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Abstract. In this paper, a method for pitch independent musical in-
strument recognition using artificial neural networks is presented. Spec-
tral features including FFT coefficients, harmonic envelopes and cepstral
coefficients are used to represent the musical instrument sounds for clas-
sification. The effectiveness of these features are compared by testing
the performance of ANNs trained with each feature. Multi-layer percep-
trons are also compared with Time-delay neural networks. The testing
and training sets both consist of fifteen note samples per musical instru-
ment within the chromatic scale from C3 to C6. Both sets consist of nine
instruments from the string, brass and woodwind families. Best results
were achieved with cepstrum coefficients with a classification accuracy
of 88 percent using a time-delay neural network, which is on par with
recent results using several different features.

Keywords: neural networks, musical instrument recognition

1 Introduction

With the advent of digital multimedia, there is an increasing need to be able
to catalogue audio data in much the same way that books are catalogued. Most
digital audio formats in use today such as MP3 and WAV contain limited meta-
data about the actual recordings that they contain [1]. However, the MPEG-7
specification requires that meta-data, such as the types of musical instruments
in a recording, should be stored in the file with the recording to enable effective
cataloguing of files [2]. The classification and identification of important features
of musical instruments in digital audio will be a step towards such a cataloguing
system. The process of classification based on a set of features is often referred
to as 'Content-Based Classification [1].’

Meta-data generated by such a system may be used by a search engine to
allow users to find specific styles of music. For example, a music teacher may be
interested in searching for audio files with certain instruments playing or music
from a certain genre. Currently, musical search systems only have the ability to
classify their music based on filenames.

The model discussed in this paper concentrates on identifying musical instru-
ments in sound recordings whilst assessing the usefulness of different features
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that can represent musical instruments for the purpose of classification. Meta-
data gathered by an effective instrument classification system can be used to
build databases based on MPEG-7 meta-data. Another possible use of such an
audio classification system include the ability to automatically generate meta-
data about music files and to fight the distribution of copyright audio material
on the Internet.

The main aim of this research was to compare the usefulness of spectrum and
cepstrum based features using an artificial neural network. Also, the performance
of the time delay neural network and the multi-layer perceptron were compared.
The results may lead to an improved cataloguing system that allows people to
search through music databases more effectively.

2 Previous Work

Two major characteristics of an audio classification system are the features that
are used to distinguish between the sounds and method in which the classifier
is 'trained’ to recognise the sounds. A trained human ear can easily identify
musical instruments that are playing in a sound mix, even if each of these in-
struments share a similar note range. This is because each instrument has a set
of auditory features that distinguishes it from other instruments. For example,
many musical instruments have harmonics or overtones that can be heard at
multiples of the fundamental frequency. These harmonics colour the sound mak-
ing each instrument sound different. The features that enable one to distinguish
musical instruments can be described as the timbre of the sound. At present,
computerised audio classifiers lack the accuracy of human classifiers. As a re-
sult, research is being conducted in improving the features that are fed to audio
classifiers as well as the audio classification engines themselves (eg. ANNs).

Audio Classification Techniques

Herrera [2] provides a survey of different techniques that have been used to clas-
sify musical instruments in monophonic (where one instrument plays only one
note at any given time) sounds. Techniques discussed include K-nearest neigh-
bours, Bayesian classifiers, binary trees, support vector machines and neural
networks. Comparability between these techniques is difficult due to differing
experimentation approaches and sound samples used. Also, many of these ex-
periments have been based on a limited set of musical instruments. However,
the attractiveness of the ANN comes from its ability to generalise after being
trained with a finite set of sound samples. Herrera also alludes to the difficulty
involved with using the same algorithms for identifying musical instruments in
sound mixes.

