
Constructive Plausible Logic

Is Relatively Consistent

David Billington and Andrew Rock

School of Computing and Information Technology
Nathan Campus, Griffith University
Brisbane, Queensland 4111, Australia

Telephone: +61 (0)7 3875 {5017,5016}
Facsimile: +61 (0)7 3875 5051

{d.billington,a.rock}@griffith.edu.au
http://www.griffith.edu.au

Abstract. An implemented, efficient, propositional non-monotonic
logic, called Constructive Plausible Logic, is defined and explained.
Several important properties enjoyed by this logic are stated. The
most important property, relative consistency, means that whenever
the set of axioms is consistent so is the set of all formulas proved
using defeasible information. Hence the non-monotonic deduction
mechanism is trustworthy. This is the first Plausible Logic which has
been proved to be relatively consistent. Constructive disjunction is
characterised by the property that a disjunction can be proved if and
only if at least one of its disjuncts can be proved. Constructive Plausible
Logic uses constructive disjunction. Moreover the ambiguity propa-
gating proof algorithm is simpler than the one in Billington and Rock [4].

Keywords: Nonmonotonicity; Common-sense reasoning; Logic; Knowl-
edge representation.

1 Introduction

In the late 1980s Nute [6] introduced a non-monotonic reasoning formalism called
Defeasible Logic. It was a propositional logic which dealt with uncertain and in-
complete information, as well as factual information. However the uncertainty
and incompleteness was not represented by numbers. Moreover the reasoning was
based on principles rather than on the manipulation of numbers. So probabili-
ties and certainty factors have no place in Defeasible Logic. Defeasible Logic has
many desirable properties, but perhaps the most important of these is a deter-
ministic polynomial deduction procedure which enables a straightforward imple-
mentation of this logic. However, Defeasible Logic can neither represent nor prove
disjunctions. In the late 1990s Billington [2] introduced Plausible Logic which
was based on Defeasible Logic but which could represent and prove clauses. Both
Defeasible Logic and Plausible Logic have a syntax which distinguishes between
formulas proved from just the facts or axioms, and those proved using defeasible
information.

T.D. Gedeon and L.C.C. Fung (Eds.): AI 2003, LNAI 2903, pp. 954–965, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Constructive Plausible Logic Is Relatively Consistent 955

Relative consistency means that whenever the set of axioms is consistent so is
the set of all formulas proved using defeasible information. Relative consistency
is important because it shows that the non-monotonic deduction mechanism
does not create inconsistencies. The incorporation of disjunction makes prov-
ing relative consistency very difficult. Indeed relative consistency has not been
proved for the Plausible Logic introduced in Billington and Rock [4].
Constructive disjunction is characterised by the property that

∨
L can be

proved if and only if at least one element of L can be proved. With classical
disjunction it is possible to prove

∨
L and not be able to prove any element

of L. Experience with translating business rules and regulations into Plausible
Logic indicates that often only constructive disjunction is needed. For example,
the eligibility criteria for becoming a member of the IEEE is a disjunctive list,
which means that if at least one criterion in the list is satisfied then the candi-
date is eligible. In general constructive disjunction is exactly what is needed for
any disjunctive list of eligibility criteria. The fact that constructive disjunction
is computationally simpler than classical disjunction means that constructive
disjunction may be just the right compromise between computational efficiency
and expressive power. Certainly Constructive Plausible Logic is much more ex-
pressive than Defeasible Logic.
The purpose of this paper is to define, and give some intuitions about, a Plau-

sible Logic which is relatively consistent. All attempts at proving relative con-
sistency for many different Plausible Logics with a non-constructive disjunction
have failed. As this paper shows, when the simpler constructive disjunction is
used then relative consistency can be proved.
A separate issue is that of ambiguity. An atom a is ambiguous if and only if

neither a nor its negation, ¬a, can be proved. Suppose there is evidence for b. If a
is ambiguous and a is evidence for ¬b then what should be concluded about b?
A logic is ambiguity blocking if it can conclude b; and it is ambiguity propagating
if b is ambiguous, because the ambiguity of a has been propagated to b.
The Plausible Logic presented in this paper has a simplified ambiguity prop-

agating proof algorithm compared to the Plausible Logic in Billington and
Rock [4]. The ambiguity propagating proof algorithm of Billington and Rock [4]
required an auxiliary proof algorithm. No such auxiliary algorithm is needed in
this paper.
Section 2 of this paper defines and explains Constructive Plausible Logic.

