Exporting a module creates a file with a .bas extension.
These files are text files, and you can open and read them
with any text editor.

Once you have exported a module, you can use the Import
File dialog box to import the module back into the project
from which you exported it or into another project. If you
have modules you want to share with other programmers,

Remove a Module

you can export them so the other programmers can import
them. When you import a module file, the VBE tries to
assign it the same name as the original module. If a module
already exists with that name, the VBE adds a sequential
number to the end of the module name. Therefore, if you
named the original module Module1 and a Module1 exists
in the project, Excel names the imported module Module11.

When you remove a module that contains code used by a

macro, you can no longer access the macro. If you remove
a module that contains code referenced by a procedure in

another module, an error message appears when you run

the code.

When you delete macros within Excel, Excel removes the
corresponding VBA code. If a VBA module does not
contain any code, Excel removes the entire module.

@ Click the module you want to
remove.

If the Project Explorer is not
visible, press Gtrl+R to
display it.

@ Click File > Remove Module
Name, where Module Name
is the name of the selected
module.

The Remove command
always contains the name
of the selected module.

The VBE displays a message,
asking whether you want to
export the module before
removing it.

@ Click Yes to export the
module to a file.

Alternatively, click No if you
want to delete the module
permanently.

@

[T |
im RecNo(1 To 10) As Integer
For X=1To 10

RecNo(X) = X
Cells(X, 1) = RecNo(X)
Next X
End Sub

=fi

Sub AssignNumbers()
Dim X As Integer
Dim RecNe(1 To 10) As Integer
For X =1To 10
RecNo(X) = X
cel e] Vosal Ramn. b b shim
Next } NV
End Sub|

i

The Export File B e e s o o e 8

P e et Tyt Dy

dialog box appears. L | 3 —
@ Click the down

| Sub AssignNumbers()
Dim X As Integer

¢ Idey)

arrow and select Dir RodERN—
the folder in which ForX=| e 5
you want to save ::ﬁ: c
the module code. Next X E
@ Type a name for the EndSub 1 /S
module code. E_r
. o
Click Save.
= <
(7
o
|)
of . (=
o)
The VBE removes (S g &
" 1 i m
the module from [——)
the project and | Sub AssignValues() m
saves the mOdU'e '‘Denise Etheridge Q‘
q ‘Example: VBA =0
in the folder and Range("A1") = 100 S
file you specified. End Sub =

® Module2 no longer
exists.

You do not need to delete a module to save it as a file. If you want to share your code with other VBA developers,
you can simply export the module to a file and then distribute the file. To export, select the module and then click
File = Export File. The Export File dialog box appears. In the Save In field, select the folder in which you want to
save the file. Type a filename in the File Name field and then click Save.

After you export a module to a file, you can import it into any workbook. To import an exported file, click a project
name to select the project into which you want to import the file. Click File = Import File. The Import File dialog
box appears. Use the Look In field to locate the folder in which you saved the exported module. Click the filename
and then click Open. VBA imports the file.

ou can hide macros so they do not appear in the
Excel Macro dialog box. If you create workbooks
that you intend to share with others, you may

want to hide some of the macros to ensure that users do
not inadvertently delete them.

Because Excel cannot execute a hidden macro from the
Macro dialog box, you must assign the hidden macro to
the Quick Access toolbar, Ribbon, an object, such as a
shape or picture, or have another macro call the macro.
When you hide a macro, shortcut keys will no longer
execute the macro.

To hide a macro, open the module containing the macro
within the VBE and place the private statement in front

of the sub statement for the procedure. For example, type
the following to hide the Assign_Values procedure:
Private Sub Assign_Values().

Hiding a macro does not prevent users from viewing or
modifying the macro in the VBE. If you want to keep users
from accessing the macro, you must password-protect the
project containing the macro by changing the properties of
the project. See the section “Set Properties for a Project” for
the details on setting project properties. Locking the project
prevents users from using the VBE to view and modify the
VBA code within that project. To open the project, a user
must enter the correct password. Locking a project limits
user accessibility, but Excel can still execute any macros in
the project.

0 Click the Developer tab.

@ Click Macros in the Code
group.

The Macro dialog box
appears.

@ Click the macro you want
to hide.

@ Click Edit.

[-

Prp—

] e

e TR

';.-—9

i1

i | ou -

The VBE opens
to the macro you
selected.

|

p-Private Sub AssignValues()
'‘Denise Etheridge

e Type Private 'Example: VBA

before the Sub Range("A17) = 100

statement. End Sub

@ Press Alt+Fi1 to
return to Excel.

¢ Idey)

.
.

@ Repeat Steps 1
and 2 to open the
Macro dialog box.

® The macro no L]
longer appears. il

C
=
=
Vj}
(=
=
(¢
=
72]
s
<))
=
o}
)]
2.
a
M
(=N
;‘
o
o

You should hide macros that are called by other macros if you do not want the To make a hidden macro
user to be able to execute the macro from the Macro dialog box. For example, visible again, you need to
you have a macro named Change_Cells that calls another macro named Add_ access the module
Cell_values. You can hide the Add_Cell_vValues macro so users cannot containing the procedure
execute it from the Macro dialog box. When you mark a procedure as private by in the VBE and delete the
placing the Private statement in front of the Sub statement for the procedure, Private statementin
you can access the procedure only from the same code module. In other words, front of the Sub statement.
the hidden macro and the procedure that contains the macro calling the hidden

macro must be in the same code module.

a Macro

ou can update a macro at any time by adding or

removing VBA code. After you record a macro,

you can record it again to replace it, but you
cannot modify it in Excel. The only way to modify your
macro is to change the procedure by using the VBE. If
you do not know how to read and write the VBA code
required for the step you want to add to the macro, this
can be quite an undertaking.

Modifying a macro — even one you create with the macro
recorder — requires manually specifying the new VBA
code you want to add to the macro. You can quickly
update an existing macro by recording the code you want
to add to the macro and then using copy and paste to add
the new steps to the old macro.

Update a Macro

For example, you create a macro that sums the values in
a column of cells but you forget to change the formatting
of the cell that contains the column total to Currency. You
can record a second macro in Excel that formats the cell,
and then open the VBE, copy the formatting code you
created when you recorded the second macro, and paste it
into the procedure for the first macro. When you copy the
code, be sure you only copy the portion of the procedure
between the sub and the End sub statements.

After you copy the code from the second macro into the
first macro, you can delete the second macro. You can
find out more about deleting macros in Chapter 1.

0 Click the Developer tab.

@ Click Macros in the Code group.
The Macro dialog box appears.

@ Click your original macro.

@ Click Edit.

The VBE appears, and opens to
the module that contains your
macro.

Click and drag to select the code
in your second macro.

()

OO0

Place your cursor at the end
of the last line of code in your
original macro and then press
Enter.

The VBE creates a new line.
@ Press Ctrl+V to paste the code.

ﬂ

1,800.00

140000 (E
1,600.00 | e ra
190000 |2

] 5 9,400.00

* FormatNumber Macro

Selection.NumberFormat =

"_($" #,##0.00_); ($" (#,##0.00); ($* ""-""27_); (@)"4—-0

Press Ctrl+C to copy the code. e

P ActiveCell.FormulaR1C1 = "=SUM(R[-6]C:R[-1]C)"
e

B Wipbote ¢ b . Ml ¥ et

Sub SumColumn()

* SumColumn Macro
'

ActiveCell.FormulaR1C1 = "=SUM(R[-B]c:R[-1}C}"<_6
End Sub
fmfi «

© Click Tools >
Macros.

* FormatNumber Macro

¢ Idey)

.
.

Selection.NumberFormat =
" ($* #,##0.00); ($* (#,##0.00); ($* "-""?7); (@)"

| ActiveCell.FormulaR1C1 = "=SUM(R[-6]C:R[-1]C)"
= s

[sub sumcolumn()

[SumColumn Macro
ActiveCell.FormulaR1C1 = "=SUM(R[-6]C:R[-1]C)"
End Sub
=i v

The Macro dialog
box appears.

Click the second -
macro. * FormatNumbg ™

S

J1031pd dIsed JensIA Y} Suisn

| -
CI|Ck Delete. Selection.Nu
m TS #u = ‘;“*_Pmt@_)"
The VBE deletes | ActiveCellF C:RI-1IC)"
the macro. =N T

M e o s b Wb] it

[sub sumcolumn()

[SumColumn Macro
ActiveCell.FormulaR1C1 = "=SUM(R[-6]C:R[-1]C)"
End Sub
g«

When you view the VBA code for your macro, you may notice that an apostrophe (') precedes several lines. These
are called comment lines. Programmers use comments to provide information about the code, such as what the
code does, when it was created, and who coded it. When you use the macro recorder to create a macro, any
information you type in the Description box appears as a comment.

Example:

Sub Assign_Values ()
'Denise Etheridge
'Example: VBA
Range ("Al") .Value = 100

End Sub

Create Sub

Procedures

block of VBA code that performs a task is a

procedure. A sub procedure is a special type of

procedure that performs a task but does not
return a value. Every time you record a macro, Excel
creates a sub procedure. You can view the sub procedures
in the VBE. You can also use the VBE to create sub

procedures.

Every sub procedure begins with the keyword sub
followed by the name of the sub procedure and
parentheses. If the sub procedure does not take any
arguments, the parentheses are empty. If the sub
procedure does take arguments, you place the arguments
between the parentheses, separated by commas. sub
procedures end with the keywords End sub.

Create Sub Procedures

Every sub procedure must have a name. You can name
your sub procedure anything you want as long as you
follow these naming rules: The name must start with a
letter. The name can contain only letters, numbers, and
underscores and cannot contain any spaces. The name
cannot be longer than 255 characters. The name cannot
be a cell address; for example, you cannot name your Sub
procedure A1. Procedure names in VBA are not case-
sensitive. The name of your sub procedure should
describe the function the procedure performs. For
example, if your sub procedure prints a sales report, you
might want to name it PrintSalesReport Or
Print_Sales_Report.

You place sub procedures inside modules. See Chapter 2
to learn more about modules.

@ Click Insert = Module.

® The VBE creates a new module.

Type Sub.

Type your procedure’s name.

00O

Type parentheses.

Place arguments the procedure
takes between the parentheses
separated by commas.

® The VBE automatically adds the
words End Sub.

ﬂ

o= B

@ Type your code.

@ Press Alt+F11 to switch from the VBE to
Excel, and then run your macro.

Note: See Chapter 1 to learn how to run a macro.

In this example, VBA places the number 100
in cell A1. e

s - - ;_. - {)':
[A1].Value = 1004—6

End Sub

[| -

A glossary of Sub procedure terms:

TERM DEFINITION

Argument An argument can be a constant, a variable, or an expression that is passed by a calling
procedure.

Constant A value that remains the same.

Function A type of procedure. This is a block of code that performs a task (usually a calculation) and
returns a value.

Expression A combination of objects, numbers, text, operators, and variables that yield a result. A
mathematical equation is an example of an expression.

Procedure A sequence of code that, when executed, performs a task in Excel. There are several types of
procedures.

Sub procedure | A procedure that performs a task but does not return a value.

Variable A named location where you store information. In the expression x=1, x is a variable that has
been assigned the value 1.

¢ 1dey)

jeo1jddy 10j o1Sed [ensiA Supnponuj :

.

i
o
=
7]

Create

Functions

ou are probably already familiar with functions.
Excel has over 300 predefined functions, with sum

being the most commonly used. You use the sum
function to add a list of values. Like a sub procedure, a
function is a special type of procedure. A _function is a block
of code that performs a task — usually a calculation — and
returns a value. There are three types of functions: VBA
functions, worksheet functions, and custom functions.

VBA functions are functions provided by VBA for use in
your VBA code. The MsgBox function is a popular VBA
function explained in detail, along with several other VBA
functions, in Chapter 7. When executed, the MsgBox
function displays a pop-up box with your message. Other
VBA functions obtain input from users, execute another
program, return the current date, or return the current time.

Create Functions

If an analogous VBA function is not available, you can
use an Excel worksheet functions in your code. Chapter 7
explains how to use worksheet functions in detail.

If none of the VBA or worksheet functions suit your
needs, you can create a custom function. Every custom
function begins with the keyword Function followed by
the name of the function and parentheses. If your
function takes arguments, you place the arguments
between the parentheses, separated by commas. Every
Custom Function ends with the keywords End Function.
There are two ways to execute a custom function: by
using the function in a formula or by calling the function
from a procedure. Excel lists custom functions under User
Defined in the Insert function dialog box. See Chapter 7
for more information on custom functions.

@ Click Insert = Module.

® The VBE creates a new module.

Type Function.
Type your procedure name.

Type parentheses.

000

Type arguments between the
parentheses, separated by commas.

® The VBE automatically adds the
words End Function.

ﬂ

[
T b et AT -

L 48 ¥ 5 @ rous 1
AN N Bt [
[t - PR K Bded.

..... T

Flvl ncfion BG hl.l!. Sala ry

% Perceni) ;

End F ti

O Type your code.

@ Press Alt+F11 to switch
from the VBE to Excel.

a8, Gl]

el

Fu;:tlr.; E.anus-{gélary f'ercen;:j-
Bonus = Salary * Percent 4—0

End Function

¢ 1dey)

.
.

You can use your function B e e T e e e .
to perform calculations. s x - (B 3 AT 4

CHOOSE = ° & o & sBanudi00000,8.08)

+ =Bonus(100000,0.05)

jeo1jddy 10j o1seq [ensiA Supnponul

.

i
o
=
7]

You can create VBA functions that you can use within Excel to perform calculations. When you create a public
function in the VBE, the function is listed in the Insert Function dialog box that appears when you click Formulas =
Insert Function within Excel. The VBE places the functions you create under the User Defined category in the Insert
Function dialog box. You can use these VBA functions in your worksheet to create formulas in the same way that
you use the built-in functions that are standard with Excel. The VBA functions you create are available in the Insert
Function dialog box only when the workbook containing the functions is open. Therefore, if you create a specific
function you want to use in all your workbooks, you should add the function to your Personal Macro Workbook,
Personal.xIsm, to ensure that it is always available from within Excel. The Personal Macro Workbook always opens
with Excel, so any macros and functions it contains are always available. See Chapter 1 for more information on the
Personal Macro Workbook.

Comment

Your Code

ith comments, you can document each step
of your code. You can use comments to
document such things as the person who

created the code, the date when the code was last
updated, the purpose of the code, and the purpose of each
step in the code. When you are working in a collaborative
environment, comments are essential.

In VBA, you start a comment by typing an apostrophe
(). When you execute the code, VBA ignores everything
after the apostrophe. Comments and code appear in
different colors. After you add an apostrophe, the VBE
changes the color of the commented text.

You can place an apostrophe anywhere in a line of code,
and VBA views the text after the apostrophe as a
comment. There is an exception to this rule: If you type

Comment Your Code

an apostrophe within double quotation marks, VBA does
not view it as a comment. For example, VBA would not
view the text after the apostrophe in the following
example as code: Ssaying = "That's Life!".

Comments help only if they provide enough information
to describe the code. A reader should be able to read the
comments without studying the code and still understand
the code. For example, a comment such as “Sums the
values” does not provide enough information about the
code. A comment such as “Sums the values in cells A1
and A2 and places the result in cell A3” is better because
it describes the actual process.

You can turn several lines of code into a comment by
using the Comment Block button on the Edit toolbar.
Later, if you want to make the commented lines code
again, you can click the Uncomment Block button.

@ Double-click the module that contains the
code you want to document.

Your code appears in the Code window.

=
F i
ES
[
3

L pe=—— o] (Dt

ey

Bonus = Salary * Percent
End Function

.\lpﬂ

ci—n =
‘Created By: Denise EIharldgu‘-@g

"Purpose Cal. e

You can place your comments anywhere.
| Function Bonus(Salary, Percent)

9 Press Alt+F11 to switch from the VBE to =3 ‘Multiply salary times annual percent

Excel, and then run the code. Bonus = Salary * Percent 'Approved by KP
| End Function

9 Type an apostrophe followed by your
comments.

¢ JGJdEI{Q

.
.

jeo1jddy 10j o1seq [ensiA Supnponul

o l=fwa o
The comments do not affect your code. e T e S e bae
CleO0sE .- ® o B cBonu{100000,0.08)
+ =Bonus(100000,0.05) . .
. tom o et TS
| - - — e
: Z = =
()
1 :
u 7]
o “_1““‘
You can use comments when you are testing your code. In the VBE, you can use the Edit toolbar to comment
If you suspect a line of code is causing your code to run | out a block of code. To access the Edit toolbar, click
improperly, you can comment it out and run your View => Toolbars = Edit. The Edit toolbar appears.
procedure without it. The process eliminates the need Select the lines of code you want to comment out. Click
to delete the line of code. You can reactivate the the Comment Block button ([3). The VBE comments
commented-out code by simply removing the out your code. When you run your procedure, the lines
apostrophe. of code do not execute. To uncomment the lines of
code, select them and then press the Uncomment Block
button ([Z]).

Reference Cells

and Ranges

s you write your VBA code, you will frequently
need to reference cells in an Excel worksheet
either to access the information in cells or to put

information there. VBA has several methods you can use
to reference cells.

One method is the ce11s method. When using the cells
method, you use an index to reference a row and column.
For example, if you want to reference cell A1, you type
the word ce11s followed by an open parenthesis, the row
reference, a comma, the column reference in quotes, a
close parenthesis, a period, and the word value. The
period and the word Value are optional. Both of the
following assign the value 1 to cell Al: cells (1, "a").
Value = 1, Cells(1l,"A") = 1.

Reference Cells and Ranges

When using the ce11s method, you can also use
numbers to identify the column. The first column in your
worksheet is column 1, and each column thereafter is
numbered sequentially. To assign the value 10 to cell E1,
you would type either of the following: cel1s(1,5) .
Value = 10, Cells(1,5) = 10.Column E is identified
by a 5 because it is the fifth column in a worksheet.
Using numbers to identify a column is preferable because
you can use loops to manipulate your row and column
references. To learn more about loops, see Chapter 6.

If you have a simple procedure and you want to access a
cell, you can enclose the cell reference in square brackets
followed by a period and the word Value. For example,
you can use the following to place the number 25 in cell
B3: [B3].Value = 25.

@ Click Insert = Module.

® The VBE creates a new module.

@ Name your procedure.

Note: See the section “Create Sub Procedures”
to learn how to name a procedure.

9 Reference cells by using the cells
method.

® This is a row reference.

This is a column reference.

@

el T=T=E=
T e e e i i

- o= B
Kyzyfo o P

- , ‘:Jub ".:nlI*afv‘cm:o()<—9:E —

End Sub T

9 Reference a cell by using the cell
address.

e Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to run
a macro.

The VBA places the values in the
cells you specified.

B e it i

| Sub CellReference() -

—3 [B2].Value = 25.99

Celis(1, "A").Value = "Price List"
Celis(2, 1).Value = "Sweater"”

End Sub

+ Price List
1 Sweater 25.99

Range ("C4")

You can also use the Range property to reference cells. The following table illustrates Range syntax:

SYNTAX REFERENCE

Cell C4

Range ("B1:B7")

Cells B1 to B7

Range ("D1:D8, F1:H2, F7:H8, G2:G6") Cells D1 to D8, F1 to H2, F7 to H8, and G2 to G6
Range ("J:J") Column
Range("11:11") Row 11

Range ("L:M")

Columns Lto M

Range("14:16")

Rows 14 to 16

See Chapter 11 to learn more about the Range property.

¢ 1dey)

jeo1jddy 10j o1Sed [ensiA Supnponuj :

.

Suol

Understanding Variables

and Data Types

ou use variables to store information for later variable, VBA retrieves the assigned value whenever you
use. The following syntax stores information to use the variable name. For example, you might make the
a variable. following assignment:
VariableName = Value =1
VariableName represents the name you give to the With this assignment, every time VBA sees the variable
variable. The equal sign is the assignment operator. x, it interprets it to mean 2. You can change the value
The assignment operator tells VBA you want to assign assigned to a variable many times and at any point in

something to a variable. value represents what you want your code.
to assign to the variable. Once you assign a value to a

Variable Names

You can name your variables anything you want; however, you must follow these rules:

e The first character of the variable name must be a letter.

e Your variable name cannot include a space or any of the following: . ! @ & $ or #.

e Your variable name cannot exceed 255 characters.

e Generally, you should not use names that are the same as functions, statements, or methods.
e Your variable name must be unique within its scope.

e You do not need to start each word in your variable name with an uppercase letter; however, that is the convention used in
this book. If you develop a convention and use it consistently, you will have an easier time debugging your code.

Data Types

In VBA, a variable can store many data types, including you later change the assignmentto x = "George", VBA
strings, dates, Booleans, and a variety of number types. reevaluates the expression and determines x is a string. Having
A string is any sequence of characters consisting of any VBA evaluate your variables slows down your code.
combination of letters, numbers, or punctuation marks. A . . .

Boolean is a value of either True or False. A number is When you declare a variable in VBA, you explicitly tell VBA the

variable’s data type. In other words, if your variable contains
an integer, you declare an integer variable. Because declaring
a variable makes your code run faster and more efficiently,

If you do not declare a data type, VBA assigns the default data you should make a habit of declaring variables. To ensure that

a value on which you can perform mathematical operations
such as addition, subtraction, multiplication, and division.

type of variant. When a variable is a variant data type, VBA variables are always properly declared, type option
examines the variable to determine if the value is an integer, Explicit as the first statement in your module. If option
string, date, Boolean, or other data type. When you change the Explicit is the first statement in your module, your code
value assigned to the variable, VBA automatically changes the does not run if you have any undeclared variables. You must

data type if needed. For example, if you assign x = True, VBA place the option Explicit Statement at the top of each
evaluates the expression and determines that x is a Boolean. If module you create.

@

Scope of Variables

Each Excel workbook is a project. Each sub procedure and function you create is a procedure. You can place multiple
procedures in a single module, and you can have many modules in a project. VBA variables can be procedure-only,
module-only, or public. Only the procedure in which the variable resides can use a procedure-only variable. Any procedure
in a module can use a module-only variable. Any procedure in a project can use a public variable.

Use the pim statement to declare a procedure-only variable. You place the statement after the sub statement but before
the procedure code and End sub Statement in a sub procedure. In a custom function, you place the pim statement after
the Function statement but before the procedure code and the End Function statement. The following example
includes several pim statements that declare procedure-only variables:

Example:

Option Explicit

Sub ProcedureOnlyExample ()
Dim EmpLastName As String
Dim Salary As Long
Dim StartDate As Date
'Place procedure code here

End Sub

When you want to create a module-only variable that any procedure in a module can use, you place your declarations
before the first sub or Function statement in the module. You refer to this area of the module as the declarations area.
The example shown here includes several Dim statements used to declare module-only variables.

Example:

Option Explicit

Dim EmpLastName As String

Dim Salary As Long

Dim StartDate As Date

Sub ModuleOnlyExample ()
'Place procedure-only declarations here.
'Place procedure code here

End Sub

When you want to create a public variable that any procedure in your project can use, you place your declarations in the
declarations area before the first sub or Function statement in the module and precede them with the keyword
Public instead of Dim.

Example:

Option Explicit

Public EmpLastName As String

Public Salary As Long

Public StartDate As Date

' Place module-only declarations here

Sub PublicVariableExample ()
' Place module-only declarations here.
' Place procedure code here

End Sub

¢ 1dey)

jeo1jddy 10j o1Sed [ensiA Supnponuj :

.

i
o
=
7]

Declare

Variables

ou use a variable to store information for later use.
If you are making an assignment to a variable, you
should start by declaring the variable. In its

simplest form, declaring your variable consists of telling
VBA what data type your variable will use.

You can assign one of several data types. Most are listed
in the “Extra” section of this task. Generally, if your data
consists of text or numbers you do not intend to use in a
mathematical calculation, you should declare your data as
a string. If your data is numerical data you do intend to
use in mathematical calculations, you should use one of
the many numeric data types. Use the data type that uses
the least amount of bytes but fully accommodates your
needs. If you do not declare your variables, VBA assigns
a variable type of variant. A variant data type can hold
any type of data. However, declaring your variables

Declare Variables

makes your code run faster. You should declare your
variables.

You can declare a variable as procedure-only,
module-only, or public. To learn more, see the section,
“Understanding Variables and Data Types.” You use a
Dim statement to declare a procedure-only or module-only
variable. You type the word pim followed by the variable
name, the As keyword, and then the variable type — for
example, Dim EmployeeName As String. If you are
declaring a public variable, you replace the pim keyword
with Public: Public EmployeeName As String.

After you have declared a variable, you assign a value to
it. Type the variable name, followed by an equal sign and
the value you want to assign the variable — for example,
EmployeeName = "John Smith".

@ Click Insert = Module.

® The VBE creates a new module.

e Type Option Explicit.

Note: See the section “Understanding
Variables and Data Types” for more
information.

This is the declarations area.
Declare your public variables.

Declare your module-only
variables.

Name your procedure.

00 00.

Declare your procedure-only
variables.

@

e =]

Sub Decl bles() <&
Dim Salary As Long ¢
End Sub |

@ Assign values to your variables.

Note: See the sections “Work with Strings”

) | Option Explicit 5
and “Work with Numbers” to learn more.

Public EmpLastName As String
' Dim Age As Integer
Sub DeclareVariables()
Dim Salary As Long

¢ 1dey)

@ Place the values in cells.

Q Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

.
.

D 7

Celis(1, 1) = "Last Name:"
Cells(2, 1) = "Salary:"
Cells(3, 1) = "Age:"

L

jeo1jddy 10j o1seq [ensiA Supnponul

End Sub

VBA places the values in your B T i i e
variables in the cells you specified. s

+ Last Name: Smith
2 Salary: 20000
1+ Age: 45

.

i
o
=
7]

[| ou -

You should choose the data type that uses the smallest number of bytes but can accommodate your data. Excel
provides characters you can use to set the data type for a variable. For example, you can use the following syntax to
declare a string: Dim EmployeeName$.
DATA TYPE BYTES USED RANGE OF VALUE DECLARATION CHARACTER
Boolean 2 bytes True or False
Date 8 bytes 1/1/100 to 12/31/9999
Double (negative values) | 8 bytes -1.79769313486231E308 to #
-4.9406564841247E-324
Double (positive values) | 8 bytes 4.94065645841247E324 to #
1.79769313486232E308
Integer 2 bytes -32,768 to 32,767 %
Long 4 bytes -2,147,483,648 to 2,147,483,647 | &
Object 4 bytes Any defined object
Single (negative values) | 4 bytes -3.402823E38 to -1.401298E-45 | !
Single (positive values) 4 bytes 1.401298E-45 to 3.402823E38 !
String 1 per character | Varies $
Variant Varies Varies

Work with

Strings

ou can assign strings to a variable so you can use
the string elsewhere in your code. A string is any

sequence of characters consisting of any
combination of letters, numbers, and punctuation marks.
A string can have up to two billion characters. When you
declare a string variable, you type the pim keyword
followed by the variable name and as String — for
example, Dim SampleString As String.

You can assign a string data type to a variable by typing
the variable name followed by an equal sign and then the
value you want to assign to the variable within quotation
marks. For example, you could use the following syntax
to assign the name John smith to the string variable
EmployeeName: EmployeeName = "John Smith".

You can join the contents of two or more strings to create
one string. The process of joining strings is called

Work with Strings

concatenation. Use the concatenation operator (&) or the
plus concatenation operator (+) to combine strings. Using
the concatenation operator is the better choice because
the plus concatenation operator can be confused with the
plus arithmetic operator. The expression FirstName =
"David" assigns the string pavid to the variable

FirstName. The expression LastName = "Jackson"
assigns the string Jackson to the variable L.astName. The
expression FullName = FirstName + " " +

LastName and the expression FullName = FirstName
& " " & LastName both return pavid Jackson. You
include the double quotation marks separated by a space
(*) to leave a space between the first and last names.

You can assign a string to a cell by enclosing the string in
quotes. For example, cCells (2, 1).value = "0ld
Salary" assigns old salary to cell A2.

o Click Insert = Module.

® The VBE creates a new module.

@ Name your procedure.

9 Declare your variables.

Tl

ey

|| SI.lI: UseStri ngst];é
—06

| End Sub

J _'F.‘ Al

9 Assign string values to variables.
6 Concatenate the strings.

@ Assign a variable to a cell.

o Assign strings to cells.

0 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

VBA places the values in your
variables in the cells you specified.

Sub UseStrings()
Dim LastName As String
Dim FirstName As String
Dim FullName As String

FullName = "John" & " " & 'Smith"—e

= Celis(1, 1).Value = FullName

L

| End Sub

3 =R

a
John Smith
2 Old Salary:
1 Raise:

s New Salary:

When you declare a string, you can declare it as a fixed-length or a variable-length string. A fixed-length string can
have between 1 and 65,526 characters. When declaring a fixed-length string, you specify the string’s maximum
length in characters. For example, you can use the following syntax to declare a fixed-length string with a maximum
of ten characters: Dim SampleString As String * 10.

When concatenating fixed-length strings, there is the potential for exceeding the declared or maximum length of the
string. VBA does not extend the size of a fixed-length string to store a larger string. If two joined strings form a
string larger than the space allows, VBA truncates the string to fit the allotted space. If each of the strings you want
to join is ten characters in length, you must make the variable that receives the concatenated string at least 20
characters in length, or VBA truncates the string.

¢ 1dey)

jeo1jddy 10j o1Sed [ensiA Supnponuj :

.

i
o
=
7]

Work with

Numbers

o perform mathematical calculations, you can use

VBA's seven arithmetic operators: the plus (+),

minus (-), multiplication (*), division (/),
exponential (*), integer division (\), and Mod operators.
You use the plus operator to add, the minus operator to
subtract or negate, the multiplication operator to multiply,
the division operator to divide, and the exponential
operator to raise to a power.

The integer division operator divides two values and
returns only the integer portion of the result. VBA
discards the remainder when you use this operator. For
example, the expression x = 10\3 returns 3. The Mod
operator divides two numbers and returns only the
remainder. For example, the expression X = 10 Mod 3
returns 1. This operator works well for predetermining if

Work with Numbers

a value divides evenly. If the mMod returns a zero, the
value divides evenly.

You can assign the results of a mathematical calculation
to a variable, and you can include cells and variables in
your calculations. All of the following are valid: 2 = 5,

X =A + 25,X =5+ 7,X =9 + Cells(1,1) .Value.

When you perform a mathematical calculation in VBA, you
must be careful of precedence — the order in which VBA
performs calculations. VBA performs calculations from left
to right, performing multiplication and division before
addition and subtraction. For example, the formula = 3 +
4 = 2 returns 11; VBA multiplies 4 times 2 and then adds
3. If you want to change the order of precedence, use
parentheses. Excel calculates numbers in parentheses first.
The formula = (3 + 4) * 2 returns 14; VBA adds 3 plus
4 and then multiplies the result by 2.

@ Click Insert = Module.

® The VBE creates a new module.

@ Name your procedure.

@ Declare your variables.

= = = =]
i T s T

ES-d

ey =]

- 1 :' L .-.g. = R

= ‘:Jub UsaNumhrs(]‘-@z ~
-—0

End Sub

Assign numeric values to variables.

You can perform mathematical
calculations.

Assign variables to cells.

Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

©0

VBA places the values in your
variables in the cells you specified.

-
fromet sttt

an

F T e

?

hicmas;

E'.

Sub UseN| s()
Dim Salary As Single
Dim Raise As Single
Dim NewSalary As Single

NewSalary = _Salary * Rais-<—.

End Sub

a
¢ John Smith

2 Old Salary:

1 Raise:

s New Salary:

80000
5600
85600

evaluates the equation from left to right.

The following table shows the precedence order, from highest to
lowest, that VBA uses to evaluate operators in formulas. If the
operators in the formula have the same order of precedence, Excel

PRECEDENCE OPERATORS SYMBOL

subtraction

1 Exponentiation n
2 Minus sign - (negates a number before
any calculations)
3 Multiplication and | * /
division
Integer division \
Modulus arithmetic | Mod
Addition and +-

You can assign a number to a cell. For
example, Cells (2, 2).Value =
80000 assigns 80000 to cell B2.
When assigning a number to a cell,
do not enclose the number in quotes.

¢ 1dey)

jeo1jddy 10j o1Sed [ensiA Supnponuj :

.

i
o
=
7]

Create a

Constant

declare it as a constant. For example, there are four

quarters in a year. If, in your code, you frequently
divide an annual amount by four to allocate amounts to
quarters, you can store 4 to a constant named NbrofQtrs
and use the constant when performing calculations. When
you review your code and see the constant name, you
instantly know you are dividing by the number of quarters,
whereas if you use the number 4, the true meaning of the
number is not as readily apparent. In short, using constants
makes your code easier to understand. After you assign a
constant a value, you cannot alter the value.

When you declare a constant, you specify the data type.
Constants use the same data types that variables use. As
with variables, if you do not specify a data type, VBA
treats the value as a variant.

Create a Constant

I f you often use a value that never changes, you can

If you want your constant to be available only to the
procedure in which it was created, declare your constant
after the sub or Function statement. If you want your
constant to be available to all of the procedures in your
module, declare your constant in the declarations area. If
you want your constant to be available to any procedure
in the workbook, declare your constant in the
declarations area and use the public keyword.

Declaration examples: Const NumOfQuarters As
Integer = 4, Public Const Region As String =
"New York"

To name your constant, you use the same naming rules
used for variables. For more information, see the section
“Understanding Variables and Data Types” earlier in this
chapter.

@ Click Insert > Module.

® The VBE creates a new module.

@ Name your procedure.
@ Create your constant.

@ Declare your variables.

== B

i = LTI

T=Ed

Sub Cra:tuConstant({*—@ g

Const NbrOfQtrs As Integer = 4

| End Sub

= LTI

@ Assign a value to a variable.

@ Use your constant in a calculation.
® The result is stored in a variable.

@ Assign values to cells.

0 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

VBA places the values in the cells you
specified.

-| | Sub CreateConstant()

Const NbrOfQtrs As Integer = 4

Dim MarketingBudget As Single

Dim QtrBudget As Single
MarketingBudget = 800(<€ 6
.——>QtrBudgot = MarketingBudget /| NbrOfQt

G

End Sub

3 =R

A 0 [o i
+ Marketing Budget
2 First Quarter 200000

[| ou -

VBA provides a large number of built-in constants that you can insert into your code at any point without declaring
them. The Excel VBA object model adds many more, all of which begin with either x| or vb. Each constant has a
numeric value. You can use these constants anywhere, and you do not need to know their numeric value to use them.
Two of the most commonly used VBA constants deal with inserting carriage returns, vbCrLf, and tab characters,
vbTab, in your output. Although each of these constants has a numeric equivalent, you simply type the name of the
appropriate constant value in your code. To find a list of all VBA and Excel VBA Object Model constants, press F2 to
view the Object Browser and search for Constant. Most of the constant values are self-explanatory, based on the
name. The appendix also includes many of the constant values used in this book. You can also find a listing of
constants by typing constant in the Help text box.

¢ 1dey)

jeo1jddy 10j o1Sed [ensiA Supnponuj :

.

i
o
=
7]

Discover the Excel

Object Model

bjects are the individual pieces of an application.

For example, a worksheet is an object, a range

of cells is an object, and a chart is an object. You
can use the Excel object model to interact with objects.

Using the object model, you can access everything from
the entire application to an individual cell in a worksheet.

Objects can have properties and methods. You use
methods to perform actions on objects, such as move an

Excel Objects

object. You use properties to change the characteristics of
an object, such as the color of an object.

Excel has an enormous number of objects, properties,
and methods, and remembering all of them is virtually
impossible. Luckily, the VBE provides a help system to
help you quickly locate objects and determine the
corresponding methods and properties that are available
for the object. You can learn how to work with objects by
performing the tasks in this chapter.

The Excel object model has several hundred objects and
thousands of corresponding properties and methods. Each object
represents an element of the Excel application. For example, the
Application object refers to the entire Excel application, and
the worksheet object refers to an individual worksheet.

Most objects have child objects. A child object is an object that
is part of a larger object. For example, a worksheet object is a
child object to a workbook object because worksheets are part
of a workbook. All objects in the Excel object model except the
Application objectis a child of at least one other object. The
Excel application object is the parent of all objects in Excel.

The object model groups common objects into collections. For
example, the workbook object identifies an individual workbook,
but the workbooks collection refers to all open workbooks.

Although the list of available objects is extensive, there are six
objects that you use frequently: Application, Workbook,
Worksheet,Chart,Range,andDialog.Becmﬁeyouuse
these objects frequently, it is a good idea to familiarize yourself
with them.

Application Object

You usually need to reference the parent object when
referencing the child object. For example, to access the
second worksheet in the current workbook, you would type
ThisWorkbook.Worksheets (2).

The Application object represents the entire Excel program. All
other objects are children of the Application object in the
Excel object model. The application object has several
properties and methods. Those that return the most common
user-interface values, such as the activecell property, do
not require the use of the Application object in the
statement. Both of these statements are valid:

Application.ActiveCell
ActiveCell

Worksheet Object

Every worksheet in Excel is a worksheet object. Every
Worksheet object is part of the worksheets collection.
You can use worksheet methods to do things such as add,
delete, or copy a worksheet. See Chapter 10 for more
information about working with the worksheet object.

Workbook Object

Every workbook you open in Excel is @ workbook object.
Every workbook object is part of the workbooks collection.
The workbooks collection is part of the Application
object. You can use the workbook object methods to do
things such as save or close a workbook. See Chapter 9 for
more information on working with the workbook object.

Chart Object

Every chart in a workbook is a chart object. You can embed
a chart in a worksheet or you can place a chart on a chart
sheet. The chartobject object holds chart objects you
embed in a worksheet. All chartobject objects are part of
a ChartObjects object collection. chart objects you place
on a chart sheet are part of the charts collection. See
Chapter 15 for more information about working with charts.

Range Object

The Range object enables you to reference an individual cell
or a range of cells. Several different methods and properties
use Range objects. See Chapter 11 for more information on
the Range object. The following references cell B3:

Range ("B3")

@

Excel Objects (continued)

Dialog Object

The pialog object references each of the built-in dialog boxes available in Excel. Excel stores these dialog boxes in the
Dialogs collection. VBA identifies each dialog box by assigning it a constant value. The constant value begins with
x1Dialog followed by the name of the dialog box. For example, x1pialogSaveas references the Save As dialog box. You
can use the constant value associated with a dialog box to view the dialog box. You view individual dialog boxes by using the
show method. The Dialog object refers to existing dialog boxes. For information on creating dialog boxes, see Chapter 14.

¥ 191dey)

.
S

Excel Properties Excel Methods

Each object in the Excel object model has properties. Each object in the Excel object model has methods. You
Properties enable you to view or change the use methods to perform actions on objects. For example,
characteristics of an object. For example, you can use you can use the copy method to copy a worksheet and
the value property to change the value of a cell. You place the copy in a specified location.

can also use properties to change other aspects of an
object. For example, you can use the Hidden property
to hide or unhide a worksheet. To change an object
property, you combine the object name with the property
name and then assign a property, as follows:

To use a method with an object, you combine the object
name with the method name, as in the following
example:

Worksheets (1) .CopyAfter:=Worksheets (3)

|
=
o=t
-
o
u
s
(@)
Eo
UQ
=3
(¢}
94
Q
()
J—
o
=,
(¢']
a
ot
=
o
(=
e

Range ("Al") .Value = 45

Object Collections

You can have multiple objects of the same type, such as multiple worksheets in a workbook. To make these objects more
accessible, VBA groups them together in an object collection. For example, each workbook object contains a
Worksheets collection. You access a collection in a manner similar to the way you access an array. You use an index
value to reference the desired object in the collection. The following code accesses the second worksheet in the
Worksheets collection:

Worksheets (2)

TERM DESCRIPTION

Object An element in an application, such as a worksheet, chart, or form. You can use VBA to manipulate
objects.

Properties The characteristics of an object, such as its color, size, or location.

Methods The actions VBA can perform on an object, such as copy, save, or move. For example, you can use
methods to copy, save, or move a worksheet.

+++

Access the Excel Object (T} /

Model Reference “

hen you want to know what objects are method, provides you with the syntax for each method,

available to you and the properties and explains the parameters associated with each method,

methods associated with those objects, you and provides you with sample code for most methods.
can refer to the Excel Object Model Reference, which is The Excel Object Model Reference also explains each
part of the VBA help system. The Excel Object Model object property and event and provides you with the
Reference provides documentation on every object, syntax and sample code for most properties and events.
method, property, and event in the Excel object model. An when using the Excel Object Model Reference, you can
event occurs in Excel whenever the user performs any access the information you want in several ways. When

type of action. You can use events to tr‘igger the execution you type the name of an object, method, property, or
of a procedure by creating event-handling procedures. See ayent into the Search field, the Excel Object Model

Chapter 17 to learn more about events. Reference brings back a list of topics. You can then click
The Excel Object Model Reference explains every object, the topic of interest to you. You also can select topics
and provides you with sample code. You can cut and from the Developer Reference Table of Contents, which
paste the sample code into the VBE and then run it in appears when you access help.

Excel. The Excel Object Model Reference explains each

Access the Excel Object Model Reference
@ Click Help in the VBE. e e s e ~—0 —0

A menu appears. LYY K— Sl “

9 Click Microsoft Visual i
Basic for Applications

Help. e 4—9

® The Excel 2010 Developer
Reference window

appears.
@ Click Excel Object Model
Reference.
A list of the objects in the B ==
Excel object model T e
appears. el ikt iodid

@ Click the object for which
you want more
information.

@

A window with links
to the properties,
methods, and
events appears.

Click the
subcategory or
topic in which you
are interested.

Information on the
topic or a menu of
additional choices
appears.

If a menu appears,
choose an option,
Excel displays

information on the
topic you selected.

You can use the Object Browser to access a
list of objects, properties, and methods
available for your use. You open the Object
Browser by pressing F2, or by choosing View
=> Object Browser from the menu while in the
VBE. In the field in the upper left corner of the
browser, select Excel to access the Excel
Object Model Reference. Use the Search field
in the upper left corner to search for the object
you want to find. When you find what you are
looking for, click it and then click the question
mark at the top of the window for help.

If you position your cursor over
a keyword in your code and
then right-click, a contextual
menu appears. Click List
Properties/Methods to see a
list of properties or methods
that you can use with the
keyword. Click List Constants
to see a list of constants that
you can use with the keyword.
Click Parameter Info to see a
list of parameters.

As you type your code, the
VBE provides you with a
list of properties, methods,
and constants that you can
use with the object for
which you are creating a
command.

¥ 191dey)

.
.

[PPO 193[qO [20xT 211 Sunponuy

Create an

Object Variable

ou can reference objects by typing the complete

object reference each time you want to reference

the object, or you can assign an object to a
variable. You assign objects to variables because variable
names are usually shorter and easier to remember, and
you can change the objects that variables refer to while
your code is running. In addition, VBA code runs faster
when you use object variables.

You declare object variables in much the same way as
you declare a standard variable. You use the pim
statement to declare the variable and the as statement to
identify the variable as an object variable. The data type
for the variable is the corresponding object type. For
exanuﬂ&thesananentDim SampleVar As Worksheet
creates an object variable named samplevar that is a
Worksheet object.

Create an Object Variable

After you create an object variable, you assign an object
to the variable by using a set statement. The following
statement assigns Sheetl to Samplevar:

Set SampleVar = ActiveWorkbook. _

Worksheets ("Sheetl")

When you assign an object to a variable, you are
assigning a reference to the object to the variable and not
the actual object value. For example, when you assign a
range to a variable without using a set statement, you
are assigning the value in the cell to the variable. When
you assign a range to a variable using a set statement,
you reference the actual cells. Assigning a range to a
variable by using the set statement enables you to use
the variable to set properties for the range.

@ Name your procedure.

@ Declare your object
variable.

Use a set statement to
assign an object to the
variable you created.

© o

Assign the object
properties.

® Assigns a text to a cell.

® Places a thick border at
the bottom of the cell.

@

- AN 9 s AN H¥W L @ o]
305 “EELZ ']

| sub cuatoOijarn<—o
Dim Title As Range 4—9

End Sub

f +

- T ram
) P LM Y et el Dibeg B Jesk hadin e (b =y ety
HE-d) Pa AN NYW L D ey i

o 1 - RS E .]
| Sub createobjvar()

Dim Title As Range

Set Title = ActiveSheet.Rangn{“B1“)<—9
=3 Title.Value = "Sales"

4——.

End .

Makes the font
bold.

Makes the font
color blue.

Right-aligns the
text.

Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

The macro places
the text you
specified in the cell
you specified, adds
a thick border to
the bottom of the
cell, makes the font
bold, and sets the
font color to blue.

)
“ B STD

Sub CreateObjVar()
Dim Title As Range
Set Title = ActiveSheet.Range("B1")
Title.Value = "Sales"
Title.Borders(xlEdgeBottom).LineStyl

= xIC

Title.Borders(x|lEdgeBottom).Weight = xIThick

Title.Font.Bold = True <€——

Title.Font.Color = RGB(0, 0, 255) €«——

Title.HorizontalAlignment = xIRighti—.
End Sub

ofy s

e
v | e aplawd e D =@

= O A

b ' W g - n A EEWEE G -0 G ekt
i - ®
A] c [i C

i sales<_.
2 Maonday 1,800

1 Tuesday 1,100

i Wednesday 1,000

s Thursday 500
s Friday . 1,300

i | ou -

If you want to refer to the currently selected worksheet,
you can use the ActiveSheet property. You can use this
property in place of an object reference to the worksheet,
such as Worksheets (1), which refers to the first
worksheet in a workbook. By using the ActiveSheet
property, you reference the active worksheet at the time
your procedure executes. For example, SheetName =
ActiveSheet .Name assigns the name of the currently
active worksheet to the SheetName variable.

The ActiveSheet property can refer to any type of sheet
within a workbook. Therefore, if the currently selected
sheet is a chart sheet, the ActiveSheet property returns
a reference to the chart sheet. See Chapter 10 for more
information on working with worksheets.

When you create object variables, you are essentially
creating an object reference. Unlike a standard variable,
which is the name of a memory location containing the
variable’s value, an object variable is the memory
location that stores a reference to the object. For
example, in the following code, ObjVar stores the
reference to cell B2 in the worksheet.

Example:
Dim ObjVar As Range
Set ObjVar = ActiveSheet.Cells(2, 2)

¥ 191dey)

.
.

|)
=
o=t
-
o
Qu
s
Q,
=
UQ
=3
(¢}
o]
ad
(@)
o
S
@)
S
(¢
(@
=
=
()
(=
()
.

Change the Properties

of an Object

ou can change the value of an object, its

appearance, and other characteristics by

modifying the properties associated with the
object. For example, when working with a cell on a
worksheet, you use the value property to change the
value of the cell. If you want to change the font style, you
modify Font object properties, such as Bold, Ttalic,
Underline, and Size.
If you want to make several property changes to the same
object, you can create a statement for each property you
want to change. For example, you can enter the following
statements to change the properties of a cell:

Active Sheet.Range("Bl").Value = "Sales"

Active Sheet.Range("Bl") .Borders _
(x1EdgeBottom) .LineStyle = xlContinuous

Active Sheet.Range("Bl") .Borders _
(x1EdgeBottom) .Weight = x1Thick

Change the Properties of an Object

Active Sheet.Range("Bl").Font. _
Bold = True

Active Sheet.Range("Bl").Font. _
Color = RGB(0, 0, 255)

You can simplify these statements by assigning
ActiveSheet.Range ("B1") to an object variable and
then referencing the variable for each statement. For
example, you can assign ActiveSheet.Range ("B1l") to
the variable Title and type Title.value = "Sales".

You can simplify the statements even further by using a
with statement. Instead of typing the object variable
reference, you simply type with VariableName followed
by each property statement. When you complete your list
of property settings, you type End with to mark the end
of your with statement. You can nest your with
statements to further simplify your code.

@ Name your procedure.

9 Declare your object
variable.

@ Use a set statement to
assign an object to the
variable you created.

@ Assign the object
properties by using a
with statement.

® Assigns text to a cell.

® Places a thick border at
the bottom of the cell.

Right-aligns a cell.

@

(] ==~
1 e e et e (e B D Abbbe e o e
EE-d AR AT + 4 aEIY @ i i
| sub chgmjprupu<—o
Dim Title As Range‘-@
End Sub
=5
4] T=TERE
EE - as 9 A YYD Lo i
| Sub ChgObjProp()
Dim Title As Range
Set Title = J\ctivnShoet.Range("B1“]4—9

With Title

Nalue = “Sales“‘—.

.HorizontalAlignment = xIRight €———
End With
End Sub

=fs

Makes the font
bold.

Makes the font
color blue.

with statement.
Nested with.

Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

The macro places
the text you
specified in the cell
you specified, adds
a thick border to
the bottom of the
cell, makes the font
bold, and sets the
font color to blue.

1 b ee jeit hpa sy B Dk Sabbe ek b ra—— T
ER-d BAS v iR EFEF D Law i

| Sub ChgObjProp()
Dim Title As Range
Set Title = ActiveSheet.Range("B1")
With Title
Value = "Sales”
.Borders(xIEdgeBottom).LineStyle = xIConti
.Borders(x|EdgeBottom).Weight = xIThick
-HorizontalAlignment = xIRight
With .Font-e—
.Bold = True €¢—
.Color = RGB(0, 0,255) ¢ @

End With €—

End With
End Sub
=&
e Crrope 2 ot of o Oyt Wbt e (3
e | e Paglawd b D e =@
" _‘) K mmge T o E @ s or
- s Sl EEREEE Vo0 W et i |y :
i - »
i] c [i C
o Sales f—
2 Maonday 1,800
1 Tuesday 1,100
i Wednesday 1,000
s Thursday 500
& Friday = _1.900
6,700

[| s -

Some objects, such as the Font object, have a Color property that determines the color of the object. You can use

the RGB function to set the font color. When you use this function, you select the desired color by indicating the
amount of red, green, and blue in the color. You specify the color values with an integer value between 0 and 255.

For example, you type (0,0,0) for the color black.

COLOR RED VALUE GREEN VALUE BLUE VALUE
Black 0 0 0

Blue 0 0 255

Cyan 0 255 255

Green (0] 255 0

Magenta 255 0 255

Red 255 0 0

White 255 255 255

Yellow 255 255 0

¥ 191dey)

.
.

|)
=
o=t
-
o
Qu
s
Q,
=
UQ
=
(¢}
o]
ad
(@)
o
S
@)
S
(¢
(@
=
=
()
(=
()
.

Compare Object

Variables

ou can use an object comparison to determine if

two object variables reference the same object.

Unlike standard variables, which actually contain
values that you can compare, the object variable does not
contain the object, but references it. When you compare
two object variables, you are checking to see if they
reference the same object. For example, you may want to
find out if the currently active worksheet is the first
worksheet. If so, you can perform an object comparison.

When you compare standard variables, you use the
equals (=) operator to determine if they are the same. For
example, If Valuel = Value2 Then compares two
standard variables. See Chapter 3 for more information
on working with standard variables.

Compare Object Variables

When comparing objects, instead of the equals operator,
you use the 1s operator. For example, you write an 1f
Then statement to compare two object variables as
follows: If Objvall Is Objval2 Then.

This statement looks at the object referenced by objvali
and checks to see if it is the same as the object referenced
by objval2.

In addition to comparing two objects, you can also use the
Is operator to determine if an object variable has an
assigned value, as shown in the following example: 1f
ObjVvall Is Nothing Then. This comparison statement
returns a value of True if the object variable does not
reference an object. If the object variable references to an
object, the comparison statement returns a value of False.

@ Name your procedure.

@ Declare your variables.

9 Assign objects to your
object variables.

2] =)
= BAc s i s EFYr D L i

| sub 60mpam0bj\lartl<—0

End Sub
=
By = B
F R e e e o el
EE - B A ST @ o i

| sub CompareObjVar()
Dim WSRef1 As Worksheet
Dim WSRef2 As Worksheet

End Sub

=i

@ Compare the objects U —— — e
q ES-- BT v AN EFT @ L i _ :ﬂ

and assign the — S —— o
result to a variable. Sub CompareObjVar() =4

Dim WSRef1 As Worksheet o)

e Display the result Dim WSRef2 As Worksheet -
Dim Result As Boolean SN

using the MsgBox

.
.

Set WSRef1 = ActiveSheet

function. Set WSRef2 = Worksheets("Sheet1”
e Result = WSRef1 4—6

Press Alt+F11 to MsgBox {Rnsnm%

switch from the VBE End Sub
to Excel, and run the
macro.

If you are on Sheet1, T o e e RN S e
the macro returns
the value True;
otherwise, it returns

5| The Haoclymas, LLC

A
¢ |The Handyman, LLC 1

|)
=
o=t
-
o
Qu
s
Q,
=
UQ
=
(¢}
o]
ad
(@)
o
S
@)
S
(¢
(@
=
=
()
(=
()
.

the value False. + Budgeted Cash Flow
1
' dul Aug Sep
5 Cash Receipts
Painting Interior s [EElo ¢ 2sm0
Painting Exterior fuse 000 7,000
[) Drywall 500 1,500
s Roofing | =] [ooo 3,000
10 Total Cash Receipts $ 14500 5 14,500 § 14,000
(i
12 Cash Disbursements
1 Salaries and Wages $ 4200 § 4200 § 4200
u Payroll Taxes & Employees Expe 1,050 1,050 1,050
o Owner Withdrawals 2,000 2,000 2,000
16 Rent 1,200 1,200 1,200
Marketing 1,500 1,500 1,500
Exvap! B0 Compers Ot Versalien .

You can also use the Is operator with the Nothing keyword to ensure that an object variable points to a valid
object. You can compare the value of the object variable to the Nothing keyword by using an If Then statement,
as shown in the following example. If the If Then statement returns a value of True, the object variable does not
contain a reference to a valid object.

Example:
If ObjVar Is Nothing Then

MsgBox ("Variable does not reference a valid object.")
End If

You can use the Nothing keyword to clear the object variable. By doing so, you free up the memory required to
store the object reference in the object variable.

Example:
Set ObjVar = Nothing

Using an

Object Method

an action on an object. The Excel object model

contains several hundred objects, and each object
has a list of methods you can use with it. For example,
you can use the copy method to copy a worksheet object
and then place the copy in another location.

To use an object method, you specify the appropriate
object, followed by a period and the method you want to
use. If the selected method has arguments, you place the
arguments after the method:
Worksheet ("Sheet2") .Copy Before:=

Worksheet ("Sheetl")
In this example, the code copies sheet2 and places the
copy before sheet1 in the current workbook.

Using an Object Method

You use Excel object methods to modify or perform

Worksheet ("Sheet2") is the object, copy is the method,
and Before:= Worksheet ("Sheet1") is the argument.

Most methods take arguments. Arguments tell VBA how
to modify the object. Usually, at least one argument is
required. In this example, the copy method requires you
use either the Before or After argument to tell VBA
where to place the copied worksheet. Use the Before
argument to specify the sheet before which you want to
place the copied worksheet. Use the After argument to
specify the sheet after which you want to place the copied
worksheet. See Chapter 10 for more information about
copying Excel worksheets.

@ Name your procedure.
@ Declare a Range object variable.

9 Store an object to an object
variable.

9 Use a method to perform an action
on an object.

In this example, you use the
Delete method to delete a range.

® The Range object.
® The pelete method.
Assigns arguments to the method.

This argument is a constant that
tells VBA to shift cells to the left
after deleting.

6 Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

ﬂ

- ==~
Mo L AR NI S n i :
| sub Usmhjm-thnd()<—0 9
Dim DeleteRange As Range <&
Set DeleteRange = Range("D4", “559“14—9
End Sub
=+
l == B
e b N et gt ey e Dok Bibbe s iy [re—— P
Ho-E) BAr s i aEFT @ Lo i

i

| Sub UseObjMethod()
Dim DeleteRange As Range

Set DeleteRange = Range("D4", "E59")
DeleteRange.Delete {xlShiﬂToLeﬂ)‘-@

End Sub

=i

The worksheet . o e
o b g = Iy
before you run the e > [Fown @ 2 T &
macro. o =
A [c [' ' (¢°)
¢ |The Handyman, LLC 1 -
2 Budgeted Cash Flow
. W07 AugD? Sep-07 -07 —
s Cash Receipts =
& Painting Interior 5 2000 5 2,000 % 2,500 5 3,000 -
Painting Exterior 8,000 £,000 7,000 5,000 -
" Drywall 1,500 1,500 1,500 3,000 o
s Roofing 3,000 3,000 3,000 3,000 Qu
10 Total Cash Receipts 4 14500 § 14,500 § 14,000 § 14,000 =
(i . o)
12 Cash Disbursements | e
Salaries and Wages 5 4200 5 4200 5 4200 5 4200 :
u Payroll Taxes & Employees Expe 1,050 1,050 1,050 1,050 QQ
o Owner Withdrawals 2,000 2,000 2,000 2,000
16 Rent 1,200 1,200 1,200 1,200 g‘
Marketing 1,500 1,500 1,500 1,000 0
<<><‘_;|--,' 2yt - g « Res
e = :
e}
. a
The worksheet after sl ' sGee 8
you run the macro. 2oun | S0 —
The macro deletes R RN - - , - : o
the range ¢ |The Handyman, LLC 1 \a'
) 1 Budgeted Cash Flow a
] =t
. k07 AugD?
= Cash Receipts g
& Painting Interior $ 2000 5 2000 (@)
Palnting Exterior 8,000 E,000 2 Q
[} Drywall 1,500 1,500 (D
s Roofing 3,000 3,000 Y
0 Total Cash Receipts 5 14500 § 14,500
(i
12 Cash Disbursements
() Salarles and Wages 5 4200 5 4200
" Payroll Taxes & Employees Expe 1,050 1,050
1 Owner Withdrawals 2,000 2,000
16 Rent 1,200 1,200
" Marketing 1,500 1,300
CR I T = e
i | - +

You can use named arguments with functions, methods, and statements. Using named arguments is an easier way
to supply your functions, methods, and statements with the arguments, especially when a large number of
arguments are required. If you do not use a named argument, you supply arguments by placing them after the
method, enclosed in parentheses and separated by commas in the order VBA expects them. For example, the
Worksheet object’s Protect method has 16 optional arguments. If you do not use named arguments, then
calling this property requires a placeholder for each argument to specify a value for each parameter, as shown in
this example:

Example:

Worksheets (1) .Protect ("Excel", , , , ., » + + + + + + . ,True,)

If you use named arguments, you can provide the arguments in any order. You assign a value to the argument by
using a colon followed by an equals sign (: =).

Example:
Worksheets (1) .Protect Password:= _
"Excel", AllowFiltering:=True

Display a Built-in

Dialog Box

ou can incorporate code into your procedure that

opens a built-in Excel dialog box. The Excel object

model contains a Dialog object for each Excel
dialog box. These objects are part of the pialogs
collection. You can access each of the Excel dialog box
objects by specifying its constant value. The constant
value for each dialog box begins with x1pialog followed
by the name of the dialog box. For example, the constant
for the Excel Save As dialog box is x1DialogSaveas.

You can find a complete list of the dialog box constants
in the help that comes with the VBE by typing
X1BuiltInDialog in the Search field and then clicking
XIBuiltInDialog Enumeration.

You use the show method to display a built-in dialog box.
You cannot access the values that a user places in the

Display a Built-in Dialog Box

fields. You can only determine what the user selects by
looking at the results after the user dismisses the dialog
box. You can use arguments to assign values to a dialog
box. For example, the Properties dialog box
(x1DialogProperties) has the following arguments:
Title, Subject, Author, Keywords, and Comments. You
can enter the values for these arguments before you open
your dialog box. For a list of the arguments associated
with each dialog box, type Built-In Dialog Box
Arguments List in the Search field and then, in the list
of options that appears, click Built-In Dialog Box
Arguments Lists. If you want to use named arguments to
assign values to the arguments, use arg1 for the first
argument, arg2 for the second argument, and continue
in this manner. For example, if you are working with the
x1DialogProperties dialog box, you can use argl for
Title and arg2 for Subject.

@ Create a new procedure.

@ Type your command.
® The show method.
® The title.

2] =)
P bl et gt [y e Dok Biibe s by -8
ES-w BB AT) A AMEFY @ bao i

| Sub OpnnDiangBux()<—0

End Sub
=% + i
E Tl B
1 b e it bpma [y B D abbe e el
EE - B A NPT D b i

Sub OpenDialogBox()
Application.Dialogs(xiDialogProperties) 4—9
.Show Arg1:="Expenses"”, <_.
Argl:="Sales Department Expenses "
End Sub

=i ¢ s

The subject. T ———— = e
Ee-d BAS L A aMYFE D o i § =

© Press Alt+Fi1 to = : = =
. Sub OpenDialogBox() =)
switch from the Application.Dialogs(xIDialogProperties) 8
VBE to Excel, and .Show Arg1:="Expenses", =
run the macro. Arg2:="Sales Department Expenses " @—— [N
End Sub °*

e

=

o=

-

o
Qu

ot

(@)

E.

UQ

(s

=

i (¢’)

=¥ « m

T »

The macro adds the 5 8
arguments to the g y—
dialog box and then e : g)_
0 i . A L] [o L} ¥ [" . i - 0
pens the dialog box . =
1 (@)

: TR =

'.|A-' o

s u

()

P,

i |

Excel has hundreds of dialog boxes that appear throughout the application. You can display them by using the
appropriate constant. The following table lists a few of the most commonly used Excel dialog boxes:

CONSTANT DISPLAYS

x1DialogFileDelete The Delete dialog box, where you select files to remove
x1DialogInsert The Insert dialog box for adding additional cells to a worksheet
x1DialogNew The New dialog box

x1DialogOpen The Open dialog box

x1DialogPrint The Print dialog box

x1DialogSaveAs The Save As dialog box

Declare

an Array

f you have a group of related values of the same data

type, you can declare them as an array. You declare

an array in much the same way you declare other
variables and, as with other variables, you can declare
arrays as either local or global. You set the scope of an
array with the pim or Public statements. See the section
“Understanding Variables and Data Types” in Chapter 3
for more information about setting the scope of a
variable.

You can use arrays to store a group of related data. Using
arrays simplifies your code because you can use one
variable to store several values. For example, you can
declare an array and use it to store all 12 months of the
year instead of creating a separate variable for each
month.

Declare an Array

When you declare an array, you specify the number of
elements in the array. For example, the declaration pim
Month(l To 12) As String declares 12 elements
numbered sequentially 1 through 12. In the example, the
Month array has 12 elements with a lower bound of 1
and an upper bound of 12.

An element is a data value in the array. You access the
elements in an array by using the index value that
represents the desired element. Elements are sequentially
numbered. The lower bound of an array is the lowest
index value, and the upper bound of an array is the
highest index value. To access the second element of the
Month array, use the index value of 2, as in Month (2).

@ Name your procedure.
@ Declare your array.

Note: For more information on
data types, see Chapter 3.

@ Assign values to the array
elements.

® A number enclosed in
parentheses identifies
each element.

] ==~
1 G e et pma sy B D Aebbe e o ek
EHE -) [R - & Ny i

| sub Do:laraAnay()<—0

Dim Month(1 To 3) As 5tring<—9

End Sub
= ¢ s
By s B
7 e P N v .l
ES-w Bar s s aKSPY @ Lo i

| sub DeclareArray()
Dim Month(1 To 3) As String

-—O

End Sub

=i

@ Use the ce11s method to assign
the values in the array to cells in
the spreadsheet.

Note: For more information, see the
section “Reference Cells and Ranges”
in Chapter 3.

@ Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

Note: See Chapter 1 to learn how to
run a macro.

Excel places the values in the
array in the specified cells.

| Sub DeclareArray()
Dim Month(1 To 3) As String
Month(1) = "Jan"
Month(2) = "Feb™
Month(3) = "Mar"

0

End Sub

i | o -

element 45.

based, your code is easier to debug.

When you specify the size of an array, you indicate the upper and lower bounds of the array, or the first and last
index values. In the example, Dim NewArray (1 To 45), the statement creates an array with 45 elements with a
lower bound of 1 and an upper bound of 45. You can omit the lower bound value when you declare an array, as in
the example, Dim NewArray (45). If you do not specify the lower bound, VBA assigns a lower bound value of 0.
Therefore, the array NewArray actually has 46 elements starting with the first element 0 and ending with the final

If you want all your arrays to have a lower bound value of 1, place the following statement before any procedures in
your module: Option Base 1. Making your arrays one-based is desirable because Microsoft Excel collections are
one-based and the arrays that Excel methods and properties return are one-based. If your arrays are also one-

G 1dey)

.
.

c
=)
o
)
-
n
o=t
(S
=
o
=
=]
(V)e}
>
-
-
(S
<
7))

Declare a

Multidimensional Array

ou can use a multidimensional array to store
related values within one array. VBA allows you
to create arrays with up to 60 dimensions.

However, working with arrays that have more than two
or three dimensions is unusual.

By using multidimensional arrays, you can store related
values in one location. For example, you can store team
numbers and game scores. The first dimension of the array
can contain the team’s number, and the second dimension
can contain the team'’s score. To help envision a
multidimensional array, try thinking of a two-dimensional
array as a worksheet, with rows and columns. You access
each element of the array by specifying two index values.
For example, Multiarray (1,2) accesses the value whose
first dimension index is 1 and whose second dimension
index is 2 — or first row, second column.

Declare a Multidimensional Array

As you add a third dimension to an array, it gains depth.
Using the worksheet example, you can add a third dimension
to the two-dimensional array to make it resemble a cube.
Accessing an element of the array now requires three index
values, as in the example MultiArray (1,2,2) — first
row, second column, two deep.

As with other variables, you use the pim statement to
declare procedure-only arrays and module-only arrays,
and the public statement for arrays that are accessible
to the entire workbook.

When you declare a multidimensional array, you indicate
the size of each dimension in the array. You do not have
to make the dimensions in the array equal. In the example
Dim MultiArray(l To 4, 1 To 5, 1 To 3), the
array contains four elements in the first dimension, five in
the second, and three in the third.

@ Name your procedure.

@ Declare your multidimensional
array.

@ Specify the range in your
Excel worksheet in which
VBA will place the contents
of your array.

. == B
e i i e Dy B Do hodbe o by Sy
EE - ann [+ & 0 My i
| sub Cra:IaMuliiAruy(|<—“
Dim Title(1 To 3) As String
Dim TeamScores(1 To 3,1 To 3) As Inleger‘-@
End Sub
=5
] ==~
F o e ST v S
ES-d AB AT+ 4 A EPY @ Lo i

| Sub CreateMultiArray()
Dim Title(1 To 3) As String
Dim TeamScores(1 To 3, 1 To 3) As Integer
Dim TitleRange As Range
Dim CellRange As Range<—9
Set TitleRange = Range(Cells(1, 1), Cells(1, 3))

Set CellRange = Range(Cells(2, 1), Cells(4, 3)) 4—9

End Sub

@ Assign values to the e : o
array elements. — :)

. Title(1) = "Team" =

@ Assign the array values Title(2) = "Game 1" =
to the cells you specified Title(3) = "Game 2" =

in Step 3. 54

@ Press Alt+F11 to switch G
from the VBE to Excel, o

and run the macro. 4—0 Q

a

&

=

=

CellRange.Value = Tnam&ums<—6 =

End Sub ¢

i ¢ >

=

The values in the array s Aose V)
appear in cells in your e e el o B 83 oA ‘a

worksheet.

At & Toam
[" C

£ Game 1 Game 2

£ 1 205 162

1 2 172 267

1 3 289 180
u
i —
You can assign the contents of an array to a series of cells in a worksheet When you use a multidimensional
by using the Value property of the Range object. To learn more about array, all elements of the array
the Range object, see Chapter 11. When you create a Range object, you must have the same data type. If
can specify the cells you want to include in the range by using the Set you plan to use the array to store
statement. As the macro runs, VBA places any values you assign to the different types of values, such as
Range object in the corresponding cells in your worksheet. strings and numeric values, you
must declare your array as variant.
Example:
Dim CellRange As Range Example:
Set CellRange = Range(Cells(2,1), Cells(4,3)) Dim MultiArray (1 To 4, 1
CellRange.Value = TeamScores To 5, 1 To 3) As Variant

The Set statement assigns the range of cells to the Range object. You
specify the range by using the Cells property to determine the starting
and ending cells for the desired range. After you specify the desired range,
you assign the contents of an array to the cells in the range by using the
Value property.

Convert a List

to an Array

y converting a list of values to an array, you can
access the individual values quickly using one
variable. You can use a variety of methods to

convert a list of values to an array.

You can assign values to your array by referencing the
index values of each element. Arrays use index values to
identify their elements. For example, if an array has ten
elements with a lower bound of 1, the third element in
the array has an index value of 3. To assign a value to an
array, you specify the index values that correspond to the
appropriate array element. For example, the following
code assigns a value of 45 to the third array element:
SampleArray (3) 45,

With large arrays, assigning values to each element of the
array in a statement using the above method can be

Convert a List to an Array

cumbersome. Using a For Next loop is more efficient;
you simply create a For Next loop to cycle through the
entire array. For Next loops work best for adding values
either from a series of cells or when values are
incremental. See Chapter 6 for more information about
working with For Next loops.

You can use the array function to add a list of values to
an array. The Array function adds values to the array by
starting at the lower bound of the array and then adding
values consecutively. For example, the following code adds
the values "one", "Two", and "Three" t0 SampleArray:
SampleArray = Array("One", "Two", "Three").

You can produce the same results by specifying each
element individually; for example, you can assign a value
to the first element of the array, as follows:
SampleArray (1) "One".

] ===

F T ™ B - o
@ Name your procedure. T R T I Y
Q Declare your array. Su;_ccuév:::‘l.ist()-q—‘“ - '

im CellRange As Range
Dim RegionalSales As Variant 4—9
End Sub

=i
@ Assign values to your array. S ——— —

HE-- A8 9 A NZ @ i i

| Sub ConvertList()
Dim CellRange As Range
Dim RegionalSales As Variant
RegionalSales = Array("Region 1", 1000, "Region 2", 1500
End Sub

—©O

=i ¢ s

@ Ssct the Range property. Am - : g
@ Assign the values i the array P m——— =
to the range. Dim CellRange As Range 8
. Dim RegionalSales As Variant ; -
e Press Alt+F11 to switch from RegionalSales = Array("Region 1", 1000, "Region 2", 1) (9]
the VBE to Excel, and run the Set CellRange = Range(Cellis(1, 1), Cells(334—6 =
macro CellRange.Value = RegionalSales c
' End Sub =
(=
()
-
n
=t
k)
=
(=W
[=
=
UQ
=55 >
S
The values in the array appear '.ﬁ o e = R <)
in cells in your worksheet. T Wl e % XA ‘ﬁ
\[Regioni | 1000 Region2 T
P o ———— - e
The Array function You can use the ReDim statement to change the size of the array after you create it.
uses the variant data You can also use the Array function more than once in the same procedure to
type. As a result, you reassign the values in the array. See the section “Redimension an Array” for more

can have different information on resizing an array.
data types in a single
array. As shown in
the example in this
section, you can add
both strings and
numeric values to the
same variable when
using the Array

You can use the following code to assign the numbers 1 to 10 to an array. See
Chapter 6 for more information on For Next loops.

Example:
Sub AssignNumbers ()

Dim X as Integer

Dim RecNo(l To 10) As Integer
g For X =1 To 10
function. RecNo (X) = X

Cells(X,1) = RecNo (X)

Next

End Sub

Redimension

an Array

BA lets you declare two types of arrays: fixed-

size and dynamic arrays. When you declare a

fixed-size array, you specify the number of
elements in the array. For example, the following code
creates a fixed-size array with seven elements: Dim
NewArray(1l,7) As String.

If you do not know how large to make the array when
you declare it, you can use a dynamic array. A dynamic
array does not have a size until you use the ReDim
statement to change the array size. First, use the pim
statement without a size to create a dynamic array — for
example: Dim NewArray () As String.

When you are ready to use the array, use the ReDim
statement to size the array so you can add values. For
example, in the code, ReDim NewArray(1l To 4), an

Redimension an Array

array that was initially declared as a dynamic array with
an unknown number of elements is redimensioned to
contain four elements.

VBA does not allow you to redimension a fixed-size
array. If you attempt to change the size of a fixed-size
array, you receive an “Array already dimensioned” error
message. However, if you declare your array as a
dynamic array, you can use the ReDim statement multiple
times within a procedure to change the size of the array.

Each time you redimension an array, you destroy the
existing elements in the array. If you want to retain the
existing values, use the preserve statement. For
example, the statement ReDim Preserve NewArray (7)
instructs VBA to resize the array to seven elements and
maintain any existing values. If the array has four values,
those values remain the first four values.

Name your procedure.

Declare a dynamic array.

Set the initial dimension size.

Assign a value to the variable element.

Place the contents of the variable in a
cell.

Redimension the array.

Assign values to the variable elements.
Place the contents of the variables in
cells.

Redimension the array.

Assign values to the variable elements.

Place the contents of the variables into
cells.

Preserve the first four elements and add
space for three more.

® @ 9660 OO0 O000O0O

Assign values to the three new elements.

e

AN EFY @ aon i

| sub RoDimArr-uy(]‘-ﬂ
Dim NewArray() As String <<—1&)

== ReDim NewArray(1)
NewArray(1) = “Sales'a—e
- Cells(1, 1) = NewArray(1)
ReDim NewArray(1 To 3) 4—6

—

—_—

oo of

End Sub

==
AN NFW S O Lnwma i

Cells(2, 4) = NewArray(3)
ReDim NewArray(1 To 4)4—0

~—0
—0

ReDim Preserve NewArray(1 To 7) 4—@

End Sub

=&

@ Place the values for all of the ey n Q
. AR 9T + a5
elements in the worksheet. - (S}
) Cells(4, 1) = NewArray(2) =]
@ Press Alt+F11 to switch from the Cells(5, 1) = NewArray(3) e
VBE to Excel, and run the macro. Cells(6, 1) = NewArray(4) =
ReDim Preserve NewArray(1 To 7) (¢
NewArray(5) = "Apr" °
NewArray(6) = "May" c
NewArray(7) = "June” =
(=W
(¢)
-
]
(=
4—@ m
=
(=W
(=
=
End Sub ¢
o
=
The values in the array appear in B e e -0 Q
cells in your worksheet. ama.. 8 R e S =
® These values were preserved. R S— -
sfoates |
1 lan Feb Mar
) Region 1
4 Region2
s Region3
& Regiond
" Apr May June
4—.

[| o -

To find the upper and lower bounds of an array, VBA provides the UBound and LBound functions. The example
finds the upper and lower bounds and assigns them to variables.

Example:
UpperBound = UBound (NewArray)
LowerBound = LBound (NewArray)

Each of these functions returns a Long data type indicating the upper or lower bounds of the specified array. If the
array is multidimensional, you must specify the dimension for which you want the bounds.

Example:
UpperBounds = UBound(MultiArray, 2)

Data Type

+++

Create a User-Defined

ser-defined data types enable you to create a

single variable that records multiple pieces of

information. User-defined data types resemble
multidimensional arrays in that you can store related
values by using one variable name. However, although
all elements in the array must contain the same data type,
you can create a user-defined data type that contains
multiple data types.

You declare user-defined data types at the top of your
module in the declarations area. You specify a user-defined
data type with the Type and End Type statements. The
Type statement indicates the start of the user-defined data
type definition, and the End Type statement specifies the
end. After the Type statement, you indicate the name of
the new data type; for example, Type ItemInfo creates a
data type called Ttemtnfo. To create a user-defined data

Create a User-Defined Data Type

type to store a price and description, you can specify a
user-defined data type with two components.

After you create the data type, you can declare variables
that use the specified data type. You can use a user-defined
data type as the data type for an array. For example, to
create an array of the ItemInfo data type, you enter Dim
NewItems (1l To 10) As ItemInfo.

To assign values to a user-defined array, you not only
specify the array element, but you also indicate the
component you want to change. For example, this code
changes the value of the first component in the array:
NewItems (1) .ItemDescription = "15 inch Monitor".

