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Preface 

Mechatronics is an engineering field that refers to mixed systems tight 

integration. Currently, this integration can be viewed as based on digital 

computer monitoring and control, but it cannot be denied that integration 

can be based on any other signal processing system and any form of raw 

power that can be modulated and transferred to the mixed system in 

accordance to the output of this digital signal processor. 

Distributed parameters systems, in the form of solids, liquids, gases, 

are seen as fields in which the dynamics can be represented by traveling 

waves. These fields can be mechanical vibration fields of substance, 

acoustic, electromagnetic etc. The assumption of continuity is often 

limited, when moving down from macroscopic level, by the molecular, 

atomic discontinuous structure, which can be represented in duality with 

the fields at that level. Moving up from immediate macroscopic level 

towards infinite celestial level, again the continuum of the quasi-vacuum 

space is filled with solid planets etc. Consequently, while at terrestrial 

macroscopic level, continuous fields can be assumed of infinite 

dimensions, there are perceived limits as we move up and down from 

this level. 

Distributed Parameters Systems are modeled mathematically by 

partial differential equations and/or multiple integrals that can be recast 

also in a system of partial differential equations. The solutions of these 

partial differential equations show that the dynamics of distributed 

parameters systems can be simulated as composed of infinite 

dimensional combinations of harmonic components (something that 

might remind of Pythagoras’ view of the planets motions) where higher 

frequency components might become less and less significant unless 

excited and brought to resonance.  
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Mechatronics refers to monitoring, control and integration not only of 

lumped parameters systems, but also of distributed parameters systems. 

In fact, the latter representation of the world under engineering focus is 

more realistically modeled by distributed parameters systems; handling 

such models is, however, much more difficult that the lumped parameters 

systems. Monitoring and control of distributed parameters systems is 

limited by ill-posed problems, the inverse problems of estimating system 

states and parameters from sensors signals and controlling and infinite 

dimensional system with modulated power output from actuators. 

Sensors and actuators are available in most cases as point devices and, 

even if they are distributed, they cannot be found in the infinite 

dimensional form. Sensors and actuators are bandwidth limited and 

cannot access higher frequency components of distributed parameters 

systems dynamics. As a result, only lower frequency dynamics can be 

controlled and maybe somewhat higher but still low frequency 

components can be monitored; higher frequency dynamics remains 

uncontrolled and unobserved. Pascal made a valid comment with regard 

to human condition in an infinite world: “...qu’est que l’homme dans la 

nature? Un néant à l’égard de l’infini, un tout à l’égard du néant, un 

milieu entre rien et tout.” (B. Pascal, Pensées, no. 72). Using science and 

engineering, we reach easily documented limits in monitoring and 

controlling such systems and only religion, art and philosophy can offer 

further views outside these limits. Indeed, direct view, i.e. intuitive 

access to that level requires to become detached from contact and 

affection from the immediate and finite environment and to bring 

ourselves to the vision of infinite spaces.  

I acknowledge the results documented in the book of joint published  

research with my colleagues professors Dr. R. Baican F. Bakhtiari-

Nejad, J. Sasiadek and W. Weiss and with my former graduate students: 

R. F. De Abreu, G. M. Ceru, G. Ganapathy, Kuoc-Vai Iong, Y. Jiang and 

W. Zhang.  

 

 

Dan Necsulescu, Ottawa, Canada 
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1 

Chapter 1 

Introduction 

1.1 Advanced Mechatronics Systems  

1.1.1 Monitoring and Control of Distributed Parameters Systems  

Most engineered systems are composed of mixed mechanical-electrical-

electronic-thermal subsystems and have fewer sensors (under-sensing) 

than states needed for monitoring and control and, moreover, have fewer 

actuators than degrees of freedom (under-actuated). Some of these 

systems can be modeled in a first approximation as lumped parameters 

systems but, in general, require more complex approaches for proper 

design and operation. 

The focus in this Advanced Mechatronics text is on the computer 

based -integration, -monitoring and -control of mixed systems that can  

be described as distributed parameters systems. The illustrations for 

distributed parameters systems will be acoustic fields, thermo-dynamic 

fields, magnetic fields, vibrations in flexible structures, etc. The 

following topics will be presented: 

- overview of advanced mechatronic systems: signals versus power 

transmission, local sensing and actuation in continuous systems, 

centralized versus local control 

- modeling and control issues for mixed systems: effort-flow modeling, 

modeling and simulation of distributed parameters systems, open and 

closed loop control 

- numerical solutions for inverse problems using regularization and 

singular value decomposition methods 

- dynamic calibration of sensors 
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- transient response of under-actuated and under-sensed systems 

-  active vibration control in flexible structures 

- acoustic fields monitoring and control 

- thermo-dynamic fields in thermal process control 

- magnetic fields in magnetic levitation. 

Figure 1.1 shows the schematic diagram of a distributed parameters 

mechatronic system. In Fig. 1.1 system variables are measured by 

transducers, signal conditioned and converted from analog to digital  

form and transmitted to a computer. The computer performs real time 

monitoring and control as well as signal analysis and has two types of 

outputs, one for actuator commands and the other for system monitoring 

display.   

 

 

Fig. 1.1 Schematic diagram of a distributed parameters mechatronic system 

 

The commands are either operator commands, or computed 

commands that are shown applied in a closed loop control configuration. 
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Computer output for control, after conversion from digital to analog 

form, sends commands to actuators.  

Control commands are signals sent to drivers that modulate the power 

from an external power supply for the actuators.  

An advanced mechatronics approach has to take into account  

that physical systems are inherently distributed parameters systems and 

that only some of these systems can be represented by a lumped 

parameters model. Lumped parameters mechatronic systems were 

already investigated extensively in several mechatronics books [1-9]. 

Figure 1.1 refers to a distributed parameters mixed system that can 

represented by partial differential equations [25, 44, 110]. Numerous 

distributed parameters systems are mixed systems. Examples analyzed in 

this text are:  acoustic, thermal, fluid, magnetic systems and flexible 

structures. 

1.2 Signals versus Power Transmission. Lumped Parameters 

Modeling of Mechatronic Systems 

Integration of systems is achieved transmission of signals and power 

between subsystems.  

Distributed parameters systems modeling require modeling of 

propagation delays, boundaries effects, 3D interactions etc, which are  

not present in a lumped parameters model or in its block diagram 

counterpart. Lumped parameters systems, described by Linear Time 

Invariant (LTI) Ordinary Differential Equations (ODE), are reviewed in 

this section, in order to identify specific needs for modeling distributed 

parameters systems. 

Block diagrams contain variables associated to the unidirectional  

links between blocks. These variables can be seen as signals containing 

the information transmitted from the output of one block to the input of 

another block. In control engineering signal flow graphs are sometimes 

used as an equivalent alternative form to block diagrams.  

What is important in communication systems is only the information 

contained in the signals, not the power transmitted by the carrier of this 

information. In this case, blocks represent transformations applied to the 
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signal transmitted, for example delays, attenuation or filtering. On a 

communication link, signals can be transmitted bi directionally. Block 

diagram models represent only unidirectional transmission, from the 

designated output of one block to the designated input of another block 

and consequently contain only a direct model, from “cause” to “effect”. 

The model associated with a block corresponds only to the transfer from 

the input to the output. This might be acceptable for signal transmission, 

but for power transmission, which is normally bidirectional, effort-flow 

models are required. 

Inverse model, from desired output to the required input, is obtained 

by matrix inversion for square LTI systems. Inverse model for non-

square LTI systems require pseudo-inverse. For non-linear systems, no 

closed form solution might be available for model inversion.  

In other engineering systems, the power transmitted by the carrier 

becomes important, and the equations describing their dynamics are 

written for variables like force and velocity in mechanical systems and 

voltage and current in electrical circuits. Equations using these variables 

can also be used for block diagram modeling. Again, while power often 

flows bi-directionally on a transmission line, a block diagram model can 

represent only a single direction of the transmission. In fact, state space 

models, transfer function and block diagram representations require the 

assignment of the direction of the signal from one component of the 

model to another.  

 

Example 1.1 Consider first a simple mechanical system example, shown 

in Fig. 1.2, composed of a mass m, a spring k and a damper b and subject 

to a force input F. The velocity v is assumed the output. 

Fig. 1.2 A mass-spring-damper example 

 m b 

k 

x 

v 

F 
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Newton’s second law gives 

 

 

The above differential equation can be written using v as variable 

 

 

for 

d
v( ) x(t)

dt
t =  

Laplace transform for zero initial conditions gives  

 

1
v(s) F(s)

ms b k/s
=

+ +
 

Due to the input and output assignments, the same system is modeled 

differently when the variables F and v change designation. In this case, a 

simple inversion of the transfer function gives the inverse model 

 

 

In general, however, model inversion does not have a closed form 

solution, typically for distributed parameters systems. This restricts 

modularity and interchangeability to modules with identical input and 

output assignment.  

x(t)kx(t)
dt

d
bx(t)

dt

d
mF

2

2

⋅++=

∫⋅+⋅+⋅=
t

0

τd)τ(vkv(t)bv(t)
dt

d
mF

)s(v)s/kbsm(F(s) ⋅++⋅=
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1.2.1 Effort Flow Variables and Two Port Models 

Two port models were introduced for representing components of 

electric networks using two terminals for each port. Alternative names 

for two port components of a network are: four terminal network or 

quadripole. The two pole port models have associated a current I variable 

and a voltage V variable that permit the calculation of the power P = VI, 

transferred  through  the port [8,9].  

 

Example 1.2 For an inductance-resistance L-R circuit supplied by an 

ideal voltage E source (i.e. with zero internal impedance), the circuit is 

shown in Fig. 1.3. Obtain the tree cuts diagram. 

 

 

 
 
 

 

Fig. 1.3 A resistance-inductance R-L circuit 

 

Resistance R and capacitance L components can be represented as 

separate elements as a result of three cuts (Fig. 1.4). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4 Three cuts in R-L circuit 

L 

E 
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R 

E 

L R 
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Example 1.3 A resistance - inductance-capacitance (R – L – C) series 

circuit subject to voltage V is shown in Fig. 1.5. Obtain Z(s) = V(s) / i(s) 

Fig. 1.5 R-L-C circuit 
 

Solution The following voltage drop equation can be written 

 

Laplace transform of the above equation for zero initial conditions 

gives 

 

 

The impedance Z(s) of the resistance – inductance – capacitance  

series circuit is given by 

Z(s) = V(s) / i(s) 

or 

Z(s) = R + L · s + C/s 

In the case of solid body mechanics, free body diagrams represent 

components of a multi body system obtained by cutting each “body” 

from the system and representing boundary effects by local force f and 

velocity v whose product gives the power P = f · v.  

 

∫++=
t

0

i(τ(τ)Ci(t)
dt

d
LRi(t)V(t)

E 

L R 

I 

C 

V(s) (R Ls (C/s)) i(s)= + + ⋅
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Example 1.4 Assume that a flexible horizontal rod is linked to an 

undefined arbitrary mechanical systems by spherical joints. The rod, cut 

from these systems, give the free body diagram shown in Fig. 1.6. Obtain 

the model. 

 

 

 

 

 

Fig. 1.6 Free body diagram of a rod 

 

In Fig. 1.6 for each cut the internal force F and the absolute velocity v 

are identified. Assuming the flexible rod represented by a lumped 

parameters model, shown in Fig. 1.7, the following equations can be 

written 

F1(t) = (x1(t) – x2(t)) · k + (v1(t) – v2(t)) · b 

F2(t) = – [(x1(t) – x2(t)) · k + (v1(t) – v2(t)) · b] = –F1(t) 

Even if there is a spring and a damper between the two forces, the 

equality F2(t) = –F1(t) reflects the fact that, in this model, the time-

varying force change F1(t) applied to end 1 appears transmitted 

instantaneously at end 2, given that lumped parameters models do not 

account for propagation delay. 

For 

1 1

d
v (t) x (t)

dt
=  

2 2

d
v (t) x (t)

dt
=  

F1 F2 

v1 v2 
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Fig. 1.7 Free body diagram for the rod 

 

the Laplace transform gives 

    1 1x (s) v (s)/s=  

2 2x (s) v (t)/s=  

 

The two force equations give   

v1(s) = – [1/(k / s + b)] · F2(s) + v2(s) 

 F1(s) = – F2(s) 

 

These last two equations give the cut variables at end 1, F1 and v1 

function only of cut variables at end 2, F2 and v2, and parameters b and k, 

i.e. independent of the dynamics of the systems to which cut 1 and 2 

were applied. Lumped parameters mechanical systems can be sectioned 

by cuts into subsystems interfaced only by force and velocities defined 

with respect to the cuts. For a flexible torsional shaft, with cut parameters 

torque T and angular velocity ω, the model is structurally similar: 

ω1(s) = – [1/(k / s + b)] · T2(s) + ω2(s) 

T1(s) =  –  T2(s) 

F1 F2 

v1 v2 

b 

x1 x2 
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A generalization to a variety of engineering systems can based on the 

two port components that have associated a flow or through variable  

“f” and an across or effort variable “e” giving the power as the product 

(flow) · (effort) [8]. This is the power passing through the junction of two 

components associated to a particular port [9]. 

In the case of distributed parameters systems, the interactions are too 

complex to be reducible to equivalent simple two-port models.  

The direction of the power flow in the junction is bidirectional  

as opposed to the block diagram description in which signals have 

unidirectional flow. The same description, using effort-flow two pole 

ports, is suitable for mixed systems. The theoretical background of  

this description can be found in Hamiltonian dynamics for obtaining 

power transfer equations [8]. While effort-flow cuts permit to define 

power transfer between mixed subsystems, Hamiltonian and Lagrange 

dynamics permit simultaneous modeling of mixed systems, for example 

of electromechanical systems [9]. 

1.2.2 Newton-Euler and Kirchhoff Equations for a Mixed  

Electro-Mechanical System 

Effort-flow representation of mixed systems permits easy application of 

Newton-Euler equations of motion and Kirchhoff equations for electric 

circuits. Power transfer conservation law at the conversions of electrical 

and mechanical energies permits to integrate the two models in an joint 

electro-mechanical model. The simplified diagram of Permanent 

Magnet-Direct Current (PM-DC) motor is shown in Fig. 1.8. The stator 

consists of a pair of magnetic poles N-S. The rotor consists of coils of 

conducting wires connected through the segments of a collector to a DC 

power supply.  

Figure 1.8 shows the cut from a mechanical load (with cut variables 

torque T and angular velocity ω = dθ/dt) as well as the cut from a DC 

power supply (with cut variables voltage u and current i). The rotor is 

modeled mechanically as a rigid body with a moment of inertia “J” and a 

viscous friction coefficient “b” accounting for the air drag and viscous 

friction in the lubricated bearings. The electric model of the rotor is 
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given by the lumped parameters R and L, the rotor winding circuit from 

the electrical cut (u, i) towards the mechanical cut (T, ω). 

 

Fig. 1.8 The diagram of a PM- DC motor 

  

The conversion of the electrical energy from the DC power source 

into the mechanical energy supplied to the load takes place in the DC 

motor, in particular in the electromagnetic field of the air gap between 

the stator and the rotor. Forces applied on rotor coils are generated as a 

result of the current i flowing through the rotor winding surrounded by 

the magnetic field produced by the PM of the stator. At the same time, 

the so called back electromotive force (back e.m.f.) are induced voltages 

in the moving rotor winding moving in the magnetic field. These two 

effects in a PM-DC motor can be modeled by separating the mechanical 

subsystem and the electrical subsystem, each being modeled by two port 

elements, as shown in Figs. 1.9 and 1.10, respectively.  

In the left hand side of Fig. 1.9, torque components are represented 

around a cross section of the shaft. Tr  denotes the torque generated in the 

electromagnetic field of the and acting on the rotor, while Ur represents 

the back electromagnetic force (back e.m.f.) induced by the magnetic 

field in the rotor winding in opposite to the supply voltage u.  The torque 

T, and angular velocity ω are the cut variables toward the mechanical 

load, while the voltage u and the current i are the cut variables toward the 

DC power supply. 

 

θ 

T 

L R 

u 
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Example 1.5 Obtain the model equations. 

 

The free body diagram and the two port circuit facilitate the derivation of 

the model equations.  

 

 

       

 

 

 

Fig. 1.9 Free body diagram for the mechanical part of the DC motor 

 
 

 

 

 

 

Fig. 1.10 Two port (Ur, i) and (u, i) circuit of the electrical part of the DC motor 

 

Two algebraic equations result from the lumped-parameters model of 

the electro-mechanic conversion phenomena 

Tr = km· i 

Ur = ke · ω 

where km [Nm/A] is the torque constant and ke [Vs/rad] is the electrical 

constant. 

i 
L             R 

Ur u 

i 

J ω 

T 

Tr 

b·ω 

ω  

Tr - b·ω - J·dω/dt 

 

J·dω/dt 

T 
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In case of ideal conversion efficiency, η = 1, of the electrical power  

Ur · i into mechanical power Tr  · ω,   

 

η = (Ur · i )/( Tr  · ω) = 1 

which gives 

Tr  · ω = Ur · i  

Using the above two algebraic equations, the following relationship is 

obtained 

km · i · ω = ke · ω · i 

such that, in appropriate metric units, km in [Nm / A] and ke in [Vs / rad], 

are of equal value 

km =  ke 

Power losses occur due to winding resistance, magnetic losses, 

friction etc. In the case of negligible losses, ideal power conversion can 

be assumed (η = 1). 

For the mechanical part, shown in the free body diagram of Fig. 1.11, 

Newton second law gives: 

 

For the electrical part shown in Fig. 1.12, the voltage drop equation 

gives: 

 

The last two differential equations and the two algebraic equations 

regarding the electro-mechanic conversion form a system of four 

Tωb-T
dt

dω
J r −⋅=

rUiR
dt

di
Lu +⋅+=
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differential-algebraic equations containing six variables T, ω, Tr, Ur, i 

and u. This system of four differential-algebraic equations represents the 

analytical model of the PM-DC motor.  

The elimination of internal variables Tr and Ur results in a model 

reduced to two differential equations with four variables of the two cuts 

(T, ω) and (u, i): 

 

Most DC motors have negligible L, such that the model, for L = 0, is 

reduced to:  

 

These equations, obtained using effort-flow cuts, permit the 

determination of the electrical power u · i and mechanical power T · ω  

transferred between these subsystems.  

1.2.3 Lagrange Equations for a Mixed Electro-Mechanical System  

Lagrange equations are given by [11]:  

 

            r

rrr

Q]U[
q

]K[
q

]K[
qdt

d
=

∂
∂

+
∂
∂

−
∂
∂
ɺ

        for r = 1,2,…..N  

 

Tωb
dt

dω
Jik m +⋅+=⋅

Tωbik
dt

dω
J m −⋅−⋅=

ωkiRu e+⋅=

ωkiR
dt

di
Lu e ⋅+⋅+=
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where 

K is kinetic energy 

U is potential energy 

qr is the generalized coordinate k 

Qr is the generalized force corresponding to the work done by the 

generalized coordinate qr (or voltage in the case of the electrical 

generalized coordinate) 

N is the total number of generalized coordinates needed to completely 

describe in time the components of the system. 

For an electromechanical system with one generalized coordinate  
x for the mechanical part and  one generalized coordinate Q for the 
electrical part, Lagrange equations for the mechanical and electrical parts 
of the system are given by [9, 11]: 

 

F] U[U
x

]K [K
x

]K [K
xdt

d
ememem =+

∂
∂

++
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∂

−+
∂
∂
ɺ

 

V] U[U
Q

]K [K
Q

]K [K
Qdt

d
ememem =+

∂
∂

++
∂
∂

−+
∂

∂
ɺ

 

where  

Km + Ke are the electric and mechanical kinetic energies 

Um + Ue are the electric and mechanical potential energies 

x is the generalized displacement variable (angular displacement) 

xɺ  = v is the generalized velocity (angular velocity) 

Q is the charge in capacitive components 

Qɺ = i is the current 

F is the generalized force (dissipative and applied forces or torques) 

V is the voltage (dissipative voltage drop and applied voltage) 

 

Example 1.6 Obtain the model for the DC motor using Lagrange 

equations. 

 

Lagrange equations for a PM- DC motor 
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For the DC motor shown in Fig. 1.8, Lagrange equations are 

F] U[U
θ

]K [K
θ
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θdt
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or, taking into account that  

θ ω=ɺ  

and 

Q i=ɺ  
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where 

Km(ω) = J · ω2
/2 

Um = 0 

F(ω, i) = – b · ω + km · i – T 

Ke(i) = L · i
2
/2 

Ue = 0 

V(I, ω) = u – R · i – ke · ω 
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Partial derivatives are 
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such that, for km = ke, Lagrange equations result as follows 
 

 

 

These are the same as the equations derived for the same DC motor using 

Effort-Flow representation of mixed systems and Newton-Euler 

equations of motion and Kirchhoff equations for electric circuits. 

Dissipative components are the dissipative voltage drop Ri and the 

dissipative generalized force, in this case the dissipative reaction torque  

b · ω. 

ωkiR-ui)(L
dt

d
e ⋅−⋅=⋅

Tωbik)J(
dt

d
m −⋅−⋅=ω⋅
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Indeed, Lagrangian dynamics approach does not require effort-flow 

cuts neither for the mechanical subsystem nor for the electrical 

subsystem, and no internal variables were defined for such cases. For the 

interface between electrical and mechanical subsystems, applied torques 

T (external load torque) and ke  · i (motor torque) and applied voltages u 

(external voltage) and ke · ω (induced voltage) had to be however 

identified and this requires in fact the definition of the effort-flow cut at 

this interface.  

 

Example 1.7 Figure 1.11 shows a plunger solenoid consisting of a 

solenoid of inductance L(x), dependent of the displacement x of the 

plunger from the non-energized position x = 0. The motion of the 

plunger along x is due to the plunger induced force, caused by the 

solenoid current i. The current flows in the electric circuit R-L(x) subject 

to the applied external voltage u(t). On the mechanical side, the plunger 

of mass M consists of a flexible rod with stiffness coefficient k supported 

by a lubricated bearing with viscous friction coefficient b. Obtain the 

model using Lagrange equations. 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 1.11 The diagram of a plunger solenoid 
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R 
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x 

k 
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Lagrange equations in this case are 
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where 

x v=ɺ  

and  

Q i=ɺ  

such that 

 

F] U[U
x

]K [K
x

]K [K
vdt

d
ememem =+

∂
∂

++
∂
∂

−+
∂
∂

 

V] U[U
Q

]K [K
Q

]K [K
idt

d
ememem =+

∂
∂

++
∂
∂

−+
∂
∂

 

and 

Km(ω) = M · v
2
/2 

Um = k · x
2
/2 

F = –b · v  

Ke = L(x) ·  i
2
/2 

Ue = 0 

V = u(t) – R · i 
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Partial derivatives are 
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such that Lagrange equations for the mechanical generalized coordinate 

x and for the electrical generalized coordinate Q result as follows 

 

vbxk
dx

dL(x)

2

i
vM

dt

d 2

⋅−=⋅+−⋅  

iRu(t)iL(x)
dt

d
⋅−=⋅  

The term (i
2 

/ 2) · dL(x) / dx corresponds to the position dependent  

force applied by the solenoid on the plunger, while the term d / dt L(x) · i 

corresponds to the position dependent voltage drop on the solenoid 

inductance. 

In reference [11] can be found other examples of Lagrangian 

dynamics for an electromechanical system in which there is a position 
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dependent capacitance and for an angular position dependent mutual 

inductance. 

In this section, the same equations of motion of an electro-mechanical 

system were obtained using two approaches effort-flow cuts with 

Newton-Kirchhoff dynamics and Lagrangian dynamics. The letter 

approach is particularly interesting due to the link to Hamiltonian 

dynamics and Lyapunov stability analysis for mixed systems [9]. 
 

Example 1.8  Figure 1.12 shows an electromechanical system composed 

of a spring, with spring coefficient k, and a coil of radius ρ, with moment 

of inertia J and with N turns in which flows a current I = dQ/dt [11]. The 

angular position of the coil with regard to the horizontal plane is θ and 

varies from 0° to 180°. The coil is subject to a magnetic field produced 

by a solenoid with n turns in which flows a current i = dq/dt. The angular 

displacement of the coil is due to the induced torque resulting the 

solenoid current I and coil current i. Resistances of the coil and of the 

solenoid are R and r, respectively. The coil is subject to a voltage U(t) 

while the solenoid is subject voltage u(t). Self-inductances L of the coil 

and l of the solenoid are constant, i.e. independent of the angular position 

θ of the coil. The mutual inductance M(θ), between the static solenoid 

and the rotating coil, is dependent of the angular position θ of the coil  

M (θ) = knN  · π · ρ2
  · n · N · sin θ 

where knN is a characteristic constant of the coil.  

The coil is supported by a lubricated bearing with viscous friction 

coefficient B. Obtain the model using Lagrange equations. 

Lagrange equations in this case are 
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Fig. 1.12 The diagram of rotating spring coil and solenoid system 
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where the constant α is 

α = knN · π · ρ
2
 · n · N 
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Partial derivatives are 
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such that Lagrange equations for the mechanical generalized coordinate θ 

and for the electrical generalized coordinates Q and q result as follows 

 

ωBθkcosθiIαωJ ⋅−=⋅+⋅⋅⋅−⋅ ɺ  

IRU(t)cosθωiαsinθiαIL ⋅−=⋅⋅⋅+⋅⋅+⋅ ɺɺ  

iru(t)cosθωIαsinθIαiL ⋅−=⋅⋅⋅+⋅⋅+⋅ ɺɺ  

or 

cosθiIαθkθBθJ ⋅⋅⋅=⋅+⋅+⋅ ɺɺɺ  

cosθωiαsinθiαU(t)IRIL ⋅⋅⋅−⋅⋅−=⋅+⋅ ɺɺ  

cosθωIα-sinθIα-u(t)iriL ⋅⋅⋅⋅⋅=⋅+⋅ ɺɺ  

These three nonlinear differential equations with variables θ(t), I(t) 

and i(t) represent the model of the system from Fig. 1.12, given the 

inputs U(t) and u(t), i.e. the direct problem. In practical applications, one 

of the inputs, U(t) or u(t), can be held constant. For either I or I 

vanishing, the first equation gives the equilibrium position θ = 0. 

In the first equation, for the rotational mechanical subsystem, the 

term T = α · I · i · cos θ represents the torque produced by the magnetic 

fields interaction of the solenoid with the coil, which is zero when the 

coil and the solenoid are perpendicular, i.e. when θ = 90°, or when the 

two magnetic fields are parallel. As a result, the angle θ should be limited 

to the domain 

–90 + ε < θ < 90 – ε 

where ε can be obtained from the condition that maximum admissible 

currents Imax and imax produce a minimum required torque Tmin to be able 

to rotate the J-B-K mechanical system, i.e. 

Tmin = α Imax imax cos |θ – ε| 
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In second equation, for the moving coil, the terms α i sinθ α⋅ ⋅ + ⋅ ⋅ ⋅ɺ  

θ α i ω cosθ⋅ ⋅ + ⋅ ⋅ ⋅  represent the induced voltages in the coil due to the time 

varying current and due to the coil angular velocity. Similarly, the terms 

α I sinθ α I ω cosθ⋅ ⋅ + ⋅ ⋅ ⋅ɺ  represent induced voltages in the solenoid due 

to the time varying current and due to the coil angular velocity.  

 

Example 1.9 Figure 1.13 shows a capacitance with a moving top 

electrode of mass m and with a gap X  –  x, where X is the gap. The 

equilibrium position of the top electrode is x = 0, when no voltage is 

applied to the capacitance and the spring is stretched by m · g / k to 

counterbalance top electrode weight m · g. The bottom electrode is 

sitting on a fixed electric insulator. The top electrode can move vertically 

with the displacement x, as a result of the time varying voltage applied to 

the electrodes from a voltage source with U(t) connected through wires 

with resistance R and inductance L [11]. The top electrode is connected 

to the moving bottom end of a spring with spring coefficient k. The 

spring has the top end connected to a fixed insulator. Assume that the 

structural damping coefficient is b. 

The capacity of the time varying gap capacitance is given by 

xX

Ak
)x(C

−
⋅

=  

where k is the dielectric constant and A is the cross-sectional area of the 

capacitance. Obtain the model using Lagrange equations. 

