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Abstract. We resolve the computational complexity of determining the
treelength of a graph, thereby solving an open problem of Dourisboure
and Gavoille, who introduced this parameter, and asked to determine the
complexity of recognizing graphs of bounded treelength [6]. While recog-
nizing graphs with treelength 1 is easily seen as equivalent to recogniz-
ing chordal graphs, which can be done in linear time, the computational
complexity of recognizing graphs with treelength 2 was unknown until
this result. We show that the problem of determining whether a given
graph has treelength at most k is NP-complete for every fixed k > 2,
and use this result to show that treelength in weighted graphs is hard to
approximate within a factor smaller than 3 Additionally, we show that
treelength can be computed in time O*(1.8899™) by giving an exact ex-
ponential time algorithm for the Chordal Sandwich problem and showing
how this algorithm can be used to compute the treelength of a graph.

1 Introduction

Treelength is a graph parameter proposed by Dourisboure and Gavoille [6] that
measures how close a graph is to being chordal. The treelength of G is defined
using tree decompositions of G. Graphs of treelength k are the graphs that have
a tree decomposition where the distance in G between any pair of nodes that
appear in the same bag of the tree decomposition is at most k. As chordal graphs
are exactly those graphs that have a tree decomposition where every bag is a
clique [14], [3], [10], we can see that treelength generalizes this characterization.

There are several reasons for why it is interesting to study this parameter.
For example, Dourisboure et. al. show that graphs with bounded treelength have
sparse additive spanners [5]. Dourisboure also shows that graphs of bounded tree-
length admit compact routing schemes [4]. One should also note that many graph
classes with unbounded treewidth have bounded treelength, such as chordal, in-
terval, split, AT-free, and permutation graphs [6].

In this paper, we show that recognizing graphs with treelength bounded by
a fixed constant k > 2 is NP-complete. The problem of settling the complexity
of recognizing graphs of bounded treelength was first posed as an open problem
by Doursiboure and Gavoille, and remained open until this result [6]. Our result
is somewhat surprising, because by bounding the treelength of G we put heavy
restrictions on the distance matrix of GG. Another indication that this problem
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might be polynomial for fixed k& was that the treelength of a graph is fairly easy
to approximate within a factor of 3 [6]. In comparison, the best known approx-
imation algorithm for treewidth has an approximation factor of O(y/logk) [7].
As Bodlaender showed, recognizing graphs with treewidth bounded by a con-
stant can be done in linear time [I]. Since the above observation about approxi-
mately might indicate that determining treelength is ”easier” than determining
treewidth, one could arrive at the conclusion that recognizing graphs with tree-
length bounded by a constant should be polynomial. However, there are also
strong arguments against this intuition. For instance, graphs of bounded tree-
length are just bounded diameter graphs that have been glued together in a
certain way. Thus, when trying to show that a graph indeed has small treelength
one would have to decompose the graph into components of small diameter and
show how these components are glued together to form the graph. As the class
of bounded diameter graphs is very rich, one would have a myriad of candidates
to be such components, making it hard to pick out the optimal ones. This intu-
ition is confirmed when we prove the hardness of recognizing graphs of bounded
treelength because the instances we reduce to all have bounded diameter.

In the next section we will give some notation and preliminary results. Next,
we present a proof that determining whether the treelength of a weighted graph
is less than or equal to k is NP-hard for every fixed k > 2. Following this, we
reduce the problem of recognizing weighted graphs with treelength bounded by
k to the problem of recognizing unweighted graphs with the treelength bounded
by the same constant k, thereby completing the hardness proof. Finally we also
consider the complexity of approximating treelength, and propose a fast exact
algorithm to determine the parameter by solving the Chordal Sandwich problem.

2 Notation, Terminology and Preliminaries

For a graph G = (V,E) let w : E — N be a weight function on the edges. The
length of a path with respect to a weight function w is the sum of the weights
of its edges. The distance d,,(u,v) between two vertices is the length of the
shortest path with respect to w. Whenever no weight function is specified the
unit weight function w(e) = 1 for all e € E is used. G to the power of k with
respect to the weight function w is GE = (V,{uv : dy(u,v) < k}). A weight
function w is metric if it satisfies a generalization of the triangle inequality, that
is, if w((u,v)) = dyw(u,v) for every edge (u,v).