Similarly, you can copy the entire contents of one element
to another by simply referring to the array element. The
following code copies TtemDescription and ItemPrice
of the first element of the array to the second array
element: NewItems (2) = NewItems(1).

0 Create your user-defined
data type in the
declarations area.

@ Add the Type and Ena
Type Statements.

9 Declare the components.

Create a new procedure.

(o~

Declare your user-defined
data type.

©

Assign values to your
user-defined data type.

ey =)
F AT T A v N
EHE - B AN BEFY @ Law i

Type C fo < 9

End Typ¢<—9

DIV.HDCI:OII'Z

=¥ LAPSi1icK: OF
By == B
P T T v caf
EE -) (R & Ny i

| Type Custinfo
CustName As String * 40
Company As String * 35
Phone As String * 12
ActNum As Long

End Type

| Sub CHnlaCustomsr{)4—e
Dim NewCust(1 To 2) As Cusllnfb<—e

~—0

End Sub

o Copy the contents of one

element to another element.

@ Place the contents of both

elements in worksheet cells.

Q Press Alt+F11 to switch
from the VBE to Excel, and
run the macro.

The values from the user-
defined data type appear in
cells in your worksheet.

® V/BA copies the values from
the first element to the
second element.

S Ban s 4a 5

Dim NewCust(1 To 2) As Custinfo
NewCust(1).ActNum = 135
NewCust(1).Company = "ABC Corp"
NewCust(1).CustName = "John Smith"

NewCust(1).Phone = "888 555 14140
NewCust(2) = Naw0ust(1)<—b

End Sub

=f& .

e 3 [— S p——e— -

e s

2 ABC Corp
1 John Smith
1 8885551414

s

» ABC Corp

a John Smith

%+ B8B 555 1414
10

u

As you use VBA to develop macros, the complexity of your code may make it difficult to keep track of variables. To
simplify the process, many developers use a standard naming convention where the variable name reflects the variable
type. When using this type of naming convention, you preface each variable name with a standard lowercase prefix
that identifies the data type of the variable. For example, you can identify an integer variable by prefixing it with i to
create the variable name iNumvisits. The integer prefix makes it clear at any location in the code that the variable
holds an integer value. The following table lists the standard variable-naming conventions for Visual Basic and VBA.

PREFIX DATA TYPE

b Boolean

c or cur Currency
dat Date/Time
a Double
iorint Integer

1 or lng Long

obj Object

S Oor sng Single

str String

u User-defined
v or var Variant

G 1dey)

.
.

c
=)
o
)
-
n
o=t
(S
=
o
=
=]
(V)e}
>
-
-
(S
<
7))

Create

Comparisons

omparison operators allow you to compare two

expressions. Comparison expressions always

return either True or False. For example, the
expression, A = B, compares the variable a to the variable
B. It then returns True if the value stored in variable a is
equal to the value stored in variable B, or False if the
value stored in variable a is not equal to the value stored
in variable B.

When writing a comparison expression, you use a
comparison operator. You place the comparison operator
between the expressions you want to compare. For
example, you can use the equal (=) sign to determine if
two values are equal or you can use the not equal (<>)
sign to determine if values are not equal.

Create Comparisons

The following table is a summary of the comparison

operators:

OPERATOR FUNCTION

Equal to

<>

Not equal

Greater than

Less than

Less than or equal to

Greater than or equal to

@ Add a comparison
operator to your Do
Wwhile loop.

In this example, if
Counter is less than 11,
VBA executes the code
inside the loop.

Note: See the section “Employ
Do While Loops” in this
chapter to learn more about
Do While loops.

@ Add a comparison
operator to your I£ and
ElseIf statements.

Note: See the section “Create
If Then Else Statements” in
this chapter to learn more
about If Then Statements.

==l
e b e it bt [y B Dk Babbe e by [

Sub DoWhileLoop()
Dim Counter As Inte:
Dim RowNum As Intejger
Counter = 1
RowNum = 1
Do While Counter < 11
Cells(RowNum, 1) = Counter
Counter = Counter + 1
RowNum = RowNum + 1
Loop
End Sub

= T |

2}
9500 . im st Npeis (og o Du kb lnden oy [,

Sub fTax()
Dim RowNum As Integ
RowNum = 2
Do While Not (IsEmpty(§ells(RpwNum, 2)))
If Cells(RowNum, 2) = "TX" Fhen
Cells(RowNum, 3) = Cqlis(RowNum, 1) * 1.05
Elself Cells(RowNum, 2) = "FL" Then
Cells(RowNum, 3) = Cells(RowNum, 1) * 1.08
Elself Cells(RowNum, 2) = "CA" Then
Cells(RowNum, 3) = Cflils(RowNum, 1) * 1.1

Else
Celis(RowNum, 3) = C (RowNum, 1) * 1
End If
RowNum = RowNum + 1
Loop

| End Sub

= T |

Make Use of
Logical Operators

hen writing VBA code, you can use logical
operators to link together comparison
expressions to create complex comparison

Using Logical Or

expressions. There are six logical operators: or, And,
Xor, Eqv, Imp, and Not.

Using Logical And

The logical operator or returns the value True if
expression A is true or expression B is true.

EXPRESSION A EXPRESSION B RESULT

The logical operator and returns the value True if
expression A is true and expression B is true.

EXPRESSION A EXPRESSION B RESULT

Sub LogicalOr ()
Dim Result As Boolean
Result = 10 < 20 Or 30 < 20
MsgBox (Result)

End Sub

Using Logical Xor

'Returns True

True True True True True True
True False True True False False
False True True False True False
False False False False False False
Example:

Using Logical Eqv

The logical value xor returns the value True if
expression A is true and expression B is false, or if
expression A is false and expression B is true.

The Eqv operator returns the value True if expression A
is true and expression B is true, or if expression A is
false and expression B is false.

True True False True True True
True False True True False False
False True True False True False
False False False False False True

Using Logical Imp

Using Logical Not

The Tmp operator returns True unless expression A is
true and expression B is false.

True True True
True False False
False True True
False False True

The Not logical operator negates an expression. If the
expression would normally return True, using a Not
operator causes it to return False and vice versa.

Example:

Sub LogicalNot ()
Dim Result As Boolean
Result = Not (10 = 10)
MsgBox (Result)

End Sub

'Returns False

(@
=
<))
=
I~
)
-
o)l

.
.

molq weidoid suronuo)

While Loops

ou can execute a VBA statement or a series of

VBA statements as long as a condition is True by

using a bo while loop. The following is the
syntax for a Do while loop:

Do [While condition]
[statements]
Loop

A condition is an expression that evaluates to either True
or False. When VBA encounters a Do While loop, it
evaluates the condition. If the condition is True, it
executes the statements. After it executes all of the
statements, VBA returns to the Do while statement and
evaluates the condition again. If the condition is still True,
it executes the statements again. If the condition is False,
VBA executes the first statement after the Loop Statement.

Employ Do While Loops

A Do while loop consists of four basic parts: The po
statement initiates the loop. The while statement
evaluates the condition that must be met. The body of the
loop contains a series of statements to perform as long as
the condition is True. Finally, the L.oop statement marks
the end of the loop.

You also use the following syntax to create a Do-Loop
While loop:
Do
[statements]
Loop [While condition]

A Do-Loop While loop is similar to a Do while loop.
The primary difference is VBA evaluates the condition at
the end of the block of statements so the loop always
executes at least once.

@ Name your procedure.
@ Declare your variables.
@ Assign values to your variables.

This example assigns the
number 1 to the variable
counter and then uses the
variable as a counter. It also
assigns the number 1 to the
variable RowNum and then uses
the variable as the row number.

9 Use a Do while statement to
evaluate whether a condition is
True.

In this example, the code looks
at the value assigned to the
variable counter and performs
the statements inside the loop if
Counter is less than 11.

@ Place the value of counter in
the specified cell.

In this example, the cell row
starts at 1 and increases with
each loop. The cell column is
column 1 (column A).

\l

88

e == B

7, e g g [
Eub Do_\'I'.Iulle.l..oop{.)<—0-) “
—0

-—O

End Sub

= T

L] ToT= Bl
1 Lo e et pma (aby B Dmn s feam iy
| sub DowhileLoop()

Dim Counter As Integer

Dim RowNum As Integer

Counter =1

RowNum = 1

Do While Counter < 114—9

Cells(RowNum, 1) = C ter-g 6
End Sub

@ Increase the value of the counter.

In this example, VBA adds 1 to the
current value of counter.

® This example also adds 1 to the
current value of the row number.

@ Add the Loop Statement.

VBA returns to the o while
statement and continues looping until
your code no longer meets the
condition.

0 Press Alt+F11 to switch from the VBE
to Excel, and then run the macro.

Note: See Chapter 1 to learn how to run
a macro.

The macro places the numbers 1 to
10 in column A, rows 1 to 10.

Sub DoWhileLoop()
Dim Counter As Integer
Dim RowNum As Integer
Counter = 1
RowNum = 1
Do While Counter < 11
Cells(RowNum, 1) = Counter 6

Counter = Counter + 1

RowNum s RowNum + 14—.
Loop

End Sub

[

a@aw
o @ T 0

Example:

Dim Counter As Integer

Counter = 1

Do While Counter < 5
Cells(Counter, 1) = Counter
Counter = Counter + 1

Loop

A loop must contain a statement that changes the condition, and the condition must eventually evaluate to False,
or the loop continues endlessly. Programmers refer to this condition as an infinite loop.

To avoid an infinite loop, you can use a counter. In the following example, the procedure assigns the variable
Counter an initial value of 1. The Do While loop verifies that it is less than 5, and then executes the loop. The
loop assigns a value of 1 to the first cell on the worksheet, cell A1. The variable Counter increments by 1, and the
loop retests the condition. The looping continues until the condition is False. In this example, the loop repeats
four times. When Counter equals 5, the looping stops.

9 191dey)

.
.

(@
)
=
(=3
-
)
=
=
¢Q
)
-
o
©
k<)
=
ey
1
Q
=

Create Do

Until Loops

statements until a condition is met, you can use a po

Until loop. For example, you can use a Do Until
loop to apply changes to a series of cells until you
encounter an empty cell.

When you use the po until loop, the statements you
place between the po Until and Loop statements execute

I f you need to execute a statement or a series of

until the specified condition is met. As soon as the looping

structure determines that the condition is True, control
moves to the next statement outside the loop.

A Do until loop consists of four basic parts: The po
statement initiates the loop. The until condition
specifies the condition that must be met. The body of the
loop contains a series of statements that execute until the

Create Do Until Loops

value of the statement meets the condition of the loop.
Finally, the L.oop statement marks the end of the loop.

When the until condition follows the Do statement, the
Do Until loop checks to see if the condition is True
before executing. If the condition is not True, the loop
executes. If the condition is True, the loop does not
execute. When you use this structure for a o Until
loop, the code inside the loop may never execute.

You can also place the until condition at the end of the
loop. When you place the unti1 condition at the end of
the loop, the bo Until loop always executes at least
once before checking the condition. If the condition is
True, the Do Until loop stops execution, and control
passes to the next VBA statement in your procedure.

@ Name your procedure.
@ Declare your variable.

@ Assign a value to your
variable.

In this example, the
variable RowNum is used
to set the row number.

@ Addapo until
statement.

In this example, the loop
continues until it reaches
an empty cell.

e ===
P T T P v -8
[sub GalculatoTax()<—0)
Dim RowNum As Integer<—9
RowNum = 2 & e
End Sub
=/ T

U 1 b e et e Day B D Sbdbe ke e

| sub calculateTax()
Dim RowNum As Integer

RowNum = 2
Do Until IsEmpty(Cells(RowNum, 1])<—e
End Sub

=Wl |

e Type the statements you want to execute.

In this example, VBA multiplies the value
in column A by 0.07 and places the result
in column B.

o Add the Loop statement.

VBA returns to the o uUntil statement
and continues looping until the condition
is met.

0 Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a
macro.

The procedure places 7 percent of
column A'in column B.

n $ 117810 § 8247

" =]
[b e it Gy Qe B Dt Akbie edos ey -8
| sub calculateTax()]
Dim RowNum As Integer
RowNum = 2
Do Until IsEmpty(Cells{(RowNum, 1))
Loop‘—o
End Sub
=l |
[IEEE =
“ - - - =@
- i AL SefE e E ;'}(}j
et R S nep EEW @E G -0 g Bk e
u e 5
' Price 7 Percent Tax i T | BT
: 5 500 % 0.35
6.50 0.46
‘ 17.65 1.24
385.00 26.95
52.00 3.64
683.00 47.81
14.50 1.02
3.00 0.21
11.45 0.80

condition.

Example:
Do While Conditionl = True
If Condition2 = True
Exit Do
End If
Loop

When working with loops, you may have situations where you want to jump out of a loop before executing the
remaining statements in the loop. You can use an Exit Do statement. You can place an Exit Do statement
anywhere within the body of your loop, and you can have multiple Exit Do statements. When VBA encounters an
Exit Do statement, the control immediately transfers out of the current loop to the next statement outside the loop.

Typically, a conditional statement such as If Then appears before the Exit Do statement. The conditional
statement looks for a condition to meet and then executes the Exit Do statement when your code meets the

9 191dey)

.
.

molq weidoid suronuo)

Create For

Next Loops

ou can use a For Next loop to execute a
statement or a series of statements a specific
number of times. For example, by using a For

Next loop, you can place text in a specified number
of cells.

When you use a For Next loop, you must create a
counter variable. The statements you place between the
For and Next statements execute until the counter
variable exceeds the maximum value. As soon as the
looping structure determines that the current value of the
counter is greater than the maximum value, control
moves to the first statement after the loop.

For Next loops consist of three basic parts: The For
statement initiates the loop. The For statement includes a
counter variable with an initial and maximum value, such

Create For Next Loops

asxXx = 1 To 5. The body of the loop consists of a series
of statements that perform until the counter exceeds the
maximum value of the loop. Finally, you mark the end of
the loop with the Next statement.

When the For Next loop starts, it checks to make sure
the value of the counter variable does not exceed the
maximum value. If the variable is less than or equal to
the maximum, the loop executes. The counter variable is
a numeric value that increments by default by one each
time the loop executes. The loop continues to execute as
long as the initial value is less than or equal to the
maximum value specified for the counter variable. If the
initial value starts out greater than the maximum value,
the body of the loop never executes.

@ Name your procedure.
@ Declare your variable.

© Add a For statement.
® Counter variable.
® |nitial value.
Maximum value.

e Type the statement you want
to execute.

This example places the text
Region 1 through Region 4 in
four consecutive cells starting
at the active cell. See Chapter
11 to learn more about the
Offset property.

@

2] =)
e b e et Gpeaa Deing B Dt Adhbe dedos e e PR
il éub Erea.t;ilogi.ana(.i<_o 3
Dim C ter As Integer & 9
End Sub
=fgsl |

=]

jer
For Counter =1 To 44—6

ActiveCell.Offset(Counter - 1, 0) = "Region " & Counter
End Sub

= T |

e Add a Next statement. i s bR - g
VBA returns to the For statement | Sub CreateRegions() g
and if the counter exceeds the S =y
maximum Value, VBA moves to the ActiveCell.Offset(nter - 1, 0) = "Region " & Counter I~
first line of code after the Next Next Couuter‘j o)
statement; otherwise, it executes End Sub

the statements inside the loop.

@ Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to run
a macro.

The procedure places the text B e e
Region 1 through Region 4 in a e e Insania
column in four consecutive cells.

(@
)
=
(=3
-
)
=
=
¢Q
)
-
o
©
k<)
=
ey
1
Q
=

: Region 1
+ Region 2
« Region 3
+ Region 4

o] ; -

You can use any value to increment your counter variable. By default, the counter variable for a For Next loop
increments by one each time the loop executes. If you want to increment or decrement the counter variable by a
different value, you can use the Step statement to specify the value. If you specify a positive value, the counter
variable increments by that value each time the loop cycles. If you specify a negative value, the counter variable
decrements by that value each time the loop cycles. In the following example, the For loop starts with an initial
counter variable of 2 and a maximum value of 20. Each time the loop cycles, the counter variable increments by
two. The TotalVal variable increments by the value of the loop. The loop executes ten times. When the initial and
maximum values of the counter are equal, the loop executes a final time before it passes control to the next
statement after the loop.

Example:

For J = 2 To 20 Step 2
TotalvVal = Totalval + J

Next

Execute For

Each In Loops

ou can use a For Each In loop to execute a

series of statements for each element in an array

or each object in a collection. When you use a For
Each In loop, the statements you place between the For
and Next statements execute for each element in the array
or collection. After the statements execute for the last
element, control moves to the next statement outside the
loop. The following is the syntax for a For Each In loop:

For Each element In group
[statements]

Next [element]

Execute For Each In Loops

A For Each In loop consists of three parts. The For
Each element In group Statement initiates the IOOp.
An element is a variable used to hold an array or
collection as you cycle through the For Each In loop.
Group is the name of the array or collection you want to
cycle through. The body of the loop contains a series of
statements to perform for each element. Finally, the Next
statement marks the end of the loop.

If you are looping through an array, the variable you

use as the element in the For Each element In group
statement must be defined as a variant data type. If you
are working with a collection, you can define the variable
as a variant, generic object, or specific object.

@ Name your procedure.
@ Declare your array.

Note: See Chapter 5 to learn
more about arrays.

@ Declare your variables.

@ Assign values to your
array.

In this example, the value
in the active cell and
three subsequent cells

in the same column are
assigned to the array.

2] =)
F - . S
- @ Lt cus]
L - :
Sub Sumnrray()<_o
Dim NewArray(1 To 4) As Intagar‘—g

End Sub
= T |
(2l]
@l b e et e Dby B 1 T
R]

AN SFT @ Lnow]
|

K+ a4 g9 0 e

Sub SumArray() 2|
Dim NewArray(1 To 4) As Integer
Dim N As Integer
Dim RowNum As Integer
Dim Total As Double
Dim CellValue As Variant

End Sub

=/ _JCT

@ Add your For Each In statements.
® \Variable that holds each element.
® Array or collection name.
Statements to execute.
0 Add the Next statement.
This example totals the elements in the array.

o Type any statements you want to execute
when the For Each 1In loop completes.

@ Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a macro.

In this example, VBA totals the elements in
the array and places the total in the cell that
follows the array.

Tl Bs
T (S rou e
IHE-d i an o ha i
NewArray(N) = Cells{(RowNum, 2)
RowNum = RowNum + 1
Next
RowNum = 2

Range("B2").Select
ForN=1To 4

NewArray! = Cells(um, 2)
RowNum =|RowNum + 1

Next

Total =

For Eacll CellValue In Nawhmy

Total = Total + CellV.
Next CellValue
Celis(RowNum, 2) = Tot:l<—0

End Sub

K e

(9]

Bepc EEWEE G V-w %

11 £ — -
A] L} [} E 4
1+ Region Sales Totst Swas Ginscre Sases Tetsl
: Region 1 13,653
1 Region 2 19,709
« Region 3 15,415
+ Region 4 14,453
« Total 63,230 €—

Web site for this book for the complete macro.

Sub BuildArray ()
Dim NewArray(l To 3,
Dim Row As Integer
Dim Column As Integer
Dim CellValue As Integer
Cellvalue = 1
For Row = 1 To 3
For Column = 1 To 4
NewArray (Row, Column) =
Cellvalue = Cellvalue +
Next Column
Next Row
End Sub

1 To 4) As Integer

Cellvalue
1

You can nest loops to populate a multidimensional array. When you nest loops, you place one loop inside
another loop. To work with a multidimensional array, you create a separate loop for each dimension of the array.
The following code uses two nested For Next loops to access elements of the array. Notice that the inside loop,
with the Column counter variable, completely cycles each time the loop with Row counter variable runs once.
Each Next statement has a variable following it. You must exit the inside loop before you can exit the outside
loop. Please note that this macro is incomplete. See the file Execute For Each In Loops.xlsm, which is on the

TYPE THIS:

RESULT:

The code creates a two-dimensional
array with the values shown in the
following table:

‘ 1 2 3 4
6 8

9 191dey)

.
.

(@
)
=
(=3
-
)
=
=
¢Q
)
-
o
©
k<)
=
|
1
Q
=

Create If Then

Else Statements

ou can conditionally execute a group of

statements by using an If Then Else Statement.

For example, you can calculate a bonus of 5
percent of sales if an employee’s sales are greater than
$50,000, or enter the text “No Bonus” if an employee’s
sales are less than or equal to $50,000. The following is
the syntax for an If Then Else statement:

If condition Then
[statements]
Else
[statements]
End If

An If Then Else statement evaluates a condition. A
condition is any expression that evaluates to either True

Create If Then Else Statements

or False. For example: The expression If Sales >
50000 Then evaluates the variable sales. If the variable
Sales is greater than 50,000, the expression returns
True; otherwise, it returns False. If the condition is True,
the statements that follow the Then Statement execute.

If the condition is False, the statements that follow the
Else statement execute. A null condition evaluates to
False. An End If statement marks the end of an

If Then Else Statement.

If you have multiple conditions that you want to evaluate,
you can use ElseIf. For example, you can use ElseIf
when you want to calculate tax at a rate of 5 percent if
the state is Texas, 8 percent if the state is Florida, and

no tax for all other states. When using ElseIf, a single
If Then statement is followed by several El1se1f
statements and a final E1se statement.

If Then Else

Add your Tf Then statement.
Condition.

Statement to execute.

Add your E1se statement.
Statement to execute.

Type End If.

0D .0. 9

Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to
run a macro.

In this example, if the Sales
column is over 50,000, VBA
calculates a bonus of 4 percent
of sales; otherwise, it prints the
words “No Bonus.”

By =)
e b e et s (e B Dam dbe el b N
Sub Bonus()
Dim RowNum As Integer
RowNum =2
Do Until IsEmjjty(Cells(RowNum, 1))
If Cells(RowNum, 2).Value > 50000 Than<—0
—
Else<—9
Cells(RowN 3).Value = "No Bonus"g—
Endlf<1———JE’
RowNum = RowNum + 1
Loop
End Sub
=/ _JCT I
[- . & - 1 >
=m - - - - - @
| Av mee @ Ko Lra
S A EEBEE S V-n 0 ua "
11 5
+ Salesperson Sales BONUS Corunia Bosss | Dvlete Sorua
: Adams, Mike 93,224 4661.20
s Childress, Mike 85,488 4274.40
1 Cook, Allen 68,469 3423.45
. Ford, Jacob 8,048 No Bonus
&« Franklin, Fred 88,648 4432.40
» Hobbs, Linda 84,714 4235.70
« Johnson, Henry 17,993 No Bonus
» Smith, Jenny 37,788 No Bonus
w Thompson, Bill 56,635 2831.75

Elself

©0.0.0.

Add your If Then statement.
Condition.

Statement to execute.

Add your E1seIf statements.
Statement to execute.

Add your E1se statement.
Statement to execute.

Type End If.

Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

In this example, the procedure
calculates the sales price plus tax,
based on the state tax amount.

A B b e et fpma oy B D Aabbe e b

[sub IfTax()
Dim RowNum As Integer
RowNum = 2

Do While Not (lSEmpty(Cells(RowNum, 2)))
If Cells(RowNum, 2) = "TX" leu<_o

Elself Cells(RowNum, 2) = "FL" Then

Elself Cells(RowNum, 2) = "CA" Then
Cells(RowNum, 3) = Cells(RowNum, 1) * 1.14—'.
Else
Cells(RowNum, 3) = Cells(RowNum, 1) * 1€—
nd If
RowNum = RowNum + 1

Loop
| End Sub |
sl | e
a0 e
o ey = f@oe
o e I d
ettt Al ILBCH &) %A EEBEE A 4% U e b G ek b
2 . E
1 Total Sale State Total with Tax cecees Tes e e || e T s s
500 TX 5.25
3 500 CA 5.50
1 5.00 FL 5.40
5 500 UT 5.00
& 10,00 TX 10.50
10,00 TX 10.50
(] 10.00 CA 11.00
. 20.00 FL 21.60
0 2000 TX 21.00
1 2000 CA 22.00
2000 UT 20.00

Cells(RowNum, 3) = Cells(RowNum, 1) * 1.054——.

Cells(RowNum, 3) = Cells(RowNum, 1) * 1.08<«——@®

Although VBA does not require you to indent your code, you can use indentation to improve readability. Indenting

enables you to analyze the structure of the code without reading each line. When working with conditional
statements, such as If Then statements and looping statements, most programmers indent the statements that
execute. The following example shows how you can indent the code for a For Next loop so you can easily locate
the loop’s beginning and end. The example also indents an If Then statement.

Example:
For T =1 To 5
If J < 10 Then
J=J +1
End If
Next

If you have an If Then statement that consists of only one statement, you can combine the If statement with the

Then statement and eliminate the End If statement.

If Sum < 10 Then Sum = Sum + 1

IS EQUIVALENT TO:

‘ If Sum < 10 Then

Sum = Sum + 1
End If

9 191dey)

.
.

(@
)
=
(=3
-
)
=
=
¢Q
)
-
o
©
k<)
=
ey
1
Q
=

ou can execute a specific block of code based on a
value by using a select case statement. Using

a Select Case statement is similar to using
ElseIf.You can use Select Case when you have
different statements to execute and the statements that
execute depend upon the value of a cell, variable,
number, or string. For example, you can base the
calculation of sales tax on the state. You can calculate a
tax rate of 5 percent if the state is Texas, 8 percent if the
state is Florida, and no tax for all other states. The
following is the syntax for select case statements.

Select Case testexpression
[Case expressionlist -n
[statements-n]]
[Case Else
[elsestatements]]

End Select

Construct Select Case Statements

The select case statement identifies the expression
against which you want to test each case statement.
Each case statement contains a value to test and the
statements to execute if the case statement is True. For
example:

Select Case UserVal
Case 4

Statements

End Select

The example determines whether Userval = 4 is True.
Under each case statement are statements that execute if
the expression evaluates to True. The End Select
statement marks the end of the select case statement.

You can also add a case Else statement that supplies
the statement to run if none of the case statements
evaluate to True.

@ Name your procedure.
@ Declare your variable.

@ Initialize your variable.

@ Createapo while loop.

Note: See the section “Employ Do While
Loops” in this chapter to learn how to
create a Do While loop.

@ Type your select case statement.

® FEach case statement value is
compared to this value.

@ Type your case statements.

® |f the value in the select case
statement is equal to the value in the
case Statement, the statements that
follow the case statement execute.

@

Do While Not (IsEmpty(Cells(RowNum, 21134—9
e'l_> 0

By = B
['sub a.,..,'+.,;(3<_0 E
Dim RowNum As Integer‘—@
RowNum = 2 <€ 9
End Sub
= T |
. =]
[P B e et Gpma Doy B Dmm Aidbe feae b P

il D_im _I{uwl_i-um ;\s.l.nieger
RowNum = 2

Select Case Cells(R um, 2)
Case ""I'X"‘—v‘
Cells(RowNum = Cells(RowNum, 1) * 1.05 4——.
Case “FL"<—6
Cells(RowNum, 3) = Cells(RowN
Case "CA™
Cells(RowNum, 3) = Cells(RowNum, 1) * 1.14—‘-.
Case Else
Cells(RowNum, 3) = Cells(RowNum, 1) * 1
End Select

RowNum g RowNum + 1
Loop

End Sub

= T

, 1) * 1.08 «<—@

18]
o

Add your case Else Statement.

The statements after the case
Else statement execute if none
of the other case statements
match the select case value.

Add an End Select statement.

Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to
run a macro.

In this example, the procedure
calculates the sales price plus
tax, based on the state tax
amount.

[b e it fgma Dy e

=

Dim RowNum As Integer
RowNum =2
Do While Not (IsEmpty(Cells(RowNum, 2)))
Select Case Cells(RowNum, 2)
Case "TX"
Cells(RowNum, 3) = Cells(RowNum, 1) * 1.05
Case "FL"
Cells(RowNum, 3) = Cells(RowNum, 1) * 1.08
Case "CA"

Cells(RowNum, 3) = Cells(RowNum, 1) * 1.1
Case Els-<_é

Celis(RowNupgm3) = Cells(RowNum, 1) * 1
End Select 4—@

RowNum = RowNum + 1

PRICES e A EEEEE
. : A e B | Total Sale -
i B (5 (-} T
‘| Total salel State Total with Tax Cosm mswmte | O frn e 1o]
z 500 TX 525
) 500 CA 5.50
i 500 FL 540
' 500 UT 5.00
. 10,00 TX 10.50
' 10,00 TX 10.50
' 10.00 CA 11.00
' 2000 FL 21.60
® 2000 TX 21.00
" 2000 CA 22,00
: 2000 UT 20.00
£iveom [— —

values.

TYPE THIS:

Select Case NumSales
Case 1 To 5

Commission = Total * .05
Case 6 To 15
Commission = Total * .1

End Select

TYPE THIS:

Select Case NumStudents
Case Is < 10
MsgBox ("Not enough students
enrolled.")
End Select

TYPE THIS:

Select Case State
Case "TX", "CA"
Total = Total * 1.085
End Select

With the Select Case statement, you can use comparison statements to compare a range of values, or multiple

The Select Case statement checks the value of
NumSales to see whether it falls into one of the
two specified ranges.

RESULT:

The Select Case statement displays the
message box if the value of NumStudents is less
than 10.

RESULT:

If the value of State equals TX or CA, the total is
calculated using 8.5 percent for the sales tax.

9 191dey)

.
.

(@
)
=
(=3
-
)
=
=
¢Q
)
-
o
©
k<)
=
|
1
Q
=

GoTo a Named

Location

ou can jump to a named location within your

macro by using a GoTo statement. However,

before you can use a GoTo statement, you must
label the line in your procedure to which you want to
move. A label is a text string followed by a colon. The

GoTo command moves to the label, thereby passing
control from the current location in the procedure to the

label. The following is the syntax for the coTo command:

GoTo label

As you can see, there are two parts to a GoTo command:
the GoTo statement and the label. You can place a label
anywhere in your procedure. The GoTo command can
jump only to labels within the same procedure. They
cannot jump to a label in another procedure, even if both

GoTo a Named Location

procedures are in the same module. You can add multiple
GoTo commands to the same procedure, and each GoTo
command can jump to the same or different labels.

You should use GoTo commands only in situations where
you cannot obtain the desired results using conditional
statements or looping structures. GoTo commands date
back to when each line of code had a specific line
number, and GoTo commands jumped to the specified line
of code. Although GoTo commands are often used for
trapping errors in VBA, many programmers consider it
bad programming to use GoTo commands too frequently.
See Chapter 8 for more information on using a GoTo
statement when debugging your code.

0 Create a new procedure.
@ Add your code.

© Add your coTo statements.

=
4510 0 im ot fmas Doy o Du b et o

R i e e - W =

End Sub

= T |

el e B
Sub CalculateShipping()
Select Case Cells(2, 2)
Case "TX"
Cells(2, 3) = Cells(2, 1) *§.075
If Cells(2, 1) > 50 Then GoTo NoShipping
9 = GoTo Shipping
Case "FL"
Cells(2, 3) = Galis(2, 1) * 1.085
If Cells(2, 1&-‘5&60T¢ NoShipping
e—»GoTu Shipping
Case Else

Cells(2, 3) = Cells(2, 1) * 1.09

If Cells(2, 1) > 50 Then GoTo NoShipping
e—FGo'l'o Shipping

End Select
End Sub

= T |

Add your GoTo label.

« O

Label names are
followed by a colon.

Add any additional code.

o Press Alt+F11 to switch
from the VBE to Excel,
and then run the macro.

Note: See Chapter 1 to learn
how to run a macro.

In this example, the
procedure calculates a
shipping charge if the
cost with tax is less
than $50.00.

e
£ e e g e

Case "FL"
Cells(2, 3) = Cells(2, 1) * 1.085
If Cells(2, 1) > 50 Then GoTo NoShipping
GoTo Shipping
Case Else
Cells(2, 3) = Celis(2, 1) * 1.09
If Cells(2, 1) > 50 Then GoTo NoShipping
GoTo Shipping
End Select

NoShipping: <€)
Cells(2, 4) = "No Charge™
Exit Sub

Shipping: <& @
Cells(2,4) =1
End Sub

[TEEE

T

Cost State g

Cost with Tax Shippi Total Cost

$5.00 T $5.38 $1.00

i Fi—

$6.38

procedure.

statement.

Example:
Sub TestGoTo ()
Dim T As Integer
T = Cells(1,1)
If T < 5 Then GoTo IncreaseValue
o= w5
Exit Sub
IncreaseValue:
T = 50
End Sub

The following example uses the Exit Sub command before the label procedure to avoid execution of the T

You place labels in a procedure to mark the location of code. Labeling code does not change how it executes. Code
within a loop or conditional statement executes only when the condition is met. Labeled code executes when a
GoTo statement jumps to it, or when the program reaches that line of code.

If you have multiple areas of labeled code, you may not want it all to execute. To avoid execution of code that
follows a labeled section, you can use another GoTo statement or an Exit Sub statement to terminate the current

9 191dey)

.
.

(@
)
=
(=3
-
)
=
=
¢Q
)
-
o
©
k<)
=
ey
1
Q
=

Call a

Procedure

another procedure, you can use a call statement.

You simply type the word ca11 followed by the name
of the procedure you want to execute, as well as any
arguments the procedure requires, in parentheses and
separated by commas. When you call a procedure, VBA
moves to the first line of code in the called procedure and
begins processing. After the called procedure completes
processing, VBA returns to the next line of code after the
call and continues processing the original procedure.

You can conditionally call a procedure by using a

I f you are in one procedure and you want to execute

conditional VBA statement, such as an If Then Statement

with a call statement. When you combine the ca1l
statement with a conditional statement, VBA executes the
called procedure only if the specified condition is met. The

Call a Procedure

If Then statement checks the specified condition. If the
value of the condition is True, the control passes to the
called procedure or function and then, upon the called
procedure’s completion, returns to the original procedure.
If you do not want to continue processing the first
procedure after calling the second, you can use an Exit
Sub statement to exit the procedure.

The keyword cal1l is optional when executing a call
statement. You can call a procedure simply by typing the
procedure name. If you omit the ca11 keyword, do not
place your arguments in parentheses. Simply type the
procedure name followed by its arguments, separated by
commas. You can call sub procedures, Function
procedures, or Dynamic-Link Library (DLL)
procedures.

@ Name your procedure.

Q Declare and initialize any
variables.

You may need to make your
variable public.

Note: See Chapter 3 to learn more
about public variables.

@ Create an 1£ Then condition.
9 Call another procedure.

] ==~
.Pu-bl-i.c .RBV\;N;IM ;A-s Double<—9 E
0—l>5uh CallTax()
RowNum = 24—9
End Sub
=/ _JCT
l = B
F T e S T T v v

| Public RowNum As Double
Sub CallTax()
RowNum =2
Do While Not (IsEmpty(Cells(RowNum, 2)))
If Cells(RowNum, 2) = "TX" Thun<—9
e—FCaII FivePercent
Elself Cells(RowNum, 2) = "FL" Then
e—>0all TenPercent
Elself Cells(RowNum, 2) = "CA" Then
e—»call FivePercent
Else
Celis(RowNum, 3) = Cells(RowNum, 1) * 1
End If
RowNum = RowNum + 1
Loop
| End Sub

= T

Create called procedures. [g g o

Type code to run when Sub Fi"°"°'°°"‘0<—e e 3

the procedure is called. Cells(RowNum, 3) = Cells(RowNum, 1) * 1.05

End Sub
Press Alt+F11 to switch Sub TenPercent() a , e

Cells(RowNum, 3) = Cells(RowNum, 1) * 1.1
from the VBE to Excel, End Sub

and then run the macro.

(o M)
9 191dey)

.
.

Note: See Chapter 1 to learn
how to run a macro.

When the condition is A

(@
)
=
(=3
-
)
=
=
¢Q
)
-
o
©
k<)
=
|
1
Q
=

met, the If Then : Total Sale State Total with Tax ceasms 1w D s i
statement calls the : 5.00 TX 525
. : 5.00 cA 525
approprlate prOCGdUre. 5 5.00 FL tEp
. 5.00 uT 5.00
: 10.00 T 1050
: 10.00 T 1050
' 10.00 CA 10.50
' 20.00 FL 22.00
) 20.00 TX 21.00
20.00 CA 21.00
20.00 uT 20.00

an T - v

You do not need to use the Call keyword when you call another procedure or function. However, using the Call
keyword eliminates confusion by clearly indicating that you are calling a function or Sub procedure. When you use
the Call keyword, you must enclose any arguments passed in parentheses. If you call a procedure without the
Call keyword, you must omit the parentheses around the argument list, as follows:

T+

IS EQUIVALENT TO:

Call NewProc (Varl, Var2) . NewProc Varl, Var2

Work with Excel

Worksheet Functions

function is a block of code that performs a task

and returns a value. There are three types of

functions: VBA functions, Excel worksheet
functions, and custom functions. A VBA function is a
function supplied by VBA. An Excel worksheet function
is a formula that Excel has predefined. You can use them
to do things such as add numbers, find an average, or
find the highest number in a list. Excel provides you with
more than 300 worksheet functions. Custom functions
work like worksheet functions; however, you define the
formula the function uses.

Use the worksheetFunction property to place an Excel
worksheet function in your VBA procedure. The
WorksheetFunction property is available through the
Application object. To access a function in the
WorksheetFunction(ﬂﬁed,youlypeApplication.
WorksheetFunction. followed by the function you want

Work with Excel Worksheet Functions

to use and the function arguments enclosed in
parentheses. If you want, you can omit Application.
from the expression. For example, if you want to sum a
range of cells and store the result to a variable, both of
these expressions are valid:

SumVal = Application.WorksheetFunction _

.Sum(Range ("Al:2A4"))

SumVal = WorksheetFunction.Sum _

(Range ("Al:24"))

Generally, you cannot use an Excel worksheet function
that has an equivalent VBA function. For example, both
VBA and Excel have a cos function that returns a
numeric value that represents the cosine of an angle. If
you try to use the Excel worksheet function cos in your
VBA procedure, you receive an error message.

@ Name your procedure.

@ Declare the variables you
want to use to store the
results of your worksheet
functions.

(3]
o

Declare any other variables
you will use.

Activate the worksheet that
uses this procedure by
typing .Activate after the
worksheet reference.

Create your worksheet
functions.

® The underscore indicates that
the statement is continued on
the next line.

® The name of the function.
Arguments.
A VBA function.
@ Sstore the result to a variable.

@

pa e~
F e g e g T

—0
Dim Msg As sning<_9

Worksheets("Worksheet Function™).Activate 4—9
End Sub

tion()

 Sub UseWorkshestF

= T

2] =]
I b o i g o oo iy o8

Sub UseWorksheetFunction()
Dim MaxVal As Double
Dim MinVal As Double
Dim AvgVal As Double
Dim Msg As String
Worksk unction”).Agtivate

=5 MaxVal = <—.
WorksheetFunction.Max(Rang ;"52:513"334—6

= MinVal =
Workshe @FunetizeMin(Range("B2:B13")) 4—6

= AvgVal = _
——> Round(Application.WorksheetFunctn
Average(Range("B2:B13")), 0) <—B

End Sub

"Wearkehoot
{ Wor

PPP

o Use a message box to display
the result.

Note: See the section “Work with a
MsgBox Function” to learn more
about message boxes.

® The variable.
® This code creates a blank line.

@ Press Alt+F11 to switch from
the VBE to Excel, and then run
the macro.

Note: See Chapter 1 to learn how to
run a macro.

The results of the worksheet
functions appear in the
message box.

L

Dim Msg As String
Worksheets("Worksheet Function”).Activate
MaxVal =
WorksheetFunction.Max(Range("B2:B13"))
MinVal = _
WorksheetFunction.Min(Range("B2:B13"))
AvgVal =
Round(App tion.WorksheetFuncti
Average(Range("B2:B13")), 0)
Msg = "Highest Sales: " & MaxVal
Msg & vbNewLine & vhNawLino‘—.
Msg = Msg & "Lowest Sales: " & MinVal
Msg = Msg & vbNewLine & vbNewLine

Msg = Msg & "Aver; Sales: " & AvgVal
MsgBox (Msg]‘-ﬁ

i |

w Total 3

End Sub
=/ T I
[DTRE J
7| s _ . 1] - - L
T 5 ot
+ |[Month Sales| semsemwr
: January $ 45630 = j
y February 98,200
« March 69,116
+ April 63,277
« May 23,793
¢ June 45,857
+ July 72,285
+ August 66,659
« September 61,896
n October 21,462
= November 51,182
« December 44,351
653,708

LI

The Object Browser lists the
functions that are part of
the WorksheetFunction
object. To view this list, use
WorksheetFunction as the
search criterion in the Object
Browser. Press F2 to open
the Object Browser.

See Chapter 4 for more
information on the Object
Browser.

If a VBA statement does
not fit on a single line, you
can use the underscore (_)
character to tell Excel you
want to continue the
statement on another line.
The example in this section
uses the underscore
character as a continue
statement indicator.

The remainder of this chapter discusses and
illustrates VBA functions. The Round function
used in the following example is a VBA function.
The Round function takes two arguments: an
expression and the number of decimal places to
which you want to round the number. If you do
not specify the number of decimal places, the
Round function rounds to an integer.

Example:

Result = Round(124.4589, 2)
124.46

'Returns

You can also use the Excel worksheet function
ROUND when writing a VBA procedure.

2 391dey)

.
.

10Ung 199YsyIom [20xg Suisn

.

[
o
=
7]

Work with a

MsgBox Function

he MsgBox function is a VBA function that makes

writing code easier. See Chapter 3 to learn more

about functions. You can use the MsgBox function
to display a dialog box that provides information to the
user and, if you want, returns a value to VBA that
represents the user’s response. The MsgBox function has
a preset list of values it can return. For example, you can
use the MsgBox function to prompt the user for a Yes or
No response; VBA returns 6 if the user clicks Yes and 7 if
the user clicks No.

When using the MsgBox function, you use arguments to
designate the prompts, buttons, and title that appear in
your message box. The Button and Title arguments are
optional. Use the prompt argument to specify the text

Work with a MsgBox Function

that appears in the message box. You can use a text
string enclosed in quotes or you can use a variable. You
can combine strings and variables by using the
concatenation operator (&), as in this example:

MsgBox ("Total Sum: " & TotalSum).

Use the Button argument to specify a constant that
indicates the buttons and icons that appear in the
message box. If you do not specify a button constant, the
MsgBox function uses the default vboxonly and displays
only the OK button. Use the Title argument to display
the title that appears on the title bar of the message box.
If you omit this argument, Excel displays the default title,
Microsoft Excel.

@ Name your procedure.

@ Declare the variables you want to use as
arguments in the MmsgBox function.

Alternatively, you can type the arguments
directly into the MsgBox function.

9 Declare the variable you want to use to
store the value returned by the MsgBox
function.

@ Activate the worksheet that uses this
procedure by typing .Activate after
the worksheet reference.

Store your message to a variable.

o)

Store the values that represent the
buttons you want to use to a variable.

Place a plus sign between each button
you want represented.

0 Store the title you want your message box
to have to a variable.

@

e——FDim Answer As Integer

0——>mh5uttun = vbYesNo + vbQuestion

T ToT= Bl

| sub Disﬁl-ay_llisg onﬂ-(—o

Worksheets("Display MsgBox").Activate 4—9

End Sub

= T

2] =)
il éub Disﬁ[-a);ﬁsgﬁoxt)-

Dim mbPrompt As String

Dim mbTitle As String

Dim mbButton As Integer

Dim Answer As Integer

Worksheets("Display MsgBox").Activate

mbPrompt = "Calculate Region 3 Total?"<—6

mbTitle = "Calculate the Region 3 Total"<_o

End Sub

ST |

@ Create the MmsgBox function.
® Your message.
® The buttons you want to display.
The title.

Q Assign the value returned by the message
box to a variable.

@ Write code to execute an action based on
the value returned by the message box.

(D Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a macro.

The message box appears when you run
the macro.

The title.
® The prompt.
® The vbyesNo bhuttons.

The vbQuestion button.

(2] =]

Sub DisplayMsgBox()

Dim mbPrompt As String
Dim mbTitle As String
Dim mbButton As Integer
Dim Answer As Integer
Worksheets("Display M§Box").ActiVate
mbPrompt = "Calculate [Region 3 Total?"
mbButton = vbYesNo + ybQuestion
mbTitle = "Calculate th{¥ Region 3 Yotal"

—3-Answer = MsgBox(mbPrompt, mbButton, thitln}<—9

End Sub
= T | |
] =
AL .- & C
 |District Region 1 Region 2 Region 3
: District 1 3,425 9,163 9,813
1 District 2 8,379 3,468 9,281
« District 3 3,501 7,830 9,647
+ District 4 3,749 2,092 1,502
+ District 5 7,304 5,958 3,677
+ District & 5,508 1,177 1.841
+ Total 31,866 29,689
: It o B 1 T
e) s e 1 4—.
-0

L ey g 5
i |

Example:

You can use 20 different constant values as the Buttons value for the MsgBox function. You can use these values
separately, or combine them by placing a plus (+) sign between each constant value. The following code creates a
message box containing Yes, No, and Cancel buttons, as well as the Question icon.

Response = MsgBox("Select button.", vbYesNoCancel + vbQuestion)
The MsgBox function returns an integer value between 1 and 7, which represents the button the user clicked. You

can interpret the value the MsgBox function returns by looking at the integer value. The following table shows the
integer values returned by the MsgBox function and their associated constant values.

MSGBOX RETURN VALUE CONSTANT DESCRIPTION

1 vbOK OK button clicked

2 vbCancel Cancel button clicked
3 vbabort Abort button clicked
4 vbRetry Retry button clicked
5 vbIgnore Ignore button clicked
6 vbYes Yes button clicked

7 vbNo No button clicked

2 391dey)

.
.

10Ung 199YsYIoM [90xq Suisn

.

.
o
=
7]

Using the

InputBox Function

function. You can use the InputBox function to

prompt the user for information during the
execution of a procedure. The TnputBox function displays
a dialog box that requests information from the user and
returns the user response to your procedure. You capture
the user response by assigning the results of the
InputBox function to a variable. The following is the
syntax for the ITnputBox function:

I ike MsgBox, the TnputBox function is a VBA

InputBox (Prompt[,Titlel [, Default]
[, yPos])

Use the prompt argument to specify the text that appears
in the input box. You can combine strings and variables
by using the concatenation operator (&). The Title
argument is optional. You can use it to specify the title of

Using the InputBox Function

[, xPos]

your input dialog box. You can use either a text string
enclosed in quotes or a variable. If you omit the Title
argument, Excel displays the default title, Microsoft Excel.

The Default argument is optional. You can use it to
specify the default value that displays when your text box
appears.

You can specify the display position of the dialog box by
using the optional xpos and yPos arguments. If you omit
these arguments, the dialog box appears in the center of
the screen. These arguments use units of measurement
called twips. One twip equals 1/20 of a point, or 1/1,440
of an inch. The xpos argument indicates the distance
from the left side of the screen to the left side of the
dialog box. The yPos argument indicates the position
from the top of the screen to the top of the dialog box.

@ Name your procedure.

@ Declare the variable you want to
use to store the value returned by
the InputBox function.

@ Declare the variables you want to
use as arguments in the
InputBox function.

Alternatively, you can type the
arguments directly into the
InputBox function.

o

Activate the worksheet that uses
this procedure by typing
.Activate after the workbook
reference.

Store your prompt to a variable.

Store the title you want your
message box to have to a
variable.

Store the default value you want
your input box to display to a
variable.

Create your InputBox function.

©0 © o0

Assign the value returned by the
InputBox function to a variable.

@

e——bibTitle = "Select a l.':alor"o
0——>Us¢rlnput = InputBox(ibPrompt, ibTitle, ibDﬂauIt)‘—g

(] ==
P b e ot Gpma Doy B Dwm Asdbe s by oA
| sub Disﬁl-ay.lnputnaox(id—“ -
Dim Userlnput As String4—9
Worksheets("Display Input!ox"}.Activate‘-@
End Sub
=fEsl |

== B

e bl e et Gpwa Doy B Dwm Asdbe s by ol
éub Disﬁl-ay.lnputnaox(i

Dim Userlnput As String

Dim ibPrompt As String

Dim ibTitle As String

Dim ibDefault As String

Worksheets("Display InputBox").Activate

ibPrompt = "What color do you want?"<—6

It = "Blue" %

End Sub

= T |

@ Write code that executes based on =
the value returned by the input vt ey mr— oS =

box. ibDefault = "Blue”
Userinput = InputBox(ibPrompt, ibTitle, ibDefault)

Note: See Chapter 6 to learn more
about If Then Else Statements.

@ Press Alt+F11 to switch from the
VBE to Excel, and then run the

macro. 4——®

Note: See Chapter 1 to learn how to run

a macro.
End Sub
The input box appears when you '.ﬁ e e e e bae
run the macro. e Ml e B M TS
® The title. e ———
« [Product Color ilabl gt Tea
® The prompt. . JX-07893 Blue 8
» JX-07893 Green 7
The default value. « JX-07893 Red 4
+ JX-07892 Silver 6
; (
._»...,:_. - i |
q‘.,

50 Dy gt)
i | ou -

You can use named arguments to simplify your functions. Many VBA functions have optional arguments. For
example, although the InputBox function has several arguments, only the first one is required. If you want to
include additional arguments, you specify the argument values in order, leaving a space between two commas as a
placeholder for any arguments you do not want to use.

Example:
UserInput = InputBox("Type a value:", ,"5")

Instead of specifying a placeholder for each value, you can use named arguments with the VBA functions. When
using a named argument, you specify the name of the argument along with the corresponding value. You type the
name of the argument followed by a colon, an equal sign, and the value of that particular argument. You can place
named arguments in any order, and you do not have to specify a value for every argument.

Example:
UserInput = InputBox(Prompt:="Type a value:", Default:="5")

2 391dey)

.
.

10Ung 199YsYIoM [90xq Suisn

.

.
o
=
7]

Retrieve the Current

Date and Time

BA includes several date-related, built-in
functions that you can add to the procedures and
functions you create. You can use these functions

to return a system date and/or time, perform date
calculations, set a date, or even time a process.

If you want to display the current date or time, you can
select from three different functions. The pate VBA
function returns the current system date, the Time VBA
function returns the current system time, and the Now
VBA function returns both the date and time. VBA
formats the date and time information in your system’s
short date format. You can modify the date and time
formats by using the Control Panel.

When working with dates, you can avoid displaying a
date outside of range by remembering the date range that

Retrieve the Current Date and Time

Excel accepts. Excel accepts dates between January 1,
1900, and December 31, 9999. If you use Excel on a
Macintosh, the date range is even smaller. The acceptable
date range begins January 1, 1904. If you need to display
a date outside the range, you can do so by placing the
date in a string variable. VBA accommodates a much
larger date range than Excel. It accepts dates between
January 1, 0100, and December 31, 9999.

You can assign the results of the pate or Time function
to a variable, a worksheet cell, or another function. The
following example stores the Now function to a message

Retrieve the Current Date
0 Name your procedure.
9 Type the pate function.

In this example, the pate function
is part of the prompt argument for
the MsgBox function.

Note: See the section “Work with a
MsgBox Function” in this chapter to
learn more about the MsgBox function.

9 Press Alt+F11 to switch from
the VBE to Excel, and then
run the macro.

Note: See Chapter 1 to learn how to run
a macro.

The current system date appears in
the message box.

@

box: MsgBox ("Current Date and Time: " & Now()).
] e -]
| sub E’ﬁoﬁﬁat’a(j<_o E
MsgBox ("Current Date: " & Date)
End Sub
=fF. | g
[
e (]
i — x 3 al

] -

Retrieve the Current Time A —— ——

@ Name your procedure. sub snowrume()<—o E
& Tlmo)<—g

MsgBox ("Current Time: "
@ Type the Time function. End Sub

2 391dey)

In this example, the Time function is part of
the prompt argument for the MsgBox
function.

.
.

Note: See the section “Work with a MsgBox
Function” in this chapter to learn more about the
MsgBox function.

9 Press Alt+F11 to switch from the VBE to
Excel, and then run the macro.

Note: See Chapter 1 to learn how to run a macro. —_HE. o

The current system time appears in the e e e e e b=e
message box. @ ma - g oo |, S0

10Ung 199YsYIoM [90xq Suisn

.

.
o
=
7]

o] o e

In Excel, you can convert dates and times into a serial value that Excel can add or subtract and then convert back
into a recognizable date or time. Excel calculates a date’s serial value as the number of days after January 1, 1900,
and represents each date with a whole number. Excel calculates a time’s serial value in units of 1/60 of a second.
Each time can be represented as a serial value between 0 and 1. A date and time, such as January 1, 2000, at noon,
consists of the date to the left of the decimal and a time to the right. In the example August 25, 2011, 5:46 p.m.,
the date and time serial value is 40780.74028.

VBA uses the same serial number system for dates and times as Excel. Each date and time is stored as a numeric
value. Because VBA stores dates and times as numeric values, you can add and subtract to perform date
calculations.

+++

Perform Date and

Time Calculations

dates by using the patepiff VBA function. With value True if an expression is a date. Use the cpate
this function, you can obtain time intervals function to coerce a date data type.
between two date values, such as the number of months, yoy can use the optional Firstdayofweek argument if

days, hours, minutes, or seconds. you want to use a day other than Sunday as the first day
The pateDiff function takes five arguments: Interval, of the week. To create the constant value you use as this
Datel, Date2, Firstdayofweek, and Firstweekofyear. argument, type vb before the appropriate day of the

The first three arguments are required. Use the Tnterval week. For example, to use Monday as the first day of the
argument to specify the unit of time to use when week, type vbMonday as the argument value.

returning the differenqe betwgen the two dates. Use a You can use the optional Firstweekofyear argument to
constant value to specify the interval. indicate what you want to treat as the first week of the year.
Use the patel and pate2 arguments to specify the dates If you omit this argument, VBA considers the week that
you want to compare. You can use a date string, a value contains the date January 1 as the first week of the year. If
returned by a function, or the contents of a cell, as long you want to have the first week contain at least the first

as you use a valid date. To ensure the date is valid, you four days, specify a value of vbFirstFourDays. See the

appendix for a list of Firstweekofyear constant values.
Perform Date and Time Calculations

You can determine the amount of time between two can use the Ispate VBA function, which returns the

=] =3 ==
1 b e st byma [ebey be Dk Akbbe deae i T e
@ Name your procedure. P ————— 7
] Sub calulatenifmata{}<—ﬂ E
@ Declare the variables you want to use to
store your dates.
y Dim RowN As Integ - 6
@ Declare any other variables you need. RowNum = 2
End Sub
R
. g =] =3 ==
This example uses a Do while loop L ey ey e
and an If Then Else Statement. " Sub CalulateDiffDate() . =
Note: See Chapter 6 to learn more about S et o J
loops and 1f Then Else Statements. Dirm RowNimm As Infeger
i RowNum =2
® This eXample evaluates two columns of Do While Not IsEmpty(Cells(RowNum, 1))
cells, starting at row 2.
o Store the cell values to variables. If IsDate(Date1) And IsDate(Date2) Then
. Cells(RowNum, 3=
e Use the zspate VBA function to make ateDiff("h", Cell{{RowNum, 1), Cells(RowNum, 2))
sure the cells contain valid dates.
MsgBox ("Type valid dates in colls.“)<—e
O Use the MsgBox function to display an End If
error message if the dates are not valid. Lo::“""“‘“ * RowNum:+1
=Eal |

@

@ Use the patepi ££ function
to determine the amount of
time between two dates.

® The Interval.
Date1.
Date2.
@ Place the results in a cell.
© Press Alt+F11 to switch from

the VBE to Excel, and then
run the macro.

Note: See Chapter 1 to learn how
to run a macro.

The procedure calculates the

difference between two times.

) B b e et by ey B D bsibe e

Dim Date1 As Date
Dim Date2 As Date
Dim RowNum As Integer
RowNum = 2
Do While Not IsEmpty(Cells(RowNum, 1))
Date1 = CDate(Dells(RowNur, , 1))
Date2 = CDate(Cells(RowNum, 2))
If IsDate(Date1)) And IsDate(Date2) Then
e—»calls(ﬂo um, 3)=_ Y
e_bbahniﬂ’(" "y Cells(RowNum, 1), Cells(RowNum, 2}))
Else
MsgBox ("Type valid dates in cells.”)
End If
RowNum = RowNum + 1
Loop
End Sub

=Wal | D

[OEEE

| e
. =

| Shart Time

I

End Time Hours Worked

«|___Start Time

: 8:05 AM 6:13PM 10

, 8:14 AM 5:23 PM 9

‘ 9:12 AM 5:14 PM 8
7:34 AM 6:11 PM 11
7:55 AM 6:00 PM 11

Catctats asey Woned

I
[| s, |-

You can use one of ten constant values to specify the Interval argument and the type of date interval to return.
INTERVAL VALUE DESCRIPTION
VYYY Year Only compares the year portion of both dates. The dates 12/31/1999 and
1/1/2000 return a value of 1 year.
aq Quarter Divides the year into four quarters and returns the number of quarters between dates.
m Month Compares only the month portion of both dates. The dates 12/31/1999 and
1/1/2000 return a value of 1 month.
Day The number of days between two dates.
Day of Year | The same results as using d.
W Weekday Determines the day of the week of the first date — for example, Wednesday — and
then counts the number of Wednesdays between the dates.
ww Week Relies on the value specified as the Firstdayofweek argument to determine the
number of weeks between two dates.
h Hour The number of hours between two times. If a time is not specified, it uses midnight
or 00:00:00.
n Minute The number of minutes between two times.
s Second The number of seconds between two times.

2 391dey)

.
.

10Ung 199YsYIoM [90xq Suisn

.

.
o
=
7]

Format a Date

Expression

ou can format an expression that uses a date or

time by using the FormatDateTime VBA

function. The FormatDateTime function takes
two arguments: Date and NamedFormat. The Date
argument is required. It identifies the date expression that
you want to format and accepts cell references, variable
references, string expressions, or numeric values. You
can reference a cell using any of the cell range reference
options discussed in Chapter 11. For example, if the date
you want to format is located in cell A1, you can use the

following code to reference that cell:
X = FormatDateTime (Range ("Al"))

You use the NamedFormat argument to specify the
formatting you want to use. You can use any of the
predefined formatting constants. If you omit the

Format a Date Expression

NamedFormat argument, the FormatDateTime function
uses the vbGeneralDate constant.

The vbGeneralDate constant instructs Excel to format the
date portion of the expression in the system short date
format, and to format the time portion of the date in the
system long time format. Windows maintains your
default date and time settings in the Regional and
Language Options dialog box, which you can access
through the Control Panel. When you use a constant as
the NamedFormat argument, you specify which of these
settings you want to use to format your date and time
values. By changing the values in the Regional and
Language Options dialog box, you affect how the dates
and times appear when you use the FormatDateTime
function.

@ Name your procedure.

@ Declare the variables you
want to use to store your
unformatted dates.

@ Store the contents of the
cells with unformatted
dates to variables.

2]
T S T

éub F.urmat.Datefime"\-F-aI.ue.v.-[.i:

End Sub

= T

E ey
A) M i i g B D B " S 1y T

Sub FormatDateTimeValues()
Dim Date1 As Date
Dim Date2 As Date
Dim Date3 As Date

Dim Dated As Date

~—O

End Sub

= T

e Use the FormatDateTime Ufl- L S T ¥rE] g
function to format the variables " Sub FormatDateTimeValues() e (S}
in which you stored the dates. Dim Date1 As Date E
. . Dim Date2 As Date o
® The variable containing the date. Dim Date3 As Date :
Dim Dated4 As Date b
® The format you want to apply. Date1 = Cells(2, 1) c
@ Assign the results to cells st 2
o Date3 = Cells(4, 1) E'
A Dated = Cells(5, 1
@ Press Alt+Fi1 to switch from g TS uQ
the VBE to Excel, and then run (5 I = FormatDateTime 0 rm
the macro. = FormatDateTime -~ (>§
= FormatDateTime '¢’)
Note: See Chapter 1 to learn how to End Sub =
run a macro. 2
=
= T g
W
The procedure formats the e e e %-
dates in column A and places e R o e e Lo o I | g
. FRICIES S = EEE e G el LY.
the results in column B. — =
; — 5 o]
al Onginail Formatted Type of Format [
1 6/2/99 3:45 PM 6/21999 vbGeneralDate =
» 8/10/00 11:23 AM Thursday, August 10, 2000 vbLongDate (@
« TNM1/01 5:45 PM 7M11/2001 vbShortDate Q
4/23/99 9:45 AM 9:45:00 AM vbLongTime g
7
Saan ‘_1‘ e = o~

You can specify the formatting for a date and time by using the NamedFormat argument. If it is omitted, Excel uses
the vbGeneralDate constant. When you use the NamedFormat argument, you can pass it a constant value or the
numeric value that corresponds to the constant, as outlined in the following table. The actual formats used as a
result of specifying these constant values are based upon the system date and time settings in the Regional and
Language Options dialog box.

CONSTANT VALUE DESCRIPTION

vbGeneralDate 0 The default value if the NamedFormat argument is omitted. This value displays
the date using the short date format and the time using the long time format.

vbLongDate 1 Displays the date using the system long date format.

vbShortDate 2 Displays the date using the system short date format.

vbLongTime 3 Displays the time using the system long time format.

Format a Numeric

Expression

ou can format a numeric expression by using the

FormatNumber, FormatCurrency, Or

FormatPercentage function. These functions all
take a numeric value and return the value formatted in
the format you specify. The FormatNumber function
returns a formatted number, the FormatCurrency
function returns a formatted number preceded by a
currency symbol, and the FormatPercentage function
returns a number followed by a percentage sign.

Each function takes the same five arguments:
Expression, NumDigitsAfterDecimal, Include,
LeadingDigit, UseParensForNegativeNumbers, and
GroupDigits. The Expression argument is required.

The Expression argument specifies the numeric value to
format. The NumDigitsAfterDecimal argument indicates

Format a Numeric Expression

the number of decimal places to display on the right side
of the decimal. The TncludeleadingDigit argument
determines whether a zero appears before fractional
values. The UseParensForNegativeNumbers argument
specifies whether to place parentheses around negative
numbers. Finally, the Grouppigits argument determines
whether Excel groups numbers to make them more
readable. With this argument, you can specify whether to
display fifty thousand as 50,000 or 50000.

The last three arguments, ITncludeLeadingDigit,
UseParensForNegativeNumbers, and GroupDigits, all
use the same three constant values. Use vbTrue as the
argument if you want to use the formatting, and vbFalse
if you do not want to use the formatting. If you do not
specify a value, or if you specify vbuseDefault, the
function uses your computer’s regional settings.

@ Name your procedure.

@ Declare the variables you
want to use to store your
formatted numbers.

@ Declare any other variable
you need.

@ Sstore the numeric values
you want to format to
variables.

E =3 ===
£ e g S ey e
Toub Numberrormat)<—0
Dim Msg As Slring(—@
End Sub
= LT |

I =]
Bl b e et fpa Dy B Dmn Sabbe i b vl

Sub NumberFormat()
Dim MaxVal As Double
Dim MaxPerct As Double
Dim TotalVal As Double
Dim Msg As String

End Sub

@ Apply a format to the variables. [1n i i o tme o bt e e - e
In this example, the formatted | Maxval = R ¥ %
numbers are part of the message e TR =y
box prompt. WorksheetFunction.Max(Range("C2:C13")) :

TotalVal = _ -

o Press Alt+F11 to switch from o\‘:orl:slleetFunclion.Sum(ﬂango(“Bz=B1 3")
the VBE to Excel, and then run Msg = "Highest Sales: "
the macro. e'l—b& FormatNumber(MaxVal, 0, vbFalse, vbFalse, vbTrue)

Msg = Msg & vbNewLine & vbNewLine
Note: See Chapter 1 to learn how to (5) Mag = Mag & "Fercent of Total Sates; ~ &
run a macro FormatPercent(MaxPerct, 0, vbFalse, vbFalse, vbFalse)
. Msg = Msg & vbNewLine & vbNewLine
Msg = Msg & "Total Sales for Year: " &
@—»analCumncy(TotaIVal, 0, vbFalse, vbFalse, vbTrue)
MsgBox (Msg)
End Sub

=/ T

In this example, the procedure B o T Bee
formats the numbers and displays] : 2 b T
the results in a message box.

« [Month Sales Percent| fomsmee

10Ung 199YsYIoM [90xq Suisn

: January 45630 0.07

, February 98200 0.15

« March 69116 0.11 =
+ April 53277 0.08 = o)
+ May 23793 0.04 | ropnsons m =
+ June 45857 0.07| * (7]
+ July 72285 Q.19 T

» August 66659 0.10 ;

« September 61896 0.09;|

n October 21482 0.03

« November 51182 0.08

« December 44351 0.07

w Total L 653708 1.00

i | o -

If you want to customize the way a number appears, you can use the Format function. You can create your own
number formats by combining specific characters along with symbols that represent the numbers, as in the
following example: Format (Numval, "##.##").

NUMERIC DISPLAYS
CHARACTERS
0 A numeric digit or a zero if the number does not have a digit in that place. Use this character

to ensure that a digit appears in a specific place. For example, 0000 always displays a four-
digit number. If there are fewer digits, a 0 appears for the non-specified digits.

A numeric digit if the number has a digit in that place. If there is no digit, a value does not
appear in that place.

A decimal-point placeholder.

% An expression as a percentage by multiplying by 100 and adding a percent sign.
s A thousands separator.
E-, E+, e-, e+ A numeric expression in scientific format. The number of digits on the right side of the symbol

indicates the number of digits in the exponent.

\ The character that follows a backslash or is enclosed in quotes. For example, to place a plus
sign (+) in the number string, you would type \+ in the desired location.

Change the

Case of a String

ou can use the Lcase and Ucase VBA functions

to change the case of your text. This is useful

when you are formatting output or when you
want to compare strings without regard to case. The
Lcase function changes all characters that are not already
lowercase to lowercase. The ucase function changes all
characters that are not already uppercase to uppercase.

To use the L.case function, simply type L.case followed

by the expression you want to convert to lowercase in
parentheses.

Example:
MyVariable = "HELLO"

SampleText = LCase(MyVariable)

Result:
hello

Change the Case of a String

The syntax for the ucase function is similar to the syntax
for the L.case function. To use the ucase function, you
type ucase followed by the expression you want to
convert to uppercase in parentheses.

Example:
MyVariable = "hello"

SampleText = UCase (MyVariable)

Result:
HELLO

Both the Lcase and the ucase functions ignore numbers
and symbols. The expression can be an actual string
enclosed in quotes, or a reference to a string such as a
cell or variable name. If the string contains no data, both
functions return Nu11.

@ Name your procedure.
@ Declare your variable.

@ Use an InputBox function to
retrieve a user entry.

@ Use the ucase function to change
the entry to uppercase.

Alternatively, you can use the Lcase
function to change the entry to
lowercase.

e Use a message box to display the
entry.

@ Press Alt+F11 to switch from the
VBE to Excel, and then run the
macro.

Note: See Chapter 1 to learn how to run
a macro.

@

izl =3 +-]
[B e e Gpea Duing B Dl Adbbe edos e o ol
[sub Eﬁange&aseﬂ‘—c E
e_ Dim YourEntry As Strlng<_g
=3 YourEntry = InputBox("Type your entry in lowercase:")
e——»YourEntry = UCase(YourEntry)
End Sub
= T

=)
1 b e e Gyema Qe B D Adibe e e
Sub ChangeCase() S
Dim YourEntry As String
YourEntry = InputBox("Type your entry in lowercase:")
YourEntry = UCase(YourEnt
MsgBox (YourEutry)<—B
End Sub

= T |

@ WMake an entry using lowercase text. e e e =

i | o |-

® The message box displays the text in B e it o 8-
uppercase.

c
o=
=]
Vj}
M
o
a
©,
§
W
2
=
o
o
=
1
s
=
a
=
)
=
7

i | s, |-

The example used in the section “Using the InputBox Function,” earlier in this chapter, converts the user’s entry to
lowercase and then compares the entry to a string. Converting the entry to lowercase allows you to make a
comparison without regard to case. For example, if the user types GREEN, green, or GrEen, the procedure returns
the value True when it compares the user input to green.

Example:
If LCase(UserInput) = "blue" Then
Inventory = Cells(2, 3)
ElseIf LCase(UserInput) = "green" Then
Inventory = Cells(3, 3)
ElseIf LCase(UserInput) = "red" Then
Inventory = Cells (4, 3)

ElseIf LCase(UserInput) = "silver" Then
Inventory = Cells(5, 3)
Else
Inventory = 0
End If

To see this function in action, refer to the Chapter 7 example file, “Using the InputBox Function,” which is on the
Web site for this book.

Return a Portion

of a String

functions available in VBA to return a portion of a

string. You can use three different functions: reft,
Right, and mMid. The Left function returns the specified
number of characters starting at the left side, or
beginning, of the string. The Right function returns the
specified number of characters starting at the right side,
or end, of the string. These functions use similar syntax:
Left (string, length) and Right (string, Ilength).

The string argument specifies the string from which you
want to return the specified number of characters. You
can make the argument an actual string enclosed in
quotes, a variable that contains a string, or a cell
reference. The length argument indicates the number of
characters to return from the string.

Return a Portion of a String

I nstead of an entire string, you can use the built-in

The third built-in function for returning a portion of a
string is the mid function. Use this function to retrieve
characters from the center of a string. When you use this
function, you indicate the character with which to start
and how many characters to return. There are three Mid
function arguments: Mid (string, start, [length]).

Similar to the Left and Right functions, the Mmid
function string argument specifies the string to use with
the function. The start argument indicates the position
of the first character in the string to return. The length
argument is the only optional argument when using the
wid function. If you omit the 1ength argument, the
function returns the remaining portion of the string.
Otherwise, the 1ength argument indicates the number of
characters to return.

@ Name your procedure.
@ Declare your variables.

9 Use an InputBox function to
capture a user entry.

@ Use the Lett function to retrieve
the left portion of a user entry.

® The variable that you want to
examine.

® The number of characters from
the left you want to retrieve.

In this example, if the first two
characters of the user entry are
not “0S”, then the user receives
an error message.

@

T r

7 e e e i S W P Tube i

T Sub Portionofstring() <——) -
On Error GoTo ErrorFound

Worksheets("Portion of String").Activate

ProductID = InputBox("Enter a Product ID:"]<—9

End Sub

= T

] == B
) e b e et bpma Deiny B Dmn Swibe i b T el

Sub PortionOfString()
Dim ProductlD As Variant
Dim Description As String
Dim Price Doul
On Error GpTo Err¢rFound
Worksheets("Portipn of String").Activate
ProductiD Input’ox{"Enter a Product 1D:")
- If Left(ProductlD, 2) <> "OS" Then
Msg = "The first two characters of the "
Msg = Msg & "product ID must be 05. "
MsgBox (Msg)
Exit Sub
End Sub

= T

@ Use the mid function to retrieve

a portion of a string.

The variable you want to
examine.

The position of the first character
you want to return.

The number of characters you
want to return.

In this example, if the third
character of the user entry is not
a “-”, then the user receives an
error message.

Use the Right function to
retrieve the right portion of the
user entry.

The variable that you want to
examine.

(4]
F

B e it fpua [y B Dl Sabbe e b

Dim ProductlD As Variant
Dim Description As String
Dim Price As Double
On Error GoTo ErrorFound
Worksheets("Portion of String"”).Activate
ProductiD = InputBox("Enter a Product 1D:")
If Left{ProductiD, 2) <> "0S" Then
Msg = "The f st tw racters of the "
Msg = Msg &|"prodyct|/ID must be 0S. "
MsgBox (Msg)
Exit Sub

NI, 0o °

> Elself Mid(P tiD, 3, 1) <> "-" Then
Msg = "The third character of the "
Msg = Msg & "product ID must bea-. "
MsgBox (Msg)
Exit Sub

BN A A S N S—
Elself IsNumeric(Right{ProductiD, 4)) <> True Then
Msg = "The last four characters of the "
Msg = Msg & "product ID must be a number.
MsgBox (Msg)
Exit Sub
Elself Len(ProductiD) <> 7 Then

2 391dey)

.
.

10Ung 199YsYIoM [90xq Suisn

pude

The number of characters from MsgBox ("The Product ID must be 7 characters long.” [le)

the right you want to retrieve. Exit:Subl a
End If

This example uses the
IsNumeric function.

In this example, if the last four
characters of the user entry are
not numbers, then the user
receives an error message.

‘Uses the Viookup worksheet function.
Description = WorksheetFunction. _
VLookup(ProductlD, Range("ProductList”), 2, False)
Price = WorksheetFunction.
VLookup(ProductlD, Range("ProductList”), 3, False)
Msg = "Product: " & UCase(ProductiD) & " "
Msg = Msg & Description & " Price: ™

You can use the
IsNumeric VBA function
to determine if a value is a
number. The IsNumeric
function takes one
argument, the value you

You can determine the length of a string with the Len function, Len (string),
which takes one argument, string. You can make the string argument an actual
string, or the name of a variable that contains a string. The following example
checks to see if the length of the string is not equal to 7. If the length of the string
is not equal to 7, the procedure displays an error message.

Example:
Dim ProductID As String
ProductID = InputBox("Enter a ProductID:")
If Len(ProductID) <> 7 Then
MsgBox ("The Product ID must be 7 characters long.")
Exit Sub
End If

want to examine. The
IsNumeric function
returns True when the
value is a number, and
False when the value is
not a number.

Debug a Procedure with

Inserted Breakpoints

a normal part of writing a program. VBA has

several tools you can use to debug your
procedures. For example, you can insert breakpoints in
your procedures. Breakpoints suspend the execution of a
procedure at the points you specify. Once the program
stops, you can examine the results and then continue the
execution of the program.

You set a breakpoint by clicking the margin of the Code
window next to the line where you want to insert the
breakpoint. The VBE places a circle in the margin and
highlights the line of code using the display options you
set for the Code window. See Chapter 2 for more
information on setting the display options for the Code
window. While in the Break mode, if you position your

Debug a Procedure with Inserted Breakpoints

c orrecting errors, often referred to as debugging, is

cursor over a variable name, the value of the variable
appears.

The VBE has a Locals window, which displays the
expressions in your procedure, their current value, and
their type. When you are debugging your code, you
should dock the Locals window at the bottom of the VBE.
You can then use the Locals window to view the value of
expressions and variables at each breakpoint. See Chapter
2 for more information on using the VBE windows.

When your procedure stops at a specified breakpoint,
VBA places you in Break mode and stops the procedure.
You can then choose to continue running the procedure
until it encounters another breakpoint or the procedure
ends. Each time VBA encounters a breakpoint, the current
value of the local variables appear in the Locals window.

0 In Project Explorer, double-click the
module name to open the module.

@ Click View - Locals Window.

® You can click the Close button to
close the Project Explorer.

® The Locals window appears.

9 Click in the margin where you want to
add a breakpoint.

You can add additional breakpoints as
needed.

@

Tw = . 'v + Num2
Cells(3, 1) = TotalVal
End Sub
=&
2] ey =]
7 e e e PR
EE-d Ban + s BT @ Lo i

Sub BreakPoints()

Dim Num1 As Long

Dim Num2 As Long

Dim TotalVal As Long
Num1 = Cells(1, 1)

Num2 = Cells(2, 1)
TotalVal = Num1 + Num3}]

Ul celis(3, 1) = TotalVal

End Sub

e =

p—— ~

@ Click Run - Run Sub/UserForm. e o —
EE- B
Alternatively, press F5. ' Sub BreakPointsd] —
. Dim Num1 As
If.the Macros dialog box appears, i iasia:As
click the macro you want to run Dim TotalVal As Long
and then click Run. Num1 = Cells(1, 1)
Num2 = Cells(2, 1)
. TotalVal = Num1 + Num2]
Ol cCelis(3, 1) = TotalVa
End Sub
fi
(] ===
The values for the locally declared R e
. . EE-d ap e v i aEIE @ i
variables appear in the Locals i
window. Sub BreakPoints()
Dim Num1 As Long
@ Position your cursor over a variable Dim Num2 As Long
name to see the current value. (5 W Dim TotalVal As Long
= Num1 = Cells(* 1)
The value for the variable appears. | g ¥Celis(z, 1)
L otalVal = Num1 + Num2
@ Press F5 to run the procedure. ¢ °'"’i3- 1) = TotalVa
End Sub

Click Run = Reset to stop.

