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Abstract. In real-time safety-critical systems, it is important to predict the im-
pact of faults on their operation. For this purpose we have developed a test bed
based on software implemented fault injection (SWIFI). Faults are simulated
by disturbing the states of registers and memory cells. Analyzing reactive and
embedded systems with SWIFI tools is a new challenge related to the simula-
tion of an external environment for the system, designing test scenarios and re-
sult qualification. The paper presents our original approach to these problems
verified for an ABS microcontroller. We show fault susceptibility of the ABS
microcontroller and outline software techniques to increase fault robustness.

Keywords: Fault injection, fault tolerance, safety evaluation, real-time embed-
ded systems, automotive systems.

1 Introduction

Recently, in automotive industry, electronic embedded systems are gaining much
interest resulting in steady increase of devices controlling various car functions in-
volved in airbags, active brakes, engine control and x-by-wire operations ([1-6] and
references). These applications result in quite complex microcontrollers for which
fault occurrence cannot be neglected. In particular, soft errors are becoming real prob-
lem. Hence, dependable operation of electronic control devices is a crucial point and
appropriate safety norms have to be assured e.g. IEC 61508 [7] or AUTOSAR [8].
This can be achieved with various redundancy techniques as well as specific error
recovery procedures ([3, 9-10] and references). An important issue is to analyze the
effectiveness of the proposed solutions for various classes of faults. In particular we
have to deal with permanent, intermittent and transient faults. In practice, transient
faults (due to electromagnetic interference, power brownouts, and environmental
disturbances) are dominating, so we are mostly interested in this class of faults.

Many approaches to analyzing fault susceptibility were proposed ([11-15] and ref-
erences therein). They base on formal methods (functional analysis, fault tree and
failure mode effect analysis) and various simulation experiments covering specific
fault models at different abstraction levels. Most simulation techniques related to
automotive systems rely on a simulation model for the entire considered system (usu-
ally in Matlab/Simulink and TrueTime [14]) enriched by some fault injection capa-
bilities [1,15]. Typically, faults are injected at some abstract level e.g. selected state
variables, abstracting from the implementation, or they are targeted at some specific
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problems. In [4] the authors analyzed the impact of CAN network bandwidth (effects
of the delays and jitter resulting from the use of a shared bus) on car suspension
control performance, packet suppression faults, and sensor faults. The simulation
experiments in [1] were targeted at high level mathematical model of a car suspension
control developed in Matlab/Simulink with embedded fault injection functions.

In our approach we are closer to the real implementation and faults, which are well
emulated by the software implemented fault injection (SWIFI) tool at the level of
binary code of the evaluated system. SWIFI simulates faults in the real system by
disturbing (e.g. performing bit-flips) the states of processor registers and memory
cells (used for storing the program code, data and stack). The fault injection moments
and locations can be specified explicitly or in a pseudorandom way. The fault effects
are analyzed by comparing the behavior of the disturbed program with the reference
execution (golden run) with no faults. The SWIFI approach is a popular and widely
used dependability evaluation method for classical computational programs
[11,13,16,17]. Adapting this technique to reactive control subsystem is a kind of chal-
lenge, due to the problem of taking into account the interactions of various electronic
and mechanical subsystems as well as the impact of the environment e.g. driver reac-
tions, road and weather conditions.

To qualify the controlled object’s response to faults we have to define some per-
formance parameters that describe the quality of the performed task by the controller
in request of the driver or other car sub-circuits. The measured deviation of the ana-
lyzed parameter from the nominal values gives an indication on performance loss or
even critical and unacceptable situations. A large class of embedded systems used in
automotive or other industrial applications relates to feedback control of physical
systems. Such systems usually operate in a cyclic way. Typically they get signals
from sensors, process them and deliver output signals to the actuators. The control
algorithm may take into account system deviation from the correct behavior (due to
external disturbances or even microcontroller faults) and compensate detected error
by adjusting newly calculated outputs. In this process an important issue is to meet
time requirements while producing output signals.

To meet dependability expectations various techniques can be used that are based
on fail-silence property. Duplex systems built by pairing two subsystems with con-
tinuously compared output signals, triplicated systems with voting or cheaper designs
with limited or no hardware redundancy all can, to a certain degree, exhibit the fail-
silence property ([17] and references). In any case, the analysis of fault effects and
error propagation for simplex systems is important since often duplex implementation
is not cost effective for an application. It is worth noting that for many applications a
single temporary malfunction of the controller is not critical due to the natural inertia
of the controlled system. Moreover, a simple error recovery performed after fault
detection using the available idle time of the microcontroller (so as to not exceed real
time requirements) maybe also effective. These features have to be validated.

