
‘Ambiguous Live’ – Exploring Collaborative,
Dynamic Control of MIDI Sequencers

David Eyers

Computer Laboratory
University of Cambridge

David.Eyers@cl.cam.ac.uk

Abstract. Computer sequencers generally control other digital musical instru-
ments. This paper discusses our particular interest in playing the sequencers
themselves as digital musical instruments. We present our ensemble’s approach
to live sequencer-based performance, supporting multiple musicians coordinat-
ing activities through one central control system. We then review a number of
promising software technologies currently available for the purpose of such live
sequencer-based performances, and finally discuss our consequent future perfor-
mance goals.

1 Introduction

People have gathered together to enjoy musical performances for thousands of years.
Many of these performances have included groups of musicians who, through improvi-
sation or interpretation, cooperate to resonate their ideas and musical intuition. Modern
day orchestras and bands combine the talents of their constituent musicians to form a
dynamic and complex higher-order performance entity.

How does this compare with the music flourishing throughout the night-clubs of
the world today, however? Many have no respect for this ‘dance’ music, due to its
prefabricated nature. However, we feel that proliferation of digital musical technology
is an opportunity rather than an affront to music performance (or it is at least both!).

Whilst hardly a house-hold name, ‘Ambiguous Live’, was a duo formed in part by
the author for the sake of investigating the ease with which we could design software,
supported by a hardware rig of synthesisers, to enable live, largely improvised elec-
tronic music performance. Our approach involved the high-level control of a computer
sequencer, centrally coordinating the actions of multiple musicians. In the group’s brief
lifetime, we performed in a number of university-oriented Sydney nightclubs, and were
interviewed regarding our live operating environment in the street magazine ‘3DWorld’
under its ‘localz’ section in March 2001 [1]. Unfortunately this group had to suspend
activities when the author left Australia to pursue postgraduate education in the UK.

This paper is organised as follows. We provide some background discussion relating
to electronic music performance in section 2. We discuss our performance approach in
section 3. A number of technologies which support our goals to a greater or lesser
extent are reviewed in section 4. Section 5 presents our plans and desires for future
performance environments. Finally we conclude the paper in section 7.

U.K. Wiil (Ed.): CMMR 2003, LNCS 2771, pp. 54–63, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



‘Ambiguous Live’ – Exploring Collaborative, Dynamic Control of MIDI Sequencers 55

2 Background

Disc Jockeys (DJs) originally had the job of setting up the media to be played in se-
quence for radio stations. They may have provided voice interludes between the songs,
and indeed may have had a greater or lesser degree of control in the actual sequence of
music played. Although possibly very musically knowledgeable, they were not musi-
cians in any performance sense.

Nightclubs also need someone to keep music playing when there are no live bands,
so the role name was transfered to this environment, although the job being performed
varies greatly. Some DJs merely choose an order of tracks to play, reading the mood
of the crowd but nothing more than that in a performance sense. These DJs are some-
times bestowed undue credit; the audience members are actually enjoying the work
of the composers rather than the DJs, but the DJs provide a face to which to direct
appreciation. However, most club DJs interact more directly with their performance
machinery, controlling the speed and looping of a number of sound sources – they
simultaneously perform audio mixing and compositing. Compact Disc (CD) players
(or possibly computer-based multi-track MP3 players) may be used by comparatively
unskilled DJs, although most serious DJs use traditional phonograph turntables. Un-
doubtedly good turntable control is a skilled role, and there is ample space for artistic
creativity. However, the musical building blocks with which such DJs perform are still
very coarse in musical granularity (at the level of whole tracks or phrases).

The most sophisticated DJs in fact render their own musical material, and indeed
are the artists responsible for making the material other DJs mix and play back to their
audiences. However, even these DJs have only limited abilities to create live music per-
formance. Some have taken to including drum machines, or other simple sequencers
into their performance rigs – we feel that is an initial step to acknowledging the rele-
vance of sequencer performance discussed in this paper.

