Modelling Support for Design of Safety-Critical
Automotive Embedded Systems

DelJiu Chen', Rolf Johansson?, Henrik Lonn®, Yiannis Papadopoulos®,
Anders Sandberg5 , Fredrik Tbmeré, and Martin Ttirngren1

'Royal Institute of Technology, SE-10044 Stockholm, Sweden
{chen,martin}@md.kth.se
> Mentor Graphics Corp., SE-41755 Gothenburg, Sweden
rolf_ johansson@mentor.com
3 Volvo Technology Corp., SE-40508 Gothenburg, Sweden
Henrik.lonn@volvo.com
*University of Hull, Hull HU6 7RX, UK
Y.I.Papadopoulos@hull.ac.uk
>Mecel AB, SE-400 20 Gothenburg, Sweden
anders.sandberg@mecel . se
®Volvo Car Corp., SE-40531 Gothenburg, Sweden

ftorner@volvocars.com

Abstract. This paper describes and demonstrates an approach that promises to
bridge the gap between model-based systems engineering and the safety process
of automotive embedded systems. The basis for this is the integration of safety
analysis techniques, a method for developing and managing Safety Cases, and a
systematic approach to model-based engineering — the EAST-ADL?2 architec-
ture description language. Three areas are highlighted: (1) System model
development on different levels of abstraction. This enables fulfilling many re-
quirements on software development as specified by ISO-CD-26262; (2) Safety
Case development in close connection to the system model; (3) Analysis of
mal-functional behaviour that may cause hazards, by modelling of errors and
error propagation in a (complex and hierarchical) system model.

Keywords: Automotive Embedded Systems, Dependability, Model-Based De-
velopment, Safety Analysis, Safety Case.

1 Introduction

Safety is posing an increasing challenge for the developers of automotive embedded
systems, also referred to as automotive Electrical/Electronic (E/E) systems. While
accounting for a large portion of the innovations and flexibility, the underlying com-
puter software and hardware also results in growing product complexity. The last
decade has indeed shown that an increasing number of vehicle failures stem from
errors related to embedded systems.

Currently, ISO is developing a standard on Functional Safety for Road vehicles
(ISO-CD-26262) [1]. As pointed out in its introduction, with the high complexity
growth there is an increasing risk of failures in automotive embedded systems. This

M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 72@ 2008.
© Springer-Verlag Berlin Heidelberg 2008

Modelling Support for Design of Safety-Critical Automotive Embedded Systems 73

makes safety a key issue in future automobile development. ISO-CD-26262 requires
that a complete Safety Case is developed, presenting evidence that the system is safe.
It also specifies the requirements on product development at software level.

While state-of-the-art safety analysis techniques [2] provide support for deriving
the causes and consequences of errors, the difficulties remain in capturing and main-
taining plausible errors, safety requirements, and other related information along with
design refinement, changes and evolution, and in providing the safety argument. Such
analysis techniques in turn rely on system modelling and management support, as
well as the alignment with tools, processes, and standards. One challenge with current
methods for automotive E/E systems development is the lack of systematic ap-
proaches to information management, architecting and verification. Solutions relying
on social and traditional text-based communication do not scale for handling ad-
vanced embedded systems. Software architectures and/or exchange format standards
such as AUTOSAR [3] offer a significant improvement of the state of practice. How-
ever, experience tells us that advanced and complex systems also require model-based
engineering encompassing appropriate abstractions and views for both cost-efficiency
and development effectiveness. Over the years, the demand for additional levels of
abstractions and views has been continuously raised [6, 12].

System modelling based on an architecture description language (ADL) is a way to
keep the engineering information in a well-defined information structure. In this paper
we present how the architecture description language EAST-ADL2, complementary
to AUTOSAR, provides a basis for systematic development of safety-critical automo-
tive systems. As a language for architecture description, the EAST-ADL2 captures the
domain knowledge for automotive embedded systems and provides the modelling
means for keeping various engineering information, e.g., across multiple levels of
abstraction and concerns, within one infrastructure. Three important areas of EAST-
ADL2 will be highlighted in this paper: (1) System development based on models on
different levels of abstraction. This enables fulfilling many requirements on software
development as specified by ISO-CD-26262; (2) Safety Case development in close
connection to the system design; and (3) Analysis of hazardous failures by modelling
of errors and the propagations in a hierarchical system model. The integration of these
aspects provides structured information handling of requirements, design, safety
analysis, other verification and validation information, and design decisions. The
approach supports reuse, consistency between models, automated handling of de-
pendencies, view generation, transformations and analysis.

The paper is organised as follows: We first give an overview of EAST-ADL2
showing its capabilities for model-based development, and how it is complementary
to AUTOSAR. Then we describe the modelling support for a Safety Case. In the
following section we describe error modelling and modelling of error propagation,
and the link to the HiP-HOPS safety analysis tool. Finally, we illustrate the approach
with an industrial case study on one ECL (Electronic Column Lock) system.

