
Output-Sensitive Algorithms for Computing
Nearest-Neighbour Decision Boundaries�

David Bremner1, Erik Demaine2, Jeff Erickson3, John Iacono4,
Stefan Langerman5, Pat Morin6, and Godfried Toussaint7

1 Faculty of Computer Science, University of New Brunswick, bremner@unb.ca
2 MIT Laboratory for Computer Science, edemaine@mit.edu

3 Computer Science Department, University of Illinois, jeffe@cs.uiuc.edu
4 Polytechnic University, jiacono@poly.edu

5 Chargé de recherches du FNRS, Université Libre de Bruxelles,
stefan.langerman@ulb.ac.be

6 School of Computer Science, Carleton University, morin@cs.carleton.ca
7 School of Computer Science, McGill University, godfried@cs.mcgill.ca

Abstract. Given a set R of red points and a set B of blue points, the
nearest-neighbour decision rule classifies a new point q as red (respec-
tively, blue) if the closest point to q in R∪B comes from R (respectively,
B). This rule implicitly partitions space into a red set and a blue set
that are separated by a red-blue decision boundary. In this paper we
develop output-sensitive algorithms for computing this decision bound-
ary for point sets on the line and in R

2. Both algorithms run in time
O(n log k), where k is the number of points that contribute to the decision
boundary. This running time is the best possible when parameterizing
with respect to n and k.

1 Introduction

Let S be a set of n points in the plane that is partitioned into a set of red points
denoted by R and a set of blue points denoted by B. The nearest-neighbour
decision rule classifies a new point q as the color of the closest point to q in
S. The nearest-neighbour decision rule is popular in pattern recognition as a
means of learning by example. For this reason, the set S is often referred to as
a training set.

Several properties make the nearest-neighbour decision rule quite attractive,
including its intuitive simplicity and the theorem that the asymptotic error rate
of the nearest-neighbour rule is bounded from above by twice the Bayes error
rate [6,8,16]. (See [17] for an extensive survey of the nearest-neighbour decision
rule and its relatives.) Furthermore, for point sets in small dimensions, there are
efficient and practical algorithms for preprocessing a set S so that the nearest
neighbour of a query point q can be found quickly.
� This research was partly funded by the Alexander von Humboldt Foundation and

The Natural Sciences and Engineering Research Council of Canada.

F. Dehne, J.-R. Sack, M. Smid (Eds.): WADS 2003, LNCS 2748, pp. 451–461, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [600 600] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil: ¡M
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile (¡M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [600 600]
>> setpagedevice

452 D. Bremner et al.

The nearest-neighbour decision rule implicitly partitions the plane into a red
set and a blue set that meet at a red-blue decision boundary. One attractive
aspect of the nearest-neighbour decision rule is that it is often possible to reduce
the size of the training set S without changing the decision boundary. To see
this, consider the Voronŏı diagram of S, which partitions the plane into convex
(possibly unbounded) polygonal Voronŏı cells, where the Voronŏı cell of point
p ∈ S is the set of all points that are closer to p than to any other point in S (see
Figure 1.a). If the Voronŏı cell of a red point r is completely surrounded by the
Voronoi cells of other red points then the point r can be removed from S and
this will not change the classification of any point in the plane (see Figure 1.b).
We say that these points do not contribute to the decision boundary, and the
remaining points contribute to the decision boundary.

(a) (b)

Fig. 1. The Voronŏı diagram (a) before Voronŏı condensing and (b) after Voronŏı con-
densing. Note that the decision boundary (in bold) is unaffected by Voronŏı condensing.
Note: In this figure, and all other figures, red points are denoted by white circles and
blue points are denoted by black disks.

The preceding discussion suggests that one approach to reducing the size of
the training set S is to simply compute the Voronŏı diagram of S and remove any
points of S whose Voronŏı cells are surrounded by Voronŏı cells of the same color.
Indeed, this method is referred to as Voronŏı condensing [18]. There are several
O(n log n) time algorithms for computing the Voronŏı diagram a set of points
in the plane, so Voronŏı condensing can be implemented to run in O(n log n)
time.1 However, in this paper we show that we can do significantly better when
the number of points that contribute to the decision boundary is small. Indeed,
we show how to do Voronŏı condensing in O(n log k) time, where k is the number
of points that contribute to the decision boundary (i.e., the number of points of
S that remain after Voronŏı condensing). Algorithms, like these, in which the
size of the input and the size of the output play a role in the running time are
referred to as output-sensitive algorithms.

