
Conflict-Tolerant Features�

Deepak D’Souza and Madhu Gopinathan

Indian Institute of Science,
Bangalore, India

{deepakd,gmadhu}@csa.iisc.ernet.in

Abstract. We consider systems composed of a base system with mul-
tiple “features” or “controllers”, each of which independently advise the
system on how to react to input events so as to conform to their in-
dividual specifications. We propose a methodology for developing such
systems in a way that guarantees the “maximal” use of each feature.
The methodology is based on the notion of “conflict-tolerant” features
that are designed to continue offering advice even when their advice has
been overridden in the past. We give a simple priority-based composition
scheme for such features, which ensures that each feature is maximally
utilized. We also provide a formal framework for specifying, verifying,
and synthesizing such features. In particular we obtain a compositional
technique for verifying systems developed in this framework.

1 Introduction

In this paper we consider systems that are composed of a base system along
with multiple “features” or “controllers,” each of which are meant to advise the
system on how to adhere to their individual feature specifications. Such system
models are common in software intensive domains such as telecommunications
and automotive electronic control. One of the problems faced in integrating var-
ious features in such systems is that the system may reach a point of “conflict”
between two (or more) features, where the features do not agree on a common
action for the system to perform [1,2]. Such conflicts can be resolved by redesign-
ing one of the features to satisfy a relaxed specification. However redesigning
existing features is often not feasible in practice [3]. Redesign would also defeat
the purpose of software product lines [4], which aim to improve software reuse
by composing features to derive multiple products from a family of features.
Another resolution technique is to suspend the feature with lower priority, and
continue with the advice of the higher priority feature. However the issue now
is how and when to “resume” the suspended feature so as to maximize its use.

In this paper we propose a formal framework for developing such systems in a
way that overcomes some of these problems. The framework is based on a notion
of “conflict-tolerance”, which simply requires features to be “resilient” or “toler-
ant” with regard to violations of their advice due to conflicts with other features.
� This research was partially supported by a grant from India Science Lab, General

Motors Corporation.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 227–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 D. D’Souza and M. Gopinathan

Thus, unlike a classical feature, a conflict-tolerant feature observes that its ad-
vice has been overridden, takes into account the violating event, and proceeds
to offer advice for subsequent behavior of the system. Our methodology includes
a way of specifying features, as well as a compositional verification technique for
checking whether a feature implementation satisfies its specification.

The starting point in this framework is the notion of a conflict-tolerant specifi-
cation of a feature. A classical specification (which we will assume in this paper
to be safety specifications of linear-time behavior) can be viewed as a prefix-
closed language of finite words containing all the system behaviors which are
considered “safe”. This can be pictured as a safety “cone” in the tree represent-
ing all possible behaviors, as shown in Fig. 1 (a). A conflict-tolerant specification
on the other hand can be viewed as an “advice function” that specifies for each
behavior w of the base system, a safety cone comprising all future behaviors that
are considered safe, after the system has exhibited behavior w (Fig. 1 (b)).

w

(a) (b)

Fig. 1. The conflict-tolerant specification on the right advises on how to extend w even
though its advice has been overridden (dashed line) in the past when generating w

To illustrate how a conflict-tolerant specification can capture a specifier’s in-
tent more richly than a classical specification, consider a feature that is required
to release (by the event “rel”) a single unit of medication in response to a
“timer” event from the environment. A classical specification for this feature
may be given by the transition system shown in Fig. 2 (a). The transition sys-
tems shown in Fig. 2 (b) and (c) denote conflict-tolerant specifications that both
induce the same classical specification shown in (a). The dashed transitions are
to be read as “not-advised”, and their role is to keep track of events that violate
the advice at a given state. Thus in specification (b), after an initial timer event,
the advised action is rel; however, if the event no-rel occurs against its advice,
the specification moves to the lightly shaded copy where on receiving another
timer event it advises the action rel-double. The second specification thus at-
tempts to maintain a unit average in every window of two cycles (it may, for
example, be releasing oxygen), while the third specification does not attempt to
do this (it may be releasing doses of insulin).

