

Agentized, Contextualized Filters
for Information Management

David A. Evans, Gregory Grefenstette, Yan Qu,
James G. Shanahan, Victor M. Sheftel

Clairvoyance Corporation, 5001 Baum Boulevard, Suite 700

Pittsburgh, PA 15213-1854, USA
{dae, grefen, y.qu, jimi, v.sheftel}@clairvoyancecorp.com

Abstract. When people read or write documents, they spontaneously
generate new information needs: for example, to understand the text they are
reading; to find additional information related to the points they are making in
their drafts. Simultaneously, each Information Object (IO) (i.e., word, entity,
term, concept, phrase, proposition, sentence, paragraph, section, document,
collection, etc.) someone reads or writes also creates context for the other IOs
in the same discourse. We present a conceptual model of Agentized,
Contextualized Filters (ACFs)�agents that identify an appropriate context for
an information object and then actively fetch and filter relevant information
concerning the information object in other information sources the user has
access to. We illustrate the use of ACFs in a prototype knowledge
management system called ViviDocs.

1 Information Management

Developing technology for information management (IM) is a challenge because our
systems cannot be based on the perfection of any single function�such as superior
information retrieval, for example�but rather must derive their usefulness from an
interaction of many functions. Effective IM will depend on the integration (and
exploitation) of models of (1) the user, (2) the context, and (3) the application (or
information purpose) with (4) the processing of source data. Integration will be the
dominant factor in making information management systems useful. To aid such
integration, we seek to mobilize information in the user�s environment.

IM tasks are highly contextualized, highly linked to other tasks and related
information�never tasks in isolation. Every time a user engaged in work reads or
writes, the user spontaneously generates new information needs: to understand the
text he or she is reading or to supply more substance to the arguments he or she is
creating. Simultaneously, each Information Object (IO)�word, entity, term, concept,
phrase, proposition, sentence, paragraph, section, document, collection, etc.�
encountered or produced creates context for the other IOs in the same discourse. An
effective IM system will automatically link varieties of such IOs, dynamically
preparing answers to implicit information needs.

To this end, rather than focus on a system that performs a single �end-to-end�
function�processing a request for information or finding �similar� documents or
even �answering a question��we have been focusing on the critical components of a
system (which we call �ViviDocs�) that operates behind more ordinary user tasks,

L. van Elst, V. Dignum, and A. Abecker (Eds.): AMKM 2003, LNAI 2926, pp. 229-244, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.2
 Für schnelle Web-Anzeige optimieren: Ja
 Piktogramme einbetten: Ja
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [1200 1200] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 150 dpi
 Downsampling für Bilder über: 225 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Mittel
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 600 dpi
 Downsampling für Bilder über: 900 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein
 Bitanzahl pro Pixel: Wie Original Bit

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Untergruppen bilden unter: 100 %
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: []
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
 Methode: Standard
Arbeitsbereiche:
 Graustufen ICC-Profil:
 RGB ICC-Profil: sRGB IEC61966-2.1
 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Nein
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Nein
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein
 EPS-Info von DSC beibehalten: Nein
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Nein

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [1200 1200]
>> setpagedevice

230 David A. Evans et al.

such as reading messages or writing reports. These tasks are not, explicitly, directed at
finding information. But when performed in the workplace, these tasks continually
generate new information needs; and to address these, we require a system that can
ground a document in a structured web of authoritative information.

2 Agentized, Contextualized Filters

In ViviDocs, while a person reads or writes a text (an e-mail message; a report), the
components of the text are continually analyzed into candidate IOs. A variety of
agents are generated for each new IO. These agents identify an appropriate (typically
local) context for the IO�represented by other text or information in the user�s
environment�and then actively fetch and filter relevant information concerning the
IO in information sources the user has access to. We call such agents �Agentized,
Contextualized Filters� (ACFs). They are agents in the sense that they operate
autonomously and asynchronously; they are triggered by some event; they use their
own data; and they perform specific functions on the data; and they adjust to changing
conditions, potentially learning from the user�s behavior [1]. They are contextualized
because they are anchored to specific IOs in contexts of use.

