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Abstract. With the increase of attacks on the Internet, a primary concern for 
organizations is how to protect their network. The objectives of a security team 
are 1) to prevent external attackers from launching successful attacks against 
organization computers that could become compromised, 2) to ensure that or-
ganization computers are not vulnerable (e.g., fully patched) so that in either case 
the organization computers do not start launching attacks. The security team can 
monitor and block malicious activity by using devices such as intrusion preven-
tion systems. However, in large organizations, such monitoring devices could 
record a high number of events. The contributions of this paper are 1) to intro-
duce a method that ranks potentially corrupted computers based on imperfect 
intrusion prevention system event data, and 2) to evaluate the method based on 
empirical data collected at a large organization of about 40,000 computers. The 
evaluation is based on the judgment of a security expert of which computers were 
indeed corrupted. On the one hand, we studied how many computers classified as 
of high concern or of concern were indeed corrupted (i.e., true positives). On the 
other hand, we analyzed how many computers classified as of lower concern 
were in fact corrupted (i.e., false negatives). 

Keywords: Security Metrics, Empirical Study, Intrusion Prevention Systems. 

1   Introduction 

With the increase of attacks on the Internet, a primary concern for organizations is how to 
protect their network. To do so, organizations monitor their traffic using security devices 
such as intrusion detection systems or intrusion prevention systems. The monitored ac-
tivity provides some insight into an organization’s security and identifies potentially 
corrupted computers. While in some organizations the quantity of monitored traffic is 
manageable, it becomes a hassle to analyze security data for large organizations. For 
example, intrusion prevention systems could record thousands of alerts per day and the 
security team cannot investigate every alert. Moreover, although intrusion prevention 
systems are aimed at detecting and blocking malicious activity, they also raise false 
alarms. Due to 1) the potentially large quantity of data to deal with, and 2) the number of 
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false alarms, it is of main interest to organize the generated alerts and to extract infor-
mation from the collected data that would be useful to the security team. 

This paper presents a method to retrieve useful information for the security team 
from data collected by an intrusion prevention system (IPS). The method consists in 
identifying potentially corrupted computers inside the organization and ranking them 
according to three metrics: the coefficient of consecutiveness indicating during how 
many consecutive weeks IPS alerts were observed, the number of weeks during which 
alerts were raised and the number of distinct attack types. Based on these metrics, po-
tentially corrupted computers can be ranked. We will show that the proposed method 
helps the security team gaining some insight into the organization’s security. The in-
troduced method is evaluated for data collected at a large organization of about 40,000 
computers. The evaluation is based on the judgment of a security expert of which 
computers were indeed corrupted. On the one hand, we studied how many computers 
classified as of high and medium concern were indeed corrupted (i.e., true positives). 
On the other hand, we analyzed how many computers classified as of low concern were 
in fact corrupted (i.e., false negatives).  

The remainder of the paper is structured as follows. Section 2 describes the related 
work on data analysis of security logs. Section 3 introduces the concepts relative to 
IPSs. Section 4 defines the method. Section 5 presents the evaluation of the method. 
We provide conclusions in Section 6. 

2   Related Work 

A lot of research focuses on analyzing security logs for security assessment. To face the 
possibly high quantity of data to analyze, a common step is to reduce data before ana-
lyzing it. [1] describes an architecture to analyze distributed darknet traffic: first, col-
lected data on attacks are filtered; secondly, forensics is used to analyze the reduced data. 
[2] focuses on analyzing data of a denial of service. In order to study the traffic volume 
per protocol, a categorization of the collected network traffic by protocol was made. 

