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Preface 

In regression analysis, the concepts to be learned are mathematical and require 
programming and intuition. The mathematical and intuition-based content can be 
taught in a traditional sense, but real-world scenarios are necessary to inspire 
students to remain interested. This book focuses on applied regression analysis 
for business students with an introduction to the R programming language. It 
emphasizes illustrating and solving real-time, up-to-date problems. Modern and 
relevant case studies from business are available within the text, along with clear 
and concise explanations of the theory, intuition, hands-on examples, and the 
coding required to use regression modeling. Each chapter contains the mathematical 
formulation and details of regression analysis and provides a practical in-depth 
breakdown using the R programming language. 

This book stresses the practical usage of regression analysis, making it applicable 
to data sets encountered in everyday business. Specifically, while traditional books 
contain excessive theories and mathematical formulas, they can overwhelm business 
students without advanced mathematical knowledge. On the contrary, some books 
that stress intuitive lessons often omit the coding components, which prevents 
students from understanding the process. As such, to equip business students with 
an understanding of the basic principles needed to apply regression analysis without 
extensive and complex mathematical knowledge, this book blends theory and appli-
cation by engaging students with worked-through real-life examples accompanied 
by detailed coding. Learning through relevant business cases is inevitable in today’s 
business world. To that end, numerous practical applications and exercises are 
available in this book, allowing students to quickly apply complex math to the data 
sets they collect. 

In this digital era, businesses have become highly dependent on data-driven 
analytics to guide their decision process. A survey by the GMAC even found that 
companies are increasingly looking to hire talent in data science and business 
analytics for advanced positions. Due to the increasing demand, the number of 
programs and courses in business analytics and data science has drastically grown 
in recent years. For example, Miami Herbet Business School at the University 
of Miami currently offers at least seven annual sections that cover regression
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analysis. However, no single textbook is designated for applied regression analysis 
in business. 

Hence, the primary audience of this book will be (1) advanced undergraduate-
level students studying business analytics and (2) graduate students studying 
business: including but not limited to students who study Master of Science in 
Business Analytics, Master of Science in Accounting, Master of Science in Tax, 
and Master of Business Administration. Nevertheless, this book suits advanced 
undergraduate-level students studying engineering, math, and statistics. 

Coral Gables, FL, USA Daniel P. McGibney 
September 25, 2022
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Chapter 1 
Introduction 

In God we trust. All others must bring data. 

—W. Edwards Deming 

1.1 Introduction 

Business analytics uses modern computing methods to report, enhance, and provide 
insights into modern businesses. Regression analysis does these actions through data 
by predicting unknown values, assessing differences among groups, and checking 
the relationships among variables. When regression analysis is applied to the right 
data set in the right way, the results can make businesses extremely profitable, 
whether the objective is predicting the sale price of houses, assessing marketing 
methods, or predicting the number of likes on a social media post. This book has 
countless applications of business examples where regression analysis produces 
valuable insights. This chapter begins with a discussion of the history of regression 
analysis and its role in data science, machine learning, and artificial intelligence 
(AI). Also, we will provide an overview of each of the eight case studies in this 
book. These cases offer detailed analyses of how to use regression analysis to obtain 
actionable business findings. 

1.2 History 

Regression analysis, developed over two hundred years ago, has a rich history. 
French mathematician Adrien-Marie Legendre published the first writings on 
regression in 1805, and German mathematician Johann Carl Friedrich Gauss in 
1809. Their work focused on astronomical applications. Later that century, Sir 
Francis Galton coined the term “regression” to describe the phenomenon where 
the descendants of tall ancestors tend to have lower heights. Specifically, the name 
regression stems from the concept that the descendants’ heights had a “regression 
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toward the mean.” Galton’s student, Karl Pearson, worked with Udny Yule to 
put regression into a more general statistical framework. Another notable pioneer, 
Ronald Fisher, continued the statistical work, developed the analysis of variance 
(ANOVA) methodology, and set the foundations for modern statistics. While 
regression analysis has roots in astronomy and biology, there are many modern 
applications in almost every academic field. 

1.3 Linear Regression, Machine Learning, and Data Science 

In modern statistics, the fundamental concepts of linear regression have changed 
little over the past decades. More work has been done to develop and expand on 
these existing concepts, and regression continues to be an active area of research. 
Today, many linear regression methods are broadly considered machine learning or, 
even more broadly, artificial intelligence. 

Traditional linear regression analysis can be used to make predictions and 
inferential understanding. Machine learning aims to make predictions, sometimes 
using a “black-box” approach and typically not used for inference. Despite this 
pitfall, machine learning is gaining popularity because predictions are needed with 
the copious amounts of data being collected in this modern age. 

Data scientists are required to have statistical, programming, and domain knowl-
edge. To become a data scientist or develop expertise in business analytics, the 
reader must learn many powerful tools to understand and manipulate data. Linear 
regression and the R programming language are a few of these powerful tools. 

1.4 Case Studies 

The case studies in this book aim to show how analytics can solve numerous 
problems, particularly in business domains. Each case covers a different business 
application and demonstrates the relevance analytics can play in each. The cases are 
listed here: 

1. Top 200 Companies 
In this case study, we will create visualizations and generate summary statistics 
from a small set of the world’s top 200 companies. 

2. Accounting Analytics 
Using a data set consisting of the adjusted gross income and the itemized 
deductions for a select list of subjects, we look at the relationship between the 
variables and investigate any irregularities.
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3. Stock Betas 
This data set consists of monthly returns of seven stocks and the S&P 500. From 
these data, we will calculate the stock "betas," which are valuable measures of 
the relationship between stocks and a market benchmark. 

4. Housing Market Analysis 
In this case study, we consider a data set of 90 cities and investigate the housing 
market for each city. In addition, we test a claim about the impact tax rate has on 
house prices. 

5. Employee Retention 
This case investigates two data sets: a historical data set of employee retention 
records and another consisting of new applicants to the company. With these 
data sets, we predict the retention of new applicants and evaluate two potential 
employee staffing companies. 

6. Social Media Analysis 
This case considers video posts advertised by one of two possible promoters. 
Here we analyze which promoter we should use and how the sentiment and the 
age of a video affect the number of likes. 

7. Lead Generation 
Using a data set consisting of the performance of 142 car dealerships across 
the country, we analyze the data to increase sales revenue. In particular, the 
dealerships could use radio ads, robocalls, emails, or cold calls as a means by 
which to increase sales. Here we compare and contrast the different methods and 
recommend which method to use. 

8. Cancer Treatment Cost Analysis 
In this case study, we focus on the factors of health care costs that an insurance 
company can use to determine premiums. This case examines the data on charges 
billed by health insurance for treating different types of cancer. 

1.5 R Versus Python 

Business analytics and data science problems are solved using various software, 
most notably R and Python. R and Python are relatively new compared to older 
programming languages such as C, C++, and Fortran. They also both offer a great 
deal of flexibility in coding data. One key advantage of R over Python is the number 
of functions available in “base R.” For example, to load a data file into R, one can 
use the read.csv command, but in Python, it is necessary to use the Pandas library. 
These functions from base R make a difference in coding with relative ease. 

Python is a general-purpose programming language not necessarily meant for 
statistics, even though it has significant libraries devoted to statistics and data 
science. Being a general-purpose programming language is a perk in many ways, 
and the data science community has targeted Python as a popular choice for 
data science. The sklearn library within Python is rich with machine learning
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algorithms. For deep learning and natural language processing, Python is a popular 
choice. However, for linear regression analysis, we recommend R. 

R was created for statistical computing, making it a natural choice to do 
regression, logistic regression, time series, machine learning, and general statistical 
analysis. In the case of linear regression, base R is sufficient to perform the analysis 
and is quite powerful in doing so. In this book, base R is used more frequently than 
functions from R packages, but a select few packages are used in a few cases. Other 
key advantages include R’s usage of Posit (formerly RStudio), and the reporting 
tools available in R. R provides some great tools for the analyst to get going on 
analyzing data sets. While Python offers many advantages as well, for regression 
analysis, we recommend using R over Python. It is highly recommended to the 
reader that after studying this text and programming examples, they continue their 
studies in both R and Python, as both have advantages and limitations. 

1.6 R Installation 

In order to install R, it is highly recommended that you install both R and Posit. 
While R is the programming language that can do R calculations, Posit is a popular 
interface for R referred to as an Integrated Development Environment (IDE). While 
installing R is sufficient for learning regression analysis in R, a better experience 
can be had by using R with Posit. 

1.6.1 R (Programming Language) 

Installing R can be done by navigating to https://www.r-project.org/ and selecting 
the “CRAN” (Comprehensive R Archive Network) link. This link will bring you to 
a list of locations from which you can download R. While the location selected is 
not significantly important, you may want to choose the “0-Cloud” option that will 
automatically direct you to servers worldwide by Posit. Next, choose the operating 
system of your computer, and select the most up-to-date release of R. Finally, run 
the downloaded file specifying the download options of your choice. 

1.6.2 RStudio IDE 

After installing R, the RStudio integrated development environment (IDE) can 
be installed by navigating to https://posit.co/. While we recommend the desktop 
version of RStudio, other versions can also be selected. Run the downloaded file, 
specifying the download options of your choice. Mac users may be prompted to

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://posit.co/
https://posit.co/
https://posit.co/


1.7 Book Organization 5

move the RStudio icon into the Applications folder, which should be done as 
specified by the program. 

Once the user is familiar with programming in R, it is further recommended that 
the reader explores R Markdown and Latex for generating reports. 

1.7 Book Organization 

Chapter 2 discusses some basic concepts in statistics and basic concepts in R 
programming. The following two chapters, Chaps. 3 and 4, provide the detailed 
calculation and theory of simple linear regression or regression analysis with only 
one predictor variable. Then, Chap. 5 introduces multiple regression or regression 
with multiple predictor variables. Multiple regression is followed by Chap. 6, a  
chapter on additional theory and methods, particularly analysis of variance for 
regression, and prediction/confidence intervals. Then, Chap. 7 provides a detailed 
discussion on predictor variable transformations, including dummy variables and 
squared predictor variables. Chapter 8 follows with a discussion of diagnosing 
regression models. Lastly, there is a chapter that gives an overview of variable 
selection methods for multiple regression models (Chap. 9).



Chapter 2 
Basic Statistics and Functions Using R 

Numerical quantities focus on expected values, graphical 
summaries on unexpected values. 
—John Tukey 

2.1 Introduction 

Data science represents a multifaceted discipline, since it requires knowledge from 
statistics to understand the data, knowledge from programming to manipulate the 
data, and the know-how to explain the data, which is often best done with one 
or more visualizations. Beyond statistics as the general subject matter within the 
branch of mathematics, the word “statistics” carries a second definition referring to 
the numeric values that summarize a sample, such as the mean, median, standard 
deviation, and variance. The R programming language signifies a preferred choice 
among statisticians and data scientists to easily manipulate data and provide useful 
statistics on that data. R has many popular plots, but here we will focus on three of 
the most basic ones, which are necessary for the study of linear regression. 

This chapter provides a basic overview of statistics, programming, and plotting. 
We review the aforementioned numeric quantities and a few other statistics. We 
introduce data manipulation in R at a basic level so that, after the reader understands 
the basic statistics, he or she can input the data and calculate the values within R. 
In addition, plots can provide graphical summaries of data samples and also offer 
important tools to the field of statistics. We cover a few basic plots and how to create 
them using R. The concepts are put into context with a simple application using data 
from a call center, which observes sales and the corresponding number of calls. In 
the final discussion of the chapter, we present and solve a case study utilizing a data 
set consisting of the world’s top 200 companies. This case study uses R to generate 
descriptive graphs and basic statistics to understand the data. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
D. P. McGibney, Applied Linear Regression for Business Analytics with R, 
International Series in Operations Research & Management Science 337, 
https://doi.org/10.1007/978-3-031-21480-6_2
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2.2 Basic Statistics 

In basic statistics, the mean is used as a measure of center to summarize a random 
variable. If the random variable is X with n values in a sample .(x1, x2, . . . , xn), then 
the sample mean, denoted as . x̄, can be calculated from 

.x̄ =
∑n

i=1 xi

n
, (2.1) 

where . xi is the . ith entry in X. 
The variance of X is the expectation of the squared deviation of X from its 

mean. The variance measures the spread of a random variable, or how dispersed 
observations are in the distribution of the random variable. The sample variance of 
a random variable X is denoted as . s2 and calculated: 

.s2 =
∑n

i=1(xi − x̄)2

n − 1
. (2.2) 

For computational purposes, calculating the sample variance from Eq. (2.2) is  
typically less convenient than calculating the variance from the mathematically 
equivalent equation: 

.s2 =
∑n

i=1 x2
i − (∑n

i=1 xi

)2
/n

n − 1
. (2.3) 

The denominator of Eqs. (2.2) and (2.3) is the degrees of freedom, which denotes 
the number of choices or parameters that are available in determining s or . s2. Since 
the value of . x̄ is known and used to calculate . s2, the number of . xi values needed 
is .n − 1. More specifically, in Eq. (2.1), the value on the left-side is known, and 
therefore, only .n − 1 values of . xi are needed because the remaining unknown . xi

values can be found using simple algebra. It may seem odd that the denominator of 
the variance is .n − 1 and not n; however, it should be noted that dividing by . n − 1
denotes a better estimate of the unknown population variance. 

The numerator of Eqs. (2.2) and (2.3) is commonly called the sum of squares of 
X that represents the total variation in X. Pay special attention to this value for it is 
the foundation for many formulas in regression analysis. The formula for the sample 
sum of squares is 

.SSxx =
n∑

i=1

(xi − x̄)2, (2.4) 

but it is often more convenient to calculate the sum of squares using the form: 

.SSxx =
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

/n. (2.5)
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One popular measure of variation is the sample standard deviation, which can be 
found by simply taking the square root of the sample variance: 

.s =
√

s2 (2.6) 

.s =
√∑n

i=1(xi − x̄)2

n − 1
. (2.7) 

Since the .SSxx is used to find the variance, it can also be used to find the standard 
deviation directly: 

.s =
√

SSxx

n − 1
. (2.8) 

The following application captures the utility of these simple concepts. 

2.3 Sales Calls Application: Basic Statistics 

Jordan manages retirement accounts for Enright Associates. She documented the 
number of sales calls that she made each day for the last 6 days. 

Using Table 2.1, describe the distribution by doing the following with functions 
in R: 

(a) Compute the mean. 
(b) Compute the sum of squares. 
(c) Compute the variance. 
(d) Compute the standard deviation. 

Solution 

(a) Plugging the values of X into Eq. (2.1), the sample mean is calculated to be 

. x̄ =
∑n

i=1 xi

n

. x̄ = 12 + 18 + 5 + 25 + 15 + 8

6

.x̄ = 13.83.

Table 2.1 Jordan’s calls Variable 

Calls (X) 12 18 5 25 15 8 
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(b) The sum of all the values and the sum of all the x squared values will need to 
be calculated to find .SSxx : 

. 

n∑

i=1

xi = 12 + 18 + 5 + 25 + 15 + 8 = 83

. 

n∑

i=1

x2
i = 122 + 182 + 52 + 252 + 152 + 82 = 1407.

Knowing these two values, Eq. (2.5) can now be utilized: 

. SSxx =
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

/n

. SSxx = 1407 − (83)2 /6 = 258.83.

(c) Since the numerator from Eq. (2.3) is .SSxx , the variance is easily solved using 
Eq. (2.3): 

. s2 =
∑n

i=1 x2
i − (∑n

i=1 xi

)2
/n

n − 1

. s2 = 258.833

5
= 51.767.

(d) The standard deviation can be found by taking the square root of the variance, 
as in Eq. (2.6): 

. s =
√

s2

. s = √
51.767 = 7.195.

2.4 Data Input and Dataframes in R 

To use data in R, one must either input data or load data. Some simple functions that 
accomplish this task are the c function and the data.frame function.
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2.4.1 Variable Assignment 

Assigning variables within R can be done using the equal sign. For instance, 
assigning the variable x to a value of 24 is done with an equal sign as shown here. 

x = 24 

The resulting variable is a scalar named x. Alternatively, variable assignment can 
be done without the equal sign. 

x <- 24 

Using either of the two assignment methods shown above creates a scalar value 
named x. 

Note that x can be printed by simply entering x at the command line of the 
console. 

x 

## [1] 24 

Further note that the output returned is [1] followed by the value of x (24). The 
[1] simply refers to the index of the output that can be ignored in this case since x 
is a scalar. 

2.4.2 Basic Operations in R 

By simply typing numbers and operations in the R console, R will perform the 
specified mathematical operations. Addition and subtraction are carried out with the 
+ and - characters, respectively. 

8 + 4 - 3 

## [1] 9 

Multiplication, division, and exponentiation are carried out with *, /, and ˆ 
characters, respectively. 

10 ˆ 2 - 1 

## [1] 99
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Parentheses can be used to specify the order of operations. 

10 ˆ (2 - 1) 

## [1] 10 

From the previously created scalar x, we can subtract a value of 12. 

x - 12 

## [1] 12 

If we were to define a scalar variable y with a value of 12 and subtract y from x, 
it would yield the same result as above. 

y = 12 
x - y 

## [1] 12 

2.4.3 The c Function 

The c function is a simple function that combines data. For instance, the numbers 1, 
2, and 3 can be combined into a vector called v1 by doing the following. 

v1 = c(1, 2, 3) 

The c function, however, is not limited to numeric data. The letters a, b, and c 
can be combined into a character string vector v2. 

v2 = c("a", "b", "c") 

Numeric and character values can be brought together into a vector as well. 

v3 = c("a", 2, "c", 99) 

Similar to scalar values, vectors can be printed in the console by typing the vector 
name. To print v1, we write the following. 

v1 

## [1] 1 2 3
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2.4.4 The data.frame Function 

The data.frame function can be used to combine vectors into a single dataframe. 
Since vectors v1 and v2 are the same length, a dataframe df can be created 
consisting of both vectors. 

df1 = data.frame(v1, v2) 

The dataframe can be created with the names var1 and var2. To specify the 
variable names accordingly, the following syntax is utilized. 

df2 = data.frame(var1 = v1, var2 = v2) 

2.4.5 The read.csv Function 

The read.csv function can be used to load in data from a csv or other text files. If 
a data file “test.csv” is in the working directory, then we can create a new dataframe 
in the following way. 

df3 = read.csv("test.csv") 

To ensure that R can find the csv file, we recommend that the csv file be located 
in the same directory as the r or rmd file. Alternatively, the working directory can 
be set in RStudio or using the setwd function. 

2.4.6 Indexing Vectors 

Indexing is accomplished in R by using square brackets “[]” immediately following 
the data object. Specifically, the vector v2 has 3 values, the first of which is a. This  
first value can be referenced by typing: 

v2[1] 

## [1] "a" 

The second and third values can be referenced as 

v2[2:3] 

## [1] "b" "c"
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or by using the c function. 

v2[c(2, 3)] 

## [1] "b" "c" 

We can also omit the first value by using a minus sign in front of the index. 

v2[-1] 

## [1] "b" "c" 

The above code omits the first value in the vector. 

2.4.7 Indexing Dataframes 

The square brackets can also be used to index dataframes. Dataframes have both 
rows and columns that are referenced within the square brackets and separated by a 
comma. 

df1[row, column] 

To specify the first row and the second column of df1, we would specify: 

df1[1, 2] 

## [1] "a" 

To specify all of the row values in the first column of df1, we could leave the 
row value empty. 

df1[, 1] 

## [1] 1 2 3 

We could also specify the second row from both columns by leaving the column 
value empty. 

df1[2, ]  

## v1 v2 
## 2 2 b 

Omitting the second row can be done using the minus sign.
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df1[-2,] 

## v1 v2 
## 1 1 a 
## 3 3 c 

2.5 Accessing the Objects of a Dataframe in R 

The dataframes contain objects within them. In df1, the object v1 can be accessed 
using the $ symbol. 

df1$v1 

Recall that df2 had the vectors renamed to be var1 and var2. Accessing the first 
vector from df2 can also be accomplished using the $ symbol. 

df2$var1 

The dataframe can also be appended easily. For instance, suppose we have the 
vector v4 that consists of the numbers 4, 5, and 6. To append the vector v4 to df1, 
we could input the code below. 

v4 = c(4, 5, 6) 
df1$v4 = v4 

2.5.1 The Head Function 

While a dataframe can be printed to the console simply by typing the name of 
the dataframe, the head function can be a convenient way to observe the data. 
Specifically, the head function prints out the first 6 rows of the dataframe. 

head(df1) 

## v1 v2 v4 
##  1 1 a 4  
##  2 2 b 5  
##  3 3 c 6  

Observing the first 6 rows can reveal much about the dataframe without 
overwhelming the console with the entire data set.
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2.5.2 The str Function 

The str function returns the structure of an object. The structure of v1 shows that 
the vector is numeric with three values and the first few values are 1, 2, and 3. 

str(v1) 

## num [1:3] 1 2 3 

Applying the str to the dataframe df1 not only shows the details of v1, but also 
shows the details of v2 and v4 since they are also within the dataframe. 

str(df1) 

## ’data.frame’: 3 obs. of 3 variables: 
## $ v1: num 1 2 3 
## $ v2: chr "a" "b" "c" 
## $ v4: num 4 5 6 

The output of the str function reveals that v2 is a vector of character (chr) 
strings. 

2.6 Basic Statistics in R 

In the previous sections, we discussed a few of the different types of data objects 
that can be used in R, particularly the scalar, vector, and dataframe objects. In this 
section, we cover how to manipulate these objects to calculate some basic statistics. 

2.6.1 The Summary Function 

The summary function can also help the user to understand the data of interest. The 
summary of a dataframe will return the minimum, 25th percentile, median, 75th 
percentile, the maximum, and the mean for each numeric vector in the dataframe. 

summary(df1) 

## v1 v2 v4 
## Min. :1.0 Length:3 Min. :4.0 
## 1st Qu.:1.5 Class :character 1st Qu.:4.5 
## Median :2.0 Mode :character Median :5.0
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## Mean :2.0 Mean :5.0 
## 3rd Qu.:2.5 3rd Qu.:5.5 
## Max. :3.0 Max. :6.0 

The summary function will function in a similar manner when applied to a 
numeric vector. The summary function can also be used for summarizing regression 
objects as discussed in the next chapter. 

2.6.2 The Sum Function 

The sum function will add up all of the values in a vector. This function can be 
applied to vector v1, 

sum(v1) 

## [1] 6 

or within dataframes using the dollar sign ($) as follows. 

sum(df1$v1) 

## [1] 6 

If all of the values in df1 were numeric, the sum function could be used to sum 
up all of the values in the dataframe. To get the column sums of all the numeric 
columns in a dataframe, one could employ the colSums function. 

2.6.3 The Mean Function 

The mean function calculates the mean or average of the vector. 

mean(v1) 

## [1] 2 

Similar to the colSums function, the colMeans function can return the means of 
every column for a dataframe that consists of numeric values. 

2.6.4 The sd Function 

The sd function will calculate the standard deviation of a vector. 

sd(v1) 

## [1] 1
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2.7 Sales Calls Application: Basic Statistics in R 

Using Jordan’s data from the previous application (Table 2.1), describe the distribu-
tion by doing the following with functions in R: 

(a) Compute the mean. 
(b) Compute the sum of squares. 
(c) Compute the variance. 
(d) Compute the standard deviation. 

Solution 

(a) Before computing the mean, the data must be entered using the c function. Here 
we refer to the calls variable as X. 

X = c(12, 18, 5, 25, 15, 8) 

The mean function can be used here. 

mean(X) 

## [1] 13.83333 

(b) The sum of squares can be done by squaring each value of X individually, but R 
allows for element-wise operations. Squaring each value within the vector can 
be accomplished using the ˆ operator. 

sum(Xˆ2) 

## [1] 1407 

(c) Computing the variance can be done using the var function, or by squaring the 
result from the sd function. 

sd(X)ˆ2 

## [1] 51.76667 

(d) The standard deviation can be computed using the sd function. 

sd(X) 

## [1] 7.194906
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2.8 Plotting in R 

While R is capable of advanced plotting using a package such as ggplot2, the  
functions within the base distribution of R are very capable. Throughout this text, 
examples will be given in base R, whereas some of the advanced graphics will be 
done using ggplot2. 

2.8.1 Scatterplots 

Scatterplots are an important type of plot to visually demonstrate the relationship 
between two numeric variables. Since the goal of regression analysis is to determine 
the relationship between numeric variables, the scatterplot is of particular interest to 
analysts performing a regression. In particular, scatterplots can be used to assess the 
quality of a regression as discussed in Chap. 8. 

Drawing a scatterplot consists of a simple process whereby the x-axis and y-
axis are drawn and then points are plotted. To generate a scatterplot in R, the plot 
function can be used. 

2.8.2 The Plot Function 

The plot function is a popular method for generating plots within R. In most 
instances, one uses the plot function to generate scatterplots. It is possible to 
specify only a vector within the plot function. While a scatterplot is generated 
with only a vector as the input, the plot generated places the index (or row number) 
on the x-axis that is typically not desirable. Here we demonstrate how to plot v1 
using the plot command assuming the v1 value is created and falls within the R 
environment. 

plot(v1) 

Here, we show how to generate the same plot if we would like to access v1 within 
the df1 dataframe. 

plot(df1$v1) 

The plots above produce identical results with the exception of the y-axis label. 
The y-axis label becomes “v1” and “df$v1” for both of the respective plots. If 
we would like to change the y-axis label for the last plot, we could use the ylab 
argument within the plot function. The code below produces results identical to 
the output for plot(v1).
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plot(df1$v1, ylab = "v1") 

The following code produces a scatterplot that has v1 on the x-axis and v4 on 
the y-axis assuming the vectors are within the global environment. 

plot(v1, v4) 

To plot v1 and v4 that are contained within df1, the following code can be used. 

plot(df1$v1, df1$v4) 

As discussed, when plotting the vector v1 by itself, the x-label and y-label may 
not be the desired names. Therefore, we can modify the plot by specifying xlab and 
ylab. The  main argument allows us to add a title to the plot. 

plot(df1$v1, df1$v4, 
xlab = "Vector 1", ylab = "Vector 2", main = "Title") 

2.8.3 Histograms 

A histogram refers to an important plot that analysts use to identify the shape of 
a distribution. Most notably, a frequency histogram separates numeric values into 
bins of equal length, and a bar is drawn for each bin where the height of the bar is 
determined by the frequency of values within the corresponding bin. The common 
bell-shaped normal curve represents one popular shape identified by histograms. 
Like the scatterplot, histograms can be used in regression analysis to verify the 
validity of a regression model, as discussed in Chap. 8. 

2.8.4 The Hist Function 

To create a histogram in base R, the hist function can be used. To get a histogram 
of the vector v1 contained in the global environment, we code the following. 

hist(v1) 

To get a histogram of the vector v1 contained within df1, we code the following. 

hist(df1$v1) 

Similar to the plot function, the xlab and main arguments can be used here. 
While the ylab argument can also be used here, the y-axis label defaults to 
“Frequency” that is typically a satisfactory label. 

hist(df1$v1, main = "Histogram Title", xlab = "Vector 1")
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2.8.5 Boxplots 

A boxplot, sometimes called a box-and-whiskers plot, is great for visualizing 
the variability and the center of variables simultaneously. The variability of each 
variable can be observed by noting the total height of each box and whiskers 
and noting the height of the box. The height of each box is referred to as the 
interquartile range (IQR) and can be calculated by finding the 75th percentile (. Q3) 
and subtracting the 25th percentile (. Q1): 

.IQR = Q3 − Q1. (2.9) 

If observations fall outside of .Q1 − 1.5(IQR) and .Q3 + 1.5(IQR), then they are 
deemed outliers, displayed in the boxplot as unfilled circles above or below the 
whiskers in the standard boxplot function. Also, the median, a measure of center, 
can be observed by a black line within each box. 

2.8.6 The Boxplot Function 

The boxplot function produces a boxplot. To get a boxplot of a vector, simply 
specify the vector within the boxplot function. 

boxplot(df1$v1) 

To get a boxplot of a dataframe with all numeric values, specify the dataframe 
as the first argument. This will produce a boxplot for each of the vectors within the 
dataframe together on the same plot. For instance, assume we have a dataframe with 
all numeric values called df. A boxplot can be generated using the following code. 

boxplot(df) 

2.9 Sales Calls Application: Plotting Using R 

Jordan, from the previous application, also collected the number of sales that she 
made each day for the last 6 days, denoted as Y . 

Using Table 2.2, investigate the relationship between X and Y by doing the 
following:

(a) Create vectors for X and Y . 
(b) Create a dataframe containing calls and sales. 
(c) Use the plot function to create a scatterplot of calls and sales. Interpret the 

plot.
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Table 2.2 Jordan’s calls and 
sales 

Variable 

Calls (X) 12 18 5 25 15 8 

Sales (Y ) 10 15 4 21 14 6

(d) Use the hist function to create histograms of both calls and sales. Interpret the 
plots. 

(e) Use the boxplot function to create a boxplot of calls and sales on separate 
plots. Interpret the plots. 

(f) Use the boxplot function to create a boxplot of calls and sales on the same 
plot. Interpret the plot. 

Solution 

(a) Vectors are created using the c function. 

X = c(12, 18, 5, 25, 15, 8) 
Y = c(10, 15, 4, 21, 14, 6) 

(b) Using the X and Y vectors as inputs of the data.frame function, we create a 
dataframe called df. Here we label X as Calls and Y as Sales. 

df = data.frame(Calls = X, Sales = Y) 

(c) Using the plot function, we input the X and Y vectors. Here we label the axes 
and give the plot a title. 

plot(X, Y, xlab = "Calls", ylab= "Sales", main = "Scatterplot") 

From the scatterplot in Fig. 2.1, we note a clearly defined relationship between 
calls and sales. In particular, as the number of calls increases, the number of sales 
also increases. A positive linear trendline could be used to accurately describe the 
relationship between the two variables. 

(d) Here we use the hist function to create a histogram of calls and a histogram of 
sales. 

hist(X, xlab= "Calls", main = "Histogram of Calls") 
hist(Y, xlab= "Sales", main = "Histogram of Sales") 

From the left-side histogram of Fig. 2.2, we see that the highest frequency bars 
correspond to between 5 and 10 calls and also between 10 and 15 calls. The bins 
here each have frequencies of 2. The remaining bins have frequencies of 1 each. The 
frequencies appear to be decreasing as calls increase, and most of the days have less 
than 15 calls.
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Fig. 2.2 Jordan’s histograms 

From the right-side histogram of Fig. 2.2, the highest frequency bars correspond 
to between 5 and 10 sales and also between 10 and 15 sales. Here a majority of 
the sales values are less than or equal to 15 with the exception of one value that is 
between 20 and 25. 

(e) Plugging in the X and Y variables into the boxplot function individually, we 
have the following. 

boxplot(X, ylab = "Calls") 
boxplot(Y, ylab = "Sales")
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Fig. 2.3 Jordan’s boxplots 

From the left-side graph of Fig. 2.3, we see that the number of calls ranges from 
5 to 25, and the median value is approximately 13.5. Furthermore, the interquartile 
range (IQR) is given by Eq. (2.9): 

. IQR = Q3 − Q1

. = 17.25 − 9 = 8.25

since .Q1 and .Q3 are 17.25 and 9, respectively. 
From the right-side graph of Fig. 2.3, we see that the sales range from 4 to 21, and 

the median value is approximately 12. Furthermore, the interquartile range (IQR) 
is given by Eq. (2.9): 

. IQR = Q3 − Q1

. = 14.75 − 7 = 7.75

since .Q1 and .Q3 are 14.75 and 7, respectively. 
Notice that the y-axis differs minimally enough that the boxplots look relatively 

similar despite the different values of the quartiles, minimum, and maximum. 

(f) Using the boxplot function, we directly plug in the dataframe df. 

boxplot(df) 

While the interpretation is similar to part (e), in Fig. 2.4, we can visualize the 
difference between sales and calls. Clearly, the number of calls is higher for each 
quartile, the minimum, and the maximum.
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2.10 Case Study: Top Companies 

2.10.1 Problem Statement 

One crucial part of business analytics is creating informative visualizations since 
this area is necessary to understand data across different business domains. Under-
standing data can lead to actionable results in business. In this case study, we present 
a dataset consisting of 200 of the world’s top companies and provide a quick analysis 
to help understand datasets. 

To understand the overall global economy, we can observe the world’s largest 
public companies using four metrics: assets, market value, sales, and profits. The 
dataset for the year 2022 consists of 6 columns and 200 rows. The columns in the 
data are:

• ID—numeric integer corresponding to the row number
• Country—the country in which the company resides
• Sales—the annual sales in billions of USD
• Profit—the annual profit in billions of USD
• Assets—the total company assets in billions of USD
• Value—the company’s total market value in billions of USD 

As an analyst working for an investment firm, you are tasked with analyzing 
the top 200 global companies from 2022 to get some understanding of the overall 
economy. The tasks are the following: 

1. Describe the data by running some R commands to familiarize yourself with the 
data. 

2. Generate scatterplots of all numeric variables, particularly sales and profits. 
3. Generate histograms of all numeric variables except the ID.
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After describing the data and generating the plots, we must interpret the resulting 
graphs. 

2.10.2 Data Description 

The first step in analyzing a dataset is to get familiar with the data set of interest. 
After loading the data, examine the first six observations using the head function. 

df = read.csv("Top200.csv") 
head(df) 

## ID Country Sales Profit Assets Value 
## 1 1 US 15.264 6.261 234.234 55.157 
## 2 2 US 31.454 11.662 12.398 6.204 
## 3 3 China 36.713 16.065 46.544 184.417 
## 4 4 Japan 0.743 -6.856 0.765 29.102 
## 5 5 US 2.511 7.644 26.513 48.270 
## 6 6 Japan 28.391 4.222 258.418 40.879 

Note that half of the companies listed in the head output are from the United 
States, and one-third are from Japan. We now use the str (structure) command to 
view the dataframe df. 

str(df) 

## ’data.frame’: 200 obs. of 6 variables: 
##  $ ID :  int  1 2 3 4 5 6 7 8 9 10 ...  
## $ Country: chr "US" "US" "China" "Japan" ... 
## $ Sales : num 15.264 31.454 36.713 0.743 2.511 ... 
## $ Profit : num 6.26 11.66 16.07 -6.86 7.64 ... 
## $ Assets : num 234.234 12.398 46.544 0.765 26.513 ... 
## $ Value : num 55.2 6.2 184.4 29.1 48.3 ... 

From the structure, we note the variable type of each variable within the 
dataframe. Specifically, ID is an int or integer, Country is a chr or character string, 
and the remaining variables are num or numeric. 

The summary function provides insight into the data by displaying some 
summary statistics. 

summary(df) 

## ID Country Sales 
## Min. : 1.00 Length:200 Min. : 0.034



2.10 Case Study: Top Companies 27

## 1st Qu.: 50.75 Class :character 1st Qu.: 6.572 
## Median :100.50 Mode :character Median : 14.932 
## Mean :100.50 Mean : 19.820 
## 3rd Qu.:150.25 3rd Qu.: 27.538 
## Max. :200.00 Max. :126.626 
## Profit Assets Value 
## Min. :-9.619 Min. : 0.351 Min. : 0.131 
## 1st Qu.: 1.260 1st Qu.: 26.328 1st Qu.: 12.813 
## Median : 6.058 Median : 64.045 Median : 31.363 
## Mean : 6.296 Mean : 87.662 Mean : 44.728 
## 3rd Qu.:10.380 3rd Qu.:123.857 3rd Qu.: 58.949 
## Max. :28.638 Max. :507.224 Max. :263.381 

The output shows the integer and numeric columns’ minimum, first quartile, 
median, mean, third quartile, and maximum values. From observing this data, note 
the minimum values are at or near 0 for Sales, Assets, and Value. On the other 
hand, Profit has a negative minimum value. Further note that the third quartiles are 
much different than the maximum values for these numeric variables, which denotes 
a trailing tail in each distribution. Since the third quartile is the 75th percentile, we 
employ the quantile function to verify the third quartile from the summary. The 
first argument in the quantile is the vector we access from df using the $ for each 
numeric variable. 

Q3Sales = quantile(df$Sales, .75) 
Q3Profit = quantile(df$Profit, .75) 
Q3Assets = quantile(df$Assets, .75) 
Q3Value = quantile(df$Value, .75) 

The variable values can be seen within the Posit environment or by typing the 
variable name in the console. For demonstration, we print Q3Sales by typing the R 
code. 

Q3Sales 

## 75% 
## 27.53775 

Notice that 27.53775 is shown as the third quartile for Sales, which is consistent 
with the summary. 

2.10.3 Scatterplots 

To generate a plot of Sales and Profit, the plot function is executed with 
df$Sales as the first argument for the x values, and df$Profit is the second 
argument to denote the corresponding y values.
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plot(df$Sales, df$Profit) 

While this plot is correct, it chooses the x- and y-labels as df$Sales and 
df$Profit, respectively. Rather than use these undesirable variable names, we can 
use the following notation to plot the data. In this case, Profit precedes Sales 
and is separated by the tilde character (“~”). Further note, the dataframe does not 
precede the variable since the data were specified by data = df. 

plot(Profit ~ Sales, data = df) 

Both previous lines of code will produce a plot with Sales on the x-axis and 
Profit on the y-axis. While the second plot has slightly more appealing labels, 
either can be modified to particularly specify the axis labels using the xlab and 
ylab arguments. In addition, we can add a title using the main option. 

plot(df$Sales, df$Profit, xlab = "Sales (Billions $)", 
ylab="Profits (Billions $)", 
main = "Scatterplot of the Top 200 Companies") 

From the plot in Fig. 2.5, each circle represents an observation in the data. These 
unfilled circles display the density of the observations. For example, whenever an 
observation is near another similar observation, the overlap is easily seen. 

Next, we can generate a scatterplot matrix of all numeric variables (excluding 
ID). The numeric variables are 3, 4, 5, and 6 within the dataframe. Here we reference 
these variables in the dataframe with the c function. 
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Fig. 2.6 Scatterplot matrix of the top 200 companies 

numeric_df = df[,c(3,4,5,6)] 

The resulting numeric_df is a dataframe consisting of the numeric columns. 
Passing numeric_df as the only argument into the plot function produces a matrix 
of scatterplots. 

plot(numeric_df) 

Along the diagonal of Fig. 2.6, we see the variable names. Notice all scatterplots 
in the top row have Sales on the y-axis, and all scatterplots in the first column have 
Sales on the x-axis. The scatterplot in the first row and second column shows 
Profit versus Sales. A matrix of scatterplots can help assess the relationship 
between variables quickly. Remember that this visualization becomes less appealing 
when too many variables are included since the graphs will become smaller and 
less visible. While the scatterplots are not extremely revealing, it can be seen that 
Profit does tend to increase with Sales and Value. 

2.10.4 Histograms 

Using the hist function, we generate a histogram of Sales by passing the 
df$Sales.
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hist(df$Sales) 

The plot generated from the previous line of code will have suboptimal labels. 
Therefore, we carefully specify the xlab and main arguments in the hist function 
to generate histograms for Sales, Profit, Assets, and Value. We employ the  
par function here, which allows multiple plots to be shown by specifying the 
mfrow argument. Since the mfrow option is c(2,2), there will be two rows and 
two columns of plots. 

par(mfrow=c(2,2)) 
hist(df$Sales, xlab = "Sales (Billions $)", main = "Sales") 
hist(df$Profit, xlab = "Profit (Billions $)", main = "Profit") 
hist(df$Assets, xlab = "Assets (Billions $)", main = "Assets") 
hist(df$Value, xlab = "Market Value (Billions $)", 

main = "Market Value") 

As mentioned in the interpretation of the summary statistics, all numeric 
variables have a tail leading to the right, referred to as a right skew. We see from 
Fig. 2.7 that a bulk of sales is below 60 billion USD, a majority of assets are below 
150 billion USD, and a majority of market values are below 100 billion USD. Profit 
has most values between 0 and 20 billion, but there are also many companies with 
negative profits. 
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2.10.5 Case Conclusion 

In this analysis, we showed the value of visualizations by creating some elementary 
plots characterizing the top 200 dataset. In addition, we interpreted the data by 
using some essential R functions. Analyzing data from visualizations and basic R 
functions is a valuable skill that analysts need to conclude their results. 

Problems 

1. Accounting Basic Statistics 
Using Table 2.3, answer the questions below. Both variables are in thousands of 
U.S. dollars. 

Without the use of a computer: 

a. Calculate the mean for both X and Y . 
b. Calculate the standard deviation for both X and Y . 

2. Sales Calls Basic Statistics 
Jordan’s colleague at Enright Associates is Abdullah who also manages retire-
ment accounts. Jordan documented the number of sales calls Abdullah made each 
day for the last week. The number of calls is denoted by X, and the number of 
sales that resulted is denoted as Y . The values of X and Y are given in Table 2.4. 
Without the use of a computer: 

a. Calculate the mean for both X and Y . 
b. Calculate the standard deviation for both X and Y . 
c. Compute the variance for both X and Y . 

Table 2.3 Basic accounting 
data 

Adjusted gross income (X) Itemized deductions (Y) 

51 11 

142 31 

66 11 

67 14 

35 12 

Table 2.4 Abdullah’s calls 
and sales 

Variable 

Calls (X) 18 23 25 15 8 20 12 

Sales (Y ) 10 11 15 8 3 11 7
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3. Sales Calls Basic Statistics in R 
Investigate the relationship between X and Y from the previous problem by doing 
the following. While using a computer (with R): 

a. Create vectors for X and Y . 
b. Calculate the mean for both X and Y . 
c. Calculate the standard deviation for both X and Y . 
d. Compute the variance for both X and Y . 

4. Sales Calls Plots in R 
Investigate the relationship between X and Y from the previous problem by doing 
the following. While using a computer (with R): 

a. Create a dataframe containing calls and sales. 
b. Use the plot function to create a scatterplot of calls and sales. Interpret the 

plot. 
c. Use the hist function to create histograms of both calls and sales. Interpret 

the plots. 
d. Use the boxplot function to create a boxplot of calls and sales on separate 

plots. Interpret the plots. 
e. Use the boxplot function to create a boxplot of calls and sales on the same 

plot. Interpret the plot. 

5. Top 200 Companies Basic Statistics 
In the chapter case study, the summary function was used to provide summary 
statistics of the variables. Use the Top 200 dataset to answer the following 
questions: 

a. Calculate the mean of each numeric variable. 
b. Calculate the standard deviation of each numeric variable. 
c. Find the sum of each numeric variable.



Chapter 3 
Regression Fundamentals 

There is bound to be a regression toward the mean. 

—Charlie Munger 

3.1 Introduction 

With a recent expansion of information collection and storage, businesses increas-
ingly turn to classical analyses of data. In particular, linear regression analysis, while 
developed more than 200 years ago, remains a fundamental concept in statistics and 
business analytics. Linear regression is at the heart of many predictive methods, 
including modern machine learning models. 

In this chapter, we examine the core concepts of linear regression. The discussion 
of linear regression will be limited to two variables to focus on developing a clear 
understanding of the calculations and theory. The concepts are put into context with 
a simple application using data from a call center, predicting successful sales by the 
number of calls. 

In the final discussion of the chapter, we present and solve an accounting case 
study involving the prediction of the adjusted gross income of an individual based 
on the amount of their itemized deductions. This case study makes use of the R 
programming language with descriptive graphs and the relevant source code. 

3.2 Covariance 

When analyzing a single random variable, the mean and standard deviation are 
often the only statistics needed since they represent the center and spread of the 
variable’s distribution. When two random variables are analyzed for a relationship, 
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the covariance can be calculated. For random variables X and Y with data pairs 
.(xi, yi), the joint sum of squares of X and Y can be calculated as 

.SSxy =
n∑

i=1

(xi − x̄)(yi − ȳ) (3.1) 

or equivalently as 

.SSxy =
n∑

i=1

xiyi −
(∑n

i=1 xi

)
(
∑n

i=1 yi)

n
. (3.2) 

The covariance can be calculated from the sum of squares of X and Y as 

.Cov(X, Y ) = SSxy

n − 1
. (3.3) 

3.3 Correlation Coefficient 

To predict an unknown variable, knowing which variables are highly correlated with 
the unknown variable of interest proves helpful. For example, knowing that height 
and weight are correlated is useful if you would like to approximate the weight of an 
individual based on their height. It is also useful if the degree of correlation between 
two random variables can be measured. The Pearson correlation coefficient, referred 
to as the correlation coefficient herein, provides such a measurement. For height and 
weight values, the correlation coefficient would be relatively high since there is a 
relationship between the two variables. 

Similar to the covariance, the correlation coefficient describes the relationship 
between two or more random variables. The correlation coefficient differs from the 
covariance because the correlation is scaled and therefore unitless. 

The sample correlation coefficient can be calculated using the equation: 

.r = Cov(X, Y )

sxsy
, (3.4) 

where . sx and . sy are the sample standard deviations of X and Y , respectively. The 
sample correlation coefficient can also be solved in terms of the sum of squares: 

.r = SSxy√
SSxxSSyy

. (3.5)
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The correlation coefficient has several properties: 

1. It is a unitless measurement between -1 and 1 inclusive (.−1 ≤ r ≤ 1). 
2. If .r = 1, there is perfect positive linear correlation. If .r = −1, there is perfect 

negative linear correlation. If .r = 0, there is no linear correlation. 
3. Positive values of r imply that as x increases, y tends to increase. Negative values 

of r imply that as x increases, y tends to decrease. 
4. The value of r is the same for the pairs .(x, y) and the corresponding pairs .(y, x). 
5. The value of r does not change when either variable is converted into different 

units. 
6. The correlation coefficient only measures the degree of linear correlation. 

While the correlation coefficient is very useful in finding a measure of corre-
lation between variables, it is limited since it only measures the degree of linear 
correlation between variables. Some may wrongfully assume that if there is a high 
correlation coefficient, then the relationship must be linear; however, there are many 
relationships that are nonlinear but close to linear. Another misinterpretation of the 
correlation coefficient occurs in the case of a low value of r . If the  value of  r is 0, it 
does not mean there is no relation between X and Y , but rather that there is no linear 
relationship between X and Y . While this may seem counter-intuitive, consider the 
example in Fig. 3.1 where a clear relationship between X and Y exists. Because the 
relationship is circular, the correlation coefficient is 0. 

Fig. 3.1 Nonlinear 
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3.4 Coefficient of Determination 

The square of the correlation coefficient (r) is called the coefficient of determination 
but is more commonly referred to as . R2. The  value of  . R2 is obtained by squaring 
Eq. (3.5): 

. R2 =
(

SSxy√
SSxxSSyy

)2

.R2 = SS2
xy

SSxxSSyy

. (3.6) 

The . R2 value signifies an important measure of how well the model fits the data 
since it measures the amount of variability in Y that is explained by the variability 
in X. For convenience and interpretability, . R2 is often converted into a percentage 
and represents the percentage of the explained variability in Y . 