In the paper we present an original methodology of analyzing fault susceptibility
using SWIFI fault injector FITS [9] with appropriate adaptation to reactive systems.
This methodology has been verified for the anti-lock microcontroller, and the gained
experience can be easily extended for other reactive systems. We have also performed
similar experiments with robot and alcohol rectification microcontrollers [16].
Section 2 describes the ABS microcontroller operation in relevance to the behavior of
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the braking system and the car. Section 3 outlines the fault injection platform and its
adaptation to the required test scenarios. Experimental results are discussed in
section 4. They show the impact of the faults on the performance of the ABS control-
ler. The last section presents the conclusion and suggestions for the future research.

2 ABS Model

To study the fault susceptibility of the ABS controller we have developed its program
and the model of the external environment covering the behavior of the car in rele-
vance to the road conditions. The modeling of ABS is based on mathematical equa-
tions describing Newton’s 2™ law of motion [18] defined separately for x, y, and z
Cartesian coordinate axis. The ABS controller model has been defined using Matlab
scripts for Simulink and is based on the mathematical model given in [18,19]. The
developed Simulink model has later been transformed into C++ language for software
fault injection based on SWIFI technology. We are mainly interested in the vehicle
motion in the x direction. Whenever a vehicle brakes or accelerates the resultant in-
stantaneous net force is lower or greater than zero. The objective of the anti-lock
braking systems is to minimize the braking distance under the constraint of the tire
slip. The tire slip occurs in situations where excessive braking force pressure is ap-
plied to braking pads while the friction force provided at the surface contact point of
the tire and the road is insufficient. Exceeding the optimal braking force results in tire
slippage, and in extreme may lead to tire locking. For the tire lock, the angular veloc-
ity of the wheel is zero, and the only friction force acting on the tire is the slippage
friction. The slip friction is usually much lower than non-slip friction and may result
in excessively long braking distance. Therefore, the anti-lock braking system has been
developed by Bosch [18] in the 1970s, so that vehicle “slip” may be prevented in
situations requiring sudden braking maneuvers. Analyzing ABS dependability we
study the motion of only one wheel relative to the quarter vehicle body mass and the
road surface.

The developed ABS controller unit (MCU) is composed of two blocks: the control
logic block module (CLB) and the signal processing block (SPB). The input signals to
the controller are brake signal (from the brake pedal), wheel angular velocity Omega,
and some constants specifying various mechanical parameters. These signals are
obtained from the controller environment. There are only two controller output sig-
nals namely the inlet and outlet valve control signals. These signals force appropriate
brake torque within the hydraulic mechanism shown in Fig. 1. The controller (MCU)
monitors sensors, calculates critical parameters and delivers control signals to actua-
tors according to the algorithm outlined in section 2.3. While computing its outputs,
the control algorithm exchanges information with a specific car behavioral model.
The car behavioral model simulates the dynamics of the vehicle. The developed
software is time triggered, a fixed sequence of tasks is activated periodically. There is
no hardware replication. The behavior of the car is modeled as the controller envi-
ronment. In the sequel we present a more detailed description.
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2.1 ABS Controller

The control logic block generates two output binary signals: the inlet and outlet valve
control signals. They are connected directly to the brake torque modulator module
(BMM). This module is directly responsible for modulating the brake fluid pressure
in individual brake lines. The binary TRUE (1) signal at the inlet output port com-
mands the brake line valve to remain closed, whereas the binary outlet valve, depend-
ing on the situation, can be either closed - FALSE (0) or open — TRUE (1) at this
time. Closing the outlet valve maintains current brake line pressure resulting in a
constant torque, whereas opening the valve decreases the line pressure thus reducing
the brake torque. Similarly, the binary FALSE (0) signal at the inlet valve commands
this valve to be open thus increasing brake line pressure under the constraint that the
outlet valve is in the closed position. Properly functioning control block module,
under the condition of excessive tire slip, will generate a modulated sequence of
pulses that increase, decrease or maintain brake line pressure. The concept of the used
control algorithm is described in section 2.3.