Click Debug = Clear All Breakpoints
to clear all breakpoints.

The VBE has three different modes: Design, Run, and Break. You use the Design mode to create new VBA
procedures. You use the Run mode to execute a procedure. To activate the Run mode, click Run = Run Sub/
UserForm, or press F5. The VBE runs your procedure.

The VBE places you in the Break mode whenever a procedure stops running due to a breakpoint, a Stop statement,
or a Watch statement, or when it encounters an error during execution. When the VBE places you in the Break
mode, it highlights the line of code that caused the error and places the word break in the caption of the title bar.
To exit the Break mode, click Run = Reset.

You can toggle breakpoints on and off by selecting a line of code and then pressing F9 or by clicking Debug =
Toggle Breakpoint. You can remove a breakpoint by clicking it with your mouse. You can clear all breakpoints from
your code by pressing Ctrl+Shift+F9 or by clicking Debug = Clear All Breakpoints. Remember to clear all
breakpoints after you finish debugging your code.

8 131dey)

.
.

=)
()
=
0%
‘g.
U
=
()
o)
=
]
7

to Debug a Procedure

+++

Using the Watches Window

breakpoint, when a variable or expression reaches a

certain value, or when the value of a variable or
expression changes, the Watches window can be of use to
you.

You can use the Add Watch dialog box to set up a watch.
You start by entering an expression in the Expression
field. For example, if you suspect that an error occurs
when the variable RowNum is equal to 2, you can enter the
expression RowNum = 2 to have your procedure break
when the variable RowNum is equal to 2. In the Procedure
field of the Add Watch dialog box, select the proper
procedure. In the Module field, select the proper module.
If you have multiple procedures or modules that call one
another and you are not sure which procedure is causing

Using the Watches Window to Debug a Procedure

I f you suspect an error occurs at a particular

the error, you can opt to monitor all procedures and/or all
modules.

The Add Watch dialog box offers three watch types: Watch
Expression, Break When Value Is True, and Break When
Value Changes. You can set a breakpoint and then select
Watch Expression to display the expression you are
evaluating and its current value in the Watches window
when your procedure breaks. You can select Break When
Value Is True to have your procedure break when an
expression evaluates to True. For example, by using this
option, you can break when the variable RowNum is equal to
2. You can select Break When Value Changes to have your
procedure break when the value of an expression changes.
For example, if you are using a counter, you can break
every time the variable you are using to count changes.

@ 'n Project Explorer, double-click
the module name to open the
module.

@ Click View >Watch Window.

® You can click the Close button to
close the Project Explorer.

® The Watches window appears.
@ Click Debug = Add Watch.

= ()
.. |1To 3,1 To 3) As Integer
er
5 Integer
« As Integer
As Range
R ' = Range(Cells(1, 1), Cells(3, 3))
CellValue = 1
For RowNum =1To 3
For ColNum =1 To 3
NewArray(RowNum, ColNum) = CellValue
CellValue = CellValue + 1
Next ColNum
Next RowNum
CellRange.Value = NewArray

=]

| Sub WatchWi 4
Dim NewA ... 4—&) As Integer
Dim RowN , h
Bl Goalul o i
Dim CellV: -
Dim CellRange as mange
Set CellRange = Range(Cells(1, 1), Cells(3, 3))
CellValue = 1
For RowNum =1To 3

For ColNum =1 To 3
- _ _ .

® © © ®© ©

©

The Add Watch dialog box
appears.

Type the expression to watch
in the Expression field.

Click the down arrow and
select a procedure.

Click the down arrow and
select a module.

Click to select a watch type
(© changes to @).

Click OK.

The Watches window lists
each watch.

Press F5 to run your
procedure.

If the Macros dialog box
appears, click the macro you
want to run and then click
Run.

The procedure breaks when
the expression you entered
evaluates to True.

P Tor bpv -

EE-d b4 ? 1

b b e et G ey B]

LA IV @

Dim CellValue £
Dim CellRange |

For RowN =1

| Sub WatchWindow()
Dim NewArray(1 To 3, 1 To 3) As Int¢ger

Dim RowNum A s :
Dim ColNum As 4—6 g

Set CellRange = :L
c-uv-ﬂ-—l—»

="

3, 3)

S s e i

o=

or v

For ColNum =1 To 3

i Tase e —
2]

T e s el e v

BR-d sasn 9 AKEFH 0 i

CellValue = 1

=i
=

| Sub WatchWindow()
Dim NewArray(1 To 3, 1 To 3) As Integer
Dim RowNum As Integer
Dim ColNum As Integer
Dim CellValue As Integer
Dim CellRange As Range
Set CellRange = Range(Cells(1, 1), Cells(3, 3))

For RowNum =1To 3
For ColNum =1 To 3

When you are in the Break mode,
you can find the current value of a
variable or expression by using
VBA’s Quick Watch feature. Select
the variable or expression for which
you want to find the value. Click
Debug = Quick Watch or press
Shift+F9. The current value of the
expression appears in the Quick
Watch dialog box. If you want to
continue to monitor the variable or
expression value, click Add to add
the item to the Watches window.

To delete a watch, right-click the
watch you want to delete and then
click Delete Watch on the context
menu that appears. To edit a watch,
right-click the watch you want to
edit and then click Edit Watch on
the context menu. The Edit Watch
dialog box appears. Use it to edit
your watch.

When evaluating an expression,
such as X > 5, thevalue in the
Watches window is either True or
False, indicating whether the
expression is valid. For example, if
the current value of X is 6, the
expression X > 5 has a value of
True because 6 is greater than 5.

8 131dey)

.
.

sonew suigsngad

Step through

a Procedure

code one line at a time ¢racing. With breakpoints,

VBA executes the code until it encounters a
breakpoint. With tracing, VBA executes one line of code
and waits for you to indicate that you want to execute the
next line of code. Tracing is an excellent way to debug
your code when you do not know where your error is
located.

As you step through your code, you can use the Watches
and Locals windows to monitor the value of variables and
expressions. See the section “Using the Watches Window
to Debug a Procedure” to learn more about the Watches
window. See the section “Debug a Procedure with
Inserted Breakpoints” to learn more about the Locals
window.

Step through a Procedure

P rogrammers call the process of stepping through

You start tracing by executing the Step Into command on
the Debug menu, or by pressing F8. When you are ready
to move to the next statement, you execute the Step Into
command or press F8 again. You can continue executing
the Step Into command or pressing F8 for each line of
code you want to execute.

Each time you execute the Step Into command or press
F8, the VBE highlights the next line of code. The Locals
window updates the value of the local variables, and the
Watches window monitors the values of any watch
expressions created for the procedure.

As you step through a procedure, if a code statement calls
another procedure, the VBE also steps through the called
procedure. After that procedure runs, the control returns
to the original procedure.

0 In Project Explorer, double-click the
module name to open the module.

@ Click View > Watch Window.
@ Click View - Locals Window.
[J

You can click the Close button to
close the Project Explorer.

® The Locals and Watches windows appear.
@ sct up a watch,

Note: See the section “Using the Watches
Window to Debug a Procedure” to learn how.

6 Press F8.
Alternatively, click Debug = Step Into.

As you begin stepping into the code, VBA
highlights the first line of code.

@

Din i s |1 aa, 1 To 3) As Integer
G-_,Q,i e eger

L bedhisier 5 Integer

D= « As Integer

D As Range

S .. = Range(Cells(1, 1), Cells(3, 3))

CeliValue = 1
For RowNum =1To 3
For ColNum =1 To 3
NewArray(RowNum, ColNum) = CellValue
CellValue = CellValue + 1
Next ColNum
Next RowNum
CellRange.Value = NewArray

=]

< Sub StepThrough() <—-
Dim NewArray(1 To 3, 1 To 3) As Integer
Dim RowNum As Integer
Dim ColNum As Integer
Dim CellValue As Integer
Dim CellRange As Range
Set CellRange = Range(Cells(1, 1), Cells(3, 3))
CellValue = 1
For RowNum =1To 3
For ColNum =1 To 3

0 Continue pressing F8 to step 1‘ B — . —— 9
. HE-u B 3 a4, Cold
through the entire procedure. — i - o
Dim CellRange As Range =
Set CellRange = Range(Cells(1, 1), Cells(3, 3)) 8
CellValue = 1 =
For RowNum =1 To 3 o0
For ColNum = 1 To 34—0 o
NewArray(RowNum, ColNum) = CellValue. U
CellValue = CellValue + 1 g_
Next ColNum
=1
Next RowNum (71
CellRange.Value = NewArray qs
=
- — == oq
o
(@)
-
@
As you step through the code, local (@18t e o e Gy 8= 1ot s o vt
variable values appear in the Locals A ———ne .
window, and any watches that are Dim CellRange As Range
set appear in the Watches window. Set CellRange = Range(Cells(1, 1), Cells(3, 3))
CellValue = 1

For RowNum =1 To 3
For ColNum =1 To 3
NewArray(RowNum, ColNum) = CellValue
CellValue = CellValue + 1
Next ColNum
Next RowNum
CellRange.Value = NewArray

You step into procedures by pressing F8 or by clicking Debug => Step Into. If your If your code is running

procedure contains calls to other procedures, you can step through those procedures and you need to break,
by using the Step Into command. VBA executes the entire called procedure without press Ctrl+Break. This
stopping and then returns control to the next line in the original procedure. If you feature is useful when you
do not want to step through called procedures, you can step over them. To step find yourself in an infinite
over a called procedure, click Debug => Step Over or press Shift+F8. loop.

If you decide to step through the called procedure, you still have the option of
stepping out of it at any time. To step out of a called procedure, click Debug =
Step Out or press Ctrl+Shift+F8. The remainder of the called procedure runs, and
then control returns to the next line of code after the called procedure in the
original procedure.

Using the Immediate

Window

he Immediate window is useful when you want to

evaluate expressions, find out the value of a

variable, or quickly test a procedure. You can
open the Immediate window by pressing Ctrl+G.

You can print values to the Immediate window by placing
a Debug. Print command in your code. When VBA
executes the Debug . Print command, it prints the value
you indicate to the Immediate window. For example, if
you place Debug.Print Vvall in your code, and then you
step through your code, when VBA executes the Debug.
pPrint vall command, the value of the variable val1
appears in the Immediate window.

You can use the Immediate window to return a value. Use
the print statement or a question mark (?) to return the

Using the Immediate Window

value of a variable or expression. For example, if you
want to display the value of the variable va11, you can
go to the Immediate window and type:

Print Vall
or
? Vall

You can also use the Immediate window to execute
commands. Type the command in the Immediate window.
As soon as you press Enter, VBA executes the command.
When using the Immediate window, control statements
must appear on a single line. For example, you would use
the following code for a For Next loop:

For X = 1 to 4: Print X: Next X

Use Debug Print
@ Add the pebug. Print command to your code.
@ Press Ctrl+G.
Alternatively, click View = Immediate Window.
® The Immediate window appears.
9 Press F8 to step through your code.

As you step through your code, the values you
requested with the bebug . Print command
appear in the Immediate window.

® The vall value.
The val12 value.
The Totalval value.
Use Print
Create a breakpoint.
Press F5 to run your code.

Type print followed by the variable you want to
retrieve.

Press Enter.
The Immediate window retrieves the value.

Type = followed by the value you want to retrieve.

e ®.0 O0O

The Immediate window retrieves the value.

@

=
|BE-d s a9 AMSFE L @ o i

Dim Val1 As Long
Dim Val2 As Long
Dim TotalVal As Long

Val1 = Cells(1, 1)

Debug.Print Val1<—0

Val2 = Cells(2, 1)

Debug.Print V:IZ‘—o

TotalVal = Val1 + Val2

Debug.Print TotalVal<—0

“| Cells(3, 1) = TotalVal

i i
30 -—

50 €«—

] =)
R S o i gl T - ey ielx
EE-d 2 AKETH 0 i

Sub BreakPoints()
Dim Val1 As Long
Dim Val2 As Long
Dim TotalVal As Long
Val1 = Cells(1, 1)
Val2 = Cells(2, 1)
TotalVal = Val1 + Val2
< [lcetis(3, 1) = Totalval
End Sub

=l

_;:int Val'l<—9

204—.

? Valz<—9
0

30

Evaluate an Expression T RURAT st e g b= 1 b s 9
| — — S
@ Type your expressions. oy —— =
The Immediate window - @
evaluates the expressions. vaiz = ceis(2,1)«—I0) 0
- U
TotalVal = Val1 +Val2+200<—0 g..
=]
-
Test1 = Val1>\o"a|24—o oqg.
-~ o
Test2 = IsEmpty(Celis(1,1)) 4—0 g
- m
a
-
2
Evaluate a For Next Loop e —
T 90 s L AKEFN @ i

@ Type your For Next loop. rvenr (1)

For X = 1 to 10: Print X*10: Next X
All of the statements must
be on one line.

The results appear in the <
Immediate window.

The VBE has a toolbar you can use when debugging your code. To view the toolbar, click View = Toolbars = Debug.
The toolbar appears below the menu. The following table lists the functions that the buttons on the toolbar perform.

Run Macro

Break

Reset

) Toggle Breakpoint
E Step Into

= Step Over

"3 Step Out

Open Locals Window

Open Immediate Window

Open Watches Window

EIEIEIE

Open Quick Watch

Resume Execution When

an Error Is Encountered

runtime error is an error that occurs when your

code attempts to perform an invalid operation,

such as trying to access a value that does not
exist. If you do not provide a way for VBA to handle
runtime errors, when VBA encounters them, it stops

running your code and displays an error message to the
user, or it acts in an unpredictable way.

VBA has special code you can use to handle runtime
errors. You can instruct VBA to continue the execution of
a procedure when it encounters an error by using the on
Error GoTo statement. The following is the syntax for
the on Error GoTo command:

On Error GoTo label

Resume Execution When an Error Is Encountered

When you use this command, control jumps to a labeled
section of code whenever VBA encounters a runtime
error. A label is a text string followed by a colon. The on
Error GoTo command moves to the label, thereby
passing control from the current location in the procedure
to the label. Usually, you place your labeled code at the
end of your procedure. For example, you can use
ErrorFound: as a label for the code you want to run if
VBA encounters an error.

An Exit Sub OI Exit Function statement causes VBA
to end the execution of your procedure. You can place an
Exit Sub Or Exit Function Statement prior to the
labeled section of your code to keep the procedure from
executing the labeled code when VBA does not encounter
an error.

@ Name your procedure.

Q Type your on Error
GoTo command.

® This is the label.

9 Type the VBA code for
the procedure.

9 Type Exit Sub at the
end of the main
procedure code.

The Exit Sub
statement causes the
procedure to exit without
running the error code.

@ Create a label.

VBA moves to the label
when a runtime error
occurs.

@

Sub ErrurEn:onntnr(]‘—o 4

Dim ProductID As Variant
Dim Description As String
Dim Price As Double

g——>0n Error GoTo ErrorFuund‘—.

= T

ey =]

BAT + A AR SFY D baom i

=]
7
-
VLookup(ProductlD, Range("ProductList”), 2, False)

Price = WorksheetFunction.

VLookup(ProductiD, Range("ProductList”), 3, False)
Msg = "Product: " & UCase(ProductiD) & " "
Msg = Msg & Description & " Price: "
Msg = Msg & FormatCurrency(Price, 2, vbFalse,
vbFalse, vbTrue) & " "

MsgBox (Msg)
Exit Sub 4—9
Ennﬁound:<—6

MsgBox ("You have entered an incorrect product 1D.")
End Sub

=i

@O Type the VBA code e e e o ' — Q
1) Bon 4 s ERY Lot Coit
to execute when an — e o
error occurs. VLookup(ProductlD, Range("ProductList”), 2, False) =]
Price = WorksheetFunction. 8
o Press Alt+F11 to VLookup(ProductiD, Range("ProductList”), 3, False) ;
: Msg = "Product: " & UCase(ProductiD) & " "
switch from the Msg = Msg & Description & " Price: " °
VBE to EXCB|, and Msg = Msg & FormatCurrency(Price, 2, vbFalse,
then run the macro. vbFalse, vbTrue) & " "
MsgBox (Msg)
Exit Sub
ErrorFound:
MsgBox ("You have entered an incorrect product lD.“i‘—e
End Sub ’

=)
()
=
0%
“g.
U
=
()
o)
=
]
7

If a runtime error
occurs, the appropriate
VBA code executes.

o

o B Prodect 10
[0 c o ' C
§ProductiD Description | prce e
1 0S-2004 Document Mailers. 4298
s O5-2005 Whiteboard Easel 149.99
s O5-2006 Glue Sticks 7.98
» OS-2007 Tape Refill Raolls 13.99 [
« OS-2008 Tape Dispenser 228 I,
¢ 0S-2009 Staple Remover 1.88
s OS-2010 Index Card File 1.58 =
a OS-2011 Index Cards 2.74
w 05-2012 Stacking Trays 7.98
u 0852013 Wall Calendar 7.89
u OS-2017 Paper Clips 228
11 05-2035 Razor Poinl Pens 12.49
u 05-2038 CDIDVD Envelopes 578
s 05-2040 Self Sealing Envelopes 2078
05-2042 Hanging Data Binders 4.39

u O5-2048 Desk Stapler 15.75

i | ou -

If you place a Resume statement at the end of your labeled code, control returns to the line of code that caused the
runtime error, and the line of code executes again. If the code produces an error, the error-handling code executes
again. This option enables you to recheck for the error.

If you place a Resume Next statement at the end of your labeled code, control returns to the next line of code in
the procedure after the location that produced the runtime error. Your code continues execution without the line of
code that produced the error. This option enables you to complete the procedure.

If you place a Resume label statement followed by a label name at the end of your block of code, you can
transfer control to the labeled line of code.

Process a

Runtime Error

henever VBA encounters a runtime error, it

places the error information, which includes

an error code and description, in the Err
object. You can use this information to correct the error.

To capture the error without halting the execution of your
code, you can place the on Error Resume Next
statement immediately after the sub statement for your
procedure. This statement instructs VBA to capture the
error and continue processing.

The Err.Number property contains the most recent
runtime error code. The error codes for runtime errors are
always numbers. Essentially, if the Err . Number property
has a value greater than 0, then an error has occurred.
You can quickly check to see if an error exists by checking
the Number property of the Err object. If an error exists,
you can use If Then sStatements or Case statements to
respond to the error, as in the following code: 1f Err.
Number = 13 Then.

Process a Runtime Error

You can design your error-processing code to react to the
specific runtime error encountered. For example, if the
Err.Number property has a value of 13, the value passed
to a variable is not the correct data type; the user may
have entered a string for a variable that requires a
number. You can write code that examines the runtime
error and prompts the user for the correct data type.

If you want to see the error description, use the Err.
Description property. The following code creates a
Division by Zero error and then displays the error number
and code in a message box:

On Error Resume Next

X = 1/0

MsgBox (Err.Number & " " & Err.Description)

@ Name your procedure.

Q Type the on Error GoTo
command.

® This is the label.

9 Type Exit sub at the end
of the main body of code.

Create a label.

(o~

Create a conditional statement
to check the value of the Err.
Number Object property.

il
B 1 b fn it b Dy B D babb e i
EE - an 9 AN NPT D Lno i

| sub cha:usncud-sn<—n

g——»»:m Error GoTo CheckNumber¢]

Dim Val1 As Double
Dim Val2 As Double
Dim Result As Double
Val1 = 100
Yourlnput:
Val2 = InputBox("Type a number.")
Result = Val1 / Val2
MsgBox "Result is: " & Result

9——>Enit Sub

End Sub

=ji

Tl B

BAC WAaKEFE @ Lam i

[
) B b e et fpa ey B fm sbbe e
EE--

MsgBox "The result is: " & Result
Exit Sub

i e ©

End Sub

=i

(6]
7]

Type the code to execute if a
specific error occurs.

Press Alt+F11 to switch from
the VBE to Excel, and then
run the macro.

If a runtime error occurs, the
appropriate VBA code executes.

In this example, an error occurs if
you enter a 0 into the input box.

nepe EEWEE G V-

2] =]
e e e e e e e
ES-d L) Bauw ¥y @ L cwt i
. MsgBox "The result is: " & Result
Exit Sub
CheckNumber:
Select Case Err.Number
End Select
End Sub
=¥ .
|0 0 @
N A Ko e B o E @si s
. | M = 3 "~

| w —=

capture the code and display your own custom messages.

The following table lists some of the most common errors that VBA returns when it encounters a runtime error.
Each error code has a description message you can display using the Err.Description property. You can also

CODE ERROR REASON
3 Return without GoSub | The Return statement exists without a corresponding GoSub statement.
5 Invalid procedure call The call to another procedure or function cannot be made. This is usually
due to a problem with the arguments; either not calling with a valid number
of arguments, or the value of an argument is not valid for the procedure.
9 Subscript out of range An attempt was made to access an array element that does not exist.
10 The array is fixed or This occurs when you try to redimension a fixed-length array.
temporarily locked
11 Division by zero This occurs when the divisor is zero.
13 Type mismatch The value passed to a variable is not the correct data type.
35 Sub, Function, or This occurs when you attempt to call a procedure, function, or property
Property not defined that does not exist.

8 131dey)

.
.

sonew suigsngad

Workbook

ou can use the open method with the workBooks
object to open a workbook. This is similar to
clicking the File tab and using the menu to open a

workbook. Each time you open a new workbook, Excel
adds the workbook to the workbooks collection.

The open method has 16 parameters. This section
discusses the FileName, WriteResPassword, Password,
ReadOnly, IgnoreReadOnlyRecommended, and
addToMru parameters. Refer to VBA help for a discussion
of the remaining parameters.

Use the FileName parameter to specify the workbook you
want to open. You can use the name of the workbook if
the workbook is located in the current folder. If the
workbook is located in another folder, enter the path to

Open a Workbook

the workbook. You must enclose the workbook name or
path in quotes.

If you want users to enter a password before they can
modify the workbook, set the writeResPassword
parameter to the password you want them to enter. If you
want users to enter a password before they can open a
protected workbook, set the password parameter to the
password you want them to enter.

Set the Readonly parameter to True to make a workbook
read-only. If the workbook is Read-only Recommended,
Excel prompts users to open the file as read-only each
time the workbook opens. To eliminate the prompt, set
the IgnoreReadonlyRecommended parameter to True.

Set the AddToMru parameter to True to add the workbook
to the Recent Workbooks list.

@ Name your procedure.

@ Create your open
command.

® The workbook you want
to open.

® Adds the file to the
Recent Workbooks list.

Sets the file to read-only.

Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

By == B

L A T —— S8k

['sub 6penhor'kiiookii<—n E
End Sub

- T | ‘ ;?I

Sub OpenWorkbook()
=3 Workbooks.Open Filename:="Budget.xlsx",
——>» AddToMRU:=True,
ReadOnly:=True <€«———
End Sub

of

=Wal |

The macro opens the file
and adds the filename to
the Recent Workbooks list.

6 1dey)

.
.

If users make a change and s e

then try to save the file, Qo= ies S oWy (&

Excel warns that the file is e e : _
read-only. — —= = : . . e

+ Budgeted Cash Flow
1

5
-
X
=)
UQ
=
=
5
=
=3
o
o
W
n
k)
=)
(=N
=
=1
(¢
]

a Jub07 Aug0? Sep-07 Oct-07 HNow0? Decd?
+ Cash Recelpts
Painting Intetior S 2000 § 2000 § 7500 S 3000 S 3000 5 3,000
Painting Exteriar) Wi e — — 2,500
s Deywall R 1,000
Roofing = b 1,500
1 Total Cash Receipts. - 510,000
12 Cash Disbursements
o Salarkes and Wages S 4200 § 4200 § 4200 5 4200 5 4200 § 4200
u| Payroll Taxes & Empioyees Expenses 1050 1,050 1,050 1,050 1,050 1,050
Owner Withdrawals 2000 000 2000 2000 2000 2,000
" Rent 1.200 1.200 1,200 1.200 1,200 1,200
Marketing 1,500 1,500 1,500 1,000 1,000 1,000
900 300

200 200 200 200 200 200

When working in Excel, you can use the Save As dialog box to set a password for your file, to set your file to read-
only recommended, or to set your file to read-only. To open the Save As dialog box, click the File tab and then click
Save As. The Save As dialog box appears. In the lower right corner of the Save As dialog box, click the Tools button.
The Tools menu appears. Click General Options. The General Options dialog box appears. Enter a password in the
Password to Open or Password to Modify field to password-protect your file. Select the Read-Only Recommended
option to set your file to read-only recommended. Click OK to close the dialog box.

Open a Text File

as a Workbook

any software applications have an option for

exporting the application’s data to a text file.

You can use VBA’S openText method with
the workbooks object to import a text file. You can then
use all of Excel’s data-analysis capabilities to analyze the
file. With the openText method, Excel opens the text file
as a single worksheet in a new workbook. The file
remains a text file. Users can modify the workbook and
save it as a text file or as an Excel worksheet.

The list of parameters for the openText method is
extensive. Only the FileName parameter is required. Use
the FileName parameter to tell VBA the name of the file
to open. You can enter the name of a file as the parameter
if the workbook is located in the current folder. If the file
is located in another folder, enter the path to the file.

Open a Text File as a Workbook

Make sure you enclose the name of the file or path in
quotes.

The openText method can handle any delimited or fixed-
width file. A delimited file uses a comma, space,
semicolon, tab, or other character to mark the end of each
column. A fixed-width file aligns the columns and gives
each column a defined width. Use the pataType
parameter to tell VBA whether your file is a delimited file
or a fixed-width file. Use the constant x1Delimited for
delimited files, and the constant x1Fixedwidth for fixed-
width files.

If your file is delimited, you specify what the delimiter is.
For example, if the delimiter is a comma, then you set the
Comma parameter to True.

@ Name your procedure.

@) Create your openText
command.

® The file you want to open.

® The file type. Type
x1Delimited Or
x1Fixedwidth.

The delimiter. In this
example, a comma
separates each column.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

éub aponT_exti)-oc(i
9——>Wurklmaks.0pen79xt Filename:="Purchases.txt",

| sub 6penfextﬁoc6<—0 -

End Sub

ST |

E =]
/300 e Ve it e Dabey B D B e iy T

DataType:=xIDelimited,
Comma:=True <€—
End Sub

ST |

q T == B
The text file. p_ti_bome e

Purchase_Date,Item_No,Description,Quantity,unit_Price, Tota'l _Price z
1/21/2007, 2004 ,Document Mailers - 25 pack,10,42.98 429
1/2/2007,3011,Index cards - 100 pack,50,2.74,137
1/11/2007,2011,Index cards - 100 pack, 10,2.74,27.4
1/30/2007,2017,Paper Clips - Box 100, 100,2.28,228
1/26/2007, 2035, Razor Point_Pens - Box 12,12,12.49,149.88
1/22/2007,2038,C0/0v0 Envelopes - 25 pack,50,5.78,289
1/10/2007,2040,5e1f Sealing Envelopes - 100 box, 25 20.78,519.5
1/9/2007,2042, Hang'lng pata Binders - Each,50,4.39,219.5
1.-"26,-’20[)? 2048 ,Desk stapler - Each,24,15. ;5 378

6 1dey)

.
.

§
Z
=
i
=
=
§
&
o
)
w
7,]
V)
=]
(=N
!
(=%
(4%
7,]

[Eaases]
You can open the . Abee
ila i o Bl L4 4
file in Excel. 5 3 T A
et) PR S] i~
The macro opens T i . . -
the text f”e as a b Ilem_Nn Description Quantity Unit_Price Total_Price
. 1 1/21/2007 2004 Document Mailers - 25 pack 10 4298 429.8
worksheet in Excel. 1 1/2/2007 2011 Index Cards - 100 pack 50 274 137
‘ 1/11/2007 2011 Index Cards - 100 pack 10 2.74 274
: ; s 1/30/2007 2017 Paper Clips - Box 100 100 228 228
The file remains a 5 1/26/2007 2035 Razor Point Pens - Box 12 12 1249 14888
text file.] 1/22/2007 2038 CO/OVD Envelopes - 25 pack 50 5.78 289
" 1/10/2007 2040 Self Sealing Envelopes - 100 box 25 20.78 519.5
' 1/9/2007 2042 Hanging Data Binders - Each 50 433 219.5
w 1/26/2007 2048 Desk Stapler - Each 24 1575 378

Use the following parameters with the OpenText method to open a text file in a workbook.

PARAMETERS DESCRIPTION

FileName The name and location of the text file.

Origin Indicates the original file platform: x1Macintosh or x1Windows.
StartRow The first row to import.

DataType The format of the text file, either x1Fixedwidth or x1Delimited.
TextQualifier The character that identifies text.

ConsecutiveDelimiter Set to True to treat consecutive delimiters as one delimiter.

Tab, Semicolon, Comma, Space | Set each of these parameters to True if they are a delimiter.

Other Set to True to specify the delimiter.

OtherChar If Other is set to True, use this parameter to specify the character to use as
a delimiter.

FieldInfo The column number followed by an X1ColumnDataType constant.

DecimalSeparator The character VBA recognizes as a decimal separator.

ThousandsSeparator The character VBA recognizes as a thousands separator.

TrailingMinusNumbers Set to True to designate trailing minus signs as negative numbers.

Local Set to True to use the computer’s regional settings.

Open a File Requested

by the User

ou can retrieve the name of the file a user wants
to open by prompting the user with the Open
dialog box and then using a method to open

the file.

To display the Open dialog box from an Excel procedure,
use the GetOpenFilename method. This method does not
open the file when the user clicks OK. Instead, the
method passes the name of the file the user selects to a
variable you assign to the statement. If you want to open
the selected file, you must use either the workbooks .
open method or the Wworkbooks . OopenText method. If the
user does not select a file, the statement returns False.

The GetOpenFilename method has several optional
parameters. The FileFilter parameter lets users select
the type of file they want to open. You can create a list of

Open a File Requested by the User

values for the Files of Type drop-down menu in the Open
dialog box. For example, “XML Files (*.xml), *.xml” tells
VBA that Excel should open only XML files. You can specify
multiple file types by separating the file types with commas.
Users can then select the file type they want to use.

Use the FilterIndex parameter to indicate the default
FileFilter option. You can specify a filter value
between 1 and the number of filters you selected. If you
omit this parameter, VBA uses the first filter specified as
the default value.

Use the Title parameter to place a title on the Open
dialog box. For example, for a dialog box that opens text
files, you can make the title “Open Text Files.”

To enable users to select and open multiple files at once,
set the MultiSelect parameter to True.

Name your procedure.

Create a variable to store the
filename returned by the
GetOpenFilename method.

®

Create your GetOpenFilename
command.

Types of files the user can open.
The title of the Open dialog box.

Create a command to open the
workbook.

® 0. .

Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

@

T
B b e ot fpme [ebey B Dem Adbbe e b
i éub ée-t.u-.'.erF.i.l-el.;l-ama-i)<—o- 9
Dim UFile As Variant
End Sub

ST |

[
) B b e et by [y B Dem Sdibe s b

il éub ée-t.l.l-.'.erF.il-el.;l.ame(-}-
Dim UFile As Variant

UFile = Application.
@—»ﬁolOPInFiI-nam- -

Title:="Text Files") ««——®

—0

End Sub

= T |

The macro opens the Open
dialog box.

The list of file types the
user can open.

The title of the dialog box.

@ Double-click the file you
want to open.

The macro opens the file.

A mmfEle 5 e

g |mfu- nepe EEWEE G V-

% | Pushase Dats
" [:

[
t {Purchaze Date |ltem_MNo Description

Quantity Unit_Price Total_Price

1 1/21/2007 2004 Document Mailers - 25 pack 10 4298 419.8
1 1/2/2007 2011 Index Cards - 100 pack 50 2.74 137
. 1/11/2007 2011 Index Cards - 100 pack 10 2.74 274
5 1/30/2007 2017 Paper Clips - Box 100 100 228 228
1/26/2007 2035 Razor Point Pens - Box 12 12 12.49 145,88
1/22/2007 20338 CO/OVD Envelopes - 25 pack 30 5.78 289

0 1/10/2007 2040 Self Sealing Envelopes - 100 box 25 20.78 519.5
1/9/2007 2042 Hanging Data Binders - Each 50 4.35 2155

n 1/26/2007 2048 Desk Stapler - Each 24 15.75 378

6 1dey)

.
.

§
Z
=
i
=
=
§
&
o
)
w
7,]
V)
=]
(=N
!
(=%
(4%
7,]

The FileFilter parameter enables you to create a list of files users can select in the Open dialog box. You
describe the file and follow the description with a comma and a wildcard file specification. If you do not set this
parameter, VBA lists all of the file types Excel can open.

Example:
Text Files (*.txt), *.txt

An asterisk (*) is a wildcard character that represents any string of characters, and a question mark (?) is a wildcard
character that represents a single character. The notation *.txt means any filename that ends with .txt.

FILE TYPE DESCRIPTION

*.txt, *.prn, *.csv Text files

* xls, *.xIm, *.xl, *.xlc, * .xlsx, *.xlsm Microsoft Excel files
*.htm Web pages

* xml XML files

*.odc, *.udl, *.dsn

Data sources

*.mdb, *.mde

Access databases

*.wk? Lotus files
* .wks Microsoft Works 2.0 files
*.dbf dBase files

Save a

Workbook

o save an Excel workbook, you can use the save

or saveas methods of the workbook object. VBA

creates a workbook object for each workbook you
open. You can reference a specific workbook object by

name. For example, Wworkbooks ("Sample.xlsx") refers
to the Sample.xIsx workbook.

If you do not know the name of the workbook you want
to save, you can make the workbook you want to save
the active workbook, and then use the Activeworkbook
property to save the workbook. For example, the code
ActiveWorkbook . Save saves the active workbook.

If the workbook you want to save contains the macro that is
currently running, you can use the ThiswWorkbook property.
For example, the code ThisWorkbook. Save saves the
workbook in which the macro is located. The workbook that
contains the macro is often the active workbook. However,
if you open a new workbook during the execution of a
macro, the new workbook can become the active workbook.

Save a Workbook

To set save specifications for a workbook, use the
Workbook . SaveAs method, which has the following
parameters: FileName, FileFormat, Password,
WriteResPassword, ReadOnlyRecommended,
CreateBackup, AccessMode, ConflictResolution,
AddToMru, and Local.

Use the FileName parameter to specify the name of the
workbook and the folder in which to save the workbook.
If you do not set this parameter, Excel uses the
workbook’s current name.

Use the FileFormat parameter to specify a format for the
saved file. You can use any of the file formats that Excel
supports by entering one of the x1FileFormat constant
values. See the appendix for a list of the x1FileFormat
constant values. Set the aAddToMru parameter to True if
you want to add the workbook to the Recent Workbooks
list.

0 Name your procedure.

@ Create your saveas
command.

® The name you want to
give the saved file.

® The file format.

Adds the file to the
Recent Workbooks list.

9 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

| Sub Save-c urrent'-l'ﬂ.';sr.k.l-t
g——>ThISWorkhoak.S ave.

] j=ars -]
TR e bt s oy e Do’ o gndee’ 4 Ry

il Su-b Save-c urrent'-l'ﬂ.';sr.k.l-wo-lt.iiq_n

End Sub

=i ¢ s

2] e~
A e i e Dy B Do W

k()

el e 12 wiam™

¥ F 1
FileFormat:=xlOpenXMLWorkbookMac ruEmlhlnd,_‘—.

AddToMRU:=True <€—
End Sub

The macro saves
your file.

® The macro adds your
file to the Recent
Workbooks list.

1 e Workbook
]
"
=
1
man T s
e]
=E - = - e [}
e o
W e
5 own L
= L E

The Workbook. SaveAs method has several optional parameters that determine how the file is saved.

SAVEAS PARAMETER DESCRIPTION

FileName Indicates the name and location to save the file.

FileFormat The X1FileFormat constant that indicates the format of the saved file. See the
appendix for a list of X1FileFormat constant values.

Password The up to 15-character password required to open the file.

WriteResPassword

The password for write-restricting the file.

ReadOnlyRecommended

Set to True to display a message that recommends that the user open the file as
read-only.

CreateBackup

Set to True to create a backup file.

AccessMode

A constant value of x1Exclusive, x1NoChange, or x1Shared. Indicate the access
mode.

ConflictResolution

A constant that indicates how to resolve conflicts. A value of x1UserResolution
displays a Conflict Resolution box, x1LocalSessionChanges accepts a local user’s
changes, and x10therSessionChanges accepts changes from other users.

AddToMru

Set to True to add a workbook to the Recent Workbooks list.

Local

Set to True to save files in the language used by Excel; set to False to save files in
the language used by VBA.

6 1dey)

.
.

§
Z
=
i
=
=
§
&
o
)
w
7,]
V)
=]
(=N
!
(=%
(4%
7,]

Save a Workbook in a Format

Specified by the User

ou can use the GetSaveAsFilename method to

request the name, location, and format to use

when saving a workbook file. This method
displays the Save As dialog from which users select the
file they want to save. The GetSaveAsFilename method
does not save the file; instead, VBA returns the user’s
selection to the variable you assign to the
GetSaveAsFilename Statement. If the user does not
make an entry, the variable returns False. To save the
file, use the saveas method. See the section “Save a
Workbook” for more information.

The GetSaveasFilename method has the following
optional parameters: ITnitialFilename, FileFilter,
FilterIndex, and Title. Use the InitialFilename
parameter to suggest a name for the file. If you do not
suggest a name, Excel uses the name of the active

Save a Workbook in a Format Specified by the User

workbook. Use the FileFilter parameter to create a list
of file formats users can use to save the file. If you do not
include this parameter, Excel lists all available formats.
To create the list, describe the file type, place a comma
after the description, and then place a wildcard
specification after the comma. For example:

Text Files (*.text),

An asterisk (*) is a wildcard character that means any
string of characters. The notation *.txt means any file that
ends with .txt.

Use the FilterIndex parameter to select a default file-
filtering option from the Filerilter parameter options.
You can use a filter value between 1 and the total number
of filters. If you omit this parameter, VBA uses the first
filter as the default value. Use the Tit1le parameter to
place a title on the dialog box.

*.txt

@ Name your procedure.

@ Declare your variables.

9 Create a GetSaveAsFilename
command.

® The filter list.
® The dialog box title.

e——»Usaniln = Application.

el e~
I B e (st Gy ey B D Abbe e by T

il éub ée-t l-.l-.v.ergavaFlulé(.) 4—”
Dim UserFile As Varlant<—9

End Sub

=Wal |

2] ey =]
I e M i K g’ B Dok B Adndns iy TE

il éub ée-t.u-.'.ergavaFlulé()

Dim UserFile As Variant
GetSaveAsFilename
(FileFilter:=
"Excel Workbooks(*.xlsx; *.xlsm),*.xlsx;*.xlsm)", @

Title:="Save Workbook As")
End Sub

= T

Create a command
to save the file.

Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

The macro opens
the Save Workbook
As dialog box and
then saves the file
using the name you
specify.

e b e st bpma (g e Dm Skbbe ek b

| Sub GetUserSaveFile()
Dim UserFile As Variant
UserFile = Application.
GetSaveAsFilename _
(FileFilter:=
"Excel Workbooks(*.xIsx; *.xlsm),*.xlsx;".xlsm)",
Title:="Save Workbook As")
If UserFile <> False Then
ThisWorkbook.S As Fil "sorFIIe‘—e
End Sub

[| ou -

an .xlw filename extension.

Instead of saving an individual workbook, you can save the entire workspace. Saving workspaces enables you to
save all open workbooks as a group. When you open a workspace, all of the workbooks open. Workspace files have

To save a workspace, use the Savellorkspace method of the Application object. The SaveWorkspace
method has one parameter: FileName. To save your file in the current folder, enter the name of the file as the

FileName parameter. To save to another folder, enter the path to the file as the FileName parameter. Enclose the

filename or path quotes.

Examples:
Application.SaveWorkspace ("Sample")
Application.SaveWorkspace ("C: \Workbooks\Sample")

6 1dey)

.
.

S9[Id pue syooqyIiom YIm Sunjiom

Determine If a

Workbook Is Open

he workbooks collection contains all of the

workbooks that are open in Excel. You can

determine if a workbook is open by examining
the workbooks in the workbooks collection. Every time
you open a workbook, it becomes a workbook object and
Excel adds it to the workbooks collection. Excel stores
workbooks in the workbooks collection sequentially and
assigns each workbook an index value based on its
sequence. For example, the first workbook opened is the
first workbook in the collection, and VBA assigns it an
index value of 1; the next workbook opened is the second
workbook, and VBA assigns it an index value of 2. If you
know the order in which a workbook opened, you can
access the workbook by using the associated index value.

The code MyWorkbook = Workbook (1) .Name uses the
Name property to return the name of the first workbook in

Determine if a Workbook Is Open

the collection to the Myworkbook variable. The Name
property is read-only. You can use it to return the name
of a workbook, but you cannot use it to change the name
of a workbook. To learn how to change the name of a
workbook, see the section “Save a Workbook.”

To locate a workbook, look at each workbook in the
Workbooks collection. With a For Each Next loop
statement, you can cycle through all open workbooks. See
Chapter 6 for more information about using a For Each
Next loop statement.

Within a looping structure, you can compare the name of
each workbook with the name of the desired workbook.
With an 1f Then statement, you can check the name of
each workbook and then execute a series of statements
when the workbook you want is found. See Chapter 6 for
more information on using an If Then statement.

@ Name your procedure.
@ Declare your variables.
® Handles errors. See Chapter 8.
9 Assign False to a Boolean variable.

You set this variable to True if the active
workbook is the workbook that you want
to activate.

9 Assign the file you are looking for to a
variable.

®

Create a For Each In loop.

This statement enables you to review
every open workbook.

@ Createan 1£ Then statement.

The code looks at every open workbook;
if it finds the workbook you requested, it
activates the workbook and displays a
message.

® |f the macro does not find the workbook,
it looks in the current folder and opens
the workbook.

Handles errors. See Chapter 8.

0 Press Alt+F11 to switch from the VBE to
Excel, and run the macro.

@

] ==~}
" sub CheckWorkbook()<—)
On Error GoTo ErrorOcc d(—.
whbOpen = False<—6
wbFilename = ”Budgets.xlsx"<_e
End Sub
=fi ¢ i

(2] ey =]

00 L, e it s ey B Dk B i 1o
For Each wb In .I-\ppl.i-caiiﬁn.-\'ht.‘l.t.l;uol.(she
Then =% e

If wb.Name = wbFil
whOpen = True
wh.Activate
MsgBox "Workbook is already open.”

End If

Next<—6
If wbOpen = False Then
Workb Open wbFil
End If
Exit Sub
ErrorOccurred: <€———
mbPrompt = "An error has occurred.”
mbPrompt = mbPrompt + " Is Budget.xIsx in the current”
mbPrompt = mbPrompt + " folder?”
MsgBox (mbPrompt)

A

=fi +

The macro opens the
file you specified and
activates it.

If the file is already
open, the macro
displays the message
“Workbook is already
open.”

[Eaa-=s iy =
m Yo vl N S — a@as
: ~ 3 = F m
3va e s
A B | The Hancdyman, LLC
A . v C "
1 [Tha Handyman, LLC |
+ Budgeted Cash Flow
:
a k07 Aug0? Sep-07 Oct-07 Now0? Decd?
+ Cash Recelpts
. Painting Intetior $ 2000 § 2000 5 2500 5 3000 5 3000 § 3,000
+ Painting Exterior BOOO BOOO 7000 5000 4000 2500
[Doywall 1,500 1,500 1,500 3,000 3,000 000
s Roofing 3,000 1000 3000 3000 1500 1500
1 Total Cash Recelpts $14500 $14500 $14,000 514000 511,500 510,000
12 Cash Disbursements
o Salarkes and Wages S 4700 5 4200 § 4200 5 4200 5 AN 5 4200
w| Payroll Taxes & Employees Expenses 1050 1,050 1,050 4050 1050 1,050
] Owner Withdrawa 2,000 2,000 2,000 2,000 2,000
" Rent 1.200 1,200 1.200 1,200 1,200
W Marketing 1,500 1,500 1500 1000 1000 1,000
" Legal & Accounting %00 300
1| Office Supplies 200 00 200 200 00 00
M T > = -
[CTRE J
- - @
; 5| W = 3 2 = = m
3 . 3 ke oo
B | The tancdyman, LLC
a 0 L C "
s [Tha Handyman, LLC |
+ Budgeted Cash Flow
'
a k07 Aug0? Sep-07 Oct-07 HNow0? Decd?
+ Cash Recelpts
[Painting Intetior 5 iR 500 5 3000 5 3,000 5 3,000
: Painting Exteriar | 000 5000 4000 2,500
[Deywall | ————— LS00 3,000 3,000 3,000
« Roofing | 000 3000 1500 1
1 Total Cash Recelpts sy] 000 514000 $11,500 510,000
12 Cash Disbursements
o Salarkes and Wages S 4700 5 4200 § 4200 5 4200 5 AN 5 4200
W Payroll Taxes & Employees Expenses 1050 1,050 1,050 4050 1050 1,050
n Owner Withdrawals 2,000 2,000 2,000 2,000 2,000 2,000
" Rent 1.200 1,200 1,200 1.200 1,200 1,200
@ Marketing 1,500 1,500 1,500 1,000 1,000 1,000
900 300
200 00 200 200 00 00

If a workbook is open, you can activate it by using the
Activate method of the Workbook object. The
activated workbook becomes the currently selected
workbook in Excel. The Activate method has no
parameters. Specify the workbook to activate, followed
by the method.

Example:
Workbooks ("Budget.x1sx") .Activate

Using Application.Workbooks returns all
workbooks, including hidden workbooks, but it does
not return any open add-ins. To return a specific add-in,
reference the add-in by name.

Example:
Workbooks ("OpenAddin.xla") .

The Open method opens the specified add-in file. If you
do not specify the path, Excel looks for the workbook in
the current folder. See Chapter 18 for more information
on add-ins.

6 1dey)

.
.

§
Z
=
i
=
=
§
&
o
)
w
7,]
V)
=]
(=N
!
(=%
(4%
7,]

Close a

Workbook

ou can close a workbook by using the close

method and referencing the workbook object that

contains the workbook you want to close. When
you open a workbook, VBA assigns the workbook an
index value. For example, VBA assigns the first workbook
you open an index value of 1, and the next workbook you
open an index value of 2. The workbooks collection
contains all open workbooks as individual workbook
objects. You can reference a workbook by using an index
value, the name of the workbook, the ActiveWorkbook
property, or the Thisworkbook property. If you close a
workbook that is running the macro and you have code
after the close statement, Excel may ignore the code. The
following examples close a workbook:

Workbooks (1) .Close
Workbooks ("Budget.xlsx") .Close

Close a Workbook

ActiveWorkbook.Close
ThisWorkbook.Close

The close method has three optional parameters:
SaveChanges, Filename, and RouteWorkbook. Set the
SaveChanges parameter to True to save changes to a
workbook as it closes. A SaveChanges value of False
closes the workbook without saving, and you lose any
changes you have made since your last save. Use the
FileName parameter to tell VBA the name you want to
give your file when you save it.

If you set up the workbook to route, you can use the
RouteWorkbook parameter to route the workbook to the
next recipient on the routing list. You specify a value of
True to route the workbook; you specify a value of False
if you do not want route the workbook to the next
recipient.

@ Name your procedure.

@ Create your close
command.

® The workbook that you
want to close.

® Saves any changes.

The new filename.

@

| Sub CloseOpenWorghook()
g——>Wurkboaks("sudgot.xlsx").cIose

] T
AL e it o iy B T B "S- iy s
['sub Eiaseﬁpedivbéﬁb]:&{jd E

End Sub

=l |

=] ’ T=T= Bl

[l b e it G Dy B Do aibe i ey

SaveChanges:=True,
Filename:="Budget2.xlsx"@——
End Sub

=/ _JCT

@ Create a message e TS Q

for the user. | Sub CloseOpenWorkbook() g

R 5 Workbooks("Budget.xlsx").Close =

Note: This procedure SoveChanpiinTnes, o

assumes that BUdger Filename:="Budget2.xlsx" ~

xIsx is open. e——szgBox "Budget.xlsx saved as Budget2.xlsx and closed.” .\9
End Sub

@ Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

The macro closes
the file specified in
the macro, saves it =
under the name : 5 " C
specified in the :
macro, and then .
displays a message : —— e
to the user. . [——

[

§
&,
=
i
=
=
§
&
o
)
w
7,]
V)
=]
(=N
!
(=%
o
7,]

i | o -

By using the Close method with the Workbooks object, you can close all workbooks that you have open in Excel.
If the SaveChanges parameter does not have a value specified, Excel checks to ensure that you have saved each
workbook since its last modification. If a workbook contains modifications, Excel prompts you to save the
workbook. The following example closes all open workbooks.

Example:
Workbooks.Close

When you close all workbooks, Excel remains open. If you want Excel to close, use the Quit method with the
Application object.

Example:
Application.Quit

Before closing Excel, the Quit method first closes the open workbooks. If any of the workbooks contain changes,
Excel prompts you to save the changes. If you do not want to save modified worksheets and you do not want the
dialog box to ask you to save changes, set the DisplayAlerts property to False. This property determines
whether the alert message appears when Excel performs a task.

Example:
Application.DisplayAlerts = False

Create a New

Workbook

o create a new Excel workbook, use the aada

method with the workbooks collection. The ada

method has one optional parameter: Template.
The following is the syntax for the ada method:

Workbooks.Add (Template)

To tell VBA how to create a workbook, use the Template
parameter. You can use one of the four x1wBaTemplate
constant values or another workbook as the template
parameter. Use x1WBATWorksheet to create a workbook
containing one worksheet; x1wBATChart to create a
workbook containing one chart sheet;
x1WBATExcel4MacroSheet to create an Excel 4.0 macro
sheet; and x1WBATExcel4IntMacroSheet tO create an
international macro sheet.

Create a New Workbook

When you use a workbook as the template, Excel copies
the workbook into a new workbook. You can use the
name of the workbook as the parameter if the workbook
is located in the current folder. If the workbook is located
in another folder, use the path to the workbook.

When you use the add method without the template
parameter, Excel creates a new workbook with the name
Book1.xIsx. If a workbook already exists with that name,
Excel assigns the name Book2.xIsx. You can use the Title
property to specify the title of the workbook. To name
and save the new workbook, you can use the saveas
method. See the section “Save a Workbook” for more
information on the saveas method.

@ Name your procedure.

Declare a new workbook
object.

@ Create your Aaa command.
°

The workbook that you
want to use as a template.

Assign a title to your
workbook.

® O

Name and save your
workbook.

©

Press Alt+F11 to switch from
the VBE to Excel, and run
the macro.

@

P =T

F e g e g

l éub Ereatéliewﬁﬁrﬁﬁookﬂ‘—n
Dim NewWB As Workhook‘—@

Set NewWB = Wnrlthnoks.Add{"Bndgut.xlsx")<—9
End Sub

=Wl |

e =)
Sub CreateNewWorkbook()
Dim NewWB As Workbook
Set NewWB = Workbooks.Add("Budgetgpsx")
NewWB.Title = "Budget File Z"J
NewWB.SaveAs "anBudgnt.xlsx"<—6

End Sub

= T

® The macro creates

and saves the new
workbook.

The macro adds the
title to the Document
Properties pane.

[re— 5
ot it - a@os
= A -1 o
L
A B The Hancdyman, LLC
A . v C 1
1 [Tha Handyman, LLE |
& Budgeted Cash Flow
'
a Jul07 Aug07 Sep-07 Oct-07 HNow0? Decd?
+ Cash Recelpts
. Painting Intetior $ 2000 § 2000 § 2500 5 3000 5 3000 § 3,000
Painting Exterior BO0O0 BOOO 7000 5000 4000 2,500
[Doywall 1,500 1,500 1,500 3,000 3,000 3,000
s Roofing 3,000 1000 3000 3,000 500 1,500

1.5
1 Total Cash Receipts $14500 514,500 514, 514000 $11,500 510,000

12 Cash Disbursements

o Salarkes and Wages S 4700 5 4200 5 4200 5 4200 5 4200 5 4200

» Cash Recelpts

Painting Interior S 2000 5 2000 5 2500 5 3000 $ 3000 5 3,000

Exterior 8000 8000 7,000 5000 4000 2500
Dryw 1,500 1,500 1500 3,000 3,000 3,000
Roofing 3000 3000 3000 3000 1500 1500

Total Cash Recelpts $14,500 514500 $14,000 $14,000 511500 %10,000

Cash Disbursements
w| Salaries and Wages § 4200 5 4200 5 4,200 5 4200 5 4200 5 4300
w| Payroll Tawes & Employees Expenses 1050 1,050 1050 1,050 1050 1,050

i | e +

w| Payroll Taxes & Employees Expenses 1050 1,050 1,050 1,050 1,0 1,050
-] Owner Withdrawals 2,000 2,000 2,000 2,000 A 2,000
" Rent 1.200 1.200 1,200 1.200 1,200 1,200
o Marketing 1,500 1500 1500 1,000 1000 1,000
| Llegal & Accounting 00 300
1| Office Supplie 200 200 200 200 00 00
man T = - :
e v 5
- s b——— =@

u = =

=1 H 8
— e -
[T T P e —
= T S - s

% B Tha tamcpman. | -

+ [The Handyman, LLC |
+ Budgeted Cash Flow
x k07 Augd7 Sep07 Oct07 Nowd7 Decd?

You can use the following properties with the Workbook object.

PROPERTY DESCRIPTION

ActiveSheet A string indicating the name of the active sheet in the workbook.

FileFormat A read-only value indicating the format of the workbook. This value returns an
X1FileFormat constant; see the appendix for more information.

FullName A read-only string indicating the name and complete path to the workbook.

HasPassword A read-only Boolean value indicating whether the workbook is password-protected.

Name A string indicating the name of the workbook.

Password Returns or sets the password string for the workbook.

Path Returns the complete Excel application path.

ProtectStructure A read-only Boolean value indicating whether the order of the sheets in the
workbook is protected. If True, you cannot move, delete, or add worksheets.

ReadOnly A read-only Boolean value indicating whether the workbook was opened as read-only.

ReadOnlyRecommended | A read-only Boolean value indicating whether the workbook was saved as read-only.

Saved Contains a Boolean value indicating whether changes were made since the workbook
was saved.

6 1dey)

.
.

§
Z
=
i
=
=
§
&
o
)
w
7,]
V)
=]
(=N
!
(=%
(4%
7,]

Delete

a File

The VBA i1l statement deletes a workbook or file. You remove multiple files at once by using wildcard symbols

can use this statement to have VBA delete any file that to specify multiple characters. An asterisk (*) represents

the user has permission to delete. The following is the multiple characters, and a question mark (?) represents a
syntax for the ki11 statement: single character. For example, you can remove the entire
Kill (Pathname) contents of a folder by using the *.* specification. The

statement Kill "C:\Excel Files*.x" deletes every
file in the Excel Files folder. If you only want to remove
the Excel workbooks, you can use ki1l "C:\Excel
Files*.xls?".

The xi11 statement has one parameter: Pathname. The
Pathname parameter is a string referencing the files you
want to delete. You can use the name of a workbook as
the parameter if the workbook is located in the current

folder. If the workbook is located in another folder, use You cannot delete open files. If you attempt to delete an
the path to the workbook. Make sure you enclose the open file, a Permission Denied error appears. You also
filename or path in quotes. cannot delete read-only files. If you attempt to delete a
. . : . read-only file, Excel displays a Path/File access error
You can specify the name of a single file by typing the message
complete filename, including the extension. You can ’
Delete a File

7 g i v

@ Name your procedure. S — = T
] Sub naletaFilesu<—o :
@ Declare your variables. Dim DeleteWR As String<—1I8)

End Sub

| ToT= B

This example uses the
DeleteWwB variable to store
the name of the file to delete.

= T

9 Use the GetSaveAsFilename ?_l-- BRI R Ll T e D Mkl st "
method to request from the user | Sub DeleteFiles()
the file that the user wants to Dim DeleteWB As String
delete.

Note: See the section “Save a
Workbook in a Format Specified by End’Sub
the User” to learn more about the
GetSaveAsFilename method.

=Wal |

@

@ Delete the file. Tty — Q
@ Press Alt+Fi1 to Sub DeleteFiles() =
switch from the 3:,'{'.:,’.,'.,‘.;‘;"’ As:String =~
VBE to Excel, and Application.GetSaveAsFil)]
run the macro. (Title:="Select Files elete™) .\9
Kill (DeleteWB)
End Sub

The macro requests
a filename and then
deletes the file.

§
&,
=
i
=
=
§
&
o
)
w
7,]
V)
=]
(=N
!
(=%
o
7,]

[| 0%, |-

The Kill statement removes files; it does not remove folders. To delete a folder, use the RmDir statement. The
RmDir statement has one parameter: Path. If you omit the parameter, VBA tries to delete the current folder. For
the path parameter, specify the location of the folder that you want to remove. For example, the code

RmDir ("Excel Files") removes the Excel Files folder. The RmDir statement removes only folders; it does not
remove any files. If the folder you are deleting contains any files, an error appears telling you that Excel cannot
remove the folder.

When working with folders, you may need to know the current path. To determine the path to the current folder,
use the CurDir function. The CurDir function returns a string containing the path to the current folder. You can
assign the value returned by the function to a variable, as shown in following example.

Example:

CurrentFolder = CurDir

o0 add a new sheet to a workbook, you can use the

2Add method with the sheets object. You can use

this method to add a worksheet, chart sheet, or
macro sheet. The add method has four optional parameters
that specify where in the workbook to place the sheet, the
number of sheets to add, and the type of sheet to create.
The following is the syntax for the ada method:

After, Type)

Use the expression portion of the statement to identify
the workbook to which you want to add sheets. Use the
Before parameter to tell VBA the sheet before which you
want to place the new sheet, or use the After parameter to
tell VBA the sheet after which you want to place the new
sheet. You can use the sheets collection to reference a
sheet. Excel uses an index value to refer to sheets in the

Add a Sheet

expression.Add (Before, Count,

Sheets collection. In a workbook, the first sheet on the left
has an index value of 1 and is referred to as Sheets (1).
To reference a sheet, you can use the sheet name or the
Sheets collection with an index value, as in this example:
ThisWorkbook.Sheets.Add Before:= Sheets(1).

Use the count parameter to add multiple sheets to a
workbook. If you do not specify a value for the count
parameter, Excel adds one sheet.

By default, the ada method creates a worksheet. You can
also use this method to create chart or macro sheets. You
specify the type of sheet you want to create by using one
of the four x1sheetType constant values: You use
x1Worksheet to add a new worksheet, x1chart to add a
chart sheet, x1ExceldMacroSheet to add a macro sheet,
and x1ExceldIntMacroSheet to add an international
macro sheet.

@ Name your procedure.

@ Create your add
command.

® The sheet before which
you want to add the new
sheets.

® The number of sheets
you want to add.

The type of sheet you
want to add.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

2 | Sub AddSheetstoWorkbook()

=] T
1 b e jeit fpma Deg B fmm Aadbe ede ey Frep— e
Toub AddhestatoWorkbook) <) =

End Sub

=Wal |

2} =T=E=
T e g e e ey e

o= B

=3ThisWorkbook.Sheets.Add
Before:=Sheet1,
Count:=2, =
Type:=xIWorksheet<€—
End Sub

= T

The workbook e o Q
before you run the = ; g g
macro. . "3
[i i i i i 'e)
o | s =
y January S 128989 $ 134578 § 176372 S5 439,939 (@)
« February 112,115 112,926 136,305 361,346 o
s March 156,411 147,791 118,184 422,386 s
« April 149,427 101,633 104,102 355,162 ()
: May 121,411 126,557 184,693 432,661 =
« lune 100,643 107,442 143,001 351,086 =
s Total $ 768,996 § 730,927 $ 862,657 $ 2,362,580 E’
v
o=t
=
=T —= 2
® The workbook after = ey 91
you run the macro. et 5,‘
The macro adds TR — : . 8
two worksheets - —)
before the first .
worksheet in the :
workbook. i

] " v —=

If you know that you want Excel to add new sheets before the first sheet in the workbook or after the last sheet,
reference an element of the Sheets collection. Excel always makes the first sheet in the workbook the first element
in the Sheets collection. You can refer to it as Sheets (1). You can use the Count method with the Sheets
object to determine the last sheet in the workbook. The expression Sheets.Count returns the total number of
Sheets in the Sheets collection. The following example places a Sheet after the last sheet in the workbook.

Example:
ThisWorkbook.Sheets.Add _
After:=Sheets (Sheets.Count)

You can also reference a sheet by name. For example, by default, Excel names worksheets Sheet1, Sheet2, and so
on. If you want to place new sheets before Sheet1, use the following as the Before parameter: Before:=
Sheets ("Sheetl").

Delete

a Sheet

ou can delete or remove from a workbook any

sheet you can modify. If you open the workbook

in read-only mode or if a sheet is protected, you
may not be able to delete a sheet.

To delete sheets, use the Delete method with the sheets
object. You can delete worksheets, chart sheets, and
macro sheets. To use the Delete method, you simply
specify the sheet you want to remove. The following
example removes the first sheet in a workbook:

Sheets (1) .Delete

Every sheet has an index value. This example deletes the
sheet with the index value of 1. Excel numbers worksheets
and charts as you add them to the workbook as follows:
Sheet1, Sheet2, and so on (or Chart1, Chart2, and so on).
However, the VBA index number does not always
correspond with the number given to the sheet by Excel.

Delete a Sheet

VBA assigns index values numerically, starting with the
first sheet on the left. If you move sheets within your
workbook, Excel reorders them in the sheets object. The
first sheet on the left always has an index value of 1.

You can also use the sheet name to reference the sheet
you want to delete. You must enclose the name of the
sheet in quotes, as in the following example:

Sheets ("Sheet3") .Delete

When a pelete statement executes, Excel displays an
alert and asks you to verify that you really want to delete
the sheet. Click Yes to remove the specified sheet from
the workbook. If you do not want Excel to display an
alert, use the following code to set the DisplayAlerts
property to False: Application.DisplayAlerts =
False. Remember that if the sheet contains any data,
when you delete Excel permanently removes the data.

o Name your procedure.

@ Declare your variables.

® Handles Errors.
@ Create an input box.

Users enter the name of
the sheet they want to
delete into the input box,
and VBA stores the name
to a variable.

@ Create apelete
command.

® The variable containing
the worksheet that the
user wants to delete.

@ Press Alt+F11 to switch
from the VBE to Excel
and then run the macro.

@

ey =)
T o e e iy e v ol
l éub ﬁemovegpeciﬁegﬁeetijdg g
Dim DeleteWS As String
End Sub
=/ _JCT I .'._:!
T TETEEE
P T T T v .l

il Sub R.omoveSpeciﬁcs.r-lee_th
Dim DeleteWS As String

.——>Dn Error Resume Next

DeleteWSs =
InputBox("Which sheet do you nt to delete?")
Sheots(DolstoWs).Dolete<——C)
End Sub

The macro displays e e S o o ol Soe g
the message box ARl 8 BT Ha i)
requesting the TR D : E
sheet the user ‘ ' — e | RS
wants to delete. rotal B —
, January $ 128989 S 134,578 § 176372 $ 439,939 o)
« February 112,115 112,926 136,305 361,346 o
s March 156,411 147,791 118,184 422,386 s
« April 149,427 [iaants ameTEm 355,162 o)
\ May 121,411 | Wenwmirererdnes Cod| 432,661 —
« June 100,643 ==l| 351,086 =
« Total $ 768,996 | = - | 2,362,580 E'
2 UQ
5 o - - = : s
T = o
The macro deletes = = e e —
the sheet. n = 6 I Ao [d g‘
" 2
AL = & | Sales @
o Erea M
1 product 1 Product product 3 ra Oueteshen | 7))
,January $ 128989 S 134,578 § 176372 $ 439,939
« February 112,115 112,926 136,305 361,346
s March 156,411 147,791 118,184 422,386
« April 149427 101,633 104,102 355,162
y May 121,411 126,557 184,693 432,661
 June 100,643 107,442 143,001 351,086
. Total $ 768,996 $ 730927 $ 862,657 $ 2,362,580
FEIT App— ¢ ‘
If you want to create a procedure that removes only If you want to create a procedure that removes only
worksheets from the workbook, you can use the chart sheets from a workbook, you can use the Delete
Delete method with a Worksheets object instead of | method with the Charts object. The Charts object
the Sheets object. The Sheets object contains all contains all of the chart sheets that are contained in a
worksheets, chart sheets, and macro sheets that are workbook. This method works only with chart sheets,
open in a workbook, whereas the Worksheets object not charts embedded in worksheets. When you use the
only keeps track of the open worksheets. If you use the Charts object with the Delete method, Excel
Worksheets object to remove the first worksheet in considers only actual chart sheets and ignores any

the workbook, Excel ignores any chart sheets before the | worksheets, even if they exist before the specified chart
first worksheet. The following statement deletes the first | sheet. The following statement deletes the first chart
worksheet in the workbook and ignores any other sheet sheet in the workbook and ignores any other sheet

types. types.

Example: Example:
Worksheets (1) .Delete Charts (1) .Delete

Move

a Sheet

ou can use the Move method with the sheets
object to rearrange sheets within a workbook.
When you move a sheet, you indicate the new

location by specifying the name of the sheet before or
after which you want to place the sheet you are moving.

The Move method has two optional parameters: Before
and after. Although both parameters are optional, you
can use only one of them at a time. Use the Before
parameter to specify the sheet in front of which you want
to place a sheet, and the After parameter to specify the
sheet after which you want to place a sheet. For example,
the following statement moves the first sheet in a
workbook and places it after the third sheet:

Sheets (1) .Move After:=Sheets(3)

Move a Sheet

If you do not specify a Before or After parameter value,
Excel creates a new workbook and places the worksheet
in that workbook. The worksheet becomes the only
worksheet in the new workbook.

The sheets object references all sheets in the workbook,
including all worksheets, chart sheets, and macro sheets.
As shown in the example, you can use index values to
reference sheets based on their order in the workbook.
You can also reference a sheet by using the name on the
sheet tab.

Moving a sheet before or after a nonexistent sheet causes
VBA to display a “Subscript out of range” error. To avoid
this error, you can use the count method to determine
the number of sheets in the workbook before you attempt
to move sheets.

@ Name your procedure.
@ Declare your variables.

9 Count the number of
sheets in your workbook
and store the result to a
variable.

@ Create your Move
command.

® The sheet you want to
move.

® The location where you
want to move your sheet.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

&l =y -]
U B b e just fpw Deiny B Dmi babbe edos b sl
" Sub Movesheot) <—) E
e D
LastSheet = Shnnls.ﬂuun{‘—@
End Sub
=/ T .'.::
Y =)
R e it i iy T B s iy eax

| sub Movesheet()
Dim LastSheet As Integer
LastSheet = Sheets.Count

e——» Sheets(1).Move After:=Sheets(LastSheet)

End Su

= T

The worksheet = e O
before the move. o I 4 g
- 1

. = E*

o 7 | et -

1§ Product 1 Pra _ Product 3 rotal [,

s January 5 128989 S 134578 5 176,372 & 439,939 o

« February 112,115 112,926 136,305 361,346 o

s March 156,411 147,791 118,184 422,386 s

« April 149,427 101,633 104,102 355,162 ()

, May 121,411 126,557 184,693 432,661 —
« lune 100,643 107,442 143,001 351,086 =

s Total $ 768,996 § 730,927 $ 862,657 $ 2,362,580 E'

uQ
=

i . : s

- (@)

The worksheet after = z e —
the move. -noiflC 8 g‘
=

- e o o

A g : : ; o =

o | et =

s January S 128989 § 134578 S 176372 S 439,939

s February 112,115 112,926 136,305 361,346
s March 156,411 147,791 118,184 422,386
« April 149,427 101,633 104,102 355,162
. May 121,411 126,557 184,693 432,661
« June 100,643 107,442 143,001 351,086
+ Total $ 768,996 §$ 730,927 S 862,657 $ 2,362,580

10

e R e e sheety 8] . 5
[| oos, |-

When you work with Excel objects in VBA, especially collection objects that contain several objects, you frequently
must determine the number of objects in the collection. Because the number of objects in a collection can vary, you
may need to determine the number of objects as your code runs. The best way to do this is by using the Count
property, which works with virtually all VBA collection objects and returns the number of items in the collection.

Example:
NumWrkSheets = Worksheets.Count

The Count property is read-only, meaning you can use it to obtain the number of sheets in a workbook, but you
cannot use it to change the number of sheets in a workbook.

method with the sheets object. When you copy a

sheet, you indicate where you want to place the copy
by specifying the name of the sheet before or after which
you want the copy to appear.

The copy method has two optional parameters: Before
and after. Although both parameters are optional, you
can use only one of them at a time. Use the Before
parameter to specify the sheet in front of which you want
to place the copy of the sheet, or use the After parameter
to specify the sheet after which you want to place the
copy of the sheet. The following statement copies the first
sheet in a workbook and places the copy after the third
sheet: Sheets (1) .Copy After:=Sheets(3). If you do

I f you want to copy a sheet, you can use the copy

not specify a Before or after value, Excel creates a new
workbook and places the copy in the new workbook.

When you use the sheets object, you can reference all
sheets within a workbook, including worksheets, chart
sheets, and macro sheets. You can use index values to
reference sheets based on their order in the workbook, or
you can reference sheets by using their sheet names.

Be careful with the sheet references you use. If you try to
place a copy of a sheet before or after a nonexistent
sheet, VBA displays a “Subscript out of range” error. To
avoid this error, consider using the count method to
determine exactly how many sheets you have in a
workbook before you copy a sheet.

@ Name your procedure.
@ Declare your variables.

9 Count the number of
sheets in your workbook
and store the result to a
variable.

@ Create your copy
command.

® The sheet you want to
copy.

® Where you want to place
the copy.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

2] = Bl
) fe b e et fpea (e B fme akbe e e A
[sub Copysheet)<—@)
Dim LastSheet As Integer 9
LastSheet = Shnnls.ﬂuurﬂ<_9
End Sub
= T

(2]
e W Ty W

| sub copySheet() 4
Dim LastSheet As Integer
LastSheet = Sheets.Count

e——»shnals(Las Sheet).Copy Before:=Sheets(1)

End Sub

The workbook L A O
before you run the @ 3 g & RN i g
R e e R
; ; : ; i i o o
' | coms e —
\ January $ 128989 S 134,578 § 176372 $ 439,939 o)
« February 112,115 112,926 136,305 361,346 o
s March 156,411 147,791 118,184 422,386 s
« April 149,427 101,633 104,102 355,162 o)
\ May 121,411 126,557 184,693 432,661 —
 June 100,643 107,442 143,001 351,086 =~
. Total $ 768,996 $ 730927 $ 862,657 $ 2,362,580 =3
0Q
P - e : s
The workbook after TR : 2
| R g —) %
you run the macro. 43 e (A
: O H o
A = @
, January $ 128989 S 134,578 § 176372 $ 439,939
« February 112,115 112,926 136,305 361,346
s March 156411 147,791 118,184 422,386
« April 149,427 101,633 104,102 355,162
' May 121,411 126,557 184,693 432,661
'« June 100,643 107,442 143,001 351,086
. Total $ 768,996 $ 730927 $ 862,657 $ 2,362,580
TP ' — ‘
The Copy method produces the same results when you use it with a Chart When you copy a sheet in a
object, Charts collection object, Worksheet object, or Worksheets workbook, Excel indicates
collection object instead of the Sheets object. You can use these other the sheet is a copy by placing
objects when you want to work with a specific type of sheet. For example, to a number in parentheses
make a worksheet the first worksheet in a workbook, you can type after the sheet name. For
Worksheet (3) .Copy Before:=Worksheets (1). This code places a example, for Sheet3, Excel
copy of the third worksheet in front of the first worksheet. If the first sheet indicates the copied sheet as
in the workbook is a chart, the copied sheet comes after the chart but Sheet3 (2), with the number
before the first worksheet. You can copy chart sheets the same way, by using in parentheses indicating that
the Charts collection object to specify the chart sheet to copy. You can the sheet is the second
combine your object references within a Copy statement. For example, you version. Copying the
can place a copy of the first worksheet before the first chart sheet. worksheet again creates
Sheet3 (3).
Example:
Worksheets (1) .Copy Before:=Charts(1)

with the sheets object. You may want to hide sheets

to prevent users from viewing them. These sheets
might contain the raw values that you use to calculate
data.

Hiding a sheet does not always keep users from accessing
it. Users can unhide sheets in Excel by using the Unhide
option on the Format menu. If you want others to be able
to unhide a sheet but not be able to change a sheet,
protect the sheet. See the section “Protect a Worksheet”
for more information about protecting sheets.

Using the visible property, you can determine the
current state of a sheet — visible or not visible — or you
can change the state of a sheet. To determine the current

Hide a Sheet

I f you want to hide sheets, use the visible property

state of a sheet, you assign the visible property to a
variable as follows: SheetProps = Sheets(1).
visible. If you declare the sheetProps variable as a
Boolean value, the variable receives a value of True if the
specified sheet is visible; otherwise, it receives a value of
False. If you do not declare the variable as Boolean,
Excel assigns a numeric value of -1 if the sheet is visible
and o if the sheet is not visible.

To change the visibility of a sheet, you can assign a
Boolean value of True or False to the sheet’s visible
property. You can hide all but one sheet in a workbook,
because Excel requires that a workbook have at least one
visible sheet. The following example hides a sheet:

Sheets (2) .Visible = False

@ Name your procedure.
@ Declare your variables.

9 Count the number of
sheets in your workbook
and store the result to a
variable.

o Set the visible
property to False.

® This example uses a For
Next loop to hide every
worksheet except the first
one.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

(| =]
" sub Hideshoot)<—@) E
LastSheet = Shnals.Cnnnt‘—e
End Sub
=l | o
BT |

Sub HideSheet()
Dim LastSheet As Integer
Dim SheetNum As Integer
LastSheet = Sheets.Count

@ >For SheetNum = 2 To LastSheet
Sheets(SheetNum).Visible = False‘—e
.——»Next

End Sub

= T

® The workbook

before you execute
the macro.

The workbook after
you execute the
macro.

e r >
- - v [
- i = F m
- L —
! e
8 |
1 January S 128989 S 134578 § 176372 5 439,939
s February 112,115 112,926 135,305 361,346
s March 156,411 147,791 118,184 422,386
« | April 149,427 101,633 104,102 355,162
+ May 121,411 128,557 184,693 432 661
a June 100,643 107,442 143,001 351,086
s Total % 768,996 S 730,927 S 862,657 S 2,362,580
.
i ;
o E =
- v a@oe
- - 2 Fm
& e
o . e
1 January S 128989 S 134578 S 176,372 § 439,939
s February 112,115 112,926 136,305 361,346
s March 156,411 147,791 118,184 422,386
« April 149427 101,633 104,102 355,162
' May 121,411 126,557 184,693 432,661
« June 100,643 107,442 143,001 351,086
. Total $ 768,996 S 730,927 $ 862,657 $ 2,362,580

[s

Sheets that you hide by setting the Visible property
to False are still accessible to users from within Excel.
To see hidden sheets, on the Home tab click Format =
Hide & Unhide = Unhide Sheet. The Unhide dialog box
appears, listing all of the sheets that you have hidden.
To unhide a sheet, click the sheet and then click OK.
This is equivalent to setting the Visible property for
a sheet to True.

There are three X1SheetVisibility constant values.
You can use them to set the visibility status of a sheet.

CONSTANT VALUE FUNCTION

x1SheetHidden Hides a sheet. The
Ribbon can be used to
unhide the sheet.
x1SheetVeryHidden Hides a sheet. The
Ribbon cannot be used
to unhide the sheet.
x1SheetVisible Displays a sheet.
Example:

Sheets ("Formulas") .Visible =
x1SheetVeryHidden

01 1xdey)

.
.