3 Ambiguous Live

Our performance goal was to be able to create synthesised music via live collabora-
tion between performers, with a heavy emphasis on improvisation. Limitations in our
software sequencer meant that we did need to prerecord a number of musical patterns,
however for most monophonic parts we divorced the rhythmic control from the tonal
control. Essentially we programmed the synthesiser to convolve separate rhythmic and
melodic patterns into MIDI events, in effect creating a simple Control Voltage (a MIDI
precursor) to MIDI converter.

Our equipment rig grew in between each of our performances. In our most re-
cent performance, our inventory included three MIDI-controller keyboards (in the pi-
ano sense), two general purpose MIDI controller knob banks, two samplers, two ana-
log modelling synthesisers (one monophonic, and one 16-channel multitimbral unit), a
multitimbral digital synthesiser, a drum machine, four effects processors, two mixers, a
Sony VAIO laptop, and a desk fan.



56 David Eyers

Fig. 1. The ‘Ambiguous Live’ rhythm control environment screen-shot

Fig. 2. The ‘Ambiguous Live’ stream control environment screen-shot

3.1 Music Control Structure

Our top-level control architecture consisted of two main regions. One whole control
area in our environment was devoted to rhythmic parts (drums and playback of prere-
corded samples); a screen-shot is shown in Figure 1.

The other main control area related to numerous ‘streams’. We used this term so
as not to confuse streams with MIDI channels; any stream could output to any number
of MIDI channels on any of our devices. Essentially each stream was responsible for a
section of our music. A screen-shot of the stream environment is shown in Figure 2. We
generally used the following streams:

Sub-bass. Used for very low bass used predominantly to keep sub-woofer speakers
occupied, generally for the sake of shaking the performance venue rather than making
particularly pitched contributions.

Bass. Provide audible bass-lines providing low-pitch texture and rhythm.



‘Ambiguous Live’ – Exploring Collaborative, Dynamic Control of MIDI Sequencers 57

Noise. This stream was employed to play signature samples or noises to identify each
particular part of a musical set.

Pads. Used for fairly soft-timbred chords providing a harmonic foundation.

Arps. Arpeggios are often used to produce high-pitch texture and rhythm.

Lead. Synthesiser lines which stand out well in front of the rest of the music. Usually
monophonic.

Note that while we were using a sequencer which provided a piano-roll style view,
the actual music output did not come directly from the time-line. Some control parts
from the time-line were used to influence pattern playback however. For example pat-
terns of different length aligned themselves on specific bar numbers, ensuring that
changing from an 8 bar to a 1 bar and back to an 8 bar pattern would not cause the
second 8 bar pattern to be played out of alignment with other 8 bar patterns.

3.2 Music Control Inputs

Another experimental aspect of our performances was that the centralised sequencer
permitted both performers to collaborate, interacting across all the controls. There were
several ways in which we could exert control over our music sequencing environment:

Via laptop. The mouse and keyboard of the laptop running our sequencer could be used
to adjust parameters and override controls. We were only using one physical display
screen, so needed to use computer keyboard hot-keys to change which virtual screen of
data within the sequencer we were examining or manipulating.

Via direct synthesiser controls. All of our audio synthesis equipment was present at
each performance, so we were able to directly manipulate each device’s controls.

MIDI dial boxes. We used two banks of assignable MIDI dial boxes to permit us to
control parameters on the equipment. We programmed the sequencer to provide a num-
ber of default pages of knob assignments, but included the capacity for knobs to be
assigned by the laptop during performance.

MIDI keyboards. In the relative dark, we found it easiest to use three MIDI piano
keyboards between us for both melodic performance, and for remote control of the se-
quencer. On the melodic keyboards, upper octaves played notes in various lead streams.
The lowest octave was used for real-time transposition of streams currently set to have
non-fixed root notes. Thus if the sequencer was playing some particular bass-line, and
an introduced chord progression required its transposition to fit harmonically, it was
sufficient for a performer to tap an appropriate lower octave key once to set a new root
note. The middle octaves of the keyboard were reserved for muting, routing and assign-
ment control. The mute controls allowed stream output to be switched on and off easily.
The routing controls allowed each stream to be moved dynamically to other synthesis-
ers, and finally the assignment controls allowed any of our prerecorded patterns to be
assigned to any of the streams.