The control logic block (CLB) accepts four binary control signals and its inputs
are coupled indirectly through two OR gates to the signal processing block (SPB).
The four input ports of the block are decrease, hold, increase, stop decrease and
they either cause opening or closing of the associated inlet and outlet valves. Al-
though the control action seems straight forward, the “tricky” part of the ABS con-
trol algorithm lies in the amount of time an inlet or outlet valve is either in the open
or close position. This time effectively generates the necessary brake torque. The
torque is a result of the brake line fluid pressure which is transmitted to the brake
pads. The pads act on the wheel rotor (brake disc) surface to generate necessary
friction torque. Therefore, a constant input to the logic control block produces a
sequence of time varying output values forming a duty cycle varied pulse. This
duty cycle modulated pulse is directly responsible for the pumping action of brakes
in ABS. Its operation is described in [18]. The CLB block co-operates with the
signal processing block(SPB).

The SPB block generates various signals needed to identify the state of the wheel.
This block outputs two groups of binary signals. The first group is related to monitor-
ing wheel acceleration and signaling crossing three thresholds: -a, +a and A. The
second group comprises 3 pairs of binary signals specifying the direction of crossing
the above mentioned thresholds: in increasing (pos.slope) or decreasing (neg slope)
direction. Moreover, SPB delivers the wheel slip coefficient slip, and the ratio of
wheel angular acceleration to velocity Om_dot/Om. All these signals enable the logic
controller (CLB) to determine if the tire has entered or is near the non-optimal fric-
tion region. If it happens, the wheel brake line is modulated as to bring the tire back
to its optimal “friction” state. The computation of these signals and associated A/+a/-
a thresholds are given in [18]. The input signals to SPB block are the vhvel, r_eff,
omega, and brake signals. The vhvel is the vehicle horizontal velocity (calculated by
car dynamics module, described in the sequel), and r_eff is the effective rolling radius
of the tire. This radius is a function of the tire stiffness and the normal force acting at
the tire contact point. The omega is the angular velocity of the wheel and brake is a
binary signal that is TRUE (1) whenever a driver presses the brake pedal.
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2.2 ABS Environment Model

The ABS environment relates to three modules: brake modulator, tire and wheel dy-
namics module, and car dynamics. The brake modulator module (BTM) generates a
real value of the simulated brake torque applied at the wheel rotor (disc brake). This
module models a physical device and is represented in Fig. 1 as hydraulic pressure
modulator. As the inlet valve remains open, the brake torque modulator integrates a
constant rate of torque increase. When the integrator output exceeds the maximum
brake torque that a brake pad may generate, the output of the integrator is saturated
and kept constant. If the brake pedal is depressed by the driver, the torque modulator
generates zero torque. This is accomplished by resetting the output of the integrator.
In summary, BTM generates an appropriate brake torque as a function of inlet, outlet
valve signals and the brake pedal state.

~ HYDRAULIC
PRESSURE
MODULATOR

Fig. 1. Block diagram of the ABS brake system with the wheel speed sensor, hydraulic pressure
modulator and electronic control unit (MCU)

The tire and wheel dynamics module (TWDM) is responsible for simulation of the
wheel angular velocity omega. This value is generated based on two inputs — the slip
(delivered by CLB) and applied brake torque (delivered by BTM). Additionally, the
wheel angular velocity is computed based on an initial wheel velocity, polar moment
of inertia of the wheel and tire, unloaded tire radius, vertical tire stiffness, effective
tire radius, and normal force due to vehicle mass. These parameters are defined in
[18,19]. Generally, as the slip value and brake torque increase, the wheel lock condi-
tion can be reached (the angular velocity of the wheel is zero). The controller there-
fore must adjust the brake torque to avoid the “wheel lock”™ state.