2 Overview of EAST-ADL?2

EAST-ADL?2 is developed in the ATESST project (www.atesst.org), further extend-
ing and refining the EAST-ADL language from the EAST-EEA project (www.east-
eea.org). It is a domain-specific architecture description language aiming to

74 D. Chen et al.

adequately meet the engineers’ needs regarding information management and practi-
cal methods in the development of advanced automotive embedded systems. The
language provides an ontology for all the related engineering information and a set of
well-defined constructs for the capturing and structuring of such information in a
standard format. The covered system aspects include requirements, vehicle features,
functions, variability, software and hardware design, and environment, as well as the
related structures and behaviours. For the purpose of early quality assessment and
verification, the language also supports the capturing of other necessary non-
functional properties and thereby enables the reasoning of system timing and failure
modes. Through its constructs for traceability, the EAST-ADL2 allows the modelling
of dependencies across requirements, structural items and V&V information.

2.1 Hierarchies and Levels of Abstraction

While stipulating the abstractions and viewpoints that are of particular importance in
the development of automotive embedded systems, the EAST-ADL?2 further enforces
separation-of-concerns and complexity-control through a multi-viewed and hierarchi-
cal modelling language. The core concept is to structure the solution architecture into
five levels of abstraction: VehicleLevel, AnalysisLevel, DesignlLevel, Implementa-
tionLevel, and OperationalLevel. See also Figure 1. The levels correspond to system
views that can be used to support a variety of processes (from top-down to bottom-
up), including the typical scenario for platform-based product families, where a new
function is added to an existing system. The architectural solution at each abstraction
level is self-contained in the sense that it constitutes a complete model of the system
under consideration from a particular viewpoint. Within each of these architectural
solutions, hierarchies of composition are supported by dedicated constructs to de-
scribe the part-whole relations of functions/components.

The models at the VehicleLevel provide a top-level view of the E/E system of a ve-
hicle where the intended electronic features are described and elaborated in respect to
the related product-line organizations. One view that captures the realizations of such

SystemModel

VehicleFeatureModel Vehicle
Level

Analysis
Level

AnalysisArchitecture

FunctionalAnalysisArchitecture

DesignArchitecture
Functional Middleware Hardware

Design Abstraction Design
Architecture W
ImplementationArchitec| ||
TOSM-

‘ QperationalArchitecture ‘ Operational

EnvironmentModel
\

Level

Fig. 1. EAST-ADL?2 abstraction layers and its relation to AUTOSAR [9]

Modelling Support for Design of Safety-Critical Automotive Embedded Systems 75

electronic features in terms of logical functions and principal interfaces is given at the
AnalysisLevel. A further refined view is provided at the DesignLevel where more
implementation-oriented aspects are taken into consideration, such as alignment with
intended software decomposition and the target platform, fault tolerance, sensor and
actuator interfacing, etc. The support by EAST-ADL?2 at this level includes the func-
tional design architecture for application software, the middleware abstraction for
platform software (e.g., middleware, RTOS etc.), and the hardware architecture for
target platform (e.g. I/O, sensor, actuator, power, ECU, topology and electrical wiring
including communication bus). It allows the reasoning of partitioning and allocation
of functions as well as the verification of the preliminary design either by simulation
or analysis techniques. The overall structure at the DesignLevel is such that one or
several entities can be later realized by AUTOSAR entities captured at the Implemen-
tationLevel [9]. Full traceability is possible from function definitions at the vehicle
level to AUTOSAR entities. The OperationalLevel is hidden by AUTOSAR concepts
via deployment on the AUTOSAR RTE (Run-Time Environment), representing the
E/E system as it is realized in the manufactured products.

One example of this hierarchical multi-viewed modelling approach is illustrated in
Figure 2, with an electronic feature Brake (denoted by the EFeature construct),
models of more detailed solutions, and the final implementation. The solutions at the
AnalysisLevel include the logic function BrakeCtrl (denoted by the ADLFunction
construct) and the abstract interfaces BrakePedal and BrakeMotor for the interactions
with the vehicle environment (denoted by the FunctionalDevice construct). The corre-
sponding software and hardware design solutions are shown at the DesignLevel.
While the logic function BrakeCtrl is realized by the software function BrakeCtrl, the
abstract interfaces are represented by hardware devices (denoted by the DevicelF
construct) and software components for signal transformation (denoted by the Local-
DeviceManager construct). The implementation of the design is given by AUTOSAR
concepts at the ImplemenationLevel (e.g., an elementary ADLFunction is mapped to a
RunnableEntity of an AtomicSoftwareComponent).

