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Preface

Mechatronics is an engineering field that refers to mixed systems tight
integration. Currently, this integration can be viewed as based on digital
computer monitoring and control, but it cannot be denied that integration
can be based on any other signal processing system and any form of raw
power that can be modulated and transferred to the mixed system in
accordance to the output of this digital signal processor.

Distributed parameters systems, in the form of solids, liquids, gases,
are seen as fields in which the dynamics can be represented by traveling
waves. These fields can be mechanical vibration fields of substance,
acoustic, electromagnetic etc. The assumption of continuity is often
limited, when moving down from macroscopic level, by the molecular,
atomic discontinuous structure, which can be represented in duality with
the fields at that level. Moving up from immediate macroscopic level
towards infinite celestial level, again the continuum of the quasi-vacuum
space is filled with solid planets etc. Consequently, while at terrestrial
macroscopic level, continuous fields can be assumed of infinite
dimensions, there are perceived limits as we move up and down from
this level.

Distributed Parameters Systems are modeled mathematically by
partial differential equations and/or multiple integrals that can be recast
also in a system of partial differential equations. The solutions of these
partial differential equations show that the dynamics of distributed
parameters systems can be simulated as composed of infinite
dimensional combinations of harmonic components (something that
might remind of Pythagoras’ view of the planets motions) where higher
frequency components might become less and less significant unless
excited and brought to resonance.

vii
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Mechatronics refers to monitoring, control and integration not only of
lumped parameters systems, but also of distributed parameters systems.
In fact, the latter representation of the world under engineering focus is
more realistically modeled by distributed parameters systems; handling
such models is, however, much more difficult that the lumped parameters
systems. Monitoring and control of distributed parameters systems is
limited by ill-posed problems, the inverse problems of estimating system
states and parameters from sensors signals and controlling and infinite
dimensional system with modulated power output from actuators.
Sensors and actuators are available in most cases as point devices and,
even if they are distributed, they cannot be found in the infinite
dimensional form. Sensors and actuators are bandwidth limited and
cannot access higher frequency components of distributed parameters
systems dynamics. As a result, only lower frequency dynamics can be
controlled and maybe somewhat higher but still low frequency
components can be monitored; higher frequency dynamics remains
uncontrolled and unobserved. Pascal made a valid comment with regard
to human condition in an infinite world: “...qu’est que I’homme dans la
nature? Un néant a 1’égard de I’infini, un tout a I’égard du néant, un
milieu entre rien et tout.” (B. Pascal, Pensées, no. 72). Using science and
engineering, we reach easily documented limits in monitoring and
controlling such systems and only religion, art and philosophy can offer
further views outside these limits. Indeed, direct view, i.e. intuitive
access to that level requires to become detached from contact and
affection from the immediate and finite environment and to bring
ourselves to the vision of infinite spaces.

I acknowledge the results documented in the book of joint published
research with my colleagues professors Dr. R. Baican F. Bakhtiari-
Nejad, J. Sasiadek and W. Weiss and with my former graduate students:
R. F. De Abreu, G. M. Ceru, G. Ganapathy, Kuoc-Vai Iong, Y. Jiang and
W. Zhang.

Dan Necsulescu, Ottawa, Canada
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Chapter 1

Introduction

1.1 Advanced Mechatronics Systems

1.1.1 Monitoring and Control of Distributed Parameters Systems

Most engineered systems are composed of mixed mechanical-electrical-
electronic-thermal subsystems and have fewer sensors (under-sensing)
than states needed for monitoring and control and, moreover, have fewer
actuators than degrees of freedom (under-actuated). Some of these
systems can be modeled in a first approximation as lumped parameters
systems but, in general, require more complex approaches for proper
design and operation.

The focus in this Advanced Mechatronics text is on the computer
based -integration, -monitoring and -control of mixed systems that can
be described as distributed parameters systems. The illustrations for
distributed parameters systems will be acoustic fields, thermo-dynamic
fields, magnetic fields, vibrations in flexible structures, efc. The
following topics will be presented:

- overview of advanced mechatronic systems: signals versus power
transmission, local sensing and actuation in continuous systems,
centralized versus local control

- modeling and control issues for mixed systems: effort-flow modeling,
modeling and simulation of distributed parameters systems, open and
closed loop control

- numerical solutions for inverse problems using regularization and
singular value decomposition methods

- dynamic calibration of sensors
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- transient response of under-actuated and under-sensed systems
- active vibration control in flexible structures

- acoustic fields monitoring and control

- thermo-dynamic fields in thermal process control

- magnetic fields in magnetic levitation.

Figure 1.1 shows the schematic diagram of a distributed parameters
mechatronic system. In Fig. 1.1 system variables are measured by
transducers, signal conditioned and converted from analog to digital
form and transmitted to a computer. The computer performs real time
monitoring and control as well as signal analysis and has two types of
outputs, one for actuator commands and the other for system monitoring
display.

D/A
A
CONTROL
A T
C R C
D T S A 0
R Y M
1 K S IS\I Signal P
A\ > T = T > D | Conditioning [P A/D P U
E o) E U T
R R M C E
S S E » R
R
S Commands
A 4
D
Power I
Suppl S
PPy MONITORING | p
Operator
A
Y

Fig. 1.1 Schematic diagram of a distributed parameters mechatronic system

The commands are either operator commands, or computed
commands that are shown applied in a closed loop control configuration.
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Computer output for control, after conversion from digital to analog
form, sends commands to actuators.

Control commands are signals sent to drivers that modulate the power
from an external power supply for the actuators.

An advanced mechatronics approach has to take into account
that physical systems are inherently distributed parameters systems and
that only some of these systems can be represented by a lumped
parameters model. Lumped parameters mechatronic systems were
already investigated extensively in several mechatronics books [1-9].
Figure 1.1 refers to a distributed parameters mixed system that can
represented by partial differential equations [25, 44, 110]. Numerous
distributed parameters systems are mixed systems. Examples analyzed in
this text are: acoustic, thermal, fluid, magnetic systems and flexible
structures.

1.2 Signals versus Power Transmission. Lumped Parameters
Modeling of Mechatronic Systems

Integration of systems is achieved transmission of signals and power
between subsystems.

Distributed parameters systems modeling require modeling of
propagation delays, boundaries effects, 3D interactions etc, which are
not present in a lumped parameters model or in its block diagram
counterpart. Lumped parameters systems, described by Linear Time
Invariant (LTI) Ordinary Differential Equations (ODE), are reviewed in
this section, in order to identify specific needs for modeling distributed
parameters systems.

Block diagrams contain variables associated to the unidirectional
links between blocks. These variables can be seen as signals containing
the information transmitted from the output of one block to the input of
another block. In control engineering signal flow graphs are sometimes
used as an equivalent alternative form to block diagrams.

What is important in communication systems is only the information
contained in the signals, not the power transmitted by the carrier of this
information. In this case, blocks represent transformations applied to the
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signal transmitted, for example delays, attenuation or filtering. On a
communication link, signals can be transmitted bi directionally. Block
diagram models represent only unidirectional transmission, from the
designated output of one block to the designated input of another block
and consequently contain only a direct model, from “cause” to “effect”.
The model associated with a block corresponds only to the transfer from
the input to the output. This might be acceptable for signal transmission,
but for power transmission, which is normally bidirectional, effort-flow
models are required.

Inverse model, from desired output to the required input, is obtained
by matrix inversion for square LTI systems. Inverse model for non-
square LTI systems require pseudo-inverse. For non-linear systems, no
closed form solution might be available for model inversion.

In other engineering systems, the power transmitted by the carrier
becomes important, and the equations describing their dynamics are
written for variables like force and velocity in mechanical systems and
voltage and current in electrical circuits. Equations using these variables
can also be used for block diagram modeling. Again, while power often
flows bi-directionally on a transmission line, a block diagram model can
represent only a single direction of the transmission. In fact, state space
models, transfer function and block diagram representations require the
assignment of the direction of the signal from one component of the
model to another.

Example 1.1 Consider first a simple mechanical system example, shown
in Fig. 1.2, composed of a mass m, a spring k and a damper b and subject
to a force input F. The velocity v is assumed the output.

HX

\%
F W
g B T

Fig. 1.2 A mass-spring-damper example



Introduction 5

Newton’s second law gives

F= mix(t) + bix(t) +k-x(t)
dt? dt

The above differential equation can be written using v as variable

F=m~iv(t)+b~v(t)+k~jv(r)dr
dt )

for

V()= ij(o

Laplace transform for zero initial conditions gives

1
s)=——F(s
v(s) ms+ b+ k/s ®)

Due to the input and output assignments, the same system is modeled
differently when the variables F and v change designation. In this case, a
simple inversion of the transfer function gives the inverse model

F(s)=(m-s- b- k/s)-v(s)

In general, however, model inversion does not have a closed form
solution, typically for distributed parameters systems. This restricts
modularity and interchangeability to modules with identical input and
output assignment.
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1.2.1 Effort Flow Variables and Two Port Models

Two port models were introduced for representing components of
electric networks using two terminals for each port. Alternative names
for two port components of a network are: four terminal network or
quadripole. The two pole port models have associated a current I variable
and a voltage V variable that permit the calculation of the power P = VI,
transferred through the port [8,9].

Example 1.2 For an inductance-resistance L-R circuit supplied by an
ideal voltage E source (i.e. with zero internal impedance), the circuit is
shown in Fig. 1.3. Obtain the tree cuts diagram.

A=

Fig. 1.3 A resistance-inductance R-L circuit

Resistance R and capacitance L components can be represented as
separate elements as a result of three cuts (Fig. 1.4).

N\ -
L R
E)
Voltage Inductance Resistance End

Fig. 1.4 Three cuts in R-L circuit
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Example 1.3 A resistance - inductance-capacitance (R — L — C) series
circuit subject to voltage V is shown in Fig. 1.5. Obtain Z(s) = V(s) / i(s)

— cC

Fig. 1.5 R-L-C circuit

Solution The following voltage drop equation can be written

V(t)=Ri(t) + Lii(t) + C} i(t(7)
dt 0

Laplace transform of the above equation for zero initial conditions
gives

V(s)=(R +Ls +(C/s))-i(s)
The impedance Z(s) of the resistance — inductance — capacitance
series circuit is given by
Z(s) = V(s) /i(s)
or
Z(s)=R+L-s+C/s

In the case of solid body mechanics, free body diagrams represent
components of a multi body system obtained by cutting each “body”
from the system and representing boundary effects by local force f and
velocity v whose product gives the power P =f - v.
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Example 1.4 Assume that a flexible horizontal rod is linked to an
undefined arbitrary mechanical systems by spherical joints. The rod, cut
from these systems, give the free body diagram shown in Fig. 1.6. Obtain
the model.

F, F,

) 4
v

Vi Va

Fig. 1.6 Free body diagram of a rod

In Fig. 1.6 for each cut the internal force F and the absolute velocity v
are identified. Assuming the flexible rod represented by a lumped
parameters model, shown in Fig. 1.7, the following equations can be
written

Fi(t) = (x1() = x2(1)) - kK + (vi() = V(1)) - b
Fy(t) = = [(x1() = x2(1) - k + (vi() = v2(1) - b] = —F, (D)

Even if there is a spring and a damper between the two forces, the
equality F,(t) = —F,(t) reflects the fact that, in this model, the time-
varying force change F(t) applied to end 1 appears transmitted
instantaneously at end 2, given that lumped parameters models do not
account for propagation delay.

For

d
vi(t) = le (t)

d
Vo () = gxz(t)
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F, v v F,
b
1]
——>

v

—>
Vi Va

—p —p
X X2

Fig. 1.7 Free body diagram for the rod

the Laplace transform gives

x;(8) = v (s)/s
Xz(s) = Vz(t)/s

The two force equations give

vi(s) =—=[1/(k /s + b)] - Fx(s) + vs(s)

Fi(s) = - Fy(s)

These last two equations give the cut variables at end 1, F; and v,
function only of cut variables at end 2, F, and v,, and parameters b and k,
i.e. independent of the dynamics of the systems to which cut 1 and 2
were applied. Lumped parameters mechanical systems can be sectioned
by cuts into subsystems interfaced only by force and velocities defined
with respect to the cuts. For a flexible torsional shaft, with cut parameters
torque T and angular velocity m, the model is structurally similar:

o(s) == [1/(k/s +b)] - Ta(s) + 0(s)

Ti(s) = — Ta(s)
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A generalization to a variety of engineering systems can based on the
two port components that have associated a flow or through variable
“f” and an across or effort variable “e” giving the power as the product
(flow) - (effort) [8]. This is the power passing through the junction of two
components associated to a particular port [9].

In the case of distributed parameters systems, the interactions are too
complex to be reducible to equivalent simple two-port models.

The direction of the power flow in the junction is bidirectional
as opposed to the block diagram description in which signals have
unidirectional flow. The same description, using effort-flow two pole
ports, is suitable for mixed systems. The theoretical background of
this description can be found in Hamiltonian dynamics for obtaining
power transfer equations [8]. While effort-flow cuts permit to define
power transfer between mixed subsystems, Hamiltonian and Lagrange
dynamics permit simultaneous modeling of mixed systems, for example

of electromechanical systems [9].

1.2.2 Newton-Euler and Kirchhoff Equations for a Mixed
Electro-Mechanical System

Effort-flow representation of mixed systems permits easy application of
Newton-Euler equations of motion and Kirchhoff equations for electric
circuits. Power transfer conservation law at the conversions of electrical
and mechanical energies permits to integrate the two models in an joint
electro-mechanical model. The simplified diagram of Permanent
Magnet-Direct Current (PM-DC) motor is shown in Fig. 1.8. The stator
consists of a pair of magnetic poles N-S. The rotor consists of coils of
conducting wires connected through the segments of a collector to a DC
power supply.

Figure 1.8 shows the cut from a mechanical load (with cut variables
torque T and angular velocity ® = d@/dt) as well as the cut from a DC
power supply (with cut variables voltage u and current i). The rotor is
modeled mechanically as a rigid body with a moment of inertia “J” and a
viscous friction coefficient “b” accounting for the air drag and viscous
friction in the lubricated bearings. The electric model of the rotor is
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given by the lumped parameters R and L, the rotor winding circuit from
the electrical cut (u, i) towards the mechanical cut (T, ).

L R

—/\A/—I_l—l_l—

Fig. 1.8 The diagram of a PM- DC motor

The conversion of the electrical energy from the DC power source
into the mechanical energy supplied to the load takes place in the DC
motor, in particular in the electromagnetic field of the air gap between
the stator and the rotor. Forces applied on rotor coils are generated as a
result of the current i flowing through the rotor winding surrounded by
the magnetic field produced by the PM of the stator. At the same time,
the so called back electromotive force (back e.m.f.) are induced voltages
in the moving rotor winding moving in the magnetic field. These two
effects in a PM-DC motor can be modeled by separating the mechanical
subsystem and the electrical subsystem, each being modeled by two port
elements, as shown in Figs. 1.9 and 1.10, respectively.

In the left hand side of Fig. 1.9, torque components are represented
around a cross section of the shaft. T, denotes the torque generated in the
electromagnetic field of the and acting on the rotor, while U, represents
the back electromagnetic force (back e.m.f.) induced by the magnetic
field in the rotor winding in opposite to the supply voltage u. The torque
T, and angular velocity ® are the cut variables toward the mechanical
load, while the voltage u and the current i are the cut variables toward the
DC power supply.
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Example 1.5 Obtain the model equations.

The free body diagram and the two port circuit facilitate the derivation of
the model equations.

J-dw/d
L, T;-b-w - J-dw/dt
e A
> T

Fig. 1.10 Two port (U,, i) and (u, i) circuit of the electrical part of the DC motor

Two algebraic equations result from the lumped-parameters model of
the electro-mechanic conversion phenomena
T =k i
U,=k.-®

where k,, [Nm/A] is the torque constant and k. [Vs/rad] is the electrical
constant.
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In case of ideal conversion efficiency, = 1, of the electrical power
U, - i into mechanical power T, - ®,

N=U-i)(T, -0 =1
which gives
T, -0o=U,-1

Using the above two algebraic equations, the following relationship is
obtained

kp1-0o=k.-®-1

such that, in appropriate metric units, k;,, in [Nm / A] and k. in [Vs / rad],
are of equal value

kn= k.

Power losses occur due to winding resistance, magnetic losses,
friction etc. In the case of negligible losses, ideal power conversion can
be assumed (n = 1).

For the mechanical part, shown in the free body diagram of Fig. 1.11,
Newton second law gives:

199 hpoT
dt

For the electrical part shown in Fig. 1.12, the voltage drop equation
gives:

u=LI R4 U
dt

The last two differential equations and the two algebraic equations
regarding the electro-mechanic conversion form a system of four
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differential-algebraic equations containing six variables T, ®, T, U,, i
and u. This system of four differential-algebraic equations represents the
analytical model of the PM-DC motor.

The elimination of internal variables T, and U, results in a model
reduced to two differential equations with four variables of the two cuts

(T, ®) and (u, 1):

K i=19  hosT
dt

u=LE+R~i+ke-w
dt

Most DC motors have negligible L, such that the model, for L = 0, is
reduced to:

These equations, obtained using effort-flow cuts, permit the
determination of the electrical power u - i and mechanical power T - ®
transferred between these subsystems.

1.2.3 Lagrange Equations for a Mixed Electro-Mechanical System

Lagrange equations are given by [11]:

d o 0 0
——[K]—-——[K —[U]l= f =1,2,.....N
ataq, ) ag, g V1T forr
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where

K is kinetic energy

U is potential energy

q: is the generalized coordinate k

Q, is the generalized force corresponding to the work done by the
generalized coordinate g, (or voltage in the case of the electrical
generalized coordinate)

N is the total number of generalized coordinates needed to completely
describe in time the components of the system.

For an electromechanical system with one generalized coordinate
x for the mechanical part and one generalized coordinate Q for the
electrical part, Lagrange equations for the mechanical and electrical parts
of the system are given by [9, 11]:

ii‘[Km+Ke]—i[Km+Ke]+i[Um+Ue]=F
dt 0x ox ox
d o 0 0
——[K K. ]-—I[K K —[U U.]1=V
dtaQ[ n TK(] aQ[ mt e]"'aQ[ m T U

where

K. + K. are the electric and mechanical kinetic energies

U, + U, are the electric and mechanical potential energies

x is the generalized displacement variable (angular displacement)

X = v is the generalized velocity (angular velocity)

Q is the charge in capacitive components

Q =1 is the current

F is the generalized force (dissipative and applied forces or torques)
V is the voltage (dissipative voltage drop and applied voltage)

Example 1.6 Obtain the model for the DC motor using Lagrange
equations.

Lagrange equations for a PM- DC motor
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For the DC motor shown in Fig. 1.8, Lagrange equations are

d o 0 0

——[K. +K.]-—[K. +K . ]+— =F
dtae[ n T K] ae[ m C]+ae[Um+Ue]

d o d d

—— K +K ]-—[K. . +K.]+—[U_+U_.]=V
CltaQ[ m T K] aQ[ m T e]+aQ[ mt U]

or, taking into account that

=0
and
Q=i
d 9 J 0
Z %K +K.]-—[K. +K.]+—[U. +U.]=F
at 9o om TR G AR T2 + U
d o d d
ZZ2K +K.]-—[K. +K ]J+—[U. +U.]1=V
acoiom PRI S Kn + KI5 U + Ul
where

Kn(®) =T - 02
U,=0
F(®,))=-b-0+ky-i-T
K.(i)=L-i*2
U.=0

Vo, w)=u-R-i-k.-®
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Partial derivatives are

9

K +K.]=J
80)[ " A=Jo

3
—[K K 1=0
g0 om T K]

0

—[U U.1=0
g9 Un U
i[Km+Ke]:Li
dJi

d
3! Kn TK1=0

9 (U, +U.1=0
aQ

such that, for k,,, = k., Lagrange equations result as follows

d .
—J 0=k, ,-i-b-o-T
dt

4L i=u-Ri-k o
dt

These are the same as the equations derived for the same DC motor using
Effort-Flow representation of mixed systems and Newton-Euler
equations of motion and Kirchhoff equations for electric circuits.
Dissipative components are the dissipative voltage drop Ri and the
dissipative generalized force, in this case the dissipative reaction torque
b- .
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Indeed, Lagrangian dynamics approach does not require effort-flow
cuts neither for the mechanical subsystem nor for the electrical
subsystem, and no internal variables were defined for such cases. For the
interface between electrical and mechanical subsystems, applied torques
T (external load torque) and k. - i (motor torque) and applied voltages u
(external voltage) and k. - ® (induced voltage) had to be however
identified and this requires in fact the definition of the effort-flow cut at
this interface.

Example 1.7 Figure 1.11 shows a plunger solenoid consisting of a
solenoid of inductance L(x), dependent of the displacement x of the
plunger from the non-energized position x = 0. The motion of the
plunger along x is due to the plunger induced force, caused by the
solenoid current i. The current flows in the electric circuit R-L(x) subject
to the applied external voltage u(t). On the mechanical side, the plunger
of mass M consists of a flexible rod with stiffness coefficient k supported
by a lubricated bearing with viscous friction coefficient b. Obtain the
model using Lagrange equations.

Fig. 1.11 The diagram of a plunger solenoid
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Lagrange equations in this case are

d 9 d J
——[K K ]-—I[K K —[U U.]=F
dt ox om TR = oKy + R 20U + U]

d o d d
——[K K.]-—I[K K —[U Uu. 1=V
dtaQ[ n T K] aQ[ m T °]+8Q[ mt U]
where
X=V
and
Q=i
such that
d o d d
——[K K.]-—I[K K —[U U.]1=F
dtav[ mn e ax[ m ¥ e]—i-ax[ mt U]
d o J 0
——[K K. ]-—I[K K —[U U=V
acoiom KT 5K A K5 U + U
and

Kn(®) =M - v/2
Un=k-x/2
F=-b-v
K.=L(x)- i/2
U.=0

V=u®)-R-i

19
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Partial derivatives are
0
—[K,+K.]=M-v
ov

i’ d

0
—[K K ]l=——L
ax[ m K] 2 dx @

U +U,]=k-x
ox

0 .
_[Km +Ke] :L(X)'l
oi

d
—I[K_,+K.]=0
aQ[ m K]

d
—[U,+U,]1=0
aQ[ m T U

such that Lagrange equations for the mechanical generalized coordinate
x and for the electrical generalized coordinate Q result as follows

d i* dL(x)

dt 2 dx

+k-x=-b-v

iL(x)~i =u(t)-R-i
dt

The term (i*/ 2) - dL(x) / dx corresponds to the position dependent
force applied by the solenoid on the plunger, while the term d / dt L(x) - i
corresponds to the position dependent voltage drop on the solenoid
inductance.

In reference [11] can be found other examples of Lagrangian
dynamics for an electromechanical system in which there is a position
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dependent capacitance and for an angular position dependent mutual
inductance.

In this section, the same equations of motion of an electro-mechanical
system were obtained using two approaches effort-flow cuts with
Newton-Kirchhoff dynamics and Lagrangian dynamics. The letter
approach is particularly interesting due to the link to Hamiltonian
dynamics and Lyapunov stability analysis for mixed systems [9].

Example 1.8 Figure 1.12 shows an electromechanical system composed
of a spring, with spring coefficient k, and a coil of radius p, with moment
of inertia J and with N turns in which flows a current I = dQ/dt [11]. The
angular position of the coil with regard to the horizontal plane is 6 and
varies from 0° to 180°. The coil is subject to a magnetic field produced
by a solenoid with n turns in which flows a current i = dg/dt. The angular
displacement of the coil is due to the induced torque resulting the
solenoid current I and coil current i. Resistances of the coil and of the
solenoid are R and r, respectively. The coil is subject to a voltage U(t)
while the solenoid is subject voltage u(t). Self-inductances L of the coil
and 1 of the solenoid are constant, i.e. independent of the angular position
0 of the coil. The mutual inductance M(0), between the static solenoid
and the rotating coil, is dependent of the angular position 0 of the coil

M (0) = kN 'n'pz -n-N-sin0

where k,\ is a characteristic constant of the coil.

The coil is supported by a lubricated bearing with viscous friction
coefficient B. Obtain the model using Lagrange equations.

Lagrange equations in this case are

ii.[Km +Ke]—i[Km +Ke]+i[Um +U,]=F
dt 90 0% 20

d o 0 0
aﬁ[Km +Ke]—£[Km +Ke]+£[Um +U,]=V
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i u(®)
U@ !
\
Fig. 1.12 The diagram of rotating spring coil and solenoid system
ii.[Km +Ke]—i[Km +Ke]+i[Um +U,.]=vVv
dt 9q aq aq
where
ie =0
dt
d
—0=1
dt Q
4
ac
such that
ii[Km + Ke]—i[Km + Ke]+i[Um +U,]=F
dt do 20 20

54-____----____----____----_---------
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d o d d
——K K.]- K K —[U U l=V
" K, +K.] Q[ mt e]+aQ[ m T U]
d o
——_[Km+K]——[K +K]+ [U +U,.]=v
dt oi
and
(,02
K J—
m(®) >
2
u, =%
2
F=-B-o
12 i2 IZ i2

K,=L—+1—+M(@®)-I-i=L—+1—+k, -n- p*-n-N- sin®)-1-i
) ©)- 5 15 p ©)

or

2 .2
K. :L—+11—+a-I-i-sin9
2 2

U.=0
V=U()-RI1
v=u(t) —ri
where the constant a is

a=an-n-p2-n-N
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Partial derivatives are

i[Km+Ke]:ioc-l~i-sin9:oc-I-i-cos()
20 20

i[Km +K.1=0

aQ

i[Km +K.1=0

dq

i[Um +U,]=k-6
20

i[Km+Ke]:L-I+0L~i-sin9

ol

0 . .

E[Km+Ke]=l-1+a-I-sm9
i

0
—[K,+K.]=0
aQ[ m + K]

i[Km-%Ke]=0

Jq

d

—[U U.]1=0

aQ[ m T U]
99k, K =10
dt do

ii[Km+Ke]=L-i+()t~i-sin9+oc-i~co~cose
dt oI
)

i—.[Km+Ke]:1-i+(x~i~sin9+(x~l~w~cos9
dt di
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such that Lagrange equations for the mechanical generalized coordinate 0
and for the electrical generalized coordinates Q and q result as follows

J-o- a-1-i-cosb- k-0=-B-o
L-i+a-i~sin9+(x~i-co-cose:U(t)—R-I
L-i+a-1-sinf+a-1-0-cos®=u(t)—r-i

or
J-6-B-0- k-0=a-1-i-cosd
L-I+R-I=U(t)—a-i-sinf—a-i-®-cosd
L-i+r-i=u(t)-oa-1-sin0-a-1-o-cosd

These three nonlinear differential equations with variables 6(t), I(t)
and i(t) represent the model of the system from Fig. 1.12, given the
inputs U(t) and u(t), i.e. the direct problem. In practical applications, one
of the inputs, U(t) or u(t), can be held constant. For either I or I
vanishing, the first equation gives the equilibrium position 6 = 0.

In the first equation, for the rotational mechanical subsystem, the
term T =a - 1-1i- cos 0 represents the torque produced by the magnetic
fields interaction of the solenoid with the coil, which is zero when the
coil and the solenoid are perpendicular, i.e. when 6 = 90°, or when the
two magnetic fields are parallel. As a result, the angle 0 should be limited
to the domain

-90+e<0<90-¢

where € can be obtained from the condition that maximum admissible
currents I, and iy, produce a minimum required torque T, to be able
to rotate the J-B-K mechanical system, i.e.

Thin = 0 Ljax imax €OS 10 — €l
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In second equation, for the moving coil, the terms o-i-sin0+
a-i--cosd represent the induced voltages in the coil due to the time
varying current and due to the coil angular velocity. Similarly, the terms
o-1-sin@+0-1-w-cosd represent induced voltages in the solenoid due
to the time varying current and due to the coil angular velocity.

Example 1.9 Figure 1.13 shows a capacitance with a moving top
electrode of mass m and with a gap X — x, where X is the gap. The
equilibrium position of the top electrode is x = 0, when no voltage is
applied to the capacitance and the spring is stretched by m - g / k to
counterbalance top electrode weight m - g. The bottom electrode is
sitting on a fixed electric insulator. The top electrode can move vertically
with the displacement x, as a result of the time varying voltage applied to
the electrodes from a voltage source with U(t) connected through wires
with resistance R and inductance L [11]. The top electrode is connected
to the moving bottom end of a spring with spring coefficient k. The
spring has the top end connected to a fixed insulator. Assume that the
structural damping coefficient is b.
The capacity of the time varying gap capacitance is given by
k-A
C(x)= X

where k is the dielectric constant and A is the cross-sectional area of the
capacitance. Obtain the model using Lagrange equations.
Lagrange equations in this case are

ii[Km +Ke]—i[KIn +Ke]+i[Um +U.]=F
dt ox ox ox

d o d d

Eﬁ[Km +Ke]—£[Km +Ke]+£[Um +U,.]=V
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where
dx
—_— =V
dt
dQ _
dt
fixed frame
insulator
L
k
R
A
U(t) X
\/ C
insulator

fixed frame

Fig. 1.13 Diagram of a system consisting of a capacitance and a spring

such that

ii[Km +Ke]—i[Km +Ke]+i[Um +U,]=F
dt ov ox ox
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ii[Km +Ke]—i[Km +Ke]+i[Um +U, 1=V
dt oI 0Q 0Q

and

X -x

A2
U0 =Q -2

U.(x)=Q* (X -x)/(2-A-c)

Partial derivatives are

2 2
K, +K =2 m 2o
o0x o0x 2 2

i[Km +K,1=0
90

2 _ 2
i[Um +Ue]=i[kx—+Q2 .M]:k.X_Q_
ox ox 2 2-A-k 2.A-k

2 2
K +K =L m LD o mey
ov ov 2 2
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0 V2 I’
aI[ o tK ( + )
i[K +K,.]=0
dQ
a a 2 2 X—X X_X
aQ[ m Ul aQ[ TS AT YA
ii[Km+1<e]=m-v
dt dv
d d
——K K L-1
e (K, +K.]=

Lagrange equations for the mechanical generalized coordinate 6 and
for the electrical generalized coordinates Q and q result as follows

QZ

m-v+k-x-— =-b-v

. X- X
L-I+Q——=U({t)—-R -1
Q~ —-=UW

The following two second order nonlinear differential equations with
unknowns x(t) and Q(t) and q(t) represent the model of the system from
Fig. 1.13, given the time varying input voltage U(t).

m-X- b-%x- k-x =F(Q)

O+R-O0+-2 -
L-Q+R-Q+ 5 ==UW

where C(x) is the time varying gap dependant capacitance with
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k-A
C(X)_X— X
and
_ @
F(Q)_z-kA

is the charge dependant force applied by the moving electrode to the
bottom end of the spring.

The two nonlinear differential equations with variables x and Q
permit to model the effect of time varying external voltage U(t) on the
displacement x(t) of the moving top electrode, i.e. a direct problem.

1.3 Local Sensing and Actuation in Spatially Continuous Systems

Spatially continuous systems, can be modeled using either effort-flow
cuts or Lagrangian dynamics. These models are needed for the design of
systems or for their real-time monitoring and control.

Continuous systems can be modeled with lumped parameters models
or with distributed parameters models, depending on the acceptable level
of accuracy and modeling difficulties. In both cases, the number of
inputs can be lower than the number of degrees of freedom, resulting in
under-actuation or lower number of outputs than states, resulting in
under-sensing. The issue of local sensing and actuation has to be
investigated in both cases. Control of these systems can be either open
loop or closed loop. Under-actuation and under-sensing have
consequences on the performance of both types of systems, but is a
particularly difficult problem to solve for distributed parameters models
[18].
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1.3.1 Lumped Parameters Models with Under-Actuation and
Under-Sensing

Lumped parameters models for linear case can be written in the form of
linear ordinary differential equations (ODE):

dX(t) / dt = A(t) - X(t) + B(t) - u(®) + G(1) - w(t)
y(®) = C(1) - X(®) + D(t) - u(t)

where

X(t) = n-vector of states with given initial conditions x(0)
u(t) = m-vector of inputs

w(t) = d-vector of disturbances

y(t) = p-vector of outputs

A(t), B(t), G(t), C(t), D(t) = time varying matrices.

Lumped models for nonlinear case can also be written in the form of
linear ordinary differential equations (ODE):

dX(t) / dt = F(X(t), u(t), w(t))

y(®©) = HX(®), u(v)

where F and H are nonlinear functions.

The number of states, n, is finite and, consequently, lumped
parameters models which are a simplified representation of continuous
systems. Certainly, spatial resolution is in the former case limited.
Under-actuation results from fewer inputs m than the number of degrees
of freedom N, i.e. m < N, and under-sensing from fewer outputs p than
the number of states, i.e. p < n. A continuous system would have infinite
values for n and N, consequently, finite number of actuators and sensors
will always result in this case in under-actuation and under-sensing.
Given the complexities of distributed parameters models, under-actuation
and under-sensing issues are easier to be analyzed using in a first
approximation lumped linear models represented by ordinary differential
equations (ODE) with time invariant (LTI) parameters.
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1.3.2 Distributed Parameters Models with Under-Actuation and
Under-Sensing

Distributed parameters models can be take a large variety of
mathematical forms. A generic form is:

8X(x,y,z 1)/ 8t =F(X(x,y, z 1), VX(x, y, z, 1), VX(X, y, Z, 1), ..., W(1))

subject to boundary conditions
G(X(Xp, Ybs Zp, D)su(t)) =0
and intial conditions
I(X(x, y, z,0),u(0)) =0
While, output equation is

H(y(Xm, Ym: Zm: 1), X(X, Y, z, 1), u(D))

where V is the partial differentiation operator, with regard to x, y, z,
variables and the function G and the subscript b refer to boundary
conditions, while the function I defines initial conditions. It can be
observed that control variables u(t) appear in this case only in the
boundary conditions, a typical case in practice where the continuous
system is actuated only from specific system boundaries. Similarly, the
outputs y are typically measured in some specific points Xu, Vm, Zm-
These limitations regarding local actuation and sensing pose specific
challenges to the design and performance of controllers and for the
integration of spatially continuous systems.

1.4 Centralized versus Local Control

Local sensing and actuation of systems with large or infinite number of
states is linked also to the issue of centralized versus local control. A
finite number of actuators can be controlled either at the actuator location
or using a centralized control for all actuators.
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Local controllers use collocated actuators and sensors, have the
advantage of easier design and tuning and tend to produce predictable
local system behavior, but are not optimal for the system as a whole.
Moreover, dynamic couplings in the system can result in inefficient or
unstable system behavior. Centralized control can be designed optimally,
but suffers from unavoidable simplifications of the system model on
which they are based and requires often a prohibitively large number of
signal transmissions [19]. These issues are critical for continuous
systems distributed over a large area or for formations.

Problems

1. Consider the system shown in Fig. 1.2 but with added viscous
friction between the mass M and the ground, with viscous
friction coefficient B. Obtain v(s) given F(s).

2. For the system shown in Fig. 1.5, obtain the four cuts
representation.

3. For the free body diagram shown in Fig. 1.7, consider that the
mass of the rod is not negligible and that is concentrated equally
at the two ends of the diagram as M; and M,. Obtain the
equations for v; and F, function of v, and F,.

4. For the DC motor shown in Fig.1.8, assume that the shaft is
flexible, such that in the free body diagram from Fig. 1.9 a
torsional spring coefficient K is in series with the moment of
inertia J.

a. Obtain the model with two differential equations for the cut
variables (T, ®) and (u, 1)

b. Verify that the same model is obtained using Lagrange
equations.

5. Assume that the plunger solenoid from Fig. 1.11 has the plunger
of mass M connected by a spring, with spring coefficient K, to a
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right hand side rigid wall. Obtain the Lagrange equations of
motion.

For electromechanical system shown in Fig. 1.12, the mutual
inductance between the static solenoid and the rotating coil is
M@®)=kyn- - pz- n- N- sin 0. The coil, of moment of inertia J,
actuates a flexible shaft supported at one end by a lubricated
bearing with viscous friction coefficient B. The shaft, with
torsional stiffness coefficient K, has a load with a moment of
inertia J, and has itself a negligible moment of inertia, relative to
the two end moments of inertia. Obtain Lagrange equations for
this system.

Consider the system shown in Fig. 1.13, which consists of a
capacitance with a moving top electrode of mass m and with a
gap X - x, where X is the gap for the equilibrium position x = 0,
when no voltage is applied to the capacitance, and the spring is
stretched by m - g / k to counterbalance top electrode weight m -
g. The bottom electrode is sitting on a fixed insulator. The top
electrode is moving vertically with the displacement x, as a
result of the time varying voltage applied to the electrodes from
a voltage source with U(t) connected through wires with
resistance R and inductance L. The top electrode is connected to
the moving bottom end of a spring with spring coefficient k and
in parallel with a damper with damping coefficient b. The spring
has the top end connected to a fixed insulator. The capacity of
the time varying gap capacitance is C(x) =c - A/ (X - x), where
c is a constant dependent of the insulator between the electrodes.
Obtain the model using Lagrange equations.