A conflict-tolerant feature implementation can be viewed as a transition sys-
tem with transitions annotated as “advised” and “not-advised”, similar to the
conflict-tolerant specifications described above. A feature implementation is now
said to satisfy a conflict-tolerant specification (with respect to a given base sys-
tem), if after every possible behavior w of the base system, the behaviors of the
base system that are according to the advice of the feature implementation, are
all contained in the safety cone prescribed by the specification for w.

Conflict-Tolerant Features 229

timer

rel rel
rel-double

no-rel

no-rel

rel-double, no-reltimer
timer
rel

timer timer

relno-rel

rel-double

rel

rel-double

(a) (b) (c)

Fig. 2. The specification (a) is a classical specification whereas (b) and (c) are conflict-
tolerant specifications. If “release double” (event rel-double) occurs against the advice
of specification (b), it moves to the darkly shaded copy and advises “no release” (event
no-rel) in the next cycle; if no-rel occurs against its advice, it moves to the lightly
shaded copy and advises rel-double in the next cycle.

We give decision procedures to solve the natural synthesis and verification
problems in this setting. In particular, we give a procedure to check whether a
finite-state implementation satisfies a given finite-state conflict-tolerant specifi-
cation, with respect to a given base system.

An important aspect of our framework is the fact that conflict-tolerant fea-
tures admit a simple and effective composition scheme based on a prioritization
of the features being composed, which can also be viewed as a conflict resolution
technique. The composition scheme ensures that the resulting system always
satisfies the specification of the highest priority feature. Additionally, it follows
the advice of all other features F , except at points where each action in the
advice of F conflicts with the advice of a higher priority feature. It is in this
sense that each feature is “maximally” utilized. Together with our verification
procedure, this gives us a compositional way of verifying the composed system,
since once the individual features have each been verified to conform to their
specifications, the composed system is guaranteed to be correct (in the sense
above) “by construction.”

Related Work. In [5], it is argued that system verification must be decomposed
by features as every feature naturally has an associated property to be verified.
There are several approaches in the literature where features are specified as
state machines and a conflict is detected by checking whether a state, in which
the features advise conflicting system actions, is reached. For a survey, see [1].
The problem of conflict detection is addressed in [6], where features are specified
using temporal logic and conflict is detected automatically at the specification
stage.

We now focus on previous work addressing conflict resolution. Our approach of
viewing features as discrete event controllers [7] follows that of [8,9]. In both these
works, the main issue addressed is that of resuming the advice of a controller
once it has been overridden due to conflict with a higher priority controller.
In [8] (see also [10]), when the lower priority controller (say C2) is suspended,
the behavior of the base system is masked from C2. The resolution mechanism
resumes C2 when it determines that the base system has reached a state (based
on language equivalence) from which it is safe to accept the advice of C2. The
drawback of this scheme is that the base system may never reach a state from

230 D. D’Souza and M. Gopinathan

which the advice of C2 can be accepted, and even if such a state was reached
eventually, the utility of the controller is lost during the period of suspension.

The work of [9] is closer to ours, in that the specifications are designed to
anticipate conflict by having two kinds of states: in-spec and out-of-spec. When
a controller’s specification is violated, it transitions to an out-of-spec state from
where it passively observes the system behavior, till it sees a specified event that
brings it back to an in-spec state. Thus, unlike our controllers, these controllers
are designed to work with only certain anticipated conflicts, and moreover do
not offer any useful advice in out-of-spec states.

In [11], a rule-based feature model and composition operators for resolving
conflicts based on prioritization is presented. Their work is closest to ours in that
it implicitly contains the notion of conflict-tolerance with a similar resolution
mechanism. However the notion of a conflict-tolerant specification (as against
the feature implementation itself) is absent in their work, while it is central in
ours. In the absence of a specification one cannot address the important problems
of verification and synthesis. With respect to their notion of “weak” (in a sense
conflict-tolerant) invariants of features, the feature model is not obliged to offer
advice on how to restore the invariant in case of violations.

The rest of the paper is structured as follows: After preliminary definitions,
in Sect. 3 we view features as controllers and illustrate conflict between features.
We then introduce the notion of conflict-tolerance in Sect. 4 and address the
synthesis and verification problems in Sect. 5. Finally in Sect. 6, we describe
our composition scheme and provide a precise formulation of the claim that the
controllers are maximally utilized.

