Finding Corrupted Computers Using Imperfect Intrusion
Prevention System Event Data

Danielle Chrun', Michel Cukier', and Gerry Sneeringer2

! Center for Risk and Reliability, University of Maryland
College Park, Maryland 20742-7531
2 Office of Information Technology, University of Maryland
College Park, Maryland 20742-7531

{chrun,mcukier, sneeri}@umd.edu

Abstract. With the increase of attacks on the Internet, a primary concern for
organizations is how to protect their network. The objectives of a security team
are 1) to prevent external attackers from launching successful attacks against
organization computers that could become compromised, 2) to ensure that or-
ganization computers are not vulnerable (e.g., fully patched) so that in either case
the organization computers do not start launching attacks. The security team can
monitor and block malicious activity by using devices such as intrusion preven-
tion systems. However, in large organizations, such monitoring devices could
record a high number of events. The contributions of this paper are 1) to intro-
duce a method that ranks potentially corrupted computers based on imperfect
intrusion prevention system event data, and 2) to evaluate the method based on
empirical data collected at a large organization of about 40,000 computers. The
evaluation is based on the judgment of a security expert of which computers were
indeed corrupted. On the one hand, we studied how many computers classified as
of high concern or of concern were indeed corrupted (i.e., true positives). On the
other hand, we analyzed how many computers classified as of lower concern
were in fact corrupted (i.e., false negatives).

Keywords: Security Metrics, Empirical Study, Intrusion Prevention Systems.

1 Introduction

With the increase of attacks on the Internet, a primary concern for organizations is how to
protect their network. To do so, organizations monitor their traffic using security devices
such as intrusion detection systems or intrusion prevention systems. The monitored ac-
tivity provides some insight into an organization’s security and identifies potentially
corrupted computers. While in some organizations the quantity of monitored traffic is
manageable, it becomes a hassle to analyze security data for large organizations. For
example, intrusion prevention systems could record thousands of alerts per day and the
security team cannot investigate every alert. Moreover, although intrusion prevention
systems are aimed at detecting and blocking malicious activity, they also raise false
alarms. Due to 1) the potentially large quantity of data to deal with, and 2) the number of
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false alarms, it is of main interest to organize the generated alerts and to extract infor-
mation from the collected data that would be useful to the security team.

This paper presents a method to retrieve useful information for the security team
from data collected by an intrusion prevention system (IPS). The method consists in
identifying potentially corrupted computers inside the organization and ranking them
according to three metrics: the coefficient of consecutiveness indicating during how
many consecutive weeks IPS alerts were observed, the number of weeks during which
alerts were raised and the number of distinct attack types. Based on these metrics, po-
tentially corrupted computers can be ranked. We will show that the proposed method
helps the security team gaining some insight into the organization’s security. The in-
troduced method is evaluated for data collected at a large organization of about 40,000
computers. The evaluation is based on the judgment of a security expert of which
computers were indeed corrupted. On the one hand, we studied how many computers
classified as of high and medium concern were indeed corrupted (i.e., true positives).
On the other hand, we analyzed how many computers classified as of low concern were
in fact corrupted (i.e., false negatives).

The remainder of the paper is structured as follows. Section 2 describes the related
work on data analysis of security logs. Section 3 introduces the concepts relative to
IPSs. Section 4 defines the method. Section 5 presents the evaluation of the method.
We provide conclusions in Section 6.

2 Related Work

A lot of research focuses on analyzing security logs for security assessment. To face the
possibly high quantity of data to analyze, a common step is to reduce data before ana-
lyzing it. [1] describes an architecture to analyze distributed darknet traffic: first, col-
lected data on attacks are filtered; secondly, forensics is used to analyze the reduced data.
[2] focuses on analyzing data of a denial of service. In order to study the traffic volume
per protocol, a categorization of the collected network traffic by protocol was made.