A tree decomposition of a graph G = (V, E) is a pair (S,T') consisting of a set
S ={X;:i €I} of bags and a tree T' = (I, M) so that each bag X; € S is a
subset of V' and the following conditions hold:

Ui Xi =V
— For every edge (u,v) in E, there is a bag X; in S so that u € X; and v € X;

— For every vertex v in V', the set {i € I : v € X;} induces a connected subtree
of T
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The length of a bag is the maximum distance in G between any pair of vertices
in the bag. The length of a tree-decomposition is the maximum length of any
bag. The treelength of G with weight function w is the minimum length of a
tree-decomposition of G, and is denoted by tl,,(G). When no weight function is
given on E, then the treelength is denoted by tI(G). A shortest tree decompo-
sition is a tree decomposition having minimum length. We will always assume
that all weight functions are metric. This can be justified by the fact that if w
is not metric, we easily can make a new metric weight function w’ by letting
w'((u,v)) = dy(u,v) for every edge (u,v) and observe that tl, (G) = tl,(G).

The neighbourhood of a vertex v is denoted N(v) and is the vertex set {u :
(u,v) € E}. When S is a subset of V., G[S] = (S, EN{(u,v) : u € S,v € S}) is
the subgraph induced by S. We will use G \ v to denote the graph G[V \ {v}].
G is complete if (u,v) is an edge of G for every pair {u, v} of distinct vertices in
G. A clique in G is a set S of vertices in G so that G[S] is complete.

For two graphs G = (V, E) and G’ = (V, E’), G C G’ means that E C E’. For
a graph class IT, G is a II-graph if G € II. G’ is a II-sandwich between G and
G" if G is a II-graph and G C G’ C G” [11]. A graph class IT is hereditary if
every induced subgraph of a IT-graph is a IT-graph.

A graph is chordal if it contains no induced cycle of length at least 4. Thus the
class of chordal graphs is hereditary. A vertex v is simplicial if the neighbourhood
of v is a clique. A vertex v is universal if V= {v} U N(v). An ordering of the
vertices of G into {vy,va,...,v,} is a perfect elimination ordering if for every 4,
v; is simplicial in G[{v; : j > i}]. A clique tree of G is a tree decomposition of
G where every bag is a maximal clique of G (see e.g., [12] for details).

Theorem 1. The following are equivalent:
— G is chordal.

— G has a clique tree. [T])], [3], [10]

— G has a perfect elimination ordering. [9]

For more characterizations of chordal graphs and the history of this graph class,
refer to the survey by Heggernes [12]. Following Theorem [Iit is easy to see that
if v is simplicial then G is chordal if and only if G'\ v is chordal. Universal vertices
share this property, as has been observed by several authors before.

Observation 1. If v is universal in G then G is chordal if and only if G \ v is
chordal.

Proof. If G is chordal then G\ v is chordal because the class of chordal graphs is
hereditary. Now suppose G\ v is chordal. Consider a perfect elimination ordering
of G'\ v appended by v. This is clearly a perfect elimination ordering of G, hence
G is chordal.

We now define the problem that we are going to show is NP-complete. In the
problem statement below, k is an integer greater than or equal to 2.

k-TREELENGTH
INSTANCE: A graph G
QUESTION: Is t(G) < k7
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Finally, we define the problem we will reduce from.

CHORDAL SANDWICH [11]
INSTANCE: Two graphs G7 and G5 with G; C G,
QUESTION: Is there a chordal sandwich between G; and G57

3 Weighted k-Treelength is NP-Complete

In this section we are going to show that determining whether the treelength of
a given weighted graph is at most k is NP-complete for every fixed & > 2. In
the next section we will conclude the hardness proof for unweighted graphs by
showing how one from a weighted graph G in polynomial time can construct an
unweighted graph G’ with the property that tl,,(G) < k if and only if t/(G’) < k.

WEIGHTED k-TREELENGTH
INSTANCE: A graph G with weight function w
QUESTION: Is tl,,(G) < k?

Observation 2. For a graph G = (V, E), tl,,(G) < k if and only if there exists
a chordal sandwich G’ between G and G¥ .

Proof. Suppose tl,(G) < k. Consider a shortest tree decomposition (S, T) of G,
and construct the graph G’ = (V, {(u,v) : Ji v € X;,v € X;}). G C G’ is trivial,
G' C G* holds because the length of the tree decomposition is at most k, and
G’ is chordal because (5,7 is a clique tree of G'. In the other direction, let G’
be a chordal sandwich between G' and G%. Consider a clique tree (S,T) of G'.
This is a tree decomposition of G, and the length of this decomposition is at
most k, as u € X; and v € X; implies (u,v) € E(G') C E(GF).