=
2
W
pte
=
UQ
=
=3
=
2
w
22)
=
(0]
o
o=
n

Change the

Name of a Sheet

naming your sheets enables your users to easily

determine which sheet they want to access. For
example, if you keep your budget on a sheet named
Budget and your sales figures on a sheet named Sales,
when users open your workbook, they can quickly
determine the sheet they want to access.

To change the name of a sheet in a workbook, use the
Name property of the sheets object. By default, Excel
names all worksheets Sheet#, replacing # with the order
in which you add the sheet to your workbook. For
example, a typical workbook contains three worksheets:
Sheet1, Sheet2, and Sheet3. If you add a worksheet,
Excel names it Sheet4. Excel uses the name Chart# for
chart sheets. Again, Excel assigns chart sheets numbers,

Change the Name of a Sheet

I f you have a number of sheets in a workbook,

based on the order in which you add them, with the first
chart sheet being Chart1.

You can change the name of a sheet by assigning a name
to the Name property of the sheet object. For example,
the following code changes the name of Sheet1 to Budget:

Sheets (1) .Name = "Budget"

You can assign a string or a variable to the Name
property.

You can determine what the current name of a sheet is by

assigning the Name property to a variable, as in the
following example:

SheetName = Sheets(1l) .Name

This example returns the name of Sheet(1) to the variable
SheetName.

@ Name your procedure.
@ Declare your variables.

® Handles Errors.
@ Create an input box.

In the input box, users
enter the name they want
to change the active sheet
to, and VBA stores the
name to a variable.

@ Create a Name command
to rename the sheet.

® The variable containing
the name the user wants
to give to the worksheet.

The sheet to be renamed.

In this example, the code
is renaming the active
sheet.

e Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

o——»ncliveShenl.Na me = SheetName

l = B
) J b e et fpa ey B fme babbe e e frep—— el
| 'sub Eﬁangeéhe&tﬁamaﬁ(—_o E
Dim SheetName As Stﬂng’<—9
End Sub
=fgsl |

| o= B
T A o W i —o 8k

Dim SheetName As String
On Error Resume Next
SheetName = _

End Sul

=fi ¢ s

The macro displays O S R gy g 0.5 g
a input box 23 ri o Pl r = 30 I"_:_. <)
requesting the TR O Er
name the user R - — S ——— @
wants to give the Productl Product2 Product3 rotal —
active sheet. , January $ 128989 §$ 134578 S 176372 $ 439,939 ()
+ February 112,115 112,926 136,305 361,346 o

+ March 156,411 147,791 118,184 422,386 s

¢ Aprl 149,427 101,633 104,102 355,162 o

. May 121,41 1gedac Es2 ieacad_ 432,661 —
« June BT/ YT E—)| 351,086 =

« Total $ 768,996 ==15% 2,362,580 E'

= vQ

z

s : s

IO EE . A L [o

The macro renames . e - Rl =
the sheet.] =il g‘
| ranee st e =

y January S 128989 § 134578 S 176372 S 439,939

« February 112,115 112,926 136,305 361,346
s March 156,411 147,791 118,184 422,386
« April 149,427 101,633 104,102 355,162
. May 121,411 126,557 184,693 432,661
« June 100,643 107,442 143,001 351,086
+ Total $ 768,996 $ 730,927 S 862,657 $ 2,362,580

10

You can manually change the name of a sheet in Excel by clicking the Home tab and then selecting Format =
Rename Sheet. Excel highlights the sheet’s name tab. You click the tab and then type the new name. After you
modify the name, click elsewhere on the sheet and Excel updates the sheet name.

Because users can easily modify the name of a worksheet, be careful when referencing sheet names in your macros.
If you reference a sheet name that Excel cannot find, Excel returns an error message.

Regardless of what sheets are named, Excel keeps track of them based on the order in which they exist within the
Sheets collection.

You can also use the Name property in conjunction with the Parent property to determine the name of the
workbook that contains the current sheet. To determine the name of the corresponding workbook, use the code
CurrentWB = ActiveSheet.Parent.Name.

Save a Sheet

to Another File

ou can save any sheet to another file by using the

saveAs method with a sheets collection object.

The saveas method has several parameters that
tell VBA how to save the sheet: FileName, FileFormat,

Password, WriteResPassword, ReadOnlyRecommended,
CreateBackup, AddToMru, and Local.

The FileName parameter is required. Use the FileName
parameter to specify the name of the file you want to
save the sheet to, and the folder in which you want to
save the sheet. If you do not specify a path, Excel saves
the file to the current folder.

Use the FileFormat parameter to specify the file format
in which you want to save the file. You can save in any
file format supported by Excel, by using one of the
X1FileFormat constant values. See the appendix for a
list of the x1FileFormat constant values. If you do not
specify a file format, Excel uses the format that was

Save a Sheet to Another File

previously used to save the file if the file was previously
saved, or the file format used by the current version of
Excel if the file has never been saved. Use the Password
parameter to set a password of up to 15 characters for
opening the file. Use the writeResPassword parameter
to restrict the file to open as read-only, unless the user
has the password.

The remaining parameters accept the Boolean values
True OI False. YOU Set ReadOnlyRecommended t0 True
to display a message to users when the file opens,
suggesting that they open the file as read-only. You set
CreateBackup t0 True to create a backup file; AddToMru
to True to add the file to the Recent Workbooks list;
Local to True if you want to save the file in the
language used by Excel; and Local to False if you want
to save the file in the language used by VBA.

@ Name your procedure.

@ Create your saveas
command.

® The name of the new file.

® The format in which you
want to save the file.

This example saves the
file in HTML format.

Creates a backup.

Adds the file to the
Recent Workbooks list
when the file is saved.

9 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

2] == B

bl e st by [aiey B Dk babbe s e

TSub Saveworksheot() <)

End Sub

= T

[
) f b e et by ey B D sibe e

e_ | sub saveWorksheet() 3

—>>ActiveSheet.SaveAs
Filename:="Sales Web Format", 4—.
FileFormat:=xIHtml, <
CreateBackup:=True, €—
AddToMru:=True<€—

End Sub

® The macro saves B = R A
the file in HTML S =
format, adds the = 9 =
file to the Recent e i @
Workbooks list, and | i =
creates a backup. (o)

2
W
P o
=
uQ
z
e B
The HTML flle that > T b AR S et W 2510 B o P bt Py 508 04050150 153 (5 P | oy p— - ”’9 9{
the macro created, [i T g‘
. o & iy AR Db (0 0 B3 Bocia e -0~ m-- Page = O limin =
open in a browser. - : =
Sarer ai Wl page @
January 5 128,989 5 134578 3 176,372 & 439939 a
February 112,115 112,926 136,305 361,346
March 156,411 147,791 118,184 422,386
April 149,427 101,633 104,102 355,162
May 121,411 126,557 184,693 432,661
June 100,643 107,442 143,001 351,086
Total $ 768,996 $ 730,927 $ 862,657 $ 2,362,580
- s e

The FileFormat parameter accepts any of the X1FileFormat constant values that are listed in the appendix.
The list of available file formats is rather extensive. You can save a worksheet to another workbook by specifying
the x1WorkbookNormal constant. This constant creates a new workbook based on the default workbook
format for the current version of Excel. If you need to save the workbook in a format used by an earlier version
of Excel, you need to specify the appropriate format parameter. For example, x1Excelb5 saves the workbook

in a format that you can open in Excel 5.0 or later. To save an Excel 2010 file in a macro-enabled format, use
x10penXMLWorkbookMacroEnabled.

Protect a

Worksheet

rotecting your worksheets enables users to make

certain types of changes while disallowing others.

For example, you can allow users to make changes
to formats; insert or delete columns, rows, or hyperlinks;
sort; filter; use PivotTables; and edit objects or scenarios.

You use the Wworksheet . Protect method to protect a
worksheet. The worksheet . Protect method has several
parameters, all of which are optional. With the exception
of the Password parameter, you use the Boolean value
True to activate a parameter and the Boolean value
False to deactivate a parameter. The parameters are
Password, DrawingObjects, Contents, Scenarios,
UserInterfaceOnly, AllowFormattingCells,
AllowFormattingColumns, AllowFormattingRows,
AllowInsertingColumns, AllowInsertingRows,
AllowInsertingHyperlinks, AllowDeletingColumns,
AllowDeletingRows, AllowSorting, AllowFiltering,
and AllowUsingPivotTables.

Protect a Worksheet

If you want to password-protect your worksheet, set the
Password parameter to the password you want to use.
You can use any string as a password, but remember
passwords are case-sensitive. In other words, Excel
interprets “password” and “PASSWORD” differently.

Set the DrawingObjects parameter to False if you want
the user to be able to modify shapes. The default value is
True. By default, Excel protects locked cells; to remove
this protection, set the contents parameter to False. To
unprotect scenarios, set the scenarios parameter to
False. If you set the UserInterfaceOnly parameter to
False, Excel applies protection to macros and to the user
interface. If you want only the user interface protected,
set the UserInterfaceOnly parameter to True.

The remaining parameters are self-explanatory and they
all have a default value of False. To allow any of these
options, set the parameter to True.

0 Name your procedure.

9 Create your Protect
command.

® Sets the password.

Protects the user
interface only.

Allows format changes.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

If the user tries to change
a cell, Excel does not
permit the change.

T ToT= B

il éub Protact_\‘lo;k-s-r;aef(-ji—n
Worksheets(1).Protect 4—6

.——>Passw0rd:="oxcel",

Userlinterfa caOnIy:ﬂTruI,<_.

—+—> AllowFormattingCells:=True
End Sub

1 The Mandyman, LLC Pt ¥ gt v |
* Budgeted Cash Flow

+ Cash Recelpts
Painting Intesior 5 10 5 2000 5 2500 5 3000 5 3000 5 3000

Lo0a_5000 400 2,500

Painting Exterior
Drywalt
Roofing |
« Tatal Cash Recalpts

1 Cash Disbursements

Salaries and Wages $ 4200 § 4200 5 4200 5 4200
1,050 1,050 1,050
Cwner Withdrawals 2,000 2000 2000 2,000
fent 1200 1,200 1,200 1,200
Marketing 1,500 1,500 1,500 1,000
Legal & Accounting 900 100
plies 200 200 200 200 200 200

Payroll Ta

& Employees Expanses. 1,050

o g
i | oo -

[ERasE-i Al 5
The user can make e e aee 9
: A 2 X
permitted changes. B B BT A ()
f A - B T Hacchyman, 11 z
In this example, the L o &
1 [The Handyman, LLC P - -
user can change the N i1
)
formats. f E— jul Aug Sep Ot Moy Dec o
1 Cash Recelpts oo
Painting Interior $ 2,000 $ 2000 § 2500 $ 3000 5 3000 S5 3,000
Painting Exterior BOOO 8000 7,000 5000 4000 2500 s
] Deywall 1.500 1.500 1.500 3,000 3,000 3,000 o
v Rooling 3000 3000 3000 3000 1500 1,500
 Total Cash Recelpts $ 14500 5$14500 514000 $14000 511,500 $10,000 =
* Cash Disbursements =P
o rs and Wages $ 4200 § 4200 5§ 4200 § 4200 5 4200 5 4200 :
Payroll Taxes & Employees Expenses 1,050 1050 1,050 1,050 1050 1,050 ()}
Owner Withdrawals 2,000 2,000 2,000 2,000 2,000 2,000
L0 200 1,200 1200 1200 1200 s
s 1500 1500 1,500 1,000 1000 1,000 —
Legal & A 00 100 =t
ofice 200 200 200 200 200 200 =
] e : :S
If users know the L e i I
password, they can % [W L1 P I W B avons o
enter the password ; b e =
A - 5| The tancyman, 1€ =)
to unprotect the - : - R
i [The Handyman, LLE Pt | et v | -t
worksheet. + Budgeted Cash Flow &
. Jul Aug Sep Oct Hoy Dec
1 Cash Receipts
Painting Intesior S 2000 § 2000 § 2500 § 3000 § 3000 § 3,000
Painting Exterior BOOO 8000 7,000 5000 4000 2500
] Deywall LS00 LS00 1 Ifi ‘1 3,000 3,000 3,000
» Roofing FE— gu 3000 1500 1500
 Tatal Cash Recelpts £ Tt haooo $11500 $10,000
5 o) o=
* Cash Disbursements
u Salaries and Wages $ 4200 § 4200 § 4200 § 4200 5 4200 5 4200
Payroll Tares & Employees Expenses 1,050 1,050 1050 1,050 1,050
Owner Withdrawals 2,000 2,000 2,000 2,000 2,000
frent L300 1,200 1200 1,200 1,200
Marketing 1500 1500 1000 1000 1,000
L] S0 300
Ofice Sug 200 200 200 200 200 200
= = z

After you password-protect a worksheet, a user can unprotect the worksheet by clicking the Review tab, clicking
Unprotect Sheet in the Changes group, and then typing the correct password in the Unprotect Sheet dialog box that
appears.

You can unprotect the worksheet from within a procedure by using the Unprotect method. The only parameter
the Unprotect method takes is the Password parameter. You set the parameter to the worksheet password.

Example:
ActiveSheet.Unprotect Password:="excel"

This example unprotects the active worksheet by passing it the correct password. Remember to keep track of the
passwords that you have assigned to worksheets. If you lose your password, you cannot access the password-
protected document.

Protect

a Chart

ou can use the chart.Protect method to protect

a chart so that a user cannot modify it. The

Chart.Protect method takes several parameters
that you can use to select the type of protection you want
to assign to the chart. All of the parameters are optional.
With the exception of the password parameter, you use
the Boolean value True to activate a parameter and the
Boolean value False to deactivate a parameter. The
following is the syntax for the chart.Protect method:
expression.Protect (Password, DrawingObjects,
Contents, UserInterfaceOnly)
Use the expression portion of the statement to identify
the chart you want to protect. If you want to password-
protect your chart, set the Password parameter to the
password you want to use. You can use any string as a

Protect a Chart

password, but remember that passwords are case-
sensitive. In other words, Excel interprets “password”
and “PASSWORD” differently.

If you set the DrawingoObjects parameter to False, the
user can add shapes to the chart and modify the shapes
in the chart. The default value is True. If you set the
Contents parameter to False, the user can modify the
chart. If you set the UserInterfaceOnly parameter to
False, Excel applies protection to macros and to the user
interface. If you want only the user interface protected,
set the UserInterfaceOnly parameter to True.

To unprotect a chart using a procedure, use the Unprotect
method. You must include the password if the chart is
password-protected, as follows:

Charts(1l) .Unprotect Password:="excel"

] == Bl
0 Name your procedure. R —— ﬂ ci
Q Create your Protect g——»::namm.wotect
command. Fasswurd::"oxcel",<_.
o1 UserinterfaceOnly:=True, _
® Sets the password. DrawingObj False <€——
End Sub
® Protects the user
interface only.
Allows the user to draw
objects.
9 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.
sl | f
Excel grays out the s = T - 5
Ribbon options to ul = c
indicate that they are
not available. :
$180,000
$160,000
$140,000
$120,000
$100,000 | i
S ol
S60,000
540,000
520,000 +
s
Product 1 Product 2 Product 3 .]l

The user can make
permitted changes.

® |n this example, the
user can add shapes.

® |f users know the
password, they can
enter the password
to unprotect the
worksheet.

[Eda-e =
| R e — - c@as
. .
5180,00 ---.'-.—'-
S150,00 b shswm
S:-lU_an_-.
120,00 Setdr—
510000} &
‘ = - lan
480,00 REeh
ot i Mar
560,00
540,00
520,00 oy
&
Product 1 Product 2 Product 3
| W
[.
[e
v [W 5 J 2 >
3
S1R0,000
160,000
5140,000
$120,000
$100,000 |
lan
480,000 i Eeb
i Mar
$60,000
540,000
L0000 +
&
Product 1 Product 2
fr| = s

read-only.

ProtectContents

PROPERTY DESCRIPTION

VBA provides properties that you can use with Worksheet and Chart objects to determine if parts of a sheet are
protected. This helps eliminate errors caused by attempting to modify a protected sheet. Each of these properties is

Returns a value of True if the sheet is protected. For a chart, the property looks
to see if the entire chart is protected. For a worksheet, the property looks to see if
the cells are protected. To turn off this property, set the Contents parameter of
the Protect method to False.

ProtectDrawingObjects

Returns a value of True if the shapes in the sheet are protected. To turn off this
property, set the DrawingObjects parameter of the Protect method to False.

ProtectScenarios Returns a value of True if the scenarios are protected. To turn off this property,
set the Scenarios parameter of the Protect method to False.
ProtectionMode Returns a value of True if the user interface is protected.

01 1xdey)

.
.

=
2
W
pte
=
UQ
=
=3
=
2
w
22)
=
(0]
o
o=
n

Print a

Sheet

ou can use the printout method to create a

procedure to print the contents of a sheet. The

printout method has several parameters for
specifying how Excel prints the sheet: From, To, Copies,

Preview, ActivePrinter, PrintToFile, Collate, and
PrToFileName.

Use the From and To parameters to indicate the range of
pages within the specified sheet that you want to print.
Indicate the page number of the first page to print as the
value of the From parameter, and the page number of the
last page as the value of the To parameter. If you omit
these parameters, Excel prints the entire sheet.

By default, Excel prints one copy of the sheet. For
multiple copies, use the copies parameter to specify the
desired number. You can specify a value of True for the

Print a Sheet

Collate parameter to have Excel collate the copies.

If you want the Excel preview window to show the
contents of the print selection, set the value of the
Preview parameter to True. The Print button on the Print
Preview screen prints the copy, and the Close button
cancels the print.

To specify a printer, use the ActivePrinter parameter.
If you do not set the ActivePrinter parameter, VBA
uses the computer’s default printer.

You can send the printout to a file instead of a printer

by setting the PrintToFile parameter to True, and
specifying the name of the file to which you want to send
the printout by setting the PrToFileName parameter. If
you do not specify a filename, Excel prompts you for one
when your procedure runs.

@ Name your procedure.

@ Set up your page.

® Sets the orientation to
landscape.

® Sets the print area.

9 Create your Printout
command.

The number of copies to
print.

Displays the Print
Preview before printing.

| sub Printsheet()
g——bAcﬂvaSheot.PagoSetup.D ientati

(2] =]
) fe b e et bpma [y B Dmn Sabbe i b oA

= xIL P
ActiveSheet.PageSetup.PrintArea = "A1:5D$13"
End Sub

= T |

) B b e et byma Deg e Dk Ssdbe dede by

(2] - Tl Bl
| Sub Printsheet()
ActiveSheet.PageSetup.Orientati

= xIL P
ActiveSheet.PageSetup.PrintArea = "A1:5D$13"

e——FAcliv-Shnal.PrinIOHl)

Copies:=2, €——

Preview:=True,<€———

ActivePrinter:="0KI C5150n"
End Sub

The printer to which
you want to send
the report.

Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

The macro displays
the Print Preview
screen.

The Print button
prints the file.

The Close button
cancels the printing.

e s
T e e S e g v T
sl x| [=
Sub PrintSheet()
ActiveSheet.PageSetup.Orientation = xIL. P
ActiveSheet.PageSetup.PrintArea = "A1:8D$13"
ActiveSheet.PrintOut _
Copies:=2,
Preview:=True,
ActivePrinter:="0OKl €5150n"<¢«— @
End Sub
~ T
e -
-l] [A
Franklin Skyes
Cost of Goods Sald
Product Product Product
A B c
Sales 534474 53339 533N
Sales Returns ; _'I:l-‘_l _!_-_‘-'\‘I _'!_:i’.‘M
Het Sales 533505 531,938 § 36088
Inventary, lanuary 1 6737 5,359 6,379
Purchases 14,724 14,645 14,585
Cost of Goods Avallable for Sale & 4§ 20,964
Less: Inventory, December 31 4 2E9 15,426
Cost of Goods Sold 5 10,462 5 § 5538
e g4 e r

You can set a print area for a
worksheet by using the PageSetup
object with the PrintArea
property. Assign the PrintArea
property a range of cells as the print
area. For example, ActiveSheet.
PageSetup.PrintArea =
"AS1:D13" sets the range of
cells in the print area to A1 to D13.
If cells outside that range contain
data, Excel does not print them.

When you use the PrintArea
property to set the range of cells to
print, you can omit the From and
To parameters of the PrintOut
method.

To clear the print area, assign the
PrintArea property a value of
False or an empty string. Both of
the following lines of code clear the
print area:

Examples:

ActiveSheet.PageSetup _
PrintArea = False

ActiveSheet.PageSetup _
PrintArea = " "

When printing, you can set the
orientation by using the PageSetup
object with the Orientation
property. Use the x1Landscape
constant value to set the orientation
to landscape. Use the x1Portrait
constant value to set the orientation
to portrait.

01 19dey)

.
.

S199YSYIOM M Suryiom

Sort Sheets

ou can use VBA to sort worksheets in a workbook

based on the worksheet names. When you first

create a new workbook, Excel lists the sheets in
order: Sheet1, Sheet2, Sheet3. However, as you add
sheets, the order of the sheets can change dramatically.
For example, if your active sheet is Sheet2 and you
instruct Excel to add a new sheet, Excel adds it before
Sheet2 and names it Sheet4, making the order of your
sheets Sheet1, Sheet4, Sheet2, Sheet3.

You can easily resolve this problem by manually
renaming or moving the sheets within the workbook.
Alternatively, you can create a procedure that sorts the
worksheets and lists them in alphabetical order. You start
by using the count property to determine the number of

Sort Sheets by Name

sheets in the workbook. When you know the number of
sheets in a workbook, you can use a For Next loop to
cycle through the sheets so that Excel can compare the
names and place the sheets in order. You use nested
looping, which is the process of placing one loop inside
another loop. The inside loop executes completely, and
then control returns to the outside loop. See Chapter 6 for
more information on using For Next loops.

Within the second For Next loop, use an If Then
statement to compare the name of a sheet to the sheet
currently considered the alphabetically lowest sheet name. If
the compared name is alphabetically lower, it becomes the
new alphabetically lowest name. Excel does an alphabetical
comparison when you are working with strings.

@ Name your procedure.
@ Declare your variables.

9 Count the number of sheets and
store the result to a variable.

@ Create a For wext loop to loop
through each index position.

IndexNumil Starts at 1 and
increments with each loop.

6 Store the name of the sheet with
the index value of IndexNuml to
the variable sheetName.

@ Create a For Next loop within
the previous loop, assign the value
of IndexNuml t0 IndexNum2,
and loop through the total number
of sheets, starting at the value of
IndexNum?2.

@ f the name of the sheet with an
index value of IndexNum?2 is less
than sheetName, store the name
of the sheet with an index value of
IndexNum?2 to the variable
SheetName and then keep
looping; otherwise, do nothing
and keep looping.

@

Po eﬁ’

[: " ECFERN
7 sub Sortshests)<—)
TotalSheets = 5hests.00unt<—e
End Sub
= T

el s -]
1o b em it byma Dy B Dwn Aabbe e T

Sub SortSheets()

Dim SheetName As String
Dim TotalSheets As Integer
Dim IndexNum1 As Integ
Dim IndexNum2 As Integ
TotalSheets = Sheets.Count

==For IndexNum1 = 1 To TotalSheets

e S S = Sh ts(l 1 2 1).N

- FOT IndexNum2 = IndexNum1 To TotalSheets

End If

e N @ £ 5
Sheets(SheetName).Move Before:=Sheets(IndexNum1)
—>Next

End Sub

= T |

When the loop has finished, [y ey =y — 9
SheetName Gontains the [Sub SortShests() = H o
lowest value. Dim SheetName As String FE,.
. . Dim TotalSheets As Integer o
@ Move the sheet identified by Dim IndexNum1 As Integ =
the variable sheetName Dim IndexNum2 As Integ 8
before the sheet with an TotalSheets = Sheets.Count oo
. For IndexNum1 = 1 To TotalSheets
index value of IndexNum1. SheatName = Sheats{indexNumd).N s
0 M t th t . d | For IndexNum2 = IndexNum1 To TotalSheets 9§
ove 10 the next Index Va. ue If Sheets(IndexNum2).Name < SheetName Then =
and perform the loop again. SheetName = Sheets(IndexNum2).Name S'
. End If
@ Press Alt+F11 to switch Next U
from the VBE to Excel, and &—»srmts(snutuam).mw Before:=Sheets(IndexNum1) §
run the macro. E“::’“b =
u
O N o s
® The macro sorts the sheets. [T g 9?:_
0
$180,000 g
5160,000 2
$140,000 &
5120,000
$100,000 W lanuary
W February
$80,000 i March
$60,000
,000 |
20,000 |
s.
Product 1 Product 2 Product 3
waan ‘ﬂ“wu = -

The steps in this section determine the sheet with the lowest name in the inside loop and places that sheet before
the index value that it is evaluating. Although this code works correctly, it is not the most efficient method for
sorting a large list of items. The code attempts to move the sheet without first checking to see if the lowest name is
also the current sheet. To make the execution of the code more efficient, add a conditional If Then statement that
compares the two sheets and performs the move only if they are not the same sheet. The code runs more effectively
because it determines that no move is required if the sheets are already in the correct order.

RESULT:

T+

If Sheets(SheetName) <> Sheets(N) Then This code checks that the sheet you are
Sheets (SheetName) . Move Before:=Sheets (N)) 4
End If moving and the sheet before which you

intend to move it are not the same sheet. If
the sheets are the same, Excel ignores the
Move statement and continues with the
looping statements.

Using the

Range Property

hen working in Excel, a lot of the work that

you do involves ranges. You can define a

range by using the range property. Defining
a range creates a Range object, which can be a single cell,

a column, a row, or a group of cells.

If you use the range property without an object qualifier,
Excel assumes you are referencing the active sheet. If
you apply the rRange property to a range object, the
property is relative to the object. For example, the code
Range("B11:D11") .Formula = "=Sum(B6:B10)"
sums in a relative fashion.

You can use two syntax forms with the Range property.
The first form requires two parameters: ce111 and

cel12. This form references the upper left corner of the
desired range with the ce111 parameter, and the lower

Using the Range Property

right corner of the range with the ce112 parameter. For
example, to specify a range of cells between A1 and E15,
you would use the code Range ("A1", "E15").

The other form of the Range property requires a Name
parameter. This required parameter indicates a range.
You place a colon between two cells to specify a range.
For example, Range ("A3:F5") refers to the range of cells
from A3 to F5. You place a comma between the range
definitions to refer to two or more noncontiguous ranges.
For example, Range ("A3, A1, B4:C10") specifies the
range of cells A3, A1, and B4 to C10. You leave a space
between the two range definitions to specify the location
where two ranges intersect. For example, Range ("A3: F3
D2:G5") . Select selects the cells where the range A3 to
F3 intersect with the range D2 to G5, which happens to be
cells D3 to F3.

0 Name your procedure.
Q Define a range and select it.
® The range.

@ Ask users if they want to
calculate a total.

@ If the user responds
“Yes,” then calculate the
total.

® This same range was
selected in Step 2 using
a different syntax.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

B ST—— s
| sub ﬁangeﬁreitab‘—o- E
.__>Range("311", “D11"}.Select<—g
Msg = MsgBox("Do you want to total?",
vbYesNo + vbQuestion, _
"Calculate Total") - 9
End Sub
=Wl |
2] o= B
& e b e poet byma Dy e] B

Sub RangeCreate()
Range("B11", "D11").Select
Msg = MsgBox("Do you want to total?",
vbYesNo + vbQuestion, _
"Calculate Total")
IfMsg=6 Thnn‘—o
.——>Ranga{"51 1:D11").Formula = "=SUM(B6:B10)"
End Sub

=Wal |

The macro selects _ R (@
the range and then e E @ g
. u -
displays a message . i "3
i & : B
bOX. ' Franklin Skys Company R 9;
Assets @ v [,
December 31 | (=%
Divisions I .
s Davis Fratt Cornell U
s | Cash 25,800 39,469 29,789 ()
: Accounts Receivable 50,987 34,527 47,962 :'2
1 Office Supplies 1,713 1,251 1,737 =
+ Land 176,892 186494 134,365 E’
w Building 591,432 459,384 490,455 OQ
u Total Assets | I(— w
)
=
o = 0
7,]
If the user clicks [R T e e g e
the Yes button, the A o BoAS Rt F e g @
(R B oA EEREE G 4-n 0 WA
macro totals the 4 A
Bit e 5 LA BB 0
columns. # § 5 '
' Franklin Skys Company T ke T
Assets
December 31
Divisions
E Davis Fratt Cornell
& | Cash 25,800 39,469 29,789
+ Accounts Recelvable 50,987 34527 47,962
1 Office Supplies 1,713 1,251 1,737
» Land 176,892 186,494 134,365
w Building 591,432 459,384 490,455
« Total Assets 846,824 721,125 704,308 |€——
K] R rupwty -5 ! -

To select a cell or range of cells in a worksheet, use the Select method with a Range object. For example, to select
the range of cells from A3 to A6, you would type Range ("A3:A6") .Select.

When you use the Select method with a Range object, the first cell in the specified range becomes the active cell.
If you specify individual cells with the Select method, the first cell specified becomes the active cell. For example,
Range ("A3, Al, A5").Select makes cell A3 the active cell.

You can use the Activate method to highlight a cell or range of cells. With the Activate method, the first cell
referenced in the range becomes the active cell, but VBA highlights all of the other cells in the range to indicate that
VBA has selected them as well. For example, the code Range ("B4:C6") . Activate makes B4 the active cell and
highlights cells B4 to C6. The Select method and the Activate method are often interchangeable.

Using the Cells

Property

ou can use the cells property to reference

specific cells in a worksheet and make changes to

the values or properties of the cells, such as the
font settings. The Excel object model does not contain a
cells object. To reference specific cells, use either the
cells property or the Range property, each of which
returns a Range object with the specified cells. See the
section “Using the Range Property” for more information
about the rRange property.

You can use the cells property with the application,
Range, and Worksheet objects. Using the cells property
with the Application and worksheet objects returns
the same result. For example, you can type x =
Application.Cells(1l,1) Or X = ActiveSheet.
Ccells(1,1) to obtain the content of cell Al.

Using the Cells Property

The cells property has two parameters. The first
parameter, Row, contains a value indicating the row
index. The second parameter, Column, contains a value
indicating the column index. For example, to reference
cell B5, you assign a value of 5 for the row parameter,
because you want row 5, and a value of 2 for the column
parameter, because you want column 2.

Cells (5,2).

One advantage of using the cells property over using
the Range property is that you can use variables to
change the values. For example, you can use a variable to
represent either the row or column, as shown in the code
Cells (RowNum, 1) = 5, which sets the value of a cell in
column A and a row specified by RowNum to 5.

@ Name your procedure.

@ Declare your variable.

@ Create a For Next loop.

@ Use the ce11s property
to indicate the cells you
want to format.

@ Format the cells.

o Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

[T=Ed

[1o b oe fuet s Doy o D baiie diiem e

[Sub CellsFormat)<—@)
Dim RowNum As Integer‘—@

End Sub

= T

2} T=T=Em
0 e e i i ey B T

| Sub CellsFormat()
Dim RowNum As Integer 9
For RowN =3 To 8

(4 1IN
Next<—e

End Sub

=f&

The worksheet before
you run your macro.

The worksheet after
you run your macro.

® The macro moves
down the first column
and adds bold and italic
formatting to each cell.

[GHE] 0 = oo &
| —~ i a@as
.l : ey [T O R - Sir— ; ra
e B-Ac EER @EE G -0 B+ P .

AL - &

2l Sales Pl O

2 Product 1 Product2 Product3 e o et

» January $ 12425 § 13736 § 17,389

« February 19,596 11,968 11,904

+ March 14,609 11,838 18,761

« April 10,897 13,969 19,322

+ May 12,556 13,906 11,548

1 June 18,651 19,850 13,072

$ 88734 § 85267 § 91,99

L | P
(] o L 5
. - = - s A@as

Ko =afe - nira
e o me BeAc EEREE G -0 E

» January
« February
« March

« April

« May

i June

$

Product 1

12,425
19,596
14,609
10,897
12,556
18,651
88,734

$

Sales
Product 2
13,736 §
11,968
11,838
13,969
13,806
19850
85267 $

Product 3
17,389
11,904
18,761
19,322
11.548
13,072
91,996

attributes of a specified object. Some of these properties are listed in the following table.

FONT PROPERTY DESCRIPTION

To set the font attributes for objects in Excel, use the Font object. You typically use the Font object to modify the
attributes of a cell or a range of cells. The Font object has several properties for obtaining or modifying the

Bold A Boolean value indicating whether the font for the object is bold.

Color Indicates the color of the font. Use the RGB function to set the font color.

FontStyle Indicates the font style. For example, to set both a bold and an underline font style, specify
Font.FontStyle = "Bold Underline".

Italic A Boolean value indicating whether the font for the object is italic.

Shadow A Boolean value indicating whether the font is a shadow font.

Size Indicates the size of the font.

Strikethrough A Boolean value indicating whether to use a strikethrough font to draw a horizontal line
through each character.

Subscript A Boolean value indicating whether the font is subscript.

Superscript A Boolean value indicating whether the font is superscript.

Underline A Boolean value indicating whether the font is underlined.

11 1deyd

.
.

uyaq

.

soSury Su

Combine

Multiple Ranges

o create a multiple area range, you can use the

Union method. A multiple area range contains

more than one block of cells, and the blocks of
cells are noncontiguous. For example, you can use the
Union method to create a Range object containing the

cells A1 to B5 and D1 to E5.

When you use the Range property in conjunction with the
Union method, you can specify up to 30 ranges. You
must specify at least two ranges. You assign the ranges
by using any option that returns a valid Range object,
such as the Range property or the cells property. See
the sections “Using the Range Property” and “Using the
Cells Property” for more information. The following
example specifies two ranges:

Combine Multiple Ranges

Dim RangeVar As Range

Set RangeVar = Union

Range ("A5:A15"))

The code Set RangeVar = Union (Range("Al:A3"),
Range ("A5:A15")) uses the Union method to combine
two Range objects created with the Range property and
assigns the result to a Range object variable. The new
range contains the cells A1 to A3 and A5 to A15. Notice
that the two blocks of cells are noncontiguous.

Because you must declare the variable to which you
assign the multi-area range as a Range object, you use
the set statement when creating the assignment
statement. You must use the set statement whenever
you assign an object to an object variable. See Chapter 4
for more information on assigning objects to variables.

(Range ("Al:A3"), _

@ Name your procedure.

@ Declare the Range object
variables that you will use
to store your ranges.

@ Store each range to a
variable.

@ Use the union method
to create a single range
object that contains
multiple ranges.

e Apply formats to multiple
ranges using one Range
object.

@ Press Alt+Fi1 to switch
from the VBE to Excel,
and run the macro.

4 ——— =]
| sub Rangeinultin<—o E
Set RAIl = Union(R1, R2, R3)<_e
End Sub
— 7|

L] ™ Tl B
) o b e et fpma (e B Jmm Skibe e e [r—— .8
Sub RangeMuiti()
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim RAIl As Range
Set R1 = Range("A3:E3")
Set R2 = Range("A5:E5")
Set R3 = Range("AT:ET")
Set RAIl = Union(R1, R2, R3)

—0

End With
End Sub

=Wal |

The worksheet before [H e
you run your macro. i

. Product 1 1,708 1,278 1,891 1,642

11 1deyd

+ Product 2 1,811 1,274 1,781 1,740
« Product 3 1,314 1,271 1,155 1418 oo
+ Product 4 1,055 1,311 1,000 1,391
« Product 5 2,000 1,151 1,738 1,374
+ Product 6 1,328 1,684 1,748 1,765
+ Total 9,216 7,969 9,313 9,330

§ Forma o Rasges

i st Maapta flarga Farmt |

B e ke g i
L | - &

o
()
=
=
(=
=
uQ
=
Q
0%
(¢
7

ey r—ree [

The worksheet after
you run your macro.

The macro uses a T —
Union range to . Product 1 1.708 1,278 1,891 1,642
apply a format to Product 2 1,811 1,274 1,781 1,740
mu|tip|e ranges. + Product 3 1.314 1,271 1,155 1,418

. Product 4 1,055 1,311 1,000 1,391

. Product 5 2,000 1,151 1,738 1,374

. Product 6 1,328 1,684 1,748 1,765

. Total 9,216 7,969 9,313 9,330

§ Foome Ve Rasges

5 st Matasta flarge Frmst |

A etk g i
i | - +

When you use the Union method, you combine multiple ranges. Each range is a Range object and is part of the
Areas collection. Each member of the Areas collection represents a contiguous block of cells, with one Range
object representing each contiguous block of cells.

You cannot apply some VBA operations to ranges that contain multiple areas; for that reason, you may need to
determine the number of areas in a range. The Count property counts the number of areas in the range; if the
Count property returns a value greater than 1, the range contains more than one area. The following example uses
the Count property to determine the number of areas in the range RA11:

Example:
NumOfRanges = RAll.Areas.Count

Each range in an Areas collection has an index value. The first range added to the collection has an index value of
1, the next 2, and so on. You can reference an area by its index value.

Using the

Offset Property

sing the of fset property is another way to
specify a range of cells. The offset property
defines a range as an offset from another range,

with the offset being the distance in rows and columns
from the existing range to the new range.

The offset property has two parameters. Although both
are optional, if you do not specify at least one parameter,
the offset property returns the current range. Use the
RowOffset parameter to indicate the number of rows to
offset the new range from the current range. A positive
number offsets the range downward. A negative number
offsets the range upward. The of fset property bases the
offset on the upper left cell in the active range. For
example, if the active range is cells A1 to B4, the offset
property bases the offset values on the number of rows

Using the Offset Property

and columns from cell A1. Use the Columnoffset
parameter to specify the number of columns to offset the
range from the current range. A positive number offsets
the range to the right. A negative number offsets the range
to the left. The default value for both parameters is 0.

If you assign a value to only one of the parameters, Excel
gives the other parameter a value of 0. For example, with
a value of 5 for the Rowoffset and no Columnoffset
parameter value, the property returns the range that is
five rows down from the current range selection.

If you specify a value outside the valid number of rows
and columns in a worksheet (for example, if you specify

@ Name your procedure.

@ Declare the Range object
variables that you will use
to store your ranges.

@ Store your range to an
object variable.

Use the of fset property
to define the range.

The same row.
Four columns to the right.

Place a formula in the
offset range.

Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

© .o

@

Offset (-1, -1) and the current cell is A1, VBA returns
an error.
=] T=es
| sub 6’65aiﬁhngeii<—o']
Set OriginalRange = Range("AG:A11") 4—9
End Sub
R
e -]
e b e et Gpeaa Deiveg B Dw Sdibe edos st g

Sub OffsetRange()
Dim OriginalRange As Range
Dim OffsetRange As Range
Set OriginalRange = Range("AG6:A11")
Set OffsetRange = OriginalRange.Offset(0, 4)4—9
OffsetRange.Formula = “=$UM(BB=DB)"<—6
End Sub

5T |

The worksheet before isee g
you run the macro. S (]
- =
%| e =t
Franklin Skys Company -
: Assets P
' December 31, 2007 [S=Y
‘ Divisions .
s Davis Fratt Cornell Total U
+ Cash 25,800 39,469 29,789 ()
» Accounts Receivable 50,987 34,527 47,962 ',:'}
+ Office Supplies 1,713 1,251 1,737 =
+ Land 176,892 186,494 134,365 E’
« Building 591,432 459,384 490,455 i)
n Total Assets B46,824 721,125 704,308 W
A Q
g — : 1)
7,]
The worksheet after [i
you run the macro. B me e (g
The macro uses the TR
Offset property ' o Toxs | Franklin Skys Company i
to create the values : :ws
' December 31, 2007
under the Total - e
column. 5 Davis Fratt Cornell Total
& Cash 25,800 39,469 29,789 95,058
+ Accounts Recelvable 50,987 34,527 47,962 133,476
+ Office Supplies 1,713 1,251 1,737 4,701
» Land 176,892 186,494 134,365 497,751
« Building 591,432 459,384 490,455 1,541,271
n Total Assets B46,824 721,125 704,308 2,272,257 -
T T— - = :

You can use the Of fset property in a For Next loop to cycle through a range of cells.

Example:
Dim Counter As Integer
For Counter = 1 To 4
ActiveCell.Offset (Counter -1, 0) = "Region" & Counter
Next Counter

The initial value of Counter is 1. Counter -1 isequal to 0. The code starts executing from the active cell because
ActiveCell.Offset (Counter -1, 0), resolvesto ActiveCell.Offset (0,0). With each loop, the value of
Counter increases by 1, and so VBA stays in the same column, but moves down one row. See Chapter 6 to learn
more about using a For Next loop and to see this code in action.

Delete a Range

of Cells

o remove a range of cells from a worksheet, use

the pelete method. Excel completely removes the

cells and adjusts the remaining values in the
worksheet to fill the gap left by the deletion. For example,
if you remove column B, Excel shifts the values in
column C to the left to become the new column B values,
and all remaining column values shift to the left as well.
Conversely, if you delete a row, Excel shifts all values up
one row. You can reference an entire column by using the
syntaX Columns (ColumnNumber). You can reference an
entire row by using the syntax Rows (RowNumber) . The
following examples delete column B and row 3,
respectively:
Columns (2) .Delete

Rows (3) .Delete

Delete a Range of Cells

Excel easily determines how to shift the cells when you
remove entire rows and columns, but if you remove a
block of cells, you must specify how the remaining values
fill by using the shift parameter with the pelete method.
When you use the shift parameter, you assign it one of
the x1DeletesShiftDirection constant values. The
x1ShiftToLeft constant value tells Excel to shift values
to the left to fill the gap created by the deletion. The
x1shiftup constant value tells Excel to shift values up to
fill the gap. For best results, specify how to shift the cells.

Excel ignores the parameter value if it is not a valid shift
direction for the deleted range. For example, the code
Columns (2) .Delete Shift:=x1ShiftUp deletes a
column, but Excel shifts the cells to the left because there
are no cells to shift up.

@ Name your procedure.

@ Declare a Range object
variable.

@ Store your range to an
object variable.

9 Delete your range.

® The range you want to
delete.

® The instruction to shift up.

6 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

2] =)
| sub Daietaﬁange{}(—n E|
Dim RangeDelete As Range<—9
Set RangeDelete = Rangn("AQ:E‘lS")‘—e
End Sub
= T
2] =y -]
E R e S TR VR s— - P

Sub DeleteRange()

Dim RangeDelete As Range

Set RangeDelete = Range("A%:E13")
P>RangeDelete.Delete Shift:=x|ShiftUp
End Sub

KT |

The worksheet before
you run your macro.

The rows that the £ . x v

11 1deyd

i 1| Region 1 Region 2 .
macro will delete' :+ Product 1 S 43979 % 42347 $ 39,349 § 48,825
, Product 2 25,225 35714 25819 38,996
« | Product 3 33,587 40,384 28,248 49,422 oo
+ Product 4 27,710 42 467 20,597 34,017 U
« Product 5 41,130 30917 33,353 38,462 o
+ Product 6 33,470 36432 29,034 31,096 P—
» Product 7 26,951 45621 24,996 49 969 E'
" =
=
<—O g
)
. Total S 404,672 § 431610 $ 382,504 § 481,673 g
. — —— 49
7
The worksheet after Wi e
= T =] = o

you run your macro.

Region 1

1| Region 2 ex

+ Product 1 $ 43979 § 42347 § 39349 § 48825
» Product 2 25,225 35714 25,819 38,996
« Product 3 33,587 40,384 28,248 49,422
+ Product 4 27,710 42 467 20,597 34,017
« Product 5 41,130 30917 33,353 38,482
: Product & 33470 36432 29,034 31,096
+ Product 7 28,951 45621 24,996 49,969
» Total § 232,052 $ 273882 $§ 201,396 $ 290,787

] s B Delete Al i
i | - +

If a workbook is protected, you may not be able to modify a range by adding or removing cells. You can use the
AllowEdit property to determine if you can modify a range. The AllowEdit property returns a Boolean value of
True if you can modify the specified range. In the example code, the A11owEdit property checks a range to make
sure you can modify the range before it calls the Delete method.

Example:

If Columns(6).AllowEdit Then
Columns (6) .Delete

End If

The code checks the A1lowEdit property for column F and then deletes column F if you can modify it. If you
cannot modify column F, the code ignores the Delete statement.

To protect worksheets, use the Protect method. See Chapter 10 for more information on using the Protect
method.

Hide a Range

of Cells

ou can use the Hidden property with the Range

object to hide a range of cells. Generally, you hide

portions of a worksheet so that you can focus in
on other data. For example, a worksheet may contain
monthly data and quarterly summaries. You can hide the

monthly data so you can focus on the quarterly
summaries.

With the Hidden property, the range of cells you hide
must consist of an entire row or column. You hide a
column or row by assigning True to the Hidden property.
You make the column or row visible again by assigning
False to the Hidden property. The following examples

hide row 2 and column C respectively:
Rows (2) .Hidden = True

Columns (3) .Hidden =

Hide a Range of Cells

True

You can also hide column C by using the following
syntax:

Columns ("C") .Hidden = True

When you hide a column or row, Excel sets either the
width of the columns or height of the rows to 0. You can
use the Hidden property to determine if a range is hidden.
For example, you can check to see if column A is hidden
by typing HiddenRange = Columns (1) .Hidden. If you
declare the #HiddenRrRange variable as a Boolean value, the
variable receives a value of True if the specified range is
hidden; otherwise, it receives a value of False. If you do
not declare the variable as Boolean, Excel assigns a
numeric value of -1 if the range is hidden and o if the
range is visible.

@ Name your procedure.
@ Create For Next loops.

In this example, the For
Next loop enables you to
hide multiple columns —
columns 2 to 4 in the first
loop and columns 6 to 8
in the second loop.

@ Set the Hidden property
to True to hide the
columns.

You can set the Hidden
property to False to
unhide the columns.

e Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

T ToT= Bl
R e e R Rl o

il Sub H!deﬂange()‘-ﬁ
ForN=2To 44—9

Columns(N).Hidden = True

Colum ns{widd en = True
Next

End Sub

=i ¢ s

! Tl B
) e b e it G Dy e fm bkbbe e i S8
] ™| e

il Sub I‘lude Rangeii

ForN=2To 4
Columns(N).Hidden = Truu<—9

Next
ForN=6To 8
Columns(N).Hidden = 'l'rue<—9
Next
End Sub

=i

The worksheet before o

Dt Mpiyed feman e — whow Sinda =@ ’-' O
you run the macro. i . el d e a o & (S}
® The columns that the i : =
macro will hide. | ar axe =
+ Region 1 405 551 —
» Region 2 376 423 —
« Region 3 475 536 oo
: Regiond. {440 | 414 o)
. Total 1,696 1,924 &
' o]
o o R | :
fssslia | =
0 0 =
uQ
=
=
-)
(| e [¢’)
w
The worksheet after 'iﬁ e e e e e T
you run the macro. e P W ol - I ALl A
The macro hides : e | ’
. atr1 a2
the c_ollumns you + Region 1 405 551
specified. ,Region2 376 423
« Region 3 475 536
+ Region4 440 414
. Total 1,696 1924
B |
Srum Flarge |
i =

When you hide a row or column in Excel, you can still access the values contained in the cells by referencing them in
functions and macros. Excel indicates the existence of hidden rows and columns by skipping over the hidden rows
and columns in the row and column headings. For example, if you hide columns C and D, you see the column labels
for columns A, B, E, F, and so on. To unhide a row or column in a worksheet, set the Hidden property to False.

You can use the following code to unhide all of the columns in a worksheet.

Example:

Columns.Hidden = False

You can use the following code to unhide all of the rows in a worksheet.

Example:

Rows.Hidden = False

Create a

Range Name

easier to remember than cell addresses. When you

name a range, you can refer to the range using the
range name when creating formulas or performing other
tasks. When you move a range to a new location, Excel
automatically updates any formulas that refer to it.

When you use a named range in a procedure, you do not
need to know the location of the cells that contain the
desired values. For example, if cell B3 contains the sales
tax rate, assign the name Tax_Rate to the cell so you can
reference the cell by name when you want to use it.

In VBA, you use the Name property to assign a name to a
range of cells, as follows:

I n Excel, you can name ranges. Range names are

Columns (3) .Name = "May_Sales"

Create a Range Name

This example assigns the name May_Sales to Column C
in the active worksheet. To view the assigned name in
Excel, you can select the range, and the name will appear
in the Name box on the Formula bar.

Whenever you need to reference the range in your
procedure, you can use its range name. You can reference
range names created by your procedure and range names
created manually in Excel. You can use Excel to modify
and delete the range names you define in VBA.

You can use the pelete method to delete a range name.
The following example deletes the range name
May_Sales:

ActiveWorkbook.Names ("May_Sales") .Delete

@ Name your procedure.
@ Declare your variable.
@ Assign a name to a range.

® The range to which you
want to assign a name.

® The name that you want
to assign the range.

9 Use the range name.

In this example, the
worksheet function sum
totals the range.

6 Assign the result of the
worksheet function to
a cell.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

| éub NameRange() 4—0 : E
Dim Total As Long 4—9
Range("B2:B9").Name = "Salns"<—9
End Sub
= T

] =)

il éub N-ameﬁaﬂgeﬁ - =
Dim Total As Long
Range("B2:B9").Name = "Sales"
Total = WorksheetFunction.S Rang-(“&-l-s"j)‘—o
Range("B10") = Tntal4—5
End Sub

= T |

The worksheet before e e) Q
yoU run your macro. e e W ol &
=
m o FypE—) 8
§Employee _______Sales| —
+ Smith, Sam 296,264 —
» Jones, John 216,049 p—
« Smith, Fred 203,723 o0
+ Hansen, April 284,213 U
« Anderson, Tom 252,195 (¢
- Adams, Jerry 295,063 (e)
P >
+ Peterson, Paul 272,263 =
+ Garcia, Juan 253,648 pu s
. Total =
. UQ
=
)
3
o - (4]
75}
The worksheet after FURRR T e _ s
yoU run your macro. B T e e a2

5

The macro uses the

named range to sum + Smith, Sam 296,264
a range of cells. , Jones, John 216,049
« Smith, Fred 203,723
+ Hansen, April 284,213
« Anderson, Tom 252,195
: Adams, Jerry 295,063
+ Peterson, Paul 272,263
+ Garcia, Juan 253,648

. Total 2,073,418 <—

¥ Marge W 5
i | o -

To create a named range in Excel, select the range, click the Formulas tab on the Ribbon, and then click Define
Name in the Defined Names group. The New Name dialog box appears. Type a name in the Name field, and then
click OK.

Click Name Manager on the Formulas tab to open the Name Manager. The Name Manager contains a list of all
named ranges. To see which cells a named range includes, select the range name in the Name Manager; the
corresponding range appears in the Refers To field. If you want to delete a named range, highlight the range name
and then click Delete. If you delete a named range, any macros that reference the named range will not work.

You can also use the Name Manager to modify a named range. In the Name Manager, click the Edit button. The
Edit Name dialog box appears. Use the Refers To field to define the range of cells to which the range name refers.

Resize

a Range

ou can use the rResize property to change the
size of a range. When you resize a range, you
change the number of rows and/or columns

included in the range. You can specify either more or
fewer rows or columns.

The Resize property has two optional parameters. You
should set at least one of the two parameters. If you do
not set either parameter, Excel returns the original range.
The first parameter, RowsSize, sets the number of rows in
the new range. The second parameter, Columnsize, sets
the number of columns in the new range.

When you resize the range, the upper left corner of the
original range remains the same. For example, if the
original range is B1 to C4 and you resize the range to
contain only two rows and two columns, then B1 remains
the upper left cell value. VBA adjusts the range based on

Resize a Range

that cell, creating a new range of cells from B1 to C2.

You may need to know how many rows and columns
currently exist in a range before you resize it. If you are
working with a range that is defined elsewhere, such as a
named range, use the count property to determine the
number of rows and columns in the range, as shown in
the following code:

NumberOfRows = _
Range ("Named_Range") .Rows.Count.

The count property counts the number of rows in
Named_Range and assigns the result to the
NumberOfRows variable. You use the same syntax with
the columns property to count the number of columns in
a range. Once you know the size of the range, you can
use the Resize property to modify the number of rows
and/or columns.

@ Name your procedure.
@ Declare your variables.

@ Count the number of
rows in a range and
assign the result to a
variable.

@ Count the number of
columns in a range and
assign the result to a
variable.

@ Add 2 to the values
stored in your variables.

By == B
T e e e i i v natses. cam
il éub Eesiza-Rangotj-‘—a

NumRows = Rango("Emplnfu"j.Rowx.Count‘—Q

ety Supo it Bl | |

End Sub

ST |
T == B
il éub Eosizaﬁango(f

Dim NumRows As Integer

Dim NumCol As Integ

NumRows = Range("Empinfo”).Rows.Count

NumCol = Range("Emplinfo").Columns.Count

End Sub

O Resize your range. : - - eri] o
® The range you want to s“:i:-lml'::::::::t:\s Integer | %
resize. g =
Dim NumCol As Integ 2
NumRows nge("Empinfo”).Rows.Count
@ Sets the number of NumColumns = Range("Emplinfo”).Columns.Count :

rows to the value in NumRows =|NumRows + 2

.
.

your NumRow Variable. NumColummng = NumColumns + 2
e——FRange{"Emplnfo"}. (?
Sets the number of Rosiza(ﬂowSizeFNumRows,(—' jamp]
columns to the value in ——E:s"h' Size:=NumColumns).Selsct =8
your NumCo1l variable. na =y 0%
o Press Alt+F11 to switch =
from the VBE to Excel, g
and run the macro. (V1)
=fisl | [¢)
©v
The macro resizes S e b
the range. Bt | B
The original size of e . . —
the range. ' __ Department Age
: Information Systems 29
i) countine 35
® The current size of : am.nmgemm >
the range. : Administrative Services 26
.!Andsrson‘ Tom Programmer 70000 Information Systems 30|

- |Adams. Jerry Programmer 85000 Information Systems 32

e | At ATAIN Lou B o LRI | 0N

Besides determining the number of rows and columns in a range, you may need to know the exact row or column
that begins the range. To find this, use either the Row property or the Column property. The following code
determines the number of the first row in a range:

Example:

FirstRowNum = Range ("EmpInfo") .Row

The code assigns the integer value representing the first row in the specified range to the FirstRowNum variable.
You can also determine the first column in the range by using the Column property, as shown in this code:

Example:
FirstColNum = Range ("EmpInfo") .Column

ou can use the Tnsert method to insert a range

of cells into a worksheet. When you insert a

range of cells, VBA adjusts the values in the
existing cells by moving them either down or to the right
so that it can insert the new cells into the specified
location. For example, if you insert a new range of cells
in row 3, VBA shifts the existing values in row 3 down to
row 4 and shifts all of the values in cells below row 3
down as well. If you add a new column, Excel shifts all
existing values to the right. The following examples insert
a column and a row, respectively:

Columns (2) . Insert
Rows (3) . Insert

How the cell values in the worksheet should shift when
you add an entire row or column is obvious. With a

Insert a Range

smaller block of cells, you must use the Tnsertshift
parameter to tell VBA how the cells shift. To make sure
the cells shift correctly, assign the parameter one of the
X1lInsertShiftDirection constant values. You can use
the x1shiftToRight constant value to shift the cell values
to the right. You can use the x1shiftDown constant value
to shift the cell values down. The following example shifts
cells to the right:

Range ("B5:B7") .Insert:=x1ShiftToRight

You use the copy method to paste data to the Office
Clipboard. You can insert data that is on the Office
Clipboard into your worksheet by placing a copy
command before the Tnsert command in your procedure.
See Chapter 12 to learn more about the copy method.

0 Name your procedure.
@ Copy arange.

9 Insert the range.

® The point at which to
begin the insertion.

® The shift direction.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

e——»ﬂnngs{'BS").

! T Te Bl
7 e e v e oA
| sub Inseﬂiﬁange()‘—ﬂ E
Range("Ez:Ed“J.copy<_e
End Sub
= T
2] =)

il éub .I.nsertiﬁ-a nge(_J -
Range("E2:E4").Copy

Insert khift:=xIShiftDown<e——@

End Sub

=Wl |

The worksheet before R .. !
you run the macro. ARl &8 B e S &
ey =3
e 0 : : [o)
' |No. IEmprnynn New Hires -
z 1 Adams, Jerry Best, Marvin —
) 2 Anderson, Tom Caldwell, Steven —
3 Andrews, Andy Davis, Joan X
4 Garcia, Juan
5 Hansen, April (?
& Jones, John —
7 Peterson, Paul [=o
8 Smith, Fred E.
9 Smith, Sam :
0 0
11
% =
=
i
51 =L (43
17,]
The worksheet after I e ibe
= -} Q
you run the macro. : ey
The macro places e z : .
the COpied data in i [No. IEmplnynn New Hires
.) z 1 Adams, Jerry Best, Marvin
the insert location. 2 Anderson, Tom Caldwell, Steven
. 3 Andrews, Andy Davis, Joan
4
5 - —
]

7 Garcia, Juan
8 Hansen, April
9 Jones, John
10 Peterson, Paul
11 Smith, Fred
12 Smith, Sam

[| ou -

You can also use the Insert method to insert a value in a cell. To insert a value in a cell, use the Insert method
with the Characters object. You can insert a string of characters at the beginning of a cell or at any location in the
cell. For example, to insert the words “New String” in cell B1 and replace the contents, type the following code:

Example:
Range ("Bl") .Characters.Insert ("New String")

To place new characters within the existing string of characters, indicate the location and the number of characters.
For example, in the string “Excel 2011 Worksheet,” you can replace the “2011” with “2012” by using the Insert
method. The following code illustrates how to make the replacement when the string is located in cell A1.

Example:
Range ("Al") .Characters(7,4) .Insert("2012")

The Characters object has two parameters, Start and Length. The Start parameter indicates the number of
the character at which to start the insert — in this case, character 7. The Length parameter indicates the number of
characters to replace.

Set the Width of

Columns in a Range

to each column. Excel bases this width size on the
number of zeros it can place in the cell using the
Normal style. One unit is equal to one character.

To set the width of a column, use the columnwidth
property. In the following example Excel sets column 1
to 15 characters in the Normal style:

Columns (1) .ColumnwWidth = 15

You can also use the columnwidth property to determine
the width of the columns in a range. If all columns in the
range have the same width, the columnwidth property
returns the number of characters that can appear in each
column using the Normal style. If the column widths in

B y default, Excel assigns a width of 8.43 characters

Set the Width of Columns in a Range

the selected range vary, the columnwidth property
returns Null. The following example, returns the width
of column 1.

Colwidth = Columns(1l).ColumnWidth

Every worksheet has a default width, commonly referred
to as the standard width. You can use the standardwidth
property to set the columns in a worksheet to the standard
width. The following example sets every column in a
worksheet to the standard width:

Columns.ColumnWidth = _
ActiveSheet.Standardwidth

Set a Column Width
@ Name your procedure.
@ Create a For Next loop.

@ Create a columnwidth
command.

® The column for which you want
to set the column width.

® The amount to which you want
to set the column width.

Set Columns to a Standard Width
0 Name your procedure.
Q Create a For Next loop.

@ Create a columnwidth
command.

The column for which you want to
set the column width.

The amount to which you want to
set the column width.

@ Press Alt+F11 to switch from the
VBE to Excel, and run the macros.

@

- = B
L natses. el
Sub SetcorumnWIdth{)J- :
Dim ColNum As Integer
For ColNum =1 Te 34—0
[)] > Col (ColNum).ColumnWidth = 35
Next
End Jub
=/ T I A
. s B
F T T N T v e .
Sub SetColumnWidth()
Dim ColNum As Integer
For ColNum =1To 3
Col (ColNum).Col Width = 35
Next
| End Sub
Sub 50!ColumnsTnStd‘Width()<—0
Dim ColNum As Integer
For ColNum =1 To 34—9
— > Col (ColNum).ColumnWidth =
Active t.StandardWidth <€—
Naxt‘j
End Sub
sl | L:..

When you run the e 9
SetColumnWidth = (]
macro, the macro = =
x [- t
SUISECIUINTISHIGIZ §Empioyeo ame e — s | <
and 3 to 35 . Hansen, April Sr. Developer 90,000 suwan | =
+ Anderson, Tom Accountant 95 000 Mt
i | Adams, Jerry Vice President 145,000 t-.‘
& Peterson, Paul Receptionist 25,000
« Garcia, Juan Sr. Developer 93,000 U
1 Andrews, Andy Software Developer 85,000 (¢]
+ Wilson, Sam Systems 82,000 jamp]
» Jones, Wendy Software Developer 81,000 :
= Smith, Fred Sales Manager 100,000 |
n Jensen, George Northeast Sales 75,000 =
«w Adams, Mary Secretary 25,000 GQ
« Hansen, April cTo 195,000 w
w Anderson, Tom CEO 195,000
w Adams, Jerry Systems 85,000 m
= Pelersen, Paul Human Resources 55,000 :
iGars, uan lanitar - 30000 OQ
a5l 4 O
17,]
When you run the =R T ey 5 Ay
SetColumnsToStdWidth 2 S| @
macro, the macro sets o -
columns 1, 2, and 3 to the 8 Empi Titie -a1r, [N
standard width. HansiSr. D #hs#]
1 Andel Accol s Btamctaed
o Adam Vice F#se
« Peter Rece| ##8%
« Garci Sr. D #aE
v Andre Softw ##8
o Wilso Syste #38%
s Jones Softw #ie
= Smith Sales ##88
o Jense North s
= Adam Secre #5484
0 Hans CTO #88
u AndeiCEQ ##a¢
w Adam Syste #8%
w Paler Hum: #3848
SR Tt M 2
| o s

You can also use the Width property to obtain the width of a column. The Width property returns the
measurement of the column width in points, unlike the Columnwidth property, which returns characters. You
typically use points to reference font sizes (1 point is equivalent to 1/72 of an inch).

The Width property is read-only, meaning that you can use it only to obtain the width of a column. To obtain the
Width property of a column, assign the value to a variable, as shown in the following code.

Example:
ColwWidth = Column (4) .Width

The width property is useful when you want to compare a column width to a row height because Excel stores row
heights in points.

Set the Height of

Rows in a Range

o modify the height of rows in a range, you can

use the RowHeight property. By default, Excel

assigns a height of 15.75 points to each row.
Excel measures font sizes in points, with each point equal
to approximately 1/72 of an inch. Because the default font
size in Excel is 12 points, the default row size of 15.75
points is usually adequate for displaying text. For a larger
font size or for text that wraps in a cell, you can specify a
larger row height by using the RowHeight property.

You can set the height of the row by assigning a numeric
value to the RowHeight property. For example, to change
the height of row 2 to 25 points, use the following code:
Rows (2) .RowHeight=25

If the row height you specify is not high enough to
display the entire font, the text appears cut off when you
view it in Excel.

Set the Height of Rows in a Range

You can also use the RowHeight property to obtain the
height of the rows in a range. If all rows in the range have
the same height, the height is returned as the number of
points. If all the rows in the selected range do not have
the same height, the RowHeight property returns Null.
The following example demonstrates how to use the
RowHeight property to obtain the height of a row:

RowHeight = Rows (1) .RowHeight

Every worksheet has a default height, commonly referred
to as the standard height. You can use the
StandardHeight property to set the standard height for
a worksheet or to set a range of rows in a worksheet to
the standard height. The following example sets every
row in a worksheet to the standard height:

Rows.RowHeight = ActiveSheet.StandardHeight

Set the Row Height

@ Name your procedure.

@ Create a For next loop.

@ Create a RowHeight command.
°

The rows for which you want to
set the height.

® The amount to which you want to
set the row height.

Set Rows to the Standard Height
Name your procedure.

Create a For Next loop.

200

Create a RowHeight command.

The row for which you want to set
the height.

The amount to which you want to
set the row height.

Press Alt+F11 to switch from the
VBE to Excel, and run the macros.

@

=]

As Integer

=1 To 23 4—9

.——FnowstﬂowNum}.ngnighl =25
Next

End Sub

= T o

B . M i R [y B D Sabe Jedon i

o= =] [o

2] == B
Sub SetRowsHeight() 8|
Dim RowNum As Integer
For RowNum =1 To 23
Rows(RowNum).RowHeight = 25
Next

| End Sub

Sub SetRowsToStdHeight() 4_0
Dim RowNum As Integer
For RowNum =1 To 234—9
———> Rows(RowNum).RowHeight =

.ﬂ:livab Stand ght=
Next

End Sub

s
When you run the T 9
q e Y
SetRowsHeight % ()
macro, the macro sets o gaiis - =t
i n 1] < -] E ¥ "" O
rows 1 tO 23 tO 25 il Employee Name Title Sala =
: Hansen, April Sr. Developer 90,000 s p—
1 Anderson, Tom Accountant 95,000 p—
i | Adams, Jerry Vice President 145,000 3
s Peterson, Paul Receptionist 25,000
« Garcia, Juan Sr. Developer 93,000 U
r Andrews, Andy Software Developer 85,000 (¢]
+ Wilson, Sam Systems 82,000 :'2
» Jones, Wendy Software Developer 81,000 =
= Smith, Fred Sales Manager 100,000 |
n Jensen, George Northeast Sales 75,000 =
«w Adams, Mary Secretary 25,000 OQ
« Hansen, April cTo 195,000 w
w Anderson, Tom CEO 195,000
w Adams, Jerry Systems 85,000 m
 Peterson, Paul Human Resources 55,000 =
o Bargia, o, lanitar - A0 000 x UQ
i - : [¢°)
17,]
C
When you run the s@us
SetRowstoStdHeight %
macro, the macro sets — -
rows 1 to 23 to the ; <% G L — —icyy ""’*'J‘
q) AHURESOL, O AL i L Ty — e
standard height. S M I g P ——
§ASEiCkd, JUdn o LEvEIupe B3, U
T AN WS, MUY DUILWAIE Lieveiupe ou, U
§OVVISUNE, Sl DYl OL
¥ wvEluy Suiware Leveiupe o1 U
oo, Fieu Sl WMl iaye (LU VAV
1] JE IS, ey U EasL Sdies [Ny
3 MU S, el =l LU U
3 e e, AR i) ECAnY
A AU, U ! 190, vw
A, JETY 2y su
§ FElEsUn, Fau FILA TRl | AEsUUILeEs uu uuu
LN, JUan Sl iU U
WA EWS, MUY VT U e e YAV VT
SELUny e
al, Leveioper of uuu
DECUIIY U
PRI st £,
2. LEVEIURe ELREE
ST i it 20 1e -
i | e +

You can also use the UseStandardHeight property to set a row to the standard height. The following example
sets row 1 of the active sheet to the standard height.

T+

Example:
ActiveSheet.Rows (1) .UseStandardHeight = True

You can use the Height property to determine the total height of a range of cells. Excel returns the height of the
range in points. The Height property is read-only. You can obtain the range height by assigning the height value to
a variable, as shown here.

HeightOfRange = Range("Al1:A10") .Height '

The code assigns the height of all the
rows specified by the Range object to
the HeightOfRange variable.

Cut and Paste

Ranges of Cells

ut, Copy, and Paste are among the most

commonly used commands, and you can find

them in almost every application. When writing
VBA code, you can use the cut and copy methods to cut,
copy, and paste a range of cells. The following is the
syntax for the cut method (see “Copy and Paste Ranges
of Cells” for an explanation of the copy method):
expression.Cut (Destination)

The cut method enables you to cut a range of cells and
paste them either to the Windows Clipboard or to another
range of cells. You can use the cut method’s optional
Destination parameter to tell VBA where you want to
paste. If you do not include a destination, VBA pastes to
the Windows Clipboard.

Cut and Paste Ranges of Cells

If you include a destination, you can use a Range object
to specify the location to which you want to paste. The
following example uses the cut method to cut and paste
a range of cells:

Range ("Al:A5") .Cut Range("C1l:C5")

When using this syntax, you must make the cut range
and the destination range the same size or VBA returns
an error. Alternatively, you can specify a single cell as the
destination range. VBA makes the cell you specify the
upper left corner of the paste range.

Cut and Paste by Using a
Single Cell

@ Create your cut statement.
® The range you are cutting.

® The upper left corner of the
range where you are
pasting.

This code resizes columns
to ensure that the contents
appear in the cells.

Cut and Paste by Using a
Range of Cells

0 Create your cut statement.
The range you are cutting.

® The range where you are
pasting.

Note: The range you cut must
be the same size as the range
where you paste.

@ Press Alt+F11 to switch
from the VBE to Excel, and
run the macro.

@

ey =)
) B b e pust fpma Doy B D Adbbe Medos b -8
| sub cutandpPastecell() E
0——>Range("E1:F1 4").Cut Range("C1")
Range("CD14").Col AutbFit€——
End Sub
=/ _JCT :::
. ®

T Bl

al
4_-:“”- b juee by 4 B fun Aaibe fieas o ;
| Sub CutAndPiisteRange() Y E
Range("E1:F14").Cut Range("C1:D1 4")4—0
Range("C1:D14").Col
End Sub

AutoFit

R o

The original worksheet. = e 9
m = @ ()
® The macro cuts and =
pastes this information. e B ; : = =
1 [Marnth I Frojected Sales Actual Sales Differance -
+ January $ 124,103 S 175083 § 50,980
» February 107,400 157,134 49,734 =
« March 139,194 119,435 (19,759) !\.J
April 139 596 122,307 (17,289)
« | May 169,264 199,114 29,850 s
» June 177,753 141,629 (36,124)
s July 100,266 . > 170,731 70,465 o
+ August 148,391 143,542 (4,849) =
= Seplember 146,509 158,852 12,343 a‘
n Oclober 126,461 114,789 {11,672) =
u November 120,550 120,308 (242)
u December 199,111 171,699 (27,412) oq
§1,698,598 $1,794,623_§ 96,025 s
. —— 1 e =.
=
£ et 5 £ = : A
()
"] v [IyeTE—— = |=
The worksheet after [et bt - “@ns 7
5| - o 1 - - — —
the cut-and-paste B T a i | e i e - .
macro has executed. TR T z
1 [Manth I P-»jn(;.d Sales Aﬂ‘n‘nlhln mﬂ;.nm =) A
Both of the macros , January § 124103 § 175083 550880
shown in this \ February 107400 157,134 49,734
: « March 139,194 119435 (19,759)
example yleld the April 139,596 122,307 (17,289)
+ | May 169,264 199,114 29,850
sSame result. + June 177,753 141,629 (36,124)
» July 100,266 170,731 70,465
» August 148,391 143,542 (4,848)
w Seplember 146,509 158,852 12343
11 October 126,461 114,789 (11,672)
= November 120,550 120,308 (242)
u December 199,111 171,699 (27.412)

u $1.698,598 $1,794623 596,025

When you paste values in cells, the cells may not be able to hold the new content. If the values you paste are
numeric and the cells are not wide enough for the numbers, Excel displays pound signs (####) in the cells. When
you write a VBA procedure, VBA provides formatting options you can use to resize cells so that your values fit into
the cells to which you paste them. For example, you can use the AutoFit method to resize the rows and columns
in a range automatically to allow the contents to appear. The AutoFit method uses the following syntax:

Example:
Range ("C1:D14") .Columns.AutoFit

You can use the ShrinkToFit property to reduce the font size of the text so the entire contents of the cell appear.
You set the ShrinkToFit property by assigning the Range property the value of True, as shown in the following
example:

Example:
Range ("C1:D14") .ShrinkToFit = True

You can also use the WrapText property to ensure text appears properly. Assigning a value of True to the
WrapText property causes text to wrap within the cell.

Example:
Range ("Cl:D14") .WrapText = True

Copy and Paste

Ranges of Cells

of cells. You can copy and paste cell ranges by using

the copy method. The copy method is essentially the
same as the Copy and Paste commands within Excel. The
following is the syntax for the copy method:

expression.Copy (Destination)

The copy method enables you to copy a range of cells and
paste them either to the Windows Clipboard or to another
range of cells. You can use the copy method’s optional
Destination parameter to tell VBA where you want to
paste the cells. If you do not include a destination, VBA
pastes the cells to the Windows Clipboard.

If you include a destination, you can use a Range object
to specify the location to which you want to paste. The

Copy and Paste Ranges of Cells

I n this section, you learn how to copy and paste a range

following code illustrates using the copy method to copy
and paste a range of cells:

Range ("Al:A5") .Copy Range("C1l:C5")

When using this syntax, you must make the copy range
and the destination range the same size or VBA returns
an error. Alternatively, you can specify a single cell as the
destination range. VBA makes the cell you specify the
upper left corner of the paste range.

A block of cells surrounded by blank cells is called the
current region. You can use the currentRegion property
to copy and paste or to cut and paste when using VBA.
When entering the range, you specify any cell within the
block of cells you want to cut or copy as the range, and
then follow the range specification with .currentRegion.

Copy and Paste by Using a
Single Cell

@ Create your copy statement.
® The range you are copying.

® The currentRegion property
enables you to manipulate a
range of cells without specifying
the entire range.

The upper left corner of the
range where you are pasting.

@ Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

The macro copies and pastes the
information.

The range you copied.
® The pasted data.

éub l._':.opynn P_ast-é-{}.
Range("B6").CurrentRegion.Copy Rango("F1")<—0

AutoFit

Range("F1:114").Col

End Sub

5| Mosth

i [Month| Projected Sales Actual Sales Difference Month Projected Sales Actual Sales Difference

1 Jan $ 124103 § 175083 $50980 Jan $ 124103 § 175083 $50,980
1 Feb 107 400 157,134 40,734 Feb 107,400 157,134 49,734
i Mar 138,184 119,435 (19,759) Mar 138,194 119,435 (19,759)

Apr 130,506 122,307 (17.289) Apr 138,508 122,307 (17,280)
» May 160,264 199,114 20,850 May 168,284 199,114 29,850
£/ Jun 177,753 141,620 (36,124) Jun 177,753 141,820 (38,124)
0 dul 100,266 170731 70485 Jul 100,268 170,731 70,465
» Aug 148,391 143,542 (4.849) Aug 148,201 143,542 (4,849)
1 Sep 146,509 158,852 12343 Sep 146,509 158,852 12,343
w1 Oct 126,461 114,789 (11672) Oct 126,461 114,788 (11872)
u Nov 120,550 120,208 {242) Nov 120,550 120,308 (242)
n Dec 199,111 171,689 (27412) Dec 199,111 171,609 (27.412)

5 1698598 51.794623 $96.025

S 1,698,508 51,794,623 $96.025

] e

Copy and Paste by Using a
Range of Cells

o Create your copy Statement. Range("A1:D14").Copy Range("F1:11 4")4—0

® The range you are copying.

21 1dey)

.
.

The range where you are

paSting' End With

The range you copy must be Fod Sub
the same size as the range
where you are pasting.

Formats the range.

This example changes the
color of the interior of cells, Wl | off
the border that surrounds
cells, and the font.

@ Press Alt+F11 to switch from
the VBE to Excel, and run the

'9€§
W
pte
=
UQ
=
=3
O
(¢)
—
7]

1 {Manth| Projected Sales Actual Sales Dl Month | Projected Sales| Act:

1 Jan 5 124103 § 175083 $50.980 Jan s 3
maCfO 1 Feb 107 400 157,134 40,734
i Mar 138,184 118,435 (19,759

H 1 . el

The macro copies and pastes I aa e
i i £ Jun 177,753 141,820 (36,124)
the information. ¥l 100,266 170,731 70,465
» Aug 148,381 143,542 (4.848)
[] i Sep 146,509 158,852 12,343
The range yOU COpIEd 11 Oct 128,481 114,789 (11,672)
! Now 120,550 120,308 {242)

® The pasted data. 1/ Dec 199,111 171,689 (27.412)

5 1698598 51,794,623 $96.025

ey i = s

You can use the ColorIndex property with the Interior, Borders, and Font objects to change the color of the
interior of cells, the border that surrounds cells, and the font. You can assign an index value of 1 to 56 to the
ColorIndex property. The following example demonstrates the ColorIndex property.