If . R2 represents the fraction of explained variability, it follows that the value 
.1 − R2 is the ratio of unexplained variability in Y . This unexplained variation can 
be the result of random chance and/or lurking variables. Obviously, one desires to 
maximize . R2 and thus minimize .1 − R2. 

Many students inquire: what constitutes a high . R2 or a high r value? While 
there is no specific threshold that separates high from low correlation, one can get a 
general idea about what constitutes a high correlation and a low one through careful 
observation. Referring to Fig. 3.2, the first scatterplot at the top-left of the page 
shows a perfect positive linear correlation that has an r value of 1. The next three 
scatterplots on the left represent r values of 0.8, 0.5, and 0.3. The last scatterplot 
at the bottom of the figure corresponds to a r value of 0. Note that the data trend 
is still discernible at .r = 0.8, but the trend slowly degrades as r decreases. In 
the same figure, in the upper right, the values of r are . −1, .−0.8, .−0.5, and .−0.3. 
From these plots, it should be evident the magnitude of r denotes the degree of 
linear relationship, whereas the sign denotes whether the linear trend is increasing 
or decreasing. The sign of the slope for a linear regression is always in agreement 
with the slope of the r value. The value of . R2 does not take this upward or downward 
trend into account as seen in the figure (Fig. 3.2); particularly, the spread around the 
line is relatively similar for .r = 0.8 and .r = −0.8.

3.5 Sales Calls Application: Variable Correlations 

Here, we investigate Jordan’s data further. Using Table 2.2 from the previous 
chapter, investigate the relationship between X and Y by doing the following: 

(a) Calculate the sum of squares of X and Y .
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Fig. 3.2 Correlation values
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(b) Calculate the sample covariance. 
(c) Compute the sample correlation coefficient. 
(d) Compute the coefficient of determination. 
(e) Plot a scatterplot. 

Solution 

(a) First, calculate the following values required to obtain .SSxy : 

. 

n∑

i=1

xi = 12 + 18 + 5 + 25 + 15 + 8 = 83

. 

n∑

i=1

yi = 10 + 15 + 4 + 21 + 14 + 6 = 70

. 

n∑

i=1

xiyi = 12 × 10 + 18 × 15 + 5 × 4 + 25 × 21 + 15 × 14 + 8 × 6 = 1193.

Knowing these three values, Eq. (3.2) can now be utilized: 

. SSxy =
n∑

i=1

xiyi −
(∑n

i=1 xi

)
(
∑n

i=1 yi)

n

. SSxy = 1193 − (83) (70)

6
= 224.67.

(b) The sample covariance can be calculated from Eq. (3.3) 

. Cov(X, Y ) = SSxy

n − 1

. Cov(X, Y ) = 224.67

5
= 44.93.

(c) To calculate the sample correlation coefficient, one must first calculate the sum 
of squares for Y : 

. SSyy =
n∑

i=1

y2
i −

(
n∑

i=1

yi

)2

/n

.SSyy = 1014 − (70)2 /6 = 197.33.
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Fig. 3.3 Scatterplot of sales vs. calls 

From earlier calculations, recall .SSxx = 258.83 and .SSxy = 224.67. The correlation 
coefficient is calculated from Eq. (3.5), 

. r = SSxy√
SSxxSSyy

. r = 224.67√
258.83 × 197.33

= 0.994.

(d) The coefficient of determination can be found by squaring the value of r: 

. R2 = 0.9942 = 0.988

indicating that 98.8% of the variation in Y (sales) can be explained by the variation in X 
(calls). 

(e) The scatterplot is shown in Fig. 3.3. 

3.6 Least Squares Criterion 

The least squares criterion is a method that determines the best line between two 
variables. The best line is achieved by making the distance between the line and the 
points as small as possible. This is depicted in Fig. 3.4. These vertical distances are 
known as residuals, and the . ith residual is expressed as
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Fig. 3.4 Least squares depiction 

.ei = yi − ŷi . (3.7) 

Summing the residuals poses a problem mathematically since some residuals 
are positive, while others are negative. It is therefore desirable to minimize the 
magnitude of these distances, which can be achieved by minimizing the sum of 
the squares of the vertical distances from the data points .(xi, yi) to the line that is 
referred to as the sum of the squared error (SSE), expressed as 

.SSE =
n∑

i=1

e2i (3.8) 

.SSE =
n∑

i=1

(yi − ŷi )
2. (3.9) 

Using the least squares criterion, one can find the equation of a line, which can be 
referred to as the regression line. The equation of the regression line is simply called 
the regression equation and is given by 

.Ŷ = β̂0 + β̂1X, (3.10) 

where: 

• . Ŷ denotes an estimate of Y . 
• . β̂0 and . β̂1 estimate the Y -intercept and the slope, respectively.
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The values of . β̂0 and . β̂1 are solved for by finding the minimum value of Eq. (3.18) 
while substituting in Eq. (3.10) for . ŷ: 

. SSE =
n∑

i=1

(yi − (β̂0 + β̂1xi))
2

.SSE =
n∑

i=1

(yi − β̂0 − β̂1xi)
2. (3.11) 

To minimize Eq. (3.11) and thereby find equations for . β̂0 and . β̂1, the partial 
derivative of the SSE with respect to . β̂0 and . β̂1 should be found and set equal 
to 0 as is common practice in calculus. The resulting equations are referred to as the 
“normal” equations. 

The result of solving the normal equations is 

.β̂1 = SSxy

SSxx

(3.12) 

.β̂0 = ȳ − β̂1x̄, (3.13) 

where . x̄ and . ȳ denote the sample means of X and Y , respectively. 
The regression line has the following properties: 

1. The point .(x̄, ȳ) is always on the linear regression line. 
2. The value . Ŷ is read “Y hat,” where the “hat” denotes an estimate. 
3. The variable X is referred to as the independent variable, predictor, or explana-

tory variable. 
4. The variable Y is referred to as the dependent variable, response, or target 

variable. 
5. The values of X can be plugged into the regression equation to get estimates of 

Y denoted as . Ŷ . 

With the knowledge to properly solve the regression equation, we are equipped 
with the necessary tools to continue the sales calls application. Previously, we 
identified a positive linear correlation between calls and sales that suggested further 
analysis. 

3.7 Sales Calls Application: Simple Regression 

From the data used in the previous application (Table 2.2), the least squares 
regression line can be computed. Further investigate the relationship between X 
and Y by doing the following:
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(a) Find the regression equation that best fits the data. 
(b) Interpret the slope of the regression equation. 

Solution 

(a) Recall from the previous problems that .SSxx = 258.83 and .SSxy = 224.67. 
Using these values and Eq. (3.12), the slope is 

. β̂1 = SSxy

SSxx

. β̂1 = 224.667

258.833
= 0.8680.

Using the slope and the sample means (.x̄ = 13.8333 and .ȳ = 11.6667), the 
intercept is given from Eq. (3.13): 

. β̂0 = ȳ − β̂1x̄

. β̂0 = 11.6667 − 0.868 × 13.8333 = −0.3406.

Note that as a final step, the intercept and slope are plugged into Eq. (3.10) 

. Ŷ = β̂0 + β̂1X

. Ŷ = −0.3406 + 0.868X.

(b) Since the slope is 0.868, if the number of calls (X) is increased by 1, then the 
number of sales (Y ) is expected to increase by 0.868. This interpretation can be 
expanded to 10 calls; that is, if the number of calls increases by 10, then the 
number of sales is expected to increase by 8.68. 

3.8 Interpolation and Extrapolation 

Predicting a response variable, Y , from a predictor variable value, X, that is within 
the range of observed X values in the data set is called interpolation. If the value 
of . xi is outside of the range of observed X values, then the resulting prediction is 
called an extrapolation. 

Since interpolation occurs in the range of known X values, the result is most 
likely easy to predict, as opposed to the case when . xi is far away from any similar 
known X values. Extrapolation should hence be met with skepticism since the 
available data are not similar enough to the X value of interest. Furthermore, it 
is often the case that patterns appear to be linear, but when extreme points are 
considered, a nonlinear trend emerges, which is why caution should be taken when



3.9 Sales Calls Application: Prediction 43

0 

5 

10 

15 

20 

25 

0 5 10 15 20 25 30 
Calls (X) 

S
al

es
 (

Y
) 

Outside the Range of X Range of X 

a. Range of Calls (X) 

0 

5 

10 

15 

20 

25 

0 5 10 15 20 25 30 
Calls (X) 

S
al

es
 (

Y
) 

Extrapolation Interpolation 

b. Regression Line 

Fig. 3.5 Interpolation and extrapolation 

extrapolating. For instance, if Jordan makes 100 calls in a day, she probably will not 
be able to maintain her typical sales conversion rate than if she made 10 calls in a 
day. 

In Fig. 3.5a, the minimum value of X can be deciphered as 5. To the left of .X = 5, 
there are no data values, which means that the interval of .X < 5 is outside the range 
of X. The area to the left of .X = 5 is therefore denoted in pink (in Fig. 3.5a) since 
it is outside the range of X. Similarly, the maximum value of X is 25, and therefore, 
the area to the right of .X = 25 is in pink. 

Using the range information from Fig. 3.5a along with the regression line, 
Fig. 3.5b shows which portions of the regression line are extrapolation and which are 
interpolation. As mentioned previously, the extrapolated values are values predicted 
with X values outside of the range of X. 

3.9 Sales Calls Application: Prediction 

Jordan is considering a few ways to increase her sales numbers including making 
3 calls if she is sick, working a half day on Saturday when she could make 5 calls, 
increasing her minimum number of calls to 15 per weekday, and increasing the 
number of calls she makes to 30 on Mondays. Using Table 2.2, investigate the 
relationship between X and Y by doing the following: 

(a) Find the range of X. 
(b) Predict the corresponding sales for .x = 3, 5, 15, 30. 
(c) Indicate whether each prediction from (b) is an interpolation or extrapolation.
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Solution 

(a) The smallest value of X is 5 and the largest is 25. Therefore, the range is 
between 5 and 25 inclusive: 

. 5 ≤ X ≤ 25.

Figure 3.5a depicts the range of X for this application. 
(b) The least squares regression line was computed in the previous application: 

. Ŷ = −0.3406 + 0.868X.

Using the regression line, the predictions are made as follows: 

• When .x = 3, then . ŷ = −0.3406 + 0.868(3) = 2.2634.
• When .x = 5, then . ŷ = −0.3406 + 0.868(5) = 3.9994.
• When .x = 15, then . ŷ = −0.3406 + 0.868(15) = 12.6794.
• When .x = 30, then . ŷ = −0.3406 + 0.868(30) = 25.6994.

(c) Since .x = 3 and .x = 30 are outside the range of X indicated in part a, the 
corresponding predictions are extrapolations. The values of .x = 5 and . x = 15
are within the range of X and therefore are interpolations. 

3.10 Explained Deviation 

To understand how . R2 can measure the percentage of explained variation, one 
should consider the deviations that make up the variation. Figure 3.6 depicts the 
explained, the unexplained, and the total deviations for one particular observed value 
.(x, y) that is above the regression line. From the depiction, the total deviation from 
the mean of Y (. ȳ) is .y − ȳ. This deviation, or difference, consists of both explained 
and unexplained deviation. For the observed value of x, the linear regression 
prediction of y would be . ŷ. Therefore, the amount of deviation explained by linear 
regression would be .ŷ − ȳ. The amount of unexplained deviation is .y − ŷ. Since the 
total deviation can be broken down into unexplained and explained deviations, the 
deviations can be expressed for the particular value of Y as 

.(y − ȳ) = (ŷ − ȳ) + (y − ŷ), (3.14) 

or for the entire vector Y as 

.(Y − ȳ) = (Ŷ − ȳ) + (Y − Ŷ ). (3.15)
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Fig. 3.6 Explained vs. unexplained deviation 

The deviation can be found from a single observation, but the amount of variation 
is calculated using every observation. By squaring and summing the deviations that 
comprise the total deviation of each observation, a measure of the total variation is 

.SST =
n∑

i=1

(yi − ȳ)2, (3.16) 

which is referred to as the sum of squares total (SST ). The variation of the sum of 
squares due to regression (SSR) is  

.SSR =
n∑

i=1

(ŷi − ȳ)2, (3.17) 

and the variation of the sum of squares due to error (SSE) is  

.SSE =
n∑

i=1

(yi − ŷi )
2. (3.18) 

Similar to Eq. (3.15), the SST can be expressed in terms of the SSR and SSE: 

.SST = SSR + SSE (3.19)
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or equivalently stated, 

.

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi )
2. (3.20) 

As mentioned previously, the .R2 value is the amount of explained variation. 
Therefore, using SSR and SST , the  value of . R2 is 

.R2 = SSR/SST . (3.21) 

Equation (3.21) is mathematically equivalent to Eq. (3.6), which is left for the reader 
to prove as one of the problems at the end of the chapter. 

In the next sections, concepts from this chapter are brought together to solve a 
case study in accounting analytics. 

3.11 Case Study: Accounting Analytics 

3.11.1 Problem Statement 

Prediction and analytics constitute valuable skills to have in many different business 
domains. For this reason, the skills required for entering the job market have 
evolved, with analytics now being one of the most widely sought-after skill sets. 
Analytics has especially changed the field of accounting, in which irregularities in 
the data can be quickly found using simple analytical methods. 

As an accounting analyst, you are investigating the amount of itemized deduc-
tions that are reasonable considering someone’s adjusted gross income. You are 
handed the tax return documents of 8 individuals, and you are tasked with analyzing 
these data. From these data, you are to generate a scatterplot, calculate the 
correlation coefficient, fit a linear regression model, and use your fitted model to 
predict the itemized deductions for an individual who is at risk of an audit. The data 
are listed in Table 3.1 where both variables are in thousands of U.S. dollars. 

Table 3.1 Accounting data Adjusted gross income Itemized deductions 

77 16 

96 15 

50 8 

54 10 

130 21 

67 13 

135 24 

114 24
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3.11.2 Correlation and Scatterplot 

From the data in Table 3.1, the variable that will be predicted is the amount of 
itemized deductions. Therefore, the itemized deductions variable is the response 
variable, which will be assigned as Y by convention. The variable that will be used 
to predict Y is known as the predictor variable and is assigned as X by convention. 
Using the c function in R, vectors are created for both x and y. 

x = c(77, 96, 50, 54, 130, 67, 135, 114) 
y = c(16, 15, 8, 10, 21, 13, 24, 24) 

As an initial action, the points can be plotted (as shown in Fig. 3.7) using the plot 
command: 

plot(x, y, xlab = "Adj. Gross Income (in $1000s)", 
ylab = "Itemized Deductions (in $1000s)") 

The relationship can be observed in the plot. However, it is beneficial to quantify 
the relationship using the correlation coefficient (r) and also the coefficient of 
determination (. R2). Using the cor function allows for the calculation of the 
correlation coefficient: 

cor(x,y) 

## [1] 0.9426905 
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Fig. 3.7 Accounting data scatterplot
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The value of 0.9427 denotes a strong positive linear correlation between the 
response and the predictor variable. The coefficient of determination (. R2) can be 
found by squaring the correlation coefficient: 

cor(x,y)ˆ2 

## [1] 0.8886653 

In interpreting the model, one should note that the . R2 value is relatively high at 
.0.8887. From this value, one can conclude that 88.87% of the variation in Y can 
be explained by the variation in X. More specifically, the variation in the adjusted 
gross income can explain 88.87% of the variation in the itemized deductions. 

3.11.3 Linear Regression Modeling 

One can further analyze the relationship between adjusted gross income and 
itemized deductions using linear regression. If a linear relationship exists between X 
and Y , or even if the relationship is approximately linear, the simple linear regression 
model can be used. The coefficients of the simple linear regression model can be 
calculated using the lm function. Assigning reg to be the lm object is done using: 

reg = lm(y ~ x) 

A summary of the linear regression can be obtained using the summary function: 

summary(reg) 

## 
## Call: 
## lm(formula = y ~ x)  
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -2.3448 -1.6123 -0.0862 0.9739 3.5520 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 0.79430 2.38250 0.333 0.750184 
## x 0.17240 0.02491 6.920 0.000451 *** 
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 2.204 on 6 degrees of freedom 
## Multiple R-squared: 0.8887, Adjusted R-squared: 0.8701 
## F-statistic: 47.89 on 1 and 6 DF, p-value: 0.0004506
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Fig. 3.8 Accounting data scatterplot 

From the summary output of the regression line, the coefficient estimates are 
given in the “Estimate” column. From this column, the estimate of the intercept 
is displayed as 0.79430, and the estimate of the slope is displayed as 0.17240. The 
resulting regression equation from these coefficients is 

. Ŷ = 0.79430 + 0.17240X.

As a further note from the summary, the “Multiple R-squared” value matches that 
of the . R2 value from squaring the r value found using the cor function. The value 
of . R2 is referred to as Multiple . R2 when there are multiple predictor variables. 
Since there is only one predictor variable in our model, the “Multiple R-squared” 
designation is inappropriate in this case. 

The scatterplot from Fig. 3.7 can be modified to include the linear regression 
line within the plot using the abline function as shown in Fig. 3.8. The  abline 
function should be used following the plot command and only requires one input: 
the regression object created by the lm function. 

plot(x, y, xlab = "Adj. Gross Income (in $1000s)", 
ylab = "Itemized Deductions (in $1000s)") 

abline(reg) 

3.11.4 Audit Scenarios 

After analyzing the data, your manager identifies 4 individuals who will most likely 
be audited due to irregularities in their income data and the amount of itemized
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deductions that they have reported. The adjusted gross incomes from last year for 
the individuals are: 

1. $30,000 
2. $78,000 
3. $214,000 
4. $120,000 

From the model, an appropriate number of itemized deductions can be predicted 
with the predict function. The values will need to be combined into a dataframe 
in order to pass them through the predict function. A dataframe can be created 
using the data.frame function: 

df = data.frame(x =  c(30, 78, 214, 120)) 

After the adjusted gross income values are specified within the new dataframe, the 
predict function can be used to approximate the amount of itemized deductions 
using the fitted model (reg). The predict function requires the fitted model object 
as the first argument and the new dataframe as the second argument. 

predict(reg, df) 

## 1 2 3 4  
## 5.966315 14.241543 37.688022 21.482367 

Note the third value in df is $214,000, which is outside the range of X, and therefore 
means the third prediction (37.688022 or $37,688) represents an extrapolation. 

After reporting your predictions to your manager, she notes that the reported 
itemized deductions for each individual are: 

1. $6849 
2. $12,862 
3. $24,690 
4. $42,409 

The results indicate the first and second individuals are roughly close to the 
predicted amount of itemized deductions. The third individual corresponds to 
the extrapolation, which has a large difference between the observed value and 
the predicted value. However, more data should be gathered before assuming 
the third individual’s itemized deductions are irregular. The fourth individual has 
approximately twice the predicted itemized deductions and should be scrutinized. 
While there are many more intricacies to tax and audit analysis, this case study 
shows the value that predictive analytics can play in the area of accounting.
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3.11.5 Case Conclusion 

In this analysis, we showed the value of analytics by fitting a model to predict the 
amount of itemized deductions using the adjusted gross income as a predictor. The 
tax code has many more significant numeric variables that one can consider for a 
detailed analysis. For this reason, accounting professionals have sought analytical 
skills as a means to have an advantage over their competition. Analytics will con-
tinue to play an important role in accounting and accounting-related applications. 

Simple linear regression—regression with one predictor variable—is fundamen-
tal in understanding regression analysis. This case study demonstrates the utility of 
that analysis, using some fundamental R commands that were used, such as: c, lm, 
abline, summary, cor, predict, plot, and data.frame. When studying more 
complex regression analysis, several of these commands will need to be used further. 

Problems 

1. Accounting Analytics Basic Statistics 
In the chapter case study, the problem solved involved the use of R program-
ming. The same analysis can be done without the use of a computer as well. 
Using Table 3.1, answer the questions below. Both variables are in thousands 
of U.S. dollars. 
Without the use of a computer: 

a. Find the correlation coefficient and the coefficient of determination for X 
and Y . 

b. Find the equation of the least squares line between X and Y . 

2. Accounting Analytics Prediction 
From the accounting analytics case study, it was shown that the regression 
equation was: 

. Ŷ = 0.7942958 + 0.1724006X.

Without the use of a computer: 

a. Find the range of X using the values of X from Table 3.1. 
b. Predict the corresponding sales for x = 30, 55, 115, 300. 
c. Indicate whether each prediction from part b is an interpolation or extrapo-

lation.
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Table 3.2 Social media 
influencers data 

Pay Clicks 

1000 26,855 

250 2230 

5000 99,323 

800 23,321 

2500 47,916 

780 3274 

100 4686 

980 15,591 

400 7174 

4200 92,447 

270 10,219 

3600 59,221 

3. Sales Calls Problem 
Jordan’s colleague at Enright Associates is Abdullah who also manages 
retirement accounts. Jordan documented the number of sales calls Abdullah 
made each day for the last week. The number of calls is denoted by X, and the 
amount of sales that resulted is denoted as Y . The values of X and Y are given 
in Table 2.4. 
Without the use of a computer: 

a. Find the correlation coefficient and the coefficient of determination for X 
and Y . 

b. Find the equation of the least squares line between X and Y . 
c. From Jordan’s data, a slope of 0.868 was noted. How does Abdullah’s slope 

compare with Jordan’s? 

While using a computer (with R): 

d. Verify your results from parts a and b. 
e. Generate a summary of the regression line between X and Y . 
f. Plot a scatterplot of X and Y . 

4. Social Media Influencers 
The CEO of Zen Sports Apparel contracts social media influencers to generate 
clicks to their products. The data shown in Table 3.2 reflect the amount paid (in 
dollars) and the resulting number of clicks. 
Without the use of a computer: 

a. Find the correlation coefficient and the coefficient of determination for the 
pay (X) and clicks (Y ). 

b. Find the equation of the least squares line between pay (X) and clicks (Y ). 
c. What does the slope coefficient indicate?
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Table 3.3 Automotive earnings and price data 

Rank Name Ticker EPS Price 

1 Douglas Dynamics PLOW 0.0021 55.00 

2 Volkswagen AG VWAGY 2.6600 19.29 

3 Tesla TSLA −4.9200 418.33 

4 Ford F 0.0100 9.30 

5 Penske Automotive Group PAG 5.2800 50.22 

6 General Motors GM 4.6200 36.60 

While using a computer (with R): 

d. Verify your results from part a. 
e. Generate a summary of the regression line between pay (X) and clicks (Y ). 
f. Plot a scatterplot of pay (X) and clicks (Y ). 
g. Would it be more beneficial to hire several low-cost social media influencers 

or hire only one social media influencer with the same amount of money? 

5. Automotive Stocks 
Table 3.3 displays the data for 6 automotive stocks. The data indicate the 
earnings per share (EPS) reported on 12/31/2019 and the corresponding stock 
closing price on the same day. 
Without the use of a computer: 

a. Find the correlation coefficient and the coefficient of determination for the 
EPS (X) and price (Y ). 

b. Find the equation of the least squares line between EPS (X) and price (Y ). 
c. Based on the value calculated for r , describe the linear relationship between 

earnings and price. 

While using a computer (with R): 

d. Verify your results from part a. 
e. Generate a summary of the regression line between EPS (X) and price (Y ). 
f. Plot a scatterplot of EPS (X) and price (Y ). 
g. Based on the regression equation, calculate the predicted price given an EPS 

of 2. 

6. Age and Net Worth of Billionaires 
The age and net worth of 10 billionaires are shown in Table 3.4 where “Age” is 
in years and “Net Worth” is in billions of U.S. dollars. 
Without the use of a computer: 

a. Find the correlation coefficient and the coefficient of determination for the 
age (X) and net worth (Y ). 

b. Find the equation of the least squares line between age (X) and net worth 
(Y ). 

c. Based on the value calculated for R2, is there a significant relationship 
between age and net worth?
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Table 3.4 Billionaires data Rank Age Net worth Source 

12 82 1.3 Technology 

27 58 2.6 Casinos 

61 83 2.7 Software 

85 82 4.0 Logistics 

100 69 8.6 Hedge funds 

123 39 10.3 Metals and energy 

192 49 10.4 Business software 

383 58 18.7 Video games 

763 63 21.4 Consulting 

944 99 26.4 Telecom 

Table 3.5 Bitcoin data Month BTC SPY 

1 0.142 −0.006 

2 0.363 0.028 

3 0.305 0.042 

4 −0.020 0.056 

5 −0.354 0.007 

6 −0.061 0.019 

7 0.188 0.028 

8 0.133 0.030 

9 −0.072 −0.050 

10 0.400 0.074 

11 −0.070 −0.008 

12 −0.077 0.043 

While using a computer (with R): 

d. Verify your results from part a. 
e. Generate a summary of the regression line between age (X) and net worth 

(Y ). 
f. Plot a scatterplot of age (X) and net worth (Y ). 

7. Bitcoin and S&P 500 
The returns of Bitcoin in U.S. Dollars (BTC-USD) are said to relate closely with 
the overall stock market. Using the returns of the S&P 500 market benchmark 
(SPY), analyze the returns of Bitcoin with the S&P 500. The data given in 
Table 3.5 are the monthly returns from 2021. 
Without the use of a computer: 

a. Find the correlation coefficient and the coefficient of determination for the 
returns of Bitcoin (X) and the S&P 500 (Y ). 

b. Find the equation of the least squares line between the returns of Bitcoin (X) 
and the S&P 500 (Y ).
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c. Based on the value calculated for r , describe the linear relationship between 
the returns of Bitcoin (X) and the S&P 500 (Y ). 

d. Calculate and interpret the coefficient of determination. 

While using a computer (with R): 

e. Verify your results from part a. 
f. Generate a summary of the regression line between the returns of Bitcoin 

(X) and the S&P 500 (Y ). 
g. Plot a scatterplot of the returns of Bitcoin (X) and the S&P 500 (Y ). 

8. Residual Summation Proof 
Show that both sides of Eq. (3.15) are equivalent: 

. (Y − ȳ) = (Ŷ − ȳ) + (Y − Ŷ ).

9. Sum of Squares of X Proof 
Show that the equations for SSxx (Eqs. 2.4 and 2.5) are equivalent. In particular, 
show that: 

. 

n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

/n.

10. Sum of Squares of X and Y Proof 
Show that the equations for SSxy (Eqs. 3.1 and 3.2) are equivalent. In particular, 
show that: 

. 

n∑

i=1

(xi − x̄)(yi − ȳ) =
n∑

i=1

xiyi −
(∑n

i=1 xi

)
(
∑n

i=1 yi)

n
.

11. Normal Equation Proof Part 1 
Show that the estimated intercept value is given by 

. β̂0 = ȳ − β̂1x̄

by taking the partial derivative of the SSE with respect to β̂0 and setting it equal 
to 0. 

12. Normal Equation Proof Part 2 
Prove that the partial derivative of the SSE with respect to β̂1 results in 

. β̂1 = SSxy

SSxx

.

Hint: You will need to use the result from the previous problem.



Chapter 4 
Simple Linear Regression 

If you can’t explain it simply, you don’t understand it well 
enough. 

—Albert Einstein 

4.1 Introduction 

In Albert Einstein’s quote above, he stresses the paramount importance of simplicity. 
In regression analysis, focusing on only two variables demonstrates the concepts 
simply. Thus, in Chap. 2, we calculated the least squares line by using two variables. 
We also plotted scatterplots and calculated correlation coefficients to further assess 
the linear relationship. From this analysis, we obtained a detailed understanding of 
the relationship between two variables. Upon understanding a linear relationship, 
other more complicated processes become easier to grasp. 

Simple linear regression refers to linear regression with one predictor variable 
and one response variable. In the previous chapter, our primary focus entailed the 
calculation and fundamental programming concepts of linear regression. The goal 
of this chapter is to guide the reader through some of the understanding and analysis 
details of simple linear regression. 

We begin with a discussion of the mathematical model of simple linear regres-
sion, the assumptions that are required to make inferences from the fitted model, 
and how to measure statistical significance of a fitted model. We then cover 
confidence intervals for the model coefficients, followed by an application. In the 
final discussion, we present a stock market case study and solve it in detail. The 
case study involves utilizing simple linear regression to calculate stock betas, which 
measure the performance of a stock as a function of the overall stock market. This 
case study makes use of R with descriptive graphs and the relevant source code. 
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4.2 Simple Linear Regression Model 

A mathematical model is an equation that describes the behavior of a system or 
concept mathematically. A mathematical model can be used to draw conclusions, 
such as the time it takes an object to fall to the ground or the speed of an orbiting 
satellite. Mathematical models are applicable to a wide array of subject areas. In 
regression analysis, the simple linear regression model provides one example of a 
simple mathematical model and is defined as 

.Y = β0 + β1X + ε, (4.1) 

where . β0 and . β1 are parameters of the model. These parameters are the theoretical 
coefficients. The . ε term is a random variable with a mean of 0 and is called the 
irreducible error or the error term. We include an error term in the equation to 
account for the deviation between the observed response value and the expected 
response value. Including the error term in the equation allows for measuring the 
error and dealing with it accordingly. 

In using the least squares approach as outlined in Chap. 2, the simple linear 
regression model was automatically assumed although not explicitly stated. 

4.3 Model Assumptions 

Since we use the least squares criterion, the values . β̂0 and . β̂1 result in the best line 
that fits the data. For this model to be appropriate, four assumptions, as listed below, 
must hold true: 

1. The relationship between the response and the predictor variable is linear. 
2. Each value of . εi is independent. 
3. The random variable, . ε, is normally distributed. 
4. The variance of . ε, denoted as . σ 2, is the same for all observations. 

Assumption 1, often referred to as the linearity assumption, is equivalent to 
assuming that the mean of each . εi is 0. Mathematically, these assumptions can be 
summarized by the following: 

. εi
i.i.d.∼ N(0, σ 2).

This notation is read as: the ith error (. εi) is independent and identically distributed 
(i.i.d.) and is distributed according to a normal (or Gaussian) distribution with a 
mean of 0 and a variance of sigma squared (. σ 2). Chapter 7 provides a more in-depth 
discussion.
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4.4 Model Variance 

As mentioned in the model assumptions, the irreducible error of the model, . ε, has a 
variance of . σ 2 that implies the standard deviation is assumed to be . σ . A large value 
of . σ indicates the data are widely dispersed about the regression line, and a small 
value of . σ indicates the data lie relatively close to the regression line. In Fig. 4.1, 
the variance in the error is depicted as relatively steady as x increases. Having a 
constant variance about the least squares line marks assumption 4 of the model as 
listed above. If this assumption were not met, some of the analysis associated with 
the variance may not be correct. 
While the parameter . σ 2 is the unknown theoretical value of the variance, an estimate 
can be obtained by dividing the SSE by the degrees of freedom: 

.s2 = SSE

n − 2
. (4.2) 

The degrees of freedom are given by .n − 2 when there are n observations in the 
data set and 2 coefficients in the model. The simple linear regression model has 
2 coefficients (. β0 and . β1) as shown in Eq. (4.1). In simple linear regression, it 
is always the case that the degrees of freedom for the SSE are . n − 2. From the  
approximation of the variance, an approximation of the standard deviation can be 

Fig. 4.1 Variance in the error
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found by taking the square root: 

.s =
√

s2. (4.3) 

Plugging in Eq. (4.2) for . s2, the value becomes 

.s =
√

SSE

n − 2
. (4.4) 

This standard deviation is often referred to as the residual standard error (RSE) or 
the root mean squared error (RMSE). 

Recall from Eq. (3.18) in Chap. 3 that the SSE is 

.SSE =
n∑

i=1

(yi − ŷi )
2. (4.5) 

If the simple regression equation is plugged in, the SSE becomes 

.SSE =
n∑

i=1

(yi − β̂0 − β̂1xi)
2. (4.6) 

4.5 Application: Stock Revenues 

Gabriele compiled financial information on the company Altryx. She then made 
predictions that Altryx had revenues of 

. Ŷ : 85 75 64 89 35 88 (in billions $) 

for the years 2010 to 2015. Thereafter, she compared her revenue predictions with 
the actual revenue values: 

Y : 83 80 73 90 47 80 (in billions $) 

Investigate the estimates of Y by doing the following: 

(a) Calculate the residuals for each year. 
(b) Calculate the SSE. 
(c) Calculate the RMSE. 

Solution 

(a) The calculated residuals are displayed in Table 4.1 within column 3. Recall from 
Chap. 4 the residuals are given by .y − ŷ.
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Table 4.1 Stock residuals y .ŷ .y − ŷ . (y − ŷ)2

83 85 .−2 4 

80 75 5 25 

73 64 9 81 

90 89 1 1 

47 35 12 144 

80 88 .−8 64 

(b) The squared residuals are in column 4 of Table 4.1. From these squared residuals 
and Eq. (3.11), the SSE is 

. SSE =
n∑

i=1

(yi − ŷi )
2

. SSE = 4 + 25 + 81 + 1 + 144 + 64

. SSE = 319.

(c) From Eq. (4.2), the variance estimate is 

. s2 = SSE

n − 2

. s2 = 319

6 − 2
= 79.75.

From the variance estimate, the RMSE is given by 

. s =
√

s2

. s = √
79.75 = 8.93.

4.6 Hypothesis Testing 

Inferential statistics refers to the practice of drawing conclusions from data. The 
practice signifies an important topic not only in simple linear regression, but also 
in regression analysis in general. In fact, regression analysis addresses two major 
goals: prediction and inference. The purpose of prediction lies in estimating a 
variable. The value of prediction becomes somewhat obvious when different profit 
margins result from different business actions, but the value of inference may not
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Fig. 4.2 A two-tailed  p-value 

be as obvious. One example of inference is interpreting how variables influence a 
predicted value, which can help explain a data set. Knowing that for every five sales 
calls a product is sold, for example, demonstrates the utility of inference. 

Hypothesis testing exists as important tool in inferential statistics. In performing 
a hypothesis test, we assume a null hypothesis (. H0) and calculate a test statistic 
assuming the null hypothesis is true. If the statistic is within an acceptable range, 
then the null hypothesis is reasonable. However, if the test statistic is extreme, 
the null hypothesis is unlikely to be correct. Hypothesis testing of a mean is 
usually explained in introductory statistics, and the logic remains the same for more 
advanced hypothesis testing. 

To efficiently conduct a hypothesis test, we introduce the concept of a p-value. 
Assuming .H0 is true, the probability that the test statistic will take on values as 
extreme as or more extreme than the observed test statistic is called a p-value. 

Determining the results of a hypothesis test by using the p-value is called the 
p-value method, whereas comparing a test statistic with a critical value is referred 
to as the critical region method. In regression analysis, the p-value method is the 
preferred approach because p-values represent probabilities that offer a measure of 
the degree of rejection. Furthermore, test statistics are typically less intuitive than 
probabilities. A depiction of the p-value corresponding to a test statistic, t , is shown  
in Fig. 4.2. In this figure, the density area highlighted in blue represents the p-value, 
which results from a two-tailed hypothesis test using a t- distribution. 

4.6.1 The qt Function 

Traditionally, the critical value or p-value necessary to conduct a t-test was found 
using statistical tables that are widely used and easily obtained online. However, we 
may also easily and more accurately find this information using R. The qt function
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Fig. 4.3 The qt function 

in R is used to find quantile values of the t-distribution and, therefore, allows us to 
find the t critical value. 

The qt function has two required arguments and the following syntax: 

qt(p, v) 

The first argument (p) is a probability or a vector of probabilities, and the second 
argument (v) refers to the degrees of freedom. Figure 4.3 depicts the resulting t-
value that can be found using the qt function. As with any function in base R, the 
full details on the qt function can be found in the R help files. 

By entering a probability and the degrees of freedom, the qt function returns 
the t-value that corresponds to that probability. To find the critical value, .α/2 will 
be the first argument and .n − 2 will be the second argument in the qt function. In 
which case the qt function will yield the negative critical value (.−tα/2). Since the 
t-distribution is symmetrical, .1 − α/2 could be entered for p, which would result in 
the positive critical value (.tα/2). By default, the probability for p will correspond to 
the area on the left-side of the quantile value. 

4.6.2 The pt Function 

Similarly, a pt function in R returns the probability corresponding to a quantile 
value. The syntax is 

pt(t, v) 

where t refers to the quantile (t-value), and v denotes the degrees of freedom. 
Figure 4.4 depicts the resulting cumulative probability density value (p) that can 
be found using the pt function.
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Fig. 4.4 The pt function 

We can use the pt function to find the p-value corresponding to a test statistic. 
If we are looking for the p-value for a hypothesis test, the test statistic should be 
entered as t and the degrees of freedom should be entered as v. It is important to 
note the pt will return the area to the left of t; thus, the area will be less than 0.5 if 
t is negative but greater than 0.5 for a positive value of t. If there is a positive test 
statistic, the area more extreme than the t-value is 

1 - pt(t, v) 

When using t-tests in regression analysis, it will almost always be the case that 
the hypothesis test is two-tailed. For example, the area in the t-distribution that is 
more extreme than 2 is not only the tail above 2, but also the tail below . −2. When 
finding the p-value in a two-tailed test, the results of the pt function will need to be 
multiplied by 2 when t is negative: 

2*pt(t, v) 

In the case when t is non-negative, we have 

2*(1-pt(t, v)) 

Replacing pt(t, v) with 1-pt(t, v) accounts for the t-value being on the right-
side, as the pt function returns the area to the left. 

4.7 Application: Using the pt and qt Functions 

Use your knowledge of the pt and qt functions to answer the following questions 
without the use of R. While the answers to these questions can be found using R, it 
is best to test your understanding of these concepts here.
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Using the qt function: What will the following code return? 

(a) qt(0.5, 10) 
(b) qt(0.5, 100) 
(c) qt(0.025, 10000) 
(d) qt(-0.025, 10000) 
(e) qt(100, 10000) 

Using the pt function: What will the following code return? 

(a) pt(0, 5) 
(b) pt(0, 25) 
(c) pt(-1.96, 10000) 
(d) pt(-100, 10000) 
(e) pt(100, 10000) 

Solution 
Using the qt function: 

(a) Since having an area of 0.5 on the left of the graph represents the center of 
the t-distribution and the center of the distribution is at 0, this qt function will 
return 0. The degrees of freedom dictate the size of the distribution’s tails that 
is irrelevant in this case since the distribution is symmetrical. 

(b) The degrees of freedom dictate the size of the distribution’s tails that is irrelevant 
in this case since the distribution is symmetrical. Having an area of 0.5 on the 
left-side of the graph corresponds to a t-value of 0. 

(c) When the degrees of freedom are large, then the t-distribution emulates that of 
a standard normal distribution. Recalling the properties of the standard normal 
distribution from the empirical rule, having an area of 0.025 in the left-side of 
the graph corresponds to a t-value of .−1.96. 

(d) The first argument within the qt function represents a probability or an area, 
neither of which can be negative. Therefore, this function will return an error. 

(e) Having a probability of 100 is impossible and will return an error. 

Using the pt function: 

(a) Since 0 represents the center of the distribution, the probability to the left of 0 
is 50% or half. The degrees of freedom dictate the size of the distribution’s tails 
that is irrelevant in this case since the distribution is symmetrical. 

(b) The probability to the left of 0 is 50% or half. Even though the degrees of 
freedom change from the values in part (a), the distribution with 25 degrees of 
freedom is also symmetrical and centered about 0. 

(c) When the degrees of freedom are large, then the t-distribution emulates that of 
a standard normal distribution. With this in mind, the area to the left of . −1.96
in a standard normal distribution is 0.025 or 2.5%. For verification of this result, 
review the empirical rule from an introductory statistics source. 

(d) As in (c), we note that the large degrees of freedom result in the distribution 
being approximately equal to a standard normal distribution. The area to the
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left of .−100 in a standard normal distribution is approximately 0 since .−100 is 
an extreme value in the left tail. 

(e) As in (c) and (d), the large degrees of freedom result in the distribution being 
approximately equal to a standard normal distribution. The area to the left of 
100 in a standard normal distribution is approximately 1 since 100 is an extreme 
value in the right tail. 

4.8 Hypothesis Testing: Student’s t-Test 

When testing the significance of a slope parameter . β1, it may prove valuable to 
check if the parameter is zero, since a zero . β1 means that there is no relationship 
between the response and the predictor variables. Therefore, a test can be created to 
check if . β1 is zero or nonzero. Setting up the hypotheses, the null hypothesis would 
stipulate that the parameter is 0, and the alternative hypothesis would therefore be 
that the parameter would be nonzero. Using statistical symbols, this can be written 
as: 

. H0 : β1 = 0

. H1 : β1 �= 0,

where . H0 and . H1 denote the null and alternative hypotheses, respectively. 
To find a test statistic for this test, . β̂1 is used as the estimate of . β1. The value of  

. β̂1 is divided by the standard error of . β̂1: 

.t1 = β̂1

s
β̂1

. (4.7) 

The standard error of . β̂1 is given by 

.s
β̂1

= s√
SSxx

. (4.8) 

Note that the standard deviation of the error is used to determine the standard error 
of . β̂1. 

The value of . t1 represents a student’s t-distribution with .n−2 degrees of freedom. 
Therefore, the null hypothesis can be rejected if the p-value corresponding to . t1 lies 
below the level of significance (. α). Although somewhat arbitrary, it is common to 
set . α to 0.05. This value can usually be assumed if there is no mention of . α.
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4.9 Employee Churn Application: Testing for Significance 
with t 

Karen from human resources at Global IT Enterprises is trying to find the number 
of employees that will leave the company by department. The number of employees 
in a department (X) can be used to predict the number of employees that will churn 
(Y ). The data are shown here in Table 4.2. 

Using the formulas from Chap. 2, we calculate the regression equation as 

. ŷ = 2.1818 + 1.6452x.

Investigate the relationship between X and Y by doing the following: 

(a) Calculate the SSE. 
(b) Calculate the standard deviation of the error. 
(c) Calculate the standard error of the slope. 
(d) Calculate the test statistic for the slope. 
(e) Compute the p-value. 
(f) Make the decision. 
(g) Interpret the slope. 

Solution 

(a) The predicted values are easily obtained by plugging in each value of X into the 
regression equation: 

. ŷ1 = 2.1818 + 1.6452(2) = 5.4722

. ŷ2 = 2.1818 + 1.6452(2) = 5.4722

. ŷ3 = 2.1818 + 1.6452(5) = 10.4078

. ŷ4 = 2.1818 + 1.6452(1) = 3.827

. ŷ5 = 2.1818 + 1.6452(3) = 7.1174

. ŷ6 = 2.1818 + 1.6452(.5) = 3.0044

. ŷ7 = 2.1818 + 1.6452(7) = 13.6982.

Table 4.2 Churn data Variable 

Employees (in 100s) (X) 2 2 5 1 3 0.5 7 

Churns (Y ) 7 5 12 4 8 1 12
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Plugging in the predicted values (. ̂y) and the actual values of y into Eq. (3.11), the SSE is 

. SSE =
n∑

i=1

(yi − ŷi )
2.

. SSE = (7 − 5.4722)2 + (5 − 5.4722)2 + (12 − 10.4078)2 + (4 − 3.827)2

+(8 − 7.1174)2 + (1 − 3.0044)2 + (12 − 13.6982)2

= 12.80266.

(b) From Eq. (4.2), the variance of the error is 

. s2 = SSE

n − 2

. s2 = 12.80266

7 − 2

. s2 = 2.560532.

The standard deviation is therefore 

. s = √
2.560532

. s = 1.600166.

(c) To calculate the standard error of the slope, the standard deviation of the error 
and the sum of squares of X (.SSxx) are required. The sum of squares of X is 

. SSxx =
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

/n

. SSxx = 92.25 − (20.5)2/7

.SSxx = 32.21429,
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and the standard deviation of the error was calculated in the previous part. Using Eq. (4.8), 
the standard deviation of the slope estimate is therefore 

. s
β̂1

= s√
SSxx

. s
β̂1

= 1.600166√
32.21429

. s
β̂1

= 0.2819297.

(d) The test statistic for the slope, as stated in Eq. (4.7), is calculated to be 

. t1 = β̂1

s
β̂1

. t1 = 1.6452

0.2819297

. t1 = 5.835497.

(e) The p-value corresponding to .t1 = 5.835497 and 5 degrees of freedom can be 
found using the R function: 

2*pt(-5.835497, 5) 

## [1] 0.002089956 

(f) Since the p-value of 0.002089956 is less than .α = 0.05, the null hypothesis 
should be rejected at the .α = 0.05 level of significance. The slope is therefore 
statistically significant. 

(g) Since the slope is 1.6452: for every 100 employees in a department, it is 
expected approximately 1.6452 will churn. 

4.10 Coefficient Confidence Interval 

Confidence intervals give us an interval estimate for our approximation assuming a 
confidence level of .1−α. The confidence interval for . β1 in a simple linear regression 
model is: 

.β̂1 ± tα/2sβ̂1
, (4.9)
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where . β̂1 is the point estimate of . β1, .tα/2 is the t-value such that .α/2 is in the upper 
tail with degrees of freedom of .n − 2, and . s

β̂1
is the standard error of the slope. 

The confidence interval of a coefficient can be calculated using the confint 
function in R. If there is a regression object, reg, available in the R environment, 
the confidence interval can be calculated as 

confint(reg) 

This R function requires a regression object as input and defaults to a 95% 
confidence interval. The optional level argument can be specified to return a 
different level of confidence. 

In the previous sections, a test statistic was used to conclude the hypothesis test 
for t . Additionally, confidence intervals of the coefficients can be used to test the 
hypotheses used in the previous t-test. For instance, when .α = 0.05 if the value 
of .β1 = 0 is outside the 95% confidence interval, then . H0 is rejected since the null 
hypothesized value of . β1 is not included in the confidence interval. In the application 
below, we conduct an equivalent hypothesis test using a confidence interval for . β1. 

4.11 Employee Churn Application: Confidence Interval 
Hypothesis Testing 

Again using Karen’s churn data (Table 4.2), find out if the number of employees 
in each department (X) is a significant variable in determining the number of 
employees that will churn (Y ). 

Recall that the regression equation is 

. ŷ = 2.1818 + 1.6452x.

Investigate the relationship between X and Y by doing the following: 

(a) Set up a statistical test for . β1. 
(b) Calculate the .tα/2 critical value. 
(c) Find a 95% confidence interval for . β1. 
(d) Conclude the test using the confidence interval. 

Solution 

(a) The null hypothesis states that . β1 is 0 and the alternative hypothesis is nonzero: 

. H0 : β1 = 0

.H1 : β1 �= 0.
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(b) Since . α is split into two equal parts at the beginning and end of the distribution, 
the probability value of 0.025 is the probability argument for the first critical 
value. Keeping in mind that the qt function takes as arguments areas to the right, 
we plug in 0.975 as the probability argument to get the right-side critical value. 
The values corresponding to .±tα/2 with 5 degrees of freedom and .α = 0.05 can 
be found using the R code: 

qt(0.025, 5) 
qt(0.975, 5) 

## [1] -2.570582 

## [1] 2.570582 

From this result, the positive value is returned: 

. tα/2 = 2.570582.