Section 3 presents the main results. Unfortunately space limitations allow the
inclusion of only the proof of the main theorem on relative consistency. However
all the proofs are in Billington [3]. Section 4 describes our implementation of
Constructive Plausible Logic, and contains an example of a reasoning problem
and its automated proof. Section 5 is the conclusion.

2 Constructive Plausible Logic

We begin by establishing our basic notation and terminology. We often abbre-
viate “if and only if” by “iff”. X is a subset of Y is denoted by X ⊆ Y ; the



956 David Billington and Andrew Rock

notation X ⊂ Y means X ⊆ Y and X �= Y , and denotes that X is a proper
subset of Y . The empty set is denoted by {}, and the set of all integers by Z.
If m and n are integers then we define [m..n] = {i ∈ Z : m ≤ i ≤ n}. The car-
dinality of a set S is denoted by |S|. The length of a sequence P is denoted by
|P |. Let P = (P (1), P (2), . . . , P (|P |)) be a finite sequence. If i ∈ [1..|P |] then
P [1..i] = (P (1), . . . , P (i)), and if i = 0 then P [1..i] = (), the empty sequence.
The notation x ∈ P means that there exists j in [1..|P |] such that x = P (j).
And x /∈ P means not(x ∈ P ). The concatenation of a sequence P onto the be-
ginning of the sequence Q is denoted by P&Q. Let S be any set. It is sometimes
convenient to abbreviate “for all x in S” by “∀x ∈ S”. Also “there exists an x
in S such that” is sometimes abbreviated to “∃x ∈ S such that”, and sometimes
to just “∃x ∈ S”. P(L) is the powerset of L. When convenient we abbreviate
“for all I in P(S)” by “∀I ⊆ S”. Also “there exists an I in P(S) such that” is
sometimes abbreviated to “∃I ⊆ S such that”, and sometimes to just “∃I ⊆ S”.
Our alphabet is the union of the following four pairwise disjoint sets of sym-

bols: a non-empty finite set, Atm, of (propositional) atoms; the set {¬, ∧
,
∨
, →,

⇒, ⇀} of connectives; the set {+, −, δ, γ, π} of proof symbols; and the set of
punctuation marks consisting of the comma and both braces. By a literal we
mean any atom, a, or its negation, ¬a. A clause, ∨

L, is the disjunction of a
finite set, L, of literals.

∨{} is the empty clause or falsum and is thought of
as always being false. If l is a literal then we regard

∨{l} as another notation
for l and so each literal is a clause. A clause

∨
L is a tautology iff both an atom

and its negation are in L. A contingent clause is a clause which is not empty
and not a tautology. A dual-clause,

∧
L, is the conjunction of a finite set, L,

of literals.
∧{} is the empty dual-clause or verum and is thought of as always

being true. If l is a literal then we regard
∧{l} as another notation for l and

so each literal is a dual-clause. Thus
∧{l} = l = ∨{l}. Neither the verum nor

the falsum are literals. The verum is not a clause, and the falsum is not a dual-
clause. A cnf-formula,

∧
C, is the conjunction of a finite set, C, of clauses. A

dnf-formula,
∨
D, is the disjunction of a finite set, D, of dual-clauses. If c is

a clause then we regard
∧{c} as another notation for c. If d is a dual-clause then

we regard
∨{d} as another notation for d. Thus both clauses and dual-clauses

are both cnf-formulas and dnf-formulas. By a formula we mean any cnf-formula
or any dnf-formula. The set of all literals is denoted by Lit ; the set of all clauses
is denoted by Cls ; the set of all dual-clauses is denoted by DCls ; the set of all
cnf-formulas is denoted by CnfFrm; the set of all dnf-formulas is denoted by
DnfFrm; and the set of all formulas is denoted by Frm. Frm is finite.
We define the complement, ∼f , of a formula f and the complement, ∼F , of

a set of formulas F as follows. If f is an atom then ∼f is ¬f ; and ∼¬f is f . If L
is a set of literals then ∼L = {∼l : l ∈ L}. If ∨

L is a clause then ∼∨
L =

∧∼L.
If

∧
L is a dual-clause then ∼∧

L =
∨∼L. So the complement of a clause is

a dual-clause, and the complement of a dual-clause is a clause. In particular the
falsum and the verum are complements of each other. If E is a set of clauses
or a set of dual-clauses then ∼E = {∼e : e ∈ E}. If ∧