Analyzing large amounts of security data becomes an emerging task in the intrusion
detection field. Indeed, intrusion detection systems face two main issues: 1) a high
number of alarms can be raised and 2) there can be many false alarms among them.
Thus, the objective is to decrease the number of false alarms. Research was conducted
to retrieve normal behavior (i.e., traffic that is not malicious) from the dataset using
several techniques: time series [3], data mining [4, 5, 6, 7, 8, 9, 10 and 11] and corre-
lation [6, 12, 13, 14, 15 and 16]. A common practice is to use historical data to define
normal behavior so that future alarms can be handled more efficiently. Data mining
techniques can be used to achieve this goal. However, research projects differ in the
data mining technique used: association rules [10], frequent episode rules [4, 9], clas-
sification [11] or clustering [5, 6, 7, 8 and 9]. A commonly used method in intrusion
detection is alert correlation. [13] defines a model for intrusion detection alert correla-
tion and presents three examples of correlation: aggregation of alerts referring to a
single targeted host, aggregation of alerts referring to hosts vulnerable to an attack
occurrence and aggregation according to alerts similarities (such as alerts caused by the
same event or referring to the same vulnerabilities). [5 and 6] introduce a cooperative
intrusion detection framework in which functions to manage, cluster, merge and cor-
relate alerts were implemented. The objective was to correlate alerts to generate more
global alerts and discard false alarms.
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In [11], the authors present the Adaptive Learner for Alert Classification (ALAC)
system. ALAC is a system to reduce false positives in intrusion detection systems and
relies on two elements: 1) expert judgment and 2) machine learning techniques. An
analyst classifies alerts as true positives or false positives. Then, ALAC autonomously
processes alerts that have been classified by the analyst. The accuracy of ALAC is as
good as the quality of the analyst’s classification.

3 On the Use of Intrusion Prevention System Event Data

3.1 Approach

Many organizations use security devices to monitor their network activity. The quantity
of data collected per day can be so substantial that every event identified by a security
device cannot be investigated by the security team. Hence, retrieving meaningful in-
formation from the collected data on the malicious activity would give a more detailed
insight to security administrators into the network’s security. The main issue is that the
data currently collected are far from being perfect. For example, the data collected by
security devices, such as intrusion prevention systems (IPSs), might contain alerts for
activity that is not malicious (i.e., false positives) and might not detect some malicious
activity (i.e., false negatives). Moreover, they will not include new attacks in the case of
signature-based IPSs. They often rely on the trust we have in the security devices and
the vendors. No ground truth is provided. Details are lacking on the meaning of the data
and how they are produced (the security devices are black boxes for which vendors
only release few details).

Two approaches are then possible. The first one is to work on obtaining datasets
clean enough so that accurate security estimations are possible. The second one is to
accept that the dataset is imperfect but that useful information regarding an organiza-
tion’s security can be retrieved. In this paper, we adopt the second approach.

In this paper, we provide a method to extract useful information from IPS event data.
The suggested method aims at extracting a list of potentially corrupted organization
computers that would then be handled by the security team. Those computers manifest
in the IPS dataset as the potential source of attacks. The dataset might not only contain
attackers who willingly launch attacks. It might also include computers that may not
have been fully patched. Once the list of suspected computers is identified, the security
team can make a decision regarding these computers. For example, a decision could
consist in blocking the IP address from the network until the computer is cleaned.

3.2 Intrusion Prevention Systems

An IPS is a security device that monitors malicious activity and reacts in real-time by
blocking a potential attack. An IPS is considered as an extension of an intrusion de-
tection system (IDS). An IDS is a passive device that monitors activity whereas an IPS
is an active device that blocks potential malicious activity. For our study, we focus on
signature-based IPSs: the IPS blocking decision relies on a set of signatures that are
regularly released by the vendor as attacks are newly discovered on the Internet. When
characteristics of an attack match the ones of a defined signature, the attack is blocked
and an alert is recorded in the IPS logs.
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We assume that the IPS is located at the edge of the organization. In other words, the
IPS monitors 1) malicious activity originating inside the organization and targeting
outside computers, 2) malicious activity originating outside the organization and tar-
geting organization computers.

We define an alert in the IPS dataset as a source IP address (SIP/attacker) attacking a
destination IP address (DIP/target) with a certain type of attack (signature) at a given
time.

3.3 Dataset: Assumptions

As previously mentioned, the IPS dataset has several issues. We have not evaluated the
IPS and thus do not know how many false positives and false negatives the IPS pro-
duces. Moreover, since the IPS is a signature-based device, new attacks will not be
detected nor blocked.