(c) Using Eq. (4.9) and the values calculated in the previous application, the 
confidence interval becomes 

. β̂1 ± tα/2sβ̂1

. 1.6452 ± 2.570582 × 0.2819297

or written as 

. 0.9204766 ≤ β1 ≤ 2.369923.

As confirmation, the 95% confidence intervals for both . β0 and . β1 can be calculated using 
the confint function in R once a regression object is created using the lm function: 

confint(reg) 

## 2.5 % 97.5 % 
## (Intercept) -0.4490947 4.812731 
## x 0.9205094 2.369956 

Note that the confidence interval limits for . β1 calculated by R are consistent with the earlier 
calculation when ignoring minor rounding errors. 

(d) Since 0 is not included in the confidence interval for . β1, the null hypothesis is 
rejected. The estimate . β̂1 is therefore said to be statistically significant.
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4.12 Hypothesis Testing: F -test 

In addition to the t-test, the F -test, which signifies the ratio of two chi-square 
distributions, represents another important statistical test in regression analysis. In 
general, the F -test determines if any significance exists among predictor variables. 
When there is only one predictor variable, as in simple linear regression, the setup 
and results are the same as for the t-test. For models with more than one predictor 
variable, once the F -test deems the model significant, the t-test may be used to 
determine whether individual predictor variables are significant. 

The hypotheses for an F -test in simple linear regression are as follows: 

. H0 : β1 = 0

. H1 : β1 �= 0.

The test statistic for F is given as 

.F = MSR

MSE
, (4.10) 

where MSR is the mean squares due to regression that is 

.MSR = SSR

p
. (4.11) 

In this equation, p represents the number of predictor variables, which is one for 
the simple linear regression case. The number of predictors denotes the degrees of 
freedom for the regression. 

The rejection rule holds that one should reject . H0 if F is at or more extreme than 
the critical value for a given . α. An equivalent method constitutes verifying that the 
p-value of the test statistic occurs at or below . α. In particular, reject . H0 if p-value 
.≤ α or if .F ≥ Fα where the critical value . Fα is based on an F distribution with 
p degrees of freedom in the numerator and .n − p − 1 degrees of freedom in the 
denominator. 

The null hypothesis of the F -test posits no linear relation between the predictor 
variables and the response variable. The alternative hypothesis posits a linear 
relation between at least one predictor variable and the response variable. 

4.13 The qf Function 

We use the qf function in R to find quantile values of the F distribution. Similar to 
the qt function, the qf function can return the critical value of an F distribution if 
the significance level is specified. In contrast to the t-distribution, the F distribution
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Fig. 4.5 The qf function 

requires two degrees of freedom values since this distribution is the ratio of two . χ2

distributions. 
The qf function has three required arguments. The syntax is as follows: 

qf(p, v1, v2) 

The first argument (p) refers to a probability or a vector of probabilities, whereas the 
second and third arguments (v1 and v2) are the degrees of freedom in the numerator 
and denominator, respectively. By entering a probability and the degrees of freedom, 
the qf function returns the F -value that corresponds to that probability, as depicted 
in Fig. 4.5. To find the critical value, .1−α will be the first argument. In simple linear 
regression, the degrees of freedom in the numerator are 1, which is attributed to the 
number of predictor variables, and the degrees of freedom in the denominator are 
.n − 2. Note that the F distribution shape varies with different degrees of freedom 
combinations. 

4.14 The pf Function 

The pf function in R returns the probability corresponding to a quantile value for 
the F distribution. The syntax is 

pf(f, v1, v2)
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Fig. 4.6 The pf function 

where f denotes the quantile (F -value) and the second and third arguments (v1 and 
v2) are the degrees of freedom in the numerator and denominator, respectively. Note 
that pf will return the area to the left of f by default. Figure 4.6 shows a depiction 
of the pf function. 

4.15 Employee Churn Application: Testing for Significance 
with F 

Again using Karen’s churn data, find out if the number of employees in each 
department (X) is a significant variable in determining the number of employees 
that will churn (Y ). 

Recall that the regression equation is 

. ŷ = 2.1818 + 1.6452x.

Investigate the relationship between X and Y by doing the following: 

(a) Calculate the F critical value with .α = 0.05. 
(b) Calculate the F -test statistic. 
(c) Make the F -test decision. 
(d) Find the p-value from the F -test statistic. 
(e) Comment on the p-value. 
(f) Interpret the results.
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Solution 

(a) The F critical value is 1 degree of freedom in the numerator (. vn) and . n − 2
degrees of freedom in the denominator (. vd ). The qf R function gives 

qf(0.95, 1, 5) 

## [1] 6.607891 

(b) To find the F -statistic, one must first find the SSR. Using Eq.  (3.17), the  SSR 
is 

. SSR =
n∑

i=1

(ŷ − ȳ)2

. SSR = (5.4722 − 7)2 + (5.4722 − 7)2 + (10.4078 − 7)2 + (3.827 − 7)2

+(7.1174 − 7)2 + (3.0044 − 7)2 + (13.6982 − 7)2

= 87.19386

From this value of SSR, the MSR is 

. MSR = SSR/vn

. MSR = 87.19386/1

. MSR = 87.19386.

Using the value of the MSE from the previous application, the F - statistic is 

. F = MSR/MSE

. F = 87.19386/2.560532

. F = 34.05302.

(c) Since the F -statistic is more extreme than the critical value, the null hypothesis 
is rejected. More specifically, 

. F > Fα

.34.05302 > 6.607891.
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(d) The p-value from F with 1 degree of freedom in the numerator (. vn) and . n − 2
degrees of freedom in the denominator (. vd ) can be found with the pf function: 

1 - pf(34.05302, 1, 5) 

## [1] 0.002089957 

(e) There are two important findings from the p-value: 

1. The p-value corresponding to the F -statistic is equivalent to the one for the t 
statistic. In simple linear regression, the F -test is equivalent to the t-test that 
results in the same p-values. 

2. The hypothesis test can be concluded by comparing the p-value with . α. This test 
gives the same result as if the critical value were compared to the F -test statistic 
(as in part c). 

(f) The F -value is more extreme than the critical value, and therefore, the model is 
significant. 

4.16 Cautions About Statistical Significance 

In practice, if a t-test or F -test shows that rejecting the null hypothesis is the 
appropriate course of action, it does not enable us to definitively conclude that a 
cause-and-effect relationship exists between x and y. Concluding a test as shown 
in this chapter may suggest correlation, but correlation between variables does not 
imply causation. Also, finding statistical significance in the aforementioned tests 
does not enable us to conclude that there is a linear relationship between x and y. A  
nonlinear model may be a better fit regardless of the significance. 

4.17 Case Study: Stock Betas 

4.17.1 Problem Statement 

In studying the stock market, data analysis can provide insights about the selection 
of stocks, sectors, and the overall market. Noting the individual stock performance 
relative to the overall market is of particular importance. One such measure of this 
performance is referred to as beta. As shown in the next section, beta can be derived 
by fitting a regression model. This case demonstrates how regression analysis can 
be used in finance, particularly stock market analysis.
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The beta value for a particular stock can be found by fitting a simple linear 
regression model, which can be written as 

.Ra = α + βRb + ε, (4.12) 

where:

• . Ra is the return of an asset (or stock).
• . Rb is the return of a market benchmark.
• . ε is the error of the model. 

The remaining model parameters . α and . β denote the intercept and slope of the 
linear regression model. The estimate of . β can be interpreted as “correlated relative 
volatility,” but in simpler terms, this means that for every percentage increase in the 
market benchmark (. Rb), the . Ra increases by . β percent. 

For the market benchmark in this case study, we will use the S&P 500, 
which is commonly used as a measure of the market’s total performance. Using 
several individual stocks, we will fit a regression model and calculate the resulting 
coefficients. 

As an analyst working for a hedge fund, you are tasked with analyzing data on 
seven stocks to obtain the beta values for each. The seven stocks, which are of 
particular interest to management, are listed here, along with their tickers:

• Apple Incorporate (AAPL)
• Caterpillar Incorporated (CAT)
• Johnson & Johnson (JNJ)
• McDonald’s Corporation (MCD)
• Procter & Gamble Company (PG)
• Microsoft Corporation (MSFT)
• Exxon Mobil Corporation (XOM) 

Specifically, you will need to use data from the 36 months prior to September 
1, 2021. Using the data, you will then find each stock’s beta value and create some 
visualizations. From the calculated beta values, you will then need to make some 
investment recommendations to management. 

4.17.2 Descriptive Statistics 

The case study data consist of 36 monthly returns of a selection of stocks. The first 
step in analyzing a clean data set is to fully understand the data set of interest. After 
loading in the data, examine the first 6 observations using the head function. 

df = read.csv("Betas.csv") 
head(df)
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## X AAPL CAT JNJ MCD 
## 1 2018-09-01 -0.004824971 0.09823557 0.03267315 0.037627656 
## 2 2018-10-01 -0.030477500 -0.20440695 0.01317225 0.057445226 
## 3 2018-11-01 -0.184044589 0.12540913 0.04936063 0.065630391 
## 4 2018-12-01 -0.113616340 -0.06338909 -0.11591696 -0.052224994 
## 5 2019-01-01 0.055154105 0.04792657 0.03122828 0.006814199 
## 6 2019-02-01 0.040314724 0.03802575 0.02675073 0.028302710 
## PG MSFT XOM SPY 
## 1 0.003375568 0.02207889 0.071434774 0.001412313 
## 2 0.065481313 -0.06610134 -0.062808643 -0.064890545 
## 3 0.075159052 0.03819886 -0.002258965 0.018549474 
## 4 -0.027404354 -0.08009031 -0.133569056 -0.093343088 
## 5 0.049499294 0.02815791 0.074644220 0.086372988 
## 6 0.029641118 0.07277600 0.078466127 0.032415740 

The data set from “Betas.csv” was assigned to the df dataframe using the 
read.csv function. Note the first column corresponds to the date of each return, 
while the next 7 columns consist of the monthly returns for 7 stocks, and the last 
column represents the S&P 500 (denoted as SPY) index. The first date value is 
September 1, 2018, and the second date value is October 1, 2018, indicating each 
date corresponds to the first of the month. On closer inspection, the dates range 
from September 1, 2018 to August 1, 2021. The dataframe can be modified using 
simple indexing to exclude the first column. Here we indicate that column 1 should 
be excluded by placing a negative one within square brackets “[ ]” that indexes all 
columns except the first one. 

df = df[-1] 

After loading in a data set, the head function gives the analyst a glimpse of 
the first 6 observations of the data. Data sets can also be understood by finding 
descriptive statistics and graphs that summarize the information. The summary 
command provides a quick and powerful way to compute descriptive statistics in 
R. 

summary(df) 

## AAPL CAT JNJ 
## Min. :-0.18404 Min. :-0.20441 Min. :-0.11592 
## 1st Qu.:-0.03588 1st Qu.:-0.03730 1st Qu.:-0.01916 
## Median : 0.05580 Median : 0.03986 Median : 0.02056 
## Mean : 0.03300 Mean : 0.01726 Mean : 0.01066 
## 3rd Qu.: 0.10116 3rd Qu.: 0.06148 3rd Qu.: 0.04187 
## Max. : 0.21438 Max. : 0.18699 Max. : 0.14421 
## MCD PG MSFT 
## Min. :-0.143098 Min. :-0.08600 Min. :-0.080090 
## 1st Qu.:-0.009394 1st Qu.:-0.01084 1st Qu.: 0.005981
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## Median : 0.017790 Median : 0.01786 Median : 0.034708 
## Mean : 0.014158 Mean : 0.01829 Mean : 0.030299 
## 3rd Qu.: 0.051348 3rd Qu.: 0.05453 3rd Qu.: 0.062072 
## Max. : 0.134321 Max. : 0.09660 Max. : 0.136326 
## XOM SPY 
## Min. :-0.2512614 Min. :-0.1299871 
## 1st Qu.:-0.0599777 1st Qu.:-0.0004336 
## Median : 0.0001581 Median : 0.0220387 
## Mean :-0.0006238 Mean : 0.0153075 
## 3rd Qu.: 0.0722371 3rd Qu.: 0.0428491 
## Max. : 0.2238609 Max. : 0.1336104 

From the summary, the data become easier to understand, but one common statistic 
that remains missing is the standard deviation, which represents an important 
measure of spread that will help assess the variability of the stock returns. To get the 
standard deviation of the Microsoft returns, the sd function can be used. 

sd(df$MSFT) 

## [1] 0.05361294 

Rather than finding the standard deviation of each stock return separately, the 
standard deviations can be calculated using a single line of code. Specifically, the 
sapply function can apply the sd function across every variable in our dataframe. 

sdevs = sapply(df, sd) 
sdevs 

## AAPL CAT JNJ MCD PG 
## 0.09515141 0.08226207 0.05387847 0.05494649 0.04376807 
## MSFT XOM SPY 
## 0.05361294 0.10281086 0.05413432 

Even though the mean is included in the summary, the mean can be calculated in a 
similar manner. 

means = sapply(df, mean) 
means 

## AAPL CAT JNJ MCD 
## 0.0329988211 0.0172605185 0.0106559689 0.0141578462 
## PG MSFT XOM SPY 
## 0.0182918257 0.0302987475 -0.0006237706 0.0153074727
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4.17.3 Plots and Graphs 

As a simple yet informative graph, a bar graph can represent the mean monthly 
returns for each stock. The barplot function in R can generate this visualization 
with relative ease. 

barplot(means, xlab = "Stock Ticker", 
ylab = "Mean Monthly Returns", 
main = "Mean Monthly Stock Returns") 

From this barplot, we see that Apple (AAPL) has the highest mean return among 
the stocks, closely followed by Microsoft (MSFT) and then Proctor & Gamble (PG). 
Depending on the purpose of our analysis of these stocks, we may find importance 
in noting the lowest two stocks are Exxon Mobil (XOM) and Johnson & Johnson 
(JNJ), respectively. 

Previously, a vector of standard deviations was calculated and printed. A barplot 
of the standard deviations provides a useful visualization. 

barplot(sdevs, xlab = "Stock Ticker", 
main = "Std. Dev. of Monthly Returns") 

Recall the standard deviation is a measure of variability and is often associated with 
risk. As shown in the barplots above, Exxon Mobil has the largest standard deviation 
(Fig. 4.8) and the lowest mean of the stocks listed (Fig. 4.7). While Exxon Mobil’s 
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Fig. 4.7 Barplot of means
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Fig. 4.8 Barplot of standard deviations 

low mean indicates it did not perform well, the variability shown by the standard 
deviation would indicate it is a risky investment. 

In contrast to Exxon Mobil’s performance, it is often the case that a large standard 
deviation is consistent with a large mean, which is shown from Apple’s relatively 
large mean and standard deviation. This relation between high mean performance 
and high standard deviation reinforces the notion that with greater risk comes greater 
reward. 

The S&P 500 often has low variability since it is an index consisting of 500 
stocks, as indicated by a low standard deviation. However, from Fig. 4.8, we observe 
that Proctor & Gamble has an even lower standard deviation. To investigate this 
unlikely result, we use another plot to observe the variability further. 

As discussed in Chap. 2, the boxplot function is an important R tool to analyze 
data. Boxplots are great for visualizing the variability and the center of each variable 
simultaneously. 

boxplot(df, xlab = "Stock Ticker", ylab = "Monthly Returns", 
main = "Boxplot of Monthly Returns of Stocks") 

From Fig. 4.9, several conclusions can be made. For example, we can see that Exxon 
Mobil has the highest variability, which is in agreement with the standard deviation. 
From the standard deviations, we noted that Proctor & Gamble had the lowest 
standard deviation. However, the S&P 500 appears to have a lower IQR variability 
indicating that the middle 50% of the observations have lower variability than the
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Fig. 4.9 Boxplot of returns 

middle 50% of observations from Proctor & Gamble. The S&P 500 generally has 
lower variability since it represents an index of 500 stocks, but it appears a few 
outliers were able to drive the standard deviation higher than Proctor & Gamble. 

4.17.4 Finding Beta Values 

The beta value of Microsoft can be found easily by using the lm function. The syntax 
for the lm function is as follows: 

lm(y ~ x, data = df) 

where y is the response, x is the predictor variable, and df is the dataframe where 
the y and x variables are located. 

To find the beta value for Microsoft, use the following: 

regression = lm(MSFT ~ SPY, data = df) 
summary(regression) 

## 
## Call: 
## lm(formula = MSFT ~ SPY, data = df) 
## 
## Residuals:
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## Min 1Q Median 3Q Max 
## -0.058379 -0.031883 0.003456 0.022605 0.084847 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 0.019050 0.006323 3.013 0.00486 ** 
## SPY 0.734825 0.113871 6.453 2.24e-07 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 0.03647 on 34 degrees of freedom 
## Multiple R-squared: 0.5505, Adjusted R-squared: 0.5373 
## F-statistic: 41.64 on 1 and 34 DF, p-value: 2.235e-07 

From the summary, the value of the slope coefficient (beta) for Microsoft is 
0.734825. The regression equation is therefore 

.MSFT = 0.019050 + 0.734825 × SPY, (4.13) 

where MSFT is the predicted value of the Microsoft returns, as predicted by the S&P 
500 returns (SPY). This regression equation makes use of the model in Eq. (4.12). 

Since the slope coefficient represents the desired result, we may attain it by 
typing: 

regression$coefficients[2] 

## SPY 
## 0.7348248 

The r-squared value can also be found from the regression by typing: 

summary(regression)$r.squared 

## [1] 0.5505208 

4.17.5 Finding All the Betas 

We may find all of the beta values by getting the slope from each model. This 
process can be automated with a loop in order to find the beta of multiple stocks. 
Notice that the dataframe (df) has 8 variables with names given by 

nm = names(df) 
nm 

## [1] "AAPL" "CAT" "JNJ" "MCD" "PG" "MSFT" "XOM" "SPY"
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To contain the betas, an object with the first 7 names from df each having a value of 
0 is created with the setNames() function. 

betas = setNames(numeric(7), nm[1:7]) 

Similarly, an object to contain the r_squares can be created with the code: 

r_squares = setNames(numeric(7), nm[1:7]) 

Noting that the paste() function can be used to create a formula by concatenating 
text strings. More specifically, the formula for making the first stock (Apple) the 
response and the S&P 500 (SPY) the predictor variable would be 

paste(nm[1], "~ SPY") 

## [1] "AAPL ~ SPY" 

A for loop can be used to repeat an operation for different indices (such as stocks). 
For example, if the indices are 1 through 7, a simple for loop can go through each 
value and print out each index. 

for (i in 1:7){ 
print(i) 

} 

## [1] 1 
## [1] 2 
## [1] 3 
## [1] 4 
## [1] 5 
## [1] 6 
## [1] 7 

Using a simple for loop, one can find each value of beta and . R2. 

for (i in 1:7){ 
regression = lm(paste(nm[i], "~ SPY"), data = df) 
betas[nm[i]] = regression$coefficients[2] 
r_squares[nm[i]] = summary(regression)$r.squared 

} 

A barplot of the betas provides a visual depiction: 

barplot(betas, xlab = "Stock Ticker", ylab = "Beta", 
main = "Beta Values by Stock")
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Fig. 4.10 Barplot of betas 

If a stock beta is 1, then the stock increases at the same rate as the market benchmark. 
If a stock beta is above 1, then the stock is considered to be more volatile than the 
market. From the stock beta plot, Fig. 4.10, we notice Apple and Exxon Mobil are 
more volatile than the market. 

The names of the stocks with betas above 1 can be confirmed using the following 
code. 

names(betas[betas > 1]) 

## [1] "AAPL" "XOM" 

Stocks with betas below 1 are considered to be less volatile than the market. The 
names of the stocks with betas below 1 can be found using the following code. 

names(betas[betas < 1]) 

## [1] "CAT" "JNJ" "MCD" "PG" "MSFT" 

A visual representation of the . R2 values is shown below. 

barplot(r_squares, xlab = "Stock Ticker", 
ylab = "Percent Return", 
main = "Percent of Return Explained by Market")
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Fig. 4.11 Barplot of .R2 values 

By looking at the stock .R2 values in Fig. 4.11, we note that Exxon Mobil is the 
stock most correlated with the market. To investigate this matter further, we plot a 
scatterplot to see the relationship. 

plot(df$SPY, df$XOM, xlab="S&P 500 Benchmark Return", 
ylab="Exxon Mobil Return") 

In Fig. 4.12, we note that there is a clear relationship with the S&P 500. However, 
the vertical axis has a larger range than the horizontal axis. This indicates further 
evidence that Exxon Mobil, the vertical axis in the figure, is more variable than the 
market. 

4.17.6 Recommendations and Findings 

From this analysis, we draw several conclusions. In taking the mean of each 
variable, Apple showed the best performance followed by Microsoft. However, 
when looking at the variability, Apple had the second highest variability, which 
demonstrates the risk–reward relationship. Looking at the other extreme, Exxon 
Mobil had the lowest average return in the data set and the highest standard 
deviation, making it a poor investment. Proctor & Gamble had the third largest mean 
and a standard deviation that indicated a low risk. Having a low standard deviation 
and a high mean makes Proctor & Gamble a sound investment.
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Fig. 4.12 Scatterplot of returns 

From this analysis, we can use the following insights to formulate some 
investment strategies for management:

• It is probably a safe prediction that Proctor & Gamble will not be affected as 
much as other stocks if the S&P 500 does not perform well. Therefore, investing 
in Proctor & Gamble is a sound choice given that the return is relatively high.

• If Apple continues to have high variability and high returns, then it may be 
advantageous to buy Apple when the price is on the downswing, since the 
variability of Apple’s stock is high and the long-term mean return is high.

• Since Microsoft and Exxon Mobil are correlated with the market, if we are able 
to accurately predict the market’s performance, it would be possible to accurately 
predict the returns of Microsoft and Exxon Mobil. 

Despite the analysis done here, keep in mind that financial analysts warn that the 
past does not guarantee future performance. 

4.17.7 Case Conclusion 

Analytics and the broader field of AI are revolutionizing global markets. AI relies 
on some basic programming commands such as for loops in order to repeat the 
same script for a number of different indices. Also, creating functions is important 
to implement a programmer’s logic. Both for loops and functions were discussed 
in this case. 

Using free data is often the first step for students learning about stock market 
analysis. The data for this case were downloaded for free from Yahoo Finance
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using the quantmod package. For additional details on downloading data using 
the quantmod package, see the Appendix. Many base R commands were used to 
model and analyze the data, such as: barplot, boxplot, c, head, lm, mean, names, 
paste, plot, print, sapply, sd, subset, summary, and setNames. 

By analyzing stock market indicators, analysts can better understand the cur-
rent market trends. This analysis conveyed some basic stock market analysis to 
demonstrate the use of these tools and techniques. The lessons learned here can 
be expanded to generate more plots and get even better insights on more complex 
data. 

Problems 

1. Social Media Influencers F -Statistic 
Using the social media influencer data from Table 3.2, calculate the F -statistic 
by answering the following questions. Assume we are trying to predict the 
number of clicks based on the amount of pay. 
Without the use of a computer: 

a. Find ŷi for each xi . 
b. Find the residual corresponding to each y. 
c. Calculate the SST . 
d. Calculate the SSR. 
e. Calculate the SSE. 
f. Calculate the F -value for the regression. 

While using a computer (with R): 

g. Verify your results from parts a through f. 

2. Social Media Influencers t-Statistic 
Using the data from Table 3.2, answer the following questions. 
Without the use of a computer: 

a. Calculate the mean square error (MSE) and the root mean square error 
(RMSE). 

b. Calculate the standard error of the slope estimate ( β̂1). 
c. Calculate the t-value for the slope estimate ( β̂1). 

While using a computer (with R): 

d. Verify your results from parts a through c.
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3. Social Media Influencers Hypothesis Tests 
Using the data from Table 3.2, answer the following questions: 

a. Specify the null and alternative hypotheses for the t-test. 
b. Find the p-value for the t-test using R. 
c. Compare the p-value to the level of significance (α = 0.05) and make the 

decision. 
d. Specify the null and alternative hypotheses for the F -test. 
e. Find the p-value for the F -test using R. 
f. How do the p-values of the F and t-tests differ? 
g. Interpret the results of both tests. 

4. Accounting Analytics F -Statistic 
Using the data from the previous chapter case study, calculate the F -statistic by 
answering the questions. Assume you are predicting the itemized deductions 
using the adjusted gross income. The data are given in Table 3.1. 
Without the use of a computer: 

a. Find ŷi for each xi . 
b. Find the residual corresponding to each y. 
c. Calculate the SST . 
d. Calculate the SSR. 
e. Calculate the SSE. 
f. Calculate the F -value for the regression. 

While using a computer (with R): 

g. Verify your results from parts a through f. 

5. Accounting Analytics t-Statistic 
Using the data from Table 3.1, answer the following questions. 
Without the use of a computer: 

a. Calculate the mean square error (MSE) and the root mean square error 
(RMSE). 

b. Calculate the standard error of the slope estimate ( β̂1). 
c. Calculate the t-value for the slope estimate ( β̂1). 

While using a computer (with R): 

d. Verify your results from parts a through c. 

6. Accounting Analytics Critical Region Method for t 
Using the data from Table 3.1, answer the following questions: 

a. Specify the null and alternative hypotheses for the t-test. 
b. Find the critical values for the t-test using R with α = 0.05. 
c. Compare the critical value to the test statistic for t and make the decision. 
d. Interpret the results of the t-test.
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7. Sales Calls F -Statistic 
Using Abdullah’s calls and sales data from Table 2.4, answer the following 
questions: 

a. Find ŷi for each xi . 
b. Find the residual corresponding to each yi . 
c. Calculate the SST . 
d. Calculate the SSR. 
e. Calculate the SSE. 
f. Calculate the F -value for the regression. 

8. Sales Calls t-Statistic 
Using the data from Table 2.4, answer the following questions. 

a. Calculate the mean square error (MSE) and the root mean square error 
(RMSE). 

b. Calculate the standard error of the slope estimate ( β̂1). 
c. Calculate the t-value for the slope estimate ( β̂1). 

9. Automotive Stocks F -Statistic 
Using the automotive stock data from Table 3.3 to predict price from earnings, 
answer the following questions: 

a. Find ŷi for each xi . 
b. Find the residual corresponding to each y. 
c. Calculate the SST . 
d. Calculate the SSR. 
e. Calculate the SSE. 
f. Calculate the F -value for the regression. 

10. Automotive Stocks Test Statistic for t 
Using the data from Table 3.3, answer the following questions: 

a. Calculate the mean square error (MSE) and the root mean square error 
(RMSE). 

b. Calculate the standard error of the slope estimate ( β̂1). 
c. Calculate the t-value for the slope estimate ( β̂1). 

11. Automotive Stocks F -Tests 
Using the data from Table 3.3, answer the following questions: 

a. Find the critical value for the F -test using R. Specify the function, argu-
ments, and output. 

b. Compare the critical value to the test statistic for F and make the decision. 
c. Find the p-value for the F -test using R. Specify the function, arguments, and 

output. 
d. Compare the p-value to the level of significance (α = 0.05) and make the 

decision.



Chapter 5 
Multiple Regression 

Prediction is very difficult, especially about the future. 
—Niels Bohr 

5.1 Introduction 

In this chapter, we build upon the coverage of regression analysis by considering 
situations involving two or more predictor variables. For instance, while the weight 
of a person may be predicted using their height, we could use both the height 
and age of that person to predict their weight. Using more than one predictor 
variable to predict a response is called multiple regression analysis, which enables 
us to consider more predictor variables and thus obtain better estimates than those 
possible with simple linear regression. 

Since the calculations of the multiple regression coefficients are identical to 
those of the simple linear regression, it is imperative to first fully understand the 
simple linear regression case prior to learning multiple linear regression. As seen 
in Chap. 3, calculating coefficients and model statistics aids in the understanding of 
simple linear regression. In multiple regression, most of the calculations build on the 
knowledge gained from working with simple linear regression, but the calculations 
become more tedious due to the number of predictor variables involved. Therefore, 
we limit the calculations done by hand or calculator when working with multiple 
regression and instead rely upon R and its functions for such calculations. 

We begin by specifying the multiple regression model and equation. Then, we 
discuss the limitations of using . R2 in multiple regression (referred to as multiple 
. R2). Next, we introduce a measure of model fit that is more appropriate for multiple 
regression (adjusted . R2). We use a website marketing application to illustrate 
these concepts while keeping the number of predictor variables limited to two for 
simplicity. In the final discussion of the chapter, we analyze a housing data set in a 
case study, providing detailed analyses for the reader. 
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5.2 Multiple Regression Model 

In the previous chapters, we discussed in detail the simple linear regression model 
and the utility of having a mathematical model. In multiple regression, the aim is to 
capture the effect of multiple predictor variables in predicting a response variable. 
The equation that describes how the response variable Y is related to p predictor 
variables .X1, X2, ..., Xp and an error term is 

.Y = β0 + β1X1 + β2X2 + · · · + βpXp + ε, (5.1) 

where .β0, β1, β2, . . . , βp are the parameters and . ε is a random variable representing 
the error in the model. If only . β0 and . β1 are nonzero and the remaining coefficients: 
.β2, β3, . . . , βp are zero, then the resulting model would be the simple linear 
regression model: 

.Y = β0 + β1X1 + ε (5.2) 

as mentioned in the previous chapter. As is the case for both the simple linear 
regression model and the multiple regression model, the assumptions for the linear 
regression model must be adhered to. A detailed discussion of the assumptions for 
linear regression and how to deal with violations of the linear model is given in 
Chap. 8. 

5.3 Multiple Regression Equation 

The mathematical model given from Eq. (5.1) is called a multiple linear regression 
model. When we use and fit the multiple linear regression model with a real data 
set, then the corresponding multiple linear regression equation is 

.Ŷ = β̂0 + β̂1X1 + β̂2X2 + · · · + β̂pXp. (5.3) 

The sample statistics or coefficients .β̂0, β̂1, β̂2, . . . , β̂p can be calculated using a 
given data set and the set of matrix equations. These sample statistics are point 
estimators of the corresponding parameters: .β0, β1, β2, . . . , βp. 

5.4 Website Marketing Application: Modeling 

A recent startup company is developing a website for news and entertainment. They 
notice that their monthly revenue (in thousands of dollars) is dependent on the 
number of ads and the amount of money (in thousands of dollars) spent on additional 
marketing. The data are shown in Table 5.1.



5.4 Website Marketing Application: Modeling 93

Table 5.1 Website 
marketing data 

Ads Marketing Revenue 

4 14 118 

5 8 113 

6 13 149 

4 14 129 

5 10 131 

5 5 126 

5 11 129 

5 9 125 

6 12 150 

5 11 124 

5 11 126 

6 11 159 

5 12 130 

4 9 114 

6 8 136 

3 9 80 

6 7 137 

5 8 128 

6 9 149 

5 10 136 

Investigate the relationship between the response and the predictors by doing the 
following: 

(a) Specify the multiple linear regression model that results from predicting revenue 
by the number of ads and the amount spent on marketing. 

(b) Fit the model using R. 
(c) Explicitly state the regression equation. 

Solution 

(a) Since it is useful to predict the revenue based on the number of ads and 
the amount spent on marketing, it follows that the revenue generated is an 
appropriate response variable. The multiple linear regression model can be 
written as 

. Y = β0 + β1X1 + β2X2 + ε,

where: 

• Y is the amount of revenue generated. 
• . X1 is the number of ads. 
• . X2 is the amount spent on additional marketing. 
• . ε is the error.



94 5 Multiple Regression

The model, therefore, has parameters .β0, β1, and . β2. Fitting the data to a model generates 
approximations of the parameters that are referred to as . β̂0, . β̂1, and . β̂2. 

(b) The regression analysis for this problem can quickly be carried out using R. As 
a first step, we use the c function to enter in the data. 

Revenue = c(118, 113, 149, 129, 131, 126, 129, 125, 150, 124, 
126, 159, 130, 114, 136, 80, 137, 128, 149, 136) 

Ads= c(4, 5, 6, 4, 5, 5, 5, 5, 6, 5, 5, 6, 5, 4, 6, 3, 6, 5, 6, 
5) 

Marketing = c(14, 8, 13, 14, 10, 5, 11, 9, 12, 11, 11, 11, 12, 
9, 8, 9, 7, 8, 9, 10) 

Once the data set is read into R, a regression object can be created using the lm function. 
In the code below, the object is named reg. To view a summary of the regression model 
created, use the summary function as shown: 

reg = lm(Revenue ~ Ads + Marketing) 
summary(reg) 

## 
## Call: 
## lm(formula = Revenue ~ Ads + Marketing) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -10.849 -4.726 -1.352 4.816 10.096 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 12.5506 12.5314 1.002 0.33061 
## Ads 18.6143 1.8930 9.833 1.98e-08 *** 
## Marketing 2.2783 0.6714 3.393 0.00346 ** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 6.747 on 17 degrees of freedom 
## Multiple R-squared: 0.8558, Adjusted R-squared: 0.8389 
## F-statistic: 50.45 on 2 and 17 DF, p-value: 7.091e-08 

The output of the summary function is quite extensive and can be used to reconstruct the 
regression equation by looking at the coefficients.
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(c) Upon inspection of the summary output, the resulting multiple linear regression 
equation is 

. Ŷ = 12.55 + 18.61X1 + 2.28X2,

which is often written in terms of the actual variable names, making it easier to 
interpret: 

. Revenue = 12.55 + 18.61(Ads) + 2.28(Marketing).

5.5 Significance Testing: t 

We conduct a separate t-test for each of the predictor variables in the model. Each 
of these t-tests constitutes a test for individual significance. 

The hypotheses for the t-test of the ith variable are as follows: 

. H0 : βi = 0

. H1 : βi �= 0,

and the corresponding test statistic can be calculated by dividing the coefficient 
estimate (. β̂i) by the corresponding standard error of the coefficient (. sβ̂i

): 

.ti = β̂i

s
β̂i

. (5.4) 

In general, a t-test statistic can be calculated for every coefficient in the multiple 
regression model. The t-value corresponds to a p-value that can be calculated using 
the pt function in R as shown in the previous chapter. For multiple regression 
models, we use a t-distribution with .n−p−1 degrees of freedom. We reject the null 
hypothesis and deem the coefficient estimate (. β̂i) is deemed statistically significant 
when the p-value is less than . α. As discussed in Chap. 4, a two-tailed test is most 
relevant for a coefficient test since the p-value takes into consideration extreme 
values on both sides of the T -distribution. Alternatively, the test can be concluded 
by comparing . ti with the critical values (.ti ≤ −tα/2 or .ti ≥ tα/2). 

5.6 Coefficient Interpretation 

In multiple regression analysis, the ith regression coefficient . β̂i can be interpreted 
as the impact of one unit increase in . xi on the response variable when all other 
predictor variables are held constant.
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While small correlations among . xi variables often occur, large correlations may 
hinder the interpretation of the regression coefficients. If little or no correlation 
among predictor variables is assumed, then the interpretation of the coefficients 
becomes quite convenient. 

5.7 Website Marketing Application: Individual Significance 
Tests 

From the regression summary, a coefficient summary is constructed and shown 
below in Table 5.2. This table displays several statistics that indicate important 
details about the fitted regression coefficients. Most importantly, we see the esti-
mated values of . β̂0, . β̂1, and . β̂2, as given in the second column. The corresponding 
standard errors of . β̂0, . β̂1, and . β̂2 are given in the third column, with the resulting 
t-values and p-values in the fourth and fifth columns, respectively. 

Using the estimate and the standard error of the estimate from Table 5.2, do the  
following: 

(a) Verify the calculation of the t-value using the estimate and the standard error. 
(b) Verify the p-value for each coefficient using the t-value and the pt function. 
(c) Conclude the t-test for each coefficient. 
(d) Interpret the coefficients. 

Solution 

(a) For the website marketing application, the t-values can be calculated using 
Eq. (5.4): 

. t0 = β̂0

s
β̂0

= 12.551

12.531
= 1.002

. t1 = β̂1

s
β̂1

= 18.614

1.893
= 9.833

.t2 = β̂2

s
β̂2

= 2.278

0.6714
= 3.393.

Table 5.2 Website marketing regression 

Estimate Std. error t-value p-value 

(Intercept) 12.550623 12.5313599 1.001537 0.3306108 

Ads 18.614323 1.8930117 9.833179 0.0000000 

Marketing 2.278313 0.6713902 3.393426 0.0034566 
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(b) Since the t-distribution is symmetric, extreme t-values can exist on both the 
right- and left-side of the distribution. Thus, we use a two-tailed test, which 
considers both extreme values. In this case, each p-value is two-tailed and 
can be calculated using the formula given here. Recall that the negative of the 
absolute t-value is taken in order to return the extreme area on the left. 

2*pt(-t, n-p-1) 

From the code above and noting that the degrees of freedom are . n−p −1 =
20− 2− 1 = 17, the  p-values corresponding to .t0, t1, and . t2 are given by the R 
code. 

2*pt(-1.002, 17) 
2*pt(-9.833, 17) 
2*pt(-3.393, 17) 

The code above yields near the values listed in the summary output, although 
slight discrepancies occur due to rounding. Note that, in this case, each p-value 
is two-tailed with .n − p − 1 = 20− 2− 1 = 17 degrees of freedom since there 
are 20 observations and 2 predictors. 

(c) Since the p-value of the intercept is larger than .α = 0.05, the null hypothesis 
cannot be rejected and is, therefore, not statistically significant. The slope 
estimates of . β̂1 and . β̂2 are both statistically significant since both of the 
corresponding p-values are less than .α = 0.05. 

(d) Since the intercept is not statistically significant, it should not be interpreted. 
The coefficient corresponding to the “Ads” variable is .β̂1 = 18.61. Therefore, 
the coefficient can be interpreted as: 

For each additional ad, an increase of $18,610 in revenue occurs when money on additional 
marketing is held constant. 

In a similar way, .β̂2 = 2.28 can be interpreted as: 

The revenue increases by $2,280 for every $1000 spent via other marketing means assuming 
number of ads is held constant. 

5.8 Significance Testing: F 

In simple linear regression, the F - and t-tests provide the same conclusion since 
the null and alternative hypotheses are the same. In fact, the resulting p-values of 
the tests are also equivalent despite using different statistics. In multiple regression, 
however, these tests have different conclusions. We use the F -test to determine if 
the model is significant. Once the F -test deems the model significant, we should use 
the t-test to determine whether each individual predictor variable is significant.



98 5 Multiple Regression

The hypotheses for an F -test are as follows: 

. H0 : β1 = β2 = . . . = βp = 0

. H1 : At least one coefficient is nonzero.

The null hypothesis of the F -test states that there is no linear relation between the 
predictor variables and the response variable. The alternative hypothesis states that 
there is a linear relation between at least one predictor variable and the response 
variable. 

The F -test takes into account the entire regression model when determining 
significance. The test statistic is given by the ratio of the mean squares due to 
regression (MSR) and the mean squared error (MSE): 

.F = MSR

MSE
(5.5) 

or in terms of multiple . R2: 

.F = R2

1 − R2

(
n − p − 1

p

)
. (5.6) 

The rejection rule stipulates that one should reject . H0 if F is at or more extreme 
than the critical value for a given level of . α. An equivalent method entails verifying 
if the p-value of the test statistic is at or below . α. In particular, reject . H0 if p-value 
.≤ α or if .F ≥ Fα , where the critical value . Fα is based on an F -distribution with 
p degrees of freedom in the numerator and .n − p − 1 degrees of freedom in the 
denominator. 

5.9 Multiple R2 and Adjusted R2 

For multiple regression, many of the components are similar to simple linear 
regression but take into consideration multiple predictor variables. Particularly, 
while we discussed the coefficient of determination (. R2) between two variables, 
we would like to find the coefficient of determination for the multiple predictor case 
(multiple . R2). Multiple . R2 is given by 

.R2 = SSR/SST . (5.7) 

In the website marketing application, both variables were significant in predicting 
the revenue. In practice, however, a new predictor variable will not always aid in 
the prediction of the response variable. In some of the simple linear regression 
examples, the . R2 value was very low, and we easily showed that the predictor
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variable did not aptly predict the response. In multiple regression, including an 
additional predictor variable, even new variables that are not statistically significant, 
will always result in a higher multiple . R2. This concept can be explained intuitively 
by considering that predictor variables with a low multiple . R2 still contribute to 
reducing the error in fitting the model. 
Mathematically, the prediction errors become smaller, thus reducing the sum of 
squares due to error, SSE. Because 

.SSR = SST − SSE, (5.8) 

when SSE becomes smaller, SSR becomes larger, causing 

.R2 = SSR

SST
(5.9) 

to increase. Even though increasing the SSR causes the .R2 to increase, the 
addition of predictor variables does not always increase the true explained variation. 
Therefore, it is better to avoid using the multiple . R2 as a means of model evaluation 
for multiple regression. 

Also consider the case in which over a hundred predictor variables exist, but each 
predictor variable consists of random noise with no predictive power. If a response 
variable were introduced with less than a hundred observations, then a model could 
be fit to predict the response variable with the random noise predictors. In fact, since 
the number of observations would be limited, the random noise could be easily fit 
to predict the response. The error or SSE would be at or near zero, implying a great 
fit, but the model fit would be misleading. 

To counteract this limitation of . R2, we introduce a similar statistic without the 
pitfalls mentioned previously. The adjusted multiple coefficient of determination is 
known as the adjusted . R2 and written as . R2

a , which compensates for the number of 
predictor variables in the model and the number of observations. This adjustment 
allows for a more useful measure since it is affected by the number of predictor 
variables. The . R2

a amplifies the unexplained variation ratio (.1 − R2) by the ratio of 
total degrees of freedom (.n−1) with the degrees of freedom due to error (.n−p−1). 
The result is the equation 

.R2
a = 1 − (1 − R2)

n − 1

n − p − 1
, (5.10) 

which raises the unexplained variation by taking p, the number of predictor 
variables, into account.
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5.10 Website Marketing Application: Multiple R2 and 
Adjusted R2 

In the website marketing application, the SSR is 4593.13 and the SST is 5366.95. 
Recalling that there are 20 observations and two predictors, do the following: 

(a) Calculate the multiple . R2. 
(b) Calculate the adjusted . R2. 
(c) Interpret the multiple . R2 and the adjusted . R2. 

Solution 

(a) The multiple . R2 is given by Eq. (5.9): 

. R2 = SSR

SST
= 4593.13

5366.95
= 0.8558.

(b) From Eq. (5.10), 

. R2
a = 1 − (1 − R2)

n − 1

n − p − 1

. = 1 − (1 − 0.8558)
20 − 1

20 − 2 − 1
= 0.8389,

which agrees with the summary output from the modeling application above. 
(c) The multiple . R2 indicates that 85.58% of the variation in Y is explained by the 

two predictor variables. The adjusted . R2 indicates that 83.89% of the variation 
in Y is explained by the two predictor variables taking into account the number 
of observations and the number of predictors. 

5.11 Correlations in Multiple Regression 

A correlation matrix shows the linear correlation between each pair of variables 
under consideration in a multiple regression model. While correlations between the 
predictor and response variables serve to predict the response variable, correlations 
among predictor variables may be problematic for modeling the regression. For 
instance, if predictor variables . X1 and . X2 have a correlation coefficient of 0.99, 
then there would be little benefit to using both . X1 and . X2 to predict the response 
variable, Y . In fact, using both . X1 and . X2 could be a detriment to the predictive 
power of the model since noise is likely the reason for the difference between the 
predictors. We expect some amount of random noise to be present in all random 
variables whether they be a response or a predictor. Therefore, if . X1 contains most
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of the same information about Y that . X2 contains, using a multiple regression model 
with both predictor variables would compound the effects of the noise. 

The effect of compounding noise as mentioned above is referred to as multi-
collinearity. Multicollinearity exists between two predictor variables if they have a 
high linear correlation. If two predictor variables in the regression model are highly 
correlated with each other, it is important to investigate the regression output. 

Since inspecting a correlation matrix will indicate if one or more high correla-
tions exist between predictor variables, using additional, more advanced techniques, 
such as the inspection of variance inflation factors (VIFs), may not be necessary to 
find multicollinearity. 

5.12 Case Study: Real Estate 

5.12.1 Problem Statement 

Real estate represents a popular investment not only among wealthy investors, but 
also among lower and middle-class investors. Because of this widespread interest, 
analysis of real estate data can be particularly interesting. 

The board of directors for an investment firm has sought your expertise in 
analyzing their data. You are tasked with analyzing a data set with 90 similar 
cities in a large state. You will need to fit a regression model, analyze the model, 
interpret the coefficients, and test a claim made by a local politician. The directors 
of the investment firm need your input so that they can determine which city they 
should invest in. First, you will need to understand the data set using some basic R 
commands. 

5.12.2 Data Description 

The data consist of 150 similar cities in a large state. The state of interest remains 
unknown as the investment firm directors would like to retain some secrecy. The 
firm leaders requested that the model predicts price as a function of the remaining 
variables in the data set. 