C is a cnf-formula then
∼∧

C =
∨∼C. If ∨

D is a dnf-formula then ∼∨
D =

∧∼D. So the complement



Constructive Plausible Logic Is Relatively Consistent 957

of a cnf-formula is a dnf-formula, and the complement of a dnf-formula is a cnf-
formula. If F is a set of formulas then ∼F = {∼f : f ∈ F}. Both Lit and Frm
are closed under complementation.
The information with which constructive plausible logic reasons is either

certain or defeasible. All the information is represented by various kinds of
rules and a priority relation on those rules. Define r to be a rule iff r =
(A(r), arrow (r), c(r)) where A(r) is a finite set of literals called the antecedent
of r, arrow (r) ∈ {→, ⇒, ⇀}, c(r) is a literal called the consequent of r, c(r) /∈
A(r), and ∼c(r) /∈ A(r). A rule r which contains the strict arrow, →, is called
a strict rule and is usually written A(r) → c(r). A rule r which contains the
plausible arrow, ⇒, is called a plausible rule and is usually written A(r)⇒ c(r).
A rule r which contains the defeater arrow, ⇀, is called a defeater rule and is
usually written A(r)⇀ c(r). The antecedent of a rule can be the empty set. The
set of all rules is denoted by Rul . Rul is finite.
Strict rules, for example A → l, behave like the material conditional. If all

the literals in A are proved then l can be deduced. Plausible rules, for example
A ⇒ l, represent some of the aspects of a situation which are plausible. If all
the literals in A are proved then l can be deduced provided that all the evidence
against l has been defeated. So we take A ⇒ l to mean that, in the absence of
evidence against l, A is sufficient evidence for concluding l. A defeater rule, for
example A ⇀ ∼l, is evidence against l, but it is not evidence for ∼l. A ⇀ ∼l can
be defeated by defeating

∧
A. Defeater rules can be used to prevent conclusions

which would be too risky. For instance, given the rules a⇒ b and b⇒ c it may
be too risky to conclude that things with property a usually have property c. In
which case we could add the defeater rule a ⇀ ∼c. In this case adding a ⇒ ∼c
would be wrong because having property a is not a reason for having property
∼c, indeed it is a weak reason for having property c.
Let R be any set of rules. The set of antecedents of R is denoted by A(R);

that is A(R) = {A(r) : r ∈ R}. The set of consequents of R is denoted by c(R);
that is c(R) = {c(r) : r ∈ R}. We denote the set of strict rules in R by Rs, the
set of plausible rules in R by Rp, and the set of defeater rules in R by Rd. Also
we define Rpd = Rp ∪Rd and Rsp = Rs ∪Rp.
Let l be any literal. If C is any set of clauses define C[l] = {∨L ∈ C : l ∈ L}

to be the set of all clauses in C which contain l. If R is any set of rules and L is
any set of literals then define R[l] = {r ∈ R : l = c(r)} to be the set of all rules
in R which end with l; and R[L] = {r ∈ R : c(r) ∈ L} to be the set of all rules
in R which have a consequent in L.
Any binary relation, >, on any set S is cyclic iff there exists a sequence,

(r1, r2, . . . , rn) where n ≥ 1, of elements of S such that r1 > r2 > . . . > rn > r1.
A relation is acyclic iff it is not cyclic. If R is a set of rules then > is a priority
relation on R iff > is an acyclic binary relation on R such that > is a subset
of Rp × Rpd. We read r1 > r2 as r1 beats r2, or r2 is beaten by r1. Notice that
strict rules never beat, and are never beaten by, any rule. Also defeater rules
never beat any rule. Let R[l; s] = {t ∈ R[l] : t > s} be the set of all rules in R
with consequent l that beat s.



958 David Billington and Andrew Rock

A plausible description of a situation is a 4-tuple PD = (Ax , Rp, Rd, >) such
that PD1, PD2, PD3, and PD4 all hold.
(PD1) Ax is a set of contingent clauses.
(PD2) Rp is a set of plausible rules.
(PD3) Rd is a set of defeater rules.
(PD4) > is a priority relation on Rpd.
The clauses in Ax , called axioms, characterise the aspects of the situation that
are certain. The set of strict rules, Rs, is defined by Rs = {∼(L−{l})→ l : l ∈ L
and

∨
L ∈ Ax}. Define R = Rs∪Rp∪Rd to be the set of rules generated from PD .