Lagrange equations in this case are 
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where 

v
dt  

dx
=  

I
dt  

dQ
=  

Fig. 1.13 Diagram of a system consisting of a capacitance and a spring 
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Lagrange equations for the mechanical generalized coordinate θ and 

for the electrical generalized coordinates Q and q result as follows 
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x X
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The following two second order nonlinear differential equations with 

unknowns x(t) and Q(t) and q(t) represent the model of the system from 

Fig. 1.13, given the time varying input voltage U(t). 

 

F(Q)xkxbxm =⋅+⋅+⋅ ɺɺɺ  

U(t)
)x(C

Q
QRQL =+⋅+⋅ ɺɺɺ  

where C(x) is the time varying gap dependant capacitance with  
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xX

Ak
C(x)

−
⋅

=  

and  

Ak2

Q
F(Q)

2

⋅⋅
=  

is the charge dependant force applied by the moving electrode to the 

bottom end of the spring. 

The two nonlinear differential equations with variables x and Q 

permit to model the effect of time varying external voltage U(t) on the 

displacement x(t) of the moving top electrode, i.e. a direct problem. 

1.3 Local Sensing and Actuation in Spatially Continuous Systems 

Spatially continuous systems, can be modeled using either effort-flow 

cuts or Lagrangian dynamics. These models are needed for the design of 

systems or for their real-time monitoring and control.  

Continuous systems can be modeled with lumped parameters models 

or with distributed parameters models, depending on the acceptable level 

of accuracy and modeling difficulties. In both cases, the number of 

inputs can be lower than the number of degrees of freedom, resulting in 

under-actuation or lower number of outputs than states, resulting in 

under-sensing. The issue of local sensing and actuation has to be 

investigated in both cases. Control of these systems can be either open 

loop or closed loop. Under-actuation and under-sensing have 

consequences on the performance of both types of systems, but is a 

particularly difficult problem to solve for distributed parameters models 

[18]. 
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1.3.1 Lumped Parameters Models with Under-Actuation and  

Under-Sensing 

Lumped parameters models for linear case can be written in the form of 

linear ordinary differential equations (ODE): 

dX(t) / dt = A(t) · X(t) + B(t) · u(t) + G(t) · w(t) 

y(t) = C(t) · X(t) + D(t) · u(t) 

where 

X(t) = n-vector of states with given initial conditions x(0) 

u(t) = m-vector of inputs 

w(t) = d-vector of disturbances 

y(t) = p-vector of outputs  

A(t), B(t), G(t), C(t), D(t) = time varying matrices. 

Lumped models for nonlinear case can also be written in the form of 

linear ordinary differential equations (ODE): 

dX(t) / dt = F(X(t), u(t), w(t)) 

y(t) = H(X(t), u(t)) 

where F and H are nonlinear functions. 

The number of states, n, is finite and, consequently, lumped 

parameters models which are a simplified representation of continuous 

systems. Certainly, spatial resolution is in the former case limited. 

Under-actuation results from fewer inputs m than the number of degrees 

of freedom N, i.e. m < N, and under-sensing from fewer outputs p than 

the number of states, i.e. p < n. A continuous system would have infinite 

values for n and N, consequently, finite number of actuators and sensors 

will always result in this case in under-actuation and under-sensing. 

Given the complexities of distributed parameters models, under-actuation 

and under-sensing issues are easier to be analyzed using in a first 

approximation lumped linear models represented by ordinary differential 

equations (ODE) with time invariant (LTI) parameters.  



Advanced Mechatronics 32

1.3.2 Distributed Parameters Models with Under-Actuation and 

Under-Sensing 

Distributed parameters models can be take a large variety of 

mathematical forms. A generic form is: 

δX(x, y, z, t) / δt = F(X(x, y, z, t), ∇X(x, y, z, t), ∇2
X(x, y, z, t), ..., w(t))  

subject to boundary conditions 

 

G(X(xb, yb, zb, t),u(t)) = 0 

 

and intial conditions 

 

I(X(x, y, z, 0),u(0)) = 0 

 

While, output equation is 

 

H(y(xm, ym, zm, t), X(x, y, z, t), u(t)) 

 

where ∇ is the partial differentiation operator, with regard to x, y, z, 

variables and the function G and the subscript b refer to boundary 

conditions, while the function I defines initial conditions. It can be 

observed that control variables u(t) appear in this case only in the 

boundary conditions, a typical case in practice where the continuous 

system is actuated only from specific system boundaries. Similarly, the 

outputs y are typically measured in some specific points xm, ym, zm. 

These limitations regarding local actuation and sensing pose specific 

challenges to the design and performance of controllers and for the 

integration of spatially continuous systems. 

 

1.4 Centralized versus Local Control  

 

Local sensing and actuation of systems with large or infinite number of 

states is linked also to the issue of centralized versus local control. A 

finite number of actuators can be controlled either at the actuator location 

or using a centralized control for all actuators.  
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Local controllers use collocated actuators and sensors, have the 

advantage of easier design and tuning and tend to produce predictable 

local system behavior, but are not optimal for the system as a whole. 

Moreover, dynamic couplings in the system can result in inefficient or 

unstable system behavior. Centralized control can be designed optimally, 

but suffers from unavoidable simplifications of the system model on 

which they are based and requires often a prohibitively large number of 

signal transmissions [19]. These issues are critical for continuous 

systems distributed over a large area or for formations. 

 

Problems 

 

1. Consider the system shown in Fig. 1.2 but with added viscous 

friction between the mass M and the ground, with viscous 

friction coefficient B. Obtain v(s) given F(s). 

 

2. For the system shown in Fig. 1.5, obtain the four cuts 

representation. 

 

3. For the free body diagram shown in Fig. 1.7, consider that the 

mass of the rod is not negligible and that is concentrated equally 

at the two ends of the diagram as M1 and M2. Obtain the 

equations for v1 and F1 function of v2 and F2. 

 

4. For the DC motor shown in Fig.1.8, assume that the shaft is 

flexible, such that in the free body diagram from Fig. 1.9 a 

torsional spring coefficient K is in series with the moment of 

inertia J. 

a. Obtain the model with two differential equations for the cut  

    variables (T, ω) and (u, i) 

b. Verify that the same model is obtained using Lagrange       

    equations. 

 

5. Assume that the plunger solenoid from Fig. 1.11 has the plunger 

of mass M connected by a spring, with spring coefficient K, to a 
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right hand side rigid wall. Obtain the Lagrange equations of 

motion. 

 

6.  For electromechanical system shown in Fig. 1.12, the mutual 

inductance between the static solenoid and the rotating coil is   

M (θ) = knN · π · ρ
2

 · n · N · sin θ. The coil, of moment of inertia J, 

actuates a flexible shaft supported at one end by a lubricated 

bearing with viscous friction coefficient B. The shaft, with 

torsional stiffness coefficient K, has a load with a moment of 

inertia J, and has itself a negligible moment of inertia, relative to 

the two end moments of inertia. Obtain Lagrange equations for 

this system. 

 

7. Consider the system shown in Fig. 1.13, which consists of a 

capacitance with a moving top electrode of mass m and with a 

gap X - x, where X is the gap for the equilibrium position x = 0, 

when no voltage is applied to the capacitance, and the spring is 

stretched by m · g / k to counterbalance top electrode weight m · 

g. The bottom electrode is sitting on a fixed insulator. The top 

electrode is moving vertically with the displacement x, as a 

result of the time varying voltage applied to the electrodes from 

a voltage source with U(t) connected through wires with 

resistance R and inductance L. The top electrode is connected to 

the moving bottom end of a spring with spring coefficient k and 

in parallel with a damper with damping coefficient b. The spring 

has the top end connected to a fixed insulator. The capacity of 

the time varying gap capacitance is C(x) = c · A / (X - x), where 

c is a constant dependent of the insulator between the electrodes. 

Obtain the model using Lagrange equations. 

 

8. For a multi-DOF linear lumped parameters mechanical system, 

the system is considered under-actuated if: 

a. there are fewer actuators than the number of states 

b. there are as many actuators as the number of states 

c. there are as many actuators as the number of degrees of 

freedom.  
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Chapter 2 

Examples of Direct and Inverse Problems for 

Mixed Systems 

2.1 Modular Modeling and Control Issues for Mixed Systems 

 

2.1.1 Effort-Flow Modeling of Mechatronic Systems 

 

Issues regarding direct and inverse problems can be presented based on 

the schematic diagram of a distributed parameters mechatronic system, 

shown in Fig. 2.1. In Fig. 2.1, measurement and control signal 

transmission is shown in thin lines, while power transfer to the 

Distributed Parameters Mixed System is represented using effort-flow 

representation of power transfer cuts concept, introduced in Ch. 1. 

Electric power supply of the mechatronic system provides an 

instantaneous power transfer UAC · IAC to supply the drivers. The drivers 

modulate the electric power output u · i to actuators, assumed electric 

motors with given efficiency, such that u · i < UAC · IAC. Actuators can be 

controlled by modulating voltage or current input. The modulation 

follows the computer control commands transmitted from the DAC as 

analog signals. The actuators, assumed here as electromechanical 

actuators, provide modulated mechanical power Fv < ui < UAC · IAC to the 

Distributed Parameters Mixed System for changing, as required, the 

states of the system. In Fig. 2.1, point actuators are assumed to apply 

forces F in given points at the outer boundary surface of the system.  

Inside the Distributed Parameters Mixed System other power transfer 

and conversions take place and they can also be represented by the 

effort-flow representation of power transfer cuts concept in case that this 

is concentrated in specific some points of the system. Distributed 
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parameters power transfer and conversion, for example in case of 

radiation, require specific distributed parameters effort-flow 

representation in which power transfer cross-sections can be identified 

[23].  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Schematic diagram of a distributed parameters mechatronic system with 

effort-flow representation of power transfer cuts 
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Modeling and simulation of Distributed Parameters Mixed Systems 

has to be based on the fact that, in this case states, inputs and outputs are 

dependent not only on time but also on spatial x, y, z location in the 

system. 

 

2.2 Modeling and Simulation of Distributed Parameters Systems 

 

2.2.1 Examples of Distributed Parameters Systems 

 

2.2.1.1   Examples of models of vibrating flexible structures 

 

Flexible structures (strings, membranes, beams, plates etc.), acoustic 

field, heat transfer, fluid flow, electric and magnetic fields, are some 

examples of systems that have distributed parameters and are modeled by 

partial differential equations or alternatively, by integral equations [14, 

24]. While the initial model of such systems is in the form of distributed 

parameters, often, for developing active control of the dynamics of these 

systems, an equivalent lumped parameters model is often derived, as for 

example the finite elements model for vibrating systems [23]. 

 

A) Examples of models of vibrating flexible structures are the following: 

 

a) the string, shown in Fig. 2.2, has a small transversal displacement  

y(x, t) from the equilibrium position. In this example, initial 

conditions, away from equilibrium lead to space and time variation of 

y(x, t).  

                    

The motion equation is 

 

2

2
2

2

2

x

t)y(x,
c

t

t)y(x,

∂

∂
=

∂

∂
 

where   

c = T/ρ [m / s] 

T is the constant tension in the string [N] 

ρ is linear mass density [kg / m] 
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Fig. 2.2 Vibrating string 

 

b) the membrane, shown in Fig. 2.3 has a small transversal displacement 

z(x, y, t) from the equilibrium position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Vibrating membrane 

 

As in the case of vibrating string, the displacement is governed by 

second order partial differential equation with regard to time and to space 

coordinates. 
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The equation is 

 

)
y

t)y,(x,z

x

t)y,z(x,
(c

t

t)y,z(x,
2
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∂
=

∂
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where c = T/ρ [m / s]. Initial conditions are assumed away from 

equilibrium. 

 

c) the beam is shown in Fig. 2.4 and has a small longitudinal 

displacement u(x, t), along axis x, from the equilibrium position. 

 

 

 

 

 

 

 

 

 
 

Fig. 2.4 Beam vibrating longitudinally 

 

The equation is the same the equation for vibrating string, but, written for 

the longitudinal displacement u(x, t)   

 

2

2
2

2

2

x

t)u(x,
c

t

t)u(x,

∂

∂
=

∂

∂
 

where   

c = T / ρ [m / s] 

T is the constant tension in the beam [N] 

ρ is linear mass density [kg / m] 

 

d) the beam, shown in Fig. 2.5, has a small transversal displacement  

y(x, t) from the equilibrium position and is subject to an applied 

distribute force F(x, t). 

y 

u(x, t) x 
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The equation is 

 

IE

 t)F(x,
b

x

t)y(x,
b

t

t)y(x, 2
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+

∂

∂
 

where   

 

b = E · I · g / µ [m / s] 

E is the Young modulus of the homogenous material of the beam 

I is the moment of inertia about x axis 

µ is linear mass density [kg / m] 

 

 

 

 

 

 

 

 

 
 

Fig. 2.5 Beam vibrating transversally 

 

Different from the previous examples of flexible structures, which had 

vibrations due to initial nonzero conditions, in this case there is an 

external force F(x, t) applied to the beam. 

 

2.2.1.2   Acoustic fields 

 

Acoustic fields of relatively low amplitudes are modeled by the linear 

Euler equation [21] 

 

pc
t

p 22

2
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where 

p(x, y, z, t) is the acoustic pressure at x, y, z at time t 

c is the thermodynamic speed of sound for the specific fluid supporting 

the propagation. 
2∇ , nabla squared, is the Laplacian operator defined by 

 

2

2

2

2

2

2
2

zyx ∂

∂
+

∂

∂
+

∂

∂
=∇  

2.2.1.3   Heat transfer 

 

Three-dimensional (3D) heat conduction equation is given by 

 

uk
t

u 2∇⋅=
∂

∂
 

where  

u(x, y, z, t) is the temperature in a solid body in the point x, y, z at time t. 

k is diffusivity. 

σ is the specific heat of the solid body conducting the heat  

τ is the volume density [kg  / m
3
] 

 

2.2.1.4   Fluid flow 

 

Euler’s method for the flow in space gives the state change f(x, y, z, t) of 

a particle of the fluid as follows 

 

)f(gradV
t

f

dt

df
⋅+

∂
∂

=  

where   

V is the velocity 

and the gradient operator grad (nabla or del) is given by 
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grad = 
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2.2.1.5   Electric and magnetic fields 

 

For an infinite, homogenous, isotropic, insulating (I = 0), i.e. no free 

charges (Q = 0), lossless, dispersion-less and linear medium, i.e. an ideal 

vacuum free space, Maxwell equations for electromagnetic fields can be 

written in the partial differential equations form, in Cartesian coordinates 

as follows   

 

-Gauss equation for electric field intensity E 

δ Ex / δx + δ Ey / δy + δ Ez / δz = 0     

-Gauss equation for magnetic induction B 

δ Bx / δx + δ By / δy + δ Bz / δz = 0 

-Faraday law   

δEz / δy -  δEy / δz =   -   δ Bx / δ t 

δEx / δz -  δEz / δx =   -   δ By / δ t 

δEy / δx -  δEx / δy =   -   δ Bz / δ t 

-Ampere law 

δBz / δy - δBy / δz =     µ · Α · ε  · δ Ex /δ t 

δBx / δz - δBz / δx =     µ · Α · ε  · δ Ey /δ t 

δBy / δx - δBx / δy =     µ · Α · ε  · δ Ez /δ t 

where  

E = electric field with the components Ex, Ey  Ez [V / m] 

B = magnetic flux density or magnetic induction, [T] or [N / (Am)], with 

the components Bx , By , Bz 

µ = permeability constant = µr · µo, [H / m] or [N / A
2
] 

µr  = relative permeability constant with regard to vacuum (µ r  ≈ 1 for air) 

µo  = vacuum permeability constant = 4 · π · 10
-7

 [H / m] or [N / A
2
] 

ε = permittivity constant [F/m] or [C
2 
/ Nm

2
] 

ε r  = relative permittivity constant with regard to vacuum, (ε r  ≈ 1 for air) 
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ε o = vacuum permittivity constant = 8.85 · 10
-12

 [F / m] or [C
2 
/ Nm

2
] 

 

The above examples of distributed parameters models, expressed as 

partial differential equations, require boundary and initial conditions for 

complete definition for a specific system. 

These systems can have external excitations from actuators, that are 

located on some points along the 1D, 2D or 3D field. For 3D fields in 

particular, actuators are often located on the 2D outer boundary surface 

of the field and appear in the model only in the boundary conditions. 

Sometimes, as shown in the example shown in Fig. 2.5, actuating force 

can be applied distributed within the system. The placement of actuators 

in distributed parameters systems has important consequences on the 

design of controllers for both open loop and closed loop control.  

These problems will be presented in more detail in subsequent 

chapters. 

 

2.2.2 Direct and Inverse Problems. Well Posed and Ill Posed Problems 

 

Two distinct problems can be formulated for distributed parameters 

systems: 

-simulation problem, to determine positions and time dependent states 

and outputs given distributed external excitation and initial and boundary 

conditions. This is called a direct problem: given known input determine 

the output. 

-control problem, to determine distributed external excitation, applied 

often on the boundary, given desired states and outputs as well as initial 

and boundary conditions. This is an inverse problem: given desired 

outputs determine inputs. 

These problems can be characterized as well-posed if [82]: 

-the solution exists; 

-the solution is unique; 

-the model is continuously dependent on parameters. 

These conditions, stated by Hadamard, when violated define ill-posed 

problems. In particular, partial differential equations are characterized as 

ill-posed. Ch.3 presents methods for solving discrete inverse problems 

for the case of ill-posedness. 
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2.2.3 Classification of Partial Differential Equations and Methods  

of Solving 

 

The majority of partial differential equations (PDE) used in mathematical 

physics are of the following types: 

-Single linear PDE with one unknown, for example for heat flow, string 

equation, Euler Bernoulli beam equation and membrane equation as well 

as wave equation for vibrations,  sound and electromagnetic waves; 

-Multiple linear PDE with multiple unknowns, for example Maxwell 

equations; 

-Nonlinear systems of PDE, for example Euler and Navier-Stokes 

equations for fluid dynamics. 

Most of these PDE in mathematical physics are second order 

equations and, in case of two independent variables, are of the general 

form: 
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∂
 

or, in a more compact notation 

A · uxx + B · uxy  + C · uyy + D · ux + E · uy + F · u = G 

where A, B, C, D, E, F, G do not depend on u but might depend on x  

and y.  

Second order equations PDE are classified based on the sign of  

B
2
 – 4 · A · C: 

 

a) for B
2
 – 4 · A · C < 0, elliptic equations.  

For example two-dimensional heat conduction equation  

   

)
y

t)y,u(x,

x

t)y,u(x,
k(

t

t)y,u(x,
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2

2

2

∂

∂
+

∂

∂
=
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in steady state form (δu(x, y, t) / δt =0 for t = ∞) becomes Laplace 

equation with independent variables x, y  
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where A = C = 1 and B = 0 such that B
2
 – 4 · A · C = - 4 < 0. 

 

b) for B
2
 – 4 A · C > 0, hyperbolic equations.   

For example string and longitudinal vibrations equations with 

independent variables x and t   

 

0
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t)u(x,
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t)u(x,
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2 =
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−
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where A = c
2 
, B = 0, C = - 1 and B

2
 – 4 · A · C= 4 · C

2
 > 0. 

 

c) for B
2
 – 4 · A · C = 0, parabolic equations.  

For example one-dimensional heat conduction equation 

    

2
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x

t)u(x,
k

t

t)u(x,

∂
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=

∂
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where A = k
 
, B = C = 0 and B

2
 – 4 · A · C = 0.  

The importance of this classification is due to the fact that each class 

shares similar methods of solving the equations of the direct problem. 

Methods for solving the above equations given initial and boundary 

conditions include [14, 24]: 

 

A) analytical methods 

-general and particular solutions  

-separation of variables and modal analysis, often used in vibration 

engineering  

-Fourier transform  

-Laplace transform, in particular with regard to time variable etc. 

B) numerical methods  

-finite differences method 

-finite elements method. 
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These methods will be reviewed in examples as part of the presentation 

of various applications in next chapters. 

 

2.3 Overview of Open Loop and Closed Loop Control of 

Distributed Parameters Systems 

 

2.3.1 Direct and Inverse Problems 

 

Both open and closed loop control of systems use a model of the system 

for the controller design, to determine the control scheme that provides 

the commands for the inputs u(t) such that the states X(t) of the system 

tend towards some given desired values or time variations. System 

models give the relationships between inputs u(t) and the states X(t), that 

permit to formulate the direct problem, i.e. the determination of time 

variation of the states X(t) given inputs u(t). Control problems require 

the determination of u(t) given a desired time variation of the states X(t). 

This open loop control represents also called inverse problem. 

It is easier to illustrate these concepts for a LTI lumped parameters 

system: 

dX(t) / dt = A · X(t) + B · u(t) 

y(t) = C · X(t) 

where 

X(t) = n-vector of states with given initial conditions x(0) 

u(t) = m-vector of inputs  

y(t) = p-vector of outputs 

A, B, C = parameters matrices. 

After applying Laplace transform for zero initial conditions this gives 

 

(I · s – A) · x(s) = B · u(s) 

Y(s) = C · x(s) 

 

For this illustration, assuming that all states are directly observable, i.e. 

C = I, where I is identity matrix, the direct problem is given by 

 

x(s) = (I · s – A)
-1

 · B · u(s) 



Examples of Direct and Inverse Problems 47

and the solution for inverse problem is 

u(s) = B
-1

 · (I · s – A) · x(s) 

Assuming as many outputs as states, the inverse problem for desired  

x (s) = C
-1

 · yd (s) 

gives the open loop control law 

u(s) = B
-1

 · (I · s – A) · C
-1

 · yd (s) 

In the path of the solution u(s) for inverse problem is s and yd(s). As a 

result, fast desired variations of yd (t) are subject to a derivative operator 

and will require extremely high amplitudes of  u(t), leading to an ill-

posed problem.  

In practice, however, closed loop control is frequently used, with its 

own advantages and limitations, presented in well known control 

textbooks [50, 70]. Besides open loop control, inverse problem occurs in 

numerous other monitoring, identification and estimation problems, 

investigated in the next chapters of the book. 

Direct and inverse problems were extensively investigated since 

1960’s for various distributed parameters systems, particularly in the 

case of inverse heat conduction problem [10, 22, 30]. 

For a generic distributed parameters system, the direct problem, of 

determining X(x, y, z, t) given u(x, y, z, t) and for the noise w(x, y, z, t), 

can be formulated as follows 

 

δX(x, y, z, t)/δt = F(X(x, y, z, t), ∇ X(x, y, z, t), ∇2
X(x, y, z, t), ..., u(x, y, 

z, t), w(x, y, z, t)) 

G(X(x, y, z, t), u(xb, yb, zb, t)) = 0 

I(X(x, y, z, 0), u((x, y, z, 0)) = 0 

H(y (xm, ym, zm, t), X(x, y, z, t)) = 0 

 

where  

X(x, y, z, t) is the state vector 

u(x, y, z, t) is the input vector 
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H(y (xm, ym, zm, t), X(x, y, z, t)) = 0 is the output equation defining y (xm, 

ym, zm, t), the output vector from measurements from point sensors 

located at (xm, ym, zm) 

G(X(x, y, z, t), u(xb, yb, zb, t)) = 0 is the boundary equation for defining 

the inputs u(xb, yb, zb, t) from point actuators located at (xb, yb, zb) 

I(X(x, y, z, 0), u((x, y, z, 0)) = 0 is the initial conditions equation 

Control input u(x, y, z, t) appears either in the boundary conditions 

G(X(xb, yb, zb, t), u(x, y, z, t)) = 0 or in the PDE defining the dynamics 

δX/δt = F. In most cases, control input u(x, y, z, t) corresponds to point 

actuators located on the system boundaries. Direct problem of calculating 

y and X given u is already a difficult to solve problem, analytically or 

numerically and inverse problem of calculating u given y and X is 

significantly more difficult to solve. Some simple examples of inverse 

heat conduction problem will be first used to clarify basic issues. 

 

2.3.2 Inverse Heat Conduction Problem 

 

Inverse heat conduction problem is illustrated for the case of a one-

dimensional symmetric semi-infinite body, where the heat input q(t) is 

applied at the boundary x = 0 heated at the boundary x = 0 by the applied 

heat flux q(t), as shown in Fig. 2.6. 

 

 

 

 

 

 

 

 

 
 

Fig. 2.6 One-dimensional symmetric semi-infinite heated body 

 

This can be modeled, in non-dimensional formulation, by the heat 

conduction 1D PDE equation for x > 0 and t > 0 [18, 22]: 

 

u(xm, t)= Tm(t)  

 

x 
xm 

u(x, t) q(0, t)=q(t) 
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or, in a more compact notation 

uxx(x, t) = ut(x, t) 

where u(x ,t) is the temperature (in dimensionless units) in point x at  

time t. 

Output equation for exact measurements of the temperature u(xm, t) 

from the temperature sensor output Tm(t), located at x = xm , is given by 

u(xm, t) = Tm(t) 

Boundary conditions are given for a semi-infinite body with finite 

right hand side temperature 

u(x, t) < ∞      for x → ∞ 

and 

 

a) u(0, t) = T(t) in case that the temperature at the left hand side  

surface (x = 0), shown in Fig. 2.6, is the unknown. This is a  

distant temperature monitoring problem, for the measurement  

u(xm, t) = Tm(t). 

b) ux(0, t) = - q(t) in case that the surface heat flux q(t) entering at the 

left hand side surface of the body (x = 0) is the unknown (given that 

in dimensionless equations the heat flux is proportional to the 

gradient of the temperature). This is an open loop control problem. 

 

Both a) and b) are inverse problems. 

The initial condition is given by 

u(x, 0) = 0 

Fourier transform with regard to time gives 

Uxx(x, ω) = Ut(x, ω) 
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a) For the case of the above initial and boundary conditions distant 

temperature monitoring problem, the solution of the above Fourier 

transform for the Fourier transform of the measured temperature  

U(xm,ω) = τm(ω) inside the body at sensor location x = xm given the 

Fourier transform of the unknown temperature U(0, ω) at the left hand 

side surface (x = 0) of the body from Fig. 2.6, [22] 

τm(ω) = U(0, ω) · exp{-√( ω /2) · [1 + i · sgn(ω)] } 

This shows that high frequency components of the surface temperature 

U(0, ω) are multiplied by a term  exp{-√( ω /2) · [1 + i · sgn(ω)] } that 

decreases exponentially with increasing ω, i.e. a term that acts as a low 

pass filter.  

The inverse of the above solution gives the Fourier transform of the 

temperature U(0, ω) at the left hand side surface (x = 0) of the body 

given the Fourier transform of the measured temperature τm(ω) inside the 

body at sensor location x = xm [22]  

U(ω) = τm(ω)· exp{√( ω /2) · [1 + i · sgn(ω)]} 

where τm(ω) is the Fourier transform of the temperature measurements  

Tm(t)  at  x = xm 

This shows that high frequency components of the surface temperature 

U(0, ω) are multiplied by a term  exp{√( ω /2) · [1 + i · sgn(ω)] } that 

increases exponentially with increasing ω, i.e. a term that acts as high 

pass filter that reduces the relative weight of useful low frequency 

components from the measurement signal and amplifies the high 

frequency components that can contain noise, always present in the 

output signals of temperature to voltage transducers. This measurement 

error amplification effect makes the inverse heat conduction problem an 

ill-posed problem.  

 

b) For this open loop control problem, the boundary condition 

ux(0, t) = - q(t) 
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refers the heat flux q(t) entering at the boundary surface (x = 0) that 

determines the temperature u(xm, t) inside the body (x = xm), measured as 

Tm(t). The same type of high pass filter as in case a, leads also to an 

inverse heat conduction problem that is an ill-posed problem. As a result, 

open loop control q
(c)

(t) = - ux(0, t), based on inverse heat conduction 

problem formulation, results also in an ill-posed problem. 

Same conclusions result from the exact solution of the heat 
conduction equation 
 

uk
t

u 2∇⋅=
∂

∂
 

where u(x, y, z, t) is the temperature in a solid body in the point x, y, z at 

time t and k is diffusivity. 

 

2.3.3 Open Loop Control of Distributed Parameters Systems 

 

Figure 2.7 shows the block diagram for an open-loop control system, 

when the commands u
(c)

(t) to the actuators are the result of an open-loop 

controller. 

 

 

 

 

 

 

 

Fig. 2.7 Block diagram for an open-loop system control with no feedback for actuators 

 

In order to reduce the errors between the commands u
(c)

(t) and outputs of 

the actuators of the system and actual output of the actuators u(t), an 

open-loop control system with feedback at actuators is used, as shown in 

the block diagram from Fig. 2.8. 