Analyzing large amounts of security data becomes an emerging task in the intrusion 
detection field. Indeed, intrusion detection systems face two main issues: 1) a high 
number of alarms can be raised and 2) there can be many false alarms among them. 
Thus, the objective is to decrease the number of false alarms. Research was conducted 
to retrieve normal behavior (i.e., traffic that is not malicious) from the dataset using 
several techniques: time series [3], data mining [4, 5, 6, 7, 8, 9, 10 and 11] and corre-
lation [6, 12, 13, 14, 15 and 16]. A common practice is to use historical data to define 
normal behavior so that future alarms can be handled more efficiently. Data mining 
techniques can be used to achieve this goal. However, research projects differ in the 
data mining technique used: association rules [10], frequent episode rules [4, 9], clas-
sification [11] or clustering [5, 6, 7, 8 and 9]. A commonly used method in intrusion 
detection is alert correlation. [13] defines a model for intrusion detection alert correla-
tion and presents three examples of correlation: aggregation of alerts referring to a 
single targeted host, aggregation of alerts referring to hosts vulnerable to an attack 
occurrence and aggregation according to alerts similarities (such as alerts caused by the 
same event or referring to the same vulnerabilities). [5 and 6] introduce a cooperative 
intrusion detection framework in which functions to manage, cluster, merge and cor-
relate alerts were implemented. The objective was to correlate alerts to generate more 
global alerts and discard false alarms.  
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In [11], the authors present the Adaptive Learner for Alert Classification (ALAC) 
system. ALAC is a system to reduce false positives in intrusion detection systems and 
relies on two elements: 1) expert judgment and 2) machine learning techniques. An 
analyst classifies alerts as true positives or false positives. Then, ALAC autonomously 
processes alerts that have been classified by the analyst. The accuracy of ALAC is as 
good as the quality of the analyst’s classification.  

3   On the Use of Intrusion Prevention System Event Data 

3.1   Approach 

Many organizations use security devices to monitor their network activity. The quantity 
of data collected per day can be so substantial that every event identified by a security 
device cannot be investigated by the security team. Hence, retrieving meaningful in-
formation from the collected data on the malicious activity would give a more detailed 
insight to security administrators into the network’s security. The main issue is that the 
data currently collected are far from being perfect. For example, the data collected by 
security devices, such as intrusion prevention systems (IPSs), might contain alerts for 
activity that is not malicious (i.e., false positives) and might not detect some malicious 
activity (i.e., false negatives). Moreover, they will not include new attacks in the case of 
signature-based IPSs. They often rely on the trust we have in the security devices and 
the vendors. No ground truth is provided. Details are lacking on the meaning of the data 
and how they are produced (the security devices are black boxes for which vendors 
only release few details). 

Two approaches are then possible. The first one is to work on obtaining datasets 
clean enough so that accurate security estimations are possible. The second one is to 
accept that the dataset is imperfect but that useful information regarding an organiza-
tion’s security can be retrieved. In this paper, we adopt the second approach. 

In this paper, we provide a method to extract useful information from IPS event data. 
The suggested method aims at extracting a list of potentially corrupted organization 
computers that would then be handled by the security team. Those computers manifest 
in the IPS dataset as the potential source of attacks. The dataset might not only contain 
attackers who willingly launch attacks. It might also include computers that may not 
have been fully patched. Once the list of suspected computers is identified, the security 
team can make a decision regarding these computers. For example, a decision could 
consist in blocking the IP address from the network until the computer is cleaned. 

3.2   Intrusion Prevention Systems 

An IPS is a security device that monitors malicious activity and reacts in real-time by 
blocking a potential attack. An IPS is considered as an extension of an intrusion de-
tection system (IDS). An IDS is a passive device that monitors activity whereas an IPS 
is an active device that blocks potential malicious activity. For our study, we focus on 
signature-based IPSs: the IPS blocking decision relies on a set of signatures that are 
regularly released by the vendor as attacks are newly discovered on the Internet. When 
characteristics of an attack match the ones of a defined signature, the attack is blocked 
and an alert is recorded in the IPS logs.  
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We assume that the IPS is located at the edge of the organization. In other words, the 
IPS monitors 1) malicious activity originating inside the organization and targeting 
outside computers, 2) malicious activity originating outside the organization and tar-
geting organization computers.  

We define an alert in the IPS dataset as a source IP address (SIP/attacker) attacking a 
destination IP address (DIP/target) with a certain type of attack (signature) at a given 
time.  

3.3   Dataset: Assumptions 

As previously mentioned, the IPS dataset has several issues. We have not evaluated the 
IPS and thus do not know how many false positives and false negatives the IPS pro-
duces. Moreover, since the IPS is a signature-based device, new attacks will not be 
detected nor blocked. 

Furthermore, the dataset does not include the case where a computer inside the or-
ganization attacks another computer inside the organization. The IPS is located at the 
edge of the organization so it cannot detect traffic within the organization. Besides, this 
study solely focuses on computers with static IP addresses. 