The variables for each city are: 

• Price—average price of home 
• Rooms—average number of rooms 
• Income—average income 
• Tax rate—property tax rate 
• Commercial—percent of commercial property 

As a first step, we load the data file into R and observe the first 6 observations.
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df = read.csv("HousePrices.csv") 
head(df) 

## price.in.usd rooms income Tax.Rate X.Commercial 
## 1 107496 4.494 61168 1.937 21.26 
## 2 102012 4.235 56311 3.975 20.22 
## 3 118100 4.415 64746 1.557 13.45 
## 4 102439 4.526 56074 2.771 20.52 
## 5 97648 4.043 47908 4.275 12.93 
## 6 104024 4.261 51624 2.155 22.82 

Notice that R replaces several of the characters in the variable names with “.” 
and the “%” character with “X.” The variable names can easily be renamed using 
the names function: 

names(df) = c('Price', 'Rooms', 'Income', 'TaxRate', 'Commercial') 

The plot function in base R can be used to create scatterplots of two variables; 
however, it can also be used to quickly create a matrix of scatterplots. If the first 
argument of the plot function is a dataframe with more than 3 variables, then a 
matrix of scatterplots is created (Fig. 5.1). 

plot(df) 

The scatterplots prove particularly interesting with regard to the response vari-
able. Upon a cursory glance, the average price is positively correlated with “Rooms” 
and “Income” and negatively correlated with “Tax Rate” and “Commercial.” Using 
the cor function in base R, the correlations can be verified. 

cor(df) 

## Price Rooms Income 
## Price 1.0000000 0.50143372 0.4048224196 
## Rooms 0.5014337 1.00000000 0.4022251672 
## Income 0.4048224 0.40222517 1.0000000000 
## TaxRate -0.3778801 0.02102138 -0.0780820791 
## Commercial -0.1364745 -0.21719890 -0.0005592479 
## TaxRate Commercial 
## Price -0.377880100 -0.1364744745 
## Rooms 0.021021381 -0.2171989031 
## Income -0.078082079 -0.0005592479 
## TaxRate 1.000000000 -0.0023067737 
## Commercial -0.002306774 1.0000000000 

While this information verifies our conclusions from the scatterplots, the correla-
tion matrix can be difficult to read and understand. Using the corrplot package, the
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Fig. 5.1 Scatterplot matrix of housing data 

matrix may be color-coded and much more easily read. If you have not yet installed 
the corrplot package, you may easily install it using the install.packages 
command. 

install.packages("corrplot") 

To generate a correlation matrix, one can simply use the cor command and then 
run corrplot on the resulting correlation matrix. Several additional options are 
available to make the graph more visually appealing. 

library(corrplot) 
c = cor(df) 
corrplot(c) 

Using the corrplot command, an elegant matrix of correlations can be created. 
The corrplot command has the following optional arguments: 

• add—Set this argument to TRUE to superimpose the corrplot on another corrplot. 
• method—Set this argument to "number" to display the numeric values of the 

correlation coefficients. 
• type—Set this to "upper" or "lower" to get an upper or lower diagonal 

correlation matrix.
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Fig. 5.2 Correlation plot of housing data 1

• diag—Toggles whether to include the diagonal elements of the matrix. 
• tl.pos—Set this to "n" to hide the axis labels. 
• cl.pos—Set this to "n" to hide the color legend. 

corrplot(c) 
corrplot(c, add = TRUE, method = "number", type = "lower", 

diag = FALSE, tl.pos = "n", cl.pos = "n") 

Figure 5.2 is generated by using the corrplot command with the correlation 
matrix c as the only input, whereas Fig. 5.3 is generated by using a second 
corrplot function and specifying the options mentioned in the above bulleted list 
as shown in the code above. 

Note that some of the correlations between the response and other variables 
are relatively weak (particularly “Price” with “Commercial”). A t-test can better 
accomplish testing for individual significance between predictor and response 
variables. 
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Fig. 5.3 Correlation plot of housing data 2 

5.12.3 Simple Linear Regression Models 

If one were only familiar with simple linear regression, a simple linear regression 
model could be fit for each predictor variable. In particular, a model could be 
generated and fit for each .i = 1, 2, 3, 4, where 

. Y = β0 + βiXi + ε.

Here, Y is the average price (Price), . X1 is the average number of rooms (Rooms), 
. X2 is the average income (Income), . X3 is the tax rate (Tax Rate), . X4 is the percent 
of commercial real estate (Commercial), . ε is the error, and the unknown parameter 
values are .β0, β1, β2, β3, β4. The models can be fit from the dataframe using the lm 
command as shown in the previous chapters. 

reg1 = lm(Price ~ Rooms, data = df) 
reg2 = lm(Price ~ Income, data = df) 
reg3 = lm(Price ~ TaxRate, data = df) 
reg4 = lm(Price ~ Commercial, data = df)
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The slope values are calculated from the previous code chunk and can be 
accessed from the fitted regression objects (reg1, reg2, reg3, reg4) as done in 
the stock beta case study: 

reg1$coefficients[2] 
reg2$coefficients[2] 
reg3$coefficients[2] 
reg4$coefficients[2] 

## Rooms 
## 20468.44 

## Income 
## 0.7573866 

## TaxRate 
## -3878.652 

## Commercial 
## -248.5123 

Note that the second coefficient, referenced using the square brackets, represents 
the slope coefficient for each regression model. 

The corresponding p-values of the slopes are available in the coefficients of the 
summary for each regression: 

s = summary(reg1) 
s$coefficients 

## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 14358.41 12922.066 1.111155 2.683037e-01 
## Rooms 20468.44 2903.053 7.050661 6.317987e-11 

Since the p-value for the slope is the fourth column and second row shown in the 
output above, the p-values from all four fitted models can be returned by specifying 
“[2, 4]” from the summary coefficients as follows: 

summary(reg1)$coefficients[2, 4] 
summary(reg2)$coefficients[2, 4] 
summary(reg3)$coefficients[2, 4] 
summary(reg4)$coefficients[2, 4] 

## [1] 6.317987e-11 

## [1] 2.772951e-07 

## [1] 1.866897e-06 

## [1] 0.0958564
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From the output above, all of the slope values are significant in each simple linear 
regression model. Furthermore, the . R2 values are 

summary(reg1)$r.squared 
summary(reg2)$r.squared 
summary(reg3)$r.squared 
summary(reg4)$r.squared 

## [1] 0.2514358 

## [1] 0.1638812 

## [1] 0.1427934 

## [1] 0.01862528 

and the . R2
a values are 

summary(reg1)$adj.r.squared 
summary(reg2)$adj.r.squared 
summary(reg3)$adj.r.squared 
summary(reg4)$adj.r.squared 

## [1] 0.2463779 

## [1] 0.1582317 

## [1] 0.1370014 

## [1] 0.01199437 

which are slightly less than the . R2 values, since . R2
a take into account the low 

number of observations. 

5.12.4 Multiple Regression Model 

As discussed previously, the directors of the investment firm would like us to create 
a model to predict the average price based upon all of the other variables in the 
data. Therefore, our model will be a multiple regression model with four predictor 
variables: 

. Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε,

where Y , . X1, . X2, . X3, . X4 are the same values from the simple linear regression 
models. However, the error (. ε) and the unknown parameter values . β0, β1, β2, β3, β4
may potentially be different values.
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The model can be fit from the dataframe using the lm command: 

reg = lm(Price ~ Rooms + Income + TaxRate + Commercial, 
data = df) 

summary(reg) 

## 
## Call: 
## lm(formula = Price ~ Rooms + Income + TaxRate 
## + Commercial, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -32241 -3881 191 4288 22422 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 20083.5355 12355.8105 1.625 0.10624 
## Rooms 16937.6420 2859.3548 5.924 2.19e-08 *** 
## Income 0.3910 0.1283 3.048 0.00274 ** 
## TaxRate -3801.8121 641.4735 -5.927 2.16e-08 *** 
## Commercial -85.7450 116.5882 -0.735 0.46325 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 7132 on 145 degrees of freedom 
## Multiple R-squared: 0.4391, Adjusted R-squared: 0.4236 
## F-statistic: 28.37 on 4 and 145 DF, p-value: < 2.2e-16 

In the summary, the values of the coefficients prove significantly different 
from those of the simple linear regression models. In fact, the coefficient for 
“Commercial” is not significant, even though the coefficient was significant in 
the simple linear regression case. Comparing the . R2 values from simple linear 
regression, even the highest value of 0.2514358 is not higher than the . R2 value from 
the multiple regression model, indicating a better model fit using multiple variables. 
Earlier in this chapter, the reader was warned about comparing models using . R2

alone. Therefore, we compare . R2
a and note that, when taking into consideration the 

number of observations and the number of variables, the variation in Y is better 
explained using a combination of variables than using a single variable. 

The reg object was created with a formula that specified four variables. For 
convenience, the reg object could have been equivalently defined using a coding 
shorthand as shown below. 

reg = lm(Price ~ ., data = df)
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Note the “.” on the right-side of the formula. Recall that the right-side of the 
formula is where we denoted our predictor variables previously. Having “.” on the 
right-side of the formula tells R to include all of the variables except the response 
variable in the dataframe as predictor variables in the model. 

The regression equation can therefore be expressed as 

. Ŷ = 20083.5355 + 16937.6420X1 + 0.3910X2 − 3801.8121X3 − 85.7450X4,

where the variables are defined above. Additionally, the regression equation can be 
expressed as 

. Price = 20083.5355 + 16937.6420 × Rooms + 0.3910 × Income

−3801.8121 × TaxRate − 85.7450 × Commercial.

Model Interpretation 

The summary function provides a myriad of information we need for our analysis. 
First, note that the F -value corresponds to a small p-value, which indicates that the 
model has significance and, therefore, should be investigated further. The value of 
multiple . R2 is 0.4391, but since this model is a multiple regression, the number 
of variables used should be taken into account. Thus, the . R2

a value of 0.4236 is 
preferred in the interpretation of this regression. Recall that the . R2 value represents 
the percent of variation explained by our model, in this case about 43.91% of the 
variation. 

Coefficient Interpretation 

Each coefficient estimate is tested when fitting a regression model in R. The 
coefficients can be interpreted as follows: 

• Intercept—the intercept coefficient p-value is 0.106, which is larger than 0.05 
(p-value .> α). The conclusion of the hypothesis test results in an insignificant 
intercept. There is not enough evidence to support that the intercept is nonzero 
for this model. 

• Rooms—the coefficient for rooms has a small p-value, much smaller than 0.05 
(p-value . < α). The conclusion holds that the coefficient is not 0. The coefficient 
can be interpreted as: “For every room, an increase in price of $16,937.64 is 
expected.” This interpretation assumes that all of the other variables remain 
unchanged or constant. 

• Income—the coefficient for income has a small p-value, also smaller than 0.05 
(p-value . < α). The conclusion holds that the coefficient is not 0. The coefficient 
may be interpreted as: “For every dollar of income, an increase in price of $0.391
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is expected.” Like the “Rooms” coefficient, this interpretation assumes that all of 
the other variables remain unchanged or constant. 

• Tax Rate—the coefficient for tax rate has a small p-value, much smaller than 
0.05 (p-value .< α). The conclusion holds that the coefficient is not 0. We can 
further interpret the coefficient as: “For every percentage increase in the tax rate, 
a decrease in price of $3801.81 is expected.” This interpretation assumes that all 
of the other variables remain unchanged or constant. 

• Commercial—the coefficient for price has a p-value larger than 0.05 (p-value 
.> α). Therefore, the commercial variable is not nonzero for this model, and the 
coefficient for commercial should not be interpreted. 

Confidence Interval 

As another task given by the directors of the investment firm: we must test the claim 
of a local politician. The politician states that, for every percent decrease in the real 
estate tax, the property value increases by $5000. Can this claim be refuted? 

From the tax rate coefficient of the fitted model, the estimate for the increase in 
property value for a 1% decrease is $3801.81. While the estimate in R should be 
trusted over a random claim, a simple hypothesis can be conducted. We may set up 
the null and alternative hypotheses as follows: 

. H0 : β3 = −$5000

. H1 : β3 �= −$5000.

Note that the null hypothesis states that the coefficient is negative, which implies 
home values decrease in value by $5000 for every 1% increase in tax. 

This test is easy to conclude using the confidence interval for . β3. The  confint 
function in R will calculate 95% confidence intervals for each coefficient. 

confint(reg) 

## 2.5 % 97.5 % 
## (Intercept) -4337.2243748 44504.2954268 
## Rooms 11286.2428127 22589.0411426 
## Income 0.1374199 0.6445348 
## TaxRate -5069.6585228 -2533.9656892 
## Commercial -316.1768576 144.6868108 

Since . −$5000 falls within the 95% confidence interval, the claim by the 
politician cannot be rejected at the 5% level of significance. 

Was the politician correct in his statement? Our data indicate that the best 
estimate is $3801.81, while the politician claims the value as $5000. A significant 
difference between the estimate and the claim seems clear. In fact, if we change the
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level of significance to .α = 0.1, we attain a different result. We run the confint 
function again while specifying the level of significance at .α = 0.1, which is 
equivalent to specifying a confidence level of 0.9 as shown in the R code: 

confint(reg, level = 0.9) 

## 5 % 95 % 
## (Intercept) -370.6470269 40537.7180789 
## Rooms 12204.1795192 21671.1044361 
## Income 0.1786043 0.6033503 
## TaxRate -4863.7267296 -2739.8974824 
## Commercial -278.7486327 107.2585859 

The above represents a scenario where an estimate was made possibly with 
the intent to deceive by positing a claim that the value is close to one end of 
the confidence interval. However, as demonstrated above, the claim is difficult to 
disprove. 

5.12.5 Case Conclusion 

In this analysis, we analyzed a housing data set by creating and observing a 
scatterplot matrix and a correlation plot of relevant variables. We then fit simple 
linear regression models. While these models proved statistically significant, the 
amount of variation explained by each model was relatively small. We then specified 
and fit a multiple regression model, which showed a significant improvement from 
the best simple linear regression model. An interpretation of the fitted multiple 
variable model and its coefficients, followed by additional analysis using confidence 
intervals, allowed us to answer the question posed regarding the politician’s 
statement. 

This analysis further showcases the utility of the lm, summary, cor, and plot 
functions by demonstrating their usage in the multiple variable case. In addition 
to expanding the reader’s knowledge of previously used functions, the corrplot 
function from the library of the same name and the confint function were used to 
convey the concepts presented earlier in the chapter. 

Generally speaking, multiple regression tools can be used in a variety of real-
world applications. This case study demonstrates their utility in solving problems in 
real estate and investment strategies. Solving these kinds of problems is important, 
as finding the drivers behind price and other monetary variables allows businesses 
to optimize their profits.
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Problems 

1. Automotive Tire Sales Simple and Multiple Regression 
For this example, we use a subset of the tire sales data set. The data set has 
several variables and is used to calculate the sales of tires at 500 different stores. 
The variables of the data set are as follows: 

• Sales—the number of tires sold at each store (in thousands) 
• CompPrice—the local competitor’s price for the same or similar tire in USD 
• Income—the average annual income in thousands of USD within a 5 mile  

radius of the store 
• Ads—the number of ads from a particular store 
• Cars—the average number of cars in a household within a 5 mile radius 
• Price—the sales price of the tire offered in USD 
• SellerType—one of three possible categories: supercenter, automotive, or 

dealer 
• District—one of the four possible categories denoting the district of the store: 

north, south, east, or west 
• Age—the average age of customers from each store 

A subset of the data can be accessed using the R code below: 

df = read.csv("TireSales.csv") 
sub = subset(df, select = c('Sales', 'CompPrice', 'Income', 

'Ads', 'Cars', 'Price', 'Age')) 

The data subset sub provides the variables required for the questions below. 
Using the sub dataframe, do the following: 

a. Get a summary of the dataframe. 
b. For each variable in the dataframe, fit a simple linear regression model to 

predict Sales. 
c. In which of these models is there a statistically significant relationship 

between predictor and response? Hint: the p-value is available within 
the coefficients for each summary. It may be advantageous to create a 
summary object and access these coefficients directly. 

d. Fit a multiple regression model predicting Sales as a function of all of the 
predictors. For which predictors can you reject the null hypothesis H0 : βj = 
0? 

e. How do your results from the simple linear regression models compare to 
those from the multiple regression model?
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2. Automotive Tire Sales Correlations 
A subset of the data can be accessed using the R code below: 

df = read.csv("TireSales.csv") 
sub = subset(df, select = c('Sales', 'CompPrice', 'Income', 

'Ads', 'Cars', 'Price', 'Age')) 

The data subset sub provides the variables required for the questions below. 
Using the sub dataframe, do the following: 

a. Find a correlation plot between the variables within the data subset (Sales, 
CompPrice, Income, Ads, Population, Price). 

b. From the correlation plot, which predictor variable is sales most correlated 
with? 

c. Generate a scatterplot matrix from the variables within the data subset (Sales, 
CompPrice, Income, Advertising, Population, Price). 

d. Which variable relationship appears to be the strongest? Compare your answer 
with your result from part b. 

3. Automotive Tire Sales Modeling 
Using the data from TireSales.csv, answer the following questions: 

a. Fit a linear model to predict the response variable (Sales) from the variables: 
CompPrice, Income, Ads, Cars, Price, and Age. 

b. Display a summary of the model given from a and clearly state the regression 
equation. 

4. Automotive Tire Sales by Store Type 
Using the data from TireSales.csv, answer the following questions: 

a. Construct boxplots of the number of sales by store type. 
b. It is believed that sales are significantly different across the different store 

types. Can you refute this claim using an F -test with a significance level of 
α = 0.05? Clearly state the null and alternative hypotheses. 

5. Automotive Tire Sales by District 
Using the data from TireSales.csv, answer the following questions: 

a. Construct boxplots of the number of sales by store type. 
b. It is believed that sales are significantly different across the different districts. 

Can you refute this claim using an F -test with a significance level of α = 
0.05? Clearly state the null and alternative hypotheses.



Chapter 6 
Estimation Intervals and Analysis 
of Variance 

An approximate answer to the right problem is worth a good 
deal more than an exact answer to an approximate problem. 
—John Tukey 

6.1 Introduction 

In some cases, a point estimate alone proves insufficient and requires a confidence 
interval. Hence, we expand our coverage to explore confidence intervals for the 
mean response and prediction about the predicted value of the response. Chapters 2 
and 3 introduced the fundamental concepts behind sum of squares and the explained 
and unexplained components. Here, we look at these fundamental concepts more in 
depth and in the process provide additional analysis techniques. 

We begin with a discussion of confidence intervals of the mean response for 
simple linear regression and then cover prediction intervals for individual values. 
These intervals of estimation provide different types of estimates, which we in turn 
explore with an application of housing prices. We then discuss analysis of variance 
for regression and expand on the house price application. In the final discussion, we 
present a case study from human resources and solve it in detail. The case study 
involves finding both prediction and confidence intervals to find interval estimates 
for both a mean response and an individual response. This case study makes use 
of previously learned R functions with the aforementioned concepts and shows the 
relevant source code. 
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6.2 Expected Value 

The expected value or expectation refers to the mean value. As the name implies, 
the expected value provides the long-term value that we would expect in a given 
scenario. For instance, if one were to flip a fair coin many times, one would expect 
an equal number of heads and tails. Therefore, the expected number of heads from 
many flips of a fair coin would be one half of the flips. It follows that the expectation 
of one flip is 50% heads. Mathematically, if we let X represent the number of heads, 
then the expected value for the number of heads is written as .E[X]. In regression 
analysis, we use the conditional expectation to find the expected value of Y given X, 
written as .E[Y |X]. In fact, making predictions using fitted regression models can 
be thought of as calculating conditional expectations from known data. 

The expected value of the simple linear regression model is written as 

.E[Y |X] = β0 + β1X, (6.1) 

and the expected value of the multiple regression model is written as 

.E[Y |X1, X2, . . . , Xp] = β0 + β1X1 + β2X2 + . . . + βpXp. (6.2) 

Notice that Eqs. (6.1) and (6.2) do not include the error term (. ε) since the error has 
a mean of 0 (.E[ε] = 0) as assumed in the assumptions of linear regression. The 
actual value of .E[Y |X1, X2, . . . , Xp] is in fact unknown, but can be estimated as . Ŷ . 

6.3 Confidence Interval 

As mentioned in the previous section, the expected value of Y given X is 
synonymous with the mean of Y given X. A confidence interval can be constructed 
about this mean and, since its estimate is . Ŷ corresponding to a value of X, the best 
estimate of Y is . Ŷ . 

Assuming the simple linear regression case and using lower case x to denote a 
particular X value of interest, the standard error of the mean is calculated to be 

.SECI = s

√
1

n
+ (x − x̄)2∑n

i=1(xi − x̄)2
. (6.3) 

Using this standard error, a .(1 − α) × 100% confidence interval for .E[Y |X], the  
mean response of Y for a specified value of X, is given by the interval: 

.ŷ ± tα/2SECI , (6.4) 

where .tα/2 is the critical value with .n − 2 degrees of freedom for the simple linear 
regression case.
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6.4 House Prices Application: Confidence Interval 

Charles is interested in purchasing a house in Dallas and wants to purchase a house 
that is roughly 2500 square feet. He collects the size and sale price of 12 houses in a 
particular Dallas neighborhood. The data shown here reflect the size (in square feet) 
and the sale price (in thousands of dollars). Construct a 95% confidence interval 
about the predicted mean house price for all houses with a size of 2500 square feet. 

Use the data from Table 6.1 to find the following. 

(a) Calculate the mean of X (. x̄). 
(b) Calculate the .SSxx . 
(c) Find the least squares line. 
(d) Calculate the RMSE. 
(e) Predict the house price of a house with 2500 square feet. 
(f) Calculate the critical value .tα/2 for .α = 0.05. 
(g) Find the standard error (.SECI ). 
(h) Calculate the upper and lower bounds of the confidence interval. 
(i) Provide an interpretation of the confidence interval. 

Solution 

(a) The mean is easily calculated to be .x̄ = 2375. This operation can be done by 
hand or using R as follows. 

X = c(3500, 2400, 4900, 1900, 1200, 1600, 1450, 1550, 1600, 
1750, 2850, 3800) 

mean(X) 

## [1] 2375 

(b) From formula (2.5) in Chap. 2, we have  

. SSxx =
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

/n

. SSxx = 82320000 − (28500)2 /12

. SSxx = 14, 632, 500.

Table 6.1 House price data 

Variable 

Size (X) 3500 2400 4900 1900 1200 1600 1450 1550 1600 1750 2850 3800 

Price (Y ) 588 490 675 425 350 412 385 405 420 418 509 550
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SSxx = sum(Xˆ2)-sum(X)ˆ2/12 
SSxx 

## [1] 14632500 

(c) Using the methods from Chap. 3, we calculate the regression equation: 

. Ŷ = 275.082 + 0.081615X

We saw in the stock beta case study from Chap. 4 that the coefficients can be 
calculated from the regression summary as follows. Here the regression coefficients 
are within the model object reg. 

X = c(3500, 2400, 4900, 1900, 1200, 1600, 1450, 1550, 1600, 
1750, 2850, 3800) 

Y = c(588, 490, 675, 425, 350, 412, 385, 405, 420, 418, 509, 
550) 

reg = lm(Y ~ X) 
reg$coefficients 

## (Intercept) X 
## 275.08209465 0.08161456 

(d) From formula (4.4) in Chap. 4, we have  

. s =
√

SSE

n − 2

. RMSE = 17.9799.

SSE = sum(reg$residualsˆ2) 
SSE 
RMSE = sqrt(SSE/(12-2)) 
RMSE 

## [1] 3232.773 

## [1] 17.97991 

(e) Noting that . ŷ is calculated from .x = 2500, the regression equation from part c 
allows us to calculate
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. ŷ = 275.08209465 + 0.08161456(2500) = 479.1185.

predict(reg, data.frame(X =  2500)) 

## 1 
## 479.1185 

(f) The qt function in R allows us to calculate the critical value (. tα/2) as discussed  
in Sect. 4.6.1. Since the critical value is such that 2.5% is in each tale, we want 
the t-value where 97.5% of the area is to the left which leads us to inputting 
0.975 as the first argument of the qt function. The second argument is the 
degrees of freedom .n − 2. Using the command line in R we have: 

qt(0.975,10) 

## [1] 2.228139 

which can be written as .tα/2 = t0.025 = 2.228 with 10 degrees of freedom. 

(g) The standard error for .x = 2500 can be obtained by Eq. (6.3): 

. SECI = s

√
1

n
+ (x − x̄)2

SSxx

. SECI = 17.9799

√
1

12
+ (2500 − 2375)2

14632500

. SECI = 5.223528.

Calculating this value in R is done using the basic operators and the sqrt function. 

SE_ci = 17.9799*sqrt(1/12+(2500-2375)ˆ2/14632500) 
SE_ci 

## [1] 5.223499 

(h) Using the standard error, the confidence interval is 

.ŷ ± tα/2SECI
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which gives a lower bound of 

. 479.1185 − 2.228139(5.223499) = 467.4798,

and an upper bound of 

. 479.1185 + 2.228139(5.223499) = 490.7572.

We can find these bounds using R by using the predict function and specifying a dataframe 
with the X value of interest and the interval argument specified as a “confidence” interval. 

predict(reg, data.frame(X=2500), interval = "confidence") 

## fit lwr upr 
## 1 479.1185 467.4798 490.7572 

This output matches the lower and upper bounds of our calculation specified above. These 
values are 467.4798 and 490.7572 respectively. 

(i) The interpretation is such that we are 95% confident that the mean price for 
houses of 2500 square feet is between $467,480 and $490,757. 

6.5 Prediction Interval 

In many cases, a prediction interval for a particular value seems more desirable. 
Confidence intervals about a mean response yield the standard error based upon 
a mean, and therefore, have smaller standard error. As with confidence intervals, 
prediction intervals are centered about the predicted value of y. Prediction intervals 
are calculated when we wish to know the range under which .(1− α) × 100% of the 
predictions lie. 

Note the subtle difference between the standard error of the confidence interval 
in Eq. (6.3) and the standard error of the prediction interval: 

.SEPI = s

√
1 + 1

n
+ (x − x̄)2∑n

i=1(xi − x̄)2
. (6.5) 

Similar to that of the confidence interval, a .(1 − α) × 100% prediction interval for 
an individual response about . ŷ, for a specified value of .X = x, is given by 

.ŷ ± tα/2SEPI , (6.6)
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where x is the given value of the predictor variable, n is the number of observations, 
and .tα/2 is the critical value with .n − 2 degrees of freedom. 

In the application below, we will show and discuss a comparison between the 
prediction and confidence intervals. 

6.6 House Price Application: Prediction Interval 

Construct a 95% prediction interval about the predicted house price for all houses 
with a size of 2500 square feet. 

Use the data from Table 6.1 to find the following. 

(a) Calculate the upper and lower bounds of the prediction interval. 
(b) Provide an interpretation of the prediction interval. 
(c) Explicitly state the difference between the interpretation of the prediction 

interval and the confidence interval. 
(d) Indicate which interval has a larger range. 

Solution 

(a) Recall from the previous application that . SSxx = 14,632,500, s =
17.9799, t0.025 = 2.228139, and .ŷ = 479.1185. Using the aforementioned 
calculations, we find the standard error of the prediction interval at .x = 2500: 

. SEPI = s

√
1 + 1

n
+ (x − x̄)2

SSxx

. SEPI = 17.9799

√
1 + 1

12
+ (2500 − 2375)2

14632500
.

. SEPI = 18.72329

In R, the calculation can also be easily found doing the following. 

SE_pi = 17.9799*sqrt(1+1/12+(2500-2375)ˆ2/14632500) 
SE_pi 

## [1] 18.72329 

Using the standard error, the prediction interval is 

.ŷ ± tα/2SEPI
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which gives a lower bound of 

. 479.1185 − 2.228139(18.72329) = 437.4004,

and an upper bound of 

. 479.1185 + 2.228139(18.72329) = 520.8366.

We can find these bounds using R by using the predict function and specifying 
a dataframe with the X value of interest and the interval argument specified as a 
“prediction” interval. 

predict(reg, data.frame(X =  2500), interval = "prediction") 

## fit lwr upr 
## 1 479.1185 437.4004 520.8366 

This output matches the lower and upper bounds of our calculation specified 
above. These values are 437.4004 and 520.8366, respectively. 

(b) The interpretation is such that we are 95% confident that house price for 
a random house with a size of 2500 square feet is between $437,400 and 
$520,837. 

(c) The result from this application represents the interval of a particular house 
price whereas the previous application represents that of a mean house price. 

(d) The prediction interval is a larger range interval than the confidence interval. 

6.7 Confidence Intervals verse Prediction Intervals 

In the previous applications, both confidence and prediction intervals were calcu-
lated. However, note that confidence intervals give a range for .E[y|x] which is the 
mean response of Y and prediction intervals give a range for values of y. In both 
cases, the best guess of a particular value of y given a known x is . ŷ, and therefore, 
both intervals are centered at . ŷ. Since the mean has less variation than a single value, 
the standard error of .E[Y |X] is smaller than the standard error of y. Furthermore, 
the prediction interval will have a larger range than that of a confidence interval, 
which is attributed to the standard errors (Eqs. 6.3 and 6.5). 

6.8 Analysis of Variance 

Analysis of Variance (ANOVA), developed by statistician and evolutionary biologist 
Ronald Fisher, is a collection of statistical models used to analyze the differences 
among group means and their associated procedures (such as “variation” among and 
between groups).
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Explained deviation: 

Unexplained deviation:Total deviation: 

X 

Y 

Fig. 6.1 Explained vs. unexplained deviation 

By analyzing the variation, the least squares regression equation becomes a nat-
ural result. The components of the variation in regression modeling are represented 
by the sum of squares of the total, regression, and the error: SST , SSR, and SSE, 
respectively. Recall from Chap. 3 the relationship between the sum of squares in 
Eq. (3.11): 

. SST = SSR + SSE.

This equation holds not only for the simple linear regression case but also for 
the multiple regression case. Figure 6.1 provides an intuitive depiction between 
the total, unexplained, and explained deviations. These deviations represent the 
components of the corresponding sum of squares values. 

6.8.1 Mean of Squares Due to Regression 

While the SSR is variation, it is preferred that this variation be as large as possible 
since SSR represents the amount of variation “explained” by the regression model. 
It follows that the larger values of the Mean of Squares due to Regression (MSR) 
indicate large amounts of explained variation. The MSR represents the mean 
variation explained by each predictor. From the SSR and the degrees of freedom, 
the Mean of Squares due to Regression (MSR) can be calculated as 

.MSR = SSR/p. (6.7)
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The degrees of freedom for the SSR corresponds to the number of predictors (p) in  
the model. For the simple linear regression model, there is one degree of freedom 
since we have only one predictor variable (X). In the case of a model with . p = 10
predictors, there are 10 degrees of freedom. The MSR, the  SSR, and corresponding 
degrees of freedom are shown in the ANOVA table (Table 6.2). 

6.8.2 Mean Squared Error 

The degrees of freedom for the SSE corresponds to the number of observations (n) 
minus the predictors (p) minus 1 or 

. n − p − 1.

In the simple linear regression case, there are .n − 2 degrees of freedom. For the 
model with 20 observations and 7 predictors, the degrees of freedom of the SSE 
would be . 20 − 7 − 1 = 12.

The previous chapters were devoted to simple linear regression and resulted in 
.n − 2 used as the degrees of freedom, with the MSE found by dividing by .n − 2. 
Generally, the MSE can be found by 

.MSE = SSE

n − p − 1
. (6.8) 

Both SSE and MSE are considered measures of error; therefore, we desire them to 
be as small as possible. The MSE, SSE, and corresponding degrees of freedom are 
shown in the ANOVA table (Table 6.2). 

6.8.3 The F Statistic 

Taking the ratio of the MSR to MSE results in the F -statistic: 

.F = MSR

MSE
. (6.9) 

Since the degrees of freedom of the MSR is p and the degrees of freedom of the 
MSE is .n − p − 1, the  F -statistic has p degrees of freedom in its numerator and 

Table 6.2 The ANOVA table 

Variation source DF SS MS F p-value 

Regression p SSR .MSR = SSR
p

.F = MSR
MSE

p-value (F ) 

Error .n − p − 1 SSE . MSE = SSE
n−p−1

Total .n − 1 SST
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Table 6.3 The ANOVA table for simple linear regression 

Variation source DF SS MS F p-value 

Regression 1 SSR .MSR = SSR
1 . F = MSR

MSE
p-value (F )

Error .n − 2 SSE . MSE = SSE
n−2

Total .n − 1 SST 

.n−p−1 degrees of freedom in its denominator. Noting the ratio of MSR to MSE, 
a larger F -statistic results in lower p-values, indicating overall significance. 

6.9 ANOVA Table 

From the ANOVA components in the previous section, a table can be created 
to summarize the F -statistic. Specifically, the MSR, MSE, and their underlying 
components can be shown in an ANOVA table (Table 6.2). 

Considering the simple linear regression case, the ANOVA table can be simpli-
fied such that .p = 1. Filling in .p = 1 for Table 6.2 results in Table 6.3. In this  
table, 

. MSR = SSR

1
= SSR

and 

. MSE = SSE

n − 2

as discussed in Chap. 4. 
Using the anova function in base R, the components of ANOVA are easily 

returned from the fitted regression model. For instance, if the regression model 
object is named reg, then the anova function can be used in the following manner: 

anova(reg) 

We demonstrate the utility of this function in the following application. 

6.10 House Price Application: ANOVA Table 

Calculate the values in the ANOVA table for the data from Table 6.1. In particular, 
do the following to construct the ANOVA table. 

(a) Calculate the SSR. 
(b) Calculate the SST .
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(c) Calculate the MSR. 
(d) Calculate the F -statistic. 
(e) Use R to find the p-value of the F -statistic. 
(f) Use the calculated information from the previous parts to construct the ANOVA 

table for the data. 
(g) Verify your table using the anova function in R. 

Solution 

(a) Using Eq. (3.17), the  SSR is 

. SSR =
n∑

i=1

(ŷ − ȳ)2

. SSR = 97466.14.

While we could easily find the . ̂y values using some simple calculation, these values are 
given to us within the regression object reg accessed as reg$fitted.values. Using the 
vector already calculated for us, we use the sum function and pay careful attention to the 
orders of operation by adding in extra parentheses. 

SSR = sum((reg$fitted.values - mean(Y))ˆ2) 
SSR 

## [1] 97466.14 

(b) Equation (3.16) is  

. SST =
n∑

i=1

(yi − ȳ)2

. SST = 100698.9

Using R, the calculation is done using the formula here. 

SST = sum((Y - mean(Y))ˆ2) 
SST 

## [1] 100698.9 

Equivalently, the SST can be found with Eq. (3.19): 

. SST = SSR + SSE

which yields the same result (using .SSE = 3232.773).
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(c) For the MSR, we have .MSR = SSR/1 = 97,466.14, since .p = 1. 
(d) Combining Eqs. (6.9) and (6.8), the F -statistic is 

. F = MSR

SSE/(n − 2)

. F = 97,466.14

3232.773/10

. F = 301.4939.

(e) The pf function in R allows us to calculate the p-value of the F -statistic as 
discussed in Sect. 4.14. Using  the  pf function with .F = 301.4939, .vn = 1, and 
.vd = 10, we have:  

1 - pf(301.4939, 1, 10) 

## [1] 8.50638e-09 

(f) Filling in the calculated values, we obtain Table 6.4. 

(g) Passing the regression object to the anova function, we have: 

X = c(3500, 2400, 4900, 1900, 1200, 1600, 1450, 1550, 1600, 
1750, 2850, 3800) 

Y = c(588, 490, 675, 425, 350, 412, 385, 405, 420, 418, 509, 
550) 

reg = lm(Y ~ X) 
anova(reg) 

## Analysis of Variance Table 
## 
## Response: Y 
## Df Sum Sq Mean Sq F value Pr(>F) 
## X 1 97466 97466 301.49 8.506e-09 *** 
## Residuals 10 3233 323 

Table 6.4 The ANOVA table for the house price data 

Variation source DF SS MS F p-value 

Regression 1 97,466 97,466 301.49 8.506e. −09 

Error 10 3232.8 323.28 

Total 11 100,698.9
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## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

While the labels differ slightly, the information in the R table is consistent with the table 
created in part f. We see a slight rounding error in the p-value, but this error is negligible and 
does not affect the test results with .α = 0.05. The  anova function does, however, leave out 
the total degrees of freedom and the SST , which are unnecessary in finding the F -statistic. 

6.11 Generalized F Statistic 

Arguably, the most important F -test for multiple linear regression consists of the 
test for overall significance. However, this test can be modified from the hypothesis 
tests in Chap. 4 to assess differences between models. Recall from Chap. 4 the null 
and alternative hypotheses for an F -test: 

. H0 : β1 = β2 = . . . = βp = 0

. H1 : At least one coefficient is nonzero.

The null and alternative hypotheses can be thought of in terms of the models that 
result. For example, the null hypothesis with .β1 = β2 = . . . = βp = 0 would give 
us the following reduced model: 

. H0 : Y = β0 + ε

and the alternative hypothesis would result in the full model: 

. H1 : Y = β0 + β1X1 + β2X2 + · · · + βpXp + ε.

The F -statistic was previously calculated to be 

. F = SSR/p

MSE
.

Recall that the SSR is the difference between the sum of squares total (SST ) and 
the sum of squared error in the full model (SSE). The F -statistic can therefore be 
written as 

.F = (SST − SSE)/p

MSE
. (6.10) 

The test statistic, as calculated in Eq. (6.10), represents the difference between the 
SST and the SSE. The  SST is the amount of error that would result from assuming
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the null hypothesis that .β1 = β2 = . . . = βp = 0, whereas, the SSE is the error 
that results from using the alternative hypothesis. 

Now consider the reduced model (null hypothesis model) to contain one less 
predictor variable than the full model (alternative hypothesis model). If the full 
model contains p predictors, then the statistical test to compare the models with 
and without . Xp would be: 

. H0 : Y = β0 + β1X1 + β2X2 + · · · + βp−1Xp−1 + ε

. H1 : Y = β0 + β1X1 + β2X2 + · · · + βpXp + ε.

The numerator of the F -statistic, for the test mentioned here, is the difference 
between the sum of squared error in the reduced model and the sum of the squared 
error of the full model divided by the number of predictors. Here we denote the sum 
of the squared error in the reduced model to be .SSE(X1, X2, . . . , Xp−1). Since the 
difference in the number of predictors is equal to one, the degrees of freedom in the 
numerator are equal to one, resulting in an F -statistic of 

.F = SSE(X1, X2, . . . , Xp−1) − SSE

MSE
. (6.11) 

In general, it is possible to generalize the F -statistic to compare models with any 
number of predictor variables as long as the reduced model is a subset of the full 
model. For simplicity, the Eq. (6.11) only considers the comparison of models with 
a difference of one predictor variable. 

6.12 Case Study: Employee Retention Modeling 

6.12.1 Problem Statement 

Managers at modern companies work hard to ensure that their employees are 
satisfied with their current jobs. Several corporate problems stem from employees’ 
lack of satisfaction in the workplace, including costly restaffing fees or a lacking end 
product due to poor quality of work or productivity. Companies hence investigate 
when a disproportionate number of employees churn from their current roles. 

Angelo, a hiring manager at Royalty Cruise Lines, carries out the task of 
predicting future employee retention in new applicants. He collects data from 
several current employees and, based on the data, creates a regression model. In 
particular, he prepares to predict the number of years an employee will stay with 
Royalty using the number of years that they worked at a previous job, education 
level, starting salary, and a dummy variable (a more thorough coverage of dummy 
variables will follow in the next chapter) that states if they would be hired in branch
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A of the company. Angelo has a particular interest in a few employees who will be 
working with him on an important project. 

Angelo has to decide among seven job candidates. If he would like the employee 
with the longest retention time, whom should he choose? For this role, Angelo 
would prefer that the candidate remains at his job for at least five years. Calculate a 
95% prediction interval for this candidate’s retention. 

Angelo also faces the challenge of whether to hire applicants from competing 
staffing and recruiting companies Gravity AP or Ascend. The applicants from 
these companies generally have different characteristics due to differing recruiting 
strategies. 

6.12.2 Data Description 

The data consists of 100 former employees followed throughout their career at 
Royalty. The variables for each employee are: 

• Retention—The number of years that the employee worked at Royalty. 
• BranchA—Denotes whether employee worked in branch A during their work 

career (1 if they worked in branch A; 0 otherwise). 
• Education—The education level in years. 
• Experience—The number of years of previous experience before joining Royalty. 

Here we load in the data and use the head and summary functions to peruse the 
data. 

df = read.csv("HR_retention.csv") 
head(df) 

## Retention BranchA Education Experience 
## 1 6.9680996 0 19 12.345578 
## 2 0.1956849 0 15 7.669670 
## 3 5.3079883 0 19 8.152030 
## 4 6.9384618 0 19 10.139741 
## 5 1.9794614 0 17 6.608843 
## 6 11.1552751 0 13 11.730156 

summary(df) 

## Retention BranchA Education 
## Min. : 0.1957 Min. :0.0 Min. :12.00 
## 1st Qu.: 2.3841 1st Qu.:0.0 1st Qu.:15.00 
## Median : 5.5609 Median :0.5 Median :16.00 
## Mean : 6.4017 Mean :0.5 Mean :16.05
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Table 6.5 Recent hires data BranchA Experience Education 

1 0 12 

0 10 16 

0 0 16 

1 10 16 

0 15 18 

1 10 16 

1 10 18 

## 3rd Qu.: 9.8388 3rd Qu.:1.0 3rd Qu.:17.00 
## Max. :21.3770 Max. :1.0 Max. :21.00 
## Experience 
## Min. : 4.959 
## 1st Qu.: 7.400 
## Median : 9.389 
## Mean : 9.863 
## 3rd Qu.:11.760 
## Max. :17.976 

The employees that Angelo recently hired have the characteristics given in 
Table 6.5. 

The data set can be arranged into a dataframe by creating vectors for each 
variable using the c function, and then using the data.frame function. 

BranchA = c(1, 0, 0, 1, 0, 1, 1) 
Experience = c(0, 10, 0, 10, 15, 10, 10) 
Education = c(12, 16, 16, 16, 18, 16, 18) 
df_new = data.frame(BranchA, Experience, Education) 

Running the above code provides the information from the new hires into the 
dataframe df_new. 

6.12.3 Multiple Regression Model 

As discussed previously, Angelo’s firm would like us to predict the average retention 
based upon all of the other variables in the data. Therefore, our model will be a 
multiple regression model: 

. Y = β0 + β1X1 + β2X2 + β3X3 + ε,

where Y , . X1, . X2, and .X3 variables are Retention, BranchA, Education, and 
Experience, respectively. The remaining component in the model, . ε, refers to the 
error.
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The regression equation, as determined by the summary above, is given by: 

. Ŷ = −7.93599 + 1.43316X1 − 0.01740X2 + 1.40928X3.

Substituting in for the full variable names we have: 

. Retention = −7.93599 + 1.43316 × BranchA − 0.01740 × Education

+1.40928 × Experience.

The regression model fit is given below: 

reg = lm(Retention ~ BranchA + Education + Experience, 
data = df) 

summary(reg) 

## 
## Call: 
## lm(formula = Retention ~ BranchA + Education + Experience, 
## data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -4.3464 -1.2415 -0.1563 1.2840 4.8966 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -7.93599 1.82783 -4.342 3.5e-05 *** 
## BranchA 1.43316 0.40929 3.502 0.000704 *** 
## Education -0.01740 0.11021 -0.158 0.874915 
## Experience 1.40928 0.07165 19.669 < 2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 2.014 on 96 degrees of freedom 
## Multiple R-squared: 0.8219, Adjusted R-squared: 0.8164 
## F-statistic: 147.7 on 3 and 96 DF, p-value: < 2.2e-16 

Model Interpretation 

Since the F -statistic has a very low p-value in the summary, the model proves 
statistically significant. The high values of the . R2 and . R2

a indicate the model is 
fit well. The most significant predictor variable based on the p-values consists of
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Experience, followed by BranchA. The  Education variable does not appear to 
be significant since its p-value is well above 0.05. 

Coefficient Interpretation 

Fitting a regression model tests each coefficient estimate against a null value of zero. 
The coefficients can be interpreted as follows: 

• Intercept—The intercept represents the retention when all the variables are 0. 
The p-value is significant since it falls below 0.05. In this case, the retention is 
below 0 which does not make sense. 

• BranchA—Since the p-value indicates significance, the interpretation is: 

The retention will increase by 1.433 if they are to work in Branch A holding experience and 
education constant. 

• Education—Since the p-value indicates the variable is insignificant, the coeffi-
cient for education should not be interpreted. 

• Experience—The p-value indicates this variable is significant. The interpretation 
is: 

For every 1 year of previous experience, the retention is expected to increase by 1.409 years, 
holding Branch A and education constant. 

ANOVA Table 

Within the ANOVA table, we should note several numerical computations which 
are the fundamental building blocks of the linear regression equation. We easily 
calculate these values using the anova function in base R. 

anova(reg) 

## Analysis of Variance Table 
## 
## Response: Retention 
## Df Sum Sq Mean Sq F value Pr(>F) 
## BranchA 1 200.54 200.54 49.4271 3.005e-10 *** 
## Education 1 27.53 27.53 6.7862 0.01065 * 
## Experience 1 1569.69 1569.69 386.8763 < 2.2e-16 *** 
## Residuals 96 389.51 4.06 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Note that the order of the variables matters. The F -statistic for BranchA is 
calculated using the sum of squares of 200.54. This sum of squares represents 
the variation explained by using BranchA as a prediction. The sum of squares 
of Education represents the benefit of using the BranchA variable and the 
Education predictor over using only the BranchA variable. 

. F = SSE(X1, X2) − SSE

MSE
.

Therefore, one should note that .SSE(X1, X2) = 1569.69 + 389.51 represents the 
reduced sum of squared error since 1569.69 is the variation explained through 
including experience in the model and 389.51 is the SSE that would still be 
included. The F -statistic for a model without experience would be: 

F = (1569.69)/(389.51/(100-4)) 
F 

## [1] 386.8713 

Notice that this F value corresponds to the F value for experience in the R table 
above. 

From the output above, we can calculate the SST by summing up all of the sum 
of squares values. Particularly, we have: 

SST = 200.54+27.53+1569.69+389.51 
SST 

## [1] 2187.27 

One should further note that the value of . R2 can be calculated using these sum 
of squares values: 

. R2 = SSR/SST = 1 − SSE/SST

Rsquare = 1-389.51/SST 
Rsquare 

## [1] 0.8219196 

Furthermore, . R2
a can be calculated as: 

.R2
a = 1 − (1 − R2)

n − 1

n − p − 1
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AdjRsquare = 1 - (1-Rsquare)*(100-1)/(100-3-1) 
AdjRsquare 

## [1] 0.8163545 

The values of . R2 and . R2
a can be verified by viewing the regression summary. 

6.12.4 Predictions 

Predict the retention of an employee who will be working in branch A with no work 
experience and 12 years of education. 

. Retention = −7.93599 + 1.43316 × 1 − 0.01740 × 12 + 1.40928 × 0

. = −6.7116.

Making predictions in R is straight-forward using the predict command. The first 
argument is the regression object and the second argument is a dataframe. Note, the 
variable names in the dataframe must reflect those of the predictor variables used 
within the lm function. 

predict(reg, data.frame(BranchA = 1, Experience = 0, 
Education = 12)) 

## 1 
## -6.711566 

Negative retention values are impossible, and therefore, the result of this reten-
tion calculation does not make sense. Based on the model above, we would predict 
the retention to be 0. Further note that this prediction represents an extrapolation 
since our original data set has minimum years of experience of almost 5 years. 

Recall that the dataframe of new hires defined previously, df_new, can be 
predicted. 

predict(reg, df_new) 

## 1 2 3 4 5  
## -6.711566 5.878533 -8.214309 7.311696 12.890165 
## 6 7 
## 7.311696 7.276906
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Based on this model, Applicant 5 who has 15 years of experience, is predicted to 
have the highest retention in the group. 

Prediction Interval 

The predict function can also be modified to return the limits of the prediction 
or confidence interval by specifying the interval option within the function. 
Calculate 95% and 99% prediction intervals for applicant 5. The 95% prediction 
interval serves as the default, given by the predict function: 

predict(reg, df_new[5,], interval = "prediction") 

## fit lwr upr 
## 5 12.89016 8.763318 17.01701 

The predict function may be easily modified to return a prediction interval with 
a different . α using the level option within the predict function. A 99% prediction 
interval for Applicant 5 can be found through 

predict(reg, df_new[5,], interval = "prediction", level = 0.99) 

## fit lwr upr 
## 5 12.89016 7.426434 18.3539 

Observing a 99% prediction interval for Applicant 5, we are very confident that 
he or she will remain at Royalty for more than 5 years as desired. 