Vehicle ‘

VehicleFeature
Brake

Level ‘

EFeature
Brake

o

Analysis FunctionalDevice
Level

ADLFunction
BrakeCtrl

Functiol
Br;

BrakePedal
x

U3 WUoIAUT

LocalDeviceMgr

Design
BrakePedaI

Level

DevicelF|
PedallF

ADLFunction
BrakeCtrl

Sasepa)u] [ed|UBYDS

AsuLeged

Impl.
Level

BrakePedal

Se nsorActuSWC Appl icationSWC

Brakes

SensorActuSwC
BrakeMotor

ﬁ
g

Fig. 2. An example showing the electronic feature (Brake) and its representations with the

EAST-ADL?2 abstraction levels

ADLFunction
BrakeCtrl

ADLFunction
SpeedEstimation

ADLFunction
BrakeForceCtrl

ADLFunction
BCtrl1

ADLFunction
BCtri2

HIH

76 D. Chen et al.

2.2 Requirements and Traceability Support

EAST-ADL2 provides explicit support for requirement specification and management
in the development of advanced embedded systems. It differentiates between func-
tional requirements, which typically focus on some part of the “normal” functionality
that the system has to provide (e.g. “ABS shall control brake force via wheel slip
control”), and quality requirements, which typically focus on some external property
of the system seen as a whole (e.g. “ABS shall have an MTTF of 10,000 hours”). To
allow integration of external requirements tools, EAST-ADL2 provides supports for
the mapping of Requirements Interchange Format (RIF) [7] concepts.

The language treats requirements as separate entities and provides specific con-
structs to support the traceability by extending and adapting related principles from
SysML [8]. Typically, based on requirements on the higher abstraction levels of
EAST-ADL2, more detailed requirements are derived along with the refinements and
decompositions. Specific associations are introduced to relate requirements to their
target elements (through the ADLSatisfy construct). EAST-ADL?2 introduces the no-
tion of Verification&Validation Case (denoted by the VVCase construct) in order to
show how a certain requirement is verified in a particular system context as well as to
support the planning, tracking, and updating of V&V efforts,. While linking certain
requirements and target entities, each VVCase provides a description of the related
evaluation information and activities.

3 Safety Case Support in EAST-ADL2

A Safety Case provides structure to the qualitative argumentation about why a system
is safe enough. Hence, the Safety Case is dependent on referencing and aggregating
information of different types related to the systems functionality and realization.
Therefore, integration with an ADL is useful for system development. Currently,
there are no requirements for Safety Cases in the automotive industry, but in the up-
coming automotive safety standard ISO-CD-26262 [1] such requirements are raised.
This section will provide the safety case metamodel which was implemented in
EAST-ADL2. A more detailed description is presented in [10].

A Safety Case can consist of large amounts of data and may be very hard to grasp.
To mitigate the complexity, a graphical notation, the Goal Structure Notation, have
been introduced by Kelly for the argumentation part of a Safety Case [4]. The nota-
tion consists of the following building blocks:

Goal — A claim about a property of the system.

Strategy — A description of how and why a Goal can be derived into other Goals.
Justification — Provides further rationale for a selected GSN entity.

Evidence — This is the set of leafs of an argumentation representing the actual evi-
dence that shows satisfaction of the goals it is connected to.

e Context — Defining in what context a Goal is given.

A safety case metamodel is shown in Figure 3. It is based on a description of GSN
and shows how the GSN entities relate to each other. The safety case entity itself is
the top level of a safety case, and it consists of the GSN argument entities. The safety

Modelling Support for Design of Safety-Critical Automotive Embedded Systems 77

case can also consist of several other safety cases, in a hierarchical structure. In order
to maximize the traceability of the design data, each GSN class can be associated to
any EAST-ADL2 entity. This will provide support for consistency of the data as well
as support for the change management process.

Strategy

+goalDecompositionStrategy|
+subGoal

+contextOf

+goalDecomposttion | o 4 vz . +ustificationOf

0." 2 0.0
Context Goal Justification
1

of

Item Definition

ExistsFor

0.1 0.*

0-"+contextof 0.1

GSN Argument 0.1

. 0.
+contextOf +jugtificationOf

EAST-ADL2 +solutionOf\[/1.."

Metamodel

1

Entities \

Evidence 0.1

GSN Argument 0.1
Classes:Goal

Fig. 3. The safety case metamodel based on GSN

A Safety Case is valid for a system or function, and this scope needs to be defined.
As shown in Figure 3, the safety case scope is defined by the ItemDefinition class that
is a collection of EAST-ADL2 entities, i.e. all available specifications entities for the
given item. The metamodel also contains the relations between the internal elements.
As shown in Figure 4, the Goal is the centre of the safety case structure. It can be
decomposed directly, or through the usage of a strategy, into two or more Goals. Each
Goal shall have a solution relation to at least one Evidence, also known as Solution in
the GSN notation. The Evidence entity can have several specializations, ranging from
protocols of V&V activities to design decisions. Each element in the GSN structure
can also be related to a Context entity indicating that a description of the context can
be provided. Similarly, a Justification for increased clarity can be provided for each
GSN entity, by a justification relation.

The Evidence represents any information that supports or, in its ultimate form,
proves that the Goal it is connected to is achieved. As such, the information can be of
many types, e.g. analysis reports, design specifications, requirements, protocols from
V&V activities, etc. The system model of EAST-ADL?2 captures most of these enti-
ties in suitable packages, e.g. a package focusing on verification and validation, the
V&V package. In [10], the described safety case metamodel clearly visualizes the
GSN entities and interdependencies which has the advantage of facilitating the com-
prehension and easing the training effort.