Finally, we cannot prove that a blocked attack would have been harmful to the tar-
geted computer. Indeed, for an attack to be successful, the targeted computer should 
have the associated vulnerability. We have scanned several computers for which an IPS 
alert was raised and noticed that in many cases the vulnerability associated with the 
alert was not present. This means that even without the IPS, the attack would not have 
been successful. This also indicates that the IPS identifies and detects an attack in its 
early stage preferring to block attacks that would not have been successful instead of 
not blocking a potentially successful attack. 

4   Method 

The next sub-sections present the method to identify potentially corrupted organization 
computers. First, we define three metrics to characterize the activity in the IPS dataset. 
Then, we present the method for ranking the potentially corrupted computers according 
to the three metrics values. 

4.1   Metrics 

A computer is of main concern to the security team if 1) it appears often in the IPS 
dataset as the source of an attack, and 2) it launches a wide range of different attack 
types. Therefore, we introduce the following metrics for a computer: 1) a coefficient of 
consecutiveness of the number of weeks for which at least one alert was raised, 2) the 
number of weeks for which at least one alert was raised, and 3) the number of different 
signatures (i.e. attack types) associated to the computer. We defined these metrics that 
we believe are appropriate for attackers. These metrics might be less relevant for targets 
(computers under attack). 

4.1.1   Coefficient of Consecutiveness 
Computers that appear in the IPS dataset for many consecutive weeks are of main 
concern for the organization’s security team, seeming to indicate that a computer is 
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launching attacks during several consecutive weeks and has not been checked. We 
define the coefficient of consecutiveness as: 

Cons = Week/(Max - Min + 1) 

where Max is the identifier of the last week when the computer appears in the dataset, 
Min is the identifier of the first week, and Week is the number of distinct weeks. The 
consecutiveness factor is positive and the maximum value is 1. Let us consider a 
computer that appears in the IPS dataset at weeks 2, 3, 6, 8, 9, among 10 weeks of 
observation (Figure 1). In this case, Max = 9, Min = 2 and Week = 5. The consecu-
tiveness factor is: 5/(9-2+1) = 0.625. 

Fig. 1. Consecutiveness Factor 

The closer to 1 the coefficient of consecutiveness is, the more focus the security 
team should put on the computer. However, if a computer only appears once in the IPS 
dataset, it means that Week = 1. Nonetheless, it does not necessarily mean that the se-
curity team should focus on that computer. This emphasizes that the number of weeks 
is also an important metric. 

4.1.2   Number of Weeks 
The number of weeks for which at least one alert was associated to the computer is the 
second metric.  

However, the case where the number of weeks is 1 may be misleading. In this case 
(the computer was recorded as an attacker only for one week along the considered pe-
riod of time), the coefficient of consecutiveness would be 1 and the computer would be 
reported to the security team. Considering the computers for which Week = 1 would 
raise a lot of alerts for computers that are in fact not corrupted. Therefore, we discard 
for the study all computers where week = 1.  

Hence, the minimum is Week = 2 and the maximum is the number of weeks during 
which data have been collected. 

The number of weeks reflects the frequency at which the computer appears in the 
IPS dataset. A computer with a large number of weeks reveals that the computer is 
potentially corrupted and has not been checked. 

4.1.3   Number of Signatures 
Finally, we believe that the number of distinct attack signatures associated with a given 
computer is important. It reflects the range of different attack types one computer 
seemed to have launched. Note that a great number of distinct signatures might also 
reveal that the computer contains several vulnerabilities. 

The minimum number is 1 and the maximum is the total number of existing distinct 
signatures in the IPS. 

1 2 3 4 5 6 7 8 9 10 Week 

X X X XX
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4.2   Level of Criticality 

We define the level of criticality of a computer as the 3-tuple {Cons, Week, Sign} (Cons 
stands for the coefficient of consecutiveness, Week for the number of weeks, Sign for 
the number of signatures). The higher the level of criticality, the more important it is for 
the security team to check that computer. 