Furthermore, the dataset does not include the case where a computer inside the or-
ganization attacks another computer inside the organization. The IPS is located at the
edge of the organization so it cannot detect traffic within the organization. Besides, this
study solely focuses on computers with static IP addresses.

Finally, we cannot prove that a blocked attack would have been harmful to the tar-
geted computer. Indeed, for an attack to be successful, the targeted computer should
have the associated vulnerability. We have scanned several computers for which an IPS
alert was raised and noticed that in many cases the vulnerability associated with the
alert was not present. This means that even without the IPS, the attack would not have
been successful. This also indicates that the IPS identifies and detects an attack in its
early stage preferring to block attacks that would not have been successful instead of
not blocking a potentially successful attack.

4 Method

The next sub-sections present the method to identify potentially corrupted organization
computers. First, we define three metrics to characterize the activity in the IPS dataset.
Then, we present the method for ranking the potentially corrupted computers according
to the three metrics values.

4.1 Metrics

A computer is of main concern to the security team if 1) it appears often in the IPS
dataset as the source of an attack, and 2) it launches a wide range of different attack
types. Therefore, we introduce the following metrics for a computer: 1) a coefficient of
consecutiveness of the number of weeks for which at least one alert was raised, 2) the
number of weeks for which at least one alert was raised, and 3) the number of different
signatures (i.e. attack types) associated to the computer. We defined these metrics that
we believe are appropriate for attackers. These metrics might be less relevant for targets
(computers under attack).

4.1.1 Coefficient of Consecutiveness
Computers that appear in the IPS dataset for many consecutive weeks are of main
concern for the organization’s security team, seeming to indicate that a computer is
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launching attacks during several consecutive weeks and has not been checked. We
define the coefficient of consecutiveness as:

Cons = Weekl/(Max - Min + 1)

where Max is the identifier of the last week when the computer appears in the dataset,
Min is the identifier of the first week, and Week is the number of distinct weeks. The
consecutiveness factor is positive and the maximum value is 1. Let us consider a
computer that appears in the IPS dataset at weeks 2, 3, 6, 8, 9, among 10 weeks of
observation (Figure 1). In this case, Max = 9, Min = 2 and Week = 5. The consecu-
tiveness factor is: 5/(9-2+1) = 0.625.

Fig. 1. Consecutiveness Factor

The closer to 1 the coefficient of consecutiveness is, the more focus the security
team should put on the computer. However, if a computer only appears once in the IPS
dataset, it means that Week = 1. Nonetheless, it does not necessarily mean that the se-
curity team should focus on that computer. This emphasizes that the number of weeks
is also an important metric.

4.1.2 Number of Weeks
The number of weeks for which at least one alert was associated to the computer is the
second metric.

However, the case where the number of weeks is 1 may be misleading. In this case
(the computer was recorded as an attacker only for one week along the considered pe-
riod of time), the coefficient of consecutiveness would be 1 and the computer would be
reported to the security team. Considering the computers for which Week = 1 would
raise a lot of alerts for computers that are in fact not corrupted. Therefore, we discard
for the study all computers where week = 1.

Hence, the minimum is Week = 2 and the maximum is the number of weeks during
which data have been collected.

The number of weeks reflects the frequency at which the computer appears in the
IPS dataset. A computer with a large number of weeks reveals that the computer is
potentially corrupted and has not been checked.

4.1.3 Number of Signatures
Finally, we believe that the number of distinct attack signatures associated with a given
computer is important. It reflects the range of different attack types one computer
seemed to have launched. Note that a great number of distinct signatures might also
reveal that the computer contains several vulnerabilities.

The minimum number is 1 and the maximum is the total number of existing distinct
signatures in the IPS.
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4.2 Level of Criticality

We define the level of criticality of a computer as the 3-tuple { Cons, Week, Sign} (Cons
stands for the coefficient of consecutiveness, Week for the number of weeks, Sign for
the number of signatures). The higher the level of criticality, the more important it is for
the security team to check that computer.

We identify three levels of interest: high concern, concern, and low concern. We
define thresholds for each metric so that the interval is cut into three intervals: C/ and
C2 are thresholds for the consecutiveness factor, Wi and W2 for the number of weeks,
S1 and S2 for the number of distinct signatures. We decided to visualize each computer
by using a Cartesian coordinate system: the coordinates are the consecutiveness factor,
the number of weeks and the number of signatures. In other words, each computer is
represented in a 3-D space. Hence, by considering the thresholds and the 3-D space, we
can visualize a cube that is cut into 27 sub-cubes (Figure 2a).