2.1 A Conceptual Model of ACFs

We define an ACF as a function that links one information object (as anchor) with
another information object (output), taking into account the context of the task and the
context of the user�s work environment. Formally, we define an ACF as:

),,,,,,,,(iiiiiiiiii FTCUHSRPACF θ (1)

where (for time/instance i) Pi represents the feature profile of the information object,
Ri, the associated knowledge resources, Si, the target sources, iθ , the threshold, Hi,
the history lists, Ui, the utility function for the user, Ci, the processing context, Ti, the
triggering condition that activates the agent, and Fi, the response function and format.
We elaborate on each of these factors below.
Profile (Pi). The Profile is a representation of the information object based on its
textual content. For example, in an information retrieval system, a profile representing
an IO (e.g., a document or paragraph) might consist of a list of terms with associated
weights to reflect their usages in the document or with respect to a document
collection.

Resource (Ri). Resource refers to language resources (e.g., stop words, grammar,
lexicons, etc.), knowledge resources (e.g., abstract lexical-semantic types, taxonomies
or classification schemata, semantic networks, inference rules, etc.), and statistical
models (e.g., term frequency and distribution counts, language models, etc.) used for
processing.

Source (Si). Source refers to the target or available information sources, accessible to
the user or to the agent, in which responses to information needs may be found. In a
workgroup, this might include all the user�s files and the accessible files of the
members of the user�s team or department. In a general business setting, this might

Agentized, Contextualized Filters for Information Management 231

include the contents of the company intranet, extranet, and, selectively, the internet, as
well as the user�s personal files.

History (Hi). History consists of lists of information objects (and perhaps �scores�)
that have been generated by previous actions of ACFs. For example, in information
retrieval with user feedback, the initial ranked list of documents considered as
relevant by the system can be regarded as the history for the next round of retrieval
with additional user feedback.

Threshold (iθ). A threshold is used to control the cut-off points in decision making.
Thresholds can be absolute numbers (e.g., the top 100 documents or passages),
similarity scores, or confidence scores applied to retrieved information.

Utility (Ui). Utility is used to measure and rank system outputs based on the benefits
they produce for the user or on the degree to which they satisfy the user�s information
needs minus the associated costs. Such measures are commonly used in information
filtering and are typically calculated from an explicit or implicit statement of the
tolerance for �noise� (the ratio of true-positive to false-positive responses) in the
output.

Context (Ci). Context provides additional information that can be associated with the
profile. While this concept is inherently open-ended (and subject to overuse), we
restrict it to information that can be determined operationally by the system. We
distinguish at least three kinds of context: (a) global context, (b) local context, and (c)
focus. In an IR-like action anchored to a specific IO (e.g., word or phrase), the global
context might be the document in which the IO occurs; the local context the
paragraph; the focus the sentence (essentially, the proposition expressed).

Consider, for example, the following passage in a text on the German military
campaign in the Soviet Union during World War II:

The Battle of Stalingrad represented a major turning point for the Germany
Army. The German general Paulus was out-foxed by the Russian Generals by
being drawn into the city. The Russians eventually wore the Germans down, cut
off their supply lines, and made retreat impossible.

The simple IO corresponding to �Paulus� has several constraining contexts. The
global context establishes Paulus as a German general in WWII. Local context relates
specifically to his participation in the battle of Stalingrad. Focus involves his
particular role in the event, namely, being �out-foxed� by the Russian generals. If we
imagine stepping through the document and selecting each such IO (e.g., person-name
reference) in sequence, we can see that the general context is stable, and does not
need to be updated as we move from IO to IO; the local will change frequently, from
passage to passage; and focus will vary from sentence to sentence. If the user were
writing a text, we could imagine focus changing quite dynamically, even as the user
wrote a new sentence or deleted an old one.

User profiles and work-tasks can be treated as another source of context. On
projects, the current set of documents that a user is working on or has access to may
supply the global context, the specific document in which the information object is
found can be the local context, and the immediate vicinity of the IO can be the focus.

Trigger (Ti). Triggers activate the ACFs. The action associated with opening a
document or beginning to compose a message could launch a battery of ACFs. Under

232 David A. Evans et al.

a GUI, triggers can take the form of highlighting, typing, clicking, etc. For example,
every time the user types a full stop, an ACF can be triggered on the most recently
completed sentence. Likewise ACFs could be triggered every twenty-four hours,
updating the information that they associate with the IOs they are attached to.