 

 

 

u
(c)

(t) Xd(t)  Open-loop 

controller 
 
System 

X(t)   
Actuator 

u (t) 
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Fig. 2.8 Block diagram for an open-loop control system 

 

In this case a local closed loop control is included for each actuator,  

much simpler than an overall closed loop control for a distributed 

parameters system. Distributed parameters systems frequently have 

coupled dynamics and require a multi input multi output controller, while 

in the case shown in Fig. 2.8, closed loop control is single input single 

output for each actuator separately and results in collocated control. 

Monitoring and open loop control of distributed parameters systems 

is affected by the specific inverse problems issues. The example of open 

loop controller based on the inverse heat conduction equation showed 

augmented effects of high frequency components, mostly noise, and 

diminished effects of low frequency components, often more important 

for the controlled system. In applications, desired internal temperature 

distributed over space and time is often the result of heat flux from heat 

sources located at the boundary of the thermal system. The general 

problem of open loop control of infinite dimensional system with a finite 

number of point actuators is not yet solved [30]. New results in solving 

the ill-posed problem accounting for high-frequency components effect, 

are based on the reformulation of the ill-posed problem into an 

approximately equivalent well-posed problem [22]. 

 

 

 

u
(c)

(t) 
Xd(t)  

Open-loop 
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System 

X(t)  
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+_ 

u (t) 
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2.3.4 Closed Loop Control of Distributed Parameters Systems 

 

Figure 2.9 shows the block diagram for the closed-loop control of a 

distributed parameters system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 Block diagram for a closed-loop control of a distributed parameters system 

 

This block diagram illustrates the difficulties of the closed-loop control 

of a distributed parameters system. The measurement and estimation of 

all system internal states X(x, y, z, t) using a finite number of point 

sensors, located inside the system or on the boundary, is also an ill-posed 

problem due to under-sensing and indirect-sensing, as was illustrated 

above for one-dimensional symmetric semi-infinite heated body. Also, 

the control of all system internal states X(x, y, z, t) with a finite number 

of point actuators, located normally on the boundary of the system, is 

also an infinite dimensional system problem that does not have yet 

generic satisfactory solutions. Solutions for ill-posed inverse problems 

are presented in Ch. 3, while their use for particular systems (flexible 

systems, thermal systems etc) will be presented in the subsequent 

chapters.  
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2.4 Under-Actuated and Under-Sensed Mixed Systems 

 

2.4.1 General Problem of Multi DOF Linear Mechanical Systems. 

Lumped Parameters Model 

    

Lumped parameters model for a nonlinear system in the canonic form is: 

X(t) / dt = F(X(t), u(t), w(t)) 

y(t) = H(X(t), u(t)) 

where  F and H are nonlinear functions and 

u(t) = m-vector of  inputs   

w(t) = d-vector of disturbances 

y(t) = p-vector of outputs. 

Under-actuation results from fewer inputs m than N, the number of 

degrees of freedom (DOF), i.e. m < N, and under-sensing from fewer 

outputs p than the number of states n, i.e. p < n. Only actuated DOFs can 

be open loop controlled and only the DOFs with controlled variable 

measurement by sensors can be closed loop controlled, while the rest of 

the system will have indirectly controlled dynamics that has to be 

verified for acceptable bounded states.  

Given the complexities of nonlinear models, under-actuation and 

under-sensing issues are easier to be first analyzed using lumped 

parameters linear models represented by Ordinary Differential Equations, 

Linear with Time Invariant parameters (ODE with LTI), presented in  

Ch. 2.3. Assuming the case that m out of the total of  N DOF, (m < N), 

have collocated inputs from actuators and that all these m DOFs have the 

controlled state variables measured by sensors,  than m-N DOF will be 

un-actuated and the system is both under-actuated and under-sensed. The 

DOFs subject to closed loop control can have controllers that efficiently 

bring their state variables towards desired values, while the remaining 

DOFs can only be subject to redesign to bring their open loop dynamics 

states within acceptable bounded limits as a result of excitations from 

other DOFs of the system.  

A simple mechanical system will illustrate these issues. 
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2.4.2 Two DOF Mechanical System Case 

 

Figure 2.10 shows a 2 DOF mechanical system. 

 

 

 

 

 

 

 

 

Fig. 2.10 A 2 DOF mechanical system 

  

This 2 DOF mechanical system has one input force FBBB1 
BBB

and one position 

sensor producing the output yBBB1
BBB

, and the motion is assumed frictionless. 

As the result, the degree of freedom corresponding to M1 is actuated and 

sensed and the degree of freedom corresponding to M2 is not actuated 

and not sensed.  

The free body diagrams are shown in Fig. 2.11. 
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Fig. 2.11 Free body diagrams for the system from Fig. 2.10 
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The dynamics of this system is described by the following two second 

order ODEs.  

 

1212112

1
2

1 F)x(xKxK
dt

xd
M =−⋅+⋅+  

0)x(x · K
dt

xd
M 1222

2
2

2 =−+  

The measured output is 

11 xy =  

 

After taking Laplace transform for zero initial conditions, these equations 

become 

 

[M1s
2
 + K1 + K2] · X1 (s) - K2 · X2 (s) = F1 (s) 

 

[M2s
2
 + K2] · X2 (s) - K2 · X1 (s) =0 

 

Y1(s) = X1(s) 

 

The position variables XBBB1 
BBB

(s) and XBBB2 
BBB

(s) are given by 

 

(s)X
KKsM

K
(s)F

KKsM

1
(s)X 2

21
2

1

2
1

21
2

1

1
++

+
++

=  

(s)X
KsM

K
(s)X 1

2
2

2

2
2

+
=  

After replacing XBBB2 
BBB

(s) from the first equation with the result of the second 

equation 

 

(s)X
)Ks(M)KKs(M

K
(s)F

KKsM

1
(s)X 1

2
2

221
2

1

2

2
1

21
2

1

1
+++

+
++

=  
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or  

 

(s)F 

)Ks(M)KKs(M

K
1

KKsM

1

(s)X 1

2
2

221
2

1

2

2

21
2

1
1

+++
−

++
=  

The model becomes 

 

(s)F(s)G(s)F 

)Ks(M)KKs(M

K
1

KKsM

1

(s)X 111

2
2

221
2

1

2

2

21
2

1
1 ⋅=

+++
−

++
=  

(s)X(s)G(s)X
KsM

K
(s)X 1121

2
2

2

2
2 ⋅=

+
=  

)s(X)s(Y 11 =   

 

The open loop dynamics model is shown in Fig. 2.12. The consequence 

is that M1 is both actuated by F1 and has the position measured as y1 = x1. 

M1 can have closed loop motion control, while M BBB2 
BBB

has open loop 

dynamics that cannot be directly controlled.  

 

 

 

 

 

 

 

 
 

Fig. 2.12 Open loop dynamics diagram 
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Assume a proportional controller (with gain kp) of position error of X1(s) 

with regard to the desired position X1d(s) giving the force command 

F1
(c)

(s) 

 

F1
(c)

(s) = kp · (XBBB1d
BBB

(s) - XBBB1
BBB

(s)) 

 

and an ideal actuator  

 

F BBB1
BBB

(s) = F1
(c)

(s) 

 

The closed loop controlled system is shown in Fig. 2.13.  

 

 

                      

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.13 Closed loop controlled system 

 
 

Figure 2.13 clearly shows that only M BBB1
 

has closed loop motion control, 

while MBBB2 
BBB

is subject to open loop dynamics that can be modified only by: 

- modifying the parameters KBBB2
 

and M BBB2  

- modifying the structure of the system, for example by including a 

damper BBBB2 

- manipulating the input X1 (s) to the right hand side open loop system. 
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In fact, the transfer function for the right hand side open loop system 

 

(s)G 
KsM

(s)K

(s)X

(s)X
12

2

2

2

2

1

2 =
+

=  

indicates that this system is marginally stable due to the imaginary poles  

+/- √(KBBB2
BBB

/MBBB2
BBB

). 

This open loop subsystem can be stabilized by modifying the 

structure of the system, by including a damper BBBB2 
BBB

, as shown in Fig. 2.14. 

 

 

 

 

 

 

 

Fig. 2.14 Modified 2 DOF mechanical system 

 

As a result, the equation of motion become 

 

1212112

1
2

1 F)x(xKxK
dt

xd
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0)x(xK
dt
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2
22

2
2

2 =−⋅++  

Following the same procedure as above, the model becomes 
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(s)X(s)g(s)X
KsBsM

K
(s)X 1121

22
2

2

2
2 ⋅=

++
=  

Y1(s) = X1(s) 

 

The closed loop of the modified controlled system is shown in Fig. 2.15. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15 Closed loop control of the modified system 

 

In this case, the transfer function for the right hand side open loop system 
becomes 

(s)g 
KsBsM

(s)K

(s)X

(s)X
12

22

2

2

2

1

2 =
++

=  

indicating that this system has poles that can be made under-damped or 

over-damped by proper choice of the value of B2 and consequently  the 

open loop subsystem can be maintained within acceptable bounded 

outputs. Structural system modifications are, however, more expensive 

than closed loop controllers. 

Another case is shown in Fig. 2.16, where MBBB1 is actuated while only 

the position of MBBB2 is sensed. In this case the control of yBBB2 is indirect. 
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Fig. 2.16 DOF mechanical system with M1 actuated and M2 sensed 

 

The closed loop of the system from in Fig. 2.15 is shown in Fig. 2.17. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.17 Closed loop control of the system from Fig. 2.16 

 

This control scheme requires the solution G12
-1

(s) for the inverse problem 

of estimating X1est (s) given measurements Y2 (s). 

 

 

Problems 

 

1. For a linear lumped parameters system, which of these is true: 

               a) direct and inverse problems are the same 

         b) no inverse problem can be defined inverse problem is used 

for open  loop control. 

 

2. Assume that for the 2 DOF system shown in Fig. 2.10 there is 

viscous friction between the body of mass MBBB1 and the ground 

F BBB1(s) 

G1 (s) 

X1est(s)   

   1 

 1 

F BBB1
 (c)

PPP(s) 

 Kp   - 

+    

 X1d(s) X2 (s) 

 G12
-1

 (s) 

 G12 (s) 

XBBB1(s) 

K1 
FBBB1 BBB 

M2 K2 M1 

y2 

Y2 (s) 



Advanced Mechatronics 62

with the viscous friction coefficient BBBB1 .Obtain GBBB1 BBB(s) and GBBB12(s) 

of the corresponding block diagram as shown in Fig. 2.12. 

 

3. Assume that for the modified 2 DOF system shown in Fig. 2.14 

there is viscous friction between the body of mass MBBB1 and the 

ground with the viscous friction coefficient BBBB1 .Obtain gBBB1 BBB(s) and 

gBBB12(s) of the corresponding block diagram closed loop control 

as shown in Fig. 2.15. 

 

4. Assume a modified form of the system shown in Fig. 2.16, in 

which position of MBBB1 is sensed while the mass MBBB2 is in this case 

subject to a force F BBB2. Obtain the corresponding GBBB1 BBB(s) · GBBB12(s) 

and G12 BBB 
-1 

for a closed loop control as shown in Fig. 2.17. 

 

5. Assume a modified form of the system shown in Fig. 2.16, in 

which position of MBBB1 is sensed while the mass MBBB2 is in this case 

subject to a force F BBB2 and that between the body of mass MBBB1 and 

the ground there is viscous friction with the viscous friction 

coefficient BBBB1. Obtain the corresponding GBBB1 BBB(s) · GBBB12(s) and  

G12 BBB 
-1 

for a closed loop control as shown in Fig. 2.17. 
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Chapter 3 

Overview of Integral Equations and Discrete 

Inverse Problems 

 
 

 

3.1 Integral Equations and Continuous Inverse Problems 

 

3.1.1 Integral Equations 
 

Integral equations are considered here for formulating a generic form of 

models for continuous systems. 

Integral equations can be interpreted as forward problems as well as 

inverse problems, depending on which functions are considered given 

and which are considered unknown. 

Nonlinear Fredholm equation of the first kind [67] is 

 

∫ τ⋅ττ=
b

a

d))(U,,t(f)t(Y  

This is a definite integral with constant limits a and b. This equation is 

nonlinear in U(τ).  

If interpreted as a forward problem, U(τ) is a given continuous 

function of τ, the input, while Y(t) is the solution of the integration, a 

continuous function, in this case the unknown output. 

If interpreted as an inverse problem, Y(t) is a given continuous 

function, the input, and U(τ) is the solution of the integral equation, a 

continuous function, the unknown input. 

Solutions U(τ) to integral equations represent in this case a generic 

form of solutions for continuous inverse problems. 
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Nonlinear Volterra equation of the first kind [67], is a particular form 

of the nonlinear Fredholm equation, where the limits become a = - ∞ and 

b = t. For τ > t, h(t, τ) = 0, which means that U(τ) has effect on Y(t) only 

for values prior to τ 

 

∫
∞−

τ⋅ττ=
t

d))(U,,t(f)t(Y  

There is equivalence between Volterra equations and ordinary 

differential equations, illustrated later as convolution integral. 

In order to avoid complexities in solving nonlinear Fredholm 

equations, this book will focus on Fredholm equation of the first kind 

linear in U(τ) [67] 

 

∫ τ⋅τ⋅τ=
b

a

d)(U),t(h)t(Y  

For τ > t, h(t, τ) = 0, which means that U(τ) has effect on Y(t) only for 

values of t prior to τ.  

The kernel h(t, τ) has often in applications the role of a low pass filter 

behavior that reduces the effect of fast variations of U(τ) on Y(t). This is 

physically due to the effect of inertia in mechanical systems or 

inductances in electrical systems.  

The forward problem solution Y(t) obtained by integration, for a 

given continuous function U(τ) is, as a result, a well-posed problem, i.e. 

it exists, is unique and depends continuously on parameters. In the case 

of distributed parameters systems, this implies that the corresponding 

model has suitable initial and boundary conditions [78]. The low pass 

filter behavior of the kernel h(t, τ) results also in diminishing the effect of 

noise content of U(τ) on the direct problem solution Y(t).  

The solution U(τ) of the inverse problem, for a given continuous 

function Y(t) is, as a result, a ill-posed problem. If the kernel has a low 

pass filter behaviour, its effect in the inverse problem is that fast 

variations of Y(t) due to high frequency noise, result in highly amplified 
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presence in the solution U(τ) and, ultimately in significant difficulties in 

obtaining numerical solutions [45, 49]. Specialized numerical methods, 

in particular regularization methods, were developed for this reason. 

 

3.1.2 Discrete Form  

 

Integral equations can be approximated by a n-point linear quadrature 

over the range of integration. 

For example, linear Fredholm equation of the first kind  

 

∫ ⋅τ⋅=
b

a

dτ)U(τ)h(t,Y(t)  

 

a n-point linear quadrature has evenly spaced discretization for the range 

of integration (a, b) with a constant step 

 

1n

ab
H

−
−

=  

For the step count k=0, 1, 2,..., (n-1) 

 

t = (K + k) · H 

 

a = K · H 

 

b = (K + n - 1) · H 

 

Replacing the continuous values for τ from a to b by n-discrete values 

 

τ = K · H, (K+1) · H,..., (K+n-1) · H 

 

Fredholm equation can be can be converted using a chosen quadrature in 

discrete time as follows [45, 49] 
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k

1)Hn(K

KHk

ki,i uhY ⋅= ∑
−+

=

 

 

After dropping H, Volterra equation can be written in discrete time as 

follows 

k

i

-k

ki,i uhY ∑
∞=

⋅=  

where hi,k are elements of a lower triangular matrix. For discrete  

Volterra equation uk is easily computed by forward substitution, given Yi 

and hi,k [49].  

As a result both Fredholm and Volterra equations can be 

approximated by systems of linear equations in discrete form leading to 

the matrix equation 

 

Y = h · U 

 

where Y [Ny · 1], h [Ny · Nu] and U [Nu · 1]. 

The coefficients of matrix h are obtained for first order or higher 

order approximations (quadratures) of the continuous function h(t, τ) for 

time step H [45, 49].  

The calculation is analyzed, for simplicity, for the integral 

 

τ⋅τ⋅τ= ∫ d)(U)(hY

b

a

 

i.e. for the case h dependent only on the integration variable τ that results 

in a constant value for Y. 

The integral is approximated by the sum of a finite number N of 

terms defined by the discrete values of equally or non-equally spaced the 

integration variable τ1, τ2, ..., τN  
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∑∫
=

τ⋅τ=τ⋅τ⋅τ=
N

1j

jj

b

a

)U()w(d)(U)(hY  

by extending numerical  integration rules, for example Simpson rule [45, 

49]. The calculation of the weights w(τ) might be possible analytically or 

might require again the use of quadrature method. 

In the case of  Volterra equation in discrete approximation, the matrix 

h is lower triangular and this facilitates significantly the calculation  

of the solution h. Lower triangular structure results in discrete 

approximation from the continuous form condition h(t, τ) = 0 for τ > t. 

In general, the solution of the above matrix equation is obtained using 

the inverse matrix h
-1 

for Ny  = Nu and non-singular matrix h 

 

U = h
-1 

· Y 

 

In monitoring, estimation, identification and control applications, matrix 

h [Ny · Nu] is rarely square or non-singular, and the solution of the matrix 

equation uses the generalized inverse   h
-g 

[Nu · Ny] 

 

U = h
-g 

· Y 

 

3.1.3 Other Examples of Discrete Inverse Problems 

 

Discrete inverse problems do not result only from discretization of 

integral equations. In this section curve fitting case will be investigated. 

Boundary measurement of single ray reflection in distributed parameters 

systems and boundary measurement of direct ray propagation in 

distributed parameters systems are presented in detail in specialized texts 

[45, 65, 67]. Linear and nonlinear curve fitting try to recover a 

continuous functional dependence of variables given a set of discrete 

data. 

 

Example 3.1 Assume that for the experimental data for the measured 

resistance versus temperature consists of m = 6 pairs of values 
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i               1         2      3       4        5       6 

Ri [Ω]       600    627   651   682   701   732 

Ti [
0
C]       24     25.2   27    28.7   29    29.8 

 

For linear curve fitting the following algebraic equation, an assumed 

direct problem model is considered 

 

R = a0 + a1 · T 

 

with unknown parameters a and b. This leads to an over-determined 

inverse problem for n = 2 unknowns and m = 6 equations. The over-

determined matrix equation is in this case 

 

Y = h · U 

 

where the vector of unknowns is 

 

U 







=

1

0

a

a
 

For Y [6 · 1], h [6 · 2] and U [2 · 1], the matrix equation becomes 

 

0

1

600 1 24.0

627 1 25.2

a651 1 27.0

a682 1 28.7

701 1 29.0

732 1 29.8

   
   
   
     

= ⋅     
    

   
   
   

 

Inverse problem in this case consists in determining the unknown 

parameters a0 and a1 of the assumed inherent linear dependence between 

R and T of a direct problem. 
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Solving the linear regression problem consists in obtaining the unknown 

parameters by minimizing the Euclidean norm of the errors, i.e. in 

calculating the Least Squares (LS) error solution [28] 
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The solution is obtained from vanishing partial derivatives 
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m
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The following matrix equation results for n=2 unknowns, a and b, 
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Inverse problem solution is given by 
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For nonlinear curve fitting the following n-order polynomial can be 

chosen  

 

R = a0 · T
0 
+ a1 · T

1  
+…+ an · T

n 

 

The inverse problem consists in this case in calculating the unknown n-

parameters, a0, a1,…,an given data pairs  

 

(R1 , T1), (R2 , T2),…, (Rm , Tm) 

 

The inverse problem is normally over-determined, m > n, i.e. there are 

more data pairs m than unknowns n. The solution can be obtained again 

using a least squares error solution. The above linear curve fitting 

problems will be solved in Ch. 3.3 using a MATLAB function. 

Other examples of discrete inverse problems, boundary measurement 

of single ray reflection in distributed parameters systems, boundary 

measurement of direct ray propagation in distributed parameters systems 

etc. will be presented in next chapters of the book. 

 

3.2 Discrete Problems for LTI Systems 

 

3.2.1 Introduction 

 

Inverse problems for Linear Time Invariant (LTI) systems can be 

formulated for different representations of the forward model of the 

system, for example for lumped parameters systems or for distributed 

parameters systems. 

In what follows the goal is to present solutions to inverse problems 

that are numerically efficient and common to both for lumped parameters 

systems and distributed parameters systems. In subsequent chapters, a 
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particular attention will be given to problems requiring real-time 

solution, for example for dynamic compensation of sensors. 

 

3.2.2 Lumped Parameters Systems 

 

Inverse problems for LTI lumped parameters systems, for the case of 

fewer inputs and fewer measurements than states (more representative 

for lumped parameters approximation of a distributed parameters 

system), for different representations of the forward model of the system 

can be formulated as follows: 

 

3.2.2.1   State space representation 

 

State dynamics and output LTI ODE equations from Ch. 2.3 are 

completed here with measurement noise w(t): 

 

dX(t) / dt = A · X(t) + B · u(t) 

ym(t) = C · X(t) + w(t) 

 

where  

X(t) = n-vector of states with given initial conditions x(0) 

u(t) = m-vector of inputs  

y(t) = p-vector of measurement outputs 

w(t) =p-vector of measurement noise 

A, B, C = parameters matrices. 

and m < n and p < n 

We denote the noiseless output as 

 

y (t) = ym(t) - w(t) 

 

such that the output equation becomes 

 

y(t) = C · X(t) 
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In this case the inverse problem of estimating the input, uest(t), from 

measurements y(t) is obtained by solving first the output equation for  

m < n using the generalized inverse C
-g 

 

X(t) = C
-g

 · y(t) 

 

and then 

 

dX(t)/dt = C
-g 

 · dy(t) / dt 

 

that gives 

 

C
-g 

 · dy(t)/dt = A · C
-g

 · y(t) +B · u(t) 

 

The solution for u(t) of the state equation gives 

 

uest(t) = B
-g

 · (dX(t) / dt – A · X(t)) 

 

or 

 

uest (t) = B
-g

 · (C
-g 

 · dy(t) / dt – A  · C
-g

 · y(t)) 

  

This solution requires the calculation of generalized inverses b
-g

 and c
-g 

as well as the derivative dy(t)/dt. Real-time implementation of this 

solution is often computationally intensive and requires specific code for 

each application. The presence of noise and discontinuities in ym(t) signal 

might lead to unacceptable signal to noise ratios, which is not suitable for 

real-time implementation. 

 

3.2.2.2   Complex functions representation 

 

After applying Laplace transform to the above LTI ODE system for zero 

initial conditions the result is 

 

(I · s – A) · x(s) = B  · u(s) 

y(s) = C · x(s) 
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where 

 

y(s) = ym(s) - w(s) 

 

Assuming that all states are directly observable, i.e. C = I, where I is 

identity matrix, the direct problem is given by 

 

x(s) = (I · s – A)
-1

 B  · u(s) 

 

while the solution for the inverse problem is 

 

u(s) = B
-1

  · (I · s – A) · x(s) 

 

Assuming as many outputs as states, the inverse problem solution for 

desired output yd is 

 

x (s) = C
-1

 ·
 
yd (s) 

 

and the open loop control law is  

 

uest (s) = B
-1

 · (I · s – A) · C
-1

 · yd (s) 

 

This solution requires also the calculation of generalized inverses B
-g

 and 

C
-g

. The presence of “s” in the feed-forward path from y(s) to u(s), 

corresponds to time derivative of yd. As a result, real-time 

implementation of this solution is not desirable. 

 

3.2.2.3   Convolution integral representation 

 

Convolution integral representation is of interest as a link to non-linear 

forward problems formulation using integral equations and as a basis for 

developing computationally efficient matrix formulation. 
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The principle of superposition, valid for linear systems, gives [70] 

 

∫
∞−

⋅τ⋅=
t

dτ)U(τ)h(t,Y(t)  

 

where h(t, τ) is the impulse response of the system, for the impulse 

assumed applied at any time τ ≤ t. This is a Volterra equation of the first 

kind and h(t, τ) = 0 for τ > t [9]. 

In the case of LTI systems,  

 

h(t, τ) = h(t - τ) 

 

and depends only on the difference between the time τ, when the impulse 

is applied, and the time t, when the response y is observed. This property 

greatly reduces the computation of the impulse response h. The 

convolution integral for LTI systems is given by 

 

∫
∞−

⋅τ⋅−=
t

dτ)U(τ)h(tY(t)  

The calculation of the impulse response for a system modeled by a LTI 

ODE model results from considering a unit impulse input U(t) = δ(t), 

such that 

 

dX(t) / dt = A · X(t) + B · δ(t) 

 

and 

 

C
-g 

 · dy(t) / dt=A · C
-g

 · y(t) + B · δ (t) 

 

Rather then solving analytically this equation for y(t) = h(t), complex 

functions representation can be used to obtain the transfer function. For  

n = m = p = 1 
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u(s)

y(s)
h(s) =  

and for the unit impulse input u(s) =1, impulse response h(s) is 

 

h(s) = y(s) 

 

In time domain, inverse Laplace transform L
-1

 gives 

 

h(t) = L
-1

 {h(s)}  for t > 0 

 

The condition t > 0 reflects the property that the input signals starting at  

t = 0 cannot affect the output for t < 0. 

Examples of impulse responses are [70]: 

 

A) First order system with the transfer function  

 

1
h(s)

s a
=

+
 

which has the inverse Laplace transform 

 

h(t) = e
-at

 1(t) 

 

where 1(t) is unit step function indicating that an input applied at t = 0 

cannot influence the output  for t < 0. 

 

B) Second order system with the transfer function  

 

h(s) = ωn
2 
/ ( s

2 
+ 2 · ζ · ωn · s+ωn

2
) 

 

has the inverse Laplace transform 

 

1(t)t)]ωζ1sin([e
ζ1

ω
h(t) n

2tζω

2

n n ⋅⋅⋅−⋅
−

= −
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C) Higher order systems transfer functions can be expanded by partial 

fraction expansion to a sum of first and second order transfer 

functions for which impulse responses can be determined by inverse 

Laplace transform as above. 

 

Convolution integral can be reformulated in the discrete form 

convolution sum using shifted impulse response hi-j, corresponding to the 

sampled time interval t - τ with sampling period Ts.  The discrete time ti, 

(corresponding to the continuous time τ) when the impulse is applied 

[67], is given by 

 

ti  = i · Ts 

 

and the time ti when the response y is observed 

 

tj  = j · Ts 

 

such that t - τ in discrete time is (i - j) Ts , or i - j in steps. 

Volterra equation of the first kind [67] 

 

∫
∞−

⋅τ⋅=
t

dτ)U(τ)h(t,Y(t)  

 

can be written in discrete time as follows 

 
i

i i,k k

k

Y h u
-= ∞

= ⋅∑  

where h i,k are terms of a lower triangular matrix. In this case Yi is easily 

computed by forward substitution given hi,k and uk [49].  

Convolution sum for LTI discrete systems is  

 

∫
∞−

⋅⋅−=
t

dτ)U(τ)h(tY(t) τ  
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which can be written in discrete time as follows 

 

k

i

-k

k-ii uhY ⋅= ∑
∞=

 

where the condition embodied in continuous time in 1(t) is replaced here 

by i – k ≥ 0 or k ≤ i. 

For LTI systems, a recursive formula can be obtained using the 

property hi-k = hi-1-k h1. For the current time i, the output depends on the 

effect of the current input ui and also on all previous inputs uk (for k = - ∞ 

to i - 1) weighted by the corresponding discrete impulse response hi-k 

values 

 
i i

i i-k k i-k k o i

k k

Y h u h u h u
- -

−

= ∞ = ∞

= ⋅ = ⋅ + ⋅∑ ∑
1

 

or, the recursive formula 

 

Yi = Yi -1 + h0 · ui 

 

where 

 
i-1

i-1 i-k k

k

Y h u
-= ∞

= ⋅∑  

The impulse response in discrete time ti, for first order systems is 

 
iat

i eh −=      for  i ≥ 0 

 

and for second order systems is 

 

)]tωζ1sin([e
ζ1

ω
h tn

2tζω

2

n
i

in ⋅⋅−⋅⋅
−

= −
     for  i ≥ 0 
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For actual physical systems, input signals are of limited duration and the 

significant part of the transient response is characterized by the finite 

settling time. Also, the output reflects both the effect of the periodic 

input with period Ti = 2 · π / ωi and of the under-damped response of  

the system with natural period Tn = 2 · π / ωn. Assume that an earlier time 

ti-K = (i-K) · Ts of an older input can still affect current time ti  output. For 

current time step i = 0, i.e. at time t0, the oldest input signal still affecting 

current output can be assumed to having been applied at –K time steps, 

i.e. at t-K = -K · Ts. As a result, at the current time step i, the summation 

can be limited to i – K <  k ≤ i, i.e. 

 
i

i i-k k

k i K

Y h u
-=

= ⋅∑       for  i ≥ 0 

At the lower limit k = i - K, the input ui-K is multiplied hK to determine  

its contribution to the current output Yi. For i = 0, the product is u-K · hK 

and determines the contribution of u-K to the output Y0. In this case, 

inverse problem solving is reduced a finite number of K forward 

substitutions [49].  