We then introduce three colors associated with the three levels of criticality: 1) green
regions (G) depict computers of low concern, 2) yellow regions (Y) group computers of
concern that should be checked by the security team, and 3) red regions (R) show
computers of high concern that should be addressed in priority. For each sub-cube, a
security expert helped us decide on their level of criticality and thus their associated
color. Figure 2b depicts the colors selected for the 27 sub-cubes.

4.3 Method for Identifying Computers of Concern

The method consists in five steps: 1) analysis of the IPS dataset to identify computers
that were the source of alerts, 2) calculation of the level of criticality for each identified
computer, 3) determination of thresholds for the three metrics, 4) investigation of
computers in the red region and 5) investigation of computers in the yellow region.
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Fig. 2. Visualization of Metrics (a) and Colored Zones (b)

Step 1: Analysis of the IPS dataset

The identification of computers that were the source of alerts in the IPS dataset is done
through the extraction of the internal IP addresses that appear as the source of alerts in
the IPS dataset.

Step 2: Calculation of the level of criticality
To calculate a level of criticality, a period of time for which to calculate the metrics
needs to be defined. We advise selecting a period long enough to allow a metric like the
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coefficient of consecutiveness to be relevant (at least 5 weeks for the coefficient of
consecutiveness to be meaningful).

Step 3: Determination of thresholds for the three metrics

We believe that threshold values (C1, C2, Wi, W2, S1, §2) are organization dependent.
Characteristics, such as the size of the organization, the type of the organization can
greatly differ between organizations. In that sense, we advise each organization to
choose its own thresholds.

Steps 4 and 5: Investigation of computers in the red and yellow regions
As the method consists in ranking computers in function of the level of criticality in
order to focus on the computers of main concern, the security team should focus in
priority on the computers in the red region.

Depending on the available sources of information, checking a potentially corrupted
computer would include:

- Using the IPS dataset to look at the date and time of events,
- Using the IPS dataset to understand the attack type,
- Investigating previous incidents with that particular IP address.

The method tends to identify computers that appear frequently in the IPS dataset:
those are the computers in the red and yellow regions (the frequency is reflected by the
metrics Cons and Week, Sign interferes in making the distinction between the red and
yellow regions). Hence, our method will not raise a flag for a computer that is involved
in a single alert that could be harmful. Therefore, the method does not identify all po-
tential corrupted computers.

Also, the method identifies computers that may be corrupted or not. For the re-
maining of the paper, we call:

- False negatives: corrupted computers that have not been identified by the
method,

- True positives: corrupted computers that have been identified by the
method,

- False positives: non-corrupted computers that have been identified by the
method,

- True negatives: non-corrupted computers that have not been identified by
the method.

The thresholds C1, C2, Wi, W2, S1 and S2 are chosen by making a trade-off between
the number of true positives and the number of false negatives.

5 Evaluation

5.1 Approach

In this section, we will evaluate the presented method. We will study IPS event data
collected on a large public university (University of Maryland) composed of about
40,000 computers. The considered IPS dataset covers a period of 17 months, from
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September 1% 2006 to January 31¥ 2008. The IPS raised an average of around 142 alerts
per day during the studied period for computers inside the campus that are detected
transmitting potentially malicious traffic toward computers outside the campus. Over
the 17 months, 1,441 different computers inside the organization that launched at least
one attack were identified.

First, we need to define a time period on which to apply the metrics. The campus is
much less populated during the summer break (3 months) and the winter break (1
month). In other words, the traffic recorded by the IPS may drop during these periods
due to fewer students/computers. In order not to bias the results, we should apply the
metrics over a period greater than 3 months. We decided to apply the metrics over a
6-month period. In order to show how the metrics evolved over time, we calculated the
metrics for increments of 2 weeks. On each period of 6 months, we extracted a list of
computers and calculated the associated metrics.