Function (Fi). Function specifies the relation that is to be established between the IO
and other information by the ACF, including the format for extracting or presenting
such information. The function might be as simple as �retrieval��finding a rank-
ordered list of documents or passages�or �answer� (a simple sentence) in response
to an implicit question. But the function might also be considerably more complex,
such as establishing the background facts that support the proposition that the IO
asserts. Functions have associated presentation requirements or formats. Formats
typically require that a set of (possibly contrastive) information be developed, such as
the ranked list of responses to a query, or clusters of passages that each represents
different senses of a response. More ambitious combinations of functions and formats
might involve providing the user with a sense of the structure of the space of answers
(via topic modeling, perhaps [2]); or the location of centers of importance (via
semantic hubs and authorities, perhaps); or of related topical "regions" (via semantic-
space abstractions).

2.2 ACF Parameters

Generally, of course, parameters of an ACF interact with each other. For example, our
model of the user affects utility. If the user is an analyst who already knows a great
deal about a topic, then we probably want to maximize the novelty aspect of any
information we link to the user�s work and discount the information already in the
user�s background (files, past work, workgroup, etc.). On the other hand, even in the
case of a user whose �normal� type is well understood, based on the user�s response
to information or changing assignments, we may need to update or revise the user
model and other parameters frequently.

The issue of parameter interaction and calibration would seem to doom the model,
especially if one considers the need to adapt to specific users over time: the �training�
problem could be daunting. However, though parameters can vary quite widely in
theory, we observe that, for many practical application types, the actual values of
parameters may be quite limited. In short, in practical use, only a few of the
parameters will vary freely and these will overwhelmingly assume only a few
possible values.

As an illustration, consider one of the most general functions an ACF can perform:
association�finding relevant related material. Note that, while this might be
implemented as a simple IR task, taking the text of a document as a query and
searching available external sources, the proper association of information to a
document is not a trivial matter. For example, a long document, taken as a query, will
typically give high rank to documents (responses) that share terms with its dominant
(high-frequency/low-distribution) terms. If the external sources are large, it is likely
that virtually all the top-ranked responses will be biased to the �summary� or
�centroid� sense of the document. Thus, in order to insure that all the parts of the
document are properly represented, an association process should formulate many
separate queries from the text of the document and merge results in a fashion that
insures that all parts will be represented in �high-ranking responses.� An ACF that

Agentized, Contextualized Filters for Information Management 233

performs such a task on �start up� (when a document is opened, for example) might
well follow a standard procedure to decompose the document into sequences of
passages (each serving as a source of a query (P)), use default resources for term
extraction (R) on each passage of approximately paragraph size, and target a default
large external source (S). Such an ACF might ignore context (C) and history (H),
since the document itself is term rich and the user�s session is just beginning, being
triggered (T) upon opening the document. The function to be performed�in this
case, multi-pass IR (F)�can be specified to establish a local cache of material that
will be of high value if the user wants to explore topics or answer questions that arise
in reading the text. Thus, the only open questions relate to what the operational
interpretation of utility (U) and threshold (θ) should be. In this regard, a variety of
heuristics may prove serviceable, e.g., (1) insure that each passage brings back at least
n documents and all documents (up to a maximum, m) that score above the threshold;
(2) vary the threshold for each passage based solely on the scoring potential of the
passage against the data being searched; (3) aim for a final cache of documents in the
range of 100 to 10,000. This might be achieved by ranking the results of each
passage-query using normalized scoring�dividing the term score of each responding
document by the term score of the first-ranked document�using a fixed threshold,
e.g., 0.7 or 0.6 normalized score, and returning (and caching) the top n responses and
any other responses (up to the mth) that score at or above threshold. Since we know
how big the document is (the count of the number of passages we extract from it), we
can set n and m to insure that the resulting information cache is in the target range
(e.g., 100 to 10,000 documents).