This result corresponds to the calculation of the sum for a sliding 

window of K steps from the past to the current time.   

In this book, the input u(τ) is assumed applied only at τ  ≥ 0, similar 

to the condition for unilateral Laplace transform. In discrete time this 

means that uk = 0 for k < 0 and Yi depends only on the input values uk  

at k = 0, 1, 2,….,i. 

 

Example 3.2 Assume 2% criterion for first order system h(t) = e
-at 

1(t) 

for the duration of the settling time. For a = 0.2, the time constant is  

τ = 1 / a = 5 [s], and sampling time is chosen less than half the time 

constant, in this case Ts = 1. Over 4 · τ for 2% criterion, i.e. for 20 [s],  

at sampling time Ts = 1, there are i = 1, 2,…, 20 discrete time steps. 

Impulse response for the first order system  

 
iat

i eh −=  for  i ≥ 0 
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gives 

 

 h 0 =  exp{-0.2 · 0 } = 1 

h 1 =  exp{-0.2 } = 0.82 

h 2 =  exp{-0.4 } = 0.67 

h 3 =  exp{-0.6 } = 0.55 

h4 =  exp{-0.8 } = 0.45 

h5 =  exp{-1.0 } = 0.37 

…………………….. 

h 10 =  exp{-2 } = 0.13 

------------------------- 

h 20 =  exp{-4 } = 0.018 

 

Consequently, after 20 time steps the impulse response is less than 2% 

from the steady state value and the rest of the transient regime can be 

ignored in practical applications. 

 

Example 3.3 For the previous system, for i  ≥  k or i - k ≥ 0 and i  ≥ 0 

 
i

i i-k k

k i K

Y h u
- -=

= ⋅∑  

has nonzero products values only for i ≥ k ≥ 0. Assume the input 

  

uk = 0 for k < 0 

uk = 10 for k = 0 

uk = 0 for k > 0 

 

 

such that the only non-zero value is u0 = 10. 
The first 20 time steps outputs are: 

 

Y0 =  h0 · u0  = 10 

Y1 =  h1 · u0 = exp{-0.2 } · 10 = 8.2 

…………………….. 
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Y 10 =  h10 · u0 = exp{-2 } · 10 = 1.3 

------------------------- 

Y 20 = h20  · u0 = exp{-4 } · 10 = 0.18 

 

These results illustrate that the the single non-zero input value, u0 = 10 

has diminishing in time effect  on Yi for i = 1.2,…, 20. 

 

Example 3.4 For the previous system, assume the input  

 

uk = 0 for k < 0 

u0 = 10 

u1 = 1 

uk = 0 for k > 1 

 

The output is 

 

11-i0ik

i

K-ik

k-ii uhuhuhY ⋅+⋅=⋅= ∑
=

 

is 

Y0 =  h0 ·  u0 = 10 

Y1 = h1 ·  u0 + h0 · u1=exp{-0.2 } · 10+1 = 9.65 

…………………….. 

Y 10 =  h10 · u0 + h9 · u1 =exp{-2} · 10 +exp{-1.8 } = 1.75 

------------------------- 

Y 20 =  h20 · u0+ h19  ·  u1 = exp{-4 } · 10+ exp{-3.8 } = 0.2 

 

The result is the superposition of the outputs for u0 and u1. 

 

3.2.2.4   Matrix form representation 

 

Matrix form representation of discrete Volterra equation forward model 

is 

 

Y = h · U 
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where 

U is input [Nu  · 1] vector 

Y(t) is noiseless output [Ny  · 1] vector 

h  is  [Nu  · Ny  ] matrix 

 

and 

 

hi,k = hi-k   for i – k ≥ 0 

  

and  

 

hi,k = 0 for i – k < 0 

 

such that 

 

hi,k = 0   for i < k 

hi,k = h0    for i = k 

hi,k = h1    for i = k +1 

………………… 

hi,k = hj for i = k + j 

etc. 

 

Matrix representation permits to define easily the inverse problem of 

determining the values of the input uk given the values of the output Yi  

as long as the matrix h is known. 

For a non-invertable matrix h,  

 

U =h
-g

 · Y 

 

Three cases can be identified: 

A) Ny  = Nu,  

B) Ny  <  Nu  

C) Ny  > Nu 

 

Ny = Nu = K+1  
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For this case, the matrix h [(K+1) · (K+1)] is a lower triangular square 

matrix  

 

h =



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
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o12
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o
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00.h.hhh
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00.0.hhh

00.0.0hh

00.0.00h

 

 

The solution U of equation Y = h · U for given Y and h [(K +1) · (K +1)] 

will have the same length K+1 as the given Y and can be calculated 

continuously, as a length K +1 sliding window ending at current time i 

and for the input uk for  i-K ≤ k ≤ i. The input might have, however, 

several zero values. Moreover, for the case of a lower triangular matrix 

h, for the direct problem 

 

Y = h · U 

 

or for 

 

k

i

K-ik

k-ii uhY ⋅= ∑
=

 

given Y and h, the solution U of is easily computed by forward 

substitution [49]. This permits to solve analytically the inverse problem.  

For uk = 0 for k < 0, scalar forward model is 

 

Y0= h0 · u0 
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Y1= h1 · u0 + h0 · u1 

Y2= h2 · u0 + h1 · u1 + h0 · u2 

..................................... 

Yi= hi · u0 + hi-1 · u1+hi-2 · u2 +.....  h0 · ui 

................................................. 

YK =  hK · u0 + hK-1 · u1  +... ..........h0 · uK 

   

or, in matrix form, for the a lower triangular matrix h 
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The direct problem result Y = h · U is easy to obtain given h and U. The 

inverse problem solution U given h and Y, is normally more difficult to 

obtain. The calculation of U can be carried out using the inverse problem 

formulation for a non-singular square matrix h 

 

U = h
-1

 · Y 

 

For LTI systems, given that h is constant, numerical inversion of h into 

h
-1

 of can be done off-line. In this case  the computation of K+1 values of 

Yi for i = 0, 1,..., K consists in a weighted sum of current values of ui,  

i = 1, 2,..., (K+1) with known constant values of the elements of h
-1 

[(K+1)·(K+1)].
 
This shows that after the calculation of h

-1
, obtaining the 

result for U is a simple summation of weighted inputs.  
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Example 3.5 Assume a discrete first order system with K = 3 and a =  

0.2 [s
-1

] with 

 
iat

i eh −= for i=0,1,...3 

 

Obtain  

a) the non-zero elements of the  discrete impulse response matrix  

h [4 · 4] and Y = h · U 

 

b) Obtain Y for  
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c) Obtain Y for  
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a) The non-zero elements of the  discrete impulse response are 

 

h 0 =  exp{-0.2 · 0 }=1 

h 1 =  exp{-0.2 }=0.82 

h 2 =  exp{-0.4 }=0.67 

h 3 =  exp{-0.6 }=0.55 
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The [4 · 4] matrix equation  
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in this case is 
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b) For 



















=



















0

0

10

0

u

u

u

u

3

2

1

0

 

the direct problem is 
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and the result Y of the direct problem Y =h · U given U is  
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Y0 = 0 

Y1 = 10 

Y2 = 8.2 

Y3 = 6.7 

 

or 

 

0

1

2

3

Y

Y

Y .

Y .

   
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As expected, for a first order system subject to a delayed impulse input 

by one time step, an exponentially decaying output, also delayed by one 

time step, is obtained. Due to the limitation of the output to only K = 3, a 

significant part of the output, beyond Y3, is not observed. 

Normally, for this system with a time constant τ = 1/a = 5 [s], 2% 

settling time requires output observations for 4 time constants, i.e. 20 [s]. 

The time constant of 5 [s] requires a sampling time significantly shorter, 

for example of 1 [s]. This would require measurements of the output for 

K = 20 time steps, much longer than the above K = 3. 

In the case of an input U [20 · 1], instead of the above [4 · 1], output 

values for Y [20 · 1] would be obtained with Y = h · U. 

 

c) In this case, for 

 



















=



















0

1
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u

u

u

u

3

2

1

0

 

the direct problem is given by 
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

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

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






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



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1
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and the result Y of the direct problem is  
 

Y0                               = 0 

Y1 =10 + 1          = 11 

Y2 =8.2+1         =  9.2 

Y3=6.7 + 0.82   =  7.52 

or 

 



















=



















52.7

20.9

0.11

0

Y

Y

Y

Y

3

2

1

0

 

As expected, the effect of u2 = 1 is added to the result for the input u1 = 

10 from b. 

 

Inverse problem solution of obtaining the estimated input Uest given h 

and the measured output Y for K=3, is obtained by forward substitution. 

Direct problem scalar equation permit the calculation by forward 

substitution from i=0 toward i=3:  

 

Y0 = h0 ·  u0 

gives                                        

u0  = Y0 / h0 

Y1 = h1 · u0 + h0 · u1 = Y0 · h1 / h0 + h0 · u1 

gives       

u1 = - Y0 · h1 / h0
2  

+Y1 / h0 

Y2 = h2 · u0 + h1 · u1 + h0 · u2  =  
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Y0 · h2 / h0 +Y1 · h1 / h0 -Y0 · h1
2 
/ h0

2  
+ h0 · u2 =  

Y0 · [h2 / h0-h1
2 
/ h0

2 
] + Y1 · h1 / h0

 
+h0 · u2    

gives 

u2 = Y0 · [- h2 / h0
2 
+ h1 / h0

3 
] - Y1 · h1 / h0

2 
+ Y2 / h0 

Y3 = h3 · u0 + h2 · u1 + h1 · u2 + h0 · u3 = 

Y0 · h3/h0 - Y0 · h1  · h2 / h0
2  

+ Y1 · h 2/ h0 + Y0 · [-h1 · h2 / h0
2 
+ h1

2 
/ h0

3
]- 

Y1 · h1
2 
/ h0

2 
+ Y2 · h1 / h0+h0 · u3

 

 

or 

 

Y3 = Y0 · [h3 / h0  - h1 · h2 / h0
2 
- h1 · h2 / h0

2  
+ h1

2 
/ h0

3
] + Y1[h2 / h0 –  

h1
2 
/ h0

2
] + Y2 · h1 / h0 + h0 · u3 

 

gives 

 

u3 = -Y0   · [h3 / h0
2 
- 2h1 ·  h2 / h0

3
  + h1

2 
/ h0

4
] -Y1  ·  [h2 / h0

2 
- h1

2 
/ h0

3
]-Y2 · 

h1 / h0
2
 + Y3 / h0 

 

In matrix form again results a lower triangular matrix [4 · 4] 
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This gives the inverse problem solution U = h
-1

 · Y, where  
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
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
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
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Example 3.6 For a first order system h(t) = e
-at

 1(t) with a = 0.2, and 

sampling time Ts = 1, obtain 

 

a) h i 

b) scalar equations inverse problem solutions for ui   for i=1, 2, 3 and 4 

c) estimate of input U given the output values Y= [0 10  8.2  6.7]
T
.
 
 

 

a)  

 
iat

i eh −=  for  i = 0,1,2,3 

 

gives 

 

h 0 =  exp{-0.2 · 0 } = 1 

h 1 =  exp{-0.2 } = 0.82 

h 2 =  exp{-0.4 } = 0.67 

h 3 =  exp{-0.6 } = 0.55 

 

b) 

u0 = Y0 / h0 = Y0 

u1 = - Y0 · h1 / h0
2  

+Y1 / h0 = -Y0 · 0.82
  
+ Y1 

u2 = Y0 · [- h2 / h0
2 
+ h1 / h0

3 
] - Y1 · h1 / h0

2 
+ Y2 / h0       

   =  Y0 · (-0.67  + 0.82
 
) -Y1 · 0.82 + Y2 

u3 = Y0 · [- h3 / h0
2 
+ 2 · h1 · h2 / h0

3 
- h1

2 
/ h0

4
] + Y1 · [- h2 / h0

2 
+ h1 / h0

3
] -    

        Y2· h1 / h0
2
 +Y3 / h0 

    = Y0 · [-0.55 + 2 · 0.82·0.67 - 0.82
2
] +Y1·[-0.67 + 0.82]-Y2 · 0.82+Y3 

 

c) For Y0 = 0, Y1 = 10, Y2 = 8.2 andY3 = 6.7 
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d) 

u0 = Y0  = 0  

u1 =-Y0 · 0.82
 
+Y1 = 10 

u2 = Y0 · (-0.67 +0.82
 
)-Y1 · 0.82+Y2 = -8.2 + 8.2 = 0

                                                        
 
                                                 

   
 

u3 =Y0 · [-0.55+2 · 0.82 · 0.67-+0.82
2
] +Y1 · [-0.67+0.82]-Y2 · 0.82+Y3   

       =10 · [-0.67+0.82]-8.2  · 0.82+6.7 = 0 

 

or in matrix form 

 

0 1 0 0 0 0

10 0. 1 0 0 10

0 . 0. 1 0 8.2

0 . . 0. 1 6.7

     
     −     = ⋅
     −
     −     

82

0 15 82

1 22 0 15 82

 

The inverse problem solution U, given Y is, in this case of a non-singular 

square matrix h
-1

, the exact recovery of forward problem from Example 

3.5.b. In the case of noisy signals Y, this exact recovery of U is not 

possible. In case of higher order sensors, with longer duration and non-

square matrix h
-1

, such exact recovery is also not possible. Moreover, 

matrices h
-1

 can result in an ill-posed inverse problem. 

For the linear time variant case, 

 
i

i i,k k

k i K

Y h u
-=

= ⋅∑  

the solution for the inverse problem can also be calculated by forward 

substitution, but the K substitutions involve more computations because 

hi,k  ≠ hi-k is dependent on actual tome values i and k, not only on  the 

difference i - k. 

 

B) Ny < Nu  

In case that the length of the output vector Ny is shorter than the length of 

the input vector Nu, the inverse matrix cannot be computed and has to be 



Overview Integral Equations and Discrete Inverse Problems 91

replaced by the generalized inverse h
-g

. The inverse problem is in this 

case under-determined [7] 

 

C) Ny > Nu 

In case that the length of the output vector Ny is longer than the length of 

the input vector Nu, inverse matrix cannot be computed and a 

compromise solution can be computed using least 
 
squares method. 

Inverse problem is in this case over-determined [7].  

 

These two last cases of non-square matrices h will be investigated later 

in this chapter. The analysis will be based on matrix form representation 

Y = h · U which is not limited to lumped parameters system or to discrete 

Volterra equation case, when h is lower triangular. In what follows, h is 

not in general lower triangular, i.e. it corresponds to Fredholm equation 

and also to numerous other direct and inverse problems presented in this 

book. 

 

3.3 Discrete Inverse Problems Solved by Matrix Inversion   

 

3.3.1 Types of Methods for Solving Inverse Problems 

 

Two types of methods for solving inverse problems will be presented: 

-matrix inversion 

-iterative methods using forward model. 

The basic scheme of solving the discrete inverse problem using 

matrix inversion is shown in Fig. 3.1.  

 

 

 

 

 

 

 

Fig. 3.1 The diagram of inverse problem solver using matrix inverse 

 

 

       h
-1 

Input  Estimated output 

Y  Uest 
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Y, the output of the direct problem, becomes the input to the inverse 

problem and consists in the data from a system for which either the input 

U or the parameters P are unknown, while the model f (P, U) is assumed 

as a known forward problem 

 

Y = f (P, U) 

 

The corresponding discrete matrix form of the forward problem is 

 

Y = h · U 

 

Inverse problems result from unknown input estimation [67]  

 

Uest = h
-g

 · Ym 

 

or from parameters identification 

 

hest = Ym · U
-g 

 

Matrix inversion based solvers require generally the computation of a 

pseudo-inverse and, has to take into account that the data input to the 

inverse problem, Ym, are normally the result of noisy measurements, i.e. 

in fact that 

 

Ym =Y + w 

 

where w represents measurement noise and Y is the noiseless sensor 

output. In this case of noisy measurement data Ym, inverse problem 

becomes 

 

Uest = h
-g

 · (Y  + w) 

 

Ill-posed inverse problem results when there is a very high amplification 

by some rows of h
-g

 of the significant variation of the adjacent elements 

of Ym, in particular due random noise w. 
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The basic scheme of solving the discrete inverse problem using 

iterative methods using forward model is shown in Fig. 3.2. It can be 

observed that solving the discrete inverse problem using matrix inversion 

is basically an open loop scheme, while iterative method using forward 

model is a closed loop error (negative feedback) based computation 

scheme. Iterative method using forward model is not affected by the 

difficulties resulting from the inversion of a matrix, particularly in the 

case of rank deficiency. Moreover, the aforementioned amplification  

of the noise effect in matrix inverse method is avoided in the  

iterative method. Being an iterative scheme, real-time applications  

might be however limited due to the computation duration cannot be 

predetermined for given ε. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Basic scheme of solving the discrete inverse problem using iterative methods 

 

The concept behind the method for solving inverse problems using 

matrix inversion is the same as for open loop control, while for iterative 

methods using forward model is the same as for closed loop negative 

feedback control. 

 

 

 

 

 

Y 
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3.3.2 Inverse and Pseudo-Inverse. MATLAB Solutions 

 

Discrete inverse problems result from approximating continuous system 

models but also directly from models of system monitoring. 

In Ch. 3.1, both Fredholm and Volterra equations were approximated 

by systems of linear equations in discrete form leading to the matrix 

equation Y = h · U. 

The solution of the above matrix equation is obtained using the 

inverse matrix h
-1

 

U = h
-1

 · Y 

if the inverse h
-1

 exists. Example 3.6 illustrates this type of problem. 

Given that in monitoring, estimation, identification and control 

applications, matrix h is rarely square and non-singular, and the solution 

of the matrix equation uses the generalized or pseudo-inverse   h
-g 

Uest =  h
-g

 ·Ym 

MATLAB

 contains numerous functions that solve inverse, pseudo-

inverse and various over- and under-determined problems. In what 

follows, MATLAB examples illustrate solutions to discrete inverse 

problems in matrix formulation. 

 

Example 3.7 Three h matrices are used for illustrating these functions 

[81]  

 

 1) A 







=

75

31
 

 2) B 







=

62

31
 

 3) C 







=

275

431
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Matrix A is square and non-singular, |A| = - 1, matrix B is square and 

singular, |B| = 0 and matrix C is non-square. 

MATLAB function inv() gives 

 

1) A 







=

75

31
 

inv(A) 

-0.8750    0.3750 

0.6250   -0.1250 

pinv(A) 

-0.8750    0.3750 

0.6250   -0.1250 

For the square, non-singular matrix A, the inverse A
-1

 exists and is the 

same as the pseudo-inverse A
-g

. 

2) B 







=

62

31
 

>> inv(B) 

Warning: Matrix is singular to working precision. 

ans = 

   Inf   Inf 

   Inf   Inf 

 

For this singular matrix (second row is the double of the first row) there 

is no inverse B
-1

.
 

The pseudo-inverse function gives however 

 

pinv(B) 

    0.0200    0.0400 

    0.0600    0.1200 

 

3) C 







=

275

431
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>> inv(C) 

??? Error using ==> inv 

Matrix must be square. 

The non-square matrix C has no inverse C
-1

.
 

>> pinv(C) 

   -0.1055    0.1101 

   -0.0046    0.0917 

    0.2798   -0.0963 

 

The non-square matrix C has a pseudo-inverse C
-g

.
 

Further inside is given by the rank of these matrices 

>> rank(A) 

=2 

 

>> rank (B) 

 =1 

 

>> rank(C) 

= 2 

It can be observed that matrices A [2 · 2] and C [2 · 3] have rank 2, while 

the singular matrix B [2 · 2] has the rank 1. 

 

Also, the norm and condition number are needed for further 

developments in solving discrete inverse problems. 

 

Euclidean norms ||A||2 are  

 

>> norm(A) 

= 9.1231 

 

>> norm(B) 

=7.0711 

 

>> norm(C) 

=9.7366 
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Maximum norms ||A||∞ are 

 

>> norm(A, inf)  

=12 

 

>> norm(B, inf) 

=8 

 

>> norm(C, inf) 

=14 

 

Norms of absolute values ||A||1 are 

 

>> norm(A,1)  

=10 

 

>> norm(B,1) 

=9 

 

>> norm(C,1) 

=10 

 

More important in characterizing ill-posed inverse problems will be the 

condition number. 

 

>> cond(A) 

=10.4039 

 

>> cond(B) 

=1.2588e+016 

 

>> cond(C) 

=3.2104 

 

It can be observed that for the singular matrix B [2 · 2] the rank(B) = 1  

and the condition number is cond(B) = 1.2588e+016. The condition 
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number is a better indicator of how close a square matrix is to being non-

singular. 

 

For example for the square matrix B1 that resembles to B but the second 

row is not exactly the double of the first row 

 

B1 







=

016.000000002

31
 

pinv(B1) 

>> inv(B1) 

= 1.0e+010 * 

   5.999999503657816  -2.999999751778908 

  -1.999999834519272   0.99999991725963 

= 

  5.9999e+010 -2.9999e+010 

 -2.0000e+010  9.9998e+009 

 

>> pinv(B1) 

= 1.0e+010 * 

   5.999853977167788  -2.999926988533896 

  -1.999951325689263   0.999975662844632 

 

>> rank(B1) 

 =2 

 

>> cond(B1) 

= 4.9999e+011 

 

It can be observed that in this case the inverse B1
-1 

exists and is close to 

the values of B1
-g

, the rank of is 2, but the condition number cond(B1)= 

4.9999e+011 is very large and closer to the large number of 

cond(B)=1.2588e+016, indicating that B1 is closer to the singular matrix 

B than to the non-singular matrix A. 
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Further inside can be obtained from changing B1 into B2 

B2 







=

000000016.000000002

31
 

>> inv(b2) 

Warning: Matrix is B2 is singular to working precision. 

ans = 

  Inf   Inf 

  Inf   Inf 

>> pinv(b2) 

= 

    0.0200    0.0400 

    0.0600    0.1200 

In this case, making B2 has element (2, 2) very close to 6.0 from B gave 

a MATLAB result for pinv(b2) identical to the result from pinv(b1)
 
while 

pinv(b1) gave a very different result. It can be observed, however, that 

within MATLAB working precision,  

B*pinv(B) 

= 

    1.0000    0.0000 

    0.0000    1.0000 

results in an identity matrix [2 · 2], while for B1*pinv(B1) 

B1*pinv(B1) 

=    

0.999984741210938   0.000015258789063 

   0.000015258789063   1.000007629394531 

results in a [2 · 2] matrix, that is approximately identity matrix in four 

digits approximation 

>> B1*pinv(B1) 

= 

    1.0000    0.0000 

    0.0000    1.0000  
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For B2*pinv(B2), the result is 

 

B2*pinv(B2) 

= 

    0.2000    0.4000 

    0.4000    0.8000 

 

That is not an identity matrix. This shows that square matrices which are 

very close to singularity, to like B1 and B2, or singular, like B, i.e. 

matrices with very high condition number, can result in significantly 

different pseudo-inverses. 

Discrete inverse problems require more elaborate analysis using 

specific methods for over- and under-determined problems, condition 

number, and Singular Value Decomposition (SVD).  

 

Example 3.8 The purpose is to obtain the discrete direct problem 

formulation for a DC motor. 

Consider the DC motor from Example 1.5 for ω = dθ / dt 

 

 

 

For negligible L and b, (L = 0 and b = 0) and no load (T = 0) 

 

 

For i obtained from the last equation, 

 

ωkiR
dt

di
Lu e ⋅+⋅+=

Tωb
dt

dω
Jik m −⋅−=⋅

ik
dt

dω
J m ⋅=

ωkiRu e ⋅+⋅=
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the torque equation becomes 

 

 

 

or 

 

 

or 

 

 

where 

 

RJ

k m

⋅
=β  

The transfer function is 

 

sα1

β

u(s)

ω(s)

⋅+
=  

R

ωk-u
i e ⋅

=

e
m

u k ωdω
J k

dt R

− ⋅
= ⋅

u
RJ

k

RJ

kk
ω mem

⋅
+ω

⋅

⋅
−=ɺ

ω α ω β u=− ⋅ + ⋅ɺ

RJ

kk em

⋅

⋅
−=α
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Direct problem is given by the state space model, for  

 

x1 = θ 

x2 = dx1 / dt = dθ/dt  = ω 

 

such that 

 

u
β

0

x

x

α0

10

x

x

2

1

2

1 ⋅







+








⋅








−

=







ɺ

ɺ

 

Discrete direct problem will be derived for a sampling period T and zero-

order hold (sample and hold approach) [127].  

Sampling frequency 1/T is chosen to satisfy sampling theorem 

requirement for the maximum frequency fmax of interest of the sampled 

signal  

 

1 / T > 2 ·fmax 

 

or, at limit 

 

T = 1 / (2 · fmax) 

 

Sampling interval of ν · T duration is chosen larger than 2% settling time 

Ts. In this case, for the time constant α, Ts = 4 · α, such that 

 

ν · T > 4 · α 

 

or 

 

ν / (2 · fmax ) > 4 · α 

 

or 
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RJ

·f kk
8 maxem

⋅

⋅
⋅>ν  

 

Discrete time state representation is given by [70, 127] 

 

xn+1 = Φ · xn + Γ · un     for n = 1,2,…, ν 

 

where [70] 

 









⋅−

=⋅+≈= ⋅

Tα10

T1
TAIeΦ TA  










⋅−

⋅
=⋅⋅⋅+≈⋅⋅= ⋅∫

/2)Tαβ(1

/2Tβ
BTT/2)A(IdλBeΓ

2

2λ

0

λA  

By recursion 

 

x1 = Φ · x0  + Γ · u0 

x2 = Φ · x1  + Γ · u1 = Φ
2
 · x0  + Φ· Γ · u0 + Γ · u1 

…………………………………………………………………. 

xν = Φ
ν
 · x0  + Φ

ν-1
· Γ · u0  +  ….Γ · uν-1 

 

or 

 

k

1ν

0k

k1ν

0

ν

ν uΓΦxΦx ⋅⋅+= ∑
−

=

−−
 

 

The last equation is the discrete time convolution integral of a LTI 

Volterra equation. 

In matrix form, for zero initial state x0 = 0, the direct problem x =  

h · U in discrete form is 
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


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

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ΓΓ⋅ΦΓ⋅Φ

ΓΓ⋅Φ

Γ

=























−
−−

1

1

0

21

2

1

.

..

..

.....

.....

0..

0..0

.

.

ν
νν

ν u

u

u

x

x

x

 

This lower triangular h square matrix permits to formulate the inverse 

problem as 

 

U = h
-1

 · x 

 

This inverse problem allows to recover the sequence of commands  

u0, u1,…, uν-1 that resulted in state values x1, x2,…, xν.  MATLAB 

function c2d converts the continuous time equation 

 

dX(t) / dt = A · X(t) + B · u(t) 

 

into discrete time equation 

 

x = h · U 

 

for zero initial conditions. 

 

3.3.3 Over-Determined and Under-Determined Problems 

 

Assume the matrix equation Y= h · U where Y [Ny · 1], h [Ny · Nu] and U 

[Nu · 1]. 

 

This equation is  

 

a) over-determined for  Ny > Nu, i.e. more data values than unknowns 

b) even-determined for  Ny = Nu and non-singular matrix h 

c) under-determined for Ny < Nu i.e. fewer data values than unknowns 
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Over-determined matrix equations for Ny > Nu are solved using Least-

Squares Solution (LSS). This solution results from minimizing the 

Euclidean norm of the errors, a least squares error solution [28, 65] 

 

min S(U) = min{(Ym- h · U)
T
 · (Ym- h · U)} 

 

The solution is obtained from vanishing partial derivatives 

 

δS / δU= - 2 · h
 T

 · Ym+ 2 · h
 T

 · h · U = 0 

 

If the rank (h) = m, h · h
 T

 is invertible and the solution for  U is 

 

Uest = (h
 T

 · h)
-1

 · h
 T

 · Ym 

 

Even-determined solution for an invertible matrix h, Ny = Nu, is given by 

 

Uest= h
-1 

·
 
Ym 

 

Under-determined for Ny < Nu is solved using a minimum Euclidean 

length U
T
 · U solution subject to the constraint Ym – h · U = 0, i.e. a 

Minimum Length Solution (MLS) 

 

min S(U) = min{Um
T
 · U +λ

T
 · (Ym-h · U)} 

 

where λ is a Lagrange multiplier.  