We then asked the Director of Security of the Office of Information Technology at
the University of Maryland, to indicate which computers were corrupted among the
ones identified by our method. To do so, the Director of Security needed to investigate
every computer. This step relies on expert judgment and human activity, as opposed to
an automated investigation. As previously stated, we believe that computers for which
Week = 1 are of less interest that those that appear at least two weeks over a 6-month
period. By eliminating those computers, we are left with 303 computers to investigate.

We recognize that we rely on expert judgment to indicate which computers are
corrupted. Another security expert might provide slightly different results. To decrease
the potential bias due to expert judgment, we asked the Director of Security: 1) to use a
systematic method for deciding if a computer is corrupted, and 2) to be conservative in
his judgment (the Director will declare a computer corrupted (respectively
non-corrupted) only if he is sure that the computer is corrupted (respectively
non-corrupted)). Such requirements led to many investigated computers without clear
decision. Among the 303 investigated computers, for 76 (25%) of them it was unclear
whether they were corrupted. One reason is that the analyzed data went back to Sep-
tember 2006 making it difficult to make sure if the flagged computer was indeed
corrupted.

First, in order to investigate the computers to determine if they are corrupted, the
Director of Security needed the following information:

- For each computer: the number of alerts triggered in the IPS, the signature
list associated to these alerts (SL), the time span for these alerts by signa-
ture, the list of computers targeted (target list TL), the list of incidents as-
sociated to the computer,

- Alist of signatures known to trigger false alarms,

- Alist of signatures known to be non-malicious.

Figure 3 depicts the sequential questions to answer regarding a given computer to
determine if it is corrupted (C), non-corrupted (NC), or undetermined (O for other). If
the answer to a question is “yes”, the computer can be classified and the Director of
Security investigates another computer. If the answer is “no”, the Director of Security
moves to the next question. These steps are the ones that were followed by the Director
of Security to investigate the computers in order to evaluate the suggested method.
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Fig. 3. Flowchart of the Steps of the Investigation

First, classifying computers as (non)-corrupted involves investigating the target list
(TL): does the target list contain computers in the adjacent address blocks? If yes, it is
possible that the computer is scanning the adjacent IP addresses range in order to detect
computers. In that case, the computer is classified as corrupted. Otherwise, the signa-
ture list (SL) needs to be investigated: does the signature list contain signatures known
to not produce false alerts? If yes, the computer is classified as corrupted. Six sequential
steps consist in investigating the target list and the signature list. The seventh step aims
at searching into the incident data in order to find an incident report involving the
computer under investigation: if there is an incident report to support the alert associ-
ated with the computer, then the computer is classified as corrupted. If none of these
steps allows classifying the computer as (non)-corrupted, the Director of Security will
examine the specific circumstances of the alerts: if the investigation reveals malicious
activity, the computer is corrupted; otherwise, if the investigation indicates false alerts,
the computer is non-corrupted; otherwise, the computer is classified as undetermined.

Out of 303 investigated computers, 91 (30%) were identified as corrupted and 136
(45%) were identified as non-corrupted. One important measure is to find how many
among the 303 identified computers led to an interesting investigation (independently
of the outcome). The issue is whether the method identifies computers worth investi-
gating or flags computers clearly of no concern leading to a waste of the time for the
security team. Among the 303 flagged computers, the Director of Security found that
the investigation was useful for all the identified computers. Indeed, either the com-
puter is declared corrupted and the security team did check it or should have checked it,
or the computer is not corrupted and the IPS itself needs to be retuned to reduce the
number of alerts raised for non-corrupted computers. This high percentage indicates
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that the proposed method is already of practical use for the security team. Although the
number of non-corrupted investigated computers is high, the non-corrupted computers
may reveal events that could not have been identified otherwise. For example, we
identified an event where 64 systems tried to access Facebook using a suspicious PHP
argument and users who operated Nmap. The computers involved in these two events
were identified as non-corrupted but provided an additional insight into the organiza-
tion’s security.

The next step is to assess our method to know if it correctly identifies the
(non)-corrupted computers. Each computer will be assigned a color: red (R), yellow
(Y), green (G), and an investigation result: corrupted (C) or non-corrupted (NC)
computer. A computer that was in the red or yellow regions and was identified as
corrupted is a true positive. On the contrary, a computer that was in the green region
and was identified as corrupted is a false negative. All combinations of color and in-
vestigation result are given in Table 1. Note that when the investigation could not tell if
a computer was corrupted or not, we will use O (O stands for “Other”). For example,
RO groups computers that are in the red region and that could not be identified as
corrupted or non-corrupted by the Director of Security.