The ordered pair (R,>) is called a plausible theory. If T = (R,>) is a plausible
theory then Ax(T ) = {∨({c(r)} ∪ ∼A(r)) : r ∈ Rs} is the set of axioms from
which Rs was generated.
Let S be a set of clauses. A clause Cn is resolution-derivable from S iff there is

a finite sequence of clauses C1, . . . , Cn such that for each i in [1..n], either Ci ∈ S
or Ci is the resolvent of two preceding clauses. The sequence C1, . . . , Cn is called
a resolution-derivation of Cn from S. The set of all clauses which are resolution-
derivable from S is denoted by Res(S). Define Rsn(S) = Res(S)− {∨{}} to be
the set of all non-empty clauses in Res(S).
Let S be a set of sets. Define the set of minimal elements of S, Min(S),

to be the set of minimal elements of the partially ordered set (S,⊆). That is,
Min(S) = {Y ∈ S : if X ⊂ Y then X /∈ S}.
Let R be the set of rules generated from some plausible description

(Ax , Rp, Rd, >). Define Inc(R) = {∼L : ∨
L ∈ Rsn(Ax ) ∪ {∨{k,∼k} : k ∈

c(R)}} to be the set of non-empty sets of literals which are inconsistent with R.
Define Inc(R, l) = Min({I − {l} : I ∈ Inc(R) and l ∈ I}). Each member of
Inc(R, l) is a minimal set of literals which is inconsistent with l. Since Ax is
finite and R is finite, Res(Ax), Rsn(Ax), Inc(R), and Inc(R, l) are finite.
Cnf-formulas can be proved at three different levels of certainty or confidence.

The definite level, indicated by δ, is like classical monotonic proof in that more
information cannot defeat a previous proof. If a formula is proved definitely then
one should behave as if it is true. Proof at the general [respectively, plausible]
level, indicated by γ [respectively, π], is non-monotonic and propagates [respec-
tively, blocks] ambiguity. If a formula is proved at the general or plausible level
then one should behave as if it is true, even though it may turn out to be false.
It is sometimes necessary to prove that a cnf-formula is impossible to prove.

To signify the six possible cases of proof we use the following tags : +δ, −δ, +γ,
−γ, +π, −π. If α ∈ {δ, γ, π} then +αf indicates f is proved at the α level,
and −αf indicates that we have proved that +αf is impossible prove. A tagged
formula is a formula preceded by a tag; so all tagged formulas have the form
±αf where ± ∈ {+,−}, α ∈ {δ, γ, π}, and f is a formula.
In the following inference conditions, P = (P (1), . . . , P (|P |)) is a finite se-

quence, (R,>) is a plausible theory, C is a non-singleton set of clauses, L is a
non-singleton set of literals, l is a literal, and α ∈ {δ, γ, π}.



Constructive Plausible Logic Is Relatively Consistent 959

+
∧
) If P (i+ 1) = +α

∧
C then ∀c ∈ C, +αc ∈ P [1..i].

−∧
) If P (i+ 1) = −α∧

C then ∃c ∈ C, −αc ∈ P [1..i].
+

∨
) If P (i+ 1) = +α

∨
L then ∃l ∈ L, +αl ∈ P [1..i].

−∨
) If P (i+ 1) = −α∨

L then ∀l ∈ L, −αl ∈ P [1..i].
+L) If P (i+ 1) = +αl then either

.1) ∃r ∈ Rs[l],+α
∧
A(r) ∈ P [1..i]; or

.2) both
.1) α ∈ {γ, π} and ∃r ∈ Rp[l],+α

∧
A(r) ∈ P [1..i], and

.2) ∀J ∈ Inc(R, l) ∃j ∈ J ∀s ∈ R[j] either
.1) ∃t ∈ Rp[l; s],+α

∧
A(t) ∈ P [1..i]; or

.2) A(s) �= {} and +α∼∧
A(s) ∈ P [1..i]; or

.3) α = π and −π∧A(s) ∈ P [1..i].
−L) If P (i+ 1) = −αl then

.1) ∀r ∈ Rs[l],−α
∧
A(r) ∈ P [1..i], and

.2) either
.1) α = δ or ∀r ∈ Rp[l],−α

∧
A(r) ∈ P [1..i]; or

.2) ∃J ∈ Inc(R, l) ∀j ∈ J ∃s ∈ R[j] such that
.1) ∀t ∈ Rp[l; s],−α

∧
A(t) ∈ P [1..i], and

.2) A(s) = {} or −α∼∧
A(s) ∈ P [1..i], and

.3) α = γ or +π
∧
A(s) ∈ P [1..i].