Examples:

Range ("F1:I14") .Interior.ColorIndex = (1)
Range ("F1:I14") .Borders.ColorIndex = (2)
Range("F1:I14") .Font.ColorIndex = (2)

The following table lists 16 of the possible colors you can use with the ColorIndex property. Refer to VBA help for
a complete list.

INDEX COLOR INDEX COLOR

1 Black 9 Brown

2 White 10 Forest Green
3 Red 11 Navy Blue

4 Green 12 Yellow-Brown
5 Blue 13 Maroon

6 Yellow 14 Blue-Green

7 Fuchsia 15 Light Gray

8 Light Blue 16 Gray

Using Paste Special

Options When Pasting

ells can contain a lot of information. When you

use the rasteSpecial method, you decide

exactly what information you want to paste. You
can choose to paste everything, or you can choose to
paste just one element of the cell’s contents, such as the
formula, value, or column width. You can also use the
PasteSpecial method to perform simple arithmetic
operations on each cell in a range. For example, in a list
of salaries, you may want to increase every salary by five
percent. You can use the PasteSpecial method to make
the change quickly. Just copy the value by which you
want to multiply to the Clipboard and then use
x1PasteSpecialOperationMultiply when you paste
with the PasteSpecial method.

You can use the pPasteSpecial method with values
you have added to the Windows Clipboard using the
copy method. The following is the syntax for the
PasteSpecial method:

Using Paste Special Options When Pasting

expression.PasteSpecial (Paste,
SkipBlanks, Transpose)

Use the paste parameter to indicate how you want to

paste the information into the new range. By default,

Excel uses the x1pasteall constant value for this

parameter, which pastes the entire contents of the copied

cells into the new range.

Use the operation parameter to perform a mathematical
operation, such as multiplying the current value of a cell
by the pasted value. The default constant value used by
Excel is x1PasteSpecialOperationNone, Which does
not perform any mathematical operations.

Set the skipBlanks parameter to True if you do not
want to overwrite a destination cell with a blank cell if
the destination cell has data in it and the copied cell does
not. If you want to transpose the data values from rows
to columns or vice versa, set the Transpose parameter to
True.

Operation,

Paste Parameter
0 Copy a range of cells to the Clipboard.

Do not include the Destination parameter.
Type your PasteSpecial command.

The range where you are pasting.

(2]

This statement pastes the column widths,
thereby making sure that the source column
widths match the destination column widths.

This statement pastes the data.
Operation Parameter
@ Copy a cell to the Cliphoard.

In this example, cell B1 contains the number

needed to calculate an annual salary increase.
Q Type your PasteSpecial command.
The range where you are pasting.

In this example, range B5 to B10 contains the
salaries you want to increase.

® The Operation parameter.

Press Alt+F11 to switch from the VBE to Excel,
and run the macro.

@

L] Ty T Bl
- rogingiaiiinpi T g g e T

=1 =] [erantrmrte

Sub CopyAndPasteSpecial()
Range("A1 14"].Copy<—0
»Range("F1:114").PasteSpecial
Paste:=xIPasteColumnWidths <—.
ge("F1:114").P. Special _
Paste:=xIPasteAll €—
End Sub

®©®

>R

= T

ET TeTe e
D B e (st fpwa ey B D Abbbe e by ol x

=] e e

l éub Pastaf_.peciall'}pem-tioﬂ-)
Ran ge("Bf‘}.copy(—b
g——bﬂangu{'BS:B‘l 0").PasteSpecial

B
Opera ialOperati Mu!tiply(—.

n:=xIP

End Sub

The worksheet before
you run the macro.

® The cell you copied.

The worksheet after
you run the macro.

The PasteSpecial
range.

The macro multiplies
each cell in the

PasteSpecial
range by the value in
the cell you copied.

O] [
- it o f@as
gar [= - LY
AL - T Pevnual Sakary lacosdia
1 lAnnual Sala& Increase: 1.05 =
& | Employse Narme Salary
Mayfield, Adam 1 0
s+ Lome, Harry 5
r Jacs, Henry 2
» Mathews, John 50000
+ Jones, Libby 60000
= Bradley, Florence 10000
0
T i P ST Copy e Pt Bl) 5
] =
it o A@as

1 [Annual Sala& Increase: 1.05

& | Employse Narme Salary
Mayfield, Adam

s+ Lome, Harry

» Jacs, Henry

» Mathews, John

+ Jones, Libby

= Bradley, Florence

74§ oy e Sa S| Copy md Wty Spwd 5 F3
[| ou -

xlPasteAll

The Paste parameter requires one of the following constant values.

NAME DESCRIPTION

The default value, which pastes the entire contents of the cells.

x1PasteAllExceptBorders

Pastes everything except border settings.

x1PasteAllUsingSourceTheme

Pastes everything using the source theme.

x1PasteColumnWidths Pastes the column widths.
x1PasteComments Pastes the cell comments only.
x1PasteFormats Pastes the formats only.
xlPasteFormulas Pastes the formulas only.

xlPasteFormulasAndNumberFormats

Pastes the formulas and number formats.

x1lPasteValidation

Pastes the cell validation only.

x1lPasteValues

Pastes the cell values only.

x1PasteValuesAndNumberFormats

Pastes the cell values and number formats.

The Operation parameter requires an X1PasteSpecialOperation constant value. See the appendix for a list.

21 1dey)

.
.

'9€§
W
pte
=
UQ
=
=3
O
(¢)
—
7]

+++

Add Comments

to a Cell

hen several people work on a single
workbook, comments can provide useful
information. Excel associates a comment

with an individual cell and indicates its presence with a
small, red triangle in the cell’s upper right corner. You
can view a comment by clicking in the cell or by
positioning your mouse pointer over the cell. In VBA, by
using the Addcomment method with the Range object,
you can add a comment to any cell in your worksheet.
When the user creates a comment, Excel adds the user’s
name to the comment. When you create a comment by
using the Addcomment method, VBA does not automatically
include a username. The following is the syntax for the
AddComment method:

expression.AddComment (Text)

Add Comments to a Cell

The expression is the variable or range object that
represents the cell to which you want to add a comment.
The following code adds a comment to cell A1:

Cells(1,1) .AddComment "Sample Comment Text"

If you want to add the same comment to multiple cells,
you can use a looping statement, such as a Do Until
loop, to cycle through a range of cells. See Chapter 6 to
learn more about loops.

If you attempt to add a comment to a cell that already
contains a comment, Excel returns an error message. To
avoid errors, you can use the clearComments method to
clear existing comments. The following is an example of
the clearcomments method:

Cells(1,1) .ClearComments

@ Add aloop, if you are going to
loop through a series of cells.

9 Add case statements, if you are
going to add comments
selectively.

Note: See Chapter 6 to learn more
about loops and case Statements.

9 Add a clearcomments statement.
® The range.

The clearcomments statement
clears any comments that are already
in the cell.

@ Add an Adacomment statement.
® The range.
The comment.

The addcomment statement adds
comments to your worksheet.

6 Press Alt+F11 to switch from the VBE
to Excel, and run the macro.

@

L == B
7 e S sal R
| sub AddComments()
Dim RowNum As Integer
RowNum = 2

Do Until IsEmpty(Cells(RowNum, 4])4—0
Select Case Cells(Ro m, 4)
Casels < OJ
Cells(RowNum, 4).ClearC t
Cells(RowNum, 4).AddComment

"Bob, please regw.“
Casels>=0

Cells(RowNum, 4).ClearComments
End Select

RowNum =RowNum + 1
Loop

End Sub

=Wl |

el T=T=Em
410 i e vt s Doy b Dun bbibe i o R

Sub AddComments()
Dim RowNum As Integer
RowNum =2
Do Until IsEmpty(Cells(RowNum, 4))
Select Case Cells{RowNum, 4)
Casels <0
Cells(RowNum, 4).ClearC ts <€ 9
Cells(RowNum, 4).AddComment 4—9
"Bob, please review." <€——
Case Is >=
Celis(Ro
End Select
RowNum = RowNum + 1
Loop
End Sub

Num, 4).ClearComments

=Wl |

The worksheet before

you run the macro.

Projected Sales

1 | Manth Actusl Sales Difference
: | January 124103 5 175083 550980
+ February 107,400 157,134 49734
« March 139,194 119,436 (19.759)
April 139,596 122,307 (17,289)

« May 169,264 199,114 29,850
r June 177,753 141629 (36,124)
» July 100,266 170,731 70465
s August 148,391 143,542 (4,849)
= Seplember 146,509 158,852 12,343
n Oclober 126,461 114,788 (11672)
u November 120,550 120,308 (242)
u December 199,111 171,699 (27412)
$1,698598 51,794,623 596,025

21 1dey)

.
.

'9€§
W
pte
=
UQ
=
=3
O
(¢)
—
7]

The worksheet after

you run the macro.

The macro adds the

1 Manth Projected Sales Actusl Sales Difference
comments to your : January 124,103 § 175083 550880
Worksheet. + February 107,400 157,134 49734

« March 139,194 119435 (19759) b

April 139,596 122,307 (17289) |

« | May 169,264 199,114 29850 |

» June 177,753 141,629 (36,124)

» July 100,266 170,721 70465

s August 148,391 143,542 (4,848)

« September 146,509 158,852 12,343 L

w Oclober 126,461 114,789 (11672),

u Movember 120,550 120,308 :242}‘

v December 199,111 171,699 (27412)

$1.608,508 $1.794,623 $96.025

S A oty 5

i | - +

When you add a comment to a cell, Excel creates a Comment object for that cell. The Comment object is part of the
Comments collection, which contains all comments in a worksheet. You can reference comments using an index
value. For example, to access the second comment in a worksheet, you would type the following:

Example:
SecondComment=ActiveSheet.Comments (2) . Text

You may want to delete comments that a particular author created. The Comment object provides an Author
property that you can use to return the author. Excel adds the author when it creates a comment. The following
example deletes a comment by a particular author:

Example:
CountComments = ActiveSheet.Comments.Count
For N = 1 To CountComments

If Comment (N).Author = "John Smith" Then
Comment (N) .Delete
End If

Next

Automatically Fill

a Range of Cells

data series has an intrinsic order such as days of the

week, months of the year, or numeric increments. You
can use the Autorill method to create an AutoFill using
VBA. The following is the syntax for the autori11 method:

expression.AutoFill (Destination, Type)

The expression is the variable or range object that
represents the cell or cells you want to use when you
create an AutoFill. VBA uses the values in this source
range to determine the type of values to add to the cells
in the destination range. For example, if the source range
is cells A1 and A2 and the cells contain the values
January and February, respectively, Excel fills the cells in
the destination range with the months of the year starting
with March.

Automatically Fill a Range of Cells

I n Excel, AutoFill helps you quickly enter data when a

The autorill method has two parameters, Destination
and Type. The Destination parameter, which is
required, must contain a range indicating which cells to
fill. The pDestination range must encompass the source
range. For example, if the source range is A1 and A2,
these cells must be included in the destination range, as
shown in the following example:
Range ("Al:A2") .AutoFill _

Destination:=Range ("Al:A12").
VBA uses the values in the source range to determine the
pattern you want to use when adding values to the cells
in the destination. If you want to tell VBA the pattern to
use to add values to the destination, you must include
the Type parameter. The Type parameter accepts an
X1AutoFillType constant, which specifies the type
of fill.

Fill a Range

@ Type your autorill
command.

® The range you want to
use as the source.

® The cells you want to fill.
The fill type.

This example uses
months.

Q Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

The worksheet after you
run the macro.

The source cells.

® The destination cells.

—=-Range("A1:A2").AutoFill
Destination:=Range("A1:A12"), Type:=xIFjliMonths
End Sub

e 2 e

Create an AutoFill # U — —_—

E g, " s -
@ Create your autorill | sub AutoFilicells() R 3
command. 0——>Range(".n1 ").AutoFill Destination:=Range("A1;A7")

Range("Af").Select
® The range you want to End Sub
use as the source.

21 1dey)

.
.

The cells you want to fill.

No fill type is given
because VBA bases the
fill type on the cell you
use as the source.

9 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro. -)

'9€§
W
pte
=
UQ
=
=3
O
(¢)
—
7]

The worksheet after you
run the macro.

The macro fills the cells.

The source cell.

) : 0
® The fill.

o= —E

The X1AutoFillType constant values specify how Excel fills the range of cells for the Destination parameter.
The following table describes each of the X1AutoFillType constant values.

CONSTANT DESCRIPTION

x1FillDays Increments the values by days. If only one date is specified for the source, it increments by
one day. If multiple dates are specified, it uses those dates to determine the increment value.

x1FillFormats Applies the formats of the source cells to the destination cells.

x1FillSeries Creates a series based upon the contents of the source range.

x1FillWeekdays Increments based on weekdays, omitting dates that fall on Saturday or Sunday.

x1GrowthTrend Fills cells based on a growth trend.

x1FillCopy Copies the formatting and values, and increments based on source values.

x1FillDefault The default value. Excel determines the fill type based upon values in the source cells.

x1FillMonths Increments by month.

x1FillValues Copies the values in the source cells.

x1FillYears Increments the year portion of the date.

x1LinearTrend Fills cells based on a linear trend.

Copy a Range to

Multiple Sheets

ou can copy a range of cells and place the

contents in the same location on multiple sheets

with the FillAcrossSheets method. When you
use this method, Excel copies the cells you specify to each
worksheet you specify. You can copy everything in the
range of cells, just the values in the cells, or just the
formatting. The following is the syntax for the
FillAcrossSheets method:

expression.FillAcrossSheets (Range, Type)

The expression is the variable or object that represents
the worksheets to which VBA copies the range of cells. The
worksheets must exist within the current workbook and
you must include the worksheet that you are copying
from in the list.

The FillAcrossSheets method has two parameters:
Range and Type. The Range parameter, which is

Copy a Range to Multiple Sheets

required, specifies the range of cells you want to copy to
the other worksheets. You can specify the range of cells
using any valid range statement. See Chapter 11 for more
information on specifying ranges.

The Type parameter is optional. Use this parameter to tell
VBA what you want to copy. The Type parameter accepts
one of the three x1Fi11with constant values. If you do
not specify a Type parameter, VBA uses the default value
of x1Fillwithall, which copies the entire contents of
the range of cells, including the formatting. If you want to
copy only the cell contents, use the x1FillwithContents
constant value. This constant value instructs Excel to copy
everything but the cell formatting. If you want to copy
only the formatting, use the x1FillwithFormats
constant value. When you use x1FillwithFormats,
Excel ignores the values and applies the formatting only.

@ Declare a variable to store your
array.

You use an array to store the
list of worksheets to which you
want to copy.

@ Create your array and store it
to the variable you created.

9 Activate the sheet you want to
copy.

Note: See Chapter 5 to learn more
about arrays.

o Add your FillAcrossSheets
command.

® The sheets to which you want
to copy.

® The range you want to copy.
What you want to copy.

Use x1Fillwithall to copy
everything.

Use x1FillWithContents
to copy the contents only.

Use x1FillwithFormats t0
copy the formats only.

@

e——FShnals(WS).Fillﬁ: rossSheets

2] ==}

Sub CopyToOtherSheets() g
Dim WS As Variant<—o
WS = Array("Sheet1", "Sheet2", "Sheet3a "Shuw')<—b
Worksheets("Sheet1”).Activate <—b

End Sub

= T

el
S gy g

Sub CopyTdPtherSheets()
Dim WS As Variant
WS = Array("Sheet1”, "Sheet2", "She¢et3", "Sheetd")
Worksheyts("Sheet1”).Activate

Worksheets("Sheet1”).Range("A1:D8"),
Type:=xIFillWithAll
End Sub

-]

e Move to one of the "%.. e el g
sl g o ol | Sub CopyToOthersheets() B =
copied. Dim WS As Variant =

WS = Array("Sheet1”, "Sheet2", "Sheet3", "Sheetd") ()

O Select range Al Worksheets("Sheet1").Activate =

Sheets(WS).FillAcrossSheets B

@ Press Alt+F11 to Worksheets("Sheet1").Range("A1:D8"), S
switch from the Type:=xIFillWithAll s
VBE to EXCB|, and Worksheets("slleotz"}.nctivate<—6
run the macro Range("A1").Select 8

: End Sub =
e
=)
oa
g
=
e - e
®,
Your macro copies R s Y
the range you ,, st
specified to the - "y
WorkSheets yOU ' :ﬁl I‘ﬂ"ivn 1 ‘ioslun 2 ; Reglon 3
specified. + January § 145914 5 136905 S 170,328
1 February 159,412 197,966 159,239
« March 181873 103,739 114,754
« April 117,738 187,543 141,966
s May 160,519 179,471 143,850
r June 117,444 177,723 171,647
+ Total $ 882900 § 993347 § 901824

Aen T ” —=

You can fill a range of cells in a specific direction within a worksheet using one of the fill methods. For example, you
may want to fill across a worksheet with the first value in the left corner of the range. VBA offers four Range object
methods for filling in a specific direction: F111Up, FillDown, Fil11Right, and FillLeft.

You can use the F111Up method to fill a range of cells with the value in the last cell of the range. For example, if you
have the range A1:A10 and you apply the Fi11Up method, as shown here, the value in cell A10 copies and pastes
to cells AT:A9.

Example:
Range ("Al:A10") .FillUp

The FillDown method works opposite to the Fi11Up method. This method takes the value in the first cell of the
range and copies it to all other cells.

You can use the Fi11Right method to fill across rows. For example, if you use this method with the range A1:G1,
Excel takes the value in cell A1 and pastes it into cells B1 to G1. The FillLeft method works opposite to the
FillRight method. This method takes the value in cell G1 and pastes it into cells A1 to F1.

Add a

Border

hen creating an Excel worksheet, you can

highlight important information by adding a

border. In VBA, you can add borders to a
range of cells by using the Range . Borders property. Use
an x1BordersIndex constant to specify where you want
to place the border. The following is a list of
X1BordersIndex constant values: x1EdgeTop,
x1EdgeBottom, x1EdgeRight, x1EdgeLeft,
x1InsideHorizontal, x1DiagonalDown, and
x1DiagonalUp. If you do not specify an X1BordersIndex
constant, Excel places a border around the outside edge
of every cell in the range.

You can set the line style, weight, and color of a border.
Use an x1LineStyle constant value to set the style of
the line. Use an Xx1BorderWeight constant value to set
the weight of the line. See the appendix for a list of

Add a Border

X1LineStyle and X1BorderWeight constant values. You
can use a ColorIndex, RGB function, or theme color to
set the color of a border.

Use a colorIndex value between 1 and 64. See the section
“Copy and Paste Ranges of Cells” for a partial list of
ColorIndex values. Set the ColorIndex to
x1ColorIndexAutomatic to use the default line color. If
you want to use an RGB color value, use the reB function.
To assign a theme color, use the Border . ThemeColor
property with an x1ThemeColor constant. See the “Extra”
portion of this section for a list of x1ThemeColor
constants. Use the Border . TintAndShade property to
lighten or darken a color. The Border.TintAndShade
property can be set to any value between -1 and 1. A value
of -1 produces the darkest color, a value of 0 produces a
neutral color, and a value of 1 produces the lightest color.

@ Create a border.
® The range.
® The line style.
The weight.

The theme color.
® The tint and shade.

e R T Bl
B b e st fpme [y e OB Adbe e b PR
Sub AddBorders()
With Range{"cz:Fz"1.Borders(xIEdgeBottom)<—0
.LineStyle = xIContinuous
Weight = xIThick€——
.ThemeColor = xIThemeColorAccent1
.TintAndShade = 0.25
End With
End Sub

=fi

(4]
1 B e st by ey B D Abbe don i

Sub AddBorders()
With Range("C2:F2").Borders({xlEdgeBottom)
.LineStyle = xIContinuous
Weight = xIThick
.ThemeColor = xIThemeColorAccent]<€—
.TintAndShade = 0.25
End With
End Sub

® Color index. R e e = e
e | e <] =
RGB color. [.LineStyle = xIContinuous 2 %
Weight = xIThick P
9 Press Alt+F11 to .ThemeColor = xIThemeColorAccent1 2
switch from the .TintAndShade = 0.25 N
End With
VBE to EXCBL and With Range("C9:F9").Borders(xIEdgeTop) !\?
run the macro. LineStyle = xIConti s
Weight = xIThin
.Colorindex =5 S
End With =
With Range("C9:F9").Borders(xIEdgeBottom) E'
.LineStyle = xiDouble UQ
Weight = xIThick
.Color = RGB(0, 0, 255) «—— §‘
End With (=
End Sub =‘
sl | 2 O
<
The worksheet after B e e e e e hoses IR
you run your macro. EIo U B 0R3S W5 Enis on e s
V/BA places a border Syt ; N . s——
1 [Sales
around the ranges g Feree Maonth Region 1 Region 2 Region 3
you Specified. ' January S 145914 5 136905 § 170,328
‘ February 159,412 197,966 159,239
March 181,873 103,728 114,754
April 117,738 197 543 141,966
May 160,519 179,471 143,800
. June 117 444 177,723 171,647
Total § 882,900 § 993347 § 901,824

o] = e

You can set the color of your border to a theme color. In Excel, whenever you choose an option that gives you the
ability to apply a color, theme colors appear at the top of the gallery. For example, if you click the Home tab, click
the down arrow next to the Borders button, and then click Line Color, a gallery appears with Theme Colors at the
top. You can use X1ThemeColor constants to apply these colors to your borders. When you position your mouse
pointer over a color below the first row, a Lighter Value appears. To match these colors, set the TintAndShade
value to the Lighter Value. For example, if the Lighter Value is 25%, set the TintAndShade to .25.

The following is a partial list of X1ThemeColors.

VALUE DESCRIPTION

x1ThemeColorAccentl The 5th column in the theme color gallery
x1ThemeColorAccent?2 The 6th column in the theme color gallery
x1ThemeColorAccent3 The 7th column in the theme color gallery
x1ThemeColorAccent4 The 8th column in the theme color gallery
x1ThemeColorAccent5 The 9th column in the theme color gallery
x1ThemeColorAccent6 The 10th column in the theme color gallery
x1ThemeColorLightl The 1st column of the theme color gallery
x1ThemeColorDarkl The 2nd column of the theme color gallery
x1ThemeColorLight2 The 3rd column of the theme color gallery
x1ThemeColorDark?2 The 4th column of the theme color gallery

Find Specific

Cell Values

ou can use the Find method to search for a value

within a range of cells. This method is similar to

the Find command in Excel. The following is the
syntax for the Find method:
After, LookIn, LoOOKAt,
MatchCase)
The what parameter is the only required parameter. Use
the what parameter to tell VBA what you want to find.
You can use the after parameter to specify the cell after
which you want to start searching. If you omit this
parameter, Excel starts the search after the top left cell in
the range. The LookIn parameter tells VBA what you
want to search. You can assign one of the x1FindLookIn
constants: x1values searches cell values, x1Comments
searches comments, and x1Formulas searches formulas.

Find Specific Cell Values

expression.Find (What,
SearchOrder, SearchDirection,

The Lookat parameter tells VBA how to match your
search criteria. Assign the LookAt parameter x1whole if
you want your search criteria to match the contents of the
cell exactly; assign x1part if you want VBA to return a
match if your search criteria is found anywhere in the cell.

The searchorder parameter tells VBA the order in which
you want to search. Assign the value x1ByRows if you
want to search by rows, or assign the value x1ByColumns
if you want to search by columns.

Use the searchDirection parameter to indicate the
direction you want to search. A value of x1Next finds the
next matching value. A value of x1pPrevious finds the
previous matching value.

Assign True to the MatchCase parameter if you want
your search to be case-sensitive.

In this example, the user enters
a value in a cell and VBA
searches a range for the value.

Declare the variable VBA uses
to store the search criteria.

9 Type on Error Resume
Next.

This statement tells VBA to
continue processing if an error
occurs.

Note: See Chapter 8 to learn more
about handling errors.
9 Activate the relevant worksheet.

If a procedure works only with a
particular worksheet, you
should activate the worksheet.

9 Store to a variable the contents
of the cell in which the user
enters the search criteria.

@

l =)
A T b e pist fyma Dy e Dmn Labbe fiedoe i %
il éub Findlilatcflﬁ
Dim FindData As Range‘—o
On Error R Next <& 9
End Sub
= T

L] ToT= B
[b e et Gy Daiy B Dl Adhbe et e .l
il éub Findlilatcflﬁ
Dim FindData As Range
On Error Resume Next
Worksheets("Search”).Activate 4—9
Set FindData = Rango("F1'}<—9
End Sub

= T | o

e Type your Find command.
® The range you want to search.

® The data for which you are
searching.

In this example, the data is
stored in the Findpata
variable.

What you want to search.

How you want to match your
search criteria.

® The search order.

® Your instruction as to what
VBA should do when it finds
the item.

o Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

The cell in which the user
places the search criteria.

When you execute the macro,
if VBA finds the item, Excel
moves to the first instance of
the item.

=)
T e e S T e o
Sub FindMatch()
Dim Findn'a As Range
On Error Rgsume Next
Worksheetp("Search"”).Activate
Set FindD = Range("F1")
e——FRange("Jﬁ :D25").Find
(What:=FindData,
Lookin:=xIValues, €———
—t—> LookAt:=xIPart,
SearchOrder:=xIByColumns). 4—.
Activate
End Sub
o LT |
_— - @ ’.,
= ¥ - 8
5 L
' R.ginn- aw Produce Units Sokét What are yDu‘ loaking for? Qz-—=
: Region1 Q1 R6790 7000 |
: R6790 5000 |
« Regionl Q3 R6790 4000 |
Region1 Q4 R6790 6000 . _|
+ Region1l Q1 X5495 4300
+ Region1 Q2 X5495 5450
+ Region1 Q3 X5495 6975
s Region1 Q4 %5495 2004
+ Region1l Q1 Y7746 5196
« Region1 Q2 Y7746 5123
= Region1 Q3 Y7746 5248
o Region1 Q4 Y7746 4222

] -

The introduction to this task does
not mention two Find method
parameters: MatchByte and
SearchFormat. If you have
installed double-byte language
support on your computer, assign
the value True to the MatchByte
parameter.

The SearchFormat parameter
enables you to match formats. If
you assign the value True to this
parameter, you must specify the
format for the Application.
FindFormat object.

VBA remembers the values specified
for the What, LookIn, LookAt,
SearchOrder, and MatchByte
parameters. If you run a search
again without setting these
parameter values, Excel uses the
settings from the previous Find or
Replace method execution. These
values are also set when you run a
Find or Replace from within Excel.
To avoid running searches that have
unexpected results, you should set
these parameters each time you run
the Find method.

You can continue a search and find
the next match using the FindNext
or FindPrevious methods. When
using these methods, you must
specify an After parameter. The
After parameter tells Excel the cell
after which you want to execute the
next search.

Example:
SearchRange.FindNext (After)

SearchRange. _
FindPrevious (After)

21 1™dey)

.
.

'9€§
w
pte
=
UQ
=
=3
O
(¢)
—
7]

Find and Replace

Values in Cells

ou can use the rReplace method to search for and

replace values within a range of cells. This method

is similar to the Find and Replace command in
Excel. The following is the syntax for the Replace method:

expression.Replace (What, Replacement, LookAt,
SearchOrder, MatchCase, SearchFormat,
ReplaceFormat)

The Replace method has two required parameters: what
and Replacement. The what parameter tells VBA what
you want to find. The Replacement parameter tells VBA
with what you want to replace the data you find.

The Lookat parameter tells VBA how to match your
search criteria. You can assign the Lookat parameter
x1whole if you want your search criteria to match the
contents of the cell exactly. You can assign x1prart if you
want VBA to return a match if your search criteria is
found anywhere in the cell.

Find and Replace Values in Cells

The x1Searchorder parameter tells VBA the order in
which you want to search. You can assign the value
x1ByRows if you want to search rows, or assign the value
x1ByColumns if you want to search by columns.

You can assign True to the Matchcase parameter if you
want your search to be case-sensitive.

The searchFormat and the ReplaceFormat parameters
tell VBA the format you want to search for or replace. If
you want to search for or replace a format, then you must
set the appropriate parameter to True and specify the
format properties for the application.FindFormat
object or the ReplaceFormat object, or both. For
example, to replace text with a bold format, you can use
the following code:

Application.ReplaceFormat.Font.FontStyle = _
"Bold"

0 Type on Error Resume Next.

This statement tells VBA to continue
processing if an error occurs.

Note: See Chapter 8 to learn more about handling
errors.

Q Activate the relevant worksheet.

If a procedure works only with a particular
worksheet, activate the worksheet.

e Type your ReplaceFormat OF
FindFormat command.

In this example, you make the replacement
text bold and italic.

@ Type your Replace command.
® The range you want to search.
® The data for which you are searching.
Your replacement.
Set your ReplaceFormat object t0 True.
VBA uses your ReplaceFormat command.
® How you want to match your search criteria.

e Press Alt+F11 to switch from the VBE to
Excel, and run the macro.

@

e——bﬂan ge("A2:D13").Replace

el =T=E=
T, g e g

o= =] o s s

Sub ReplaceCeliContents()
On Error Resume Noxt<—o
Worksheets("Replace Data").Activate < 9
Application.ReplaceFormat.Font.FontStyle = 4—9
"Bold Italic”
End Sub

= T

[

Sub ReplaceCeliContents()
On Error RfBume Next
Worksheets("Repl Data").Acti
Applicationg.ReplaceFormat.Font.FontStyle = _
"Bold Itylic”

What:="Region 1",

Replacement:="North",<€——

~t—>ReplaceFormat:=True,
LookAt:=xIWhole

End Sub

Your worksheet before ot it
you execute your macro. o '

' ‘R.amn—l Produst u;m. Sald
: Region 1 RE6790 7000 we |
: Region 1 RE790 5000 s |
Region 1 R6790 4000
s Region 1 RE790 6000
Region 2 X5495 4300
- Region 2 %5495 5450
Region 2 X5495 6975
Region 2 Xx5495 2004
s Region 1 Y7746 5196
« Region 1 Y7746 5123
= Region 1 Y7746 5248
o Region 1 Y7746 4222

i | o |-

Your worksheet after you
execute your macro.

The macro replaces the R —T

Region 1 text with North T
i o | . North R6790 7000 |
and applies bold and italics. \North RETO0 5000 =
« North RE790 4000
. North R6790 6000

Region 2 X5495 4300
+ Region 2 %5495 5450
Region 2 X5495 6975
Region 2 X5495 2004

« North Y7746 5196
w North Y7746 5123
« North Y7746 5248
u North Y7746 4222

o] aptrn Dot 5
i | oo, |-

When you specify a value of True for the SearchFormat parameter or for the ReplaceFormat parameter, VBA
looks for the search and replacement format settings. If you want to use formatting as part of the search criteria,
you need to specify the format settings by using the FindFormat property of the Application object. With the
ReplaceFormat parameter, you need to specify the replacement format settings by using the ReplaceFormat
property. Set these properties at the top of the procedure, before the code that sets the associated parameter. You
can use these properties to set the Font object properties for searching and replacing text. You can use the With
statement to set the property values. For example, to set replacement text properties, you can type code similar to
the following:

Example:

With Application.ReplaceFormat.Font
.Name = "Arial"
.FontStyle = "Bold"
.Size = 12

End With

21 1™dey)

.
.

'9€§
w
pte
=
UQ
=
=3
O
(¢)
—
7]

Convert a Column of Text

into Multiple Columns

hen you need to break a column of text into
multiple columns, you can use the
TextToColumns method. For example, if a

list contains both first and last names in one column, you
can use the TextToColumns method to break the list into
two columns — one for the first name and one for the
last name. When using the TextToColumns method, use
the Range object to specify the column you want to parse
into multiple columns.

The TextToColumns method provides several optional
parameters you can use to specify how to separate the
text. Use the Destination parameter to specify the range
where VBA should place the results.

A delimiter is a character, such as a comma or space, which
indicates a separation between strings. Use the DataType
parameter to specify a constant value of x1Delimited if
the text has a delimiter. Use the constant value of
x1Fixedwidth if each column of text is a fixed width.

Convert a Column of Text into Multiple Columns

Use one of the Xx1TextQualifier constants,
x1TextQualifierDoubleQuote, x1TextQualifierNone,
or x1TextQualifierSingleQuote, to indicate the text
qualifier character.

Specify a value of True for the consecutiveDelimiter
parameter to have consecutive delimiters treated as one.
For the Tab, Semicolon, Comma, Space, and other
parameters, set the value to True for each delimiter that
is used in the specified range. If you specify other as the
delimiter, set the value for the otherchar parameter to
the delimiter character.

The FileInfo parameter contains information pertaining
to parsing individual columns in the range, with the first
element being the column number, and the second
element being one of the x1columnDataType constants.

Specify the character used to separate decimals with the
DecimalSeparator parameter, and the character used to
separate thousands with the ThousandsSeparator
parameter.

@ Name your procedure.

@ Declare a Range object

variable.
(3]

Store the column you
want separate to the
Range 0bject variable.

Create your
TextToColumns
command.

® Where you want to place
the separated text.

® The type of data.
The delimiter.

Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

e— =3 RangeVar.TextToColumns

2] e =]
il éub geparateéo.l.umn(-}-ho
Dim RangeVar As Range‘-@
Set RangeVar = Cuhﬂnnsﬂ)‘—e
End Sub
. — =

2}
410 0 e st K Doy B Du bbb lnden o

il éub éeparateeo.l.umn(-}-
Dim RangeVar As Range
Set RangeVar = Columns(1)

Dastiuatinn:naang,(us1.'.')‘4_.
-0

DataType:=xIDelimited,
Comma:=True <€—
End Sub

The worksheet before s A

you run your macro. mmI

1 [Hansen, April i o
+ Anderson, Tom
1 |Adams, Jerry
Peterson, Paul
+ Garcia, Juan

« Andrews, Andy
+ Wilson, Sam
Jones, Wendy
» Smith, Fred

w Jensen, George
n Adams, Mary

¢1 dey)

.
.

The worksheet after you
run your macro.

§
=~
P o
=
vQ
=
(s
=
c
ao
=
7

The macro separates 2 g
one column of data into hianecn, ool __hanaen Aprl ="

¢+ Anderson, Tom Anderson Tom
tWO co|umns Of data. 1 Adams, Jerry Adams Jerry
Peterson, Paul Peterson Paul
+ Garcia, Juan Garcia Juan
« Andrews, Andy Andrews Andy
r Wilson, Sam Wilson Sam
Jones, Wendy Jones Wendy
» Smith, Fred Smith Fred
w Jensen, George Jensen George
n Adams, Mary Adams Mary

i | o -

You can use the Parse method to separate data values into multiple columns. When using the Parse method, you
specify how the string should break. The Parse method has two optional parameters. The first parameter,
ParseLine, is a string containing left and right brackets, indicating where the columns should split. For example,
[xx][xxxx] breaks each string so that the first two characters are placed in the first column and the second four
characters are placed in the second column. VBA ignores any other characters. For example, for the string
“0S1024Y26,” Excel would place the first two characters (OS) in the first column and the second four characters
(1024) in the second column. Excel would ignore the remaining characters. The second parameter, Destination,
specifies the range where the Parse method places the data. If the range has more than one cell, Excel uses the
upper left corner of the range as the first cell.

Example:

Worksheets (1) .Range ("Al") .Parse __
ParseLine:="[xx] [xxxx]", _
Destination:=Range ("B1l")

Perform

a Sort

ou can use VBA to sort your data, and you can

have several levels of sort. For example, you can

sort a list by last name and within last name by
first name.

If you have imported your data or if you constantly
update your data, you may not know the exact range the
data encompasses. If you know the location of any cell in
the range, you can use Selection.CurrentRegion to
determine the range. Activate any cell in the range and
use Selection.CurrentRegion to select the block of
cells that surround the active cell. VBA selects everything
above, below, to the left, and to the right until it reaches
a blank column or row.

Use the Add method to add each level of sort. Create your
highest level first and then create each additional level in

Perform a Sort

the order you want to sort. For example, if you want to sort
by last name, then within last name by first name, create
the last name sort, and then create the first name sort. You
may want to assign a range name to each column.

The add method has five parameters: kKey, Sorton,
order, CustomOrder, and DataOption. Use the Key
parameter to specify the sort field. You can use a range
name or a range object. Use the Sorton parameter to
specify the attribute to sort on. You can sort on values,
cell color, font color or icons by specifying the proper
X1Sorton constant value. See the “Extra” portion of this
section for a list of x1sorton constant values. Use the
order parameter to specify the sort order. Set the order
parameter to x1Ascending to sort in ascending order or
x1Descending to sort in descending order.

@ Declare a Range object.

Q Activate the worksheet
containing the data you
want to sort.

© Activate a cell in the
range you want to sort.

@ Assign the data range to
the Range object you
declared.

@ Assign a range name to
each field.

L] ToT= B

| sub sortpata() e
Dim DataRange As Range 4—0
ActiveWorkbook.Worksheets(j nuﬂ"LA:‘livatn‘—@
Range("A1").Activate
Set DataRange = Solnction.ﬁunnntﬂogion‘—e

End Sub

= T |

ey =)
7, g g e i
Sub SortData()
Dim DataRange As Range
ActiveWorkbook.Worksheets("Sheet1").Activate
Range("A1").Activate
Set DataRange = Selection.CurrentRegion

—0

End Sub

= T

G Clear any Sorts on the range.

o Add the first sort level.
® Field you want to sort.
® The attribute you want to sort on.
The sort direction.
The data option.

(8]

Add any additional sort levels.

o——FAcliVQWorkbnok.Workshuts ;

0= :
=3 ActiveWorkbook.Worksheets

| Sub SortData()
Dim DataRange As Range
ActiveWorkbook.Worksheets("Sheet1"”).Activate
Range("A1").Activate
Set DataRange = Selection.CurrentRegion

¢1 1dey)

.
.

Range("A1").Name = "RecNo" s
Range("B1").N = "LastN. -

Range("C1").Name = "FirstName" S

Range("D1").Name = "PurchaseAmount” ?T‘

. i o

ActiveWorkbook.Worksheets _ 0%

{J\ctiveShnet.Namnl.Sorl.SortFields.Q!ear‘-@ s

End Sub :F‘

nd Su

=

=il | =

=

Aa

i e i e et et ey B D Bibbe edon ey e 7))

ActiveWorkbook.Worksheets
(ActiveSheet.Name).Sort.SortFields.Clear

(ActiveSheet.Name).Sort.SortFields.Add
Key:=Range("LastName"),
SortOn:=xISortOnValues,

(ActiveSheet.Name).Sort.SortFields.Add _

Key:=Range("FirstName"), _

SortOn:=xlISortOnValues,

Order:=xlAscending, DataOption:=x|SortNormal
End Sub

=4l

You can use the SortField. SortOn property to
retrieve or set the sort attribute. The syntax for the
SortField.SortOn property is expression. SortOn.
The expression can be any variable that represents the
SortField object. Use an X1SortOn constant value to
tell Excel the attribute to sort on.

XLSORTON CONSTANT VALUE ATTRIBUTE

x1SortOnvValues 0 Values
x1SortOnCellColor 1 Cell Color
x1SortOnFontColor 2 Font Color
x1SortOnIcon 3 lcon

You can use an X1 SortDataOption constant to
specify how to treat numeric data when you perform
a sort.

XLSORTDATAOPTION DESCRIPTION
CONSTANT
x1SortNormal Sort text and numeric

data separately.

Treat text as numeric
data for sort.

x1SortTextAsNumbers

continued 9 @

Perform a

Sort (continued)

se the customorder parameter if you want to

sort by a custom order such as days of the week

or months of the year. Use the Dataoption
parameter with one of the x1sortbataoption constants
to specify how to treat numeric data. See the Extra
section for a list of Xx1SortDataOption constant values.

You can use a with statement to set the methods and
properties associated with a sort. See the Chapter 4 section
“Change the Properties of an Object” to learn more about
the with statement. Use the sort.SetRange method to
set the range of the sort. Use the Sort .Header property to
specify whether the sort range has headers. Set the sort.
Header property to x1Guess to have Excel determine if
there is a header, x1No if the range does not have headers,

Perform a Sort (continued)

or x1ves if the range has headers. The default value is
x1No. Use the Sort.MatchCase property to specify
whether the sort is case sensitive. Set the property to True
for a case-sensitive sort or False for a non-case-sensitive
sort. Use the Sort.Orientation property to set the
orientation of the sort. Set the Sort.orientation to
x1SortColumns to sort by columns or to x1SortRows to
sort by rows. The Sort .SortMethod property sets the sort
method for Chinese languages; x1Pinyin is the default
and works with the English language. Use x1Stroke to
sort by the quantity of stokes for each character. Use
x1Pinvin for a phonetic Chinese sort order. Use the Sort.
Apply method to apply the sort. VBA does not sort if you
do not include the sort.apply method.

o

Use awith statement to
set the methods and
properties.

Set the range you want to
sort.

Specify whether the range
has headers.

@ Specify whether the sort
should be case-sensitive.

Specify the orientation.
Apply the sort.

Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

®e06

ActiveWorkbook.Worksheets
(ActiveSheet.Name).Sort.SortFields.Add
Key:=Range("FirstName"),
SortOn:=xISortOnValues, _
Order:=xIA ling, DataOpti

ISortNormal

0——»With ActiveWorkbook.Workshee tiveSheet.Name).Sort
.SetRange DataRange
@_».Hoador = lees‘—@

MatchCase = False

Orientati = xlSortCol
-Apply

0--».«; With

End Sub

=Wal |

il =T=RE
ActiveWorkbook.Worksheets
(ActiveSheet.Name).Sort.SortFields.Add
Key:=Range("FirstName"),
SortOn:=xISortOnValues, _
Order:=xIA ling, DataOpti

ISortNormal

With ActiveWorkbook.Worksheets(ActiveSheet.Name).Sort
.SetRange DataRange
.Header = xlYes
.MatchCase = False

penssiuiiel || e
-Apply
End With
End Sub

—0B

= T

The worksheet before = o ieoe 9
e 1
you run the macro. = &
o 1 =
[[[[: G W e (¢°)
i I.asl Name First Name Purchase Amount o | -
3 1 Wilson George 163.00 umve et |
1 2 Levitt Wanda 363.00 -
1 3 Wilson MNeil 359.00 Sfl
5 4 Hall Sharon 200.00
8 5 Hall Bob 183.00 s
] & Adams Sonya 53.00
" 7 Levitt Harry 475.00 o
" 8 Hall Leslie 405.00 =
n 9 Levitt MNorman 465.00 E
1n 10 Levitt lay 22000 :
11 Adams Brenda 452,00 oq
{0 12 Wilson Glenda 50.00
" 13 Adams April 438.00 s
18 14 Wilson Amy 68.00 —
1 15 Adams Philip 205.00 -t
u 16 Hall Mitch 310,00 =
Lot : q —
e
_ 7
The worksheet after you R pes e o
run the macro. - &
The macro sorts the data. L 2] . . ; T
i I.asl Name First Name Purchase Amount S|
' 13 Adams April 438,00 e 1|
1 11 Adams Brenda 492.00
] 15 Adams Philip 209.00
5 6 Adams Sonya 53.00
s 5 Hall Bob 183.00
8 Hall Leslie 408.00
" 16 Hall Miteh 310,00
" 4 Hall Sharon 200,00
n 7 Levitt Harry 475.00
1 10 Levitt lay 22000
5 Levitt Norman 465.00
L 2 Levitt Wanda 353.00
i 14 Wilson Amy B2.00
18 1 Wilson George 163.00
1 12 Wilson Glenda 50,00
3 Wilson Meil 359.00
T —= :

If you want to add a custom sort, you must list each of the sort values in the order you want to sort as shown in the
following code, which sorts by months in a year:

Example:
ActiveWorkbook.Worksheets ("Sheetl") .Sort.SortFields.Add _
Key:=Range ("Month"), _ ' Month is a named range

SortOn:=xlSortOnValues,

Order:=x1Ascending,

CustomOrder:= _

"Jan, Feb,Mar, Apr,May, Jun,Jul, Aug, Sep, Oct,Nov,Dec",
DataOption:=xlSortNormal

Perform

a Filter

ou can use the Range.AutoFilter method to

filter the data in your worksheet. For example, if

you have four quarters of data for regions one to
four and you want to look at regions one and two and
quarters one, two, and three, you can use the rRange.
autoFilter method. The following is the syntax for the
Range.AutoFilter method:

Range.AutoFilter (Field,Criterial,
Criteria2, VisibleDropDown)

Operation,

Use the Field parameter to specify the column you want
to filter. VBA numbers the columns in your list. The
leftmost column is column 1, the next column is column 2,
and so on.

Use the criterial parameter to specify the criteria you
want to use to filter a column. Use the operator parameter

Perform a Filter

to specify an x1autoFilteroOperator. These operators

tell VBA the type of filter to apply. For example, the x10r
operator causes VBA to use a logical or, and the x1and
operator causes VBA to use a logical and. See the Chapter 6
section “Make Use of Logical Operators” to learn more about
logical operators. You can use an x1AutofilterOperator
such as x1Topl0Items Or x1FilterCellColor to find

the highest values or the cell color, respectively. Use the
Criteria2 parameter with a logical operator to construct
multiple criteria.

Use the visibleDropDown parameter to tell VBA whether
to display an AutoFilter drop-down arrow for the filtered
field. Set the parameter to True to display the drop-down
arrow. Set the parameter to False to hide the drop-down
arrow. The default is True.

@ Declare a Range object.

Activate the worksheet
containing the data you
want to filter.

(2
© Activate a cell in the
(4

range you want to filter.

Assign the data range for
the list to the Range
object you declared.

()

Create a column filter.
® The field you want to filter.
® Filter criterial.
The operator.
Filter criteria2.
O Add additional column filters.

Note: This filter uses an array and
the x1Filtervalues constant.

0 Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

@

e——»nalaﬂangn.Au Filter Field:=2, Criteria1:="=Q1",

e——FDataRanga.Authilter Figld:=3, Criteriat:=Array(

] ==~
e b e it s (e B Dam adie e b - T
| Sub FilterData()
Dim DataRange As Range 4—0
ActiveWorkbook.Worksheets (ivat¢<—9
R:ngl(".ﬂ‘l").ﬂclivatn‘—ﬁ
Set DataRange = Selection.CurrentRegion 4—0
End Sub
o =l

2] =)
o e S A (R PR — pr ey PR
Sub FilterData()
Dim DataRange As Range()
ActiveWorkbot...Workshe¢ts(1).Activhte
Range("A1").Attivate
Set DataRange = Selectioy.CurrentRfgion

Operator:=xl0r, Criteria2:="=Q2"

"Region 1", "Region 21, "Region 3"),
Operator:=xIFilterValues
End Sub

= T

The worksheet before
you run the macro.

The worksheet after you
run the macro.

The macro filters the data.

[OH] -
- - A@ow
=
| Rech
Region
Region 1
Region 2
Region 3
Region 4
sz Region 1
602 Region 2
" 7Q2 Region 3
g8 a2 Region &
n saQ3 Region 1
u 10Q3 Region 2
& 1143 Region 3
L 1203 Region 4
{0 1304 Region 1
i 14 Q4 Reglon 2
w 1504 Region 3
v 1604 Region 4
ne
i | -
& - - e »
— - — a@os
= =i e 18]
| Rech
c o '
.+ Region e Sale..
Region 1 74100
Region 2 65200
Region 3 48100
Region 1 47200
Region 2 94800
" 7Q2 Region 3 37000
"
1
n
n
! . s

X1AutoFilterOperators.

You can use X1AutoFilterOperators to specify the type of filter to apply. The following is a list of

CONSTANT VALUE DESCRIPTION

x1And 1 Logical And

x10r 2 Logical or

x1ToplOItems 3 Items with highest value. Use the criteria parameter to specify the number
of items.

x1Bottoml0Items 4 Items with lowest value. Use the criteria parameter to specify the number
of items.

x1ToplOPercent 5 Items with highest value. Use the criteria parameter to specify the
percentage.

x1BottomlOPercent 6 Items with lowest value. Use the criteria parameter to specify the
percentage.

x1FilterValues 7 Filter values

x1FilterCellColor 8 Color of the cell

x1FilterFontColor 9 Color of the font

x1FilterIcon 10 Filter icon

x1FilterDynamic 11 Dynamic filter

¢1 1dey)

.
.

§
W
pte
=
UQ
=
=3
<
172]
o=t
n

Perform an

Advanced Filter

ou can use the Range . AdvancedFilter method to

filter your data. With the Range.AdvancedrFilter

method, you can create two or more filters and
easily coordinate filters within and among columns. For
example, you can filter a list to find all females with an
income more than $100,000 and all males with an income
less than $100,000. The syntax for the rRange.
AdvancedFilter method is:

expression.AdvancedFilter (Action,
CriteriaRange, CopyToRange, Unique)

You have two options when you create a filtered list using
the Range . AdvancedFilter method.You can have your
filtered list appear in place — under the column heads of
your unfiltered list — thereby hiding the unfiltered list.
Or, you can have your filtered list appear in another
location, thereby enabling you to keep your original list in
your worksheet. If you want to filter your list in place, set

Perform an Advanced Filter

the Action parameter to x1FilterInPlace. If you want
to keep your unfiltered list in your worksheet, set the
Action parameter to x1FilterCopy.

When using the Range . AdvancedFilter method, you
must have a criteria range. To create a criteria range,
copy one or more column labels from a list. In the cell
below each label, type the criteria by which to filter each
column, such as >100000 to find people with an income
greater than $100,000 and M to find all males. Use the
CriteriaRange parameter to specify the criteria range.

If you specified x1Filtercopy as the action, use the
CopyToRange parameter to specify where you want to
place the filtered data. Make sure your copy to range has
enough room below it to include all the values in the
filtered list.

If you want to include only unique records set the Unique
parameter to True. The default is False.

@ Declare your ranges.
@ Set your ranges.

Activate the sheet where the
results will appear.

Create an AdvancedFilter.

Set the Action parameter.

e e© O

Set the copyToRange.
Set the unique parameter.

@ Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

@

(2] =]
e e e it Gyenst (g e D hibbn it b ol

l éuh im:omeFiitar(}

End Sub

= T

=)

Set CriteriaRangeDefined = Selection.CurrentRegi

Range("D5").Activate

Set DatabaseRangeDefined = Selection.CurrentRegion

Set CopyToRangeDefined = Worksk
Range("A1:D1")

ts("Results"). _

Set the CriteriaRange. e@*ﬁclive“orkbook.“‘orl(sheets("Results"}.ﬁctivale

> Datal RangeDefined.AdvancedFilter
Action:=xIFilterCopy,
Crlterial!anga:=Cﬂt¢rlanangobeﬂned.<—.

CopyToRange:=CopyToRangeDefined;€——
Unique:=False €«—
End Sub

The worksheet before
you run the macro.

The results.

The macro filters the data.

¢1 1dey)

.
.

[- e n
[G W] =
it
1
'
5 Last_Name First_Name Gender Income
& Adams lane F 38,431
7 Harrison Judy F 52,630
s Jones Serena F 75,436
% lackson Nancy F 52,606
0 Jones Libby F 125,871
1 Wilson Marie F 127,434
1 Mitchell June F 135,923
13 Johnstone Helen F 133,719
14 Smith Jeff M 38.241
1 Robinton George M 61,783
2 Cohen lames M 64,220
&7 Johnson Mark M 85,234
w Johnsten Lucy M 113,957
& Jacobs Tom M 145,621
n
e [T 5
n P - Boac
[" € [i 2 e
i unt_‘NameIFinl_Name Gender Income
1 lones Libby F 125871
1 Wilson Marie F 127,434
1 Mitchell June F 135923
3 Johnstone Helen F 138,719
& Smith leff M 38241
7 |Robinson George M 61,783
& Cohen lames M 54,220
% Johnsen Mark M 86,234
1
1
i)
"
n
SENE oty = ;

SISIT M Sunjiom

Selection.CurrentRegion statement.

Example:

Range ("D5") .Activate
Set DatabaseRangeDefined

= Selection.CurrentRegion

At any time after you create a procedure that performs an advanced filter, you can change the criteria. The example
finds all females with an income more than $100,000 and all males with an income less than $100,000. You can
change the criteria to find, for example, all females. In the example, the criteria appear on two rows. If you want to
find all females, the criterion would appear on one row. For that reason, your code for finding the criteria range
must be flexible. You can create a flexible criteria range by activating any cell in the region and then using a

If you include a blank row in your criteria range, Excel returns all the records in the list.

Create

Subtotals

fter you sort, you can group your data into

categories, such as quarters, and you can perform

calculations so that you can compare one category
with another. If you have a sort defined for at least one
column, you can find the average, sum, min, max, number
of items, and more for that column and/or other columns.
Excel calls this feature subtotaling. In VBA, you can use
the Range . Subtotal method to subtotal. The following is
the syntax for the Range . Subtotal method:

Range.Subtotal (Groupby,
Replace, PageBreaks,

The range portion of the statement can be any expression
that returns a range object. Use the Groupby parameter to
specify the column you want to group. VBA numbers each
column in your list. The leftmost column is column 1, the
next column is column 2, and so on.

Create Subtotals

Function, TotalList,
SummaryBelowData)

Use the Function parameter to specify an
X1lConsolidationFunction. X1ConsolidationFunctions
tell VBA how to subtotal. For example, if you want to
calculate a sum, use the x1sum function.

Use the TotalList parameter to create an array that
identifies the columns you want to subtotal. Set the Replace
parameter to True to replace any existing subtotals with the
newly defined subtotal, or set the parameter to False to add
an additional subtotal to the existing subtotals. The default
is True. If you want every subtotal to appear on a separate
page when you print, set the PageBreaks parameter to
True. The default setting is False.

Your subtotals and grand totals can appear below or
above each category. If you want them to appear below
each category, set the summaryBelowData parameter to
True. If you want them to appear above each category,
set the parameter to False.

@ Activate the worksheet
where you want to create a
subtotal.

@ Create a subtotal.

® The column you want to
group.

® The function you want to use
to summarize your data.

An array that identifies the
columns you want to
summarize.

Indicates whether you want to
replace the existing subtotal.

® Determines whether a page
break is created after each
summary.

® Places summary data below
the category. Set to False t0
place summary data above the
category.

@ Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

@

P T=T=E=
0 e e it S iy B 1 T

il Su-b creat-eSu.bt-otal.s.{")
ActiveWorkbook.Worksheets("Subtot '")Acbte<—o

Range("A1").Current Reiinn Subtotal
GroupBy:=2;

Function:=x1Sum,

TotalList:=Array(4, 5, 6),

Replace:=True,

PageBreaks:=False,

SummaryBelowData:=True
End Sub

=i ¢ s

e s -]
Py pingresei e ey

il Su-b crea.tIeSUIbt-otjal.s.{")

ActiveWorkbook.Worksheets("Subtotal”).Activate
Range("A1").CurrentRegion.Subtotal
GroupBy:=2,

Function:=x1Sum,

TotalList:=Array(4, 5, 6), €——

Replace:=True,€———

PageBreaks:=False,

5ummary!¢lowData:=Tme<—.
End Sub

i . ! -
The worksheet before R T =T 2E oo 9
W : [] =]
you run the macro. . RectidJquarter _ Region : Net reun sl move st (]
2 1o Region 1 26,538 47,502 PU
1 2o Region 2 29,032 35,168 o=t
. 31 Region 3 15679 32421 (@)
; aa1 Region 4 27,424 35,676 -
. Q2 Region 1 26,677 20,523 —
6Qz Region 2 19,991 74,809]
702 Region 3 13,312 13,588 bt
802 Region 4 17,178 3,622
203 Region 1 15,052 72,848 s
1003 Region 2 18,724 28,976
1103 Region 3 21,906 58,694 o
1203 Region 4 23,598 14,102 =)
1308 Region 1 17,894 22,306 =
1404 Region 2 17,704 19,996 E'
w 1504 Region 3 22,999 601
e 16 04 Region 4 25,164 66,336 UQ
i s
n i o
n 9
e - : =
[~y
v - m
The results. - 7y

: s i
Reglon Revenue Expenses
The macro subtotals the data. Regoni 74100 2659
Region 2 85,200 29,032
Region 3 4E,100 15,679
Region 4 63,100 27,424
250,500 98,733 151,767
? 5oz Region 1 47,200 26,677 20,523
) 602 Region 2 94,800 19,931 74,809
1 7az2 Region 3 37,000 13312 23,688
0 - Xl Region 4 20,800 17,178 3,622
=], an Q2 Total 195,800 77,158 122,642
-5 sa3 Region 1 87,500 15,052 71,848
£3 1003 Region 2 47,700 18,724 28978
it 11a3 Region 3 80,600 21,906 58,694
15 1203 Region 4 37,700 23,598 14,102
LT a3 Total 253,500 79,280 174,620
tr 1304 Region 1 40,200 17,894 22,306
8 1404 Region 2 37,700 17,704 19,9%6
] 1504 Region 3 23,600 22,999 601
] 16 Q4 Region 4 91,500 25,164 66,336
Q4 Total 193,000 83,761 109,239
Grand Total 897,200 338932 558,168
You can use X1ConsolidationFunctions After you create a subtotal, you can use code similar to the
to specify the type of function to use when following to remove it.
summarizing data. See Chapter 16 section
“Add Fields to a PivotTable” for a list of Example:
XlConsolidationFunctions. Sub RemoveSubtotals ()

ActiveWorkbook.Worksheets ("Subtotal") .Activate
Range ("Al") .CurrentRegion.RemoveSubtotal
End Sub

Create

Groups

ith the Range. Ssubtotal method, you can
create groups based on sorted data. If you
want to group data that you have not sorted,

use the Group method. When using the group method,
you must specify the rows and/or columns that you want
to group. For example, you can group the details related
to cash receipts and cash disbursements so that you can

compare total cash receipts with total cash disbursements.

When you create a group, Excel places Collapse and
Expand buttons to the left side of the worksheet row
labels if you group rows, or above the worksheet column
labels if you group columns. When you click a Collapse
button, Excel hides the columns or rows and the Collapse
button turns into an Expand button. When you click an
Expand button, Excel reveals the columns or rows and
the Expand button turns into a Collapse button.

Create Groups

When you create a group, Excel places it on a level.

Excel places the group that encompasses the most data
on Level 1; it places any groups that fall within Level 1
on Level 2, and any groups that fall within groups on
Level 2 on Level 3, and so on. Each time you run a macro
that creates groups, Excel attempts to add the groups to
the existing groups. To avoid this, you may want to
include code that removes any existing groups to the
beginning of your sub procedure.

When creating a group, you can use the Range property
to identify the columns or rows you want to group. For
example, if you want to group columns A through C, you
can use the syntax Range ("A:C") .Group. If you want to
group rows 1 through 3, you can use the syntax
Range("1:3") .Group.

0 Remove any existing
groups.

® A cell anywhere in the
grouped range.

@ Group columns.

® The columns you want
to group.

9 Group rows.

The rows you want to
group.

You can create several
levels.

Specify the level you want
to display.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

Range("A6").ClearOutlin:
Range|).Group 4—9

End Sub

= T

=]
U T b e et s Dy B D bbb ke e

éub Ereate raupsi}
Range("AB").ClearOutline

Range(” ").Group
Range(' .croup<—IO)

-

Worksheets(1).0utline.ShowLevels RowlLevels:=2 4—9
End Sub

=Wl |

| . @
The worksheet before e e o
you run the macro. 1 e olmees] T IS
1 Cash Receipts s
1 Painting Interior $ 2200 § 2300 S 2,500 S 7,000 =t
s Painting Exterior £000 8000 7,000 23,000 o
+ Drywall 1,500 1,500 1,500 4,500 -
« Rogfing 3000 3,000 3,000 9,000 —
7 Total Cash Receipts $14,700 514,800 514,000 543,500 CIJ
« Cash Dishursements -
1w Salaries and Wages $ 4200 S 4,200 5 4,200 512,600 s
11 Rent 1,200 1,200 1,200 3,600 o
Marketing 1,500 1,500 1,500 4,500 =
11 Legal & Accounting 500 - 500 w
1w Office Supplies 200 200 200 600 P o
= Equipment 1470 1480 1400 4,350 =
1w Telephons 125 125 125 i7s oq
17 Total Cash Disbursements § 9,595 § 8,705 § 8625 526,925
4 Net Cash Flow $ 5105 § 6,095 § 5375 516575 §¢
_ =
1 Cumulative Cash Flow $ 5,105 $11,200 $16,575 $32,880 =
CEI—— = .=
[ty
G] o e——— = (u_,r
The results. R S e e e e
1fals : A L L] c o (] [[[}
The macro groups the [] san Feb Mar w1 Soip) lrgee]
data and disp|ays the + 3 Total Cash Receipts $14,700 $14800 $14,000 43,500
level you indicated. & 1 Total Cash Disbursements § 9,595 § 8,705 $ 8,625 $26,925
"
1+ Net Cash Flow § 5105 $ 6095 $ 5375 $16575
.
i Cumulative CoshFlow § 5,105 $11,200 $16,575 $32,880
M
o - ' :
You can use the Range.ClearOutline method Excel places grouped data on levels. You can use the
to remove groups from your data. The Range. Outline.ShowLevels method to specify the level you
ClearOutline method consists of a range object want to display. The Outline.ShowLevels method
followed by ClearOutline. The range object can has two parameters: RowLevels and ColumnLevels.
be any range within the grouped data. The following Use the RowLevels parameter to specify the row level
statement removes the groups created by the sample you want to display. Use the ColumnLevels parameter
code. to specify the column level you want to display. If the

group has fewer levels than you specify, Excel displays
Example: all levels.
Range ("A6") .ClearOutline

Example:

Worksheets (1) .Outline.ShowLevels RowLevels:=2

Define a List

as a Table

table is a set of columns and rows where each column

represents a single type of data. When you define a list
as a table, Excel adds AutoFilter buttons to each column
label, enabling you to readily sort and filter your data. To
create a table, you use the ListoObjects.add method.

The ListObjects.add method has five optional parameters:
SourceType, Source, LinkSource, TableStyleName, and
Destination. Use the SourceType parameter to specify
your data’s source type. The source type can be a SharePoint
Services site, a query, a range, or an XML file. Use the
Source parameter to specify your data source. If your
SourceType iS a range, specify a Range object. If you do not
specify a Range object, Excel uses internal code to detect

the range. If the sourceType is a SharePoint Services site,
you must use an array to specify the URL to the SharePoint
site, the ListName, and the vViewGUID.

Define a List as a Table

I n Excel, a table is a special type of list. Like all lists, a

Use the LinkSource parameter to specify a Boolean value
indicating whether you want to link the data source to the
ListObject object. If the data source is a SharePoint
Services site, the default is True. Use a x1YesNoGuess
constant with the TablestyleName parameter to indicate
whether imported data has headers. Do not set the
LinkSource or the TableStyleName parameter if the
SourceType is a range. Use the Destination parameter
to specify a Range object that is a single cell, indicating the
upper left corner of where you want to place the new table.
If your source is a SharePoint Services site, you must
specify a destination. If your source is a range, VBA
ignores this parameter.

You can use a with statement to set the properties for a
ListObject object.

@ Declare a Listobject.

@ Add the Listobject.
® The SourceType.
[]

The Source.

9 Set the ListObject
properties.

The name.
Display a totals row.
® Set the table style.

9 Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

(=]
E s g e g v

| sub DefineTable()
Dim VarianceReport As ListOhjact‘—ﬂ
On Error Resume Next
Set VarianceReport =_<—9
ActiveWorkbook.Worksheets(1). _
ListObjects.Add
(SourceType:=xISrcRange, 0

Source:=Range("A1:5D$12")) S a—
End Sub

- L1

2l == B
T e e N e v .l
Sub DefineTable()
Dim VarianceReport As ListObject
On Error Resume Next
Set VarianceReport = _
ActiveWorkbook.Worksheets(1). _
ListObjects.Add
(SourceType:=xISrcRange,
Source:=Range("A1:5D$12"))
With VarianceReport
Name = "Variance"e@—-
———3.ShowTotals = True
.TableStyle = 'TablaStyleMadiurnﬁ"<—.
End With
End Sub

The worksheet before e % g
A !
you run the macro. = &
- %] et il =
rrr— e e e | T
2 Licenses and Permits 3,171 1,136 -2,035
1 Employee Benefits 13,202 14,054 852 =
1 Office Supplies 2487 3979 1,512 Sfl
5 Outside Services 10,540 11,560 1,020
& Payrall Expense 47,021 43,337 -3,684 s
1 Rent Expense 9,339 B 541 ~798
n Repairs 4,226 33717 -848 O
+ | Research Expense 3,397 1,194 -2,203 =
1 Telephone Expense 1,252 1,868 616 E
11 Federal Tax 2411 3,629 1,218 :
1 State Tax 1,709 2371 662 oq
:-’ :
A et = . e
[ty
— n
The results. e o
® The name.
The totals row. = = T e
4 Licenses and Permits 3171 1,136 20
1 Employee Benefits 13,202 14,054 852
1 Office Supplies 2,467 3979 1,512
5 Outside Services 10,540 11,560 1,020
& Payroll Expense 47,021 43,337 -3,684
1 Rent Expense 9,339 B 541 ~798
1 Repairs 4,226 33717 -g48
1 Research Expense 3,397 1,194 -2,203
1 Telephone Expense 1,252 1,868 616
11 Federal Tax 2411 3,629 1,218
1 State Tax 1,708 237 662
1 Total 3,689 —
You can use the TableStyle In Excel, tables have Use an X1ListObjectSourceType constant
property to assign a style to a names. The default name to specify the SourceType.
ListObject. To find a is Table #. You can use the
style’s name, click the Home Name property to assign a CONSTANT VALUE DESCRIPTI
t:b. Clllck Format as TI:;the |? name to a table. x1SrcExternal | 0 SharePoint
the Styles group. A gallery o . .
tyles group. A gallery If you add a totals row Services site
styles appears. When you
.. . to your table, Excel can x1SrcRange 1 Range
position your mouse pointer .
, automatically calculate the 5 XML
over a style, the style’s name . x1SrcXml
appears. You can assign the sum, count, max, min, or
ppears. Tou 518 other value for a column. x1SrcQuery 3 Query
name to a ListObject by
.. . Set the ShowTotals
assigning the name, without
property to True to add a
spaces between the words, to
totals row.
the TableStyle property.

UserForm

Basics

gather information from the user, and Excel is no you can use with your code. In addition, you can create
exception. For example, you can use the Open your own custom dialog boxes. See Chapter 7 for more
dialog box in Excel to select a file to open. VBA has two information on the MsgBox and InputBox dialog boxes.

E very Windows application uses dialog boxes to ready-made dialog boxes, MsgBox and InputBox, that

Use the Visual Basic Editor to Create Custom Dialog Boxes

By using the VBE, you can create custom dialog boxes to use with boxes as UserForms. When you create a UserForm, you design

your Excel procedures. The VBE refers to these custom dialog it by using the various controls available in the UserForm Toolbox.
Select Objects Label Button TextBox Button ComboBox Button
EE
ListBox Button CheckBox Button Option Button Toggle Button
EE ¥ =
Toolbox (=]

Controls I

'R A abl B

F e 2

[= s

2 M

Frame Button Command Button TabStrip Button MultiPage Button
[= = i
Scrollbar Button Spin Button Image Button RefEdit Button

3 ¢ B

@

UserForm Toolbox

The userForm Toolbox appears when you select a
UserForm in the VBE. The Toolbox contains controls that
you can add to your custom userrForm. See the section
“Create a Custom Dialog Box” for more information about
adding Toolbox controls.

The Toolbox contains several standard controls. You can
also create custom controls and add them to the Toolbox.
See the section “Create Custom UserForm Controls” for
more information on adding custom controls.

Select Objects

For resizing and moving controls that have been drawn on
a user form.

Label

For adding text to @ UserForm. This control does not
interact with the userForm; you add labels for
informational purposes only.

CommandButton

A user clicks the button to perform a specific action. When
you create a CommandButton control, you specify the
text that appears on the button by setting a control

property.

TabStrip

A multiple-page area for a section of your UserForm.

TextBox

Enables the user to type text.

ComboBox

A user can either click an item from the list or type the
appropriate value.

ListBox

Presents a list of items from which a user can select the
desired item.

MultiPage

Tabbed dialog boxes a user can use to switch between
pages of options.

By default, when you add the multipage control to your
UserForm, it creates two pages. To add additional pages,
right-click one of the page tabs and then select the New
Page option.

CheckBox

A user can select or deselect options. Typically, a CheckBox
control returns a value of True if it is selected, and False
if it is not selected.

ScrollBar

A user can scroll through information that is not shown on
the screen, or indicate a position on a scale.

SpinButton

A user can specify a value by clicking one of the arrow
buttons to increment or decrement the value.

OptionButton

A user can select from a list of items. You place Option
Button controls in a group. When the user selects a
control, the other controls are automatically deselected.

ToggleButton

The button appears to be either pressed or unpressed.
When pressed, the button returns a value of True; when
unpressed the button returns a value of False.

Image

Use this control to add a graphic to the userForm. Excel
stores the graphic in the worksheet. If you distribute the
worksheet, Excel includes the graphic. You can use a
graphic that is in any of the following file formats: BMP,
CUR, GIF, ICO, JPEG, and WMF.

Frame

This control is a container for grouped controls.

RefEdit

A text field and a button with which a user can select a
range of cells from a worksheet. When the user clicks a
button, the corresponding dialog box minimizes so that the
user can drag the pointer across the worksheet to select
the desired range of cells.

$1 191dey)d

.
S

(@)
-
(]
=
Eo
]
=
0
Q&
Yl
Qo
uQ
=
=
(43
7]
o))
=)
(=W
(@)
(=
w0
o=t
o
=3
)
=
uQ
=
(¢}
%“;
=3
o
=

ou can use VBA to create custom dialog boxes to

use with your macros. Dialog boxes are user

interfaces that enable users do such things as
click buttons to indicate a desired selection or type

appropriate values in a field. VBA refers to these dialog
boxes as Forms or UserForms.

To create a custom dialog box, in the VBE select the
UserForm option on the View menu. The VBE creates a
new UserForm called UserForm# and creates a Forms
folder in the Project Explorer window. The Forms folder
appears only if you have created UserForms. See Chapter 2
for more information about the Project Explorer window.

You can use the Properties window to make changes to
the properties associated with a UserForm. For example,
you can change the name of a UserForm to make it

Create a Custom Dialog Box

easier to identify when you look at the userForms list in
the Project Explorer window. To open the Properties
window, press F4.

After you create a UserForm, you can custom design it by
using the Toolbox controls, which appear only when you
select the UserForm. You add controls to the UserForm
by dragging them from the Toolbox to the appropriate
location on the userForm. For example, to create a list
box to request a value from the user, you drag the
ListBox control onto the UserForm. After you add a
control, you can resize it as needed. The VBE assigns
default values to the control’s properties. You can change
the assigned values in the Properties window for the
control. You must select the control before you can
change its properties.

0 In the Project Explorer
window, click the project
to which you want to add
d UserForm.

@ Click Insert > UserForm.

® The VBE creates a blank
UserForm With a default
name of UserForm1, and
the Toolbox appears.

Press F4.

The Properties window
appears.

e ®

Type a form name in the
Name field of the
Properties window.

® ©

Click the UserForm.

The Toolbox reappears.

@

Vitbrgt
0—»__M
ool

@ Click a control.

0 Click and drag to create the
control on the UserForm.

Repeat Steps 6 and 7 and
to add additional controls.

e Click the UserForm or a
control on the form.

$1 191dey)d

.
.

© Use the Properties window
to modify any properties
you want to change.

This example changed the
Caption on the UserForm.

@ PressF5.
The VBE moves you to

= @ >
Excel and provides you
with a preview of the =
1 L] ‘E‘

dialog box.

@ To return to the VBE, click
the Close button.

B ety Sawd e 5 Bl ¥

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
QL
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

For each control you add to a UserForm, you can set several properties. Although each control type has unique
properties, most of the properties are common to all controls. To change the value of a control property, either
type a new value or select a value from the drop-down list. The following table describes some common control

properties.
(Name) The name of the control.
BackColor The background color of the control.
Caption The text that appears on the control, such as the button or label text.
Font The font used to display the text on the control.
Height The height of the control in pixels.
Text The text on the control.
TextAlign The way text aligns on the control.
Width The width of the control in pixels.

Call a Custom Dialog

Box from a Procedure

ou can call, display, and use custom dialog boxes

to obtain user input. For example, you can use a

custom dialog box to request the values you need
to perform a calculation from the user.

To display a custom dialog box, use the show method of
the UserForm object. The show method instructs Excel to
display the specified userrForm. The following is the
syntax for the show method:

UserForm.Show modal

The show method has one optional parameter, Modal.
The Modal parameter determines whether the userForm
appears as a modal or modeless dialog box in Excel. The
default value of vbModal makes the dialog box modal,
which means that users must either close or hide the
dialog box before selecting any other options in Excel.

Call a Custom Dialog Box from a Procedure

When Excel opens a modal dialog box, Excel passes
control to the dialog box, and the user can interact only
with the dialog box. A value of vbModeless means that
although the dialog box remains open until a user closes
it, the user can perform other actions.

Dialog boxes contain a Close or Cancel button a user can
click to close the dialog box. In a procedure, you can also
close a dialog box by using the unload method. You
must use a Click event with CommandButton controls to
create a procedure that calls the unload method. See the
section “Capture Input from a Custom Dialog Box” for
more information about specifying the code to run when
a user clicks a button.

0 Create a UserForm.

Note: See the section “Create a
Custom Dialog Box” to learn
how to create a UserForm.

@ Create a new sub
procedure.

[0 fhe Lo Yiew juert Fomet Debeg B Imn adim Wesos iy o el

r—— =] [Comtmmrgecn =)
Sub caumanogbox()<—9 i
|

End Sub

@ Create a snow
command.

@ Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

[Foamere =] [Catstontrm.

Sub CaliDialogbox()
SampleForm.Show vbModal 4—9
End Sub

$1 191dey)d

.
.

W
I
|

Excel displays the
dialog box.

@ Click the Close
button to close
the dialog box.

Q
-
()
Q
=
=
)
=
Q
[=
Q
(1))
o
Q
>
(¢
7]
&
=)
QL
(@)
o
7]
o=t
o
=)
N
=)
7
=t
=
(¢’)
§
(=n
(@]
=)

You can use the Unload statement to remove the You can use the Hide method to hide a UserForm so
UserForm from memory. When you call the Unload that it is no longer visible. When you hide a UserForm,
statement, VBA resets all the controls on the UserForm | you can still access it from your procedure.

to their default values; as a result, you cannot access the
options specified by the user after the UserForm

unloads from memory. To maintain access to the UserForml .Hide .
values, you can either store the values in public variables
or hide the UserForm until your procedure terminates.
To unload a UserForm, use the Unload statement
followed by the name of the UserForm that you want
to unload, or use the code Unload Me:

T+

Excel hides the form.

After hiding a form, Excel may appear to freeze as your
code continues to access the UserForm. This condition
clears as soon as the code that accesses the UserForm
finishes processing.

. IS EQUIVALENT TO:

Unload Me

Unload UserForml

Capture Input from

a Custom Dialog Box

ialog boxes in Excel gather input from the user.
The input can be anything, from what button

the user clicks to text the user types into a field.

You can capture user input by using UserForm events.
For example, when the user clicks an OK commandButton
control, you can use a CommandButton_Click Sub
procedure to tell Excel what to do next.

Excel considers every user interaction that occurs in a
dialog box an event. For example, scrolling through a list
of items, clicking an OK button, and typing text in a text
box are all events. Each userForm control has several
events that you can capture. The most common event is
the c1ick event, which occurs each time a user clicks a
control. To make UserForms interactive, you can create
procedures that execute when specific events occur.

Capture Input from a Custom Dialog Box

Each userForm has two views: a graphical layout
window and a code window. The graphical layout window
is where you add controls that appear in the dialog box.
See the section “Create a Custom Dialog Box” for more
information on designing custom dialog boxes. The code
window contains the code associated with the UserForm.
You can use the code window to create event procedures
for each control. To create event code, you double-click
the control. By default, the VBE creates a private click
event for a control when you double-click it. If a c1ick
event already exists, the VBE simply displays the code
window. Users cannot execute private click event
procedures by using the Macro dialog box. The only way
execute a private click event procedure is to click the
appropriate control.

