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Abstract. In this work, we propose an Intrusion Detection model for
computer newtorks based on Hidden Markov Models. While stateful tech-
niques are widely used to detect intrusion at the operating system level,
by tracing the sequences of system calls, this issue has been rarely re-
searched for the analysis of network traffic. The proposed model aims at
detecting intrusions by analysing the sequences of commands that flow
between hosts in a network for a particular service (e.g., an ftp session).
First the system must be trained in order to learn the typical sequences
of commands related to innocuous connections. Then, intrusion detection
is performed by indentifying anomalous sequences. To harden the pro-
posed system, we propose some techniques to combine HMM. Reported
results attained on the traffic acquired from a European ISP shows the
effectiveness of the proposed approach.

1 Introduction

The widespread diffusion of information systems in an increasing number of
businesses, as well as for social and government services, requires incresing level
of security. Very often, information resources are the core business of an or-
ganisation, or at least consitute one of the principal assets. The internal flow
of information, and the external flow to customers and providers need to be
deployed as a lightweigth service in order to be effective. As a consequence, in-
formation resources need to be easily reacheble and accessible, and the risk of
misuse is increasing [18]. The adoption of best practices in the configuration and
management of all the devices in the network is the first step to protect the
information. Very often reported incidents in computer networks are related to
the misconfiguration of:

– operating systems and the applications running on the hosts inside the
network;

– routers and switches, which are the devices connecting the hosts in a local
network, and the local network to the Internet;

– firewalls, which are the first line of defence used to protect a network from
attempts of intrusions.

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 449–464, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



450 D. Ariu, G. Giacinto, and R. Perdisci

However, no matter how cleverly the network has been configured and man-
aged, an intruder may find his path through the inevitable bugs and errors that
are always present in software or may exploit legitimate services as security re-
quires setting a trade-off bewteen protection of resources and their usability. As
a consequence network analysis tools are needed to detect anomalous or intrusive
traffic. These tools used to protect the network and its resources are called In-
trusion Detection Systems (IDS). An IDS includes a set of tools that can be used
to detect and stop attempts of intrusion. We can distinguish Intrusion Detection
Systems between anomaly-based and misuse-based Systems. The anomaly-based
approach has been the first to be developed as in principle this approach is able
to detect intrusions never seen before [6]. These kind of IDS are based on a
description of the normal behaviour. Starting from this description, the system
classifies as anomalous all the behaviors that are different from the normal ones.
Anomalous behaviors are typically related to intrusions, but they may also be
related to normal activities as the definition of a good model of normal activ-
ities is far from being perfect. As a consequence, anomaly based systems may
generate a very high percentage of false alarms. For this reason, the most widely
used IDS model are based on misuse detection. Misuse-based systems perform
a pattern matching between a set of rules (called signatures), which describes
well known attacks, and currently observed patterns. If this process detects a
matching between the observed behaviors and those encoded in the signatures,
the system labels the observed patterns as an attempt of intrusion. It is easy
to see that misuse based IDS can precisely detect known intrusions, but if the
traits of attacks are only slightly modified the matching process is likely to fail.
This is the case of so-called "polimorphic" attacks, where the code of the attack
is changed in order to evade misuse-based IDS while retaining their malicious
effect. The increasing number of these kind of attacks in recent years motivates
a renewed interest on anomaly based IDS [19].

In this work, we propose an anomaly based IDS that analyzes sequences of
commands exchanged between two hosts through a certain protocol (e.g., FTP,
SMTP, HTTP, etc.), and produces an output score that is used to assess if the
analyzed sequences are normal or anomalous. To model normal network traf-
fic, we use Hidden Markov Models (HMM). After a sequence of commands is
analysied, the HMM assigns a probability value that can be interpreted as the
likelihood that the sequence is normal. By setting a threshold on this probabil-
ity value, it is possible to flag anomalous traffic. However, the performances of
HMM depend on the choice of the learning parameters as well as on the number
of hiddden states. Thus, it may be difficult to design a model that meets the re-
quirement of high detection rate and low false alarm rates. To solve this problem,
we propose to use an ensemble of HMM created by using multiple training sets
and multiple learning parameters. Experimental results show the effectiveness of
the ensemble approach with respect to the use of a single model.