Let T be a plausible theory. A formal proof or T -derivation P is a finite
sequence, P = (P (1), . . . , P (|P |)), of tagged cnf-formulas such that for all i in
[0..|P |−1] all the inference conditions hold. So () is a T -derivation. If the plausible
theory T is known or is irrelevant then we often abbreviate T -derivation to just
derivation. Each element ±αf of a derivation is called a line of the derivation.
First notice that the inference conditions are paired, one positive and one

negative. The negative one is just the strong negation of the positive one. That
is, the negative condition is obtained by negating the positive condition and then
replacing +X /∈ P [1..i] by −X ∈ P [1..i], and −X /∈ P [1..i] by +X ∈ P [1..i]. So
only the positive inference conditions need explaining. +

∧
says that to prove

a conjunction at level α, all the conjuncts must have been proved at level α
previously. +

∨
says that to prove a disjunction at level α, at least one of the

disjuncts must have been proved at level α previously. This is just the definition
of constructive disjunction.
+L shows how to prove a literal l at level α. +L.1 says that if the conjunction

of the antecedent of a strict rule has been previously proved at level α, then its
consequent can be added to the derivation. +L.1 is just modus ponens for strict
rules. +L.2.1 says that +L.1 is the only way to prove a literal at level δ. Hence
proof at level δ only uses strict rules, which were generated from the axioms.
+L.2 gives another way of proving a literal at the defeasible levels. +L.2.1

says there must be some evidence for the literal, and +L.2.2 says that all the
evidence against the literal must be defeated. +L.2.1 is similar to +L.1 but
with plausible rules replacing strict rules. +L.2.2 says that every set of literals
which is inconsistent with l must contain an element j such that every rule s
supporting j is defeated. Among other things this ensures that j cannot be



960 David Billington and Andrew Rock

proved at a defeasible level. +L.2.2.1, +L.2.2.2, and +L.2.2.3 give the three
ways in which a rule can be defeated. +L.2.2.1 says that s is beaten by an
applicable plausible rule, t, which supports l. +L.2.2.2 says that the antecedent
of s is not empty and that the complement of the conjunction of the antecedent
of s has previously been proved. +L.2.2.3 gives the π level an alternative way to
defeat s, which is not available at the γ level. This is the only difference between
these two defeasible levels. +L.2.2.3 says that at the π level the conjunction of
the antecedent of s has previously been proved to be not provable.
The notation T � ±αf means that ±αf is in a T -derivation. If α ∈ {δ, γ, π}

then we define T (+α) = {f : T � +αf} and T (−α) = {f : T � −αf}. A
constructive plausible logic consists of a plausible theory and the inference con-
ditions.

3 Results

This section contains some of the results which have been proved for Constructive
Plausible Logic. The proofs of these and other results are in Billington [3].
Since a negative tag means that the corresponding positively tagged formula

has been proved to be unprovable, it would be reassuring to know that the same
formula cannot have both a positive and a negative tag. This property, called
coherence, is proved in the first result.
Intuitively an ambiguity propagating proof procedure should be more reliable

than an ambiguity blocking proof procedure. This is because in an ambiguity
propagating proof procedure more evidence is required to defeat an attack than
in an ambiguity blocking proof procedure. So it would be good to know that every
formula that can be proved at the δ level (using only infallible information) can
be proved at the γ level (which is ambiguity propagating), and every formula
that can be proved at the γ level can be proved at the π level (which is ambiguity
blocking). This hierarchy is established in the first result, as is a corresponding
hierarchy for the negative tags.

Theorem 1 (Coherence and Hierarchy).
Let T be a plausible theory and suppose α ∈ {δ, γ, π}.
(1) (Coherence) T (+α) ∩ T (−α) = {}.
(2) (Hierarchy) T (+δ) ⊆ T (+γ) ⊆ T (+π), and T (−π) ⊆ T (−γ) ⊆ T (−δ).
End

Sets in Inc(R) are inconsistent with the rules in R. So it would be nice to show
that it is not possible to prove every element of a set in Inc(R). Unfortunately
it is possible to prove every element of a set in Inc(R), but only if the axioms
were inconsistent. This is what lemma 3 says. To help prove lemma 3, we need
lemma 2 which shows that if every element of a set in Inc(R) is proved then the
fault is confined to just the strict rules (which were derived from the axioms).

Lemma 2 (Inconsistency Needs Strict Rules).
Suppose T = (R,>) is a plausible theory, I ∈ Inc(R), and α ∈ {δ, γ, π}. Let P
be a T -derivation such that for all l ∈ I, +αl ∈ P . Then either



Constructive Plausible Logic Is Relatively Consistent 961

1. for all l ∈ I, +L.2 fails, and so +L.1 holds; or
2. α ∈ {γ, π} and there exists a literal k such that +αk and +α∼k are in
a proper prefix of P .