Note that to compress so many different functions into limited numbers of keys,
chording was required (and we add works far better for keyboard-players on musical
keyboards than on computer keyboards!). So, for example, three stream select notes
could be played simultaneously with the mute key to affect them all together.



58 David Eyers

Our sequencer environment was created within Emagic’s Logic Audio [4] software
sequencer. The most remarkable feature of this program is its graphical MIDI program-
ming environment. The next section discusses why we believe graphical environments
are so well suited to sequencer programming and our type of application development.

3.3 Graphical Programming

Unlike traditional procedural programming in which one considers the computational
steps sequentially, music performance, and thus sequencer programming, tends to be
much more event driven. In effect, the performance environment can be thought of as a
web of interconnected nodes, each of which responds to some sort of message or set of
messages sent to it on its inputs, by itself generating some number of modified events
on its outputs. Usually there is only very simple state held within each of these nodes.
For MIDI sequencer programming, the environment is even more predictable, since the
structure of the MIDI messages themselves are very well defined.

Emagic’s Logic Audio package provides for the programming of MIDI ‘environ-
ments’, which consist of a number of types of nodes connected together visually by
‘wires’ which indicate where events will flow. The language is reasonably expressive;
transformer nodes can themselves be modified by ‘meta-events’; events intended only
for the internal control of the sequencer.

Crucial to our programming were the Logic ‘touch-tracks’ node type, which al-
lowed us to trigger the hundreds of simultaneous sequenced parts we needed as event
sources under the control of the environment itself (visible on the right hand extreme
of each stream path in Figure 2). In fact, the conventional sequencer time-line merely
contained some muted emergency parts, and some parts providing control triggers into
the environment.

Apart from some of the limits we reached in using Logic (discussed in section 5), we
generally feel that graphical programming is particularly suited to live sequencer design
and operation. By using two-dimensional spatial layout, a great deal of information can
be compressed into each screen. Also, there is little distinction between design time and
control-time. Graphical components can be controlled during performances in the same
manner in which they are built up during sequencer environment programming.

4 Alternative Tools
for Developing Live Performance Environments

We feel our performances merely scratched the surface of this fascinating potential area
of live music. Due to availability and time limitations, we used the existing Logic se-
quencer as discussed above. There are a number of other promising current technologies
which might be employed to perform music in a similar manner, some of the ones we
experimented with before choosing Logic are described in this section.

4.1 Collaborative Music Environments

One of the most wide-spread collaborative music environments offered recently has
been the Rocket Network [10]. Unfortunately the Rocket Network service providers



‘Ambiguous Live’ – Exploring Collaborative, Dynamic Control of MIDI Sequencers 59

closed down their service in early 2003. The RocketControlTM software hooks into
commercial sequencers to allow composers to conveniently exchange musical data,
both in MIDI and audio forms. Some sequencer versions have been released which
cater directly to this function, such as Logic Rocket, and Cubase InWired. The Rocket
Network also provided a centralised storage facility for media.

There are numerous other musical collaboration sites on the Internet, but they gen-
erally offer a loose coupling, basically implementing some form of discussion board
or Internet data storage site through which files can be passed back and forth between
artists. However web browsers provide a very general interface to such services and
suffer from not being able to cater specifically for the demands of music media.

Note that all of the above forms of musical collaboration environment were fun-
damentally unsuitable for our performances because they introduce a delay in the ex-
change of data and control. Whilst they provide great opportunities for globally dis-
tributed artists to work together with relative ease, they do little to help two performers
standing next to each other to lever their mutual control of musical equipment.