The car dynamics module (CDM) calculates the vehicle horizontal acceleration
(hac) and velocity (hvel), and the vehicle stopping distance based on only two inputs:
the wheel angular velocity omega and brake status signal. CDM calculates these
signals and simulates the motion of the vehicle in the x direction taking into account
the following parameters: vehicle mass, axle and rim mass, initial body translational
velocity, initial axle translational velocity, tire belt translational stiffness, tire belt
translational damping, vehicle translation dumping suspension, vehicle translation
stiffness suspension, stop velocity, damping of translation, and normal force at the tire
contact point. These parameters are defined in [18,19].
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2.3 ABS Control Algorithm

The concept of the control algorithm is based on mathematical models from [18].
This concept has been implemented in software for x86 platform. The correctness of
the implemented algorithm has been verified in many simulation experiments involv-
ing the developed ABS controller and the environment model. The objective of the
algorithm is to decide what corrective action needs to be taken during excessive brak-
ing maneuver. The key variable of the algorithm is the wheel slip. This variable tells
the algorithm if the wheel-tire system is in the normal (optimum friction) or abnormal
(less than optimal friction) operating region. If the threshold slip is exceeded the tire
is in the abnormal region and some corrective action needs to be taken.

The algorithm operates in an iterative way with specified time slot (0.1 ms) for
each iteration. This time slot assures sufficient accuracy while controlling the brake
mechanism. If an excessive wheel slip is detected during braking, the algorithm closes
inlet and outlet valves of the brake torque modulator module (BTM) to maintain a
constant brake pressure. The algorithm then measures the slip criterion during the
subsequent iteration (time slot) and if the slip is still exceeding the required threshold,
the algorithm commands the outlet BTM valve to open, thus reducing the torque rate
at a constant rate measured in units of Nm/s. In the next phase, as the wheel speeds-
up, the algorithm measures the wheel peripheral acceleration +a and compares this
measurement with a predetermined acceleration threshold. If the threshold is not ex-
ceeded the algorithm keeps the outlet valve open. In another case the outlet valve is
closed and brake pressure is maintained constant.

In the last phase, the algorithm checks again the peripheral acceleration of the
wheel to see if it exceeds the A threshold. This threshold determines when the braking
torque should be increased again to maintain the safe braking action. As soon as this
threshold is exceeded or a negative slope is detected in the peripheral acceleration of
the wheel (here the A threshold can not be exceeded), the brake torque is increased by
closing the outlet valve and opening the inlet valve of the BTM. The pressure is in-
creased at a constant rate, either 2533 Nm/s or 19000 Nm/s, if ABS was activated for
the first time in the braking interval. The first phase of ABS braking relates to the
interval immediately after the driver has engaged the brake pedal. During this inter-
val, the maximum brake pressure is applied until the slip value does not exceed the
allowed maximum threshold. After the threshold has been exceeded, further brake
torque increase occurs at a reduced or modulated rate. In this second control phase,
the algorithm ensures that the possible wheel lock condition is avoided. The general
structure of the algorithm is given below for typical values of some parameter thresh-
olds (they can be adapted to other test scenarios):

WHILE (brake == TRUE AND vehicle_velocity > 1.5){
inlet = OPEN
outlet = CLOSE
IF (first_braking_phase == TRUE) {
brake_torque_increase_rate =
} ELSE {
/*set second braking phase torque increase rate*/
brake_torgue_increase_rate = 2533 Nm/s}
IF (current_vehicle_slip > 0.2) {
/*close the BTM inlet valve*/

19000 Nm/s
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inlet = CLOSE

DO {brake_torque_decrease_rate = 19000 Nm/s}

WHILE (wheel acceleration < 0)

outlet = CLOSE

DO {outlet = CLOSE}

WHILE (wheel acceleration<3 AND
neg_slope_wheel_acceleration == FALSE)

}

3 Fault Simulation Platform

To analyze fault effects in the ABS controller we use software implemented fault
injector FITS [9], which has been adapted to deal with real-time and reactive systems.
The fault injector treats the ABS controller and car environment as an integrated ap-
plication. Faults are injected by disturbing the states of processor registers or RAM
locations (storing program code and data).

Each fault injection called test needs the execution of the application and simulat-
ing a fault at an appropriate fault triggering moment. The fault triggering moment is
correlated with the program instruction i.e. its location address and execution iteration
(appearance number). The fault injection (fault triggering moment and its location)
can be either specified directly by the user or generated in an automatic way e.g. ac-
cording to pseudorandom strategy. In the pseudorandom strategy we specify only the
number of injected faults and some indications on fault location, fault type (bit flip,
bit setting, resetting and bridging), fault duration, etc. This process has to be done for
each test scenario (i.e. input data). The fault triggering moments may be restricted to
specified program modules or even code address ranges. Fault location can be defined
explicitly (e.g. specific register such as EAX or EBX, RAM memory address) or
pseudorandomly within a selected group of registers, memory code or data area. Simi-
larly, the fault type can be defined explicitly (e.g. bit flip in a specified position) or
pseudorandomly within specified bit areas and related to a fixed number of faults (e.g.
m-bit flips). Depending upon the goal of the analysis we can either generate the most
stressing fault injection scenarios (to find critical points e.g. in specified code areas)
or assure the pseudorandom selection of fault triggering moments with equal distribu-
tion within the tested code space (static strategy) or within the time of the application
execution (dynamic strategy).