We identify three levels of interest: high concern, concern, and low concern. We 
define thresholds for each metric so that the interval is cut into three intervals: C1 and 
C2 are thresholds for the consecutiveness factor, W1 and W2 for the number of weeks, 
S1 and S2 for the number of distinct signatures. We decided to visualize each computer 
by using a Cartesian coordinate system: the coordinates are the consecutiveness factor, 
the number of weeks and the number of signatures. In other words, each computer is 
represented in a 3-D space. Hence, by considering the thresholds and the 3-D space, we 
can visualize a cube that is cut into 27 sub-cubes (Figure 2a).  

We then introduce three colors associated with the three levels of criticality: 1) green 
regions (G) depict computers of low concern, 2) yellow regions (Y) group computers of 
concern that should be checked by the security team, and 3) red regions (R) show 
computers of high concern that should be addressed in priority. For each sub-cube, a 
security expert helped us decide on their level of criticality and thus their associated 
color. Figure 2b depicts the colors selected for the 27 sub-cubes. 

4.3   Method for Identifying Computers of Concern 

The method consists in five steps: 1) analysis of the IPS dataset to identify computers 
that were the source of alerts, 2) calculation of the level of criticality for each identified 
computer, 3) determination of thresholds for the three metrics, 4) investigation of 
computers in the red region and 5) investigation of computers in the yellow region. 

 

 

 

 

 

(a)         (b) 

Fig. 2. Visualization of Metrics (a) and Colored Zones (b) 

Step 1: Analysis of the IPS dataset 
The identification of computers that were the source of alerts in the IPS dataset is done 
through the extraction of the internal IP addresses that appear as the source of alerts in 
the IPS dataset.  

Step 2: Calculation of the level of criticality 
To calculate a level of criticality, a period of time for which to calculate the metrics 
needs to be defined. We advise selecting a period long enough to allow a metric like the 
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coefficient of consecutiveness to be relevant (at least 5 weeks for the coefficient of 
consecutiveness to be meaningful). 

Step 3: Determination of thresholds for the three metrics 
We believe that threshold values (C1, C2, W1, W2, S1, S2) are organization dependent. 
Characteristics, such as the size of the organization, the type of the organization can 
greatly differ between organizations. In that sense, we advise each organization to 
choose its own thresholds.  

Steps 4 and 5: Investigation of computers in the red and yellow regions 
As the method consists in ranking computers in function of the level of criticality in 
order to focus on the computers of main concern, the security team should focus in 
priority on the computers in the red region. 

Depending on the available sources of information, checking a potentially corrupted 
computer would include: 

- Using the IPS dataset to look at the date and time of events, 
- Using the IPS dataset to understand the attack type,  
- Investigating previous incidents with that particular IP address. 

The method tends to identify computers that appear frequently in the IPS dataset: 
those are the computers in the red and yellow regions (the frequency is reflected by the 
metrics Cons and Week, Sign interferes in making the distinction between the red and 
yellow regions). Hence, our method will not raise a flag for a computer that is involved 
in a single alert that could be harmful. Therefore, the method does not identify all po-
tential corrupted computers.  

Also, the method identifies computers that may be corrupted or not. For the re-
maining of the paper, we call: 

- False negatives: corrupted computers that have not been identified by the 
method, 

- True positives: corrupted computers that have been identified by the 
method, 

- False positives: non-corrupted computers that have been identified by the 
method, 

- True negatives: non-corrupted computers that have not been identified by 
the method. 

The thresholds C1, C2, W1, W2, S1 and S2 are chosen by making a trade-off between 
the number of true positives and the number of false negatives.  

5   Evaluation 

5.1   Approach 

In this section, we will evaluate the presented method. We will study IPS event data 
collected on a large public university (University of Maryland) composed of about 
40,000 computers. The considered IPS dataset covers a period of 17 months, from 
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September 1st 2006 to January 31st 2008. The IPS raised an average of around 142 alerts 
per day during the studied period for computers inside the campus that are detected 
transmitting potentially malicious traffic toward computers outside the campus. Over 
the 17 months, 1,441 different computers inside the organization that launched at least 
one attack were identified. 