The solution is obtained from vanishing partial derivatives  

 

δS / δU=  2 · U -  h
 T

 · λ = 0 

 

δS / δ λ = Ym - h
 
· U = 0 

 

From first equation 

 

2 · h · U = h · h
 T

 · λ 
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Using second equation 

 

2 · Ym = 2 · h
 
· U = h · h

 T
 · λ 

 

If the rank (h) = Ny, h · h
 T

 is invertible and the solution for λ is 

 

λ = 2 · (h · h
 T

)
-1

 · Ym 

 

and the MLS solution for x is obtained replacing λ in the first vanishing 

partial derivative 

 

2 · U = h
 T

 · λ = h
 T

 ·2 · (h
 
· h

 T
)

 -1
 · Ym 

or 

Uest = h
T
·
 
(h

 
· h

 T
)

 -1
·Ym 

 

where the generalized inverse for the matrix h [Ny · Nu] is 

 

h
-g  

= h
T 

·
  
(h

 
· h

 T
)

 -1 

 

MATLAB functions h\Y can solve over-determined, even-determined 

and under-determined matrix equations. 

 

Example 3.9 For Y = h · U in over-determined case Ny > Nu, for the 

matrix h [3 · 2] and Y [3 · 1], i.e. for (Ny = 3) > (Nu = 2), rank(h) = 2,  

obtain the least squares solution U [2 · 1], U = h
-g

 · Y 

where 

 

>> h=[1 0;2 1;2 2] 

h = 

     1     0 

     2     1 

     2     2 

 

>> rank(h) 

=2 
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>> Y=[1;2;-4] 

Y = 

     1 

     2 

    -4 

>> h\Y 

 

ans = 

     2.3333 

   -4.0000 

>> 

 

This least square solution for U [2 · 1] minimizes total Euclidean error. 

 

Example 3.10 For Y = h · U in over-determined case Ny > Nu, for the 

matrix h [3 · 2] and Y [3 · 1], i.e. for (Ny = 3) > ( Nu = 2), rank(h) =2,  

obtain the least squares solution U [2 · 1], U = h
-g

 · Y where 

h=[2 3;2 3;2 3] 

 

h = 

     2     3 

     2     3 

     2     3 

>> rank(h) 

ans = 

     1 

>> h\Y 

Warning: Rank deficient, rank = 1,   

 

ans = 

         0 

   -0.1111 

 

Matrix h [3x2] has Rank deficient rank(h) = 1 and the solution for  

U[2 · 1] contains only one nonzero value -0.1111. 
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Example 3.11 For Y = h · U in underdetermined case Ny < Nu, for the 

matrix h [2 · 3] and Y [2 · 1], i.e. for (Ny = 2) < ( Nu = 3), rank(h) = 2,  

obtain the least squares solution U [3 · 1], U = h
-g

 · Y 

where 

>> h=[1 0 3;2 1 4] 

h = 

     1     0     3 

     2     1     4 

>> rank (h) 

ans =2 

>> Y=[4;5] 

Y = 

     4 

     5 

>> h\Y 

ans = 

     0 

   -0.3333 

    1.3333 

>> 

i.e. 

U
















−=

4/3

3/1

0

 

 

For a rank(h) = 2, only two nonzero results are obtained for U [3 · 1]. In 

fact, there are infinite solutions U(t) for arbitrary value of t but 

corresponding to the above solution for t = 0, [81] 

 

h· =

















⋅+

⋅+−

tb4/3

ta1/3

t

Y 

The parameters a and b can be calculated from the equation h · U(t) = Y  
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







=

















⋅+

⋅+−







5

4

tb3/4

ta3/1

t

412

301
 

 

which gives two scalar equations with unknowns a and b 

 

t + 4 + 3 · b · t = 4 

2 · t - 1/3 + a · t +16/3 + 4 · b · t = 5 

 

or 

 

(1 + 3 · b) · t  = 0 

(2 + a + 4 · b) · t = 0 

 

For the general case t ≠ 0, these equations are verified for the solutions 

 

a = - 2/3 

b = - 1/3 

 

The infinite number of solutions U(t) for this under-determined problem 

is given for t taking any real number value in 

 

U(t)=

















⋅−

⋅−−

t)3/1(4/3

t2/3)(1/3

t

 

 

Example 3.12 For Y = h · U in over-determined case Ny > Nu, for the 

matrix h [6 · 2] and Y [6 · 1], i.e. for (Ny = 6) > ( Nu = 2), rank(h) = 2,  

obtain the least squares solution U [2 · 1], U = h
-g

 · Y, for the example of 

experimental data for the measured resistance versus temperature Ch. 

3.1,  that consists of Ny = 6 pairs of values 
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i               1         2      3       4        5       6 

Ri [Ω]       600    627   651   682   701   732 

Ti [
0
C]       24     25.2   27    28.7   29    29.8 

 

There are Nu = 2 unknown parameters, a0 and a1 of the assumed linear 

direct problem model 

 

R = a0 + a1 · T 

 

For the over-determined matrix equation  

 

Y = h · U 

 

the vector of unknowns is 

 

U= 








1

0

a

a
 

For Y [6 · 1], h [6 · 2] and U [2 · 1], the matrix equation becomes 

 




































=



























1

0

a

a

29.81

29.01

28.71

27.01

25.21

24.01

732

701

682

651

627

600

 

MATLAB program gives 

 

>> h=[1 24.0;1 25.2;1 27.0;1 28.7;1 29.0;1 29.8] 

h = 

    1.0000   24.0000 

    1.0000   25.2000 
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    1.0000   27.0000 

    1.0000   28.7000 

    1.0000   29.0000 

    1.0000   29.8000 

>> Y=[600;627;651;682;701;732] 

Y = 

   600 

   627 

   651 

   682 

   701 

   732 

>> h\Y 

ans = 

   97.9112 

   20.8035 

>> 

 

The over-determined inverse problem solution using least squares errors 

method resulted in 

   

U = h
-g

 · Y 







=








=

20.8035

97.9112

a

a

1

0
 

 

Example 3.13 For Y = h · U for the matrix h [4 · 2] and Y [4 · 1], i.e.  

for (Ny = 4) > ( Nu = 2), rank(h) =2,  obtain the least squares solution  

U [2 · 1], U = h
-g

 · Y, in over-determined case Ny > Nu, but of deficient 

rank of h. Assume Ny = 4 pairs of values, which correspond to the case 

of an insignificant variation of the resistance value versus temperature: 

 

 

i               1         2                      3                             4           

Ri [Ω]       600    600.0000000001   600.0000000002   599.99999999999     

Ti [
0
C]       24     25.2                       27                            28.7     
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There are Nu = 2 unknown parameters, a0 and a1 of the assumed linear 

direct problem model 

 

R = a0 + a1 · T 

 

The over-determined matrix equation is Y = h · U, where the vector of 

unknowns is 

 

U 







=

1

0

a

a
 

For Y [4 · 1], h [4 · 2] and U [2 · 1], the matrix equation becomes 

 

 




























=



















1

0

a

a

7.281

271

2.251

241

99999999999.599

0000000001.600

0001600.000000

600

 

 

MATLAB program gives 

 

>> Y=[600;600.0000000001;600.0000000001;599.99999999999] 

Y = 

  600.0000 

  600.0000 

  600.0000 

  600.0000 

>> h=[1 24;1 25.2;1 27;1 28.7] 

h = 

    1.0000   24.0000 

    1.0000   25.2000 

    1.0000   27.0000 

    1.0000   28.7000 
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>> h\Y 

ans = 

  600.0000 

   -0.0000 

 

In fact, the result is a0 ≈ 600 and a1 ≈ 0. 

The answer shows that in fact the resistance is practically constant for 

various temperature values in this case and the linear approximation is a 

constant 

 

R = a0 + a1 · T = 600.00 

 

MATLAB gives 

 

>> rank(h) 

ans = 2 

>> cond(h) 

ans =387.8996 

 

The rank equal to 2 would indicate that the matrix h would give a 

nonzero answer to both unknowns a0 and a1, but the condition number is 

high and indicates that the rank might be closer to 1. 

In practice inverse problems can become mixed determined (partly 

over-determined, partly underdetermined) and generic solutions in this 

case are: 

-Singular Value Decomposition (SVD) method  

-Damped LS method 

-Regularization method 

These methods also address specific problems of ill-conditioning in 

inverse problems. 

 

3.3.4 SVD Method 

 

SVD method permits to determine the null-space of the forward problem 

Y = h · U (Y [Ny · 1], h [Ny · Nu] and U [Nu · 1]), when the matrix h is 
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mapping the unknown vector U into the output vector Y with a zero 

subset. Such a zero subset of Y, the null space, cannot contribute to 

recover the unknown vector U.  

SVD permits the calculation of a generalized inverse h
-g

 by retaining 

only singular values of h that do not result in ill-conditioning when 

calculating the estimation Uext given Ym 

 

Uex t= h
-g 

 · Ym 

 

A non-square matrix h for Ny > Nu, (over-determined) and rank(h) = r ≤ 

Nu, can be factored into 

 

h = u · Λ ·  v
T 

 

where: 

Λ [Ny · Nu] is a matrix with all elements equal to zero except for diagonal 

values of the top left r · r part containing in decreasing  order the r non-

zero eigenvalues of h · h
T 

[Ny · Ny] or h
T
 · h [Nu · Nu] 

u [Ny · Ny] is an orthogonal matrix with the columns the eigenvectors of  

h · h
T 

calculating in the decreasing order of eigenvalues 

v [Nu · Nu] is an orthogonal matrix with the columns the eigenvectors of 

h
T 

· h
 
calculated in the decreasing order of eigenvalues. 

The calculation by SVD method of h
-g   

[Nu · Ny] retains from Λ [Ny · 

Nu] in only p ≤ min [Ny, Nu] eigenvalues that permit the avoidance of ill-

conditioning by removing zero and very small valued eigenvalues and 

retaining only decreasing eigenvalues with no very low values Λ 1, Λ 2, 

…, Λ p, i.e. Λp [p · p], and calculates the corresponding vp [Nu · p] and  up 

[Ny · p] and up
T
 [p · Ny]. The pseudo (or generalized) inverse is then 

calculated as follows 

 

hp
-g  

=  vp
 
 · Λp

-1
 · up

T 

 

The elimination of zero and very low eigenvalues corresponds to a 

reduced order dynamic model that avoids ill-conditioning in inverse 

problem solving. 
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In this case  

Uext= hp
-g 

 · Ym 

gives 

Uext = vp
 
 · Λp

-1
 · up

T
  · Ym 

where Λp is a diagonal matrix 

  























Λ

Λ

Λ

p

2

1

.

.  

 

and Λp
-1 

is also a diagonal matrix and can be written as follows  

 























Λ

Λ

Λ

p

2

1

1/

.

.

1/

1/

 

such that xext  can be expanded as follows [67] 

 

im

T

i

p

1i i

est

1
vYuU ⋅⋅

Λ
= ∑

=

 

This shows that in order to obtain the inverse problem SVD solution the 

measurement values Ym are divided by the decreasing eigenvalues Λ1 > 

Λ2 >,…, > Λp. As a result, smaller eigenvalues in the denominator 
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become high multiplication factors for Ym = Y + w and their effect might 

become unacceptable when the errors w are more important then the 

contribution of Y, the usual case for high frequency components. As a 

result of removing smaller Λ < Λp this unacceptable effect is avoided, 

making the inverse problem well-conditioned. 

MATLAB examples will illustrate the use of SVD. 

 

Example 3.14 SVD solution for over-determined case Ny > Nu 

For the matrix h [3 · 2] and Y [3 · 1], i.e. for (Ny = 3) > (Nu = 2),  

rank(h) = 2,  obtain the  SVD solution for U [2 · 1], U = h
-g

 · Y 

 

>> h=[1 0;2 1;2 2] 

h = 

     1     0 

     2     1 

     2     2 

>> [ua,Sa,va]=svd(h) 

ua = 

   -0.2222    0.7115    0.6667 

   -0.6047    0.4358   -0.6667 

   -0.7648   -0.5513    0.3333 

Sa = 

    3.6503         0 

         0    0.8219 

         0         0 

va = 

   -0.8112    0.5847 

   -0.5847   -0.8112 

 

Retaining decreasing eigenvalues Λ1 = 3.6503 and Λ2 = 0.8219 for  

p = Nu = 2, Λp, i.e. Λp (p · p) 

 

becomes in the MATLAB notation  

Sa=Sp 

3.6503         0 

         0    0.8219 
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or 

 

Sp 







=

219.00

06503.3
 

and 

 

Sp
-1 

 

1/3.6503         0 

       0      1/0.8219 

 

The calculation of the corresponding vp [Nu · p] and up [Ny · p] and  

up
T
 [p · Ny] gives 

 

Up = 

   -0.2222    0.7115     

   -0.6047    0.4358    

   -0.7648   -0.5513     

 

and  

 

up
T
 =

 

-0.2222      -0.6047   -0.7648 

 0.7115       0.4358   -0.5513           

 

while vp (Nu · p) remains the same for p = Nu = 2 

 

vp = 

   -0.8112    0.5847 

   -0.5847   -0.8112 

 

Finally 

 

h
-g

 = vp
 
 · Λp

-1
 · up

T 
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MATLAB gives  

>> vp=[-0.8112 0.5847;-05847 -0.8112] 

vp = 

  1.0e+003 * 

   -0.0008    0.0006 

   -5.8470   -0.0008 

>> upT=[-0.2222 -0.6047 -0.7648;0.7115 0.4358 -0.5513] 

upT = 

   -0.2222   -0.6047   -0.7648 

    0.7115    0.4358   -0.5513 

>> Spinv=[1/3.6503 0;0 1/0.8219] 

Spinv = 

    0.2740         0 

         0    1.2167 

>> hinv=vp*Spinv*upT 

hinv = 

  1.0e+003 * 

   0.000555540524813   0.000444409759338  -0.000222234836570 

   0.355214646288678   0.968169961176620   1.225590173846834 

=  5.5554e-001  4.4441e-001 -2.2223e-001 

    3.5521e+002  9.6817e+002  1.2256e+003 

>> Ym=[1;2;-4] 

Ym = 

     1 

     2 

    -4 

>> Uest=hinv*Ym 

Uest = 

  1.0e+003 * 

    0.0023 

   -2.6108 = 

  or 

Uest 







−

=
8.2610

3333.2
 



Overview Integral Equations and Discrete Inverse Problems 119

The SVD result has the same value for the first element, 0.2333 and 

different value for the second element, -2.6108, versus -4.000, for the 

h\Y earlier calculation. The difference is due to the use of different 

algorithms and approximations. 

 

3.3.5 Damped LS Solution 

 

Damped LS (DLS) method is a combination of the LS solution with 

minimum length solution resulting from  

 

min S(U) = min{(Ym- h · U)
T
 · (Ym- h · U) + λλλλ · U

 T
 · U} 

 

Vanishing partial derivative gives 

 

δS/δU = - 2 · h
 T

 · Ym+ 2 · h
 T

 · h · U + 2 λλλλ · U 
 
= 0 

 

In case that h · h
 T

 + λλλλ · I is non-singular, 

 

Uest = (h
 T

 · h + λλλλ · I)
-1

 · h
 T

 · Ym 

 

As expected, for λ=0, damped LS solution becomes identical to LS 

solution 

 

Uest = (h
 T

 · h)
-1

 · h
 T

 · Ym 

 

3.3.6 Regularization Method. Regularized LSS 

 

Regularization method, proposed initially by Tikhonov, is a combination 

of the LS solution with a priori information about how “smooth” the 

solution has to be and leads to a stable solution for the inverse problem. 

A priori information does not come from the data measurement 

information contained in Ym vector [45, 47, 63, 67]. A priori information 

or belief is contained in the regularization matrix R [k · Nu] that 

multiplies U [Nu · 1] in  

 

min S(U) = min{(Ym- h · U)
T
 · (Ym- h · U) + λλλλ ·( R · U

 
)

T
 · ( R · U

 
)} 
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or 

min S(U) = min{(Ym- h · U)
T
 · (Ym -  h · U) + λλλλ ·( U

 T
 · R

 T
 · R · U

 
)} 

Vanishing partial derivative gives 

δS/δU = - 2 · h
 T

 · Ym+ 2 · h
 T

 · h · U + 2 λλλλ · R
 T

 · R · U
 
= 0 

Given any non zero k of R [k · Nu], the matrix R
T 

· R is [Nu · Nu] is 

square.  

In case that h
 T

 · h + λλλλ · R
 T

 · R is non-singular, by inversion gives the 

regularized LS solution 

Uest = (h
 T

 · h + λλλλ · R
 T

 · R)
-1

 · h
 T

 · Ym 

As expected, for R = I, regularized LS solution becomes identical to the 

damped LS solution 

Uest = (h
 T

 · h + λλλλ · I)
-1

 · h
 T

 · Ym 

and for λ=0, the regularized LS solution becomes identical to LS solution  

Uest = (h
 T

 · h)
-1

 · h
 T

 · Ym 

Regularization matrix R [k · Nu] reflects a priori information about the 

solution U, while a posteriori information is contained in Ym.  

Examples of a priori information about the solution vector U or 

sequence of adjacent scalar values Uk-1, Uk, … for k = 1, 2,…, K are [49, 

67]: 

quasi constant, i.e. minimum change of Uk -Uk-1, for k = 1, 2,…, Nu -1 

linear variation, i.e. minimum change of (Uk+1- 2 Uk +Uk-1), for k = 1, 

2,…, Nu -2 

quadratic variation, i.e. minimum change of (Uk+2 -3 Uk+1 + 3 Uk –Uk-1), 

for k = 1, 2,…, Nu -3 etc. 

The effect of a priori information or belief about the sequence of adjacent 

scalar values Uk-1, Uk, … for k = 1, 2,…, K of the vector U [K · Nu] is to 
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reduce the variability inherent to ill-posed inverse problems due to 

potential high amplification of errors. They work by replacing current 

value Uk by a weighted sum of adjacent values …, Uk-1, Uk, Uk+1,…. 

 

These three cases lead to the following non-square regularization 

matrices: 

 

a) quasi constant, R [(Nu -1) · Nu] 

 

R 























−

−

−

−

=

11000

011.0

.....

0.110

0.011

 

 

b) linear variation, R [(Nu -2) · Nu] 

 

 

R 





























−−

−−

−−

−

−−

−−

=

121...0

0121..0

0.121.0

.......

0..2100

0..1210

0..0121

 

c) quadratic variation, R [(Nu -3) · Nu] 
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R





























−−

−

−

−

−−

−−

=

1331..0

0133..0

0.133.0

.......

0..3100

0..3310

0..1331

 

 

  

The calculation of the solution requires not only the regularization matrix 

R, for example as defined above, but also a value for the Lagrange 

amplifier λλλλ for 

 

Uest = (h
 T

 · h + λλλλ · R
 T

 · R)
-1

 · h
 T

 · Ym 

 

A first value for a scalar λ is suggested to be [49] 

 

λ = Tr (h
 T

 · h) / Tr (h) 

 

using the trace of these matrices, i.e. the sum of diagonal elements. In 

obtaining a suitable value for λ, we have to take into account that low 

values in the minimization of  S 

 

min S(U) = min{(Ym- h · U)
T
 · (Ym- h · U) + λ ·( R · U

 
)

T
 · ( R · U

 
)} 

 

favour the part  

 

(Ym- h · U)
T
 · (Ym- h · U) 

 

while high values favour the part 

 

(R · U
 
)

T
 · ( R · U

 
) 
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Example 3.15 The solution for over-determined case Ny > Nu for Y =  

h · U. For the matrix h [3 · 2] and Y [3 · 1], i.e. for (Ny = 3) > (Nu = 2), 

rank(h) = 2,  MATLAB gave the following least squares solution for U 

[2 · 1], U = h
-g 

· Y  

 

>> h=[1 0;2 1;2 2] 

h = 

     1     0 

     2     1 

     2     2 

>> rank(h) 

ans =2 

>> Y=[1;2;-4] 

Y = 

     1 

     2 

    -4 

>> h\Y 

ans = 

    2.3333 

   -4.0000 

>> 

 

Regularization solution 

 

Uest  = (h
T 

· h + λ· R
T 

· R)
-1 

· h
T 

· Ym 

 

for quasi constant, R [(3-1) · 2] 

 

R 







−

−
=

11

11
 

 

and 

 

λ = Tr (h
 T

 · h) / Tr (h) 
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MATLAB program gives for λ 

 

>> h=[1 0;2 1;2 2] 

h = 

     1     0 

     2     1 

     2     2 

 

 

>> R=[-1 1;-1 1] 

R = 

    -1     1 

    -1     1 

>> RTR=R'*R 

RTR = 

     2    -2 

    -2     2 

>> TraceRTR=2+2 

TraceRTR = 4 

>> lambda=14/4 

lambda = 

    3.5000 

 

MATLAB program for lambda =3.5000 

 

m

T-1TT

est )λ ( YhRRhhU ⋅⋅⋅⋅+⋅=  

>> Uest=inv(h'*h+lambda*RTR)*h'*Ym  

Uest = 

   -0.2199 

   -0.5183 

 

MATLAB result for lambda =0 is 
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>> lambda=0 

lambda = 0 

>> Uest=inv(h'*h+lambda*RTR)*h'*Ym  

Uest = 

    2.3333 

   -4.0000 

>> 

 

Regularization LS result for lambda=0 reduces the solution equation to 

 

Uest= (h
 T

 · h)
 -1 

· h
T  

· Ym 

 

which is the LS solution result for U. As expected the Regularization LS 

result for lambda=0 is the same as the above LS result obtained with 

MATLAB function h \ Y. 

Regularization LS result for λ=3.5 

 

 

 

differs from LS result due to the effect of regularization term λ · R
 T

 · R  

for the quasi-static regularization matrix 

 









−

−
=

11

11
R  

The scalar values of Uest are not the same for λ=3.5 but much close to one 

another then the LS values obtained for λ=0 

 

 

 

 

The selection of the values for Uest depend on the confidence in a 

posteriori the measurement data in Ym and the a priori information used 

for the regularization term λ · R
 T

 · R.  









−

−
=

5183.0

2199.0
estU









−

=
000.4

3333.2
estU
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In the above example, measurement data in Ym show significant variation 

 

 

 

 

 

and a quasi-static Regularization matrix might try to force a solution that 

is less realistic than the LS result. 

 

 

 

 

Problems 

 

1.      Assume five measurements of the resistance versus temperature 

 

   i             1                 2                  3                4                 5 

Ri [Ω]     500              505               509            516             520 

Ti [
0
C]     29                40                 49               61              70 

 

Using MATLAB, obtain the values of the coefficients a0 and a1 of 

the linear curve R=a0+a1·T fitting these measurements values. 

 

2.      Assume a first order instrument with impulse response  

 

h(t)= exp{-0.1 · t} 

 

and a sampling period of  2 [s]. 

Determine hi for i=1, 2, …, K, where K results from 2% 

settling time. 

Given U0 = 2, U1 = 4 and Uk = 0 for k>1, obtain 

 

k

i

K-ik

k-ii uhY ⋅= ∑
=

        for  i = 1, 2, ..., K 

















−

=

4

2

1

Ym
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3.      Use MATLB to obtain for the following matrices 

 

A 







=

73

41
 

B 







=

82

41
 

C 







=

673

341
 

a) the inverse or generalized inverse 

b) the norm and the rank 

 

4.      For the matrix C from problem 3, and 

 

 Y 







=

3

2
 

obtain an estimate of U [3·1] for the underdetermined problem 

 

Y = C · U 

 

5. Assume, for the problem 1, the results of another set of    

measurements are    

     

 

   i             1              2               3                 4                  5 

 Ri [Ω]     500      500+10
-8

   500+10
-9

      500-10
-10

     500-10
-9

 

 Ti [
0
C]     29             40             49              61                70 

 

Using MATLAB, obtain the values of the coefficients a0 and a1 of 

the linear curve R=a0+a1·T fitting these measurements values. 
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6. Given  

 

h
















=

73

03

12

 

and using MATLAB, obtain 

a) The generalized inverse using SVD method. 

b) Uest = h
-g 

· Ym   for 
















=

99.1

10.2

00.2

mY  

b) The regularization solution  

Uest = (h
T 

· h + λ· R
T 

· R)
-1 

· h
T 

· Ym 

 

             for 

 









−

−
=

11

11
R  
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Chapter 4 

Inverse Problems in Dynamic Calibration 

of Sensors 
 

 

 

4.1 Introduction 

 

System monitoring requires numerous sensors but rarely is possible to 

have as many sensors as quantities to measure. Frequently, system 

monitoring problem is under-determined. Moreover, time varying signals 

require dynamic measurement, while sensors are characterized by 

bandwidth frequencies that can be lower than the useful range of 

frequencies of the signals to be measured. Computer based 

instrumentation can alleviate such difficulties by providing means for 

estimating system variables that are not directly measured, i.e. indirect 

measurement, and  by increasing the range of signal frequencies the 

sensors can measure accurately. In this section these problems are 

analyzed using ill-posed inverse problems theory in particular using 

inverse dynamics approaches. This chapter presents in the beginning the 

case of simple first and second order instruments considered alone, then 

continues with the investigation of the full order and reduced order 

dynamic calibration (compensator) for sensors. In the first part of this 

chapter, noiseless sensing and exact models are assumed in order to 

focus the analysis of inverse problem issues for first and second order 

instruments [71]. For this purpose, complex domain and frequency 

domain analysis are carried out for lumped parameters models of 

sensors. Section 4.2 presents the analysis of first and second order 

instruments dynamics simulation using transfer functions, time response 

and Bode diagrams. In section 4.3 the investigation is extended by 

including dynamic calibration, anti-aliasing filters and phase lead 
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compensators required in computer based instrumentation. In section 4.4, 

the effect of measurement noise on dynamic calibration is analyzed. In 

section 4.5, the focus is on state estimation in indirect sensing.   

Forward Dynamics of a sensor, modeled as a LTI system, can be 

described by its transfer function G(s) = Y(s) / X(s), with X(s) = input 

and Y(s) = output. First and second order instruments analysis will 

illustrate general issue in dynamic calibration using inverse models. 

 

4.2 First Order Instruments 

 

4.2.1 Time and Frequency Response of Forward Dynamics 

 

Numerous sensors can be modeled by a first order transfer function  

 

k
G(s)

1 T s
=

+ ⋅
 

where k = gain, T = time constant.  

 

Example 4.1 The first order model for a J thermocouple with gain at 20 

[
0
C] of =50 [µV/

0
C] and time constant of 0.01 [s] is assumed, i.e. k = 5 

[10 µV/
0
C] and T = 0.01 [8]. 

MATLAB program is 

k =5; 

T=0.01; 

num=[0 k]; 

den=[T 1]; 

step(num,den);grid 

Figure 4.1 shows the Y(t) plot of the unit step response of a first order 

instrument.  

MATLAB program 

>> bode(num,den); 

grid; 

The Bode diagram results for the above case is shown in Fig. 4.2. 
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Fig. 4.1 The plot of the unit step response Y(t) of a first order instrument 
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Fig. 4.2 Bode diagram for the case shown in Fig. 4.1 
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4.2.2 Bandwidth of First Order Instruments 

 

Bandwidth cutoff frequency, ωb, corresponds to the frequency for which 

the Magnitude 20 log|G(j · ω)| drops 3 [dB] below its zero-frequency 

value  20 log|G(j · 0)|, such that, at the limit, 

20 log|G(j · ωb)| = 20 log|G(j · 0)| - 3 [dB] 

 

Example 4.2 In the above case of a first order transfer function for k = 5, 

T = 0.01 [s] 

5
G(s)

1 0. s
=

+ ⋅01
 

or 

5
G( jω)

1 0.01 j ω
=

+ ⋅ ⋅
 

its zero-frequency value  is 

G(j0) = 5 

or 

20 log|G(j · 0)| = 14 [dB] 

Cutoff frequency, ωb, defining the bandwidth, is the solution of the 

equation 

20 log|G(j · ωb)| = 20 log|G(j0)| - 3 = 14 – 3 = 11 [dB] 

The result is the same as in Fig. 4.2. 