In the performed experiments we specify fault-triggering moments and fault loca-
tions related only to the analyzed ABS controller. The system environment is not
disturbed. For each injected fault (a test) we check the system behavior. Test results
are identified in relevance to the reference execution of the analyzed application - so
called the golden run. The golden run delivers GR log with the registered information
on the dynamic image of the application execution. In addition, it comprises some
statistical data related to the number of writes, reads, state changes for each CPU
register, register activity [9], etc. (they are not encountered in other SWIFI injectors).
This is helpful while profiling the experiment or analyzing experimental results.
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In general, test results can be qualified as: C — correct result, INC — not correct
result, T — time-out, S - system exception (e.g. access violation, invalid opcode, mem-
ory misalignment or parity errors, overflow), U — user message (generated by the
application). We have to define some procedure qualifying C and INC results. It can
be done in a general way or targeted at the considered application. In calculation
oriented applications (mostly considered in the literature [13]) the result analysis is
simple and coarse-grained e.g. binary qualification based on the comparison with the
final correct result. In real time applications the result qualification usually is more
complex due to the fact that we have to analyze the output signals trajectories in time.
Moreover, different tolerance margins and incorrect behavior severity levels can be
attributed. This may lead to fined-grained result qualification with more detailed in-
formation e.g. the file comprising the generated output results of the application. We
resolved this problem by defining a special result qualification module coupled to the
fault injector and the model of the controlled object (environment).

In the case of the ABS controller the test result analysis can be performed by se-
lecting some output control variables (e.g. control signals of a brake) and comparing
their trajectories with the non-faulty run. The comparison can be based on calculating
the mean square error. Another approach is to analyze the brake effect using two main
safety parameters — the vehicle stopping distance and its final translational velocity.
The vehicle stopping distance determines the total distance (in meters) traveled by a
car during the braking time interval. The correct state can be defined if the final vehi-
cle velocity (FV) is less than a specified value fv (m/sec) and the stopping distance
(SD) is less than sd (meters). The relative fault severity levels can also be introduced
using some knowledge on car behavior e.g. a car with a greater final velocity has a
greater final momentum and thus will likely cause more damage during a head-on
collision between two vehicles. The acceptable values for SD and FV can be based
on the analysis given in [18,19] where the authors specify nominal values of stopping
distance for a car traveling at a given initial velocity. This approach is illustrated in
the next section.

The performed experiments were targeted at transient faults (bit flips) injected into
registers (specified CPU or FPU registers, or all of them), the code or data area of the
memory used by the ABS controller. By concentrating on specified system resources
(or code segments) we can perform a deeper analysis and tune appropriate fault han-
dling mechanisms. For each experiment, we choose a representative set of input data
to assure high coverage of the code, decisions etc. The number of injected faults is
sufficiently large to assure statistical significance of the obtained results.

In many applications fail-silent hypothesis is assumed i.e. the system produces cor-
rect outputs and stops producing outputs after detecting an error. For systems with
some inertia as well with control loops fail-bounded hypothesis can also be assumed
[17]. In this case the controller produces correct outputs, does not produce outputs
after detecting some errors, produces wrong outputs within an acceptable deviation
margin from the correct ones. This margin can be defined by some application de-
pendant assertions. This approach allows postponing or even eliminating recovery.
Here the assertion should allow predicting critical situations. Within the idle time of a
controller we have to check if at the present control trajectory the worst case error
may produce a critical situation. If so, we have to perform recovery. In the opposite
case, the system follows its normal operation. Recovery can be limited to software
(re-execution of some procedures, etc.) or, if needed, instantiating spare or backup
hardware resources can do it.
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4 Experimental Results