First, we need to define a time period on which to apply the metrics. The campus is 
much less populated during the summer break (3 months) and the winter break (1 
month). In other words, the traffic recorded by the IPS may drop during these periods 
due to fewer students/computers. In order not to bias the results, we should apply the 
metrics over a period greater than 3 months. We decided to apply the metrics over a 
6-month period. In order to show how the metrics evolved over time, we calculated the 
metrics for increments of 2 weeks. On each period of 6 months, we extracted a list of 
computers and calculated the associated metrics.  

We then asked the Director of Security of the Office of Information Technology at 
the University of Maryland, to indicate which computers were corrupted among the 
ones identified by our method. To do so, the Director of Security needed to investigate 
every computer. This step relies on expert judgment and human activity, as opposed to 
an automated investigation. As previously stated, we believe that computers for which 
Week = 1 are of less interest that those that appear at least two weeks over a 6-month 
period. By eliminating those computers, we are left with 303 computers to investigate. 

We recognize that we rely on expert judgment to indicate which computers are 
corrupted. Another security expert might provide slightly different results. To decrease 
the potential bias due to expert judgment, we asked the Director of Security: 1) to use a 
systematic method for deciding if a computer is corrupted, and 2) to be conservative in 
his judgment (the Director will declare a computer corrupted (respectively 
non-corrupted) only if he is sure that the computer is corrupted (respectively 
non-corrupted)). Such requirements led to many investigated computers without clear 
decision. Among the 303 investigated computers, for 76 (25%) of them it was unclear 
whether they were corrupted. One reason is that the analyzed data went back to Sep-
tember 2006 making it difficult to make sure if the flagged computer was indeed  
corrupted.  

First, in order to investigate the computers to determine if they are corrupted, the 
Director of Security needed the following information: 

- For each computer: the number of alerts triggered in the IPS, the signature 
list associated to these alerts (SL), the time span for these alerts by signa-
ture, the list of computers targeted (target list TL), the list of incidents as-
sociated to the computer, 

- A list of signatures known to trigger false alarms, 
- A list of signatures known to be non-malicious. 

Figure 3 depicts the sequential questions to answer regarding a given computer to 
determine if it is corrupted (C), non-corrupted (NC), or undetermined (O for other). If 
the answer to a question is “yes”, the computer can be classified and the Director of 
Security investigates another computer. If the answer is “no”, the Director of Security 
moves to the next question. These steps are the ones that were followed by the Director 
of Security to investigate the computers in order to evaluate the suggested method. 
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Fig. 3. Flowchart of the Steps of the Investigation 

First, classifying computers as (non)-corrupted involves investigating the target list 
(TL): does the target list contain computers in the adjacent address blocks? If yes, it is 
possible that the computer is scanning the adjacent IP addresses range in order to detect 
computers. In that case, the computer is classified as corrupted. Otherwise, the signa-
ture list (SL) needs to be investigated: does the signature list contain signatures known 
to not produce false alerts? If yes, the computer is classified as corrupted. Six sequential 
steps consist in investigating the target list and the signature list. The seventh step aims 
at searching into the incident data in order to find an incident report involving the 
computer under investigation: if there is an incident report to support the alert associ-
ated with the computer, then the computer is classified as corrupted. If none of these 
steps allows classifying the computer as (non)-corrupted, the Director of Security will 
examine the specific circumstances of the alerts: if the investigation reveals malicious 
activity, the computer is corrupted; otherwise, if the investigation indicates false alerts, 
the computer is non-corrupted; otherwise, the computer is classified as undetermined. 

Out of 303 investigated computers, 91 (30%) were identified as corrupted and 136 
(45%) were identified as non-corrupted. One important measure is to find how many 
among the 303 identified computers led to an interesting investigation (independently 
of the outcome). The issue is whether the method identifies computers worth investi-
gating or flags computers clearly of no concern leading to a waste of the time for the 
security team. Among the 303 flagged computers, the Director of Security found that 
the investigation was useful for all the identified computers. Indeed, either the com-
puter is declared corrupted and the security team did check it or should have checked it, 
or the computer is not corrupted and the IPS itself needs to be retuned to reduce the 
number of alerts raised for non-corrupted computers. This high percentage indicates 
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that the proposed method is already of practical use for the security team. Although the 
number of non-corrupted investigated computers is high, the non-corrupted computers 
may reveal events that could not have been identified otherwise. For example, we 
identified an event where 64 systems tried to access Facebook using a suspicious PHP 
argument and users who operated Nmap. The computers involved in these two events 
were identified as non-corrupted but provided an additional insight into the organiza-
tion’s security. 