Confidence Intervals 

Ascend mentions that their typical applicants have the properties given in Table 6.6. 
Whereas applicants from Gravity AP have the properties given in Table 6.7. 
Find 95% confidence intervals for each set of applicants. 

df_ascend = data.frame(BranchA=1, Experience=10, Education=20) 
predict(reg, df_ascend, interval = "confidence") 

Table 6.6 Ascend data BranchA Experience Education 

1 10 20 

Table 6.7 Gravity AP data BranchA Experience Education 

1 7 16
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## fit lwr upr 
## 1 7.242116 6.196755 8.287477 

df_gravity = data.frame(BranchA = 1, Experience = 7, 
Education = 16) 

predict(reg, df_gravity, interval = "confidence") 

## fit lwr upr 
## 1 3.083843 2.34395 3.823737 

The observed confidence intervals and predictions indicate that hiring Ascend 
applicants would result in higher retention values. 

6.12.5 Case Conclusion 

In this analysis, we specified and fit a multiple regression model using R and then 
interpreted the model and its coefficients. Some additional analysis included the 
ANOVA table and the calculations of both prediction and confidence intervals for 
the coefficients. One new hire, in particular, yielded a prediction value that indicated 
the longest retention. The prediction interval for the retention of this employee 
was calculated to be sufficient at the .α = 0.01 level of significance. Both staffing 
companies had confidence intervals calculated about their mean candidate, showing 
Ascend as the better fit due to the higher retention values. 

Many possible ways to use the results of regression analysis exists. This case 
study demonstrates how to make use of prediction and confidence intervals and how 
to calculate ANOVA. While we only introduced a few R commands in this chapter, 
we built upon knowledge from previous chapters and used many of the previous 
functions in new ways. When studying regression analysis, it is important to know 
and understand the various uses of such functions. 

Problems 

1. Coral Gables Housing Confidence Interval 
Jigar is interested in purchasing a house in Coral Gables and wants to get the 
largest total living area for the price. He collects the size and sale price of 5 
houses in a particular Coral Gables neighborhood. The data shown in Table 6.8 
reflect the size (in square feet) and the sale price (in thousands of USD). 

Without the use of a computer: 

a. Find the regression equation that predicts price as a function of the house 
size.
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Table 6.8 Coral Gables 
house price data 

Size Price 

2700 650 

3500 875 

2600 670 

5300 1200 

4200 981 

b. Calculate the 95% critical value tα/2 for α = 0.05 (use R here). 
c. Use x̄ = 3660, SSxx = 5,052,000, and RMSE = 26.71 to find the standard 

error for a 95% confidence interval (SECI ) for a house price with a size of 
2500 square feet. 

d. Calculate the upper and lower bounds of the 95% confidence interval for a 
house price with a size of 2500 square feet. 

e. Provide an interpretation of the confidence interval. 

2. Coral Gables Housing Prediction Interval 
Use the Coral Gables housing data from Table 6.8 and do the following without 
the use of a computer. 

a. Use x̄ = 3660, SSxx = 5,052,000, and RMSE = 26.71 to find the standard 
error for a 95% prediction interval (SEPI ) for a house price with a size of 
2500 square feet. 

b. Calculate the upper and lower bounds of the prediction interval for a house 
price with a size of 2500 square feet. 

c. Provide an interpretation of the prediction interval. 
d. Explicitly state the difference between the interpretation of the prediction 

interval and the confidence interval. 
e. Indicate which interval has a larger range. 

3. Coral Gables Housing Intervals in R 
Use the Coral Gables housing data from Table 6.8 and do the following using 
R. 

a. Print a summary of the regression equation that predicts price as a function 
of house size. 

b. Use the regression equation to predict the price when the size of the house 
is 2500 square feet. 

c. Find a 95% confidence interval for the price when the size of the house is 
2500 square feet. 

d. Find a 95% prediction interval for the price when the size of the house is 
2500 square feet. 

4. Coral Gables Housing ANOVA 
Using the Coral Gables Housing data from Table 6.8, do the following 
calculations without the use of a computer.
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a. Calculate the SSR. 
b. Calculate the SST . 
c. Calculate the MSR. 
d. Calculate the F -statistic. 

5. Coral Gables Housing ANOVA in R 
Using the Coral Gables Housing data from Table 6.8, do the following using R. 

a. Find the p-value of the F -statistic calculated in the previous problem. 
b. Use R to construct the ANOVA table. 

6. Streaming Service Confidence Interval 
A popular video streaming service relies on paid subscribers. In Table 6.9, we  
display the revenue (in millions of $) and the number of paid memberships (in 
millions) for the years 2007 to 2022. 

Without the use of a computer: 

a. Find the regression equation that predicts revenue as a function of the number 
of memberships. 

b. Use the regression equation to predict the revenue when the memberships is 
100 million. 

c. Calculate the critical value tα/2 for α = 0.05 (use R here). 
d. Find the standard error for a 95% confidence interval (SECI ) for revenue 

when there are 100 million memberships. 
e. Calculate the upper and lower bounds of the 95% confidence interval 

centered about 100 million memberships. 
f. Provide an interpretation of the confidence interval. 

Table 6.9 Streaming service 
data 

Year Memberships (X) Revenue (Y ) 

2007 1.19 339 

2008 5.78 499 

2009 6.93 600 

2010 7.08 687 

2011 9.63 836 

2012 12.28 1079 

2013 11.10 1604 

2014 7.24 1807 

2015 23.18 2189 

2016 27.03 2752 

2017 34.78 3395 

2018 38.67 4417 

2019 56.84 5845 

2020 71.32 7890 

2021 88.98 10, 081 

2022 101.44 12, 498
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7. Streaming Service Prediction Interval 
Use the streaming service data from Table 6.9 and do the following without the 
use of a computer. 

a. Find the standard error for a 95% prediction interval (SEPI ) for revenue 
when there are 100 million memberships. 

b. Calculate the upper and lower bounds of the prediction interval for revenue 
when there are 100 million memberships. 

c. Provide an interpretation of the prediction interval in part b. 
d. Explicitly state the difference between the interpretation of the prediction 

interval and the confidence interval. 
e. Indicate which interval has a larger range. 

8. Streaming Service Intervals in R 
Use the streaming service data from Table 6.9 and do the following using R. 

a. Print a summary of the regression equation that predicts revenue as a 
function of the number of memberships. 

b. Use the regression equation to predict the revenue when the memberships is 
100 million. 

c. Find a 95% confidence interval for the revenue when the memberships is 100 
million. 

d. Find a 95% prediction interval for the revenue when the memberships is 100 
million. 

e. Find a 95% confidence interval for the slope coefficient. 

9. Streaming Service ANOVA 
Use the streaming service data from Table 6.9, do the following calculations 
without the use of a computer. 

a. Calculate the SSR. 
b. Calculate the SST . 
c. Calculate the MSR. 
d. Calculate the SSE. 
e. Calculate the F -statistic. 

10. Streaming Service ANOVA Calculations in R 
Use the streaming service data from Table 6.9, do the following using R. 

a. Calculate the SSR. 
b. Calculate the SST . 
c. Calculate the MSR. 
d. Calculate the SSE. 
e. Calculate the F -statistic. 

11. Streaming Service ANOVA in R 
Use the streaming service data from Table 6.9, do the following using R. 

a. Find the p-value of the F -statistic calculated in the previous problem. 
b. Use the anova function in R to construct the ANOVA table.



Chapter 7 
Predictor Variable Transformations 

If you torture the data enough, nature will always confess. 
—Ronald Coase 

7.1 Introduction 

In this chapter, we discuss transformations of predictor variables. One popular 
transformation consists of dummy variables, which are variables that allow for the 
effect of categorical variables to be considered in regression modeling. Dummy 
variables can be used in regression analysis as both predictor and response variables, 
but we will limit our discussion to predictor variables. Using dummy variables as 
the response variable is often referred to as classification, which will remain outside 
of the scope of this book. In previous chapters, we assumed linear models with 
untransformed predictor variables. Here, we introduce nonlinear transformations of 
predictor variables, thereby, making the model linear. 

First, we discuss categorical variables containing two different categories, and 
then broaden the discussion to include more than two categories. Applications using 
salary data are used to reinforce the concepts. Second, curvilinear relationships 
are introduced, which can be modeled using nonlinear transformations. Third, 
interactions between predictor variables are explained, followed by a discussion of 
the general linear model. The final discussion consists of a case study that predicts 
the number of likes of YouTube videos based upon the characteristics and sentiment 
of the comments. 
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7.2 Categorical Variables 

Not all data is numeric or quantitative in nature. For instance, a categorical variable 
refers to a non-numeric variable that can take on one or more possible groupings 
or categories. Therefore, each observation can be assigned to a particular group. 
One example of a categorical variable is business type, which can be broken down 
into two categories: for-profit and not-for-profit. Methods of payment used at a 
convenience store can also be considered a categorical variable. 

It is often the case that categorical data has a relationship to a numeric response 
variable, which can help predict the response variable. Also, while categorical 
variables may seem problematic because of their non-numeric characteristic, it is 
possible to convert categorical variables into quantitative ones. For example, X 
might represent business type, for a specific company. We can let 0 indicate a not-
for-profit business, and 1 indicate a for-profit business. For a particular observation 
of .X = x, we specify 

. x =
{
0, if not-for-profit
1, if for-profit.

In this case, X is called a dummy or indicator variable. When dummy variables 
are used in a regression model, the dummy variable coefficients are interpreted in 
relation to a base level. Here, the dummy variable X denotes the for-profit category 
and the base level is not-for-profit, since for-profit corresponds to 1 and not-for-
profit corresponds to 0. For example, the coefficient for X is 20 indicates that for-
profit businesses contribute 20 more to the response variable than the not-for-profit 
businesses. 

Care should be taken in defining dummy variables since their definitions will 
dictate their interpretations. Dummy variables provide a convenient and easy way 
to account for categorical data, as we demonstrate in the application below. 

7.3 Employee Salary Application: Dummy Variables 

Suppose the management of Northrop Grumman want to test whether their employ-
ees’ annual salaries relate to education level and experience. The education level, 
highest degree achieved, years of experience, and the annual salary (in thousands 
of dollars) for each of the sampled 28 employees are shown in the data table above 
(Table 7.1). The degree variable contains three levels: a Bachelor of Arts (B.A.) 
degree, a Master of Science (M.S.) degree, and a Master of Science in Business 
Analytics (M.S.B.A.) degree. 

Use the data from Table 7.1 to do the following.

(a) Specify the model to be fit using “Education” and “Experience” variables to 
predict salary.
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Table 7.1 Salary data Education Degree Experience Salary 

Graduate MSBA 2 85 

Graduate MS 3 74 

Graduate MS 8 100 

Graduate MSBA 0 78 

Undergraduate BA 2 52 

Undergraduate BA 0 60 

Graduate MSBA 0 85 

Graduate MSBA 0 74 

Graduate MSBA 5 124 

Graduate MS 0 73 

Graduate MSBA 2 82 

Undergraduate BA 3 55 

Undergraduate BA 10 115 

Undergraduate BA 0 43 

Graduate MSBA 2 97 

Graduate MS 0 74 

Graduate MS 0 72 

Graduate MSBA 0 80 

Undergraduate BA 5 75 

Undergraduate BA 0 62 

Graduate MSBA 2 90 

Graduate MSBA 3 88 

Graduate MS 8 72 

Graduate MS 0 65 

Graduate MSBA 2 85 

Undergraduate BA 0 54 

Undergraduate BA 20 103 

Graduate MSBA 0 78

(b) Manually code a dummy variable denoting whether or not an employee has a 
graduate degree. Use 0 to denote if a candidate has an undergraduate degree, 
and use 1 to denote if a candidate has a graduate degree. 

(c) Fit the linear regression model. 
(d) Explicitly state the linear regression equation. 
(e) Interpret the intercept coefficient. 
(f) Interpret the variable coefficients. 
(g) Discuss the model fit. 

Solution 

(a) The multiple linear regression model can be written as 

.Y = β0 + β1X1 + β2X2 + ε,
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where 

• Y is the annual salary (in thousands). 
• . X1 is the years of experience. 
• . X2 is a graduate degree dummy variable (1 for an observation with a graduate 

degree, 0 otherwise). 
• . ε is the error. 

(b) Using the c function, the degree variable is 

degree_dummy = c(1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 
1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1) 

(c) The regression model is fit by creating the variables and using the lm function. 
The model details are then printed using the summary function: 

experience = c(2, 3, 8, 0, 2, 0, 0, 0, 5, 0, 2, 3, 10, 0, 2, 0, 
0, 0, 5, 0, 2, 3, 8, 0, 2, 0, 20, 0) 

salary = c(85, 74, 100, 78, 52, 60, 85, 74, 124, 73, 82, 55, 
115, 43, 97, 74, 72, 80, 75, 62, 90, 88, 72, 65, 
85, 54, 103, 78) 

reg = lm(salary ~ experience + degree_dummy) 
summary(reg) 

## 
## Call: 
## lm(formula = salary ~ experience + degree_dummy) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -28.554 -6.356 0.082 4.264 32.173 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 55.8495 4.9308 11.327 2.45e-11 *** 
## experience 2.9089 0.5771 5.040 3.36e-05 *** 
## degree_dummy 21.4332 5.3113 4.035 0.000452 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 12.63 on 25 degrees of freedom 
## Multiple R-squared: 0.5696, Adjusted R-squared: 0.5352 
## F-statistic: 16.54 on 2 and 25 DF, p-value: 2.65e-05
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(d) From the summary coefficients, we have: 

. Ŷ = 55.8495 + 2.9089X1 + 21.4332X2.

(e) We first note that the intercept coefficient is significant, indicating that the 
interpretation is valid. The expected salary is predicted to be $55,850 when 
all predictor variables are 0. Note that the dummy variable (. X2) is 0 when an 
employee has an undergraduate degree. 

(f) Since both variable coefficient p-values indicate statistical significance, it is 
appropriate to interpret the variable coefficients. 

• For every additional year of experience, the annual salary is expected to increase 
by $2909 assuming the degree variable remains constant. 

• Since 1 designates that an employee has a graduate degree, the coefficient 
indicates an increase of $21,433 in annual salary if someone has a graduate 
degree assuming the experience variable remains constant. 

(g) The model fit proves reasonably well given that the . R2 is 0.5696, indicating 
the regression model explains approximately 57% of the variation in the annual 
salary. 

7.4 Employee Salary Application: Dummy Variables 2 

In this application, we will demonstrate how to modify the model interpretation by 
changing the dummy variable. Use the data from Table 7.1 to do the following. 

(a) Create a new dummy variable that is 1 if someone has an undergraduate degree, 
and 0 if someone has a graduate degree. 

(b) Fit a linear regression using this new dummy variable and experience to predict 
salary. 

(c) Interpret the intercept coefficient. 
(d) Interpret the variable coefficients. 
(e) Discuss the differences between this model and the first application model. 

Solution 

(a) The dummy variable can easily be coded manually but also by using the 
ifelse command. The results are printed for the reader to verify the correct 
representation. 

degree_dummy2 = ifelse(degree_dummy == 1, 0, 1) 
degree_dummy2 

##  [1]  0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 00 0 1 1 0
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(b) The regression is fit and summarized using the commands below: 

reg2 = lm(salary ~ experience + degree_dummy2) 
summary(reg2) 

## 
## Call: 
## lm(formula = salary ~ experience + degree_dummy2) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -28.554 -6.356 0.082 4.264 32.173 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 77.2828 3.1086 24.861 < 2e-16 *** 
## experience 2.9089 0.5771 5.040 3.36e-05 *** 
## degree_dummy2 -21.4332 5.3113 -4.035 0.000452 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 12.63 on 25 degrees of freedom 
## Multiple R-squared: 0.5696, Adjusted R-squared: 0.5352 
## F-statistic: 16.54 on 2 and 25 DF, p-value: 2.65e-05 

(c) As in the previous problem, all three coefficient p-values indicate statistical 
significance; hence, it is appropriate to interpret the intercept and both variable 
coefficients. The expected salary is predicted to be $77,283 when all predictor 
variables are 0. Note that the dummy variable (. X2) is 0 when an employee has 
a graduate degree. 

(d) The variable coefficient interpretations are: 

• The annual salary coefficient interpretation is the same as in the previous 
application. 

• Since one designates that an employee has an undergraduate degree, the coef-
ficient indicates a decrease of $21,433 in annual salary if someone has an 
undergraduate degree, assuming the experience variable remains constant. 

(e) The model in this application proves a similar overall fit to the previous 
application model as shown by the .R2

a and . R2. The sign of the dummy 
coefficient is now the negative of the previous dummy coefficient. In addition, 
the intercept has changed to reflect the base level of employees with a graduate
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degree. Despite these differences, both models show the expected salary for an 
employee with no experience is $55,850 for those with an undergraduate degree 
and $77,283 for those with a graduate degree. 

7.5 Multilevel Categorical Variables 

If a categorical variable has k levels, or categories, .k − 1 dummy variables are 
required to adequately reflect the information in the categorical variable. For 
example, a variable with levels A, B, and C could be represented by the dummy 
variables . x1 and . x2. If . x1 and . x2 are assigned as 

. x1 =
{
1 if level B
0 otherwise

. x2 =
{
1 if level C
0 otherwise

then (.x1, x2) will have values of (0, 0) when level A occurs, (1, 0) for when level B 
occurs, and (0, 1) when level C occurs. Notice that since there were three levels, it 
was necessary to have two dummy variables to account for all three levels. Similarly, 
if a categorical variable has 10 levels, then 9 dummy variables would be necessary 
to extract all the information from the categorical variable. 

The following application demonstrates how to code dummy variables with more 
than two categories. 

7.6 Employee Salary Application: Dummy Variables with 
Multiple Levels 

Continuing with the salary data (Table 7.1) from the previous two applications, use 
the data to do the following. 

(a) Code the “Degree” variable as a vector of text strings. 
(b) Fit a linear regression using degree and experience to predict salary. 
(c) Explicitly state the linear regression equation. 
(d) Interpret the intercept coefficient. 
(e) Interpret the variable coefficients. 
(f) Discuss the differences between this model and the previous application model.
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Solution 

(a) A text string can be denoted using double quotes or single quotes. Using the c 
function, a vector of text strings is defined by: 

deg_string = c("MSBA", "MS", "MS", "MSBA", "BA", "BA", "MSBA", 
"MSBA", "MSBA", "MS", "MSBA", "BA", "BA", "BA", 
"MSBA", "MS", "MS", "MSBA", "BA", "BA", "MSBA", 
"MSBA", "MS", "MS", "MSBA", "BA", "BA", "MSBA") 

(b) The lm function automatically converts the deg_string variable to dummy 
variables, making its usage similar to that of the previous application: 

reg = lm(salary ~ experience + deg_string) 
summary(reg) 

## 
## Call: 
## lm(formula = salary ~ experience + deg_string) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -19.989 -5.088 -2.453 5.091 29.116 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 55.0931 4.3599 12.636 4.26e-12 *** 
## experience 3.0791 0.5129 6.004 3.38e-06 *** 
## deg_stringMS 12.2638 5.6886 2.156 0.0413 * 
## deg_stringMSBA 27.4550 5.1433 5.338 1.77e-05 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 11.15 on 24 degrees of freedom 
## Multiple R-squared: 0.6782, Adjusted R-squared: 0.6379 
## F-statistic: 16.86 on 3 and 24 DF, p-value: 4.171e-06 

(c) From the summary coefficients, we have: 

. Ŷ = 55.0931 + 3.0791X1 + 12.2638X2 + 27.4550X3,

where 

• . X1 is the years of experience.
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• . X2 is a dummy denoting if an employee has a M.S. degree. 
• . X3 is a dummy denoting if an employee has a M.S.B.A. degree. 

(d) The p-value of the intercept indicates statistical significance, which means the 
intercept can be interpreted. The interpretation should state the following. 

An employee with no experience who has a B.A. degree is expected to earn $55,093. 

(e) All variable coefficient p-values indicate statistical significance; hence, it is 
appropriate to interpret all three variable coefficients. 

• For every additional year of experience, the annual salary is expected to increase 
by $3079 assuming all other variables remain constant. 

• If someone has a M.S. degree, then their salary is expected to be $12,264 higher 
than someone with a B.A. degree assuming all other variables remain constant. 

• If someone has a M.S.B.A. degree, then their salary is expected to be $27,455 
higher than someone with a B.A. degree assuming all other variables remain 
constant. 

(f) Since the number of predictor variables increased in this application, the . R2

value will certainly increase. Therefore, we should look at . R2
a to compare 

models rather than . R2. The model in the previous application had . R2
a of 0.5352; 

the current model’s . R2
a of 0.6379 hence proves a better fit. 

7.7 Coding Dummy Variables 

In the first application, the dummy variable for noting if an employee had a 
graduate degree (degree_dummy) was created by replacing “Graduate” with 1 and 
“Undergraduate” with 0. In the third application, we took advantage of the lm 
function’s ability to automatically transform the vector of text strings (deg_string) 
to dummy variables. When R automatically created these dummy variables, a two-
step process took place. First, deg_string was converted into a factor variable. 
Second, the factor variable is then converted into dummy variables. In many 
instances, manually coding a variable as a factor variable proves advantageous. This 
can be done in R using the factor function. 

deg_factor = factor(deg_string) 

The deg_string vector above occurs as a character string. A convenient method 
for finding the variable type in R is to use the str function. 

str(deg_string) 

## chr [1:28] "MSBA" "MS" "MS" "MSBA" "BA" "BA" "MSBA" ...
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The “chr [1:28]” output denotes that the deg_string is a character string with 
28 vector elements. The remaining output refers to the contents of the vector. 
The typeof function can also be used here, but the structure (str) function 
provides more information and can be used to inspect the variables within a data 
frame. Below, a dataframe is inspected using the structure function and using 
the data.frame command to create a dataframe with the variables experience, 
salary, and deg_string. 

df = data.frame(experience, salary, deg_string) 
str(df) 

## ’data.frame’: 28 obs. of 3 variables: 
## \$ experience: num 2 3 8 0 2 0 0 0 5 0 ...  
## \$ salary : num 85 74 100 78 52 60 85 74 124 73 ... 
## \$ deg_string: chr "MSBA" "MS" "MS" "MSBA" ... 

From this output, we observe that the dataframe created has 28 observations with 
3 variables. Both experience and salary are shown to contain numeric values 
as indicated by the “num” type. The deg_string vector is shown to contain text 
strings as denoted by the “chr” type. 

The variable type of deg_string stands in contrast to the variable type of 
deg_factor: 

str(deg_factor) 

## Factor w/ 3 levels "BA","MS","MSBA": 3 2 2 3 1 1 3 3 3 2 ...  

This output denotes a factor variable with 3 levels corresponding to a B.A. 
degree, a M.S. degree, and a M.S.B.A. degree. Each level corresponds to a different 
integer. Since B.A. is mentioned first, the integer 1 is associated with B.A. while 
M.S. and M.S.B.A. correspond to integers 2 and 3, respectively. This arrangement 
can be confirmed by observing the ordered integers of the factor variable: 3 2 2 
3 1  . . . . align with the entries from deg_string: “MSBA” “MS” “MS” “MSBA” 
“BA”. . . . . 

By default, the levels are decided by ordering them alphabetically and then 
assigning integers starting with 1. This step results in the first level being the 
reference or base level. When fitting a regression model with dummy variables, each 
dummy variable occurs in reference to another level. As mentioned in the previous 
application, the dummy variable for M.S.B.A. is interpreted in reference to someone 
with a B.A. degree. One helpful technique in dealing with factor variables consists 
of the ability to relevel the factors: 

deg_factor2 <- relevel(deg_factor, ref = 3)
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In the previous code, we specify the reference level to be the previous third level 
(M.S.B.A.). The structure of the new variable becomes: 

str(deg_factor2) 

## Factor w/ 3 levels "MSBA","BA","MS": 1 3 3 1 2 2 1 1 1 3 ...  

While this new variable appears to be different, careful inspection reveals the 
sequence of this variable is still: “MSBA” “MS” “MS” “MSBA” “BA”. . . . . 

Releveling a factor variable will change the regression analysis coefficients and 
the interpretation of the coefficients, but will not change the significance of the 
model or the overall characteristics of the model. As an alternative to releveling, 
defining a factor variable with the correct level sequence can be done using the 
levels option in the factor function: 

deg_factor3 = factor(deg_string, 
levels = c("MSBA","BA","MS")) 

The structure of deg_factor2 is identical to that of deg_factor3. 
In most applications, manually coding dummy variables from factor variables is 

not necessary. Factor variable coding is typically enough to model a data set with 
linear regression. However, coding dummy variables manually can be done easily in 
R and several functions and packages exist to automatically code dummy variables. 
Two notable packages for this purpose include fastDummies or dummies. 

7.8 Employee Salary Application: Dummy Variable Coding 

With the salary data set, do the following. 

(a) Create a new degree factor variable with M.S. as the base level. 
(b) Fit a linear regression using this new factor variable and experience to predict 

salary. 
(c) Interpret the intercept coefficient. 
(d) Interpret the variable coefficients. 
(e) Discuss the differences between this model and the previous application model. 

Solution 

(a) Rather than using the relevel function, we specify the levels argument 
within the factor function with the first level being a M.S. degree. Recall that 
R uses the first level as the base level when using the lm function.
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deg_factor3 = factor(deg_string, 
levels = c("MS", "MSBA", "BA")) 

str(deg_factor) 

## Factor w/ 3 levels "BA","MS","MSBA": 3 2 2 3 1 1 3 3 3 2 ...  

(b) The model is fit with the new factor variable as follows: 

reg = lm(salary ~ experience + deg_factor3) 
summary(reg) 

## 
## Call: 
## lm(formula = salary ~ experience + deg_factor3) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -19.989 -5.088 -2.453 5.091 29.116 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 67.3569 4.4382 15.177 8.41e-14 *** 
## experience 3.0791 0.5129 6.004 3.38e-06 *** 
## deg_factor3MSBA 15.1912 5.3392 2.845 0.00894 ** 
## deg_factor3BA -12.2638 5.6886 -2.156 0.04134 * 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 11.15 on 24 degrees of freedom 
## Multiple R-squared: 0.6782, Adjusted R-squared: 0.6379 
## F-statistic: 16.86 on 3 and 24 DF, p-value: 4.171e-06 

(c) The p-value of the intercept indicates statistical significance, which means that 
the intercept can be interpreted. The interpretation holds that an employee with 
no experience who has a M.S. degree is expected to earn $67,357. 

(d) All variable coefficient p-values indicate statistical significance so it is appro-
priate to interpret all three variable coefficients. 

• The interpretation of the experience coefficient remains unchanged from that of 
the previous application. 

• If someone has a M.S.B.A. degree, then their salary is expected to be $15,191 
higher than someone with a M.S. degree assuming all other variables remain 
constant.



7.10 Sales Performance Application: Quadratic Modeling 153

• If someone has a B.A. degree, then their salary is expected to be $12,264 lower 
(or . −$12,264 higher) than someone with a M.S. degree, assuming all other 
variables remain constant. 

(e) The model in this application proves a similar overall fit to the previous 
application model as shown by the . R2

a and . R2. The dummy coefficients and 
the intercept have changed to reflect the base level of employees with a M.S. 
degree. Despite these differences, both models show that the expected salary 
for an employee with no experience is $55,093 for those with a B.A. degree, 
$67,357 for those with a M.S. degree, and $82,548 for those with a M.S.B.A. 
degree. 

7.9 Modeling Curvilinear Relationships 

When using linear regression, one makes the assumption that the data follows a 
linear relationship, but this scenario may not always be the case. Linear regression, 
despite the name, can handle nonlinear data by transforming the nonlinear compo-
nents of the data. 

Consider the data given in Fig. 7.1, which shows a nonlinear relationship between 
X and Y . The relationship in each scatterplot is said to be curvilinear. When we use 
a simple linear regression model to fit the data, we do not properly capture the 
pattern as shown by the blue line. Therefore, it becomes necessary to fit the data to 
a quadratic model by introducing an . X2 term. This relationship is shown in Fig. 7.1 
by the red curve. The quadratic model can be written as: 

.Y = β0 + β1X + β2X
2 + ε, (7.1) 

where . β0, . β1, and . β2, are the coefficient parameters of the model and . ε is the error 
term. Fitting this equation to a data set provides the regression equation: 

.Ŷ = b0 + b1X + b2X
2, (7.2) 

where . b0, . b1, and . b2 are the estimated coefficients. 

7.10 Sales Performance Application: Quadratic Modeling 

A manufacturer of quantum computing servers wants to investigate the relationship 
between the length of employment of their salespeople and the number of servers 
sold. The data in Table 7.2 lists the number of months each salesperson has been 
employed by the firm, “Employment,” and the number of servers sold, “Sales,” by 
21 randomly selected salespeople.
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Fig. 7.1 Scatterplots of curvilinear data 

If the response variable is Sales and the predictor variable is Employment, then 
do the following. 

(a) Fit a simple linear regression line to the data and print the model summary. 
(b) Plot the data in a scatterplot superimposing the simple linear regression line on 

the plot. 
(c) Fit a quadratic regression model to the data and produce the corresponding 

summary. 
(d) Plot the data in a scatterplot superimposing the quadratic model curve on the 

plot. 
(e) Explain which relationship (simple linear or quadratic) more accurately reflects 

the relationship between “Sales” and “Employment.”
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Table 7.2 Sales data Sales Employment 

379 57 

239 114 

225 100 

240 58 

403 75 

227 46 

338 106 

5 2 

167 50 

284 77 

378 93 

399 70 

239 106 

306 89 

325 86 

113 33 

270 67 

131 24 

30 5 

125 15 

267 52 

Solution 

(a) The summary can be found using the code below: 

df = read.csv("Employment.csv") 
reg = lm(Sales ~ Employment, data = df) 
summary(reg) 

## 
## Call: 
## lm(formula = Sales ~ Employment, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -127.812 -55.816 0.298 26.631 151.518 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 88.1515 38.4925 2.290 0.033628 * 
## Employment 2.4444 0.5412 4.517 0.000236 *** 
## ---
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Fig. 7.2 Sales and employment: linear trend 

## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 81.41 on 19 degrees of freedom 
## Multiple R-squared: 0.5178, Adjusted R-squared: 0.4924 
## F-statistic: 20.4 on 1 and 19 DF, p-value: 0.0002361 

(b) The abline function from Chap. 3 allows us to superimpose the line on the 
plot. Using the col option within the abline function allows us to color the 
line blue (Fig. 7.2). 

plot(df$Employment, df$Sales, xlab = "Employment", 
ylab = "Sales") 

abline(reg, col = "blue") 

(c) The I function can be used within a formula to include a squared term in the 
model as in the following: 

quad = lm(Sales ~ Employment + I(Employmentˆ2), data = df) 
summary(quad) 

## 
## Call: 
## lm(formula = Sales ~ Employment + I(Employment^2), 
## data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -96.041 -33.745 -6.939 37.994 95.651
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## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -26.44537 39.28955 -0.673 0.509441 
## Employment 8.32360 1.46025 5.700 2.09e-05 *** 
## I(Employment^2) -0.05068 0.01212 -4.183 0.000559 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 59.56 on 18 degrees of freedom 
## Multiple R-squared: 0.7555, Adjusted R-squared: 0.7283 
## F-statistic: 27.8 on 2 and 18 DF, p-value: 3.127e-06 

(d) To plot the quadratic curve, we employ the lines function, which connects 
the points with line segments. First, we create a vector of X values (xvalues) 
starting at the minimum value of 2, incrementing by 1 until we reach the 
maximum value of 114. Then, we place this vector in a dataframe with the 
column label of “Employment” since that is the name of the predictor variable. 
The predict function requires a model object and a dataframe from which to 
get predictions. The lines function requires we input a vector of X values 
followed by a vector of Y values. For aesthetics, the quadratic curve is colored 
red using the col option (Fig. 7.3). 

plot(df$Employment, df$Sales, xlab = "Employment", 
ylab = "Sales") 

xvalues = 2:114 
xvalues_df = data.frame(Employment = xvalues) 
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Fig. 7.3 Sales and employment: curvilinear trend
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pred = predict(quad, xvalues_df) 
lines(xvalues, pred, col = "red") 

(e) The superimposed model fit line and the curve in the scatterplots both indicate 
strong fits. However, the relationship between the length of time employed and 
the number of sales is better captured using the quadratic model. The . R2

a values 
in the summaries also show the quadratic model proves a better fit since 0.7283 
is greater than 0.4924. 

7.11 Mean-Centering 

In many cases, the intercept does not reveal anything interesting about the data, 
or worse, the intercept does not make sense. These scenarios can be attributed to 
the intercept reflecting the expected value of the response when all of the predictor 
variables are zero. If a predictor variable being zero does not make sense, then the 
corresponding prediction will not make sense either. 

Mean-centering a predictor variable allows the variable to retain the spread, 
but the value of the mean-centered variable occurs in reference to the mean. To 
mean-center the variable X, simply subtract the mean from each observation. If . xi

represents the ith value of X, then the ith transformed value is: 

.xi − x̄. (7.3) 

Note the mean of the transformed data will be zero, which allows for a convenient 
interpretation of the intercept. The application below provides an example of how 
mean-centering can be utilized. 

7.12 Marketing Toys Application: Mean-Centering 

A popular toy company sells two different toys: toy A and toy B. The company 
wishes to know how much to spend on marketing to achieve their sales goals. The 
data are in the file: MarketingToys.csv. Units of Sales and Marketing are in 
thousands of USD. The data can be loaded into R using read.csv. Additionally, 
we observe the first 6 observations: 

df = read.csv("MarketingToys.csv") 
head(df) 

## Toy Sales Marketing 
## 1 A 855.844 174.081
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## 2 A 728.745 175.027 
## 3 B 887.742 180.757 
## 4 B 604.876 168.615 
## 5 B 703.407 162.877 
## 6 A 579.380 164.438 

After loading in the data, complete the following. 

(a) Create scatterplots of the marketing expenditures versus the sales revenue for 
all observations, toy A only, and toy B only. 

(b) Fit a model and print a summary predicting sales as a function of marketing and 
the toy type. 

(c) Interpret the coefficients. 
(d) Mean center the marketing variable and repeat part b. 
(e) Interpret the intercept coefficient for the model in part d. 
(f) Change the base level, produce a summary and state the new meaning of the 

intercept. 

Solution 

(a) The overall scatterplot is given using the plot command. The xlab and ylab 
options are specified to produce a well-labeled plot (Fig. 7.4): 

plot(df$Marketing, df$Sales, xlab = "Marketing (USD)", 
ylab = "Sales (USD)") 
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Fig. 7.4 Marketing and sales of products A and B
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A few coding details regarding the next code chunk: 

(1) For coding ease, the dataframe df is broken up into two data frames using 
simple indexing. The resulting df_A and df_B represent dataframes of products 
A and B, respectively. 

(2) Here, we introduce par to allow for two graphs to be posted side by side. The 
mfrow = c(1,2) option within par specifies 1 row and 2 columns of graphs. 

(3) Within the plot command, we specify the limits of the X and Y axes using xlim 
and ylim. Setting the upper and lower limits of each axis allows for a direct 
visual comparison between both products. 

(4) Toys A and B are colored as “navy blue” and “maroon,” respectively (Fig. 7.5). 

df_A = df[df$Toy == "A",] 
df_B = df[df$Toy == "B",] 

par(mfrow=c(1,2)) 
plot(df_A$Marketing, df_A$Sales, xlab = "Marketing", 
ylab = "Sales", xlim = c(120, 220), 
ylim = c(300, 2200), col = "navyblue") 

plot(df_B$Marketing, df_B$Sales, xlab = "Marketing", 
ylab = "Sales", xlim = c(120, 220), 
ylim = c(300, 2200), col = "maroon") 

120 160 200 

50
0

10
00

15
00

20
00

 

Marketing 

S
al

es
 

120 160 200 

50
0

10
00

15
00

20
00

 

Marketing 

S
al

es
 

Fig. 7.5 Sales and marketing by toy model (in 1000s USD)
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(b) Using the dataframe df, a fit can easily be made using the lm function: 

reg1 = lm(Sales ~ Marketing + Toy, data = df) 
summary(reg1) 

## 
## Call: 
## lm(formula = Sales ~ Marketing + Toy, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -253.04 -55.00 -3.60 60.37 245.84 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -907.5484 52.7491 -17.20 <2e-16 *** 
## Marketing 9.3253 0.2875 32.43 <2e-16 *** 
## ToyB -76.8916 6.5574 -11.73 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 83.74 on 997 degrees of freedom 
## Multiple R-squared: 0.7158, Adjusted R-squared: 0.7152 
## F-statistic: 1255 on 2 and 997 DF, p-value: < 2.2e-16 

(c) The interpretation of the coefficients is as follows: 

• Toy B has on average $76,892 less sales than toy A, or alternatively, toy A has 
sales on average $76,892 more than toy B. 

• For every $1000 increase in marketing expenditures, there is expected to be 
$9325 more sales. 

• The intercept is the value when all variables are 0 (0 indicates toy A the ToyB 
dummy). Note that it would not make sense for sales to be negative which implies 
the intercept should not be interpreted. 

(d) Subtract the mean of the marketing expenditures from all the marketing values. 
The summary displays this new variable and confirms the new mean is zero: 

df$Mktg_MC = df$Marketing - mean(df$Marketing) 
summary(df$Mktg_MC) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## -29.8013 -8.2923 -0.8773 0.0000 7.3855 39.3897
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The regression is now fit using the mean-centered variable with Toy: 

reg2 = lm(Sales ~ Mktg_MC + Toy, data = df) 
summary(reg2) 

## 
## Call: 
## lm(formula = Sales ~ Mktg_MC + Toy, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -253.04 -55.00 -3.60 60.37 245.84 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 736.2614 4.2145 174.70 <2e-16 *** 
## Mktg_MC 9.3253 0.2875 32.43 <2e-16 *** 
## ToyB -76.8916 6.5574 -11.73 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 83.74 on 997 degrees of freedom 
## Multiple R-squared: 0.7158, Adjusted R-squared: 0.7152 
## F-statistic: 1255 on 2 and 997 DF, p-value: < 2.2e-16 

(e) In the previous part, a zero for both variables indicates that the sales from toy A 
without any marketing expenses will be $736,261. 

(f) To change the base level, we redefine the Toy variable with B as the base level 
and then fit the regression model: 

df$Toy = factor(df$Toy, levels = c("B","A")) 
reg3 = lm(Sales ~ Mktg_MC + Toy, data = df) 
summary(reg3) 

## 
## Call: 
## lm(formula = Sales ~ Mktg_MC + Toy, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -253.04 -55.00 -3.60 60.37 245.84 
## 
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 659.3698 4.2145 156.45 <2e-16 *** 
## Mktg_MC 9.3253 0.2875 32.43 <2e-16 *** 
## ToyA 76.8916 6.5574 11.73 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 83.74 on 997 degrees of freedom 
## Multiple R-squared: 0.7158, Adjusted R-squared: 0.7152 
## F-statistic: 1255 on 2 and 997 DF, p-value: < 2.2e-16 

In this case, a 0 for both variables indicates that the sales with mean marketing expenditures 
will be $659,370. 

7.13 General Linear Regression Model 

Models in which the parameters (.β0, β1, . . . , βp) all correspond to variables with 
exponents of one are called linear models. However, as shown in the quadratic 
model, it is possible to square the predictor variable and use the resulting square 
as another predictor variable. This method allows us to model nonlinear functions 
using linear regression techniques. Since the aforementioned transformed models 
can be represented as linear models, they are a class of regression models that are 
referred to as general linear models. 

The general linear model involving p predictor variables is 

.Y = β0 + β1Z1 + β2Z2 + . . . + βpZp + ε. (7.4) 

Each of the predictor variables . Zi is a function of .X1, X2, . . . , Xk (the variables for 
which data have been collected). 

The simplest case occurs when we have collected data for just one variable . X1
and want to estimate Y by using a straight-line relationship. In this case .Z1 = X1. 
The resulting model, the simple linear regression model is: 

.Y = β0 + β1X1 + ε. (7.5) 

Within the framework of the general linear regression model, this model is called a 
simple first-order model with one predictor variable. 

To account for a curvilinear relationship, we might set .Z1 = X1 and .Z2 = X2
1. 

The resulting quadratic model is 

.Y = β0 + β1X1 + β2X
2
1 + ε (7.6) 

and is called a simple second-order model with one predictor variable.
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Table 7.3 General linear regression model versus generalized linear model 

General linear 

regression model Generalized linear model 

Typical estimation method Least squares Maximum likelihood or Bayesian 

Examples ANOVA, linear regression Logistic regression, Poisson regression, 

gamma regression, general linear 

regression model 

R function lm() glm() 

If the original data set consists of observations for Y and two predictor variables 
. X1 and . X2, we might develop a second-order model with two predictor variables: 

.Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 + ε. (7.7) 

In this model, we include the variable .Z5 = X1X2 to account for the potential effects 
of the two variables acting together. This type of effect is called an interaction. 

Sometimes, the general linear regression model is referred to as the general linear 
model, which should not be confused with the Generalized Linear Model (GLM). 
The GLM serves as a flexible generalization of linear regression that allows for 
response variables that have non-normal distributions. The GLM generalizes linear 
regression by using a link function on the response variable. These differences are 
summarized in Table 7.3. 

7.14 Interactions 

To simplify the discussion, we focus here on the case of two predictor variables with 
an interaction. The resulting model is therefore: 

.Y = β0 + β1X1 + β2X2 + β3X1X2 + ε. (7.8) 

If . X2 is a dummy variable, then the model changes for each outcome of . X2. 
When .X2 = 0, the model is: 

.Y = β0 + β1X1 + ε, (7.9) 

but when .X2 = 1, the model is: 

. Y = β0 + β1X1 + β2(1) + β3X1(1) + ε.

.Y = (β0 + β2) + (β1 + β3)X1 + ε. (7.10)
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Notice the intercept for Eq. (7.10) is .β0 + β2 and the slope is .β1 + β3. By including 
an interaction with a dummy variable, the interaction model is equivalent to creating 
two separate models for each category the dummy variable represents. 

7.15 Marketing Toys Application: Interactions 

Using the marketing toys data from the previous application, perform the following 
steps. 

(a) Fit a model with the mean-centered marketing expenditures, the toy type, and an 
interaction as predictors of the sales. Use “B” as the base level for the dummy 
variable and print a summary of the fitted model. 

(b) Interpret the coefficient of the interaction. 
(c) Use the summary to find the fitted models that would result if we were to fit 

models for type A and type B separately. 
(d) Plot the mean-centered marketing variable on the x-axis and the sales on the 

y-axis, then plot lines representing both toy types. 
(e) Fit a model using only the type B to predict sales using marketing. How do the 

coefficient values differ from those in the model with the interaction? 

Solution 

(a) Using the mean-centered marketing variable and the interaction Mktg_MC:Toy, 
the model is fit: 

reg = lm(Sales ~ Mktg_MC + Toy + Mktg_MC:Toy, data = df) 
summary(reg) 

## 
## Call: 
## lm(formula = Sales ~ Mktg_MC + Toy + Mktg_MC:Toy, data = 
## df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -255.851 -54.512 -2.249 61.757 242.921 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 650.3707 4.7433 137.113 < 2e-16 *** 
## Mktg_MC 7.9869 0.4383 18.223 < 2e-16 *** 
## ToyA 79.2695 6.5348 12.130 < 2e-16 *** 
## Mktg_MC:ToyA 2.3232 0.5774 4.023 6.18e-05 *** 
## ---
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## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 83.11 on 996 degrees of freedom 
## Multiple R-squared: 0.7203, Adjusted R-squared: 0.7195 
## F-statistic: 855.1 on 3 and 996 DF, p-value: < 2.2e-16 

(b) The interaction can be interpreted as: 

For every dollar spent on marketing, there is an additional $2.32 increase in sales for toy A 
as compared to toy B. 

(c) From the summary, when ToyA is 0, the dummy variable and interaction 
coefficient can be disregarded. If X and Y denote mean-centered marketing and 
sales in thousands of USD, the resulting model for toy B is: 

. Ŷ = 650.3707 + 7.9869X.

The intercept for the toy A model can be found by adding the coefficient of the 
ToyA dummy variable to the intercept. The interaction term of the model can 
be added to the slope of the toy B model to get the slope of the toy A model. If 
X and Y denote mean-centered marketing and sales, respectively, the resulting 
model for toy A is: 

. Ŷ = (650.3707 + 79.2695) + (7.9869 + 2.3232)X

. Ŷ = 729.6402 + 10.3101X.

(d) Altering the plot code in the previous application to contain the mean-centered 
marketing expenditures on the x-axis, we have: 

plot(df$Mktg_MC, df$Sales, xlab = "Mean-centered Marketing", 
ylab = "Sales") 

abline(a =  650.3707, b =  7.9869, col = "maroon", lwd = 2) 
abline(a =  729.6402, b =  10.3101, col = "navyblue", lwd = 2) 
legend('topleft', c('Toy A','Toy B'), lty = c(1,1), 

col = c("navyblue", "maroon"), lwd = 2) 

In the above code, we explicitly state the options of the abline function to match the 
intercept (a) and the slope (b) for each model. We use the lwd option to increase the width 
of the line. We also add a legend to clarify which line denotes each toy. The result is shown 
in Fig. 7.6. 

(e) Fitting a model for Toy A using the mean-centered marketing variable is done 
using the following code.
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Fig. 7.6 Scatterplot of toys 

df_A$Mktg_MC = df_A$Marketing - mean(df_A$Marketing) 
reg = lm(Sales ~ Mktg_MC, data = df_A) 
summary(reg) 

## 
## Call: 
## lm(formula = Sales ~ Mktg_MC, data = df_A) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -255.851 -53.418 -2.728 58.221 240.489 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 798.9623 3.6056 221.59 <2e-16 *** 
## Mktg_MC 10.3100 0.3647 28.27 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 80.62 on 498 degrees of freedom 
## Multiple R-squared: 0.6161, Adjusted R-squared: 0.6153 
## F-statistic: 799.1 on 1 and 498 DF, p-value: < 2.2e-16
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For the toy A model, the slope is the same as the result from part c. Since marketing was 
centered based upon the marketing for Toy A alone, the intercept differs between the model 
given here and from part c. 

7.16 Case Study: Social Media 

7.16.1 Problem Statement 

Social media has become a driving force in the world of business in recent years. 
It provides users with a forum to express their views, as well as to teach and learn 
from other users. Yet some posts do not get much notice while others go viral. Being 
able to create popular posts can be a very profitable skill, as seen by the revenue 
generated by many influencers who are able to regularly produce attention-grabbing 
posts. 