4 Error Modelling Support in EAST-ADL2

As an overall system property, safety is concerned with the anomalies (in terms faults,
errors, and failures) and their consequences under given certain environmental condi-
tions. Functional safety represents the part of safety that depends on the correctness of

78 D. Chen et al.

a system operating in its context [11] and addresses the hazardous anomalies of a
system in its operation (e.g., component errors and their propagations). The objective
of the EAST-ADL?2 error modelling is to allow an explicit reasoning of functional
safety and thereby to facilitate safety engineering along with an architecture design or
maintenance process.

4.1 Key Concepts and Domain Model

EAST-ADL2 facilitates safety engineering in regards to the modelling and informa-
tion management. While supporting the safety design through its intrinsic architecture
description and traceability support, the language also allows the developers to explic-
itly capture the error logics in terms of component errors and the error propagations in
an architecture error model through its error modelling support (see also Figure 4).
The error modelling is treated as a separated analytical view. It is not embedded
within a nominal architecture model but seamlessly integrated with the architecture
model through the EAST-ADL2 meta-model. This separation of concerns is consid-
ered necessary in order to avoid some undesired effects appearing when error model-
ling and nominal design is mixed, during comprehension and management of nominal
design, reuse of models, and system synthesis (e.g., code generation).

EAST-ADL2 Model
Architecture Model Architecture Error Model
Vehicle Level
Analysis Level Hazard
:
Gl
@‘
EAST-ADL2 Tool Environment ' Exeme
2 (Papyrus) Safety Analysis Plugin A_rI!aIylsls
ools

Fig. 4. EAST-ADL2 error modelling extends the nominal architecture in a separate view and
provides analysis leverage through external tools

The EAST-ADL?2 error modelling package extends a nominal architecture model,
typically at the AnalysisLevel and DesignLevel, with the information of failure seman-
tics and error propagations. The failure semantics can be provided in terms of logical
or temporal expressions, depending on the analysis techniques and tools of interest.
Such analytical information, together with environmental conditions, forms the basis
for identifying the likely hazards, reasoning about the causes and consequences, and
thereby deriving the safety requirements. The relationships of local error behaviours
are captured by means of explicit error propagation ports and connections. Due to
these artefacts, EAST-ADL2 allows advanced properties of error propagations, such
as the logical and temporal relationships of source and target errors, the conditions of
propagations, and the synchronizations of propagation paths. Hazards or hazardous
events are characterized by attributes for severity, exposure and controllability

Modelling Support for Design of Safety-Critical Automotive Embedded Systems 79

according to [1]. A hazardous event may be further detailed by e.g. use cases, se-
quence or activity diagrams. In an architecture specification, an error is allowed to
propagate via design specific architectural relationships when such relationships also
imply behavioural or operational dependencies (e.g., between software and hardware).
Fig. 5 shows the domain model definitions of constructs for the error modelling. The
key concepts include:

e ErrorBehavior: the definitions of possible failure behaviours of an ADLEntity (i.e.,
an abstract function or component).

e ErrorModel: the container for the usages or instantiations of particular errorBehav-
iors in a particular architecture context.

e propagationPort: ports through which the faulty events defined in an ErrorBehav-
ior propagate to other ErrorBehaviors or result in Hazards.

e ErrorPropagation: abstractions for error propagations that in turn relies on particu-
lar instances of ADLEntity (e.g. communication connectors) or the explicit or
implicit dependencies between them (e.g., allocations described by the ADLReali-
zation construct).

e ErrorToHazard: a link between errorBehaviors and their effects on the system.

class ErrorBehavior /
+o 1. N +otherRelatedPropagations
PropagationPort <1 =« | ErrorPropagation 0.*
+ direction: PropagationDirectionKind|}from + propagationLogic: String = NA
+ event: String = NA %]7
N 0." 1 ;
+propagationPort +ailureEvent +throughADLRealization\}/0..1
ADL TraceableSpecification| ADLRelationship)
Hazard ADLRelationshipModeling::
+ controllability: String ADLRealization
+ exposure: String
+ severity: String

+hazard /\0..* 0.*

+source +throughADLEntity +realizedByADLEntity +realizedADLEntity
\/0.* \/0-1 \)0..* VAR

— ADL Context|

ErrorToHazard UserAmr'buteab/eElemen(&' !
ADLCoreConstructs::ADLEntity +argetADLPart
+ kind: ConstraintKind [0..1]
+ name: String
+targetADLType/0..1 0.1 \\+adlErrorContext ErrorModelToTarget
+portOwner +errorBehavior o
0.* -
1 1 0.." 0.1
ErrorBehavior +attachedADLErrorModel
+ failureLogic: String = NA 0.. 1
+ genericDescription: String = NA
b - ErrorModel
G WeelEdt besisem=(Ese +containedErrorBehavior +inADLErrorModel
constraints 1. 1.
{targetOption} * *
{targetType}

Fig. 5. The EAST-ADL2 domain model definitions for error modelling

In EAST-ADL2, the support for safety requirements and analysis is specifically ad-
dressed. The safety requirements, which are specialized to define the safety goals to be
met, have attributes and related entities to define the related functional and non-
functional requirements and the hazards to be mitigated. Hazards or hazardous events
are associated with both errors of abstract functions/components and the environment
model and characterized by attributes for severity, exposure and controllability. See