2 Preliminaries

Let Σ be a finite alphabet of events and let Σ∗ denote the set of finite words
over Σ. We denote the empty word by ε. A language over Σ is a subset of Σ∗.
We write v · w (or simply vw) to denote the concatenation of two words v and
w. Let L be a language over Σ and let v be a word over Σ. We define the set of
extensions of v in L to be extv(L) = {w ∈ Σ∗ | v · w ∈ L}.

A transition system T over Σ is a tuple (Q, s, →), where Q is a set of states, s ∈
Q is the start state, and →⊆ Q×Σ×Q is a Σ-labeled transition relation. A run of
T on a word w = a0a1 · · ·an starting from a state q, is a sequence q0, q1, . . . , qn+1

of states in Q such that q0 = q, and for each i ∈ {0, . . . , n}, we have qi
ai→ qi+1.

The language generated by T , denoted L(T), is the set of all words w on which
T has a run starting from s. The language generated by T starting from a state
q ∈ Q, denoted by Lq(T), is the set of all words on which T has a run starting
from q. We say the transition system T is complete (respectively deterministic)
if for each q ∈ Q and a ∈ Σ, there exists (respectively, exists at most one) q′ such
that q

a→ q′. For a deterministic transition system T and a word w on which T
has a run, let q be the unique state reached in T after generating w. Then, we
define Lw(T) = Lq(T).

Conflict-Tolerant Features 231

Finally, for transition systems T1 = (Q1, s1, →1) and T2 = (Q2, s2, →2) over
Σ, we define the synchronized product of T1 and T2, denoted T1‖T2, to be the
transition system (Q1 × Q2, (s1, s2), →) over Σ, where (p1, p2)

a→ (q1, q2) iff
p1

a→1 q1 and p2
a→2 q2.

3 Features as Controllers

In this section we elaborate on the view of features as modular discrete event
controllers [7], as proposed in [9,8].

In this paper, we focus on “safety” specifications. A safety specification over
an alphabet Σ is a prefix-closed language over Σ. A safety specification can also
be viewed as an “advice function” as defined below. This view will be useful
when we introduce the notion of conflict tolerance in Sect. 4.

Definition 1 (Advice Function). An advice function over Σ is a function
f : Σ∗ → 2Σ∗

such that f(ε) is prefix-closed language, and is consistent in the
sense that for all vw ∈ f(ε) we have f(vw) = extw(f(v)).

A safety specification L over Σ induces an advice function fL given by fL(v) =
extv(L). Conversely, an advice function f induces a safety language Lf given by
Lf = f(ε). An advice function f induces in a natural way an immediate advice
function f i : Σ∗ → Σ given by

f i(v) = {a ∈ Σ | ∃w ∈ Σ∗ : aw ∈ f(v)}.

We say a finite word w is according to an immediate advice f i if for each prefix
va of w, we have a ∈ f i(v). A deterministic transition system T over Σ induces
an advice function fT given by fT (w) = Lw(T) for all w ∈ L(T), and ε oth-
erwise. We will say a safety specification L over Σ is regular if it is given by a
deterministic finite-state transition system S over Σ.

We now define the notion of a base system. Let Σ be an alphabet which is
partitioned into “environment events” Σe and “system events” Σs. We model
systems over Σ by viewing their executions as a repeated cycle in which an
environment event is sampled and a system event is performed in response to
it. For simplicity we assume that exactly one environment action is sampled in
each cycle.

Definition 2 (Base System). A base system (or plant) over Σ is a determin-
istic finite-state transition system B over Σ, which is

– alternating in that L(B) ⊆ (Σe · Σs)∗ ∪ ((Σe · Σs)∗ · Σe).
– non-blocking in that whenever w ∈ L(B) there exists c ∈ Σ such that

wc ∈ L(B).