Luke is the founder and CEO of a small video marketing and production 
company. He currently manages many of his clients’ videos and distributes them 
on a popular social media platform. Luke measures the success of his videos by 
the number of “likes” that the videos get, since the number of likes has a direct 
relationship with the profit from ads that will be collected. After collecting some 
data, Luke seeks to find which promoter he should use, and the effects the sentiment 
and the age of a video have on the number of likes. 

Here we will use regression analysis to help Luke understand his data and, 
therefore, generate larger profits for his clients. 

7.16.2 Data Description 

Luke was able to collect a small data set consisting of 157 videos containing 4 
variables. The variables are listed below. 

• Likes—The number of likes a video received. 
• Promoter—A categorical variable representing the promoter corresponding to the 

video. 
• Age—The age of the video in days from the reference date of August 10, 2021. 
• Sentiment—The average sentiment score of the comments from the video. The 

sentiment score is calculated based on a sentiment scoring algorithm using a 
dictionary which maps positive or negative sentiments with each word. Negative 
values correspond to a negative sentiment, whereas positive values correspond 
to a positive sentiment. For more information on sentiment scoring algorithms, 
access the R help file for the get_sentiment function. 

The data is contained within the Youtube.csv file. Here we explore the data set 
by loading in and obtaining the head of the dataframe.
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df = read.csv("Youtube.csv") 
head(df) 

## Likes Promoter Age Sentiment 
## 1 240372 A 437 0.115398920 
## 2 100243 A 234 0.005290118 
## 3 19015 A 4 0.022849940 
## 4 188370 A 364 -0.003857647 
## 5 173882 A 358 -0.016700042 
## 6 26730 A 94 -0.001736301 

From the head function, the Promoter variable has the incorrect variable type 
(chr). Therefore, we convert the variable to a factor variable. 

df$Promoter = factor(df$Promoter) 

Next, we visualize the data using the plot function. For a more interesting plot, 
the colors vector is created using an ifelse function from the “Promoter” variable 
designating promoter “A” as “red,” and promoter “B” as “blue.” Then, we pass 
along colors to the col argument within the plot function. The dataframe df 
uses referencing to exclude column 2 since that column is represented by the red 
and blue colors (Fig. 7.7). 
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Fig. 7.7 Scatterplot matrix colored by promoters
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colors = ifelse(df$Promoter == "A", "red", "blue") 
plot(df[, -2], col = colors) 

Investigating the scatterplot matrix above yields some interesting findings. Most 
notably, the Likes variable follows a different pattern for each promoter type since 
the red and blue observations are distinct. 

7.16.3 Promoter A Model 

Since the scatterplot matrix above has notably different characteristics for each 
promoter, we can segment the data by promoter which will allow us to analyze 
the data from each promoter separately. 

First, we fit a multiple regression model on the dataframe for promoter “A” using 
all of the other variables to predict the Likes variable. 

df_A = df[df$Promoter == "A",] 
reg = lm(Likes ~ Age + Sentiment, data = df_A) 
summary(reg) 

## 
## Call: 
## lm(formula = Likes ~ Age + Sentiment, data = df_A) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -52926 -18793 -4955 18129 79420 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -20326.65 5665.94 -3.588 0.000566 *** 
## Age 552.79 19.09 28.961 < 2e-16 *** 
## Sentiment -28295.58 54576.69 -0.518 0.605537 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 25230 on 82 degrees of freedom 
## Multiple R-squared: 0.9133, Adjusted R-squared: 0.9112 
## F-statistic: 432 on 2 and 82 DF, p-value: < 2.2e-16 

This summary has a high . R2
a with the Age being significant and Sentiment being 

insignificant according to the p-values. Recalling from the scatterplot matrix, the 
relationship between Likes and Age is curvilinear. Hence, we add another variable 
for the squared Age to the regression formula.
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reg=lm(Likes~Age+I(Ageˆ2)+Sentiment, data = df_A) 
summary(reg) 

## 
## Call: 
## lm(formula = Likes ~ Age + I(Age^2) + Sentiment, 
## data = df_A) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -37536 -9954 -1165 8418 37159 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.307e+04 5.045e+03 4.574 1.7e-05 *** 
## Age 2.831e+01 4.592e+01 0.616 0.539 
## I(Age^2) 1.045e+00 8.847e-02 11.808 < 2e-16 *** 
## Sentiment 8.313e+02 3.338e+04 0.025 0.980 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 15390 on 81 degrees of freedom 
## Multiple R-squared: 0.9681, Adjusted R-squared: 0.967 
## F-statistic: 820.7 on 3 and 81 DF, p-value: < 2.2e-16 

From the summary, the . R2
a increased by more than 0.05; hence the model fit has 

improved. Next, we again analyze the p-values of the coefficients, with the largest 
p-value being that of the Sentiment variable. From this observation, we drop the 
Sentiment from the model and observe the resulting . R2

a . 

reg=lm(Likes~I(Ageˆ2)+Age, data = df_A) 
summary(reg) 

## 
## Call: 
## lm(formula = Likes ~ I(Age^2) + Age, data = df_A) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -37548 -10042 -1153 8462 37179 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 2.306e+04 4.955e+03 4.653 1.24e-05 *** 
## I(Age^2) 1.045e+00 8.769e-02 11.911 < 2e-16 *** 
## Age 2.845e+01 4.531e+01 0.628 0.532 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 15290 on 82 degrees of freedom 
## Multiple R-squared: 0.9681, Adjusted R-squared: 0.9674 
## F-statistic: 1246 on 2 and 82 DF, p-value: < 2.2e-16 

While removing Sentiment only marginally increases the . R2
a , the model 

complexity decreases which adds to its interpretability. Also, the p-value of the 
unsquared Age variable is insignificant according to its p-value; therefore, we 
remove this variable from the model as well. 

reg = lm(Likes ~ I(Ageˆ2), data = df_A) 
summary(reg) 

## 
## Call: 
## lm(formula = Likes ~ I(Age^2), data = df_A) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -37563 -9982 -874 8452 35600 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.571e+04 2.564e+03 10.03 5.72e-16 *** 
## I(Age^2) 1.098e+00 2.191e-02 50.10 < 2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 15240 on 83 degrees of freedom 
## Multiple R-squared: 0.968, Adjusted R-squared: 0.9676 
## F-statistic: 2510 on 1 and 83 DF, p-value: < 2.2e-16 

The . R2
a again increases by a miniscule amount. However, by removing the 

unsquared variable from the model, the interpretation of the coefficient in the fitted 
model for promoter A is simplified significantly. The interpretation is: 

For every unit increase in the squared age, the number of likes is expected to increase by 
1.098.
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The interpretation of the intercept for promoter A videos is: 

When the video is first released (the age is zero days), the expected number of likes is 
25,710. 

7.16.4 Promoter B Model 

A similar process can be done to get a model for promoter B. The resulting model 
is shown below in the summary here. 

df_B = df[df$Promoter == "B",] 
reg = lm(Likes ~ I(Ageˆ2), data = df_B) 
summary(reg) 

## 
## Call: 
## lm(formula = Likes ~ I(Age^2), data = df_B) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -3315.4 -901.5 109.4 1117.6 3942.9 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 8.596e+03 2.886e+02 29.79 <2e-16 *** 
## I(Age^2) 5.726e-02 2.599e-03 22.03 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 1696 on 70 degrees of freedom 
## Multiple R-squared: 0.874, Adjusted R-squared: 0.8722 
## F-statistic: 485.5 on 1 and 70 DF, p-value: < 2.2e-16 

The interpretation of the Age-squared coefficient for the promoter B model is: 

For every unit increase in the squared age, the number of likes is expected to increase by 
0.05726. 

The interpretation of the intercept for promoter B videos is: 

When the video is first released (the age is zero days), the expected number of likes is 8596.
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7.16.5 Combined Model 

As shown earlier in this chapter, an interaction can be added to model the promoter 
A and B models jointly. 

reg = lm(Likes ~ I(Ageˆ2) + Promoter:I(Ageˆ2) + Promoter, 
data = df) 

summary(reg) 

## 
## Call: 
## lm(formula = Likes ~ I(Age^2) + Promoter:I(Age^2) + 
## Promoter, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -37563 -3310 -187 2800 35600 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.571e+04 1.898e+03 13.548 < 2e-16 
## I(Age^2) 1.098e+00 1.622e-02 67.672 < 2e-16 
## PromoterB -1.712e+04 2.700e+03 -6.341 2.44e-09 
## I(Age^2):PromoterB -1.041e+00 2.371e-02 -43.892 < 2e-16 
## 
## (Intercept) *** 
## I(Age^2) *** 
## PromoterB *** 
## I(Age^2):PromoterB *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 11280 on 153 degrees of freedom 
## Multiple R-squared: 0.982, Adjusted R-squared: 0.9816 
## F-statistic: 2781 on 3 and 153 DF, p-value: < 2.2e-16 

From this model with interactions, the . R2
a has improved due to the number of 

model observations increasing. The coefficient for Age-squared remains 1.098. The 
interpretation of the coefficient for the interaction is: 

For every unit increase in the squared age, there is a 1.041 decrease in Likes for promoter 
B videos as compared to promoter A videos. 

Note that the intercept for promoter B videos is also less than that of the intercept 
for promoter A videos.
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Fig. 7.8 Scatterplot colored by promoters 

plot(Likes ~ Age, col = colors, data = df) 

xvalues = 0:500 
xvalues_df_A = data.frame(Age = xvalues, Promoter = "A") 
pred = predict(reg, xvalues_df_A) 
lines(xvalues, pred, lwd = 1.5) 

xvalues = 0:500 
xvalues_df_B = data.frame(Age = xvalues, Promoter = "B") 
pred = predict(reg, xvalues_df_B) 
lines(xvalues, pred, lwd = 1.5) 

legend('topleft', c('Promoter A','Promoter B'), pch= 1, 
col = c("red", "blue")) 

In Fig. 7.8, the promoter A and B videos are distinguished by red and blue colors, 
respectively. The Likes are plotted on the y-axis and the Age is plotted on the x-
axis. The regression trends are plotted in black for both the promoter A model and 
the promoter B model. 

7.16.6 Case Conclusion 

From the results shown above, a clear distinction exists between the two promoters. 
Promoter A not only has the initial Likes but also has the stronger trend for the 
number of Likes when accounting for Age. Luke can confidently contract promoter 
A to advertise his clients’ videos assuming the costs are not prohibitive. The quality
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of promotion can be continued, as promoter A has the capacity to handle all of the 
videos. 

This case study demonstrates the utility of interactions and dummy variables 
within regression analysis. Observing the scatterplots carefully was integral, and 
allowed for the data and the models to be separated by promoter. This led us to 
create a model for each promoter separately and then a joint one to account for both 
promoters. 

Problems 

1. Job Changes Data with Dummy Variables 
Using the JobChanges.csv file, answer the following questions. 

a. Fit a simple linear regression model to predict the annual salary in thousands 
of USD (Salary) as a function of the number of job changes (Jobs). Print a 
summary of the model. 

b. What percent of the variation in Salary can be explained by the model in the 
previous part? 

c. Create a barplot of the 3 education levels in the Education variable by 
passing a summary of the Education factor into the barplot function. 

d. Fit a multiple regression model to predict the Salary using Jobs and 2 
dummy variables representing education levels as predictor variables. Print 
a summary of the model. 

e. Create a scatterplot of Jobs versus Salary. Overlay the scatterplot with the 
regression line for the HS level as given in the previous model. Also, overlay 
the scatterplot with the regression lines for the other 2 levels as given by the 
previous model. 

f. How should the dummy variables be interpreted? 

2. Job Changes Data with Interactions 
Using the JobChanges.csv file, answer the following questions. 

a. Fit a multiple regression model on the data set predicting Salary as a func-
tion of Jobs and Education. Include an interaction between the predictor 
variables. Print a summary of the model. 

b. Interpret the interaction coefficients from the previous model. 
c. Create a scatterplot of Jobs versus Salary. Overlay the scatterplot with the 

regression line for the HS level as given in the previous model. Also, overlay 
the scatterplot with the regression lines for the remaining levels as given by 
the previous model. 

d. Using the multiple regression model with the interaction from part a, specify 
the simple linear regression equation that predicts Salary using Jobs as a 
predictor for high school graduates (HS). Also, specify the same simple linear
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regressions for college graduates (bachelors) and people with a graduate 
degree (masters). 

e. Repeat the plot from part c and color the observations by Education level. 
f. Create and add a variable called JobsM which mean-centers the Jobs variable. 
g. Fit a multiple regression model which uses the following predictors: 

• A dummy variable for observations at the bachelors level 
• A dummy variable for observations at the masters level 
• The mean-centered Jobs 
• Interactions between each dummy variable and the mean-centered Jobs 

h. Interpret the interactions from the previous part. 

3. Automotive Tire Sales with Categorical Variables 
Here we will use the tires data to solve the questions below. Load in the 
Tires.csv file by running the code chunk below. 

## df = read.csv("TireSales.csv") 

a. Get a summary of the data using the summary function. 
b. List the variables that are numeric and the variables that are categorical. 
c. Generate a linear model to predict the response variable (Sales) from all of 

the other variables in the data set. 
d. Display a summary of the model given from the previous part. 
e. Interpret the dummy variables from the summary in part d. 

4. Facebook Analysis with Dummy Variables 
Using the Facebook.csv file, answer the following questions. 

a. Fit a simple linear regression model to predict the number of Facebook friends 
(Friends) as a function of the number of friend requests sent (Requests). 
Print a summary of the model. 

b. What percent of the variation in number of friends can be explained by the 
model in the previous part? 

c. Fit a multiple regression model to predict the number of friends (Friends) 
using the friend requests sent (Requests) and sex (Sex) as predictor variables. 
Print a summary of the model. 

d. Create a scatterplot of Requests versus Friends. Overlay the scatterplot 
with the regression line for males as given in the previous model. Also, overlay 
the scatterplot with the regression line for females as given by the previous 
model. 

e. How should the sex dummy variable be interpreted?
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5. Facebook Analysis with Interactions 
Using the Facebook.csv file, answer the following questions. 

a. Fit a multiple regression model on the data set predicting Friends as a 
function of Sex and Requests. Include an interaction between the predictor 
variables. Print a summary of the model. 

b. Interpret the interaction coefficient from the previous model. 
c. Create a scatterplot of Requests versus Friends. Overlay the scatterplot with 

the regression line for males as given in the previous model. Also, overlay the 
scatterplot with the regression line for females as given by the previous model. 

d. Using the multiple regression model with the interaction from part a, specify 
the simple linear regression equation which predicts the number of Friends 
using Requests for males. Also, specify the same simple linear regression 
equation for females. 

e. Repeat the plot from the previous part and color the observations by Sex. 
f. Fit a multiple regression model which uses the following predictors: 

• A dummy variable for females 
• The mean-centered friend requests 
• An interaction



Chapter 8 
Model Diagnostics 

All generalizations are false, including this one. 

—Mark Twain 

8.1 Introduction 

Knowing the correct mathematical model can be tremendously helpful when trying 
to make predictions. In many cases, however, a mathematical model that is relatively 
close to the true state may suffice. Yet this process brings its challenges. The quote 
from Mark Twain shown above alludes to the difficulty of attempting to find a 
mathematical model that is acceptable enough. 

In previous chapters, we discussed how to find and evaluate models. In this 
chapter, we explore methods for evaluating regression models—one important tool 
is known as diagonostic plots—and determine if they are acceptable for a given 
situation. We will discuss diagnostic plots after a review of the mathematical model 
for multiple regression. While diagnostic plots greatly indicate when the regression 
model assumptions are violated, fixing these model violations requires additional 
analysis. We introduce methods for fixing some common model assumption vio-
lations. We also address unusual observations of the data that may occur in many 
cases. Lastly, a case study about an automotive sales conglomerate allows us to 
demonstrate how to run the analysis in detail with the relevant diagnostic plots and 
the R source code. 

8.2 Multiple Regression Model Revisited 

In Chap. 5, Eq. 5.1 describes how the response variable Y relates to the predictor 
variables .X1, X2, . . . , Xp and an error term . ε: 

.Y = β0 + β1X1 + β2X2 + · · · + βpXp + ε, (8.1) 
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where .β0, β1, β2, . . . , βp are the model parameters. As alluded to in the chapter 
introduction, generalizations must be met with skepticism since the actual mathe-
matical model can be elusive or even impossible to find. In Chap. 7, we explored 
the general linear model, which provides some techniques for modeling nonlinear 
relationships by manipulating the data to conform to the model from Eq. 5.1. After  
making such manipulations, it is important to determine if the model assumptions 
are met or if another model should be considered. 

8.3 Model Assumptions 

In Chap. 4, the assumptions for the simple linear regression model were stated. Here, 
we extend the assumptions to the multiple regression case. The four assumptions of 
the multiple regression model are listed below: 

1. The relationship between the response and each predictor variable is linear (or 
.E[εi] = 0 for each . εi). 

2. Each value of . εi is independent. 
3. The random variable, . ε, is normally distributed. 
4. The variance of . ε, denoted as . σ 2, is the same for all observations. 

The assumptions are summarized in the statement below: 

. εi
i.i.d.∼ N(0, σ 2).

In this chapter, we discuss these assumptions in detail, as they are frequently vio-
lated in practice. The effect of the violation depends on which model assumption is 
not met and the degree of the divergence. In one such consequence, the coefficients 
might be biased, or some of the fundamental statistics from the regression may be 
invalid. 

8.4 Violations of the Model Assumptions 

If the relationship between a response and one or more predictor variables is 
nonlinear, then a linear model is not appropriate for the relationship. To resolve 
this issue, one can conduct transformations of the predictor variable as discussed in 
Chap. 7, which allows some nonlinear relationships to fit into the framework of the 
general linear model. In some cases, it may be necessary to transform the response 
variable. 

If the errors (. ε) are dependent, then the relationship between response and 
predictors is not correctly captured in the confidence and prediction intervals. For 
example, if the variance of the errors changes as the response increases, then the
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estimate of the standard deviation is invalid, which will make the confidence and 
prediction intervals invalid. 

8.5 Residual Analysis 

To check these linear regression assumptions, a number of diagnostic measures can 
be employed. One popular method is referred to as residual analysis. To analyze 
the residuals of a regression model, we can look at a plot of the residuals on the 
y-axis and the fitted values (. Ŷ ) on the  x-axis. In the simple linear regression case, 
the predictor variable can be plotted on the x-axis in place of the fitted values. 

Figure 8.1a shows a residual plot in which the residuals have roughly the same 
variation across all fitted values, from left to right. In addition, the slope of the 
residuals and the fitted values is zero. Figure 8.1b and d, on the other hand, 
demonstrates a quadratic or parabolic relationship. The residuals in Fig. 8.1c form  
a cubic relationship with the fitted values. Having a pattern such as a quadratic or 
cubic relationship as shown in the figures violates the linearity assumption. 
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Fig. 8.1 Residual plots
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8.6 Sales Performance Application: Residual Analysis 

Recall from Chap. 7, we determined that a quadratic function best fit the sales data 
from Table 7.2. The linear model was fit using the following R commands. 

df = read.csv("Employment.csv") 
reg = lm(Sales ~ Employment, data = df) 

From the simple linear regression model, do the following: 

(a) Plot the residuals on the y-axis and the fitted values on the x-axis. 
(b) Discuss the fit of the model based on the residual plot. 
(c) What advantage does a residual plot have over a standard scatterplot between X 

and Y? 

Solution 

(a) The plot command can be used to plot the residuals as shown in Fig. 8.2. 
Specifically, from the plot on the left-side in the figure, the residuals are on the 
y-axis, and the fitted values on the x-axis. In base R, there are multiple plots gen-
erated by simply plotting a regression object. Here, we employ the which option 
to select the first of those plots. The result is shown in the right-side of Fig. 8.2. 
By plotting the regression object, a few additional details are shown, particularly 
the trend of the plot and the observation numbers of some values of interest. 

par(mfrow = c(1, 2)) 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted Values", 

ylab = "Residuals") 
plot(reg, which = 1)
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(b) As indicated by the red curve, the residual plot suggests a nonlinear model and 
would benefit from quadratic modeling. 

(c) When we analyzed this data set previously in Chap. 5, we found that the best fit 
for this data was a quadratic model. In this application, we arrive at the same 
conclusion using residual plots. In the residual plot from Fig. 8.2, the nonlinear 
relationship is exacerbated, which allows the analyst to more easily identify the 
best fit for the data. 

8.7 Constant Variance 

If a plot of the residuals against the predictor variable shows a pattern, then a 
strict requirement—called constant error variance—of the linear model is violated. 
The statistical term for constant error variance is homoscedasticity, whereas het-
eroscedasticity refers to nonconstant variance. 

In Fig. 8.3a, no discernible pattern exists between the residuals and fitted values. 
The residuals have constant variance from left to right. The residuals from Fig. 8.3b 
increase in variation as the fitted values increase, resulting in a funnel-like shape as 
shown in Fig. 8.3b. 

Identifying nonconstant variance from residual plots constitutes standard prac-
tice. For a more algorithmic procedure, a hypothesis test can be set up and 
concluded. This test, developed by Breush and Pagan in 1979, is referred to as the 
Breush–Pagan or the nonconstant variance test. The null and alternative hypotheses 
would then be 

. H0 : Constant variance

. H1 : Nonconstant variance.
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In order to run a nonconstant variance test in R, the ncvTest function from the car 
package can be used. After loading in the car package and creating a model object 
reg, the  ncvTest function can be used with the first argument being the model 
object. The syntax is given below. 

ncvTest(reg) 

This function calculates a chi-square test statistic and the corresponding p-value 
for the test. For the example above, the p-value generated for this test is 0.42557, 
which indicates that there is no evidence that the constant variance assumption has 
been violated. 

8.8 Twitter Application: Residual Variance 

Lina Alvarez aspires to be a social media influencer. To achieve her goal, she inves-
tigates the performance of social media influencers to understand the relationship 
between the number of tweets that an influencer posts per year and the followers 
added in the same year. Understanding this relationship will help her manage 
her own social media account with greater efficiency. She collects the number of 
followers (Followers) and the corresponding number of tweets (Tweets) from 
influencers in similar domains and saves the data in the Twitter.csv file. 

Using the data in the Twitter.csv file located on the companion site, do the 
following: 

(a) Load in the data and plot Followers on the y-axis and the Tweets on the 
x-axis. Comment on the relationship between the plotted variables. 

(b) Fit a linear regression model that predicts Followers using Tweets. Use  the  
model to fit a residual plot. Comment on the variance of the residuals. 

(c) Test the residuals for nonconstant variance by performing a nonconstant 
variance test. Comment on the findings. 

Solution 

(a) A plot is easily generated by reading in the data and then using the plot 
command. 

df = read.csv("Twitter.csv") 
plot(Followers ~ Tweets, data = df) 

While the Followers trends upward as Tweets increases, the variance of 
this trend increases as Tweets increases. This relationship can be seen by the 
upward trending funnel shape of the scatterplot in Fig. 8.4.

(b) After fitting the linear model using lm, we again use the plot command with 
the model as the first argument, followed by the which argument set to 1.
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Fig. 8.5 Residual plot

reg = lm(Followers ~ Tweets, data = df) 
plot(reg, which = 1) 

From the output in Fig. 8.5, the increase of the residual variance becomes 
obvious from the funnel shape of the residual plot. 
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(c) Since the ncvTest is in the car package, use the library function to load in 
the car package. Then, use ncvTest with reg as the first argument. 

library(car) 
ncvTest(reg) 

## Non-constant Variance Score Test 
## Variance formula: ~ fitted.values 
## Chisquare = 57.23239, Df = 1, p = 3.8724e-14 

Here the p-value (.3.8724 × 10−14) is much less than .α = 0.05, which 
indicates that we reject the null hypothesis and conclude that the residuals have 
nonconstant variance. 

8.9 Response Variable Transformations 

In addition to predictor variable transformations, it may be helpful to transform 
the response variable. In fact, it is often the case that nonconstant variance can be 
corrected by transforming the response variable. The logarithmic transformation is 
a widely used transformation that we discuss here. 

8.10 Logarithmic Transformations 

In Fig. 8.6, the scatterplot on the left-side indicates exponential growth as X 
increases. We recognize the exponential growth by the changing increase in Y as 
X increases. Specifically, the values of Y increase at a slow rate when X is negative, 
but when X is positive, the points on the scatterplot increase significantly. Applying 
the logarithm of the response variable, Y , results in a linear relationship between 
log(Y ) and X, as depicted on the right-side of Fig. 8.6. 

The right-side of Fig. 8.7 exhibits a pattern of exponential decay. Noting the 
exponential decay, the logarithm of X is applied and plotted versus Y . The result 
is the linear relationship depicted on the left-side of Fig. 8.7. 

In some data sets, it may be helpful to take the logarithm of both the response 
and predictor variables to model a linear relationship. On the left-side of Fig. 8.8, 
we note that many values appear bunched up between 0 and 2 for X and between 
0 and 1 for Y . The logarithmic transform can “unbunch” these values. In the center 
of Fig. 8.8, we note that applying the logarithm of Y results in an exponential decay 
relationship. Therefore, the logarithm of X is applied, and the resulting relationship 
appears on the right-side of Fig. 8.8.
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Fig. 8.8 Log–log transformation 

8.11 Other Response Variable Transformations 

Popular response variable transformations include the following: 

• Logarithmic 
• Reciprocal 
• Square root 

Of the three mentioned above, the logarithmic transformation is the most widely 
used. As an example of the reciprocal transformation, the left-side of Fig. 8.9 depicts 
a relationship between X and Y in which it is appropriate to transform Y with a 
reciprocal transformation. The action results in the model fit depicted in the right-
side plot of Fig. 8.9. 

In Fig. 8.10, the observed X and Y values are plotted along with the untrans-
formed regression fit on the left-side figure. On the right-side of Fig. 8.10, the plot 
depicts the square root transformation of the response variable. 

8.12 Box–Cox Transformation 

Guidelines exist to help select the appropriate response variable transformation. One 
such set of guidelines is referred to as the Box–Cox method. Statisticians George 
E. P. Box and David R. Cox developed a procedure to identify the “optimal” power
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transformation of Y to stabilize the variance of the model residuals. In particular, 
the Box–Cox method finds the value of . λ such that the value of . Yλ maximizes the 
log-likelihood function. Simply put, an analyst chooses the value of . λ that is most 
likely to be the response variable exponent. 

To use the Box–Coxmethod, we first find a model that predicts the untransformed 
Y . Then, the resulting model is passed along to the boxCox function. While other 
Box–Cox functions exist, we choose the implementation from the car package. 

boxCox(reg) 

After passing the regression model into the boxCox function, the log-likelihood 
values are on the y-axis, and values of . λ are on the x-axis. Figure 8.11 shows an 
example of this plot. 

While a more exact value of the estimate of . λ can be found, an analyst commonly 
chooses the exponent of Y so that a common transformation is used. Therefore, we 
choose the exponent of Y to be one of the following: 

• .λ = −1 denotes the reciprocal transformation. 
• .λ = 0 denotes the logarithmic transformation. 
• .λ = 0.5 denotes the square root transformation. 
• .λ = 1 denotes that no transformation should be applied to Y . 
• .λ = 2 denotes a square transformation. 

Figure 8.11 indicates that a logarithmic transformation would be most appropri-
ate since .λ = 0 is very close to the maximum log-likelihood. 
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8.13 Twitter Application: Box–Cox 

Using the Twitter data from the previous application, use the techniques mentioned 
above to diagnose and rectify the nonconstant variance. Specifically, do the follow-
ing: 

(a) Apply the Box–Cox method to the linear model from the previous application 
and identify which transformation would be most appropriate. 

(b) Fit a new model with the prescribed relationship and plot the residuals. 
Comment on the variance of the residuals. 

(c) Perform a test for nonconstant variance on the revised model, and compare the 
resulting p-value with the previous application’s p-value. 

Solution 

(a) The reg object from the previous application is used as the first argument of 
the boxCox function. If the car package was not previously loaded, it would be 
necessary to again use the library function in order to run boxCox. 

library(car) 
boxCox(reg) 

From the Box–Cox results in Fig. 8.12, the  value of  . λ that maximizes the log-likelihood 
function is close to 0.5. Therefore, we choose the response variable exponent of 0.5 to 
model the relationship between Tweets and Followers. Since taking a variable to the 
power of 0.5 is equivalent to taking the square root, this transformation is referred to as the 
square root transformation. 
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(b) The new model is fit by changing the response in the formula to Followers ˆ 
.5. After the transformed model is fit, we use the plot function to provide a 
residual plot. 

Treg = lm(Followers ˆ .5 ~ Tweets, data = df) 
plot(Treg, which = 1) 

In Fig. 8.13, there are only a few residuals with fitted values below 240. 
When the fitted values are above 240, the variance is relatively constant. 

(c) Using the ncvTest function on the transformed regression model, we can 
conduct a test for nonconstant variance. 

ncvTest(Treg) 

## Non-constant Variance Score Test 
## Variance formula: ~ fitted.values 
## Chisquare = 22.84582, Df = 1, p = 1.7553e-06 

While the p-value of the nonconstant variance test indicates that nonconstant 
variance is still evident, the p-value of .1.7553 × 10−06 indicates a significant 
improvement over the untransformed model with a p-value of .3.8724 × 10−14.
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8.14 Assessing Normality 

Normality is often assessed by visually inspecting a histogram for a bell-shaped 
curve. Figure 8.14 shows a histogram with observed values of a continuous random 
variable X. The red curve indicates the pattern that a normal distribution would 
follow. Since the bars roughly align with the red curve, we would conclude that 
the distribution of X is approximately normal. This method of inspection is very 
intuitive since most people are familiar with the bell curve of a normal distribution. 

Another popular method consists of plotting the ordered quantiles of the residuals 
on one axis versus the theoretical quantiles expected. This resulting plot is called a 
quantile–quantile plot (QQ plot). For normality to hold, the points should roughly 
fall on the line. The QQ plot in Fig. 8.15 is that of the random variable X from the 
histogram of Fig. 8.14. 

While plots are generally sufficient for regression diagnostics, one might employ 
the Shapiro–Wilk hypothesis test as a test for normality. The null and alternative 
hypotheses would then be 

. H0 : Normal distribution

. H1 : Non-normal distribution.
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Fig. 8.15 Normal Q–Q plot 

shapiro.test(X) 

## 
## Shapiro-Wilk normality test 
## 
## data: X 
## W = 0.99469, p-value = 0.5344 

The p-value of 0.5344 resulting from the Shapiro–Wilk test indicates that the 
distribution of X is approximately normal, or at least that the null hypothesis should 
not be rejected. 

8.15 Assessing Independence 

While tests for independence exist, the level of independence can be determined 
by the study design or the collection of data. For instance, if observations are 
ordered in a time sequence such as stock data, the current price of a stock is 
dependent on the price yesterday. A common fix for this issue is to consider 
a time series model. Another common problem occurs when observations are 
clustered geographically, which would be better addressed using a spatial model. 
When repeated measurements are drawn from the same subject, the resulting 
errors are dependent. Repeated measurements can be regressed using differences 
of measurements. Generally speaking, it is important to know the nature of the data 
so that the proper model can be used to fit the data.
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8.16 Outliers and Influential Observations 

Some observations are more extreme than others. An extreme observation is referred 
to as an outlier, which can be revealed by plotting the residuals against a predictor 
variable. Outliers will be easy to identify because the residual will lie far away from 
the rest of the plot. If the outlier is influential, the results of the analysis may be 
affected. An influential observation refers to one that has a disproportionate effect 
on the value of the slope and intercept in the least squares regression equation. 

Figure 8.16a shows a scatterplot with three extreme observations colored 
blue, red, and green. Figure 8.16b specifically isolates the blue observation from 
Fig. 8.16a with the black observations and two lines. The black line is fit using only 
the black observations, while the blue line is fit using the black observations plus 
the isolated blue observation. Note that the blue line does not differ significantly 
from the black line. Because the blue dot lies near the black dots, the black dots 
indicate that the Y value should be lower, showing only a slight difference between 
the blue and black lines. 

Notice the red and green dots in Fig. 8.16a, c, and d; both red and green dots 
have an extreme X value compared to the other observations. However, the red dot 
lies near the black regression line, whereas the green dot lies far from it. Since the 
green dot is an outlier and no other observations occur close to it, the regression line 
changes significantly when the green observation is included, as indicated by the 
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Fig. 8.16 Scatterplots illustrating the influence of outliers
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green regression line. This drastic change to the regression line is in contrast to the 
red regression line, which remains somewhat similar to the black regression line. 
The green dot is considered an influential observation. 

8.17 Residuals and Leverage 

The leverage of an observation measures its ability to move the regression model 
all by itself by simply moving in the y direction. The leverage measures the amount 
by which the predicted value would change if the observation was shifted one unit 
in the y direction. The leverage always takes values between 0 and 1, inclusively. 
A point with zero leverage has no effect on the regression model. If a point has 
leverage equal to 1, the line must follow the point perfectly. 

8.17.1 Leverage 

Leverage can be attained for each predicted value in our data set. Taking the ith 
predicted value, we compose a linear combination of weights and the response value 
in the data set. For each predicted value, we have an equation of the form: 

.Ŷi = hi1Y1 + hi2Y2 + . . . + hinYn, (8.2) 

where the weights are denoted as . hij and where i is the index of the predicted value 
and j corresponds to the weight from the corresponding observed value. From this 
relationship, we define the leverage of the ith value to be . hii . If . hii is large, then the 
. yi value has a large effect on . ŷi , and we say that the ith value is highly leveraged. 

Bringing together every value of . hij , the hat matrix can be constructed, which is 
denoted as H . 

hat(model.matrix(reg)) 

In the R code above, the model.matrix function takes the regression object and 
puts it into the correct variable type for the hat command. 

8.17.2 Standardized Residuals 

Prior to studying the residuals of the regression output, it is common practice to 
standardize them to compensate for differences in leverage. To standardize, one can 
simply divide by the standard deviation. The standardized residuals are given by 

.ri = ei

s
√
1 − hii

,
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where . ei is the residual, s is the RMSE, and . hii is the leverage for the ith 
observation. 

8.17.3 Studentized Residuals 

The standardized residuals are not valid t-values since . ei and s are dependent. 
Therefore, consider . si , which is the RMSE with every residual except . ei . Similar 
to the standardized residuals, the studentized residuals are given as 

. r∗
i = ei

si
√
1 − hii

.

Studentized residuals can be computed in R using the command 

r = rstudent(reg) 

8.17.4 Cook’s Distance 

An influential point is one that if removed from the data, such point would 
significantly change the fit of the model. An influential point may either be an outlier 
or have large leverage, or both. Cook’s distance refers to a commonly used influence 
measure that combines these two properties. It can be expressed as, “Typically, 
points with . Di greater than 1 are classified as being influential.” 

. Di =
(

r2i

p

)(
hii

1 − hii

)
.

The construct may look a little messy, but the main aspect to recognize is that 
Cook’s distance depends on both the residual, . ei , and the leverage, . hii . That is, both 
the x value and the y value of the data point play a role in the calculation of Cook’s 
distance. 

In short: 

• . Di directly summarizes how much all of the fitted values change when the ith 
observation is deleted. 

• A data point having a large . Di indicates that the data point strongly influences 
the fitted values. 

We can compute Cook’s distance using the following command: 

cook = cooks.distance(reg)
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Fig. 8.17 Cook’s distances for Twitter application 

From the cook object created in the code above, a plot of the different Cook’s 
distances can be generated using the plot command. 

plot(cook, ylab="Cook's distances") 

From Fig. 8.17, we see the largest Cook’s distance for the Twitter Data analysis 
is about 0.0424 indicating that there are no significant influential points. 

8.18 Case Study: Lead Generation 

8.18.1 Problem Statement 

Regression analysis has applications throughout many different business domains, 
including the evaluation of lead generation for sales revenue. Lead generation, or the 
methodology in which companies attract customers, results in sales and, therefore, 
generates revenue. For this reason, sales managers often work with analysts to find 
out which methods or tactics attract the most customers. Since data on customer 
acquisition are readily available, analysts serve a key role in understanding how to 
increase customer leads, thereby increasing sales revenue. 

As a consulting analyst, you are tasked with helping Bergheger Automotive 
Group increase sales revenue. The group consists of 142 dealerships across the 
country. Management is interested in understanding their lead generation results 
from 2021. You request data on the various lead generation methods so that you can 
analyze and make recommendations. The sales team currently has several methods 
of customer acquisition available to them: radio ads, robocalls, email, and cold-calls.
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Each method carries its own strengths and weaknesses. In this analysis, you need to 
understand the relationship between sales revenue and the corresponding customer 
acquisition method. Specifically, your tasks consist of the following: 

1. Identify revenue by lead generation method. 
2. Find the dealerships with the highest total revenue. 
3. Describe the relationship between revenue and each lead generation method by 

fitting a simple linear regression line and interpreting the fitted model. 
4. Make recommendations on how to increase revenue. 

8.18.2 Data Description 

You are  given the  Sales.csv file that contains data from 142 dealerships with the 
following variables: 

• X1 is the number of radio ads. 
• Y1 is the sales revenue generated from the radio ads in dollars. 
• X2 is the number of robocalls in hundreds. 
• Y2 is the sales revenue generated from robocalls in dollars. 
• X3 is the number of emails in thousands. 
• Y3 is the sales revenue generated from emails in dollars. 
• X4 is the number of cold-calls in hundreds. 
• Y4 is the sales revenue generated from cold-calls in dollars. 

As a first task, we will do some simple descriptive statistics to understand the 
data. After loading in the data, a summary of the variables is calculated using the 
summary function. 

df = read.csv("Sales.csv") 
summary(df) 

## X1 Y1 X2 
## Min. : 16.00 Min. : 15457 Min. : 14.11 
## 1st Qu.: 83.25 1st Qu.: 47530 1st Qu.: 51.12 
## Median :118.00 Median : 84490 Median : 88.77 
## Mean :119.53 Mean :121145 Mean :124.32 
## 3rd Qu.:158.00 3rd Qu.:165425 3rd Qu.:170.16 
## Max. :236.00 Max. :740712 Max. :880.47 
## Y2 X3 Y3 
## Min. : 6294 Min. : 4.498 Min. : 15674 
## 1st Qu.:33402 1st Qu.: 17.443 1st Qu.: 47222 
## Median :47140 Median : 34.700 Median : 84123 
## Mean :47823 Mean : 54.224 Mean :120833 
## 3rd Qu.:63214 3rd Qu.: 77.444 3rd Qu.:166332 
## Max. :94410 Max. :368.485 Max. :721275
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## X4 Y4 
## Min. :35.67 Min. : 57519 
## 1st Qu.:50.11 1st Qu.: 69128 
## Median :65.32 Median : 74500 
## Mean :66.33 Mean : 75959 
## 3rd Qu.:80.75 3rd Qu.: 81189 
## Max. :99.27 Max. :111973 

The summary indicates that the largest value among response variables is 
$740,712, which can be observed by looking at the maximum value of Y1. The  Y1 
response variable, which corresponds to radio ad revenue, also shows the largest 
mean value. The mean and maximum values of Y1 are followed closely by the 
Y3 response variable, corresponding to email revenue. Revenue from cold-calls, 
represented by Y4, has the third lowest mean followed by robocalls, represented 
by Y2. 

In addition to viewing the summary function, an analyst may benefit from looking 
at some of the observations. As discussed previously, the head function will display 
the first six observations. 

head(df) 

## X1 Y1 X2 Y2 X3 Y3 X4 Y4 
## 1 126 72705 56.33 50375 40.757 75617 89.67 80251 
## 2 116 110808 134.15 46315 33.269 107596 37.21 71193 
## 3 56 35567 37.33 22573 10.151 35303 57.29 62825 
## 4 95 74220 85.25 38017 21.971 72655 90.82 88127 
## 5 140 138520 148.41 55891 53.701 137058 89.84 86198 
## 6 144 138982 140.84 57796 59.067 138699 94.47 111973 

Observing the head of the data provides some intuition about the data. For 
example, a reasonable value of X1 is 100 radio ads that would most likely generate 
revenue in the low one hundred thousand. Therefore, the revenue generated by an 
ad is roughly just above $1 thousand. While this is a rough approximation, it can 
help understand the meaning of the X1 variable and its relationship to Y1. Rough 
estimates of the other variable relationships can similarly aid in understanding the 
data. 

8.18.3 Revenue by Lead Generation Method 

Notice that the amount of revenue from the various sources is shown in the barplot 
in Fig. 8.18. The revenue variables are summed individually using the sum function 
and combined into a vector using the c function. By using the names function, a 
name is attached to each sum. The barplot function displays the specified name 
on the x-axis of the barplot. In addition to specifying the ylab and main arguments,
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Fig. 8.18 Barplot of sales revenue by method 

the col argument is used to specify different colors for each revenue generation 
method. The order of the colors specified corresponds to the order of the sums. In 
particular, radio ads will be dark red, robocalls will be dark blue, emails will be dark 
green, and cold-calls will be dark orange. These colors were chosen since they are 
aesthetically pleasing and for easy viewing. We will adhere to this color coding in 
later plots throughout this case. 

sums = c(sum(df$Y1), sum(df$Y2), sum(df$Y3), sum(df$Y4)) 
names(sums) = c("Radio Ads", "Robocalls", "Emails", "ColdCalls") 
barplot(sums, ylab = "Sales Revenue", 

main = "Sales Revenue by Method (2021)", 
col = c("darkred", "darkblue", "darkgreen", 

"darkorange")) 

Figure 8.18 supports our assessment of the response variables from observing the 
summary output. Specifically, the revenue from radio ads and emails is the highest, 
followed by the revenue from cold-calls and robocalls. Note that the largest total 
revenue for each response variable will have the same proportional value as the mean 
of said response variable. In fact, after dividing the sales revenue by the number of 
dealerships, each revenue variable will retain the same ratio as depicted in Fig. 8.18. 

While the barplot function provides some basic functionality, the ggplot2 
package provides more flexibility and less limitations. For a more thorough 
discussion on ggplot, see Chap. 9. 

Boxplots of the different revenue amounts can be calculated using the boxplot 
function. As a first attempt, we select the revenue variables by using the subset 
function. Rather than using the variable names Y1, Y2, Y3, and Y4, we use  the  names



202 8 Model Diagnostics

Radio Ads Robocalls Emails ColdCalls 

0e
+

00
2e

+
05

4e
+

05
6e

+
05

 
Sales Revenue by Method (2021) 

Fig. 8.19 Boxplot of sales revenue by method 

function to modify the names of the data subset. We then pass the data subset to 
the boxplot function and specify the col argument to change the color of each 
respective box in the plot. 

sub = subset(df, select = c(Y1, Y2, Y3, Y4)) 
names(sub) = c("Radio Ads", "Robocalls", "Emails", "ColdCalls") 
boxplot(sub, main = "Sales Revenue by Method (2021)", 

col = c("darkred", "darkblue", "darkgreen", 
"darkorange")) 

In Fig. 8.19, the variation of the radio ad and email variables can be observed. 
However, the variation of the robocalls and cold-calls is difficult to decipher since 
the y-axis is dictated by the revenue range from the radio ads and emails. As a 
simple remedy, we can plot the boxplot of radio ads and emails together using the 
same y-axis scale and then plot the boxplot of robocalls and cold-calls on a separate 
y-axis scale. The result is shown in Fig. 8.20. 

We use the subset function to select the responses, creating the data sets: sub1 
and sub2. The sub1 dataframe contains radio ad and email revenue variables, while 
the sub2 dataframe contains the robocall and cold-call revenue variables. After 
generating the data subsets, the use of the names and boxplot functions is similar 
to the previous boxplot. Notice the different y-axis for the left-side and right-side 
boxplots.
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Fig. 8.20 Boxplots of sales revenue by method 

par(mfrow=c(1,2)) 

# Ads and Emails 
sub1 = subset(df, select = c(Y1, Y3)) 
names(sub1) = c("Radio Ads", "Emails") 
boxplot(sub1, col = c("darkred", "darkgreen"), 

main = "Revenue by Radio Ads, Emails") 

# Robocalls and cold-calls 
sub2 = subset(df, select = c(Y2, Y4)) 
names(sub2) = c("Robocalls", "ColdCalls") 
boxplot(sub2, col = c("darkblue","darkorange"), 

main = "Revenue by Robocalls, Cold-calls") 

On the left-side of Fig. 8.20, the revenue by radio ads and emails shows two 
similar boxplots, whereas the right-side shows that revenue by robocalls is not very 
similar to that of cold-calls. For most dealerships, the revenue from cold-calls will 
be larger than the revenue for robocalls since the bottom whisker of cold-calls lands 
above the median line for robocalls. 

8.18.4 Revenue by Dealership 

To calculate the total revenue for each dealership, all lead sources for each individual 
dealership are summed. We will name this column Total and sort it from highest 
to lowest. Sorting a column from highest to lowest is referred to as sorting in
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descending order. To sort the data in descending order, the sort function can be 
used by specifying the column to be sorted, followed by the decreasing argument 
set to TRUE. Omitting this decreasing argument would default to sorting the 
column in increasing order or ascending order. Similar to the sort function, the 
order function returns the row number corresponding to the sorted totals. 