A
im
su
N
(f
re
re
FindRelevantDocs

Profile: <terms in Passagei∈ Document, passage-count=I>
Resource: <English lexicon, English grammar>
Source: <specified Source>
History: <empty>
Threshold: <all documents d in Source to rank =
 max(n,min(count(normscore(d)≥0.7),m)), where n=100/I and
 m=10,000/I>
Utility: <not defined>
Context: <empty>
Trigger: <opening of Document>
Function: <retrieve documents from Source for each Passagei ; cache
results>

Figure 1: Schematic FindRelevantDocs ACF

Figure 1 gives the parameter settings in schematic form for a FindRelevantDocs
CF that can effect the association function described above. Note that the actual
plementation of an ACF such as this one requires a host of supporting operations,
ch as document-structure processing (e.g,, to find passages), term extraction (e.g.,
LP to identify the unit features of the profile for each passage), an indexing system
or the external sources), and a filtering or IR system with mechanisms for using
ference data (resources) to weight and score terms and for enforcing thresholded
trieval [3]. In addition, these must be integrated with the system�s document-

234 David A. Evans et al.

handling and editing functions and GUI. However, if such supporting operations are
available, the interpretation of an ACF is straightforward and the processing (e.g.,
multi-pass retrieval) can be made quite efficient.

The essential observation we make is that the number and type of parameters in an
ACF, itself, is not a barrier to ACF development. In fact, we believe that the total
number of ACF types required in order to establish full and rich functionality in a
system such as ViviDocs probably is less than fifty and possibly less than twenty five.
Most of these will have a small number of variable parameters in practice, related
directly to the type of function (e.g., retrieval vs. question-answering) the ACF
performs.

2.3 Types of Information Needs and ACFs

The user�s information needs, whether implicit or explicit, can be organized in a
hierarchy of increasing complexity. On the first level, we have implicit information
needs that are local to the information objects mentioned: factoids (such as those
supplied by current QA systems), definitions, localizations, elaborations on
information objects mentioned. On a higher level, we have argumentative and
discovery needs: authoritative evidence for facts, recognition of arguments being
made, finding support for and against arguments, discovery of unmentioned
information (e.g., third parties associated with mentioned parties).

Corresponding to the types of information needs, we design ACFs that generate a
hierarchy of investigative discourse answer types [4]. These answers range from the
relatively simple to the very complex and include (a) definitions (�factoids� such as
who, what, when, where, etc.), (b) descriptions (contextualized facts), (c) elaborations
(information that expands the background of a contextualized fact), (d) explanations
(a set or sequence of facts that are causatively related to one another or the anchor
IO), (e) arguments (a set of facts that reflects alternative points of view on the anchor
IO), (f) synthesis (a set of facts ordered to reflect steps in a logical process, oriented to
a goal or outcome), and (g) discovery (a set of facts representing new knowledge).

The simpler types of information needs, such as definitions, descriptions, and
elaborations, may be addressed with functions such as small-passage-level IR or
question answering, especially if these can be targeted to sources that are designed to
provide answers�dictionaries; encyclopaedias; gazetteers; phone and address books;
company directories; FAQ databases; etc. Even over free texts, we can design
processes that will retrieve a large amount of information, cluster it (for organization),
and then order related information for complementary coverage of a topic.

Clearly, some types of information needs may be very difficult to satisfy (even if a
human agent were addressing them). In increasing order of difficulty, explanation,
argumentation, synthesis, and discovery are at the core of higher intelligence. We do
not imagine that there is a facile solution to the challenges they pose. However, we
do believe that selective components of such functions can be automated and will be
useful even though they may be primitive. For example, the explanation of an event
or conclusion may lie in antecedent information. The set of such prior information,
assembled, sorted for topic, and chronologically presented to the user, may be
precisely the response required to support the user�s own, efficient discovery of an
underlying cause.

Agentized, Contextualized Filters for Information Management 235

We believe that it is less important that an ACF perform a specific function
flawlessly than that an ACF perform a function well enough to provide the user with
information that the user can use to complete the function efficiently.