Experiments performed using ANNs to classify musical instrument sounds
have found that good results can be achieved for monophonic instrument sam-
ples [3, 4]. Cemgil [4] provides a comparison between a multi-layer perceptron,
a time delay neural network and a hybrid Self-Organising Map/Radial Basis
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Function (RBF) for classifying instrument sounds. All network types are pre-
sented sound in the form of a set of harmonic envelopes. The number of instru-
ment harmonics required for good neural network generalisation performance
is also discussed. The results indicated that generalisation improves when more
harmonics are presented to the neural networks. The number of time windows
had less bearing on the performance of each of the models. It was found that
the spectral content in the attack portion of the sound contained most of the
information needed by the network to make a classification.

Cemgil’s experiment found that the performance of each of the models in
order of success were: the Time Delay Neural Network with classification success
of up to 100%; the Multi-layer perceptron with a classification success of up to
97%, and lastly the hybrid Self Organising Map (SOM)/Radial Basis Function
with a classification success of up to 94%. However, the results shown by the SOM
are promising because they show how the instruments are organised according
to timbre. Unfortunately, these results are optimistic for the classification of real
life sounds. The sound samples included a limited range of notes (one octave)
and limited instrument articulation (eg. a cello string can be plucked or bowed).

Experiments detailed in this paper test the adequacy of the standard back-
propagation Multi-Layer Perceptron (MLP) the Time Delay Neural Network
(TDNN) for detecting the presence of a musical instrument in a monophonic
source regardless of the note played or its volume. Each ANN is fed a series of
spectral parameters based on the Fourier Transform.

Selection of Auditory Features

A digital audio signal must be converted into a suitable form before classification
becomes possible. Auditory features can be classified as spectral or temporal.
Spectral features are parameters that can be extracted from the frequency spec-
trum of a sound whereas temporal features relate to the timing of events over
the duration of a note.

When using multiple features for classifying musical instrument, it is pos-
sible for one bad feature to destroy the classification results. It is therefore
important to determine whether a certain feature allows musical instruments
to be distinguished. Kostek’s [3] work goes some way to identifying instrument
distinguishing sound characteristics.

Brown [5] demonstrated the validity of cepstral coefficients for distinguishing
between an oboe and a saxophone by using a K-means algorithm. Eronen [6]
later verified their robustness in classifying a wider range of instruments.

Having surveyed the literature, it must be noted that different features may
be suitable for classifying a small set of instruments. However, a universal set
of parameters with the ability to distinguish between any musical instrument
is non-existent. Most of the timbral features discussed are based on perceptual
models of the ultimate sound classifier, namely the human being. However, the
difficulty lies in the objective measurement of these properties using a com-

puter [5]. The human auditory system is a highly non-linear device in which
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some harmonic components produced by musical instruments may be masked
by spectral energy at nearby frequencies.

Extensive research has been completed on defining timbre in terms of human
perception. The definition of timbre in terms of spectral features was apparent
as early as 1954, when Helmholtz claimed that the relative amplitudes of the
harmonic partials that compose a periodic tone is the primary determinant of
a tone’s sound quality [7, 8]. Temporal features were recognised as important
determinant of musical instrument sounds as early as 1910 when Stumpf recog-
nised the importance of the onset of a musical note for distinguishing musical
sounds [3]. For this reason, experiments detailed in this paper involve presenting
the ANN with representations of sounds beginning at the onset of a note.

The field of computational auditory scene analysis [9] attempts to mimic the
ability of humans to conceptualise music. Abdallah [10] discusses how to extract
features that make up our perception of musical sounds. His idea is to create
a ’single unifying description of all levels of musical cognition from the raw audio
signal to abstract musical concepts.’

This research could lead to improvements in how a neural network is fed

sound features in the form of reduced redundancy.
In the meantime, techniques such as Mel scaling (passing audio through a set of
band pass filters based on experimental results on human hearing) are used to
approximate the human auditory system. Future work in musical classification
based on perceptual models may be fruitful.