1 Historically, the first efficient algorithm for specifically computing the nearest-
neighbour decision boundary is due to Dasarathy and White [7] and runs in O(n4)
time. The first O(n log n) time algorithm for computing the Voronŏı diagram of a
set of n points in the plane is due to Shamos [15].

Output-Sensitive Algorithms for Computing 453

Readers familiar with the literature on output-sensitive convex hull algo-
rithms may recognize the expression O(n log k) as the running time of optimal
algorithms for computing convex hulls of n point sets with k extreme points, in 2
or 3 dimensions [2,4,5,13,19]. This is no coincidence. Given a set of n points in R

2,
we can color them all red and add three blue points at infinity (see Figure 2).
In this set, the only points that contribute to the nearest-neighbour decision
boundary are the three blue points and the red points on the convex hull of the
original set. Thus, identifying the points that contribute to the nearest-neighbour
decision boundary is at least as difficult as computing the extreme points of a
set.

Fig. 2. The relationship between convex hulls and decision boundaries. Each vertex of
the convex hull of R contributes to the decision boundary.

Observe that, once the size of the training set has been reduced by Voronŏı
codensing, the condensed set can be preprocessed in O(k log k) time to answer
nearest neighbour queries in O(log k) time per query. This makes it possible to do
nearest-neighbour classifications in O(log k) time. Alternatively, the algorithm
we describe for computing the nearest neighbour decision boundary actually
produces an explicit description of the boundary (of size O(k)) that can be
preprocessed in O(k) time by Kirkpatrick’s point-location algorithm [12] to allow
nearest neighbour classification in O(log k) time.

The remainder of this paper is organized as follows: In Section 2 we describe
an algorithm for computing the nearest-neighbour decision boundary of points
on a line that runs in O(n log k) time. In Section 3 we present an algorithm for
points in the plane that also runs in O(n log k) time. Finally, in Section 4 we
summarize and conclude with open problems.

454 D. Bremner et al.

2 A 1-Dimensional Algorithm

In the 1-dimensional version of the nearest-neighbour decision boundary prob-
lem, the input set S consists of n real numbers. Imagine sorting S, so that
S = {s1, . . . , sn} where si < si+1 for all 1 ≤ i < n. The decision boundary
consists of all pairs (si, si+1) where si is red and si+1 is blue, or vice-versa.
Thus, this problem is solveable in linear-time if the points of S are sorted. Since
sorting the elements of S can be done using any number of O(n log n) time sort-
ing algorithms, this immediately implies an O(n log n) time algorithm. Next, we
give an algorithm that runs in O(n log k) time and is similar in spirit to Hoare’s
quicksort [11].

To find the decision boundary in O(n log k) time, we begin by computing
the median element m = s�n/2� in O(n) time using any one of the existing
linear-time median finding algorithms (see [3]). Using an additional O(n) time,
we split S into the sets S1 = {s1, . . . , s�n/2�−1} and S2 = {s�n/2�+1, . . . , sn} by
comparing each element of S to the median element m. At the same time we
also find s�n/2�−1 and s�n/2�+1 by finding the maximum and minimum elements
of S1 and S2, respectively. We then check if (s�n/2�−1, m) and/or (m, s�n/2�+1)
are part of the decision boundary and report them if necessary.

At this point, a standard divide-and-conquer algorithm would recurse on both
S1 and S2 to give an O(n log n) time algorithm. However, we can improve on this
by observing that it is not necessary to recurse on a subproblem if it contains
only elements of one color, since it will not contribute a pair to the decision
boundary. Therefore, we recurse on each of S1 and S2 only if they contain at
least one red element and one blue element.