0 Create a UserForm.

Note: See the section “Create a
Custom Dialog Box” to learn
how to create a UserForm.

@ Double-click a control.

In this example, you write
code for the OK button, and
S0 you double-click OK.

= e e e e g e e >
[e b s s gt Duteg fon Dson fHhdiw B

0B B bor S jowrt bomat Dubuy Ban lmh Jddks fedew tep

S

® V/BA creates a sub
procedure.

Ll

=] o= 2

(3]

Assign the user
selection to a variable.

Name of the control.

You can find the name
of the control in the
Properties window’s
Name field.

Close the dialog box.

Name of the form.

You can find the name
of the form in the
Properties window’s
Name field.

End Sub

Private Sub CommandButton1_click{)<—7—.

{0 Bl L s fomrt Fomet fuiug

[husict ViAbrapcs L1} e

=] fof

j= 1= =
T YRkt [ties i b 8 o

= 5 erousi

Private Sub Command*lttom_click{)
UserSelection = ListBox1 .V&a

o | S T

dS leForm ==

A Click event occurs when the user
clicks a control or a value in a
control. For most controls, you can
write a procedure to handle the
Click event, by simply placing _
Click after the control name.

Example:
Sub CommandButtonl Click()

If you need to capture the Click
event to determine the page or tab
selected with a MultiPage or
TabStrip control, you can use an
index parameter value to specify the
index value of the page or tab.

Example:
Sub MultiPageQtr_Click(1l)

When working with MultiPage
and TabStrip controls, create a
separate procedure to handle the
selection of each page or tab by
using the proper index value.

A Click event also occurs when the
user presses Enter while a control
has focus, when the user presses the
accelerator key that corresponds to
the control, or when the user
presses the spacebar while a
CommandButton has focus.

continued 9 @

$1 191dey)d

.
.

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
QL
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

Capture Input from a Custom

Dialog Box (continued)

ou can create code to monitor events and execute

code when a specific event occurs. Each control has

its own events, and the VBE lists them for you in
the Procedure list box. You can quickly create an event
procedure in the code window by selecting the appropriate
control name in the Object list box and then selecting the
corresponding event from the Procedure list box. When
you select an event, the VBE creates a procedure with the
name of the control followed by the event name.

Control values on a UserForm are active only as long as
the dialog box is open. If you close the dialog box prior to
saving user input values, you lose the user input. To
avoid potential problems related to lost data, consider
saving user responses to public variables that can pass
into other procedures. For example, you can call a

Capture Input from a Custom Dialog Box (continued)

UserForm from a procedure to capture user responses
and then pass the values back to the main procedure.

You declare public variables at the top of your module,
before any procedure code, by using the public
statement. Declaring public variables enables you to
declare variables that all procedures in a project can
access. See Chapter 3 for more information on declaring
variables.

When working with a single-column list box or combo

box, you can use the addTtem method to create the list
of choices that appears in the box. The following is the
syntax for the AddItem method:

object.AddItem Item
You can use the with statement to shorten the code

required to create the list. See Chapter 4 for more
information on using the with statement.

@ Create a new module.

Note: See Chapter 2 to learn
how to create a new module.

@ Declare a public variable
to hold the user selection.

@ Create a sub procedure.

Q Add items to the list box.

<] [immwinestom

]|
Public UserSelection As String <)) °

- Sub ShowUserForm()

End Sub
e 7
[Ty =
et | Carmgorond |
=Eal | lz
=T
TR DB i el Mt oy o Joth e e B e ETE
(B L= =] [Mmmitsestorm e
33 [=
T“mm—' | Public UserSelection As String &
s Sub ShowUserForm()
With SampleForm,ListBox1
“w H End With
e Vi ~| | End Sub
s | Camront |
| T —
sl | ar

© show the dialog box. T BCTi o b Ao W b T ke e e .1 9
o 3] el
(@ Press Alt+F11 to | Public UserSelection As String - I
switch from the VBE : Sub ShowUserForm() =y
to Excel. and run the o ik With SampleForm.ListBox1 —
' S -Additem "Quarter 1" =
SRR TSR e .Additem "Quarter 2" [N
macro. .Additem "Quarter 3" **
JAdditem "Quarter 4"
: - . End With
e — SampleForm.Show & e
——— ! MsgBox "You selected " & UserSelection -
End Sub
=fal | i

The dialog box displays
and returns the data
you requested.

B4R shewt) Sieet) Chewy)] ———— -
=

uoqqry ay) Surzrwojisn) pue saxog Sofeig Suneai)

You use control events to determine when to execute specific code. The following list identifies the most common
events that occur with the various controls placed on UserForms. Not all events are available for each control. In
the code window, check the Procedure list box to see the events that are associated with the selected control.

CONTROL EVENT OCCURRENCE

BeforeDragOver The user is dragging-and-dropping data onto a control.
BeforeUpdate Before data on a control is changed.

Change The Value property of the control changes.

Click The user clicks the control.

DblClick The user clicks the control twice.

Enter Before a control receives focus.

KeyDown The user presses a key.

MouseDown The user presses the left mouse button.

Validate Input from

a Dialog Box

ou can validate the values returned by controls in

a dialog box before passing them to your

procedure. You validate the data values for two
reasons: First to ensure that the user enters a value.
Second, and probably more important, to ensure that
errors do not occur in your code because the wrong data
passes to a procedure.

You can create code that validates the user input for any
event that occurs in a UserForm. The best time to
validate is prior to closing the dialog box. For example, if
a CommandButton control, such as an OK button, passes
values to variables and closes the dialog box, the OK
button is the ideal place to validate your data. When you
create the validation code, you can use a conditional
statement, such as an If Then statement, to check the

Validate Input from a Dialog Box

properties of each control. For example, to make sure the
user typed a string in the Name text field of a dialog box,
you can add the following If Then Statement to your
procedure: Tf TextBoxl.Text = "" Then.

The If Then statement checks the Text property for the
specified TextBox control to ensure that it contains a
value. If the TextBox control does not contain a value,
your VBA code can call the MsgBox function and display
a message telling users that they must enter a value.

When working with a list box, you can use the ListIndex
property to find out if the user typed a value. The
ListIndex property returns -1 if the user did not type in
a value, o if the user selected the first value in the list, 1 if
the user selected the second value in the list, and so on.

@ Double-click the control
to which you want to add
validation code.

The code window opens.

e e =TT
(00 e o Siow joert Fgmet Detng Bun lesh Sibs fedew Hew 0 esee= wm o8
frrmmct hbgmr = L =
o B [rerRe—— G
ﬂwm&mmh—
- s b ot et . .
b e Ty oo ﬁllﬁ
- i |
& A i 1§
L LA |
1 CJJJ
] zaEm
e

T =]
ot Dby Ben Jesh Addies Wedes Heo . S T8 =
[=] [eme =]
Private Sub CommandButton1_Click()
UserSelection = ListBox1.Value
Unload SampleForm
End Sub
&” .'.‘.Tm1
i et | o

@ Add the validation code. T e ey e

[t ibdeagcs E =) =] [oms]

Private Sub CommandButton1_Click()

In this example, if the
user does not make a
selection, a message
box appears.

@ Press Alt+F11 to switch
from the VBE to Excel,

UserSelection = ListBox1.Value
Unload SampleForm

End Sub

and run the macro.

(sl | _IJ
If the user does not i : NSat
make a selection, a
message box appears.

0 C] [V CE =

R —— Te|
Select 2 Quarter

o A Shewt) Seet) e 0) S ——— ol

The QueryClose event takes two arguments, Cancel and CloseMode. The Cancel argument accepts an integer
value. If the value of the argument is anything other than 0, the QueryClose event stops and the associated dialog box
remains open. The CloseMode argument contains a constant value indicating the cause of the QueryClose event, as
shown in the following table.

CONSTANT VALUE DESCRIPTION

vbFormControlMenu 0 The user selected the Close button in the dialog box.
vbFormCode 1 The code initiated an Unload statement.
vbAppWindows 2 The Windows operating session is ending.
vbAppTaskManager 3 The Windows Task Manager is closing Excel.

$1 191dey)d

.
.

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
QL
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

Create Custom

UserForm Controls

ou can customize the Toolbox to suit your needs.

The Toolbox that appears when you select a

UserForm in the Visual Basic Editor contains all
of the standard controls you can add to a UserForm.
These controls appear on a single tabbed page called
Controls. By using the Properties window, you can
change the tip text that appears when a user drags across
the icon, the color of the control, and many other
features. You can also create new controls and add them
to the Toolbox.

To create new controls, you customize and combine the
existing controls. For example, if you add an OK button to
all of your UserForms, you can create a custom button
and set the appropriate properties, such as Caption, Width,
Height, and Default. If you place the button in the

Create Custom UserForm Controls

Toolbox, the VBE adds it as a new control. Alternatively,
you can create new controls by combining multiple
controls. For example, you can create a new control that
consists of an OK and a Cancel button.

To keep your custom controls separate from the existing
controls in the Toolbox, you can add a new page to the
Toolbox. You add a new page to the Toolbox by using the
New Page option. You can assign a name to the new page
by using the Rename option.

When you create a custom control by dragging a control
from a form to the Toolbox, you transfer only the
properties. Code that you have added to the control does
not transfer. Each time you use a custom control you
must add the necessary code.

0 In the Toolbox, click the control
you want to customize.

9 Drag the control to the

UserForm.
@ set the control properties.

® |n the Properties window, type the
control name in the Name field.

® Type the text you want to appear
on the control in the Caption field.

Enter the tip that appears when the
user drags across the control in
the ControlTipText field.

e In the Toolbox, right-click the
Controls tab.

@ Click New Page.

T e S et e

[0 B bs W et fomet Debeg B Inok Sadim Weses by b i T

D T I T} (0T
[ol

LT T ey,
OB Bl fsr Yoo et Fomst Doy B lmsk jadi Winsom iy
fremt Vb [

Ut |
1 1 -
B VRtrvet (Creats Castom s

= o M e e

[rr—
" 3

The VBE adds a et oot e o o e e e
new page to the T j[== i
Toolbox. B

@ Click the control on
the UserForm and
drag the control to
the Toolbox.

® The control appears
on the new page of
the Toolbox.

You can add multiple pages to the Toolbox. To change the order of the pages, right-click the page tab and then
click the Move option on the menu to display the Move dialog box. Click the desired page to select it, and then click
the Move Up or Move Down buttons to reorder your pages.

If you want to rename a tab, right-click the tab, and then click Rename. The Rename dialog box appears. Type the
name you want to give the tab in the Caption field.

Creating a separate page in the Toolbox to store your custom controls gives you the ability to export the page for
loading on another computer. To export a page, right-click the page tab and then click the Export Page option. In
the Export Page dialog box, specify the name and location for the page file. The VBE assigns the page file an
extension of .pag.

To import a page file into the Toolbox, right-click a tab menu and then click the Import Page option. In the Import
Page dialog box, specify the name and location of the page file to import.

$1 191dey)d

.
.

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
QL
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

Create a UserForm

Template

repeatedly, you can create a UserForm template and

use that template as a basis for creating new forms.
When you create UserForms, the Visual Basic Editor
attaches them to the project in which you create them.
Each time you create a new project, you must re-create
the UserForm.

I fyou find that you create the same basic UserForm

With a UserForm template, you design a basic UserForm
and save it as a template. You can then import the
template to add the userForm to any other project you
create. You create a template by using the Export File
command on the File menu. In the Export File dialog box,

you specify the name and location for saving the template.

You may want to create a special folder in which to save
all your templates.

Create a UserForm Template

When you create a UserForm for use as a template, you
should keep it generic so you can customize it for each
new project. For example, if you frequently create a
UserForm that contains a TextBox control for gathering
user input, as well as two CommandButton controls, OK
and Cancel, you can create a generic version of the form
with the three controls on it. If you do not place the Label
control for the text box in the template version, you can
import the form and add a label that reflects the type of
data you want to gather from the user.

To add a UserForm template to a project, you use the
Import option on the File menu. The VBE imports the file
into your project.

Create a Template
o Create @ UserForm.

Note: See the section “Create
a Custom Dialog Box” to learn
how to create a UserForm.

@ Click File = Export File.

@ Locate the folder in which
you want to save the file.

e Type the filename.
@ Click Save.
VBA exports the file.

@

P

Fam
L]
[ox] ool
B Ml et Wi Tl Fom Mg st [1t vt Tomapiatn ahiom [ohote Linesdorm Trmsupdats s Lommgand mtim (sl meatl] R -]
[0 B for S jowrt Fomat Doty B Dok Sadbn fiedew oo s e a8 ®
rramct Vi = 3 =]
o3 s

Import a Template

| = e
B ek jadie fesee Heip —-M—:““ﬂ :
@ Click the project to which _ p— 0—'“@3! -
you want to add a template. s == |y
. . . 3 Ciowe e Rt 12 Microwst kit PR = _‘;‘:d..-u =
9 Click File = Import File. —
e
s
|
O ST
The Import File dialog R o e o b= o e o e o P
box appears. i %L;ng
@ Locate the folder in r =t
which you saved the |
template. i Sy wt

Click the file containing — —

the template. [P em) e s

o

FE I P Ca—— o st | e |
© Click Open. O_.l=- = S
The VBE adds the T
template to the project. - 'T | ol =

uoqqry ay) Surzrwojisn) pue saxog Sofeig Suneai)

You can specify the order that Excel uses to move between controls on a UserForm by setting each controls’ tab
order. Tab order is the order in which the VBE selects the control to move to when a user presses Tab. By default,
the tab order is the order in which you add controls to a UserForm.

Each control has two properties that relate to tab order. You can use the Properties window to set these properties.
The first property, TabStop, determines whether focus stops on the control when the user presses Tab. If you set
the TabStop property to False, when the user tabs through the controls, Excel skips the control. The second
property, TabIndex, is a value between 0 and the number of controls, and sets the order in which Excel moves
from control to control when the user presses Tab. You can use the Tab Order dialog box to set the tab order. This
dialog box appears when you right-click the UserForm and then click Tab Order.

Customize

the Ribbon

tarting with Office 2007, Microsoft introduced a

new user interface for many of its Office products,

including Excel. Earlier versions of Excel used
toolbars and menus to provide access to Excel commands;
Office 2007 and later use the Ribbon. You can customize
the Ribbon. You can add tabs, groups, commands, and
buttons. You can also delete tabs, delete groups,
rearrange commands, and rearrange buttons.

You can add command groups and commands to existing
Ribbon tabs. For example, if you frequently use the
Format Cells dialog box, you can add it to the Home tab
next to the Styles group. You can rename tabs and
groups. For example, if you do not like the name Home
tab, you can change the name to Basic Commands or
some other name. You can also choose what tabs appear

Customize the Ribbon

and the order in which they appear. For example, if you
never use the Review tab, you can remove it from view. If
you frequently use the Formulas tab, you can have it
display first.

Excel divides commands into the following categories to
make it easier for you to find the commands you want:
Popular Commands, Commands Not in the Ribbon, All
Commands, Macros, Office Menu, All Tabs, Main Tabs,
Tool Tabs, and Custom Tabs and Groups. Main Tabs are
the tabs that you see when you use Excel without any
customizations. Tool tabs are the context-sensitive tabs
that appear when you work on objects such as charts or
PivotTables. You select a command category from the
Choose Command From drop-down list.

@ Right-click the Ribbon.
A menu appears.

Click Customize the I
Ribbon. :

(2]

Region 1
:+ Region 2
+ Region 3
< Region 4

200
152
196
170

« Total

718

(]
]

]
1"

The Customize the Ribbon

pane appears.

Click the down arrow and
then select the type of tab
you want to customize.

Click to select or deselect
the tabs you want to
display or not display
(IZ1 changes to [¥] or
changes to [C1]).

To display the Developer
tab, make sure you select
the Developer check box.

@ Click OK.

“riREE > FYENNTsEluDem F 77

DEFFUCRE

@

Only selected tabs appear.
Right-click the Ribbon.

A menu appears.

Click Customize the Ribbon.

The Customize the Ribbon
pane appears.

Click the down arrow and
then select Macros.

All the macros in open
workbooks appear.

To add a command, click the
down arrow and then select
the category from which you
want to select commands.

Click New Tab.

: Region 1
s Region 2 151
+ Region 3 127 160
< Region 4 127 176

109 376 1582 139 132 423
188 475 196 152 188 536
137 440 170 114 130 414

555 1,696 718 678 628

« Total 475 666

Tabs, groups, and commands
display in the order they appear in
the Customize the Ribbon pane.
To change the order, open the
Customize the Ribbon pane. Click a
tab, group, or command and then
use the Move Up (’T) or Move
Down ([~) buttons to change the
location. Move Up moves the tab,
group, or command up, and Move
Down moves the tab, group, or
command down.

If you no longer want a tab, group,
or command to appear, you can
remove it. Open the Customize the
Ribbon pane. Click the tab, group,
or command you want to remove
and then click the Remove button.
Excel removes the tab, group, or
command.

You can restore the Excel Ribbon
back to the way it was before you
made any customizations. To
remove all customizations, click the
Reset button. A menu appears.
Click Reset All Customizations. A
prompt appears. Click Yes. Note
that the Quick Access toolbar
customizations are also removed.
To restore a specific tab, click the
tab. Click the Reset button. A menu
appears. Click Reset Only Selected
Ribbon Tab. Excel restores the tab.

continued 9 @

y1 19dey)d

.
.

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
o
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

Customize the

Ribbon (continued)

ou can place buttons on the Ribbon to execute

your macros. To access the macros you have

created, choose Macros from the Choose
Commands From drop-down list. All of the macros in

open workbooks appear. You click a macro and then click
Add to add the macro to the Ribbon.

You can use the Customize the Ribbon drop-down list to
tell Excel the type of tab you want to a modify. Choose
from All Tabs, Main Tabs, or Tool Tabs. Once you choose
a tab type, the options appear in the box below the
Customize the Ribbon field. A check box appears next to
each tab listed. Only the selected tabs appear in the
Ribbon. To access the VBE, you must display the
Developer tab, which is unselected by default and does

Customize the Ribbon (continued)

not appear. You can find the Developer tab under Main
Tabs. To display the Developer tab, select the Developer
tab check box.

You can click the New Tab button to add a new tab. You
can click the New Group button to add a new group.
When you click the New Tab button or the New Group
button, Excel usually places the new tab or group under
the highlighted tab or group. Tabs and groups appear in
the order listed on the Customize the Ribbon pane. You
can change the order of tabs and groups.

You can use the Rename button to rename any tab or
group. You can also use the Rename button to assign a
button to a macro.

® A new tab and a new group appear.

If a new group does not appear, click
New Group.

@ Click a macro.

To add a command, click the
command

@ Click Add.

Repeat Steps 10 and 11 for every
macro or command you want to add.

® Excel adds the macro or command to
the new group.

Click a tab or group name.
Click Rename.
The Rename dialog box appears.

Type a new name.

@0 60

Click OK to close the Rename
dialog box.

Excel renames the tab or group.

Repeat Steps 8 to 11 for every tab
and group you want to rename.

@

@ Click a macro.
@ Click Rename.

The Rename dialog box
appears.

y1 19dey)d

.
.

Click the button you want to
use to represent your macro.

Type a name for your macro.

Click OK to close the Rename
dialog box.

Click OK to close the Excel
Options pane.

© 80

The new tab and group c@csn
appear.
@ Click a button to run a macro. - T,
atr1 Qtr2
If you added a command, . Region1 405 551
you can click the command 1 Region2 376 423
N + Region 3 475 536
to run it. . Region4 440 414
. Total 1,696 1,924
};h-ﬂ!!-l-.'ﬂ-.!--..'- e :.

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
o
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

To add a new group to a standard Excel tab, follow these steps: Open the Customize the Ribbon pane. Click the
down arrow next to the Choose Commands From field and then choose the category from which you want to
choose commands. Click the down arrow next to the Customize the Ribbon command and then choose the type of
tab you want to customize. Click the tab to which you want to add the new group. Click New Group. Excel adds the
new group. Click Rename. The Rename dialog box appears. Type the name you want to give the new group and
then click OK. Excel renames the group.

Click the command you want to add. Click the Add button. Excel adds the command. Repeat the process to add
additional commands. Groups display in the order they appear in the Customize the Ribbon pane. Click the new
group’s name. Click the Move Up button ([~) to move the group up. Click the Move Down button ([=) to move
the group down. Click OK. The group and the commands appear on the Ribbon on the tab you selected.

Create a

CustomUI.xml File

ou can use XML to customize the Ribbon. Using

XML is a bit more difficult than using the

Customize the Ribbon pane, but it offers some
features that are not available there. For example, using
XML you can add drop-down lists and check boxes to the
Ribbon. Microsoft refers to the XML markup system as
RibbonX. You create and use a file named customUILxml
to modify the Ribbon. Because you write XML in plain
text, you can use any text editor to create a customULxml
file. To learn more about XML, see Chapter 19.

Creating a basic Ribbon modification requires that you use
control markups. The ribbon control markup represents
the Ribbon. The tab control markups represent the tabs
on the Ribbon. All tab control markups are contained
within the tabs control markup.

Create a CustomUIxml File

The tabs control markup does not have any attributes.
You can set an id attribute and a 1abel attribute for a
tab control. An id attribute uniquely identifies a control.
A label attribute assigns a label to a control.

The group control markup identifies a group on a tab.
You can set an id attribute and a 1abel attribute for the
group markup.

The button control markup creates a button on a tab. You
can set id, label, imageMso, size, onAction, and
screenTip attributes for a button control. The imageMso
attribute identifies the built-in image you want to use as
the button. The size attribute determines the size of the
button. You can set the size attribute to either normal or
large. The customUI .xml file can call the onaAction
attribute when the user clicks a control. The screenTip
attribute specifies the screen tip that appears when the
user positions the mouse pointer over the button.

0 Create a file named R — =]
customUl.xml. i g
<ribbon>
You can use Notepad or <tabs>

another text editor to create
the file.

9 Type <customUI xmlns=
"http://schemas.
microsoft.com/
office/2006/01/
customui">.

You start every customUl.
xml file with this code.

<tab id="CustomTab" label="Sales">

<group id="Groupl" label="
<button id="Buttonl"
imageMso="CreateReportBlankReport"
size="large"
label="Format Report"
onAction="ThisWorkbook.ReportFormat"
screentip = "Create a report format"/>
<button id="Button2"
imageMso="ReviewAcceptChange"
size="large"
label="Sign and Date"
onhAction="ThisWorkbook.SignAndDate”
screentip = "Sign and date report" />

Create Reports ">

</group>

</tab>
</tabs>
</ribbon>

®

Create a ribbon control
markup.

Create a tabs control
markup.

Create a tab control
markup, include attributes.

()

Ih Rt P Ve g

<customUI g
xmlns="http://sc] s.microsoft,.com/office/2006/01/customui>
<zihbon><—Ea

e—» <tabs>

<tab id="CustomTab" label="Sales">

=)

<group id="Groupl" label="
<button id="Buttonl"
imageMso="CreateReportBlankReport"
size="large"
label="Format Report"
onAction="ThisWorkbook.ReportFormat"
screentip = "Create a report format"/>
<button id="Button2"
imageMso="ReviewAcceptChange"
size="large"
label="Sign and Date"
onAction="ThisWorkbook.SignAndDate”
screentip = "Sign and date report" />

Create Reports ">

</group
</tab> 4—6
o .-
</ribbon> 4—9

{‘ai:li

:<cu5 tomUI

<ribbon>
<tabs>

@ Create a group, include
attributes.
@ Create buttons, include
attributes.
® A button.
® Alabel.
Executes the procedure.
Name of the procedure

Save your file with the
filename customUl.xml.

[

e <tab id="CustomTab" label="Sales">
<g
Q= =

e—» <button

e—» </group>

E=ara]

xmlns="http://schemas . microsoft.com/office/2006/01/customui">

roup id="Groupl" label="
<button id="Buttonl"
im.aqel'L-io="CreateReportBlankReport"(-‘
size="large"
label="Format Report" <¢——@&

3 onAction="ThisWorkbook.ReportFormat" <g——
screentip = "Create a report format"/>
id="Button2"
imageMso="ReviewAcceptChange"
size="large"
label="Sign and Date"
onhAction="ThisWorkbook.SignAndDate”
screentip = "Sign and date report" />

Create Reports ">

</tab>
</tabs>
</ribbon>
</customUI>
After you add your file to e e S
a workbook, your Ribbon
should look like the one =
shown here. = z 5 5 T
1 Sales
® A new tab. The tab label 2) : .
appears on the tab. - Region! Reglon? Reglon3
® Two buttons with button : :::::Zi
7 Productd
labels. 5 b B 553
9
The group label. 10 Reviewed by: Denise 4/12/2010
11
This is how the file g
appears after you perform 14
the steps outlined in “Add a3
q 16
a GustomUl.xml File to a)
Workbook.” CoYE I e

You use the imageMso attributes to identify the built-in
image you want to appear on the Ribbon by using the
following syntax:

Example:
imageMso = "ImageName"

To obtain the name of the image, click the File tab and
then Options. The Excel Options dialog box appears.
Click Customize Ribbon. In the Choose Commands From
field, select All Commands. Position the mouse pointer
over the command with the button that you want to use.
A screen tip appears. The name of the image appears at
the end of the screen tip in parentheses.

You can also download the 2007 Icons Gallery from

the Microsoft Web site. The Icons Gallery is an Excel
workbook. When you open the workbook, galleries
containing built-in images appear on the Developer tab.
When you position your mouse pointer over an image
or click an image, the name of the image appears. You
can specify the size of the image by using the size
attribute. Set the size attribute to 1arge to display

a large button. Set the size attribute to normal to
display a normal size button.

y1 19dey)d

.
.

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
o
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

Add a CustomUI.xml

File to a Workbook

o integrate the procedures that you create with

VBA into the Excel Ribbon, you can use a

customUILxml file to place buttons on the Ribbon
that execute your macros when the user clicks them. You
place the customULxml file in your workbook file, and
then create a relationship between the workbook and the
customULxml file. See the section “Create a CustomUIL.xml
File” to learn more about creating a customization file.

You can open an Excel workbook file by changing the
filename extension to .zip and then double-clicking the
file. When the file opens, you will see several files and
folders. You refer to this Zip file as a package, and the
files in the Zip file as parts. To modify the Ribbon, you
place your customULxml file in a folder named customUI
and then place the folder and file in the package.

Relationships define how the parts of a document come
together to form the document. To modify the Ribbon,

Add a CustomUI.xml File to a Workbook

you must create a relationship between the workbook and
the customization file by adding a relationship to the
RELS file under _rels in the root directory. You create the
relationship by placing the following code between the
last Relationship tag and the Relationships tag.
<Relationship Id="AnyIDYouWant" Type="http://
schemas.microsoft.com/office/2006/
relationships/ui/extensibility"
Target="CustomUI/customUI.xml" />

If you are going to execute a procedure by using a Ribbon
button, you can use the onAction attribute. Assign the
onAction attribute the name of the procedure you want
to execute. Place the procedure in a module and place
(ByVal control As IRibbonControl) after the
procedure name and between the parentheses, as follows:
Sub SubName (ByVal control As _

IRibbonControl)

0 Create a folder on your
desktop and name it
customUl.

@ Place your customULxml file
in the folder.

Note: See the section “Create a
CustomUl.xml File” to learn how
to create a customUl file.

9 Open the file that will contain
the macros you want to
execute.

@ In the Project Explorer,

double-click
ThisWorkbook.

The workbook module
opens.

@ Name your sub procedures
and type Byval control
As IRibbonControl in
parentheses.

0 Type your sub procedures.
@ Save and close your file.

6—>5uh Sigmdnato(ay\hl control As Iﬂibboncontrol) 3
ActiveSheet.Cells(10, 1) = "Reviewed by: " & Application. 04—6
| End Sub
e—>8uh ReportFormat(ByVal control As IRibbonControl)
Dim CopyRange As Range
Set CopyRange =
Worksheets("Format”).Range("A1:D10")
CopyRange.Copy Destination:=ActiveSheet.Range("A1:D10 4—6
With ActiveSheet
.Columns(1).ColumnWidth = 16
.Columns(2).ColumnWidth = 14
-Columns(3).Col

Width = 14

@

@ Locate your file in Windows

Explorer.
Q Change the extension on the
filename to .zip. =
@ Double-click the file to open it.
@ Drag the customuUl folder from
the desktop to the Zip file.
@ Drag the _rels folder from the
Zip file to the desktop.
(® Double-click the _rels folder to
open it.
The RELS file appears. "-':’E- 'm.c_m_.v.u-i.»«_;u; m e =
Open the RELS file in Notepad B e Sipaciage /2006 seiationshipa”>
or another text editor. L s S e ol feome
<Ralationship Id="rId2"
Create a relationship. ool ommeamripeitisink oy e

Save and close the file.

Delete the RELS file in the Zip
file and replace it with the new
RELS file.

Rename the Zip file back to its
original name.

® 0606 O

A new tab appears in the file.

<Relationship Id="rIdi"

Typs="http://schemas .openxmlformats.org/officeDocument 2006/ relationships/of ficeDocument”
Target="xl/workbook.xml" />

<Ralaticnship Id="rld4"

Type="http://schemas. openxmlformats . /2006/relats

propertiss” Target="docProps/app.xml=/>

</Ralaticnships>

The process outlined in the steps modifies the Ribbon
for an individual workbook. If you want to modify the
Ribbon for multiple workbooks using VBA, you can use
an add-in. You create an add-in by saving a workbook in
add-in format. Add-ins enable you to integrate additional
functionality into Microsoft Excel. You can create an add-
in and distribute it to others. See Chapter 18 to learn
more about add-ins.

If you are planning to convert a workbook with a
modified Ribbon to an add-in, do not place your code in
ThisWorkbook. Place you code in standard modules.

The examples in this book introduce modifying the
Ribbon with XML. For complete coverage of the topic,
refer to a book dedicated to the topic. There are many
more things that you can do in addition to what is
presented here.

$1 191dey)d

.
.

a
-
J
&
=
=
¢Q
=4
&
Pl
o
U
oc)
)
»
(97
75}
<))
=
u
(@
(=1
2]
=t
o
=3
S|
=
Vj}
(=
=
(¢
%‘;
=2
o
=

Add Additional Options

to the Ribbon

ou can create a customUILxml file, use that file to

create a new Ribbon tab, add buttons to the tab,

and use the buttons to execute your procedures.
You can also add control markups to your customUILxml

file that will create launchers, drop-down lists, toggle
buttons, check boxes, and more.

When creating your Ribbon modification, you use
callbacks to run procedures based on the information
returned when the user interacts with a control. For
example, check boxes return a Boolean value of either
True Of False when you use the onAction callback. Your
procedure can perform one action if the value returned is
True, and another action if the value returned is False.

Excel uses dialog boxes to enable users to access
advanced features. The user is able to open the dialog

Add Additional Options to the Ribbon

box by clicking a launcher located in the lower right
corner of the group. You can create launchers to open the
dialog boxes you create for your custom applications.
Dialog boxes are useful when you want to obtain
information from the user. Use the dialogBoxLauncher
element to create a launcher. Each group can have one
launcher. The launcher element must be the last element
in the group and must contain a button attribute. You can
use the onaAction callback to tell VBA what procedure to
execute when the user clicks the launcher.

Use the droppown element to present the user with a list
of options. When you present the user with a list, the
procedure that executes depends on the option the user
selects. You typically use conditional statements with a
drop-down list.

Add a Launcher
@ Add alauncher.

This example adds additional
code to the file started in
“Create a CustomUl.xml File.”

® The dialogBoxLauncher
tag.

® The required button tag.

Open the VBE.

Add the code that will
execute t0 ThisWorkbook.

®0

Opens an input box.

b L fgma et
<group id="Groupl"
label=" Create Reports ">
<button id="buttonl"
i Creat Blan} £

TR

size="large"

label="Format Report"

onAction="ThisWorkbook.ReportFormat"

screentip = "Create a report format" />
<button id="buttonz”

imageMso="TableDrawTable"

size="large”

label="Create Data"

onAction="ThisWorkbook.CreateData"

screentip = "Create report data” />
<button id="button3”

i Revi tCh o

size="large"
label="Sign and Date"
onAction="ThisWorkbook.SignAndDate"

screentip = "ig'n and date report" />
<dialogBoxLauncher>

<button id="launcherl"
screentip="Select a Quarter"

onAction="Thisgorkbook.ReportForm" />
</dialogBoxLauncher>
</group>

> = - — == kN
B (8 You jpiri gt Deing Sn lesh Sabies fedew e T.8

e—>$uh ReportForm(ByVal Control As IRibbonControl) I
——+—>»UserSelection = InputBox

("What title would you like to give your report?™)
Worksheets("Sales Data™).Activate
ActiveSheet.Range("B2") = UserSelection

| End Sub

Add a Drop-down List

®0

Add a tag to end the
previous group.

Add tags for the new
group.

This label will appear
at bottom of the group.

Create your drop-down
list tags.

List of options.

b Lt e Yew fe

g—-» <group id="Group3"

9——> </group>

</tab>
</tabs>
</ribbon>
</customUI>

label="Hide Region 2"
onhction="ThisWorkbook.CheckBoxR2"
GetPressed="ThisWorkbook.CheckBoxR2P" />
id="chec) 3n
label="Hide Region 3"
onhction="ThisWorkbook . CheckBoxR3"
getPressed="ThisWorkbook.CheckBoxR3P" />
<toggleButton id="toggleButtonl"
label="Show/Hide Product Detail"
size="normal"
onAction="ThisWorkbook.ToggleMeD1"
getPressed="ThisWorkbook.ToggleButtonlP” />

</group>

label="Chart Data"> <——
> T id pDowWnl"”
label="Select a Chart Type"
onAction="ThisWorkbook.ChartFunction">

e »

3 M.

e

y1 19dey)d

.
.

Open the VBE.

=

[—

Add the code that
will execute to
ThisWorkbook.

|=f5 < s

(@
-
()
Q
=y
=
uQ
o
Q
P
o
(1))
or]
Q
>
(¢
wn
&
=
o
(@)
c
n
o=t
()
2
S
=
U
=t
=
(¢’)
%‘;
=
o
=

Prior to Office 2007, developers used command bars to
modify the user interface. In most cases, this code works
in Office 2007 and higher without any modification.
The changes appear on the Add-ins tab. If the developer
added an item to a menu in Office 2003, then Office
2007 and higher creates a Menu Commands group and
places the information there. If the information was
assigned to a toolbar, then Office 2007 and higher
places the information in a Toolbar Commands group.

When the user checks a check box, the Boolean value
True is returned to the variable pressed; when the user
unchecks the check box, the Boolean value False is
returned to the variable pressed. You can use a check
box to set a property to True or False. For example,
you can use a check box to set the Hidden property for
a worksheet column. If the Hidden property is False,
the column is visible. If the Hidden property is set to
True, the column is not visible.

Example:

Sub PressCheckBox (control As IRibbonControl,
pressed as Boolean)

Columns (2) .Hidden =
End Sub

pressed

continued 9

&)

Add Additional Options

to the Ribbon (continued)

ou can use the toggleButton element to add a
toggle button to the Ribbon. Toggle buttons are
useful when you want to enable the user to turn
an option on and off with a single mouse click. For
example, if your worksheet has detail and summary data,
you can use a toggle button to hide the detail data so that
you can focus on the summary data. Use an onAction
callback to specify the procedure to execute. Use the label
attribute to label the button. In Excel, enter VBA code
similar to the following:
Sub ToggleMeDl (Control As IRibbonControl, _
pressed As Boolean)
Dim RowNum As Integer
Dim Counter As Integer
RowNum = 4
For Counter = RowNum To 7

Add Additional Options to the Ribbon (continued)

Rows (Counter) .Hidden = pressed
Next
End Sub

When used with a toggle button, the onaction callback
returns True when a toggle button is pressed, and False
when it is not. The value is returned to the variable
pressed. The code hides the detail when the button is in
a pressed state, and unhides the detail when the button is
in an unpressed state. Toggle buttons are always in one
of two states, pressed or unpressed. In Excel, bold is an
example of a toggle button.

You can use the checkBox element to add check boxes.
For example, if your data consists of three columns with
data for Region 1, Region 2, and Region 3, then you can
create a check box that hides and unhides the
information for each of the regions.

View Changes to the
Ribbon

@ Click the launcher to open
a dialog box.

The dialog box appears.

® Notice that there are
multiple groups.

® Notice the custom tab.

The dialog box adds a
title to your worksheet
when the user clicks OK.

Click this button to add a
format to your worksheet.

o T Wi | v L—) L
- ‘—.

ar € [i ¥ & =
T saes |
1

3 Wil B35 Region 2 Region 3

o | M e—— - L 166,384 5 110,242

s | — 155,403 135,896

L8 == 162,828 168,293

¢ ProauCTS 178 ALz 187,272 194,503

. s 627,741 § 671,887 § 608,934

]
10 Reviewed by: Denise 4/12/2010
1n
2
13

1

L c] r ¥ G "
Sales
2 Quarter 1 ~f——

3 Region 1 Region 2 Region 3
+ Product1 s 150,515 $ 166,384 3 110,242
s Product 2 145,704 155,403 135,896
o Product3 153,100 162,828 168,293
¢+ Product 4 178,422 187,272 194,503
' H 627,741 $ 671,887 § 608,934

]
10 Reviewed by: Denise 4/12/2010
1n
2
12
14
L]
18

17
® 48 E ek Durls G Chat T
a5 -

@ Click the drop-down list e 9
to see a list of options. A I Q
=t
n c] [} ¥ G 2
1 Sales
3 Quarter 1 ek
3 Region 1 Region 2 Region 3 i-h
2 Productl s 150,515 § 166,384 S 110,242 °*
= Product 2 145,704 155,403 135,896
& Product3 153,100 162,828 168,293
¢ Productd 178,422 187,272 194,503
' S emga S 671,887 5 608,934
£
10 Reviewed by: Denise 4/12/2010
1
i
3
14
1%
"
17
) s xS al
dandy | G| as -

The Bar Chart option

displays a bar chart.
‘l-lv\.‘ whonad
i e

uoqqry ay) Surzrwojisn) pue saxog Sofeig Suneai)

The following XML script creates a toggle button:

Example:

<toggleButton id="toggleButtonl"
label="Show/Hide Product Detail"
size="normal"
onAction="ToggleMeDl" />

The following XML script creates a check box:

Example:

<checkBox id="checkBoxl"
label="Hide Region 1"
onAction="CheckBoxR1l" />

Create a

Chart Sheet

ou can use VBA to create a chart. When you

create a chart, VBA creates a new Chart object.

You can then set the properties such as the title,
name, font, type, and style.

You can create a new chart sheet or embed a chart in a
worksheet. When you create a new chart sheet, you use
the chart object directly. When you create an embedded
chart, you use a chartobjects object. See the section
“Embed a Chart in a Worksheet” for more information on
creating embedded charts.

To create a new chart sheet, use the add method with the
Charts object. After you create the chart, you can use a

with statement to set chart properties such as chart type,
the name you want to place on the chart’s tab, the title of

Create a Chart Sheet

the chart, and the chart style. You select a chart type

by assigning an x1chartType constant value to the
ChartType property. You use the Name property to assign
a name to the chart tab. If you want to place a title on the
chart, set the HasTit1le property to True and then use
the chartTitle property to assign the title. If you want
to apply a style, assign a style number to the Chartstyle
property. Every style in the Excel style gallery has a
number. Position your mouse pointer over the style to
find out what the number is.

Use the setSourcebata method to tell VBA where the
data is located. The setSourceData method has two
parameters: Source and PlotBy.

@ Create a chart object
variable.

9 Set the chart object
variable.

® Use the add method to
add the new chart.

Create a with statement.

Use the chartType property
to specify a chart type.

Name the chart sheet tab.

Set HasTitle to True and
then assign a title to the chart.

Assign a chart style.
Specify your data source.

The worksheet tab name.

©.00 066 00

Press Alt+F11 to switch from
the VBE to Excel, and run your
macro.

@

ey =)
B b e juet fpwma (e Be Jmn Asdd o .
éub Enateéhanﬁi_oei()
Dim NewChart As Chart<—0
Set NewChart = ThisWorkbook.Charts.Add() < 9
End Sub
=wel | ;:.:

2y =)
Bl b e et fpwma (e B Jmm Asdb Pt by TR "l
il éub Enateéﬁart.si\-oet.()-

Dim NewChart As Chart

Set NewChart = ThisWorkbook.Charts.Add()

e——»\ﬂith NewChart

.ChartType = xICol cl ed-<€ e
:Name = "Sales by Region"

~—0

ChartStyle = 26 e

SetS Data <€
Source:=Worksheets("Monthly Sales Data"). _
Range("A2:D5"), _

PInlBy==xlcynns
End With

End Sub

|.r . Crasty s Chart Whert o - Marousft bicsl
Your source data. .,‘. e T = pmirs

PR T = s

The worksheet tab name. - T D bl

B Aagam

B Regon dan feb war |

s Region1 94104 71752 68691

i Region2 87,790 71986 81983

: Reglon3 70,202 63350 95859 €
¢ Total 252,096 207,097 246,533

g1 19dey)

.
.

The macro creates a chart.
® The tab name.

® The title.

§
W
[
=)
U
s
=t
=
(@
=
&
=
n

When creating a chart, you should specify the chart’s data source. Use the Set SourceData method. The following
is the syntax:

Example:
NewChart.SetSourceData (Source, PlotBy)

Use the Source parameter to specify the actual data range your chart will use. The Source parameter can
reference any valid data range. See Chapter 11 for more information on defining a range of values. When working
with a chart sheet, you must indicate the name of the worksheet containing the data as part of the range reference.
For example, the following code references the range of cells contained in Sheet1 in the same workbook.

Example:
NewChart.SetSourceData Source:=Worksheets ("Sheetl") .Range("Al:B15")

With the SetSourceData method, you can use the P1otBy parameter to tell VBA how to plot the data in the
specified range. You assign P1otBy one of the X1RowCol constant values.

+++

Embed a Chart

A A
‘-

ou can use VBA to embed a chart in a worksheet. parameters you can use to set the location and size of the

in a Worksheet

When you embed a chart, Excel creates a new chart in points: Left, Top, Wwidth, and Height. Use the

Chart object. You can then set the properties Left parameter to specify the location of the chart in
such as the title, name, font, type, and style. relation to the left edge of column A. Use the Top
When you embed a chart in a worksheet, the parameter to specify the location of the chart in relation
corresponding chart object that Excel creates becomes a t0 the top edge of row 1. Use the width and Height
part of the Worksheet object. Because you can embed parameters to specify the initial width and the height of
multiple charts in one worksheet, the worksheet object the chart object.
contains a chartobjects collection object that contains You specify the type of chart that Excel creates by using
all chart objects on the worksheet. When you add or the chartType property with one of the x1ChartType
remove embedded charts, you must use the constant values. For example, to create a line chart, you
ChartObjects collection object. use the constant x1Line. See the appendix for a list of

To add a chart to a worksheet, use the add method with ~ the X1ChartType constants.
the chartobjects object. The add method has four

Embed a Chart in a Worksheet

i - [et - s — & P :.I?n
@ Create a chart object I — e)
variable. Sub EmbedChart() 7|
Dim EChart As chancubject<—o
9 Set the chart object Set EChart = Sheets("Sheet1").ChartObjects.Ad
vl T e e aE o s(::n_sauo, Top:=175, Width:=400, Height:=300)
® The name of the
worksheet in which you
want to place the chart.
® Sets the chart position
and size.
=/ _JCT
Tl= s
9 Create a with statement. zL--L- e ot s o ' Ty . pndine - KLE
9 Use the chartType | Sub EmbedChart() i
. Dim EChart As ChartObject
property to specify a Set EChart = Sheets("Sheet1").ChartObjects.Add
chart type. (Left:=300, Top:=175, Width:=400, Height:=300)
e——>with EChart
6 Set HasTitle 10 True .Chart.ChartType = xlant:otumn<—e
and then assign a title to , e
the chart. e—».chart.cnartstyla =26
e Assign a chart style. g " ;c::‘rth.SﬂSonranata Source:=Range("A2:D6")
* n n
End Sub
=/ T I

@

q == B
o Specify your data source. 2..- e S ey Yetariows T g
@ Press Alt+F11 to switch s M Object il <
m al -1 a ec -
from the VBE to Excel, and Set EChart = Sheets("Sheet1").ChartObjects.Add (¢)
run your macro. (Left:=300, Top:=175, Width:=400, Height:=300) =
With EChart a
.Chart.ChartType = xI3DColumn oo
.Chart.HasTitle = True s
.Chart.ChartTitle.Text = Cells(1, 1) i)
.Chart.ChartStyle = 26 —
.Chart.SetSourceData Suurc¢:=ﬂang¢("n2:DB")<—o =
End With E'
End Sub uQ
z
=2
=Eal | of (@)
=
The macro creates your chart. i e Ssu §
il — Sales :) §
Your source data. : jan Feb War @
, Dallas 154943 149,161 193,062
The tab name ¢ Atianta 175,116 197,934 188,209
. + Miami 169,210 122,356 172,085 -
. « New York 142,876 150,437 148,503
® The title. 1 Total $642,145 $628,888 $701,850
: .—» Sales
Saan “_1““‘ e

The only real difference between embedded charts and chart sheets is that the Chart object for an embedded chart
is part of the ChartObjects collection for the worksheet, whereas the Chart object for a chart sheet is part of the
Workbook object. If you compare the code that creates an embedded chart to the code that adds a chart sheet, you
will notice that with an embedded chart, specifying chart methods and properties requires reference to the Chart
object. This is because when you create a new chart sheet, you create a new Chart object, but when you create an
embedded chart, you add a Chart object to the ChartObjects collection for the worksheet; therefore, the Chart
object becomes a child of the ChartObjects collection object. To set the chart type of an embedded chart, you
can use the following code:

Example:
Worksheets ("Sheetl") .ChartObject (1) .Chart.ChartType = xlColumnStacked

This code sets the chart type of the first Chart object in the worksheet named Sheet1 to a stacked column chart.
If you compare this code to the code required for changing the chart type of a chart sheet, you can see the
similarities.

Example:
Sheets ("Chartl") .ChartType = x1lColumnStacked

Apply Chart Wizard

Settings to a Chart

hen writing VBA code, you can use the
Chartwizard method to format or reformat
a chart quickly. The method has 11 optional

parameters that enable you to set chart properties. The
following is the syntax:

expression.ChartWizard (Source,
Format, PlotBy, CategoryLabels,
HasLegend, Title, CategoryTitle,
ExtraTitle)

Use the source parameter to specify or modify the chart’s
data source. When you are working with a chart sheet,
you must specify the name of the worksheet that contains
the data source. Use the callery parameter to specify
the chart type. Assign one of the x1chartType constant
values to indicate the desired chart type. See the appendix
for a list of x1chartType constants.

Apply Chart Wizard Settings to a Chart

Gallery,
SeriesLabels,
ValueTitle,

Specify a value of 1 to 10 for the Format parameter. The
Format parameter applies one of VBA’s built-in formats.
The format that it uses depends on the chart type you
select. The PlotBy parameter tells VBA whether the
data series is in rows or columns. Assign the PlotBy
parameter x1Rows if the data series is in rows. Assign

it x1columns if the data series is in columns.

Assign an integer value to the categoryLabels and
SeriesLabels parameters to indicate the number of
rows or columns in the category or series that have
labels. Assign the HasLegend parameter the value True
if you want your chart to have a legend.

Use the Title parameter to assign a title to your chart, the
CategoryTitle parameter to assign a title to the axis that
displays categories, and the valueTitle parameter to assign
a title to the axis that displays values. For a 3-D chart, use
the ExtraTitle parameter to assign a title to your depth
axis. You must set any additional properties individually.

@ Create a chart object

variable.
(2]

Set the chart object
variable to the chart you
want to modify.

The name of the chart
sheet.

Create your
ChartWizard
command.

Set your parameters.

Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

(o~

@

(2] T Bl
e b e st bpma Dniny B Dmn Shbbe i b prp—— Py

Sub UseChartWizard()

Dim SalesChart As Chart 4—0

Set SalesChart = ThisWorkbook.Charts("Monthly Salus")*—g
End Sub

=Wal | o

| ToT= Bl
[Je b e juiint bpma [abeg B Dmm Addbe fede by [r— sl
Sub UseChartWizard()
Dim SalesChart As Chart
Set SalesChart = ThisWorkbook. rts("Monthly Sales™)
SalesChart.ChartWizard 4—@

-—0

End Sub

T+

Your chart before s
you apply the macro.

100300

o0

o

Your chart after you B e e s
apply the macro.

Your macro changes i

the format of your " =

chart.

.o
EM - P
g 2
ipid |

pere

W oy e iy e s
3

When working in Excel, once you have your chart designed exactly the way you want it, you can save your design as
a template. You can also use VBA to save your design as a template.

Example:
Sub CreateTemplate ()
Dim SalesChart as Chart
Set SalesChart = ThisWorkbook.Charts ("Monthly Sales")
SalesChart. _
SaveChartTemplate("Sales Chart Template")
End Sub

To apply your template to an existing chart, in Excel, click your chart. The Chart tools become available. Click the
Design tab. Click Change Chart Type in the Type group. The Change Chart Type dialog box appears. Click
Templates, click your template, and then click OK. Excel applies your template to your chart.

g1 19dey)

.
.

=
2

W
pte
=
UQ

=
=3
Q
=
&

S
7))

Add a New Data

Series to a Chart

data series is a group of data values that Excel

displays in your chart. Each data series appears

as a legend item. After you create a chart, you
can redefine the range of data Excel uses to display
values in your chart by adding a new data series. For
example, if you have a bar chart showing the sales in
Regions 1, 2, and 3 for January, February, and March,
you can add another data series that contains the sales
data for April.

The seriesCollection collection object contains all of
the data series that Excel plots on a specific chart, with
each data series representing a series object. To define
a new data series, create a new Series object and add it to
the seriesCollection collection object by using the adad
method.

Add a New Data Series to a Chart

When used with the seriescollection object, the

Add method has five parameters: source, Rowcol,
SeriesLabels, CategoryLabels, and Replace. Use the
Source parameter to specify the data series you want to
add to the chart. Use the Rowcol parameter to tell VBA
whether the new series is in a row or a column. Use
x1Rows if the data series is in a row, or use x1Columns
if the data series is in a column.

Set the seriesLabels to True if the first row or column
of the data series contains a label. Set the categorylLabels
to True if the first row or column of the data series
contains a category label. If you specify a value of True
for the categoryLabels parameter and for the Replace
parameter, VBA replaces the current category labels with
the labels from the new range.

@ Create your

SeriesCollection
Add statement.

® The worksheet name.

® |[dentifies the chart.

The data series you want
to add.

Tells VBA that the series
has labels.

® Tells VBA the data is
organized in columns.

@ Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

@

4] b ==~
Bl b e et fpwe [ebay Be Jme Asdb e faf
| éub ;dd_N.ewger.i.es(-j.

0——>Workshaots{"Monthly Sales Data").ChartObjects(1).
Chart.SeriesCollection.Add
Source:=Worksheets("Monthly Sales Data™). _
Range("E2:E5"), _
SeriesLabels:=True,
Rowcol:=xIColumn
End Sub
o =l
Tl e

BB b e et bpea [y B Dmn Asbbe ek e Fer— =T

Sub AddNewSeries()

Worksheets("Monthly Sales Data").ChartObjects(1).
Chart.SeriesCollection.Add
Source:=Worksheets("Monthly Sales Data™). _

—t+—> Range("E2:E5"), _
SeriesLabels:=True,<€———
@ > Rowcol:=xIColumn

End Sub

= T

[T .]
Your chart before Bl = neom e e e b o s) 9
you apply the macro. B Regon __an e Mar o (S
1 Region 1 94,104 71,752 68,691 94,103 PU
« Region2 87780 71986 81983 74126 -
« Region3 70,202 63,359 95859 58830 ()
« Total 252,096 207,097 246533 227,109 -
(=Y
; S
3 =
o i -
v i o
. =
" V)]
z
=g oo | J
— = @
=
Your chart after you e e §
apply the macro. B Regon _ don Fob M dor »n
1 Region 1 a4, 104 71,752 68,691 94 103
« Region2 87780 71986 81983 74126
® The macro adds a « Region3 70,202 63,359 95859 58830
new data Series. « Total 252,096 207,097 246,533 227,109

] ety S Doty 5
i |

Each chart embedded in a worksheet is a member of the You can remove a series from a chart by using the
worksheet’s ChartObjects collection. Each chartin the | Delete method. The following code removes the series
worksheet’s ChartObjects collection has an index that was added in the example.

number. The first chart is ChartObjects (1), the

second chart is ChartObjects (2), and so on. You can Example:

refer to a chart by its index number. You can also refer to Worksheets ("Monthly Sales Data")._

a chart by its name. To find a chart’s name, in Excel, click ChartObjects (1) ._

your chart. The Chart tools appear. Click the Layout tab. Chart.SeriesCollection ("Apr") _

The chart name appears in the Properties group. -DRlEiEE

Each chart sheet in a workbook is part of the Charts

collection. Each member of the Charts collection has

an index number. The leftmost chart is Chart (1), the

next chart is Chart (2), and so on. You can refer to

Chart objects by their index number.

Format

Chart Text

s with all text elements in a workbook, you can
format the text that appears in your chart by
changing the Font properties. When Excel adds
text to a chart, such as a chart title, axis label, or even
data label, it applies default formatting. You can reformat
the text by using the Font object properties. By setting
the Font properties, you can make your chart easier
to read.

The chart area encompasses everything in your chart. By
applying Font object properties to the chartarea object,
you can set the font attributes for all of the text in the
chart. For example, if you want to change the font color
for the entire chart, you apply the Font object color
property to the chartarea object.

Format Chart Text

Excel also enables you to format individual elements of
text that appear in your chart. For example, if you use the
Font object properties with the chartTitle object, you
can modify the chart title. To change how Excel displays
legend text, use the Font object properties with the
Legend object.

You can use the chartArea object to set the font settings
for the entire chart and then use the individual objects to
customize various portions of the chart. You can set the
properties for any of the following objects by using the
Font object: ChartTitle, DataTable, Legend,
Characters, AxisTitle, DataLabel, and TickLabels.
See the Chapter 11 section “Using the Cells Property” to
see a partial list of the Font properties you can set.

@ Create a chart object
variable.

9 Set the chart object
variable to the chart you
want to format.

® The name of the chart
sheet tab.

®

Format the text in the
chart area.

Format the chart title.

Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

©0

g——>s-t SalesChart = ThisWorkbook.Charts

[EY == B
Bl b e et tpma [evyg B lwm Aadb e it Pt e
i éub F.urmat.t_:ﬁ nrt()

Dim SalesChart As l:harl<_o

("Monthly Sales"™)
End Sub

= T

e =]
L Ty —- Fesr— V.

Sub FormatChart()
Dim SalesChart As Chart
Set SalesChart = ThisWorkbook.Charts
("Monthly Sales™)

End With
End With
End Sub

= T

T+

The chart without formatting.

whegn 1
g |

a0 o wom mgen o 1000
P

The macro formats the data. -

The chart with formatting. Manthly Sales By Raglon

95,859
Mar 1,983
68,691

é 63,359
B leb 71,986 whtegion3
= 71,952 ® Region 2
wRegion 1
70202
Jan 07,790
94104
20,000 40,000 60,000 BO000 100000 120,000
Sales
S0 sw (e | Pin d M e i e
| e

You may not want to apply the same font settings to an entire Chart object. For example, you may want to
underline the first character in the chart title. With the ChartTitle, AxisTitle, and DataLabel objects, you
can use the Characters object to specify the character within the text string where formatting should start, as well
as the number of characters to format. For example, to underline the first two characters in a chart title, type code
similar to that shown in the example. The Characters object has two parameters: Start and Length. Use the
Start parameter to indicate the character in the text string at which VBA should begin applying the format. Use
the Length parameter to indicate the number of characters to which VBA should apply the format.

ThisWorkbook.Charts (1) .ChartTitle. .
Characters(1,2) .Font.Underline = True

Excel underlines the first and second characters

in the chart title, but all remaining characters
maintain their original font settings.

g1 19dey)

.
.

suey) YPIm Suryiom

Create Charts with

Multiple Chart Types

you may want to create a chart that uses a different

chart type for each data series. For example, if your
chart displays the population of various cities and the
average income in those cities, you may want to create a
column chart to display population, and a line chart to
display average income. A chart that uses more than one
chart type is called a combination chart.

To set the chart type for a data series, you use the series
Collection collection object. The seriesCollection
collection object contains each of the data series in the
range of data shown in your chart as an individual
SeriesCollection object. You reference an individual
object by using an index value. VBA numbers each data

I f you show more than one type of data in your chart,

Create Charts with Multiple Chart Types

series. The first data series iS SeriesCollection (1),
the second iS SeriesCollection (2), and So on.

To set the chart type for a data series, you set the
ChartType property for the seriescollection object.
When you initially create your chart, you can set the
chart type for each individual data series, or you can set
the chart type for the entire chart, and then modify the
ChartType property for the individual data series you
want to change. You assign the chartType property, an
X1ChartType constant value that represents the chart
type you want to use for the data series. See the appendix
for a list of the x1chartType constant values that you
can assign to the chartType property.

® Use the add method to add a new
chart.

Create a chart object variable.

Set the chart object variable.

Set your data source.
Assign a chart type to your chart.
Assign a chart style to your chart.

Tell VBA whether your data is in
columns or rows.

O 0000

Assign a new chart type to a data
series.

In this example, you assign
a new chart type to
SeriesCollection(1l).

Format your chart.

Press Alt+F11 to switch from the
VBE to Excel, and run the macro.

@

©0

) == B
[

B b e et fpma [ebvey B Jum Sdibe e e [eep— .8

Sub CombinationChart()
Dim IncomePopuChart As Chan‘—o
=3 Set IncomePopuChart = ThisWorkbook.Charts.Add()
End Sub

=Wl |

.ChartType = leineMa:ﬁs
.ChartStyle = 2
.PlotBy = xIColumns

B I b e et fpes (g B Dmw Akbbe s b

| sub CombinationChart()
Dim IncomePopuChart As Chart
Set IncomePopuChart = ThisWorkbook.Charts.Add()
With IncomePopuChart
.SetSourceData Source:ﬂwclrksllulst"Data“}.ﬂ—e
Range("A1:C5")

.SeriesCollection(1).ChartType = xICol Clust
.HasTitle = True

End With
End Sub

= T |

Your data source. e o Q
® Series 1. - - : . =
. 1| F lation Average Income Coss Cust
Serles 2 : Aftlanta 95,116 “41594 9;
1 Chicago 102,876 70,670

« Dallas 84,843 32,334 a

+ Philadeiphia 119.210 54,310 5%

: 2
i N

2 i o

- =

UQ

z
=

= —= @)
_ =
The macro creates B e e e e e s PR Seek §
a combination chart. Income/Population by City W
140,000

120,000

100,000

80,000

- Population
“aAverage Income

60,000

40,000

20,000

Atlanta Chicago Dallas Philadelphia

i | -

You can use a different chart type for each data series. Excel keeps track of the data series chart types, and groups
the common types together as ChartGroup objects. Each ChartGroup object contains one or more data series

with the same chart type. Excel stores all ChartGroup objects within the ChartGroups collection object, which

you can access through the ChartGroup property.

The ChartGroups object provides methods for returning the collection of the ChartGroup objects that
correspond to a particular type. For example, if you want to access the line chart type ChartGroup objects, you
can use the LineGroups method. The example that follows illustrates how to count the number of column chart
types in a chart.

Example:

DataSeriesCount = ThisWorkbook.Charts (1) .ColumnGroups.Count

METHOD DESCRIPTION

AreaGroups Determines the number of series with an area data type
BarGroups Determines the number of series with a bar chart data type
ColumnGroups Determines the number of series with a column chart data type
DoughnutGroups Determines the number of series with a doughnut chart data type
LineGroups Determines the number of series with a line chart data type
PieGroups Determines the number of series with a pie chart data type

Add a Data Table

data table displays the values in your chart. You

to a Chart
can add data tables to any chart you create. VBA

A stores the data table associated with a chart in

the pataTable object.

Use the HasDataTable property to tell VBA whether you
want to include a data table in your chart. This property
accepts the Boolean values True and False. If you want
to display a data table, set this property to True.
Conversely, if you do not want to display a data table, set
this property to False.

After you set the HasDataTable property, you can format
your data table by using the methods and properties
associated with the pataTable object. You specify the
font by using the Font properties. For example,
DataTable.Font.Name = "Arial" tells VBA to use an

Add a Data Table to a Chart

Arial font in the data table. See the section “Format Chart
Text” for more information on working with the Font
object in a chart.

You can choose to display or not display borders in and
around your data table by using the HasBorderHorizontal,
HasBorderOutline, and HasBorderVertical properties.
By default, Excel displays all borders on a data table. If you
do not want to display one or more of these borders, set their
value to False. For example, the following code removes the
horizontal border from a data table: DataTable.
HasBorderHorizontal = False.

A legend key tells the user what each data series
represents. You can use the showlLegendkey property to
tell VBA whether you want to show a legend key in your
data table.

@ Create a chart object

variable.
(2]

Set the chart object
variable to the chart to
which you want to add
a data table.

]

BB b e et fpma (e Be Jwe babe e e

| sub AddDataTable()

=l

Dim TableChart As Chaﬂ(—ﬂ

Set TableChart = ThisWorkbook.Charts("Sales by Region”)=
End Sub

Create a with statement.

Set the HasDataTable
property to True.

Assign a font to your data
table.

Assign a border color.

Set the showLegendkey
property for the data table
10 True.

00 ® 00

This code shows a legend
in the data table.

B b e st Gy Dy B]

| Sub AddDataTable()

=3 With TableChart

=3 End With

=l

Dim TableChart As Chart
Set TableChart = ThisWorkbook.Charts("Sales by Region”)

.HasDataTable = Trunq—o

.DataTable.Font.Name = "Tahoma™
.DataTable.Border.Color = RGB(25,
.DataTable.ShowlLegendKey = True
.HasLegend = False
.ChartArea.Font.Name = "Cambria”
.ChartArea.Font.Size = 16

25, 112)4—0a

End Sub

@

0 Set the HasLegend

©

property for the chart
to False.

This code suppresses
the chart legend.

Set the chart area
properties.

Press Alt+F11 to
switch from the VBE
to Excel, and run the
macro.

The macro creates
a chart with a data
table.

B B b o it s (e B Dem Abibe s b

e

| Sub AddDataTable()
Dim TableChart As Chart
Set TableChart = ThisWorkbook.Charts("Sales by Region”)
With TableChart
.HasDataTable = True
.DataTable.Font.Name = "Tahoma"
.DataTable.Border.Color = RGB(25, 25, 112)

0 .DataTable.ShowlLegendKey = True
.HasLegend = False

End With
End Sub

Monthly Sales By Region
120000

100,000
80000
60,000
40,000

20,000

Region 1
44,104
71,752
Lol

Region 2
B7,790

Region 3
70.202

71986
81,983

63,359
95,859

e wownn | Drep iwnd teat “@azc

When you add a data table to a chart, you can include the chart legend with the data table. To create a data table

that contains a chart legend, set the ShowLegendKey property to True for the DataTable object. The following

example sets the value of the ShowLegendKey property.

Example:
ThisWorkbook.Charts (1) .DataTable.ShowLegendKey

= True

If you display the legend as part of your data table, you typically do not want the legend to appear separately on

your chart. To hide the chart legend, set the HasLegend

Example:

ThisWorkbook.Charts (1) .HasLegend = False

property for the Chart object to False.

g1 19dey)

.
.

=
2

W
pte
=
UQ

=
=3
Q
=
&

S
7]

Create a

PivotTable

ivotTables help you answer questions about your

data. A PivotTable shows how data is distributed

across categories. For example, you can use a
PivotTable to see how different products sell by region or
by quarter. You base PivotTables on lists. You can use a
worksheet list or you can connect to a list from another
data source, such as Access.

A pivotCache object represents the memory cache for a
PivotTable report. You must create a PivotCache object
for your PivotTable. Use the PivotCaches.Create
method. The PivotCaches.Create method has three
parameters: SourceType, SourceData, and version. Use
an x1pivotTableSourceType (0 specify the sourceType.
Use x1consolidation if the source is a consolidation, use
x1Database if the source is a list in your workbook, or
use x1External if the source is another application. The
SourceType parameter is required.

Create a PivotTable

Use the sourceData parameter to specify the location of
the data. If your SourceType iS x1consolidation or
x1Database, the sourceData can be a Range object and is
required. If your SourceType iS x1External, the
SourceData can be an Excel Workbook Connection object.
Use the optional version parameter to specify the version
of Excel by using an x1pivotTableVersionList constant.

Use the PivotCache.CreatePivotTable method to
create a PivotTable. The PivotCache.CreatePivotTable
method has four parameters: TableDestination,
TableName, ReadData, and DefaultVersion. Use the
Table Destination parameter to specify a cell that
represents the upper left corner of the range where you
want to place the PivotTable. Use the TableName
parameter to name the PivotTable. Use the Readpata
parameter to specify whether records from an external
database are held in cache. Use the optional
DestinationVersion parameter to specify the version of
Excel by using an x1PivotTableVersionList constant.

@ Declare your variables.

@ Store the location of the
data to a Range oObject.

@ Add the worksheet on
which you want to place
the PivotTable.

@ Create a PivotTable
cache.

® The SourceType.

® Where the data is located.

e—-’ Set PivotTableCache = ActiveWorkbook.PivotCach

2] o= B
) e b e et bpma Diny B Dmn Sabbe i b co 8

il éub Ereaté P-ivot'l.'.al.a.la.{“l

~—0

Worksheets.Add.Name = "‘l’able"<—9

End Sub

==

Dim PivotTableSales As PivotTable
ActiveWorkbook.Worksheets("Data").Activate
Range("A1").Activate

Set DataRange = Selection.CurrentRegion
Worksheets.Add.Name = "Table"

Create

(Sou rcoTypa:=xIDatahase,<—.
SourceData:=DataRange,
Version:=xIPivotTableVersion14)

End Sub

@ Create a PivotTable.

Where you want to
place the PivotTable.

The name you want to
give the PivotTable.

Press Alt+F11 to

switch from the VBE
to Excel, and run the
macro.

The macro creates
a PivotTable.

ey Tel= B
g S gy gy Y
il Iéoumef}pe::n.l-ﬁnt_a_h_ase, =
SourceData:=DataRange,
Version:=xIPivotTableVersion14)
e——>sn PivotTableSales = PivotTableCache.
CreatePivotTable(
TableDestinati Worksheets("Table").Range("A3");
TableName:="PivotTable1",€—
DefaultVersion:=xIPivetTableVersion14)
Range("A3").Activate
End Sub
=l | of
[- [
- - ey - a@as

e ——

¥ bt b

You can set the
CreatePivotTable
ReadData parameter to
True to create a
PivotTable cache that
holds all of the records

from an external database.

This, however, can create
a large cache. If you set
the ReadData parameter
to False, you can set
some of the fields to
server-based fields.

To construct a
PivotTable manually,
you choose the fields
you want to include in
your report and then
drag the fields from the
PivotTable Field List
into the Report Filter,
Column Labels, Row
Labels, and X Values
boxes. You can click
and drag more than
one field into an area.

You can also use the PivotTables .Add method to
create a PivotTable.

Example:
ActiveSheet.PivotTables.Add _
PivotCache:=PivotTableCache, _

TableDestination:=Worksheets ("Table"). _
Range ("A3"), _

TableName:="PTSales"

o1 191dey)

.
.

§
W
[
=
(0)°]
=
=t
=
o)
<
2
S
=N
o
(7]
75}

Add Fields to

a PivotTable

hen you manually create a PivotTable, you

choose the fields you want to include in your

report from the Choose Fields to Add list box
and then you drag the fields into the Report Filter,
Column Labels, Row Labels, and T Values boxes to create

report filters, columns, rows, and data fields.

When using VBA, you can create report filters, columns,
rows and data fields by using the rPivotFields object
with the orientation property. Use an
X1PivotFieldOrientation constant to make the
assignments. Use x1ColumnField to add a column label,
x1RowField to add a row label, x1PageField to add a
report filter, and x1patarField to add a data field. You
can refer to each field by using the field name or by using
an index value. The first field in the Choose Fields to Add

Add Fields to a PivotTable

to Report box has an index value of 1, the next field has
an index value of 2, and so on. The following examples
are equivalent and use a field name and an index value

respectively:

With PivotTableSales.PivotFields (2)
.Orientation = x1ColumnField

End With

With PivotTableSales.PivotFields ("Quarter")
.Orientation = x1ColumnField
End With

When creating a data field, you can use the Function
property to specify the x1consolidationFunction the
field should use. For example, you can specify x1Sum to
sum values.

@ Declare a pivotTable
object variable.

9 Assign a PivotTable to the
object variable.

@ Create a column.
@ Create a row.
@ Create afilter.

=
7, g e v

Sub CreatePivotReport()
g_ Dim PivotTableSales As PlvotTable<—0
—P>Seat PivotTableSales =
Worksheets("Table"). _
PivotTables("PTSales")
End Sub

|1
Ol

Al o

] T
[T b ee st fyei Deiny B Dk babbe o e .8

Dim PivotTableSales As PivotTable
Set PivotTableSales =
Worksheets("Table").
PivotTables("PTSales")
—3With PivotTableSales.PivotFields(2)
.Orientation = xIColumnField
End With
=>With PivotTableSales.PivotFields(3)
.Orientation = xIRowField
End With
=3With PivotTableSales.PivotFields(1)
.Orientation = xIPageField
End With
End Sub

PPP

o LT

O Create a data field.

@ Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

The macro creates
a PivotTable report.

E e o S vy ——

= o] Tonereer]

Worksheets("Table").
PivotTables("PTSales")

With PivotTableSales.PivotFields(2)
.Orientation = xIColumnField

End With

With PivotTableSales.PivotFields(3)
.Orientation = xIRowField

End With

With PivotTableSales.PivotFields(1)
.Orientation = xIPageField

End With

With PivotTableSales.PivotFields(4)= e
.Orientation = x|DataField
.Function = xISum

» Grand Total 45996 43910 47211 35595 172712

10

i ¢ bt

End With
End Sub

=i |
[CFEE v S

" A Ks ®mmTy Gomi

A R nep- EEW EE G 8-

TR % agm
i . G 5T ' ST T e

S Tra— R ———
1 Sum of Bushels Sold Column Labels . et

+ Row Labels -1 Q2 03 04 Grand Total o

s Apples 16262 13766 13856 12811 56695

s Oranges 15212 16634 19938 11569 63353

) Peaches 14522 13510 13417 11215 52664

You can use an X1ConsolidationFunction to tell Excel which calculation to perform on data fields. The
following is a list of X1ConsolidationFunctions.

CONSTANT VALUE DESCRIPTION

x1Average -4106 Calculate the average.

x1Count -4112 Count.

x1CountNums -4113 Count numerical values.

x1Max -4136 Display the highest value.

x1Min -4139 Display the lowest value.

x1Product -4149 Multiply.

x1StDev -4155 Calculate the standard deviation based on a sample.
x1StDevP -4156 Calculate the standard deviation, based on the whole population.
x1Sum -4157 Calculate the sum.

x1Unknown 1000 No subtotal function specified.

x1Var -4164 Calculate the variation based on a sample.

x1lvarp -4165 Calculate the variation based on the whole population.

o1 1adey)

.
.

SI[qeL10AId YIIM SurjIom

Display Subtotals

and Grand Totals

hen you create a PivotTable, Excel groups

the data for you. Excel groups all items with

the same row label together and all items
with the same column label together. You can add
subtotals to your PivotTable. For example, if you sell
apples, oranges, and peaches, in Regions 1, 2, and 3 you
can subtotal by product to find the total number of
apples, oranges, and peaches sold in each region.

You should structure your data so that Excel groups by
product, shows the number of products sold in Region 1,
the number of products sold in Region 2, and the number
of products sold in Region 3.

Subtotals can be a sum, count, or average, or display
some other value. You can use an index value with the
PivotField.Subtotals property to specify the type of

Display Subtotals and Grand Totals

subtotal you want. See the “Extra” portion of this section
for a list of index values.

To add a subtotal to your PivotTable, use the
SubtotalLocation method. You can place subtotals at
the top or the bottom of each group. To place subtotals at
the top of each group, assign the subtotallocation
method a constant value of x1atTop. To place subtotals
at the bottom of each group, assign a constant value of
x1AtBottom.

By default, when you create a PivotTable, Excel creates
grand totals for both rows and columns. You can create
grand totals just for rows, just for columns, or for neither
rows nor columns by assigning a Boolean value of either
True to display a row or column subtotal, or False to not
display a column or row subtotal, to the RowGrand and
ColumnGrand properties.

o
(2]

Declare a PivotTable
object variable.

Assign a PivotTable to the
object variable.

®

Specify the Subtotal
location.

Do not display a column
grand total.

(5]

Display a row grand total.

2] =)
F T e T T T v -8
il éub l._':.reategu.btotal.s.{m)
Dim PivotTableSales As PIvotTable‘—o
e——FSnt PivotTableSales = Worksheets("Table")
.PivotTables("PTSales")
End Sub
=Ea | 8

== s
) B b e et bpwat [B Den b e b oA
éub l._':.reate;u.btotal.s.{m)
Dim PivotTableSales As PivotTable
Set PivotTableSales = Worksheets("Table")

.PivotTables("PTSales")
With PivotTableSales 9
.RowGrand = True 4—6

.SubtotalLocation xlAtBotto
el—>.0ulumn0raﬂd = False
End With

End Sub

= T o

Q¢ e0

Create Subtotals.
Sum.
Highest value.

Press Alt+F11 to
switch from the
VBE to Excel, and
run the macro.

The macro displays
subtotals and grand
totals.

R g i —od

el o] [Crmes tabteten
| Sub CreateSubtotals()
Dim PivotTableSales As PivotTable
Set PivotTableSales = Worksheets("Table")
.PivotTables("PTSales")
With PivotTableSales
Sut ILocation xlAtBott
.ColumnGrand = False
.RowGrand = True
With .PivotFields("Region™)
Subtotals(2) = True "Sum
Subtotals(5) = True 'Highest Valus‘—.
End With
End With
End Sub

=i 1] T o

[.

- -)
o R NS el F e L2 A
s Bt oA EEE EE G 40
m - B R Labuis
A " c] [[T T o Lt "
T r— @ B emavel S
Region 1 A

Apples. 6478 SR7T1 4745 13207 i Quartes
Pt
4301 & LYEL 7 B st
s 5196 5123 5248 4332 19789
4 Region 1 Sum 15975 16445 16968 12338 61726
10 Reghon 1 Max 6478 S872 €975 6L12 €975
11 = Reglon 2
Anples 19540
2963 1
5 697 4356 (5
14431 16641 17801 11517 50440 ok B
16 Region 2 Max 5124 SOET 6751 4356 6751 S d
11 Ffeglon 3
H Apples 13048
1 [2 24808 S
20 4281 2400 3472 2637 117590 v
i1 Region 3 Sum 15540 10824 12442 11740 50546
i1 Region 3 Max 6599 5395 6212 6602 6602
X Ik G % ety
[| o

INDEX VALUE CALCULATED VALUE

Automatic

Sum

Count

Average

Highest value

Lowest value

Product

O || |lu b WD |

Count Numbers
9 StdDev

10 StdDevp

11 Var

12 Varp

In the example, there are two Row Labels: Region
and Product. In VBA, when you create more than
one label for a column, row, data, or filter field, you
can specify the order in which they appear by using
the PivotFields.Position property. Assign a
value of 1 for the first position, 2 for the second
position, and so on.