80 D. Chen et al.

Fig. 6. for the domain model definition. This concept is in line with [1] where each
hazard is related to an Item, which is defined as “E/E system (i.e. a product which can
include mechanical components of different technologies) or a function which is in the
scope of the development according to this standard”. When modelling a system in
EAST-ADL2 this means that for each level of abstraction a complete set of Items is
identified. The hazardous event may be further detailed by e.g. use cases, sequence or
activity diagrams. A safety requirement specifies the necessary safety functions and
their effectiveness (i.e., ASIL levels [1]). It can be traced all the way to its derived re-
quirements and thereby to the subsequent hardware and software solutions as well as the
needed V&V efforts.

class Hazards /
ADLRelationship
ADLRelationshipModeling::
ADLRefine
+childRequirements 0..*
+refinedBy , -1+ +refinedRequirementsy 1..* {ordered)
ADL Context| ADLT; i
U: i ArchivedEntity| 0.1
ADLCoreConstructs:: Requi ADLRe qui

ADCENHY + applicability: String [0..1]
+ kind: ConstraintKind [0..1] + name: String
+ name: String + id: String < o))

Requir quirement
+source 0." + qualityRequirementType: QualityRequirementKind
yRequi
0.* SafetyRequirement

ADL TraceableSpecification|0..* + ASIL: ASILLevelKind

Hazard
+ controllability: String [+derivedFromHazard
+ exposure: String ‘ SafetyRequirement:SafetyGoal ‘
+ severity: String ‘

Fig. 6. The EAST-ADL2 domain model definition for hazard and safety requirements

4.2 Analysis Leverage and Tool Support through HipHOPS Method

A proof-of-concept tool integration with the HiP-HOPS method (Hierarchically Per-
formed Hazard Origin and Propagation Studies) [5] has been developed. HiP-HOPS is
a model-based safety and reliability analysis technique in which topological descrip-
tions of the system (hierarchically composed if required to manage complexity) that
are annotated with formalised logical descriptions of component failures, are used as a
basis for the automatic construction of fault trees and Failure Modes and Effects
Analyses (FMEA) for a system. Suitable models include a range of diagrams com-
monly used to express hardware and software architectures.

Through the EAST-ADL2 error modelling support, a HiP-HOPS study can be
performed on the abstract models at the AnalysisLevel or on the more detailed archi-
tecture models at the DesignLevel. This creates opportunities for systematic identifi-
cation of safety related requirements, re-use of earlier analysis, and the ability to
achieve a consistent and continuous assessment in the centre of which lies the design
of the system itself. Given an EAST-ADL2 model which contains descriptions of
ErrorBehaviours, a global view of system failure can be captured via HiP-HOPS in a
set of system fault trees which are automatically constructed as expressions that de-
scribe local fault propagation are being evaluated during the traversal. The synthe-
sised fault trees are interconnected and form a directed acyclic graph sharing branches
and basic events that arise from error propagations defined in the model. Classical

Modelling Support for Design of Safety-Critical Automotive Embedded Systems 81

Boolean reduction techniques and recent algorithms for fault tree analysis that employ
Binary Decision Diagrams (BDDs) are applicable on this graph. Thus, qualitative
analysis (e.g. of abstract functional models) or quantitative analysis (e.g. calculation
of system-level failure rates from known probabilistic component data) can be auto-
matically performed on the graph to establish whether the system meets the desired
safety or reliability. The logic in the graph can also be automatically transformed into
a simple table which is equivalent to a multiple failure mode system.

S Example Case Study: Electronic Column Lock

Steering column lock is a security function for preventing any steering wheel move-
ment without an authorized starter key. Traditional solutions use the position of
physical starter key as the securing and unlocking mechanism. For the reasons of
user-friendliness, as well as crash safety and vehicle security, keyless engine start
solutions with the immobilizer transponder and start button have been increasingly
adopted, allowing advanced cryptography for authentication control prior to engine
start. As a physical starter key is no longer present, there is a need to replace the tradi-
tional steering column lock principle. With electric steering column lock (ECL), a
logical key position rather than the physical key position is used to enable and disable
steering. The implementation normally consists of a mechanical lock placed on the
steering column as the actuation element, and a control unit for reading the immobilizer
transponder code and vehicle state and for controlling the mechanical lock. Fig. 7. de-
picts the modelling coverage by EAST-ADL?2 for an ECL system.

=<=ADLRequirementContainer=> =<AbstractyVCase=>

ECL_RequirementModel ECL_TestCase1

<<AbstractYVProcedure=»
tp1: ECL_testProcedurel

t>»

sg1 : SafetyGoal1 rq1: Requirement1 rq2 : Requirement2 rg3 : Requirement3

) Aol el <<AbstracVVCases>
sg2 : SafetyGoal2 rg4 : Requirementd rq5 : Requirements ECL_TestCase2

<<Functi <<

s¢1: SafetyConceptl || rg6 : Requirements r47 : Requirement?