The correctness of the above algorithm is clear. To analyze its running time
we observe that the running time is bounded by the recurrence

T (n, k) ≤ O(n) + T (n/2, l) + T (n/2, k − l) ,

where l is the number of points that contribute to the decision boundary in
S1 and where T (1, k) = O(1) and T (n, 0) = O(n). An easy inductive argument
that uses the concavity of the logarithm shows that this recurrence is maximized
when l = k/2, in which case the recurrence solves to O(n log k) [5].

Theorem 1 The nearest-neighbour decision boundary of a set of n real numbers
can be computed in O(n log k) time, where k is the number of elements that
contribute to the decision boundary.

3 A 2-Dimensional Algorithm

In the 2-dimensional nearest-neighbour decision boundary problem the Voronŏı
cells of S are (possibly unbounded) convex polygons and the goal is to find all
Voronŏı edges that bound two cells whose defining points have different colors.
Throughout this section we will assume that the points of S are in general
position so that no four points of S lie on a common circle. This assumption is
not very restrictive, since general position can be simulated using infinitesmal
perturbations of the input points.

Output-Sensitive Algorithms for Computing 455

It will be more convenient to present our algorithm using the terminology of
Delaunay triangulations. A Delaunay triangle in S is a triangle whose vertices
(v1, v2, v3) are in S and such that the circle with v1, v2 and v3 on its boundary
does not contain any point of S in its interior. A Delaunay triangulation of S
is a partitioning of the convex hull of S into Delaunay triangles. Alternatively,
a Delaunay edge is a line segment whose vertices (v1, v2) are in S and such
that there exists a circle with v1 and v2 on its boundary that does not contain
any point of S in its interior. When S is in general position, the Delaunay
triangulation of S is unique and contains all triangles whose edges are Delaunay
edges (see [14]). It is well known that the Delaunay triangulation and the Voronoi
diagram are dual in the sense that two points of S are joined by an edge in the
Delaunay triangulation if and only if their Voronoi cells share an edge.

We call a Delaunay triangle or Delaunay edge bichromatic if its set of defining
vertices contains at least one red and at least one blue point of S. Thus, the
problem of computing the nearest-neighbour decision boundary is equivalent to
the problem of finding all bichromatic Delaunay edges.

3.1 The High Level Algorithm

In the next few sections, we will describe an algorithm that, given a value κ ≥ k,
finds the set of all bichromatic Delaunay triangles in S in O((κ2 +n) log κ) time,
which for κ ≤ √

n simplifies to O(n log κ). To obtain an algorithm that runs in
O(n log k) time, we repeatedly guess the value of κ, run the algorithm until we
find the entire decision boundary or until it determines that κ < k and, in the
latter case, restart the algorithm with a larger value of κ. If we ever reach a
point where the value of κ exceeds

√
n then we stop the entire algorithm and

run an O(n log n) time algorithm to compute the entire Delaunay triangulation
of S.

The values of κ that we use are κ = 22i

for i = 0, 1, 2, . . . , �log log n�. Since
the algorithm will terminate once κ ≥ k or κ ≥ √

n, the total cost of all runs of
the algorithm is therefore

T (n, k) =
�log log k�∑

i=0

O(n log 22i

) =
�log log k�∑

i=0

O(n2i) = O(n log k) ,

as required.

3.2 Pivots

A key subroutine in our algorithm is the pivot2 operation illustrated in Figure 3.
A pivot in the set of points S takes as input a ray and reports the largest circle
2 The term pivot comes from linear programming. The relationship between a (polar

dual) linear programming pivot and the circular pivot described here is evident
when we consider the parabolic lifting that transforms the problem of computing a
2-dimensional Delaunay triangulation to that of computing a 3-dimensional convex
hull of a set of points on the paraboloid z = x2 + y2. In this case, the circle is the
projection of the intersection of a plane with the paraboloid.

456 D. Bremner et al.

whose center is on the ray, has the origin of the ray on its boundary and has
no point of S in its interior. We will make use of the following data structuring
result, due to Chan [4]. For completeness, we also include a proof.

Fig. 3. A pivot operation.