Table 1. All Combinations of Color and Investigation Result

Color Investigation result Notation Conclusion

R C RC True Positive (TP)

R NC RNC False Positive (FP)

Y C YC True Positive (TP)

Y NC YNC False Positive (FP)

G C GC False Negative (FN)
G NC GNC True Negative (TN)
R (0] RO -

Y (0] YO -

G o GO -

5.2 Results

We studied 23 periods of 6 months from September 1% 2006 to January 31* 2008 with
increments of 2 weeks. Period 1 is the period from September 1% 2006 to February 28"
2007. Period 2 covers September 15" 2006 to March 14" 2007, etc. Period 23 defines
the period from August 1* 2007 to January 31* 2008. For each period, we extracted the
address of the organization computers that raised at least one alert corresponding to an
attack towards a computer outside the University of Maryland and calculated the as-
sociated metrics. We applied the following thresholds: C/ = 0.5 and C2 = 0.8 for the
coefficient of consecutiveness, Wi/=2 and W2 = 4 for the number of distinct weeks, S/
=1 and S2 = 2 for the number of distinct signatures. For each of the 23 periods of 6
months, our method automatically puts each flagged computers in a green, yellow or
red region. According to the identification of the (non)-corrupted computers by the
Director of Security, we can calculate 1) the number of true/false positives based on the
results in the yellow and red regions, and 2) the number of true/false negatives based on
the results in the green region. The results are shown in Table 2.
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Note first that the number of computers for which it could not be decided whether
they were corrupted or not highly depends on the region. In the red region, they rep-
resent 12% (Period 1), 0% (Period 12) and 20% (Period 23). In the yellow region, we
find 26% (Period 1), 38% (Period 12), and 36% (Period 23). In the green region, we
have 71% (Period 1), 54% (Period 12), and 32% (Period 23). It is interesting to note
that often the red region has the lowest percentage and the green region has the highest
percentage of computers that could not be clearly identified as (non)-corrupted. This
increases the confidence in our method since the computers in the red region should
have the highest likelihood of being corrupted and the green region should have a much
lower likelihood of being corrupted. This shows that the information provided to the
security team should be useful as it seems to rank the computers based on the likelihood
of corruption.

Graphs of the evolution of true positives, false positives, true negatives and false
negatives over the 23 periods are shown in Figure 4. The results show that the method is
improving regarding the number of true negatives. At Period 1, among the computers in
the green region (i.e., computer of low concern), only 10% were not corrupted. How-
ever, the trend significantly changes over time. At Period 23, among the computers in
the green region, 91.7% were not corrupted.