For a multi-DOF linear lumped parameters mechanical system,

the system is considered under-actuated if:

a. there are fewer actuators than the number of states

b. there are as many actuators as the number of states

c. there are as many actuators as the number of degrees of
freedom.
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Examples of Direct and Inverse Problems for
Mixed Systems

2.1 Modular Modeling and Control Issues for Mixed Systems
2.1.1 Effort-Flow Modeling of Mechatronic Systems

Issues regarding direct and inverse problems can be presented based on
the schematic diagram of a distributed parameters mechatronic system,
shown in Fig. 2.1. In Fig. 2.1, measurement and control signal
transmission is shown in thin lines, while power transfer to the
Distributed Parameters Mixed System is represented using effort-flow
representation of power transfer cuts concept, introduced in Ch. 1.
Electric power supply of the mechatronic system provides an
instantaneous power transfer Uac - Ixc to supply the drivers. The drivers
modulate the electric power output u - i to actuators, assumed electric
motors with given efficiency, such that u- i < Uac - Iac. Actuators can be
controlled by modulating voltage or current input. The modulation
follows the computer control commands transmitted from the DAC as
analog signals. The actuators, assumed here as electromechanical
actuators, provide modulated mechanical power Fv < ui < Uac - Izc to the
Distributed Parameters Mixed System for changing, as required, the
states of the system. In Fig. 2.1, point actuators are assumed to apply
forces F in given points at the outer boundary surface of the system.
Inside the Distributed Parameters Mixed System other power transfer
and conversions take place and they can also be represented by the
effort-flow representation of power transfer cuts concept in case that this
is concentrated in specific some points of the system. Distributed

35
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parameters power transfer and conversion, for example in case of
radiation, require specific distributed parameters effort-flow

representation in which power transfer cross-sections can be identified
[23].

Electric Power

Supply
Uac T
Iac 4
i \Y% o e R
.-> | A }-*> | Distributed
R ul T F >
I _ U le Parameters
< < N
Vv A
E T Mixed S
R o ixe
S R D
S
System U
C C
o| CONTROL |_
DAC M
P
U : R
Signal
T <+— ADC |« Cond <
E S
R
<— Qperator
Commands

Fig. 2.1 Schematic diagram of a distributed parameters mechatronic system with

effort-flow representation of power transfer cuts
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Modeling and simulation of Distributed Parameters Mixed Systems
has to be based on the fact that, in this case states, inputs and outputs are
dependent not only on time but also on spatial x, y, z location in the
system.

2.2 Modeling and Simulation of Distributed Parameters Systems
2.2.1 Examples of Distributed Parameters Systems
2.2.1.1 Examples of models of vibrating flexible structures

Flexible structures (strings, membranes, beams, plates etc.), acoustic
field, heat transfer, fluid flow, electric and magnetic fields, are some
examples of systems that have distributed parameters and are modeled by
partial differential equations or alternatively, by integral equations [14,
24]. While the initial model of such systems is in the form of distributed
parameters, often, for developing active control of the dynamics of these
systems, an equivalent lumped parameters model is often derived, as for
example the finite elements model for vibrating systems [23].

A) Examples of models of vibrating flexible structures are the following:

a) the string, shown in Fig. 2.2, has a small transversal displacement
y(x, t) from the equilibrium position. In this example, initial
conditions, away from equilibrium lead to space and time variation of
y(x, ).

The motion equation is

9*y(,0) _ 5 97y(x,0)
ot’ ox’
where
c=T/p [m/s]
T is the constant tension in the string [N]
p is linear mass density [kg / m]
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Y

y(x, t)

— —_— 5

Fig. 2.2 Vibrating string

b) the membrane, shown in Fig. 2.3 has a small transversal displacement
7(X, y, t) from the equilibrium position.

AZX Y, 1)

Fig. 2.3 Vibrating membrane

As in the case of vibrating string, the displacement is governed by
second order partial differential equation with regard to time and to space
coordinates.
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The equation is

0°z(X, y,t) _

0°z(x,y,t)  9z°(X,Y,t)
ot’ "

ox’ dy’

c’(

)

where ¢ = T/p [m / s]. Initial conditions are assumed away from
equilibrium.

c) the beam is shown in Fig. 2.4 and has a small longitudinal
displacement u(x, t), along axis x, from the equilibrium position.

u(x, t) X
> —»

Fig. 2.4 Beam vibrating longitudinally

The equation is the same the equation for vibrating string, but, written for
the longitudinal displacement u(x, t)

d’u(x,t) o d°u(x, t)
ot’ ox’
where
c=T/p[m/s]
T is the constant tension in the beam [N]
p is linear mass density [kg / m]

d) the beam, shown in Fig. 2.5, has a small transversal displacement
y(x, t) from the equilibrium position and is subject to an applied
distribute force F(x, t).
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The equation is

O*y(%,0 2 9y060 o FOu
at’ ox* E-1

where

b=E-1-g/pu[m/s]

E is the Young modulus of the homogenous material of the beam
I is the moment of inertia about x axis

W is linear mass density [kg / m]

| X
..... >

Fig. 2.5 Beam vibrating transversally

Different from the previous examples of flexible structures, which had
vibrations due to initial nonzero conditions, in this case there is an
external force F(x, t) applied to the beam.

2.2.1.2 Acoustic fields

Acoustic fields of relatively low amplitudes are modeled by the linear
Euler equation [21]
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where
p(X,y, z, t) is the acoustic pressure at X, y, z at time t
c is the thermodynamic speed of sound for the specific fluid supporting
the propagation.
V?, nabla squared, is the Laplacian operator defined by

0> 9> 97
+—t
ox* dy* oz’

V=

2.2.1.3 Heat transfer

Three-dimensional (3D) heat conduction equation is given by

N vy
ot

where

u(x, y, z, t) is the temperature in a solid body in the point X, y, z at time t.

k is diffusivity.

¢ is the specific heat of the solid body conducting the heat

7 is the volume density [kg / m’]

2.2.1.4 Fluid flow

Euler’s method for the flow in space gives the state change f(x, y, z, t) of
a particle of the fluid as follows

df of
— =—+V - grad(f
dt ot grad(f)

where
V is the velocity
and the gradient operator grad (nabla or del) is given by
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grad=V :ii+ji+ki
ox “dy 0z

2.2.1.5 Electric and magnetic fields

For an infinite, homogenous, isotropic, insulating (I = 0), i.e. no free
charges (Q = 0), lossless, dispersion-less and linear medium, i.e. an ideal
vacuum free space, Maxwell equations for electromagnetic fields can be
written in the partial differential equations form, in Cartesian coordinates
as follows

-Gauss equation for electric field intensity E
OE,/0x+d8E,;/dy+dE,/6z=0
-Gauss equation for magnetic induction B
OB,/ dx+0B;/dy+06B,/dz=0
-Faraday law

O,/ y - OE,/dz= - 8B/t
O,/ 8z - 8E,/6x = - 8B/t
S,/ 8x - 8B/ Sy= - 8B,/ 5t

-Ampere law
0B,/ 0y-0By/dz= pn-A-g-0E,/0t
OB,/ 0z-08B,/0x= un-A-€-0E,/5t
OB,/ 0x -0B,/8y= un-A-¢-8E,/dt
where

E = electric field with the components E, Ey E, [V / m]

B = magnetic flux density or magnetic induction, [T] or [N / (Am)], with
the components By, By, B,

| = permeability constant = [, - W,, [H/ m] or [N/ A%

L, = relative permeability constant with regard to vacuum (U, = 1 for air)
W, = vacuum permeability constant =4 - 7t - 107 [H/ m] or [N/ Az]

€ = permittivity constant [F/m] or [C?/ Nm’]

€, = relative permittivity constant with regard to vacuum, (€, = 1 for air)
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€,= vacuum permittivity constant = 8.85 - 10" [F/ m] or [C*/ Nm?]

The above examples of distributed parameters models, expressed as
partial differential equations, require boundary and initial conditions for
complete definition for a specific system.

These systems can have external excitations from actuators, that are
located on some points along the 1D, 2D or 3D field. For 3D fields in
particular, actuators are often located on the 2D outer boundary surface
of the field and appear in the model only in the boundary conditions.
Sometimes, as shown in the example shown in Fig. 2.5, actuating force
can be applied distributed within the system. The placement of actuators
in distributed parameters systems has important consequences on the
design of controllers for both open loop and closed loop control.

These problems will be presented in more detail in subsequent
chapters.

2.2.2 Direct and Inverse Problems. Well Posed and Ill Posed Problems

Two distinct problems can be formulated for distributed parameters
systems:

-simulation problem, to determine positions and time dependent states
and outputs given distributed external excitation and initial and boundary
conditions. This is called a direct problem: given known input determine
the output.

-control problem, to determine distributed external excitation, applied
often on the boundary, given desired states and outputs as well as initial
and boundary conditions. This is an inverse problem: given desired
outputs determine inputs.

These problems can be characterized as well-posed if [82]:

-the solution exists;
-the solution is unique;
-the model is continuously dependent on parameters.

These conditions, stated by Hadamard, when violated define ill-posed
problems. In particular, partial differential equations are characterized as
ill-posed. Ch.3 presents methods for solving discrete inverse problems
for the case of ill-posedness.
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2.2.3 Classification of Partial Differential Equations and Methods
of Solving

The majority of partial differential equations (PDE) used in mathematical
physics are of the following types:
-Single linear PDE with one unknown, for example for heat flow, string
equation, Euler Bernoulli beam equation and membrane equation as well
as wave equation for vibrations, sound and electromagnetic waves;
-Multiple linear PDE with multiple unknowns, for example Maxwell
equations;
-Nonlinear systems of PDE, for example Euler and Navier-Stokes
equations for fluid dynamics.

Most of these PDE in mathematical physics are second order
equations and, in case of two independent variables, are of the general
form:

2 2 2
A o7 u(x,y) LB o-u(x,y) L o-u(x,y) +D ou(x,y) +E ou(x,y)

ox? oxay dy* ox dy
+Fu(x,y)=G

or, in a more compact notation
A-ux+B-uy+C-uy+D-u+E-uy+F-u=G

where A, B, C, D, E, F, G do not depend on u but might depend on x
and y.

Second order equations PDE are classified based on the sign of
B’-4.A-C

a) for B>~ 4 - A - C <0, elliptic equations.
For example two-dimensional heat conduction equation

2 2
ou(x,y,t) _ k(a u(x,zy, t) N d u(x,zy,t))
ot ox ay

in steady state form (du(x, y, t) / 8t =0 for t = =) becomes Laplace
equation with independent variables x, y
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0%u(x, y, o) N 9°u(x, y, ) _

0
ox’ dy*

where A=C=1and B=0suchthatB?—=4-A-C=-4<0.

b) for B>~ 4 A - C > 0, hyperbolic equations.
For example string and longitudinal vibrations equations with
independent variables x and t

o2 9%u(x,t) B 9”u(x,t) _

0
ox > at?

where A=c?>, B=0,C=-1andB*-4-A-C=4-C>>0.

¢) for B =4 - A - C = 0, parabolic equations.
For example one-dimensional heat conduction equation

du(x,t) K 9%u(x, t)
a x>

where A=k,B=C=0and B°~-4-A-C=0.
The importance of this classification is due to the fact that each class
shares similar methods of solving the equations of the direct problem.
Methods for solving the above equations given initial and boundary
conditions include [14, 24]:

A) analytical methods

-general and particular solutions

-separation of variables and modal analysis, often used in vibration
engineering

-Fourier transform

-Laplace transform, in particular with regard to time variable etc.

B) numerical methods

-finite differences method

-finite elements method.
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These methods will be reviewed in examples as part of the presentation
of various applications in next chapters.

2.3 Overview of Open Loop and Closed Loop Control of
Distributed Parameters Systems

2.3.1 Direct and Inverse Problems

Both open and closed loop control of systems use a model of the system
for the controller design, to determine the control scheme that provides
the commands for the inputs u(t) such that the states X(t) of the system
tend towards some given desired values or time variations. System
models give the relationships between inputs u(t) and the states X(t), that
permit to formulate the direct problem, i.e. the determination of time
variation of the states X(t) given inputs u(t). Control problems require
the determination of u(t) given a desired time variation of the states X(t).
This open loop control represents also called inverse problem.

It is easier to illustrate these concepts for a LTI lumped parameters
system:

dX(t)/dt= A - X(t) + B - u(t)
y(® =C-X(t)

where
X(t) = n-vector of states with given initial conditions x(0)
u(t) = m-vector of inputs
y(t) = p-vector of outputs
A, B, C = parameters matrices.
After applying Laplace transform for zero initial conditions this gives

T+s—A)-x(s) =B -u(s)
Y(s)=C-x(s)

For this illustration, assuming that all states are directly observable, i.e.
C =1, where I is identity matrix, the direct problem is given by

x(s)=T-s—A)"-B-u(s)
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and the solution for inverse problem is
uis)=B' - (I-s—A)-x(s)
Assuming as many outputs as states, the inverse problem for desired
x(s)=C"ya(s)
gives the open loop control law
uis)=B' - T-s—A):C" ys(s)

In the path of the solution u(s) for inverse problem is s and y4(s). As a
result, fast desired variations of y4 (t) are subject to a derivative operator
and will require extremely high amplitudes of wu(t), leading to an ill-
posed problem.

In practice, however, closed loop control is frequently used, with its
own advantages and limitations, presented in well known control
textbooks [50, 70]. Besides open loop control, inverse problem occurs in
numerous other monitoring, identification and estimation problems,
investigated in the next chapters of the book.

Direct and inverse problems were extensively investigated since
1960°s for various distributed parameters systems, particularly in the
case of inverse heat conduction problem [10, 22, 30].

For a generic distributed parameters system, the direct problem, of
determining X(x, y, z, t) given u(x, y, z, t) and for the noise w(x, y, z, t),
can be formulated as follows

0X(x,y, z, )0t = FX(X, y, 2z, 1), VX(X,y, z, 1), VX(x, Y, 7, t), ..., (X, y,
z,t), W(X, y, Z, t))
G(X(x,y, z, t), W(Xp, Y, Zp, t)) =0
I(X(x,y,2z0),u(x,y,z,0)=0
H(y (Xm» Ym» Zm» 1), X(X,y,2,1)) =0

where
X(x,y, z, t) is the state vector
u(x, y, z, t) is the input vector
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H(y Xms Ym» Zms ), X(X, ¥, Z, t)) = 0 is the output equation defining y (X,
Ym» Zms t), the output vector from measurements from point sensors
located at (X, Ym» Zm)
G(X(x,y, z, t), u(Xp, Yo, Zb, t)) = 0 is the boundary equation for defining
the inputs u(xy, yb, Z, t) from point actuators located at (Xp, Yo, Z)
I(X(x, y, z, 0), u((x, y, z, 0)) = 0 is the initial conditions equation

Control input u(x, y, z, t) appears either in the boundary conditions
G(X(Xp, Vb, Zps 1), U(X, Yy, Z, t)) = 0 or in the PDE defining the dynamics
0X/dt = F. In most cases, control input u(x, y, z, t) corresponds to point
actuators located on the system boundaries. Direct problem of calculating
y and X given u is already a difficult to solve problem, analytically or
numerically and inverse problem of calculating u given y and X is
significantly more difficult to solve. Some simple examples of inverse
heat conduction problem will be first used to clarify basic issues.

2.3.2 Inverse Heat Conduction Problem

Inverse heat conduction problem is illustrated for the case of a one-
dimensional symmetric semi-infinite body, where the heat input q(t) is
applied at the boundary x = 0 heated at the boundary x = 0 by the applied
heat flux q(t), as shown in Fig. 2.6.

4(0, H=q() ux, UK D= Tu(0) 5

Fig. 2.6 One-dimensional symmetric semi-infinite heated body

This can be modeled, in non-dimensional formulation, by the heat
conduction 1D PDE equation for x >0 and t > 0 [18, 22]:
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9%u(x, t) _ Ju(x,t)
ox ot

or, in a more compact notation
uxx(Xa t) = ut(xa t)

where u(x ,t) is the temperature (in dimensionless units) in point x at
time t.

Output equation for exact measurements of the temperature u(X, t)
from the temperature sensor output T,,(t), located at x = x,, , is given by

U(Xm, t) = Tm(t)

Boundary conditions are given for a semi-infinite body with finite
right hand side temperature

ux,t)<oo  forx — o

and

a) u(0, t) = T(t) in case that the temperature at the left hand side
surface (x = 0), shown in Fig. 2.6, is the unknown. This is a
distant temperature monitoring problem, for the measurement
u(Xp, £) = Ti(0).

b) u.(0, t) = - q(t) in case that the surface heat flux q(t) entering at the
left hand side surface of the body (x = 0) is the unknown (given that
in dimensionless equations the heat flux is proportional to the
gradient of the temperature). This is an open loop control problem.

Both a) and b) are inverse problems.
The initial condition is given by

u(x,0)=0
Fourier transform with regard to time gives

Uxx(x7 (l)) = UI(Xa 0))
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a) For the case of the above initial and boundary conditions distant
temperature monitoring problem, the solution of the above Fourier
transform for the Fourier transform of the measured temperature
UXpm,®) = t,(®) inside the body at sensor location x = Xx,, given the
Fourier transform of the unknown temperature U(0, ®) at the left hand
side surface (x = 0) of the body from Fig. 2.6, [22]

Tm(®) = U0, ®) - exp{-V( ® /2) - [1 +i - sgn(w)] }

This shows that high frequency components of the surface temperature
U(0, ) are multiplied by a term exp{—\/( o /2)-[1+1-sgn(w)] } that
decreases exponentially with increasing ®, i.e. a term that acts as a low
pass filter.

The inverse of the above solution gives the Fourier transform of the
temperature U(0O, ®) at the left hand side surface (x = 0) of the body
given the Fourier transform of the measured temperature 1,,(®) inside the
body at sensor location x = x,, [22]

U(0) = () exp{V( ® /2) - [1 +1i - sgn(w)]}
where 1,,(®) is the Fourier transform of the temperature measurements
Ta(t) at x =X,

This shows that high frequency components of the surface temperature
U(0, ®) are multiplied by a term exp{\/( o /2)-[1+1-sgn(w)] } that
increases exponentially with increasing ®, i.e. a term that acts as high
pass filter that reduces the relative weight of useful low frequency
components from the measurement signal and amplifies the high
frequency components that can contain noise, always present in the
output signals of temperature to voltage transducers. This measurement
error amplification effect makes the inverse heat conduction problem an
ill-posed problem.

b) For this open loop control problem, the boundary condition

u(0, t) = - q(t)
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refers the heat flux q(t) entering at the boundary surface (x = 0) that
determines the temperature u(x,, t) inside the body (x = x,,,), measured as
Tm(t). The same type of high pass filter as in case a, leads also to an
inverse heat conduction problem that is an ill-posed problem. As a result,
open loop control q(C)(t) = - u,(0, t), based on inverse heat conduction

problem formulation, results also in an ill-posed problem.
Same conclusions result from the exact solution of the heat
conduction equation

a—u:k-Vzu
ot

where u(x, y, z, t) is the temperature in a solid body in the point x, y, z at
time t and k is diffusivity.

2.3.3 Open Loop Control of Distributed Parameters Systems
Figure 2.7 shows the block diagram for an open-loop control system,

when the commands u‘(t) to the actuators are the result of an open-loop
controller.

Xq4(t) | Open-loop u“(t) u (t) X(t)
| controller Actuator System |— »

A 4

A 4

Fig. 2.7 Block diagram for an open-loop system control with no feedback for actuators

In order to reduce the errors between the commands u“(t) and outputs of
the actuators of the system and actual output of the actuators u(t), an
open-loop control system with feedback at actuators is used, as shown in
the block diagram from Fig. 2.8.
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u‘(t)

Xa(t)
| Open-loop Closed-loop s Actuators
controller controller

u (1)

X(t)
System | —

Fig. 2.8 Block diagram for an open-loop control system

In this case a local closed loop control is included for each actuator,
much simpler than an overall closed loop control for a distributed
parameters system. Distributed parameters systems frequently have
coupled dynamics and require a multi input multi output controller, while
in the case shown in Fig. 2.8, closed loop control is single input single
output for each actuator separately and results in collocated control.

Monitoring and open loop control of distributed parameters systems
is affected by the specific inverse problems issues. The example of open
loop controller based on the inverse heat conduction equation showed
augmented effects of high frequency components, mostly noise, and
diminished effects of low frequency components, often more important
for the controlled system. In applications, desired internal temperature
distributed over space and time is often the result of heat flux from heat
sources located at the boundary of the thermal system. The general
problem of open loop control of infinite dimensional system with a finite
number of point actuators is not yet solved [30]. New results in solving
the ill-posed problem accounting for high-frequency components effect,
are based on the reformulation of the ill-posed problem into an
approximately equivalent well-posed problem [22].
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2.3.4 Closed Loop Control of Distributed Parameters Systems

Figure 2.9 shows the block diagram for the closed-loop control of a
distributed parameters system.

X(t) R ON
Closed-loop .| Finite number of
+ controller | point actuators
y u(®
Measurement and estimation Distributed
of system internal states witha | | parameters
finite number of point sensors system
v X

Fig. 2.9 Block diagram for a closed-loop control of a distributed parameters system

This block diagram illustrates the difficulties of the closed-loop control
of a distributed parameters system. The measurement and estimation of
all system internal states X(x, y, z, t) using a finite number of point
sensors, located inside the system or on the boundary, is also an ill-posed
problem due to under-sensing and indirect-sensing, as was illustrated
above for one-dimensional symmetric semi-infinite heated body. Also,
the control of all system internal states X(X, y, z, t) with a finite number
of point actuators, located normally on the boundary of the system, is
also an infinite dimensional system problem that does not have yet
generic satisfactory solutions. Solutions for ill-posed inverse problems
are presented in Ch. 3, while their use for particular systems (flexible
systems, thermal systems etc) will be presented in the subsequent
chapters.
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2.4 Under-Actuated and Under-Sensed Mixed Systems

2.4.1 General Problem of Multi DOF Linear Mechanical Systems.
Lumped Parameters Model

Lumped parameters model for a nonlinear system in the canonic form is:
X(t) / dt = F(X(t), u(t), w(t))
y(© = H(X(1), u(t))

where F and H are nonlinear functions and

u(t) = m-vector of inputs
w(t) = d-vector of disturbances
y(t) = p-vector of outputs.

Under-actuation results from fewer inputs m than N, the number of
degrees of freedom (DOF), i.e. m < N, and under-sensing from fewer
outputs p than the number of states n, i.e. p < n. Only actuated DOFs can
be open loop controlled and only the DOFs with controlled variable
measurement by sensors can be closed loop controlled, while the rest of
the system will have indirectly controlled dynamics that has to be
verified for acceptable bounded states.

Given the complexities of nonlinear models, under-actuation and
under-sensing issues are easier to be first analyzed using lumped
parameters linear models represented by Ordinary Differential Equations,
Linear with Time Invariant parameters (ODE with LTI), presented in
Ch. 2.3. Assuming the case that m out of the total of N DOF, (m < N),
have collocated inputs from actuators and that all these m DOFs have the
controlled state variables measured by sensors, than m-N DOF will be
un-actuated and the system is both under-actuated and under-sensed. The
DOFs subject to closed loop control can have controllers that efficiently
bring their state variables towards desired values, while the remaining
DOFs can only be subject to redesign to bring their open loop dynamics
states within acceptable bounded limits as a result of excitations from
other DOFs of the system.

A simple mechanical system will illustrate these issues.
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2.4.2 Two DOF Mechanical System Case

Figure 2.10 shows a 2 DOF mechanical system.

K,

Fig. 2.10 A 2 DOF mechanical system

This 2 DOF mechanical system has one input force F, and one position
sensor producing the output y;, and the motion is assumed frictionless.
As the result, the degree of freedom corresponding to M, is actuated and
sensed and the degree of freedom corresponding to M, is not actuated
and not sensed.

The free body diagrams are shown in Fig. 2.11.

2000 o

K, - _
2+ (X1 —X2)

X2
K; - (x2-xy)

Fig. 2.11 Free body diagrams for the system from Fig. 2.10
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The dynamics of this system is described by the following two second
order ODE:s.

d2
MlT’;lﬂ(l x,+K, - x, —-x,)=F

d?x
MZTZZ-FKZ'(XZ —X1)=0

The measured output is

Yi=%

After taking Laplace transform for zero initial conditions, these equations
become

M;s” + K, + Ky - X; () - Kz - X5 (5) = F, (s)
[Mys” + K, - X, (5) - Ky - X (5) =0
Y (s)=Xy(s)

The position variables X (s) and X, (s) are given by

K
X,(8)=—— F(s)+———2 X, (s)
M;s* +K, +K, M;s® +K, +K,

K
X,(8) =——+—X,(5)

M,s* +K,

After replacing X (s) from the first equation with the result of the second
equation

K.2
! F (s 2

X, (8)= )+
! Ms’ +K, +K, M,s> +K, +K,)(M,s> +K,)

X,(s)
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or

1
Ms?+K, +K
1 I{l2 2 FI(S)
2

1-—
M,s> +K, +K,)(M,s* +K,)

XI(S)=

The model becomes

1
M;s® +K, +K,
M,s* +K, +K,)M,s* +K,)

X, (s)= F.(5)=G,(s)-F,(5)

1

K
X, (s) :M—le(s) =G, (s) X, (s)

2
28" K,

Y (s)=X,(s)

The open loop dynamics model is shown in Fig. 2.12. The consequence
is that M, is both actuated by F; and has the position measured as y; = x;.
M, can have closed loop motion control, while M, has open loop
dynamics that cannot be directly controlled.

Yi(s)

'l G, (s) ! =! G2 (9) | >
F,(s) X (s) X5 (8)

Fig. 2.12 Open loop dynamics diagram
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Assume a proportional controller (with gain k;,) of position error of X;(s)
with regard to the desired position X4(s) giving the force command
FI(C)(S)

FI(C)(S) = kp * (Xi4(s) - Xi(s))
and an ideal actuator

Fi(s) = FI(C)(S)

The closed loop controlled system is shown in Fig. 2.13.

Yi(s)

| Gia(s) | >
X5 (8)

2

Fig. 2.13 Closed loop controlled system

Figure 2.13 clearly shows that only M, has closed loop motion control,

while M, is subject to open loop dynamics that can be modified only by:

- modifying the parameters K, and M,

- modifying the structure of the system, for example by including a
damper B,

- manipulating the input X (s) to the right hand side open loop system.
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In fact, the transfer function for the right hand side open loop system

X,(8)  K,(9)
X,(s) M,s®+K,

=G, (s)

indicates that this system is marginally stable due to the imaginary poles
+/- \/(K2[M2)~

This open loop subsystem can be stabilized by modifying the
structure of the system, by including a damper B,, as shown in Fig. 2.14.

B,

Fig. 2.14 Modified 2 DOF mechanical system

As a result, the equation of motion become

d’x,
Mldt—2+Kl'xl+K2.(xl_X2)=Fl
M, %2 g A (X, —x,)=0

2740 2 4t 2 Xy 1

Following the same procedure as above, the model becomes

1
M,s’ +K12+ K, R )
1— K,
M,s> +K, +K,)M,s* +B,s +K,)

X,(s)=g,(s)-E(s)

Xl(S) =
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K,

X,(s) =
27 M,s?+B,s+K,

Xl(s) =8 (s) 'Xl(s)

Yi(s) = Xy(s)

The closed loop of the modified controlled system is shown in Fig. 2.15.

Fig. 2.15 Closed loop control of the modified system

In this case, the transfer function for the right hand side open loop system
becomes

X, _ K, (s)
X,(s) M,s*+B,s+K,

=g, (8)

indicating that this system has poles that can be made under-damped or
over-damped by proper choice of the value of B, and consequently the
open loop subsystem can be maintained within acceptable bounded
outputs. Structural system modifications are, however, more expensive
than closed loop controllers.

Another case is shown in Fig. 2.16, where M, is actuated while only
the position of M, is sensed. In this case the control of y; is indirect.
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Fig. 2.16 DOF mechanical system with M, actuated and M, sensed

The closed loop of the system from in Fig. 2.15 is shown in Fig. 2.17.

Xia(s) F, “(s) Fi(s) Xi(s) X5 (s)

Fig. 2.17 Closed loop control of the system from Fig. 2.16

This control scheme requires the solution Glz'l(s) for the inverse problem
of estimating X (S) given measurements Y (s).

Problems

1. For alinear lumped parameters system, which of these is true:
a) direct and inverse problems are the same
b) no inverse problem can be defined inverse problem is used
for open loop control.

2. Assume that for the 2 DOF system shown in Fig. 2.10 there is
viscous friction between the body of mass M; and the ground
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with the viscous friction coefficient B, .Obtain G;(s) and G»(s)
of the corresponding block diagram as shown in Fig. 2.12.

Assume that for the modified 2 DOF system shown in Fig. 2.14
there is viscous friction between the body of mass M, and the
ground with the viscous friction coefficient B, .Obtain g;(s) and
g12(s) of the corresponding block diagram closed loop control
as shown in Fig. 2.15.

Assume a modified form of the system shown in Fig. 2.16, in
which position of M, is sensed while the mass M, is in this case
subject to a force F,. Obtain the corresponding Gi(s) - Gix(s)
and G, ' for a closed loop control as shown in Fig. 2.17.

Assume a modified form of the system shown in Fig. 2.16, in
which position of M, is sensed while the mass M, is in this case
subject to a force F, and that between the body of mass M, and
the ground there is viscous friction with the viscous friction
coefficient B;. Obtain the corresponding Gi(s) - Gjx(s) and
G, "' for a closed loop control as shown in Fig. 2.17.



Chapter 3

Overview of Integral Equations and Discrete
Inverse Problems

3.1 Integral Equations and Continuous Inverse Problems

3.1.1 Integral Equations

Integral equations are considered here for formulating a generic form of
models for continuous systems.

Integral equations can be interpreted as forward problems as well as
inverse problems, depending on which functions are considered given
and which are considered unknown.

Nonlinear Fredholm equation of the first kind [67] is

Y(t) = jf(t, 7,U(1)) - dt

This is a definite integral with constant limits a and b. This equation is
nonlinear in U(7).

If interpreted as a forward problem, U(t) is a given continuous
function of 7, the input, while Y(t) is the solution of the integration, a
continuous function, in this case the unknown output.

If interpreted as an inverse problem, Y(t) is a given continuous
function, the input, and U(t) is the solution of the integral equation, a
continuous function, the unknown input.

Solutions U(t) to integral equations represent in this case a generic
form of solutions for continuous inverse problems.

63
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Nonlinear Volterra equation of the first kind [67], is a particular form
of the nonlinear Fredholm equation, where the limits become a = - co and
b =t. For 1t > t, h(t, ) = 0, which means that U(t) has effect on Y(t) only
for values prior to t

Y(t)= jf(t,r, U(t))-dt

There is equivalence between Volterra equations and ordinary
differential equations, illustrated later as convolution integral.

In order to avoid complexities in solving nonlinear Fredholm
equations, this book will focus on Fredholm equation of the first kind
linear in U(7) [67]

Y(t) = jh(t,r) U(t)-dt

For t > t, h(t, ) = 0, which means that U(t) has effect on Y(t) only for
values of t prior to .

The kernel h(t, t) has often in applications the role of a low pass filter
behavior that reduces the effect of fast variations of U(t) on Y(t). This is
physically due to the effect of inertia in mechanical systems or
inductances in electrical systems.

The forward problem solution Y(t) obtained by integration, for a
given continuous function U(7) is, as a result, a well-posed problem, i.e.
it exists, is unique and depends continuously on parameters. In the case
of distributed parameters systems, this implies that the corresponding
model has suitable initial and boundary conditions [78]. The low pass
filter behavior of the kernel h(t, t) results also in diminishing the effect of
noise content of U(t) on the direct problem solution Y (t).

The solution U(t) of the inverse problem, for a given continuous
function Y(t) is, as a result, a ill-posed problem. If the kernel has a low
pass filter behaviour, its effect in the inverse problem is that fast
variations of Y(t) due to high frequency noise, result in highly amplified
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presence in the solution U(t) and, ultimately in significant difficulties in
obtaining numerical solutions [45, 49]. Specialized numerical methods,
in particular regularization methods, were developed for this reason.

3.1.2 Discrete Form
Integral equations can be approximated by a n-point linear quadrature

over the range of integration.
For example, linear Fredholm equation of the first kind

Y(t) = j h(t,7)- U(7) - dt

a n-point linear quadrature has evenly spaced discretization for the range
of integration (a, b) with a constant step

For the step count k=0, 1, 2,..., (n-1)
t=(K+k)-H
a=K-H
b=K+n-1)-H
Replacing the continuous values for t from a to b by n-discrete values
t=K-H, (K+1)-H,...,(K+n-1) - H

Fredholm equation can be can be converted using a chosen quadrature in
discrete time as follows [45, 49]
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(K+n-DH
Y, = Zhi,k Uy

i
k=KH

After dropping H, Volterra equation can be written in discrete time as
follows

i
Y, = Zhi,k Uy
K=-c0

where h;; are elements of a lower triangular matrix. For discrete
Volterra equation uy is easily computed by forward substitution, given Y;
and h; [49].

As a result both Fredholm and Volterra equations can be
approximated by systems of linear equations in discrete form leading to
the matrix equation

Y=h-U

where Y [Ny - 1], h [Ny - N,] and U [N, 1].

The coefficients of matrix h are obtained for first order or higher
order approximations (quadratures) of the continuous function h(t, t) for
time step H [45, 49].

The calculation is analyzed, for simplicity, for the integral

Y:jh(r)-U(r)-dr

i.e. for the case h dependent only on the integration variable t that results
in a constant value for Y.

The integral is approximated by the sum of a finite number N of
terms defined by the discrete values of equally or non-equally spaced the
integration variable 14, Ty, ..., T
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b N
Y= [h() U@-de=) w(r)- U(t)
a =1

by extending numerical integration rules, for example Simpson rule [45,
49]. The calculation of the weights w(t) might be possible analytically or
might require again the use of quadrature method.

In the case of Volterra equation in discrete approximation, the matrix
h is lower triangular and this facilitates significantly the calculation
of the solution h. Lower triangular structure results in discrete
approximation from the continuous form condition h(t, t) = 0 for T > t.

In general, the solution of the above matrix equation is obtained using
the inverse matrix h' for N, = N, and non-singular matrix h

U=h'Y

In monitoring, estimation, identification and control applications, matrix
h [N, - N,] is rarely square or non-singular, and the solution of the matrix
equation uses the generalized inverse h™*[N,- N]

U=h®*Y
3.1.3 Other Examples of Discrete Inverse Problems

Discrete inverse problems do not result only from discretization of
integral equations. In this section curve fitting case will be investigated.
Boundary measurement of single ray reflection in distributed parameters
systems and boundary measurement of direct ray propagation in
distributed parameters systems are presented in detail in specialized texts
[45, 65, 67]. Linear and nonlinear curve fitting try to recover a
continuous functional dependence of variables given a set of discrete
data.

Example 3.1 Assume that for the experimental data for the measured
resistance versus temperature consists of m = 6 pairs of values
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i 1 2 3 4 5 6
R [Q] 600 627 651 682 701 732
T;[°C] 24 252 27 287 29 29.8

For linear curve fitting the following algebraic equation, an assumed
direct problem model is considered

R=ay+a;-T
with unknown parameters a and b. This leads to an over-determined
inverse problem for n = 2 unknowns and m = 6 equations. The over-
determined matrix equation is in this case

Y=h-U

where the vector of unknowns is

ForY [6-1],h[6-2] and U [2 - 1], the matrix equation becomes

[600] [1 24.0]
627 |1 252
651| |1 27.0][a,
682| (1 287 'LJ
701 |1 29.0
1732] |1 29.8]

Inverse problem in this case consists in determining the unknown
parameters a, and a, of the assumed inherent linear dependence between
R and T of a direct problem.
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Solving the linear regression problem consists in obtaining the unknown
parameters by minimizing the Euclidean norm of the errors, i.e. in
calculating the Least Squares (LS) error solution [28]

min S(a,,a,) :minZ’{Ri -a,T, —a,}’

i-1

The solution is obtained from vanishing partial derivatives

=i"2'{Ri —a,T, —a,}-(-T;) =0
da,

B Y2 (R, -a,T, —a,}- (1) =0
da, 4

m 2 m
alz_:‘ T, +a021: T, =

'ME

T.R,

1

|
—_

a) T, +b-m=) R,
i1 i1
The following matrix equation results for n=2 unknowns, a and b

m

m ;Ti a
-

YR,
i-1
YToYT
i1 i-1

0 p— 1
1} iTiRi
i-1

Inverse problem solution is given by
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For nonlinear curve fitting the following n-order polynomial can be
chosen

R=ay -T’+a,-T' +..+a, T

The inverse problem consists in this case in calculating the unknown n-
parameters, aj, aj,...,a, given data pairs

(Rl s Tl)7 (RZ > T2)9' (XX} (Rm > Tm)

The inverse problem is normally over-determined, m > n, i.e. there are
more data pairs m than unknowns n. The solution can be obtained again
using a least squares error solution. The above linear curve fitting
problems will be solved in Ch. 3.3 using a MATLAB function.

Other examples of discrete inverse problems, boundary measurement
of single ray reflection in distributed parameters systems, boundary
measurement of direct ray propagation in distributed parameters systems
etc. will be presented in next chapters of the book.

3.2 Discrete Problems for LTI Systems
3.2.1 Introduction

Inverse problems for Linear Time Invariant (LTI) systems can be
formulated for different representations of the forward model of the
system, for example for lumped parameters systems or for distributed
parameters systems.

In what follows the goal is to present solutions to inverse problems
that are numerically efficient and common to both for lumped parameters
systems and distributed parameters systems. In subsequent chapters, a
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particular attention will be given to problems requiring real-time
solution, for example for dynamic compensation of sensors.