2.4 Networks of Information

When ACFs are activated, they produce a network of linked IOs, with the following
features.
• Asymmetric The ACFs serve as links that process the given information object
and pass information from it to another information object. For example, in
ViviDocs, a FindRelevantDocs filter starts with a query and returns a list of ranked
documents that are relevant to the query. A FindDescriptionWhere filter starts
with a question and returns a list of documents with location names. In general, the
linking between two information objects is directional from the anchor to the
output.
• Dynamic Links are created virtually between information objects that may
themselves be in flux. The relation of one object to another�which might serve as
a basis for establishing context, for example�can change as a result of information
being passed.
• Personalized The interpretation and processing of information objects at linking
time reflect the user�s unique perspectives. For example, consider the information
request �find documents about ATM.� In the global context of a financial analyst,
the appropriate responses are likely to be related to Automated Teller Machines
(ATMs), while in the global context of a network engineer, the appropriate
responses are likely to be related to Asynchronous Transfer Mode (ATM).
• Contextualized The interpretation and processing of information objects at
linking time depends upon context scope. In the Battle-of-Stalingrad example, the
information returned about Paulus in the local context is different from the
information about Paulus in the global context, which tells us about the person and
his career.
• Structured The information that is found by ACFs naturally lends itself to a
structured interpretation. For example, different ACFs (anchored to different IOs in
a user�s document) may �touch� the same passages in external sources or in the
local store of information associated with the document many times. Any such
individual passage is thus �validated� as useful to the document by many
independent agents; it can be interpreted as an �authority� passage for the
document. Similarly, if an external document is the source of many separate
passages, each of which is referenced by independent ACFs, that document can be
regarded as playing the role of a �hub� document. In short, the links established by
ACFs in the set of related documents and passages create a quantifiable, network
structure, directly anchored to the user�s task.
The notion of linked information was already present in the original MEMEX

vision [5]. Many people regard the World Wide Web as the practical realization of
MEMEX since the Web offers a concrete example of linked IOs. Parts of a document
may be linked to whole other documents or parts of other documents; the link lattice
can be used to move from point to point along pathways of relevance (or, at least,
association). But the network itself is relatively static and the types of links are quite

236 David A. Evans et al.

general�and must be created �by hand,� explicitly. Thus the possible interpretations
of information must be decided at link time�by individuals creating links, reflecting
their unique perspectives. The possibility that the �same� information might be
linked to multiple, distinct other objects, depending on the information needs of a
given user, cannot be accommodated. Such a static approach is limited. True
�knowledge networks� will be subject to constant change and �re-linking� of
information, dynamically. Thus, the original vision of MEMEX�as a knowledge
network�has not been realized in the Web.

3 Illustration and Use Case

We have implemented a prototype to study the behavior of ACFs. The prototype only
demonstrates a limited set of the design features of ViviDocs. For instance, in the
current version, history lists produced at different times are not maintained; only
immediate history lists are available. Also, there is no modeling of contexts at
different times; only the latest contexts are maintained. Utility has not been
incorporated (except in default settings).

ViviDocs is build on the back of the CLARIT information-management system
[6;7], which encompasses numerous IM functions ranging over NLP, extraction (of
typed entities), IR, filtering, question answering, and concept clustering. In contrast,
the current GUI supports little more than reading and writing a text and is not
integrated with other productivity software, such as e-mail. We present examples
below.

3.1 An Example Based on Writing

When the user begins to write a text, ViviDocs attempts to anticipate the types of
information the user may need. Figure 1 shows the simple ViviDocs screen editor, in
which the user has just typed �Hostage taking has become a contemporary crisis.�
The period at the end of the sentence is a trigger (T) that activates several ACFs
working in the background. Here the IO is by default the new text �hostage taking
has become a contemporary crisis.� The profile (P) for this IO is represented as a
vector of terms that have been extracted using CLARIT NLP, which uses lexicons
and grammars to identify linguistically meaningful units (R) from text and also uses a
reference database (R) to obtain occurrence (distribution) statistics, as below.

contemporary crisis: 0
hostage taking: 22
hostage: 587
contemporary: 2387
crisis: 4149
taking: 12042

The FindRelevantDocs ACF uses this information to create a query over an
available source (S), a collection of AP-newswire articles. The threshold (θ) is set to
retrieve the top 100 relevant documents (F). The response is cached as new IOs (F).
Both the history list (H) and the context (C) are initially empty.

Agentized, Contextualized Filters for Information Management 237

Other ACFs begin to work on the cached IOs as soon as they are available. Each of
these ACFs performs a specified function, using the IOs in the text as anchors. If the
user wants to see different factual aspects of the topics that have been fetched in the
background, he right-clicks the mouse and gets a menu of the set of ACFs that have
been activated (Figure 2). Selecting the Description→Where menu item displays the
responses produced by the FindDescriptionWhere filter (Figure 3). The
FindDescriptionWhere filter reformulates the original written text as a question and
produces documents relevant to the question by specifically finding information
related to locations. The additional resources (R) it exploits include resources for
extracting locative entities. Now, the history list (H) contains the ranked documents
returned by the FindRelevantDocs filter, which serves as local context for the
locations.