Corollary 1. For any graph G, tl(G) =1 if and only if G is chordal.

From Observation [ it follows that determining the treelength of a given graph
in fact is a special case of the Chordal Sandwich problem defined above. In a
study of sandwich problems [IT], Golumbic et. al. point out that as a consequence
of the hardness of Triangulating Colored Graphs, the Chordal Sandwich problem
is NP-Complete. Thus, in order to prove that Weighted k-Treelength is indeed
hard, we only need to reduce the Chordal Sandwich problem to a special case of
itself, namely the one where G5 = Gh’fj for some weight function w.

We will reduce in the following way. On input G; = (Vi, E1), Go = (Va, Es)
with G; C G2 to the Chordal Sandwich problem, let Ep = Es\ Ey. We construct
a new graph G by taking a copy of G, adding a new vertex ¢, for every edge
(u,v) in Ep and making this vertex adjacent to all other vertices of G. We denote
the set of added vertices by C, as C' is a clique of universal vertices. The weight
function is simple, w(cyy, u) = w(cyy,v) = |k/2]| for every ¢y, and w(e) = k for
all other edges.

Lemma 3. Let G, Gy and Gy be as described above. Then tl.,,(G) < k if and
only if there is a chordal sandwich G' between Gy and Gs.
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Proof. Observe that any supergraph G’ of G on the same vertex set (G’ 2 G) is
chordal if and only if G’'[V4] is chordal since every vertex in C' is universal. Also,
notice that for every pair u,v of vertices in V1, dy(u,v) < k if and only if (u,v)
is an edge of Ga. Thus it follows that Go = G¥ [V4]. Hence, by Observation 2]
tlw(G) < k if and only if there is a chordal sandwich G’ between G and G .
By the discussion above, this is true if and only if there is a chordal sandwich
between G[V1] = G and G = G¥ [V1].

Corollary 2. Weighted k-Treelength is NP-complete for every k > 2.

Proof. By Lemma[3 determining whether a given weighted graph G has tl,,(G) <
k is NP-hard for every k > 2. By Observation 2] this problem is polynomial time
reducible to the Chordal Sandwich problem, thus it is in NP.

4 k-Treelength is NP-Complete

We will now show how one from a weighted graph G in polynomial time can
construct an unweighted graph G” with the property that tl,,(G) < k if and only
if t1(G") < k. We do this in two steps. First we show how to construct a graph G’
and weight function w’ from G and w so that tl,,(G) < k if and only if tl,,/(G") <
k and w'(e) = 1 or w’(e) = k for every edge e in G’. In the second step we show
how G” can be constructed from G’ and w’. Both steps are done in an inductive
way. Obviously, if G has an edge of weight larger than & then ¢l,,(G) > k. We will
therefore assume that w(e) < k for all edges e. For an edge (u,v), let G(u,v) =
(VU{r,q}, (E\ (u,v))U{(u,r),(r,v),(u, q),(g,v)}). That is, we build G(u, v) from
G by removing the edge (u, v), adding two new vertices r and ¢ and making both
of them adjacent to u and v. Let w,, . r be a weight function of G(u,v) so that
Wywk) () = wle) ife € B(G)NE(G(u,v)), Wuok) (4,7) = Wiy k) (r,0) =k,
Ww,w,k) (U, q)) = w(u,v) =1, and wy . 1) ((¢,v)) = 1. Observe that if w((u,v)) >
1 then w(y, k) is properly defined.

Lemma 4. Given a graph G, an edge (u,v), and a weight function w with
w((u,v)) > 1, there is a chordal sandwich between G and G% if and only if
there is a chordal sandwich between G(u,v) and G(u, v)ﬁ,(u .

Proof. Suppose there is a chordal sandwich G(u)v) between G(u,v) and
G(u, v)fv(“.v.k). Then the edge (u,v) must be in E(G(u)v)) and thus G(u’v)\{r, qt,
where r and ¢ are the vertices that were added to G (u,v) to obtain G(u,v),
is a chordal sandwich between G' and G%. In the other direction, suppose
there is a chordal sandwich G between G and and G¥. Then &/ = (V(G) U
{r,q}, E(G) U{(u,7), (r,v), (u,q), (g,v)}) is a chordal sandwich between G(u, v)
and G(u, U)ﬁm,v,m because the r and ¢ are simplicial nodes in G’.