Definition 3 (Controller). Let B be a base system over Σ. A controller (or
feature implementation) for B is a deterministic transition system over Σ. A
controller C for B is valid if

232 D. D’Souza and M. Gopinathan

– C is non-restricting: If w ∈ L(B‖C) and w · e ∈ L(B) for some environment
event e ∈ Σe, then w · e ∈ L(C). Thus the controller must not restrict any
environment event e enabled in the base system after any controlled behavior w.

– C is non-blocking: If w ∈ L(B‖C), then wc ∈ L(B‖C) for some c ∈ Σ. Thus
the controller must not block the base system after any controlled behavior w.

We carry over the notions of advice function fC and corresponding immediate
advice function f i

C for a controller C.
Let B be a base system and L a safety specification over Σ. We say a controller

C for B satisfies L if L(B‖C) ⊆ L.
As a running example, we consider a lift system (in a building of only two

floors – floor 0 and floor 1) and two of its features, adapted from a case study in
[12]. Figure 3 shows the base system model. We denote the environment events in
italics and system events in bold. In order to avoid clutter, we use a Statechart-
like notation. An arrow from a box (dashed rectangle) to another box represents
arrows between states with the same label in the two boxes. For example, the
arrow labeled open represents two arrows: one between states labeled 1, and
another between states labeled 0 in the boxes C and O . We use the conven-
tion that self-loops on states are labeled with all events in Σ, excluding those
on which there is an outgoing transition from the state, and those events a for
which the self-loop has a label ∼ a. Thus the state 0 in box C has a transi-
tion to itself on the system event nops and on all environment events except
ttfull and ttnotfull . The initial state is shown by an incoming arrow. To keep
the figure simple we have not shown the base system as generating alternat-
ing environment and system events. However, we consider only the alternating
behaviors.

The event fpress i occurs when a user presses the button on floor i and the
event cpressi occurs when a user presses the car button for floor i inside the lift.
The event ttfull indicates that the lift is two-thirds full and the event ttnotfull in-
dicates that the lift is not two-thirds full. The events nope and nops respectively
denote that the environment and the system has not performed any action.

The base system is typically run with several controllers including a “vanilla”
controller which would keep track of the current direction of travel and require
the base system to service all pending requests from floors and from within the
lift along that direction before changing direction. However, we will focus on
a controller for “executive floor” feature which requires that the requests from
the “executive floor” (say, floor 1) must be serviced before other floor requests.
Figure 4 shows a possible specification SE for this requirement. The transition
system simply keeps track of the current floor in its state. When it receives a
fpress1 event, it transitions to the same state in the box P indicating that an
executive floor request is pending. It prohibits open on floor 0 and down on
floor 1 so that the executive floor request is serviced before other floors. We take
SE , with the additional constraint that nops is not allowed from the states in
box P , as a valid controller CE for the base system B.

Conflict-Tolerant Features 233

up down

0

1

0

1
open

close

OC~ttfull, ~ttnot full,
~close, ~up

~ttfull,~ttnot full,
~close, ~down

~open, ~up, ~down

~open, ~up, ~down

Fig. 3. Lift base system B. The set Σe is {fpress i, cpress i, ttfull , ttnotfull , nope}. The
events ttfull and ttnotfull can occur only when the lift door is open (in box O). The
set Σs is {open, close, up,down,nops}. The lift can move up or down only when its
door is closed.

1

up

open

fpress1
1

0

up down

~ down

~ open
0

N P

Fig. 4. Executive Floor Specification SE . Controller CE is the same as SE except that
it does not advise nops from the states in box P .

Consider adding a feature called “two-thirds-full” which requires that the
requests from within the lift should be serviced before requests from floors when
the lift is two-thirds full. Thus, when the system receives a ttfull event, the lift
should not service requests from floors as long as there are pending car requests.
When the ttnotfull event occurs, the lift can go back to its normal functioning.
Figure 5 shows a possible specification ST for this feature. We take ST , with
the additional constraint that nops is not allowed when the lift is two-thirds
full and a car request is pending, as a valid controller CT for B. Note that a
controller could impose additional constraints such as choosing open over up at
floor 0 when car requests from both floors are pending.

We now illustrate the notion of conflict between controllers.