After the user browses through passages on hostage taking in different locations, he
wants to know more about the hijacking of the TWA jet from Athens to Beirut in June
1985. So he cuts the text �The TWA jet was hijacked to Beirut on a flight from
Athens in June 1985� from the results form and pastes it to the original editor. High-
lighting (T) of the new text in addition to the original text updates the linking
maintained by the ACFs. Now selecting the Description→Where menu item returns
passages that discuss the hijacking of the TWA jet specifically (Figure 4).

Figure 1: The editor screen of ViviDocs

238 David A. Evans et al.

Figure 2: Menu for specifying results from ACFs

Figure 3: Responses of the FindDescriptionWhere filter

Agentized, Contextualized Filters for Information Management 239

Figure 4: Updated responses of FindDescriptionWhere

The parameters used in the two ACFs discussed above are given in Figures 6 and 7.
Note that information passages (IO2) created by the first ACF (FindRelevantDocs)
are in the history list and serve as the appropriate task context for future use. The
retrieved passages are indexed into a local database (D2), which subsequently is the
source used by the second ACF (FindDescriptionWhere). Upon right-clicking of
the mouse and selecting of the Description→Where option in the GUI, the
FindDescriptionWhere agent is activated and formulates the original IO as a where
question to extract factual answers from the source (D2). Currently, instead of
returning the exact factual answers, the agent brings back passages that potentially
contain the correct answers.

FindRelevantDocs

Profile: <contemporary crisis: 0; hostage taking: 22; hostage: 587;

contemporary: 2387; crisis: 4149; taking: 12042>
Resource: <English lexicon, English grammar >
Source: <indexed AP88 database built with 3-sentence passages>
History: <empty>
Threshold: <N=100>
Utility: <not defined>
Context: <empty>
Trigger: <typing of �.�>
Function: <retrieval ; caching (=IO2)>

Figure 5: Instantiated FindRelevantDocs ACF

240 David A. Evans et al.

3

W
s
p
a
c
o
p
c
w
s
o
p

o
a
k
th
h
p

3

T
w
q
o
T
b
e

FindDescriptionWhere

Profile: <contemporary crisis: 0; hostage taking: 22; hostage: 587;

contemporary: 2387; crisis: 4149; taking: 12042>
Resource: <English lexicon, English grammar >
Source: <indexed database built based on IO2>
History: <IO2>
Threshold: <N=10>
Utility: <not defined>
Context: <IO2>
Trigger: <mouse click and menu selection>
Function: <answer-where>
Figure 6: Instantiated FindDescriptionWhere ACF

.2 An Example Based on Reading

hen a user begins to read a document in the current version of ViviDocs, the system
egments the document into passages (paragraphs) and the FindRelevantDocs ACF
olls external sources for information that is related to the document, as described
bove. The returned passages/documents constitute an information repository that
an subsequently be used by other ACFs to find more detailed information. These
ther ACFs proceed through the document, passage by passage, and attempt to
erform their respective functions for each IO they encounter. In such cases, the local
ontext will be the passage itself and the focus will be the sentence or proposition in
hich the IO is located. At any time, if the user selects an IO or a local context, the

ystem is prepared to return the information that has been found by the ACFs that
perated on that IO. Typically, this results in sets of information that reflect multiple
erspectives on the IO.
In the case illustrated in Figure 8, the user has opened an AP-newswire document

n Bush�s presidential campaign (in 1988). The article notes that the Iran-Contra
ffair and the associated indictments could be a liability for Bush. If the user wants to
now more about who was involved in the Iran-Contra scandal, the user can activate
e Description→Who filter, which brings back passages with the relevant entities

ighlighted, as shown in Figure 9. For this ACF, the highlighted entities include
erson names and organization names.