The paper is organised as follows. A review of the related works on state-
ful approaches to intrusion detection is reported in section 2. Section 3 sum-
marises the basic concepts of Hidden Markov Models. The proposed IDS model is
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described in section 4, where the techniques used to design the ensemble of HMM
are also reported. Experimental results related to the analysis of the FTP traffic
of a European Internet Service Provider are reported in Section 5. Conclusions
are drawn in Section 6.

2 Related Works

HMM have been successfully used in a numer of pattern recognition applications
in the past years (e.g. Speech recognition, Motion recognition, etc.) . HMM have
also been used for Intrusion Detection thanks to their ability to model time-series
using a stateful approach where the role and meaning of the internal states are
"hidden". In an Intrusions Detection problem these series may be sequences of
events, commands or function running on a single host, or sequences of packets in
a Network. The vast majority of studies that proposed HMM to implement IDS
are related to host-based systems, i.e., IDS that analyzes the actions performed
on a single host to detect attempts of intrusion[4][10][12][24]. The simplest way
to detect an attempt of intrusion in a single host, is to analyze the log files that
contain the traces of the system calls. In fact, when the goal of an intruder is to
gain control of the operating system, typically it can be detected by analysing
the sequence of system calls and comparing them to typical sequences observed
during normal system usage [15].

The user’s behavior can be described using different mechanisms of auditing.
At the lower level the behavior of users is represented by the sequences of input
characters, while, at higher levels, the behavior can be characterised by the
sequence of input commands or by the characteristics of different work sessions
(with a work session being usually defined as the set of simple operations that a
user performs to carry out a more complex operation [5]).

When a sequence is evaluated by HMM, a value can be associated to the
sequence, which denotes the probability that the sequence is produced by the
process modeled by the HMM [21]. Also, the most likely sequence of states that
generate the observed sequence of symbols can be compute. In this latter case,
a database of normal sequences is needed to perform intrusion detection by the
direct comparison of the sequence of states output by the HMM and the normal
ones that are stored into the database [25].

To the best of our knowledge, only few works have proposed the use of HMM
to analyse Network traffic [14] [11]. In addition, these works represent the traffic
at the packet level using features as the source and destination ports, the values
of flags, and the content of the message. Thus, according to these works, a
probability value is assigned to each packet. On the other hand, in this work we
propose a state model at the application level, where the traffic is characterised
by the commands exchanged between hosts in the Internet.

3 Hidden Markov Models

Hidden Markov Models represent a very useful tool to model time-series, and to
capture the underling structure of a set of strings of symbols. HMM is a stateful
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model, where the states are not observable (hidden). A probability density func-
tion is associated to each hidden state that provides the probability that a given
symbol is emitted from that state. A Hidden Markov Model λ = (S, V, A, B) is
defined as (see figure 1):

– S = {S1, ..., SN}, the set of N hidden states in the model.
– V = {V1, ..., VM}, the set of M distinct observation symbols emitted from

each state.
– A = {ai,j}, a NxN matrix of transition probabilities between states, where

{ai,j} is the probability of being in the state j at time t + 1 given that we
were in state i at time t

ai,j = P(qt+1 = Sj | qt = Si), 1 ≤ i,j ≤ N, where qt is the state at time t.

– The probability density function that describes the probability to emit sym-
bols from each state of the HMM.

bj(k) = P(Vk | qt = Sj)
1 ≤ j ≤ N, 1 ≤ k ≤ M

– The probability of being in the state i at the beginning of the process (i.e.,
t=1) π = {πi}.

πi = P(q1 = Si) , 1 ≤ i ≤ N

Fig. 1. The basic structure of HMM

HMM are based on the Markov’s property whereby the probability of being in
a state qt+1 at time t+1 depends only on the state qt at time t. Accordingly, the
joint probability of observable (emitted symbols yi) and unobservable (hidden
state qi) variables can be expressed as:

P(yT
1 ,qT

1 )= P(q1)
T−1∏

t=1
P(qt+1 | qt)

T∏

t=1
P(yt | qt)

The joint probability distribution is thus fully specified by: i) The initial state
probability P(q1); ii) the transition probabilities P(qt+1 | qt); iii) the emission
probabilities P(yt | qt).
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3.1 Basic HMM Problems

Three basic problems can be solved by Hidden Markov Models: the Decoding
problem, the Training problem, and the Evaluation problem [22]. The Decoding
problem is formulated as follows: given a sequence O, and a model λ, find the
most likely sequence of states of λ that generated O. As this problem is not
addressed in this paper, we will not provide details about it. On the other hand,
we provide details of the Training and Evaluation procedures in the following
subsections. Let us first describe the so-called Forward-Backward procedure,
because forward and backward variables are used in the training and evaluation
problems.