End

Let T be a plausible theory and F be a set of cnf-formulas. Define F−∧ =
{c : ∧

C ∈ F and c ∈ C}. Then F is consistent [respectively, T -consistent ]
iff

∨{} /∈ Res(F−∧) [respectively,
∨{} /∈ Res(F−∧ ∪ Ax(T ))]. So T -consistent

means consistent with the axioms of T . F is inconsistent iff F is not consistent.
Since Res(F−∧) ⊆ Res(F−∧ ∪Ax(T )), if F is T -consistent then F is consis-

tent. The converse is not always true. Consider the following counter-example.
Let Ax(T ) = {∨{a, b}}, and F = F−∧ = {¬a,¬b}. Then F is consistent but F
is not T -consistent.

Lemma 3 (Relative Consistency for Members of Inc(R)).
Suppose T = (R,>) is a plausible theory and α ∈ {δ, γ, π}. If I ∈ Inc(R)
and there is a T -derivation P such that for all l ∈ I, +αl ∈ P then Ax (T ) is
inconsistent.
End

Consider the following property. If two clauses can be proved then their
resolvent (if it exists) can be proved. At least some variation of this “resolution
property” seems to be necessary for relative consistency to be proved. Hence a
resolution property is not only a useful result by itself, but also highly important.
The exact form of the resolution property which Constructive Plausible Logic
satisfies is given in lemma 4.

Lemma 4 (Resolution Property).
Suppose T is a plausible theory and α ∈ {δ, γ, π}. Let L and M be two sets of
literals and let l be a literal. If

∨
(L ∪ {l}) ∈ T (+α) and ∨

(M ∪ {∼l}) ∈ T (+α)
then either

∨
(L ∪M) ∈ T (+α) or {l,∼l} ⊆ T (+α).

End

We would like to show that the set of all proved formulas was consistent.
Unfortunately this is not true, because if the axioms are inconsistent then the
set of all proved formulas may also be inconsistent. Our final result shows that if
the axioms are consistent then the set of all proved formulas is not only consistent
but also consistent with the axioms.

Theorem 5 (Relative Consistency).
If T is a plausible theory and α ∈ {δ, γ, π} then T (+α) is T -consistent iff Ax(T )
is consistent.

Proof.
To prove this theorem we shall need the definition of a subclause and a technical
lemma, Lemma TL, concerning only classical propositional resolution.
If

∨
L and

∨
M are two clauses then

∨
L is a subclause of

∨
M iff L ⊆M .



962 David Billington and Andrew Rock

Lemma TL.
Let S and S∗ be two sets of clauses. Let L and X be two sets of literals.

1. If S ⊆ S∗ then Res(S) ⊆ Res(S∗), and Rsn(S) ⊆ Rsn(S∗).
2. If every clause in S∗ has a subclause in S then every clause in Res(S∗) has
a subclause in Res(S).

3. If
∨
X ∈ Res(S ∪L) and ∨

X /∈ Res(L), then there is a finite subset K of L
such that

∨
(X ∪∼K) ∈ Res(S), and X ∩∼K = {}.

EndTL

Let Ax = Ax(T ). Then Ax−∧ = Ax , and T (+α)−∧ = T (+α)−{∧C : ∧C ∈
T (+α) and |C| �= 1}. By lemma TL(1), Res(Ax) ⊆ Res(T (+α)−∧ ∪ Ax), so if
T (+α) is T -consistent then Ax is consistent.
Conversely, suppose T (+α) is not T -consistent. Then

∨{} ∈ Res(T (+α)−∧∪
Ax). Let T = (R,>). If there is a literal l such that {l,∼l} ⊆ T (+α)−∧,
then {l,∼l} ∈ Inc(R), and so by lemma 3, Ax is inconsistent. So sup-
pose there is no literal l such that {l,∼l} ⊆ T (+α)−∧. By lemma 4,
Rsn(T (+α)−∧) = T (+α)−∧. If

∨{} ∈ Res(T (+α)−∧) then there is a lit-
eral k such that {k,∼k} ⊆ Rsn(T (+α)−∧), and hence {k,∼k} ⊆ T (+α)−∧.
So suppose

∨{} /∈ Res(T (+α)−∧). Let L be the set of all literals in T (+α).
Then L ⊆ T (+α)−∧, and so by lemma TL(1),