.3 Note on Details of Functionality

o summarize, in our current ViviDocs implementation, for both the reading and
riting tasks, the ACFs are based heavily on two IM functions: retrieval/filtering and
uestion answering. The retrieval/filtering ACFs use IOs (e.g., a sentence, a passage,
r a whole document) to bring back associated passages from user-selected databases.
he returned passages together serve as an information repository and context for a
attery of other ACFs that establish relationships (such as definitions, description,
vidence) between IOs in the user�s document and the external sources.

Agentized, Contextualized Filters for Information Management 241

Figure 8: Document opened for reading in ViviDocs

Figure 9: ACF responses relating to �Who�

242 David A. Evans et al.

The ACFs that establish the description relationships rely on a question answering
system that utilizes typed entity extraction and passage re-ranking. The QA system
first retrieves small-sized passages (e.g., 3-sentence passages in our demo) that
potentially contain the factual answers that are of interest to the user. These passages
are then re-ranked taking into account the extracted entities associated with the user�s
interests (the selected aspect) and the retrieval scores. For example, if the user is
interested in the who aspect of a particular topic, the FindDescriptionWho filter will
rank higher the relevant passages with person and organization names. The extracted
entity types in the current system include person names, organization/office names,
country names, place names, time, currency, and numerical values.

4 Challenges for Research

Various attempts at developing IM systems such as ViviDocs have been proposed and
attempted over the past decade. In general, the central themes of such work have
involved the problems of (1) managing or exploiting context or (2) anticipating user�s
needs.

With regard to capturing context, much work has focused on improving context for
single queries, either explicitly or implicitly. People often make context explicit, as
when they type additional terms to help disambiguate an information need. For
example, if a user is looking for a personal homepage on the web, he or she could
contextualize or constrain the query by adding the word �homepage� to the name of
the person in the query. This will substantially improve the relevance of the
information retrieved. Web search engines such as Google.com are increasingly
relying on linguistic techniques, such as entity extraction, to provide more context for
short queries.

Another attempt to capture context has been the development of niche browsers that
focus on providing specific types of information such as research reports or stock
prices. An example of such a browser is provided by ResearchIndex.com whose
inherent implicit context (target domain) is research papers. Other examples include
FligDog.com (for jobs) and HPSearch.com (for computer scientists).

A number of document-centric approaches to capturing context have been proposed
in the literature. Generally, most approaches try to capture context from the
documents that are currently being viewed or edited by the user. One such system is
the Watson system [8]. Watson attempts to model the context of user information
needs based on the content of documents being edited in Microsoft Word or viewed in
Internet Explorer. The documents that users are editing or browsing are analyzed by a
heuristic term-weighting algorithm, which aims to identify words that are indicative
of the content of the documents. Information such as font size is also used to weight
words. If a user enters an explicit query, Watson modifies the query based on the
content of the user�s current document and forwards the modified query to web search
engines, thus automatically adding context information to the web search. Thus, in
the Watson system, though the user is required to compose the query, the system
derives constraining context automatically.

Watson�s mode of operation is similar to the Remembrance Agent [9;10], which
indexes specified files, such as email messages and research papers, and continually
searches for related documents while a user edits a document in the Emacs editor.

Agentized, Contextualized Filters for Information Management 243

Recently, a number of new approaches to IM have been proposed based upon
anticipating the information needs of users. The Document Souls System [11] is
designed to annotate documents actively with various types of related information that
is available on the internet or an intranet. Document Souls specifically tries to
anticipate the information needs of a user. When a document is opened, it is
associated with a �personality� (i.e., a collection of information services and
lexicons). This personality then identifies information objects in the current
document, which are subsequently annotated with links to other related information
that may help the user. The text of the information object, the surrounding context
along with global information such as the topic of the document or the surrounding
subdocument, is used to construct queries that are submitted to various information
sources (e.g., databases; folders; automatically selected regions of the classification
schema of an internet search engine; etc.). This process of annotation is performed
periodically.

Another example of an anticipatory system is Autonomy�s Kenjin program
(www.kenjin.com). Based on the documents a user is reading or editing, Kenjin
automatically suggests additional content it derives from the web or local files.

ViviDocs clearly follows in the tradition of such past efforts at extending the
relevance and functionality of IM systems. However, ViviDocs attempts to
generalize the model of relations that a document can have to external information
sources and implements a number of specific functions, such as question answering
and adaptive filtering, that go beyond simple information retrieval. ACFs are
explicitly designed both to promote multifaceted associations among information
objects and also to facilitate the interaction of filters based on feedback and
modifications of context.