Forward-Backward Procedure. Let us consider the variable αt(i) defined as

αt(i) = P (O1, O2, ..., Ot, qt = Si|λ),

This variable represents the probability of observing the sequence {O1,O2,...,Ot},
given the model λ, and that the state variables at time t is qt = Si. The procedure
of estimation of P (O|λ) is made up of three steps:

1. Initialization. α1(i) = πibi(O1) , 1 ≤ i ≤ N . This step initializes the for-
ward probability α as the joint probability of the state Si and the initial
observation O1.

2. Induction. αt+1(j) = [
N∑

i=1
αt(i)aij ] · bj(Ot+1)

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N .

3. Conclusion. P (O|λ) =
N∑

i=1
αT (i)

The backward probability is computed in a similar way. The backward prob-
ability is defined as the probability that the last symbol of a sequence OT is
preceded by the sequence of symbols OT−1, OT−2, until the symbol Ot+1. The
backward variable is defined as

βt(i) = P (Ot+1, Ot+2, ..., OT , qt = Si|λ)

and describes the probability of a subsequence of symbols within time t+1 and
time T.

βt(i) can be calcultated by induction:

1. Initialization βT (i) = 1 , 1 ≤ i ≤ N.

2. Induction βt(i) =
N∑

j=1
aij · bj(Ot+1)βt+1(j),

t = {T-1,T-2,...,1}, 1 ≤ i ≤ N .

3.2 Evaluation

Given a model λ, and a sequence of symbols O = {O1, ..., OT }, we want to
compute the probability P (O||λ) that the sequence of symbols is emitted by the
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model. This probability provides a "matching value" between the model, and
the sequence. This problem can be solved using the forward variables, because
P (O|λ) can be expressed as the sum of the terminal forward variables αT (i):

P (O|λ) =
N∑

i=1
αT (i)

3.3 Training

Given a set of sequences {O|}, we need to calculate the model λ which max-
imises P (O||λ). In this case, the problem is to find the set of parameters (A,
B, π) that maximise the Emission Probabilities P ({Ot}||λ) of a given set of
sequences O|. The solution of the problem can be find through an iterative pro-
cedure aimed at finding a local maximization of P (O|λ). One of the most widely
used training procedure for HMM is the Baum-Welch algorithm [2], which is
an Expectation-Maximization algorithm that computes the parameters of the
model by maximizing the log-likelihood λ = arg max log(P ({Ot}||λ)). At each
iteration, a new estimation of the parameters is performed using the probabil-
ity density functions estimated at the preceding iteration. Typically the initial
values of the parameters are randomly chosen. More details on the Baum-Welch
algorithm can be found in [2].

4 The Proposed IDS Model

The proposed IDS aims at analysing sequences of commands exchanged between
pairs of hosts, in order to assess if the sequences represent attempts of intrusion
or not. To perform this analysis, three problems must be addressed:

– the length of the sequences is not known in advance.
– the correlations between the elements in the sequences are not known in

advance, so that we cannot use a window of fixed length to capture correlated
elements.

– the internal state of the machine responding to the commands is unknown.

The first problem does not allow designing the IDS as a deterministic finite
state machine, as for these state machines we must fix the initial and final states
as well as the transitions between states. On the other hand, HMM is suitable
for this purpose.

The basic idea of the proposed IDS is represented in figure 2.
The sequence of events we are interested in is the sequence of commands

(USER, PASS, PWD, etc.) and numeric codes (220, 231, 257, etc.) ex-
changed between hosts. In particular, we are not interested in any argument
asssociated to the command (e.g., the command “STORE xxx” is considered as
“STORE”). In order to explain the characteristics of the proposed system, we
will refer to the scheme reported in Figure 3 [25].
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Fig. 2. Commands exchanged between hosts

Fig. 3. The basic scheme of the proposed IDS

The scheme can be explained as follows:

1. The first component, called Data-Preprocessing, is a module that performs a
number of preliminary operations on the sequence in order to make it suitable
for the HMM. During the training phase, this module extracts the dictionary
of symbols to be used by the HMM. Once the dictionary is created, all the
test sequences are preprocessed in order to contain only the symbols that are
in the dictionary. We will go into the details of the creation of dictionaries
later on.