ωb  = 100 [rad/s] 

fb  = 100/(2π) ≈16 [Hz] 

 

4.2.3 Static Calibration of the Sensor 

 

Assume that 

 

Xn   is unknown sensor input to the sensor  

Ym  is the measured output from the sensor. 
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Static calibration uses steady state sensor response to unit step, X(s) = 1 / s, 

for determining the value of Kc for calibration, i.e. for estimating the 

unknown input, using final value theorem 

 

G(0)
s

1
G(s)slimX(s)G(s)slimY(t)limK 0s0ssc =⋅⋅=⋅⋅== →→∞→  

such that estimated input value using static calibration is given by 

 

c

1

c K

Y(s)L

K

Y(t)
X(t)

−

==  

where L
-1 

is inverse Laplace transform operator. 

 

Example 4.3 Estimate input value using static calibration. 

 

Estimated input value using static calibration, for the above Example 4.2, 

for static calibration constant 

 

Kc = G(j · 0) = 5 

 

gives the estimated input value 

5

Y(t)
(t)X est =  

Consequently, the result for Y(t) shown in Fig. 4.1 can be converted in 

Xest (t) by dividing the Amplitude scale by 5, to obtain a scale for Xest (t) 

that reaches steady state value of 1.  

 

This Xest (t) is an estimation of the unit step input that has zero estimation 

error only at steady state. The result shows that Xest (t) becomes accurate 

only after settling time, for example with an error of 2% after four time 

constants, 4 · T = 4 · 0.01 = 0.04 [s]. 



Advanced Mechatronics 134

In practice, for sinusoidal inputs, the estimation error is considered 

acceptable within bandwidth, i.e. for input signal frequencies 

 

ω < ωb 

 

where, in this case  

 

ωb = 100 [rad/s] 

 

 

This issue is analyzed in the next paragraph. 

 

4.2.4 Sinusoidal Response of the Sensor-MATLAB Simulations 

 

The block diagram of a first order instrument with sinusoidal input is 

shown in Fig. 4.3.  

Given that the Laplace transform X(s) = L{X(t)} for X(t) = sin ωt is 

 

X(s) = ω / (s
2 
+ ω2

) 

 

and for unit impulse input  

δ(s) = 1 

 

Fig. 4.3 Block diagram of a first order instrument with sinusoidal input 

 

MATLAB simulation uses the computation scheme from Fig. 4.4. 

 

In fact 

 

L
-1 

{δ(s) · ω / (s
2 
+ ω2

)} = L
-1 

{ω / (s
2 
+ ω2

)} = sin ωt 

 

 

 

X(t) = sin ωt 
1/(1+Ts) 

Y(t) 
1/Kc 

Xest(t) 
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Fig. 4.4 MATLAB simulation scheme 

 

 

Example 4.4 MATLAB Simulation for k = 5; T = 0.01; Kc = 5 and 

various values of ω. 

 

1) ω = 10 [rad/s]      

MATLAB program is 

num=[0 0 0 50]; 

den=[0.01 1 1 100]; 

impulse(num,den); 

 

Figure 4.5 shows the plot Y(t) for s sinusoidal input with ω = 10 [rad/s]. 

 

2) ω = 100 [rad/s]    

MATLAB program is 

num=[0 0 0 500]; 

den=[0.01 1 100 10000]; 

impulse(num,den); 

 

Figure 4.6 shows the plot Y(t) for s sinusoidal input with ω = 100 [rad/s]. 

 

δ(s)=1  
1/(1+Ts) 

Y(t)  

1/Kc 
Xest(t) 

ω/(s
2
+ω2

) 



Advanced Mechatronics 136

0 10 20 30 40 50 60
-5

-4

-3

-2

-1

0

1

2

3

4

5
Impulse Response

Time (sec)

A
m

p
lit
u
d
e

 
Fig. 4.5 The plot Y(t) for s sinusoidal input with ω=10 [rad/s] 
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Fig. 4.6 The plot Y(t) for s sinusoidal input with ω=100 [rad/s] 
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3) ω = 1000 [rad/s]   

 

MATLAB program is 

num=[0 0 0 5000]; 

den=[0.01 1 10000 1000000]; 

impulse(num,den); 

 

Figure 4.7 shows the plot Y(t) for s sinusoidal input with ω = 1000 

[rad/s]. 

 

Fig. 4.7 The plot Y(t) for s sinusoidal input with ω=1000 [rad/s] 

 

These results illustrate the significant decrease of the amplitude |Xext(t)| 

as ω increases beyond ωb = 100 [rad/s]. 
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4.2.5 Analytical Solutions for Harmonic Response of First Order 

Instruments  

  

The block diagram for the derivation of the analytical solution for the 

harmonic response of a first order system is shown in Fig. 4.8. 

 

 

Fig. 4.8 Block diagram for the derivation of the analytical solution for the harmonic 

response 

 

Example 4.5 Derivation of the analytical solution for k = 5, T = 0.01 and 

X(t) = 1 · sin ω · t, i.e. |X(t)| = 1 

 

For 

sT1

k
G(s)

⋅+
=  

22
ω0.011

ω)0.01j-(15

jω0.011

5

jωT1

k
)G(j

⋅+

⋅⋅⋅
=

⋅+
=

⋅+
=ω  

1/222 )ω0.01(1

5
|)G(j|

⋅+
=ω  

Φ = tan
 -1

 (-0.01ω) 

 

static calibration uses 

Kc = G(j0) = k = 5 

The output Y(t) is given by [50] 

y(t) =1 · |G(jω)| · sin (ω · t+ Φ) 

while estimated input is  

L{X(t) = sin ωt} 

= X(s) = ω / (s
2 
+ ω

2
) 

G(s)=k/(1+Ts) 

L{Y(t)}  

1/Kc 

L(Xest(t)) 
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ω))(0.01tantsin(ω
5

|)G(j|

Φ)tsin(ω
K

|)G(j|

K

y(t)
(t)X

1

cc

est

⋅+⋅
ω

=

+⋅
ω

==

−

 

such that 

 

=
|X(t)|

|(t)X| est

5

|)G(jω|
 

For ω = 10 the result is  

 

|G(jω)| = 5/(1 + 0.01
2ω2

)
 1/2  

= 5/(1 + 0.01
2
10

2
)

 1/2  ≈ 5 

 

Φ = tan
 -1

 (- 0.01 · ω) = - 5.71 

 

y(t) = 1 |G(jω)| sin (ω · t + Φ) ≈ 5 sin ω · t 

 

xest(t) = y(t) / k  ≈ 1 sin ω · t = x(t) 

 

|xest(t)| / |x(t)| ≈ 1 

 

For ω = 100, the result is  

 

|xest(t)| / |x(t)| ≈ 0.7 

 

20 log |xest(t)| / |x(t)| = - 03 [dB],   i.e. ω = 100 = ωb 

 

Summary of results for ω = 10, 100 and 1000 [rad/s] is the following 

 

ω [rad/s]  f[Hz]  1/f[s]  |G(jω)|     Φ        y(t)              xest(t)      |xest(t)|/|x(t)| 

10          1.58        0.63    ≈5       ≈ 0    ≈5sin ωt           ≈sin ωt              ≈1     

100       15.8     0.063     ≈3.5    ≈-45   3.5sin(ωt-45)  0.7sin(ωt-45)     ≈0.7       

1000     158      0.0063   ≈3.5    ≈-90   0.5sin(ωt-90)  0.1sin(ωt-45)     ≈0.1 
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Consequently, for 

 

ω > ωb       |xest(t)| / |x(t)| < 0.7 

ω > >ωb     |xest(t)| / |x(t)| << 0.7 

ω = 1000   |xest(t)| / |x(t)| ≈ 0.1 

 

i.e. for ω = 1000 the estimated |xest(t)| is only 10% of the amplitude of the 

sensor input signal |x(t)|. 

Dynamic estimation (calibration) can be achieved using the inverse 

problem solution. It can be observed that dynamic calibration results in 

increasing gains, in this case 1 / 0.7 = 1.43 for ω = 100 and 1 / 0.1 = 10 

for ω = 1000 [71].  

Obviously, these gains increase with ω, and this can lead to various 

difficulties (overflow in numerical computations, over-amplification of 

noise high frequency-low amplitude components in the y(t) signal etc), to 

be addressed by the solutions to ill-posed problems from Ch. 3. 

 

4.3 Second Order Instruments   

 

4.3.1 Static Calibration 

 

Second order transfer function [50], for a mass-spring-damper system, is 

 

2

nn

2 ωsως2s

k
G(s)

+⋅⋅⋅+
=  

where k = gain, ωn = un-damped natural frequency, ζ =  damping ratio. 

An example could be a force f(t) transducer [18], with the block 

diagram shown in Fig. 4.9 where 

f(t) [N] is the input force to measure 

d(t) [m] is the output displacement  

v(t) [V] is the output voltage of the potentiometer. 
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Fig. 4.9 Block diagram of a force transducer 

 

Assume that the force measuring spring based instrument measured is 

modeled by a mass-spring-damper M-B-K system in horizontal motion 

(such that gravity effect can be ignored in deriving motion equation). The 

transfer function is 

 

KsBsM

1

d(s)

f(s)
2 +⋅+⋅

=  

where 

 

d(s) = L{d(t)} 

f(s) = L{f(t)} 

 

Assume the approximate transfer function of the position measurement 

potentiometer 

 

v(s)/d(s) = Kp 

 

where 

 

v(s) = L{v(t)} 

d(s) = L{d(t)} 

 

where Kp [V/m] is the calibration constant of the potentiometer. 

 

 

 

 

f(t) 

Force measuring 

spring-based 

instrument d(t)  

Position measurement 

potentiometer    

v(t) 
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The block diagram of the force measuring instrument is shown in  

Fig. 4.10. 

 

 

 

 

Fig. 4.10 Block diagram of the force measuring instrument 

 

The overall transfer function is 

 

2

nn
2

2

p

2

p

ωsως2s

k

M

K
s

M

B
s

M

K

KsBsM

K

f(s)

v(s)
G(s)

+⋅⋅⋅+
=

+⋅+
=

+⋅+⋅
==

 

where 

 

ωn
2 
= K / M 

2 · ζ / ωn = B / M 

k = Kp / M 

 

Time response of such second order instruments is strongly dependent on 

the value of  

 

M2

ωB
ς n

⋅

⋅
=  

The damping ratio, ζ, determines the type of response: 

 

 ζ  < 1   under-damped response 

 ζ  = 1   critically damped response 

 ζ  > 1   over-damped response 

 

f(s) 
1/ (M s

2
+B s + K) 

d(s) 
Kp 

v(s) 
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Example 4.6 MATLAB Simulations for frequency response of sensors 

forward dynamics and compensators based on inverse dynamics for a 

second order instrument with k = 1, ωn = 10 [rad/s]    fn = 1.58  [Hz]  

period of 0.63 [s] and various values of the damping ratio ζ. 
Second order transfer function is  

 

2

nn
22 ωsως2s

k

csbs

k

d(s)

v(s)
G(s)

+⋅⋅⋅+
=

+⋅+
==  

 

where  

 

b = 2 · ζ · ωn 

c = ωn
2
 

 

Steady state value of v(t) for unit step input f(t) is obtained using limit 

value theorem for unit step input f(s) = 1 / s for s tending towards zero 

 

0.01
ω

1

ωsως2s

k
lim

s

1
G(s)slimv

2

n

2

nn
20s0sss ==

+⋅⋅⋅+
=⋅⋅= →→  

 

The computation is carried out for ζ = 0, 0.1, 0.6, 1.2. 

 

a) for ζ  = 0, b = 2 · ζ · ωn = 0 

MATLAB program is  

k=1; 

b=0; 

c=100; 

num=[ 0 0 k]; 

den=[1 b c]; 

step(num,den);grid 
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Figure 4.11 shows the plot of the un-damped oscillatory response v(t), 

obviously not useful in practical applications. Higher values for ζ are 

required. 

 

b) for ζ  = 0.1, b = 2 · ζ · ωn = 2 

MATLAB program is 

k=1; 

b=2; 

c=100; 

num=[ 0 0 k]; 

den=[1 b c]; 

step(num,den);grid 
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Fig. 4.11 The plot of the un-damped oscillatory response v(t) 

 

The results from Fig. 4.12 show significant maximum overshoot of 70% 

and long 2% settling time of  
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4/(ζ ωn ) = 4/ (0.1 · 10)= 4 [s]. 

 

c) for ζ  = 0.6, b =2 · ζ · ωn  = 12 

MATLAB program is 

k=1; 

b=12; 

c=100; 

num=[ 0 0 k]; 

den=[1 b c]; 

step(num,den);grid 
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Fig. 4.12 The plot of the oscillatory response v(t) for ζ  = 0.1 

 

The results from Fig. 4.13 show significant reduced maximum overshoot 

of 5% and reduced 2% settling time to 4 / (ζ · ωn ) = 4 / (0.6 · 10) =  

0.67 [s]. 
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d) for over-damped case, ζ  = 1.2, b = 2 · ζ · ωn  =24 

MATLAB program is 

 

k=1; 

b=24; 

c=100; 

num=[ 0 0 k]; 

den=[1 b c]; 

step(num,den);grid 

 

The results from Fig. 4.14 show no overshoot but sluggish response. 
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Fig. 4.13 The plot of the oscillatory response v(t) for ζ = 0.6 

 

Present day practice is to provide under-damped response for ζ = B · ωn / 

(2 · M) in the range of 0.6-0.7, by selecting a damping coefficient of  B = 

2 · M · ζ / ωn [71].   
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Example 4.7 Bode diagram for ζ = 0.6, b= 2 · ζ · ωn =12 is given by the 

MATLAB program: 

k=1; 

b=12; 

c=100; 

num=[ 0 0 k]; 

den=[1 b c]; 

bode(num,den); 

grid; 
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Fig. 4.14 The plot of the oscillatory response v(t) for ζ = 1.2 

 

Bode diagram of a second order instrument with ζ = 0.6 is shown in  

Fig. 4.15. 

 

Magnitude response is flat up to approx. 10 [rad/s], while the phase lag 

becomes noticeable after 1 [rad/s]. 
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4.3.2 Harmonic Response of the Second Order Sensor with ζ =0.6. 

MATLAB Simulations 

  

Time response of such second order instruments depends significantly on 

the value of ζ. 
MATLAB simulation is carried out for the second order instrument 

subject to static calibration, shown in Fig. 4.16. 
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Fig. 4.15 Bode diagram of a second order instrument with ζ = 0.6 

Static calibration constant is Kc = G(j · 0). 
For X(s) = ω / (s

2 
+ ω2

) and unit impulse input δ(s) = 1, the harmonic 

response simulation is achieved with MATLAB instruction impulse 

(num, den) for the functions shown in Fig. 4.17. 
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Fig. 4.16 Second order instrument subject to static calibration 

 

 

Fig. 4.17 MATLAB simulation model 

 

 

The overall transfer function Xest(s) / δ(s) for the MATLAB program is  
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L{X(t) =sin ωt}= 

X(s)=ω / (s
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+ ω2

) 

G(s) = k/( s
2
+2 ζ ωn s +  ωn

2
 ) 
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a= 2 · ζ · ωn 

b= ωn
2
 

 

Example 4.8 Let us assume k = 1, ζ = 0.6, ωn = 10 [rad/s] such that  

a = 2 · ζ · ωn =12 and b = ωn
2 
= 100. 

 

In MATLAB notation 

num=[ 0 0 0 0 ω]; 

den=[1 a b+ ω^2 a* ω^2  b* ω^2]; 

impulse(num,den);  

 

MATLAB results for ω=1 and 5 [rad/s] are the following 

 

1) ω = 1 [rad/s]   

 

MATLAB program is 

a=12; 

b=100; 

num=[ 0 0 0 0 1]; 

den=[1 a b+1 a  b]; 

impulse(num,den); 

The plot is shown in  

 

The amplitude from Fig. 4.18 agree to amplitude |G(j · ω| for Bode 

diagram from Fig. 4.15 for ω = 1 that is -40 [dB]= 20 log 0.01. 

 

2) ω = 5 [rad/s] 

a=12; 

b=100; 

num=[ 0 0 0 0 5]; 

den=[1 12 125 300 2500]; 

impulse(num,den); 

 

The amplitude from Fig. 4.19 agrees again to amplitude |G(j · ω| for 

Bode diagram from Fig. 4.15 for ω = 5 that is -40 [dB] = 20 log 0.01. 
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4.3.3 Analytical Solutions for Harmonic Response and Bandwidth 

Frequency of a Second Order Instrument  

 

The second order instrument transfer function is 

 

2

nn
2 ωsως2s

k
G(s)

+⋅⋅⋅+
=  

Examples of analytical calculation of the harmonic response and 

bandwidth frequency are presented in the following Example 4.9. 
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Fig. 4.18 The time response for ω=1 rad/s 

 

Example 4.9 Analytical results for a second order instrument. 
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a) Harmonic response of a second order system for various values of ω 

 

Consider the block diagram from Fig. 4.16 with 

X(t) = 1 · sin ωt 

|X(t)| = 1 

k = 1 

ζ = 0.6 

ωn = 10 [rad / s]  

2 · ζ · ωn = 12 

ωn
2 
= 100 
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Fig. 4.19 The time response for ω=5 [rad/s] 

 

The transfer function is 

 

001s12s

1
G(s)

2 +⋅+
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Y(t) is given by [50] 

 

Y(t) = 1 · |G(jω)| · sin (ω · t+ Φ) 

 

while estimated input is given by static calibration as 
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b) Harmonic response for ω = 10 is given by  
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1
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+

⋅⋅−
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and 

 

20 log |G(jω)|= 20 log (1/120) = 41.6 [dB] 

 

For ω = 10, Bode diagram in Fig. 4.15 gives approx -42 [dB] and -90
0 

which agrees with the above simulation results. 

 

Y(t)=1 |G(jω)| · sin (ωt + Φ)= ((1/100)) · sin( ωt - 90) 
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For, |X(t)|=1 

 

833.0
|X(t)|

|(t)X| est =  

 

c) Calculation of the cutoff frequency ωb 

 

Exact calculation of the cutoff frequency, ωb, defining the bandwidth, is 

obtained from the equation of definition of bandwidth [50] 

 

3|0)G(j|log20 |)ωG(j|log20 b −⋅⋅=⋅⋅  

 

or 
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4125.1
20
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or 

 

|0)G(j|709.0 |)ωG(j| b ⋅⋅=⋅  

 

which shows that, at cutoff frequency, ωb , the amplitude |G(j · ωb)| drops 

to 0. 709 of the |G(j · 0)| 

For the above second order instrument 
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The cutoff frequency, ωb can be obtained from 
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The solution ωb of the equation is obtained as follows 
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The solution for ωb
2
 is 

 

ωb
2  

= 28 ± √(28
2 
+ 9952.6) = 28 ± 103.6   or 131.6 and – 75.6 
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Only the positive real solution is retained 

 

ωb = + √131.6 = 11.47 [rad / s] 

 

This result is the same as from the second order Bode diagram from  

Fig. 4.15 for the magnitude of  

 

3|0)G(j|log20|)ωG(j|log20 b −⋅⋅=⋅⋅ = - 40-3 = - 43 [dB]. 

 

4.4 Calibration for Computer-Based Instrumentation   

 

In this section, for making possible to present the main features of static 

and dynamic calibration approaches, only linear time invariant detector 

models for each pixel of the image, limited to given operational 

frequency domains are considered, in order to achieve constant gain over 

this frequency domain and the same phase shift. 

Association and fusion of these signals require first signal processing 

of different discrete spatial time representations that are specific to 

various instruments, such that these variables, measured by multiple 

sensors, will be referenced to the same spatial coordinates and will be 

synchronized in time [61]. Sensors outputs are dependent, however, not 

only on the inputs from measured target variables, but also on the 

instrument design and sensor dynamics. Sensor fusion is accurate only if 

it uses signals that are properly calibrated and compensated for the phase 

difference [65]. An effective approach for achieving these requirements 

is dynamic calibration of individual sensors output signals.  

Dynamic calibration is investigated as an inverse problem which 

permits to use numerical solutions already developed for such problems. 

Numerical results illustrate the benefits of dynamic calibration for 

various sensors. Dynamic calibration is proposed in order to improve the 

measurement accuracy, compensation for phase lag for sensor fusion and 

phase etc. (Fig. 4.20 and Fig. 4.21).    

The focus in the chapter is on the investigation of the linear time 

invariant (LTI) sensor models for dynamic calibration (See Fig. 4.21). 
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Fig. 4.20 Block diagram of dynamic calibration 

 

 

 

 

    

Fig. 4.21 Transfer functions for dynamic calibration 

 

The effect of measurement and system noise are ignored in the first part 

of the analysis, but will be included in Ch. 4.4. 

 

4.4.1 Calibration for Computer-Based First Order Instruments 

 

For a simple introduction to the issues of dynamic calibration of sensors, 

consider a first order instrument  

 

)sT(1
kG(s) ⋅+=  

where k = gain, T = time constant.    

The diagram of the system for static calibration is shown in Fig. 4.22, 

where an anti-aliasing filter is included to avoid sampling problems as a 

result of Analog to Digital Conversion (ADC) 

 

 

 

 

 

 

Fig. 4.22 Block diagram of the system with anti-aliasing filter 
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Figure 4.23 shows the corresponding transfer functions 

 

 

 

 

 

Fig. 4.23 Block diagram of transfer functions for Fig. 4.21 

 

where, for static calibration,  Kc = G
-1

(j · 0) . 

For numerical illustration, the parameters of G(s) are chosen  

k = 5 = Kc and T = 0.01 such that the bandwidth frequency is ωb ≈ 100. 

The sampling rate is chosen ωs = 2000 and, in order to satisfy the 

condition ωs > 20 · ωb [10], a first order anti-aliasing analog filter is 

required: 
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The break point value “a”, chosen a = 500, satisfy sampling theorem  

a < ωs/2. 

The first order anti-aliasing analog filter transfer function g(s) has no 

practical effect on the amplitude up to ωb  ≈ 100, while the phase lag at 

ω=100 is: 

 
011 3.11)500/100(tan)a/(tan −=−=ω−=ϕ −−  

 

L {xest(t)} L {y(t)} 

G(s) 

L {x(t)} 
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Consider a first order instrument  

 

G(s) = k / (1+Ts) 

 

where k = gain, T = time constant and 

 

Kc  = G
-1

(j · 0) = k 

 

Example 4.10 MATLAB simulations use k = 5 = Kc, T = 0.01, i.e. 

 

G(s) = 5 / (1 + 0.01s), 

ωb  ≈ 100 

 

Sampling rate ωs has to be chosen at least 20 times higher than the 

bandwidth ωb [70] 

 

ωs   > 20 ωb. 

 

A first order anti-aliasing analog filter  

 

g(s) = a / ( s + a) 

g(j · ω) = a / (a + j · ω) = a · (a - jω) / (a
2  

+ ω2
) 

|g(s)| = a / (a
2 
+ ω2

)
 1/2

 

φ = tan
-1

 (- ω / a) 

 

where the break point value a has to be smaller than ωs / 2 to satisfy 

sampling theorem. 

 

a < ωs / 2 

ωs  = 25 ωb = 2500 

a =  ωs  / 5 = 500 > ωb  ≈100 

 

Bode diagram for anti-aliasing filter are obtained with the MATLAB 

program 
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a=500; 

num=[0 a]; 

den=[1 a]; 

bode(num,den);grid 

 

The results are shown in Fig. 4.24. This shows that the first order anti-

aliasing analog filter has no practical effect on the amplitude up to ωb  ≈ 

100, but the phase lag is already significant and decreases further with ω 

down to - 90
0
. 

 

4.4.2 Phase Lead Compensation 

 

The phase lag due to the anti-aliasing analog filter can become a problem 

in multi-sensor measurements, due to different phase lags for different 

sensors [61, 62, 63, 66, 67]. To solve this problem, additional phase lead 

digital compensation is required. For example, in this case, the phase 

lead compensator is:  

)bs(

)as)(a/b(
)s(C +

+=  

where  b > a, [70]. This phase lead digital compensator can be written as: 

 

)bs(
b

a

)as(
)s(C +

+=  

which shows that it consists of an inverse part of the anti-aliasing analog 

filter: 

 

a

)as(1 )s(g
+− =  

and a low pass filter b / (s + b) with cross over frequency b > a.  

The phase lead digital compensator is based on 

 

)bs(

)as)(a/b(
)s(C +

+=  
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Fig. 4.24 Bode diagram for a first order instrument 

 

Example 4.11 MATLAB program calculates the Bode diagram of the 

phase lead digital compensator with b = 1000 and a = 500 

 

1000s
1000s2)s(C +

+=  

num=[2 1000]; 

den=[1 1000]; 

bode(num,den); grid  

 

The result is shown in Fig. 4.25. 

 

These results indicate that the phase lead compensator produces an 

increasing phase lead up to ω = 800. 
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The anti-aliasing analog filter g(s) combined in series with the phase lead 

digital compensation C(s) has the transfer function: 
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Fig. 4.25 Bode diagram of a phase lead digital compensator 

 

Anti-aliasing analog filter g(s), combined in series with the phase lead 

digital compensation C(s), has the following transfer function 
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Example 4.12 Bode diagram for the anti-aliasing is obtained with a 

MATLAB program for Bode diagram of g(s) · C(s) for b = 1000 > a =  

500.   

 

MATLAB program is 

 

b=1000; 

num=[0 b]; 

den=[1 b]; 

bode(num,den); grid 

 

The results are shown in Fig. 4.26. 

Bode diagram for the g(s) · C(s) shows that, compared to the results 

for g(s) in Fig. 4.24, in Fig. 4.26 the magnitude is maintained at 0 [dB] 

up to  ω  ≈ 500, and the phase lag is 

 

φ = φ = tan
-1

 (- ω / b)  = φ = tan
-1

 (- ω /1000) 

 

the phase decreases slowly with ω. 

At ω = 100 the phase is - 5.7 [
0
], which, as a result of the phase lead 

compensation C(s), is a reduction for g(s) · C(s) to half of the phase lag 

of g(s).  

The overall transfer function, including the transfer functions of the 

first order instrument and the anti-aliasing filter, ignoring the effect of 

ADC, is  

 

L{xest(t)} / L{x(t)} = G(s) · g(s) · C(s) / Kc = [k / (1 + Ts)] · [a / (s + a)]  

(b / a) [(s + a) / (s + b)] / k 

 

In this case of assumed exact cancellation of k · a /(s + a) 

 

L{ xest(t) } / L{x(t)} = b / [(1 + Ts) · (s + b)]= 1/ [(1 + Ts) · (1 + s / b)] 
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Fig. 4.26 Bode diagram for anti-aliasing analog filter and phase lead digital 

compensation  

 

For T = 0.01 and b = 1000 

 

L{xest(t)} / L{x(t)} = 1 / (1+0.01 · s) · (1 + s / 1000) 

 

or 

 

L{xest(t)} / L{x(t)} = 1 / (0.00001 · s
2 
+ 0.011 · s +1) 

 

Example 4.13 MATLAB program for the Bode diagram is  

 

num=[0 0 1]; 

den=[0.00001 0.011 1]; 

bode(num,den); grid 
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The results are shown in Fig. 4.27. 

-100

-80

-60

-40

-20

0

M
a
g
n
itu

d
e
 (

d
B

)

10
0

10
1

10
2

10
3

10
4

10
5

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/sec)
 

Fig. 4.27 Bode diagram for the first order instrument with the anti-aliasing filter and 

phase lead compensation 

 

The results show that the effect of anti-aliasing filter combined with the 

phase lead digital compensator is a slight increase of bandwidth and a 

reduction of the phase shift. The anti-aliasing analog filter is needed to 

remove frequencies that can generate alias frequencies after ADC. 

In multi-sensor measurements, due to different phase lags for 

different sensors, phase lead compensation might be required [8, 9]. For 

instance, two first order sensors with transfer functions 

 

sT1

1

1+
 

and  
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sT1

1

2+
 

where the time constants T1 and T2 have different values, such that the 

phase lags are also different, 

  

)T(tan 1
1

1 ω−=φ −  

)T(tan 2
1

2 ω−=φ −  

 

i.e. a relative phase lag difference  Φ1 - Φ2  with regard to the same input. 