5 Conclusions

Though the current set of ACFs is limited, the ViviDocs system demonstrates novel
functionality. Even in the modest prototype, one can see surprising effects. Our
future work will focus on extending the number and variety of ACFs, completing the
integration of advanced IM processing into the system, and refining the model of the
user, the work group, and the network of linked information generated via ACF
actions. Our challenge is to bring the system to operational completion and to begin
experiments to test the hypothesis that ACFs can make tasks more productive and
efficient and can support users in the most creative elements of their work�discovery
and integration of new knowledge.

Acknowledgements

We thank three anonymous reviewers for their comments on an earlier version of this
paper and for their constructive suggestions for improvements. The authors remain
solely responsible for any deficiencies in the work and for the possible
misinterpretation of the good advice of others.

http://www.kenjin.com/

244 David A. Evans et al.

References

1. Genesereth, M.R., and Ketchpel, S.P. 1994. Software agents. Communication of the
ACM, 37(7).

2. Evans, D.A., Shanahan, J.G., Xiang, T., Roma, N., Stoica, E., Sheftel, V.M.,
Montgomery, J., Bennett, J., Fujita, S., and Grefenstette, G. 2002. Topic-specific
optimization and structuring. In E.M. Voorhees and D.K. Harman (editors), The Tenth
Text REtrieval Conference (TREC-2001). NIST Special Publication 500-250.
Washington, DC: U.S. Government Printing Office, 132�141.

3. Zhai, C., Jansen, P., Stoica, E., Grot, N., and Evans, D.A. 1999. Threshold calibration in
CLARIT adaptive filtering. In E.M. Voorhees and D.K. Harman (editors), The Seventh
Text REtrieval Conference (TREC-7). NIST Special Publication 500-242. Washington,
DC: U.S. Government Printing Office, 149�156.

4. Evans, D.A., Grefenstette, G., Shanahan, J.G., Sheftel, V.M., Qu, Y., and Hull, D.A.
2002. Modeling QA as investigative discourse: creating networks of functionally-linked
information objects. ARDA AQUAINT Workshop, Monterey, California.

5. Bush, V. 1945. As we may think. Atlantic Monthly, 176(1) (Jul):101−108.
6. Evans, D.A., Ginther-Webster, K., Hart, M., Lefferts, R.G., and Monarch, I.A. 1991.

Automatic Indexing Using Selective NLP and First-Order Thesauri. In A. Lichnerowicz
(Editor), Proceedings of RIAO '91. Amsterdam, NL: Elsevier, 624�644.

7. Evans, D.A., and Lefferts, R.G. 1995. CLARIT�TREC Experiments. Information
Processing and Management, 31(3):385�395.

8. Budzik, J., and Hammond, K.J. 2000. User interactions with everyday applications as
context for just-in-time information access. In Proceedings of the 2000 International
Conference on Intelligent User Interfaces, New Orleans, Louisiana: ACM Press.

9. Rhodes, B.J., and Starner, T. 1996. Remembrance Agent: a continuously running
automated information retrieval system. In Proceedings of the First International
Conference on the Practical Application of Intelligent Agents and Multi Agent
Technology, 487�495.

10. Rhodes, B.J., and Maes, P. 2000. Just-in-time information retrieval agents. IBM Systems
Journal (special issue on the MIT Media Laboratory), 39(3&4): 685−704.

11. Shanahan, J.G., and Grefenstette, G. 2001. Meta-document and method of managing
meta-documents. European Patent # EP1143356. Pending (Filing Date: April 4, 2001.)

http://www.research.ibm.com/journal/sj/393/part2/rhodes.html
http://www.research.ibm.com/journal/sj39-34.html
http://www.research.ibm.com/journal/sj39-34.html
http://ep.espacenet.com/search97cgi/s97is.dll?Action=View&ViewTemplate=e/gb/en/viewer.hts&collection=dips&SearchType=3&VdkVgwKey=EP1143356A2

	1 Information Management
	2 Agentized, Contextualized Filters
	3 Illustration and Use Case
	4 Challenges for Research
	5 Conclusions
	Acknowledgements
	References