2. HMM are built using the Baum-Welch procedure, using a set of training
sequences.

3. Once the model is built, its performances are assessed by a set of test se-
quences, using the Evaluation Procedure.

4. For each test sequence, the HMM outputs a probability value stating how
likely the sequence is anomalous. By setting a decision threshold, the se-
quence can be labeled as normal or anomalous (i.e., potentially intrusive).

4.1 Creation of the Dictionaries of Symbols

To train and test HMM, we need to create the dictionaries of symbols. Such
symbols are related to the commands exchanged by hosts for a given Internet
service. Typically the number of commands defined by the RFC (i.e., the rules
that define the protocols associated to services) is very large, compared to the
number of commands that are actually used by applications. As a consequence,
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the use of a dictionary comprising all the possible commands would be ineffective
as a large number of emission probabilities would be zero, and the computational
load would be high. In addition, if a new command is added to the protocol, the
HMM must be re-trained to take into account the new symbol. On the other
hand, if we build the dictionary by using only the set of symbols of the sequences
in the training set, some action must be perfomed for those test sequences that
contain symbols that are not in the dictionary.

In this work, we propose to build the dictionaries by using only the symbols
in the training sequences. We present two alternatives solutions for processing
the test sequences that we call Large Dictionary and Small Dictionary.

Large Dictionary. The dictionary D={S1, S2, ..., Sn, “NaS′′} contains all the
symbols S1...Sn the are present in the training sequences, plus a special sym-
bol "NaS" (Not a Symbol). Unknown symbols in the test set are managed by
replacing them with "NaS". Of course this symbol is not a command defined
by the RFC, but is simply used to replace all the symbols in the test sequences
that don’t belong to the dictionary of commands learned from the training se-
quences. As an example, if the HMM is trained using the dictionary of symbols
“a”,“b”,“c”,“d”, the sequence [a-b-d-g-c-a] cannot be analysed because there is the
unknown symbol “g”. If the dictionary is enlarged with the “NaS” symbol, so that
the HMM is trained using the dictionary {“a”,“b”,“c”,“d”,“NaS”} , the symbol “g”
into the test sequence can be replaced with “NaS”: and the resulting sequence
[a-b-d-NaS-c-a] can be analysed by the HMM.

Small Dictionary. In this second solution, we discard from the test sequences
all the symbols that don’t belong to the dictionary. Thus, the test sequence of
the previous example [a-b-d-g-c-a] becomes [a-b-d-c-a].

If we compare the two solutions we can observe that in the case of Large Dic-
tionaries, all the test sequences that contain an unknown symbol are anomalous,
as the symbol NaS is never encountered in the training set, and its associated
probability of emission is 0. On the other hand, if the solution using a Small
Dictionary is used, intrusions that contain unknown symbols cannot be detected
if the sequence resulting after discarding the unknown symbols are similar to
the normal ones. We can conclude that the fewer the number of erased symbols
compared to the length of the sequence, the smaller the impact of the Small
Dictionary solution. The use of Large Dictionaries on the other hand, allows
producing an alert for each new symbol encountered. If the training set is highly
representative, then the presence of an unknown symbol in a test sequence can
be certainly related to some kind of anomaly.

4.2 Combination of HMM

As the performances of HMM are sensitive to the training set, and to the initial
values of the parameters, in this work we explored the performances attained
by combining an ensemble of HMM in order to attain low false alarms and high
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detection rates. To this end, we used three techniques for combining the outputs
of HMM, namely:

– Arithmetic Mean
– Geometric Mean
– Decision Templates

The first two techniques simply combine the outputs by computing the average
of the outputs:

Parithm(O|λ) = 1/L ·
L∑

i=1
P (O|λi)

or the product of the outputs:

Pgeom(O|λ) = L

√
L∏

i=1
P (O|λi)

where P (O|λi) is the probability that the sequence O has been emitted by the
i-th HMM, and L represents the number of combined HMM.

The combination by Decision Templates is a more complex technique that has
been first proposed in [16], and that has been used to combine HMM outputs
[3] [7].