3 Methodology

Sound samples from a variety or woodwind, brass and string instruments were
collected from the University of Iowa music samples web page [11]. Piano samples
were also obtained from this site. A synthesised guitar was included in the sample
set (from general MIDI) in order to have a representation of another stringed
instrument. The note samples, which ranged from C3 to C6 on the chromatic
scale, were separated into two sets. One of these sets was used for training and
the other for testing. The testing set was used to assess the ability of the ANN
to generalise based on a finite number of examples that were presented during
training (the training set).

The note range from C3 to C6 was chosen because the instruments selected
produce sounds that overlap in these frequencies. Notes above C6 were not in-
cluded in either the training or test sets because the Nyquist theorem prevents
the extraction of higher harmonics for higher notes. To enable the extraction of
higher harmonics, a larger audio sampling rate must be used. However, due to
processing time constraints, a sampling rate of 22 kHz was used.

It is important to use real life instrument samples for classification to ensure
that the ANN can generalise regardless of how the instrument is played. The
ANN training set contained a combination of soft notes, moderately loud notes
and loud notes. The harmonic compositions of each note change dynamically
(not proportionally) depending on how the note is articulated (see figure 1).
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This makes the classification process more difficult for live instruments. For syn-
thesized instruments the harmonic amplitudes are generally scaled in proportion
to the loudness of the fundamental frequency. The training and testing sets con-
tain examples of notes played vibrato (with modulation) and pizzicato (plucked)
notes from the cello.

After the onset of each note is detected (by computer algorithm), 50 per-
cent overlapping windows of 2048 Hann windowed samples were converted to
the frequency domain using the fast Fourier transform (FFT). From the FFT
coeflicients, harmonic envelopes and cepstral coefficients were then calculated.
The extracted features were either averaged over a number of frames or taken
directly and the resultant feature vector was placed into a pattern file ready for
presentation to the ANN. For the cepstral coefficients, only the first 128 coeffi-
cients were presented to the neural network. The lower coefficients correspond
to the rough or coarse spectral shape. The rough spectral shape contains infor-
mation of the formants or resonances of the instrument body [6], thus these were
used as features. The calculation of cepstral coefficients generally involves taking
the spectrum of a log spectrum [12].

These features were fed into both a multi-layer perceptron (MLP) and a time-
delay neural network. A limitation of the multi-layer perceptron comes from the
fact that the entire pattern has to be presented to the input layer at once. The
nature of sound is that variations occur over time. For example, musical sounds
have attack, sustain and decay transients that are difficult to represent. The
time delay neural network is an extension of the MLP back propagation network
developed by Alex Waibel [13] that has the advantage of being able to learn
patterns that vary over time [14]. TDNNs have proven to be useful for musical
instrument identification [4]. The time-delay neural network, like the perceptron,
uses back-error propagation as its learning algorithm. However, the TDNN has
a variety of time-delay components built into its architecture as described by
Waibel [15, 13].

The convergence of each Neural Network towards the correct classification
was assessed by monitoring the 'mean squared error’ (MSE) of the training
data and comparing it to the MSE of the test data after each epoch. Training
was stopped once the MSE of the test no longer improved. The validity of the
features (harmonic envelopes vs cepstral coefficients) was assessed by comparing
the recognition accuracy of ANNs using each of these features.

4 Results

4.1 Instrument Classification with Neural Networks
MLPs Trained with Harmonic Amplitudes

An MLP was initially trained with examples of individual frames (no averaging
over a number of frames) with 50% overlapping windows shifted across the entire
sound file for each instrument. Therefore, the number of neurons in the input
layer was equal to the number of harmonics presented to the neural network.
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That is, the ANN was presented with the harmonic amplitudes of one frame at
a time (not a harmonic envelope). This tests the ability of the ANN to recognise
a musical instrument given just one frame.