Example:
With PivotTableSales
.PivotFields ("Region") .Position = 1
.PivotFields ("Product") .Position = 2
End With

o1 1adey)

.
.

'9€§
W
pte
=
¢
=
=3
o)
<
)
=t
5
=N
[
(97
7,]

Filter a

PivotTable

ou can filter your PivotTable data. Filtering

enables you to view only the data relevant to you.

For example, if your data consists of Quarters 1
through 4 and you want to focus on Quarter 1, you can
filter your PivotTable so only Quarter 1 data appears.

Each field’s column label is a pivot item. In VBA, you can
use the PivotTtems.Item method to filter. You simply
set the item’s visible property to False. To make the item
visible again, set the property to True. You can identify
each item by its label or by an index value. The first
column or row is column 1 or row 1, the second is
column 2 or row 2, and so on.

Filter a PivotTable

When you add two or more fields to a column or row,
Excel adds expand/collapse buttons. You click the
buttons to view or hide detail items. In VBA, you can
hide detail items by setting the PivotItem.
ShowDetail property to False and show detail items
by setting the ShowDetail value to True.

Example:

PivotTableSales.PivotFields ("Region") _
.PivotItems ("Region 1") _
.ShowDetail = False

@ Declare a pivotTable
object variable.

9 Assign a PivotTable to the
object variable.

9 Set the visible
property to False to
filter.

e Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

The macro filters
Quarters 2, 3, and 4.

g——».%t PivotTableSal

Sub FilterTable()
Dim PivotTableSales As PlvotTable<—0
= Worksheets("Table")
.PivotTables("PTSales")
With PivotTableSales.PivotFields("Quarter”)
-Pivotitems("Q1").Visible = True

-—0

End With
End Sub

1 |Sum of Bushels Sold [Column Labels

1 Row Labels Q1 Grand Total
Region 1 15975 15975
Apples 6478 8478
Oranges 4301 4301
Peaches 5196 5196

1 - Region 2 14481 14481
Apples 5124 5124

1 Oranges 4312 4312
Peaches 5045 5045

1 =Region 3 15540 15540
Apples 4650 4650
Oranges 6599 6599
Peaches 4281 4281

11 Grand Total

"

45996 45996

[| -

Create = (,

reating groups enables you to compare data.

For example, if your PivotTable shows each

month as a column, you can group the
months so that you can compare quarters. When
you group columns or rows, Excel totals the data,
creates a field header, and creates a field with an
expand/collapse button. If the expand/collapse
button displays a plus (+), you can click it to expand
the group. If the expand/collapse button displays a
minus (-), you can click it to collapse the group.

In VBA, you can use the Group method to group.
You can use the Range property to specify the rows
or columns you want to group. For example, if you
want to group rows 1 through 3, you can use the
syntax Range ("1:3") .Group.

Create Groups

o1 191dey)

.
.

When you create groups, Excel adds a new column or
row label and creates a PivotItems collection that
contains the groups. You can use the ShowDetail
property to expand or collapse the groups. You can
refer to groups by their index number or their name.

Example:

PivotTableSales.PivotFields ("Month2") _
.PivotItems(1)_
.ShowDetail = True

SI[qeL10AId YIIM SurjIom

@ Declare a PivotTable
object variable.

Q Assign a PivotTable to
the object variable.

Group ranges.

@ Specify whether each
group should be
expanded or collapsed.

Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

The macro creates four
groups and expands
Group 1. It collapses
Groups 2, 3, and 4.

9——>Snt PivotTableSales = Worksheets("Table™)

910 e Wom iot s Doy b Dun bbibe et oy

| sub createGroups()
Dim PivotTableSales As PivotTable

.PivotTables("YearlySales")

-—O

With PivotTableSales.PivotFields("Month2")

End With
End Sub

Prp—

|

, Bum of Salea [Cotumn Labels -
1 - Groupl +Group? +Groupd + Groupd Grand Total
: Row Labels - Jan Feb Mar
& Region 1 1923 2570 4115 8700 6744 2279 33331
i Region 2 2336 4115 1255 10470 10567 9068 37812
s Grand Total 4259 6685 5370 19170 17311 18348 71143
"
"
(T

1=
L | -

Understanding

Excel Events

n event occurs in Excel whenever the user

performs any type of action. For example, an

event occurs when the user closes a workbook.
You can use events to trigger the execution of procedures
by creating event procedures. Event procedures are
exactly what the name describes: procedures that execute
when a particular event occurs.

To trap or capture an event with an event procedure, you
must place the procedure code in the correct type of

Workbook Events

module. For example, workbook-related events must be
in the Thisworkbook object standard module.

There are several categories of events. Each event
category has a set of events associated with it. For
example, the BeforeClose event is a workbook event
that Excel activates when the user chooses to close a
workbook, before the workbook closes.

Excel associates workbook-level events with the workbook in which they reside. You place workbook-level event procedures in
the Thisworkbook object module. You create workbook event procedures by naming them workbook_event name. The
following table lists the workbook events.

EVENT WHEN THE EVENT OCCURS

Activate Occurs when Excel activates the workbook, worksheet, chartsheet, or embedded chart sheet.

AddinInstall Occurs when an add-in installs a workbook.

AddinUninstall Occurs when an add-in uninstalls a workbook.

AfterXmlExportEvent Occurs after saves or export of XML data.

AfterxXMLImportEvent Occurs after XML data is refreshed or imported.

BeforeClose Occurs before a workbook closes. See the section “Run a Procedure before Closing a
Workbook.”

BeforePrint Occurs before Excel prints a workbook or a portion of a workbook.

BeforeSave Occurs before Excel saves a workbook. See the section “Run a Procedure before Saving a

Workbook.”

BeforeXmlExportEvent

Occurs before saves or export of XML data.

BeforeXMLImportEvent

Occurs before XML data refreshed or imported.

Deactivate Occurs when Excel deactivates a workbook.
NewSheet Occurs when Excel adds a new sheet to a workbook.
Open Occurs when Excel opens a workbook. See the section “Run a Procedure as a Workbook Opens.”

PivotTableCloseConnection

Occurs after a PivotTable report closes the data source connection.

PivotTableOpenConnection

Occurs after a PivotTable report opens the data source connection.

Rowset Complete

Occurs when a user drills through a recordset.

SheetActivate

Occurs when Excel activates a sheet in the workbook.

SheetBeforeDoubleClick

Occurs when a user double-clicks a sheet.

SheetBeforeRightClick

Occurs when a user right-clicks.

SheetCalculate Occurs after Excel calculates a sheet.
SheetChange Occurs when cells in a worksheet change.
SheetDeactivate Occurs when Excel deactivates a sheet.

SheetFollowHyperlink

Occurs when a user clicks a hyperlink on a sheet.

@

9
<))
3
SheetPivotTableUpdate Occurs after Excel updates a sheet of a PivotTable report. :
SheetSelectionChange Occurs when a selection changes in a worksheet. N
Sync Occurs when a local copy of a worksheet is synchronized with a copy on the server.
WindowActivate Occurs when Excel activates a workbook window.
WindowDeactivate Occurs when Excel deactivates a workbook window.
WindowResize Occurs when Excel resizes a workbook window.

Worksheet Events

Excel associates worksheet-level events with the selected worksheet. Event-handling procedures related to a worksheet
should be in the standard module for the worksheet object. The following table lists the worksheet events.

>
c
o=t
(o)
=]
(S
=3
=

V)]
e~
-
(o)
a
e
o
-
()
4]
s
=
m
>
o
@
P
o]
<
e
=
=t
95}

Activate Occurs when Excel activates the worksheet.

BeforeDoubleClick Occurs when the user double-clicks the worksheet.
BeforeRightClick Occurs when the user right-clicks the worksheet.

Calculate Occurs after Excel calculates the worksheet.

Change Occurs when a user or external link modifies cells on the worksheet.
Deactivate Occurs when Excel deactivates the worksheet.

FollowHyperlink Occurs when a user clicks a hyperlink on the worksheet.
PivotTableUpdate Occurs after a PivotTable report is updated on the worksheet.
SelectionChange Occurs when a selection changes on the worksheet.

Chart Events

Excel associates chart-level events with the currently selected chart sheet. Event-handling procedures related to a chart
should be in the standard module for the chart object. The following table lists the chart events for which you can create
event-handling procedures.

Activate Occurs when Excel activates the chart sheet.

BeforeDoubleClick Occurs when the user double-clicks a chart element.

BeforeRightClick Occurs when the user right-clicks a chart element.

Calculate Occurs after Excel plots the chart.

Deactivate Occurs when Excel deactivates the chart, worksheet, or workbook.

DragOver Occurs when the user drags a range of cells over a chart.

DragPlot Occur when the user drags and drops a range of cells onto the chart.

MouseDown Occurs when the user presses a mouse button while over a chart.

MouseMove Occurs when the position of the pointer changes over a chart.

MouseUp Occurs when the user releases the mouse button over the chart.

Resize Occurs when the user resizes the chart.

Select Occurs when the user selects a chart element.

SeriesChange Occurs when the user changes the value of a chart data point. continued i

Understanding

Excel Events (continued)

Control and Dialog Box Events

Excel associates control and dialog box events with a UserForm or the controls that exist on a userForm. Event-handling
procedures related to a UserForm should be in the standard module for the userForm object. The following table lists the
UserForm gVents.

Activate Occurs when Excel activates a UserForm.

AddControl Occurs when Excel adds a control at runtime to a UserForm.

BeforeDragOver Occurs when the user performs a drag-and-drop operation.

BeforeDropOrPaste Occurs when the user is about to paste the data from the drag-and-drop operation.

BeforeUpdate Occurs before data in a control is changed.

Change Occurs when the value property changes.

Click Occurs when the user clicks a UserForm object.

DblClick Occurs when the user double-clicks a UserForm object.

Deactivate Occurs when the user deactivates the UserForm.

Error Occurs when Excel detects a UserForm control error.

KeyDown Occurs when the user presses a key.

KeyPress Occurs when the user presses an ANSI key. ANSI keys produce visible characters.

KeyUp Occurs when the user releases a key.

MouseDown Occurs when the user presses a mouse button.

MouseMove Occurs when the user moves the pointer on the UserForm.

MouseUp Occurs when the user releases the pointer.

QueryClose Occurs when Excel closes the UserForm.

RemoveControl Occurs when Excel removes a control from the UserForm at runtime.

Scroll Occurs when the user repositions a scroll box on a control.

Terminate Occurs when Excel terminates the UserForm.

Zoom Occurs when the user zooms the UserForm.

Application Events

Application events include all events recognized by the application object. To access an application event, create a
class module to contain your application event-handling procedure code. See the section “Run a Procedure When Excel
Creates a Workbook” for more information on placing event-handling code in a class module.

The following table lists the application-level events that occur in Excel.

EVENT TYPE DESCRIPTION

Application An event that occurs for the application. For example, Excel triggers the
Newllorkbook event when it creates a new workbook.

Newllorkbook Occurs when Excel creates a new workbook. See the section “Run a
Procedure When Excel Creates a Workbook.”

SheetActivate Excel activates any sheet in any workbook.

SheetBeforeDoubleClick

Occurs when the user double-clicks any sheet.

SheetBeforeRightClick

Occurs when the user right-clicks any sheet.

SheetCalculate Excel calculates any worksheet.
SheetChange Cells on a worksheet are changed by a user or an external link.
SheetFollowHyperlink A user clicks a hyperlink on a sheet.

SheetPivotTableUpdate

Excel updates a worksheet of a PivotTable report.

SheetSelectionChange The selection changes on any worksheet.
WindowActivate Excel activates a worksheet window.
WindowDeactivate Excel deactivates a worksheet window.
WindowResize The user resizes a worksheet window.
WorkbookActivate The user activates a workbook.
WorkbookAddInInstall An add-in installs a workbook.

WorkbookAddInUninstall

An add-in uninstalls a workbook.

WorkbookBeforePrint

Excel prints an open workbook.

WorkbookBeforeSave

Excel saves an open workbook.

WorkbookDeactivate

Excel deactivates a workbook.

WorkbookNewSheet

Excel adds a new sheet to an open workbook.

WorkbookOpen

Excel opens a workbook.

WorkbookPivotTableCloseConnection

Occurs after a PivotTable report closes the data source connection.

WorkbookPivotTableOpenConnection

Occurs after a PivotTable report opens the data source connection.

L1 J9dey)

.
.

>
c
o=t
(o)
=]
(S
=3
=

V)]
e~
-
(o)
a
e
o
-
()
4]
s
=
m
>
o
@
P
o]
<
e
=
=t
95}

Run a Procedure as a

Workbook Opens

ou can create a procedure that runs automatically

each time a workbook opens. Because this type of

procedure executes only when a workbook opens,
it works well for opening other workbooks, determining if

specific conditions are met, and displaying welcome
messages.

To have a procedure execute when a workbook opens,
create the procedure using the workbook_Open event and
add it to the ThiswWorkbook object standard module. All
event-handling procedures for monitoring workbook
events must reside in the Thisworkbook object standard
module if you want Excel to execute them automatically.
If you want a procedure to execute when a workbook
opens, you must name the procedure workbook_Open.

Although the procedure resides in the ThiswWorkbook
object standard module, it can access other procedures in

Run a Procedure as a Workbook Opens

the same workbook. Therefore, you can create a
Workbook_Open procedure that calls procedures in other
modules.

If you want a procedure to execute whenever Excel opens,
you can place the procedure in the Thisworkbook object
for the Personal Macro Workbook - Personal.xlsb.
Because the Personal Macro Workbook always loads as a
hidden workbook in Excel, any procedures in this
workbook execute when Excel opens. Keep in mind,
however, that Excel associates the Personal Macro
Workbook with an individual user.

You can keep a workbook_Open procedure from
executing for a particular workbook by pressing and
holding Shift as the workbook opens. Because workbooks
open quickly, make sure you press and hold Shift as you
select the workbook.

0 Open Project Explorer.

@ Double-click the
ThisWorkbook node
under the workbook to
which you want to add a
Workbook_Open event.

® The standard module for
the ThiswWorkbook
object opens.

@ Click the down arrow and
then select the Workbook
option.

()

The Visual Basic Editor
creates a private Sub
procedure and names it
Workbook_Open.

Type the VBA code to run
when the workbook opens.

The example displays the
user’s name.

Press Ctrl+S to save your
workbook.

Close your workbook.

Open the workbook you just
closed.

The Workbook_Open
procedure executes.

In this example, a welcome
message appears.

B b e e

Pri.vat_e Sub I';'orkhoz;k 6per|.(_} 4—.
End Sub
=i |
[
S
A B c] E F G H [

[y e

You can use the Workbooks collection object Open
method to specify the workbook that Excel should open
along with the current workbook. For example, if your
workbook relies on data values in another workbook,
you can open the workbook your workbook relies on,
whenever your workbook opens. See Chapter 9 for more
information on using the Open method.

You can use the Object drop-down list in the Code
window to create your Workbook_Open Sub
procedure. The Object drop-down list contains the
objects for which you can create Sub procedures in the
current standard module. If you access the
ThisWorkbook standard module, the only available
object is Workbook.

When you select the Workbook object from the Objects
drop-down list, the VBE automatically creates a
Private Sub procedure called Workbook_Open
because the default event for the Workbook object is
the Open event.

11 11dey)

.
.

>
c
o=t
(o)
=]
(S
=3
=

V)]
e~
-
(o)
a
e
o
-
()
4]
s
=
m
>
o
@
P
o]
<
e
=
=t
95}

Run a Procedure before

Closing a Workbook

ou can create a BeforeClose event procedure

that runs automatically before a particular

workbook closes. If the user has made changes to
the workbook, the event executes before Excel asks users
if they want to save their changes. Because this type of
procedure executes only as the workbook closes, it works
well for recalculating, resetting the workbook back to
default values, and even automatically saving the
workbook. The procedure executes when the workbook
closes by executing the Beforeclose event, which is
triggered by the closing workbook.

To produce a procedure that executes when a workbook
closes, create a new procedure and add it to the
ThisWorkbook object standard module for the particular
workbook. All event-handling procedures that you create
for monitoring workbook events must reside in the

Run a Procedure before Closing a Workbook

ThisWorkbook object for Excel to execute them
automatically. You must name the procedure
Workbook_BeforeClose.

Although the procedure resides in the Thisworkbook
object standard module, it can access other procedures in
the same workbook. Therefore, you can create a
Workbook_BeforeClose procedure that calls procedures
in another module.

The BeforeClose event takes one argument, Cancel.
You can use the cancel argument to change what Excel
does after the BeforeClose event completes. If the
Cancel argument has a value of False, which is the
default, the workbook closes normally. If your procedure
sets the value to True, Excel cancels the closing process
and does not close the workbook. You can set the cancel
argument to True and then prompt the user for additional
information before closing.

@ Onpen Project Explorer.

@ Double-click the Thisworkbook
node under the workbook to which
you want to add a workbook_Open
event.

® The standard module for the
ThisWorkbook 0bject opens.

Click the down arrow and then select
Workbook.

@ Click the down arrow and then select
BeforeClose.

® The Visual Basic Editor creates a
new Private Sub procedure
named Workbook_ BeforeClose.

Delete the workbook_Open Sub
procedure if it appears.

@

ey

Bl b e et s T PP - e L
;Priva-ta éub U_I-'-t:r.l.t.bnoi{ B-ai’:;rel.':Iose@ancel. |
As Boolean)

End Sub

@ Type the VBA code
that will run before
the workbook closes.

@ Press Ctrl+S to save
the workbook.

@ Close the workbook.

Pr.i.vat; ?_-uh -ﬁor-lti:ook _B“a-f;'am}:-lose
(Cancel As Boolean)

11 11dey)

.
.

End Sub
= KT
The Workbook_ " s °
BeforeClose = el
procedure executes. '
A B [D E F G H

In this example, —

Excel asks if you :
printed a report. 3
3
;
B

>
c
o=t
(o)
=]
(S
=3
=

V)]
e~
-
(o)
a
e
o
-
()
4]
s
=
m
>
o
@
P
o]
<
e
=
=t
95}

[| o -

You can use the Me keyword in standard modules for If your procedure has made a change that affects all

Excel objects. The Me keyword references the object workbooks, you can use a BeforeClose event
associated with the module. For example, code created procedure to undo the change before the workbook

in the ThisWorkbook object module links to the closes. For example, if you have a procedure that loads
workbook object. When you use the Me keyword, you and add-in, you can use the BeforeClose event
reference the workbook object. Therefore, when you procedure to unload the add-in before the workbook
add the code Me.Close to a module, Excel closes the closes.

workbook. The code Me.Close is equivalent to using
the ThisWorkbook object reference. You can use the
Me keyword when working with UserForm modules.
When used with a user form, the Me keyword references
the corresponding UserForm and not the controls that
you have added to the UserForm.

+++

Run a Procedure before

Saving a Workbook

ou can create a BeforeSave event procedure that

runs automatically before Excel saves a

workbook. By creating a BeforeSave procedure,
you can customize the save process. For example, when
users select the Save or Save As option, you may want to

ask if they have performed all required tasks.

To create a procedure that executes before saving a
workbook, create a new procedure using the Beforesave
event and add it to the ThiswWorkbook object standard
module for the workbook. All event-handling procedures
that you create for monitoring workbook events must
reside in the Thisworkbook object. To create a procedure
that executes before Excel saves the workbook, you must
name the procedure Workbook_BeforeSave.

Although the procedure resides in the ThiswWorkbook
object standard module, it can access other procedures in
the same workbook. Therefore, you can create a

Run a Procedure before Saving a Workbook

Workbook_BeforeSave procedure that calls procedures
in another module in the same workbook.

The Beforesave event takes two arguments that VBA
passes to your procedure when the event triggers —
SaveAsUT and cancel. Use the saveAsUT argument to
indicate whether the Save As dialog box appears during
the Save command. Set the value of the saveuT argument
to True to always display the Save As dialog box.

Use the cancel argument to indicate whether the
workbook should save. If the cancel argument has a
value of False, Excel saves the workbook. The default
value is False. If the cancel argument has a value of
True, Excel does not save the workbook. From within the
Workbook_BeforeSave procedure, you can set the value
of the cancel argument to specify whether the workbook
actually saves.

@ Onpen Project Explorer.

@ Double-click the Thisworkbook node
under the workbook to which you want to
add a Wworkbook_BeforeSave event.

The module for the ThiswWorkbook 0bject
opens.

Click the down arrow and select Workbook.

Click the down arrow and select BeforeSave.

«OO0

The Visual Basic Editor creates a new
Private Sub procedure named
Workbook_BeforeSave.

Delete the workbook_Open Sub
procedure if it appears.

e Click the Close button to close Project
Explorer.

\l

288

T Bl

SaveAsUl As B
Cancel As Boole,

End Sub

@ Type the VBA code that will run T —
when the workbook saves.

(@)
Private Sub Workbook BeforeSave &
. (ByVal =
0 Press Alt+F11 to switch from the S e DR HaaTas =
VBE to Excel. Cancel As Boolean) -
—
N
End Sub

@ Click the Save button to save the
workbook.

The Workbook_BeforeSave E
B8 C D E F G k-

procedure executes. ; Last S:::d: 2/2/2010 ~—
® |n this example, the procedure 3 Sales
B O Y oiont T ———
date stamp this workbook? i Renicaz 15750 | @ mminssaera e
Click Yes if you want to date- | 1R e e

Iy

stamp your file. 1

>
c
o=t
(o)
=]
(S
=3
=

V)]
e~
-
(o)
a
e
=
-
()
4]
s
=
m
>
o
@
P
o]
<
e
=
=t
95}

i | ou -

When you want to make sure that a variable in a procedure does not change the value of variables in other
procedures, use the ByVal keyword. For example, the Workbook_BeforeSave Sub procedure includes a Byval,
SaveAsUI argument. To aid in your understanding of ByVal, consider the following example, where the message
box displays a value of 10 because the value of TestVal in the Test2 Sub procedure is ByVal. Any changes made
to TestVal in the Test2 Sub procedure do not pass back to Test1.

Example:

Sub Testl ()
Dim TestVal As Integer
TestVal = 10
Call Test2 (TestVal)
MsgBox TestVal

End Sub

Sub Test2 (ByVal TestVal)
TestVal = 55555
End Sub

Run a Procedure When

Excel Creates a Workbook

you can use the NewwWorkbook application event to

set those settings every time you open a workbook.
For example, when you open an Excel workbook, by
default it contains three worksheets. If you always need
five worksheets, you can create a NewWorkbook
application event to create two additional worksheets.

The NewWorkbook application event executes whenever
Excel opens a new workbook. Because the event comes
from the application and not from an individual object
such as a workbook or chart, the process for creating an
application event is complex.

When working with application events, first create a class
module. Excel only makes code in a standard module
available to other modules in the same project or

Run a Procedure When Excel Creates a Workbook

I f you have settings you apply to every workbook,

workbook. When you create a procedure for an
application event, you want all open projects to be able to
access the code; therefore, you use a class module.

Because Excel does not recognize your application event
code until the workbook containing the code opens, open
the workbook containing the code first. You may want to
add the code to the Personal.xIsb workbook. The
Personal.xIsb workbook opens whenever you open Excel,
and application event code activates as a workbook
opens. See Chapter 1 for more information about the
Personal.xIsb workbook.

In the class module, use the withEvents keyword to
declare a public aApplication object variable. Make the
variable public because you want all open projects to
access this object variable. See Chapter 3 for more
information on public variables.

@ Click the workbook to
which you want to add a
NewlWorkbook event.

@ Click Insert - Class
Module.

VBA creates a blank class
module.

9 Press F4.

The Properties window
opens.

9 Type a name for your
class module in the Name
field.

@ Declare a public
Application object
using the withEvents
keyword.

@

(2] o= B
[et by Doty B 1 g S8

ﬁ;aﬁllc ﬁit;l.E-vent-s l_lp|;E;.'ent is .I_\pp_l-i-ca-tiﬁn

O Click the down
arrow and then
select the name you
typed in Step 5.

-E_vent_ is .I_\pplicati-:m

L1 J9dey)

.
.

® \/BA creates a e
Private 5
AppEvent_ —>Private Sub AppEvent NewWorkbook
NewWorkbook (ByVal Wb As Workbook)

Sub procedure.

@ Type the code you
want to execute
when a new =w
workbook opens. End Sub

@ In Project Explorer,
double-click the

D 7

ThisWorkbook

>
c
o=t
(@)
=
(S}
o
=)
uQ
s
-
(@
a
&
o
-
(¢}
73
g
=
rm
>
a
o
N
e
<
o
=
o=
node. &

When you use the WithEvents keyword to declare a public Application object, the VBE creates a new object
and adds it to the Object drop-down list. When you select the object, the Procedure drop-down list lists of all
corresponding application events. To create a new event procedure, select the object from the Object drop-down
list and the appropriate event from the Procedure drop-down list. The VBE creates a new Sub procedure with the
appropriate arguments. For example, if your object is AppEvent and you select the WindowActivate procedure,
the Editor adds the following code to the class module:

Example:
Private Sub AppEvent_WindowActivate (ByVal Wb As Workbook, ByVal Wn As Window)

You can use the Object Browser to find out more about a particular event by pressing F2 while in the VBE. Type the
event you want to know about in the Search field and then click Search. A list of matching items appears. Excel
indicates the events with a small lightning bolt. If you click an event, the event syntax appears at the bottom of the
Object Browser window.

continued 9 @

Run a Procedure When Excel

Creates a Workbook (continued)

fter you declare a public Application object

variable by using the withEvents keyword, use

the NewwWorkbook event to specify that the event
executes when Excel creates a new workbook. The
NewWorkbook event has one argument, wb, which passes
to the sub procedure. The wb argument contains the
newly created workbook. You can access any of the
methods and properties of the new workbook by using
the wo argument. For example, you can use the Name
property to return the name of the new workbook. See
Chapter 9 for more information on working with the
Workbook object.

Creating the NewWorkbook Sub procedure in the class
module defines the code to run for the event but does not
activate the sub procedure. To activate the sub procedure,
add code to a workbook_Open procedure that activates
the application event procedure. Because the

Run a Procedure When Excel Creates a Workbook (continued)

Application event code is meant to work with all events
generated by the application, you want to add a class
module and the activation code to a workbook you open
frequently, such as the Personal Macro Workbook. See
Chapter 1 to learn more about the Personal Macro
Workbook.

To activate the class module code, the module containing
the activation procedure must contain a Dim statement,
which declares an object of the type defined in the class
module. Place the pim statement at the top of the
standard module. For example, Dim NewSheets As New
AppEvent creates a new object variable of the type
created in the class module. In a procedure, a Set
statement actually activates the event. To make the set
statement execute automatically, place the set statement
in the workbook_open procedure.

The standard module
opens for the
ThisWorkbook 0bject.

Declare an object variable
using the Application
object you created.

L T T T ——
vt - VRt

T T= B

Dim -l;l-ewéheo.t.s_.l\.s l.;l.ew ippf\;entd—g

ytst

Workbook_Open Sub
procedure.

Use a set statement to
activate your event.

(=)

Save, close, and reopen
Excel.

Create a Private T~

ey

Dim NewSheets As New AppEvent
P»>Private Sub Workbook Open()

Set NewSheets.AppEvent = Excel.Applicati
End Sub

@

@ Open the workbook containing the

L ——

Workbook_open Sub procedure.
@ Click the File tab and then click New.
@ Click Create.

The event-handling procedure R e e e e
executes the code. e e bl s ..

® |n this example, the procedure adds _x = : '! .
two sheets to the new workbook. —

When you open the workbook containing the code that activates an application event, the code executes each time
you trigger the event. There may be times when you need to deactivate an event so that it no longer triggers. You
can create a separate Sub procedure that you can call from within Excel at any point to cancel an event. Essentially,
you set the property of the Application object to Nothing, as shown in the following example:

T

Sub CancelEvent () . ’ The code cancels the event for the current session of
Set OpenAppEvent.AppEvent = Nothing R A
End Sub Excel. The next time you start Excel, the eventis

reactivated.

Creating this type of Sub procedure so you can disable an event-handling procedure at any time is a good idea. You
can also set the EnableEvents property to False for the Application object, as shown in this code:

Sub CancelEvents () ‘ This code disables all event-handling procedures for
Application.EnableEvents = False . .
End Sub the current session of Excel. The next time you start

Excel, the event-handling procedures are reactivated.

L1 J9dey)

.
.

>
s
o=t
o
=
&
=
=
va
o)
=
o
Q
(¢
(=W
s
=~
(9]
n
=
=t
=
e!
>
(@
(¢)
=
gs!
<
()
=
o=t
7))

Execute a Procedure

at a Specific Time

ou can create a procedure that executes at a

specific time by using the onTime event. For

example, you can create a MsgBox that reminds
the user of an event 5 minutes before the event starts.

Unlike most other events, the onTime event is not
associated with a specific object. You must access this
event by using the onTime method with the
Application object.

The onTime method has four parameters; only the first
two are required: EarliestTime, Procedure,
LatestTime, and Schedule. Use the EarliestTime
parameter to specify the time at which the procedure
executes. Use the Procedure parameter to indicate the
procedure to execute at the specified time. Enclose the
procedure name in quotes.

Use the optional LatestTime parameter to indicate the
latest time when the procedure can run. If the procedure

Execute a Procedure at a Specific Time

has not run by the time specified by this parameter, it
does not run. The other optional parameter, Schedule,
has a default value of True to schedule the onTime
procedure to run again at the specified time or False to
clear a previously set procedure.

Because the onTime event is not associated with a
specific object, you can place a procedure containing the
method for accessing the event in any standard module.
If you place the onTime method procedure in a standard
module, you must run that module to activate the onTime
event code. You can also place the onTime method in the
Workbook_Open procedure so that it loads the event code
as the workbook opens. See the section “Run a Procedure
as a Workbook Opens” for more information.

When using the onTime event, you can use Excel’s time-
numbering system or you can use VBA’s Timevalue
function. Using VBA’s Timevalue function simplifies the
process.

Create an OnTime Event Using Excel’s
Time-Numbering System

@ Name your procedure.
@ Create an onTime event.
® This is the time the procedure will execute.
This will execute a procedure at 11:25 AM.

See the next screenshot for an alternative
way to set the time.

Create an OnTime Event Using VBA’s
TimeValue Function

@ Name your procedure.
@) Create an onTime event.
® This is the time the procedure will execute.
This will execute a procedure at 11:25 AM.

This is the procedure that will execute.

@

g il éub ;afﬁ-ae!iilg-;"lloti.ce.'.l\'-h-mcti.on(“).<—o E

- —
B b e et fpwa ey B Jmn Sk e b ta
[sub éeiﬁaei'i'n{;hoﬁ'céud -
Application.OnTime 0.47569444, "MaetingNatlce"‘—g
End Sub

P i]
a .l n

N v v

P> Application.OnTime TimeValue("11:25 AM"),

"MeetingNotice"
End Sub

Create a Procedure (£ 2 rag e i s e g mig 9
@ Name your procedure. TSub SetMestingNoticeWFunction(il =
Application.OnTime TimeValue("11:25 AM"), -
@ Type the code that you want to "MeetingNotice™ <)
execute. | End Sub
| Sub MaalingNolica()<—o ':;
This causes the computer to beep. Beep<—— o3
p p MsgBox "Staff meeting in 5 minutas."{—. >
® This displays a message box. End Sub c
=
@ Press Alt+F11 to switch from the 5
VBE to Excel, and run the macro.)
=
Eo
va
o)
= T o 8
(@]
Excel executes the procedure at = 8
the designated time. =
-
& o
A B c D E F G H | ©
] s
: =
4 =
: rm
7 ad
8 (@)
.)
10
11 m
12 D)
13 0
1a
15 E
16 n
17
e
The EarliestTime and LatestTime parameters Another useful VBA time function is the Now function,
expect time values based on Excel’s time-numbering which returns the current date and time. When you use

system, which stores all times as decimal values ranging | the Now function in combination with a TimevValue

from 0.0 to 0.99999999. For example, Excel stores function, you can specify how long before an event
12:00 noon as 0.5 and 6:00 PM as 0.75. Because occurs. For example, to have an event take place in 30
fractional times can be mind-boggling, VBA provides minutes, express the time as follows:

the TimeValue function with which you can convert a

standard time into the decimal equivalent required. To Example:

use the TimeValue function, enclose the time you want Now + TimeValue("00:30:00")

to convert in quotes. For example, TimeValue ("5:45
PM") converts 5:45 PM to the appropriate decimal

value.

Execute a Procedure

When You Press Keys

ou can use the onkey event to create a procedure

that executes when you press a specific key or

combination of keys. For example, you can press
Alt+S to sign and date a worksheet. You define the keys
you want to use to execute a procedure. If you specify a
key combination that Excel already uses, your new
definition overrides the Excel combination.

Unlike most other events, the onkey event is not
associated with a specific object. For that reason, you
access this event by using the onkey method with the
Application object.

The onkey method has two parameters, Key and
Procedure. Use the xey parameter to specify the key
combination, which you express as a string consisting of
the combined keys you capture. Represent standard Kkeys,

Execute a Procedure When You Press Keys

such as @ and 5, by simply typing the character for the
key. Specify nonstandard keys, such as Delete and Insert,
by placing the key name in curly braces: {DELETE} or

{INSERT}.

Use the Procedure parameter to indicate the name of the
procedure to execute. Enclose the procedure name in

quotes.

Because the onkey event is not associated with a specific
object, you can place the procedure containing the method
for accessing the event in any standard module. However,
if you place the onkey method procedure in a standard
module, you need to run the macro to activate the code.
You can place the onkey method in the workbook_Open
procedure so that it loads as the workbook opens. See the
section “Run a Procedure as a Workbook Opens” for

more information.

@ Double-click the Thisworkbook node
under the workbook to which you want to
add a workbook_Open event.

® The module for the Thisworkbook
object opens.

Click the down arrow and then select the
Workbook option.

® The Visual Basic Editor creates a
Private Sub procedure and names it
Workbook_Open.

Note: See the section “Run a Procedure as
a Workbook Opens” for information on the
Workbook_Open procedure.

9 Create your onkey command.
This is the Alt key.

See the Extra section for more
information.

This is the name of the procedure you
want to run.

@

(O L LT

TeT= Bl

1l Priva-te Sub \-'\Tork.l.:ou.k

End Sub

O b T N

~—0

Open()«——0

=]

Application.OnKey "%s", “5ignAndDate"<—e

@ Create a sub procedure with o e : *‘I" 9
e T | e =] [=]

the same name you specified : Sub SignAndDatel) b 5 o

in Step 3. E

4-—6 ()

@ Type the code that you want =

to execute. End Sub :1‘

.
.

@ Press Alt+F11 to switch from
the VBE to Excel, and run the
macro.

When you press the

>
o
o=t
o
=]
o
=
=]
uQ
e~
-
o
a
(¢’)
(=N
o
=
(¢
7]
s
=
rm
"
a
()
-1
o]
<
()
=
o=t
7

) s@ae
designated keys. Excel o
executes the macro. s
i A - = F G H =
® In this example, Excel placgs 1 [Reviewed by: Ohnise 2/3/2010 4—‘
the username and the date in 2
cell A1 when you press Alt+S. 4 sales
5 Quarter 1 Quarter2 Quarter3 Quarter 4
& Region1 142,454 167,023 196,245 178,711
7 Region2 195,758 192,859 197,169 150,756
B Region3 174,119 103,502 158,832 196,482
9 Region 4 129,705 191,932 170,175 158,999
10 642,036 655316 722421 725948
11
12
13
14
15
16
17
T ==
When specifying keys that do To reassign a particular key combination to its original meaning, omit the

not create a character, such as Procedure parameter:

i Delete or Down Arrow,

enclose the name of the key in

curly braces: {Delete} or Application.OnKey "+"{LEFT}" ‘ The custom key combination

{Down}. For some keys, Excel assignment is removed, and

provides special characters to Excel executes the default

represent the key when you command for that key

combine it with other combination, if one exists.

characters:

Character Represents To use one of the special characters in your key combination, enclose the
character in braces. For example, to specify a procedure to execute when you

+ Shift press the percent sign, type the following code:

" Ctrl

% Alt

- Enter Application.OnKey "{%}", _ . Whenever the user presses

"ExecutePercent"

%, the ExecutePercent
procedure executes.

Monitor a Range of

Cells for Changes

y using the change event, you can create a

procedure that monitors a range of cells and

notifies you when a change occurs. Excel triggers
this event when the user or an external link changes a
value in the selected worksheet. When Excel triggers the
event, it sends your event-handling function a Range
object containing the cells that changed. You design your
procedure to check the range of cells returned and
determine if they are in the range of cells you are
monitoring.

Because the monitored event relates to an individual
worksheet, place the event-handling procedure in the
object module that corresponds to that worksheet. For
example, to monitor changes to Sheet1, place the code in
the standard module for Sheet1. To capture the Change
event, name the procedure worksheet_Change.

Monitor a Range of Cells for Changes

The change event has one argument, Target, whose
value Excel passes when it triggers the change event.
The Target argument receives the range of cells that
changed. This value passes to your procedure by value
and as a result, your procedure cannot change the value
of the Target argument.

Although the worksheet_Change procedure resides in a
sheet object standard module, it can access other
procedures in the same workbook. Therefore, you can
create a Worksheet_Change procedure that calls
procedures in another module.

Excel triggers this event only when cell values change
due to modifications made by the user or an external
link. It does not trigger if a formula or procedure performs
a calculation that changes the value or if you add an
object.

@ Double-click the sheet
you want to monitor for
change.

The code module for the
sheet opens.

® You can click the Close
button to close Project
Explorer.

(2]
(3]

® The VBE creates a new
Private Sub procedure
named Worksheet_Change.

Click the down arrow and then
select Worksheet.

Click the down arrow and then
select Change.

@

& ToT= B
IS b e it e ey e Dt bk e o T

[Chamge

.—;briva_le Su.l.:-ﬁ-ur.l.m.l'-me-t. c.ﬁam re-iBy\}ﬁi-fﬁrgei .I-\s- -R.ange.).

End Sub

2]

=i ¢ s

@ Type the VBA code that will run T —

[p=—

when the worksheet changes. :

The Intersect method
determines where ranges overlap.
In this example, it determines if

the Target is in the 4_0

WatchRange.

@ Press Alt+F11 to switch from the
VBE to Excel and run the macro. End Sub

L1 J9dey)

.
.

Each time you make a change the

>
c
o=t
(o)
=]
(S
=3
=

V)]
e~
-
(o)
a
e
o
-
()
4]
s
=
m
>
o
@
P
o]
<
e
=
=t
95}

IFEE
. . °
procedure tells you if you are in 7
range or out of range.
&3 e 5| 1682
A B c =] E F G H
1 January February March April May
2 Adams 2,000 1,325 1,794 1,125 1918
3 Anderson 1478 1097 1867 1568
4 Andrews 1181 1131 1,018 1073 1687
5 Best 1,974 1800 LE s 1,991
6 Caldwell 1,742 14 1,757
7 Davis 1,098 3™ 1,208
B Garcia 1,957 1.5_ 1,253
9 Hilten 1,284 10 1479
10 Steven 13714 1611 1,556 1317 1521
11
12
13
14
15
16
17
i

Because Excel triggers the Change event only when a user or external link changes a value in a cell, there may be
instances where Excel does not trigger a Change event when you expect it to. The following table lists instances
when Excel triggers a Change event and instances when it does not.

Triggers Change Event

Typing values in cells

Clearing formats

Pressing Delete

Using the Ribbon to delete
Making changes with spell-check
Using Find and Replace

Does Not Trigger Change Event

Calculating new formula values

Changing cell formatting

Using a form

Performing a sort

Making changes from a procedure (macro)
Inserting a comment

Create an

Add-In

ith add-ins, you can integrate additional

functionality into Microsoft Excel. You can

create an add-in and use it to add user
defined functions, custom dialog boxes, sub procedures,
and custom Ribbon tabs to workbooks. Add-ins are a great

way to integrate your procedures into any Excel workbook.

You create an add-in by saving a workbook in the add-in
format. By default, Excel places add-ins in a special
AddIns folder.

After you save a workbook in the add-in format, the
worksheets in the workbook are no longer visible and
you cannot make them visible by using the Unhide
command. You cannot see or edit the sheets in an add-in
workbook. In addition, an add-in workbook does not
become a part of the workbooks collection. You create an
add-in when you want to use defined functions, custom
dialog boxes, sub procedures, or custom Ribbon tabs in

Create an Add-In

multiple workbooks. You cannot use an add-in to share
worksheets.

You must install an add-in or open another workbook
while the add-in workbook is open to access an add-in’s
features. See the section “Install Add-Ins” to learn how to
install an add-in. If functions created by an add-in are
available, when you open the Insert Function dialog box,
they appear in the User Defined category. You can select
and use them just as you would any other functions. See
Chapter 3 to learn more about user-defined functions.
When you install an add-in, any key combinations you
assign to a sub procedure become available to the user.

Before you convert a workbook to add-in format, you
should thoroughly test it. You can simulate how the
macros will function by opening another workbook while
the workbook you want to install as an add-in (the
XLAM file) is open and executing the procedures.

@ Create the workbook you
want to use as an add-in.

Make sure it is completely
debugged.

@ Click the File tab.
© Click Save As.

L)

The Save As dialog box
appears.

@ Click the down arrow and

81 191dey)

then select Excel Add-In
(*.xlam) in the Save As
Type field. Ud
@ Type a name for your file. A = : ide—0 =3
@ Click Save. — o i =
A =
® Note the folder in which = uQ
Excel is saving the file. ! >
= o
Excel creates the add-in file. “ 9..
17 | el
—— &
=T i
@ Open the add-in file. e e i et L

When you open the add-in
file, no worksheets appear.

To distribute your add-in to others, give them a copy of | You can open an add-in file by clicking the File tab,

your XLAM file and tell them the proper directory in clicking Open, locating the add-in, and then clicking
which to install it. You should password-protect your Open. The add-in opens; however, the name of the file
file. See the section “Set Add-In Properties” to learn does not appear on the title bar and no worksheet
how to password-protect an add-in file. You do not appears. You can open another workbook and use the
need to distribute copies of your XLSM macro file. add-in. This is a great way to test your macro before

making it available to the Add-Ins manager. When you
save your add-in to the Office library or to a user’s
Addlns directory, the add-in becomes available in the
Add-ins section of the Excel Options dialog box for you
to load.

Set Add-In

Properties

hen you create an add-in, the sheets included

in the add-in file are not visible to users;

however, if users click the Visual Basic
button on the Developer tab of the Ribbon, they move to
the VBE where they can view and modify your code. If
you do not want users to modify your code, you must use
the Project Properties dialog box to password-protect it.
Although password-protecting provides some level of
security, you should be aware that there are products on
the market that can recover your password.

Use the General tab in the Project Properties dialog box to
name and describe your add-in. The project name and
description appear at the bottom of the View and Manage
Microsoft Office add-ins pane and provide the user with a
brief introduction to your add-in before installing.

Set Add-In Properties

The sheets associated with an add-in workbook are not
visible. If you want to view the sheets, open the
Properties window in the VBE by pressing F4. If you then
click ThisWorkbook in the Project Explorer, the properties
for the workbook become available. If you set the
Isaddin property to False, the sheets in your workbook
become available.

All functions you create in an add-in file are normally
available to users through the Insert Function dialog box
whenever the add-in is available. If you create functions
you intend to be available only to other functions or
procedures, use the private keyword when you create
them. To learn more about the private keyword, see
Chapter 2.

Name and Password
Protect

@ Click Tools = VBAProject
Properties.

The VBAProject
Properties dialog box
appears.

Click the General tab.

Type a project name.

00O

Type a project
description.

Click the Protection tab.

Select the Lock Project
for Viewing option
(1 changes to M).

Type a password.
Type the password again.
Click OK.

VBA password-protects
and adds a name and
description to your
project.

@

000 00

e T T T
N R il e o

Famers]

Sub CreateData(By - As IRibbonControl) B
'This procedure ... &aﬂu press the Create Da
Dim RowNum A. ..00o52.

Dim ColNum As Integer
Dim X As Integer

Dim as Interii. rmmin o,
Row = e

ColNum=2 |
For X = Coll
ForY=R
Cells(Y,] I
RandB |
Next
Next
| End Sub
Sub SignAndDate(ByVal Control As IRibbonControl)
i s

e | - =l
vl %

Used to generate 1

T Wl i Viso Pt Vo A st Lty o Al s [Whenbie | Fonbel] =T
[e (0 Yo joort Fgemet Detng Sun lesh Sadbs fedew (o T.8

Sub CreateData(ByVal Control As IRibbonControl)
"This procedure is activated when you press the Create Da
Dim RowNum As Integer
Dim ColNum As Integer
Dim X As Integer
Dim Y As Interngi simeia g
RowNum = 4 | == ”“”4—6

Lot et

Colﬂug 2 =
For X=Coll
ForY=R
0 5

Cells(Y, ! i
RandB ,nﬁﬁ% Used to generate 1
Next
Next
| End Sub
Sub SignAndDate(ByVal Control As IRibbonControl)
= ¢

Set IsAddin to False
@ PressF4

Alternatively, click View =
Properties Window.

The Properties window appears.
Press Gtrl+R

Alternatively, click View = Project
Explorer.

The Project Explorer appears.
Click ThisWorkbook.

The workbook properties appear.
Set IsAddin to False.

Press Alt+F11 to switch from the
VBE to Excel.

®©0 o

® The worksheets appear in the
add-in.

==
S

i Wedew tep

B Tesh
X

-

[—

x
|

En
Su
O

Sub CreateData(ByVal Control As IRibbon'~

"This procedure is activated when you
Dim RowNum As Integer
Dim ColNum As Integer
Dim X As Integer
Dim Y As Integer
RowNum = 4
ColNum = 2
For X = ColNum To 4
For Y = RowNum To 7
Cells(Y, X) = WorksheetFunction. _
RandBetween(100000, 200000) *
Next
Next
d Sub
b SignAndDate(ByVal Control As IRibbo

Before creating your add-in, itis a
good idea to add information to the
Properties pane. Click the File tab,
click Info, and then click Properties.
A menu appears. Click Show
Document Panel. The Properties
pane appears. Type a title in the
Title field, type a description in the
Comments field, and then close the
Properties pane.

In addition to the add-ins you
create, you can obtain add-ins from
third parties. To learn about special-
purpose Excel add-ins in your field,
perform a Google search by going
to www.google.com. Your search
terms should include Excel; the field
of knowledge — for example,
chemistry; and other information
you might have, such as vendor
name. Third-party vendors are
responsible for supporting their own
products.

As with macros, add-ins can spread
viruses. For Excel to consider an
add-in safe, the add-in must have a
current valid digital signature issued
by a certificate authority, and the
developer of the add-in must be a
trusted publisher. If the Excel Trust
Center considers an add-in unsafe,
it disables the add-in and displays a
message bar to alert you to the
potentially unsafe add-in. You can
click the Options button on the
message bar to enable the add-in.

81 191dey)

.
.

oy
=
P
=
5
]
>
a
)
|
=)
75}

Install

Add-Ins

undled add-in software is included with Excel,

but Excel does not automatically install the

software when you install Excel. The following
are among the add-ins that come standard with Excel:
The Conditional Sum Wizard enables you to create a
formula that sums only the values that meet the criteria
you specify. The Euro Currency Tools add-in enables you
to calculate exchange rates between the Euro and other
currencies. The Data Analysis Toolpak provides a number
of tools you can use for statistical analysis. Solver
enables you to produce the formula result you want by
directly or indirectly adjusting cells related to the cell that
contains the formula.

You install bundled add-ins and the add-ins you create
by using the Excel Options dialog box. You can find all
add-ins in the Add-Ins section. When you save an add-in
to the Microsoft AddIns folder or to the Library folder

Install Add-Ins

under the Office program, it becomes available for
installation in the Excel Options dialog box. Once installed,
the add-in is available right away. You can download
additional Excel add-ins from the Microsoft download site.
For example, for Excel 2010, you can download the
Microsoft SOL Server PowerPivot add-in. The add-in is
useful if you use PivotTables with large amounts of data
from multiple data sources. This add-in produces a fast
response time even if you are working with millions of
rows of data.

You can also take advantage of third-party add-ins. This
type of software adds functionality in support of
advanced work in chemistry, risk analysis, modeling,
project management, statistics, and other fields. Third-
party add-ins usually have their own installation and
usage procedures. Consult the developer of these
programs for documentation.

@ Click the File tab.
A menu appears.
Q Click Options.

The Excel Options dialog box
appears.

© Click Add-Ins.

® The View and Manage Microsoft
Office Add-ins screen appears.

@ Click an add-in.

The example uses the Create an
Add-In add-in created earlier in
this chapter.

@ Click Go.

(3

The Add-Ins dialog
box appears and
provides access to
several options.

Click to select the
add-in you want to
install (] changes
to [w]).

Click OK.

Excel installs the
add-in.

In this example, you
know Excel installed
the add-in because
you can see the
custom Ribbon tab.

W6]
e Pigtlt Fuma D Bew Vs Dewiesw L

“I:_ - T AN e B e -

P, B U A EETEE G- 4% - WA Gmemne

A o c [£ ¥ o "

¥ —|

b}

3

4

5

&

7

[}

3

w

1

1u

1

"

15

1

17

18

7 Crows i b

]

n

n

n

1

3

*

1]

BT shest] e . 2] il

Sy | 2] 1

Removing an add-in from Excel is
easy. Click the File tab, click
Options, click Add-ins, click the
add-in you want to remove, and
then click Go. The Add-Ins dialog
box appears. Click to deselect the
add-in you want to remove and then
click OK. Excel removes the add-in.

The only way to remove an add-in
from the Add-Ins section of the
Excel Options dialog box is to delete
the file from the folder in which it is
stored.

In Excel 2003, you could click a data
point in a column chart twice and
you would then be able to resize the
columns. This feature was
deprecated in Excel 2007. However,
Microsoft received a lot of feedback
indicating that people liked the
feature, so they developed an add-in
that can be used with Excel 2007
and Excel 2010. The add-in is called
Manipulate Point on Chart. You can
download it from the Microsoft
download site.

81 191dey)

.
.

oy
=
P
=
5
]
>
a
)
|
=)
75}

Using VBA to

Load Add-Ins

use the Add method with an Add1n object. The Add

method adds an add-in to the Excel Options dialog
box. The following is the syntax for the add method:
expression.Add (Filename, Open)

Use the expression to identify the add-in or a variable
that represents the add-in. Use the Filename parameter
to specify the location of the add-in you want to add. If
the file is located in the current folder, type the filename,
enclosed in quotes. If the file is located in another folder,
type the path to the file enclosed in quotes. If your add-in
is located on a removable disk such as a compact disc
and you want to move the file from the removable disk to

I f you want to add an add-in by using a procedure,

Using VBA to Load Add-Ins

the Library folder under the Office program, set the open
parameter to True. If you want the file to remain on the
removable disk, set the open parameter to False. If you
do not include this parameter and your add-in is located
on a removable disk, Excel displays a prompt asking the
user if he or she wants to move the file to the hard drive.
If your add-in is not located on a removable disk, VBA
ignores the open parameter.

The add method does not install an add-in. To install an
add-in, you must set the Tnstall property to True. You
can add an add-in and install it in a single step by using
the following syntax:

AddIns.Add("Sample.xlam") .Installed = True

@ Name your procedure.

@ Declare a variable as an
AddIn object.

@ Add the add-in.

® This is the add-in file you
want to add.

@ Install the add-in.

_ — —
[e 0 pm ot bt febng B Lok SAt e teo 8=
Sub InstallSalesRptHelper() g B
Dim CreateAnAddin As Addin 4—0
End Sub
=
- e
[e 0 o ot bt febng G Lok Satks e teo 8 x
Sub InstallSalesRptHelper() B
Dim CreateAnAddin As Addin

CreateAnAddin.Installed = True
End Sub

On Error GoTo ErrorHandler
Set CreateAnAddin = Addins.Add
(Filename:="Create An J\ddln.xlam“)<—.

@ Display a MsgBox letting
you know the add-in has
been installed.

e Handle Errors.

o Press Alt+F11 to switch
from the VBE to Excel,
and run the macro.

® The macro installs the
add-in and displays a
message box.

e
]

s— ettt e

Sub InstallSalesRptHelper()
Dim CreateAnAddin As Addin
On Error GoTo ErrorHandler 4—6
Set CreateAnAddin = Addins.Add

(Filename:="Create An Addin.xlam")

CreateAnAddin.Installed = True

e—»mWBox CreateAnAddIn.Title & " has been installed.”
Exit Sub

ErrorHandler: 4—6
MsgBox "An error occurred.”

End Sub

Example:

Addins. ("Sample") .Installed

The Add-Ins dialog box tells you a lot about add-ins. To open the Add-Ins dialog box, click the File tab, click
Options, click Add-Ins, and then click Go. The Add-Ins dialog box appears. All of the add-ins available in Excel
appear in the Add-Ins dialog box. Each add-in listed is part of the AddIns collection. You can reference Add-ins in
the AddIns collection by their title or by their index value. You determine the index value by the order in which Excel
lists the add-ins in the Add-Ins dialog box. The first add-in has an index value of 1, the second 2, and so on. The
title of an add-in is the name listed in the Add-Ins dialog box.

You can reference the index value of an add-in or its title to uninstall the add-in. To uninstall an add-in, set the
Installed property to False. The following example uninstalls an add-in.

81 191dey)

.
.

Sul-ppy Surpymg

Introducing

XML

he default file format for Office 2007 and Office

2010 is EXtensible Markup Language (XML). For

this reason, as a VBA programmer, you should
have a basic understanding of XML.

The appeal of XML is that it makes exchanging data
between different software applications and different
computer systems easier. After you mark up your data
using XML, it is available to be processed by a variety of
different systems, without regard to hardware or operating
system. You can use the same XML data in Word, Excel,
and Access, and other programs. Prior to Office 2007, Office
files were in a proprietary format. Manipulating and sharing
the data with other applications and systems was difficult.

XML is similar to HyperText Markup Language (HTML),
the language used to format data displayed in a Web
page. If you are familiar with HTML, learning XML will
be easy. Both HTML and XML are markup languages

Declaration Statement

and, as such, they both use tags. In HTML, the tags are
predefined; in XML, you define the tags.

XML and HTML have different purposes. You use HTML
to format data so you can display your data in a Web
page. You use XML to describe your data. Your XML tags
can be anything you want them to be, but they should
describe your data. Each XML tag describes the data
contained in the tag.

You do not need to purchase any software to create an XML
file; you can create XML in any text editor. For example,
you can use Notepad to create an XML file. However, you
must give your XML files an .xml file extension.

A complete explanation of XML is beyond the scope of
this book. However, the brief overview of XML that
follows provides a basic understanding of the examples
provided in this book.

You start each XML file with a declaration. The declaration
lets the program processing your file know that your file is
an XML file. The following is an example of a declaration
statement:

<?xml version="1.0" encoding="UTF-8
"standalone="yes" ?>

xm1 identifies the file as an XML file, 1. 0 is the version of
XML used, uTF-8 is the character set used to encode the
data, and standalone tells the processing program whether
the document contains references to other documents.

Empty tags are tags that do not have any content. Empty
tags do not require a closing tag. However, empty tags
must include a forward slash as part of the tag. The
following is an example of an empty tag.

<button id="Buttonl"
imageMso="AccessFormWizard"

label = "Report Format"
"ThisWorkbook.SignAndDate" />

size="large"
onAction=

In the example, the element has attributes but no content.

You use the element to pass information to the reading
program.

@

In XML, you call a unit of data an element. You use tags to
describe each element. Angle brackets surround tags: < and
>. In the following example, <CustomerName>Royal
Inc.</CustomerName>, <CustomerName>, and
</CustomerName> are the opening and closing tags for
the element. They tell you that Royal Inc. is the name of the
customer. The opening tag marks the beginning of the
element. The closing tag marks the end of the element. The
closing tag always includes a forward slash. And be aware
that XML is case-sensitive. The tag <unitPrice> is not
the same as <unitprice>. Your opening tag and closing
tag must be in the same case. You place your data between
the opening tag and the closing tag. Every tag must include
a closing tag.

Attributes

You can include attributes within an XML tag. Attributes
provide information to the program that is manipulating
the data. The following is an example of a tag that includes
a FileType attribute.

<CustomerName FileType ="J5793"
CustomerName>

> Royal Inc.</

You must enclose attributes in quotes. You can use single
quotes or double quotes. An element can have multiple
attributes.

Element Names

You can name elements anything you want; however,
element names should describe your data. Also, element
names must conform to the following rules:

e Names can contain letters, numbers, and other
characters.

e Names cannot contain spaces.

e Names cannot start with the letters XML, a number,
or a punctuation character.

e You can use an underscore to separate the words in
a name, as in Customer_Information.

You should try to keep your element names short and,
although it is allowed, avoid using the “-” and the “.” in
your element names. If you create an element name
such as Customer-Info, the reading program may try to
subtract Customer from Info; if you create a name such
as Customer.Info, the reading program may think Info is
a property of Customer.

Schemas are another important component of XML.
Schemas contain the rules that help the processing
program validate your data. For example, a schema tells
the processing program whether a tag should contain
text or a number. In that way, the schema prevents the
entry of invalid data. For example, if data between your
LastName tags should always be a string, a schema
prevents the entry of numbers.

If you are importing an XML file into Excel, and your
XML file does not have a schema, Excel creates one.
Excel maps the items in the schema. Mapping allows
you to display in your worksheet only the data you want
to see. It also allows you to refresh your data and save
your data in XML format.

You structure XML hierarchically. Consider the following
example:

<CustomerInfo>
<CustId>C001l</CustId>
<CustomerName>Royal Inc.</CustomerName>
<TransDate>2011-06-01</TransDate>
<PurchaseInfo>
<Quantity>12</Quantity>
<ItemNo>0S-001</ItemNo>
<Description>Pencils</Description>
<UnitPrice>3.99</UnitPrice>
</PurchaseInfo>
<PurchaseInfo>
<Quantity>6</Quantity>
<ItemNo>0S-004</ItemNo>
<Description>Paper</Description>
<UnitPrice>25.98</UnitPrice>
</PurchaseInfo>

</CustomerInfo>

The data between the customerInfo tags contains
information about a single customer. The file can contain
multiple customers. The information between the
pPurchaseInfo tags contains information about an
individual purchase. In the example, a single customer
made two purchases, so the PurchaseInfo tags are
inside the customerInfo tags. Shown graphically, you
can structure data as follows:

CustInfo
Customer 1
Purchase 1
Purchase 2
Customer 2
Purchase 1
CustInfo

Every XML file must have a set of root tags. The root tags
describe the document and surround the child tags. Every
document ends with a root tag. In the example,
<CustomerInfo> and </CustomerInfo> are root
tags. All of the tags between the <CustomerInfo> tags
are child tags.

When structuring your XML file, you must properly nest
your tags. In the example, you must close each purchase
before you start a new purchase, and you must close each
customer before you start a new customer.

If you want to exchange your data with other systems, your
XML file must be well-formed. If your data is not well-
formed, your XML file will not work. Well-formed XML files
comply with the following rules:

e They begin with a declaration.

e They contain a root tag.

e Every tag either has a closing tag or is an empty tag.

e (Opening and closing tags use the same case.

e Tags are properly nested.

e Attributes are enclosed in either single or double quotes.

61 19dey)

.
.

C
=)
a
(¢}
-
n
ot
<))
=
=
5
¢Q
o

Understanding

o
Excel XML Files

rior to Office 2007, by default, Office files were

saved as binary files in a proprietary format. You

can still save your files in binary format by
saving them as Excel 97-2003 files if you need to share
files with users who do not have Office 2007 or higher.
However, the binary file type is no longer the default.
Moreover, when you save your file as an Excel 97-2003
file, Office 2007 or higher features that are not supported
in earlier versions are lost.

Starting with Office 2007, the default file type is based on
XML. The XML file format has several advantages:

e XML files are smaller. The XML file format uses Zip
technology, which compresses the files. As a result,
when you compare XML files to binary files, the
XML files can be up to 75 percent smaller. This

Understanding Excel XML Files

means they take up less space and are easier to
transfer via mechanisms such as e-mail.

XML files are more secure. In the default XLSX
format, you cannot include macros. This gives you
assurance that your XLSX files do not include any
malicious macro viruses. If you want to save macros
in your Excel file, you must save the file with an
xIsm extension. Excel places the macros in a
separate part of the file that is more secure.

Data is easier to recover in XML files. XML files are
human-readable. You can open the files and read
the contents by using a text editor such as Notepad.
If part of the file becomes corrupted, you can open
the file and recover the uncorrupted part.

Create and Save an Excel
File

Create an Excel file.
Include an image.

® |nclude a comment.

=@ O

a@=8n

1 FLOWER SALES
|nCIUde data 2 June July August
) Regionl § 92780 § 59,801 § 84,084
Include properties. 4 Region 2 72,243 92,685 65,315
5 Region3 87,967 80,478 99,910
i & Regiond 90,810 81,811 77,118
9 Click the Save putton and = S 343,800 $ 314,775 5. 326,427
then close the file. 8 Denioe Etharidoer
i? ._){V;t:ould hee done Our Best Seller
12
W chenty i} i
e) ALl i o
F 7 =Te R
Open an Excel File = | =

@ 'n Windows Explorer,
move to the folder where
you saved your file.

@ Right-click the filename.
A menu appears.
@ Click Rename.

2 B

F st Vs Tomm e

= LOLAMSLE M R

. Ak

e e sty

@

@ Change the file extension

to .zip.

Windows asks if you are
sure you want to change
the file extension. Click
Yes.

Double-click the file.

The file opens.

The _rels folder stores
information about
relationships.

The [Content_Types].xml
part stores information
about what is in the
package.

The xI folder stores the
workbook component
files.

The docProps folder
stores information about
the document properties.

e Tan Ves Tomn vl

tiaren Type

| N | -

=i
I & = orcnssi hecn + L Programemng » e P+ 50398 G #5158 13 CO o+ 5
File Tde Vew Tesn Help
| ety 2 Lampmming (rppedt | o i
' e
=Tl
I i ~ s oo » B rep o 39008 o+ 352308 320 CO o + Gommyiie g + <oy [Sowen 5

Compriedie Fuswoed - o) [Ep——

I ; L, [Comwarn Tyl

T -1)

To assign properties to a file, click
the File tab, click Info, and then
click Properties. A menu appears.
Click Show Document Panel. The
Document Properties pane appears
in your workbook. Enter the
properties you want to enter. In the
upper left corner of the Properties
pane, click Document Properties,
and then click Advanced Properties.
The Properties dialog box appears.
You can use the Properties dialog
box to review properties and add
custom properties.

If you have a computer with Excel
97-2003 installed, you can go to the
Office Update Web site and
download the Microsoft Office
system Compatibility Pack for Excel.
After you install the Compatibility
Pack, you can open Excel 2007 and
2010 files in Excel 97-2003. Excel
2007 or Excel 2010 features and
formatting may not appear in the
earlier version, but they are still
available when you open the file
again in Excel 2007 or 2010.

To view the contents of an Excel
workbook file, change the file
extension to .zip and then double-
click the file. To use the file again,
change the extension back to the
extension the file originally had.

continued 9 @

61 19dey)

.
.

TWX Suipueisiopun

Understanding Excel

XML Files (continued)

or 2010 file, change the file extension on the Excel
file to .zip and then double-click the file. The file
opens and several folders and files appear.

Office 2007 and 2010 files are in a compressed Zip
format; each Zip file is called a package. A package has
three major components: Part Items, Content Type Items,
and Relationship Items.

Each file inside a package is called a part. When you
open an Excel file, a workbook.xIm file is in the xI folder.
You may also find a styles.xIm file. These files are “parts”
of the package. Most parts are XML files that describe the
data contained in the Excel workbook.

I f you want to see the XML layout for an Excel 2007

Understanding Excel XML Files (continued)

Relationships define how the parts of a document come
together to form a document. The relationships are stored
in the /_rels folders in .rels files in the root and in
subdirectories of the file.

Excel divides a workbook package into several parts.
Some of the parts you may see in a package are charts,
comments, themes, styles, and workbook drawings. You
can manually modify and replace document parts, and
you can write programs to modify and replace document
parts.

If your document includes images, the actual images are
stored in the file. For security proposes, the images are
named image1, image2, and so on.

Content Type.xml

@ Double-click Content_
Type.xml.

The file opens in your
default XML editor.

_rels

@ Double-click the _rels
folder to open it.

The .rels file appears.

@ Double-click the .rels file to
open it.

The file sets relationships.

@

=]
Fin U Fem Ve -
=raml "1.0" F-8" standal youn
<Types xmlns=" http //acheamas. eponanl:omn q 2006, ype t
image/jpeg”/ rels”
:enm\:‘lypo— |ppu-=atm,r’\mﬂ opsnnl emtl ge.relati L 1t
ype= Ly t Extension=twmlr
¥F PP openxal VmlDrawing”
Fx1f smln -ppn:auun.ivnd opaniml formats=
£t shest
/=1 heetl.xml" “application/vnd.cpanxalformats-
/=1 heatl.xml® tion/vnd. openxml:
££1 L/ id !xl.fthmfum.n.m-
tion/vmd. openxml: 1441
Pn:tll_: .-’xl.istylu! aml™ i i d.openxml £ {3
P .aty ¥ Fartiame=" !::l.rmnustnul xml"
1cati . opsnal
PartNames" /xl/drawings/drawingl.x=l" » /vnd . opensxal
£5 " 4 fx1 1.xmin
ContentType="application/vd.openxal formats-
=/ fxl, amlv
tion/ vnd, operxml; 134] Ly !
Pn:f_lu—v fxl.i:hul.u.fd\n:f_'l. l:-1 Jvnd , openxal £

Partdase="/xl/calcChain . eml”

cantmmpul appllc-t.lmrvnd npau:ml!nmh
caleChainsxml™
ication/vnd. openxml P ge.
aps/app.xml”
oft prop 1" /></Typas>

de FartMame="/docProps/core.xml"”

fvnd. openxnl formats-

=T as
e Ut bt Vb ~
<7xml wersion="1.0" aneed.xng'-"m-a standalone=" yas" 2>
<Relaticnships

xmlns="http://sch P £ .org/package/2006/relationships™>
<Relationship Id="rIdi~
Type="http://sch £ .org/officeD /2006/relationships/ex

tended-properties® !l'u:g-m-_= *docProps/app.aml"” />

<Relationship Id="rId2"
Type="http:// . 1 .org/
4 ps/core. xml" />

/2006/relationships/metadata/

<Relationship Id="rIdl"
'rypc="ht=p .v'.l’ 1 1f .org/offi
g x1/workbook .xml" />

/2006/relati hips/of |

</Relationships>

xl 9
@ Double-click the xI =
folder to open it. =
. -
A number of files —
and folders appear. O
@ Double-click each S
part and examine it. %
This example opens =
the media folder S
and then opens the =
image file. —
=)
uQ
B % > ¢ | % §
docProps O— — . _ i
0 DOUble-ClICk the :;rlw:;::;:::i.:" anceding="UTF-8" standalone="yes"7?>
nlni::g:;ﬁttp:J’!lchml.op.nml{emtl‘o:g}plckaq‘.lzooEa’mudlta/oozn—
docProps folder. L’i“:::d.c:—m,n,.u,h.m,w.i..f.m.;w
axmlns:doterms="http://purl.org/dc/terms/"
@ Double-click the vt ey sl ety s Lo RN
rts and examine T s daisiche
pa <dn;c:outer:»n¢m1ue E:h;:idg«!d.u tereator>
them :de::.au:;::;:nmlas rap:jt !Zr q\nf:e:ly meating.</de:description>
cptlas nec/ep: fimdB
<dotarms:created xsi:type="dcterms:W3ICDTF">2007-05-
The document e s
properties appear. epicorepropersion

This example opens
the core.xml file.

For a detailed explanation of the concepts presented in You can modify the contents of an Excel package. In the

this section, download “Introducing the Office (2007) example, you opened the media folder and viewed the
Open XML File Formats” (http://msdn2.microsoft. image in your Excel document. If you want to change
com/en-us/library/aa338205.aspx) from the Microsoft | the image, you can take out the image that is in the file
Web site. and replace it with a new image, manually or by using a

program. You can also change the text in the document
manually or by using a program. For example, if you
open a comment file, you see comments. If you change
a comment, the new comment appears when you open
your workbook in Excel again.

As you can see, the XML file format gives you a great
deal of flexibility by making your files easy to modify.

Open an XML File in

Excel as a Table

I f your Excel data consists of columns and rows, you program whether a particular element should contain text

can convert your data to a table. In Excel, tables or a number. When you open an XML file, if your data
allow you to manipulate your data easily. Each does not have a schema, Excel creates one. Excel infers
column heading in a table contains a down arrow. You the schema from the data that is contained in the XML
can use the down arrow to sort, filter, and otherwise file.
manipulate your data. Having your data in an Excel table wypepn you open an XML file as a table, Excel also creates
greatly enhances your ability to work with your data. an XML map. Excel uses the map to relate the schema to

If you have data that is in well-formed XML format, you the data in the worksheet. A single workbook can contain
can easily open the XML file in Excel as a table and then several XML maps, and several maps can refer to the
use Excel to manipulate the data. To find out more about same schema.

well—f,(')rmed XML format, see the section “Introducing Excel creates a graphical hierarchical representation of
XML. your data in the XML Source pane when it opens your
Excel needs a schema to import your XML data. Schemas XML file as a table. Open the Source pane to see the
enable processing programs such as Excel to validate representation.

your data. For example, a schema tells the processing

Open an XML File in Excel as a Table

@ Click the File tab. : b vt o o 2
@ Click Open. 4 e
R
ag
The Open dialog box B e =
appears. L A meew B e S Ws - wa
© Locate the folder that = S—
contains your XML file. g{)_w—
@ Click the file. 0
@ Click Open.

P s ot = [e o w]
2 et

\l
I@ i

co)

The Open XML
dialog box appears.

Click As an XML
Table (© changes
to @).

Click OK.

If Excel asks if you
want to create a
schema, click OK.

The file appears in
Excel as an Excel

table. : . !
e s i . —— -

' ' :
Click the Developer : COD1 Royal Flyers Inc. 6/1/2011 1205001 Pencils | = =
tab. » €001 Royal Flyers Inc. 6/1/2011 6 05-004 Paper [l

+ €002 PetFarm 6§/1/2011 605002 Staplers Cltrtane
Click Source. s €003 Hobbiesand Crafts 6/1/2011 10 05-9712 Clay y s

o €003 Hobbies and Crafts 6/1/2011 25 05-9865 Portfolio — saens

7 €003 Hobbiesand Crafts 6/1/2011 16 05-9926 Picture Frames e
The map to your 2 C004 JamesRealEstate 6/1/2011 305007 File Folders
data appears s CO05 Wills Car Wash 6/1/2011 25 05-207 Brush

10

1

12

12

1

15

%

1

1

Ak sheett et a1y ‘

Resny | 2]

The Open XML dialog box presents three choices. You

can open the file as an XML table or as a read-only file,

or you can use the XML Source task pane. The As an

XML Table option is explained in this section. The As a
Read-Only Workbook option opens the file as read-only

and does not create a map to your data. The Use the
XML Source Task Pane option creates a map but does

not place any elements in your worksheet. For details on
how to work with an XML map, see the section “Create

an XML Map.”

When you import or open an XML file, if the file does
not have a schema, Excel creates one for you. To view
the schema, click the Developer tab and then click
Visual Basic to open the VBE. Once in the VBE, press
Ctrl+G to open the Immediate window. In the
Immediate window, type Print activeworkbook.
XmlMaps (1) . Schemas (1) .xml. VBA prints the
schema to the Immediate window. You can copy and
paste it into a text or XML editor.

61 19dey)

.
.

C
=)
u
(¢}
-
n
ot
<))
=
=
5
¢Q
o

Create an

hen you open your XML file as an Excel

table, Excel places all of your data in your

worksheet, and you can use the table
features in Excel to manipulate your data. Alternatively,
you can create a map and place just the elements you
want to use in your worksheet. You complete the process
in three steps: create a map, move the elements you want

to use to your worksheet, and then refresh your data.

When you use the mapping method, you choose what
elements you want to appear in your worksheet. This
method is useful when your XML file has a large number
of elements and you only want to work with a subset of
those elements. Click on an element in the XML Source
pane and then drag the element onto your worksheet.

Create an XML Map

Excel calls the list of data elements in the XML Source
pane a map, and the process of clicking and dragging
elements to your worksheet mapping. Excel creates a
connection between the element in the Source pane and
your data. If you want to see the connection, after you
place an element in your worksheet, click the element in
the XML Source pane and Excel highlights the data in
your worksheet. Or, click data in your worksheet, and
Excel highlights the element name in the XML Source
pane.

When you create a map and then bring your data into
Excel, you gain the same benefits as when you open a
file in XML format. You can use all of Excel’s table
features to sort and filter your data.

Click the Developer tab.

Click Source.

The XML Source pane appears.
Click XML Maps.

(3]

The XML Maps dialog box appears.
Click Add.

The Select XML Source dialog box
appears.

Locate the folder that contains the
file you want to map.

Click the file.
Click Open.

If Excel asks if you want to create a u
schema, click Yes. =

()

()oY

T T

[p—

o [7] | Cees |

Saw) | thawd B3

©

® Excel creates your map. 9
© Click OK. =
= =t
= o
z] -
(=Y
0
()
=
(=W
¢
-
7
(s
o m
1 :
1 Q‘
[0
13 =
" UQ
"‘-'; I‘.ﬂ‘.!ﬂ'!. Sond See) 55 3L i §
® Excel adds a map to the o
XML Source pane.
© Click and drag elements
from the XML Source Q_ SiamarName
pane to your worksheet. at - y ww .
3 et Farm "‘;"'E:‘r"
(O Click the Developer tab. ajc008 _Hobbies sl Grots S .—— i
) © €005 Wills Car Wash 8/1/2011, ;
@ Click Refresh Data. :
Excel adds the data in =
your XML file to your Q
worksheet. =

After you add an element from your XML file to your Excel worksheet, you may want to delete it. If so, right-click
the field heading, click Delete, and then click Delete Columns. Excel deletes the column. If you want to remove the
connection between the XML map and your worksheet, right-click the item in the XML Source pane and then click
Remove Element. If you want to restore a connection, right-click the item in the XML Source pane and then click
Map Element. The Map XML Elements dialog box appears. Type the cell address where you want to place the field
heading and then click OK.

You can copy and paste your mapped table, but your copy will not have a connection to your map. However, if you
move your mapped table by cutting and pasting, your table maintains its connection to the XML map.

Import and Export

XML Files Using Excel

hen working with XML data, the data in the

XML file may change or you may want to

import the additional data. Conversely, you
may make changes to the data and want to export the
changes to an XML file. If you want to import and export
XML data into and out of Excel, use the Import and
Export features on the Developer tab. The Import feature
opens the Import dialog box, where you can choose the
file you want to import. The Export feature opens the
Export dialog box, where you can name the file you are
exporting.
Importing data enables you to either overwrite your
current data or append data to your table. You can use
the XML Map Properties dialog box to specify which you
want to do. The default is to overwrite existing data with

Import and Export XML Files Using Excel

new data. If the system outputting the data has corrected
the data or if your old data is no longer relevant,
overwriting your data is the better choice. If the system
outputting the data outputs data periodically, appending
data is the better choice. Appending data enables you to
keep your database up-to-date.

You can export data in XML format by using the Export
feature on the Developer tab. When you export data, all of
the data must be from a single node in your XML map. If
you want to verify that Excel can export your data, click
Verify Map for Export on the XML Source pane before
exporting. Excel exports your data as a well-formed XML
file. A well-formed XML file adheres to all the rules for
creating XML files. For more information about well-
formed files, see the section “Introducing XML.”

Import an XML File
0 Click the Developer tab.
9 Click Import.

The Import XML dialog
box appears.

9 Locate the folder where
the file you want to
import is located.

@ Click the file you want to
import.