4.2 Software Studios

Due to the recent surges in computer multimedia processing speed, it is now practi-
cal for a computer to do sufficient software synthesis to have prompted a number of
companies to develop virtual studio packages.

Reason. Propellerhead Software’s ‘Reason’ [9] is an excellent example of a virtual
studio package. It provides the user an ability to create as many virtual synthesisers
as any given computer is capable of producing faster than its audio streaming speed.
Synthesisers can be linked together via a virtual patching system implemented within
the software (and again, using a graphical view of signal flow).

For our purposes this software did not provide enough flexibility in the MIDI pro-
gramming domain however. It might provide an excellent low-cost substitute for many
types of MIDI synthesiser, but would really just perform as a target instrument in the
rigs we have built.

Orion. Synapse Audio Software’s ‘Orion’ [11] also deserves a mention. It provides the
same excellent core of software synthesis and effects limited only by the speed of the
computer on which it runs. However, the ability to experiment with custom MIDI and
audio control and routing is more limited than that of Reason. So again, although the
sound quality produced was truly impressive, we could not use this a package for any
purpose other than as a very low-cost target MIDI instrument.

Cubase VST. Before designing our final performance environment in Emagic’s Logic
sequencer as we described above, we also experimented with Steinberg’s Cubase VST
(Virtual Studio Technology) software [12].

Whilst Cubase VST is an excellent package, which we found easy to use and which
features good audio and MIDI integration, it unfortunately lacked programmability to
the degree we required for our live sequencer performance. It has some controls which
play patterns rather than just notes when keys are pressed, but without the ability to
re-program MIDI event routing and transformations from within the sequencer envi-
ronment itself, we were unable to live control it sufficiently for our needs.



60 David Eyers

4.3 Off-Line Programming Environments

We found it particularly convenient to have little distinction between programming and
performance contexts, since development was an on-going process. However, if the
design of your desired sequencer performance machines are fairly static, a number of
tools exist for easing the programming of such applications.

One notable programming environment is C-Sound [3]. Audio and MIDI based per-
formance systems can be designed in its programming language, and then compiled to
make operating machines. As with most programming, the compilation step potentially
provides a significant performance boost, but at the cost of preventing dynamic adjust-
ment of the application’s software.

Naturally general-purpose programming languages could also be employed to de-
velop performance machines. This was not a viable option for our performances; our
music machine design was constantly being extended, and our development time was
severely limited.

In terms of reducing the programming load (at a speed penalty), the Sun’s Java
language [6] provides library functions to communicate with MIDI devices. Thus a
significant amount of the machine-specific programming can be avoided and the pro-
grammer left to focus on the application. It also has the advantage of portability to other
machines. As a real-time environment, however, even if we had had the time required
to develop such custom software, we were sceptical that Java’s timing would have been
fast or reliable enough for our performance needs. Even so, JavaBeans provide an in-
teresting potential component framework in which to move the flexibility of Java code
modules into a live, graphical programming environment. Since it is already embedded
in an event-driven framework, it is described in the next section.

4.4 Live Programming Environments

We noted a number of other potential live, graphical music-oriented programming en-
vironments described on the Internet. Cycling’89’s Max and Max/MSP [13] products
look extremely promising, but we only had Windows platform computers, for which
they have not yet released their software.

The Reaktor software package from Native Instruments [5] is another live, graphical
musical programming environment, but tends to be more focused in the audio synthesis
domain, rather than the manipulation of MIDI events. Whilst a very flexible and pow-
erful transformation tool, Reaktor’s use for us would have been complicated by its lack
of the musical editing views provided by software sequencers such as Cubase or Logic.

We have been interested to see many large software vendors recently proposing
component-based development architectures. Although most developers have not yet
fully embraced such programming ideals, we feel that the domain of MIDI event pro-
cessing and performance is particularly suitable to component-based design; indeed the
environments in Logic employ its internal component-based toolkit.