3.2.2 Lumped Parameters Systems

Inverse problems for LTI lumped parameters systems, for the case of
fewer inputs and fewer measurements than states (more representative
for lumped parameters approximation of a distributed parameters
system), for different representations of the forward model of the system
can be formulated as follows:

3.2.2.1 State space representation

State dynamics and output LTI ODE equations from Ch. 2.3 are
completed here with measurement noise w(t):

dX(t)/dt=A - X(t) + B - u(t)
Ym() = C - X(0) + w(t)

where
X(t) = n-vector of states with given initial conditions x(0)
u(t) = m-vector of inputs
y(t) = p-vector of measurement outputs
w(t) =p-vector of measurement noise
A, B, C = parameters matrices.
andm<nandp<n
We denote the noiseless output as

Y () = ym(®) - W)
such that the output equation becomes

y® =C-X(®
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In this case the inverse problem of estimating the input, u.(t), from
measurements y(t) is obtained by solving first the output equation for
m < n using the generalized inverse C*

X(t)=C*-y(0)
and then
dX(t)/dt = C* - dy(t) / dt
that gives
C® - dy(t)/dt=A - C*-y(t) +B - u(t)
The solution for u(t) of the state equation gives
U, () =B* - (dX(t) / dt — A - X(1))
or
U () =B (C* - dy(t)/dt-A - C* - y(1)
This solution requires the calculation of generalized inverses b® and ¢*®
as well as the derivative dy(t)/dt. Real-time implementation of this
solution is often computationally intensive and requires specific code for
each application. The presence of noise and discontinuities in y,(t) signal
might lead to unacceptable signal to noise ratios, which is not suitable for
real-time implementation.

3.2.2.2 Complex functions representation

After applying Laplace transform to the above LTI ODE system for zero
initial conditions the result is

T-s=A)-x(s)=B -u(s)
y(s)=C - x(s)
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where
¥(8) = ¥m(s) - W(s)

Assuming that all states are directly observable, i.e. C = I, where I is
identity matrix, the direct problem is given by

x(s)=T-s—A)'B -u(s)
while the solution for the inverse problem is
uis)=B" - T-s—A)-x(s)

Assuming as many outputs as states, the inverse problem solution for
desired output y, is

x(s)=C" -y (s)
and the open loop control law is
U () =B - ([-5-A)-C"-yy(s)

This solution requires also the calculation of generalized inverses B and
C®. The presence of “s” in the feed-forward path from y(s) to u(s),
corresponds to time derivative of y4 As a result, real-time
implementation of this solution is not desirable.

3.2.2.3 Convolution integral representation
Convolution integral representation is of interest as a link to non-linear

forward problems formulation using integral equations and as a basis for
developing computationally efficient matrix formulation.
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The principle of superposition, valid for linear systems, gives [70]
t
Y= [ht, 1) UD)-de

where h(t, ) is the impulse response of the system, for the impulse
assumed applied at any time t < t. This is a Volterra equation of the first
kind and h(t, t) = 0 for t > t [9].

In the case of LTI systems,

h(t, ) = h(t - 1)

and depends only on the difference between the time 1, when the impulse
is applied, and the time t, when the response y is observed. This property
greatly reduces the computation of the impulse response h. The
convolution integral for LTI systems is given by

Y(t) = j h(t—1)- U(T)- dt

The calculation of the impulse response for a system modeled by a LTI
ODE model results from considering a unit impulse input U(t) = d(t),
such that

dX(t)/dt=A - X(t) + B - 8(t)
and
C® -dy(t)/dt=A - C*-y(t)+B -8 (v
Rather then solving analytically this equation for y(t) = h(t), complex

functions representation can be used to obtain the transfer function. For
n=m=p=1
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_Y®)
h(s) = o)

and for the unit impulse input u(s) =1, impulse response h(s) is
h(s) = y(s)
In time domain, inverse Laplace transform L™ gives
h(t)=L" {h(s)} fort>0
The condition t > O reflects the property that the input signals starting at
t = 0 cannot affect the output for t < 0.

Examples of impulse responses are [70]:

A) First order system with the transfer function

h(s) =——
S+a

which has the inverse Laplace transform
h(t) =e™ 1(t)

where 1(t) is unit step function indicating that an input applied at t = 0
cannot influence the output fort < 0.

B) Second order system with the transfer function
h(s)= 0,2/ (*+2- (- @, - s+0,°)

has the inverse Laplace transform

h(t) = —=2—[e ' - sin(y1-C -, - O]-1(t)
1-¢
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C) Higher order systems transfer functions can be expanded by partial
fraction expansion to a sum of first and second order transfer
functions for which impulse responses can be determined by inverse
Laplace transform as above.
Convolution integral can be reformulated in the discrete form
convolution sum using shifted impulse response h;;, corresponding to the
sampled time interval t - T with sampling period T,. The discrete time t;,
(corresponding to the continuous time t) when the impulse is applied
[67], is given by
ti =1i- TS
and the time t; when the response y is observed

tj :j Ts

such that t - T in discrete time is (i - j) Ty, ori - j in steps.
Volterra equation of the first kind [67]

t
Y(t) = j h(t,7)- U() - dt
can be written in discrete time as follows

Y, = Z hyy oy
K=-c0

where h ; are terms of a lower triangular matrix. In this case Y; is easily
computed by forward substitution given h; and uy [49].
Convolution sum for LTI discrete systems is

Y(t) = j h(t—1)-U(z)-dt
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which can be written in discrete time as follows

Y, = iZhi»k “Uy
—

where the condition embodied in continuous time in 1(t) is replaced here
byi-k>0ork<i.

For LTI systems, a recursive formula can be obtained using the
property h;x = h; 1 h;. For the current time i, the output depends on the
effect of the current input u; and also on all previous inputs uy (for k = - e
to i - 1) weighted by the corresponding discrete impulse response h;y
values

or, the recursive formula
Yi = Yi»l +h() - Uy

where

i-1
Yi, = 2 hi -y
k=-oc0

The impulse response in discrete time t;, for first order systems is

h.=e™ fori>0

1

and for second order systems is

h, = O e sin(1-C* -, -t,)]  for i>0
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For actual physical systems, input signals are of limited duration and the
significant part of the transient response is characterized by the finite
settling time. Also, the output reflects both the effect of the periodic
input with period T; = 2 - @ / o; and of the under-damped response of
the system with natural period T,=2 - n/ ®,. Assume that an earlier time
tix = (i-K) - T of an older input can still affect current time t; output. For
current time step i = 0, i.e. at time t,, the oldest input signal still affecting
current output can be assumed to having been applied at —K time steps,
ie. attg = -K - T,. As a result, at the current time step i, the summation
can be limitedtoi — K < k<i, i.e.

Y= Y hy-u o foriz0

k=i-K

At the lower limit k =i - K, the input u; g is multiplied hg to determine
its contribution to the current output Y;. For i = 0, the product is ux - hx
and determines the contribution of ug to the output Y,. In this case,
inverse problem solving is reduced a finite number of K forward
substitutions [49].

This result corresponds to the calculation of the sum for a sliding
window of K steps from the past to the current time.

In this book, the input u(t) is assumed applied only at t = 0, similar
to the condition for unilateral Laplace transform. In discrete time this
means that uy = 0 for k < 0 and Y; depends only on the input values uy
atk=0,1,2,....1.

Example 3.2 Assume 2% criterion for first order system h(t) = e™ 1(t)

for the duration of the settling time. For a = 0.2, the time constant is

t=1/a=>5[s], and sampling time is chosen less than half the time

constant, in this case T, = 1. Over 4 - t for 2% criterion, i.e. for 20 [s],

at sampling time Ty= 1, there are i = 1, 2,..., 20 discrete time steps.
Impulse response for the first order system

h; =e™ for i>0
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gives

ho= exp{-02-0}=1
h, = exp{-0.2 } =0.82
h, = exp{-0.4 } =0.67
h; = exp{-0.6 } =0.55
hy = exp{-0.8 } =0.45
hs = exp{-1.0 } =0.37

h,y= exp{-4 } =0.018
Consequently, after 20 time steps the impulse response is less than 2%
from the steady state value and the rest of the transient regime can be

ignored in practical applications.

Example 3.3 For the previous system, fori > kori-k>0andi =0

Y, = 2 hiy oy

k=-i-K

has nonzero products values only for i > k > 0. Assume the input

uy=0fork<0
u=10fork=0
u=0fork>0

such that the only non-zero value is uy= 10.
The first 20 time steps outputs are:

Y0= h()'ll0= 10
Y, = h;-yy=exp{-02 }-10=8.2
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Yl(): hl()‘ u0=exp{-2 } -10=1.3

Yz():hz() U= exp{—4 } -10=0.18

These results illustrate that the the single non-zero input value, u, = 10
has diminishing in time effect on Y;fori=1.2,..., 20.

Example 3.4 For the previous system, assume the input

uy =0fork<O
ug= 10
u=1

uy =0fork>1

The output is

Y, = Zhi»k ‘u, =h;-u,+h;, -u,

i
k=i-K

is
Y() = h() s Ug = 10
Yl = hl - Upg + h() . u1=eXp{—0.2 } - 10+1 =9.65

Yio= hl() . Ll()+h9 - U =exp{—2} - 10 +CXp{-1.8 } =1.75

Y o= h20 * Upt+ hlg U= eXp{—4 } - 10+ exp{—3.8 } =0.2
The result is the superposition of the outputs for u, and u;.
3.2.2.4 Matrix form representation

Matrix form representation of discrete Volterra equation forward model
is

Y=h-U
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where

Uis input [N, - 1] vector

Y (t) is noiseless output [Ny - 1] vector
h is [N, - N, ] matrix

and
hi,k= hi—k fori—-k>0
and
hy=0fori—k<0
such that
hi,k= 0 fori<k
hi,k= h() fori=k
hi,k= hl fori=k +1
hi,k= hijI'i =k+j
etc.

Matrix representation permits to define easily the inverse problem of
determining the values of the input uy given the values of the output Y;
as long as the matrix h is known.

For a non-invertable matrix h,

U=h®*.Y
Three cases can be identified:
A)Ny =N,
B) Ny < N,
O Ny >N,

N, =N, =K+l
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For this case, the matrix h [(K+1) - (K+1)] is a lower triangular square
matrix

h, O 0 0 0 0]

h, h, 0 0 0 0

h, h, h, 0 0 0
h =

h, h_, h,, h, 0 0

‘hg he, hg, . . . h h|

The solution U of equation Y =h - U for given Y and h [(K +1) - (K +1)]
will have the same length K+1 as the given Y and can be calculated
continuously, as a length K +1 sliding window ending at current time i
and for the input uy for i-K < k < i. The input might have, however,
several zero values. Moreover, for the case of a lower triangular matrix
h, for the direct problem

or for
i
Y, = Zhi—k Ty
k=i-K

given Y and h, the solution U of is easily computed by forward
substitution [49]. This permits to solve analytically the inverse problem.
For u, = 0 for k < 0, scalar forward model is

Y0= h() + U
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Y1=h1 - U+ h()‘ul
Y2=h2-u0+h1 -u1+h0-u2

Y, ] [h, 0 0 . 0 .0 0]y
Y,| |h, h, 0 . 0 . 0 0|y
Y, [ |h, h h, .0 .0 0]y
Y | |h, h, h, .h .0 0y
Y| |hg hey he, oo by by ug

The direct problem result Y = h - U is easy to obtain given h and U. The
inverse problem solution U given h and Y, is normally more difficult to
obtain. The calculation of U can be carried out using the inverse problem
formulation for a non-singular square matrix h

U=h'Y

For LTI systems, given that h is constant, numerical inversion of h into
h™' of can be done off-line. In this case the computation of K+1 values of
Y;fori =0, 1,..., K consists in a weighted sum of current values of u;,
1 =1, 2,.., (K+1) with known constant values of the elements of h'!
[(K+1)-(K+1)]. This shows that after the calculation of h™', obtaining the
result for U is a simple summation of weighted inputs.
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Example 3.5 Assume a discrete first order system with K = 3 and a =
0.2 [s™'] with

h, =e™ fori=0,1,...3
Obtain
a) the non-zero elements of the discrete impulse response matrix

h[4-4landY=h U

b) Obtain Y for

u, 0
u, | |10
u, lo
u, 0
¢) Obtain Y for
u, 0
u, | |10
u, |1
u, 0

a) The non-zero elements of the discrete impulse response are

hy= exp{-0.2-0 }=1
h; = exp{-0.2 }=0.82
exp{-0.4 }=0.67
exp{-0.6 }=0.55

[=p=p
w S8}
I
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The [4 - 4] matrix equation

Y, h,
Y, h,
Y, - h,
Y, h,
in this case is

Y, 1
Y, 3 0.82
Y,| [0.67
Y,

b) For

the direct problem is

Y, 1
Y, | |0.82
Y,| |0.67
Y3

0 0 0
h, 0 0
h, h, 0
h2 hl hO
0 0
10
0.82 1

u, 0
u, | |10
u, o
u, 0
0
1
0.82

0.55 0.67 0.82

0
0
1

0.55 0.67 0.82

- O O O
c

and the result Y of the direct problem Y =h - U given U is

85
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Y() = 0
Yl = 10
Y2 = 82
Y3 = 67
or
Y,] [0
Y, | |10
Y,| |82
Y,| |67

As expected, for a first order system subject to a delayed impulse input
by one time step, an exponentially decaying output, also delayed by one
time step, is obtained. Due to the limitation of the output to only K = 3, a
significant part of the output, beyond Y3, is not observed.

Normally, for this system with a time constant © = 1/a = 5 [s], 2%
settling time requires output observations for 4 time constants, i.e. 20 [s].
The time constant of 5 [s] requires a sampling time significantly shorter,
for example of 1 [s]. This would require measurements of the output for
K =20 time steps, much longer than the above K = 3.

In the case of an input U [20 - 1], instead of the above [4 - 1], output
values for Y [20 - 1] would be obtained with Y =h - U.

¢) In this case, for

u, 0
u, | |10
u, |1
u, 0

the direct problem is given by
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Y, 1 0o o0 o]fo
Y,| [082 1 0 of[10
Y,| (067 082 1 o0f]1
Y,| 055 067 082 1]|0

and the result Y of the direct problem is

Yo =0
Y, =10+1 =11
Y,=8.2+1 =92
Y;=6.7+0.82 = 7.52
or

<

0
_|110
~19.20

7.52

N Tl Miee

As expected, the effect of u, = 1 is added to the result for the input u; =
10 from b.

Inverse problem solution of obtaining the estimated input U, given h
and the measured output Y for K=3, is obtained by forward substitution.
Direct problem scalar equation permit the calculation by forward
substitution from i=0 toward i=3:

Y0= h() - Up
gives
Ug :Y()/h()
Y1=h1 . ll()+h()' u =Y 'hl/h0+h0' u;
gives

ur=-Yo-hi/hy’ +Y;/h
Y2=h2-u0+h1-u1+h0-u2=
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Yo-ho/ho+Y, - hy/ho-Yo - hi*/ he® +hg - up=
Yo - [ha/ ho-hy?/ he? 1+ Y, - hy/ ho+ho - us
gives
=Y [-ha/he*+hi/hg’]- Yy - hy/hy*+ Y2/ hy
Ys=hs-ug+hy,-uj+h;-u+hy-uz=
Yo - hathg- Yo - hy -ha/ho> + Yy - hof ho+ Yo - [-h; - ha/ hy?+ h*/ ho']-
Y, -h*/he’+ Y, - hi/ hothg - us

or

Ys;=Yy-[h3/ hy - h; - hy/ hy*- hy - hy/ hy + h,*/ he’] + Y [hy/ ho—
h12/h02] + Yg' h]/h0+ h() + Uz

gives

us=-Y, - [h3/he’-2h; - ho/hy +hy*/ he'l =Y, - [ha/ he*- hy%/ he']-Ys -
hy/ hy* + Y3/ hy

In matrix form again results a lower triangular matrix [4 - 4]

Ug
u |
u, -
U3
I 1/h, 0 0 01]/[Y,
—h,/h2 1/h, 0 0o ||y,
—h,/h2 +h,/h} —h,/h? i, 0 ||Y,
|—hy/h2+2hh,/h}—h2h: —h,/mZ+h/hd —h/h2 by || Y,

This gives the inverse problem solution U=h" - Y, where
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h'=
1/h, 0 0 0
~h,/h; 1/h, 0 0
—h,/h} +h /h] ~h,/h; 1/h, 0

—h,/h2+2hh,/h}—h?h¢ —h,/h+h/h) —h/h2 1/,

Example 3.6 For a first order system h(t) = e 1(t) with a = 0.2, and
sampling time T;= 1, obtain

a) hi
b) scalar equations inverse problem solutions for u; for i=1, 2, 3 and 4
c) estimate of input U given the output values Y=[0 10 8.2 6.71".

a)
h; =e™ for i=0,1,2,3
gives
ho= exp{-02-0}=1
h; = exp{-0.2 } =0.82
h, = exp{-0.4 } =0.67
h; = exp{-0.6 } =0.55
b)
Ug= Y() / h() = Y()

u=-Yo-hi/he® +Y /hy=-Yy-0.82 + Y,
U =Yo- [-ho/hy*+h;/ho’ - Y, hy/hy®+ Yo/ hy
= Yy (-0.67 +0.82)-Y,-0.82+ Y,
u3=Yo- [-hs/hy’+2 - h;-hy/ hy’-h*/ he'l + Y- [- ho/ hy*+ hy / hy'] -
Y, hy/hy* +Y3/ hy
=Y, [-0.55 +2- 0.82:0.67 - 0.82%] +Y-[-0.67 + 0.82]-Y, - 0.82+Y;

¢) For Yo=0Y,=10Y,=8.2andY;=6.7
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d)

u=Yy=0

u =-Y,-082+Y,=10

w=Y, (-0.67 +0.82)-Y,- 0.82+Y,=-8.2+82=0

u3 =Yp- [-0.55+2 - 0.82 - 0.67-+0.82%] +Y; - [-0.67+0.82]-Y, - 0.82+Y;
=10- [-0.67+0.82]-8.2 - 0.82+6.7 =0

or in matrix form

0 1 0 0 o]0
10 [-082 1 0 0|10
0| 015 -08 1 0|82
0ol 122 015 -082 1|67

The inverse problem solution U, given Y is, in this case of a non-singular
square matrix h”', the exact recovery of forward problem from Example
3.5.b. In the case of noisy signals Y, this exact recovery of U is not
possible. In case of higher order sensors, with longer duration and non-
square matrix h', such exact recovery is also not possible. Moreover,
matrices h™' can result in an ill-posed inverse problem.

For the linear time variant case,

Y, = 2 hyy ooy

k=i-K

the solution for the inverse problem can also be calculated by forward
substitution, but the K substitutions involve more computations because
h;; # hix is dependent on actual tome values i and k, not only on the
difference i - k.

B) Ny <N,
In case that the length of the output vector Ny is shorter than the length of
the input vector N, the inverse matrix cannot be computed and has to be
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replaced by the generalized inverse h® The inverse problem is in this
case under-determined [7]

C) Ny>N,

In case that the length of the output vector Ny is longer than the length of
the input vector N, inverse matrix cannot be computed and a
compromise solution can be computed using least squares method.
Inverse problem is in this case over-determined [7].

These two last cases of non-square matrices h will be investigated later
in this chapter. The analysis will be based on matrix form representation
Y =h - U which is not limited to lumped parameters system or to discrete
Volterra equation case, when h is lower triangular. In what follows, h is
not in general lower triangular, i.e. it corresponds to Fredholm equation
and also to numerous other direct and inverse problems presented in this
book.

3.3 Discrete Inverse Problems Solved by Matrix Inversion
3.3.1 Types of Methods for Solving Inverse Problems

Two types of methods for solving inverse problems will be presented:
-matrix inversion
-iterative methods using forward model.

The basic scheme of solving the discrete inverse problem using
matrix inversion is shown in Fig. 3.1.

Input Estimated output
> h' —>
Y Uest

Fig. 3.1 The diagram of inverse problem solver using matrix inverse
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Y, the output of the direct problem, becomes the input to the inverse
problem and consists in the data from a system for which either the input
U or the parameters P are unknown, while the model f (P, U) is assumed
as a known forward problem

Y =f(P,U)

The corresponding discrete matrix form of the forward problem is

Inverse problems result from unknown input estimation [67]
Uy=h*-Y,

or from parameters identification
he =Y, -U*

Matrix inversion based solvers require generally the computation of a
pseudo-inverse and, has to take into account that the data input to the
inverse problem, Y,,, are normally the result of noisy measurements, i.e.
in fact that

Y.=Y+w

where w represents measurement noise and Y is the noiseless sensor
output. In this case of noisy measurement data Y, inverse problem
becomes

Uesl= h*. (Y + W)
[ll-posed inverse problem results when there is a very high amplification

by some rows of h*® of the significant variation of the adjacent elements
of Y, in particular due random noise w.
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The basic scheme of solving the discrete inverse problem using
iterative methods using forward model is shown in Fig. 3.2. It can be
observed that solving the discrete inverse problem using matrix inversion
is basically an open loop scheme, while iterative method using forward
model is a closed loop error (negative feedback) based computation
scheme. Iterative method using forward model is not affected by the
difficulties resulting from the inversion of a matrix, particularly in the
case of rank deficiency. Moreover, the aforementioned amplification
of the noise effect in matrix inverse method is avoided in the
iterative method. Being an iterative scheme, real-time applications
might be however limited due to the computation duration cannot be
predetermined for given €.

est

Uy

Generate new U > Direct
Problem Y
est

»
»

Fig. 3.2 Basic scheme of solving the discrete inverse problem using iterative methods

The concept behind the method for solving inverse problems using
matrix inversion is the same as for open loop control, while for iterative
methods using forward model is the same as for closed loop negative
feedback control.
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3.3.2 Inverse and Pseudo-Inverse. MATLAB Solutions

Discrete inverse problems result from approximating continuous system
models but also directly from models of system monitoring.

In Ch. 3.1, both Fredholm and Volterra equations were approximated
by systems of linear equations in discrete form leading to the matrix
equation Y =h - U.

The solution of the above matrix equation is obtained using the
inverse matrix h

U=h'-Y

if the inverse h™' exists. Example 3.6 illustrates this type of problem.

Given that in monitoring, estimation, identification and control
applications, matrix h is rarely square and non-singular, and the solution
of the matrix equation uses the generalized or pseudo-inverse h*®

Uest= h_g 'Ym

MATLAB® contains numerous functions that solve inverse, pseudo-
inverse and various over- and under-determined problems. In what
follows, MATLAB examples illustrate solutions to discrete inverse
problems in matrix formulation.

Example 3.7 Three h matrices are used for illustrating these functions

(81]
1 3
A=
s3]
1 3
2)B =
i

1 3 4
3)C=
573
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Matrix A is square and non-singular, Al = - 1, matrix B is square and
singular, IBl = 0 and matrix C is non-square.
MATLAB function inv() gives

1 3
DA =
s3]

inv(A)
-0.8750 0.3750
0.6250 -0.1250

pinv(A)
-0.8750 0.3750
0.6250 -0.1250

For the square, non-singular matrix A, the inverse A" exists and is the
same as the pseudo-inverse A,

1 3
2)B =
2

>> inv(B)
Warning: Matrix is singular to working precision.
ans =

Inf Inf

Inf Inf

For this singular matrix (second row is the double of the first row) there
is no inverse B™.
The pseudo-inverse function gives however

pinv(B)

0.0200 0.0400
0.0600 0.1200

1 3 4
3)C=
573
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>> inv(C)
777 Error using ==> inv
Matrix must be square.
The non-square matrix C has no inverse C.
>> pinv(C)
-0.1055 0.1101
-0.0046 0.0917
0.2798 -0.0963

The non-square matrix C has a pseudo-inverse C*.
Further inside is given by the rank of these matrices
>> rank(A)

=2

>> rank (B)
=1

>> rank(C)

=2

It can be observed that matrices A [2 - 2] and C [2 - 3] have rank 2, while
the singular matrix B [2 - 2] has the rank 1.

Also, the norm and condition number are needed for further
developments in solving discrete inverse problems.

Euclidean norms lIAll, are

>> norm(A)
=9.1231

>> norm(B)
=7.0711

>> norm(C)
=9.7366
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Maximum norms lIAll_are

>> norm(A, inf)
=12

>> norm(B, inf)
=8

>> norm(C, inf)
=14

Norms of absolute values IIAll, are

>> norm(A,1)
=10

>> norm(B,1)
=9

>>norm(C,1)
=10

More important in characterizing ill-posed inverse problems will be the
condition number.

>> cond(A)
=10.4039

>> cond(B)
=1.2588e+016

>> cond(C)
=3.2104

It can be observed that for the singular matrix B [2 - 2] the rank(B) = 1
and the condition number is cond(B) = 1.2588e+016. The condition
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number is a better indicator of how close a square matrix is to being non-
singular.

For example for the square matrix B1 that resembles to B but the second
row is not exactly the double of the first row

1 3
1 =
{2 6.0000000001}

pinv(B1)
>> inv(B1)
=1.0e+010 *

5.999999503657816 -2.999999751778908
-1.999999834519272 0.99999991725963
5.9999¢+010 -2.9999¢+010

-2.0000e+010 9.9998e+009

>> pinv(B1)

=1.0e+010 *
5.999853977167788 -2.999926988533896
-1.999951325689263 0.999975662844632

>> rank(B1)
=2

>> cond(B1)
=4.9999e+011

It can be observed that in this case the inverse B1"' exists and is close to
the values of B1%, the rank of is 2, but the condition number cond(B1)=
4.9999e+011 is very large and closer to the large number of
cond(B)=1.2588e+016, indicating that B1 is closer to the singular matrix
B than to the non-singular matrix A.
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Further inside can be obtained from changing B1 into B2

1 3
B2=
[2 6.000000000000000 1}

>> inv(b2)
Warning: Matrix is B2 is singular to working precision.
ans =

Inf Inf

Inf Inf

>> pinv(b2)

0.0200 0.0400
0.0600 0.1200

In this case, making B2 has element (2, 2) very close to 6.0 from B gave
a MATLAB result for pinv(b2) identical to the result from pinv(b1) while
pinv(bl) gave a very different result. It can be observed, however, that
within MATLAB working precision,

B*pinv(B)

1.0000 0.0000
0.0000 1.0000
results in an identity matrix [2 - 2], while for B1*pinv(B1)
B1*pinv(B1)
0.999984741210938 0.000015258789063
0.000015258789063 1.000007629394531
results in a [2 - 2] matrix, that is approximately identity matrix in four
digits approximation

>> B1*pinv(B1)
1.0000 0.0000
0.0000 1.0000
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For B2*pinv(B2), the result is
B2*pinv(B2)

0.2000 0.4000
0.4000 0.8000

That is not an identity matrix. This shows that square matrices which are
very close to singularity, to like B1 and B2, or singular, like B, i.e.
matrices with very high condition number, can result in significantly
different pseudo-inverses.

Discrete inverse problems require more elaborate analysis using
specific methods for over- and under-determined problems, condition
number, and Singular Value Decomposition (SVD).

Example 3.8 The purpose is to obtain the discrete direct problem

formulation for a DC motor.
Consider the DC motor from Example 1.5 for @ = d6 / dt

k i=792 p.o-T
dt

u:L$+R-i+ke-w
dt

For negligible L and b, (L. = 0 and b = 0) and no load (T = 0)

190y
dt

u=R-i-k, -0

For i obtained from the last equation,
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. u-k,-o
1=
R
the torque equation becomes
Jd_(D = km . u _ke @
dt R
or
km S km
0=- o+ u
J-R J-R
or
o=—a 0+p-u
where

k. -k,
o=-
J-R
km
b= J-R
The transfer function is
os) P

u(s) Cl+a-s

101
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Direct problem is given by the state space model, for

x1=9
X, =dx;/dt =dé/dt = ®

X, 0 1 X, 0
. e . + -u
X, 0 —af|x, B
Discrete direct problem will be derived for a sampling period T and zero-
order hold (sample and hold approach) [127].
Sampling frequency 1/T is chosen to satisfy sampling theorem

requirement for the maximum frequency f.x of interest of the sampled
signal

such that

1/T>2 fiax
or, at limit
Tzl/(z'fmax)

Sampling interval of v - T duration is chosen larger than 2% settling time
T,. In this case, for the time constant o, T;=4 - a, such that

v-T>4-a
or
VIR -fhx)>4-0

or
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J-R

Discrete time state representation is given by [70, 127]
X1 =D - x,+ T -0, forn=12,...,v

where [70]

1 T
O=e*T=[+A-T=
[0 l—a'T}

A 2
r:j e“-B'dxz(I+A-T/2)-T'B:[ p-T772 }
0

B(1—a-T?/2)
By recursion

X1=®-x0+1 -ug
XZ:CD-XI+F-u1:<D2-x0+CD-F-u0+F-u1

or

The last equation is the discrete time convolution integral of a LTI
Volterra equation.

In matrix form, for zero initial state x, = 0, the direct problem x =
h - U in discrete form is
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X, r 0 0 u,
X, o r 0 u,
x| (7T @7 . . T]||u.,|

This lower triangular h square matrix permits to formulate the inverse
problem as

U=h"x
This inverse problem allows to recover the sequence of commands
ug, Up,..., u,; that resulted in state values x;, Xj,..., X,., MATLAB
function c2d converts the continuous time equation

dX(t)/dt=A-X(t) + B - u(t)

into discrete time equation

for zero initial conditions.
3.3.3 Over-Determined and Under-Determined Problems

Assume the matrix equation Y=h - U where Y [Ny 1], h [N, - N,] and U
[N,-1].

This equation is
a) over-determined for Ny > N,, i.e. more data values than unknowns

b) even-determined for Ny = N, and non-singular matrix h
¢) under-determined for Ny < N, i.e. fewer data values than unknowns
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Over-determined matrix equations for Ny > N, are solved using Least-
Squares Solution (LSS). This solution results from minimizing the
Euclidean norm of the errors, a least squares error solution [28, 65]

min S(U) = min{(Y- h - U)" - (Y- h - U)}
The solution is obtained from vanishing partial derivatives

3S/8U=-2-h"-Y,+2-h'-h-U=0
If the rank (h) = m, h - h" is invertible and the solution for U is
Uesl = (hT : h)_l : hT : Ym
Even-determined solution for an invertible matrix h, Ny, = N,, is given by
Ues= h' Y

Under-determined for Ny < N, is solved using a minimum Euclidean
length U - U solution subject to the constraint Y, —h - U =0, ie. a
Minimum Length Solution (MLS)

min S(U) = min{U,," - U+A" - (Y,-h - U)}

where A is a Lagrange multiplier.
The solution is obtained from vanishing partial derivatives

3S/8U=2-U- h"-a=0
0S/6A=Y,-h-U=0
From first equation

2-h-U=h-h"-2
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Using second equation
2:Y,=2-h-U=h-h" 2%
If the rank (h) =Ny, h - h Tis invertible and the solution for A is
A=2-(-h")"Y,

and the MLS solution for x is obtained replacing A in the first vanishing
partial derivative

2-U=h"-2=h"2-(h-hH'. Y,
or

Us=h"-(h-h")"Y,
where the generalized inverse for the matrix h [Ny - N,] is
ht=h"-(h-h""'

MATLAB functions h\Y can solve over-determined, even-determined
and under-determined matrix equations.

Example 3.9 For Y = h - U in over-determined case Ny > N,, for the
matrix h [3 - 2] and Y [3 - 1], i.e. for (Ny = 3) > (N, = 2), rank(h) = 2,
obtain the least squares solution U[2-1],U=h*-Y

where

>>h=[10;2 1;2 2]

h=

1 0

2 1

2 2
>> rank(h)

=2
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>> Y=[1;2;-4]
Y =

ans =

2.3333

-4.0000
>>

This least square solution for U [2 - 1] minimizes total Euclidean error.

Example 3.10 For Y = h - U in over-determined case Ny > N,, for the
matrix h [3 - 2] and Y [3 - 1], i.e. for (Ny = 3) > ( N, = 2), rank(h) =2,
obtain the least squares solution U [2 - 1], U=h*-Y where

h=[2 3;2 3;2 3]

h=

2 3

2 3

2 3
>> rank(h)
ans =

1
>>h\Y

Warning: Rank deficient, rank = 1,

ans =
0
-0.1111

Matrix h [3x2] has Rank deficient rank(h) = 1 and the solution for
U[2 - 1] contains only one nonzero value -0.1111.
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Example 3.11 For Y = h - U in underdetermined case Ny < N,, for the
matrix h [2 - 3] and Y [2 - 1], i.e. for (Ny = 2) < ( N, = 3), rank(h) = 2,
obtain the least squares solution U [3-1],U=h*-Y
where
>>h=[103;214]
h=
1 0
2 1
>> rank (h)
ans =2
>> Y=[4;5]
Y =
4
5
>>h\Y
ans =

3
4

-0.3333

1.3333
>>
ie.

U=|-1/3
4/3

For a rank(h) = 2, only two nonzero results are obtained for U [3 - 1]. In
fact, there are infinite solutions U(t) for arbitrary value of t but
corresponding to the above solution for t =0, [81]

t
h-(—1/3+a-t|=Y
4/3+b-t

The parameters a and b can be calculated from the equation h - U(t) =Y
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t
1 0 3 4
-1/3+a-t|=
2 1 4 5
4/3+b-t

which gives two scalar equations with unknowns a and b

t+4+3-b-t=4
2-t-13+a-t+16/3+4-b-t=5

or

1+3:-b)-t=0
2+a+4-b)-t=0

For the general case t # 0, these equations are verified for the solutions

a=-2/3
b=-1/3

The infinite number of solutions U(t) for this under-determined problem
is given for t taking any real number value in

t
U(=|—-1/3-(2/3)-t
4/3—-(1/3)-t

Example 3.12 For Y = h - U in over-determined case Ny > N,, for the
matrix h [6 - 2] and Y [6 - 1], i.e. for (Ny = 6) > ( N, = 2), rank(h) = 2,
obtain the least squares solution U [2 - 1], U=h"* - Y, for the example of
experimental data for the measured resistance versus temperature Ch.
3.1, that consists of Ny = 6 pairs of values
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i 1 2 3 4 5 6
R;[Q] 600 627 651 682 701 732
T;[°C] 24 252 27 287 29 29.8

There are N, = 2 unknown parameters, a, and a; of the assumed linear
direct problem model

R=ay+a;-T
For the over-determined matrix equation
Y=h-U

the vector of unknowns is

ForY[6-1],h[6-2] and U [2 - 1], the matrix equation becomes

[600] [1 24.0]

627 |1 252

651| |1 27.0a,

682 (1 287 _aJ

701 |1 29.0

1732 |1 29.8]
MATLAB program gives

>>h=[1 24.0;1 25.2;1 27.0;1 28.7;1 29.0;1 29.8]
h=

1.0000 24.0000

1.0000 25.2000
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1.0000 27.0000
1.0000 28.7000
1.0000 29.0000
1.0000 29.8000
>> Y=[600;627;651;682;701;732]
Y =
600
627
651
682
701
732
>>h\Y
ans =
97.9112
20.8035
>>

The over-determined inverse problem solution using least squares errors
method resulted in
) a, 979112
U=h®-Y= =
a, 20.8035

Example 3.13 For Y = h - U for the matrix h [4 - 2] and Y [4 - 1], i.e.
for (Ny = 4) > ( N, = 2), rank(h) =2, obtain the least squares solution
U|[2-1],U=h*"Y, in over-determined case N, > N,, but of deficient
rank of h. Assume Ny = 4 pairs of values, which correspond to the case
of an insignificant variation of the resistance value versus temperature:

i 1 2 3 4
Ri[Q] 600 600.0000000001 600.0000000002 599.99999999999
T,[°C] 24 252 27 28.7
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There are N, = 2 unknown parameters, a, and a, of the assumed linear
direct problem model

R=ay+a,-T

The over-determined matrix equation is Y = h - U, where the vector of
unknowns is

ForY [4-1],h[4-2] and U [2 - 1], the matrix equation becomes

600 1 24
600.0000000001 1 252 [ao}

600.0000000001 1 27
599.99999999999 1 28.7

a,

MATLAB program gives

>> Y=[600;600.0000000001;600.0000000001;599.99999999999]
Y =
600.0000
600.0000
600.0000
600.0000
>>h=[1 24;1 25.2;1 27;1 28.7]
h=
1.0000 24.0000
1.0000 25.2000
1.0000 27.0000
1.0000 28.7000
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>>h\Y

ans =
600.0000
-0.0000

In fact, the result is ap = 600 and a; = 0.

The answer shows that in fact the resistance is practically constant for
various temperature values in this case and the linear approximation is a
constant

R=ay+a;-T= 600.00
MATLAB gives

>> rank(h)

ans =2

>> cond(h)
ans =387.8996

The rank equal to 2 would indicate that the matrix h would give a
nonzero answer to both unknowns ag and a;, but the condition number is
high and indicates that the rank might be closer to 1.

In practice inverse problems can become mixed determined (partly
over-determined, partly underdetermined) and generic solutions in this
case are:

-Singular Value Decomposition (SVD) method
-Damped LS method
-Regularization method

These methods also address specific problems of ill-conditioning in
inverse problems.

3.3.4 SVD Method

SVD method permits to determine the null-space of the forward problem
Y=h-U(CY[Ny-1], h[Ny- N, and U [N, - 1]), when the matrix h is
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mapping the unknown vector U into the output vector Y with a zero
subset. Such a zero subset of Y, the null space, cannot contribute to
recover the unknown vector U.

SVD permits the calculation of a generalized inverse h® by retaining
only singular values of h that do not result in ill-conditioning when
calculating the estimation U, given Y,

Uex = h*® . Ym

A non-square matrix h for Ny > N,, (over-determined) and rank(h) =r <
N,, can be factored into

h=u-A- V'

where:

A [Ny - Ny] is a matrix with all elements equal to zero except for diagonal
values of the top left r - r part containing in decreasing order the r non-
zero eigenvalues of h - h' [Ny - Ny] or h"-h [N, N

u [N, - Ny] is an orthogonal matrix with the columns the eigenvectors of
h - h” calculating in the decreasing order of eigenvalues

v [N, - N] is an orthogonal matrix with the columns the eigenvectors of
h"- hcalculated in the decreasing order of eigenvalues.