Definition 4 (Conflict). Let C1 and C2 be valid controllers for a base system
B. The controllers C1 and C2 are in conflict with respect to B, if there exists
a behavior w in L(B‖C1‖C2) such that extw(L(B‖C1‖C2)) is empty. In other
words, there exists a behavior w ∈ L(B) which is according to both C1 and C2,
but f i

B(w) ∩ f i
C1

(w) ∩ f i
C2

(w) = ∅.
Thus C1 and C2 are in conflict with respect to B if C1‖C2 is blocking with respect
to B. Consider the behavior

fpress1 · up · nope · open · ttfull · close · cpress0 · down · fpress1

from the initial state of B. The system events allowed by B are up, open and
nops. However, the controlled system is blocked as CE does not advise open
and nops while CT does not advise up and nops.

234 D. D’Souza and M. Gopinathan

1 1 1

u d

ttfull

ttnot full

cpress0

open

0 0 0

u d u d u d

cpress1

N

0

1

cpress0

cpress1

open

open open

1 1 1

u d

cpress0

open

0 0 0

d u u d

cpress1

F

0

1

cpress0

cpress1

open

open open

~open

~up ~open

~down

Z O ZO Z O ZO

Fig. 5. Two-Thirds Full Specification ST . In box Z (O), car request for floor 0 (respec-
tively 1) is pending and in box ZO , car requests for both floors are pending. Controller
CT is the same as ST except that it does not advise nops when the lift is two-thirds
full (box F) and a car request is pending.

4 Conflict-Tolerant Controllers

In this section we introduce our notion of conflict-tolerance. Analogous to the
notion of specification as an advice function given in Sect. 3, a conflict-tolerant
safety specification over an alphabet Σ is a conflict-tolerant advice function in
the following sense:

Definition 5 (Conflict-Tolerant Advice Function). A conflict-tolerant ad-
vice function over an alphabet Σ is a function f : Σ∗ → 2Σ∗

which assigns a
prefix-closed language f(v) to every finite word v ∈ Σ∗, and is consistent in the
sense that for all vw ∈ Σ∗ with w ∈ f(v), we have f(vw) = extw(f(v)).

A conflict-tolerant transition system (or CTTS) over Σ is a tuple T ′ = (T , N),
where T = (Q, s, →) is a deterministic transition system over Σ and N ⊆→ is a
subset of transitions designated as “not-advised.” The language generated by T ′

starting from a state q in Q, denoted Lq(T ′), is defined to be simply Lq(T). The
constrained language generated by T ′, denoted Lc

q(T ′), is defined to be Lq(̂T)
where ̂T is the transition system obtained from T by deleting all not-advised
transitions (i.e. transitions in N). Let w ∈ L(T), and let q be the unique state
reached by T on w. Then by Lc

w(T ′) we mean Lc
q(T ′). We say T ′ is complete

with respect to a language L ⊆ Σ∗ if L ⊆ Lε(T ′).
The CTTS T ′ induces a natural conflict-tolerant advice function fT ′ given

by, for all w ∈ Σ∗, f(w) = Lc
w(T ′). We say a conflict-tolerant advice function is

regular if it is given by a finite-state CTTS over Σ.
We define the synchronized product of a transition system T1 and a CTTS

T ′
2 = (T2, N2) to be the CTTS (T1‖T2, N

′
2) which is complete with respect to

L(T1) and N ′
2 is the set of joint transitions where the T2 transitions are not-

advised (thus T1‖T ′
2 inherits the not-advised transitions of T ′

2).
In the definitions below let B be a base system over a partitioned alphabet Σ.

Definition 6 (Conflict-Tolerant Controller). A conflict-tolerant controller
for B is a CTTS over Σ that is complete with respect to L(B). The controller C′

for B is valid if

Conflict-Tolerant Features 235

– C′ is non-restricting: If w · e ∈ L(B) for some environment event e ∈ Σe,
then e ∈ Lc

w(C′) (or equivalently e ∈ f i
C′(w)). Thus the controller must not

restrict any environment event e enabled in the base system after any system
behavior w.

– C′ is non-blocking: If w ∈ L(B), then Lc
w(B‖C′) �= ∅ (equivalently f i

C′(w) ∩
f i
B(w) �= ∅). Thus the controller must not block the system after any system

behavior w.