Now, the idea is that the graph G(u,v) with weight function wy, , ) is some-
what closer to not having any edges with weight between 2 and k£ — 1. With
an appropriate choice of measure, it is easy to show that this is indeed the
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case. The measure we will use will essentially be the sum of the weights of all
edges that have edge weights between 2 and k£ — 1. In the following discussion,
let Wu(G) = > cep uwe<k(w(e) —1). Observe that if 1 < w(u,v) < k then
Wy o (G(u,v)) = Wy(G) — 1, and that if W, (G) = 0 then w(e) = 1 or

w(e) = k for every edge e € E.

Lemma 5. For a graph G with weight function w, we can construct in polyno-
mial time a graph G’ with weight function w’ so that |V (G")| = |V (G)|+2W,(G),
and tl, (G) <k if and only if tl, (G') < k.

Proof. We prove by induction on Wy, (G). If W,,(G) = 0 we know that w(e) =
1 or w(e) = k for every edge e. Now, suppose the statement of the lemma
holds for all graphs with W,,(G) < ¢ for some ¢ and consider a graph G with
weight function w so that W,,(G) = ¢ > 0. Then, let (u,v) be an edge so that
1 <w((u,v)) < k. By Lemmal] tl,(G) < k if and only if tly,, , , (G(u,v)) <
k. Now, Wy, , ., (G(u,v)) = Wy (G) — 1. Thus, by the induction assumption,
we can in polynomial time construct a graph G’ with weight function w’ that
satisfies tl,(G) < k <= tly, ., (Gu,v)) <k <= thy(G") < k with
V(G| = [V(G(w,0))| + 2Wa, , ) (Gu,0)) = [V(G)] + 2+ 2(Wy(G) — 1) =
V(G)] + 2, ().

The idea of the above proof is that we can use edges of weight 1 and k to emulate
the behaviour of edges with other weights. The method we now will use to prove
the hardness of unweighted treelength will be similar - we are going to show that
weight k edges can be emulated using only edges with weight 1. In order to do
this, we are going to use the following lemma by Dourisboure et. al. concerning
the treelength of cycles.

Lemma 6. [0] The treelength of a cycle on k vertices is f}?ﬂ

For an edge (u,v) € E, we construct the graph G[u, v, k] in the following way: We
replace the edge (u,v) by three paths on 2k — 1, 2k — 1 and k — 1 vertices respec-
tively. Construct these paths P, = {ai,az2,...,a2p-1}, Py = {b1,b2,...,bog_1}
and P. = {c1,¢2,...,c5—1} using new vertices. Take a copy of G, remove the
edge (u,v) and add edges from u to a1, by and ¢1, and from v to agk—1, bag—1
and cg_1. For a weight function w of G, wy, ., Will be a weight function of
Glu,v, k] so that wy,,, () = w(e) if e € E(G) and wy,,, 1) = 1 otherwise.

Lemma 7. Given G, weight function w and an edge (u,v) € E with w(u,v) =k,
tlyw(G) <k if and only if thy, , ., (Gu,v,k]) <k

Proof. Suppose there is a chordal sandwich G between G and G* . We build G’
from G by taking a copy of GG, adding three new paths P, = {a1,as,...,a2,-1},
P, = {b1,ba,...,bar—1} and P. = {c1,¢a,...,cr—1} and the edge sets {(u,a;) :
i <k}, {(u,bi) 2 i <k}, {(u,¢) 2 i SALSJ}, {(v,a;) : i >k}, {(v,b;) 7 >
E}, {(v,¢) + i > LSJ} We see that G’ is chordal because {ai,az...ar_1,
A2k—1, A2k—25 -+ - A, b1, b2 Dk—1, Dag—1, bag—2, - bk, €1, €2y oo ny g5 Chot,
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Ch—2, - Ck J} followed by a perfect elimination ordering of G is a perfect
elimination ordering of &'. Also, G’ C Glu,v, k3, - Thus G’ is a chordal
sandwich between Glu,v,k| and G[u,ukm[w,k]. In the other direction, let
GA[WJ] be a chordal sandwich between G[u,v, k| and G[u,v,k}ﬁ[u%k]. It is suf-
ficient to show that (u,v) € E(G,.) because then Gy, ,[V(G)] is a chordal
sandwich between G and G¥. Consider the set Vi = {u,v} UV(P,) U V(B,),
and let C' be the subgraph of G[u,v,k] induced by Vi. Now, observe that
B(Glu, v, K]}, , ,,[S]) = B(C*) U {(u,v)}. Suppose for contradiction that (u,v)
is not an edge of G, ). Then we know that Gf, . [Vi] is a chordal sandwich

between C' and C* implying that t/(C') < k. This contradicts Lemma [ because
C is a cycle on 4k vertices.