Results were modest with a best classification score of 67%. However, these
results suggest that the neural network struggled to identify musical instruments
correctly given just one frame at a time. This may be due to the fact that
harmonic content is not consistent across the entire length of a musical note, or
across different notes or articulations produced by the same instrument. This
makes it difficult for the ANN to generalise. Also, based on research regarding
phenomena that influence timbre perception [16], frequency information in the
attack transient of a musical note is important for classification. In the instances
where the sliding window appears over a non-attack part of a note, instruments
may be more difficult to distinguish.

There seems to be an indicative trend that by increasing the number of
harmonics presented to the neural network, the ANN will be better able to dis-
tinguish between instrument sounds. Unfortunately, there were not enough test
runs available to statistically verify this claim due to the Nyquist limitation (in-
sufficient number of harmonics). However, this trend is consistent with findings
indicated by Cemgil [4] and Kostek [3].

MLPs Trained with Harmonic Envelopes

The MLP was then presented with harmonic envelopes from several adjacent
sliding windows starting from the onset of each musical note. In other words,
the ANN was presented with harmonic amplitudes for several 50% overlapping
frames beginning from the onset of each note. Each window was individually nor-
malised (note that this is additional normalisation for each frame that was per-
formed in addition to the normalisation of the entire note during pre-processing).
It was hoped that a trend could be shown between the number of frames pre-
sented to the MLP and the ability of the MLP to generalise. However, the addi-
tion of new frames to the input vector failed to improve the classification results
of the ANN. As shown in table 8 in appendix A, the best result attained by pre-
senting multiple frames of harmonic amplitudes (harmonic envelope) was 65%.
These results are well below those attained by Cemgil [4] using harmonic en-
velopes and are also inferior to the results obtained for this research for ANNs
presented with harmonic amplitudes from only one frame.

These poor results indicate that the ANN failed to generalise to the general
(test set) population given harmonic envelopes. There are two possible causes
for this. Firstly, if the number of hidden layer nodes were excessive, the ANN is
likely to learn the nuances of the training set rather than the major features that
distinguish the instrument patterns. The second possible cause of the problem
occurs when the training sample is not representative of the general popula-
tion. For example, the trombone samples given in the training set may not be
representative of all trombone sounds. Since the number of hidden layer nodes
was carefully chosen, the former is unlikely to be the problem. Analysis of error
during training revealed a disappointing relationship between test and training
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data. Ideally, if the ANN was learning to distinguish musical instruments based
on their harmonic content, then both training and testing errors would have
decreased at a similar rate.

TDNN Trained with Harmonic Envelopes

When the Time-Delay Neural Network (TDNN) was presented with the har-
monic envelope as an input vector, the classification success for the best perform-
ing TDNN increased to only 68%. This result is well below the 100% achieved
by Cemgil (Cemgil et al., 1997). However, this may be due to the fact that every
individual frame was normalised. To improve this experiment, the harmonic en-
velope should have been normalised as a whole. By normalising each individual
frame, important information regarding change in volume associated with the
onset of a note may be lost.

4.2 Supervised Neural Networks
Using Cepstral Coefficients as Features

MLP Trained with Cepstral Coefficients

Results for MLPs, which were disappointing with a classification success of just
53 percent. It became apparent that a multi-layer perceptron is unable to distin-
guish musical instruments very well when trained with just one set of Cepstral
coeflicients per note. Thus, in order to reduce the effect of noise when measuring
the cepstrum of a note, the average of several frames over each individual note
were taken. The best result attained from averaging the Cepstrum over a number
of frames is depicted in table 1.

Improvements to the classification ability of the MLP as a consequence were
excellent. After interpretation of the results, it became evident that the ANN is
better able to generalise when the Cepstrum is averaged over an increasing num-
ber of frames. This implies that the average of a number of cepstral coefficients
at the onset of each note is more representative of a particular instrument than
cepstral coefficients in isolation. More research is needed to examine whether
this phenomenon continues beyond 7 frames. However, classification results of
up to 85% for the MLP using cepstral coefficients averaged over 12 frames (at
the onset of each note) indicate that 128 cepstral coefficients are a valid and
robust input vector option for neural networks.