Lemma 1 (Chan 1996) Let S be a set of n points in R
2. Then, for any integer

1 ≤ m ≤ n, there exists a data structure of size O(n) that can be constructed in
O(n log m) time, and that can perform pivots in S in O(n

m log m) time per pivot.

Proof. Dobkin and Kirkpatrick [9,10] show how to preprocess a set S of n points
in O(n log n) time to answer pivot queries in O(log n) time per query. Chan’s
data structure simply partitions S into n/m groups each of size m and then uses
the Dobkin-Kirkpatrick data structure on each group. The time to build all n/m
data structures is n

m ×O(m log m) = O(n log m). To perform a query, we simply
query each of the n/m data structures in O(log m) time per data structure and
report the smallest circle found, for a query time of n

m ×O(log m) = O(n
m log m).

In the following, we will be using Lemma 1 with a value of m = κ2, so that
the time to construct the data structure is O(n log κ) and the query time is
O(n

κ2 log κ). We will use two such data structures, one for performing pivots in
the set R of red points and one for performing pivots in the set B of blue points.

3.3 Finding the First Edge

The first step in our algorithm is to find a single bichromatic edge of the Delaunay
triangulation. Refer to Figure 4. To do this, we begin by choosing any red point
r and any blue point b. We then perform a pivot in the set B along the ray with
origin r that contains b. This gives us a circle C that has no blue points in its
interior and has r as well as some blue point b′ (possibly b = b′) on its boundary.
Next, we perform a pivot in the set R along the ray originating at b′ and passing
through the center of C. This gives us a circle C1 that has no point of S in
its interior and has b′ and some red point r′ (possibly r = r′) on its boundary.
Therefore, (r′, b′) is a bichromatic edge in the Delaunay triangulation of S.

The above argument shows how to find a bichromatic Delaunay edge using
only 2 pivots, one in R and one in B. The second part of the argument also
implies the following useful lemma.
Lemma 2 If there is a circle with a red point r and a blue point b on its bound-
ary, and no red (respectively, blue) points in its interior, then r (respectively, b)
contributes to the decision boundary.

Output-Sensitive Algorithms for Computing 457

r

b
C

b′ r

b
C

b′

C1

r′

(a) (b)

Fig. 4. The (a) first and (b) second pivot used to find a bichromatic edge (r′, b′).

3.4 Finding More Points

Let Q be the set of points that contribute to the decision boundary, i.e., the set of
points that are the vertices of bichromatic triangles in the Delaunay triangulation
of S. Suppose that we have already found a set P ⊆ Q and we wish to either
(1) find a new point p ∈ Q \ P or (2) verify that P = Q.

To do this, we will make use of the augmented Delaunay triangulation of P
(see Figure 5). This is the Delaunay triangulation of P ∪ {v1, v2, v3}, where v1,
v2, and v3 are three black points “at infinity” (see Figure 5). For any triangle t,
we use the notation C(t) to denote the circle whose boundary contains the three
vertices of t (note that if t contains a black point then C(t) is a halfplane). The
following lemma allows us to tell when we have found the entire set of points Q
that contribute to the decision boundary.
Lemma 3 Let ∅
= P ⊆ Q. The following statements are equivalent:
1. For every triangle t in the augmented Delaunay triangulation of P , if t has

a blue (respectively, red) vertex then C(t) does not have a red (respectively,
blue) point of S in its interior.

2. P = Q.

Proof. First we show that if Statement 1 of the lemma is not true, then State-
ment 2 is also not true, i.e., P
= Q. Suppose there is some triangle t in the
augmented Delaunay triangulation of P such that t has a blue vertex b and C(t)
contains a red point of S in its interior. Pivot in R along the ray originating at
b and passing through the center of C(t) (see Figure 6). This will give a circle C
with b and some red point r /∈ P on its boundary and with no red points inits
interior. Therefore, by Lemma 2, r contributes to the decision boundary and is
therefore in Q, so P
= Q. A symmetric argument applies when t has a red vertex
r and C(t) contains a blue vertex in its interior.