The Decision Templates method is based on a similarity measure between two
vectors, called Decision Profile and Decision Template. The Decision Template
is a vector whose elements represent the mean support given by each classifier
to the N training sequences of each class. So, as in this case we are interested in
modeling only one class, i.e. the normal class, the decision template represents
the average of the emission probabilities of training sequences for each HMM.
Let us define dti(Z) as the average emission probability of the i-th HMM for the
N sequences in the training set Z:

dti(Z) = 1/N ·
∑

j∈Z

P (Oj/λi)

The Decision Template is thus defined as follows:

DT(Z) = [dt1(Z)...dtk(Z)...dtL(Z)]

Analougously the Decision Profile for a test sequence Otest is defined as
follows:

DP(Otest) = [P (Otest|λ1)...P (Otest|λk)...P (Otest|λL)]

A soft label is then assigned to the test sequence Otest by means of a similarity
measure between DP(Otest) and DT (Z). We compute this similarity by the
Squared Euclidean Distance:

Sim(DT (Z), DP (Otest)) = 1 − 1
L

L∑

i=1

(dti(Z) − P (Otest|λi))2. (1)
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5 Experimental Results

5.1 Dataset

The dataset used to test the proposed solution is made up of a set of sequences
of FTP commands exchanged betwen a server and many clients. These sequence
are extracted from the FTP traffic that is generated by the users that upload and
download their resources on their own Web Space. The data were extracted from
the network of the European ISP Tiscali SpA. The sequences of commands have
been extracted by the live traffic using SNORT, a very popular open source
IDS [23]. In order to filter out potentially intrusive sequences, we discarded
all the sequences for which SNORT raised an alarm. The resulting dataset is
made up of 40,000 sequences that have been used to train and test the HMM.
First, we randomly extracted a training set made up of 80% of the traffic, the
remaining 20% being used for testing. To avoid a bias in the evaluation, we
repeated this subdivision five times. Thus, we created 5 different training sets,
each one made up of 32,000 sequences, and 5 different test sets, each one made
up of 8,000 sequences. Each of the 5 training set is further subdivided into
10 subsets (without replacement) of 3,200 sequences. Each of this sequences
has been used to train distinct HMM. As a result, 50 different training set are
availble for training HMMs. The main drawback of Hidden Markov Models is the
computational cost of the training process, the larger the training set, the longer
the training time. On the other hand, the training sets used to build Anomaly
Based IDS are typically very large, so that normal activities overwhelm those
anomalous events that can be present in the training traffic. In addition, the set
of parameters used of a HMM trained on a large training set may not capture the
structure of data. For this reason, it can be more effective to split the training set
into a number of smaller subsets, and to use each subset to train different HMM.
The outputs of these HMM can be then combined using the techniques outlined
in the previous section, thus exploiting the information in the training set.

In order to create attack sequences, we used the simulator IDS-Informer [26]
and added 22 attack sequences to the test set. It is worth nothing that the
generation of attack sequences is not an easy task, because typically for each
service a very small number of vulnerabilities can be actually exploited. This can
be explained by the fact that software vendors and developers update frequently
their products to correct known vulnerabilities. In addition the traffic sniffed
in a network tipically contains a very small percentage of attacks. Thus, this
experimental setup allows simulating a real network scenario.

5.2 Dictionaries of Symbols

In order to generate the Dictionaries of Symbols, we implemented the Large and
Small Dictionaries described in the previous section. In particular, in the case
of Large Dictionaries, we extracted the symbols from each of the 5 training sets
made up of 32,000. Thus, in this case all the ten HMM extracted from the same
training set, use the same dictionary. On the other hand, Small Dictionaries have
been extracted from each of the 3,200 sequences used to train each HMM. As
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a result, the ten HMM extracted from the same training set, use ten different
dictionaries.

5.3 Experimental Setup

For each of the five Training Set, the following simulations have been performed
for each of the 10 HMMs: i) HMM have been created using both the Large and
the Small Dictionary; ii) three values for the number of states of HMM have
been considered, namely, 10, 20, and 30; iii) two different random initializations
of the initial values of the emission and transition matrixes have been performed.
Thus, for a given number of states of the HMM, and for a given dictionary of
symbols, 100 HMM have been created. Finally, the number of iterations for the
training algorithm has been set to 100.