The calculation by SVD method of h*® [N, - N,] retains from A [N, -
N,] in only p < min [Ny, N,] eigenvalues that permit the avoidance of ill-
conditioning by removing zero and very small valued eigenvalues and
retaining only decreasing eigenvalues with no very low values A |, A »,
..., Ap,1.e. Ay [p - pl, and calculates the corresponding v, [N, - p] and u,
[Ny - p] and upT [p - NyI. The pseudo (or generalized) inverse is then
calculated as follows

-g _ X -1 T
h,*=v, - Ay -u,

The elimination of zero and very low eigenvalues corresponds to a
reduced order dynamic model that avoids ill-conditioning in inverse
problem solving.
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In this case
Ue=h,* - Yy,
gives
U=V, - Ay -1y - Y,

where A, is a diagonal matrix

Al

and Ap’1 is also a diagonal matrix and can be written as follows

[1/A,
/A,

1/A

p

such that x.,, can be expanded as follows [67]

ol
Z—u Y, v,
i=1 A
This shows that in order to obtain the inverse problem SVD solution the

measurement values Y,, are divided by the decreasing eigenvalues A, >
Ay >,..., > A, As a result, smaller eigenvalues in the denominator
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become high multiplication factors for Y,, = Y + w and their effect might
become unacceptable when the errors w are more important then the
contribution of Y, the usual case for high frequency components. As a
result of removing smaller A < A, this unacceptable effect is avoided,
making the inverse problem well-conditioned.

MATLAB examples will illustrate the use of SVD.

Example 3.14 SVD solution for over-determined case Ny > N,
For the matrix h [3 - 2] and Y [3 - 1], i.e. for (N, = 3) > (N, = 2),
rank(h) = 2, obtain the SVD solutionfor U[2-1],U=h®-Y

>>h=[10;2 1;2 2]

h=

1 0

2 1

2 2
>> [ua,Sa,val=svd(h)
ua =

-0.2222  0.7115 0.6667
-0.6047 0.4358 -0.6667
-0.7648 -0.5513 0.3333

Sa=
3.6503 0
0 0.8219
0 0
va=

-0.8112  0.5847
-0.5847 -0.8112

Retaining decreasing eigenvalues A; = 3.6503 and A, = 0.8219 for
p=Nu=2, A, i.e. Ay(p-p)

becomes in the MATLAB notation
Sa=Sp
3.6503 0

0 0.8219
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or

3.6503 0
S,=
0 0.219

and
Sp'1

1/3.6503 0
0 1/0.8219

The calculation of the corresponding v, [N, - p] and u, [Ny - p] and
u,' [p-N,] gives

Up=
-0.2222 0.7115

-0.6047 0.4358
-0.7648 -0.5513

and
T _
u, =

-0.2222  -0.6047 -0.7648
0.7115  0.4358 -0.5513

while v, (N, - p) remains the same for p =N, =2

vp =
-0.8112 0.5847
-0.5847 -0.8112

Finally

-g _ -1 T
h*=v, - A, -u,
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MATLAB gives
>> vp=[-0.8112 0.5847;-05847 -0.8112]
vp =
1.0e+003 *
-0.0008 0.0006
-5.8470 -0.0008
>> upT=[-0.2222 -0.6047 -0.7648;0.7115 0.4358 -0.5513]
upT =
-0.2222 -0.6047 -0.7648
0.7115 0.4358 -0.5513
>> Spinv=[1/3.6503 0;0 1/0.8219]
Spinv =
0.2740 0
0 1.2167
>> hinv=vp*Spinv*upT
hinv =
1.0e+003 *
0.000555540524813 0.000444409759338 -0.000222234836570
0.355214646288678 0.968169961176620 1.225590173846834
= 5.5554e-001 4.4441e-001 -2.2223e-001
3.5521e+002 9.6817e+002 1.2256e+003
>> Ym=[1;2;-4]
Ym =
1
2
-4
>> Uest=hinv*Ym
Uest =
1.0e+003 *
0.0023
-2.6108 =
or

2.3333
U =
[— 2610.8}
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The SVD result has the same value for the first element, 0.2333 and
different value for the second element, -2.6108, versus -4.000, for the
h\Y earlier calculation. The difference is due to the use of different
algorithms and approximations.

3.3.5 Damped LS Solution

Damped LS (DLS) method is a combination of the LS solution with
minimum length solution resulting from

min S(U) = min{(Y,-h-U)" - (Y,-h-U)+A-U"- U}
Vanishing partial derivative gives
8S/8U=-2-h"-Y,+2-h"-h-U+2A-U =0
In case that h - h™ + A - I is non-singular,
Uy=(h"-h+A-D'-h"-Y,

As expected, for A=0, damped LS solution becomes identical to LS
solution

Ue = (hT : h)>1 : hT Yo
3.3.6 Regularization Method. Regularized LSS

Regularization method, proposed initially by Tikhonov, is a combination
of the LS solution with a priori information about how “smooth” the
solution has to be and leads to a stable solution for the inverse problem.
A priori information does not come from the data measurement
information contained in Yy, vector [45, 47, 63, 67]. A priori information
or belief is contained in the regularization matrix R [k - N,] that
multiplies U [N, - 1] in

min S(U) = min{(Y,-h-U)" - (Y,-h-U)+A-(R-U)" - (R-U)}
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or
min S(U) = min{(Yy-h-U)"- (Yp- h-U)+A(UT-RT-R-U)}
Vanishing partial derivative gives
3S/U=-2-h"-Y,+2-h"-h-U+2A-R"-R-U=0

Given any non zero k of R [k - N,], the matrix R"- Ris [N, - N,] is
square.

Incase thath” -h + A - R" - R is non-singular, by inversion gives the
regularized LS solution

Ugy=h"-h+A-R"-R)'-h"-Y,

As expected, for R =1, regularized LS solution becomes identical to the
damped LS solution

Uy=(h"-h+A-D'-h"-Y,
and for A=0, the regularized LS solution becomes identical to LS solution
Uesl = (hT : h)_l : hT : Ym

Regularization matrix R [k - N,] reflects a priori information about the
solution U, while a posteriori information is contained in Yo,

Examples of a priori information about the solution vector U or
sequence of adjacent scalar values Uy, Uy, ... fork =1, 2,..., K are [49,
67]:

quasi constant, i.e. minimum change of Uy -Uy, fork =1, 2,..., N, -1
linear variation, i.e. minimum change of (Uy - 2 Uy +Uy,), for k = 1,
2,...,N,-2

quadratic variation, i.e. minimum change of (Uy,, -3 Uy, + 3 Uy =Uy ),
fork=1,2,..., N, -3 etc.

The effect of a priori information or belief about the sequence of adjacent
scalar values U, Uy, ... fork =1, 2,..., K of the vector U [K - N,] is to
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reduce the variability inherent to ill-posed inverse problems due to
potential high amplification of errors. They work by replacing current

value Uy by a weighted sum of adjacent values ..., Uy, Uy, U,p,....

These three cases lead to the following non-square regularization
matrices:

a) quasi constant, R [(N, -1) - N,]

-1 1 0 0
0 -1 1 0

R =
0 -1 1 0
0 0 0 -1 1]

b) linear variation, R [(N, -2) - N]

-1 2 -1 0 . . 0
0 -1 2 -1 0
0 0 -1 2 0
R =
o . -1 2 -1 . 0
0 -1 2 -1 0
0 -1 2 -1

¢) quadratic variation, R [(N, -3) - N]
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-1 3 -3 1 . . 0

0o -1 3 -3 . . 0

o 0 -1 3 . . 0
R=

0 3 -3 1 0

0 3 -3 1 0

0 -1 3 -3 1]

The calculation of the solution requires not only the regularization matrix
R, for example as defined above, but also a value for the Lagrange
amplifier A for
Uy=(h"-h+A-R"-R)'-h"-Y,
A first value for a scalar A is suggested to be [49]
A=Tr(h"-h)/Tr(h)
using the trace of these matrices, i.e. the sum of diagonal elements. In
obtaining a suitable value for A, we have to take into account that low
values in the minimization of S
min S(U) = min{(Ym-h-U)" - (Yu-h-U)+A(R-U)" - (R-U)}

favour the part

(Yp-h-U)" - (Yy-h-U)

while high values favour the part

(R-U)"-(R-U)
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Example 3.15 The solution for over-determined case Ny > N, for Y =
h - U. For the matrix h [3 - 2] and Y [3 - 1], i.e. for (Ny = 3) > (N, = 2),
rank(h) = 2, MATLAB gave the following least squares solution for U
[2-1],U=h®-Y

>>h=[10;2 1;2 2]
h=
1 0
2 1
2 2
>> rank(h)
ans =2
>> Y=[1;2;-4]
Y =

Regularization solution
Uest = (hT h+LR" R)_l -h"- Yo

for quasi constant, R [(3-1) - 2]
-1 1
R=
-1 1

A=Tr(h"-h)/Tr(h)

and



124 Advanced Mechatronics
MATLAB program gives for A

>>h=[10;2 1;2 2]
h=

[NOT S
N = O

>>R=[-1 1;-1 1]
R =

-101

-101
>> RTR=R'"*R
RTR =

2 -2

2002
>> TraceRTR=2+2
TraceRTR =4
>> lambda=14/4
lambda =

3.5000

MATLAB program for lambda =3.5000
U, =t"-h+A-R"-R)"-h" Y,
>> Uest=inv(h'*h+lambda*RTR)*h'*Ym
Uest =
-0.2199
-0.5183

MATLAB result for lambda =0 is
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>> lambda=0
lambda =0
>> Uest=inv(h'*h+lambda*RTR)*h'*Ym
Uest =
2.3333
-4.0000
>>

Regularization LS result for lambda=0 reduces the solution equation to
Ue= (hT : h)>1 : hT Y

which is the LS solution result for U. As expected the Regularization LS
result for lambda=0 is the same as the above LS result obtained with
MATLAB function h\'Y.

Regularization LS result for A=3.5

~0.2199
Uest =
{— 0.5183}

differs from LS result due to the effect of regularization term A - R" - R
for the quasi-static regularization matrix

-1 1
R=
-1 1
The scalar values of U, are not the same for A=3.5 but much close to one
another then the LS values obtained for A=0

2.3333
Uest =
—4.000
The selection of the values for U,y depend on the confidence in a

posteriori the measurement data in Y., and the a priori information used
for the regularization term A - R™ - R.
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In the above example, measurement data in Y, show significant variation

1
Ym=| 2
-4

and a quasi-static Regularization matrix might try to force a solution that
is less realistic than the LS result.

Problems

1. Assume five measurements of the resistance versus temperature

i 1 2 3 4 5
R [Q] 500 505 509 516 520
T.[°C1 29 40 49 61 70

Using MATLAB, obtain the values of the coefficients a, and a; of
the linear curve R=ap+a, T fitting these measurements values.

2. Assume a first order instrument with impulse response
h(t)=exp{-0.1 - t}
and a sampling period of 2 [s].
Determine h; for i=1, 2, ..., K, where K results from 2%

settling time.
Given Uy =2, U;=4 and U, = 0 for k>1, obtain

Y=YYh,u  fori=12..K

k=i-K
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Use MATLB to obtain for the following matrices
1 4
A=
37
1 4
B =
2 8
1 4 3
C=
37 6

a) the inverse or generalized inverse

b) the norm and the rank

For the matrix C from problem 3, and

[

obtain an estimate of U [3-1] for the underdetermined problem
Y=C-U

Assume, for the problem 1, the results of another set of
measurements are

i 1 2 3 4 5
Ri[Q] 500 500+10® 500+10°  500-10" 500-107
T.[°C] 29 40 49 61 70

Using MATLAB, obtain the values of the coefficients a; and a; of
the linear curve R=ap+a, T fitting these measurements values.
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Given

=
Il
(SSIRNUS I )
e

and using MATLAB, obtain
a) The generalized inverse using SVD method.
b) Uy =h®-Y, for

2.00
Y, =(2.10
1.99

b) The regularization solution
Ug=h"-h+1R"-R)'-h"- Y,

for



Chapter 4

Inverse Problems in Dynamic Calibration
of Sensors

4.1 Introduction

System monitoring requires numerous sensors but rarely is possible to
have as many sensors as quantities to measure. Frequently, system
monitoring problem is under-determined. Moreover, time varying signals
require dynamic measurement, while sensors are characterized by
bandwidth frequencies that can be lower than the useful range of
frequencies of the signals to be measured. Computer based
instrumentation can alleviate such difficulties by providing means for
estimating system variables that are not directly measured, i.e. indirect
measurement, and by increasing the range of signal frequencies the
sensors can measure accurately. In this section these problems are
analyzed using ill-posed inverse problems theory in particular using
inverse dynamics approaches. This chapter presents in the beginning the
case of simple first and second order instruments considered alone, then
continues with the investigation of the full order and reduced order
dynamic calibration (compensator) for sensors. In the first part of this
chapter, noiseless sensing and exact models are assumed in order to
focus the analysis of inverse problem issues for first and second order
instruments [71]. For this purpose, complex domain and frequency
domain analysis are carried out for lumped parameters models of
sensors. Section 4.2 presents the analysis of first and second order
instruments dynamics simulation using transfer functions, time response
and Bode diagrams. In section 4.3 the investigation is extended by
including dynamic calibration, anti-aliasing filters and phase lead

129
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compensators required in computer based instrumentation. In section 4.4,
the effect of measurement noise on dynamic calibration is analyzed. In
section 4.5, the focus is on state estimation in indirect sensing.

Forward Dynamics of a sensor, modeled as a LTI system, can be
described by its transfer function G(s) = Y(s) / X(s), with X(s) = input
and Y(s) = output. First and second order instruments analysis will
illustrate general issue in dynamic calibration using inverse models.

4.2 First Order Instruments
4.2.1 Time and Frequency Response of Forward Dynamics

Numerous sensors can be modeled by a first order transfer function

G(s) =
®) 1+T-s

where k = gain, T = time constant.

Example 4.1 The first order model for a J thermocouple with gain at 20
[°C] of =50 [uV/OC] and time constant of 0.01 [s] is assumed, i.e. k = 5
[10 uV/°C] and T = 0.01 [8].

MATLAB program is
k =5;

T=0.01;

num=[0 k];

den=[T 1];
step(num,den);grid

Figure 4.1 shows the Y(t) plot of the unit step response of a first order
instrument.

MATLAB program
>> bode(num,den);
grid;

The Bode diagram results for the above case is shown in Fig. 4.2.
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4.2.2 Bandwidth of First Order Instruments

Bandwidth cutoff frequency, w,, corresponds to the frequency for which
the Magnitude 20 loglG(j - ®)l drops 3 [dB] below its zero-frequency
value 20 loglG(j - 0)l, such that, at the limit,

20 logIG(j - @)l = 20 loglG(j - 0)! - 3 [dB]

Example 4.2 In the above case of a first order transfer function for k = 5,
T =0.01 [s]

5
=00t
or
G(jo)= m
its zero-frequency value is
G(j0)=5
or

20 loglG(j - 0)l = 14 [dB]

Cutoff frequency, w,, defining the bandwidth, is the solution of the
equation

20 1oglG(j - op)l =20 1oglG(GO)I -3 =14 -3 =11 [dB]
The result is the same as in Fig. 4.2.

oy = 100 [rad/s]

f, = 100/(2m) ~16 [Hz]

4.2.3 Static Calibration of the Sensor

Assume that

X, 1is unknown sensor input to the sensor
Y., is the measured output from the sensor.
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Static calibration uses steady state sensor response to unit step, X(s) =1/,
for determining the value of K, for calibration, i.e. for estimating the
unknown input, using final value theorem

K, =lim_,_ Y(t)=lim__,,s-G(s)- X(s) =lim, s - G(s) l =G(0)
S

such that estimated input value using static calibration is given by

-1
X YO _LYE®)
K. K

C C
where L™ is inverse Laplace transform operator.
Example 4.3 Estimate input value using static calibration.

Estimated input value using static calibration, for the above Example 4.2,
for static calibration constant

Kc=G(G-0)=5
gives the estimated input value

X0 =2

Consequently, the result for Y(t) shown in Fig. 4.1 can be converted in
Xest (1) by dividing the Amplitude scale by 5, to obtain a scale for X (t)
that reaches steady state value of 1.

This X, (t) is an estimation of the unit step input that has zero estimation
error only at steady state. The result shows that X (t) becomes accurate
only after settling time, for example with an error of 2% after four time
constants, 4 - T=4-0.01=0.04 [s].
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In practice, for sinusoidal inputs, the estimation error is considered
acceptable within bandwidth, i.e. for input signal frequencies

o <
where, in this case

o, = 100 [rad/s]

This issue is analyzed in the next paragraph.
4.2.4 Sinusoidal Response of the Sensor-MATLAB Simulations
The block diagram of a first order instrument with sinusoidal input is
shown in Fig. 4.3.
Given that the Laplace transform X(s) = L{X(t)} for X(t) = sin ot is

X(s) =0/ (s*+ o)

and for unit impulse input
o(s) =1

A 4

—»  1/(14Ts) VK, ——>
X(t) = sin ot Y(t) Kes()

Fig. 4.3 Block diagram of a first order instrument with sinusoidal input
MATLAB simulation uses the computation scheme from Fig. 4.4.
In fact

L'8(s) -0/ (*+0))} =L {o/(s*+ ®?)} = sin ot
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—> 2o’ > —> —>
5521 o/(s+m") 1/(1+Ts) o /K, Xt

Fig. 4.4 MATLAB simulation scheme

Example 4.4 MATLAB Simulation for k = 5; T = 0.01; K. = 5 and
various values of .

1) o =10 [rad/s]
MATLAB program is
num=[0 0 0 507];
den=[0.01 1 1 100];
impulse(num,den);

Figure 4.5 shows the plot Y(t) for s sinusoidal input with ® = 10 [rad/s].

2) o = 100 [rad/s]
MATLAB program is
num=[0 0 0 500];
den=[0.01 1 100 10000];
impulse(num,den);

Figure 4.6 shows the plot Y(t) for s sinusoidal input with ® = 100 [rad/s].
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Fig. 4.5 The plot Y(t) for s sinusoidal input with ©=10 [rad/s]
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Fig. 4.6 The plot Y(t) for s sinusoidal input with ©@=100 [rad/s]
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3) o = 1000 [rad/s]

MATLAB program is
num=[0 0 0 5000];

den=[0.01 1 10000 10000007];
impulse(num,den);

Figure 4.7 shows the plot Y(t) for s sinusoidal input with ® = 1000
[rad/s].

Impulse Response
T

Amplitude

05 I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

Fig. 4.7 The plot Y(t) for s sinusoidal input with @=1000 [rad/s]

These results illustrate the significant decrease of the amplitude X, (t)l
as o increases beyond m, = 100 [rad/s].
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4.2.5 Analytical Solutions for Harmonic Response of First Order
Instruments

The block diagram for the derivation of the analytical solution for the
harmonic response of a first order system is shown in Fig. 4.8.

—»  G(s)=k/(1+T > 1/ —
L{X(t) = sin ot} i =
=X(s) =0/ +0) L{Y(t)} L(Xex(1)

Fig. 4.8 Block diagram for the derivation of the analytical solution for the harmonic

response

Example 4.5 Derivation of the analytical solution for k =5, T =0.01 and
XM=1-sinw-tie IX({t)I=1

For
G(s)=

1- T-s

ko 5 _5-(1-j-0.01- o)
1+T-jo 1+001-jo  1+0.01> o>

G(jw) =

5
(1+0.01° - 0*)"

| G(jo) =

® =tan"' (-0.01w)

static calibration uses
K.=G(0)=k=5

The output Y(t) is given by [50]
y(t) =1 - IG(w)! - sin (o - t+ O)

while estimated input is
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X (1) =% SASOL Gg“) Sin(o- t+ ®)

C C

_ @sin(m “t+tan” (0.01- ®))

such that

1 X 1 1G(jo)!
IX()l 5

For o = 10 the result is

IG(jw)l = 5/(1 + 0.01°0w%) "> = 5/(1 + 0.01°10%) "* = 5

®=tan" (-0.01 - ) =-5.71
y(t) =1 IG(jo)lsin (@ - t+P)=5S5sinw -t
Xest(t) = y(t) /k = 1sin o - t =x(t)
Xest(D) / IX(DI = 1
For o = 100, the result is
Xest (DI / IX(D)] = 0.7

20 log Xes(DI / Ix(0)I = - 03 [dB], i.e. ® =100 = o,
Summary of results for ® = 10, 100 and 1000 [rad/s] is the following
o [rad/s] f[Hz] 1/[s] IG(jo) y(t) Xest(t)  Xe(DV/IX (D)
10 1.58 063 =5 =0 =5sinot ~sin ot =1

100 158 0.063 =35 =45 3.5sin(ot-45) 0.7sin(wt-45) =0.7
1000 158 0.0063 =3.5 =90 0.5sin(owt-90) 0.1sin(wt-45) =0.1
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Consequently, for

> oy X (DI / IX() < 0.7
o >>0, XD/ Ix() << 0.7
o= 1000 X (O)/Ix(t)=0.1

i.e. for ® = 1000 the estimated [x.(t)! is only 10% of the amplitude of the
sensor input signal Ix(t)l.

Dynamic estimation (calibration) can be achieved using the inverse
problem solution. It can be observed that dynamic calibration results in
increasing gains, in this case 1 /0.7 =1.43 for® =100 and 1/0.1 =10
for ® = 1000 [71].

Obviously, these gains increase with ®, and this can lead to various
difficulties (overflow in numerical computations, over-amplification of
noise high frequency-low amplitude components in the y(t) signal etc), to
be addressed by the solutions to ill-posed problems from Ch. 3.

4.3 Second Order Instruments
4.3.1 Static Calibration
Second order transfer function [50], for a mass-spring-damper system, is

k

Ge) =3 ;
s"+2-¢-o, s+,

where k = gain, o, = un-damped natural frequency, { = damping ratio.
An example could be a force f(t) transducer [18], with the block

diagram shown in Fig. 4.9 where

f(t) [N] is the input force to measure

d(t) [m] is the output displacement

v(t) [V] is the output voltage of the potentiometer.
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Force measuring Position measurement
> §pring—based »| potentiometer S
f(t) | instrument d(t) v(t)

Fig. 4.9 Block diagram of a force transducer

Assume that the force measuring spring based instrument measured is
modeled by a mass-spring-damper M-B-K system in horizontal motion
(such that gravity effect can be ignored in deriving motion equation). The
transfer function is

f(s) 1
dis) M-s?+B-s+K

where

d(s) =L{d(D}
f(s) = L{f(t)}

Assume the approximate transfer function of the position measurement
potentiometer

v(s)/d(s) =K,
where

v(s) =L{v(D}
d(s) = L{d(D)}

where K, [V/m] is the calibration constant of the potentiometer.
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The block diagram of the force measuring instrument is shown in
Fig. 4.10.

— > I/Ms+Bs+K) » K, —>
f(s) d(s) v(s)

Fig. 4.10 Block diagram of the force measuring instrument

The overall transfer function is

K
v(s
G-t K
fs) M-s“+B-s+K
Ky
_ M _ k
SZ+E.S+K Sz+2'g'mn's+(,0n
M
where
o, =K/M
2-{/o,=B/M
k=K,/M

Time response of such second order instruments is strongly dependent on
the value of

The damping ratio, {, determines the type of response:

{ <1 under-damped response
{ =1 critically damped response
 >1 over-damped response
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Example 4.6 MATLAB Simulations for frequency response of sensors
forward dynamics and compensators based on inverse dynamics for a
second order instrument with k = 1, @, = 10 [rad/s] f,= 1.58 [Hz]
period of 0.63 [s] and various values of the damping ratio .

Second order transfer function is

v(s) _ k 3 k
ds) s’+b-s+c s’+2.¢c-o,-s+0,

n

G(s) =

where

b=2-C- o,

2
C =,

Steady state value of v(t) for unit step input f(t) is obtained using limit
value theorem for unit step input f(s) = 1/ s for s tending towards zero

. . k 1
Ve =limg_s-G(s)-—=lim_, — > =—7=001
S s"+2-go, st ®

n n

The computation is carried out for { =0, 0.1, 0.6, 1.2.

a) for( =0,b=2-( - 0,=0
MATLAB program is
k=1;
b=0;
¢=100;
num=[ 0 0 kJ;
den=[1 b c];
step(num,den);grid
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Figure 4.11 shows the plot of the un-damped oscillatory response v(t),
obviously not useful in practical applications. Higher values for ( are
required.

b) for{ =0.1,b=2-0 - 0,=2
MATLAB program is

k=1;
b=2;
c=100;
num=[ 0 0 kJ;
den=[1bc];
step(num,den);grid
0.02 T
e il
0.018 I
[ il
1 1 il
N 1A Il
3 . NN I
% o DAMA | Nl
Y R | il
oI | I
A \I\ I
I | li
0 10 60

i sec)
Fig. 4.11 The plot of the un-damped oscillatory response v(t)

The results from Fig. 4.12 show significant maximum overshoot of 70%
and long 2% settling time of



Inverse Problems in Dynamic Calibration of Sensors 145
4/ w,)=4/(0.1 - 10)=4 [s].

c) for( =0.6,b=2-C - ®,=12

MATLAB program is
k=1;
b=12;
c=100;
num=[ 0 0 kJ;
den=[1 b c];
step(num,den);grid
Step Response
0.018 T
| | | | |
| | | | |
oote |-~ - e EE R LR EE Rt EEEEES
| | | | |
| | | | |
0.014 | 4 —|- - - - e [ [ [ [
‘ | | | |
e ———
| | | | |
| | | | |
%3) 0017 - - 7:;77 - 7\7777 7\7 7777\7 = - | T ]
= | | | |
g— | | | | |
[ D Y A T i T
| | | | |
0000 |- |-~ AR SRR EEREE
| | | | |
| | | | |
0.004 H------ e - - b - - - o i H- - — -
| | | | |
o2l -~ - e
| | | | |
| | | | |
0 | | | | |
0 1 2 3 4 5 6

Fig. 4.12 The plot of the oscillatory response v(t) for { = 0.1

The results from Fig. 4.13 show significant reduced maximum overshoot
of 5% and reduced 2% settling time to 4 / (- ®,) =4/ (0.6 - 10) =
0.67 [s].
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d) for over-damped case,{ =1.2,b=2-(- o, =24
MATLAB program is

k=1;

b=24;

¢=100;

num=[ 0 0 kJ;
den=[1 b c];
step(num,den);grid

The results from Fig. 4.14 show no overshoot but sluggish response.

Step Response

0.012 T T T T T T T
| | | | | | |
| | | | | | |
| | | | | |
| | | T | |
001F--—-— Lo __a____Z [ R -]
| | | | | | ]
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | I
0008~ ---7-=-=-~-F~---~- [ e [
| | | | | | |
| | | | | | |
© | | | | | | |
° | | | | | | |
£ 0.006}---- e [ —— e [ —— e —_
Q | | | | | | |
g | | | | | | |
| | | | | | |
| | | | | | |
| | I ! | | |
0.004 | | | ] | | |
) | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
0.002 - - -/ T AT ——---- T == === [
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
0 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (sec)

Fig. 4.13 The plot of the oscillatory response v(t) for { = 0.6

Present day practice is to provide under-damped response for (=B - o, /
(2 - M) in the range of 0.6-0.7, by selecting a damping coefficient of B =
2-M-{/w,[71].
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Example 4.7 Bode diagram for { = 0.6, b=2 - { - ®, =12 is given by the

MATLAB program:
k=1;
b=12;
¢=100;
num=[ 0 0 kJ;
den=[1 b cJ;
bode(num,den);
grid;
Step Response
0.01 ’ ’ : ;
| | | | |
| | T | |
0.009F - - - - —-— [ (R - - - = |
l ‘ l l l
0008F - - - - — — L_____Zv______°______‘r______+______]
. | | | | |
| | | | |
0007 - L T S DR
| | | | |
0.006 | -~ -~ - - S P P e T
© | | | | |
° | | | |
2 0005F----- oo Fee o Fomm- - o m - L
[=3 | | | | |
;E: | | | | |
0004 - —— -/ A
| | | | |
| | | | |
0008 -~ f-b ol b
| | | | |
ooe| ) R A A I
| | | | |
0.001 | -/ ———- bomm o Femmmm R P P
l l l l l
0 1 1 1 1 1
0 02 0.4 06 08 1 12

Time (sec)

Fig. 4.14 The plot of the oscillatory response v(t) for {=1.2

Bode diagram of a second order instrument with { = 0.6 is shown in
Fig. 4.15.

Magnitude response is flat up to approx. 10 [rad/s], while the phase lag
becomes noticeable after 1 [rad/s].
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Harmonic Response of the Second Order Sensor with { =0.6.

MATLAB Simulations

4.3.2

Time response of such second order instruments depends significantly on

the value of {.

MATLAB simulation is carried out for the second order instrument

subject to static calibration, shown in Fig. 4.16.

Bode Diagram

(gp) epnyubepy

(Bp) aseyd

Frequency (rad/sec)

0.6

Fig. 4.15 Bode diagram of a second order instrument with {

G(j - 0).

c=

Static calibration constant is K

For X(s) =w / (s2 + a)z) and unit impulse input d(s) = 1, the harmonic
response simulation is achieved with MATLAB instruction impulse

(num, den) for the functions shown in Fig. 4.17.
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o GE)=K(sH2Lm,s+ 0,) » 1K, —>

L{X(t) =sin ot}= L{Y(®} L(Xes(D)
X(s)=0 / (s*+ ©%)

Fig. 4.16 Second order instrument subject to static calibration

—» o/E+0) P GE)=K(s+2Lo,s+ o)
d(s)=1
L{Y(DN
/K, —>

L { Xesl(t) }

Fig. 4.17 MATLAB simulation model

The overall transfer function X..(s) / 8(s) for the MATLAB program is

Xeg (8) k-o
3(s) _(s2+c02)-(s2+2~g-con -s+c0n2)
_ k-o
_s4+2-<;~(on -s3+(coﬁ+c02)~s2+2-g~(on -coz-s+u)n2~(o

2

or

X (8) k-o
o(s) s4+a-s3+(b+c02)-s2+a~c02-s+b~c02

where
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a=2-(- o,
b= 0,

Example 4.8 Let us assume k = 1, { = 0.6, ®, = 10 [rad/s] such that
a=2-§-c0n=12andb=con2= 100.

In MATLAB notation

num=[ 0000 w];

den=[1 a b+ ®"2 a* 2 b* 0w"2];
impulse(num,den);

MATLAB results for o=1 and 5 [rad/s] are the following
1) =1 [rad/s]

MATLAB program is
a=12;

b=100;

num=[ 0000 1];
den=[1 ab+1 a b];
impulse(num,den);
The plot is shown in

The amplitude from Fig. 4.18 agree to amplitude IG(j - ®l for Bode
diagram from Fig. 4.15 for @ = 1 that is -40 [dB]= 20 log 0.01.

2) ® =5 [rad/s]
a=12;
b=100;
num=[ 0000 5];
den=[1 12 125 300 2500];
impulse(num,den);

The amplitude from Fig. 4.19 agrees again to amplitude IG(j - ol for
Bode diagram from Fig. 4.15 for @ = 5 that is -40 [dB] = 20 log 0.01.
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4.3.3 Analytical Solutions for Harmonic Response and Bandwidth
Frequency of a Second Order Instrument

The second order instrument transfer function is

k
Gls)= 2 2
S +2-¢-o, s+,

Examples of analytical calculation of the harmonic response and
bandwidth frequency are presented in the following Example 4.9.

Impulse Response

0.015 T
0.01 3
0.005
()
E
-0.005 H
-0.01 1 -
-0.015 ! ! ! !
0 50 100 150 200 250 300
Time (sec)

Fig. 4.18 The time response for w=1 rad/s

Example 4.9 Analytical results for a second order instrument.
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a) Harmonic response of a second order system for various values of @

Consider the block diagram from Fig. 4.16 with
X({t)=1 - sin ot

IX(t)l =1
k=1
£=0.6
o, = 10 [rad / s]
2.0 -m,=12
o, = 100
Impulse Response
0.015 T T T
0.01
0.005
g
= 0
Q.
£
<
-0.005 j
-0.01 H H
_0015 L L L L 1 |
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Fig. 4.19 The time response for ®=5 [rad/s]

The transfer function is

1

G(s)=————
$2-12-s- 100
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1
02 +100+12-j-®
-0? +100-12-j-®
T (@ +100+12- - @) (-0’ +100—12- - o)
0> +100-12-j-®
T (0’ +100)2 4127 - 07

GG o) =

1
[(-0* +100)* +12% - »*]"?

1G(- o) =

IG(j0)l= 1/((100)*) "*=1/100

K. =G(j0)=1/100

Y(t) is given by [50]
Y(t) =1-IG(jo)! - sin (o - t+ O)

while estimated input is given by static calibration as

X (=YO _ IG(]K- )))

K

C C

sin(m-t+®)=msin(0)~t+d))
1/100

such that
1IGG-0)| _1G(-0)| _1Gj- o)l
K. IG(-0)l  1/100

C

1X, (D)1=
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b) Harmonic response for @ = 10 is given by

1G(j- ) I= ! - 1 L
[(-0* +100)% +12% - ®*1"?  [(-10* +100)* +12%-10%1"* 120
- 12450 4, - j-12:10 412410 0
d=tan'(——————)=tan' (———) =tan (——)=-90
-»?- 100 -10% - 100 0
and

20 log IG(jw)l= 20 log (1/120) = 41.6 [dB]

For ® = 10, Bode diagram in Fig. 4.15 gives approx -42 [dB] and -90°
which agrees with the above simulation results.

Y(t)=1 IG(jo)! - sin (ot + ®)= ((1/100)) - sin( wt - 90)

1GG-®)| _1G(-10)1 _1/120
K 1G(-0)1  1/100

C

1X,, (1) = =0.833

For, IX(t)I=1
e O _ 0833
I X(0)
c¢) Calculation of the cutoff frequency w,

Exact calculation of the cutoff frequency, oy, defining the bandwidth, is
obtained from the equation of definition of bandwidth [50]

20-log | G(j-w, ) |=20-log | G(j-0)I- 3

or
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GGl _y 13

A =1.4125
1G(-0,)! 20

or

1G(- ) |=0.709-1G(-0) |

which shows that, at cutoff frequency, wy , the amplitude IG(j - ®,)l drops
to 0. 709 of the IG( - 0)I
For the above second order instrument

1
[(-0* +100)* +12% - @?]"?

1G(j- @)1=

and

1 1
{ [(-0° +100)* +12°-0%]"* 100

The cutoff frequency, o, can be obtained from

- L _07001GG-0)1= 22
[(0,> +100)* +12% - 0,7 100

1G(- )=

The solution o, of the equation is obtained as follows

12 _ 100
0.709

[(-0,> +100)* +12% - ©,”]
4 2
oy -56 @y -9952.6 =0

The solution for me is

o> =28 + V(287 + 9952.6) =28 + 103.6 or 131.6 and — 75.6



156 Advanced Mechatronics

Only the positive real solution is retained
op=+V131.6 = 11.47 [rad / 5]

This result is the same as from the second order Bode diagram from
Fig. 4.15 for the magnitude of

20-log G- w,) I=20-log 1 G(G-0) - 3=-40-3 =-43 [dB].
4.4 Calibration for Computer-Based Instrumentation

In this section, for making possible to present the main features of static
and dynamic calibration approaches, only linear time invariant detector
models for each pixel of the image, limited to given operational
frequency domains are considered, in order to achieve constant gain over
this frequency domain and the same phase shift.

Association and fusion of these signals require first signal processing
of different discrete spatial time representations that are specific to
various instruments, such that these variables, measured by multiple
sensors, will be referenced to the same spatial coordinates and will be
synchronized in time [61]. Sensors outputs are dependent, however, not
only on the inputs from measured target variables, but also on the
instrument design and sensor dynamics. Sensor fusion is accurate only if
it uses signals that are properly calibrated and compensated for the phase
difference [65]. An effective approach for achieving these requirements
is dynamic calibration of individual sensors output signals.

Dynamic calibration is investigated as an inverse problem which
permits to use numerical solutions already developed for such problems.
Numerical results illustrate the benefits of dynamic calibration for
various sensors. Dynamic calibration is proposed in order to improve the
measurement accuracy, compensation for phase lag for sensor fusion and
phase etc. (Fig. 4.20 and Fig. 4.21).

The focus in the chapter is on the investigation of the linear time
invariant (LTI) sensor models for dynamic calibration (See Fig. 4.21).
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»  Sensor »  Dynamic calibration ——— %
X Yo | Xeu(0)
Fig. 4.20 Block diagram of dynamic calibration
—>  G(s) Gls)y ———
L{X(t)} L{Y(®} L{Xexu(D)}

Fig. 4.21 Transfer functions for dynamic calibration

The effect of measurement and system noise are ignored in the first part
of the analysis, but will be included in Ch. 4.4.

4.4.1 Calibration for Computer-Based First Order Instruments

For a simple introduction to the issues of dynamic calibration of sensors,
consider a first order instrument

G(s) =&

(14Ts)
where k = gain, T = time constant.
The diagram of the system for static calibration is shown in Fig. 4.22,
where an anti-aliasing filter is included to avoid sampling problems as a
result of Analog to Digital Conversion (ADC)

X(t) y(t) Xe~'l(t)
Sens Anti-aliasing ADC Static
————p| Cns0r P Filter calibration —

\ 4

A

Fig. 4.22 Block diagram of the system with anti-aliasing filter
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Figure 4.23 shows the corresponding transfer functions

L {x(t)} L {y®} L {Xex(D)}

o H=

Fig. 4.23 Block diagram of transfer functions for Fig. 4.21

—| G(s) UK. b—>p

\ 4
\ 4

where, for static calibration, K. = G'l(]' -0).

For numerical illustration, the parameters of G(s) are chosen
k=5=K.and T = 0.01 such that the bandwidth frequency is w, = 100.
The sampling rate is chosen ®; = 2000 and, in order to satisfy the
condition ®; > 20 - , [10], a first order anti-aliasing analog filter is
required:

g(s) =315

such that:

‘) = 3 — 2@-jo)
g(](!)) T @tjo) T (@2+e?)
l g(s) = (a2+2)2)1/2

0= tan”' (—w/a)

The break point value “a”, chosen a = 500, satisfy sampling theorem
a< 2.