w,v,k]

Lemma [ gives us a way to emulate edges of weight k using only edges of weight
1. For a graph G with weight function w, let W,,[G] = |{e € E(G) : w(e) = k}|.
Notice that if w((u,v)) = k then W,,[G] = W, Glu,v,k]] + 1.

Lemma 8. For every graph G with weight function w satisfying w(e) = 1
or w(e) = k for every edge, we can construct in polynomial time a graph G’
with Wy, [G](5k — 3) + |V (G)| vertices and satisfying tl,(G) < k if and only if
tl(G) < k.

Proof. We use induction in W,,[G]. If W,,[G] = 0 the lemma follows immediately.
Now, assume the result holds for W,,[G] < t for some ¢ > 0. Consider a graph
G with weight function w so that W,,[G] = t. By Lemma [0 tl,,(G) < k if and
only if tly,, , ,, (Glu,v,k]) < k. By the inductive hypothesis we can construct in
polynomial time a graph G” with Wy, . [G[u, v, k]|(5k — 3) + |V (Gu, v, k])| +
bk — 3 = WyulG|(5k — 3) + |[V(G)| vertices and satisfying tI(G') < k <=
g, 0 (Glu, v, k]) <k = t,(G) <k

Corollary 3. For a graph G and weight function w, we can in polynomial time
construct a graph G" so that tl,,(G) < k if and only if t1(G") < k.

Proof. By Lemmalb] we can in polynomial time construct a graph G’ with weight
function w’ so that tl,/(G") < k <= tl,(G) < k and so that w'(e) = 1 or
w'(e) = k for every edge e in F(G"). By Lemma [ we can from such a G’ and w’
construct in polynomial time a G” so that t1/(G") < k < tlw(G') <k <—
tly(G) < k.

Theorem 2. Determining whether t1(G) < k for a given graph G is NP-
complete for every fived k > 2.

Proof. By Corollary [3 k-Treelength is NP-hard. As it is a special case of
Weighted k-Treelength it is also NP-complete.

[u,'u,k][

5 Treelength Is Hard to Approximate

Having established that treelength is hard to compute, it is natural to ask how
well this parameter can be approximated. We say that a polynomial time algo-
rithm that computes a tree-decomposition of G is a c-approximation algorithm
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for treelength if there is an integer k so that on any input graph G, the length
l of the tree-decomposition returned by the algorithm satisfies the inequality
I < ¢-tl(G) + k. Dourisboure and Gavoille have already given a 3-approximation
algorithm for treelength [6], and have conjectured that the parameter is approx-
imable within a factor 2. In this section we show that as a consequence of the
results in the above section, treelength in weighted graphs can not be approxi-
mated within a factor ¢ < g unless P = N P. For the treelength of unweighted
graphs we give a weaker inapproximability result, and conjecture that there is
no c-approximation algorithm for treelength with ¢ < 3 unless P = NP.

Lemma 9. If P # NP then, for any ¢ < 3, there is no polynomial time algo-
rithm that on an input graph G returns a tree-decomposition of G with length
I <c-tlG).

Proof. Suppose there is such an algorithm ALG. We give a polynomial time
algorithm for 2-treelength, thereby showing that P = NP. On input G, run
ALG on G, and let [ be the length of the tree-decomposition of G returned by
ALG. Answer “tI(G) < 27 if | < 3 and “tI(G) > 2” otherwise. We now need to
show that t/(G) < 2 if and only if I < 3. Assume | < 3. Then tI(G) <1< 2aslis
an integer. In the other direction, assume ¢/(G) < 2. In this case [ < ¢-tl(G) < 3.