As shown above, the proposed phase lead compensation contains already 

dynamic compensation and, consequently, a separate static calibration is 

no more needed. This represents an acceptable solution for first order 

instruments. Higher order instruments require a more complex phase lead 

compensation of the anti-aliasing filter with the dynamic calibration 

based on inverse model, as shown in Fig. 4.28. 

 

 

 

 

 

Fig. 4.28 Block diagram of the phase lead compensation and the anti-aliasing filter 

 

A low pass filter to limit computations of  inverse dynamics below very 

high frequencies range that can lead to overflow in numerical 

computations, low signal to noise ratio etc. 

 

4.4.3 Full and Reduced Order Dynamic Compensators  

 

Consider the transfer function G(s) of the high order instruments with P 

poles and Z ≤ P zeros: 
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For G(s) with Z < P, G
-1

(s) with p = Z poles and z = P poles, and Z < P 

for G(s) results in z > p for G
-1

(s) . Consequently, G
-1

(s) can be separated 

into a polynomial of order z - p in s and a rational function with the same 

number of poles and zeros equal to p. The polynomial of order z - p will 

operate on the input to G
-1

(s) as a high z - p order derivative. In the ideal 

case of measurements without noise, G(s) · G
-1

(s) = 1 and ideal dynamic 

calibration is obtained. In reality, noisy measurement occur and signal 

input to dynamic calibration using G
-1

(s), the high order derivative of 

random high frequency measurement noise has a very severe effect on 

calibration, in fact resulting in an ill-posed inverse problem. Dynamic 

calibration G(s) · G
-1

(s) is not desirable in this case and reduced order 

inverse dynamics Gr
-1

(s) intends to remedy this effect. 

Assume that only some of the poles and zeros have imaginary part 

within a frequency domain of interest ωuse and that the phase lead digital 

compensation is set up such that the poles of zeros outside this domain 

can be ignored in dynamic compensation. In this case, a reduced order 

Gr
-1

(s) can be used. This approach was first implemented with 

operational amplifiers that limited the domain of applications [71]. At 

this time, dynamic compensation can be implemented on embedded 

digital hardware which can be collocated with the instruments. For 

example, if only two complex conjugate poles, -a1 ± j · ω1, -a2 ± j · ω2 

and two complex conjugate zeros, -a3 ± j · ω3, -a4 ± j · ω4, fall in this 

domain 0 - ωuse, steady state unit step response of G(s) · Gr
-1

(s)(1 / s) has 

actually a constant value for 

 

0

0

)a...sas(

)b...sbs(

0s
1

r0s
a

b
lim

s

1
)s(G)s(Gslim

0
5p

4p
4p

0
5z

5z
4z

==⋅⋅⋅
+++

+++
→

−
→ −

−
−

−
−

−

 

In this case, unit step response G(s) · Gr
-1

(s) tends towards a0 /b0 for 

frequencies ω < ωuse. 

Similar to the previous section, an analog anti-aliasing filter and 

digital phase lead compensation are still needed for avoiding alias 
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frequencies after ADC and for correcting the phase leg introduced by  

the anti-aliasing filter. 

 

Example 4.14 In case that only two complex conjugate zeros and two 

complex conjugate poles for in the domain 0 to ωuse, phase lag digital 

compensation requires only a second order polynomial as numerator and 

another second order polynomial as denominator [71].  

A generic sensor transfer function can be written as follows: 

 

)a...sas)(jas)(jas)(jas)(jas(

)b...sbs)(jas)(jas)(jas)(jas(

0
5p

4p
4p

22221111

0
5z

5z
4z

44443333)s(G
+++ω−+ω++ω−+ω++

+++ω−+ω++ω−+ω++
−

−
−

−
−

−

=  

where it is assumed that the two pairs of complex conjugate zeros the 

two pairs of complex conjugate poles have: 

 

ωi < ωuse for i = 1,2,3,4 

 

while all other complex zeros and poles have frequencies larger than ωuse  

 

ωi > ωuse for i >5 

 

In this case, the dynamic compensator has to cancel only ωi < ωuse , i.e. a  

reduced order compensator with the transfer function can be used: 

 

)jas)(jas)(jas)(jas(

)jas)(jas)(jas)(jas(1
r

44443333

22221111)s(G ω−+ω++ω−+ω++
ω−+ω++ω−+ω++− =  

such that  

 

)a...sas(

)b...sbs(1
r

0
5p

4p
4p

0
5z

5z
4z

)s(G)s(G
+++

+++−
−

−
−

−
−

−

=⋅  

where G(s) · Gr
-1

(s) has complex zeros and poles with frequencies ω > 

ωuse.   
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4.4.3.1   First order instrument 

 

Inverse transfer function for a first order instrument is 

 

G
-1

(s) = (1+Ts)/ k 

 

The block diagram for the dynamically calibrated first order sensor is 

shown in Fig. 4.29. 

 

Fig. 4.29 The block diagram for the dynamically calibrated first order sensor 

 

 

Bode diagram permits to identify the effect of G
-1

(s) on the estimation of 

the input. 

 

Example 4.15 Bode diagram of the first order instruments compensator 

is obtained for k = 5 and T = 0.01.  

 

MATLAB program is 

 

num=[T 1]; 

den=[0 k]; 

bode(num,den);grid; 

 

The results are shown in Fig. 4.30. 

The magnitude of the inverse dynamics compensator |G
-1

(s)| =  

|(1 + Ts) / k| shows 20 dB/decade increase beyond bandwidth cutoff 

frequency, ωb = 100, indicating that growing computational difficulties 

can occur ω >> ωb. 

 

 

L{X(t)  

G(s)= 

k / (1+Ts) 
L{Y(t)}  

G
-1

(s) = 

(1+Ts) / k L{Xest(t)} 
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4.4.3.2   Second order instrument 

 

Assume second order instrument transfer function 

G(s) = k / (s
2 
+ b · s + c)

 

Dynamic calibration in this case is achieved by 

G
-1

(s) = (s
2 
+ b · s + c) / k 
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Fig. 4.30 Bode diagram of the first order instruments inverse dynamics compensator 

Example 4.16 MATLAB program for G
-1

(s) is  

 

k=1; 

b=12; 

c=100; 

den =[0 0 k]; 

num =[1 b c]; 

bode(num,den); 

grid; 
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The results are shown in Fig. 4.31.  
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Fig. 4.31 Bode diagram of G-1(s) = s2+12 · s + 100  

 

The magnitude of the inverse dynamic compensator |G
-1

(s)| shows 40 

dB/decade increase beyond bandwidth cutoff frequency, ωb = 10, 

indicating growing computational difficulties as ω >> ωb, even more 

significant in the case of first order instruments. N-order instruments will 

have 20 N dB/decade increase beyond bandwidth cutoff frequency, i.e. 

more significant increase of Magnitude values beyond bandwidth cutoff 

frequency. 

Some solutions to the above difficulties were outlined for the case of 

first order instruments: 

-low pass filter for removing high frequency noise in the sensor output 

-reduced order inverse dynamics 
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-Modified Output Approach (MOA) applied to non-minimum phase 

systems to avoid unstable inverse dynamics.  

In general, inverse dynamic compensator for increasing sensors 

bandwidth requires to solve various difficulties: 

-computational difficulties as ω >> ωb due to increasing magnitude of the 

inverse dynamic compensator |G
-1

(s)| = for ω > ωb; digital word length 

limitation can lead to overflow; 

-high frequency noise in the sensor output is amplified by increasing 

magnitude of the inverse dynamic compensator |G
-1

(s)| for ω > ωb 

reducing signal to noise ratio; 

-un-modeled dynamics and parametric uncertainty result in reduced 

effect of inverse dynamics compensator; 

-non-minimum phase systems have unstable inverse dynamics [74]. 

Some solutions to the above difficulties are:  

-low pass filter for removing high frequency noise w(t) in the sensor 

output ym(t), as shown in Fig. 4.32 

-Modified Output Approach (MOA) or Output Redefinition Method, 

applied to non-minimum phase systems to avoid unstable inverse 

dynamics [74], shown in Fig. 4.33. This method is applied in Ch. 9. The 

result is effective for frequencies lower than the positive zero and not to 

higher frequencies.  

In practice the increase beyond bandwidth cutoff frequency, ωb is 

normally limited up to a maximum useful frequency component ωuse.  

Limiting inverse dynamic compensator to ω < ωuse avoids reaching 

unacceptable high magnitudes of the inverse dynamic compensator, 

making this approach of interest for computer based instrumentation. 
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Fig. 4.32 Low pass filter for removing high frequency noise 

 

 

Fig. 4.33 Modified Output Approach 

 

  

4.5 Dynamic Calibration in Case of Noisy Measurements  

 

Inverse problems for Linear Time Invariant (LTI) systems can be 

formulated for different representations of the forward model of the 

system, different for lumped parameters systems from distributed 

parameters systems. 

Inverse problems for LTI lumped parameters models of sensors can 

be formulated for different representations of the forward model of the 

system:  

A) state space representation,  

B) complex functions representation,  

C) convolution integral representation,  

D) matrix form representation.  

 

 

L{X(t)}  

G(s)            

L{Ym(t)}  

G
-1

(s)  

            
L{Xest(t)} 

Low   

pass  

filter            

L{w(t)}  

L{X(t)}  

G(s)            

L{Ym(t)}  

GMOA
-1

(s)  

            
L{Xest(t)} 

Low   

pass  

filter            

L{w(t)}  
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A) State space representation in case of noisy measurements is given by: 

 

(t)(t)
dt

(t)d
UbXa

X
⋅+⋅=  

(t)(t)(t)m WXcY +⋅=  

where: 

 

X [N ·1] is the system state vector 

U [M ·1] is the system input vector 

Y [P ·1] is the system output vector,  

W(t) is measurement noise vector 

M≤N  

P≤N 

 

This model is used to obtain the estimation Uest of U given Ym and sensor 

model. 

Denote noiseless output 

 

Y(t) = Ym(t) - W(t) 

 

such that the output equation becomes 

 

(t)(t) XcY ⋅=  

 

The inverse problem of estimating the input Uest(t) from measurements 

y(t) is obtained solving output equation using the generalized inverse c
-g 

 

(t)(t) g
YcX

−=  

 

dt

(t)d

dt

(t)d g y
c

X −=  

that gives: 
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(t)(t)g

dt

(t)dg
UbYcac

y ⋅+⋅= −−  

The solution for U(t) of the state equation is 

(t))((t)
dt

(t)dg
est XabU

X ⋅−= −  

or: 

 

))(t((t) g

dt

(t)dcg
est

g

YcabU
Y ⋅⋅−= −− −

 

 

or, taking into account the noisy output 

 

Ym(t) =Y(t) + W(t) 

 

(t)])(t)[((t) g

dt

(t)](t)d([g
est

g

WYcabU
WYc −⋅−= −−− −

 

This solution requires the calculation of generalized inverses b
-g

 and c
-g 

as well as the derivative dY(t)/dt. Real-time implementation of this 

solution might be computationally intensive and requires specific code 

for each application. The presence of fast varying noise W(t) might lead 

to very low signal to noise ratios that reduces in this case the usefulness 

of dynamic calibration. 

B) Complex functions representation is obtained from the Laplace 

transform of the state space equations for zero initial conditions 

 

(s)(s))s( UbXaI ⋅=⋅−⋅  

(s)(s) XcY ⋅=  

 

For X(s) = c
–g 

· Y(s), state equation, after eliminating X(s), becomes 

 

(s)(s))s( g
UbYcaI ⋅=⋅⋅−⋅ −  

 

Solving this equation algebraically for U(s) gives 

 

(s)(s))cs( gg
UYaIb =−⋅ −−  
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The estimate Uest (s) results as follows: 

 

(s))s((s) gg
est YcaIbU ⋅⋅−⋅= −−  

or 

 

(s)](s)[c)s((s) gg
est WYaIbU −⋅⋅−⋅⋅= −−  

As expected, this solution requires also the calculation of generalized 

inverses b
-g

 and c
-g

. Moreover, in the feed-forward path of the sensor-

dynamic compensator, the presence of “s” indicates the same 

requirement for the time derivative. Real-time implementation of this 

complex function solution is not desirable. 

 

C) Convolution integral representation is of interest as a link to non-

linear forward problems formulation using integral equations and as a 

basis for developing computationally efficient matrix formulation. 

The principle of superposition, valid for linear systems, gives [70] 

 

∫
∞

∞−

⋅τ= τ)dτ(t,h)U(Y(t)  

 

where h(t, τ) is the impulse response of the system, for the impulse 

assumed applied at any time τ.  In the case of LTI systems,  

 

h(t, τ) = h(t - τ ) 
 

i.e. it depends only on the difference between the time τ when the 

impulse is applied and the time t when the response y is observed. This 

property greatly reduces the computation of the impulse response h. The 

convolution integral for LTI systems is: 

 

∫
∞

∞−

−⋅τ= τ)dτh(t )U(Y(t)  
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The calculation of the impulse response h for LTI system results from 

considering a unit impulse input U(t) = δ(t), such that: 

 

)(t(t)
dt

(t)d
δbXa

x
⋅+⋅=  

and: 

 

(t)(t)
dt

(t)d gg
δbYca

Y
c ⋅+⋅⋅= −−  

Rather than solving analytically this equation, complex functions 

representation can be used to obtain the transfer function. In scalar case 

 

h(s) = Y(s) / δ(s) 

 

For the unit impulse input U(s) = δ(s) = 1, impulse response h(s) can  

be calculated in time domain, h(t), using the inverse Laplace transform  

L
-1

 that gives h(t) = L
-1

 {h(s)}. Convolution integral can be reformulated 

in the discrete form of a convolution sum using shifted impulse response   

hi-j for the sampled time interval t - τ with sampling period Ts, such  

that the discrete time τj, (corresponding to the continuous time τ, when 

the impulse is applied [67]), where τj = τ / Ts and the time ti when  

the response y is observed tj  = t / Ts, such that t - τ in discrete time is  

(i  -  j)Ts or i - j in steps. 

Convolution sum for LTI discrete systems  

∑
∞

−∞=
−⋅=

k

kiki huY  

corresponds to: 

τ⋅τ−⋅τ= ∫
∞

∞−

d)h(t)U(y(t)  

For input signals of limited duration and/or damped systems this can be 

written, after discretization, in matrix form, as shown in the next section.  
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D) Matrix form representation of the forward model, in discrete time, is: 

 

y = h · u 

 

where u is input [Nu · 1] vector, y is output [Ny · 1] vector and h  is [Nu · 

Ny] matrix. 
It has to be taken into account that y and u in matrix form 

representation and Y and U in state space representation have different 

contents. 

Inverse model permits to calculate the estimate of the sensor input 

signal: 

 

uest = h
-1

 · y 

 

In fact noiseless output y is not available. Replacing y = ym - W 

 

uest = h
-1 

· (y - W) 

 

This estimation requires ym, which is a noisy signal, as well as the 

knowledge of the random noise characteristics. Ignoring the noise, the 

above equation gives an approximate estimation uest. 

The inversion of h, a [Nu · Ny] matrix, can only be obtained as a 

pseudo-inverse h
-g

. This is a typical difficulty in inverse problem solving, 

that is extensively investigated in the specialized literature [67-73]. 

As a result, the proposed dynamic calibration approach for sensors can 

benefit from the existing methods for obtaining numerical solutions for 

inverse problems. 

In fact, SVD and regularization methods presented in Ch. 3, as well  

as reduced order dynamics method, presented in Ch. 4.4.3, limit the 

solutions to inverse problems to lower frequencies domains to avoid the 

effect of high frequency measurement noise.  
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4.6 State Estimation for Indirect Sensing   

 

4.6.1 Derivation of the Estimator for Indirect States Estimation  

Using Matrix Inversion Approach   

 

So far in Ch. 4 sensor calibration problem was formulated for sensor 

input estimation Uest(t) from given sensor output measurements y(t). In 

this section, the problem is the estimation of states that are not directly 

measured, i.e. the case of states that do not provide direct inputs to 

sensors. The approach is based on the dynamic model linking measured 

states to the other states that are not directly measured. 

Assume a LTI (Linear Time Invariant) system in state-space 

representation 

dX(t) / dt = a · X(t) + b · U(t) 

Y(t) = c · X(t) 

where 

X [Nx · 1] is the system state vector 

U [Nu · 1] is the system input vector 

Y [Ny · 1] is the system output vector,  

where Nu ≤ Nx and Ny ≤ Nx. 

Output matrix c is assumed to distinguish between n1 measured states 

X1 [Nx1 · 1] (directly measured by n1 sensors), from the n-n1 states, 

intended to monitor, X2 [(Nx - N x1) · 1] not measured directly by sensors 

[72]. Indirect measurement of systems defined by ODE models are a 

simplified case of non-collocated measurements of systems defined by 

PDE and, for this reason, in both cases they  will be named here as cases 

of non-collocated sensing, even if in systems defined by ODE, space 

variable is not present. In this context, indirectly measured states are 

linked by lumped parameters models to directly measured states. In this 

case, the state vector is partitioned as follows 









=

2

1

X

X
X  
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System state space model can be partitioned as well 

dX1 (t) / dt = a11 · X1(t) + a12 · X2(t) + b1 · U(t) 

dX2 (t) / dt = a21 · X1(t) + a22 · X2(t) + b2 · U(t) 

Y(t) = c1 · X1(t) 

and c2 has only zero elements such that c2  · X2=0. 

Indirect sensing requires to calculate estimates X2est given direct 

measurements Y(t) of only X1(t). 

Sensors input vector u [nu · 1] is system output vector the states X1 

directly measured by n1 sensors 

u(t) = Y(t) = c1 · X1(t) 

Sensors output vector y(t) contains the only signals available to estimates 

X2est for the indirectly measured  states X2.  

Assume a state-space representation of the sensors 

dx(t) / dt = A · x(t) + B · u(t) 

y(t) = C · x(t) 

where 

x [nx · 1] is the sensor state vector 

u [nu · 1] is the sensor input vector, nu = Ny for Y = u 

y[np · 1] is the sensor output vector,  

where nu ≤ nx and np ≤ nx. 
Sensor output y is used for estimating directly X1 and indirectly X2.  

The block diagram is shown in Fig. 4.34. 

Dynamic calibration for the sensors in complex domain gives 

uest(s) = B
-g

 · (I · s - A) · C
-g

 · y(s) 

Non-collocated system states X2 result from the system state equation 

dX2(t) / dt = a21 · X1(t) + a22 · X2(t) + b2 · U(t) 

Estimation X2est of the system states X2 cam be obtained with a reduced  

order observer [72], in fact the inverse model 
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dX2est(t) / dt = a21 · X1est(t) + a22 · X2est(t) + b2 · U(t) 

 

where X1est (t) can be obtained from a matrix inversion c
-1 

and sensor 

output Y(t) 

X1est(t) = c
-1 

· Y(t) 

 

The matrix c[P * N] is rarely square and nonsingular and a pseudo-

inverses or generalized inverse c
-g

 has to be used instead 

 

X1est(t) = c
-g  

· Yest(t) = c
-g

 · uest 

 

Observer dynamics for X2est(t) is given by   

 

dX2est(t) / dt - a22 · X2 est(t) = a21 · c
-g

  · uest + b2 · U(t) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.34 Indirect state estimation 

 

While X1est(t) can be obtained from a matrix inversion c
-1 

and sensor 

output Y(t), the calculation of  X2est(t) requires the inputs uest from sensor 

dynamic calibration and system input U(t). 

After taking Laplace transform 

 

(Is - a22) · X2est(s) = a21 · c
-g

 · uest(s) + b2 · U(s) 

U  

 system            

X1  

calibration            

uest  

c1·X1          sensor 

            

y  

Y=u  

estimation            

X2  
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or, an observer based on a square matrix inversion 

 

X2est(s) = (I · s - a22)
 -1

 · [a21  · c
-g

  · uest(s) + b2 · U(s)] 

or 

 

X2est(s) = (I · s - a22)
 -1

 · a21 · X1est(s) + (I · s - a22)
 -1

· b2 · U(s) 

 

The block diagram is shown in Fig. 4.35. Digital computations of the 

estimates X1est and X2est consists of 

 

X1est (s) = c
-g

(s) · B
-g

 · (I · s - A) · C
-g

 · y 

X2est(s) = (I · s - a22)
 -1

 · (a21 · X1est(s) + b2 · U(s)) 

 

This approach takes into account sensor dynamics and introduces 

dynamic calibration for the sensor, aspects often ignored in cases when 

sensors where assumed simply represented by the output matrix c, i.e. for 

ideal sensors that measure collocated states exactly, uest = u = Y = c1 · X1 

[72]. 

                                                                                                                             

                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.35 Indirect state estimation in matrix form formulation 
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4.6.2 Luenberger Observer and Kalman Filters 

 

It can be observed that besides the numerical difficulties mentioned for 

the dynamic calibration, the observer requires the calculation of 

eigenvalues of the square matrix (I · s - a22), that controls the rate of 

estimation convergence of X2est. [70]. 

A Luenberger observer might provide, however, a better control of 

the rate of estimation convergence for X2est [70]. 

 

dX1est(t)/dt = a11 · X1est(t) + a12 · X2est(t) + b1 · U (t) + L1 · [Y(t) - Yest(t)] 

dX2est(t)/dt = a21 · X1est(t) + a22 · X2est(t) + b2 · U(t) + L2 · [Y(t) - Yest(t)] 

Y(t) = c1 · X1(t) 

Yest(t) = c1 · X1est(t) 

 

where L1 and L2 are  Luenberger observer gains that can be chosen such 

that the desired rate of estimation convergence is achieved. 

In such a case, the overall calculation of X1est and X2est can be 

formulated as an Luenberger observer that would include not only 

system dynamics equations but also sensor dynamics equations. The 

advantage could be the avoidance of inclusion of signal derivatives in the 

feed-forward path. The disadvantage is the development of a centralized 

error [Y(t) - Yest(t)] in a feedback approach on which relies the overall 

result, while the above developed approach includes decentralized sensor 

dynamic calibration adapted to the specific characteristics of the sensor. 

Moreover, Luenberger observer still requires the calculation of c
-1

, or if c 

is a singular matrix, of c
-g

. [72]. 

Kalman filters serve the same purpose, but include the effect of 

random noise. White noise assumption might be too restrictive, while 

colored noise assumption might result in a significant computation 

burden in real-time applications. In practical applications a choice might 

have to be made between a deterministic approach applied after filtering 

random noise and a stochastic approach in which random noise effects 

are included in the direct and inverse problem formulation [41, 45, 65, 

67]. 
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Indirect state estimation shown in Fig. 4.35 and Luenberger observer 

parallel the two types of methods presented in Ch. 3.3 for solving inverse 

problems, matrix inversion and iterative methods, respectively. 

For a full state feedback system 

 

221121 ]|[ XKXK
X

X
KKXKU

2

1 ⋅+⋅=







=⋅=  

dX2est(t) / dt = a21 · X1est(t) + a22 · X2est(t) + b2 · U(t) = a21 · X1est(t) + 

a22 · X2est(t)+ b2· (K1 · X1est +  K2 · X2est) = 

(a21 + b2  · K1)  · X1est (t) + (a22 + b2 ·  K2) · X2est(t) 

 

Yest(t) = uest(t) = c1 · X1est(t) 

 

In this case the estimation does not require any autonomous system input   

 

U = 0 

dX2est(t) / dt = a21 · X1est(t) + a22 · X2est(t) 

    

or         

 

dX2est(t) / dt - a22 · X2est(t) = a21 · X1est(t) 

 

Taking Laplace transform for zero initial conditions 

 

(s · I22 - a22) · X2est(s) = a21 · X1est(s) 

X2est(s) = (s · I22 - a22)
 -1

 · a21 · X1est(s) 

 

or 

X2est(s) = (s · I22 - a22)
 -1

  · a21 · c
-g

(s) ·B
-g 

· (s · I - A) · C
-g  

· y(s) 

 

For this passive system (U = 0), both estimations X1est and X2est are based 

only on the measurements y(s). For example, this would permit to 

calculate inner states of passive Mass-Spring-Damper networks from 

some particular nodes displacement measurements or inner states of 
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passive electric R-L-C networks from some particular node voltage  

measurements. 

 

4.6.3 Indirect Estimation of States and Inputs for LTI ODE Systems 

Using Matrix Inversion 

 

The state space model from Ch. 4.5.1, partitioned in states directly X1 

and indirectly X2 measured, can also be used to estimates the unknown input 

U. This problem is a combination of dynamic calibration problem, from 

Ch. 4.3 and 4.4, with indirect state estimation. For focusing only on this 

issue, ideal sensors are assumed, such that the problem is formulated for 

the system model from Ch. 4.5.1, given here after taking Laplace 

transform for zero initial conditions 

 

(s · I11 - a11) · X1(s) = a12 · X2(s) + b1 · U(s) 

(s · I22 - a22) · X2(s) = a21 · X1(s) + b2 · U(s) 

Y(s) = c1 · X1(s) 

 

The solution of the inverse problem for this LTI ODE system can be 

obtained analytically for these three equations with three unknowns 

 

X1(s) = c1
-g 

· Y(s) 

Uest(s) = [a12 · (s · I22 - a22)
 -1

 · b2 + b1]
 -g

· [(s · I11 - a11) - 

a12 · (s · I22 - a22)
 -1

 · a21] · c1
 -g 

· y(s) 

X2est(s) = {[(s · I22 - a22)
 -1

 · a21 + (s · I22 - a22)
 -1 

· b2· [a12 · (s · I22 - a22)
 -1

 ·  

b2 + b1]
 -g

 · [(s · I11 - a11) - a12 · (s · I22 - a22)
 -1

 · a21]}· c1
 -g 

· y(s) 

 

These solutions are computationally intensive even for LTI ODE systems 

and its accuracy strongly depends on the number and location of sensors 

producing y(t). 

 

Example 4.17 Scalar equations for a SISO system with two states are 

 

(s - a11) · X1(s) = a12 · X2(s) + b1 · U(s) 

 

(s - a22) · X2(s) = a21 · X1(s) + b2 · U(s) 
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Y(s) = c1 · X1(s) + 0 · X2(s) 

 

The solutions for X1(s), X2(s) and U given Y are 

 

X1(s) = Y(s) / c1 

 

Uest(s) = {[(s - a11) - a12 · a21 / (s - a22)] / [a12 · b2  / (s - a22)
 
+ b1]}· y(s) / c1 

 

X2est(s) = {[ a21 / (s - a22)
 
+ b2 · [(s - a11) - a12 · a21 / (s - a22 )] / [(s - a22)

 
[a12 · 

b2 / (s - a22)
 
+  b1]]}· c1

 -g 
· y(s) 

 

Example 4.18 For the under-actuated and under-sensed mechanical 

system shown in Fig. 4.36, obtain x1 and F2 given y = x2. 

 

 

 

 

 

 

 

Fig. 4.36 Under-actuated and under-sensed mechanical system 

 

Motion equations are 

 

F2 = k2 · (x2 – x1) + b2 · (dx2 / dt– dx1 / dt) 

k1 · x1 + b1 · dx1 / dt + k2 · (x1 – x2) + b2 · (dx1 / dt – dx2 / dt) = 0 

 

Laplace transform for zero initial conditions give the solutions 

 

y(s)
s)b(bkk

sbk
x

2121

22
est1, ⋅+++

⋅+
=  

 

F2  

x2 = y 

k1  k2  

b1  b2  
x1 
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y(s)
s)b(bkk

s)bs)(kb(k
F

2121

2211
est2, ⋅+++

⋅+⋅+
=  

 

Problems 

 

1. Consider a K thermocouple with gain at 20 [
0
C] of 40 [µV/

0
C\ and 

time constant of 0.005 [s]. 

a) Obtain the unit step response and the Bode diagram  

b) Calculate the cutoff frequency defining the bandwidth. 

c) Using MATLAB, obtain the harmonic response for a unit 

amplitude sinusoidal input with ω = 100, 200 and 1000 [rad/s].  

d) Verify that the cutoff frequency defining the bandwidth 

corresponds to the defined reduction of the amplitude of the 

harmonic response.  

e) Make a table of the amplitude variation of the steady state 

response with ω. 