The next step is to assess our method to know if it correctly identifies the 
(non)-corrupted computers. Each computer will be assigned a color: red (R), yellow 
(Y), green (G), and an investigation result: corrupted (C) or non-corrupted (NC) 
computer. A computer that was in the red or yellow regions and was identified as 
corrupted is a true positive. On the contrary, a computer that was in the green region 
and was identified as corrupted is a false negative. All combinations of color and in-
vestigation result are given in Table 1. Note that when the investigation could not tell if 
a computer was corrupted or not, we will use O (O stands for “Other”). For example, 
RO groups computers that are in the red region and that could not be identified as 
corrupted or non-corrupted by the Director of Security. 

Table 1. All Combinations of Color and Investigation Result 

Color Investigation result Notation Conclusion 
R C RC True Positive (TP) 
R NC RNC False Positive (FP) 
Y C YC True Positive (TP) 
Y NC YNC False Positive (FP) 
G C GC False Negative (FN) 
G NC GNC True Negative (TN) 
R O RO - 
Y O YO - 
G O GO - 

5.2   Results 

We studied 23 periods of 6 months from September 1st 2006 to January 31st 2008 with 
increments of 2 weeks. Period 1 is the period from September 1st 2006 to February 28th 
2007. Period 2 covers September 15th 2006 to March 14th 2007, etc. Period 23 defines 
the period from August 1st 2007 to January 31st 2008. For each period, we extracted the 
address of the organization computers that raised at least one alert corresponding to an 
attack towards a computer outside the University of Maryland and calculated the as-
sociated metrics. We applied the following thresholds: C1 = 0.5 and C2 = 0.8 for the 
coefficient of consecutiveness, W1= 2 and W2 = 4 for the number of distinct weeks, S1 
= 1 and S2 = 2 for the number of distinct signatures. For each of the 23 periods of 6 
months, our method automatically puts each flagged computers in a green, yellow or 
red region. According to the identification of the (non)-corrupted computers by the 
Director of Security, we can calculate 1) the number of true/false positives based on the 
results in the yellow and red regions, and 2) the number of true/false negatives based on 
the results in the green region. The results are shown in Table 2.  
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Note first that the number of computers for which it could not be decided whether 
they were corrupted or not highly depends on the region. In the red region, they rep-
resent 12% (Period 1), 0% (Period 12) and 20% (Period 23). In the yellow region, we 
find 26% (Period 1), 38% (Period 12), and 36% (Period 23). In the green region, we 
have 71% (Period 1), 54% (Period 12), and 32% (Period 23). It is interesting to note 
that often the red region has the lowest percentage and the green region has the highest 
percentage of computers that could not be clearly identified as (non)-corrupted. This 
increases the confidence in our method since the computers in the red region should 
have the highest likelihood of being corrupted and the green region should have a much 
lower likelihood of being corrupted. This shows that the information provided to the 
security team should be useful as it seems to rank the computers based on the likelihood 
of corruption. 

Graphs of the evolution of true positives, false positives, true negatives and false 
negatives over the 23 periods are shown in Figure 4. The results show that the method is 
improving regarding the number of true negatives. At Period 1, among the computers in 
the green region (i.e., computer of low concern), only 10% were not corrupted. How-
ever, the trend significantly changes over time. At Period 23, among the computers in 
the green region, 91.7% were not corrupted. 

Table 2. Results of the Evaluation 
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1 19 3 24 10 18 2 3 12 49 43 13 2 18 76.8 23.2 10.0 90.0 
2 19 4 30 10 17 1 3 13 46 49 14 1 17 77.8 22.2 5.6 94.4 
3 21 5 29 8 17 1 3 14 44 50 13 1 17 79.4 20.6 5.6 94.4 
4 17 5 34 7 19 1 2 16 39 51 12 1 19 81.0 19.0 5.0 95.0 
5 14 5 35 7 17 1 2 15 38 49 12 1 17 80.3 19.7 5.6 94.4 
6 13 5 33 6 20 8 2 15 35 46 11 8 20 80.7 19.3 28.6 71.4 
7 13 5 30 5 20 14 2 11 40 43 10 14 20 81.1 18.9 41.2 58.8 
8 10 4 35 4 18 14 1 13 34 45 8 14 18 84.9 15.1 43.8 56.2 
9 10 3 33 5 17 13 2 12 36 43 8 13 17 84.3 15.7 43.3 56.7 