5.4 Performances Evaluation

In order to evaluate the performances of individual HMM we decided to report
the mean value and the standard deviation computed over all the 100 HMM
with the same number of states and the same kind of dictionary. Combination
techniques have been used to combine the 20 HMM generated for each train-
ing set. Results of combination are reported in terms of average and standard
deviation computed over the five training set.

In order to evaluate the performance of the proposed IDS, we selected three
measures:

– The Area under the ROC curve, where the ROC curve represents the perfor-
mance of the HMM at different values of the decision threshold. In particular,
the ROC curve represents the False Acceptance Rate, i.e., the rate of attacks
classified as normal traffic Vs. the True Positive Rate, i.e. the rate of normal
sequences classified as attacks. It is easy to see that the larger the AUC, the
better the performance.

– The percentage of real false alarms measured on the test dataset when the
Detection Rate is equal to 100%.

– The Detection Rate, when the percentage of false alarms measured on the
training set is equal to 1%. The threshold has been calculated on the Training
Set, so we evaluated the corresponding percentage of false alarms on the Test
Set.

The second performance measure is used to assess the performance of the system
in term of the number of false alarms that are produced if we wish to attain a
100% detection, while the third measure aims at assessing the performances
when the false alarm rate is limited to 1%. This value typically represent an
upper bound for the tolerable false positives for an IDS.

5.5 Nomenclature

Let us define some acronyms that are used in the tables where results are re-
ported: i) LD and SD are used to denote respectively the use of a Large or
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Small Dictionary; ii) 10s, 20s, and 30s are used to specify the number of states
of the HMM; iii) DR is used for the Detection Rate; iv) FA is used for the False
Alarms rate.

5.6 Experimental Results

Experimental results pointed out that the use of Small Dictionaries provides
significantly lower performances with respect to the use of Large Dictionaries.
Thus, for the experiments relates to the use of Small Dictionaries, we decided
to report only the best results attained by varying the number of states of the
HMM. This result has been attained by setting the number of states of HMM
to 30. Table 1 shows the performances of this configuration. Reported results
clearly show that high vaues of AUC can be attained by combining the HMM
using the Decision Template technique. Thus, as far as the AUC is concerned,
combining an ensemble of HMM allows improving the performances. However,
if we analyse the False Alarm rate produced when the decision threshold is set
to have a 100% Detection Rate, we can easily see that these values cannot be
accepted in a real working scenario, as more than 90% of normal sequences have
been classified as intrusives. In addition, the combination of HMM provides less
reliable results than those provided on average by individual HMM. On the hand,
if we set the decision threshold (on the training set) so that the False Alarm
rate is equal to 1%, we see that the performances of combination techniques are
higher than those of individual HMM, the best performance being attained by the
Geometric Mean. In the following we will see that the use of Large Dictionaries
allows attaining higher performances. On the other hand, as far as the training
time is concerned, the use of Small Dictionaries require a shorter training time
than that needed when using Large Dictionaries.

Table 1. Simulations Small Dictionary 30 States

30 States SD DR 100% FA1%
AUC FA(real%) DR % FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.873 (0.006) 89.77 (4.14) 58.72 (2.52) 0.72 (0.23)
Arithmetic Mean 0.874 (0.002) 95.27 (0.61) 63.63 (4.54) 0.31 (0.15)
Geometric Mean 0.876 (0.002) 96.19 (1.50) 76.36 (2.03) 0.71 (0.20)

Decision Templates 0.933 (0.004) 93.84 (8.40) 65.54 (3.80) 0.35 (0.16)

If we analyse the performances of HMM using Large Dictionaries reported in
Tables 2, 3, and 4, it is easy to see that performances are quite superior to
those attained using Small Dictionaries. In particular, performances improved
significantly by increasing the number of states from 10 to 20. On the other hand
a further increase in the number of states from 20 to 30 does not provide sig-
nificant improvements in performance, except for the standard deviation which is
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Table 2. Simulations Large Dictionary 10 States

10 States LD DR 100% FA1%
AUC FA(real%) DR% FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.953 (0.006) 65.15 (2.09) 85.44 (1.73) 0.80 (0.23)
Arithmetic Mean 0.958 (0.002) 76.41 (1.22) 82.72 (2.03) 2.35 (1.24)
Geometric Mean 0.961 (0.001) 74.54 (1.07) 92.72 (4.06) 2.83 (1.22)