Total = df$Y1 + df$Y2 + df$Y3 + df$Y4 
sorted_rev = sort(Total, decreasing = TRUE) 
sorted_idx = order(Total, decreasing = TRUE) 

The names function is used to specify the dealership identification number and is 
referred to as sorted_idx. A barplot of the top five revenues by dealership number 
can be found by specifying the first five values of the sorted_rev vector as the first 
argument in the barplot function. 

names(sorted_rev) = sorted_idx 
barplot(sorted_rev[1:5], xlab = "Dealership Number", 

ylab = "Revenue", main = "Revenue by Dealership") 

From the barplot in Fig. 8.21, we see that dealership 88 has the highest total 
revenue in 2021, followed by dealerships 54, 80, 131, and 100. While stacked 
barplots can be used to show the breakdown of revenue by ad source for each of 
the top five dealerships, this task is performed better using the ggplot2 package. 
For more details, the dealerships with the top radio ad, robocall, email, and cold-call 
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Fig. 8.21 Barplot of sales revenue by dealership
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revenue are shown in Fig. 8.22. Each subfigure in Fig. 8.22 is generated by sorting 
the respective revenue variables in ascending order and returning the corresponding 
dealership number as done in the previous figure (Fig. 8.21). Note that dealerships 
88, 54, and 80 are consistently the highest in every revenue category with the 
exception of the cold-calls. The dealerships with the top cold-calls revenue are 6, 
72, 125, 135, and 97. 

par(mfrow=c(2,2)) 

# Ad Revenue 
sorted_ad_rev = sort(df$Y1, decreasing = TRUE) 
names(sorted_ad_rev) = order(df$Y1, decreasing = TRUE) 
barplot(sorted_ad_rev[1:5], xlab = "Dealership Number", 

ylab = "Revenue", main = "Radio Ad Revenue", 
col = "darkred") 

# Robocall Revenue 
sorted_rc_rev = sort(df$Y2, decreasing = TRUE) 
names(sorted_rc_rev) = order(df$Y2, decreasing = TRUE) 
barplot(sorted_rc_rev[1:5], xlab = "Dealership Number", 

ylab = "Revenue", main = "Robocall Revenue", 
col = "darkblue") 

# Email Revenue
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sorted_email_rev = sort(df$Y3, decreasing = TRUE) 
names(sorted_email_rev) = order(df$Y3, decreasing = TRUE) 
barplot(sorted_email_rev[1:5], xlab = "Dealership Number", 

ylab = "Revenue", main = "Email Revenue", 
col = "darkgreen") 

# Cold-Call Revenue 
sorted_cc_rev = sort(df$Y4, decreasing = TRUE) 
names(sorted_cc_rev) = order(df$Y4, decreasing = TRUE) 
barplot(sorted_cc_rev[1:5], xlab = "Dealership Number", 

ylab = "Revenue", main = "Cold-Call Revenue", 
col = "darkorange") 

8.18.5 Sales Versus Radio Ads 

The relationship between sales and radio ads is clearly nonlinear as indicated in 
Fig. 8.23. It can be argued that the trend is parabolic; however, a much better fit 
would be that of an exponential function. To account for this exponential, we can 
apply a logarithmic transform onto the Y1 variable, since applying a logarithmic 
transformation to Y1 with X1 as a predictor is equivalent to predicting Y1 with . e =
2.718 . . . raised to the power of X1 for positive values of Y1. 

par(mfrow = c(1,2)) 
plot(Y1 ~ X1, data = df, xlab = "Ads", ylab = "Sales", 
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Fig. 8.23 Scatterplots of sales and ads (left) and transformed sales and ads (right)
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main = "Sales vs. Ads", col = "darkred") 
plot(log(Y1) ~ X1, data = df, xlab = "Ads", ylab = "log(Sales)", 

main = "Log of Sales vs. Ads", col = "darkred") 

In Fig. 8.23, the fit of the second scatterplot follows a linear pattern, which 
indicates a fit of the logarithmic transformation is appropriate using the lm function. 
The summary of the transformed model is obtained by passing the reg object to the 
summary function. 

reg = lm(log(Y1) ~ X1, data = df) 
summary(reg) 

## 
## Call: 
## lm(formula = log(Y1) ~ X1, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.39550 -0.11163 0.01475 0.11820 0.43745 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 9.4877598 0.0389673 243.48 <2e-16 *** 
## X1 0.0161339 0.0003035 53.16 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 0.1695 on 140 degrees of freedom 
## Multiple R-squared: 0.9528, Adjusted R-squared: 0.9525 
## F-statistic: 2826 on 1 and 140 DF, p-value: < 2.2e-16 

After fitting the transformed model, we inspect the residuals using a histogram 
and a residual plot. The histogram is generated using the hist function. Note 
that the residuals are within the regression object (reg) that allows us to specify 
reg$residuals as the first argument of the hist function. 

par(mfrow = c(1, 2)) 
hist(reg$residuals, xlab = "Residuals", main = "Histogram", 

col = "darkred") 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted values", 

ylab = "Residuals", main = "Residual Plot", 
col = "darkred") 

The diagnostic plots indicate the normality condition is met within reason, and 
the variance of the residuals does not violate any assumptions. More specifically,
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Fig. 8.24 Diagnostic plots of transformed ads model 

the histogram from the left-side of Fig. 8.24 roughly exhibits a bell-shaped normal 
distribution, and the right-side residual plot does not appear to show a pattern, hence 
meeting the linearity condition. Since the conditions are met, the coefficients can be 
interpreted. Here, the coefficient is 0.0161339, which indicates that for every addi-
tional radio ad, the logarithm of revenue increases by 0.0161339. Alternatively, the 
revenue gets multiplied by a product of .e0.0161339 = 1.016265 for every additional 
radio ad. This amounts to a 1.6265% increase in the revenue per radio ad. Therefore, 
if the revenue is high, the increase will be more significant. This multiplicative 
increase may be due to the compounding effect of having multiple ads. 

8.18.6 Sales Versus Robocalls 

From Fig. 8.25, we see that the relationship between robocalls and sales is also 
nonlinear. In this case, the relationship can be modified by transforming the X2 
variable with a logarithmic transform. 

par(mfrow = c(1,2)) 
plot(Y2 ~ X2, data = df, xlab = "Robocalls (hundreds)", 

ylab = "Sales", main = "Sales vs. Robocalls", 
col = "darkblue") 

plot(Y2 ~ log(X2), data = df, xlab = "log(Robocalls (hundreds))", 
ylab = "Sales", main = "Sales vs. Log of Robocalls", 
col = "darkblue") 

reg = lm(Y2 ~ log(X2), data = df) 
summary(reg)
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Fig. 8.25 Scatterplots of sales and robocalls (left) and sales and transformed robocalls (right) 

## 
## Call: 
## lm(formula = Y2 ~ log(X2), data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -21417 -4194 -933 4880 17698 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -48407.2 3238.4 -14.95 <2e-16 *** 
## log(X2) 21379.3 707.9 30.20 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 6889 on 140 degrees of freedom 
## Multiple R-squared: 0.8669, Adjusted R-squared: 0.866 
## F-statistic: 912.1 on 1 and 140 DF, p-value: < 2.2e-16 

After fitting the revised model, we inspect the residuals using a histogram and a 
residual plot. The generated plots are shown in Fig. 8.26. 

par(mfrow = c(1,2)) 
hist(reg$residuals, xlab = "Residuals", main = "Histogram", 

col = "darkblue") 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted values",
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Fig. 8.26 Diagnostic plots for transformed robocall model 

ylab = "Residuals", main = "Residual Plot", 
col = "darkblue") 

The diagnostic plots indicate that the residuals are normally distributed, and the 
model is linear with constant error variance. Given that the diagnostic plots indicate 
the linear regression model assumptions are met and the p-value of the coefficient 
is low, the coefficients can be interpreted. The coefficient of the log of robocalls 
is 21,379.3, indicating for every unit increase in the logarithm of robocalls, there 
will be an increase in revenue of $21,379.30. The alternative interpretation holds 
that for every unit increase in the exponent of robocalls, the sales revenue increases 
by $21,379.30. As demonstrated in the untransformed plot, the initial increase may 
be steep, but the returns diminish quickly. With robocalls, repeated calls are often 
ignored, so it is logical to use the robocalls sparingly, unless there is no penalty for 
making frequent calls. 

8.18.7 Sales Versus Emails 

The left-side of Fig. 8.27 shows the untransformed scatterplot of sales and emails. 
Note the observations are densely distributed around the lower values of the x-axis 
and become more dispersed as x increases. Similarly, the observations are densely 
distributed around the lower values of the y-axis and become more dispersed 
as y increases. This pattern indicates each axis can benefit from a logarithmic 
transformation. Applying logarithms to both x and y axes changes the pattern in 
the left-side scatterplot to a linear relationship, which can be observed on the right-
side of Fig. 8.27.
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Fig. 8.27 Scatterplots of sales and emails (left) and transformed sales and transformed emails 
(right) 

par(mfrow = c(1, 2)) 
plot(Y3 ~ X3, data = df, xlab = "Emails (thousands)", 

ylab = "Sales", main = "Sales vs. Emails", 
col = "darkgreen") 

plot(log(Y3) ~ log(X3), data = df, col = "darkgreen") 

Using the lm function, the transformed model is fit. Since we named the 
regression object as reg, the previous regression object is replaced with this new 
fit. The summarized model is shown by using the summary function. 

reg = lm(log(Y3) ~ log(X3), data = df) 
summary(reg) 

## 
## Call: 
## lm(formula = log(Y3) ~ log(X3), data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.35257 -0.10007 0.01142 0.10735 0.38332 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 8.53364 0.04969 171.74 <2e-16 *** 
## log(X3) 0.80550 0.01343 59.99 <2e-16 ***
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## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 0.15 on 140 degrees of freedom 
## Multiple R-squared: 0.9626, Adjusted R-squared: 0.9623 
## F-statistic: 3599 on 1 and 140 DF, p-value: < 2.2e-16 

After fitting the revised model, we inspect the residuals using a histogram and a 
residual plot, as done previously. 

par(mfrow = c(1, 2)) 
hist(reg$residuals, xlab = "Residuals", main = "Histogram", 

col = "darkgreen") 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted values", 

ylab = "Residuals", main = "Residual Plot", 
col = "darkgreen") 

The diagnostic plots in Fig. 8.28 indicate normally distributed residuals with 
constant variance and a linear pattern; therefore, the linear regression assumptions 
are met. Furthermore, the coefficient for log of emails is significant, indicating the 
coefficient can be interpreted. For a log–log model, the slope can be interpreted as 
a 1% increase in emails is associated with a 0.8055% increase in revenue. 
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Fig. 8.28 Diagnostic plots of transformed email model
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Fig. 8.29 Scatterplot of sales and cold-calls 

8.18.8 Sales Versus Cold-Calls 

Observing the scatterplot of sales versus cold-calls in Fig. 8.29, the plot appears 
to have nonconstant variance since the variation increases from left to right. This 
increase in variation takes on the shape of a funnel. 

plot(Y4 ~ X4, data = df, xlab = "Cold-Calls (hundreds)", 
ylab = "Sales", main = "Sales vs. Cold-Calls", 
col = "darkorange") 

To verify that the plot has nonconstant variance, we fit the simple linear 
regression model and generate the diagnostic plots for the model. 

reg = lm(Y4 ~ X4, data = df) 
#summary(reg) 

Inspecting the residuals using a histogram and a residual plot is done easily using 
the code here. 

par(mfrow = c(1, 2)) 
hist(reg$residuals, xlab = "Residuals", main = "Histogram", 

col = "darkorange") 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted values", 

ylab = "Residuals", main = "Residual Plot", 
col = "darkorange") 

Note that the residual plot in Fig. 8.30 clearly shows nonconstant variance since 
the spread in the residuals increases from left to right. The increasing variance
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Fig. 8.30 Diagnostic plots of cold-calls 

pattern is that of a funnel. While it is clear that nonconstant variance is present, 
a simple hypothesis test can be performed in order to verify the results. Within 
the car package, the ncvTest function tests for nonconstant variance using a chi-
square test. If the car package is not installed, the install.packages function 
should be run in order to install it. 

library(car) 
ncvTest(reg) 

## Non-constant Variance Score Test 
## Variance formula: ~ fitted.values 
## Chisquare = 21.63455, Df = 1, p = 3.2986e-06 

Running the nonconstant variance test indicates indeed there is nonconstant 
variance since the p-value from the test is extremely low. To remedy this condition, 
we will apply the Box–Cox transform using the boxCox function, which is also from 
the car package. Note that the library function only needs to run once to access 
both the ncvTest and boxCox functions. 

boxCox(reg) 

From the Box–Cox output in Fig. 8.31, we observe that the exponent of the 
response variable (. λ) maximizes the log-likelihood function when .λ = 1. Therefore, 
we take revenue to the power of -1 as the response variable here. The transformed 
response becomes 1/Y4.
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Fig. 8.31 Box–Cox output 

reg = lm(1/Y4 ~ X4, data = df) 
summary(reg) 

## 
## Call: 
## lm(formula = 1/Y4 ~ X4, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -2.692e-06 -9.549e-07 -2.000e-10 8.439e-07 4.050e-06 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.748e-05 3.775e-07 46.31 <2e-16 *** 
## X4 -6.202e-08 5.493e-09 -11.29 <2e-16 *** 
## ---
## Signif. codes: 
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 
## 
## Residual standard error: 1.176e-06 on 140 degrees of 
## freedom 
## Multiple R-squared: 0.4766, Adjusted R-squared: 0.4729 
## F-statistic: 127.5 on 1 and 140 DF, p-value: < 2.2e-16 

After fitting the revised model, we inspect the residuals using a histogram and a 
residual plot to check the model assumptions.
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Fig. 8.32 Diagnostic plots for transformed cold-calls model 

par(mfrow = c(1, 2)) 
hist(reg$residuals, xlab = "Residuals", main = "Histogram", 

col = "darkorange") 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted values", 

ylab = "Residuals", main = "Residual Plot", 
col = "darkorange") 

The diagnostic plots in Fig. 8.32 indicate the linear regression assumptions are 
somewhat violated. Specifically, the histogram indicates non-normality given its 
distribution, and the residual plot indicates there is still evidence of nonconstant 
variance. While the residuals appear to be slightly normally distributed, the 
shapiro.test function can be used to assess normality with a hypothesis test. 

shapiro.test(reg$residuals) 

## 
## Shapiro-Wilk normality test 
## 
## data: reg$residuals 
## W = 0.98461, p-value = 0.1129 

Since the p-value of the Shapiro–Wilk test is not more extreme than .α = 0.05, 
the test indicates the residual distribution is normal. While the nonconstant variance 
appears to have improved significantly from the revised residual plot, there appears 
to be traces of nonconstant variance. The ncvTest is used here on the revised model.
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ncvTest(reg) 

## Non-constant Variance Score Test 
## Variance formula: ~ fitted.values 
## Chisquare = 4.093229, Df = 1, p = 0.043055 

Note the p-value of the revised model drastically increased from the untrans-
formed model. While the revised p-value is still below .α = 0.05, the nonconstant 
variance test may actually be better suited for lower values of . α. 

Here, we interpret the coefficient for the transformed model since the conditions 
of linear regression are nearly met, and the p-value of the coefficient indicates 
significance. The coefficient indicates that for every 100 calls, there is a . 6.202e−08
decrease in the inverse of revenue. 

8.18.9 Recommendations and Findings 

From this analysis come multiple insights. In particular, regarding the tasks that 
were given, we find the following: 

1. Identify revenue by lead generation method. 

Task 1 was answered through the use of careful observation and plots, which made clear 
that ads and emails were the most effective in generating revenue, while cold-calls also 
provided some benefit, followed by robocalls. 

2. Find the dealerships with the highest total revenue. 

Plots of revenue by dealership in Figs. 8.21 and 8.22 were used to answer the second task. 
Dealerships 88, 54, and 80 are the highest in every revenue category except the cold-call 
revenue. The dealerships with the top cold-call revenue are 6, 72, 125, 135, and 97. 

3. Describe the relationship between revenue and each lead generation method by 
fitting a simple linear regression line and interpreting the fitted model. 

Each regression model was fit and interpreted. Some interpretations, however, were more 
practical than others. The interpretations are: 

• The ad revenue increases by a multiple of 1.6265% for every additional ad. 
• For every unit increase in the exponent of robocalls, the sales revenue increases by 

$21,379.30. 
• For a 1% increase in emails, there is a 0.8055% increase in revenue. 
• For every 100 call increase in the number of cold-calls, there is a 6.202e-08 decrease in 

the inverse of revenue from cold-calls.
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4. Make recommendations on how to increase revenue. 

• From observing the dealerships by revenue, dealership 88 can provide insights to other 
dealerships to increase revenue from ads, email, and robocalls. 

• Also, dealership 6 has the most effective means by which to generate revenue from cold-
calls, which could be helpful to share with other dealerships. 

• Since ads increase revenue exponentially, dealerships should focus on increasing the 
number of ads, assuming that ads are not cost-prohibitive. 

• While robocalls may be effective in the short run, if there is a cost associated with having 
extra calls, then the number of robocalls should be limited. Also, the negative publicity 
of robocalls should be considered when determining the number of calls to make. 

• Both emails and cold-calls are beneficial methods of lead generation and should be 
continued if they are not cost-prohibitive. 

8.18.10 Case Conclusion 

This analysis demonstrates how studying marketing data can lead to increasing 
revenue streams for a car dealership conglomerate. Analyzing marketing methods 
can help optimize profits and other performance metrics. Analytics is becoming 
more relevant in the field of marketing as data become more abundant. 

Real-world data, such as marketing data, can be messy and require variable trans-
formations and diagnostic measures to better understand the relationship between 
responses and predictors. In this case, the responses required transformations in 
order to adhere to the assumptions of linear regression. We used many base R 
commands to model and analyze the data, such as: c, plot, boxplot, barplot, 
lm, data.frame, hist, subset, summary, order, sort, and shapiro.test. In  
addition to the base R commands, we used the ncvTest and boxCox functions that 
are within the car package. 

Problems 

1. Sales from Web Ads Diagnostics 
Using the SalesAds.csv file, answer the following questions: 

a. Fit a simple linear regression model to predict the sales in thousands of USD 
(Sales) as a function of the number of website ads (Ads) without using 
transformations. Print a summary of the model. 

b. Generate a scatterplot of Sales and Ads. Include the linear regression line in 
the plot. 

c. Construct a scatterplot and histogram of the residuals for the linear model 
from part a. 

d. From the scatterplot and histogram in part c, which model assumptions appear 
to be violated?
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e. Determine an appropriate transformation for correcting the problems found in 
part d and fit the corresponding regression model. 

f. Plot the transformed data and the regression line from part e. 
g. Construct a scatterplot and histogram of the residuals for the linear model 

from part a. 

2. Health Care Customers Diagnostics 
Using the CustomersInsurance.csv file, answer the following questions: 

a. Fit a simple linear regression model to predict the number of customers 
per day (Customers) as a function of the number of people with Aetna 
insurance plans (Plans) within a 5 mile radius of each clinic without using 
transformations. Print a summary of the model. 

b. Generate a scatterplot of Customers and Plans. Include the linear regression 
line in the plot. 

c. Construct a scatterplot and histogram of the residuals for the linear model 
from part a. 

d. From the scatterplot and histogram in part c, which model assumptions appear 
to be violated? 

e. Since the observations appear to be bunched up around the x-axis, apply a 
logarithmic transformation to the x-axis and generate a model summary. 

f. Plot the transformed data and the regression line from part e. 
g. Construct a scatterplot and histogram of the residuals for the linear model 

from part e. 

3. House Price Prediction Diagnostics 
Using the PriceSize.csv file, answer the following questions: 

a. Fit a simple linear regression model to predict the price in thousands of USD 
(Price) as a function of the size of the house (Size) in square feet without 
using transformations. Print a summary of the model. 

b. Generate a scatterplot of Price and Size. Include the linear regression line 
in the plot. 

c. Construct a scatterplot and histogram of the residuals for the linear model 
from part a. 

d. From the scatterplot and histogram in part c, which model assumptions appear 
to be violated? 

e. Since the observations appear to be bunched up around the x and y axes, apply 
logarithmic transformations to both X and Y. Generate a model summary. 

f. Plot the transformed data and the regression line from part e. 
g. Construct a scatterplot and histogram of the residuals for the linear model 

from part e.



Chapter 9 
Variable Selection 

All models are wrong, but some are useful. 

—George E. P. Box 

9.1 Introduction 

While it may be a bit strict to say that all models are wrong, it is often the case 
that a model is imperfect. However, an imperfect model may still provide a great 
amount of value. When attempting to find the best model from the data given, being 
able to select the predictor variables is of utmost importance in the model building 
process. In fact, one of the most important aspects of model creation is knowing 
which predictor variables to use, a process sometimes called feature selection or 
variable selection. Variable selection can be tremendously helpful when an analyst 
is attempting to find a mathematical model that is relatively close to the true state. 

In this chapter, a methodology for finding a subset of predictor variables to 
create an acceptable model is explored. Particularly, iterative approaches for finding 
a good model are explored along with the best subset selection method. We also 
discuss model evaluation criteria to assist the analyst in selecting a model. To further 
motivate the concepts discussed in this chapter, an Airbnb data set is used. Finally, 
the chapter case study consists of finding an appropriate model to predict health care 
costs using an insurance data set. 

9.2 Parsimonious Models 

The major goals of regression analysis are to have a model that makes accurate pre-
dictions and also can be easily interpreted. These attributes describe a parsimonious 
model. In order to have a parsimonious model, we should find the model with the 
fewest number of predictors that still gives a relatively good model fit. 
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9.3 Airbnb Pricing Application 

Victoria would like to list her property on Airbnb in Edinburgh, the capitol of 
Scotland. In order to price her property competitively, she collects data on listings 
to analyze the contributing factors of price. The AirBnb.csv data set consists of 
10,370 rental listings from Airbnb in Edinburgh for a period from June 25, 2019 to 
June 24, 2020. 

The variables for each listing are: 

• Bathrooms—Number of bathrooms 
• Bedrooms—Number of bedrooms 
• Beds—Number of beds 
• Accommodates—Number of guests the listing can accommodate 
• Guests—Number of guests included without an additional fee 
• MinNights—Minimum number of nights required for booking 
• MaxNights—Maximum number of nights the listing can be rented 
• ExtraPeople—Average fee for each additional person in British pounds 
• HostListings—Number of listings the host manages 
• ResponseRate—Average host response rate 
• Deposit—Average security deposit required for booking in British pounds 
• CleaningFee—Average cleaning fee charged in British pounds 
• FeeMissing—A dummy variable that is 1 if the cleaning fee is missing, 0 

otherwise 
• Price—Average price of the listing in British pounds. 

Using the Edinburgh Airbnb data file, do the following: 

(a) Load in the data and print the first six observation to the console. 
(b) Fit a regression model predicting Price using all other variables and print the 

model summary. 
(c) Repeat the previous part, but exclude the predictor variable with the lowest 

individual significance. 
(d) Comment on the model fit for the models in parts (b) and (c). Which model is 

more parsimonious? 

Solution 

(a) Using the read.csv function, the data frame df is created. The first six 
observations are printed to the console by passing df to the head function. 

df = read.csv("AirBnb.csv") 
head(df) 

## Bathrooms Bedrooms Beds Accommodates Guests MinNights 
## 1 1.0 1 1 2 1 2.9 
## 2 1.5 2 2 4 4 2.0 
## 3 1.0 0 2 2 2 4.2
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## 4 1.0 1 1 2 2 2.0 
## 5 1.0 1 1 2 2 1.0 
## 6 1.0 1 2 3 2 1.0 
## MaxNights ExtraPeople HostListings ResponseRate Deposit 
## 1 30 0 1 1 200 
## 2 365 25 1 1 250 
## 3 60 10 2 1 100 
##  4 21 0 1 1 0
## 5 31 0 1 1 75 
##  6 31 10 2 1 0
## CleaningFee FeeMissing Price 
## 1 40.0 0 101.05479 
## 2 30.0 0 111.81644 
## 3 15.4 1 49.98356 
## 4 10.0 0 33.82740 
## 5 10.0 0 80.24110 
## 6 8.0 0 77.65753 

(b) The reg1 model is fit using the lm function. We specify that Price is predicted 
using all other variables in the data frame using the formula as the first 
argument. The model summary is printed using the summary function. 

reg1 = lm(Price ~ ., data = df) 
summary(reg1) 

## 
## Call: 
## lm(formula = Price ~ ., data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -131.302 -24.807 -8.201 15.966 248.684 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.576e+01 3.805e+00 4.140 3.49e-05 *** 
## Bathrooms 1.266e+01 1.032e+00 12.258 < 2e-16 *** 
## Bedrooms 8.551e+00 9.413e-01 9.084 < 2e-16 *** 
## Beds 3.300e+00 6.704e-01 4.922 8.70e-07 *** 
## Accommodates 1.288e+01 5.216e-01 24.698 < 2e-16 *** 
## Guests -3.618e-01 3.742e-01 -0.967 0.333641 
## MinNights 2.015e+00 3.517e-01 5.730 1.03e-08 *** 
## MaxNights -1.495e-03 7.393e-04 -2.023 0.043124 * 
## ExtraPeople -1.667e-01 3.590e-02 -4.643 3.47e-06 ***
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## HostListings 3.977e-01 2.477e-02 16.054 < 2e-16 *** 
## ResponseRate -1.295e+01 3.579e+00 -3.619 0.000298 *** 
## Deposit 6.053e-02 5.223e-03 11.589 < 2e-16 *** 
## CleaningFee 8.095e-02 2.354e-02 3.440 0.000585 *** 
## FeeMissing 2.164e+00 9.393e-01 2.304 0.021259 * 
## ---
## Signif. codes: 
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 40.32 on 10356 degrees of freedom 
## Multiple R-squared: 0.4764, Adjusted R-squared: 0.4758 
## F-statistic: 724.9 on 13 and 10356 DF, p-value: < 2.2e-16 

(c) From the model summary in the previous part, we note that all predictor 
variables are significant with the exception of Guests which has an individual 
significant p-value of 0.333641. Here we fit reg2 by specifying a formula that 
includes all of the predictor variables except the Guests variable. 

reg2 = lm(Price ~ . - Guests, data = df) 
summary(reg2) 

## 
## Call: 
## lm(formula = Price ~ . - Guests, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -130.615 -24.697 -8.165 15.920 248.739 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.557e+01 3.800e+00 4.097 4.23e-05 *** 
## Bathrooms 1.266e+01 1.032e+00 12.259 < 2e-16 *** 
## Bedrooms 8.548e+00 9.413e-01 9.081 < 2e-16 *** 
## Beds 3.267e+00 6.696e-01 4.879 1.08e-06 *** 
## Accommodates 1.280e+01 5.144e-01 24.880 < 2e-16 *** 
## MinNights 2.038e+00 3.509e-01 5.806 6.58e-09 *** 
## MaxNights -1.491e-03 7.393e-04 -2.016 0.043784 * 
## ExtraPeople -1.779e-01 3.399e-02 -5.233 1.70e-07 *** 
## HostListings 3.939e-01 2.447e-02 16.101 < 2e-16 *** 
## ResponseRate -1.296e+01 3.579e+00 -3.621 0.000294 *** 
## Deposit 6.070e-02 5.220e-03 11.629 < 2e-16 *** 
## CleaningFee 7.809e-02 2.335e-02 3.345 0.000827 *** 
## FeeMissing 2.249e+00 9.352e-01 2.404 0.016213 * 
## ---
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## Signif. codes: 
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 40.32 on 10357 degrees of freedom 
## Multiple R-squared: 0.4764, Adjusted R-squared: 0.4758 
## F-statistic: 785.3 on 12 and 10357 DF, p-value: < 2.2e-16 

(d) While the multiple . R2 and adjusted . R2 values are relatively unchanged, the 
reg2 model is more parsimonious since it has fewer predictors. 

9.4 Assessing Model Performance 

We take into consideration several metrics to assess our models. Each metric 
assesses different aspects about model performance and so we discuss the details 
of some of the most important metrics here. 

9.4.1 Multiple R-Squared and Adjusted R-Squared 

In Chap. 3, the  . R2 value was introduced for simple linear regression, and later, 
in Chap. 5, the multiple . R2 and adjusted . R2 were introduced and built off of the 
knowledge of . R2. Naturally, the multiple . R2 represents the amount of explained 
variation over the total variation, 

.R2 = SSR/SST . (9.1) 

However, it was noted that the explained variation is incorrectly increased by 
irrelevant variables. To counteract this problem, we take into consideration the 
number of predictor variables (p) and the number of observations (n): 

.R2
a = 1 − (1 − R2)

n − 1

n − p − 1
, (9.2) 

which gives the adjusted . R2 value. Both the multiple . R2 and the adjusted . R2 are 
given from the model summary within R. 

9.4.2 Akaike Information Criterion 

One commonly used criterion for model selection is the Akaike Information Crite-
rion (AIC). This criterion takes into account the SSE, the number of observations 
(n), and the number of predictors (p), 

.AIC = n log
SSE

n
+ 2p. (9.3)
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To use the AIC criterion, we find AIC values for each model we would like to 
compare and then choose the model with the lower AIC value. The AIC value can 
be calculated in R using the AIC function. 

9.4.3 Bayesian Information Criterion 

Another commonly used criterion for model selection is the Bayesian Information 
Criterion (BIC). The equation for BIC is similar to Eq. 9.3, 

.BIC = n log
SSE

n
+ p log n. (9.4) 

Note that while AIC uses 2p as the last component of the equation, BIC uses 
.p log n. This subtle difference will increase BIC more rapidly for an increase in the 
number of predictors (p). Thus, BIC is penalized more heavily for higher values of 
p resulting in fewer predictor variables in the chosen model. The BIC value can be 
calculated in R using the BIC function. 

9.4.4 Mallows’s Cp 

One additional measure is Mallows’s . Cp. This measure is also popular for model 
selection. This measure is calculated by 

.Cp = SSE

MSEf ull

− n + 2p, (9.5) 

where SSE is calculated from the model in question and .MSEf ull is the mean 
squared error calculated from the model with all considered predictors. Like the 
previous criteria, Mallows’s . Cp can be used to find a good model with few variables. 
While we seek to find the smallest value of . Cp, we also deem the model to be good 
if .Cp ≤ p. One should note that Mallows’s . Cp should only be used if you are not 
considering using the full model as your final model. For the full model, it can easily 
be proven that .Cp = p, so Mallows’s statistic will always deem the full model good. 

9.5 Airbnb Pricing Application: Model Comparison 

The models from the previous application were fit using the following code: 

reg1 = lm(Price ~ ., data = df) 
reg2 = lm(Price ~ . - Guests, data = df)
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Using the models from the previous application, answer the following: 

(a) How do we account for the difference between the multiple . R2 and the adjusted 
. R2 in the first model? Is this difference relatively large or small? 

(b) Calculate the AIC and BIC for the first model. 
(c) Calculate the AIC and BIC for the second model. 
(d) Which model has the lower AIC? Which model has the lower BIC? 

Solution 

(a) The adjusted . R2 takes into account the number of predictors and the number of 
observations. There is a very small difference between the multiple . R2 and the 
adjusted . R2 in the first model. 

(b) The AIC and BIC values are calculated by passing the reg1 model to the AIC 
and BIC functions. 

AIC(reg1) 
BIC(reg1) 

## [1] 106118.4 

## [1] 106227.1 

(c) Here we repeat the calculations from the previous part using reg2. 

AIC(reg2) 
BIC(reg2) 

## [1] 106117.4 

## [1] 106218.8 

(d) The reg2 model has a lower AIC and a lower BIC indicating that reg2 is a 
better model than reg1. 

9.6 Backward Elimination 

In the first application of this chapter, we fit a model using all of the predictor 
variables in the data set, and then we used a model without the least significant 
predictor variable. In essence we were doing backward elimination with the indi-
vidual significance as the selection criteria. However, most backward elimination 
algorithms use AIC, BIC, or adjusted . R2 as the selection criteria. 

Backward elimination begins with a model that includes all predictor variables 
the analyst would like to consider. After fitting this model with all of the considered
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Fig. 9.1 Backward elimination 

variables, the analyst excludes one variable, which results in the best model selection 
metric. The process of excluding variables one at a time is repeated until no 
improvement can be made in the model selection metric. From this process, it should 
be noted that a predictor variable cannot reenter at a subsequent step or iteration. A 
structural outline of this algorithm is depicted in Fig. 9.1. 

The step function is an implementation of backward elimination in R. The 
first argument of step should be the model with all predictor variables under 
consideration. If the model with all predictors is defined as full, backward 
elimination can be performed using the R code: 

step(full) 

The step function begins with a full model and considers removing one predictor 
variable at a time. The AIC is calculated for each model with one variable removed, 
and the model chosen for the next iteration is the one with the lowest AIC. 
The algorithm is repeated on this reduced model. The algorithm continues in this 
fashion and stops when removing a variable does not reduce the AIC. While not 
specified, the direction argument is set to the default "backward" for backward 
elimination. One thing to note is that the AIC calculated in the step function is 
a simplification of the true AIC which is fine for the comparison of models, but it 
differs mathematically from Eq. 9.3 and the R function AIC.
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9.7 Airbnb Pricing Application: Backward Elimination 

Using the Edinburgh Airbnb data file, do the following: 

(a) Fit a linear regression model using all possible predictor variables. 
(b) Run backward elimination beginning from the full model in the previous part. 
(c) Specify which variable is eliminated in the first iteration of backward elimina-

tion. How many variables are eliminated in total using this process? 
(d) Print a model summary of the backward elimination model. 

Solution 

(a) The model with all the predictor variables was found previously as reg1. Here  
we fit the model again naming the resulting model object as full. 

full = lm(Price ~ ., data = df) 

(b) Backward elimination is run using the step function. The full model is the 
only necessary argument to run backward elimination using this function. 

BE = step(full) 

## Start: AIC=76687.66 
## Price ~ Bathrooms + Bedrooms + Beds + Accommodates + 
## Guests + MinNights + MaxNights + ExtraPeople + 
## HostListings + ResponseRate + Deposit + CleaningFee + 
## FeeMissing 
## 
## Df Sum of Sq RSS AIC 
## - Guests 1 1520 16838997 76687 
## <none> 16837477 76688 
## - MaxNights 1 6652 16844129 76690 
## - FeeMissing 1 8629 16846105 76691 
## - CleaningFee 1 19235 16856711 76697 
## - ResponseRate 1 21290 16858766 76699 
## - ExtraPeople 1 35052 16872529 76707 
## - Beds 1 39388 16876864 76710 
## - MinNights 1 53374 16890851 76718 
## - Bedrooms 1 134171 16971648 76768 
## - Deposit 1 218375 17055852 76819 
## - Bathrooms 1 244304 17081781 76835 
## - HostListings 1 419010 17256487 76941 
## - Accommodates 1 991776 17829253 77279 
## 
## Step: AIC=76686.59 
## Price ~ Bathrooms + Bedrooms + Beds + Accommodates +
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## MinNights + MaxNights + ExtraPeople + HostListings + 
## ResponseRate + Deposit + CleaningFee + FeeMissing 
## 
## Df Sum of Sq RSS AIC 
## <none> 16838997 76687 
## - MaxNights 1 6610 16845607 76689 
## - FeeMissing 1 9400 16848396 76690 
## - CleaningFee 1 18188 16857184 76696 
## - ResponseRate 1 21323 16860319 76698 
## - Beds 1 38710 16877707 76708 
## - ExtraPeople 1 44522 16883519 76712 
## - MinNights 1 54812 16893809 76718 
## - Bedrooms 1 134084 16973080 76767 
## - Deposit 1 219853 17058850 76819 
## - Bathrooms 1 244326 17083322 76834 
## - HostListings 1 421491 17260487 76941 
## - Accommodates 1 1006421 17845418 77287 

(c) The Guests variable is eliminated in the first iteration. The Guests variable is 
the only variable eliminated. 

(d) Here we pass the BE model to the summary function. 

summary(BE) 

## 
## Call: 
## lm(formula = Price ~ Bathrooms + Bedrooms + Beds + 
## Accommodates + MinNights + MaxNights + ExtraPeople + 
## HostListings + ResponseRate + Deposit + CleaningFee + 
## FeeMissing, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -130.615 -24.697 -8.165 15.920 248.739 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.557e+01 3.800e+00 4.097 4.23e-05 *** 
## Bathrooms 1.266e+01 1.032e+00 12.259 < 2e-16 *** 
## Bedrooms 8.548e+00 9.413e-01 9.081 < 2e-16 *** 
## Beds 3.267e+00 6.696e-01 4.879 1.08e-06 *** 
## Accommodates 1.280e+01 5.144e-01 24.880 < 2e-16 *** 
## MinNights 2.038e+00 3.509e-01 5.806 6.58e-09 *** 
## MaxNights -1.491e-03 7.393e-04 -2.016 0.043784 *
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## ExtraPeople -1.779e-01 3.399e-02 -5.233 1.70e-07 *** 
## HostListings 3.939e-01 2.447e-02 16.101 < 2e-16 *** 
## ResponseRate -1.296e+01 3.579e+00 -3.621 0.000294 *** 
## Deposit 6.070e-02 5.220e-03 11.629 < 2e-16 *** 
## CleaningFee 7.809e-02 2.335e-02 3.345 0.000827 *** 
## FeeMissing 2.249e+00 9.352e-01 2.404 0.016213 * 
## ---
## Signif. codes: 
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 40.32 on 10357 degrees of freedom 
## Multiple R-squared: 0.4764, Adjusted R-squared: 0.4758 
## F-statistic: 785.3 on 12 and 10357 DF, p-value: < 2.2e-16 

9.8 Forward Selection 

Forward selection begins without any predictor variables in the model. This model 
without predictor variables is referred to as the null model and only contains the 
intercept. Beginning with this null model, we consider all possible models with one 
predictor variable. Once we choose the best model, we continue adding in predictor 
variables, one at a time, until there is no longer an improvement in the selection 
criterion. In this case, we are bringing variables into the model, and we do not 
consider removing them in the forward selection algorithm. A structural outline of 
this algorithm is depicted in Fig. 9.2. 

To implement forward selection in R, we use the step function and specify the 
direction and scope arguments. Particularly, if we have a null model, null, and 
a full model, full, then we code the following: 

step(null, scope = list(upper = full), direction = "forward") 

To specify the model consisting of all variables under consideration as the upper 
model, the syntax in the given code necessitates the use of the list function. 

9.9 Airbnb Pricing Application: Forward Selection 

Using the Edinburgh Airbnb data file, do the following: 

(a) Fit a linear regression model using only the intercept. 
(b) Run forward selection beginning from the model in the previous part. 
(c) Specify which variable is incorporated in the first iteration of forward selection. 
(d) Print a model summary of the forward selection model.
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Solution 

(a) In an R formula, 1 represents the intercept. Thus, the null model is fit using 
the formula: Price ~ 1. 

null = lm(Price ~ 1, data = df) 

(b) The step function is used to perform forward selection by beginning with the 
null model and considering all the predictor variables from the full model. 
The scope and direction arguments are also necessary inputs to perform 
forward selection. The complete syntax is specified here to create the FS object. 
Here we print only the first 2 iterations for brevity. 

FS = step(null, scope = list(upper = full), direction = "forward") 

## Start: AIC=83372.16 
## Price ~ 1 
## 
## Df Sum of Sq RSS AIC 
## + Accommodates 1 13670568 18489144 77634 
## + Bedrooms 1 11685570 20474142 78692 
## + Beds 1 11109178 21050534 78979
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## + CleaningFee 1 4836817 27322895 81684 
## + Bathrooms 1 4619579 27540133 81766 
## + Guests 1 3196247 28963465 82289 
## + Deposit 1 1772373 30387339 82786 
## + HostListings 1 1190895 30968817 82983 
## + MinNights 1 970397 31189315 83056 
## + FeeMissing 1 403422 31756290 83243 
## + ExtraPeople 1 21360 32138352 83367 
## + MaxNights 1 20803 32138909 83367 
## <none> 32159712 83372 
## + ResponseRate 1 155 32159557 83374 
## 
## Step: AIC=77634.05 
## Price ~ Accommodates 
## 
## Df Sum of Sq RSS AIC 
## + Bathrooms 1 465453 18023690 77372 
## + Bedrooms 1 439845 18049299 77386 
## + HostListings 1 415354 18073790 77400 
## + Deposit 1 318547 18170597 77456 
## + MinNights 1 222259 18266885 77511 
## + Beds 1 118146 18370998 77570 
## + ExtraPeople 1 94287 18394857 77583 
## + CleaningFee 1 79041 18410103 77592 
## + FeeMissing 1 45143 18444001 77611 
## + ResponseRate 1 36707 18452437 77615 
## <none> 18489144 77634 
## + Guests 1 2967 18486176 77634 
## + MaxNights 1 1844 18487300 77635 
## 
## Step: AIC=77371.65 
## Price ~ Accommodates + Bathrooms 

(c) The first variable incorporated into the model is Accommodates. From the  
beginning of the forward selection output, we note that the starting AIC takes 
on a value of 83372.16. Note that +Accommodates denotes the inclusion of this 
variable and the corresponding AIC of 77634 is the lowest AIC on the first 
iteration. Therefore, including Accommodates is the best improvement on the 
model at the first iteration. 

(d) The FS model is easily printed using the summary function.
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summary(FS) 

## 
## Call: 
## lm(formula = Price ~ Accommodates + Bathrooms + 
## HostListings + Deposit + Bedrooms + MinNights + 
## ExtraPeople + Beds + ResponseRate + CleaningFee + 
## FeeMissing + MaxNights, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -130.615 -24.697 -8.165 15.920 248.739 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.557e+01 3.800e+00 4.097 4.23e-05 *** 
## Accommodates 1.280e+01 5.144e-01 24.880 < 2e-16 *** 
## Bathrooms 1.266e+01 1.032e+00 12.259 < 2e-16 *** 
## HostListings 3.939e-01 2.447e-02 16.101 < 2e-16 *** 
## Deposit 6.070e-02 5.220e-03 11.629 < 2e-16 *** 
## Bedrooms 8.548e+00 9.413e-01 9.081 < 2e-16 *** 
## MinNights 2.038e+00 3.509e-01 5.806 6.58e-09 *** 
## ExtraPeople -1.779e-01 3.399e-02 -5.233 1.70e-07 *** 
## Beds 3.267e+00 6.696e-01 4.879 1.08e-06 *** 
## ResponseRate -1.296e+01 3.579e+00 -3.621 0.000294 *** 
## CleaningFee 7.809e-02 2.335e-02 3.345 0.000827 *** 
## FeeMissing 2.249e+00 9.352e-01 2.404 0.016213 * 
## MaxNights -1.491e-03 7.393e-04 -2.016 0.043784 * 
## ---
## Signif. codes: 
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 40.32 on 10357 degrees of freedom 
## Multiple R-squared: 0.4764, Adjusted R-squared: 0.4758 
## F-statistic: 785.3 on 12 and 10357 DF, p-value: < 2.2e-16 

9.10 Stepwise Regression 

While stepwise regression could possibly refer to backward elimination or forward 
selection, we will use it here to refer to the more general case of stepwise regression 
where predictor variables could be added or removed from the model. The stepwise 
algorithm starts with a null model and then not only adds in variables, one at a time,
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Fig. 9.3 Stepwise regression 

but also considers removing variables from the model. The stepwise method differs 
from the forward selection method because we consider removing variables from 
the model as well. A structural outline of this algorithm is depicted in Fig. 9.3. 

Since the stepwise algorithm is similar to forward selection, the code to 
implement stepwise is similar to that of forward selection. Particularly, if we have 
null and full models defined as null and full, respectively, the step function can 
be used to invoke the stepwise algorithm: 

SW = step(null, scope = list(upper = full), direction = "both") 

Notice the direction argument is specified as "both" to allow variables to be 
added or removed in each step. 

9.11 Airbnb Pricing Application: Stepwise Regression 

Using the Edinburgh Airbnb data file, do the following: 

(a) Run stepwise regression beginning from a model using only the intercept. 
(b) Specify which variable is incorporated in the first iteration of the stepwise 

regression.
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(c) Print a model summary of the stepwise regression model. 
(d) Clearly state the difference (if any) between the backwards elimination, forward 

selection, and the stepwise regression models. 

Solution 

(a) Using the null and full models as inputs, stepwise regression is performed 
using the step function. Note that the syntax is identical to that of the forward 
selection method with the exception of the direction argument which is 
specified as "both". Here we print only the first 2 iterations for brevity. 

SW = step(null, scope = list(upper = full), direction = "both") 

## Start: AIC=83372.16 
## Price ~ 1 
## 
## Df Sum of Sq RSS AIC 
## + Accommodates 1 13670568 18489144 77634 
## + Bedrooms 1 11685570 20474142 78692 
## + Beds 1 11109178 21050534 78979 
## + CleaningFee 1 4836817 27322895 81684 
## + Bathrooms 1 4619579 27540133 81766 
## + Guests 1 3196247 28963465 82289 
## + Deposit 1 1772373 30387339 82786 
## + HostListings 1 1190895 30968817 82983 
## + MinNights 1 970397 31189315 83056 
## + FeeMissing 1 403422 31756290 83243 
## + ExtraPeople 1 21360 32138352 83367 
## + MaxNights 1 20803 32138909 83367 
## <none> 32159712 83372 
## + ResponseRate 1 155 32159557 83374 
## 
## Step: AIC=77634.05 
## Price ~ Accommodates 
## 
## Df Sum of Sq RSS AIC 
## + Bathrooms 1 465453 18023690 77372 
## + Bedrooms 1 439845 18049299 77386 
## + HostListings 1 415354 18073790 77400 
## + Deposit 1 318547 18170597 77456 
## + MinNights 1 222259 18266885 77511 
## + Beds 1 118146 18370998 77570 
## + ExtraPeople 1 94287 18394857 77583 
## + CleaningFee 1 79041 18410103 77592 
## + FeeMissing 1 45143 18444001 77611 
## + ResponseRate 1 36707 18452437 77615
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## <none> 18489144 77634 
## + Guests 1 2967 18486176 77634 
## + MaxNights 1 1844 18487300 77635 
## - Accommodates 1 13670568 32159712 83372 
## 
## Step: AIC=77371.65 
## Price ~ Accommodates + Bathrooms 

(b) The Accommodates variable is incorporated in the first iteration. Note that 
on the second iteration, the stepwise method considers eliminating the 
Accommodates variable from the model even though that would result in a 
large increase in the AIC. 

(c) A summary of the SW object is done here. 

summary(SW) 

## 
## Call: 
## lm(formula = Price ~ Accommodates + Bathrooms + 
## HostListings + Deposit + Bedrooms + MinNights + 
## ExtraPeople + Beds + ResponseRate + CleaningFee + 
## FeeMissing + MaxNights, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -130.615 -24.697 -8.165 15.920 248.739 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.557e+01 3.800e+00 4.097 4.23e-05 *** 
## Accommodates 1.280e+01 5.144e-01 24.880 < 2e-16 *** 
## Bathrooms 1.266e+01 1.032e+00 12.259 < 2e-16 *** 
## HostListings 3.939e-01 2.447e-02 16.101 < 2e-16 *** 
## Deposit 6.070e-02 5.220e-03 11.629 < 2e-16 *** 
## Bedrooms 8.548e+00 9.413e-01 9.081 < 2e-16 *** 
## MinNights 2.038e+00 3.509e-01 5.806 6.58e-09 *** 
## ExtraPeople -1.779e-01 3.399e-02 -5.233 1.70e-07 *** 
## Beds 3.267e+00 6.696e-01 4.879 1.08e-06 *** 
## ResponseRate -1.296e+01 3.579e+00 -3.621 0.000294 *** 
## CleaningFee 7.809e-02 2.335e-02 3.345 0.000827 *** 
## FeeMissing 2.249e+00 9.352e-01 2.404 0.016213 * 
## MaxNights -1.491e-03 7.393e-04 -2.016 0.043784 * 
## ---
## Signif. codes: 
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##
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## Residual standard error: 40.32 on 10357 degrees of freedom 
## Multiple R-squared: 0.4764, Adjusted R-squared: 0.4758 
## F-statistic: 785.3 on 12 and 10357 DF, p-value: < 2.2e-16 

(d) All three methods come up with the same solution. While it may seem that the 
algorithms should come to the same solution, it is not always the case. 