∨{} /∈ Res(L). By +
∨
, every

clause in T (+α)−∧ ∪ Ax has a subclause in L ∪ Ax , and so by lemma TL(2),
every clause in Res(T (+α)−∧ ∪ Ax) has a subclause in Res(L ∪ Ax). Hence∨{} ∈ Res(L ∪ Ax). By lemma TL(3), there is a finite subset K of L such that∨
(∼K) ∈ Res(Ax ). If ∼K = {} then Ax is inconsistent. So suppose ∼K is
not empty. Then

∨
(∼K) ∈ Rsn(Ax) and so K ∈ Inc(R). By lemma 3, Ax is

inconsistent.
EndProof5

4 Implementation

Constructive Plausible Logic has been implemented as a tool, CPL, that at-
tempts the proofs of tagged formulas. The tool is written in literate Haskell, and
is fully listed and documented in Rock [9]. It is implemented in a manner empha-
sising correctness and simplicity, similar to that of previous versions of Plausible
Logic [4, 8], and Defeasible Logic [5, 7], but does not at present contain as many
speed optimisations to cope with hundreds of thousands of rules, and is simpler
to use. It could be extended with more usage options and optimisations to match
the previous systems. It presently consists of about 1300 logical lines of code,
compared to 5000 for the previous implementation of Plausible Logic [8].
To demonstrate the tool, the following reasoning puzzle will be used. We know

for certain that Hans is a native speaker of Pennsylvania-Dutch, nspd , that native
speakers of Pennsylvania-Dutch are native speakers of German, nspd → nsg or∨{¬nspd , nsg}, and that persons born in Pennsylvania are born in the United
States of America, bp → busa or

∨{¬bp, busa}. We also know that usually native



Constructive Plausible Logic Is Relatively Consistent 963

/* file: PennDutch.d

purpose: Generalised competitors. */

% plausible description:

nspd.

\/{~nspd, nsg}.

\/{~bp, busa}.

R1: nsg =>~busa.

R2: nspd => bp.

R2 > R1.

% the requested proofs:

output{+d busa}. output{+g busa}. output{+p busa}.

output{-d busa}. output{-g busa}. output{-p busa}.

output{+d~busa}. output{+g~busa}. output{+p~busa}.

output{-d~busa}. output{-g~busa}. output{-p~busa}.

output{+d bp}. output{+g bp}. output{+p bp}.

output{-d bp}. output{-g bp}. output{-p bp}.

output{+d~bp}. output{+g~bp}. output{+p~bp}.

output{-d~bp}. output{-g~bp}. output{-p~bp}.

Fig. 1. CPL input file containing the Pennsylvania-Dutch plausible description
and requests to output specific proofs

speakers of German are not born in the United States, nsg ⇒ ¬busa, but that
usually native speakers of Pennsylvania-Dutch are born in Pennsylvania, nspd ⇒
bp. The latter rule, being more specific, should take priority over the former.
These axioms, plausible rules and the priority form a plausible description.

nspd∨{¬nspd , nsg}∨{¬bp, busa}
r1: nsg ⇒ ¬busa
r2: nspd ⇒ bp

r2 > r1

We would like to know whether we can conclude that Hans was born in the USA.
Figure 1 shows the plausible description coded for input to the CPL tool.

∨
is

approximated by \/. %, /* and */ delimit comments as in Prolog. The input
includes output directives to request proofs of tagged formulas. In these d, g
and p stand for δ, γ and π respectively.
The CPL tool prints traces for all of the requested proofs and a summary

table of the results. The trace of the proof of +πbusa is listed in Figure 2. The
trace starts with the tagged formulas to be proved, the goal. Each line of each
inference rule used is indicated by printing the label for that line, e.g. +L.1 for
line +L.1, and -/\ for line −∧

. As variables scoped by ∀ and ∃ are instantiated
their values are printed. The attempted proofs of subgoals are printed indented.



964 David Billington and Andrew Rock

To Prove: +p busa

. +L.1

. r = {bp} -> busa

. To Prove: +p bp

. . +L.1

. . +L.2.1

. . r = R2: {nspd} => bp

. . To Prove: +p nspd

. . . +L.1

. . . r = {} -> nspd

. . . To Prove: +p /\{}

. . . . +/\

. . . Proved: +p /\{}

. . Proved: +p nspd

. . +L.2.2

. . J = [~busa]

. . j =~busa

. . s = R1: {nsg} =>~busa

. . +L.2.2.1

. . t = R2: {nspd} => bp

. . Proved previously: +p nspd

. . J = [~bp]