6 Click Import.

@

1 CO01 Royal Flyers Inc. 6/1/2011 12 05001 Pencils 3.99
» €001 Royal Flyers Inc. 6/1/2011 6 05-004 Paper 25.98
4 CO02 PetFarm 6/1/2011 605002 Staplers 25.98
= C003 Hobbies and Crafts 6/1/2011 10 059712 Clay 158
o €003 Hobbies and Crafts 6/1/2011 25 05-9865 Portfolio 7.85
» CO03 Hobbies and Crafts 6/1/2011 16 059926 Picture Frames 7.85
s CO04 James Real Estate 6/1/2011 3 05007 File Folders 5.54
s CO05 Wills Car Wash 6/1/2011 25 05-207 Brush 10.98,
10

1"

=

13

"

15

1%

1

i

Rk sheeti shawed 13 i
Reswy | 2] 1

cDes
- =
Royal A 3.99
s+ €001 Royal A 25.98
s C002 PetFar "= 25.98
x C003 Hobbie G 1.98
o C003 Hobbig 7.85
7 C003 Hobbig 7.85
s CO04 James 5.54
s CO05 WillsC 10.58,

Excel imports the XML data.

W g

1 p -
1 CO06 MNorcross Inn 7f1/2011 505-001 Pencils 399
s CO06 Norcross Inn 7/1/2011 3 05-004 Paper 25.98
4 €007 Floyd Patrick 7/1/2011 205002 Staplers 25.98
= C003 Hobhbies and Crafts 7/1/2011 10 053712 Clay 158
o €003 Hobbies and Crafts 7/1/2011 25 05-9865 Portfolio 7.85
7 C003 Hobbies and Crafts 7/1/2011 16 05-9926 Picture Frames 7.85
s CO0B James Real Estate 7/1/2011 305207 Brush 10.54
s CO05 Hollis Home Builders 7/1/2011 25 05-207 Brush 10.54,
19

1

1

13

"

15

16

1

i

W sheet) Sant] [Shaee) By — L
Resny | 2] -

Export an XML File

Click the Developer tab.
Click Export.

The Export XML dialog
box appears.

Locate the folder where
you want to save the file.

(3]

Type a filename.

Click Export.

Excel exports the file.

tuan | 5

= = " = - R
(Y Custld g CustomerName @ TransDate g

; CO06 Norcross Inn 7/1/2011
» CO06 Mercross Inn 7/1f2011
4 COO7 Floyd Patrick 7/1/2011
= C003 Hobbies and Crafts 7/1/2011
o C003 Hobbies and Crafts 7/1/2011
1 €003 Hobbies and Crafts 7/1/2011
s CO0B James Real Estate 7f1f2011
s CO05 Hollis Home Builders 7/1/2011

- ,-‘.._r.....m..i;e
e R /| |
" Lavn i by | AN b el

| sheott Shoeit | Shewt) 3L

| | 1ot e dta, oy s e
3 | i ot ot 1 1t e
2 e

- ! o B

"

Prigan

When you import or refresh data, you can either
overwrite your current data or append data. Use the
XML Map properties dialog box to specify which you
want to do. To open the XML Map properties dialog
box, click the Developer tab, and then click Map
Properties in the XML group. The overwrite and append
options are at the bottom of the dialog box.

The XML Source task pane has several options you can
set by clicking the Options button in the lower left
corner. Select the Preview Data in Task Pane option to
see a sample of the data elements in your XML file in the
task pane. Select the Hide Help Text in the Task Pane
option to prevent help from appearing at the bottom of
the task pane. Select Automatically Merge Elements
When Mapping to create a single table when you place
elements side by side in a single row in the worksheet.

61 1adey)

.
.

C
=)

u
(¢}

-

n

ot
<))

=

=
5
¢Q

o

Load XML Files

Using VBA

data, use the openxmMr method. openxML is the VBA

equivalent to opening an XML file as a table. As
when you open an XML file as a table, openxmr provides
several choices. Make your choice by specifying one of
the following x1xm1L.oadoption options:
x1XmlLoadImportToList, x1XmlLoadMapXml, O
x1XmlLoadPromptUser.

If you select the x1xmlLoadImportToList option, VBA
creates a map of your data, places the map in the XML

Source pane, and then places all of your XML data in a

worksheet formatted as a table.

If you select the x1xmlLoadMapxml option, VBA creates a
map of your data and places the map in the XML Source
pane. Excel does not place any data in a worksheet.

Load XML Files Using VBA

I f you want to automate the process of loading XML

If you select the x1xmlLoadPromptUser option, VBA
displays the Open XML dialog box. The user can choose
to open the XML file as a table or as a read-only
workbook, or use the XML Source task pane.

Opening the file as a table is equivalent to the
x1xmlLoadImportToList option. Using the XML Source
task pane is equivalent to the x1xmlTLoadMapxXml option.

The following is an example of the openxmr, method:
Sub OpenXMLPromptUser ()
Application.Workbooks.OpenXML _
Filename:"invoices.xml", _
LoadOption:=x1XmlLoadPromptUser
End Sub

Use the FileName parameter to specify the name of the
file you want to load. If the file is not located in the
current folder, specify the path to the folder.

0 Name your procedure. ‘.‘:,,B fom b Toma e B Jen seb ﬁ-a-dt:._m e ”’J
Sub LoadxML() <—@) E
End Sub
=i « o
9 Create yOUI’ OpenXML [B g :- Fomn Doty :‘ e Adbdu (i el . " sl
command. e T =}
Sub LoadXML() 3
® This is the file you want g 3 Application.Workbooks.OpenXML
to load. Fil “invoices.xml", _
LoadOption:=xIXmiLoadlmportToList
End Sub

® This is the load option e Yk ot st 1o (@
[e E e bt Toma Debep B Je b e b :-l
you want to use. e = [o
] Sub LoadXML() =
9 Press Alt+F11 to switch Application.Workbooks.OpenXML 8
from the VBE to Excel, Fil "invoices.xml", -
and run the macro. Loadl.‘!ption:lexmll.oadlmport‘!'oi.lst<—. —
End Sub O
=
Qu
(¢)
-
0
(s
QO
=
(=W
[0
=
wa
=i « §
The macro loads the . o T o i =
XML file. N e | 52 W T e B
1
1 CO01 Rovyal Flyers Inc. 6/1/2011 12 05-001 Pencils .
» €001 Rovyal Flyers Inc. 6/1/2011 6 05-004 Paper 25.98
+ €002 PetFarm 6/1/2011 605002 Staplers 2598
= C003 Hobbies and Crafts &/1/2011 10 05-9712 Clay
s CO03 Hobbiesand Crafts 6/1/2011 25 05-9865 Portfolio
1 €003 Hobbies and Crafts 6/1/2011 16 05-9926 Picture Frames
s CO04 James Real Estate 6/1f2011 3 05007 File Folders .
s CO0O5 Wills Car Wash 6/1/2011 25 05-207 Brush 10.98,
1"
15
1"
R i e =

If you want to use VBA to create a document map, use code similar to the following:

Example:
Sub CreateMap ()
'Create an XmlMap object
Dim InvMap As XmlMap
'Add a map and assign the map to the XmlMap Object
Set InvMap = Application _
.ActiveWorkbook _
.XmlMaps.Add ("invoices.xml")
'Name the Map
InvMap.Name = "Invoices_Map"
End Sub

After you run the macro, click the Developer tab and then click Source to see the map.

Import XML Files ("

Using VBA

ou can use the xmlImport method to load data

into a map that already exists. This process is

similar to clicking the Import button on the
Developer tab. You can refresh your data or import new
data into your worksheet. The xm1Import method has
the following parameters: Url, TmportMap, Overwrite,
and Destination.

The url parameter is required. Use this parameter to
target a URL as a data source. Insert the URL as a string
enclosed in double quotes. You can also use this
parameter to target a file on your local computer. If the
file is located in the current directory, type the filename;
otherwise, type the path.

The ImportMap parameter is also required. For this

parameter, supply the schema map you want VBA to use.

Import XML Files Using VBA

You can identify the map by name. When you create a
map, Excel assigns it a name. The name appears in the
drop-down list at the top of the XML Source pane. You
can also view the list of XML maps in your workbook by
clicking the XML Maps button in the XML Source pane. If
you want Excel to create the map, assign Nothing to the
parameter, as in ImportMap:=Nothing.

Use the overwrite parameter to specify whether you
want to overwrite the existing data. Set the parameter to
True if you want to overwrite the data. Set the parameter
to False if you want to append to the existing data. True
is the default value.

Use the Destination parameter to specify the top left
corner of the range where you want to create the table. If
you are importing data into a map that already exists, do
not set this parameter.

0 Create a map and place
the elements in your
worksheet.

Note: To learn how to create a
map, see the section “Create
an XML Map.”

® This is the name of your
map.

@ Press Alt+F11.

Excel moves you to
the VBE.

Name your procedure.

Declare a variable as an
XmlMap Object.

®© 00

Assign your map the
xXmlMap Object variable.

® This is the map name.

@

HdD-t [T YTy —r—]
tome | B Peglmet e DM Seww Wee Dewepn A - s c

(8 Custld g CustomerName g TransDate g Quantity g itemNog I cription pl fmstiates

e

T T T

3 ;
{of B 0 fou jurt bgmet Detng B lesh dabi fedew taw s

= o =
Sub lmportXMLFIla(}<—6 3
Dim InvoiceMap As XmiMap 4—6

Set InvoiceMap = _
ActiveWorkbook.XmiMaps("Invoice Map") 4—6
End Sub

el] .-.l:J

0 Create your Xxm1 Import r - - g
[Fomermn =] [
command. Sub ImportXMLFile() .-g
@ Press Alt+F11 to switch from Dim InvoiceMap As:XmiMap =
the VBE to Excel, and run the Set involceMap » . =
ActiveWorkbook.XmiMaps("Invoice Map") —
macro. e——>Acnv.Workhmk.xmumpm B O
URL:="invoices.xml", °
ImportMap:=InvoiceMap G
End Sub a
(@)
-
0
=
QO
=
(=T
[=%
=
wa
=fiel ar §
VBA imports your data. R A T g - i -4

L - - - &

1

1 CO01 Royal Flyers Inc. 6/1/2011 12 05-001 Pencils 3.99
s €001 Royal FlyersInc. 6/1/2011 6 05004 Paper 25.98
4 €002 PetFarm 6/1/2011 605002 Staplers 25.98
s C003 Hobbiesand Crafts 6/1/2011 10 05-9712 Clay 1.98
% €003 Hobbies and Crafts 6/1/2011 25 05-9865 Portfolio 7.85
7 €003 Hobbies and Crafts 6/1/2011 16 05-9926 Picture Frames 7.85
s CO04 James Real Estate 6/1/2011 3 05007 File Folders 554
s C005 Wills Car Wash 6/1/2011 25 05-207 Brush 10.98,
10

11

u

n

"

15

1%

1

AT sheet) et ha) IL ¥
e | e

As an alternative to the syntax in the example, you can use the following syntax to import an XML file. This syntax
uses the XMLMap . Import method. The first parameter is Ur1l. Use this parameter to specify the path to the data.
The second parameter is Overwrite. Setting the Overwrite parameter to False causes the command to append
instead of overwriting data.

Example:
Sub ImportXMLFile ()
ActiveWorkbook _
.XmlMaps ("Invoice_Map")
.Import URL:="invoices.xml", _

Overwrite:=False
End Sub

VBA and Excel Object

Model Quick Reference

Legend:
Plain courier text = required [] = optional | =or
Italics = user-defined ... = list of items

File and Folder Handling

ChDir path Changes to the specified folder location.

ChDrive drive Changes to the specified drive.

Close [filenumber] Closes a file opened by using an Open statement.

FileCopy source, destination Copies a file from the source to the specified destination.

FreeFile|[(rangenumber)] Each open file is represented by an integer value. Returns the next
available integer value for use by the Open statement.

Kill pathname Deletes files from a disk. Use wildcards (*) for multiple characters
and (?) for single characters.

Lock [#]filenumber([, recordrange] Locks all or a portion of an open file to prevent access by other
processes.

MkDir path Creates a new directory or folder.

Open pathname For mode [Access access] Opens the specified file to allow input/output operations.

[lock] As [#]filenumber [Len=reclength]

Print #filenumber([, outputlist] Writes display-formatted data sequentially to a file.

pPut [#] filenumber, [recnumber,] varname Writes data contained in a variable to a disk file.

Reset Closes all files opened using the Open statement.

RmDir path Removes the specified folder.

SetAttr pathname, attributes Sets the attribute information for the specified file.

Unlock [#] filenumber[, recordrange] Unlocks a file to allow access by other processes.

width #filenumber, width Assigns the output line width for a file opened using the Open
statement.

Write #filenumber[, outputlist] Writes data to a sequential text file.

Interaction

STATEMENT DESCRIPTION

AppActivate titlel[, wait] Activates an application window.

DeleteSetting appname, sectionl[, key] Deletes a section or key setting from an application’s entry in the
Windows Registry.

SaveSetting appname, section, key, Saves an application entry in the application’s entry in the Windows

setting Registry.

SendKeys stringl, wait] Sends one or more keystrokes to the active window as if they were

typed on the keyboard.

@

VBA Statements Quick Reference (continued)

Program Flow
STATEMENT

DESCRIPTION

[Public | Private] Declare Sub name Lib
"libname" [Alias "aliasname"] |[([arglist])]

Declares a reference to an external DLL library
function.

Do [{While | Until} condition]
Loop

[statements]

Repeats a block of statements while or until a
condition is true. The condition is checked at the
beginning of the loop.

Do [statements] Loop [{While | Until}
condition]

Repeats a block of statements while or until a
condition is true. Because the condition is checked at
the end of the loop, the block of statements always
executes at |least once.

Exit Do | For | Function | Property | Sub

Exits the specified Do Loop, For Next, Function,
Sub, or Property code.

For Each element In group [statements] Next
[element]

Repeats a block of statements for each element in an
array or collection.

For counter = start To end [Step step]
[statements] Next [counter]

Repeats a section of code the specified number of
times.

[Static] Function
[statements] [name

[Public | Private | Friend]
name [(arglist)] [As typel
expression] End Function

Defines a procedure that returns a value.

If condition Then [statements] [ElseIf
condition-n Then] [elseifstatements]]
[elsestatements]] End If

[Else

Conditionally executes a block of statements based
upon the value of an expression.

[Public | Private | Friend] [Static] Property
Get name [(arglist)] [As type] [statements]
[name = expression] End Property

Declares the name and arguments associated with a
procedure.

[Public | Private | Friend]
Let name ([arglist,] value)
Property

[Static] Property
[statements] End

Declares the name and arguments of a procedure that
assigns a value to a property.

[Public | Private | Friend] [Static]
Property Set name ([arglist,] reference)
[statements] End Property

Declares the name and arguments of a procedure that
sets a reference to an object.

Select Case testexpression [Case
expressionlist-n [statements-n]]
[elsestatements]] End Select

[Case Else

Executes one block out of a series of statement blocks
depending upon the value of an expression.

[Private | Public | Friend] [Static] Sub name
[(arglist)] [statements] End Sub

Declares the name, arguments, and code that form a
Sub procedure.

While condition [statements] Wend

Executes a block of statements as long as the specified
condition is true.

With object [statements] End With

Executes a block of statements on a single object or on
a user-defined data type.

puaddy

XI

£3
.

|

<
(o]
>
)
=3
(@)
W
3
o
-
(¢}
=
(@]
(¢’)

VBA and Excel Object Model

Quick Reference (continued)

VBA Statements Quick Reference (continued)

Variable Declaration
STATEMENT

[Public | Private] Const constname [As typel
= expression

DESCRIPTION

Declares a constant value.

Dim [WithEvents]
[New] typel

varname| ([subscripts])] [As

Declares variables and allocates the appropriate storage space.

Friend [WithEvents]
[As [New] typel

varnamel ([subscripts])]

Declares a procedure or variable to only have scope in the
project where it is defined.

Option Compare {Binary | Text | Database}

Specifies the default comparison method to use when
comparing strings.

Option Explicit

Forces declaration of all variables within the module.

Option Private

Indicates that all code within the entire module is Private. VBA
uses this option by default. You can overwrite the effects of this
option by declaring a specific procedure Public.

Private [WithEvents] varnamel ([subscripts])] Declares variables and procedures to only have scope within the
[As [New] typel current module.

Public [WithEvents] varnamel ([subscripts])] Declares variables and procedures to have scope within the

[As [New] typel entire project.

ReDim [Preserve] varname(subscripts) [As

Changes the dimensions of a dynamic array.

typel

[Private | Public] Type varname Defines a custom data type.
elementname [([subscripts])] As type

[elementname [([subscripts])] As type]

End Type

VBA Function Quick Reference

Legend:

Plain courier text = required [] = optional | =or
Italics = user-defined .. = list of items
Array Functions
FUNCTION DESCRIPTION RETURNS
Array(argl,arg2, arg3, ...) Creates a variant array containing the specified elements. Variant
LBound (arrayname(, dimension]) Returns the smallest subscript for the specified array. Long
UBound (arrayname(, dimension]) Returns the largest subscript for the specified array. Long

@

VBA Function Quick Reference (continued)

Data Type Gonversion Functions

puaddy

FUNCTION DESCRIPTION RETURNS g-
Asc (string) Returns the character code of the first letter in a string. Integer é
CBool (expression) Converts an expression to Boolean data type (True or Boolean (ws]
False). >
CByte (expression) Converts an expression to Byte data type. Byte @)
CCur (expression) Converts an expression to Currency data type. Currency (Ejo
CDhate (expression) Converts an expression to a Date data type. Date =~
CDbl (expression) Converts an expression to Double data type. Double g
CDec (expression) Converts an expression to a decimal value. Variant Foh
(Decimal) 8
Chr (charactercode) Converts the character code to the corresponding Variant E
character. Chr (9) returns a tab, Chr (34) returns (¢)

quotation marks, and so on.

CInt (expression) Converts an expression to Integer data type, rounding any | Integer
fractional parts.

CLng (expression) Converts an expression to Long data type. Long

CSng (expression) Converts an expression to Single data type. Single

CStr (expression) Returns a string containing the specified expression. String

CVar (expression) Converts any data type to Variant data type. All numeric | Variant

values are treated as Double data types and string
expressions are treated as String data types.

Format (expression|[, format][, Formats the expression using either predefined or user- Variant
firstdayofweek]|, defined formats.

firstweekofyear]l])

FormatCurrency (Expression|, Formats the expression as a currency value using the Currency
NumDigitsAfterDecimal [, system-defined currency symbol.

IncludeLeadingDigit

[, UseParensForNegativeNumbers [,

GroupDigits]11])

FormatDateTime (Datel, Formats an expression as a date and time. Date
NamedFormat])

FormatNumber (Expression [, Formats the expression as a number. Mixed

NumDigitsAfterDecimal [,
IncludeLeadingDigit [,
UseParensForNegativeNumbers [,
GroupDigits]]1])

FormatPercent (Expression Returns the expression formatted as a percentage witha | String
[, NumDigitsAfterDecimal trailing % character.
[, IncludeLeadingDigit

[, UseParensForNegativeNumbers
[,GroupDigits]]]])

Hex (number) Converts a number to a hexadecimal value. Rounds String
numbers to nearest whole number before converting.

continued

continued 9 @

VBA and Excel Object Model

Quick Reference (continued)

VBA Function Quick Reference (continued)

Data Type Conversion Functions (continued)

FUNCTION DESCRIPTION RETURNS

Oct (number) Converts a number to an octal value. Rounds numbers to Variant
nearest whole number before converting. (String)

Str (number) Converts a number to a string using Variant data type. Variant

(String)

Val (string) Returns the numeric portion of a string formatted as a Mixed

number of the appropriate data type.
Date and Time Functions

FUNCTION DESCRIPTION RETURNS

Date Returns the current system date. Date

DateAdd (interval, number, date) Returns a date that is the specified interval of time from the | Date
original date.

DateDiff (interval, datel, date2[, Long | Determines the time interval between two dates. Long

firstdayofweek|[, firstweekofyear]])

DatePart (interval, datel, Returns the specified part of a date. Integer

firstdayofweek|[, firstweekofyear]])

DateSerial (year, month, day) Converts the specified date to a serial number. Date

DateValue (date) Converts a string to a date. Date

Day (date) Returns a whole number between 1 and 31 representing the | Integer
day of the month.

Hour (time) Returns a whole number between 0 and 23 representing the | Integer
hour of the day.

Minute (time) Returns a whole number between 0 and 59 representing the | Integer
minute of the hour.

Month (date) Returns a whole number between 1 and 12 representing the | Integer
month of the year.

Now Returns the current system date and time. Date

Second (time) Returns a whole number between 0 and 59 representing the | Integer
second of the minute.

Time Returns the current system time. Date

Timer Indicates the number of seconds that have elapsed since Single
midnight.

TimeSerial (hour, minute, second) Creates a time using the specified hour, minute, and second | Date
values.

TimeValue (time) Converts a time to the serial number used to store time. Date

WeekDay (date, [firstdayofweek]) Returns a whole number representing the first day of the week. | Integer

Year (date) Returns a whole number representing the year portion ofa | Integer
date.

@

VBA Function Quick Reference (continued)

File and Folder Handling Functions
FUNCTION

DESCRIPTION

puaddy

RETURNS

XI

CurDir (drive) Returns the current path. String é
Dir[(pathnamel, attributes])] | Returnsthe name ofthe file, directory, or folder that matches String
the specified pattern. >
EOF (filenumber) Returns -1 when the end of a file has been reached. Integer @)
FileAttr (filenumber, Indicates the file mode used for files opened with the Open Long (Ef
returntype) statement. -
FileDateTime (pathname) Indicates the date and time when a file was last modified. Date ';U
- - o
FileLen (pathname) Indicates the length of a file in bytes. Long FDB
FreeFile (rangenumber) Returns the next file number available for use by the Open Integer 8
statement. =
K K (@)
GetAttr (pathname) Returns a whole number representing the attributes of a file, Integer (¢’)
directory, or folder.
Input (number, [#] filenumber) Returns a string containing the indicated number of characters String
from the specified file.
Loc (filenumber) Indicates the current read/write position in an open file. Long
LOF (filenumber) Returns the size in bytes of a file opened using the Long Open | Long
statement.
Seek (filenumber) Specifies the current read/write position with a file opened with | Long
the Open statement.

Financial Functions

FUNCTION DESCRIPTION RETURNS
DDB(cost, salvage, life, Specifies the depreciation value for an asset during a specific Double
periodl, factor]) time frame.
FV(rate, nper, pmt[, pvl[, Determines the future value of an annuity based on periodic Double
typell) fixed payments.
IPmt (rate, per, nper, pvl, Determines the interest payment on an annuity for a specific Double
fvl, typell) period of time.
IRR(values(), [, guess]) Determines the internal rate of returns for a series of cash flows. | Double
MIRR (values(), finance_rate, Returns the modified interest rate of returns for a series of Double
reinvest_rate) periodic cash flows.
NPer (rate, pmt, pvl, fv[, Returns the number of periods for an annuity. Double
typell)
NPV (rate, values()) Returns the net present value of an investment. Double
Pmt (rate, nper, pvl, fvl[, Returns the payment amount for an annuity based on fixed Double
typell) payments.
PPmt (rate, per, nper, pvl, Returns the principal payment amount for an annuity. Double
fvl, typell)
PV (rate, nper, pmtl[, fvl[, Returns the present value of an annuity. Double
typell)

continued

continued 9 @

VBA and Excel Object Model

Quick Reference (continued)

VBA Function Quick Reference (continued)

Financial Functions (continued)

FUNCTION DESCRIPTION RETURNS

Rate (nper, pmt, pvl, fv[, Returns the interest rate per period for an annuity. Double

typel, guess]]])

SLN (cost, salvage, life) Determines the straight-line depreciation of an asset for a single | Double
period.

SYD(cost, salvage, life, Determines the sum-of-years’ digits depreciation of an asset for | Double

period) a specified period.

Information Functions

FUNCTION DESCRIPTION RETURNS

CVErr (errornumber) Returns a user-defined error number. Variant

Error [(errornumber)] Returns the error message for the specified error number. String

IsArray (varname) Indicates whether a variable contains an array. Boolean

IsDate (expression) Indicates whether an expression contains a date. Boolean

IsEmpty (expression) Indicates whether a variable has been initialized. Boolean

IsError (expression) Indicates whether an expression is an error value. Boolean

IsMissing (argname) Indicates whether an optional argument was passed to a Boolean
procedure.

IsNull (expression) Indicates whether an expression contains no valid data. Boolean

IsNumeric (expression) Indicates whether an expression is a number. Boolean

IsObject (identifier) Indicates whether a variable references an object. Boolean

TypeName (varname) Returns the variable type. String

VarType (varname) Returns the subtype of a variable. Integer

VBA Function Quick Reference (continued)

Interaction Functions
FUNCTION

DESCRIPTION

Choose (index, choice-1, Selects and returns a value from a list of choices. Mixed

[choice-2, ...])

DoEvents () Passes control to the operating system so the operation system Integer
can process other events.

Iif (expr, truepart, Evaluates the expression and returns either the truepart or Mixed

falsepart) falsepart parameter value.

InputBox (prompt[, title] [, | Displaysa dialogbox prompting the user for input. String

default] [, xpos] [, ypos]

[, helpfile, context])

GetAllSettings (appname, Returns a list of key settings and their values from the Windows Variant

section) Registry.

GetObject ([pathname] [, Returns a reference to an object provided by an ActiveX Variant

class]) component.

GetSetting (appname, Returns a key setting value from an application’s entry in the Variant

section, keyl, default]) Windows Registry.

MsgBox (prompt[, buttons] [, | Displaysa message boxand returns a value representing the Integer

titlel [, helpfile, button pressed by the user.

context])

Partition (number, start, Indicates where a number occurs within a series of ranges. String

stop, interval)

QBColor (color) Returns the RGB color code for the specified color. Long

Switch(expr-1, value-1[, Evaluates a list of expressions and returns the value associated Variant

expr-2, value-2 ...]) with the first True expression.

RGB(red, green, blue) Returns a number representing the RGB color value. Long

Mathematical Functions
FUNCTION

DESCRIPTION

RETURNS

Abs (number) Returns the absolute value of a number. Mixed

Atn (number) Returns the arctangent of a number. Double

Cos (number) Returns the cosine of an angle. Double

Exp (number) Returns the base of the natural logarithms raised to a power. Double
continued

continued 9 @

puaddy

XI

£3
.

|

<
>
)
=3
(@)
W
3
o
-
(¢}
=
(@]
(¢’)

VBA and Excel Object Model

Quick Reference (continued)

VBA Function Quick Reference (continued)

Mathematical Functions (continued)

FUNCTION DESCRIPTION RETURNS

Fix (number) Returns the integer portion of a number. With negative values, Integer
returns first negative value greater than or a power equal to
number.

Int (number) Returns the integer portion of a number. With negative values, Integer
returns the first negative number less than or equal to the number.

Log (number) Returns the natural logarithm of a number. Double

Round (expression [, Rounds a number to the specified number of decimal places. Mixed

numdecimalplaces])

Rnd [(number)] Returns a random number between 0 and 1. Single

Sgn (number) Returns 1 for a number greater than 0, 0 for a value of 0, and -1 Integer
number less than 0.

Sin (number) Returns the sine of an angle. Double

Sqr (number) Returns the square root of a number. Double

Tan (number) Returns the tangent of an angle. Double

String Manipulation Functions

FUNCTION DESCRIPTION RETURNS

InStr([start,]stringl, Specifies the position of one string within another string. Long

string2 [, compare])

InStrRev (stringcheck, Specifies the position of one string within another starting at the | Long

stringmatchl, end of the string.

start[, comparel])

LCase(string) Converts a string to lowercase. String

Left (string, length) Returns the specified number of characters from the left side ofa | String
string.

Len(string | varname) Determines the number of characters in a string. Long

LTrim(string) Trims spaces from the left side of a string. String

Mid(string, startl, Returns the specified number of characters from the center of a String

length]) string.

Right (string, length) Returns the specified number of characters from the right side of | String
a string.

RTrim(string) Trims spaces from the right side of a string. String

Space (number) Creates a string with the specified number of spaces. String

@

VBA Function Quick Reference (continued)

puaddy

String Manipulation Functions (continued)
FUNCTION DESCRIPTION RETURNS g-
Spc (n) Positions output when printing to a file. String =
Str (number) Returns a string representation of a number. String U<;|
StrComp (stringl, string2l[, Returns a value indicating the result of a string comparison. Integer >
compare]) IO
StrConv (string, conversion, Converts a string to the specified format. String (Ejo
LCID) =
String (number, character) Creates a string by repeating a character the specified number of | String =
times. Qh
Tabl[(n)] Positions output when printing to a file. String 2
Trim(string) Trims spaces from left and right of a string. String g
UCase (string) Converts a string to uppercase. String 8

VBA Function Constants and Characters

vbMsgBoxStyle Constants (MsgBox Function)

CONSTANT VALUE DESCRIPTION

vbAbortRetryIgnore 2 Displays Abort, Retry, and Ignore buttons.
vbApplicationModal 0 Creates application modal message box.
vbCritical 16 Displays Critical Message icon.
vbDefaultButtonl 0 Makes first button default.
vbDefaultButton2 256 Makes second button default.
vbDefaultButton3 512 Makes third button default.
vbDefaultButtond 768 Makes fourth button default.
vbExclamation 48 Displays Warning Message icon.
vbInformation 64 Displays Information Message icon.
vbMsgBoxHelpButton 16384 Adds a Help button.

vbMsgBoxRight 524288 Right-aligns text in the box.
vbMsgBoxRt1Reading 1048576 Used only with Hebrew and Arabic systems for right-to-left reading.
vbMsgBoxSetForeground 65536 Makes message box the foreground window.
vbOKCancel 1 Displays OK and Cancel buttons.
vbOKOnly 0 Displays only the OK button.
vbQuestion 32 Displays Warning Query icon.
vbRetryCancel 5 Displays Retry and Cancel buttons.
vbSystemModal 4096 Creates a system modal message box.
vbYesNo 4 Displays Yes and No buttons.
vbYesNoCancel 3 Displays Yes, No, and Cancel buttons.

continued 9 @

VBA and Excel Object Model

Quick Reference (continued)

VBA Function Constants and Characters (continued)

vbDayOfWeek Constants
CONSTANT VALUE DESCRIPTION
vbUseSystemDayofileek 0 Uses the system-defined first day of week
vbSunday 1 Sunday (default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbllednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

vhFirstWeekOfYear Constants

CONSTANT VALUE DESCRIPTION

vbUseSystem 0 Uses system-defined first week of year.

vbFirstJanl 1 Starts with week in which January 1 occurs (default).
vbFirstFourDays 2 Starts with the first week that has at least four days in the new year.
vbFirstFullWleek 3 Starts with first full week of the year.

Format Function Characters

d Day with no leading zero.

ddd Three-letter abbreviation of day (Sun - Sat).
dddd Full day name (Sunday).

dddad Complete date using short date format.
dddddd Complete date using long date format.

Day of week as number (1 for Sunday).

Week of year as number.

Month with no leading zero.

Three-letter abbreviation of month (Jan - Dec).

Complete month name.

Quarter of year.

Day of year as number.

Year as two-digit number.

Year as four-digit number.

S‘éﬁ%@%gﬁgﬁ

Hour with no leading zero.

>
3
Format Function Characters (continued) g
e
n Minutes with no leading zero. °*
s Seconds with no leading zero. U<5
ttttt Complete time using system time format. >
c Date as dddddd and time as ttttt. lg
=
Format Function Predefined Formats)
z
General Date Uses general date format. 2
Long Date Uses system-defined long date, such as Tuesday, August 7, 2011. g
Medium Date Uses the medium date format, such as 07-Aug-11. 8
Short Date Uses system-defined short date, such as 8/7/2011.
Medium Time Uses the medium time format, such as 05:45 P.M.
Short Time Uses the short time format, such as 17:45.

General Number Uses the general number format.

Currency Places the appropriate currency symbol in front of the number.
Fixed Uses a fixed decimal format.

Standard Uses standard formatting.

Percent Converts the expression to a percentage.

Scientific Displays the expression using scientific notation.

Yes/No Converts the expression to a Yes or No value.

True/False Converts the expression to a True or False value.

On/Off Converts the expression to an On or Off value.

Excel Object Model Constants

XlColumnDataType Constants

CONSTANT VALUE DESCRIPTION
x1DMYFormat 4 DMY format date.
x1DYMFormat 7 DYM format date.
x1EMDFormat 10 EMD format date.
x1GeneralFormat 1 General format.
x1MDYFormat 3 MDY format date.
x1MYDFormat 6 MYD format date.
x1SkipColumn 9 Skip Column.
x1TextFormat 2 Text format.
x1YDMFormat 8 YDM format date.
x1YMDFormat 5 YMD format date.

continued 9 @

VBA and Excel Object Model

Quick Reference (continued)

Excel Object Model Constants

XIFileFormat Constants
CONSTANT VALUE DESCRIPTION
x1AddIn 18 Excel add-in 2007.
x1AddIng 18 Excel 97-2003 add-in.
x1CSV 6 Comma-separated values format.
x1CSVMac 22 Macintosh comma-separated values format.
x1CSVMSDOS 24 MSDOS comma-separated values format.
x1CSVWindows 23 MS Windows comma-separated values format.
x1lCurrentPlatformText -4158 Text file based on current operating system.
x1DBF2 7 DBase Il format.
x1DBF3 8 DBase Ill format.
x1DBF4 11 DBase IV format.
x1DIF 9 Data interchange format.
x1Excell2 50 Excel 12 format.
x1Excel2 16 Excel 2.
x1Excel2FarEast 27 Excel 2.0 format — Far East version.
x1Excel3 29 Excel 3.0 format.
x1Exceld 33 Excel 4.0 format.
x1Excel4Workbook 35 Excel 4.0 workbook format.
x1Excel5 39 Excel 5.0 format.
x1Excel?’ 39 Excel 97 format.
x1Excel8 56 Excel 97-2003 format.
x1Excel9795 43 Excel 95-97 format.
x1Html 44 HTML format.
x1Int1AddIn 26 Excel international add-in.
x1lInt1lMacro 25 Excel international macro.
x10penXMLAddin 55 Open XML add-in.

>
=
XIFileFormat Constants (continued) g
CONSTANT VALUE DESCRIPTION E:
x10penXMLTemplate 54 Open XML Template. °
x10OpemXMLTemplateMacroEnabled 53 OpenXML Template Macro Enabled. U<5
x10penxXMLWorkbook 51 OpenXMLWorkbook. >
x10penXMLWorkbookMacroEnabled 52 OpenXMLWorkbook Enabled. lg
x1SYLK 2 Symbolic link format. o
x1lTemplate 17 Template file format. ;
x1Template8 17 Template. Qh
x1TextMac 19 Macintosh text file format. 2
x1TextMSDOS 21 MSDOS text file format. g
x1TextPrinter 36 Text file created for a printer (.prn). 8
x1TextWindows 20 MS Window text file format.
x1UnicodeText 42 Unicode text file format.
x1WebArchive 45 Web archive format (.mht).
*x1WI2WD1 14 WJ2WD1.
x1WJ3 40 W3,
x1WI3FM3 41 W)3F)3.
x1WK1 5 Lotus 2.x format.
x1WK1ALL 31 Lotus 2.x .all format.
x1WK1FMT 30 Lotus 2.x .fmt format.
x1WK3 15 Lotus 3.x format.
x1WK3FM3 32 Lotus 3.x and Lotus 1-2-3 for Windows format.
x1WK4 38 Lotus 4.0 format.
x1WKS 4 MS Works file format.
x1WorkBookDefault 51 Workbook default.
x1WorkbookNormal -4143 Excel workbook format.
x1Works2FarEast 28 MS Works file — Far East format.
x1WQ1l 34 Quattro Pro for MSDOS format.
x1XMLSpreadsheet 46 XML format.

continued 9 @

VBA and Excel Object Model

Quick Reference (continued)

Excel Object Model Constants (continued)

XIChartType Constants
CONSTANT VALUE CHART TYPE
x13DArea -4098 3D Area.
x13DAreaStacked 78 3D Stacked Area.
x13DAreaStacked100 79 100% Stacked Area.
x13DBarClustered 60 3D Clustered Bar.
x13DBarStacked 61 3D Stacked Bar.
x13DBarStackedl100 62 3D 100% Stacked Bar.
x13DColumn -4100 3D Column.
x13DColumnClustered 54 3D Clustered Column.
x13DColumnStacked 55 3D Stacked Column.
x13DColumnStacked100 56 3D 100% Stacked Column.
x13DLine -4101 3D Line.
x13DPie -4102 3D Pie.
x13DPieExploded 70 Exploded 3D Pie.
x1Area 1 Area.
x1AreaStacked 76 Stacked Area.
x1AreaStackedl100 77 100% Stacked Area.
x1BarClustered 57 Clustered Bar.
x1BarOfPie 71 Bar of Pie.
x1BarStacked 58 Stacked Bar.
x1BarStackedl100 59 100% Stacked Bar.
x1Bubble 15 Bubble.
x1Bubble3DEffect 87 Bubble with 3D effects.
x1ColumnClustered 51 Clustered Column.
x1ColumnStacked 52 Stacked Column.
x1ColumnStackedl00 53 100% Stacked Column.
x1ConeBarClustered 102 Clustered Cone Bar.
x1ConeBarStacked 103 Stacked Cone Bar.
x1ConeBarStackedl100 104 100% Stacked Cone Bar.
x1ConeCol 105 3D Cone Column.

@

Excel Object Model Constants (continued)

XlChartType Constants (continued)

puaddy

XI

£3
.

|

<
(o]
>
)
=3
(@)
W
3
o
-
(¢}
=
(@]
(¢’)

CONSTANT VALUE CHART TYPE
x1ConeColClustered 99 Clustered Cone Column.
x1ConeColStacked 100 Stacked Cone Column.
x1ConeColStackedl00 101 100% Stacked Cone Column.
x1CylinderBarClustered 95 Clustered Cylinder Bar.
x1lCylinderBarStacked 96 Stacked Cylinder Bar.
x1CylinderBarStackedl100 97 100% Stacked Cylinder Bar.
x1CylinderCol 98 3D Cylinder Column.
x1CylinderColClustered 92 Clustered Cone Column.
x1CylinderColStacked 93 Stacked Cone Column.
x1CylinderColStackedl00 94 100% Stacked Cylinder Column.
x1Doughnut -4120 Doughnut.
x1DoughnutExploded 80 Exploded Doughnut.
x1Line 4 Line.

x1lLineMarkers 65 Line with Markers.
xlLineMarkersStacked 66 Stacked Line with Markers.
x1LineMarkersStackedl100 67 100% Stacked Line with Markers.
x1lLineStacked 63 Stacked Line.
x1LineStackedl100 64 100% Stacked Line.

x1Pie 5 Pie.

x1PieExploded 69 Exploded Pie.

x1PieOfPie 68 Pie of Pie.
x1PyramidBarClustered 109 Clustered Pyramid Bar.
x1PyramidBarStacked 110 Stacked Pyramid Bar.
x1PyramidBarStacked100 111 100% Stacked Pyramid Bar.
x1PyramidCol 112 3D Pyramid Column.
x1PyramidColClustered 106 Clustered Pyramid Column.
x1PyramidColStacked 107 Stacked Pyramid Column.
x1PyramidColStacked100 108 100% Stacked Pyramid Column.
x1Radar -4151 Radar.

x1RadarFilled 82 Filled Radar.
x1RadarMarkers 81 Radar with Data Markers.
x1StockHLC 88 High-Low-Close.
x1StockOHLC 89 Open-High-Low-Close.
x1StockVHLC 90 Volume-High-Low-Close.

continued

continued 9 @

VBA and Excel Object Model

Quick Reference (continued)

Excel Object Model Constants (continued)

XIChartType Constants (continued)

CONSTANT VALUE CHART TYPE
x1StockVOHLC 91 Volume-Open-High-Low-Close.
x1lSurface 83 3D Surface.
xlSurfaceTopView 85 Top View Surface.
x1lSurfaceTopViewWireframe 86 Top View Wireframe Surface.
x1lSurfaceWireframe 84 3D Surface Wireframe.
x1XYScatter -4169 Scatter.
x1XYScatterLines 74 Scatter with Lines.
x1XYScatterLinesNoMarkers 75 Scatter with Lines and No Data Markers.
x1XYScatterSmooth 72 Scatter with Smoothed Lines.
x1XYScatterSmoothNoMarkers 73 Scatter with Smoothed Lines and No Data Markers.
XiLineStyle Constants
CONSTANT VALUE DESCRIPTION
x1Continuous 1 Continuous solid line.
x1Dash -4155 Dashed line.
x1DashDot 4 Line with the pattern dash dot.
x1DashDotDot 5 Line with the pattern dash dot dot.
x1Dot -4118 Dotted line.
x1Double -4119 Double solid line.
x1SlantDashDot 13 Slanted line with the pattern dash dot.
x1LineStyleNone -4142 No line.
XIBorderWeight Constants
CONSTANT VALUE DESCRIPTION
x1Hairline 1 Creates a very thin line.
x1Medium -4138 Creates a medium width line.
x1Thick 4 Creates a thick line.
x1Thin 2 Creates a thin line.

Excel Object Model Constants (continued)

XlIPattern Constants

CONSTANT VALUE DESCRIPTION
x1PatternAutomatic -4105 System default.
x1PatternChecker 9 Checkered pattern.
x1PatternCrissCross 16 Criss-cross pattern.
x1PatternDown -4121 Downward pattern.
x1PatternGray25 -4124 25% gray pattern.
x1PatternGray50 -4125 50% gray pattern.
x1PatternGray75 -4126 75% gray pattern.
x1PatternGrid 15 Grid pattern.
x1lPatternHorizontal -4128 Horizontal pattern.
x1PatternLightHorizontal 11 Light horizontal pattern.
x1lPatternLightVertical 12 Light vertical pattern.
x1PatternLightDown 13 Light downward pattern.
x1PatternLightUp 14 Light upward pattern.
x1PatternNone -4142 No pattern.
x1PatternSemiGray75 10 75% semi-gray pattern.
x1lPatternSolid 1 Solid color, no pattern.
x1PatternUp -4162 Upward pattern.
x1lPatternVertical -4166 Vertical pattern.
XIYesNoGuess Constants
CONSTANT VALUE DESCRIPTION
x1Guess 0 Allows Excel to determine whether data has a header.
x1No 2 The data does not have a header.
x1Yes 1 The data has a header.
XlPasteSpecialOperation Constants
CONSTANT VALUE DESCRIPTION
xlPasteSpecialOperationAdd 2 Adds.
xlPasteSpecialOperationDivide 5 Divides.
x1PasteSpecialOperationMultiply 4 Multiplies.
x1PasteSpecialOperationNone -4142 Does not perform a mathematical operation.
x1lPasteSpecialOperationSubtract 3 Subtracts.

puaddy

XI

£3
.

|

<
(o]
>
)
=3
(@)
W
3
o
-
(¢}
=
(@]
(¢’)

SYMBOLS

& (ampersand), as concatenation operator, 56

¢ (apostrophe), 43, 48

* (asterisk) wildcard character, 139

/ (division), as arithmetic operator, 58-59
= (equals) operator, 70-71, 86

~ (exponential), as arithmetic operator, 58-59

> (greater than) operator, 86
>= (greater than or equal to) operator, 86

\ (integer division), as arithmetic operator, 58-59

< (less than) operator, 86
<= (less than or equal to) operator, 86

- (minus sign), as arithmetic operator, 58-59
* (multiplication), as arithmetic operator, 58-59

<> (not equal) operator, 86

+ (plus sign), 56, 58-59, 107

(pound signs) in cells, 197

? (question mark) wildcard character, 139
_ (underscore), 105

A
A
absolute reference, 9
accessing
Edit toolbar, 49
Excel Object Model Reference, 64-65
Options dialog box, 35
Visual Basic Editor (VBE), 27
activating
Visual Basic Editor (VBE), 19, 28-29
workbooks, 145
Add Watch dialog box, 124-125
adding
borders, 208-209
comments to cells, 202-203
customUl.xml file to workbook, 252-253
data series to charts, 264-265
data tables to charts, 270-271
fields to PivotTables, 274-275
Form Controls to worksheets, 20-21
groups to tabs, 249
macros to Form Controls, 24-25
modules, 36-37

@

options to Ribbon, 254-257
pages to toolbox, 243
sheets, 152-153

add-ins

creating, 300-301
installing, 304-305
loading with VBA, 306-307
removing, 305
setting properties, 302-303
third-party, 303

Add-Ins dialog box, 307

ampersand (&), as concatenation operator, 56

and logical operator, 87
apostrophe (), 43, 48
application events, 283
applying
Chart Wizard settings to charts, 262-263
templates to charts, 263
Areas collection, 179
arguments, 45, 72
arrays
assigning content to cells, 79
converting lists to, 80-81
declaring, 76-79
functions, 80-81, 326-333
redimensioning, 82-83
resizing, 81
Assign Macro dialog box, 25
assigning
array contents to cells, 79
digital signatures to macros, 10-11
file properties, 311
macros
to buttons, 25
to pictures, 15
to Quick Access toolbar, 16-17
to Ribbon tab, 17
numbers to cells, 59
values
to Form Controls, 22-23
to user-defined arrays, 84
asterisk (*) wildcard character, 139
attributes
font, 177
XML, 308

Boolean, 52

borders, adding, 208-209

Break mode (VBE), 123

breakpoints, debugging procedures with inserted, 122-123
Button control, 21

buttons, assigning macros to, 25

Byval keyword, 289

()
C
call keyword, 102-103
calling
custom dialog boxes from procedures, 234-235
procedures, 102-103
capturing input from custom dialog boxes, 236-239
case sensitivity (keyboard shortcuts), 14
cell ranges
combining multiple, 178-179
copying and pasting, 198-199
copying to multiple sheets, 206-207
cutting and pasting, 196-197
deleting, 182-183
filling automatically, 204-205
hiding, 184-185
inserting, 190-191
monitoring, 298-299
referencing, 50-51
resizing, 188-189
setting
column width, 192-193
row height, 194-195
cells
adding comments to, 202-203
assigning
array contents to, 79
numbers to, 59
inserting values in, 191
linking to controls, 22
referencing, 50-51
selecting, 175
values
finding, 210-211
finding and replacing, 212-213

Change Chart Type dialog box, 263
changing
case of strings, 118-119
control property values, 233
object properties, 27, 68-69
object properties with wWith statement, 68-69
project names, 32
chart sheets, 258-259, 261
chart text, formatting, 266-267
Chart Wizard, 262-263
charts
adding
data series to, 264-265
data tables to, 270-271
applying
Chart Wizard settings to, 262-263
templates to, 263
creating multiple chart type charts, 268-269
embedding in worksheets, 260-261
events, 281
protecting, 168-169
saving designs as templates, 263
Check Box control, 21
check boxes, 257
clearing print area, 171
closing workbooks, 146-147
code
commenting, 48-49
indenting, 97
labeling, 101
stepping through, 126-127
Code window (VBE), 26, 31, 34-35
color (font), 69
columns
converting, 214-215
setting width, 192-193
combination chart, 268
combining multiple ranges, 178-179
comment lines, 43
commenting (code), 48-49
comments, adding to cells, 202-203
comparisons, creating, 86
concatenation, 56
Conditional Sum Wizard, 304
constants. See also specific constants
creating, 60-61
defined, 45

Content Type.xml file, 312
controls. See also specific controls
events, 282
linking cells to, 22
properties of, 233
converting
columns, 214-215
lists to arrays, 80-81
copying
ranges to multiple sheets, 206-207
sheets, 158-159
copying and pasting cell ranges, 198-199
creating
add-ins, 300-301
chart sheets, 258-259
charts with multiple chart types, 268-269
check boxes, 257
comparisons, 86
constants, 60-61
customUI.xml file, 250-251
dialog boxes, custom, 230, 232-233
digital signatures, 7
Do Until loops, 90-91
files, 310
For Next loops, 92-93
forms, 33
functions, 46-47
groups, 226-227, 279
If Then Else statements, 96-97
keyboard shortcuts, 14
macros, 19
object variables, 66-67
PivotTables, 272-273
range names, 186-187
Select Case statements, 98-99
sub procedures, 44-45
subtotals, 224-225
toggle buttons, 257
user-defined data types, 84-85
UserForm controls, custom, 242-243
UserForm templates, 244-245
workbooks, 148-149
XML maps, 316-317
current region, 198

@

customUl.xml file
adding to workbook, 252-253
creating, 250-251

cutting and pasting cell ranges, 196-197

Data Analysis Toolpak, 304
data series, 264-265
data tables, 270-271
data types, 52, 55, 84-85, 327-328
date
calculations, 112-113
formatting expressions of, 114-115
functions, 328
retrieving, 110-111
deactivating events, 293
debugging procedures
with inserted breakpoints, 122-123
with Watches window, 124-125
declaration statement, 308
declaring
arrays, 76-79
variables, 52, 54-55
decrementing counter variables, 93
defining lists as tables, 228-229
deleting
cell ranges, 182-183
elements from XML files, 317
files, 150-151
folders, 151
macro assignments, 25
macros, 16, 18-19, 38
sheets, 154-155
watches, 125
delimiter, 214
Design mode (VBE), 123
dialog boxes. See also specific dialog boxes
common, 75
custom
calling from procedures, 234-235
capturing input from, 236-237
creating, 230, 232-233

displaying built-in, 74-75
events, 282
validating input from, 240-241
Digital Signature dialog box, 10
digital signatures
assigning to macros, 10-11
creating, 7
display options, 34-35
displaying
built-in dialog boxes, 74-75
Code windows, 31
subtotals and grand totals, 276-277
VBE windows, 30-31
distributing add-ins, 301
division (/), as arithmetic operator, 58-59
Do Until loops, 90-91
Do While loops, 88-89
docking feature (VBE), 30
docProps file, 313

=)
(E)

Edit Name dialog box, 187
Edit toolbar, 49
element names, 309
embedding charts in worksheets, 260-261
equals (=) operator, 70-71, 86
errors, runtime, 130-133
Euro Currency Tools add-in, 304
evaluating expressions with Immediate window, 128-129
events
application, 283
chart, 281
control, 282
deactivating, 293
defined, 24, 64
dialog box, 282
UserForms, 239
workbook, 280-281
worksheet, 281
Excel Object model
changing object properties, 68-69
changing object properties with with statement, 68-69
comparing object variables, 70-71
creating object variables, 66-67

®

displaying built-in dialog boxes, 74-75
object'methods, 72-73
overview, 62-63
Excel Object Model Reference, 64-65
Excel Options dialog box, 17, 304-305
executing
For In Each loops, 94-95
macros, 15
procedures
at specific times, 294-295
when keys are pressed, 296-297
exponential (%), as arithmetic operator, 58-59
Export File dialog box, 39
exporting
modules, 39
XML files using Excel, 318-319
expression, 45, 128-129
Extensible Markup Language. See XML (Extensible Markup
Language)

fields, adding to PivotTables, 274-275
file handling functions, 329
file handling statements, 324
files. See also specific files
add-in, 301
assigning properties, 311
creating, 310
customULxml
adding to workbook, 252-253
creating, 250-251
deleting, 150-151
opening, 138-139, 310-311
saving, 310
saving sheets to, 164-165
text, 136-137
viewing content of, 311
XML (Extensible Markup Language)
exporting using Excel, 318-319
importing using Excel, 318-319
importing using VBA, 322-323
loading using VBA, 320-321
opening as tables, 314-315
overview, 310-313

filling cell ranges, 204-205
filters, 220-223, 278
financial functions, 329-330
finding and replacing cell values, 210-213
fixed-length string, 57
folder handling functions, 329
folder handling statements, 324
folders, deleting, 151
font attributes, 177
font color, 69
For In Each loops, 94-95
For Next loops, 92-93
Form Controls
adding
macros to, 24-25
to worksheets, 20-21
assigning values to, 22-23
format function characters, 334-335
format function predefined formats, 335
formatting
chart text, 266-267
date expressions, 114-115
numeric expressions, 116-117
forms, creating, 33
functions
constants and characters, 333-335
creating, 46-47
date, 328
defined, 45, 104
VBA (Visual Basic for Applications), 80-81, 326-333

‘)
G
General Options dialog box, 135
grand totals, 276-277
greater than (>) operator, 86
greater than or equal to (>=) operator, 86
Group Box control, 21
groups
adding to tabs, 249
creating, 226-227, 279

hiding
cell ranges, 184-185
macros, 40-41
sheets, 160-161
UserForms, 235
VBE windows, 31
HTML (HyperText Markup Language), 308

N

Icons Gallery, 251
identifying integer variables, 85
imageMsO attributes, 251
Immediate window (VBE), 26, 128-129
Imp logical operator, 87
Import File dialog box, 39
importing

page files to toolbox, 243

XML files

using Excel, 318-319
using VBA, 322-323

incrementing counter variables, 93
indenting code, 97
infinite loop, 89
information functions, 330
input

capturing from custom dialog boxes, 236-239

validating from dialog boxes, 240-241
Insert Function dialog box, 47
inserting

cell ranges, 190-191

values in cells, 191
installing add-ins, 304-305
integer division (\), as arithmetic operator, 58-59
integer variables, 85
interaction functions, 331
interaction statements, 324

“Introducing the Office (2007) Open XML File Formats”

(Microsoft), 313
Is operator, 70-71

K

key combinations, 297
keyboard shortcuts
creating, 14
launching, 15
VBE navigation, 29

L

labeling code, 101
launching keyboard shortcuts, 15
less than (<) operator, 86
less than or equal to (<=) operator, 86
linking cells to controls, 22
lists
converting to arrays, 80-81
defining as tables, 228-229
loading
add-ins with VBA, 306-307
XML files using VBA, 320-321
Locals window (VBE), 26
locating workbooks, 144-145
locking projects from editing, 33
logical operators, 87
loops, nesting, 95. See also specific loops

M

Macro dialog box, 29
Macro Options dialog box, 14
Macro Security, 11
macros
adding to Form Controls, 24-25
assigning
to buttons, 25
digital signatures to, 10-11
to pictures, 15
to Quick Access toolbar, 16-17
to Ribbon tab, 17
creating, 19
deleting, 16, 18-19, 38
executing, 15

hiding, 40-41
overview, 4-5
recording, 4, 8-9
running, 12-13
security, 5, 6, 13
setting security, 6
showing hidden, 41
updating, 42-43
Map XML Elements dialog box, 317
mapping, 316
Margin Indicator Bar (VBE), 34
mathematical functions, 331-332
Me keyword, 287
methods. See also VBA (Visual Basic for Applications)
defined, 63
object, 72-73
Microsoft Office Security Options dialog box, 11
Microsoft Visual Studio Tools, 3
minus sign (-), as arithmetic operator, 58-59
modifying macros, 42-43

modules
adding, 36-37
exporting, 39

removing, 38-39
renaming, 37
VBE, 27
monitoring cell ranges, 298-299
moving
sheets, 156-157
windows in VBE, 31
multidimensional arrays, 78-79
multiplication (*), as arithmetic operator, 58-59

N

navigating VBE with keyboard shortcuts, 29
nesting loops, 95

New Name dialog box, 187

not equal (<>) operator, 86

Not logical operator, 87

Nothing keyword, 71

numbers, 58-59

numeric expressions, formatting, 116-117

Object Browser, 65
Object List Box (VBE), 26
object methods, 72-73
Object Model constants, 335-341
object properties, 27, 68-69
object variables, 66-67, 70-71
objects. See also Excel Object model
defined, 63
selecting, 231
setting font attributes for, 177
Open dialog box, 139
Open XML dialog box, 315
opening
add-in files, 301
files, 138-139, 310-311
locked projects, 33
Save As dialog box, 135
text files as workbooks, 136-137
VBE
with Macro dialog box, 29
Ribbon with, 28
windows, 30-31
workbooks, 134-135
XML files as tables, 314-315
operators
logical, 87
Mod, 58-59
options
adding to Ribbon, 254-257
display, 34-35
Options dialog box, 35
or logical operator, 87
order of precedence, 59

D)
P
package, 312
pages, adding to toolbox, 243

part, 312
password-protection, 32

pasting. See copying and pasting; cutting and pasting

@

performing
filters, 220-223
sorts, 172-173, 216-219
pictures, assigning macros to, 15
PivotTables
adding fields, 274-275
creating, 272-273
filtering, 278
plus sign (+), 56, 58-59, 107
pound signs (###) in cells, 197
precedence, order of, 59
printing sheets, 170-171
Procedure List Box (VBE), 26
procedures
calling, 102-103, 234-235
debugging, 122-125
defined, 36, 44, 45
executing
at specific times, 294-295
when keys are pressed, 296-297
running
before saving workbooks, 288-289
as workbook closes, 286-287
on workbook creation, 290-293
as workbook opens, 284-285
stepping through, 126-127
Sub, 44-45
processing runtime errors, 132-133
program flow statements, 325
Project Explorer (VBE), 26, 27
project properties, 32-33
Project Properties dialog box, 302-303
properties
add-in, 302-303
control, 233
defined, 63
file, 311
object, 27, 68-69
project, 32-33
Properties window (VBE), 26, 27, 37
protecting. See also security
charts, 168-169
worksheets, 166-167

o)
Q
question mark (?) wildcard character, 139

Quick Access toolbar, 16-17
Quick Watch feature, 125

D)
R
Radio Button control, 21
range names, 186-187
ranges (cell)
combining multiple, 178-179
copying and pasting, 198-199
copying to multiple sheets, 206-207
cutting and pasting, 196-197
deleting, 182-183
filling automatically, 204-205
hiding, 184-185
inserting, 190-191
monitoring, 298-299
referencing, 50-51
resizing, 188-189
setting
column width, 192-193
row height, 194-195
reassigning key combinations, 297
Record Macro dialog box, 8
recording macros, 4, 8-9
redimensioning arrays, 82-83
references, absolute compared with relative, 9
referencing cells and ranges, 50-51
relative reference, 9
_rels file, 312
removing
add-ins, 305
breakpoints, 123
data series, 265
modules, 38-39
UserForms from memory, 235
Rename dialog box, 17, 249
renaming
modules, 37
projects, 32
sheets, 162-163
tabs, 243

replacing. See finding and replacing
resizing
arrays, 81
cell ranges, 188-189
retrieving date and time, 110-111
returning string portions, 120-121
Ribbon
adding options to, 254-257
customizing, 246-249
opening with VBE, 28
tab, 17
rows, setting height in cell ranges, 194-195
Run mode (VBE), 123
running
macros, 12-13
procedures
before saving workbooks, 288-289
as workbook closes, 286-287
on workbook creation, 290-293
as workbook opens, 284-285
runtime errors, 130-133

/)
S
Save As dialog box, 135
saving
chart designs as templates, 263
files, 310
sheets to files, 164-165
workbooks, 5, 140-143
schemas (XML), 309
security (macro), 5, 6, 13. See also protecting
selecting
cells, 175
objects, 231
setting
add-in properties, 302-303
Chart Wizard, 262-263
display options for Code window, 34-35
font
attributes for objects, 177
color, 69
height of rows in cell ranges, 194-195
macro security, 6
print orientation, 171

properties for projects, 32-33
width of columns in ranges, 192-193
sheets (worksheets)
adding, 152-153
adding Form Controls to, 20-21
chart, 258-259, 261
copying, 158-159
copying cell ranges to multiple, 206-207
deleting, 154-155
embedding charts in, 260-261
events, 281
hiding, 160-161
moving, 156-157
printing, 170-171
protecting, 166-167
renaming, 162-163
saving to files, 164-165
sorting by name, 172-173
showing hidden macros, 41
sorting, 172-173, 216-219
special characters, 297
Spinner control, 21
splitting Code windows, 31
statements, VBA (Visual Basic for Applications), 324-326
stepping through code, 126-127
strings
changing case of, 118-119
defined, 36
fixed-length, 57
manipulation functions, 332-333
returning portions, 120-121
working with, 56-57
structure (XML), 309
subtotals
creating, 224-225
displaying, 276-277

(==
\T/

Tab Order dialog box, 245
tables

defining lists as, 228-229
opening XML files as, 314-315

@

tabs
adding groups to, 249
renaming, 243
Ribbon, 17
tags
empty, 308
XML, 308
templates
applying to charts, 263
creating UserForm, 244-245
saving chart designs as, 263
text (chart), 266-267
text files, opening as workbooks, 136-137
third-party add-ins, 303
time
calculations, 112-113
functions, 328
retrieving, 110-111
tracing, 126
toggle buttons, 257
toggling breakpoints, 123
toolbars
Edit, 49
Quick Access, 16-17
VBE, 129
toolbox, adding pages to, 243
tracing (time), 126
Trust Bar, 11
Trust Center, 303

underscore (_), 105
Unhide dialog box, 161
unhiding workbooks, 18
Unprotect Sheet dialog box, 167
updating macros, 42-43
user-defined data types, 84-85
UserForms
calling custom dialog boxes from procedures, 234-235
capturing input from custom dialog boxes, 236-239
creating
custom controls, 242-243
custom dialog boxes, 232-233
templates, 244-245

events, 239

hiding, 235

overview, 230-231

toolbox, 231

validating input from dialog boxes, 240-241

V)
validating input from dialog boxes, 240-241
values
assigning
to Form Controls, 22-23
to user-defined arrays, 84
control property, 233
finding, 210-211
finding and replacing, 212-213
inserting in cells, 191
variable declaration statements, 326
variables
declaring, 52, 54-55, 326
defined, 45
names, 52
object
comparing, 70-71
creating, 66-67
scope of, 53
VBA (Visual Basic for Applications)
function constants and characters, 333-335
functions, 326-333
importing XML files with, 322-323
loading
add-ins with, 306-307
XML files using, 320-321
overview, 2-3
statements, 324-326
vbDayOfWeek constants, 334
VBE (Visual Basic Editor)
accessing, 27
activating, 19, 28-29
adding modules, 36-37
creating macros with, 19
Edit toolbar, 49
hiding windows, 31
opening windows, 30-31
overview, 10, 26-27

removing modules, 38-39
renaming modules, 37
toolbar, 129
vbFirstWeekOfYear constants, 334
vbMsgBoxStyle constants, 333
VeriSign, Inc., 7
viewing
file contents, 311
VBE toolbar, 129
Visual Basic Editor. See VBE (Visual Basic Editor)
Visual Basic for Applications. See VBA (Visual Basic for
Applications)
Visual Studio Tools (Microsoft), 3

w

Watches window (VBE), 26, 124-125
With statement, 68-69
withEvents keyword, 290-291
workbooks
activating, 145
adding customUl.xml file to, 252-253
closing, 146-147
creating, 148-149
events, 280-281
locating, 144-145
opening, 134-135
opening text filesas, 136-137
running
procedures before saving, 288-289
procedures on closing, 286-287
procedures on creation of, 290-293
procedures on opening, 284-285
saving, 5, 140-143
unhiding, 18
worksheet functions. See functions
worksheets
adding, 152-153
adding Form Controls to, 20-21
chart, 258-259, 261
copying, 158-159
copying cell ranges to multiple, 206-207
deleting, 154-155
embedding charts in, 260-261
events, 281
hiding, 160-161

moving, 156-157
printing, 170-171
protecting, 166-167
renaming, 162-163
saving to files, 164-165
sorting by name, 172-173

X)

7/
x1 file, 313
X1AautoFillType constant values, 205
X1BorderWeight constants, 340
X1ChartType constants, 338-340
X1ColumnDataType constants, 335
X1FileFormat constants, 336-337
X1LineStyle constants, 340
X1ListObjectSourceType constant, 229

X1PasteSpecialOperation constants, 341

X1Pattern constants, 341

X1SheetVisibility constant values, 161
X1SortDataOption constant, 217-219
X1ThemeColor constants, 209
X1YesNoGuess constants, 341
XML (Extensible Markup Language)
attributes, 308
exporting files using Excel, 318-319
files, 310-313
importing
files using Excel, 318-319
files using VBA, 322-323
loading files using VBA, 320-321
opening files as tables, 314-315
overview, 308-309
schemas, 309
tags, 308
XML maps, 316-317
XML script, 257
XML Source task pane, 319
Xor logical operator, 87

‘OO Read Less-Learn More’
<’

" There’s a Visual book
for every learning level...

Digital
Photography

Simplified

The place to start if you're new to computers. Full color.

e Computers e Internet e Office
e Creating Web Pages * Mac OS e Windows
e Digital Photography

| T TRR——

" TeachYourself

VISUALLY

Teach Yourself VISUALLY"

Get beginning to intermediate-level training in a variety of topics. Full color.

e Access e Guitar e Piano

e Bridge ¢ Handspinning e Poker

e Chess e HTML e PowerPoint
e Computers e iLife e Quilting

e Crocheting ¢ iPhoto e Scrapbooking
e Digital Photography e Jewelry Making & Beading ¢ Sewing

e Dog training e Knitting e Windows

e Dreamweaver e Mac OS o Wireless Networking
e Excel o Office ¢ Word

e Flash ¢ Photoshop

e Golf ¢ Photoshop Elements

Top 100 Simplified Tips & Tricks

Tips and techniques to take your skills beyond the basics. Full color.

e Digital Photography ¢ Internet e Photoshop Elements
it . e eBay e Mac OS e PowerPoint
Photoshop C54 e Excel e Office e Windows

e Google e Photoshop

Wiley, the Wiley logo, the Visual logo, Master Visually, Read Less-Learn More, Simplified, Teach Yourself Visually, Visual Blueprint, and Visual Encyclopedia are trademarks or registered trademarks
of John Wiley & Sons, Inc. and or its affiliates. All other trademarks are the property of their respective owners.

...all designed for visual
learners—just like you!

Master VISUALLY

Your complete visual reference. Two-color interior.

e 3ds Max e jPod and iTunes ¢ QuickBooks

e Creating Web Pages e Mac OS e Quicken

e Dreamweaver and Flash e Office * Windows

e Excel e Optimizing PC Performance ¢ Windows Mobile
e Excel VBA Programming e Photoshop Elements e Windows Server

\ iz Visual Blueprint

Where to go for professional-level programming instruction. Two-color interior.

* Ajax e HTML e Ubuntu Linux
e ASP.NET 2.0 e JavaScript e Vista Sidebar
e Excel Data Analysis e Mambo e Visual Basic
e Excel Pivot Tables e PHP & MySQL e XML

e Excel Programming e SEO

Macromeda

VISUAL Visual Encyclopedia

Your A to Z reference of tools and techniques. Full color.

e Dreamweaver e Photoshop
e Excel ¢ Windows
e Mac OS

X i

Windows 7
 V.ISUAL
\ Quick Tips

Visual Quick Tips

Shortcuts, tricks, and techniques for getting more done in less time.
Full color.

e Crochet e iPod & iTunes e PowerPoint
e Digital e Knitting e Windows
Photography e Mac OS e Wireless 5
e Excel e MySpace Networking ‘O
¢ Internet e Office <V
Visual

An Imprint of $'WILEY

For a complete listing of Visual books, go to wiley.com/go/visual Now you ko,

For more professional
instruction in a visual
format, try these.

All designed for visual learners—just like you!

(]
o
Qo

Qo

V-
Visual

Read Less—-Learn More®

Richard Wentk

Excel PivotTables (7 » iPhone OS
and PivotChart§ Dleve(t)lgf)ment

2nd Edition

Companion Web site

ncludes sample Xcode projects

Your visual blueprint™ for {stru Your visual blueprint™ for developing
. . . ¢ for Annle’e ile ire
creating dynamic spreadsheets setind %P e apps for Apple’s mobile devices

978-0-470-59161-1 - pisud rating i 978-0-470-55651-1
0 s 0P

978-0-470-34520-7

[
Q
Q
— . . TIM _. o
For a complete listing of Visual Blueprint ™ titles and other C
Visual books, go to wiley.com/go/visual —J 5
Visual
Wiley, the Wiley logo, the Visual logo, Read Less-Learn More, and Visual Blueprint are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. An Imprint of &WILEY

All other trademarks are the property of their respective owners. Now you know.

_ Read Less-Learn More® .
Microsoft* <

Excel Programming 3rd Edition Visual

Welcome to the only guidebook series that takes a visual approach to professional-level computer
topics. Open the book and you’ll discover step-by-step screen shots that demonstrate over 140 key
Excel programming techniques, including:

- Assigning digital signatures to macros * Working with workbooks and files

+ Using the Visual Basic Editor + Adding comments to a cell

* Understanding variable and data types + Creating and filtering PivotTables

* Declaring a multidimensional array + Automating procedures with Excel events
* Creating If Then Else statements + Importing and exporting XML files

Protect 5 leshcriodnes 7 L

& n s emple. the

i £30 BT Shuges

et s are case-

oM 0 Jadeyd

. Exeel Inteiprets “passwond”
esmly.

& If uaers oo Ihe-
passwor, they cn

e tion of the statement to ilemify & peocedme, use i toct
the chart you wass 1o protecs. If you want so passwoed- meehoxd. You muet Include the passwond i the chart ks

prosert your chart, set the parwsce pammetes (o the password protected, as follows:
Passwond you waRt 10 use. YOU G USE ANY MEINR B Cyeria i) Unprocecs Pasmenrdsscencs
) e ot procedine :
e]
@ Creste your srccec B
fr— e
L ey
® Sety e passwnd [t

® Protects the see
intartace oely
S e usat o deaw
oot

) Press AP e seich
from the VBE in Excel
a0 1 e sz

Excel rays out e = = —_
Fibbon opaons 1

el 1R They &1

ol geaiabie

 High-resolution screen shots
demonstrate each task

¢ Succinct explanations walk you
through step by step

» Two-page lessons break big topics

I Extra into bite-sized modules

Apply It I « “Apply It” and “Extra” sidebars
highlight useful tips

ISBN 978-0-470-59159-8

52999
Programming/Microsoft Programming Visual™

An Imprint of

$29.99 USA $WILEY

$35.99 CAN
£21.99 UK www.wiley.com/go/excel2010programmingvb 9'7804707591598

http://www.wiley.com/go/excel2010programmingvb

	Excel® Programming: Your visual blueprint™ for creating interactive spreadsheets, 3rd Edition
	TABLE OF CONTENTS
	Chapter 1: USING MACROS AND FORM CONTROLS
	Introducing Excel Programming
	Introducing Macros
	Set Macro Security
	Create a Digital Signature
	Record a Macro
	Assign a Digital Signature to a Macro
	Run a Macro
	Create and Launch a Keyboard Shortcut
	Assign a Macro to the Quick Access Toolbar
	Delete a Macro
	Add a Form Control to a Worksheet
	Assign Values to a Form Control
	Add a Macro to a Form Control

	Chapter 2: USING THE VISUAL BASIC EDITOR
	Introducing the Visual Basic Editor
	Activate the Visual Basic Editor
	Open Visual Basic Editor Windows
	Set Properties for a Project
	Set Display Options for the Code Window
	Add a New Module
	Remove a Module
	Hide a Macro
	Update a Macro

	Chapter 3: INTRODUCING VISUAL BASIC FOR APPLICATIONS
	Create Sub Procedures
	Create Functions
	Comment Your Code
	Reference Cells and Ranges
	Understanding Variables and Data Types
	Declare Variables
	Work with Strings
	Work with Numbers
	Create a Constant

	Chapter 4: INTRODUCING THE EXCEL OBJECT MODEL
	Discover the Excel Object Model
	Access the Excel Object Model Reference
	Create an Object Variable
	Change the Properties of an Object
	Compare Object Variables
	Using an Object Method
	Display a Built-in Dialog Box

	Chapter 5: UNDERSTANDING ARRAYS
	Declare an Array
	Declare a Multidimensional Array
	Convert a List to an Array
	Redimension an Array
	Create a User-Defined Data Type

	Chapter 6: CONTROLLING PROGRAM FLOW
	Create Comparisons
	Make Use of Logical Operators
	Employ Do While Loops
	Create Do Until Loops
	Create For Next Loops
	Execute For Each In Loops
	Create If Then Else Statements
	Construct Select Case Statements
	GoTo a Named Location
	Call a Procedure

	Chapter 7: USING EXCEL WORKSHEET FUNCTIONS
	Work with Excel Worksheet Functions
	Work with a MsgBox Function
	Using the InputBox Function
	Retrieve the Current Date and Time
	Perform Date and Time Calculations
	Format a Date Expression
	Format a Numeric Expression
	Change the Case of a String
	Return a Portion of a String

	Chapter 8: DEBUGGING MACROS
	Debug a Procedure with Inserted Breakpoints
	Using the Watches Window to Debug a Procedure
	Step through a Procedure
	Using the Immediate Window
	Resume Execution When an Error Is Encountered
	Process a Runtime Error

	Chapter 9: WORKING WITH WORKBOOKS AND FILES
	Open a Workbook
	Open a Text File as a Workbook
	Open a File Requested by the User
	Save a Workbook
	Save a Workbook in a Format Specified by the User
	Determine if a Workbook Is Open
	Close a Workbook
	Create a New Workbook
	Delete a File

	Chapter 10: WORKING WITH WORKSHEETS
	Add a Sheet
	Delete a Sheet
	Move a Sheet
	Copy a Sheet
	Hide a Sheet
	Change the Name of a Sheet
	Save a Sheet to Another File
	Protect a Worksheet
	Protect a Chart
	Print a Sheet
	Sort Sheets by Name

	Chapter 11: DEFINING RANGES
	Using the Range Property
	Using the Cells Property
	Combine Multiple Ranges
	Using the Offset Property
	Delete a Range of Cells
	Hide a Range of Cells
	Create a Range Name
	Resize a Range
	Insert a Range
	Set the Width of Columns in a Range
	Set the Height of Rows in a Range

	Chapter 12: WORKING WITH CELLS
	Cut and Paste Ranges of Cells
	Copy and Paste Ranges of Cells
	Using Paste Special Options When Pasting
	Add Comments to a Cell
	Automatically Fill a Range of Cells
	Copy a Range to Multiple Sheets
	Add a Border
	Find Specific Cell Values
	Find and Replace Values in Cells

	Chapter 13: WORKING WITH LISTS
	Convert a Column of Text into Multiple Columns
	Perform a Sort
	Perform a Filter
	Perform an Advanced Filter
	Create Subtotals
	Create Groups
	Define a List as a Table

	Chapter 14: CREATING DIALOG BOXES AND CUSTOMIZING THE RIBBON
	UserForm Basics
	Create a Custom Dialog Box
	Call a Custom Dialog Box from a Procedure
	Capture Input from a Custom Dialog Box
	Validate Input from a Dialog Box
	Create Custom UserForm Controls
	Create a UserForm Template
	Customize the Ribbon
	Create a CustomUI.xml File
	Add a CustomUI.xml File to a Workbook
	Add Additional Options to the Ribbon

	Chapter 15: WORKING WITH CHARTS
	Create a Chart Sheet
	Embed a Chart in a Worksheet
	Apply Chart Wizard Settings to a Chart
	Add a New Data Series to a Chart
	Format Chart Text
	Create Charts with Multiple Chart Types
	Add a Data Table to a Chart

	Chapter 16: WORKING WITH PIVOTTABLES
	Create a PivotTable
	Add Fields to a PivotTable
	Display Subtotals and Grand Totals
	Filter a PivotTable
	Create Groups

	Chapter 17: AUTOMATING PROCEDURES WITH EXCEL EVENTS
	Understanding Excel Events
	Run a Procedure as a Workbook Opens
	Run a Procedure before Closing a Workbook
	Run a Procedure before Saving a Workbook
	Run a Procedure When Excel Creates a Workbook
	Execute a Procedure at a Specific Time
	Execute a Procedure When You Press Keys
	Monitor a Range of Cells for Changes

	Chapter 18: BUILDING ADD-INS
	Create an Add-In
	Set Add-In Properties
	Install Add-Ins
	Using VBA to Load Add-Ins

	Chapter 19: UNDERSTANDING XML
	Introducing XML
	Understanding Excel XML Files
	Open an XML File in Excel as a Table
	Create an XML Map
	Import and Export XML Files Using Excel
	Load XML Files Using VBA
	Import XML Files Using VBA

	Appendix
	VBA and Excel Object Model Quick Reference

	INDEX