As mentioned above, we are concerned that the real-time properties (for example
its garbage collection strategy) of Java are not particularly desirable for performance.
Such concerns aside, Sun’s JavaBeans Component architecture for Java [7] may provide
a useful framework in which to develop dynamic MIDI machines such as our perfor-
mance environment. At the moment no MIDI-related components are listed in Sun’s



‘Ambiguous Live’ – Exploring Collaborative, Dynamic Control of MIDI Sequencers 61

JavaBeans on-line directory, but their Bean Builder application may indeed eventually
surpass the functionality of the Logic environment through extensibility. We feel the
most likely problems with JavaBeans design will be the Bean Builder interface being
polluted by unnecessary component details, or possibly that the change in and out of
the design mode will be too disruptive to allow the MIDI event handling to continue
while the application is being extended or modified.

5 Extensions

This section describes a number of our future plans, based on where we were not able
to to work around the restrictions imposed on us.

5.1 Live Recording Elements

The biggest limitation we faced was that we were not able to record passages for looping
back during our set. For example, we might improvise an eight bar chord pattern via a
sequence of piano key presses in an octave we programmed to set the transposition root
note of certain streams. Ideally, the software environment would support elements with
memory which would maintain and repeat this eight bar pattern until further input was
received to override it. Our performances only had the ability to playback prerecorded
patterns, although as mentioned above these patterns could span granularity from a
simple rhythm up to a complete musical phrase.

The Logic environment would potentially permit the programming of a very simple
step-wise live-recording sequencer, but the amount of extra environment design work
required would be massive, and rather redundant given the touch-tracks node type is
already offering a read-only version of the service we want, plus the code to handle
recording is already implemented to run the conventional Logic sequencer time-line.

Note that such an element would not merely provide the ability to live-record and
loop musical patterns; more importantly the control stream events which affect the se-
quencer environment itself would be able to be recorded. Uses might include record-
ing a list of chord sequences which can be mapped and unmapped to any stream, as
mentioned above, or indeed changing the timbre or other parameters of a particular
synthesiser in a periodic manner.

5.2 Unified Design and Performance Contexts

Generally, when we had started a particular performance set, we would not make any
changes to the design of our environment. Whilst one would not normally expect to
make modifications, we found that certain changes within the Logic environment would
unsettle other events passing through the system. Ideally, like many of the other live mu-
sic or audio programming products discussed above, there would be no distinction be-
tween design and performance environments. Placing new objects within the sequencer
programming should not affect the current live function of the sequencer at all.

A further related area of interest is in optimisation. Because we only had limited
internal control over the MIDI message patterns being played by the touch-tracks ele-
ments, we sometimes needed to carry unnecessary information into the sequencer. For



62 David Eyers

example, one of our touch-tracks elements might play a particular stream in all 16 MIDI
channels, when in fact all but one of these channels would be filtered out before reach-
ing the sequencer’s MIDI output device. An interesting challenge would be to design
the sequencer so that it could ‘push-back’ such filter events as early as possible within
the sequencer programming, thus reducing unnecessary MIDI message handling. Gen-
erally due to the cheapness of CPU cycles, this area has not been explored. In computer
networks, however, packet handling can have very high costs. We are currently working
with a research group in publish/subscribe middleware (see [8]) with a view to possibly
employing such technologies as composite event detection and subscription spanning
trees for live, collaborative performance arts.

5.3 Integration of Other Performance Media

Our future plans include performances with greater integration of music, lighting, and
video media (where present). Most DJs have their music performances enhanced by
lighting and/or video displays. In the same manner as for our discussion of DJs above,
however, there is often only a token connection between these different performance
areas.

Instead of having three people controlling the music, the lighting and video projec-
tions separately, we are interested in programming performance environments where,
in the manner of our collaborative performances, these three separate people together
control one sequencer, which then itself splits back out to control separate synthesiser,
lighting and video equipment. This integration is intended to lift the lighting opera-
tor, say, from the level of control required to get lighting effects basically in time with
the music, to deciding at a much higher, and more artistic level, how different sections
of music will relate to the activity of the lighting fixtures. Naturally override controls
would still be accessible at a device level for emergencies. Normally, however, the tim-
ing aspects would be left to the centralised event sequencer, since it already needs to un-
derstand and process the temporal context with respect to notes, beats, bars and phrases
for the music output.