<<AbstractYVProcedure>»
tp2 : ECL_testProcedure2

<<VehicleFeatureModel=> [<<EnvironmentModel>»

ECL_FeatureModel EnvironmentModel

<<VehicleFeature>> <<VehicleFeature=>

ElectricColumnLock : ECL MechanicalColumnLock : MCL B et

eCLButton : ECLbutton
<<AnalysisArchitecture>>
ey . <<ADLStructurePrototype=>
ECL_AnaiysisArchitecture vehicle : Vehicle

<<ADLStructureFrototype=> <<ErrorModel-=

ECL_FAA : ECL_FuncAnalysisArchitecture ECL_FAAErr : ECL_FAAErrorModel «’*DLSI'(':;“‘_’;'"::“V“‘”
<<DesignArchitectures> <<ADLStructurePrototype=>
ECL_DesignArchitecture engine : Engine

<<ADLStructurePrototype=» =<Errortodel== <<ADLStructurePrototypes=

ECL_FDA : ECL_FuncDesignArchitecture ECL_FDA_Err : FDA_ErrorModel eclLock : ECLLock
<<ADLStructurePrototype=» <<Errorhodel=> <<ADLStructurePrototype=»

ECL_MWDA : ECL_MiddlewareDesignArchitecture | | ECL_MWDA_Err : MWDA_ErrorModel stColumn : SteeringColumn
<<ADLStructurePrototype=» =<Errortodel== =<ADLStructurePrototype>=
ECL_HWDA : ECL_HardwareDesignArchitecture ECL_HDA_Err : HWDA_ErrorModel stWheel : SteeringWheel
<<ErrorModel>»
<<implemertationArchiectures» ECL EnvEr : Envy ErrorModel

ECL_ImplementationArchitecture

Fig. 7. The modeling coverage of EAST-ADL2 for an ECL system

82 D. Chen et al.

Taken from the legislation, 95/56/EC annex IV, some of the basic requirements for
the security function with relevance for safety are: (1) Devices to prevent unauthor-
ized use shall be such as to exclude any risk of accidental operating failure while the
engine is running, particularly in the case of blockage likely to compromise safety; (2)
Locking shall only be possible after making one operation to stop the engine and then
a second operation designed to lock the column.

The major top level hazard is: Steering is disabled while driving. This top level
hazard must be controlled to a risk level where the risk of the hazard is kept suffi-
ciently low. To model this hazard we use the mechanisms described in Fig 3. The
initial Safety Case for ECL will consists of a root ‘Item’, with one ‘Hazard’ and two
‘ADL Functions’, One being the user function and the other the Environmental Model
entity for the steering wheel. The safety assessment; in this case this is an function
with the highest safety integrity level (ASIL D according to ISO 26262), is required to
enable the correct actions on technical and process elements on the function develop-
ment. The safety analysis for the function requires that we make an architecture defin-
ing which outputs and inputs are needed in order to perform the user function. Fig 8.
shows the abstract functional definition of the ECL.

Sensors for vehicle speed, engine speed and key-position are required for ECL op-
eration. For unlocking there are requirements on using an approved key, this is not
fully considered in this example. There is also the case of retry strategies that can use

<<ADLSystemodet=>
ECL system
<<ADLStructurePrototypes=
ECL_AA : ECL_AnalysisArchitecture oYYy —
P TS — ECL_Env : EnvironmentModel
ECL_FAA : ECL_FuncAnalysisArchitecture VehSpeed
Env_VehSpeed Enginespeed
Env_EngineSpeed
Env_EclLock power_A KeyStat
Env_KeyStatus cH Oy
Env_UserOperatRequest ButtonStatus
Env_Steeringlvheel Angle rom
Env_LockedSensor Enw_Ecuniock L1117 pawer B T

Env_UnlockedSensar ‘ lockBotPostion D’]
]

vty et

ECL_FuncAnalysisArchitecture

“<ADLS P eDE “ADLEUEPIED
En VehSpogd speed : VehicleSpeed ECL : ECL Function ECL_FuncAnalysisArchitecture
- Env VehSpeed venicleSpesd i
sL ~<ADLEIUsLIRPrOiOpe=> L T wehickeSpesd <<FunctionalDevice== | | <<FunctionaiDevice>>
Em_EngineSpeed engine : EngineRunning ‘ ~ADLSTULPOIE ECL Actuator ECLUnlockedSensor
1] Env_ EvgisSpeed enginsRuningStatus T anginoRunmingSiatus act: ECL Actuator
BT 1 <<FunctionalDevice== | «=FunctionalDevice==
Em_KayStatle key: KeyPosition puyin ke Actiepouer [G N | =t i | iti
] Ere Kay3tates IgitionOn et ackPower
‘ e = = s<FunctionalDevice>= | | <<FunctionalDevice>»
. lockRes "m: ',M L ‘ L Igntiontin Actustarlock {7 ECL_LeckCommand B ek v ” UniockL
e T Eny_EriOperstionRaquest RequestActivel | o =
} = T g UnookdackRequest Ere UnlackPaveer «FunclichaiDevices= || <<FuncionaiDevice==
~ADLSiuciePcier — L 1 - "
Actatornlock] EEL_UnlockEommand ECLL
Eny_§ StWheel : ‘ otuaternlock T L
I {JEnw_ e " <<ADLFunctionTypes>
“ADLSucuePrelasss S—— ECL Function
lockedSen : EGLLockedSensor l

emluckodlonsr LS e Losieestaivs [Leckedstate loge
| ~<ADLSurePreier
- JECLL L] UrleckedStae logic
{] Erv_Unlacked Eel_UnlockedStatus [F———