Definition 7 (C′ satisfies f). Let f be a conflict-tolerant specification over
Σ. A conflict-tolerant controller C′ for B satisfies f if for each w ∈ L(B),
Lc

w(B‖C′) ⊆ f(w). Thus after any system behavior w, if the base system follows
the advice of C′, the resulting behavior conforms to the safety language f(w).

We now illustrate these definitions with our running example. Figure 6 shows
a conflict-tolerant specification S′

E for the “executive floor” feature. The not-
advised transitions are shown using dashed transitions. By ignoring the dashed
transitions, we get back the conventional specification in Fig. 4. The dashed tran-
sitions in a conflict-tolerant specification indicate the obligation on a controller
when the specification is overridden to meet the requirements of a higher priority
specification. In S′

E , open from state 0 of box P and down from state 1 of box
P are not advised. However, even if the door opens at floor 0 when a request
from floor 1 is pending, S′

E requires the controller’s subsequent advice to be
such that the request from floor 1 is serviced. Figure 7 shows a conflict-tolerant
specification for the “two-thirds-full” feature.

5 Synthesis and Verification

In this section we address the natural synthesis and verification problems for
conflict-tolerant controllers. Let Σ be a partitioned alphabet.

Theorem 1 (Synthesis). Given a base system B over Σ, and a regular
conflict-tolerant specification S′ over Σ, we can check if there exists a conflict-
tolerant controller for B that satisfies S′, and if so, synthesize a finite-state one.

Proof. We claim that there exists a controller for B satisfying S′ iff in the syn-
chronized product B‖S′ there does not exist a state (b, q) which is reachable
from the start state and satisfies one of the conditions

1. (b, q) is “restricting” in the sense that there is an environment event e enabled
at b in B, but is not advised at q in S′.

2. (b, q) is “blocking” in that there is no event advised at (b, q) in B‖S′.

If no such (b, q) exists in B‖S′, then clearly S′ itself is a valid finite-state con-
troller for B that satisfies S′. Conversely, if there is a valid controller C′ for B
satisfying S′, then again it is easy to see that no such (b, q) must exist in B‖S′

(recall that the base system is always non-blocking). These conditions can be
checked in time linear in the product of the sizes of B and S′. �

236 D. D’Souza and M. Gopinathan

1

up

open

fpress1
1

0

up down down

0

N P

open

Fig. 6. Tolerant Executive Floor Specification S ′
E . Tolerant Controller C′

E is the same
as S ′

E except that nops is not advised from states in box P .

1 1 1

u d

ttfull

ttnot full

cpress0

open

0 0 0

u d u d u d

cpress1

N

0

1

cpress0

cpress1

open

open open

1 1 1

u d

cpress0

open

0 0 0

d u u d

cpress1

F

0

1

cpress0

cpress1

open

open open

open

open

Z O ZO Z O ZO

u d

Fig. 7. Tolerant Two-Thirds Full Specification S ′
T . Tolerant Controller C′

T is the same
as S ′

T except that it does not advise nops when the lift is two-thirds full and a car
request is pending.

Note that even if a state (b, q) as above exists, a classical controller [7] may still
exist if it has a strategy to avoid reaching such a state.

Theorem 2 (Verification). Given a base system B over Σ, a regular conflict-
tolerant specification S′, and a finite-state conflict-tolerant controller C′, we can
check whether C′ is a valid conflict-tolerant controller for B, that satisfies S′.

Proof. It is easy to see that a necessary and sufficient condition for C′ to be
a valid controller for B and satisfying S′, is to check that in the synchronized
product B‖C′‖S′ there does not exist a state (b, p, q) which is reachable from the
initial state and satisfies one of the following conditions:

1. (C′ is restricting) there exists an event e ∈ Σe enabled at b in B, but is not
advised at p in C′.

2. (C′ is blocking) there is no event c which is both enabled at b in B and
advised at p in C′.

3. (C′ does not satisfy S′) there is an event c which is both enabled at b in B
and advised at p in C′, but not advised at q in S′.