The first order anti-aliasing analog filter transfer function g(s) has no
practical effect on the amplitude up to @, = 100, while the phase lag at
®=100 is:

¢ =tan"' (—w/a) = tan"'(=100/500) = —11.3°
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Consider a first order instrument
G(s) =k / (1+Ts)
where k = gain, T = time constant and
K.=G'(G-0)=k
Example 4.10 MATLAB simulations use k =5 = K., T =0.01, i.e.

G(s)=5/(1+0.01s),
o, = 100

Sampling rate o has to be chosen at least 20 times higher than the
bandwidth oy [70]

®s > 20 oy,
A first order anti-aliasing analog filter

g(s)=a/(s+a)
g(j-co):a/(a+j-m)za-(a-jco)/(a2+c02)
lg(s)l=a/(a*+ )"
p=tan" (-©/a)

where the break point value a has to be smaller than o,/ 2 to satisfy
sampling theorem.

a<wmg/?2
o =25 o,=2500
a=w,/5=500>w, =100

Bode diagram for anti-aliasing filter are obtained with the MATLAB
program



160 Advanced Mechatronics

a=500;

num=|[0 a];

den=[1 a];
bode(num,den);grid

The results are shown in Fig. 4.24. This shows that the first order anti-
aliasing analog filter has no practical effect on the amplitude up to ®, =
100, but the phase lag is already significant and decreases further with @
down to - 90°.

4.4.2 Phase Lead Compensation

The phase lag due to the anti-aliasing analog filter can become a problem
in multi-sensor measurements, due to different phase lags for different
sensors [61, 62, 63, 66, 67]. To solve this problem, additional phase lead
digital compensation is required. For example, in this case, the phase
lead compensator is:

__ (b/a)(s+a)
) ="

where b > a, [70]. This phase lead digital compensator can be written as:

C(S) — (s+a) p

a (s+b)

which shows that it consists of an inverse part of the anti-aliasing analog
filter:

(s+a)

gl )=

and a low pass filter b / (s + b) with cross over frequency b > a.
The phase lead digital compensator is based on

_ (b/a)(s+a)
C(S) T (s+b)
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Bode Diagram

Frequency (rad/sec)

Fig. 4.24 Bode diagram for a first order instrument

Example 4.11 MATLAB program calculates the Bode diagram of the

=500

phase lead digital compensator with b = 1000 and a

— 2s+1000
s+1000

C(s)

num=[2 1000];

den

[1 1000];

bode(num,den); grid

The result is shown in Fig. 4.25.

These results indicate that the phase lead compensator produces an

= 800.

increasing phase lead up to ®
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The anti-aliasing analog filter g(s) combined in series with the phase lead

digital compensation C(s) has the transfer function:

—__b
T (s+b)

(s+a)
(s+b)

)

8(5) C(8) = 5 (

— b
- (b2+co2)”2

lg(s)C(s)|

tan~' (—w/b)

(p:

Bode Diagram

(ap) apnyuben (6op)

seud

Frequency (rad/sec)

Fig. 4.25 Bode diagram of a phase lead digital compensator

Anti-aliasing analog filter g(s), combined in series with the phase lead

digital compensation C(s), has the following transfer function

L) (s+a) _ p
a’ (s+b) ~ (s+b)

g(5) - C(s) = 5




Inverse Problems in Dynamic Calibration of Sensors 163

Example 4.12 Bode diagram for the anti-aliasing is obtained with a
MATLAB program for Bode diagram of g(s) - C(s) for b = 1000 > a =
500.

MATLAB program is

b=1000;

num=[0 b];

den=[1 b];
bode(num,den); grid

The results are shown in Fig. 4.26.

Bode diagram for the g(s) - C(s) shows that, compared to the results
for g(s) in Fig. 4.24, in Fig. 4.26 the magnitude is maintained at 0 [dB]
up to ® = 500, and the phase lag is

p=¢=tan" (-0/b) =¢=tan" (- ©/1000)

the phase decreases slowly with .

At © = 100 the phase is - 5.7 [°], which, as a result of the phase lead
compensation C(s), is a reduction for g(s) - C(s) to half of the phase lag
of g(s).

The overall transfer function, including the transfer functions of the
first order instrument and the anti-aliasing filter, ignoring the effect of
ADC, is

L{xea(®} /L{x()} = G(s) - g(s) - C(s) / Ke=[k/ (1 + Ts)] - [a/ (s + a)]
(b/a)[(s+a)/(s+b)]/k

In this case of assumed exact cancellation of k - a /(s + a)

L{ Xest®) }/L{x(®)}=b/[(A+Ts)-(s+b)]=1/[(1+Ts)-(1+s/b)]
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Bode Diagram

Frequency (rad/sec)

Fig. 4.26 Bode diagram for anti-aliasing analog filter and phase lead digital
compensation

0.01 and b = 1000

For T

L{Xex(®} /L{x(®)} = 1/ (1+0.01 - 5) - (1 + s / 1000)

or

L{Xe(H)} /L{x(t)} = 1 /(0.00001 - s>+ 0.011 - s +1)

.13 MATLAB program for the Bode diagram is

Example 4

num=[0 0 1];

’

[0.00001 0.011 1];

den=

bode(num,den); grid
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The results are shown in Fig. 4.27.

Magnitude (dB)

Phase (deg)

-100

Bode Diagram

T T T T
[
[
20 -4 -FFI1H
[
[
40 - J-LLid

60 - -+~

i
EE
EE
80 -~ - i
EE
EE
L

10°
Frequency (rad/sec)

165

Fig. 4.27 Bode diagram for the first order instrument with the anti-aliasing filter and

phase lead compensation

The results show that the effect of anti-aliasing filter combined with the
phase lead digital compensator is a slight increase of bandwidth and a
reduction of the phase shift. The anti-aliasing analog filter is needed to
remove frequencies that can generate alias frequencies after ADC.

In multi-sensor measurements, due to different phase lags for
different sensors, phase lead compensation might be required [8, 9]. For
instance, two first order sensors with transfer functions

and

1
1+T;s




166 Advanced Mechatronics

1
1+T,s

where the time constants T; and T, have different values, such that the
phase lags are also different,

0, =tan”" (-T,w)
0, = tan”' (-T, )

i.e. arelative phase lag difference @, - ®, with regard to the same input.
As shown above, the proposed phase lead compensation contains already
dynamic compensation and, consequently, a separate static calibration is
no more needed. This represents an acceptable solution for first order
instruments. Higher order instruments require a more complex phase lead
compensation of the anti-aliasing filter with the dynamic calibration
based on inverse model, as shown in Fig. 4.28.

X(t) y(t) xesl(t)
Anti-aliasing Phase Lead
—p| Sensor P Filter | ADC L) compensation ==

Fig. 4.28 Block diagram of the phase lead compensation and the anti-aliasing filter
A low pass filter to limit computations of inverse dynamics below very
high frequencies range that can lead to overflow in numerical
computations, low signal to noise ratio etc.

4.4.3 Full and Reduced Order Dynamic Compensators

Consider the transfer function G(s) of the high order instruments with P
poles and Z < P zeros:
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s“+b, ;s 4. +b
G(s) = (5 oy
(s"+a, 8" +..4ag)

For G(s) with Z < P, G'(s) with p = Z poles and z = P poles, and Z < P
for G(s) results in z > p for G'(s). Consequently, G'(s) can be separated
into a polynomial of order z - p in s and a rational function with the same
number of poles and zeros equal to p. The polynomial of order z - p will
operate on the input to G™'(s) as a high z - p order derivative. In the ideal
case of measurements without noise, G(s) - G'(s) = 1 and ideal dynamic
calibration is obtained. In reality, noisy measurement occur and signal
input to dynamic calibration using G''(s), the high order derivative of
random high frequency measurement noise has a very severe effect on
calibration, in fact resulting in an ill-posed inverse problem. Dynamic
calibration G(s) - G™'(s) is not desirable in this case and reduced order
inverse dynamics G, '(s) intends to remedy this effect.

Assume that only some of the poles and zeros have imaginary part
within a frequency domain of interest @, and that the phase lead digital
compensation is set up such that the poles of zeros outside this domain
can be ignored in dynamic compensation. In this case, a reduced order
G,'(s) can be used. This approach was first implemented with
operational amplifiers that limited the domain of applications [71]. At
this time, dynamic compensation can be implemented on embedded
digital hardware which can be collocated with the instruments. For
example, if only two complex conjugate poles, -a; £j - ®, -a £j - @
and two complex conjugate zeros, -az + j - M3, -a4 = j - @4, fall in this
domain 0 - o, steady state unit step response of G(s) - G, '(s)(1/ s) has
actually a constant value for

(s“4b,_ss"+..4by) b,
s—0 (P4 -

lim,_,s-G(s) -G (s)-lzlim
S

=
+a, 4P+ tag) a,

In this case, unit step response G(s) - G, '(s) tends towards ay/b, for
frequencies ® < .

Similar to the previous section, an analog anti-aliasing filter and
digital phase lead compensation are still needed for avoiding alias
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frequencies after ADC and for correcting the phase leg introduced by
the anti-aliasing filter.

Example 4.14 In case that only two complex conjugate zeros and two
complex conjugate poles for in the domain 0 to ., phase lag digital
compensation requires only a second order polynomial as numerator and
another second order polynomial as denominator [71].

A generic sensor transfer function can be written as follows:

G(S) — (s+a3+jw3)(s+a3—ju>3)(s+a4+jw4)(s+a4—jw4)(sz_4+bz_552_5+...+b0)
(s+a,+jo; )(s+a;—joy ) (s+ay +j, )(s+a, —j, )(sp74+ap,4sp75 +.4a))

where it is assumed that the two pairs of complex conjugate zeros the
two pairs of complex conjugate poles have:

o< 0. fori=1,2,34
while all other complex zeros and poles have frequencies larger than @,
;> Wy fOr i >5

In this case, the dynamic compensator has to cancel only ;< @ , i.e. a
reduced order compensator with the transfer function can be used:

G—l (S) — (s+a;+Hjoy ) (s+a;—joy )(s+a, +jw, )(s+a,—jw, )
r (s+az+jmy ) (s+az;—joy ) (s+a,+joy )(s+a,—joy,)

such that

-1 (5" *+b,_ss“ 7 +..4by)
G(s)-G, (8)= : .

(sP™* +a’1p,45p75 +.4ag)

where G(s) - G, '(s) has complex zeros and poles with frequencies ® >
muse~
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4.43.1 First order instrument
Inverse transfer function for a first order instrument is
G'(s) = (1+Ts)/ k

The block diagram for the dynamically calibrated first order sensor is
shown in Fig. 4.29.

G(s)= - G'(s) =

Lix@ | X/ A+T) Ty eyy]  A+T9)/k L{Xeu(D)}

Fig. 4.29 The block diagram for the dynamically calibrated first order sensor

Bode diagram permits to identify the effect of G'(s) on the estimation of
the input.

Example 4.15 Bode diagram of the first order instruments compensator
is obtained fork =5 and T = 0.01.

MATLAB program is

num=[T 1];
den=[0 k];
bode(num,den);grid;

The results are shown in Fig. 4.30.

The magnitude of the inverse dynamics compensator IG'(s)l =
I(1 + Ts) / kl shows 20 dB/decade increase beyond bandwidth cutoff
frequency, o, = 100, indicating that growing computational difficulties
can occur @ >> M.
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4.4.3.2 Second order instrument

Assume second order instrument transfer function

k/(s*+b-s+c)

G(s)

Dynamic calibration in this case is achieved by

G'(s)=(s*+b-s+¢c)/k

Bode Diagram

Frequency (rad/sec)

Fig. 4.30 Bode diagram of the first order instruments inverse dynamics compensator

Example 4.16 MATLAB program for G™'(s) is

k=1;

b=12;

c=100;
den

[00K];

[Ibcl;

bode(num,den);

grid;

num
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The results are shown in Fig. 4.31.

Bode Diagram

(ap) apnyubep

(B9p) aseyd

Frequency (rad/sec)

Fig. 4.31 Bode diagram of G'(s) = s*+12 - s + 100

The magnitude of the inverse dynamic compensator IG'(s)l shows 40

dB/decade increase beyond bandwidth cutoff frequency, o,

10,

indicating growing computational difficulties as ® >> ®,, even more

significant in the case of first order instruments. N-order instruments will
have 20 N dB/decade increase beyond bandwidth cutoff frequency, i.e.

Some solutions to the above difficulties were outlined for the case of

more significant increase of Magnitude values beyond bandwidth cutoff
first order instruments:

frequency.

-low pass filter for removing high frequency noise in the sensor output

-reduced order inverse dynamics
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-Modified Output Approach (MOA) applied to non-minimum phase
systems to avoid unstable inverse dynamics.

In general, inverse dynamic compensator for increasing sensors
bandwidth requires to solve various difficulties:

-computational difficulties as ® >> w, due to increasing magnitude of the
inverse dynamic compensator IG™'(s)l = for ® > wy; digital word length
limitation can lead to overflow;

-high frequency noise in the sensor output is amplified by increasing
magnitude of the inverse dynamic compensator IG'(s)l for ® > w,
reducing signal to noise ratio;

-un-modeled dynamics and parametric uncertainty result in reduced
effect of inverse dynamics compensator;

-non-minimum phase systems have unstable inverse dynamics [74].

Some solutions to the above difficulties are:

-low pass filter for removing high frequency noise w(t) in the sensor
output y,(t), as shown in Fig. 4.32

-Modified Output Approach (MOA) or Output Redefinition Method,
applied to non-minimum phase systems to avoid unstable inverse
dynamics [74], shown in Fig. 4.33. This method is applied in Ch. 9. The
result is effective for frequencies lower than the positive zero and not to
higher frequencies.

In practice the increase beyond bandwidth cutoff frequency, wy is
normally limited up to a maximum useful frequency component @ys.
Limiting inverse dynamic compensator to ® < ®, avoids reaching
unacceptable high magnitudes of the inverse dynamic compensator,
making this approach of interest for computer based instrumentation.
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L{w(®)}
Low
—»| G(s) pass > Gls) —>
L{X(t)} filter
L{Y.(t) L{Xes(D}

Fig. 4.32 Low pass filter for removing high frequency noise

L{w(t)}
Low
— G pass > Gmoa (8) |—»
filter
L{X(®} L{Y.(0)] L{Xea(D}

Fig. 4.33 Modified Output Approach

4.5 Dynamic Calibration in Case of Noisy Measurements

Inverse problems for Linear Time Invariant (LTI) systems can be
formulated for different representations of the forward model of the
system, different for lumped parameters systems from distributed
parameters systems.

Inverse problems for LTI lumped parameters models of sensors can
be formulated for different representations of the forward model of the
system:

A) state space representation,

B) complex functions representation,
C) convolution integral representation,
D) matrix form representation.
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A) State space representation in case of noisy measurements is given by:

%=3-X(t)+b-U(t)
dt

Y, () =c-X(t)- W(t)
where:

X [N 1] is the system state vector
U [M -1] is the system input vector
Y [P -1] is the system output vector,
W(t) is measurement noise vector
M<N

P<N

This model is used to obtain the estimation U of U given Y, and sensor
model.
Denote noiseless output
Y(®) = Yu(t) - W)
such that the output equation becomes

Y(t) =c- X(t)

The inverse problem of estimating the input Ug(t) from measurements
y(t) is obtained solving output equation using the generalized inverse ¢*

X(t)=c2Y(t)

dX(O _ - dy(©
dt dt

that gives:
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¢t —a.ctY () +b-U()
The solution for U(t) of the state equation is

U, (0=b*(EY —a-X(1)

or:
U 0=t (g —a-c™ - Y(1)
or, taking into account the noisy output
Yu(® =Y + W()
U, (=b8 (0 —a ¢ [Y() - WD)
This solution requires the calculation of generalized inverses b*® and ¢*®
as well as the derivative dY(t)/dt. Real-time implementation of this
solution might be computationally intensive and requires specific code
for each application. The presence of fast varying noise W(t) might lead

to very low signal to noise ratios that reduces in this case the usefulness
of dynamic calibration.

B) Complex functions representation is obtained from the Laplace
transform of the state space equations for zero initial conditions

I-s-a)-X(s)=b-U(s)
Y(s)=c- X(s)

For X(s) = ¢ ®- Y(s), state equation, after eliminating X(s), becomes
(I-s—a)-¢®-Y(s)=b-U(s)
Solving this equation algebraically for U(s) gives

b #d-s—a)c*Y(s) =U(s)
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The estimate U, (s) results as follows:
U, (s)=b7&-(Is—a)-c¢®-Y(s)
or
U, (9)=b7* - (I's—a)-c™® [Y(5)—W(s)]

As expected, this solution requires also the calculation of generalized
inverses b*® and ¢® Moreover, in the feed-forward path of the sensor-
dynamic compensator, the presence of “s” indicates the same
requirement for the time derivative. Real-time implementation of this

complex function solution is not desirable.

C) Convolution integral representation is of interest as a link to non-
linear forward problems formulation using integral equations and as a
basis for developing computationally efficient matrix formulation.

The principle of superposition, valid for linear systems, gives [70]

Y(t) = f U(T)- h(t, )dt

where h(t, ) is the impulse response of the system, for the impulse
assumed applied at any time t. In the case of LTI systems,

h(t,t)=h(t-1)

i.e. it depends only on the difference between the time t when the
impulse is applied and the time t when the response y is observed. This
property greatly reduces the computation of the impulse response h. The
convolution integral for LTI systems is:

Y(t) = f U(t) - h(t —1)dt

—o0



Inverse Problems in Dynamic Calibration of Sensors 177

The calculation of the impulse response h for LTI system results from
considering a unit impulse input U(t) = d(t), such that:

KO X +b-5(1)
at
and:
c‘g%:aw_g YO +b-3(0)

Rather than solving analytically this equation, complex functions
representation can be used to obtain the transfer function. In scalar case

h(s) = Y(s)/ &(s)

For the unit impulse input U(s) = 6(s) = 1, impulse response h(s) can
be calculated in time domain, h(t), using the inverse Laplace transform
L that gives h(t) = L' {h(s)}. Convolution integral can be reformulated
in the discrete form of a convolution sum using shifted impulse response
h;j for the sampled time interval t - T with sampling period T, such
that the discrete time 1;, (corresponding to the continuous time T, when
the impulse is applied [67]), where t; = © / T, and the time t; when
the response y is observed t; = t / T, such that t - T in discrete time is
@1 - j)Tsori-jin steps.
Convolution sum for LTI discrete systems

corresponds to:

y(t) = J-U(‘c) ‘h(t—1)dt

—oo

For input signals of limited duration and/or damped systems this can be
written, after discretization, in matrix form, as shown in the next section.
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D) Matrix form representation of the forward model, in discrete time, is:
y=h-u

where uis input [N, - 1] vector, y is output [Ny - 1] vector and h is [N, -
Ny] matrix.

It has to be taken into account that y and u in matrix form
representation and Y and U in state space representation have different
contents.

Inverse model permits to calculate the estimate of the sensor input
signal:

Ueg = h>1 'y
In fact noiseless output y is not available. Replacingy = y,,- W
Ut = h-l : (y - W)

This estimation requires y,, which is a noisy signal, as well as the
knowledge of the random noise characteristics. Ignoring the noise, the
above equation gives an approximate estimation Ug.

The inversion of h, a [N, - Ny] matrix, can only be obtained as a
pseudo-inverse h®. This is a typical difficulty in inverse problem solving,
that is extensively investigated in the specialized literature [67-73].

As a result, the proposed dynamic calibration approach for sensors can
benefit from the existing methods for obtaining numerical solutions for
inverse problems.

In fact, SVD and regularization methods presented in Ch. 3, as well
as reduced order dynamics method, presented in Ch. 4.4.3, limit the
solutions to inverse problems to lower frequencies domains to avoid the
effect of high frequency measurement noise.



Inverse Problems in Dynamic Calibration of Sensors 179
4.6 State Estimation for Indirect Sensing

4.6.1 Derivation of the Estimator for Indirect States Estimation
Using Matrix Inversion Approach

So far in Ch. 4 sensor calibration problem was formulated for sensor
input estimation Ug(t) from given sensor output measurements y(t). In
this section, the problem is the estimation of states that are not directly
measured, i.e. the case of states that do not provide direct inputs to
sensors. The approach is based on the dynamic model linking measured
states to the other states that are not directly measured.

Assume a LTI (Linear Time Invariant) system in state-space
representation

dX(t)/dt=a- - X({)+b - U(t)
Y(t)=c-X(t)

where

X [Ny - 1] is the system state vector
U [N, - 1] is the system input vector
Y [N, - 1] is the system output vector,

where N, <N, and N, < Ni.

Output matrix c¢ is assumed to distinguish between n; measured states
X, [Ny - 1] (directly measured by n; sensors), from the n-n; states,
intended to monitor, X, [(Ny - N ) - 1] not measured directly by sensors
[72]. Indirect measurement of systems defined by ODE models are a
simplified case of non-collocated measurements of systems defined by
PDE and, for this reason, in both cases they will be named here as cases
of non-collocated sensing, even if in systems defined by ODE, space
variable is not present. In this context, indirectly measured states are
linked by lumped parameters models to directly measured states. In this
case, the state vector is partitioned as follows
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System state space model can be partitioned as well

dX] (t) /dt= a - X](t) +apn: Xz(t) + bl . U(t)
dX2 (t) /dt= a - Xl(t) + ax - Xz(t) + b2 . U(t)
Y(®) =c - Xy(0)

and ¢, has only zero elements such that ¢, - X,=0.

Indirect sensing requires to calculate estimates X,., given direct
measurements Y(t) of only X;(t).

Sensors input vector u [n, - 1] is system output vector the states X,
directly measured by n; sensors

u(t) = Y(t) = ¢ - Xy(t)

Sensors output vector y(t) contains the only signals available to estimates
Xe for the indirectly measured states X,.
Assume a state-space representation of the sensors

dx(t) /dt=A - x(t) + B - u(t)
y(© =C-x(t)
where
X [n,- 1] is the sensor state vector

u [n, - 1] is the sensor input vector, n,= Ny for Y =u
y[n, - 1] is the sensor output vector,

where n, < n, and n, <n,.

Sensor output y is used for estimating directly X, and indirectly X.
The block diagram is shown in Fig. 4.34.

Dynamic calibration for the sensors in complex domain gives

Ue(s) =B* - (I-5-A)- C*- y(s)
Non-collocated system states X, result from the system state equation
dXz(t) /dt= a - Xl(t) + ax- Xg(t) + bz . U(t)

Estimation X, of the system states X, cam be obtained with a reduced
order observer [72], in fact the inverse model
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dXZesl(t) /dt= - Xlesl(t) +ax- XZest(t) + b2 : U(t)
where X (t) can be obtained from a matrix inversion ¢! and sensor
output Y(t)
-1
Xlesl(t) =C - Y(t)

The matrix ¢[P * NJ is rarely square and nonsingular and a pseudo-
inverses or generalized inverse ¢ has to be used instead

Xlest(t) = c_g . Yest(t) = c_g + Uegt
Observer dynamics for X,.4(t) is given by

dXoeq(t) / dt - an - Xoeq(t) = a1 - € - Uy + by - U(Y)

—» system > ¢ X, Y > sensor
=u
U

X vy

calibration
Uest

v

estimation

v

Fig. 4.34 Indirect state estimation

While X.(t) can be obtained from a matrix inversion ¢! and sensor
output Y(t), the calculation of X,.(t) requires the inputs u. from sensor
dynamic calibration and system input U(t).

After taking Laplace transform

(Is - a5) - Xoe(8) = A1 - €% - Weg(8) + by - U(s)
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or, an observer based on a square matrix inversion

Xoesi(8) = (L+ 8 - ap) " [a51 - €% - Uege(s) + by - U(s)]
or

Xoesi(8) = (L+ 8 - ap) " 251+ Xje(s) + (I s - a5) - by - U(s)

The block diagram is shown in Fig. 4.35. Digital computations of the
estimates X .y and Xo. consists of

Xlesl (S) = CEg(S) : B_g : (I *S- A) . CEg 'y
Xoesi(s) = I+ s - ay) R (21 - Xiesi(s) + by - U(s))

This approach takes into account sensor dynamics and introduces
dynamic calibration for the sensor, aspects often ignored in cases when
sensors where assumed simply represented by the output matrix c, i.e. for
ideal sensors that measure collocated states exactly, u.y=u=Y =¢;- X
[72].

A 4

system » ¢;- X »| sensor
1 Xy
U X, Y=u

y
A 4

B* I-s-A)-C*

v Uest
¢t
E—
X
\ 4 lest
R + +
> b, )
I 1 XZest
S-a
( 22) »

Fig. 4.35 Indirect state estimation in matrix form formulation
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4.6.2 Luenberger Observer and Kalman Filters

It can be observed that besides the numerical difficulties mentioned for
the dynamic calibration, the observer requires the calculation of
eigenvalues of the square matrix (I - s - ay,), that controls the rate of
estimation convergence of Xoey. [70].

A Luenberger observer might provide, however, a better control of
the rate of estimation convergence for X, [70].

dXe(D/dt = a1; - (D) + @12 - Xoel(D) + by - U (1) + Ly - [Y(D) - Yea(D]
dXoes(D/dt = ay; - Xijege(t) + @ - Xoewi(t) + o= U(D) + Lo+ [Y(1) - Yese(D]
Y =¢ - Xy()
Yeu(t) = €1+ Xjeg(t)

where L, and L, are Luenberger observer gains that can be chosen such
that the desired rate of estimation convergence is achieved.

In such a case, the overall calculation of X;. and X,., can be
formulated as an Luenberger observer that would include not only
system dynamics equations but also sensor dynamics equations. The
advantage could be the avoidance of inclusion of signal derivatives in the
feed-forward path. The disadvantage is the development of a centralized
error [Y(t) - Yeu(t)] in a feedback approach on which relies the overall
result, while the above developed approach includes decentralized sensor
dynamic calibration adapted to the specific characteristics of the sensor.
Moreover, Luenberger observer still requires the calculation of ¢!, orife
is a singular matrix, of ¢*®. [72].

Kalman filters serve the same purpose, but include the effect of
random noise. White noise assumption might be too restrictive, while
colored noise assumption might result in a significant computation
burden in real-time applications. In practical applications a choice might
have to be made between a deterministic approach applied after filtering
random noise and a stochastic approach in which random noise effects
are included in the direct and inverse problem formulation [41, 45, 65,
67].
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Indirect state estimation shown in Fig. 4.35 and Luenberger observer
parallel the two types of methods presented in Ch. 3.3 for solving inverse
problems, matrix inversion and iterative methods, respectively.

For a full state feedback system

Xu

U=K-X=[K, |K2]{X }=K1-X1+K2-X2

2

dXoeq(t) / dt = ap; - Xieq(t) + @20+ Xoe(1) + by - U(t) = g - Xjeg(t) +
ay - XZesl(t)+ b2' (Kl : Xlest+ KZ : XZesl) =
(@ + by - K)) - Xjeg (1) + (an+ by - Ky) - Xoeg (1)
Yesl(t) = uesl(t) =Cr- Xlesl(t)

In this case the estimation does not require any autonomous system input

U=0
AXoeq(t) / dt = @y - Xjeq(t) + a2 - Xoeg(t)

or
dXZesl(t) /dt- ax: XZesl(t) =a - Xlest(t)
Taking Laplace transform for zero initial conditions

(s - Inx - @) - Xoe(s) = a2y - Xeu(S)
Xoes(8) = (5 - Iy - a20) ™+ g1 Xjeu()

or
Xoest(8) = (s - Inp - an) e ay - ¢c*s) BE-(s-I-A)-C*-y(s)

For this passive system (U = 0), both estimations Xy and Xy are based
only on the measurements y(s). For example, this would permit to
calculate inner states of passive Mass-Spring-Damper networks from
some particular nodes displacement measurements or inner states of



Inverse Problems in Dynamic Calibration of Sensors 185

passive electric R-L-C networks from some particular node voltage
measurements.

4.6.3 Indirect Estimation of States and Inputs for LTI ODE Systems
Using Matrix Inversion

The state space model from Ch. 4.5.1, partitioned in states directly X;
and indirectly X ipeasureds €an also be used to estimates the unknown input
U. This problem is a combination of dynamic calibration problem, from
Ch. 4.3 and 4.4, with indirect state estimation. For focusing only on this
issue, ideal sensors are assumed, such that the problem is formulated for
the system model from Ch. 4.5.1, given here after taking Laplace
transform for zero initial conditions

(s-Lip-a;) - Xi(s)=a;p- Xy(s) + by - U(s)
(s - I - ax) - Xu(s) = ay; - Xi(s) + by - U(s)
Y(s) =ci- Xi(s)

The solution of the inverse problem for this LTI ODE system can be
obtained analytically for these three equations with three unknowns

Xi(s)=¢*-Y(s)
Ue(s) =[an- (s-In-an)" -by+b 1% [(s- Ly -ay) -
ap-(s-In- 2‘22)>1 “ay] e e y(s)
Xoe(s) = {[(s - I -a2) " - @y +(s - In-a2) " by [ap - (5 - Lp-an) -
b+ b1 [(s-Lii-ai)-apn-(s-In-an) ™" anl}l ¢ y(s)

These solutions are computationally intensive even for LTT ODE systems
and its accuracy strongly depends on the number and location of sensors
producing y(t).

Example 4.17 Scalar equations for a SISO system with two states are

(s-apn) - Xi(s)=ap- Xy(s) + by - U(s)

(8 - axn) - Xy(s)=ay - Xy(s) + by~ U(s)
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Y(s) =c;- Xi(s) + 0 - Xu(s)
The solutions for X;(s), X,(s) and U given Y are
Xi(s)=Y(s)/ ¢y
Ueca(s) = {[(s - ai) - a2~ @y / (s - a)] / [ana - ba /(8 - a0) . bul}- y(s) / ¢

Xoest(s) = {[ @z / (s -ap)+by- [(s-aj) -ap-ay/(s-axn)]/[(s-ay)|an-
by/ (s -ax)+ bill}- ¢ ®-y(s)

Example 4.18 For the under-actuated and under-sensed mechanical
system shown in Fig. 4.36, obtain x; and F, given y = x,.

JM%
k) o—] P
1.
....... ’ >

Fig. 4.36 Under-actuated and under-sensed mechanical system

Motion equations are

F,= kz' (Xz—Xl) +b2' (dXz/dt— Xm/dt)
kl'X1+b1'dX1/dt+k2' (Xl—X2)+b2' (dxl/dt—dxg/dt)=0

Laplace transform for zero initial conditions give the solutions

k,-b,:-s
Xl,est = 2 2 y(S)
k, +k, +(b;+b,)-s
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=(k1‘ b, -s)(k, 4 b, -s)
2T K 4k, + (b +by) s

y(s)

Problems

1. Consider a K thermocouple with gain at 20 [°C] of 40 [uV/OC\ and

time constant of 0.005 [s].

a) Obtain the unit step response and the Bode diagram

b) Calculate the cutoff frequency defining the bandwidth.

c) Using MATLAB, obtain the harmonic response for a unit
amplitude sinusoidal input with @ = 100, 200 and 1000 [rad/s].

d) Verify that the cutoff frequency defining the bandwidth
corresponds to the defined reduction of the amplitude of the
harmonic response.

e) Make a table of the amplitude variation of the steady state
response with o.

2. Consider a second order instrument with k = 2, o, = 200 [rad/s].

a) Obtain MATLAB simulations for unit step response and Bode
diagrams for the of the damping ratio values { =0, 0.3, 0.7, 1.0,
2.0.

b) Calculate analytically the amplitude and phase of the harmonic
response for a unit amplitude sinusoidal input with @ = 100,
200 and 1000 [rad/s].

c) Calculate analytically the cutoff frequency defining the
bandwidth.

d) Obtain MATLAB Bode diagrams of the inverse dynamics
compensator for the following values of the damping ratio { =
0,0.3,0.7, 1.0 and 2.0.

e) At what frequency the magnitude is ten times higher than at
10 [rad/s]?

3. Consider the mechanical system shown in Fig. 4.36 for k; =k, =k
and b] = bz =0.
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a) Obtain estimations for x; and F,.
b) Are the results intuitive? Could the results be obtained without
any calculation?

4. Consider the under-actuated and under-sensed mechanical system
shown in Fig. 4.37. Obtain estimations for F, and x,.

K ™) F;
[ I
>Xl_y ....... >XQ

Fig. 4.37 Under-actuated and under-sensed system with measured output y = X,



Chapter 5

Active Vibration Control in Flexible Structures

In this chapter modeling and control of various flexible structure systems
(shafts, beams and membranes), will be investigated in view of outlining
active vibration control issues within the framework of solutions to direct
and inverse problems.

In the first part, SISO (Single Input Single Output) and MIMO
(Multiple Input Multiple Output) lumped parameters mechanical models
will be used for presenting active vibration control approaches [109].
Direct problems and feedback control for shafts, beams and membranes
will be investigated in the subsequent sections. MAPLE and FEMLAB
based examples of membrane transversal vibration will be presented in
the last section.

5.1 Active Vibration Suppression for Lumped Parameters
Mechanical Systems Using Force and Position Control

5.1.1 Direct Problem

Vibration suppression is illustrated here for the case of harmonic
excitations.

A simple SISO translational lumped parameters system, shown in
Fig. 5.1, can be used to illustrate the concept of active vibration
suppression [17]. Its free body diagram is shown in Fig. 5.2.

The force input subject to control is f(t), the external force
perturbation is f.,(t) and the displacement output is y(t).

189
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Fig. 5.1 Active vibration suppression in a single input single output system

y(®)
fex(D)
M
K-y f
B - dy/dt

Fig. 5.2 Free body diagram for the system shown in Fig. 5.1

The equation of motion is
M - d’y/dt* + B - dy/dt + K - y = f(t) + fo(t)

After taking Laplace transform for zero initial conditions, the result is



Active Vibration Control in Flexible Structures 191
[Ms® + Bs + K] - y(s) = f(s) + fux(s)

The solution gives the direct problem formulation for force input and
displacement output

y(s) = (f(s) + fuo) / [Ms” + Bs + K] =
f(s) / [Ms” + Bs + K] + foi./ [Ms” + Bs + K] = yc(s) + ya(s)

where
ye(s) = f(s) / [Ms® + Bs + K]
is the displacement due to the controlled force f, and
Va(s) = fux / [Ms® + Bs + K]

is the displacement due to the perturbation force f..
Perturbation f.,, effect cancellation is ideally achieved as

YC(S) + Ya(s) =0
or
f(s) + fex(s) =0

For this LTI system, the perturbation is exemplified by an external
harmonic perturbation force

fexi(t) = -Fex; - sin @t

Vibration suppression can be realized by:
- force control that has to achieve

(1) + fex () — 0
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-position control that has to achieve

Ye(©) +ya(t) = 0
5.1.2 Force Control for SISO Mechanical System

Force control approach, shown in Fig. 5.4, is based on:

- force measurement of perturbation f.,(t)

- generation of Force Control command f“ to the actuator to produce an
applied controlled force f(t) with the same frequency and amplitude as
fex(t), but of opposed phase, i.e.

f(t) = -fox(t) = -Feyi - sin ot = F,, - sin(®t + )

This approach is in fact force feedback control for achieving the desired
value fy = O for the total force applied on M, i.e. f + f.,— 0, or force
regulation, and was proposed for vibration suppression in flexible
structures subject to a known or measurable external harmonic
excitation, as well as for noise suppression. Force Control command is
given by

f(C)(t) = fex()

The controller does only a sign change of the input, which is equivalent
to a P-control with unity gain. More complex state feedback controllers
can also be developed.

This solution requires a force sensor and a force controlled actuator.
Force control for vibration suppression implies an implementation with
insignificant delays, i.e. ideal sensor f ., = f ¢y, controller G.(s) = 1, and
actuator, G,(s) = 1. Ideal force control results in f(t) = f(t) = - exp(t) =
~fexi(t) Or

f(t) + f() =0

Control law G(s) can be a PD control of force error fg - fep.
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Position control can achieve desired perturbation cancellation using a
position sensor and a position controlled actuator.

f ex(t) = Fex, - sin ot

External perturbation
force sensor

f exp
Force
Control
Actuator
fd =0

Fig. 5.3 Force control scheme for vibration suppression for a single input single

output system subject to an external excitation f ., = F,,, - sin ot

f d=0

Control Actuator
G(s) P G
System
1
_——
Sensor Ms“+Bs+K

Fig. 5.4 Block diagram for vibration suppression
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5.1.3 Position Feedback Control Approach

The vibrations of this system are characterized, for f = 0, by the
displacement y,(t) due to the perturbation force f.y

fox(t) = Foy - sin ot
which has the Laplace transform
fou(8) = Fexe - @/ (5% + @)
The displacement y,(s) due to f., is given by
Va(8) = fux(s) / [Ms” + Bs + K] = [Fex - 0/ (s* + @) 1/ [Ms” + Bs + K]

Control force f(s), applied to the same mechanical system, produces the
displacement

ye(s) = f(s) / [Ms® + Bs + K]
The superposition gives
Y=YetYa
Feedback control of the position has the goal to achieve that y(t) tends

towards the desired position yq = 0, i.e. y(t) — yq , or, equivalently, to
make position error

Ya-y =Ya— (ye(8) +ya(s)) — 0

This approach requires the displacement measurement y.(t) and
feedback position control that tries to reduce in time the position error

Ya- () = - y(t) = - (y(t) + yu(t)) = 0

The equation of motion for the system shown in Fig. 5.3 is
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M - d’y/dt* + B - dy/dt + K - y = f(t) + f.,, (1)

After taking Laplace transform for zero initial conditions, the solution
was

f(s)- £ ()

(8)=
Y M-s*- B-s- K
or
f(s)+f,,, (s) o’
y(s)= = >
K sT+26-m, s+,
where

®,=V (K/M) is the natural frequency
{ = B/(2N(K - M)) is the damping ratio.