TDNN Trained with Cepstral Coefficients

The TDNN presented with cepstral coefficients (the first 128 coefficients) proved
to be the most successful architecture for classifying musical instruments. Each
TDNN was configured to accept 10 fifty percent overlapping delayed frames
containing 128 cepstral coefficients. The TDNN was given 8 such examples per
note. As depicted in table 2, the TDNN successfully classified up to 88% of
instruments correctly.
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Table 1. Matrix of 9 instruments classified with an MLP using the first 128
cepstrum coefficients averaged over 12 frame(s) at the onset of each note

|Actual Class/Target|Bass. |F1ute|Clar. |’I‘rom. |H0rn|0boe | Piano|Guit. | Cello|

Bassoon 14 0 0 0 0 0 0 0 0
Flute 0 14 1 3 0 0 0 0 0
Clarinet 0 1 14 0 0 2 0 0 0
B. Tr 0 0 0 8 0 1 0 0 0
Horn 1 0 0 0 15 0 0 0 0
Oboe 0 0 0 4 0 12 0 0 0
Piano 0 0 0 0 0 0 8 0 0
Guitar 0 0 0 0 0 0 2 15 0
Cello 0 0 0 0 0 0 5 0 15
Total 15 15 15 15 15 15 15 15 15
Percentage Correct | 93 93 93 53 100 | 80 53 100 | 100
Total Correct 115
Total % Correct 85

Table 2. Matrix of 9 instruments classified with a TDNN Using the first 128
cepstrum coefficients delayed over 10 frames at the onset of each note (best
performance)

|Actual Class/Target|Bass. |F1ute|Clari. |Trom. |H0rn| Oboe|Piano|Guit. | Cello|

Bassoon 105 0 0 0 0 0 0 12 0
Flute 0 102 7 0 0 0 0 0 0
Clarinet 0 1 87 0 0 10 0 0 0
B. Tr 0 0 0 103 4 0 2 0 0
Horn 0 0 0 2 98 0 0 0 0
Oboe 0 0 0 0 0 95 0 25 0
Piano 0 0 0 0 0 0 85 15 0
Guitar 0 0 0 0 0 0 14 54 2
Cello 0 2 4 0 3 0 4 0 103
Total 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105 | 105
Percentage Correct | 100 | 97 83 98 93 90 81 51 | 98
Total Correct 88
Total % Correct | 832

4.3 Discussion of Results
Comparison of Feature Vectors

From the above analysis, it appears that averaged cepstral coefficients (with
classification success up to 88%) are a much more useful input vector to a clas-
sification algorithm (such as neural networks) than harmonic envelopes (with
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classification success of up to 68%). This may be indicative of the fact that
harmonic information alone is insufficient for distinguishing between musical
instruments.

For classification with harmonic amplitudes to be possible, the relationship
between the harmonics must be consistent for a given instrument class (eg.
bassoon) regardless of the note played or its articulation. Figure 1 below depicts
the harmonic structure of two different bassoon notes used in the experiments:
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Fig.1. Comparison of two bassoon notes with different articulation
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The graphs in figure 1 depict harmonic peaks of a 2048-sample frame gathered
from the onset of two bassoon notes. Each frame has been normalised to 1 so that
the relationship between harmonic amplitudes for each note can easily be seen.
From these diagrams, it is evident that the harmonic pattern is not consistent
for each bassoon note. In the top diagram, the third harmonic has the highest
amplitude whereas the second diagram shows the fundamental as having the
highest amplitude. These inconsistencies may limit the ability of an ANN to
distinguish between instruments using harmonic amplitudes exclusively. Future
studies may be interested in testing whether the process of averaging harmonic
envelopes improves the classification process as it did for cepstral coefficients.