Next we show that if Statement 2 of the lemma is not true then Statement 1
is not true. Suppose that P
= Q. Let r be a point in Q \ P and, without loss of
generality, assume r is a red point. Since r is in Q, there is a circle C with r and
some other blue point b on its boundary and with no points of S in its interior.
We will use r and b to show that the augmented Delaunay triangulation of P
contains a triangle t such that either (1) b is a vertex of t and C(t) contains r
in its interior, or (2) C(t) contains both r and b in its interior. In either case,
Statement 1 of the lemma is not true because of triangle t.

458 D. Bremner et al.

v1 v2

v3

Fig. 5. The augmented Delaunay triangulation of S.

t

C(t)

b

r

Fig. 6. If Statement 1 of Lemma 3 is not true then P �= Q.

Refer to Figure 7 for what follows. Consider the largest circle C1 that is
concentric with C and that contains no point of P in its interior (this circle is
at least as large as C). The circle C1 will have at least one point p1 of P on
its boundary (it could be that p1 = b, if b ∈ P). Next, perform a pivot in P
along the ray originating at p1 and containing the center of C1. This will give
a circle C2 that contains C1 and with two points p1 and p2 of P ∪ {v1, v2, v3}
on its boundary and with no points of P ∪ {v1, v2, v3} in its interior. Therefore,
(p1, p2) is an edge in the augmented Delaunay triangulation of P .

The edge (p1, p2) partitions the interior of C2 into two pieces, one that con-
tains r and one that does not. It is possible to move the center of C2 along the
perpendicular bisector of (p1, p2) maintaining p1 and p2 on the boundary of C2.
There are two directions in which the center of C2 can be moved to accomplish
this. In one direction, say −→

d , the part of the interior that contains r only in-
creases, so move the center in this direction until a third point p3 ∈ P∪{v1, v2, v3}
is on the boundary of C2. The resulting circle has the points p1, p2, and p3 on its
boundary and no points of P in its interior, so p1, p2 and p3 are the vertices of a
triangle t in the augmented Delaunay triangulation of P . The circumcircle C(t)

Output-Sensitive Algorithms for Computing 459

r b

p1

C

C1

r

p1 = b

C = C1

r b

p1
p2

C2

C1

r

p1 = b
p2

C1

C2

r b

p1
p2

t
p3

C2

C(t)

r

p1 = b
p2

t
p3

C2

C(t)

(1) (2)

Fig. 7. If P �= Q then Statement 1 of Lemma 3 is not true. The left column (1)
corresponds to the case where b �∈ P and the right column (2) corresponds to the case
where b ∈ P .

contains r in its interior and contains b either in its interior or on its boundary.
In either case, t contradicts Statement 1, as promised.

Note that the first paragraph in the proof of Lemma 3 gives a method of
testing whether P = Q, and when this is not the case, of finding a point in
Q\P . For each triangle t in the Delaunay triangulation of P , if t contains a blue
vertex b then perform a pivot in R along the ray originating at b and passing
through C(t). If the result of this pivot is C(t), then do nothing. Otherwise, the
pivot finds a circle C with no red points in its interior and that has one blue

460 D. Bremner et al.

point b and one red point r /∈ P on its boundary. By Lemma 2, the point r must
be in Q. If t contains a red vertex, repeat the above procedure swapping the
roles of red and blue. If both pivots (from the red point and the blue point) find
the circle C(t), then we have verified Statement 1 of Lemma 3 for the triangle t.

The above procedure performs at most two pivots for each triangle t in
the augmented Delaunay triangulation of P . Therefore, this procedure per-
forms O(|P |) = O(κ) pivots. Since we repeat this procedure at most κ times
before deciding that κ < k, we perform O(κ2) pivots, at a total cost of
O(κ2 × n

κ2 log κ) = O(n log κ). The only other work done by the algorithm is
that of recomputing the augmented Delaunay triangulation of P each time we
add a new vertex to P . Since each such computation takes O(|P | log |P |) time
and |P | ≤ κ, the total amount of work done in computing all these triangulations
is O(κ2 log κ).

In summary, we have an algorithm that given S and κ decides whether the
condensed set Q of points in S that contribute to the decision boundary has size
at most κ, and if so, computes Q. This algorithm runs in O((κ2 +n) log κ) time.
By trying increasingly large values of κ as described in Section 3.1 we obtain our
main theorem.