9.12 Best Subsets Regression 

The best subsets regression algorithm consists of evaluating all possible subsets. 
Therefore, best subsets regression guarantees that the chosen model will be the best 
model according to the criteria that you choose. For instance, the best subsets will 
find the model with the best adjusted . R2 for all variable combinations if that is our 
criteria. 

The implementation of best subsets regression in R is given within the 
leaps package, and the function that invokes the algorithm is regsubsets. 
The regsubsets requires a formula and the data set. An optional argument of 
nvmax specifies the number of variables to be considered. By default, regsubsets 
considers variable combinations up to 8. Best subsets regression can be coded using 
the formula fmla and data df: 

library(leaps) 
BSR = regsubsets(fmla, data = df) 

9.13 Airbnb Pricing Application: Best Subsets Regression 1 

Using the Edinburgh Airbnb data file, do the following: 

(a) Run the best subsets method on the data using all predictor variables using the 
default value of nvmax. 

(b) Plot the results of the best subsets method from part (a) using BIC as the scale. 
Repeat using adjusted . R2 as the scale. 

(c) Interpret the plots from part (b) by specifying the variables used. 
(d) Find the number of variables that correspond to the best BIC, adjusted . R2, 

Mallows’s . Cp, and SSE. 

Solution 

(a) Here we load in the leaps package using the library function. The best 
subsets object, BSR, is created using the regsubsets function. The primary 
input arguments for this function are the same as those of the lm function. By 
only setting the primary input arguments, the default argument of nvmax of 8 is 
used.
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Fig. 9.4 Best subsets regression results 1 

library(leaps) 
BSR = regsubsets(Price ~ ., data = df) 

(b) We can simply pass BSR to the plot function to get a best subsets plot with 
BIC as the scale. To use adjusted . R2 as the scale, set the scale argument to 
"adjr2" in the plot function. 

par(mfrow=c(1,2)) 
plot(BSR) 
plot(BSR, scale = "adjr2") 

(c) In both cases, the variables returned are Bathrooms, Bedrooms, Beds, 
Accommodates, MinNights, ExtraPeople, HostListings, and Deposit. 
This information can be seen from the top row of the plots in Fig. 9.4. It is also  
possible to list out these variables using the coef function. The arguments of 
this function are BSR and the number of predictor variables to be used. 

coef(BSR,8) 

## (Intercept) Bathrooms Bedrooms Beds 
## 3.16272079 12.73168880 8.98549616 3.26311019 
## Accommodates MinNights ExtraPeople HostListings 
## 12.87694620 2.24713688 -0.18647225 0.38641557 
## Deposit 
## 0.06450636
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(d) For convenience, we create the BSR_summary object as the summary of the 
BSR object. The BSR_summary$adjr2 consists of the best adjusted . R2 for each 
number of variables used, and each index in BSR_summary$adjr2 corresponds 
to the number of variables used. 

BSR_summary = summary(BSR) 
BSR_summary$adjr2 

## [1] 0.4250282 0.4394487 0.4513901 0.4620832 0.4694081 
## [6] 0.4716762 0.4731864 0.4743464 

By inspection of the output, we see that the last value is the highest adjusted . R2 value. Since 
the number of variables corresponds to the index of the vector in BSR_summary$adjr2, the  
best adjusted . R2 corresponds to using 8 variables. To find the number of variables of the 
highest adjusted . R2 in a programmatic way, we use the which.max function since it returns 
the index number of the maximum value. Since we would like the lowest BIC, Mallows’s 
. Cp , and  SSE, we use  which.min to return the best number of variables for each metric. 

which.max(BSR_summary$adjr2) 
which.min(BSR_summary$bic) 
which.min(BSR_summary$cp) 
which.min(BSR_summary$rss) 

## [1] 8 

## [1] 8 

## [1] 8 

## [1] 8 

9.14 Airbnb Pricing Application: Best Subsets Regression 2 

Using the Edinburgh Airbnb data file, do the following: 

(a) Run the best subsets method on the data using all predictor variables using the 
nvmax option to include all possible combinations of predictor variables. 

(b) Plot the results from the previous part. 
(c) Find the number of variables that result in the best adjusted . R2, BIC, Mallows’s 

. Cp, and SSE. Also, find the best adjusted . R2, BIC, Mallows’s . Cp, and SSE. 
(d) Plot the adjusted . R2 as a function of the number of variables. Repeat for BIC, 

Mallows’s . Cp, and SSE. 
(e) What are the advantages and disadvantages of each model selected from the 

previous part?
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Fig. 9.5 Best subsets regression results 2 

Solution 

(a) Here, we again use regsubsets in a similar fashion to part (a) in the previous 
application but specify nvmax to include all 13 variables. 

BSR2 = regsubsets(Price ~ ., data = df, nvmax = 13) 

(b) In Fig. 9.5, we plot a side-by-side plot of the best subsets plots using a BIC 
scale and an adjusted . R2 scale. 

par(mfrow=c(1,2)) 
plot(BSR) 
plot(BSR, scale = "adjr2") 

(c) For convenience, we define the BSR_summary2 summary object. 

BSR_summary2 = summary(BSR2) 

The values of the adjusted . R2, BIC, Mallows’s . Cp, and SSE are printed 
using the max and min functions here. 

adjr2 = max(BSR_summary2$adjr2) 
bic = min(BSR_summary2$bic) 
cp = min(BSR_summary2$cp) 
sse = min(BSR_summary2$rss) 

adjr2
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bic 
cp 
sse 

## [1] 0.475788 

## [1] -6598.668 

## [1] 12.9348 

## [1] 16837477 

A number of variables corresponding to the best adjusted . R2, BIC, Mallows’s . Cp , and  
SSE are found using the which.max and which.min functions here. 

nvar_adjr2 = which.max(BSR_summary2$adjr2) 
nvar_bic = which.min(BSR_summary2$bic) 
nvar_cp = which.min(BSR_summary2$cp) 
nvar_sse = which.min(BSR_summary2$rss) 

nvar_adjr2 
nvar_bic 
nvar_cp 
nvar_sse 

## [1] 12 

## [1] 9 

## [1] 12 

## [1] 13 

Plotting the metrics in a 2 by 2 grid can be accomplished using the par command. The plot 
in the upper left corner of Fig. 9.6 shows the vector BSR_summary2$adjr2 plot with the 
number of variables on the x-axis. The plot command was used here with a vector which 
results in the vector indices to be the values on the x-axis. The xlab and ylab arguments 
are used to label the axes and we further specify the type option to be a line rather than 
points. After using the plot function, we use the points function which places points on the 
previous plot. In the case of the adjusted . R2 plot, a red point is inserted at . (12, 0.4758)
which denotes the highest adjusted . R2. The optional argument col is specified to make this 
point red. The process is repeated for BIC, Mallows’s . Cp , and  SSE. 

par(mfrow=c(2,2)) 

# Adjusted R-Squared 
plot(BSR_summary2$adjr2, xlab = "Number of Variables", 

ylab = "Adj. R-Squared", type = "l")
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Fig. 9.6 Best subsets regression metric plots 

points(nvar_adjr2, adjr2, col = "red") 

# BIC 
plot(BSR_summary2$bic, xlab = "Number of Variables", 

ylab = "BIC", type = "l") 
points(nvar_bic, bic, col = "red") 

# Mallows's Cp 
plot(BSR_summary2$cp, xlab = "Number of Variables", 

ylab = "Mallows's Cp", type = "l") 
points(nvar_cp, cp, col = "red") 

# SSE 
plot(BSR_summary2$rss, xlab = "Number of Variables", 

ylab = "SSE", type = "l") 
points(nvar_sse, sse, col = "red") 

(e) In the models fit using best subsets, the model with the best fit is the model that 
includes all the variables since it has the lowest SSE. However, the model with 
the lowest error is not necessarily the best choice since it could include predictor 
variables that are not meaningful for the prediction. This was similar to the case 
with the multiple . R2, where the multiple . R2 always increased with the addition 
of another predictor regardless of if the predictor was actually related to the 
response. We were then able to modify the multiple . R2 by taking into account 
the number of predictors using the adjusted . R2 to get a better measure of fit.
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Both adjusted . R2 and Mallows’s . Cp agree that the best subset of predictor 
variables is that with 12 predictor variables. Recall for the first application from 
the chapter that the variable with low significance was removed from the model. 
While the adjusted . R2 did not noticeably change due to the number of digits 
displayed in the summary, the best subsets results indicate that the model did in 
fact improve the adjusted . R2. Furthermore, having one less predictor variable 
especially one with low significance results in a more parsimonious model. 

The BIC, on the other hand, was lowest when there were 9 predictor 
variables. The BIC measure specifies a smaller model since BIC becomes 
higher with more predictor variables. Arguably, this is an attractive feature since 
the model becomes more easily interpretable with fewer predictors. 

9.15 Stepwise and Best Subsets Regression 

The backward elimination, forward selection, and stepwise algorithms selected 
variables in an iterative manner but did not consider all of the possible predictor 
variable subsets. While the aforementioned iterative procedures are sufficient for 
most cases, in cases of many variables, the results may be insufficient since there is 
no guarantee that the resulting model from these methods will be the best method. 
Best subsets regression, on the other hand, will guarantee that the best possible 
metric is found across all predictor variable combinations. We note that the best 
subsets regression can be limited in R using the nvmax argument. This argument 
can be adjusted as discussed in the previous application, and however, the number of 
subset models needed to be fit grows at a rapid rate as the number of variables gets 
large. Since the number of variable subsets becomes very large when the number 
of variables is large, the best subsets regression algorithm can be computationally 
expensive. In the Airbnb applications, all of the iterative approaches had the same 
resulting model which would also yield the same model for best subsets regression 
using the AIC metric (this exercise is left to the reader). 

Note that the selection methods from this chapter are only a starting place for 
what variables should be included. After determining a good subset of variables, 
the analyst should continue their analysis to see if interaction or higher order terms 
should be included in the final model. 

9.16 Case Study: Cancer Treatment Cost Analysis 

9.16.1 Problem Statement 

An insurance company heavily relies on various factors to determine what an 
individual’s premium should be. A profitable insurance company charges more 
in premiums, on average, than the amount of health care expenses incurred
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by beneficiaries. Hence, insurance company analysts must study the profiles of 
individual beneficiaries to properly estimate the future expenses that each may incur 
and then properly calculate the appropriate premium for that individual. 

In this case study, we focus on the factors of health care costs that can be used 
by an insurance company to determine premiums. Health care costs can vary for a 
variety of reasons. Among these, cancer treatment represents a particularly costly 
medical expense that insurance pays for. This case examines the data on charges 
billed by health insurance for the treatment of different types of cancer. 

Carla is a junior analyst at Quality Insurance (QI). She was recently tasked 
with examining insurance charges made by policyholders who were diagnosed with 
cancer. She fit a regression model from the data, but some issues regarding the 
model need to be resolved. After Carla finished her analysis, you were hired as 
an independent contractor to check the quality of her analysis and answer a few 
additional questions. Specifically, your tasks consist of the following: 

1. Assess the regression model fit from the preliminary analysis. 
2. Find a parsimonious model that predicts insurance charges and interpret the 

coefficients. 
3. Test for differences in charges across the different BMI categories for smokers 

and nonsmokers. 
4. Test for income differences across the different insurance plans. 

9.16.2 Data Description 

QI provides data concerning cancer patients from 2021. Several variables included 
within the data can be used to predict the amount of charges billed to QI. 

The data set consists of the variables listed below: 

• ID—The row or observation number, where each row represents an individual. 
• Age—The age of the individual receiving treatment. 
• BMI—Body Mass Index (BMI), a measure of an individual’s weight in reference 

to their height. 
• Income—The income of the individual. 
• Plan—A categorical variable representing one of the three types of medical 

insurance plans offered by QI. 
• Smoke—A categorical variable representing whether an individual smokes or 

not. 
• Sex—A categorical variable representing whether an individual is male or 

female. 
• Charges—Medical costs billed to health insurance. 

The data is contained within the Charges.csv file.
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9.16.3 Preliminary Analysis 

Carla performed a preliminary analysis. She loaded in the data and fit a regression 
model using all of the columns, other than Charges, as predictors. Her code and 
summary are shown here. 

df = read.csv("Charges.csv") 
reg = lm(Charges ~ ., data = df) 
summary(reg) 

## 
## Call: 
## lm(formula = Charges ~ ., data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -99886 -26009 -3379 16961 222706 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -7.486e+04 1.753e+04 -4.269 2.15e-05 *** 
## ID -6.967e+00 4.806e+00 -1.450 0.1475 
## Age 9.403e+02 1.893e+02 4.968 7.96e-07 *** 
## BMI 3.979e+03 3.072e+02 12.953 < 2e-16 *** 
## Plan 2.190e+03 2.316e+03 0.946 0.3445 
## Sexmale 4.913e+03 2.797e+03 1.757 0.0793 . 
## SmokeY 5.284e+04 3.386e+03 15.607 < 2e-16 *** 
## Income 1.290e-01 7.222e-02 1.786 0.0745 . 
## ---
## Signif. codes: 
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 43820 on 992 degrees of freedom 
## Multiple R-squared: 0.3006, Adjusted R-squared: 0.2957 
## F-statistic: 60.9 on 7 and 992 DF, p-value: < 2.2e-16 

Unfortunately, there are several errors in the analysis. The residual plots indicate 
that the linear regression assumptions have been violated. 

par(mfrow = c(1, 2)) 
hist(reg$residuals, xlab = "Residuals", 

main = "Histogram of Residuals") 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted values", 

ylab = "Residuals", main = "Residual Plot")
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Fig. 9.7 Diagnostic plots for preliminary model 

On the left-side of Fig. 9.7, the residuals clearly show a pattern that changes 
as the fitted values increase. The pattern of the residuals violates the assumption 
of linearity. On the right-side of Fig. 9.7, the bell-shaped pattern of a histogram is 
not evident since the plot has a right skew indicating the regression model is non-
normal, which is another violation of the linear regression assumptions. Here we 
use the shapiro.test function to invoke the Shapiro-Wilk test. 

shapiro.test(reg$residuals) 

## 
## Shapiro-Wilk normality test 
## 
## data: reg$residuals 
## W = 0.88448, p-value < 2.2e-16 

The results of the Shapiro-Wilk test further verify the claim that the residuals 
follow a non-normal distribution. In particular, the Shapiro-Wilk p-value is well 
below 5% indicating that the distribution of the residuals proves to be non-normal. 
However, the coefficients are still the best estimates for the linear model, but further 
exploration is warranted.
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9.16.4 Revised Analysis 

After the preliminary analysis, some of Carla’s senior employees advise you that 
more careful inspection of the variables is required before fitting a regression model. 
Several functions in R exist to observe the data. Here we will make use of the 
summary function. 

summary(df) 

## ID Age BMI 
## Min. : 1.0 Min. :49.00 Min. :16.13 
## 1st Qu.: 250.8 1st Qu.:58.00 1st Qu.:23.77 
## Median : 500.5 Median :66.00 Median :26.80 
## Mean : 500.5 Mean :66.03 Mean :26.90 
## 3rd Qu.: 750.2 3rd Qu.:74.00 3rd Qu.:30.14 
## Max. :1000.0 Max. :82.00 Max. :40.33 
## Plan Sex Smoke 
## Min. :1.000 Length:1000 Length:1000 
## 1st Qu.:1.750 Class :character Class :character 
## Median :2.000 Mode :character Mode :character 
## Mean :2.074 
## 3rd Qu.:3.000 
## Max. :3.000 
## Income Charges 
## Min. : 34157 Min. : 44071 
## 1st Qu.: 62055 1st Qu.: 96108 
## Median : 87953 Median :110874 
## Mean : 86569 Mean :120040 
## 3rd Qu.:107296 3rd Qu.:126588 
## Max. :165321 Max. :421281 

Notice that Smoke and Sex are not listed as factor variables. While these variables 
can be manually converted to factors as shown in Chap. 5, it is simpler to make the 
conversion when loading in the data. By setting the stringsAsFactors option 
to TRUE, within the read.csv command, the text string vectors are automatically 
converted to factor variables. Within this data set, converting all of the string 
vectors to factor variables is an elegant solution for this data, since all of the 
non-numeric variables are categorical. If a date column existed within the data, 
the stringsAsFactors option should not be set to TRUE, since a date does not 
typically denote a category level. 

df = read.csv("Charges.csv", stringsAsFactors = TRUE) 

Furthermore, from the summary and the description of the variables, it is evident 
that the ID column should not be used as a predictor variable. Setting the value of 
ID to NULL will remove the column from the data frame.
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Fig. 9.8 Scatterplot matrix colored by smokers 

df$ID = NULL 

We noted in the variable explanation that the Plan variable is categorical. Since 
the Plan variable takes on three numeric values (1, 2, and 3), R incorrectly assumes 
that Plan is numeric. Using the factor function converts Plan to a factor variable. 

df$Plan = factor(df$Plan) 

An initial inspection of the variables can be done by finding a scatterplot matrix 
among the numeric variables. Using the subset function, we can create a data frame 
of numeric values named numeric_var, as shown in the code below: 

numeric_var = subset(df, select = c("Age", "BMI", "Income", 
"Charges")) 

Interesting scatterplot matrices can be created by coloring the variables by 
categorical variables. In this instance, the Smoke variable is used to color the data 
by smokers and nonsmokers. Here we use the plot function and specify the col 
argument as the Smoke variable within df. 

plot(numeric_var, col = df$Smoke) 

In Fig. 9.8, red represents smokers and black represents nonsmokers. Because 
smoking is a serious health risk, the charges incurred are much greater for smokers 
as shown.
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Fig. 9.9 Scatterplots 

Note that a similar set of scatterplot matrices can be created by using the numeric 
variables and coloring them by Sex and Plan. The code to create the plots is similar 
to that of the previous plot command. 

plot(numeric_var, col = df$Sex) 
plot(numeric_var, col = df$Plan) 

The scatterplot matrices are not displayed here because they lack significance. 
The analyst should create and inspect the scatterplots to determine their relevance. 

After observing the scatterplots colored by smoker, insurance charges notably 
differ depending on the customer’s status as a smoker or a nonsmoker, as evidenced 
by the relationship between Age and Charges. A larger scatterplot between Age and 
Charges on the right-side of Fig. 9.9 reveals more details about this relationship. 
The scatterplots also reveal a relationship between BMI and Charges, which also 
warrants further investigation and, therefore, is shown on the left side of Fig. 9.9. 

par(mfrow = c(1, 2)) 
plot(Charges ~ Age, data = df, col = df$Smoke) 
plot(Charges ~ BMI, data = df, col = df$Smoke) 

Investigating the left-side of Fig. 9.9, we see that there is a linear relationship 
between Age and Charges for nonsmokers as indicated by the black points. Above 
the black points, there is a linear trend consisting of red points. Thus, it becomes 
clear that Charges and Age may have a different relationship for smokers and 
nonsmokers.
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Table 9.1 Weight status by 
body mass index 

Body mass index (BMI) Weight status 

.BMI < 18.5 Underweight 

.18.5 ≤ BMI < 25 Normal 

.25 ≤ BMI < 30 Overweight 

.BMI ≥ 30 Obese 

Investigating the right-side of Fig. 9.9, we find the divide between the Charges 
that smokers have when their BMI is lower or higher than 30. On the BMI scale, a 
value of 30 represents the threshold between overweight and obese, which is a health 
risk that could cause medical charges to be higher. The weight status categories 
from BMI levels are given in Table 9.1. From Fig. 9.9, we see clearly that a dummy 
variable for obese individuals could be included to more accurately model Charges. 

The following line of code creates a dummy variable based on the numeric BMI 
column. The result of the inequality test is either "Y" or "N" for each observation. 

df$Obese = ifelse(df$BMI > 30, "Y", "N") 

While the BMI scale is relatively well known, it may come as a surprise to some 
that the previous scatterplots show different trends when BMI is above 30. Our 
analysis therefore prompts the insurance company to identify obese individuals, who 
are more at risk and will most likely have more insurance charges. 

9.16.5 Regression Modeling 

From the analysis in the previous section, we note that smokers should be treated 
differently in modeling their medical charges to account for the effects of smoking. 
We achieve this goal by using interactions. Here, we would like to check the 
models consisting of all predictor variables, as well as the variable interactions with 
smokers. Thus, the interaction terms are used: 

• Age:Smoke 
• BMI:Smoke 
• Income:Smoke 
• Obese:Smoke. 

In addition, we would like to consider the effects of obese smokers since they are 
at a higher risk of incurring charges. The three-way interactions are included: 

• Age:Obese:Smoke 
• BMI:Obese:Smoke 
• Income:Obese:Smoke 

For convenience, the formula consisting of Charges as predicted by all other 
variables and the interactions is defined and named fmla.
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fmla = Charges ~ . + Age:Smoke + BMI:Smoke + Income:Smoke + 
Obese:Smoke + Age:Obese:Smoke + BMI:Obese:Smoke + 
Income:Obese:Smoke 

Using the formula given by fmla, a full model is fit and summarized. 

full = lm(fmla, data = df) 
summary(full) 

## 
## Call: 
## lm(formula = fmla, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -69239 -13645 442 13449 64956 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 4.243e+04 1.215e+04 3.493 0.000498 *** 
## Age 6.346e+02 1.166e+02 5.443 6.61e-08 *** 
## BMI 8.975e+02 2.624e+02 3.421 0.000651 *** 
## Plan2 -1.620e+03 1.646e+03 -0.985 0.325069 
## Plan3 1.090e+04 2.252e+03 4.840 1.51e-06 *** 
## Sexmale 3.169e+03 1.319e+03 2.403 0.016450 * 
## SmokeY -4.252e+03 2.384e+04 -0.178 0.858497 
## Income -3.901e-02 4.584e-02 -0.851 0.394996 
## ObeseY 2.361e+04 2.835e+04 0.833 0.405159 
## Age:SmokeY -5.844e+01 2.351e+02 -0.249 0.803753 
## BMI:SmokeY 1.468e+02 5.892e+02 0.249 0.803303 
## SmokeY:Income 6.186e-02 7.732e-02 0.800 0.423871 
## SmokeY:ObeseY -2.572e+04 6.450e+04 -0.399 0.690130 
## Age:SmokeN:ObeseY -8.561e+01 2.101e+02 -0.407 0.683772 
## Age:SmokeY:ObeseY 3.783e+03 4.499e+02 8.409 < 2e-16 *** 
## BMI:SmokeN:ObeseY -6.943e+02 7.073e+02 -0.982 0.326507 
## BMI:SmokeY:ObeseY -1.909e+03 1.462e+03 -1.306 0.192010 
## SmokeN:Income:ObeseY 3.897e-02 6.647e-02 0.586 0.557820 
## SmokeY:Income:ObeseY 2.398e-01 1.539e-01 1.558 0.119449 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 20520 on 981 degrees of freedom 
## Multiple R-squared: 0.8483, Adjusted R-squared: 0.8455 
## F-statistic: 304.7 on 18 and 981 DF, p-value: < 2.2e-16 

The full model above returns a great fit, especially compared with the low 
adjusted . R2 from the initial model. However, the model is not easily interpreted 
since there are too many predictor variables. In the following section, other models 
will be considered.
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Fig. 9.10 Best subsets plots 

Best Subsets Model 

Note that the model above has a significantly higher adjusted . R2 than the model 
fit in the preliminary analysis. However, the model includes many predictors which 
should not be used. To find a more parsimonious model, we can utilize best subsets. 
In particular, the leaps package allows us to use the regsubsets function. 

library(leaps) 
bsr = regsubsets(fmla, data = df) 

The results from the best subsets object, bsr, can be observed by using the plot 
function. Here, we plot the models ranked according to their adjusted . R2 value on 
the left-side of Fig. 9.10 and ranked according to their best BIC values on the right-
side. 

The coefficients of the best subset model can be found using the coef function. 
However, this function does not return the complete summary. While the coef 
function allows you to find the best model for different numbers of variables, here 
we choose four variables since the plot in the right-side of Fig. 9.10 has the lowest 
BIC. 

coef(bsr, 4) 

## (Intercept) Age BMI 
## 44878.9832 614.8044 740.3576 
## Plan3 Age:SmokeY:ObeseY 
## 11650.6970 3163.9707
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To get a summary of the model chosen from best subsets, the lm function can be 
used with the summary function. 

reg = lm(Charges ~ Age + BMI + Plan + Age:Smoke:Obese, 
data = df) 

summary(reg) 

## 
## Call: 
## lm(formula = Charges ~ Age + BMI + Plan + Age:Smoke:Obese, 
## data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -70833 -13994 102 13566 65223 
## 
## Coefficients: (1 not defined because of singularities) 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 43880.69 7556.47 5.807 8.56e-09 *** 
## Age 3774.01 87.45 43.156 < 2e-16 *** 
## BMI 809.95 216.44 3.742 0.000193 *** 
## Plan2 -1521.51 1639.40 -0.928 0.353585 
## Plan3 10671.44 1733.82 6.155 1.09e-09 *** 
## Age:SmokeN:ObeseN -3156.16 51.67 -61.078 < 2e-16 *** 
## Age:SmokeY:ObeseN -3146.27 56.20 -55.986 < 2e-16 *** 
## Age:SmokeN:ObeseY -3169.67 48.17 -65.802 < 2e-16 *** 
## Age:SmokeY:ObeseY NA NA NA NA 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 20570 on 992 degrees of freedom 
## Multiple R-squared: 0.8459, Adjusted R-squared: 0.8448 
## F-statistic: 778 on 7 and 992 DF, p-value: < 2.2e-16 

While the coefficient values are relatively similar to those returned using the 
coef function, they are not the same since the lm function includes some variables 
not used in the best subsets model. For instance, the summary output includes the 
Plan2 and Plan3 dummy variables, whereas the best subsets results from Fig. 9.10 
did not contain the Plan2 dummy variable. A character variable for Plan3 can be 
created using the ifelse function. This character variable will automatically be 
converted to a factor variable within the lm function. 

df$Plan3 = ifelse(df$Plan == 3, "Y", "N")
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Another difference between the results of best subsets from Fig. 9.10 and the 
summary results occurs as more interactions between Age and the levels of Smoke 
and Obese. To remedy this, we again use the ifelse statement. The Obese_Smoke 
dummy indicates that an observation is both obese and a smoker. 

df$Obese_Smoke = ifelse(df$Obese == "Y" & df$Smoke == "Y", "Y", 
"N") 

Using the manually created variables within the lm function allows us to print 
the summary below: 

reg = lm(Charges ~ Age + BMI + Plan3 + Age:Obese_Smoke, 
data = df) 

summary(reg) 

## 
## Call: 
## lm(formula = Charges ~ Age + BMI + Plan3 + Age:Obese_Smoke, 
## data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -70677 -14163 148 13410 64667 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 44878.98 6231.85 7.202 1.17e-12 *** 
## Age 614.80 72.47 8.483 < 2e-16 *** 
## BMI 740.36 150.90 4.906 1.08e-06 *** 
## Plan3Y 11650.70 1389.61 8.384 < 2e-16 *** 
## Age:Obese_SmokeY 3163.97 46.45 68.118 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 20550 on 995 degrees of freedom 
## Multiple R-squared: 0.8457, Adjusted R-squared: 0.8451 
## F-statistic: 1364 on 4 and 995 DF, p-value: < 2.2e-16 

In the summary above, the best subsets model was recreated using the lm 
function, which can be confirmed since the coefficients match the best subsets 
coefficients displayed using the coef function. Also of note, since the best model 
was chosen according to the best BIC value, a more parsimonious model was 
returned despite the lower adjusted . R2 in the best subsets model. While the summary 
indicates a parsimonious model, it is important to also check the diagnostic plots.
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Fig. 9.11 Diagnostic plots for best subsets model 

par(mfrow = c(1, 2)) 
hist(reg$residuals, xlab = "Residuals", 

main = "Histogram of Residuals") 
plot(reg$fitted.values, reg$residuals, xlab = "Fitted values", 

ylab = "Residuals", main = "Residual Plot", col = df$Smoke) 

On the left-side of Fig. 9.11, the residuals have the same spread from left to 
right even though the obese–smokers have larger predicted values. The right-side 
of Fig. 9.11 indicates that the residuals are distributed normally. By observing the 
residual plots of Fig. 9.11, we can conclude that the best subsets model does not 
violate the linear regression assumptions. 

Coefficient Interpretation 

Here we interpret the coefficients of the best subsets model. 

• Intercept—The intercept represents the Charges when all the predictor variables 
are 0. While the p-value is significant, having Age and BMI set to 0 does not make 
sense. If Age and BMI are mean-centered, then the intercept has more intuitive 
meaning.
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• Age—Since the p-value indicates significance, the interpretation is: 

The Charges will increase by $614.80 for every year increase in Age, holding all other 
variables constant. 

• BMI—Since the p-value indicates significance, the interpretation is: 

The Charges will increase by $740.36 for every unit increase in BMI, holding all other 
variables constant. 

• Plan3Y—The p-value indicates this variable is significant. The interpretation is: 

The Charges for plan 3 will be $11,650.70 more than the other plans, holding all other 
variables constant. 

• Age:Obese_SmokeY—The p-value indicates this variable is significant. The 
interpretation is: 

The Charges will increase by $3163.97 more for every year increase in Age for obese 
smokers, holding all other variables constant. 

Charges Across BMI Categories 

We would now like to test for differences among Charges across the various BMI 
categories for smokers and nonsmokers. Using the cut command, we can segment 
the BMI variable according to the cutoffs as specified in the breaks option. In this 
case, an individual with a BMI of below 18.5 is placed in the “Under” category, while 
18.5 to below 25 is categorized as “Normal,” while 25 to under 30 is “Over,” and 30 
or above is “Obese.” These categories are specified in the labels option. 

df$Categories = cut(df$BMI, breaks = c(-Inf, 18.5, 25, 30, Inf), 
labels = c("Under", "Normal", "Over", 

"Obese")) 

Using these Categories, we use  the  boxplot function to get a visual compari-
son of the smokers by Categories. The smokers are specified in the data frame by 
indexing the values where Smoke is “Y.” 

boxplot(Charges ~ Categories, data = df[df$Smoke=="Y",], 
col = "lightgray") 

Notice from the boxplot in Fig. 9.12 that the Obese category significantly differs 
from the remaining categories. Therefore, there is a notable difference in Charges 
among categories. The result can be formalized with a statistical test. Here . μ1, . μ2, 
. μ3, and . μ4 represent the mean Charges of the respective Categories for smokers.
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Fig. 9.12 Boxplot of charges by BMI category (smokers) 

Null Hypothesis: Charges is the same across different BMI categories (for 
smokers). 

. H0 : μ1 = μ2 = μ3 = μ4

Alternative Hypothesis: At least one mean is different. 
The alternative hypothesis is equivalent to saying that there is a difference in 

Charges among the categories. Using the aov command, we calculate an ANOVA 
test. 

aov1 = lm(Charges ~ Categories, data = df[df$Smoke=="Y",]) 
anova(aov1) 

## Analysis of Variance Table 
## 
## Response: Charges 
## Df Sum Sq Mean Sq F value Pr(>F) 
## Categories 3 1.7414e+12 5.8045e+11 717.94 < 2.2e-16 *** 
## Residuals 210 1.6978e+11 8.0850e+08 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The p-value of the F -test is extremely small in this case indicating statistical 
significance. Therefore, the ANOVA test is in agreement with our assessment made 
by looking at the boxplots.
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Fig. 9.13 Boxplot of charges by BMI category (nonsmokers) 

Next, we analyze the relationship of nonsmokers in a similar way. The boxplot of 
nonsmokers by category can be colored “darkgreen” by specifying the col argument 
within the boxplot command. The nonsmokers are indexed in the data frame by 
selecting rows where the Smoke variable is set to “N.” 

boxplot(Charges ~ Categories, data = df[df$Smoke == "N",], 
col = "darkgreen") 

From Fig. 9.13, we notice that the median does differ for each of the 
Categories, but not as drastically as they do in the smoker boxplot shown in 
Fig. 9.12. While the ANOVA test looks for differences in the means, the mean and 
the median are both measures of the center of the distribution. Here we formalize 
the result with a statistical test. For this analysis, we let . μ1, . μ2, . μ3, and . μ4 represent 
the mean Charges of the respective Categories for nonsmokers. 

Null Hypothesis: Charges are the same across different BMI categories (for 
nonsmokers). 

. H0 : μ1 = μ2 = μ3 = μ4

Alternative Hypothesis: At least one mean is different. 
Using the aov command, an ANOVA test is calculated for nonsmokers. 

aov2 = lm(Charges ~ Categories, data = df[df$Smoke == "N",]) 
anova(aov2)
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## Analysis of Variance Table 
## 
## Response: Charges 
## Df Sum Sq Mean Sq F value Pr(>F) 
## Categories 3 1.1427e+10 3808930637 7.9686 3.082e-05 *** 
## Residuals 782 3.7379e+11 477991129 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The p-value of the F -test indicates that a difference exists among the categories 
for nonsmokers. Notice here that the p-value is significantly larger than the p-
value for the smoker F -test, which indicates that the difference among smokers 
is more significant than nonsmokers. This result is consistent with our conclusion 
from observing the boxplots. 

Income Across Plans 

Our last task will consist of analyzing the three plans by Income, since we consider 
this factor to differ across the three plans. 

The mean values by Plan can be found using the by function. Note that the by 
function applies the mean function across the different plans. The first argument in 
the by function is the numeric variable from which we want to calculate the mean. 
The second argument is the factor variable that we want the means separated by. 
Lastly, we specify the function that we want applied to the different categories for 
the numeric variable is specified. 

by(df$Income, df$Plan, mean) 

While the mean income of individuals with Plans 1 and 2 is relatively similar, 
the mean income of individuals with Plan 3 is very different. Here we produce a 
boxplot to visually show the difference of Income among Plans. 

boxplot(Income ~ Plan, data = df, col = "lightblue") 

In Fig. 9.14, the plans correspond to various income values. Lastly, we will test 
for a difference using a formal F -test. We let . μ1, . μ2, and . μ3 represent the mean 
income corresponding to Plans 1, 2, and 3. 

Null Hypothesis: Income is not statistically significant across different plans. 

. H0 : μ1 = μ2 = μ3

Alternative Hypothesis: At least one mean is different among the plans. 
As seen in Fig. 9.14, income varies by plan. Next, we have to determine if income 

is statistically significant across the separate plans. To do so, we need to create a 
regression model between Income and Plan and examine the significance of the 
model and individual variables.
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aov3 = lm(Income ~ Plan, data = df) 
anova(aov3) 

## Analysis of Variance Table 
## 
## Response: Income 
## Df Sum Sq Mean Sq F value Pr(>F) 
## Plan 2 3.0089e+11 1.5044e+11 328.12 < 2.2e-16 *** 
## Residuals 997 4.5712e+11 4.5850e+08 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

This summary shows that plans are different based on the p-value of the F -
statistic. In particular, this indicates that the model is statistically significant when 
compared to an alpha of 5%, meaning that not all plans are the same and at least 
one of the plans differs. For more details, a summary of the regression model is 
produced. 

summary(aov3) 

## 
## Call: 
## lm(formula = Income ~ Plan, data = df) 
## 
## Residuals: 
## Min 1Q Median 3Q Max
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## -57870 -19877 134 16231 59476 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 75300 1354 55.603 <2e-16 *** 
## Plan2 -1168 1706 -0.685 0.494 
## Plan3 36315 1802 20.147 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 21410 on 997 degrees of freedom 
## Multiple R-squared: 0.3969, Adjusted R-squared: 0.3957 
## F-statistic: 328.1 on 2 and 997 DF, p-value: < 2.2e-16 

Note that the F -statistic is the same in the ANOVA output and summary. 
However, the summary shows that Plans 1 and 2 do not differ significantly based 
on the individual significance t-test of Plan2. Plan3, on the other hand, differs 
significantly from Plan1, which is the underlying reason for the significance of the 
F -statistic noted by the low p-value. 

9.16.6 Recommendations and Findings 

We find the following with respect to the tasks that we were given: 

1. Assess the regression model fit from the preliminary analysis. 

A review of the preliminary analysis showed that the model not only violated the linear 
regression assumptions but also used invalid variables and neglected some important 
interactions. 

2. Find a parsimonious model that predicts insurance charges and interpret the 
coefficients. 

After applying best subsets and finding the minimum BIC, a model with only three predictor 
variables and one interaction was able to achieve an adjusted . R2 of 0.8451. The coefficients 
are interpreted in the Coefficient Interpretation section above. 

3. Test for differences in charges across the various BMI categories for smokers and 
nonsmokers. 

Both tests across the different categories for smokers and nonsmokers indicated a significant 
difference among categories, with the most extreme difference being that of smokers in the 
obese category. 

4. Test for income differences across the three insurance plans. 

The test revealed that there were differences in the income for insurance plans. In particular, 
insurance plan 3 differs from other plans.
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9.16.7 Case Conclusion 

This case demonstrates how modern health care is being transformed by analytics 
and more specifically how analytics can provide insights from health care data using 
a detailed example of the process to determine health care charges. Since greater 
insight is known about what determines health care charges, QI’s decision-makers 
can adjust the cost of premiums to offset these charges. 

The analysis done in this case study utilized methods presented throughout 
this book. We used several R commands to model and analyze the data, such as 
anova, boxplot, by, cut, factor, hist, ifelse, lm, par, plot, read.csv, 
shapiro.test, subset, and summary. In addition to the base R commands, we 
used the regsubsets function which is within the leaps package. 

Problems 

1. Health Care Costs Iterative Methods 
Load in the data: 

df = read.csv("Charges.csv") 

Using the insurance charges data set, build a model to predict the charges 
considering all other variables from the data set. 

a. Perform backward elimination and produce a summary. 
b. Perform forward selection and produce a summary. 
c. Perform stepwise regression and produce a summary. 
d. Are the models the same? If not, which one is different? 
e. How well does the backward elimination model fit the data? 
f. Construct a residual plot and a histogram of the residuals of the backward 

elimination model and discuss. By observing the plots, is it evident if any of 
the linear regression model assumptions are violated? 

2. Country GDP Iterative Methods 
Load in the data: 

df = read.csv("Countries.csv") 

Using the countries data set, build a model to predict the GDP considering all 
other relevant variables from the data set. 

a. Perform backward elimination and produce a summary. 
b. Perform forward selection and produce a summary. 
c. Perform stepwise regression and produce a summary. 
d. Are the models the same? If not, which one is different?
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e. How well does the backward elimination model fit the data? 
f. Construct a residual plot and a histogram of the residuals of the backward 

elimination model and discuss. By observing the plots, is it evident if any of 
the linear regression model assumptions are violated? 

3. Country GDP Best Subsets Regression 
Load in the data: 

df = read.csv("Countries.csv") 

Using the countries data set, build a model to predict the GDP considering all 
other relevant variables from the data set. 

a. Fit a best subsets model to predict GDP considering all other relevant variables 
from the data set. 

b. Use the plot function on the best subsets object from part (a). 
c. Which variables are in the best subset? 
d. Plot the best subsets object again, but include the option: scale=‘adjr2’. 
e. Which variables are in the best subset using adjusted R-squared? 
f. Print out the best adjusted R-squared to at least 4 decimal places. 
g. Construct a residual plot and a histogram of the residuals of the best 

subsets model indicated by BIC, and discuss if the linear regression model 
assumptions are met. (Hint: You may want to recreate the model fit using the 
lm function to get the residuals.) 

4. Country GDP Best Subsets Regression 2 
Load in the data: 

df = read.csv("Countries.csv") 

Using the countries data set, build a model to predict the GDP considering all 
other relevant variables from the data set. 

a. Fit a best subsets model to predict the GDP considering all other relevant 
variables and the interactions of all predictor variables. Hint: After removing 
all of the nonrelevant predictor variables from the data, use the formula "GPD 
~ .ˆ2" to include all of the two variable interactions. 

b. Use the plot function on the best subsets object from part (a). 
c. Which variables are in the best subset? 
d. Plot the best subsets object again, but include the option: scale=‘adjr2’. 
e. Which variables are in the best subset using adjusted R-squared? 
f. How does the model fit compare with the best model from the previous 

problem?
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5. Airbnb Best Subsets Regression 
Load in the data: 

df = read.csv("AirBnb.csv") 

Using the Airbnb data set, build a model to predict the Price considering all 
other relevant variables from the data set. 

a. Fit a best subsets model to predict Price considering all other relevant 
variables and the interactions of all predictor variables. Hint: After removing 
all of the nonrelevant predictor variables from the data, use the formula 
"Price ~ .ˆ2" to include all of the two variable interactions. 

b. Use the plot function on the best subsets object from part (a). 
c. Which variables are in the best subset? 
d. Plot the best subsets object again, but include the option: scale=‘adjr2’. 
e. Which variables are in the best subset using adjusted R-squared? 
f. How does the model fit compare with the best model from the previous 

problem?



Appendix A 
Installing Packages 

This appendix chapter will guide the reader through installing packages in R. 
Generally speaking, there are two different steps necessary to use packages in R: 

• Install the package.
• Load package. 

We first cover the concept of packages in R. Next, we discuss how to install 
packages using the install.packages command followed by a discussion on 
a few other convenient methods. While we motivate this appendix chapter by 
installing the ggplot2 package, this method can be used to install other packages 
as well. 

A.1 Installation of the ggplot2 Package 

As with any package outside of base R, you will need to install and download the 
package. The install.packages command does just that. Please note that you 
only need to use the install.packages function once to install the required packages. 
Thus, it’s not advisable to run the install.packages function every time you run 
R code. 

Here we install the ggplot2 package using the following code: 

install.packages('ggplot2') 
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A.2 Loading in the ggplot2 Package 

Once a package is installed, the library function can be used to load the package and 
also attach any required functions needed to run the packages. Loading in a package 
is necessary to run each time before the package is used. 

library(ggplot2) 

After running the command above, ggplot2 is ready to be used. 

A.3 Additional Installation Methods 

There are a few different ways of installing packages in R. If you were to load 
in a file that attempted to load in a package using the library command and the 
package was unavailable, a yellow ribbon will prompt you to install the package. 
This is a convenient method for installing packages when using Posit. Alternatively, 
in Posit, you can click on the View menu and select Show Packages. Showing the 
packages opens up a list of packages available and also gives the option to install 
new packages.



Appendix B 
The quantmod Package 

In this appendix chapter, we will guide the reader through the steps to download 
and compute the stock data for the stock beta case study. The downloaded data are 
available in the “Betas.csv” file. 

B.1 Data Source 

There is an abundance of stock data available, but it can be challenging to find 
a specific dataset that matches your desired criteria. For stock price data, Yahoo! 
Finance, http://finance.yahoo.com, provides access to thousands of stocks and 
indices. Additionally, accessing and downloading a csv file of stock price data from 
Yahoo Finance is quite simple. 

B.2 Downloading a Single Stock or Index 

First, simply specify a start date and an end date by creating text strings: 

start_date = "2018-08-01" 
end_date = "2021-09-01" 

Then use the getSymbols function within the quantmod library. Note that it 
may be necessary to install the quantmod package the first time that an installation 
of R attempts to access it through the library function. 
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To access the S&P 500, which has symbol “SPY,” one would run 

library(quantmod) 
getSymbols("SPY", from = start_date, to = end_date, 

src = "yahoo") 

## [1] "SPY" 

Notice that running the above command produces a “SPY” data set in the global 
environment. For simplicity and in an effort to reduce errors, the data set is already 
named. 

Here are the first 6 observations returned using the head function: 

head(SPY) 

## SPY.Open SPY.High SPY.Low SPY.Close SPY.Volume 
## 2018-08-01 281.56 282.13 280.13 280.86 53853300 
## 2018-08-02 279.39 282.58 279.16 282.39 63426400 
## 2018-08-03 282.53 283.66 282.33 283.60 53935400 
## 2018-08-06 283.64 284.99 283.20 284.64 39400900 
## 2018-08-07 285.39 286.01 285.24 285.58 43196600 
## 2018-08-08 285.39 285.91 284.94 285.46 42114600 
## SPY.Adjusted 
## 2018-08-01 260.0621 
## 2018-08-02 261.4789 
## 2018-08-03 262.5993 
## 2018-08-06 263.5623 
## 2018-08-07 264.4326 
## 2018-08-08 264.3216 

The variable names in the “SPY” data set are found using the names function: 

names(SPY) 

## [1] "SPY.Open" "SPY.High" "SPY.Low" "SPY.Close" 
## [5] "SPY.Volume" "SPY.Adjusted"
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Fig. B.1 Plot of SPY 

B.3 Plotting Stock Prices 

To get a plot of the close prices of the S&P 500, use the plot function (Fig. B.1). 

plot(SPY[,"SPY.Close"], main = "SPY.Close") 

The chartSeries function within the quantmod package can also be used 
to plot stock data. This function has several chart variations and customizations 
including the use of technical indicators. 

B.4 Multiple Stock Download 

Download the data by inputting a vector of text strings into the getSymbols 
function. Also, specify the periodicity as 'monthly'. 

stocks = c("AAPL", "CAT", "JNJ", "MCD", "PG", "MSFT", "XOM", 
"SPY") 

getSymbols(stocks, from = start_date, to = end_date, 
src = "yahoo", periodicity = 'monthly') 

## [1] "AAPL" "CAT" "JNJ" "MCD" "PG" "MSFT" "XOM" "SPY"
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B.5 Calculate Stock Returns 

Using the Delt function, the adjusted stock price returns can be returned. The first 
6 values are 

head(Delt(AAPL$AAPL.Adjusted)) 

## Delt.1.arithmetic 
## 2018-08-01 NA 
## 2018-09-01 -0.004824849 
## 2018-10-01 -0.030477482 
## 2018-11-01 -0.184044545 
## 2018-12-01 -0.113616477 
## 2019-01-01 0.055153880 

Note that the first return value can be calculated as follows: 

Adjusted = data.frame(AAPL$AAPL.Adjusted) 
(Adjusted[2,1] - Adjusted[1,1])/Adjusted[1,1] 

## [1] -0.004824849 

B.6 Create a Dataframe 

With the data.frame and Delt functions, a dataframe of weekly returns is 
generated: 

df = data.frame(Delt(AAPL$AAPL.Adjusted), 
Delt(CAT$CAT.Adjusted), 
Delt(JNJ$JNJ.Adjusted), 
Delt(MCD$MCD.Adjusted), 
Delt(PG$PG.Adjusted), 
Delt(MSFT$MSFT.Adjusted), 
Delt(XOM$XOM.Adjusted), 
Delt(SPY$SPY.Adjusted)) 

names(df)=stocks 

The first row of returns cannot be calculated with the data downloaded, so the 
first observation is removed. 

df = df[-1,]
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Finally, the dataframe can be output to a csv using the write.csv command. 

write.csv(df, "Betas.csv") 

The “Betas.csv” file created here is used throughout the case study for this 
chapter. 

The BatchGetSymbols library provides another elegant package for download-
ing data from multiple stock tickers. More information on this package is available 
at https://cran.r-project.org/.

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
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