Table 2. Results of the Evaluation

E = = = Je-lz-lz~
HHEBHBEHHEEBHEBEHREE B
1 |19 3 |24 |10 18] 2 3112149143 |13 2 |18 ]76.8 | 232 | 10.0 | 90.0
2119 4 (30(10]17 ] 1 3 113[]46 149 |14 1 17 | 778 | 222 | 5.6 | 944
3 (2151129 8 |17 1 3 11414415013 1 17 1794 | 206 | 5.6 | 944
4 |17 5 |34 | 7 |19] 1 2 |16 39|51 |12 1 19 | 81.0 | 19.0 | 5.0 | 95.0
5|14 5357 |17]1 2 15138149 (12| 1 17 | 803 | 197 | 5.6 | 944
6 |13 5 [33] 6 |20 8 2 | 15]35]46 | 11 8 120 ] 80.7 | 193|286 | 714
7 [ 13] 5 (30| 5 ]|20|14] 2 |11 ][40 |43 |10 | 14|20 | 81.1 | 189 | 41.2 | 58.8
8 |10 4 [35] 4 |18 |14] 1 13134145 | 8 |14 | 18 | 849 | 15.1 | 43.8 | 56.2
9 | 10| 3 [33 | 5 |17 |13 | 2 |12 |36 |43 | 8 | 13| 17 | 84.3 | 157 | 43.3 | 56.7
10 (11 ) 3 |29 | 3 |17 |11 | 2 |11 [{39]40| 6 | 11|17 | 87.0 | 13.0 | 39.3 | 60.7
11 (10 2 |24 | 4 |17 |12 ] 2 8 [ 38|34 | 6 | 12|17 | 850 | 150 | 41.4 | 58.6
12 (12 2 [ 13| 5 |16 |12 0 |11 |33 25| 7 | 12|16 | 78.1 | 219 | 429 | 57.1
13| 9 1 1316 [ 1312 0 |10 (34|22 | 7 [ 12|13 | 759 | 24.1 | 48.0 | 52.0
14| 6 O |11] 6 | 13|18] O 6 30|17 ] 6 |18 | 13| 739 | 26.1 | 58.1 | 41.9
15| 3 1 10| 7 8 |19 0 5 (130|138 [19| 8 | 619|381 | 704 | 29.6
16 | 3 0 6 8 6 [20] O 7 130 9 8 |20 6 | 529 | 47.1 | 76.9 | 23.1
17 | 3 2 4 9 5139] 0 6 30| 7 | 1139 5 |389|61.1| 886|114
18 | 3 2 31104 (36] 0 6 |27 6 |12 |36 4 | 333 ]| 66.7 | 90.0 | 10.0
19 | 2 3 3 8 5139] 0 6 28| 5 | 1139 5 |312|688 | 886|114
20| 2 3 1 8 6 [41] 0 6 |28 3 |11 |41 | 6 |214 | 786 | 872 | 12.8
21| 2 3 0 8 6 [43] 0 5 28] 2 |11[43 | 6 154 | 84.6 | 87.8 | 12.2
22| 2 3 0 8 6 [44] 0 5126 2 |11 |44| 6 154 | 84.6 | 88.0 | 12.0
23| 1 3 1 6 4 |44] 1 4 (23] 2 9 |44 ] 4 18.2 | 81.8 | 91.7 | 8.3

On the other hand, the method identifies a high percentage of true positives at Period
1 but a low percentage at Period 23. At Period 1, the method identified 76.8% of the
computers in the red and yellow regions as being indeed corrupted. At Period 23, the
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method only found 18.2% of corrupted computers in the red and yellow regions. These
numbers might indicate that our method is worsening over time. More details are
necessary to better understand the reasons for the obtained results. As expected, over
time, the security team learned how to integrate the results provided by the IPS in their
overall security solution. The number of identified corrupted computers is 61 at Period
1,41 at Period 12, and only 6 at Period 23. This clearly indicates that the IPS is helping
the security team improving the overall organization’s security. These numbers help
putting in perspective the only 18.2% of corrupted computers in the regions of concern.
At Period 23, only 5 computers were placed in the red region and 11 in the yellow re-
gion. Among them, 3 computers were incorrectly put in the red region when they were
not corrupted and 6 in the yellow region. On the other hand, at Period 23, most com-
puters were placed in the green region (71). Among them, only 4 (5.6%) were incor-
rectly put in the green region, i.e., they were identified as of low concern when in fact
they were corrupted. The method seems thus to be able to correctly identify the biggest
volumes of events, i.e. corrupted computers at Period 1 and non-corrupted computers at
Period 23.

)

OFH
@TH
OFF
aTe

Humber

Period

Fig. 4. Evolution of False Negatives (FN), True Negatives (TN), False Positives (FP) and True
Positives (TP)

6 Conclusion

We presented a method to extract useful information from imperfect IPS event data in
order to rank potentially corrupted computers in an organization. We introduced three
metrics to quantify the level of criticality of a computer: the coefficient of consecu-
tiveness, the number of distinct weeks and the number of distinct signatures. The
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method classifies computers into regions of main concern (red regions), concern (yel-
low region), or lower concern (green region). We applied the method to IPS event data
collected in an organization of about 40,000 computers. We evaluated our method by
comparing the results obtained by our method with the identification of (non)-corrupted
computers by a security expert. We showed that: 1) the percentage of computers iden-
tified as corrupted is higher for computers in the red region than for computers in the
green region, 2) the trend of the number of true negatives increases over time, 3) the
security team seems to integrate the IPS in their overall organization’s security as the
number of computers identified as corrupted decreases over time.
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