10 11 3 29 3 17 11 2 11 39 40 6 11 17 87.0 13.0 39.3 60.7 
11 10 2 24 4 17 12 2 8 38 34 6 12 17 85.0 15.0 41.4 58.6 
12 12 2 13 5 16 12 0 11 33 25 7 12 16 78.1 21.9 42.9 57.1 
13 9 1 13 6 13 12 0 10 34 22 7 12 13 75.9 24.1 48.0 52.0 
14 6 0 11 6 13 18 0 6 30 17 6 18 13 73.9 26.1 58.1 41.9 
15 3 1 10 7 8 19 0 5 30 13 8 19 8 61.9 38.1 70.4 29.6 
16 3 0 6 8 6 20 0 7 30 9 8 20 6 52.9 47.1 76.9 23.1 
17 3 2 4 9 5 39 0 6 30 7 11 39 5 38.9 61.1 88.6 11.4 
18 3 2 3 10 4 36 0 6 27 6 12 36 4 33.3 66.7 90.0 10.0 
19 2 3 3 8 5 39 0 6 28 5 11 39 5 31.2 68.8 88.6 11.4 
20 2 3 1 8 6 41 0 6 28 3 11 41 6 21.4 78.6 87.2 12.8 
21 2 3 0 8 6 43 0 5 28 2 11 43 6 15.4 84.6 87.8 12.2 
22 2 3 0 8 6 44 0 5 26 2 11 44 6 15.4 84.6 88.0 12.0 
23 1 3 1 6 4 44 1 4 23 2 9 44 4 18.2 81.8 91.7 8.3 

On the other hand, the method identifies a high percentage of true positives at Period 
1 but a low percentage at Period 23. At Period 1, the method identified 76.8% of the 
computers in the red and yellow regions as being indeed corrupted. At Period 23, the 
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method only found 18.2% of corrupted computers in the red and yellow regions. These 
numbers might indicate that our method is worsening over time. More details are 
necessary to better understand the reasons for the obtained results. As expected, over 
time, the security team learned how to integrate the results provided by the IPS in their 
overall security solution. The number of identified corrupted computers is 61 at Period 
1, 41 at Period 12, and only 6 at Period 23. This clearly indicates that the IPS is helping 
the security team improving the overall organization’s security. These numbers help 
putting in perspective the only 18.2% of corrupted computers in the regions of concern. 
At Period 23, only 5 computers were placed in the red region and 11 in the yellow re-
gion. Among them, 3 computers were incorrectly put in the red region when they were 
not corrupted and 6 in the yellow region. On the other hand, at Period 23, most com-
puters were placed in the green region (71). Among them, only 4 (5.6%) were incor-
rectly put in the green region, i.e., they were identified as of low concern when in fact 
they were corrupted. The method seems thus to be able to correctly identify the biggest 
volumes of events, i.e. corrupted computers at Period 1 and non-corrupted computers at 
Period 23. 

Fig. 4. Evolution of False Negatives (FN), True Negatives (TN), False Positives (FP) and True 
Positives (TP) 

6   Conclusion 

We presented a method to extract useful information from imperfect IPS event data in 
order to rank potentially corrupted computers in an organization. We introduced three 
metrics to quantify the level of criticality of a computer: the coefficient of consecu-
tiveness, the number of distinct weeks and the number of distinct signatures. The 
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method classifies computers into regions of main concern (red regions), concern (yel-
low region), or lower concern (green region). We applied the method to IPS event data 
collected in an organization of about 40,000 computers. We evaluated our method by 
comparing the results obtained by our method with the identification of (non)-corrupted 
computers by a security expert. We showed that: 1) the percentage of computers iden-
tified as corrupted is higher for computers in the red region than for computers in the 
green region, 2) the trend of the number of true negatives increases over time, 3) the 
security team seems to integrate the IPS in their overall organization’s security as the 
number of computers identified as corrupted decreases over time.  
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