Fig. 8. Functional Analysis Architecture with Electrical Column Lock function, where the
components from the package “ECL FuncAnalysis Architecture” act as parts

Modelling Support for Design of Safety-Critical Automotive Embedded Systems 83

movement of the steering wheel as a trigger. The results of the safety analysis are
the basic safety requirements and how these must be implemented. In this example,
the outcome is that if the ECL lock is unpowered when the vehicle is moving and/or
the engine is running, the Hazard cannot occur (unless there are electrical hardware or
mechanical failures). The following architecture requirements (shown in Fig. 7) cap-
ture this and should be implemented in the design of the ECL function:

¢ SafetyGoall — The ECL must not be powered when vehicle is moving and ignition
is on.

e SafetyGoal2 — The ECL must not be powered when engine is running and ignition
is on.

As we rely on vehicle speed, engine running and ignition state on an ASIL D class
function, we need to consider the need for redundant decision making on this set of
data. As illustrated in the example case, the ADLFunctions on the highest level are
similar between the analysis and the design level respectively. When we realize the
AnalysisArchitecture (AA) on the analysis level with the DesignArchitecture (DA) on
the design level, we can still hide a number of details on the highest level of the cho-
sen ADLFunction hierarchy. Please observe the difference between the realization
that is done when going from the more abstract analysis level to the design level (rela-
tion between “Architectures” in Figure 7), and the unpacking of details that is done
when going down an ADLFunction hierarchy (the composition relation between con-
tained and containing functions in Figure 8).

To perform a HiP-HOPS based hazard analysis, the first step is the establishment
of ErrorBehaviors of components (i.e. functions, hardware or software elements) as
failure expressions which show how output failures of each component can be caused
by internal malfunctions and deviations of the component inputs. A variant of Hazard
and Operability Studies (HAZOP) can be used to identify plausible output failures
such as the omission, commission, value (hi, low) or timing (early, late) failure of
each output and then to determine the local causes of such events as combinations of
internal component malfunctions and similar types of input failures. Thereafter, the
structure for error propagations in a particular architecture context is determined using
ErrorModels for instantiating the predefined ErrorBehaviors and ErrorPropagation
for the propagations. The system effects of failure events in terms of Hazards are
captured with the ErrorToHazard construct. This global view in terms of fault trees
are the generated with the HiP-HOPS plug-in.

Our experience from case studies suggests two useful design patterns that can be
derived from this type of analysis: (a) when the analysis indicates that the omission of
a function has only marginal effects while commission and value failures have catas-
trophic effects, a design recommendation should be made to design the function in a
way that it “fails silent”; (b) on the other hand, when all potential failure modes of a
function are shown to have catastrophic effects on the system then a design recom-
mendation should be made to allocate the function to a fault tolerant architecture.
With the help of these results, the abstract functions are allocated to appropriate
hardware and software architectures in which case HiP-HOPS studies can become
much more detailed and quantitative in nature making use of available information
about component failure modes and failure rates.

ErrorBehaviours are now extended to include real failure modes and probabilistic
component failure data. Such failure modes include electrical and mechanical

84 D. Chen et al.

component failures caused by wear and environmental conditions or, in the case of
programmable components, statistically observed functional failures caused by un-
specified random or systematic faults. Note that credible probabilistic failure data
(often not available) is not essential for producing useful results. Qualitative applica-
tion of the technique can still produce useful results. The logical reduction of fault
trees into minimal cut-sets and FMEA, for instance, can indicate single points of fail-
ure in the system and point out potential design weaknesses. Clearly, the ability to
iterate fast this process ultimately also defines the ability to manage effectively the
evolution of an EAST-ADL2 design.

We should note that there is a range of other emerging techniques that are aiming
at automation of system safety analysis (Altarica [13] and FSAP-NuSMV [14] among
others). Most use model-checking and simulation as means of inferring the effects of
component failures in a system. However, the analysis of individual failure modes via
simulation or model-checking is computationally expensive and the inductive nature
of the analysis (from causes to effects) creates difficulties, especially when combina-
tions of failures need to be considered. Assuming that there are N possible component
failures in a system, assessment of combinations of M of those failures requires that
the analysis is repeated N!/((N-M)! x M!) times. For a system that has 1.000 failure
modes, assessment of the effects of combinations of 2 failure modes requires that the
analysis is repeated approximately half a million times. In HiP-HOPS, the analysis of
propagation of failures is deductive (from effects to causes) and therefore the tech-
nique always synthesises fault trees in linear time not determined by the highest order
cutset (i.e. the maximum number of failure modes considered in combination which is
defined only by the positioning and nesting of AND gates in the error propagation
model). The fast algorithms of HiP-HOPS have not only enabled its application on
large systems but also its combination with computationally greedy heuristics such as
Genetic Algorithms for the purpose of architectural optimisation with respect to de-
pendability and cost [15] - a capability which is unique in HiP-HOPS. Moreover, HiP-
HOPS has advanced capabilities for probabilistic analysis which include Poisson,
Binomial and Weibull calculation models, as well as capabilities for common cause
and zonal analyses, while most formal techniques tend to focus on functional safety
analysis only. Clearly there is often a need in software design to consider the prob-
ability of failure of components.