All simulations were performed with FITS injector within IBM PC platform (XP
Windows Professional) and the model of the environment. The ABS controller and
its environment model constitute an integrated program CE written in C++ language.
This program was implemented based on mathematical models from [18] (compare
section 2). Integrating these models we assure that the used variables and codes are
disjoint. Hence, disturbing the ABS controller we do not interfere with environment
model. The initial conditions of fault injection experiments are defined by setting
some parameters in CE e.g. initial car speed, mechanical characteristics, road condi-
tions (compare section 2). Each experiment is composed of a specified number of
tests (a single fault injection) which are performed according to the predefined sce-
nario (e.g. pseudorandom injections into code with static or dynamic strategy). For
each test the results (system behavior) are stored in a file for the purpose of detailed
analysis. We have also developed a special result qualification module (RQ) which
analyzes the system behavior and identifies correct or incorrect system status. This
status is based on the predefined criteria described in section 3. The qualification
decision is sent to the fault injector FITS which accumulates statistics from all the
tests. Moreover, it identifies timeouts and system exceptions.

The ABS control program was based on the model described in section 2. We
have considered two implementations: the basic version (BV) and fault hardened
versions (VH1, VH2). The basic version is a direct implementation of the mathemati-
cal model from [18,19]. In the fault hardened version we use the built in hardware and
software fault detection mechanisms, which generate system exceptions. Typically
these exceptions are signaled by the operating systems. It is possible to take over most
of them at the application level and perform some error recovery. For this purpose we
can use the ¢ry and catch construct provided by object oriented languages.

It assures taking over exceptions (specified by the filter or all of them — catch(...))
generated during the execution of the code within the try brackets (try {segment of the
application code}). For any specified exception (in the exception filter) we define an
appropriate handling procedure. For example, it may initiate reexecution of the pro-
gram code starting from some specified checkpoint (previously established — back-
ward recovery), suspending further execution of the thread, etc. The error correction
can be made, if the error is uniquely correlated with the disturbed program segment.
In version VHI1 each captured exception initiates floating point unit (FPU) reset using
the _fpreset function. In version VH2 additional code and state recovery is added by
using a redundant DLL library and loading its static copy of the microcontroller code
whenever a system exception was raised.

The size of the generated MSVC 2005 compiler binary image of the ABS control-
ler program is approximately 100 KB for the basic version, and only 10-15 KB larger
for versions with fault tolerance mechanisms VHI and VH2. The ABS microcontrol-
ler without fault tolerance mechanisms consists of about 640 static code assembly
instructions and 6 million dynamic instructions executed within the 15,000 simulation
iterations. The source code was about 2000 lines in C++. The tire, wheel and suspen-
sion environment model consists of about 1000 static code instructions and 12 million
dynamic instructions (for the analyzed test scenario).
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In the discussed experiments, the operation of ABS is simulated for a fast braking
scenario (fast pressing of the brake pedal). The braking process is performed in re-
sponse to this input signal, taking into account the wheel speed, acceleration, etc.
Observing the system behavior we can monitor internal variables or output control
signals. The most interesting signals relate to the brake torque, car horizontal velocity
and stop distance. The presented results relate to the car initial speed 60km/hr and a
dry road. The golden run trajectories of these signals for the considered test scenario
are given in Fig. 2a, 2b and 2c (they cover real ABS operation time of 1.5 s). The
brake signal (pressing brake pedal by the driver) activates the ABS controller till the
moment of achieving velocity 1.5 m/s. So the braking distance is 14.5m at this mo-
ment which corresponds to 1.5 sec time. For comparison, we give in fig. 2d-f the plots
of the same variables in the case of an injected fault at time moment t=0.5438s (random
bit-flip in an instruction code of the ABS controller). The plots differ

Brake Torque [Nm]

® m o

Velocity [mIsec]

[=I]

™

Stopping Distance [m]
Stopping Distance [m]

(ST RN
—t

() Time [sec] {f) Time [sec]

Fig. 2. Sample plots showing ABS braking: @), b) and ¢) golden run plots for the brake torque,
vehicle speed and traveled distance in time, respectively; d), e) and f) corresponding plots
related to an injected bit-flip fault in ABS code at t=0.5438s
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significantly from the golden run; in particular, the braking distance at time 1.5 sec is
19 m and the final speed is 11m/s. This corresponds to a dangerous situation. Such
analysis can be done manually for some selected faults to get knowledge of their
impact.