In the under-damped case ({ < 1) damped natural frequency is ®, V(1-
).

Ifo=o0, \/(1—@2), the system will be in resonance and the amplitude
of y(t) will increase significantly. Given that the frequency of the
external excitation cannot be changed, active vibration control can be
used to change the natural frequency such that the resonance is avoided.

Active vibration reduction using position control is used for:

- vibration isolation to reduce vibrations transmission to and from
vibrating bodies

- modification of the mass-spring-damper parameters of the vibrating
body.

Active vibration reduction creates an artificial impedance between the
vibrating body and the base and, by measuring the displacement and
using a desired artificial impedance, generates a force applied to the
vibrating body by an actuator. This is achieved by producing f(t), the
output of an actuator under PD control command



196 Advanced Mechatronics
u“=-b-dy/dt-k-y

where b and k are the PD controller gains and which be interpreted as an
artificial b-k impedance.
The effect of the actuator with transfer function

The equation of motion of the controlled system for f = u ' becomes

M-dy/d?+B-dy/dt+K-y=-b-dy/dt—k-y+fu(t)
or
M- dy/d + (B +b)-dy/dt+ (K +Kk) y="fu(t)
and the new natural frequency and the damping ratio.

on= V(K + K/M) > o,
On= (B +b)/(2 - V(K +Kk) - M))

such that the resonance is avoided. Moreover, the coefficient b permits to
modify the damping ratio as desired.

The system with active vibration position control subsystem is shown
in Fig. 5.5. This control scheme, shown in Fig. 5.5 (b), is implemented
using position and velocity sensors and PD control that generates the
position command u® for the Actuator.

Lumped parameters systems have a finite number of natural
frequencies and, in principle, when subject to external harmonic
excitations, the amplitude of their vibrations can be reduced using either
force control or position control. These control approaches will be
applied in the next sections for the control of vibrations various flexible
structures.
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5.2 Direct Problem and Under-Actuated Control of a

Non-Minimum Phase Flexible Shaft

Distributed parameters modeling for flexible structures use often second
order differential equations and finite elements models [30]. In this
section a simple series system containing a flexible shaft and actuators

will be investigated.

Displacement
sensor

Fey - sin ot

A

AY.

Yest

Position
Controlled
Actuator

PD
Position
Control

y¢=0

f ext = Fex - sin @t

()
y¢=0
+
Control Actuator +
+
i ge(s) o ga(s) R
System
P 1
Veur| 0¥ y Ms +Bs+K
(b)

Fig. 5.5 Position control of vibrations scheme (a) and block diagram (b) for a SISO

system subject to an external excitation F,,, sin ot
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The distributed parameters model of a constant cross-section and small
diameter shaft is given by [17, 30]

970(x, t)
at?

907 (x,t)
2

-G/p =1(x,t)-8(0)

where

0 is the torsional displacement of the shaft

G is the shear modulus

p is mass density

T is the torque applied at the x = 0 end of the shaft.

A flexible shaft with effort-flow cuts at both ends is shown in Fig. 5.6.

T, T,
| |

(0}

(O]}

Fig. 5.6 Free body diagram of a flexible shaft

This distributed parameters system can be approximated by various
lamped parameters models, easier to compute in real time and to use for
controller design.

Three lumped parameters models of the flexible shaft will be
presented to illustrate various levels of lumped parameters approxima-
tions of a flexible structure [30]:

(a) lumped parameter model with torsional spring coefficient k;
(b) lumped parameter model with torsional spring coefficient k and

lumped inertia J;

(c) single finite element model;

These models are obtained as follows:

(a) for the flexible shaft represented by a lumped parameters model with
torsional spring coefficient k, the following equations can be
obtained:
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T1(1) = k(B4(t) - Do(1))
Ta(t) = - k ((B4(1) - 92(0) = - T (1)

Given that ® = d¥/dt and using Laplace transform, this system can be
solved to obtain the relationship between the pairs of across-through

variables {T{, ®} and {T,, m,}

Ti(s) = - Tx(s)
0(s) = - [1/(k /)] - To(s) + 0x(s)

T,(s)| | -1 0] T,(s)

o, s)| [=s/k 1] @,(s)
This model is suitable only for shafts with low moment of inertia and
ignores non-minimum phase property of flexible shafts.

or, in matrix form

(b) for the flexible shaft represented by a torsional spring coefficient k
and lumped inertia J, the following matrix equation can be written
for the case of splitting J into two J/2 at the two ends of a spring k:

Ti(s)=(J/2) - s> 1 (s) + k - (84(s) - B(s))
To) = /2) - 8- Ba(s) + k - (9a(s) - B4(5))

or, in matrix form:

T, (s) [0 0] Tk -k W 0,(s)
=|5s .
T, (s) 0 dr2) -k k , 0,(s)
This equation shows that the flexible shaft is represented by an inertia
matrix with no cross-coupling terms and a compliance matrix with cross-

couplings.
In case that the right hand side end of the shaft is subject to the torque
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T, = 1, applied by the actuator with a negligible moment of inertia J; and
right hand side end of the shaft is free, the model becomes

u®|_(of0 0] [k -k ) 0,(s)
0 0 d2)] [~k k|6,

After eliminating 0:(s), the following transfer function is obtained [30]

0,(s) J?-s?/2+k
T,(8) s*-[J*-s?/4+k-D)

This shows a minimum phase model, while the flexible shaft is a non-
minimum phase system. This model was called inconsistent; a finite
element model can be used to obtain a consistent model.

(c) for the flexible shaft represented by a single finite element model,
the following equations can be obtained:

Tis)=T/3) 8> 0(s) +(J/6) - % 0a(s) + k- (04(8) - 95 (3))
Tos)=(J/6) - 8> 0y(s) + (T /3) - %0y (s) + k- (02 (5)-9 (s))

or in matrix form:

T, (s) [03) 0] [k -k W 0,(s)
=|s .
T, (s) Jsmey d73) -k k , 0,(s)
This equation shows that the flexible shaft is represented by an inertia
matrix and a compliance matrix with cross-coupling.
In case that the left hand side end of the shaft is subject to the torque

(T, = 11) applied by the actuator and right hand side end of the shaft is
free (T, = 0), the model becomes

@) _([0B 0O] [k -k ) 0,(s)
0 ey B |-k k] [6,()
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Second scalar equation
(J-s*/6-k)-0,(s)+(J-s*/3+k)-0,(s)=0

gives

T-s2/3+k

0,(s)= 0,(s)
Y k- Ts206 0

Eliminating 0, (s) from the first scalar equation, the following transfer
function is obtained [30]

0,(s)  k-J-s%/6

7,(s)  Js?[Js*/12+K)]

This is a non-minimum phase model, i.e. a consistent model of the
flexible shaft, while

0,(8)  k+J-s%/3
7,(8) J-s?-[J-s%/12+K)]

is a minimum phase model.

For the case (c) for T, =1, and T, =0, a closed loop control to bring
0, (s) towards 0, (s) is shown in Fig. 5.7. In Fig. 5.7 besides the closed
loop control of 0, (s) there is open loop dynamics for 6, (s), due to under-
actuation.

For the case (c) for T, = 1, and T, = 1, a closed loop control can be
designed for both 6; (s) and 6,(s), but this controller is applicable to the
shaft represented by only one finite element.

Any limited number of finite elements limits the model to lower
modes of vibrations represented by the model, i.e. leaves higher modes
of vibration unaccounted for. Moreover, the closed loop control of the
vibrations of a flexible shaft is subject to the limitations of any infinite
dimensional system controlled by a finite number of point actuators.
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More detailed analysis of active control of flexible structures is presented
in the subsequent sections.

014(s) 19%)  1i(s)

Js?3+k
Js2[(Js?/12) + K)]

01 (s)

0 (s)
k-Js’6 |

Is?/3- k

Fig. 5.7 Closed loop control of 0,(s)

5.3 Control of Vibrations in Beams
5.3.1 Perturbation Cancellation Control in MIMO Linear Systems

Before the presentation of the control of vibrations in beams and plates,
the general control approach will be presented for the case of a Multi
Input Multi Output (MIMO) linear system subject to an external
perturbation w(t), shown in Fig. 5.8, as a generalization of the above
SISO translational lumped parameters system subject to a harmonic
perturbation, presented in Ch. 5.1.

The linear time invariant system is modeled by the following linear
ordinary differential equations (ODE) used for modeling lumped
parameters systems

dX(t)/dt = A - X(t) + B - u(t) + G - w(t)
y(®) = C- X(t)
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where

X(t) = Ny-vector of states with given initial conditions x(0)
u(t) = N-vector of inputs

w(t) = N,-vector of disturbances

y(t) = Ny-vector of outputs

A, B, G, C, time invariant matrices

wi(t
® External

>| perturbation
measurement

b wal®)

Controller

u (©)

I Actuators I

u

Fig. 5.8 Controller for perturbation effects suppression for a MIMO linear system subject

to an external perturbation w(t)

After applying Laplace transform, the model becomes

(s I-A) - X(8)=B - u(s) + G- w(s)
Y(s)=C-X(s)
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For linear systems, superposition principle can be applied will be
analyzed here for the following cases

a) u(t) = 0 and w(t) # O resulting in the output y,(t)
b) u(t) # 0 and w(t) = 0 for an output y,(t) = - y.(t)

¢) superposition of the above cases for the case u(t) # 0 and w(t) # 0.

a) For u(t) =0 and w(t) #0
the state and output vectors are denoted X(s) and y,,(s)

(s I-A)-X,(s)=G-w(s)
Yuw(8) =C- X, (s)

such that the output due to the perturbation is
Yu(8)=C-(s-I-A)"+ G- w(s)

b) For u(t) # 0 and w(t) =0,
Yu(s)=C-(s-I-A)"-B-u(s)

The output y,(t) = - yw(t), or yu(S) = -yu(s), is obtained as

yu8)= C-(s-T-A)" *B-uB)=-yu(s)=-C-(s-I-A)" G- w(s)
The condition for perturbation effect cancellation is
B-u(s)=-G-w(s)
For achieving
Yu(®) +yu(®) = 0
requires that

us)=-B' - G- w(s)
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such that, after inverse Laplace transform, u (C)(t), the command for the
feedfback controller is

u)=-B"'+G-w(s)

If the matrix B [N, - N,] is not an invertible matrix the generalized
inverse has to be used [19].

¢) The superposition of the above cases for the case u(t) # 0 and w(t) # 0,
results in an overall output

¥(s) = yu(s) + yu(s) =0
or, after inverse Laplace transform
YO =y O+ yu() =0

showing the condition for the perturbation effect suppression.

This ideal result of perturbation effect cancellation using a feedback
controller with input w(t), output u(t) and the gain - B'G is
conditioned by the numerous assumptions made: linear time invariant
system with invertible matrix B, i.e. with as many inputs as states, with
perfectly measurable perturbations (w(t) = wy(t)), with actuators that
produce outputs exactly as the commands are (u(t) = u(t)) etc. These
assumptions are generally not valid for practical systems and instead of

Yu(t) + YW(t) =0
feedback control can be made to achieve
Yu(D) + yu(t) — 0

A better transient regime can be achieved by PD control, as shown in
Ch. 5.1 for SISO systems.
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5.3.2 Direct Problem in Beam Vibration Modeling

The analysis of a beam vibrations requires the use if the solution y(x, t)
of the Euler-Bernoulli beam equation

22 a4y+82y: F(x,t) _f(x,0)
ox* a9t> p-A-L p-A

where

in [m2/s] is beam coefficient, F(x, t) in [N] is the applied force, and
f(x, t) in [N/m] is the force per unit length.

The method of separation of variables assumes a solution in the form
[17]

y(x, = X(x) « T(t)

The free vibration of the beam corresponds to f(x, t) = 0, such that

a2 84y(x,t) N azy(x,t) _

0
ox* ot>

Applying the above assumed solution, beam equation becomes

22 d*X(x)T(t) N d*X(x)T(t) _

0
dx* dt?

or
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» XV (%) :_T”(t) — o2
Xx) T

The meaning of the « *will be clarified later.
The above equalities can be separated in two ordinary differential
equations, one second order temporal equation
T(t) + ®*T(t) =0
and a second one, fourth order spatial equation

2
X" (x) = 2 X(x) =0
a

where

EI
a=_[—
pPA
o _ o'pA =B
a’ EI

and the wave number in [1/m] is
®
B=>
a

The general solution of the temporal equation is
T(t) = A - cos(mwt) + B - sin(mt)

where the constants A and B are determined by the required two initial
conditions of T(t) and dT(t) / dt for t = 0. For the above equation is
obvious now that the assumed constant o ”corresponds to the natural
frequency of oscillation =2+ 1 * f.
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The general solution of the fourth order spatial equation is based on the
assumed general solution

X(x)=a-e B +b-e® yc.eP +d.eM
Given Euler identities
e =coshB - x + sinhf - x
e*P* =cosp - x +sinp - x

the above solution can be rewritten in a form that identifies the mode
shapes of the beam

X(x)=C-cos(Bx)- D-sin(Bx)- E-cosh(Bx)- F-sinh(Bx)

where C, D, E, F can be obtained as function of a, b, ¢, d. Actual values
for C, D, E, F result from the required four boundary conditions for the
fourth order spatial equation of the beam.

Appendix A presents the solution of Euler-Bernoulli beam equation
using the method of separation of variables for the transversal forced
vibrations of a cantilever beam. The beam is subject to a continuous
sinusoidal excitation at point x = Ip

f(x,0) =p-A-a-sin(Qin-5(x —1,)

The complete solution for the transversal vibration of a cantilever beam,
subject to a single frequency of excitation €, is given by [17, 23, 55]

X X (1
y(x,t) = Za n () ( )( an—mﬁsincont)

n

where X, (l,) is the value at x = 1, of the mode shape function X,(x),
given by
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X, (1,)=A,coshp,1, - cosp,l, - o, (sinhB,1 - sinp,1 )]
and

Al =48, /{4B,1+ 26 ,cos(2B,1) — 26, cosh(2B 1) — 4cosh(B, D)sin(B 1)
- 40§cosh(B JDsin(B, 1) +sin(2f 1) — cﬁsin(ZB 1) —4cos(B,Dsinh(B 1)
+ 40§cos([3 ,Dsinh(B, 1)+ 8c sin(B,,1)sinh(B 1) + sinh(2B, 1)
+02sinh(2B, 1)}

The equation for X,(1,) for the beam quantifies the effect on mode n of
an actuator located at x = I, on the y(x, t).

The direct problem equation for the output y(x, t) is the model for
transversal forced vibrations due to the harmonic excitation of given
frequency € from input from a point actuator in located at x =1,

fx,)=p-A-0-sin(Qin-3(x - 1))

This solution for single frequency excitation cannot be used for
designing feedback control for a beam, because the applied force per unit
length, f(x, t), is too restrictively assumed of a single frequency and
applied at a boundary point x = lp. A generic applied force per unit
length, f(x, t), can have an arbitrary time variation and could be
distributed along x [35]

f(x,t) = Z“’l P, -sin(n-m- X/I)Z P. sin(Q, - t)
r=1

where 1 is the length of the beam.

A generic solution for simply supported Euler-Bernoulli beam
equation for the initial conditions T(0)=0 and T°(0)=0 and subject to an
arbitrary f(x, t), is [17, 23, 55]

y(x,t):i i 2 (st
r=1 =1

. O]-sin(n - w- x/1)

n r n

where m = M /1is the mass per unit length.
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This generic solution for simply supported Euler-Bernoulli beam
equation is a particular case of the solution for simply supported plate
subject to a distributed force with arbitrary time variation.

The above generic solution to the direct problem is a double infinite
series, i.e. is not in closed form, and gives the transversal displacement
y(x, t) due to the excitation f(x, t). The spatial distribution

Zilpn -sin(n-1-x /1)

is assumed based on the n modes of vibration of the beam. Further
analysis of the effect of distributed applied force on beam vibration is
beyond the scope of this book.

The response to multiple harmonic excitations of various frequencies
generated by several actuators located in various points along the beam
represents a direct problem of a higher complexity. The output equation
for y(x, t) is in the non-closed form of an infinite series of modes and,
inverse problem does not have an analytical solution such inverse
problem solution is not obtainable analytically. Active control of
vibrations has to be based on a solution that does not come from the
inverse problem. In fact the solution analyzed in the next section is based
on feedback modal control for a reduced number of modes. Moreover, a
real beam is not subject to only transversal vibrations across the width of
the beam, but also across the thickness of the beam, as well as
longitudinal vibrations and torsional vibrations.

5.3.3 Feedback Control of Transversal Vibrations in Beams

Figure 5.9 shows the diagram of feedback control for perturbation effects
suppression for an infinite beam, based on the generic diagram from Fig.
5.8, for the case of using acceleration for perturbation measurement,
actuator output and error E(xg, t).

Feedback control of transversal vibrations in beams cannot be based
on the inverse of a direct problem with infinite dimensional solution of
the partial differential equations. A practical approach for the feedback
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control for a beam, like the one shown in Fig. 5.9, has to be based on
reduced order models.

W(Xy, D)=
d*y(xy, t) / dt? E(xq, )= A
d’y(xg, t) / dt?
External Win(Xy, t) Controller
N acceleration N
perturbation
(©)
measurement u
I Actuator I
Xw
D> u(X,, t) =
Xy d*y(x,, t) / dt?

Beam

Fig. 5.9 Feedback control for perturbation effects suppression for an infinite beam

One such finite dimensional model is the finite elements model,
presented in Ch. 3.3 for a string, that can be reformulated for a beam and
the conclusions for the string hold also for the beam, in particular that
any limited number of finite elements limits the model to lower modes of
vibrations represented by the model, i.e. leaves higher modes of vibration
unaccounted for.

Another lower order model that can be used for feedback control of a
beam, shown in Fig. 5.10, is based on transfer functions, [23].

This model can be used if the beam can be assumed a linear time
invariant system.

Transfer functions are unidirectional models defined for a given input
and a given output. In a beam, however, waves propagate in both
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directions and, for this reason, in Fig. 5.10 are shown separate transfer
functions designated for each unidirectional propagation case: B(s) from
the perturbation w(xy, t) point x4, to the error E(xy, t) point X4, B{(s)
from perturbation w(xy, t) point X4, to the to the actuator location x, and
B,(s) from perturbation w(xg4, t) to the error E(xq4, t) point x4. In the
assumed infinite beam (or anechoically terminated beam) there are no
end points reflections. The feedback controller is defined by the K(s)
transfer function, that has to be designed. The effect of this feedback
controller materializes in the value of d,(xy, t) that is supposed to cancel
d(x4, t) due to the perturbation in the point x = x,, such that E(xy, t) =
da(xg4, ) + d (Xg, t) = 0. i.e. ideally a zero error E(xy4, t). In reality, the
cancellation is not perfect and only a low value significant error can be
expected. Moreover, given that only a finite number of lower frequencies
are targeted by the feedback controller, the error E(xy, s), for s = @, will
increase as the value of the frequency ® increases.

Accelerometer Controller

1| W%y, 8) | K(8) =u9(5)/ Wi(Xy, 8)

u(s) E(x4,8)

Actuator

dl(xW7 S)

u(Xy,8)

Bi(s) =
di(xy,8)/u(xy, 8) d; (x4, )/u(xy, 8)

B(s) =d(xg, s) / u(xy, s)

w(Xg, S) d (x4, 9)

Fig. 5.10 Block diagram of non-collocated feedback control for perturbation effects

suppression for a beam using transfer functions
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The block diagram from Fig. 5.10 permits to write the following model
of the beam feedback control

wB(s)=d

u By(s) =d,

uB(s)=d,
d+ d2: E

u=K(s)(w+d))

From these equations can be obtained the transfer function E(s)/w(s) that
characterizes the controller effect in reducing the effect of the
perturbation w(s) on the error E(s) [23]. This transfer function can be
obtained from the above five equations, by eliminating d, d;, dand u

E(s)/w(s) = B(s) + Ba(s) - K(s) / [1 - By(s) - K(s)]
The ideal effect is E(s) = 0 and this requires
B(s) + Ba(s) K(s) / [1 - Bi(s) - K(s)] =0

This equation permits to calculate the transfer function of the feedback
control

K(s) =B(s) / [Bi(s) - B(s) = By(s)]

In practical applications, the three transfer function for the above
beam model are obtained experimentally using frequency response
measurements, [19, 34]. A block diagram for these experiments is shown
in Fig. 5.11.

The sinusoidal signal generator receives the command signal I(w) =
I - sin (ot) over the range of frequencies significant for the beam
vibration control, for example 0.01 to 100 Hz., i.e. four orders of
magnitude of frequency variation. This input to the sinusoidal signal
generator is usually an analog voltage signal and the electromechanical
signal generator will have the output I (w) = I - sin (wt), a sinusoidal
transversal excitation applied to the beam, often with a phase difference
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ignored here. The output transversal displacement of the beam O(w), is
measured by a signal transducer that produces the analog voltage O,(®)
transmitted to the Analog Input of a Data Acquisition Board installed in a

PC.
I(C)((D) \l/

Sinusoidal
signal generator

I(®)

Z > mw

O(w
Signal (©)

transducer

On(®)

PC

Fig. 5.11 Experimental determination of the transfer function of a beam

A suitable data acquisition and processing software, for example
LabVIEW™ or MATLAB™ can be used for obtaining the experimental
Bode diagrams amplitude and phase versus frequency . Next step is to
obtain an approximation of the transfer function of the beam using
the experimental Bode diagrams. For example, Log-magnitude diagram
can be used to determine asymptotic log-magnitude straight line
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approximations with slopes restricted to integer multiples of +/- 20
dB/decade [34]. After determining corner frequencies, the damping ratio
result from the amount of local resonant peak. The phase diagram is used
to check the resulting transfer function obtained from log-magnitude
curves. Non-minimum phase behavior, typical for flexible beams, can be
identified from the high frequency phase that results 180° away in
computed phase versus experimental phase diagram, indicating that a
positive zero was missing and has to be included in the transfer function.
Propagation time of the signals in the beam can be identified from the
constant rate of change T between computed and experimental phase
angles, i.e —T®, then the propagation delay is given by the multiplicative
factor e .

An example of experimentally determined transfer function, limited
to the first three modes of vibration, could be

O0u(®) /TY) =k (s-2) - €/ [(s +p1) * (s +P2) * (5 + P3)]

This transfer function includes not only the beam, but also the transfer
functions of the sinusoidal signal generator and the of transducer.
Assuming that the effect of the transfer functions of the sinusoidal signal
generator and the transducer are not significant, the three transfer
functions from Fig. 5.10 can be written as

B(s)=k*(5-2) - e ™ /[(s+p1)* (s+P2)* (s +p3)]
Bis) =k, (s-2z1) e /(s +p") s (s +pMa) - (s + pa)]
Bas) =k, *(s-2) € 5" /[(s +pPD) (5 +pPa) * (s + pPs)]

The resulting transfer function of the feedback controller would be in this
case:

K(s) = B(s) / [Bi(s) * B(s) — Bx(s)] =
{ke(s-2)+e/(s+p):(s+p)-(s+p)}/iki-(s-z)-e " k-
(s-2)+ e /(s+p)-(s+p)-(s+p)-(s+p™)-(s+p)-
s+pPD kot (s-20) - e 2 M[(s +pP1) (s +pPo) - (s + pP]} =
{ke(s-2)-e"/[(s+p)-(s+p)-(s+p)l}/ {k-k (s-2)*(s-2))"
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e T s +p) - +p) - (s+p3) - (s+p") - (s +pM) - s +p")] -
ky (s-22) e L (s +pP) - (5 +pPa) « (s + pPy)]}

The common denominator of this transfer function is

(keki<(s-2)+(s-z) e [(s+p?) - (s +pPo) * s+ pP3)] -
ko (s-22) =€ 5" [(s+p) - (5 +P2) - (s +p3)+ (s+pT) - (s +pMa) -
(s +p"3)1}

Even when all delays are insignificant, T = T, = T, = 0, the denominator
of K(s) is a 7-th order polynomial in s, difficult to implement. Results
were reported for third order controllers, but this would limit feedback
control to the first three lower frequencies of the transfer function,
leaving all other higher frequencies with no control [23]. Significant
work has to be done in this case to verify if spillover effects to higher
frequencies and other types of vibrations do not lead to highly oscillating
or unstable open loop dynamics. Moreover, this transfer function based
control is effective only if the parameters do not vary in time.
Feedback modal control is presented in the next section.

5.3.4 Feedback Modal Control

Feeedback control of vibrations in beams can be achieved using various
methods, as for example, modal control and wave reflection control. In
this section modal control will be presented modal control of beam
vibration [109].

a) Modal control of a 2 DOF mechanical system

To illustrate the concept of modal control, first will be presented the
simple case of an under-actuated 2 DOF mechanical system, shown in
Fig. 5.12.

In Ch. 3.2 was derived the model for this system

my -2 x/de+k o x + kot (X1 —X2) =1
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my + d* X,/dt® + k; (X,— X;) = 0
with one measured output
Yi=Xy

and one input f;.

}’1 =X > X, >

f,
k; my ka my

Fig. 5.12 An under-actuated 2 DOF mechanical system

Initial conditions are assumed
x1(0) = X9
X2(0) = X0
dxl(t) / dtltzo = Vo
dXz(t) / dt'tz() = Vyo
In matrix form this equation becomes

M-X+K-X=F

where
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m, O
M=
0 m,
0
subject to initial conditions:

X(0) = X10

| X20
. _V ]

X(0) = 10

[ V20

Modal analysis requires to determine the eigenvalues and the eigenvetors
of this system and this is facilitated by a first transformation of variables
X into Q [23] using

X=M"".Q
or

Q=M".X

where
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o

The above matrix equation of motion becomes

M- M2 -Q+K-M_1/2 Q=F

-1/2

Pre-multiplying with M~ gives

M—I/Z M- M—l/2 Q+ M—I/ZK . M—I/Z . Q :M—l/2 .F
where
M—l/2 'M'M_I/Z =I

Denoting

M. K-M"™ =K

M2 .F=F= ml_llz 0_1/2 . f; _ ml_llz'fl
0 m, 0 0

previous matrix equation of motion becomes

I1.Q+K-Q=F

with initial conditions

219
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. M2 .y
mm:h“”;ﬂ

20

K is a symmetric matrix that has the same structure as the definition of
squared natural frequency for a single degree of freedom mass-spring-

damper systemk/m=k-m'=m™"* . k- m™*.
Assuming the solution

Q=V-e™

such that

Q=_(02 'V'Cjwt

For F = 0, the last matrix equation becomes

~0°-V-el” +K-V-el” =0

or

0’ V=KV
or, after denoting
o’ =X
A-V=K-V

or

(K=%-1)-V =0
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The determinant equal to zero
‘(k—x-l)-v‘ =0

gives the characteristic equation for obtaining eigenvalues.
The solutions A, and A, can be written as a diagonal matrix

A O
A=
0 2,
known as the matrix of eigenvalues while V is the corresponding
eigenvector, i.e.

Viz

v, :[V“} for A,

and

v, :[V“} for A,

Vo

These eigenvectors correspond to mode shapes.
A second transformation of variables Q into R is given by [23]

Q=P-R
such that

where
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and
V, V.
P=[Vl Vz]:[ 1 21}
Vio Vo

P is the modal matrix, that has the property P P =1.
Substituting Q by R in

I-Q+I~(~Q:l~T

gives

P-R+K-P-R=F
Pre-multiplying by P gives

PT.P-R+P'K-P-R=P"-®

Taking into account that P'- P = I and that P” K-P gives the diagonal
eigenvalues matrix A

T A O
P - KP=A=
0 A,
the above second order differential equation in
R=P' -M"”.X=P" . M"”.X

becomes

I'-R+A-R=P"-F

with initial conditions
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PT.M" . x
RO)=] . 1”2 "
P M".

After denoting
A=Q° = Q0
0 Q)
and given
P’ = VlT :[Vu V12}
VzT Vo Voo
we obtain

T =12 =12 -1/2
PTF= Voo jfm =|:V11 VIZ} my vy emy
T -1/2
vV, 0 Vo Vo 0 Vo omy - fy
The above matrix equation of motion can be written in scalar form as

r+Q7 ®=m," £, v,

L (+Q,7 n)=m, " (1) v,

These are decoupled modal equations of the above under-actuated 2 DOF
mechanical system. Figure 5.13 shows the decoupled modes, equivalent
to the system from Fig. 5.12.

It can be observed that, even if only the mass m,in Fig. 5.12 is
subject to the external undefined force f,(t)and m,is subject to no

force, both unit masses for modes 1 and 2 are actuated, but cannot be
independently controlled by the single forcef,(t). Choosing feedback
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control to determine f,(t)for mode 1, for mode 2, v, - m;*. f, cannot

be modulated any more to satisfy control needs for mode 2. The term
Vo my 12g | will however excite mode 2 as a spillover.

I

12
Vi 1y -1

I

-12
Vor - 1My -1

Fig. 5.13 Decoupled modal equivalent of the mechanical system from Fig. 5.12

5.3.5 Modal Controlin Beam Vibration

The generic solution to the direct problem, presented in the previous
section as direct problem for beam vibration modeling as a double
infinite series cannot be used for solving analytically the inverse problem
that would give the excitation f(x, t) that would produce the desired
transversal displacement y4(x, t). Consequently, this non-closed form
solution cannot be used for obtaining a feed-forward control law. This
solution was however used for the formulation of the feedback control in
the form of reduced order modal control, presented in the specialized
literature [17, 23].
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The first three modes, they contain sin x - (n /1), sin2: (x/1) and sin
3 x- (/1) give the shapes shown in Fig. 5.14. The number of nodes for
mode n is n - 1. Modal control can be implemented, for maximum
efficiency, with actuators located mid-distance between adjacent nodes,
ie.x=1/2forn=1,x=1/4or3-1/4forn=2andx=1/6,1/2or
5-1/6 for n = 3. This shows that there are required as many different
actuators as the number of modes desired to control. Space, cost and
design constraints limit the number of modes that can be controlled to,
normally, less than 10. Modes that are not controlled but can be excited
by the actuators outputs for the modes intended to control result in
spillover phenomenon that has to be addressed separately [23].

5.4 Direct Problem in Free Vibrations in Membranes

The membrane shown in Fig 5.15 has a small transversal (along z axis)
displacement u(x, y, t), in the plane x, y from the equilibrium position
[17, 25, 109].

The equation for free vibrating membrane for transversal displacement
u(x, y, t)is [17, 23, 35]

0%u(x,y,t) B 0%u(x,y,t) N 0%u(x,y,t)

m/(c-h
(mi(e-h) ot? ox* dy?

where

m iS mass per unit area
¢ -h is the uniform tensile force

The solution can be obtained using the method of separation of
variables [14, 17]

u(x, Y, t) = W(X’ Y) : e(t)

where W(X, y) is mode shape function and 0(t) is the free vibration time
dependence.
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sinx- (m/1)

n=1 1
sin2-x-(n/1)

n=2 Ul g

sin3-x-(n/1)

.

n=3

Fig. 5.14 The first three mode shapes for a simply supported beam

/ N

X,y

Fig. 5.15 Membrane vibrating transversally
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Assuming a harmonic function 8(t) of unit amplitude frequency ®
0(t) = sin ot

and a double sine series representation for W(x, y) for a simply
supported rectangular membrane a by b with fixed boundaries

W(x,y):z ZWm,n~sin(n~n~x/a)-sin(n-n-x/b)
m=l n=l

membrane equation becomes
n*-m®/a’+7’ -n’/b> =0’ (m/(c-h))

with the solution for the radial frequency of the mode m - n

®,, =m/[(m*/a> +n>/b*) /(M /(G- h))]

Similar to the case of the beam, the direct problem solution for the
membranes cannot be used for obtaining the feed-forward control law.
This direct problem solution, a triple infinite series, can be plotted using
MAPLE [25] and can be simulated using FEMLAB [36].

5.4.1 Membrane Vibration Solution Plotting
Membrane vibration solution plotting using MAPLE shown in Fig. 5.16

a to e is obtained for:
-initial conditions:

u(x, y, 0)= @(x, y)
du(x, y, 0)/dt ="¥(x, y)

-boundary conditions for the membrane fixed at four corners:
for t > 0, u = 0 for the four corners and fort =0, du/dt=0.
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c(t=10)

Fig. 5.16 MAPLE simulation results for membrane transversal vibrations
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d (t=20)

e (t=30)

Fig. 5.16 (Continued)

These results for the direct problem of free membrane vibration, subject
to non-zero initial conditions, show even in qualitative analysis the
complexity of u(x, y, t) shape change over time. Inverse problem consists
in obtaining the required input forces to achieve a desired output uy(X, y,
t). Real-time application of an inverse problem solution is not practical at
this time.
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5.4.2 Simulation of Membrane Using FEMILAB

Finite elements method can be used to solve numerically membrane
equation [36]. A commercial software, FEMLAB™ was used for this
purpose.

Boundary condition for free vibration membrane simulation were:

-Fixed at left and right.
-Front and back are free to vibrate.

The results are shown in Fig. 5.17 a to e. Initial conditions are nonzero,
as shown in Fig. 5.17 a.

b(t=5)

Fig. 5.17 FEMLAB simulation results for membrane transversal vibrations
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d (t=20)

e

e (t=30)

Fig. 5.17 (Continued)
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Similar to the membrane vibration, the solution for the direct problem for
plate vibration consists in multiple sums of infinite series for an infinity
of vibration modes and results in complex time varying shapes [55].
Also, feedback control of vibration displacement can be achieved in
modal control only for the first few modes. An example of analytical and
experimental study of plate vibration control reduced to the first two
modes of vibration is reported in [23].

Problems

1. Assume the experimentally determined transfer functions, limited to
the first two modes of vibration

On(@) / I@)=k (s-2) e/ [(s +p1) - (5 +P2)]

for the tree transfer functions from Fig. 5.10 Obtain the resulting
transfer function of the feedback controller and determine the order
of its denominator.

2. For the mechanical system, shown in Fig. 5.18, the force input
subject to control is f(t), the external force perturbation is f., and the
displacement output is y(t). B and b are viscous friction coefficients
and K is spring constant. Obtain the model for the direct problem and
the position control condition.

fo T

Fig. 5.18 Mechanical system
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3. For the mechanical system, shown in Fig. 5.19, obtain the transfer

function for the direct problem and the block diagram for PID
position control.

fext(t) = Fex - sin ot

External perturbation force sensor

fexp
M
: I
f
Force
Control €
Actuator

f d= O

Fig. 5.19 Position control diagram for vibration suppression

4. Assume a flexible shaft represented by a single finite element model.
For the case that T; = 0 and T, = 1,, draw the block diagram for the
closed loop control to bring 0,(s) towards ©,(s). Show the
relationship between 0,(s) and 0,(s).

5. For the under-actuated 2 DOF mechanical system, shown in Fig.
5.20, obtain the decoupled modal equivalent
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Y2=Xao

f,
k2 m;

Fig. 5.20 An under-actuated 2 DOF mechanical system



Chapter 6

Acousto-Mechatronics

6.1 Acousto-Mechatronic Systems

Distributed parameters acousto-mechatronic systems are mixed systems
containing acoustic field transmission under computerized tight
integration. Such systems can function only under permanent computer
monitoring and control of the state variables of the acoustic field [82-84].
Similar to other Distributed Parameters Systems (DPS), a finite number
of point sensors and actuators result in an under-sensed and under-
actuated acoustic system. This chapter focuses on room acoustics and the
use of direct and reflected ray propagation in discrete inverse problems
solving for parameters estimation.

6.1.1 Recording Studio

Figure 6.1 shows the conceptual diagram of a sound recording studio.
Acoustic signals from voice, musical instruments and other sound
sources to be recorded are assumed transmitted through the enclosed
space of a room (recording studio), in fact a Distributed Parameters
System. These acoustic signals, modified by the room acoustics
(reverberations, wall sound absorption etc) are inputs to microphone(s)
or microphones, i.e. sensors converting acoustic signals into modulated
voltage signals [21, 85]. A recording system records these signals on
hard-drives, tapes, CDs etc. Often recoding takes place in an un-echoic
studio in order to avoid reflected waves. Sound effects in records can be,
however, added by digital signal post-processing.

235
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Sound l/
source

Room DPS sound
transmission

Acoustic Sound pressure

signals [Pa]

Microphone

Sensor

Modulated
voltage signal [V]

Recording
system

Fig. 6.1 Conceptual diagram of a recording studio

6.1.2 Active Sound Control in Halls

Figure 6.2 shows the conceptual diagram of a room (hall) active
acoustics. Modulated voltage signals from, for example, microphone on a
stage or from sound recording, provide inputs to speakers (i.e. actuators)
that generate acoustic signal outputs, transmitted further in a room (hall),
assumed an enclosed space modeled as a DPS. These acoustic signals,
modified by the room acoustics (reverberations, wall sound absorption
etc) arrive to audience ears, i.e. to acoustic receivers [21, 85-87].

This system will also be analyzed in this section as a distributed
parameters acousto-mechatronic system.
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Modulated
voltage signals [V]

I Speaker(s) I

Actuator(s)

Acoustic
signals [Pa]

DPS sound
transmission

Room

|

Acoustic receivers

Fig. 6.2 Conceptual diagram of a room (hall) active acoustics

6.1.3 Active Noise Control

Figure 6.3 shows the active control scheme for noise control in a duct.
The external perturbation is, in this case, a noise source of pressure
w(X,, t) at X, that propagates in a duct. The noise is measured with a
microphone placed at x., that has the output w,(x., t). A feedback
controller produces the analog voltage command u'® sent to a speaker.
The sound generated by the speaker, y(x,, t), combines with the noise
and both propagate in the duct. A monitoring microphone, placed at x.,
produces and output voltage E(xy, t) which, in the case of ideal active
(feed-forward) control, is supposed to be zero [23].