Unfortunately, Lemma [@lis not sufficient to prove that it is hard to approximate
treelength within a factor ¢ < g The reason for this is that an algorithm that
guarantees that [ < gtl (G) + 1 can not be used to recognize graphs with tree-
length at most 2 in the above manner. However, we can show that there can be
no c-approximation algorithms for the treelength of weighted graphs by using
the weights on the edges to “scale up” the gap between 2 and 3.

Theorem 3. If P # NP then there is no polynomial time c-approzimation
algorithm for weighted treelength for any ¢ < g

Proof. The proof is similar to the one for Lemmalf0l Suppose there is a polynomial
time c-approximation algorithm ALG for weighted treelength of G, with ¢ < 3
Let k be a non-negative integer so that on any graph G with weight function
w, ALG computes a tree-decomposition of G' with length | < ¢-tl(G) + k. Now,
choose ¢ to be the smallest positive integer so that (5 —c¢)-¢ >k + 1. Let w be
a weight function on the edges of G so that for every edge (u,v), w((u,v)) = t.
Observe that tl,(G) = ¢t1(G) - t. Run ALG on input (G,w) and let [ be the
length with respect to w of the tree-decomposition returned by ALG. Answer
“tl(G) < 27 if | < 3t and “tI(G) > 2”7 otherwise. We now need to show that
tl(G) <2 if and only if [ < 3t. Assume | < 3t. Now, tI(G) - t = tl,,(G) <1 < 3t.
Dividing both sides by ¢ yields ¢I(G) < 3 implying ¢I(G) < 2 as tI(G) is an
integer. In the other direction, assume ¢/(G) < 2. In this case | < ¢-tl,(G)+k =
ct(G) t+k=3tG) t—(3—c) tUG) t+k<3t—(k+1)+Fk < 3t
This implies that the described algorithm is a polynomial time algorithm for
2-Treelength implying P = NP

In fact, it does not seem that treelength should be significantly harder to compute
on weighted than unweighted graphs. The hardness proof for k-Treelength is a
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reduction directly from weighted k-Treelength. Also, the exact algorithm given
in the next section works as well for computing the treelength in weighted as in
unweighted graphs. We feel that together with Lemma [0l and Theorem [3] this is
strong evidence to suggest that unless P = NP, treelength is inapproximable
within a factor ¢ < g, also in unweighted graphs. We state this in the following
conjecture.

Conjecture 1. If P # NP then there is no polynomial time c-approximation
algorithm for treelength for any ¢ < 3

6 An Exact Algorithm the Chordal Sandwich Problem

In this section we give an exact algorithm that solves the Chordal Sandwich
problem. The running time of this algorithm is O*(1.8899™). In fact, the algo-
rithm can be obtained by a quite simple modification of an exact algorithm to
compute treewidth and minimum fill in given by Fomin et. al []]. Together with
Observation 2] this gives a O*(1.8899") algorithm to compute the treelength of
a graph. The algorithm applies dynamic programming using a list of the input
graph’s minimal separators and potential maximal cliques.

In order to state and prove the results in this section, we need to introduce
some notation and terminology. Given two vertices u and v of G, a minimal u-
v-separator is an inclusion minimal set S C V so that u and v belong to distinct
components of G'\ S. A minimal separator is a vertex set S that is a minimal
u-v-separator for some vertices v and v. We call a chordal supergraph H of G
for a minimal triangulation of G if the only chordal sandwich between G and H
is H itself. If C' C V is a maximal clique in some minimal triangulation of G, we
say that C is a potential mazimal clique of G. The set of all minimal separators
of G is denoted by A(G) and the set of all potential maximal cliques is denoted
by II(G). By Ca(S) we will denote the family of the vertex sets of the connected
components of G \ S. Thus, if the connected components of G\ S are G[C1]
and G[Cs], Ca(S) = {C1,C2}. A block is a pair (S,C) where S € A(G) and
C € C(9). A block is called full if S = N(C). For a block (S, C) the realization
of that block is denoted by R(S,C) and is the graph obtained from G[S U C] by
making S into a clique.

The proof of correctness for algorithm FCS is omitted due to space restric-
tions.

Theorem 4. Algorithm FCS returns TRUE if and only if there is a chordal
sandwich between G1 and Gs.

Theorem 5. Algorithm FCS terminates in O*(|II1]) time.