6 Our Live Sequencer-Based Collaboration Feature Checklist

Given that we were not able to satisfy all our needs with the software available, we felt
we should indicate what our requirements would be:

Live Performance Speed. Many packages induce delays when incorporating collabo-
rative input. We require that delays are imperceivable to live performers.

Unified Design and Performance Control. It is important that the musical collabora-
tion environment make few distinctions between the performance and design phases. A
performer should be able to modify the environment while another performer is playing
it with little or no disruption.

Graphical Event Flow Views. We found it highly intuitive to program our performance
machines in a graphical environment where events could be traced through an intercon-
nected network of processing nodes.



‘Ambiguous Live’ – Exploring Collaborative, Dynamic Control of MIDI Sequencers 63

Music Specific Interfaces. Many component programming environments do not yet
provide convenient support for management of musical patterns (or score), audio, and
the consequent temporal synchronisation and arrangement of these sequence blocks.
Such interfaces are necessary to facilitate rapid composition.

Interface Design and Modularisation. It is highly useful to support encapsulation
of processing networks into higher-level modules. These modules need to have user-
programmable parameter interfaces.

7 Conclusion

This paper discussed modern popular electronic music performance, and suggested that
developing live control environments around music sequencers is a promising new area
of ensemble-based musicianship. We presented an overview of the performance en-
vironment used by the small Sydney group ‘Ambiguous Live’ formed in part by the
author. A number of alternative current technologies potentially supporting the devel-
opment of such environments are discussed. Finally, we propose a number of future
directions in which we want to develop both our performances, and research into the
music technology that will power them.

References

1. 3DWorld. Blurred beats - ambiguous live. http://www.threedworld.com.au/, March
2001.

2. MIDI Manufacturers Association. The Complete MIDI 1.0 Detailed Specification. MIDI
Manufacturers Association, 1996.

3. Richard Charles Boulanger, editor. The Csound Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing,and Programming. MIT Press, 2000.

4. Emagic. Logic audio. http://www.emagic.de/products/ls/ls/index.php.
5. Native Instruments. Reaktor.

http://www.nativeinstruments.de/index.php?reaktor_us.
6. Bill Joy et al., editors. JavaTM Language Specification. Addison-Wesley, second edition,

June 2000.
7. Sun Microsystems. JavaBeansTM API specification. http://java.sun.com/products/

javabeans/docs/beans.101.pdf.
8. Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-Based Middleware

Architecture. Proceedings of the 1st International Workshop on Distributed Event-Based
Systems (DEBS’02), July 2002.

9. Propellerhead Software. Reason. http://www.propellerheads.se/products/reason/.
10. Rocket Network Inc. The RocketControlTM online audio collaboration tool. http://www.

rocketnetwork.com/.
11. Synapse Audio Software. Orion. http://www.synapse-audio.com/products.php.
12. Steinberg. Cubase. http://cubase.net/.
13. Todd Winkler. Composing Interactive Music: Techniques and Ideas Using Max. MIT Press,

2001.


	1 Introduction
	2 Background
	3 Ambiguous Live
	3.1 Music Control Structure
	3.2 Music Control Inputs
	3.3 Graphical Programming

	4 Alternative Tools for Developing Live Performance Environments
	4.1 Collaborative Music Environments
	4.2 Software Studios
	4.3 Off-Line Programming Environments
	4.4 Live Programming Environments

	5 Extensions
	5.1 Live Recording Elements
	5.2 Unified Design and Performance Contexts
	5.3 Integration of Other PerformanceMedia

	6 Our Live Sequencer-Based Collaboration Feature Checklist
	7 Conclusion
	References