This negative feedback system, with non-collocated sensor, actuator
and output is designed to make the signal E(xy, t) tend toward its desired
zero value.
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X:O Wm(Xea t)
Controller

Xe u®©

Xu

E(Xd’ t)

Speaker

Monotoring
Microphone

W(Xe, ) Microphone Duct (Xgt) = dzy(xd,t)/dt2

Noise Sensing V(Xy, 1)

Fig. 6.3 Active noise control in a duct

6.2 Distributed Parameters Models of Sound Transmission

6.2.1 Wave Equation for Planar Sound Wave 1D Propagation in a
Free Sound Field

A simple case of acoustic wave propagation of the plane sound wave
propagating in a free (nonreflecting) 3D space is shown in Fig. 6.4.
Assuming a wave propagating in x direction from a source located x; at
constant sound speed c, the equation for the plane sound wave (i.e. far
from the source, such that spherical waves can be approximated by
planar waves) is the same as the equation for vibrating string [17, 21, 39]

9%u(x, t) 2 9%u(x,t)
ot? ox?

where



Acousto-Mechatronics 239

u(x, t) is the displacement of the longitudinal sound wave in the positive
and negative direction about an equilibrium position

u(x,t)=0
and
C=\/B / Po

B is the bulk modulus (modulus of elasticity of the medium)
Pois the density

u(x, t) X

Xq
—r—»

Fig. 6.4 Planar sound wave propagation

Assuming that the source, seen from a far point x, can be represented as a
planar wave source generating a simple harmonic motion with frequency

w=2-n-f=2-n/T
then
u=U;-cosm-t

and the plane traveling waves with velocity c arrive at a location x after
x / ¢, such that the displacement u(x, t), in case of no attenuation, is given
by

ux,t)=U; -cos®-(t—x/c¢)

or
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ux,t)=Us-cos (w-t-k-x)
where the wave-number k is
k=w/c=2-1n/)
and the wavelength is
A=2-mt-c/®
The proposed solution is

ux,t)=Us- cosm - (t—x/¢)

with
2
aL);’t):—US -@” - cos (@t —k - x)
ot
while
2
aL);’t):—US k? -cos (0-t—k-x)
ox

is a solution of the sound wave displacement equation

d%u(x,t) _o? 9%u(x,t)
ot? ox?

where, as above,
c=k/m

The plane wave of the longitudinal vibration of the air about an
equilibrium position can be interpreted as a traveling sound pressure
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wave, which is a variation of the pressure, associated with sound
propagation, about the local static value of the atmospheric pressure
generally (approx. 10,000 Pa). For the free (nonreflecting) sound
propagation case, this wave propagates in the positive x-direction, such
that any value U of the wave U = U - cos(®- t - k - X) can be seen as
traveling rightwards with velocity c.

Stress-strain Hook equation, (in this case for pressure p and strain
du(x, t) / 0x) can be written as

p=-PB-du(x,t)/dx

showing that a layer of the propagation medium is compressed by a
positive p and the strain which explains the negative sign

du(x,t)/dx=-p/P
For the above solution of the sound wave displacement equation
u(x, t) = U- cos (@t -k - x)
the time derivative is
ou(x, t)/dx = U -k -sin (0 t-k - X)
and the pressure solution becomes
p=-P-dux,t)/dx=-PB-k-U-sin (o t-k-Xx)
such that, for
c=+VB/po
or

B=cpo
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and
k=w/c
gives
p=-B-k-Usg-sin(@t-k-x)=-c-®-pg- U -sin(® t-k-x)
Second derivative, with regard to time, is

2
%:(e-m-po U)o -sin (0t —k-x)
t
while, with regard to x, is

9%u(x, t)

o =(c-®-p,-U) k> -sin (- t—k-x)

Sound pressure wave equation gives [21, 57]

’p(x,t) _ > 9°p(x.1)
ot’ ox’

or

O'p(x.) _ »9’px.0) _
ot* ox?

For, ¢ = #+\P / p,, both U; - sin (@ - t - k - x) and U; - sin (@ - t + k - x)

verify the wave equation.

For an enclosed propagation medium, like a finite length duct,
incident waves propagating in the + x direction U - cos(® - t - k - X)
interfere with the reflecting waves propagating in the — x direction Uy -
cos(® - t + k - x), (ignoring for now phase difference), forming standing
waves



Acousto-Mechatronics 243

U -cos(-t-k-x)+Ug-cos(w-t+k-x)=
2-U-(cosk-x)-(cosm-t)

i.e. non propagating waves (given that there is no factor ® - t £ k - x),
oscillating locally at x, with amplitude 2 - Us - (cos k - x) and with the
time variation cos ot [60].

6.2.2 Wave Equation for Planar Sound Wave 3D Propagation a
Free Sound Field

In this section is analyzed the case of acoustic wave propagation as a
plane sound wave propagating in a free (nonreflecting) 3D space, shown
in Fig. 6.5.

1

ux, y, x, t)

~

‘o

Xs, 0,0

v

y

Fig. 6.5 Planar sound wave propagation in 3D free space

The wave propagates in (x, y, z) space from a source located (x;, 0, 0) at
constant sound speed c. The equation for the plane sound wave
displacement u(x, y, z, t) is
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azu()a(;zf, z, t) _ C2(

or, in compact notation,

0%u(x, y,z,t) auz(x,y,z,t) auz(x,y, z,t)
x| o
y z

)=0

o%u(x,y,z,t

Jux,y.2.9 Z )—02~Au(x,y,z)=0
ot

where

u.(X, y, z, t) = 0 is the displacement of the longitudinal sound wave in the

positive and negative direction about a equilibrium position, and

C:\/B / Po

B is the bulk modulus (modulus of elasticity of the medium)
Pois air density.

The plane wave of the longitudinal vibration of the air about an
equilibrium position can be interpreted as a traveling sound pressure
wave, which is a variation of the pressure, associated with sound
propagation, about the local static value of the atmospheric pressure
generally (approx. 10,000 Pa).

Stress-strain Hook equation, (in this case for pressure p and strain
du(x, t) / 0x) is

p=-Pdu(x,t)/ox

showing, as in the case of 1D propagation, that for a layer of the
propagation medium compressed by a positive p, the strain has a
negative value.

Based on this, sound pressure p (X, y, z, t) wave equation results as
[21, 82, 83]

azp(xa Y9Z7 t) _CZ(azp(Xa y’ Z, t) + apz(xv y’ Z, t) + apz(xv y’ Z, t)
2 2 2 2
ot ox dy oz

)

=0
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or, in compact notation

I’ p(x,y,z,1)
2

c? -Ap(X,y,z,t) =0
ot

Assuming a planar wave source generating a simple harmonic motion
with frequency =2 -1 - f=2 - /T

u=U; - cos mt
a plane traveling waves along x-coordinate with velocity c arrive at a
location x after x/c, and the displacement u(x, t), in case of no
attenuation, is given by
ux,t)=Us-cos w(t—x/¢c)=Us-cos (0 t-k-x)
where the wave-number k is
k=w/c=2-n/A
and A is the wavelength
6.2.3 Sound Wave Propagation in an Enclosed Sound Field
The above wave equations can be used for modeling the sound
propagation in an enclosed space, by defining the specific boundary
conditions.

For example [56]
-for hard boundaries, (walls), with surface normal vector n

w_,
on

-for a pressure source of constant pressure po, located on the boundary
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P=Po
Numerical solvers for partial differential equations, for example
FEMLAB™, give the numerical solutions for the sound wave equation

for the particular boundary conditions for the enclosed space [56, 57].

6.3 Calculation of Room Eigenvalues and Eigenvectors for a
Rectangular Cavity or Room

A rectangular cavity of dimensions X, Y and Z is shown in Fig. 6.6.

v
<

Fig. 6.6 Rectangular enclosed space XYZ

The calculation of eigenvalues is based on the sound wave equation for
an assumed time harmonic solution [57]

p(x,y,z, ) =P(x, y, z) - &

such that
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2
w =—0" P(x,y,2)e"”
t

and
Ap(X,y,z) =e!® - AP(x,y,z)
The pressure wave equation gives
—® -P(x,y,z)e’® —c? -l - AP(X,y,2) =0
This results in the Helmholz equation [21, 57]

AP(x,y,2) +(@/¢)* -P(x,y,2) =0
or

0°P(x,y,2) . 0°P(x,y,2) . 0°P(x,y,2)
ox’ dy’ 0z*
where k=w/c.
The method of separation of variables for P(x, y, z)

+k? -P(x,y,2)=0

P(x,y,2) = A(x) - B(y) - C(2)
gives

9%A(x)

ox >

9’B(y) 9°C(z)
5yt A0 CD+ ST AG) B(Y)

B(y)-C(z) +

+k*-A(x)-B(y)-C(z)=0
where, for 3D propagation, the wave number 3D vector K is
k=k.-i+ky-j+k, -k

and [kI* = K
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K=k’ +k’+k’=(®/c)y
or
o=cV(k’+k’+k,)

After dividing by A(x) - B(y) - C(z), the following equation results

2 2 2
d A(X)z £ B(y)2 + 8 C(Z)2 +k,’+k,” +k,’ =0
A(x)-dx B(y)-dy C(z)-dz

or

d’C(z)
C(z)-dz?

d’B(y)
B(y)-dy’

d?A(x)

A AX) +k,%)=0
A(x)-dx?

k) +( k,2)+(

The three terms in this equation are equal to zero for all X, y and z only if
each separate term is equal to zero

& k.2)=0
Ax)-dx> 7
dzB(Y) 2
—_4+k,)=0
B(y)-dy®> ' :
&°C@_ 2y
C(z) - dz* :

For the nontrivial case that A(x), B(y) and C(z) are all non-zero, three
separate second order ordinary differential equations result [21]
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d? 5
(dX—2+kx )-A(x)=0
d2
(d—2+ky2)'B<y>=o
y
2
(;Z—2+kzz)-C(z)=0

These equations suggest harmonic spatial solutions, for example sin or
cos types. For the cos type, the solutions could be cos ky; - X, cos kyn - y
and cos k,, - z, forl. m,n=0,1,2,3,...

Consider a room with all boundaries, i.e. all walls, ceiling and floor,
assumed as hard boundaries,

ap(X, y, Z, t) — 0 for X = 0 and X = X
ox
aP(Xa Y.z, t) =0 for y= 0 and y= Y
dy
oz
For the wave equation
Py,

32 c? -Ap(X,y,z,t) =0

and for an assumed time harmonic solution [57]
p(x,y.z, 1) =P(x,y, ) - e

the spatial part P(x, y, z) has to be formed of cos terms, such that Imn
solutions for p(x,y, z, ) could be
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Piann(X, ¥s Zo ) = Ay + (€08 Ky + X) + (€08 Ky - y) - (cO8 kyp - 2) - €

for I, m, n = 0,1,2,3,... that can be made to verify the above hard
boundary conditions i.e.

Op(X, Y, Z, ) / 6X = Ay - K - (sin Ky - X) - (08 Kym - y) - (cOS Ky - 2) - el
=0 for x =0 and x=X

Op(X, Y, Z, ) / 8y = -Aimn - ky1 - (cos kg - X) - (sin kym - y) - (coS Ky - 2) - S
=0 for y=0 and y=Y

SP(X, Yy, z, t) / 5}’ = ‘Almn ) kzl : (COS kxl : X) ) (Sin kym ) Y) : (Sin kzn ) Z) : ejmt
=0 for z=0 and z=Z

In case of x =0, y =0 and z = 0, the above conditions are satisfied due to
the factors sin (ky - 0) = 0, sin (kym - 0) = 0 and sin (k,, - 0) = O,
respectively.

In case of x = X,

Op(X, Y, Z, t) / 0X= -Ajmy - Ky (sin Ky - X) - (cos kym - y) - (cos Kk, - 2) - e
=0

is satisfied when sin (ky - X) = 0, or when
kg=m-1/X for1=0,1,2,3,...
Similarly, for the other two boundary conditions

Kym=m-m/Y form=0,123,...
kn,a=m-n/Z forn=0,12,3,...

This gives

ko = Yk + k2 +k,%) =V [1/X)*+(m /Y) > + (n/2) %]
forl. m,n=0,1,2,3,...
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and

Q= ¢ TN (A7) +mM/Y)* + @/2)°] = 2T fi
forl. m,n=0,1,2,3,...

or, modal frequencies

frm= (c/2) -V [1/X) >+ (m/Y)>+ (n/2)%]
forl. m,n=0,1,2,3,...

This shows that larger room dimensions, X, Y, Z lead to lower modal
frequencies f .

Example 6.1 For a rectangular room, as shown in Fig. 6.6, with
dimensions X = 2 [m], Y = 1 [m] and Z = 1[m], calculate natural
frequencies for the first few modes, in case of sound speed in air ¢ =
343.6 [m/s].

Natural frequencies are given by

frm= (171.8) -V [(1/2)% + (m) > + (n) ]
for. m,n=0,1,2,3,...

such that

fooo = (171.8) YV [(0/2)*+(0)* + (0)*]1 =0 i.e. no sound transmission
f100 = (171.8) V [(1 /2)*+(0)* + (0) *]= 85.9 [Hz]

for0 = (171.8) YV [(0/2)*+(1)* + (0)*] = 171.8 [Hz]

foor = (171.8) V [(0/2)*+(0)* + (1)*] = 171.8 [Hz]

110 = (171.8) V [(1/2)*+(1)* + (0)*] = 192.1 [Hz] etc.

Larger rooms have lower modal frequencies. For example, for X = 200
[m], Y=1[m] and Z = 1[m],

f100=(171.8) -V [(1/200)* + (0)*> + (0)*] = 8.59 [Hz]



252 Advanced Mechatronics
a f oo ten times smaller than for X =2 [m], Y =1 [m] and Z = 1[m]
Given that for hard boundaries,

Pinn(Xs Y5 Z, )= Ay - (€08 Ky - X) -+ (€08 Ky + ¥) + (cOS Ky - 2) - &
forl, m,n=0,1,2,3,...

and thatforx=0,y=0andz=0and forx=X,y=Yandz=7Z

cos k- x=1
cos kym - y=1
cosk,,-z=1

for all modes 1. m, n = 0,1,2,3,..., the placement of sound sources and
sound receivers at the corners of the room provide local maximum values
for all modal components, while in any other point, X, y, z, in the room,
some modal components are not at maximum, and some might be zero if
in a node [21, 57].

Overall solution of the linear wave equation is obtained by
superposition and is a triple infinite series (ignoring 0, 0, 0 mode
corresponding to no sound transmission)

P(X, Yy, z, t) = 21:1 to o 2m=1 to o Zn:l to o len(X, Yy, z, t)
or

P(Xa Yy, z, t) = 21:1 to oczm:l to oo 2n=l to oo Almp : (COS kxl : X) : (COS kym : Y) :
(cos k,y - 2) - &

or,

p(X’ y’ z, t) = 21:1 tooch:ItoocanltoooAlmn : (COS TC : 1 . X/X) .
(cost-m-y/Y)-(cosm-n-z/Z)-e
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Example 6.2 FEMLAB™ Calculate of room eigenvalues assuming the
simulated room dimensions X= 5 [m], Y= 4 [m] and Z = 2.6 [m], [56,
57].

The modal frequencies f,, [Hz] of the empty room with hard walls are
given by

fim= (171.8) -V [(1/5) > +(m /4)* + (n /12.6) %]
forl, m,n=0,1,2,3,...

such that the eigenvalues are

Ain = Oon” = 343.67 - [(1 /5)* + (m /4)* + (n /2.6)*]
forl, m,n=0,1,2,3,...

First 13 modal frequencies for I, m, n = 0, 1, 2 (000, 100, 010, 110, 001,
200, 101, 011, 210, 020, 111, 120, 201) are below the frequency of the
mode 3,0,0 [37]

f300= (171.8) V [(3 /5)*+(0 /4)* + (0 /2.6)*] = 103.08 [Hz]
i.e. the eigenvalue
7\,3()0 = ((,03()0)2 =2 -m- f300)2 =4.19 - 105 [rad2/s2]

FEMLAB solution for hard boundary conditions for sound propagation
in the room give for the first 15 eigenvalues up to around 10° [rad®/s’].
The eigenvalue 4.207857-10°, computed by FEMLAB for the simulated
room, is very close to the above computed eigenvalue for the empty
room with hard walls and the same dimensions, A 300 = 4.19 - 10°.

Besides eigenvalues, FEMLAB permits to determine 3D pressure
distribution in the simulated room for each eigenvalue.

The results for the sound pressure distribution are very different for
various eigenvalues and are not used for the overall evaluation of room
acoustic quality. Other modes have very different pressure distributions
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[37]. As a consequence, sound pressure distributions are not directly
useful in room acoustic design.

Other acousto-mechatronics applications can be found in [23, 58, 59,
60].

6.4 Experimental and Simulation Study of Room Acoustics
6.4.1 Introduction

Room acoustics is currently achieved more based on acoustic expert
knowledge than on engineering design. Among the reasons for this
situation are the limitations due to unsolved difficulties in solving inverse
acoustic room problem given acoustic requirements. This section
investigates means for experimental validation of simulation approaches
for room acoustics design [88, 89].

Measurements of room acoustics require the development of a system
that permits to retain from sensors outputs the part of the signal
containing useful information and to remove the effect of measurement
noise and of external noise. Sound dynamics in a room is modeled by
partial differential equations for sound pressure or intensity. Such a
model accounts for multiple wall reflections, refractions and attenuation.
In this process, the sound in the room becomes increasingly complex,
compared to the input signal and, moreover, the measured signals contain
also acoustic measurement noise and noise transmitted from outside the
room. Proper filtering of the measurement noise and outside noise
benefits from the knowledge of the dynamic content of the acoustic
signals received by microphones. For this purpose, in this section, room
acoustics is numerically simulated to obtain a reference signal for the
proper selection of the cutoff frequency of the low pass filters used to
remove noise effects. As a result, useful content of the acoustic signal
can be properly retained after signal filtering the experimental results.
Moreover, the simulation model is also validated in this process and,
as a result, this model can be used during the acoustic redesign of a room
[88, 89].
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6.4.2 Proposed Approach

For this acoustic investigation was chosen the rectangular room shown
in Fig. 6.7, with a length of 9.4 [m], a width of 1.88 [m] and a height of
2.2 [m], subject external noise. This room, chosen for this preliminary
simulation and experimental study, has concrete walls and contains no
furniture.

Z A

2.2 [m]

1.88 [m]
>y

9.4 [m]

Fig. 6.7 Rectangular room for acoustic investigation

An experimental setup for room acoustics measurements is shown in Fig.
6.8. The location of the sound source (the speaker) is at about 2.1 [m]
from the location of the receiver (the microphone). The surface reflection
coefficients in this room with hard surfaces are approx. 0.85.

The diagram in Fig. 6.8 shows that, for a Single Input Single Output
(SISO) case, a sound card is sufficient for providing analog voltage input
to the speaker and for acquiring the analog voltage output from the
microphone. Moreover, an advanced sound card has adequate sampling
rate and resolution for an accurate room acoustic investigation.
Microphone signals were acquired, saved, processed and displayed using
MATLAB™ toolboxes. These signals were contaminated with outside
and measurement noise and had to be signal conditioned. In particular,
signal post-processing requires the proper choice of the cut-off frequency
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such that it leads to removing the noise while retaining the useful signal.
This choice can be facilitated by a simulation study of room acoustics for
the same input signal.

Output to Input from
speakers microphone
Sound Card
PC

Fig. 6.8 Experimental setup for room acoustics measurements
6.4.3 Simulation Model

In order to simulate the transmission of the sound signal to the
microphone location, following the direct propagation from the speakers
and reflections from the wall, a room acoustics model, based on the
impulse response of an enclosure, was developed using image method
for acoustic ray propagation. Image method is one of methods in
geometric room acoustics [82, 84, 86]. Allen and Berkley have
developed an efficient method for obtaining impulse response of a
rectangular room using image model technique [85]. In this case, a sound
ray is used instead of a planar sound wave. The propagation of sound
rays can be calculated using an image source to determine the length of



Acousto-Mechatronics 257

the ray path. Assuming that the room is a homogeneous medium and that
the refractions are negligible, the sound rays propagate in the straight
lines in between walls. Other assumptions are: diffraction is negligible,
the sound source is omni-directional and all walls have the same
reflection coefficient. In the experimental study, in order to approximate
an omni-directional speaker, an array of three speakers was used.

Preliminary simulations were carried out for an input given by a short
pulse input signal, in order to evaluate if simulation model works as
expected.

Simulation results for the signal intensity versus time at microphone
location are shown in Fig. 6.9, for the case that rigid walls, and in
Fig. 6.10, for non-rigid walls [88, 89].

0ma T T T T T T T

0.01F 4
0.008 - 4
0.006 - 4

0.004 B

N HWIII.IIIM.-_MIM
D L
1 015 02 025 03 035 04 045 0

o 00s 0

8

Fig. 6.9 The signal in the case of a room with rigid walls

The results show that the signals have decaying amplitudes and that the
non-rigid walls lead to lower amplitudes versus time. These results are
predictable and can be considered that they provide a first confirmation
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that the simulation model is correct. Complete confirmation will be the
result of the subsequent simulation and experimental study for a more
complex input signal.

omz

Dop

0.008 -

0.008 -

0.004 -

0.002 -

0
0 008

01 015 02 02 03 03 04 046 0O

Fig. 6.10 The signal in the case of a room with non-rigid walls

i

6.4.4 Simulation Results Based on Ray Propagation Approach

Simulation and experimental investigation of room acoustics was carried
out in this paper for a representative signal, shown in Fig. 6.11, selected
from [87].

The longer period component in this signal is about 15 [ms] and
the higher period component of about 0.5 [ms]. The corresponding range
of frequencies, 67 [Hz] to 2000 [Hz] is illustrative for a preliminary
investigation of room acoustics. The longer sound component
wavelength is, in this case, approximately 2.5 m, and this limits the
accuracy of the image method to geometric dimensions of the same
order.

In fact, lowest modal frequencies for this room are 18 [Hz] along X,
90 [Hz] along y and 80 [Hz] along z, such that only along x there is a
vibration mode with frequency lower than the input signal component
with the frequency of 67 [Hz]. Consequently, it is expected that direct
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propagation and sound reflection along the length of the room shown in
Fig. 6.8 are properly simulated and could serve as a reference for signal
conditioning for the experimental study. Figure 6.12 shows the
simulation results for the acoustic signal at microphone location, as a
result of the output sound from the speaker, subject to the driving signal
from Fig. 6.11 [88, 89].

Pressure(Pa)

1 | 1 1 I 1 1
0 ooos oM 0015 0oz 002 003 003 0.04
Timel(s)

Fig. 6.11 Input signal to the speakers

Simulation results at the microphone location from Fig. 6.12 show no
signal for the first 0.007 [s], i.e. for the time required to the direct sound
to propagate over the distance of about 2.1 [m] from the speaker to the
microphone. Afterwards, experimental results in fig. 6.12 from 0.007 to
0.014 [s] resemble the input signal from Fig. 6.11 for 0 to 0.007 [s] due
to the fact that the delayed direct wave is received by the microphone
during this time. Simulation results after 0.015 [s] differ from the input
signal due to the effect of wall reflections. These signals differ more and
more due to wall reflections. These signals will serve as a reference for
the selection of the low-pass filter design for the experimental study.
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0.15

r
&

-0.05-

-0.1-

0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 6.12 Simulation results for the acoustic signal at microphone location

6.4.5 Experimental Results

The experimental study was carried out using the experimental setup
shown in Fig. 6.8 and the input signal to the speaker shown in Fig. 6.11,
also used for the above simulation study.

It was expected to have differences between the experiment results,
for example, due to the fact that in experiments were used three speakers
while in simulations was assumed an omni-directional sound source.
Also, parametric uncertainty, for example in the case of reflection
coefficients, can further lead to differences between experimental and
simulation results. Moreover, measurement noise in microphone output
further modify experimental results.
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Figure 6.13 shows the non-filtered experimental result at microphone
location [88, 89].

0.15

0.05F FL h(

1

I I I I
0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 6.13 Non-filtered experimental result at microphone location

The most obvious differences between the simulation result from
Fig. 6.12 and the experimental result from Fig. 6.13 can be explained by
the measurement noise in the experimental study. A significant reduction
of these differences can be expected from the use of a low-pass filter to
remove the noise [8]. Various values of the cut-off frequency were tried.
The results are shown in Fig. 6.14 to 6.17, for the following cut-off
frequencies: in Fig. 6.14, 2000 [Hz], in Fig. 6.15, 1000 [Hz], in Fig. 6.16,
800 [Hz], in Fig. 6.17, 500 [Hz] [88, 89].

The best agreement between simulation results from Fig. 6.12 and
experimental results appears in Fig. 6.16 for a cutoff frequency of 800
[Hz]. Such agreement between experimental and simulation results also
permits to conclude that the simulation model used in this investigation
is validated, subject to satisfying the constraint that it is limited to
geometric objects larger than the longest wavelength component of the
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input signal. Such a simulation model can, consequently be used for the
acoustic redesign of the room under investigation, for example for the
evaluation of the effects of changing wall materials, placing acoustic
reflectors, furniture and audience etc.

0.2 T T T T

£z

I I I 1 I
0 0.m 0oz 0.03 0.04 0.05 0.08

Fig. 6.14 The low-pass filtered signals for the cutoff frequency of 2000 [Hz]

Dz T T T T

02

1 1 L 1 1
1] oo 002 0.03 0.04 0.0s 0.06

Fig. 6.15 The low-pass filtered signals for the cutoff frequency of 1000 [Hz]
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015 T T T T
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0 0.m 0oz 0.03 0.04 0.05 0.08

Fig. 6.16 The low-pass filtered signals for the cutoff frequency of 800 [Hz]

0.2 T T T T

oiaf 5t
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Fig. 6.17 The low-pass filtered signals for the cutoff frequency of 500 [Hz]

The room used in these experiments was a simple rectangular room with
no furniture. More complex room geometry and the presence of furniture
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result in significantly richer sound signals and in such case the
simulation study for the proper design of the low pass filter is
significantly more useful.

This simulation study based on image method proved useful for the
proper design of the measurement system for room acoustics, in
particular for the design of the low-pass filter for removing measurement
noise. The agreement between experimental and simulation results
confirms the validity of the simulation model and justify its use acoustic
redesign of the room. Further advantages of the proposed approach result
from the possibility of assessing the efficiency of the location of the
microphones for room acoustics measurement.

6.5 Discrete Inverse Problems Based on Direct and Reflected Ray
Propagation

6.5.1 Parameters Estimation Using Direct Ray Propagation

Boundary measurement of direct ray propagation in distributed
parameters systems use a linear model linking the direct wave reception
by receptors located on the boundary, apart from one another, while the
sources of the signal are located on the boundary opposite to emitters.
[67].

Figure 6.20 shows I emitters and J receptors on the boundary of an
acoustic field. Assume the unknown position dependent velocity v(x, y).
The propagation from emitter E; to receptor R;, is characterized by the
position variable along E; to R;, with a from E; to R and the velocity is
v(a) dependent of o. The propagation time Tj from E; to R;is given by
[67]

J

R, d
Ty = [~
@

In order to obtain a linear equation, v [m/s] in the denominator is
replaced by slowness with s(a) unit [s/m],
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s(a) =1/ v(a)

such that
R.l
T, = [s(@)-da
E;
.............................. EI»l EI
R,
E; R,
El T .
E, T R
Y.
RJ RJ.] ..............................
X

Fig. 6.20 Four pixel representation of direct ray propagation

The discrete form of the integration is obtained for K= pixels. For even
numbers J =1, K is

K=(1/2)-(0/2)=J/4

such that

K
T;=Y hy-s,  forj1,2,...,]
k=1
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where hj = o (i, j) is the length of the segment E; to R;, that crosses the
pixel which has the slowness si. In matrix form, the direct problem is

T=h-s

where matrix his [J - K].
The estimation of slowness s, in each pixel k = 1,2,...,K, results form
the inverse problem

s=h'-T

Example 6.3 Numerical estimation of slowness for J = I = 4 measure-
ment values for y [1-4] from receptors R;, j=1,2,3,4 and K = 7}/4=4
pixels. Assume

y =
2.1000
2.0000
2.1000
2.0000

and the four pixels shown in Fig. 6.21 of 1 [m] by 1 [m] each. The square
matrix h [4 - 4] results as follows

h=

SO O
N O O N
(=R (SR \S B )
N O DO

Is the problem even-determined?
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E; E,
Ez S3 S4
El N S»
R3 R4

R,

Fig. 6.20 Four pixel representation of direct ray propagation

MATLAB solution is

h=[2200;0022;2020;020 2]

h=

SN O
N O O
S NN O
N OO

>> inv(h)

Warning: Matrix is singular to working precision.

ans =

Inf Inf Inf Inf
Inf Inf Inf Inf
Inf Inf Inf Inf
Inf Inf Inf Inf

267
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>> rank(h)
ans =

3

The square matrix h [4 - 4] is of rank = 3 and makes this problem under-
determined, for the number of unknowns = 4 and the solution requires
the calculation of the pseudo-inverse.

>> pinv(h)
ans =

0.1875 -0.0625 0.1875 -0.0625
0.1875 -0.0625 -0.0625 0.1875
-0.0625 0.1875 0.1875 -0.0625
-0.0625 0.1875 -0.0625 0.1875

>>y=[2.1; 2; 2.1; 2]
y =

2.1000
2.0000
2.1000
2.0000

>> s=pinv(h)*y
S =

0.5375
0.5125
0.5125
0.4875

>>
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Next example considers eight measurements y [8 - 1] for estimating four
unknown slowness values s [4 - 1].

Example 6.4 Obtain the numerical estimation of slowness for an over-
determined problem with

2.1000
2.3000
2.0000
2.3000
2.1000
2.3000
2.0000
2.3000

and the non-square matrix h [8-4]

h=
2.0000 2.0000 0 0
0 2.3400 2.3400 0
0 0 2.0000 2.0000
2.3400 0 0 2.3400
2.0000 0 2.0000 0
2.3400 0 0 2.3400
0 2.0000 0 2.0000
0 2.3400 2.3400 0

MATLAB solution is
>> inv(h)
777 Error using ==> inv

Matrix must be square.

>> pinv(h)
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ans =

0.1514 -0.0226 -0.0986 0.0843 0.1514 0.0843 -0.0986 -0.0226
0.1514 0.0843 -0.0986 -0.0226 -0.0986 -0.0226 0.1514 0.0843
-0.0986 0.0843 0.1514 -0.0226 0.1514 -0.0226 -0.0986 0.0843
-0.0986 -0.0226 0.1514 0.0843 -0.0986 0.0843 0.1514 -0.0226

>> rank(h)

ans =

2.1000
2.3000
2.0000
2.3000

the estimation of s results as follows
>>y=[2.1;2.3;2;2.3;2.1;2.3;2;2.3]
y =

2.1000
2.3000
2.0000
2.3000
2.1000
2.3000
2.0000
2.3000
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>> s=pinv(h)*y

0.5253
0.5003
0.5003
0.4753

>>

The pseudo-inverse is used for this over-determined problem, but input
data have to be physically relevant and with reduced measurement noise
to make the estimation accurate enough.

6.5.2 Other Inverse Problems Using Ray Propagation

Direct ray propagation model can also be used for the estimation of
the unknown location of an emitter using a solution similar to
triangularization using multiple receptors measurement of the signal
arrival time form a single emitter. [67].

Boundary measurement of single ray reflection in distributed
parameters systems is used in tomographic imaging [67]. It consists in an
inverse problem of estimating the location of an anomaly given travel
time measurements of signal from an emitter to the anomaly and
reflected to a receptor. Reference [67] gives a detailed presentation and
examples of application for crack location inside a solid body by
measuring the first reflection time.

Problems

1. For a rectangular room, as shown in Fig. 6.6, with dimensions
X =94 [m], Y =22 [m] and Z = 1.88 [m], calculate the natural
frequencies for the first five modes, in case of sound speed in air
¢ =343.6 [m/s].
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2. Estimate the slowness for J] = I = 4 measurement values for y [1 - 4]
from receptors R;, j = 1 to 4 and K = 4 pixels, given

y:
2.0100
2.0001
2.0500
2.0002
and h from Example 6.3.
3. Repeat problem 2 for
h=
2 3 0 O
0 0 2 3
2 0 2 0
0 2 0 2

4. Obtain the numerical estimation of slowness for an over-determined
problem with
y =
2.0100
2.1000
2.0000
2.2000
2.1500
2.2000
2.0100
2.200
and h from Example 6.4.



Chapter 7

Thermo-Mechatronics

7.1 Direct Problem: Heat Flow Modeling and Simulation

7.1.1 Direct Problem Solving for 2-Dimentional (2D) Heat
Conduction from a Distributed Heat Source

Direct problem refers to the effect of heat density or a distributed heat
flux F(x, y, t) sources on the distributed parameters system temperature
u(x, y, t). For 2-dimensional (2D) forced heat flow case the model is [25]

du(x,y,t) —k(

0%u(x, y,t) N d2u(x,y,t)
ot ox ay

) +Ex,y.t)

or, in compact form
u'=k-(uy, +u,)+F
or, in a more compact form
u, =k-V*u+F
where
u(x, y, t) is the temperature in a solid body in the point x, y at time t

k is diffusivity given by
k=K/(c-7)
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¢ is the specific heat of the solid body conducting the heat

7 is the volume density [kg/m"]

F(x, y, t) is heat density (or heat flux) from an internal distributed heat
source.

Boundary conditions are specific to each particular case. For
example, for an insulated surface the boundary condition is given by
Vu - n =0 where n is the vector normal to that surface.

Initial conditions take the form

u(x, y, 0) = 0(x, y)
The method of separation of variables leads to the proposed solution
ux, y, t) = X(x) - Y(y) - T(.
Substituting it in the homogenous heat equation (F = 0)
u'=Kk-(uy +uy)
gives
X(x)-Y(y) T =k-(X"(x)- Y(y) T(t) - X(x)-Y"(y)-T(t))
or

T X', YY)
KT X0 Y(y)

To achieve validity for all x, y, t, this equation is separated into three
ordinary differential equations, one first order and two second order

T'(t) _
k-T(t)
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X"(x) _
X(x)

1

YW _,
Y()

2

where A, A, and A, are constants to be determined separately.

The first ordinary differential equation, a first order equation, gives
the time-dependent amplitudes. For the given initial conditions, Fourier
series gives [25]

T (O =Fﬂ(1 —e ')

mn

where the coefficients are given in specialized literature[25].

For the above boundary conditions, the solution u(x, y, t) of the direct
problem for this linear system is obtained by superposition for the last
two second order ordinary spatial differential equations as a double
infinite series with sinusoidal shape functions

u(x,y,t)= 2: z::len(t)-sin(n -m-Xx)-P_ -sin(m-7m-y)
This solution verifies the above boundary conditions for A, =n-z and

A, =m-aforn,m=0,1,2,3....
The general solution becomes

oo ~ F
u(x,y,t)= —my.(1—e*").sin(n-m-x)-P_ -sin(m-7-
xy,0=Y " Zm=1(amn)( ) sin( )P, -sin(m - y)

This direct problem solution is not in closed form and, as in Ch. 6, this
results in major difficulties in solving the inverse problem of determining
F(x, y, t) for achieving a desired u(x, y, t).
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MAPLE and FEMLAB examples illustrate the use of double infinite
series solution of the heat flow direct problem.

7.1.2 Direct Problem Simulation of 2D Heat Flow for a Continuous
Point-Heat Source Input Using MAPLE™

As an example, the following 2-D heat flow problem, for a square thin
plate of 1 [m] by 1[m], with the temperature fixed at O at all points along
the square boundaries, is presented in the form of MAPLE plot, shown in
Fig. 7.1, for a particular constant internal heat source, given by [25, 107]

F(x,y)=30-sin(2-m-x) -sin(2-mw-y) for 0<x<05and 0<y<0.5
=0 for 0.5<x<1 and 0.5<y<1

-
==

0
i
AR
A
A
Y
e
o
%

K
o
B0
A
B
Wl

o

=

0
o
\

Fig. 7.1 MAPLE plot for the internal heat source

The results are based on the above double series solution of the heat flow
equation, for the non-oscillatory time variation of the temperature u(0.5,
0.5, t) at the heat source located in the center (0.5. 0.5) of the square
plate.

Results for the spatial variation of the temperature u(x, y, 0.05) are
shown in Fig. 7.2.
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Fig. 7.2 Spatial variation of the temperature u(x, y, 0.05)

Results for the spatial variation of the steady state temperature
u(x, y, o) are shown in Fig. 7.3. Spatial temperature distribution over
time, shown in Fig. 7.1 for t = 0, Fig. 7.2 for t = 0,5 [s] and Fig. 7.3 for
t — oo, is dominated by a uni-modal shape with maximum at (0.25, 0.25),
which coincides with the location of the maximum of heat source
temperature, shown in Fig. 7.1.

These results show that single input F(x, y) cannot generate an
arbitrarily shaped desired temperature distribution and also that
temperature sensors, located at the plate boundaries, receive delayed and
reduced temperature variations over time. This illustrates the difficulties
in solving inverse problems of the control of point sources of heat to
achieve a desired temperature distribution and of remote monitoring of
the temperature. In fact, this remote monitoring of temperature was one
of the first studied ill-posed inverse problems [30].
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Fig. 7.3 Spatial variation of the steady state temperature u(x, y, )

7.1.3 Direct Problem Simulation of 2D Heat Flow for a Short
Temperature Pulse Input Using FEMLAB™

In this section, FEMLAB™ simulations are carried out for an unknown
heat source located at the center of a rectangular plate that produces a
fast temperature change, represented as a short pulse [56, 57]. The
simulations were carried out for a rectangular steel plate of dimensions
1.5 [m] by 2 [m], subject to a heat source of 0.2 [m] diameter at the
center. Outer boundary is assumed thermally insulated at all sides. Inner
domain of the circular heat source has boundary conditions that
correspond to a very intense heat source Q = 10° MW for t < 1 (i.e. for a
heat source that is on for less than 1 second and then is shut-off.). Initial
temperature is 0 [OC].
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Figures 7.4-7.9 show the 2D spatial distribution of the temperature
u(x, y, t) versus time [36].