6 Conclusions

In this paper we have presented how the architecture description language EAST-
ADL2 supports the development of safety-critical automotive E/E systems. The inte-
gration of the safety case metamodel, safety analysis, and the system modelling will
achieve several benefits. The Safety Case development will be eased by the
systematic development that is supported by the EAST-ADL2, including structured
information handling, support for reuse, consistency between the models, etc. The
EAST-ADL2 language will benefit by having support for the Safety Case approach,
an important technique in safety relevant system development. Further, the safety case
metamodel will provide support for motivating why certain design decisions are
needed and provide means for connecting the argumentation and design information.
The connection between error modelling and system modelling supports quick safety
design iterations, the creation of views, and structured information management.

Modelling Support for Design of Safety-Critical Automotive Embedded Systems 85

We believe this approach presents an important step in making the design and

safety processes more efficient and effective. Future work will concentrate on further
evaluation of the approach, developing systematic support for integrating several
relevant analysis techniques, and considering optimization with respect to safety
properties. Another direction is to assess how the proposed approach, biased by auto-
motive specifics and standards, is applicable to other domains.

Acknowledgments. This work was supported by contribution of all the partners of
the ATESST project consortium funded by the European Commission. We wish to
acknowledge feedback from the anonymous reviewers.

References

1.

International Organization for Standardization: Draft 26262. ISO Committee (2008)

2. Chen, D.J., Torgren, M., Lonn, H.: Elicitation of relevant analysis and V&V techniques.

(O8]

10.

12.

D2.2.1. ATESST EC FP6 (2007), http://www.atesst.org

AUTOSAR Development Partnership, http: //www.autosar.org

Kelly, T.P.: Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD
Thesis. University of York (1998)

. Papadopoulos, Y., McDermid, J.A.: Hierarchically Performed Hazard Origin and Propaga-

tion Studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS,
vol. 1698, pp. 139-152. Springer, Heidelberg (1999)

Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded System Design for Automotive
Applications. IEEE Computer 40(10), 42-51 (2007)

HIS Members and Partners: Specification Requirements Interchange Format (RIF). v1.1a
(2007), http://www.automotive-his.de

. SysML Partners: Systems Modeling Language (SysML). Open Source Specification Pro-

ject, http://www.sysml.org

Cuenot, P., Frey, P., Johansson, R., Lonn, H., Reiser, M.-O., Servat, D., Tavakoli Kola-
gari, R., Chen, D.J.: Developing Automotive Products Using the EAST-ADL2, an AUTO-
SAR Compliant Architecture Description Language. Ingéniurs de I’ Automobile 793, 58—
64 (2008)

Torner, F., Chen, D.J., Johansson, R., Lonn, H., Térngren, M.: Supporting an Automotive
Safety Case through Systematic Model Based Development - the EAST-ADL2 Approach.
Technical Paper Series, 2008-01-0127. SAE (2008)

. International ~ Electrotechnical =~ Commission: Functional safety of electri-

cal/electronic/programmable electronic safety-related systems — Part O: Functional safety
and IEC 61508 (2005)
Martin, T., Chen, D.J., Malvius, D., Axelsson, J.: Chapter - Model based development of
automotive embedded systems. In: Navet, N., Simonot-Lion, F. (eds.) Automotive Em-
bedded Systems Handbook. Industrial Information Technology. Taylor and Francis CRC
Press, Abington (2008)

. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The Altarica formalism for describing con-

current systems. Fundamenta Informaticae 40, 109-124 (2000)

. Bozzano, M., Villafiorita, A., et al.: ESACS: an integrated methodology for design and

safety analysis of complex systems. In: ESREL European Safety and Reliability Confer-
ence, Balkema, pp. 237-245 (2003)

. Papadopoulos, Y., Grante, C.: Evolving car designs using model-based automated safety

analysis and optimization techniques. Journal of Systems and Software 76(1), 77-89 (2005)

	Modelling Support for Design of Safety-Critical Automotive Embedded Systems
	Introduction
	Overview of EAST-ADL2
	Hierarchies and Levels of Abstraction
	Requirements and Traceability Support

	Safety Case Support in EAST-ADL2
	Error Modelling Support in EAST-ADL2
	Key Concepts and Domain Model
	Analysis Leverage and Tool Support through HipHOPS Method

	Example Case Study: Electronic Column Lock
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