Decision Templates 0.958 (0.002) 74.89 (2.55) 83.62 (4.06) 2.42 (1.22)

Table 3. Simulations Large Dictionary 20 States

20 States LD DR 100% FA1%
AUC FA(real%) DR% FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.967 (0.004) 59.60 (4.46) 90.94 (1.27) 0.74 (0.22)
Arithmetic Mean 0.974 (0.002) 79.23 (3.02) 92.72 (6.1) 0.33 (0.16)
Geometric Mean 0.972 (0.001) 52.27 (3.06) 95.45 (0) 0.89 (0.09)

Decision Templates 0.965 (0.002) 52.34 (9.69) 95.45 (0) 0.41 (0.18)

Table 4. Simulations Large Dictionary 30 States

30 States LD DR 100% FA1%
AUC FA(real%) DR% FA(real%)

mean(σ) mean(σ) mean(σ) mean(σ)
Mean 100 HMM 0.969 (0.003) 57.85 (3.57) 92.97 (0.65) 0.74 (0.16)
Arithmetic Mean 0.974 (0.0004) 55.92 (0.62) 95.45 (0) 0.53 (0.13)
Geometric Mean 0.971 (0.0008) 55.00 (1.20) 95.45 (0) 1.01 (0.10)

Decision Templates 0.962 (0.004) 86.02 (8.12) 95.45 (0) 0.62 (0.17)

smaller than that of HMM with 20 states. The values of AUC in the three cases
are larger than 0.95, the combination by the arithmetic and geometric means
providing the highest performances.

If we analyse the performances attained when the decision threshold is set so
that the Detection Rate is equal to 100%, we see that the values of False Alarm
rate are quite smaller than those attained using the Small Dictionaries, but still
these values are not suited for a real operating environment. It is worth noting,
however, that hardly any IDS is able to produce an accetable False Alarm rate
when it is tuned to detect the 100% of attacks [1]. Thus the evaluation of IDS
at 100% detection rate is just used to see the performances in the limit. From
an operational point of view, it is more intersting to evaluate the detection rate
when the false alarm rate is fixed at 1%. If we compare the values attained using
10, 20, and 30 states we can see that the detection rate increases as the num-
ber of states is increased. Again, the highest values are attained by combining
HMM, reaching the value of 95.45%. If we compare this result with the false
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alarm rate attained at 100% detection rate, it is easy to see that a small increase
in the detection rate is accompained by a very large increase in the false alarm
rate. Finally, the tables also report the false alarm rate attained on the test set
(FA(real%)) when the decision threshold is set to the value that produces the 1%
false alarm rate on the training set. It can be seen that, apart from the case of 10
states, the false alarm rate on the test set is always smaller that 1%. Thus, the
threshold estimated on the training set produces similar results on the test set.

6 Conclusions

This work proposed a novel technique to detect intrusions in computer networks,
based on the analysis of sequences of commands exchanged between pairs of
hosts. In particular we modelled sequences using HMM. For each command
sequence, a probability value is assigned and a decision is taken according to some
predefined decision threshold. We investigated different HMM models in terms
of the dictionary of symbols, number of hidden states, and different training sets.
We found that good performances can be attained by using dictionary of symbols
made up of all symbols in the training set, and adding a NaS (not-a-symbol)
symbol in account of symbols in the test set that are not represented in the
training set. Performances can be further improved by combining different HMM.
As the size of training sets in an intrusion detection application is typically large,
we proposed to split the training set in a number of parts, training different HMM
and then combining the output probabilities by three well known combination
techniques. Reported results on a real dataset extracted from the live traffic of
an ISP show the effectiveness of the proposed approach.

Future works should include the fusion of information from the proposed
module, which analyses sequence of commands, with information from other
modules devoted, for example, to the analysis of the arguments of commands
(e.g., the name of files exchanged, subject of e-mails, etc.). In fact attacks can be
reliably detected when multiple analysis are performed on the network traffic,
and the partial results combined. We suspect the resulting IDS will not only
produce a lower false alarm rate, but also be more robust to evasion activities, as
the attacker should evade the detection capabilities of multiple modules working
on different traffic characteristics.
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