Fig. 7.5 Temperature u(x, y, 0.2)
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T,
I

Fig. 7.6 Temperature u(x, y, 0.8)

Fig. 7.7 Temperature u(x, y, 5.0)
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Fig. 7.8 Temperature u(x, y, 80)

Fig. 7.9 Temperature u(x, y, 175)

It can be observed that the fast and significant rise in time of the
temperature at the location of the heat source, in the center of the
rectangular plate, leads to slow and a less significant temperature
increase at locations further away from the heat source. These locations
are where sensors were assumed to have been placed. The inverse
problem difficulties in reconstituting (estimating) the heat source input
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into the center of the plate from remote temperature sensing are clearly
illustrated by these results. These difficulties arise in general in the case
of remote sensing, when the propagation of the signal leads to ill-posed
inverse problems. Further investigations for solving such problems can
rely on recent results in applying the mollification method [22, 47] and
regularization methods [41, 93].

It can be observed that the values of the temperature decreases as the
distance from the internal heat source increases.

As the distance from the source to the estimation point increases it
takes much longer time for the increase in temperature to arrive at the
boundary and, moreover, the rate of temperature increase is significantly
lower.

These results indicate that significant analytical and simulation
studies are required for the investigation and testing of solutions to the
inverse heat problem to be solved for remote monitoring.

7.1.4 Direct Problem Formulation for 3-D Heat Flow

Direct problem is formulated for 3-dimensional (3D) heat conduction
problem by the non-homogenous equation

u, =k-V’u+F
or

ou
gzk-(uxx +uy, +u,)+F

where

u(x, y ,z ,t) is the temperature in a solid body in the point X, y, z at time t.
k is diffusivity given by

k=K/(c-7)

o is the specific heat of the solid body conducting the heat

7 is the volume density [kg/m’]
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F(x,y, z, t) is heat density (or heat flux) from an internal heat source.

Issues in remote monitoring and control with point sensors and point
actuators are the same as for the above 2D example, but obviously are
even more difficult to solve in real-time.

7.2 Inverse Problem Solution for Remote Temperature Monitoring
7.2.1 Introduction

In this section remote sensing issues will be analyzed taking into account
that monitoring in this case can lead to inverse problems that are ill-
posed. For this case of sensing the solutions of the resulting ill-posed
problem of estimation of internal variables of a system from
measurements on the boundary of the system will be investigated.

These difficulties are typical issues in real-time remote temperature
sensing [30, 36].

Advanced systems require sensing, acquisition and processing of
signals from multiple sensors [31].

The development of such systems cannot rely only on traditional
design tools and requires extensive investigations of new tools based,
among others, on non-linear discontinuous systems modeling of the field
propagation of signals and power from the input throughout the system
and to the sensors.

In this section the focus is on real-time remote temperature sensing,
away from heat source location.

Temperature measurement and heat flow estimation has been
analyzed for other distributed parameters applications and the inverse
heat problem solving difficulties were identified and investigated [42, 43,
35]. For example, for the case of an explosion sensing, the consequences
and the solutions of the resulting ill-posed problem of estimation of
internal variables of a system from measurements on the boundary of the
system are investigated in [22, 30, 44]. Local or distributed catastrophic
events are spreading in seconds to hours and the propagation medium
operates as a low pass filter that filter out useful high frequency signal
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components before reaching remote sensors. This physical low pass filter
effect is the main cause for inverse problems to become ill-posed.
In field propagation of signals, three cases can be considered:

A) Locally initiated heat source (for example, explosions producing heat
and/or acoustic waves that spread in the free space, floods efc.).

B) Distributed and moving sources (hurricanes, air and water biological
contamination, etc).

C) Infrared waves associated with the heat generation that propagate
faster over longer distances in free space and with less significant
attenuation such that their propagation medium acts to a much lesser
extend as low pass filters.

Remote temperature sensing is more efficient with infrared radiation
sensors, but this is not possible in the case of solid or liquid propagation
fields.

7.2.2 Inverse Problem for Heat Flux Input Remote Estimation from
Temperature Measurements

This section presents the analytical solution for the identification of the
difficulties in remote estimation of the unknown heat flux input based on
the output from sensors located on given boundaries of the thermal field.
Inverse heat conduction problem is first analyzed considering straight
line 1D heat conduction equation for x >0 and t > 0

9%u(x, t) _ Jdu(x,t)
ox? ot

where u(x, t) is the temperature (in dimensionless units) in point x at
time t.

Exact measurements of the temperature u(x, t) come from the
temperature output T,,(t), of the sensor located at x = x,,

U(Xm, t) = Tm(t)

Boundary conditions are:
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u(x, t) < oo for a semi-infinite body

u(0,t) =T(t) in case that the temperature at x = 0) is the unknown

u,(0, t) = - q(t) in case of unknown surface heat flux q(t) entering at
x=0.

In Ch. 2.3 Fourier transform approach was used for the study of

frequency effect in the case of the non-collocated temperature input.
The equation

qg=—k-Vu

at the surface (x = 0), q(0, t) can also be solved using infinite series
approach proposed by Burggraf [30].

The time-domain solution of the 1D equation for remote estimation of
heat flux qeq(0, t) from temperature measurements T, is obtained using
infinite series approach as follows [25, 30]

Qesi(0, ©) = QK ©) + X %0ei {x™ "/ [K" - (20 + 1)!]} -
(d"T /dt™) +2 " (X0 ™/ K" - 20)!T) - (d"q(Xem, 1) / dt™)

where the heat flux q(x, t) and its time derivatives are calculated using a
similar procedure based on infinite series approach.

It can be observed that the higher the derivatives d"T / dt" the larger
the values of the multiplicative coefficients {xm2“'1/ (k" - (2n+1)!]} and
{me“/ [k"(2n)!]} for larger distances between sensor location x = x,, and
the surface x = 0. This exact result consists in a series expansion for
higher derivatives d"T / dt " and corresponds to the multiplicative
coefficient function of frequency ® from Ch. 2.3

exp{-V( ol / 2)[1+1 - sgn(w)]}

Similar difficulties appear in the case of other inverse problems for
distributed parameters systems described by elliptic PDE, i.e. for other
cases of using acoustic or vibration sensing [34, 52, 44].

The above equation for the estimation of the heat flux q..(0, t) taking
into account the effect of the distance x,, from the heat flux input to the
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location of the sensor shows that the estimation for higher frequency
components, that characterizes fast varying signals, becomes more and
more difficult as the distance x,,increases.

Problems

1. Assume the 2-D heat flow problem, for a square thin plate of 2 [m]
by 3[m], with the temperature fixed at O at all points along the square
boundaries.

Obtain a MAPLE plot, for a constant internal heat source, given
by

F(x,y)=20-(sin2-mw-x)-(sin2-7m-y)
for0< x<land0<y<1
=0 forl<x €<2and1<y<3

2. Simulate the heat flow in a rectangular steel plate of dimensions 1
[m] by 3 [m], subject to a heat source of 0.1 [m] diameter at the
center. Outer boundary is assumed thermally insulated at all sides.
Inner domain of the circular heat source has boundary conditions that
correspond to a very intense heat source Q = 10° [MW] for a heat
source that is on for less than 1 second and then is shutoff. Initial
temperature is 0 [°C).



Chapter 8

Magneto-Mechatronics

8.1 Introduction

The continuously increasing demands for fast and accurate position
control systems from opto-electronics, computer hardware and
peripherals, precision machining, robotics and, recently, auto industry,
have stimulated the interest in the use of new, non-conventional
implementations of position control. An interesting solution is offered by
the use of magnetic bearings for avoiding dry friction, a major source of
reduced precision in positioning.

This section will review recent results regarding magnetic bearing
models, observers and controllers. Models and observers for magnetic
levitation, magnetic bearings and combined frictionless motor-bearing
systems will first be presented. The second part will be dedicated to
the presentation of magnetic bearings and motor-bearings systems
controllers (PID, state feedback, LQ, time-delay, PDD, PIDD, feedback
linearization, state derivative feedback and integral controllers etc.).
Simulation examples will illustrate the models and the controllers.

In the presentation, a single axis nonlinear model is used. This model
permits to focus on the performance of the proposed controllers, using
SIMULINK™ simulators for a linear (PID) controller and then for
nonlinear controllers (feedback linearization based controller and for a
state derivative feedback controller) that will illustrate the relative
improvements in case of nonlinear controllers compared to a linear
controller [94].

287
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Feed-forward compensation controllers, as well as feedback
linearization with “integral control” and a full order observer were tested
on 1D magnetic levitation models [72].

The results of the effect of sampling rate taking into account fixed
time delays, analog low pass-filter, and zero-order-hold device effects on
arious linear (PD, PDD and PIDD) controllers are documented in [95].

Approaches based on time delay control are presented in [96-98]).

State feedback for azimuth motion of a frictionless positioning device
is developed in [97]. Magnetic bearing control used one-step-backward
plus current step signals for nonlinear compensation.

LQ control of magnetic bearings, using 1 DOF and 5 DOF models for
magnetic bearings of a brushless motor was developed in [99].
Hysteresis in electromagnetic actuators can be compensated through
Preisach model inversion. The goal was the compensation of hysteresis
effects in magnetic suspension systems using soft ferromagnetic
materials. A 1 DOF model of the system was used [101].

In a recent review, of industrial solutions for magnetic bearing
systems control, only linear controllers were listed [104].

8.2 Direct Model

The model considered in this section for the control of magnetic
suspension systems through nonlinear control schemes is that of a single
axis system used for maintaining a ball at a desired height when it is
subjected to external disturbances [72, 105, 106]. Multi axis systems
require complex models that would not serve, at this stage of the
analysis, the purpose of comparing the performance improvement of
nonlinear controllers versus linear controllers. Fig. 8.1 shows a single
axis magnetic levitation system used in this section for control analysis.
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it}
( )
Electramagnet |k

[

Fig. 8.1 Single axis magnetic suspension system

The system shown in Fig. 8.1 can be modeled by the 1 DOF (Degree of
Freedom) nonlinear equation of motion [72, 127] and the voltage
equation for the electric circuit

2
- ddhz(t) =m-g—k-(i(t)/h(t))?
t

L di(t)/dt = v(t) — Ri(t)
The general form of an affine system
dx /dt=1(x) + g(x) - u

is obtained by denoting variables for state space representation as follows

X1=h
x;=dh/dt
X3:i

u=v=R-i+L-di/dt
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such that the scalar equations of the nonlinear state space model are

X =X,
kK x;
Xp==——+18g
m x,
R +
X3 =——'X3+—-U
3 3
L L

Nonlinear model in matrix form is given by

_%_
dt X2
dx —k- x5 0
dt2 = ;’ +g|+(0 |-u

m-X;

1/L

dX73 —-(R/L)- x4
L dt |

For R = 0 and L = 1, the equilibrium position h, is maintained by a
current

ip=ho- V(m - g/ k)

For m = 1 [Kg], g = 9.81 [m/s’] and k = 0.1 [Nm*A?] the equilibrium
position for hg= 0.02 [m] is maintained by ip = 0.198 [A].

8.3 Simulation Results for Linear Control

The PID controller shown in Fig. 8.2 has as input the error (x4 - X;) and
generates the command u for the nonlinear model given above in matrix
form. The output of the “Nonlinear model” block is the position variable

x; = h[107].
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PID Nonlinear model in
control matrix form

A 4

X1=h

Fig. 8.2 PID control
The PID controller is given in the SIMULINK model by the s-Function

[num,den] = tfdata(150*tf(-1*[1 20],[1 50])*tf([1 1],[1 O]),'V")
num = [-150 -3150 -3000]
den =[1 50 0]

where the proportional gain is chosen 150 and the PD control gains are
chosen from root locus analysis with a zero at 20 and a pole at 50. The
integral control is given by (s + 1) / s [105].

The system is controlled for a specific desired value x4. Feed-forward
compensation of gravity effect m - g is achieved by applying an input
voltage vp=R -ip=R - hy- \/(m -g/k).

For R=5m=1, g=9.81 and k = 0.1, the equilibrium position for
hy=0.02 is maintained by vp=R - ip =5 - 0.1982 = 0.991 [V[. This input
voltage permits to keep the magnetic ball in the equilibrium position hy
[94].

Simulations were carried out for
a) step input of amplitude x4 = 0.018 [m] and the initial condition h(0) =

0.03 [m]

b) step input of amplitude x4 = 0.03 [m] and the initial condition h(0) =

0.18 [m].

a) Simulation results for step input of amplitude x4 = 0.018 [m] and the
initial condition h(0) = 0.03 [m] are shown in Fig. 8.3. As seen from
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the response, the system is stable for a significant off-equilibrium
initial condition.

nmayr :

0.m

0005
0

Fig. 8.3 Position h(t) for a step input of amplitude x4 = 0.018 [m] and initial position
h(0) =0.03 [m]

b) A higher value of the step input makes the system become unstable
and the ball falls outside the region where the attraction force of the
electromagnet is effective. Fig. 8.4 shows the simulation results for
step input of x4 =0.03 [m] and initial position h(0) = 0.018 [m] and
indicates an unstable system with h(t) diverging indefinitely.

w10
5

Fig. 8.4 Position h(t) for a step input of amplitude x4 = 0.03 [m] and initial position
h(0) =0.018 [m]
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8.4 State-Input Linearization of a Magnetic Levitation System
8.4.1 Feedback Linearization

Feedback linearization approach defines new state variables function of
X1, X; and X3 and a new control variable v generated by a linear feedback
controller using a nonlinear input transformation.

For an affine system, a state transformation z =T(x) results from the
conditions [74]

OT
—L#0
dx,
ST _,
Ox,
oT,
—_1_90
Ox,
Choosing a simple solution
Z1=T1=X1
gives
X,
8T 8T, 8T, OT, k-x;
Z—Tz—a—‘f‘{al o _1] FrE
X X, Ox, 8x; || m-x
0
X,
8T —k-x; k-x;
z;=T,=—2f=[0 1 0 lrg|l=—2+
Y [ ] m-x; ¢ m-x; s
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The resulting State Transformation z = T(x) is [72]

71 =Xq
Z) = Xp
k-x]
z,=— S +e
m-Xx;
Time derivative of z; gives
2
k X X3 .
2y ==2-—[—5%X;——X%
X X
Inverse state transformation x = T(z) is
X, =2,
X, =12,
X3 =2,,/(8—25) K
The original state space model was
X, =X,
__k x5
X, =——:—+¢g
m Xx;
R + u
X = —— x —
3 3
L

A new control variable v is defined as
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V=12,
such that
k x, . X2
Zy=—2-— —; 3= i X1
X1 1
becomes
k x R U x;
V=2 — [ (-— Xy ) - X, ]
m x; L L xj
The solution for u gives
m-L x? X
u:———l-v+(R+L-—2)~x3
2-k x, X,

For the linearized system, a full state feedback control law can now be
applied. The original nonlinear state space model with states x;, X, and X3
and input u, subject to the above nonlinear control u and state
transformation z = T(X), results in a linearized system with new states z;,
7, and z; and new input v [127]. A Linear Full State feedback can
generate the new control variable, v.

8.4.2 State-Input Linearization and Linear Feedback Control

The new control variable, v, is given by the Linear Full State feedback
equation

v=- G, (z,- x4)- G,-2,- G;-z,4

Figure 8.5 shows the block diagram of the feedback linearization control,
used in simulations for m = 1.
The blocks from Fig. 8.5 are the following:
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-Linear Full State Feedback to generate v given z;, z, and z3
-Nonlinear Input Transformation of v into u

-Nonlinear System Model for the states x;, X, and X3 given input u
-State Transformation z = T(x).

Xd
l Full State Feedback

-G+ (21-X0)-Gr25-G3-23

‘Zl’ 72y, 73
<

z=T(x)

7Z1=X1
7r=X»
73 =-k-x5° /(m-x12)+g

A

\ 4 y

-[m-Lx,/(2-kx))] v+
(R+L-x,/X1) X3

X1, X2, X3

dx,/dt=x,
dxo/dt=k-x52/(m-x,2)+g

Nonlinear Input
Transformation

Fig. 8.5 Full state feedback control and feedback linearization of the nonlinear system

A SIMULINK program was designed based on the block diagram from
Fig. 8.5. Simulations were carried out for a step input of x4= 0.035 [m]
an initial position h(0) = 0.022 [m] and gains G, =32, G, =32 and G;=0
[94]. The results are shown in Fig. 8.6

Feedback linearization and full state feedback based controller lead to
a stable response in the case in which a PID control resulted in an
unstable system. The desired position x4 = 0.035 [m] for the case shown
in Fig. 8.6 is far from the equilibrium position of 0.02 [m] and is reached
after a large overshoot. The much smaller overshoot from Fig. 8.3 is
explained by a desired position of 0.018 [m], much closer to the

equilibrium position of 0.02 [m].

A 4

dx;/dt=-(R/L)x5 .(1/L)u

Nonlinear System
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Fig. 8.6 Position z; = x; = h(t) for the system control with feedback linearization
8.5 Nonlinear Controller of a Magnetic Suspension System
This controller includes state derivative feedback and is based on the
input u and its time derivative [94] for a non-affine system with state
vector x and scalar input

dx / dt = F(x, u)

Taking the time derivative of dx / dt = F(x, u)

d’x _oF(x,w) dx  OF(x,u) du
e ox dt Su dt

the control variable u obtained from the above equation as du/dt

-1
d_u:[aF(x,u)} (v OFGw dx ). OF
dt du dx  dt du

where the new input v has the dimension of dx*/ dt*
For the mechanical model of the nonlinear system given in state space
format by
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. X,
X
X:|:1:|: _k.uz :F(X,t)
X, 5 +g
m-X;

the above equation for du/dt gives

du x, m-x;
—_— =y -—
dt  x, 2:k-u

where v has the dimension of an acceleration.

The nonlinear controllers, given by this equation and the control
variable u obtained above as a Nonlinear Input Transformation are
restricted to conditions in which the variables u and x; in du/dt equation
do not cross zero value. This is due to the fact that these variables appear
in the denominator of the nonlinear control functions.

A controller consisting of PD feedback plus acceleration feedback, a
PDA controller, can be chosen for obtaining the new control variable v

d’x, d’x,
V=K
dt dt

) dx, dx,
¢ dt dt

)_Kp '(Xl _Xd)

where K,,, K4 and K, are the position velocity and acceleration feedback
error gains, respectively. Compared to the feedback linearization
controller from Section 8.4, in this case a third state x5 is not defined, but
the resulting du/dt has to be integrated. The fact that no state
transformation z = T(x) is required represents an important computation
simplification.
Figure 8.8 contains the following blocks:
- PDA Control that generates v given states x;and x, and state derivative
dx,/dt;
- Nonlinear Input Transformation with input v and the states x;and X,
and output du/dt;
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- Nonlinear System with input u and output the states x,and x, and state
derivative dx,/dt.

PDA Control *C\Axd, dxg/ dt, d’xe/ dt?
with gains K,,, A/ +
K, and K, .
A
v Xl,dxl/dt, (].Xz/dt:dle/dt2
A \ 4

Xm/dt =Xz

du/dt= (x2/ x;) - u — dx,/ dt=k - v*/ (m-x,%) +g

m-x2/ 2 k-u)]-v u’
Nonlinear Input du/dt .
Transformation v Nonlinear System

[

Fig. 8.8 Block diagram for PDA and nonlinear input v transformation controller

The SIMULINK simulation results for state derivative controller for step
input of 0.035 [m] and initial condition h(0) = 0.0242 [m] are shown in
Fig. 8.9.

"
n.mk ........ S e S ]
a2 . S e ]
L. .............
002 f
0 10 20 30 a0

Fig. 8.9 Simulation results for state derivative controller
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The results indicate that, again, the response corresponds to a stable
system. The steady-state error is very small. The overshoot is high but
the response shows, as in the case from section IV, a stable system, for a
case in which a linear control would lead to an unstable system. Better
transient performance can be obtained by a more elaborate controller
design.

The results presented in this chapter permit to conclude that the
nonlinear controllers, based on state-output linearization and state
derivative control, while computationally more complex, increased
significantly the domain of desired positions away from equilibrium for
which the system remains stable. The proposed state derivative control
has the supplementary advantage of being computationally less
demanding than the on state-output linearization approach.

This analysis, based on a 1- DOF model, ignored many complex
phenomena of multi-DOF systems but permitted an evaluation of various
linear and nonlinear controllers to be further considered as valuable
candidates for use in systems involving magnetic levitation.

Problems

1. Simulate using SIMULINK the PID control from Fig. 8.2 for
proportional gain is chosen 125 and the PD control gains are
chosen from root locus analysis with a zero at 25 and a pole at 60
and an integral control given by (1 + 1/ s), for a) h(0) = 0.04 [m]
and x4=0.019 [m] and b) h(0) = 0.019 [m] and x4 = 0.04 [m].

2. Simulate using SIMULINK the full state feedback control and
feedback linearization from Fig. 8.5 for h(0) = 0.019 [m] and x4 =
0.04 [m] and proportional gains G;= 30, G,=30 and G;=0.

3. Simulate using SIMULINK the PDA and nonlinear input
transformation controller from Fig. 8.8 for h(0) = 0.019 [m] and
Xxq = 0.04 [m] and proportional gains K, = 30, K, = 30 and K,=
0.0001.



Chapter 9

Inverse Problems Issues for Non-Minimum
Phase Systems

9.1 Direct and Inverse Problems for Non-Minimum Phase
Nonlinear Systems

9.1.1 Introduction

Feedback linearization is an inverse problem solution, used as a rigorous
approach for the control of direct problems of non-linear systems. One of
the most challenging difficulties in solving an inverse problem appears in
the case that the direct problem corresponds to a non-minimum phase
system. Even after successful design of a nonlinear controller, the issue
of the non-minimum phase problem remains. A solution to solve the
difficulties of inverse dynamics for such systems with non-minimum
phase dynamics is output redefinition [75]. The output redefinition
technique is formulated such that the resulting system to be inverted is a
minimum phase system. This corresponds to a reduced order minimum
phase approximation.

9.1.2 Direct Problem for Non-Minimum Phase Systems

If the non-minimum phase system is nonlinear, its linearization facilitates
the calculation of the corresponding positive zeros in the direct problem
formulation. The approach used here is Jacobian linearization.

Consider a non-minimum phase nonlinear time invariant system of
the form

301
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dx/dt=f(x) +g(x)-u
y =h(x)

where state x y, u are the vectors of states, outputs and control,
respectively. f(x), g(x) and h(x) are nonlinear functions and assumed to
be smooth.

The Jacobian linearization of system about x = 0 is given by

dx/dt=A-x+B-u
y=C-x
where
A =06f / 80X Iy
B =g(0)

C A =3h/ 06X ly=
After a positive zero is found, matrix C is recalculated by moving
positive zeros to the left half of s plane as C* using the output
redefinition technique presented in [74]. The redefined output

corresponds to a minimum phase system.
Assume the output rewritten is in form

y=h(x)=C:x+h,(x)
where h,,(x) is of order 2 or higher in x. The new output y* is
y*=C* - X+ hy(x)
Consequently, the nonlinear system is approximated by a new system

dx/dt=f(x) + g(x) - u
y* = C* x + hyy(x)
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This system is a minimum phase system, and the feedback linearization
control law can be applied to it to facilitate controller design.

9.1.3 Neural Network Approach to Inverse Dynamics

The complex calculations related to the output redefinition of system
dynamics make a real-time computation very difficult. In order to
facilitate the computation of the algorithm for real-time control, a neural
networks approach was proposed [108, 112]. This method benefits from
NARMA-L2 toolbox of MATLAB® which can be viewed as a neural
network based feedback linearization tool. In NARMA-L2 controller,
control inputs are computed algebraically, no on-line learning is needed
at this stage any more and the computation required is greatly reduced
compared with analytical feedback linearization [74, 107]. For this
purpose, NARMA-L2 Neural Network is trained off-line to identify the
forward dynamics with the redefined output, which is subsequently
inverted to force the real output to approximately track a command input.
Inverse dynamics can be obtained using neural networks. In a first stage,
neural networks are trained to model the forward dynamics of an affine
system. In the second stage, this neural network trained as direct problem
is inverted to obtain an approximate inverse problem formulation.
Simulation results for an Uninhibited Air Vehicle (UAV) illustrate the
application of the proposed approach.

9.2 Feedback Linearization of a Non-Minimum Phase UAV

The performance of highly maneuverable UAV systems, requires
enhanced operational capability in a constrained environment such
as an air space containing static or moving obstacles. The high
maneuverability of a UAV can be achieved by improving the flight
control system using nonlinear control. Feedback linearization and
dynamic inversion have been extensively applied in flight control
especially in designing high maneuverable aircrafts and UAVs. [111].
Compared with traditional flight control design, which is often based on
gain scheduling approach by dividing the flight space into linearizable
subspaces, feedback linearization transforms the nonlinear dynamics of
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an aircraft into an equivalent linear system over the entire flight
envelope, thus allowing us to use a global linear controller. However, the
full-envelope nonlinear inversion of a UAV model is computationally
intensive, because the UAV is a multi-input-multi-output (MIMO)
system and it must be inverted in real time [113-115]. Furthermore, the
exact input-output feedback linearization cannot be directly applied to a
non-minimum phase UAV model.

To reduce the computational burden of the onboard computer, off-
line trained neural network controllers were proposed to model the
inverse dynamics of nonlinear systems [108, 112]. A direct way to do
this is to train a neural network off-line to model the inverse dynamics of
an aircraft using input-output pairs [113]. However, since the mathematic
model of the inverse dynamic is not known a priori, the modeling errors
could be significant. Therefore, adaptive control or on-line learning must
be used to cancel out the modeling errors [114, 116]. An alternative way
to apply inverse dynamics approach is to train neural networks to model
the forward dynamics of the direct problem of an affine system, and then
invert the neural network model to obtain an approximate inverse model,
i.e. to obtain the formulation of the inverse problem of the system [117-
119]. This method can use MATLAB® toolbox NARMA-L2, the neural
network approach to feedback linearization. A set of neural networks that
can be trained to approximate the Lie derivatives, such that the feedback
linearization can be implemented step-by-step using these networks and,
most importantly, the nonlinearity cancellation can be achieved [120].
Non-minimum phase systems result into an unstable system when
subject directly to exact feedback inversion. A solution in this case is
the so called approximate feedback linearization. This is done by
approximating a non-minimum phase system with a minimum phase
system, such that a bounded error tracking can be achieved [74]. In [120,
121], an approximate minimum phase model of a Vertical Takeoff and
Landing (VTOL) aircraft was obtained by neglecting the coupling
between the rolling moment and lateral acceleration. Similarly, for a
slightly non-minimum phase Conventional Takeoff and Landing (CTOL)
aircraft, ignoring some small forces, caused by control surfaces, from the
equations of the system, will give a minimum phase model [122]. This
method is only valid for slightly non-minimum phase systems and results
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in a loss of performance due to the un-modeled dynamics. Another
method is output redefinition [74, 120]. In this case, the output is
modified such that the resulting zero dynamics is stable. Output
redefinition method has been successfully applied to control flexible
manipulators. In [123], outputs are defined near the tip positions, such
that the system becomes marginally minimum phase. In the field of flight
control, the output redefinition method was also called Controlled (CV)
Variable selection [124]. The selection of CVs is suitable for most
conventional flight regimes. However, this selection may have to be
modified for high-angle-of-attack or very-low-speed flight. Furthermore,
the selection of CVs still relies to some extent on trial and error. In [125],
the output is redefined using stable/anti-stable factorization performed
on the zero dynamics of a discrete-time nonlinear non-minimum phase
system. This is equivalent to moving the positive zero to the left half of s
plane in continuous-time. This approach is however valid only for a class
of non-minimum phase systems whose nonlinearities appear in output
terms. In [126], a method is proposed to modify the output of the
nonlinear aircraft model based on a transformation performed using the
Jacobian linearization of the system. This transformation does not affect
the left-half side zeros, thus the resulting system is essentially the same
as the original one in the frequency range of interest. Using this
approach, however, the system performance worsens when the frequency
of desired output exceeds a certain limit. This limitation must be
carefully considered in the context of designing tracking controllers for
high maneuverable UAV. The non-minimum phase problem is still an
active area of research in feedback control, given that all the methods
mentioned above have their merits but also many limitations.

9.3 Mathematical Model for UAV Direct Problem

Nomenclature:

Xps Yb» Zo  DOdy axes

Xe, Yes Ze  €arth axes

0,y,0  bank angle, yaw angle, pitch angle
B angle of sideslip

o angle of attack
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I, I;,I, moments of inertia about body axes

p,q. T angular velocity components along body axes
u,v,w linear velocity components along b

d,, O;, 0. aileron, rudder, elevator deflections

A\ weight of the aircraft
\" velocity of the aircraft
G gravitational acceleration

It is important to establish which factor in the equations of a UAV model
makes system behave non-minimum phase or contributes to positive
zeros, and how the positive zeros (or the positive eigenvalues of the
linearized zero-dynamics) change there values when the UAV is flying
under different conditions. Positive zeros pose limitations on the
frequency response of a UAV and hence affect its maneuverability.

The direct problem model has to be accurate enough to represent the
needed features of the UAV dynamics, but also simple enough to be
executed in real-time.

Denote:

1, =1, + 1, Act

a
m, =m, + m,Acx

m,=m,+ m,

mg. = mde+ mgZse

N, =Ny, + naéa Aa

and the state vector x and the input u vector
T
x=[p q r Aa B ¢ 6]

u=[s, & 4.
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where 9,, 0, and d. denote the deflections of the aileron, the rudder and
the elevator.

A direct nonlinear model of a small UAV is presented in detail in
[108, 111, 112] and was used for simulations and controller design.

This direct problem model can be linearized into the canonic form
[112]

dx/dt=A-x+B-u
y=C-x

where

The following [2 - 2] matrix of transform functions

H-= _ H11 H12
=y(s)/u(s) =
H21 H22

can be obtained as
HGi)=C-(s-I-A)"-B
where [108, 111, 112]

_0.0071s” —0.2488s +1.8533s — 0.3756
s*- 4.364s” - 7.6707s” - 22.8411s- 0.0563

11

B 6.3079s2 +25.2783s — 0.0902
st - 43645 - 7.6707s% - 22.8411s- 0.0563

H12
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_ 45.83s% +19.9397s +271.1101
st - 4.364s° - 7.6707s% - 22.8411s- 0.0563

H, =

7.64s> +4.1131s +108.8293

H, =—
2§t 4364s° - 7.6707s% - 22.8411s- 0.0563

For an MIMO linear system, the zeros of H(s) can be calculated as the
poles the inverse transfer function matrix H'(s) of the system. Then a
new matrix C can be determined such that the resulting system has no
positive zeros. To find the zeros of the system, one may invert the
transfer matrix H and consider its poles. The inverse transfer matrix H'

is given by
w i) e
Hi) HEY
where,

p(nv) _ 7.64s% +4.11315 +108.8293
H 0.0542 (s — 5368.31)

6.3079s> +25.2783s — 0.0902
0.0542 (s — 5368.31)

iy -

45.83s® +19.9397s +271.1101
0.0542(s - 5368.31)

i = -

_0.0071s® — 0.2488s” +1.85335 - 0.3756

H(inV) —
22 0.0542 (s — 5368.31)
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Therefore, the zero of the direct problem model H(s) is at s = 5368.31 = b
which coincides with the positive eigenvalue of the zero-dynamics of the
UAYV nonlinear model. The new system output y* can now be calculated
using output redefinition to eliminate positive zeros from the direct
problem. For a system with outputs yi(s), i = 1, 2,..., m, first a constant
matrix M is defined as link between actual output y and the redefined
output y* using the equation for y(s)

v 6) yiG)=G/blyi )
Y2.(S) Y;(S)

v ) yi ()

=M

where M has to satisfy the constraint

0 O 0
-1 _ *
M -H(b)=
k k *

Since the value of the transfer matrix H(s) at s = 5368.31 = b is

1.3129  0.2189
H(b) =

-1.5891 -0.2649

the constant matrix M can be obtained as

_— 1 0.8262
1o 1
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A redefined transfer functions matrix can now be obtained without any
positive zeros. This is the result of redefining the output such that the
positive zero from H(s)

a) does not appear in the new matrix H*(s)

b) is moved to the left hand side of the s-plane for h*(s)

a) The following equation shows the relationship between H(s) and
the new H*(s) with the positive zero removed

1-= 0 0
b

Hs)=M| 0 1 0 .H(s)
0 0 1

where

38.115s% +14.6621s +224.3589

H =—
T % 4364s% - 7.6707s% - 22.8411s- 0.0563
—_ 21.8634s- 90.0019
gt 436453 - 7.6707s% - 22.8411s- 0.0563
= 45.83s” +19.9397s +271.1101
2 gt 436483 - 7.6707s% - 22.8411s- 0.0563
7.64s% +4.1131s+108.8293
sz =-

s*- 4.364s% - 7.6707s% - 22.8411s- 0.0563
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The new output matrix C* is computed using
C'=H() [sI-A)"-B]"
that gives
CFe [1.5866 x10™* 0 -1.862x10™"* 0 1 0.82618 2.3455x107*
0 0 0 0 0 1 0

This leads to the new output after removing the positive zero b from H(s)

b) Using equation,

1+s/b 0
1-s/b
h'(s) = 0 I -« 0] -M" H(s)
0 0 1

the transfer matrix h'(s) results from moving the positive zero to the left
hand side of the s-plane. For b = 5368.31

[1+(s/5368.31)
- 1-(5/5368.31)
h'(s) = { il f} 0 1 - 0| M' H()
21 22 : . .
.0 0 - 1]

where,

~ 0.0071s> +38.1177s2 +14.7039s +224.3589
s*- 4.364s° - 7.6707s* - 22.8411s- 0.0563

hy, =
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0.0041s” +21.8468s — 90.0023

hy, = 4 3 2
s*- 4.364s% - 7.6707s> - 22.8411s- 0.0563
. 45.83s2+19.9397s +271.1101
st 436451 - 7.6707s2 - 22.8411s- 0.0563
. 7.64s% +4.1131s +108.8293
hzz =

st- 43645% - 7.6707s2 - 22.8411s- 0.0563

The new output matrix ¢* could be obtained as

ot 32053-10% 0 -37617-10* 0 1 082619 0
0 0 0 00 1 0

A new transfer function results

y*(s) -0.3756

(s)  s* +4.364s% +7.6707s +22.8411s +0.0563

The output for UAV model is redefined by moving the positive zeros to
the left half of s plane, so that these two systems with new outputs are

now minimum phase and can be inverted.

9.4 Simulation Results for the Neural Controller and Output

Redefinition

In this section, the NARMA-L2 neural controller and the output
redefinition technique are applied to a nonlinear non-minimum phase

UAYV system [108, 112, 130].
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The control scheme for the UAV, shown in Fig. 9.1 is based on the
inverse problem solution, i.e. the nonlinear inversion of a UAV model in
real time.

+

’< > ™ u(k+1) = [ya(k+d)-NNf]/NNg

Ya - X

NARNA-L2 Controller
u(k+1)

UAV [—»

y*

Fig. 9.1 UAV Control System based on NARMA-L2

To reduce the significant computation burden of the onboard computer of
a UAV, an approximate feedback linearization methodology using
offline trained NARMA-L2 neural networks NNf and NNg is analyzed
here. The NARMA-L2 neural network is trained off-line for the direct
problem, to model the forward dynamics of a UAV, with a redefined
output of the UAV model. Then, the trained neural network (NN) is
inverted so that it cancels out the nonlinearities of the UAV model.
NORMA-L2 Controller has as inputs the command inputs y, and the
UAYV model output at time step k and generates the control command for
the next time step k+1 using the output of the direct NNf and the inverse
NNg. This becomes the Control Input to the UAV model which forces
the output y to approximately track the desired output yg.

The results are shown as dotted lines for the command input and
continuous line for the actual output. Figure 9.2 shows the response to a
step input with a settling time of approx. 20 [s].
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0.01

0.005

-0.005

sideslip angle (rad)
=

201 | | | | |
0 s | 78 100 126 180
time (sec)

Fig. 9.2 The sideslip angle response to a step command input

The results shown in Fig. 9.3, for square wave input, show that for the
square wave command input period which decreases from 160 [s] in a) to
20 [s] in c), the transient regime does not vanish before a new command
value occurs. This indicates that settling time has to be accounted as a
limit to the period of the changes in the command input.

These results exemplify a solution to the non-minimum phase
problem in UAV control design. Since the feedback linearization cannot
be directly applied to a UAV, which is non-minimum phase, the output
redefinition approach redefines the output of the system, such that the
resulting new system has stable zero-dynamics and the inverse of the
new system is asymptotically stable.

0.04

0.02

-0.02

sideslip angle (rad)
L]

9 AN RN RN | RN R S NN
0 25 50 75 100 125 150 175 200
time {sec)

a) square wave period = 160 [s]

Fig. 9.3 Sideslip angle responses to square wave command inputs
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Fig. 9.3 (Continued)

In nonlinear case, due to the impossibility to define the transfer function,
output redefinition cannot be directly implemented. To solve this
problem, one may first calculate the Jacobian linearization of the
nonlinear system, and then apply above techniques to the linearized
system to define the new outputs. As a result, for the nonlinear non-
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minimum phase system, with its Jacobian linearization, its output can be
redefined by removing the positive zeros from the transfer function.
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