Theorem 2 The nearest-neighbour decision boundary of a set of n points in
R

2 can be computed in O(n log k) time, where k is the number of points that
contribute to the decision boundary.

Remark: Theorem 2 extends to the case where there are more than 2 color
classes and our goal is to find all Voronŏı edges bounding two cells of different
color. The only modification required is that, for each color class, R, we use two
pivoting data structures, one for R and one for S \ R. When performing pivots
from a point in R, we use the data structure for pivots in S \ R. Otherwise, the
details of the algorithm are identical.
Remark: In the pattern-recognition community pattern classification rules are
often implemented as neural networks. In the terminology of neural networks,
Theorem 2 states that it is possible, in O(n log k) time, to design a simple one-
layer neural network that implements the nearest-neighbour decision rule and
uses only k McCulloch-Pitts neurons (threshold logic units).

4 Conclusions

We have given O(n log k) time algorithms for computing nearest-neighbour de-
cisions boundaries in 1 and 2 dimensions, where k is the number of points that
contribute to the decision boundary. A standard application of Ben-Or’s lower-
bound technique [1] shows that even the 1-dimensional algorithm is optimal in
the algebraic decision tree model of computation.

We have not studied algorithms for dimensions d ≥ 3. In this case, it is not
even clear what the term “output-sensitive” means. Should k be the number of
points that contribute to the decision boundary, or should k be the complexity
of the decision boundary? In the first case, k ≤ n for any dimension d, while in

Output-Sensitive Algorithms for Computing 461

the second case, k could be as large as Ω(n�d/2�). To the best of our knowledge,
both are open problems.

References

1. M. Ben-Or. Lower bounds for algebraic computation trees (preliminary report).
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
pages 80–86, 1983.

2. B. K. Bhattacharya and S. Sen. On a simple, practical, optimal, output-sensitive
randomized planar convex hull algorithm. Journal of Algorithms, 25(1):177–193,
1997.

3. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. Journal of Computing and Systems Science, 7:448–461, 1973.

4. T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16:361–368, 1996.

5. T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning:
Output-sensitive construction of four-dimensional polytopes and three-dimensional
Voronoi diagrams. Discrete & Computational Geometry, 18:433–454, 1997.

6. T. M. Cover and P. E. Hart. Nearest neighbour pattern classification. IEEE
Transactions on Information Theory, 13:21–27, 1967.

7. B. Dasarathy and L. J. White. A characterization of nearest-neighbour rule decision
surfaces and a new approach to generate them. Pattern Recognition, 10:41–46,
1978.

8. L. Devroye. On the inequality of Cover and Hart. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 3:75–78, 1981.

9. D. P. Dobkin and D. G. Kirkpatrick. Fast detection of poyhedral intersection.
Theoretical Computer Science, 27:241–253, 1983.

10. D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the
separation of convex polyhedra. Journal of Algorithms, 6:381–392, 1985.

11. C. A. R. Hoare. ACM Algorithm 64: Quicksort. Communications of the ACM,
4(7):321, 1961.

12. D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12(1):28–35, 1983.

13. D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM
Journal on Computing, 15(1):287–299, 1986.

14. F. P Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
1985.

15. M. I. Shamos. Geometric complexity. In Proceedings of the 7th ACM Symposium
on the Theory of Computing (STOC 1975), pages 224–253, 1975.

16. C. Stone. Consistent nonparametric regression. Annals of Statistics, 8:1348–1360,
1977.

17. G. T. Toussaint. Proximity graphs for instance-based learning. Manuscript, 2003.
18. G. T. Toussaint, B. K. Bhattacharya, and R. S. Poulsen. The application of Voronoi

diagrams to non-parametric decision rules. In Proceedings of Computer Science and
Statistics: 16th Symposium of the Interface, 1984.

19. R. Wenger. Randomized quick hull. Algorithmica, 17:322–329, 1997.

	Introduction
	A 1-Dimensional Algorithm
	A 2-Dimensional Algorithm
	The High Level Algorithm
	Pivots
	Finding the First Edge
	Finding More Points

	Conclusions