This check can be carried out in time linear in the product of the sizes of B, C′,
and S′. �

Conflict-Tolerant Features 237

6 Composition

We now give a way of composing conflict-tolerant controllers based on a priori-
tization of the controllers. The composition guarantees that the advice of each
controller is used in a “best possible” way.

Let B = (B, r0, →) be a base system over an alphabet Σ. Let C′
1 = (Q1, s1, →1,

N1) and C′
2 = (Q2, s2, →2, N2) be valid conflict-tolerant controllers for B. Let P

be a priority ordering between C′
1 and C′

2, and say P assigns a higher priority to
C′
1, denoted by C′

2 <P C′
1. Then:

Definition 8 (Prioritized Composition). The P -prioritized composition of
the controllers C′

1 and C′
2 w.r.t. B, is the conflict-tolerant transition system C′,

denoted by ‖P,B(C′
1, C′

2), and defined as

C′ = (Q1 × Q2 × B, (s1, s2, r0), ⇒, N)

where ⇒ is given by (p1, p2, r)
a⇒ (q1, q2, t) iff p1

a→1 q1, p2
a→2 q2, and r

a→ t;
and the set of not-advised transitions N is defined as follows. With each transi-
tion u = (p1, p2, r)

a⇒ (q1, q2, t), we associate a bit-string (in this case of length
2) which denotes which of the controllers has advised this transition. Thus the as-
sociated bit-string for the transition above is b1b2 where bi is 1 iff pi

a→i qi �∈ Ni.
Let the “rank” of u be the number represented by this string in binary notation.
Then the transition u is advised (i.e. not in N) iff there is no transition of higher
rank going out of the state (p1, p2, r).

Figure 8 show how the ranks and “advised” status of transitions are calculated
(assuming that the base system allows all the events shown). Thus from state
(p, p′) only the transition on d is advised, while all others are not advised.

Lemma 1. The CTTS C′ = ‖P,B(C′
1, C′

2) defined above is a valid (i.e. non-
restricting and non-blocking) conflict-tolerant controller for B. In addition, the
immediate advice function f i

C′ it induces is given as follows. For each w ∈ L(B):

f i
C′(w) =

{

f i
B(w) ∩ f i

C′
1
(w) ∩ f i

C′
2
(w) if f i

B(w) ∩ f i
C′
1
(w) ∩ f i

C′
2
(w) �= ∅

f i
B(w) ∩ f i

C′
1
(w) otherwise.

�

We can now generalize this prioritized composition to any number of controllers.
Let C′

1, . . . , C′
n be valid conflict-tolerant controllers for a base system B. Let P

be a priority that induces a total ordering <P on the controllers. Then the
P -prioritized composition of C′

1, . . . , C′
n (wrt B) is denoted ‖P,B(C′

1, . . . , C′
n) and

defined similarly as above. Let S′
1, . . . , S′

n be conflict-tolerant specifications, and
suppose each C′

j individually satisfies the specification S′
j w.r.t. B.

Theorem 3. The conflict-tolerant transition system C′ = ‖P,B(C′
1, . . . , C′

n) is a
valid conflict-tolerant controller for B. Further, C′ satisfies each of the specifica-
tions S′

1, . . . , S′
n in the following “maximal” sense: Each w ∈ L(B‖C′) is always

238 D. D’Souza and M. Gopinathan

C'2
||

00
01

10 11

(C'1,C'2)

a
b c d a

b c d a b c d
p

q r s t

p'

q' r' s' t'

pp'

qq' rr' ss' tt'

C'1

Fig. 8. Computation of ranks in the prioritized composition

according to the immediate advice of S′
j, except at the points where C′

j is in con-
flict with the advice of higher-priority controllers, in that for each a in f i

C′
j
(w),

there is a controller C′
k such that C′

k >P C′
j and a /∈ f i

C′
k
(w)∩f i

B(w). In particular,
the highest priority specification S′

1 is always satisfied. �

Consider the base system behavior

fpress1 · up · nope · open · ttfull · close · cpress0 · down · fpress1

which we used to illustrate conflict in Sect. 3. With the priority order C′
T > C′

E ,
the conflict is resolved such that one possible extension is

open · ttnotfull · close · nope · up · nope · open

– i.e. the door is opened at floor 0 violating the advice of C′
E . As passengers go

out at floor 0, the lift is not two-thirds full and the system immediately follows
the advice of C′

E to service the executive floor. We emphasise that the same
controllers can be composed with the priority C′

E > C′
T , to obtain a system in

which conflicts will be resolved in favor of C′
E , while maximally utilizing the

advice of C′
T .