Proof. Computing A; from IT; can be done in O*(|I11|) time by looping over
each potential maximal clique {2 € IT; and inserting N(C') into A; unless already
present for every connected component C' of G\ 2. F; can be computed similarly
and then sorted in O*(|II1|) time. While building A; and F; we can store a
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Algorithm: Find Chordal Sandwich — FCS (G1, G2 )

Input: Two graphs G = (V1, E1) and G2 = (Va2, E2) so that G1 C Go,
together with a list I of all potential maximal cliques of GG that
induce cliques in Ga.

Output: TRUE if there is a chordal sandwich between G1 and G2, FALSE

otherwise.

Ay :={S € A(G1) : There is an {2 € II; so that S1 C 02};

F1 := the set of all full blocks (S, C) so that S € Ay, sorted by |SUC];

Cs(R(S,C)) := FALSE for every pair of vertex sets S and C;

foreach full block (S,C) in F; taken in ascending order do

foreach potential maximal clique {2 € I1; so that S C 2 C SUC do
ok := TRUE;
foreach full block (S;,C;) where C; € Cg, (£2) and S; = N(C;) do
if Cs(R(S;,C;)) = FALSE then
ok := FALSE;
Cs(R(S,C)) := R(S,C) V ok;

if G1 is a clique then
RETURN TRUE;

else
RETURN Vg a, Aceecs) Cs(R(S, C));

pointer from every full block (S, C) € F to all potential maximal cliques {2 € 1Ty
satisfying S C 2 C S UC. Using these pointers, in each iteration of the second
foreach loop we can find the next potential maximal clique {2 to consider in
constant time. Furthermore, it is easy to see that each iteration of the second
foreach loop runs in polynomial time. Thus, the total running time is bounded
by 0" (Y scyerm {2 € I+ § € 2 C SUCH) = 0" (X oep, H(S,C) €
Fir:8C 2CSUCYH). But as [{(S,C) ¢ F : SC 2 C SUC}H < n for
every potential maximal clique (2, it follows that the algorithm runs in time
0" (e {(S.C) € Fi:5 ¢ 2 C SUCH) = O* (L)),

Theorem 6. [§] II(G) can be listed in O*(1.8899™) time. Thus |II(G)| =
0% (1.8899™).

Corollary 4. There is an algorithm that solves the Chordal Sandwich problem
in time O*(1.8899™).

Proof. Compute II1(G). By Theorem [@] this can be done in O(1.8899™) time.
Now, for every 2 € II1(G) we can test in O(n?) time whether it is a clique in Gs.
If it is, insert {2 into IT;. We can now call algorithm F'C'S on Gy, G and Iy,
and return the same answer as algorithm F'C'S. By Theorem [ algorithm FCS
terminates in time O*(|IT;]) = O*(1.8899™) completing the proof.
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Corollary 5. There is an algorithm that solves the Chordal Sandwich problem
in time O*(21%(G2)) where tw(Gy) is the treewidth of Go.

Proof. For any tree-decomposition of Ga, every clique of G5 is contained in some
bag in this tree-decomposition [I2]. Thus, G5 has at most O*(2!*(¢2)) cliques.
We can list all cliques of a graph with a polynomial delay [13]. For every clique {2
in G2 we can test whether it is a potential maximal clique of Gy in polynomial
time [2]. If it is, we insert £2 into IT;. Thus |II;| = O*(2!*(G2)). Finally, call
algorithm F'C'S on Gy, Gy and II;, and return the same answer as algorithm
FCS. By Theorem[Blalgorithm FC'S terminates in time O* (| Pi;|) = O* (21%(G2))
completing the proof.

Corollary 6. There is an algorithm for Weighted k- Treelength that runs in time
0*(1.8899™).

Proof. By Observation [ tl,,(G) < k if and only if there is a chordal sandwich
between G and G . By Corollary @l we can check this in time O*(1.8899™).

7 Conclusion

We have proved that it is NP-complete to recognize graphs with treelength
bounded by a constant k > 2. In addition we have proved that unless P = NP
there can be no approximation algorithm for the treelength of weighted graphs
with approximation factor better than g and conjectured that a similar result
holds for unweighted graphs. Finally we gave a O*(1.8899™) algorithm to solve
the Chordal Sandwich problem and showed how it can be used to determine the
treelength of a graph within the same time bound. Dourisboure and Gavoille
provide two 3-approximation algorithms for treelength in [6], and propose a
heuristic that they conjecture is a 2-approximation algorithm. Thus there are
currently two unresolved conjectures about the approximability of treelength,
and resolving any of these would be of interest.
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