The relatively poor results attained using harmonic envelopes are not com-
parable to results from Cemgil’s [1] experiments. Differences in the training and
test-set data may be the cause for these discrepancies. For example, it appears
that Cemgil used sound samples from the standard AWE32 (sound card) set.
This makes classification using harmonic envelopes alone feasible due to con-
sistency in the harmonic envelopes of synthesised sounds. As stated by Kamin-
skyj [17], it is important for the sound classification research community to make
their results as comparable as possible in future.

Comparison of Classifiers

In terms of the feature classifiers themselves, the TDNN consistently returned
better results than the MLP. The TDNN had classification results of up to 68%
using harmonic envelopes and 88% using cepstral coefficients while the MLP
had classification results of up to 67% using harmonic envelopes and 85% using
cepstral coeflicients as features. This is indicative of the importance of temporal
features for classifying musical sounds. Further research is needed to confirm this
statistically.

One advantage of using the MLP as opposed to the TDNN came from the
fact that it completed training much more quickly. However, this was influenced
by the experiment technique used. For the MLP, cepstral coefficients were aver-
aged over several frames. Therefore, the number of input layer nodes was equal
to the window size (or 128 for the ANNs designed to accept the first 128 cep-
strum coefficients). However, for the TDNN, 10 individual frames (delays) of 128
cepstral coefficients were applied to the input layer, totalling 1280 input layer
nodes. This slowed the training process for the TDNN.

Identification of Timbral Families

One of the aims of these experiments was to identify timbral families and rela-
tionships between the musical instruments. This can reveal whether or not the
computer 'perceives’ musical instruments in a similar way to the human auditory
system. Table 3 provides totals of the most common misclassifications with the
TDNN architecture using cepstral coefficients as features:

This data can be used to reveal relationships inherent between the musi-
cal instruments. For example, the table reveals that the flute and the clarinet,
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Table 3. Common Instrument Misclassifications

|Instrument|l\/[ost Commonly Misclassified AS|N0. Of Instances

Bassoon Bass Trombone 2
Flute Clarinet 12
Clarinet Flute 44
Trombone Horn 90
Horn B. Trombone 10
Oboe Clarinet 29
Piano Guitar 7
Guitar Bassoon 59
Cello B. Trombone 34

both woodwind instruments are commonly misclassified as one another. Also,
the two brass instruments, namely the bass trombone and the horn are com-
monly misclassified. The only two instruments that significantly did not exhibit
the expected misclassification pattern were the guitar (string), which was most
commonly misclassified as a bassoon (woodwind), and the cello (string), which
was most commonly misclassified as a trombone (brass). The fact that most
instruments were misclassified as instruments within their own orchestral (tim-
bral) family indicates that cepstral coefficients have some relationship with the
perception of timbre by humans.

5 Conclusions and Future Research

The initial aim of this research was to compare the usefulness of cepstral coeffi-
cients and harmonic envelopes as inputs to a neural network for the purpose of
classifying musical instruments. Results have indicated that cepstral coefficients
may be more useful than harmonic envelopes for the purpose of distinguishing
between musical instruments. This research has also demonstrated the usefulness
of the MLLP and TDNN as classification tools.

Future work may involve combining Cepstral coeflicients with spectrum re-
lated parameters such as spectral brightness and odd/even harmonic components
in order to produce a better classification model. Temporal features must also
be carefully analysed for their usefulness in classifying musical sounds. Further
experiments involving the human perception of sound may also be fruitful for
devising a better way to present a classifier with sound data.

The results attained for this research were limited to monophonic sounds.
For classification models discussed in this paper to be useful, prior separation
of sounds is required. The ultimate goal of audio classification is to identify
musical instruments that exist in polyphonic sounds. This may be achieved in
the future by using a technique known as source (or stream) separation. Future
research in this area will improve the viability of classifying musical instruments
in polyphonic sounds.
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