7 Discussion

We note that conflict-tolerant specifications are somewhat stronger than classical
specifications, and may not always admit a conflict-tolerant controller even when
the induced classical specifications admit a classical controller. See [13] for an
example. Nonetheless, whenever the conflict-tolerant specifications are realizable,
our framework provides a flexible way of composing the controllers to obtain
systems with guarantees on the usage of each controller.

We have considered extensions of this framework to include combinations
of safety and liveness specifications [13], as well as real-time features [14] with
similar results.

Our framework is also amenable to more flexible priority schemes like ac-
cording priority dynamically based on history of events. Gößler and Sifakis [15]
consider transition systems with priorities specified by predicates under which
one action is prioritized over another. They provide conditions under which the
predicates are consistent in that the prioritized system is non-blocking. Our com-
position scheme can be thought of as synthesizing consistent priority predicates
from possibly inconsistent predicates obtained from individual controllers.

Conflict-Tolerant Features 239

References

1. Keck, D.O., Kühn, P.J.: The feature and service interaction problem in telecom-
munications systems. a survey. IEEE Trans. Software Eng. 24(10), 779–796 (1998)

2. Hall, R.J.: Feature interactions in electronic mail. In: FIW, pp. 67–82 (2000)
3. Jackson, M., Zave, P.: Distributed feature composition: A virtual architecture for

telecommunications services. IEEE Trans. Software Eng. 24(10), 831–847 (1998)
4. Software Engineering Institute: Software product lines,

http://www.sei.cmu.edu/productlines
5. Fisler, K., Krishnamurthi, S.: Decomposing verification by features. In: IFIP Work-

ing Conference on Verified Software: Theories, Tools, Experiments (2006)
6. Felty, A.P., Namjoshi, K.S.: Feature specification and automated conflict detection.

ACM Trans. Softw. Eng. Methodol. 12(1), 3–27 (2003)
7. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. of

the IEEE 77, 81–98 (1989)
8. Wong, K.C., Thistle, J.G., Hoang, H.H., Malhamé, R.P.: Supervisory control of

distributed systems: Conflict resolution. In: Conf. on Decision and Control, pp.
416–421. IEEE, Los Alamitos (1995)

9. Chen, Y.L., Lafortune, S., Lin, F.: Modular supervisory control with priorities
for discrete event systems. In: Conf. on Decision and Control, pp. 409–415. IEEE
Computer Society Press, Los Alamitos (1995)

10. Wong, K.C., Thistle, J.G., Hoang, H.H., Malhamé, R.P.: Supervisory control of
distributed systems: Conflict resolution. In: Conf. on Decision and Control, pp.
3275–3280. IEEE, Los Alamitos (1998)

11. Hay, J.D., Atlee, J.M.: Composing features and resolving interactions. In: SIG-
SOFT Found. of Softw. Engg., pp. 110–119 (2000)

12. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program 41(1), 53–84 (2001)

13. D’Souza, D., Gopinathan, M.: Conflict-tolerant features. Technical Report IISc-
CSA-TR-2007-11, Computer Science and Automation, Indian Institute of Science,
India (2007), http://archive.csa.iisc.ernet.in/TR/2007/11/

14. D’Souza, D., Gopinathan, M., Ramesh, S., Sampath, P.: Conflict-detection and
resolution for real-time features (manuscript in preparation)

15. Gößler, G., Sifakis, J.: Priority Systems. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 314–329. Springer,
Heidelberg (2004)

http://www.sei.cmu.edu/productlines
http://archive.csa.iisc.ernet.in/TR/2007/11/

	Conflict-Tolerant Features
	Introduction
	Preliminaries
	Features as Controllers
	Conflict-Tolerant Controllers
	Synthesis and Verification
	Composition
	Discussion