More interesting are statistical results over many faults. We have injected many
faults into the ABS controller code, CPU or FPU registers and data memory. We have
assumed that the correct behavior corresponds to the final speed FV < 1.5 m/s at t=1.5
sec and stopping distance SD < 16 m. This criteria is easier to calculate than checking
the correctness of the brake torque trajectory.

Test results for the basic controller version are shown in Fig. 3. Fault locations
REG, MEM, FPU and INSTR correspond to CPU registers, data memory area, FPU
registers and memory code area, respectively. The fault triggering moments are gen-
erated pseudo-randomly and distributed equally in time (dynamic). For the location
CODE faults are injected with equal distribution in the memory code area space
(static). A large percentage of faults resulted in system exceptions, which were not
handled, and in fact they lead to dangerous situations. Relatively small percentage of
incorrect results is due to some natural fault tolerance of the used control algorithm. A
simple recovery based on taking over exceptions increase significantly the correct
result percentage (Fig. 4). The presented results relate to latched transient faults (bit
flips in registers or code/data memory). For comparison we give results of fault injec-
tions into the code for non-latched transient faults in the ABS controller memory.

This mimics the controller implementation with code stored in a non-volatile mem-
ory e.g. flash. For version VHI we obtained INC=1%, C=94% and S=5%. This confirms
significantly lower fault susceptibility for non-latched faults than for latched (compare
Fig. 3). Similar results can be achieved for latched faults if more efficient error recovery
mechanisms are employed (e.g. those discussed in our previous paper [9]).

100% -
@ SYSTEM
80% | |
o TIMEOUT
60% | |
9 CORRECT
40%
m INCORRECT
20% +—| 4 —
0% : :
REG MEM FPU CODE INSTR

Fig. 3. Test results for the ABS micro-controller basic version (BV)

We have also developed the controller version VH2* adapted to platform x86 but
without floating point unit (FPU). In this case all floating point calculations are done
in software. The number of executed instructions for the analyzed test scenario in-
creased from about 14 million in version VH2 to over 100 million in version VH2*.
Fault susceptibility of both versions was practically the same for faults injected into
registers and data memory. Faults injected into the code memory gave more correct
results for version VH2* (84.5%) than for VH2 (74%).
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Fig. 4. Test results for the ABS with improved fault tolerance: version VHI and VH2

5 Conclusion

The main goal of this paper was to verify the developed methodology for evaluating
the impact of faults on reactive systems. We have adapted our fault injector tool
(FITS) for such systems by integrating it with the analyzed application (microcontrol-
ler) and its environment. Moreover, we added an interface to deal with specialized
result qualification module and test scenario configuration. This approach has been
successfully verified for the real ABS microcontroller and practical test scenarios. The
proposed approach allows detailed behavioral analysis of the system in the presence of
faults and gives statistics on susceptibility to faults injected in specified circuit areas.
This approach is very useful in finding fault leakage sources, optimization of fault han-
dling procedures as well as evaluation of the final projects. It was also verified for other
applications [16]. We can identify program modules and data which are the most sensi-
tive to faults, analyze critical behavior of the system in the presence of faults, etc. We
can also evaluate the effectiveness of embedded fault handling procedures.

As opposed to classical calculation oriented applications, real-time and reactive
systems require more complex result qualification methods. They can be based on
observing output control signals or selected parameters describing the quality of per-
formed tasks. This approach seems to be more effective and this was proved for the
ABS controller. The experimental results showed that the basic version of the ABS
controller comprises some natural fault tolerance capabilities (due to the used algo-
rithm). This can be improved with simple exception handling procedures as well as by
using non-volatile memory for the code. In the performed experiments we use a model
of the control object and the system environment. Hence, the results depend upon the
accuracy of the used models. This drawback can be eliminated in experiments with real
objects, but such experiments are usually too expensive. Moreover there is a danger of
causing critical situations or some damages in the case of injected faults.

Further research is targeted at developing and analyzing more effective fault toler-
ance mechanisms. Here we plan to use our experience gained with calculation ori-
ented applications [9] and apply it to reactive systems. Result qualification will be
extended by introducing more categories, e.g. loss of braking (the wheel speed is zero
for some specified minimal time), locked wheel (the wheel speed does not decrease
for more than some specified time). Moreover, we will consider distributed systems
e.g. around a CAN network [10,15].
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