. . j =~bp

. . s = {~busa} ->~bp

. . +L.2.2.1

. . +L.2.2.2

. . Loop detected: +p busa

. . +L.2.2.3

. . To Prove: -p~busa

. . . -L.1

. . . -L.2.1

. . . r = R1: {nsg} =>~busa

. . . To Prove: -p nsg

. . . . -L.1

. . . . r = {nspd} -> nsg

. . . . To Prove: -p nspd

. . . . . -L.1

. . . . . r = {} -> nspd

. . . . . To Prove: -p /\{}

. . . . . . -/\

. . . . . Not proved: -p /\{}

. . . . Not proved: -p nspd

. . . Not proved: -p nsg

. . . -L.2.2

. . . J = [bp]

. . . j = bp

. . . s = R2: {nspd} => bp

. . . -L.2.2.1

. . . -L.2.2.2

. . . To Prove: -p~nspd

. . . . -L.1

. . . . r = {~nsg} ->~nspd

. . . . To Prove: -p~nsg

. . . . . -L.1

. . . . . -L.2.1

. . . . Proved: -p~nsg

. . . . -L.2.1

. . . Proved: -p~nspd

. . . -L.2.2.3

. . . Proved previously: +p nspd

. . Proved: -p~busa

. Proved: +p bp

Proved: +p busa

Goal count = 10

Fig. 2. CPL trace of the proof +πbusa

Duplicated proofs of subgoals are avoided by maintaining a history of prior
results of attempted proofs. This same history is used to detect loops, where
a goal generates itself as a subgoal. Where a loop is detected the proof must be
achieved by an alternate path if possible. The trace ends with a count of the
goals and subgoals, a measure of the effort required for that proof.

5 Conclusion

A constructive Plausible Logic has been defined and explained and implemented.
This is the first Plausible Logic which has been proved to be relatively consistent,
an important property ensuring that the non-monotonic deduction mechanism



Constructive Plausible Logic Is Relatively Consistent 965

is trustworthy. It also has the desirable properties of coherence, hierarchy, and
resolution. Moreover its ambiguity propagating proof algorithm is simpler than
the one in Billington and Rock [4]. Its implementation has been at least as
straightforward and efficient as its predecessors.
In the past many Plausible Logics have been defined with a non-constructive

disjunction, and then the proof of relative consistency has been attempted. In
every case the attempt has failed. But now we can start with this constructive
Plausible Logic and try to generalise the disjunction while maintaining relative
consistency. Antoniou and Billington [1] showed that an ambiguity propagating
version of Defeasible Logic could be embedded into Default Logic with Priori-
ties. An attempt to embed an ambiguity propagating version of the Plausible
Logic of Billington and Rock [4] into Default Logic with Priorities failed because
the relative consistency of that Plausible Logic could not be proved. Now that
constructive Plausible Logic is relatively consistent it is worthwhile to see if it
can be embedded into Default Logic with Priorities.

References

[1] G. Antoniou and D. Billington. Relating defeasible and default logic. In Proceed-
ings of the 14th Australian Joint Conference on Artificial Intelligence, volume
2256 of Lecture Notes in Artificial Intelligence, pages 13–24. Springer, 2001. 965

[2] D. Billington. Defeasible deduction with arbitrary propositions. In Poster Pro-
ceedings of the 11th Australian Joint Conference on Artificial Intelligence, pages
3–14, Griffith University, 1998. 954

[3] David Billington. Constructive Plausible Logic version 1.2 repository. Available
from the author, 2003. 955, 960

[4] David Billington and Andrew Rock. Propositional plausible logic: Introduction
and implementation. Studia Logica, 67:243–269, 2001. 954, 955, 962, 965

[5] Michael J. Maher, Andrew Rock, Grigoris Antoniou, David Billington, and Tristan
Miller. Efficient defeasible reasoning systems. International Journal on Artificial
Intelligence Tools, 10(4):483–501, 2001. 962

[6] D. Nute. Defeasible reasoning. In Proceedings of the 20th Hawaii International
Conference on System Science, pages 470–477, University of Hawaii, 1987. 954

[7] Andrew Rock. Deimos: A query answering Defeasible Logic system. Available
from the author, 2000. 962

[8] Andrew Rock. Phobos: A query answering Plausible Logic system. Available from
the author, 2000. 962

[9] Andrew Rock. Implementation of Constructive Plausible Logic (version 1.2).
Available from the author, 2003. 962


	Constructive Plausible Logic Is Relatively Consistent
	Introduction
	Constructive Plausible Logic
	Results
	Implementation
	Conclusion