 

2. Consider a second order instrument with k = 2, ωn = 200 [rad/s]. 

a) Obtain MATLAB simulations for unit step response and Bode 

diagrams for the of the damping ratio values ζ = 0, 0.3, 0.7, 1.0, 

2.0. 

b) Calculate analytically the amplitude and phase of the harmonic 

response for a unit amplitude sinusoidal input with ω = 100, 

200 and 1000 [rad/s]. 

c) Calculate analytically the cutoff frequency defining the 

bandwidth. 

d) Obtain MATLAB Bode diagrams of the inverse dynamics 

compensator for the following values of the damping ratio ζ = 

0, 0.3, 0.7, 1.0 and 2.0.  

e) At what frequency the magnitude is ten times higher than at  

10 [rad/s]? 

       

3. Consider the mechanical system shown in Fig. 4.36 for k1 = k2 = k   

         and b1 = b2 = 0.      
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a) Obtain estimations for x1 and F2.  

b) Are the results intuitive? Could the results be obtained without 

any calculation? 

 

4. Consider the under-actuated and under-sensed mechanical system  

shown in Fig. 4.37. Obtain estimations for F2 and x2. 

 

 

 

 

 

 

 

Fig. 4.37 Under-actuated and under-sensed system with measured output y = x1  

F2  

x2  

k1  k2  

b1  b2  
x1=y 
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Chapter 5 

Active Vibration Control in Flexible Structures 

In this chapter modeling and control of various flexible structure systems 

(shafts, beams and membranes), will be investigated in view of outlining 

active vibration control issues within the framework of solutions to direct 

and inverse problems. 

In the first part, SISO (Single Input Single Output) and MIMO 

(Multiple Input Multiple Output) lumped parameters mechanical models 

will be used for presenting active vibration control approaches [109]. 

Direct problems and feedback control for shafts, beams and membranes 

will be investigated in the subsequent sections. MAPLE and FEMLAB 

based examples of membrane transversal vibration will be presented in 

the last section.  

   

5.1 Active Vibration Suppression for Lumped Parameters 

Mechanical Systems Using Force and Position Control 

 

5.1.1 Direct Problem 

 

Vibration suppression is illustrated here for the case of harmonic 

excitations.  

A simple SISO translational lumped parameters system, shown in 

Fig. 5.1, can be used to illustrate the concept of active vibration 

suppression [17]. Its free body diagram is shown in Fig. 5.2. 

The force input subject to control is f(t), the external force 

perturbation is fext(t) and the displacement output is y(t). 
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Fig. 5.1 Active vibration suppression in a single input single output system 

 

                                                
 
 
 
 
 
 
 
 
 
 
 
 
 
              

Fig. 5.2 Free body diagram for the system shown in Fig. 5.1 

 
 

The equation of motion is  

 

M · d
2
y/dt

2
 + B · dy/dt + K · y = f(t) + fext(t) 

 

After taking Laplace transform for zero initial conditions, the result is 

 

 

 

       M 

B · dy/d t 

K· y f 

fext(t) 
y(t) 

       M 

B K 

f 

fext 
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[Ms
2
 + Bs + K] · y(s) = f(s) + fext(s) 

 

The solution gives the direct problem formulation for force input and 

displacement output 

 

y(s) = (f(s) + fext) / [Ms
2
 + Bs + K] = 

f(s) / [Ms
2
 + Bs + K] + fext / [Ms

2
 + Bs + K] = yc(s) + ya(s) 

 

where 

 

yc(s) = f(s) / [Ms
2
 + Bs + K] 

 

is the displacement due to the controlled force f, and 

 

ya(s) = fext / [Ms
2
 + Bs + K] 

 

is the displacement due to the perturbation force fext.  

Perturbation fext effect cancellation is ideally achieved as 

 

yc(s) + ya(s) = 0 

 

or 

 

f(s) + fext(s) = 0 

 

For this LTI system, the perturbation is exemplified by an external 

harmonic perturbation force   

 

fext(t) = -Fext · sin ωt 

                               

Vibration suppression can be realized by: 

- force control that has to achieve 

 

f(t) + fext(t) → 0 
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-position control that has to achieve 

 

yc(t) + ya(t) → 0 

 

5.1.2 Force Control for SISO Mechanical System 

 

Force control approach, shown in Fig. 5.4, is based on: 

- force measurement of perturbation fext(t) 

- generation of Force Control command f
(c) 

to the actuator to produce an  

applied controlled force f(t) with the same frequency and amplitude as 

fext(t), but of opposed phase, i.e. 

 
 

f(t) = -fext(t) = -Fext · sin ωt = Fext · sin(ωt + π) 

 

This approach is in fact force feedback control for achieving the desired 

value fd = 0 for the total force applied on M, i.e. f + fext→ 0, or force 

regulation, and was proposed for vibration suppression in flexible 

structures subject to a known or measurable external harmonic 

excitation, as well as for noise suppression. Force Control command is 

given by 

 

f
(c)

(t) = -fext(t) 

 

The controller does only a sign change of the input, which is equivalent 

to a P-control with unity gain. More complex state feedback controllers 

can also be developed. 

This solution requires a force sensor and a force controlled actuator. 

Force control for vibration suppression implies an implementation with 

insignificant delays, i.e. ideal sensor f exp = f ext, controller Gc(s) = 1, and 

actuator, Ga(s) = 1. Ideal force control results in f(t) = f
(c)

(t) = -fexp(t) =  

-fext(t) or 

 

f(t) + f ext(t) = 0 

 

Control law Gc(s) can be a PD control of force error fd - fexp. 
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Position control can achieve desired perturbation cancellation using a 

position sensor and a position controlled actuator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Fig. 5.3 Force control scheme for vibration suppression for a single input single 

output system subject to an external excitation f ext = Fext · sin ωt 

  

Fig. 5.4 Block diagram for vibration suppression 
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5.1.3 Position Feedback Control Approach   

 

The vibrations of this system are characterized, for f = 0, by the 

displacement ya(t) due to the perturbation force fext  

 

fext(t) = Fext · sin ωt 

 

which has the Laplace transform 

 

fext(s) = Fext · ω/ (s
2  

+ ω2
) 

 

The displacement ya(s) due to fext is given by 

 

ya(s) = fext(s) / [Ms
2
 + Bs + K] = [Fext ·  ω/ (s

2  
+ ω2

) ]/ [Ms
2
 + Bs + K] 

 

Control force f(s), applied to the same mechanical system, produces the 

displacement 

 

yc(s) = f(s) / [Ms
2
 + Bs + K] 

 

The superposition gives 

 

y = yc + ya 

 

Feedback control of the position has the goal to achieve that y(t) tends 

towards the desired position yd = 0, i.e. y(t) → yd , or, equivalently,  to 

make position error  

 

yd - y  = yd – (yc(s) + ya(s)) → 0 

 

This approach requires the displacement measurement yest(t) and 

feedback position control that tries to reduce in time the position error 

 

yd - y(t) = - y(t) = - (yc(t) + ya(t)) → 0 

 

The equation of motion for the system shown in Fig. 5.3 is  
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M · d
2
y/dt

2
 + B · dy/dt + K · y = f(t) + fext (t) 

 

After taking Laplace transform for zero initial conditions, the solution 

was 

 

KsBsM

(s) f f(s) 
y(s)

2

ext

+⋅+⋅
+

=  

or  

 

2
nn

2

2
next

s2s

ω

K

(s) f f(s) 
y(s)

ω+⋅ω⋅ς+
⋅

+
=  

where 

 

ωn = √(K/M) is the natural frequency 

ζ = B/(2√(K · M)) is the damping ratio. 

 

In the under-damped case (ζ < 1) damped natural frequency is ωn √(1-

ζ2
). 

If ω = ωn √(1-ζ2
), the system will be in resonance and the amplitude 

of y(t) will increase significantly. Given that the frequency of the 

external excitation cannot be changed, active vibration control can be 

used to change the natural frequency such that the resonance is avoided. 

Active vibration reduction using position control is used for:  

- vibration isolation to reduce vibrations transmission to and from 

vibrating bodies 

- modification of the mass-spring-damper parameters of the vibrating 

body. 

Active vibration reduction creates an artificial impedance between the 

vibrating body and the base and, by measuring the displacement and 

using a desired artificial impedance, generates a force applied to the 

vibrating body by an actuator. This is achieved by producing f(t), the 

output of an actuator under PD control command  
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u 
(c)  

= - b · dy / dt – k · y 

 

where b and k are the PD controller gains and which be interpreted as an 

artificial b-k impedance.  

The effect of the actuator with transfer function 

The equation of motion of the controlled system for f = u 
(c) 

becomes 

 

M · d
2
y / dt

2
 + B · dy / dt + K · y = - b · dy / dt – k · y + fext (t) 

 

or 

 

M · d
2
y / dt

2
 + (B + b) · dy / dt + (K + k) · y = fext (t) 

 

and the new natural frequency and the damping ratio. 

 

ωN = √((K + k)/M) > ωn 

ζN = (B + b)/(2 · √((K + k) · M)) 

 

such that the resonance is avoided. Moreover, the coefficient b permits to 

modify the damping ratio as desired. 

The system with active vibration position control subsystem is shown 

in Fig. 5.5. This control scheme, shown in Fig. 5.5 (b), is implemented 

using position and velocity sensors and PD control that generates the 

position command u
(c) 

for the Actuator. 
 

Lumped parameters systems have a finite number of natural 

frequencies and, in principle, when subject to external harmonic 

excitations, the amplitude of their vibrations can be reduced using either 

force control or position control. These control approaches will be 

applied in the next sections for the control of vibrations various flexible 

structures.
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5.2 Direct Problem and Under-Actuated Control of a  

Non-Minimum Phase Flexible Shaft 

 

Distributed parameters modeling for flexible structures use often second 

order differential equations and finite elements models [30]. In this 

section a simple series system containing a flexible shaft and actuators 

will be investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

    

 (a) 

 

 

 

 

 

     

 

 

 

   

 

     

 (b) 

Fig. 5.5 Position control of vibrations scheme (a) and block diagram (b) for a SISO 

system subject to an external excitation Fext sin ωt 
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The distributed parameters model of a constant cross-section and small 

diameter shaft is given by [17, 30] 

 

)0()t,x(
x

)t,x(
/G

t

)t,x(
2

2

2

2

δ⋅τ=
∂

θ∂
ρ−

∂
θ∂

 

where   

 

θ is the torsional displacement of the shaft 

G is the shear modulus 

ρ is mass density  

τ is the torque applied at the x = 0 end of the shaft. 

 

A flexible shaft with effort-flow cuts at both ends is shown in Fig. 5.6. 

 

 

     

        

Fig. 5.6 Free body diagram of a flexible shaft 

 

This distributed parameters system can be approximated by various 

lamped parameters models, easier to compute in real time and to use for 

controller design. 

Three lumped parameters models of the flexible shaft will be 

presented to illustrate various levels of lumped parameters approxima-

tions of a flexible structure [30]: 

(a) lumped parameter model with torsional spring coefficient k; 

(b) lumped parameter model with torsional spring coefficient k and 

lumped inertia J; 

(c) single finite element model; 

These models are obtained as follows: 

(a) for the flexible shaft represented by a lumped parameters model with 

torsional spring coefficient k, the following equations can be 

obtained: 

 

T1 T2BBB 

ω2 
 ω1   
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T1(t) = k(ϑ1(t) - ϑ2(t)) 

T2(t) = - k ((ϑ1(t) - ϑ2(t)) = - T1(t) 

 

Given that  ω = dϑ/dt and using Laplace transform, this system can be 

solved to obtain the relationship between the pairs of across-through 

variables {T1, ω 1} and   {T2, ω2} 

 

T1(s) = - T2(s) 

ω1(s) = - [1/( k / s)] · T2(s) + ω2(s) 

 

or, in matrix form 

 

 

This model is suitable only for shafts with low moment of inertia and 

ignores non-minimum phase property of flexible shafts. 

 

(b) for the flexible shaft represented by a torsional spring coefficient k 

and lumped inertia J, the following matrix equation can be written 

for the case of splitting J into two J/2 at the two ends of a spring k: 

 

T1(s) = (J / 2) · s
2
 · ϑ1 (s) + k · (ϑ1(s) - ϑ 2(s)) 

T2(t) = (J / 2) · s
2
 · ϑ2(s) + k · (ϑ2(s) - ϑ1(s)) 

 

or, in matrix form: 

 

 

This equation shows that the flexible shaft is represented by an inertia 

matrix with no cross-coupling terms and a compliance matrix with cross-

couplings.  

In case that the right hand side end of the shaft is subject to the torque  
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T1 = τ1 applied by the actuator with a negligible moment of inertia J1 and 

right hand side end of the shaft is free, the model becomes   

 

 

After eliminating θ1(s), the following transfer function is obtained [30] 

 

 

This shows a minimum phase model, while the flexible shaft is a non-

minimum phase system. This model was called inconsistent; a finite 

element model can be used to obtain a consistent model.   

 

(c) for the flexible shaft represented by a single finite element model, 

the following equations can be obtained: 

 

T1(s) = (J / 3) · s
2
 · ϑ1(s) + (J / 6) · s

2
 · ϑ2(s) + k · (ϑ1(s) - ϑ 2 (s)) 

T2(s) = (J / 6) · s
2
 · ϑ1(s) + (J / 3) · s

2
 · ϑ2 (s) + k · (ϑ2 (s)-ϑ 1 (s)) 

 

or in matrix form: 

 

 

This equation shows that the flexible shaft is represented by an inertia 

matrix and a compliance matrix with cross-coupling. 

In case that the left hand side end of the shaft is subject to the torque  

(T1 = τ1) applied by the actuator and right hand side end of the shaft is 

free (T2 = 0), the model becomes 









θ
θ

⋅















−

−
+








=








(s)

(s)

kk

kk

(J/3)(J/6)

(J/6)(J/3)
s

(s)T

(s)T

2

12

2

1









θ
θ

⋅















−

−
+








=







τ
(s)

(s)

kk

kk

(J/2)0

0(J/2)
s

0

(s)

2

121

J)]k4/s[Js

k2/sJ

(s)τ

(s)θ
222

22

1

2

⋅+⋅⋅
+⋅

=









θ
θ

⋅















−

−
+








=







τ
(s)

(s)

kk

kk

(J/3)(J/6)

(J/6)(J/3)
s

0

(s)

2

121



Active Vibration Control in Flexible Structures 201

Second scalar equation  

 

 

gives 

 

Eliminating θ1 (s) from the first scalar equation, the following transfer 

function is obtained [30] 

 

This is a non-minimum phase model, i.e. a consistent model of the 

flexible shaft, while 

 

is a minimum phase model. 

For the case (c) for T1 = τ1 and T2 = 0, a closed loop control to bring  

θ1 (s) towards θ1 (s) is shown in Fig. 5.7. In Fig. 5.7 besides the closed 

loop control of θ1 (s) there is open loop dynamics for θ2 (s), due to under-

actuation.  

For the case (c) for T1 = τ1 and T2 = τ2, a closed loop control can be 

designed for both θ1 (s) and θ2(s), but this controller is applicable to the 

shaft represented by only one finite element.   

Any limited number of finite elements limits the model to lower 

modes of vibrations represented by the model, i.e. leaves higher modes 

of vibration unaccounted for. Moreover, the closed loop control of the 

vibrations of a flexible shaft is subject to the limitations of any infinite 

dimensional system controlled by a finite number of point actuators.  
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More detailed analysis of active control of flexible structures is presented 

in the subsequent sections.  

 

 

 

 

 

 

   

 

 

 

 

 

         

                       Fig. 5.7 Closed loop control of θ1(s) 

 

 

5.3 Control of Vibrations in Beams 

 

5.3.1 Perturbation Cancellation Control in MIMO Linear Systems  

 

Before the presentation of the control of vibrations in beams and plates, 

the general control approach will be presented for the case of a Multi 

Input Multi Output (MIMO) linear system subject to an external 

perturbation w(t), shown in Fig. 5.8, as a generalization of the above 

SISO translational lumped parameters system subject to a harmonic 

perturbation, presented in Ch. 5.1. 

The linear time invariant system is modeled by the following linear 

ordinary differential equations (ODE) used for modeling lumped 

parameters systems 

 

dX(t)/dt = A · X(t) + B · u(t) + G · w(t) 

y(t) = C · X(t) 
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where 

X(t) = Nx-vector of states with given initial conditions x(0) 

u(t) = Nu-vector of inputs  

w(t) = Nw-vector of disturbances 

y(t) = Ny-vector of outputs 

A, B, G, C, time invariant matrices 

 

Fig. 5.8 Controller for perturbation effects suppression for a MIMO linear system subject 

to an external perturbation w(t) 

 

After applying Laplace transform, the model becomes 

 

(s · I-A) ·  X(s) = B · u(s) + G · w(s) 

Y(s) = C · X(s) 

 

 

System 

u
 (c) 

w(t)  

Controller 
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wm(t) 

u
  

External 

perturbation 

measurement 
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For linear systems, superposition principle can be applied will be 

analyzed here for the following cases 

 

a) u(t) = 0 and w(t) ≠ 0 resulting in the output yw(t) 

b) u(t) ≠ 0 and w(t) = 0 for an output yu(t) = - yw(t) 

c) superposition of the above cases for the case u(t) ≠ 0 and w(t) ≠ 0. 

 

a) For u(t) = 0 and w(t) ≠ 0 

the state and output vectors are denoted Xw(s) and yw(s) 

 

(s · I - A) · Xw(s) = G · w(s) 

yw(s) = C · Xw (s) 

 

such that the output due to the perturbation is 

 

yw(s) = C · (s · I - A)
-1

 · G · w(s) 

 

b) For u(t) ≠ 0 and w(t) = 0, 

  

yu(s) = C · (s · I - A)
-1

 · B · u(s) 

 

The output yu(t) = - yw(t), or  yu(s) =  -yw(s), is obtained as 

 

yu(s) =   C · (s · I - A)
-1

 · B · u(s) = - yw(s) = - C · (s · I - A)
-1

 · G · w(s) 

 

The condition for perturbation effect cancellation is 

 

B · u(s) = - G · w(s) 

 

For achieving  

 

yu(t) + yw(t) → 0 

 

requires that 

 

u(s) = - B
-1

 · G · w(s) 
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such that, after inverse Laplace transform, u
 (c)

(t), the command for the 

feedfback controller is 

 

u
 (c) 

(s) = - B
-1

 · G · w(s) 

 

If the matrix B [Nu · Nx] is not an invertible matrix the generalized 

inverse has to be used [19]. 

 

c) The superposition of the above cases for the case u(t) ≠ 0 and w(t) ≠ 0, 

results in an overall output  

 

y(s) = yu(s) + yw(s) = 0 

 

or, after inverse Laplace transform 

 

y(t) = yu(t) +  yw(t) = 0 

 

showing the condition for the perturbation effect suppression. 

This ideal result of perturbation effect cancellation using a feedback 

controller with input w(t), output u
(c)

(t) and the gain - B
-1

G is 

conditioned by the numerous assumptions made: linear time invariant 

system with invertible matrix B, i.e. with as many inputs as states, with 

perfectly measurable perturbations (w(t) = wm(t)), with actuators that 

produce outputs exactly as the commands are (u(t) = u
(c)

(t)) etc. These 

assumptions are generally not valid for practical systems and instead of 

 

yu(t) + yw(t) = 0 

 

feedback control can be made to achieve  

 

yu(t) + yw(t) → 0 

 

A better transient regime can be achieved by PD control, as shown in  

Ch. 5.1 for SISO systems.  
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5.3.2 Direct Problem in Beam Vibration Modeling  

 

The analysis of a beam vibrations requires the use if the solution y(x, t) 

of the Euler-Bernoulli beam equation 

 

Aρ

t)f(x,

LAρ

t)F(x,

t

y

x

y
a

2

2

4

4
2

⋅
=

⋅⋅
=

∂
∂

+
∂
∂

 

where 

 

A

IE
a

⋅ρ
⋅

=  

in [m
2

/s] is beam coefficient, F(x, t) in [N] is the applied force, and  

f(x, t) in [N/m] is the force per unit length.  

The method of separation of variables assumes a solution in the form 

[17] 

 

y(x, t)= X(x) · T(t) 

 

The free vibration of the beam corresponds to f(x, t) = 0, such that 

 

0
t

)t,x(y

x

)t,x(y
a

2

2

4

4
2 =

∂
∂

+
∂

∂
 

Applying the above assumed solution, beam equation becomes 

 

0
dt

)t(T)x(Xd

dx

)t(T)x(Xd
a

2

2

4

4
2 =+  

or 
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2
iv

2

)t(T

)t(T

)x(X

)x(X
a ω=

′′
−=  

The meaning of the 2ω will be clarified later. 

The above equalities can be separated in two ordinary differential 

equations, one second order temporal equation 

 

0)t(T)t(T 2 =ω+′′  

 

and a second one, fourth order spatial equation 

 

0)x(X
a

)x(X
2

2
iv =

ω
−  

where  

 

A

EI
a

ρ
=  

4
2

2

2

EI

A

a
β=

ρω
=

ω
 

and the wave number in [1/m] is 

a

ω
β =  

The general solution of the temporal equation is 

 

T(t) = A · cos(ωt) + B · sin(ωt) 

 

where the constants A and B are determined by the required two initial 

conditions of T(t) and dT(t) / dt for t = 0. For the above equation is 

obvious now that the assumed constant 2ω corresponds to the natural 

frequency of oscillation ω= 2 · π · f. 



Advanced Mechatronics 208

The general solution of the fourth order spatial equation is based on the 

assumed general solution 

 
βxxxjxj edecebeaX(x) ⋅+⋅+⋅+⋅= β−ββ−  

 

Given Euler identities 

 

xsinhβxcoshβe βx ⋅±⋅=±  

xsinβxcosβe x ⋅±⋅=⋅β±  

 

the above solution can be rewritten in a form that identifies the mode 

shapes of the beam 

 

( ) ( ) ( ) ( )βxsinhFβxcoshEβxsinDβxcosCX(x) ⋅+⋅+⋅+⋅=  

 

where C, D, E, F can be obtained as function of a, b, c, d. Actual values 

for C, D, E, F result from the required four boundary conditions for the 

fourth order spatial equation of the beam. 

Appendix A presents the solution of Euler-Bernoulli beam equation 

using the method of separation of variables for the transversal forced 

vibrations of a cantilever beam. The beam is subject to a continuous 

sinusoidal excitation at point x = lp  

 

                            

)lδ(xsin(ΩinαAρt)f(x, p−⋅⋅⋅⋅=
 

The complete solution for the transversal vibration of a cantilever beam, 

subject to a single frequency of excitation Ω , is given by [17, 23, 55] 

 

t)sinω
ω

Ω
(sinΩs

Ωω

)(l(x)XαX
t)y(x, n

n1n
22

n

pnn −
−

= ∑
∞

=

 

where Xn(lp) is the value at x = lp of the mode shape function Xn(x), 

given by    
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[ ])lsinβl(sinhβσlcosβlcoshβA)(lX pnpnnpnpnnpn −−−=  

and  

l)}sinh(2βσ

l)sinh(2βl)l)sinh(βsin(β8σl)l)sinh(βcos(β4σ

l)l)sinh(β4cos(βl)sin(2βσl)sin(2βl)l)sin(βcosh(β4σ

l)l)sin(β4cosh(βl)cosh(2β2σl)cos(2β2σl/{4β4βA

n
2
n

nnnnnn
2
n

nnn
2
nnnn

2
n

nnnnnnnn
2
n

+

+++

−−+−

−−+=

 

The equation for Xn(lp)  for the beam quantifies the effect on mode n of 

an actuator located at x = lp on the y(x, t).  

The direct problem equation for the output y(x, t) is the model for 

transversal forced vibrations due to the harmonic excitation of given 

frequency Ω  from input from a point actuator in located at x = lp 

)lδ(xsin(ΩinαAρt)f(x, p−⋅⋅⋅⋅=  

This solution for single frequency excitation cannot be used for 

designing feedback control for a beam, because the applied force per unit 

length,  f(x, t),  is too restrictively assumed of a single frequency and 

applied at a boundary point x = lp. A generic applied force per unit 

length, f(x, t), can have an arbitrary time variation and could be 

distributed along x [35] 

t)sin(ΩPx/l)πsin(nPt)f(x, r

1r

r1n n ⋅⋅⋅⋅⋅= ∑∑
∞

=

∞

=
 

where l is the length of the beam. 

A generic solution for simply supported Euler-Bernoulli beam 

equation for the initial conditions T(0)=0 and T’(0)=0 and subject to an 

arbitrary f(x, t),  is [17, 23, 55] 

 

x/l)πsin(nt)]sinω
ω

Ω
t(sinΩ

Ωω

m/P
[t)y(x, n

n

r
r

1n
2

r
2
n

n

1r

⋅⋅⋅⋅−⋅
−

= ∑∑
∞

=

∞

=

 

where m = M / l is the mass per unit length. 
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This generic solution for simply supported Euler-Bernoulli beam 

equation is a particular case of the solution for simply supported plate 

subject to a distributed force with arbitrary time variation. 

The above generic solution to the direct problem is a double infinite 

series, i.e. is not in closed form, and gives the transversal displacement 

y(x, t)  due to the excitation f(x, t). The spatial distribution 

 

nn
P sin(n x / l)

∞

=
⋅ ⋅ π ⋅∑ 1

 

is assumed based on the n modes of vibration of the beam. Further 

analysis of the effect of distributed applied force on beam vibration is 

beyond the scope of this book. 

The response to multiple harmonic excitations of various frequencies 

generated by several actuators located in various points along the beam 

represents a direct problem of a higher complexity. The output equation 

for y(x, t) is in the non-closed form of an infinite series of modes and, 

inverse problem does not have an analytical solution such inverse 

problem solution is not obtainable analytically. Active control of 

vibrations has to be based on a solution that does not come from the 

inverse problem. In fact the solution analyzed in the next section is based 

on feedback modal control for a reduced number of modes. Moreover, a 

real beam is not subject to only transversal vibrations across the width of 

the beam, but also across the thickness of the beam, as well as 

longitudinal vibrations and torsional vibrations.   

  

5.3.3 Feedback Control of Transversal Vibrations in Beams  

 

Figure 5.9 shows the diagram of feedback control for perturbation effects 

suppression for an infinite beam, based on the generic diagram from Fig. 

5.8, for the case of using acceleration for perturbation measurement, 

actuator output and error E(xd, t). 

Feedback control of transversal vibrations in beams cannot be based 

on the inverse of a direct problem with infinite dimensional solution of 

the partial differential equations. A practical approach for the feedback 
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control for a beam, like the one shown in Fig. 5.9, has to be based on 

reduced order models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 Feedback control for perturbation effects suppression for an infinite beam 

 

 

One such finite dimensional model is the finite elements model, 

presented in Ch. 3.3 for a string, that can be reformulated for a beam and 

the conclusions for the string hold also for the beam, in particular that 

any limited number of finite elements limits the model to lower modes of 

vibrations represented by the model, i.e. leaves higher modes of vibration 

unaccounted for.  

Another lower order model that can be used for feedback control of a 

beam, shown in Fig. 5.10, is based on transfer functions, [23].  

This model can be used if the beam can be assumed a linear time 

invariant system.  

Transfer functions are unidirectional models defined for a given input 

and a given output. In a beam, however, waves propagate in both 
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directions and, for this reason, in Fig. 5.10 are shown separate transfer 

functions designated for each unidirectional propagation case:  B(s) from 

the  perturbation w(xd, t) point xd, to the error E(xd, t) point  xd, B1(s) 

from perturbation w(xd, t) point xd,  to the to the actuator location xu and  

B2(s) from perturbation w(xd, t) to the  error E(xd, t) point xd. In the 

assumed infinite beam (or anechoically terminated beam) there are no 

end points reflections. The feedback controller is defined by the K(s) 

transfer function, that has to be designed. The effect of this feedback 

controller materializes in the value of d2(xd, t) that is supposed to cancel 

d(xd, t) due to the perturbation in the point x = xw such that E(xd, t) = 

d2(xd, t) + d (xd, t) = 0. i.e. ideally a zero error E(xd, t). In reality, the 

cancellation is not perfect and only a low value significant error can be 

expected. Moreover, given that only a finite number of lower frequencies 

are targeted by the feedback controller, the error E(xd, s), for s = ω, will 

increase as the value of the frequency ω increases. 

 

Fig. 5.10 Block diagram of non-collocated feedback control for perturbation effects 

suppression for a beam using transfer functions 
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d1(xw,s)/u(xu, s)  
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The block diagram from Fig. 5.10 permits to write the following model 

of the beam feedback control  

 

w B(s) = d 

u B2(s) = d2 

u B1(s) = d1 

d + d2 = E 

u = K(s) · (w + d1) 

 

From these equations can be obtained the transfer function E(s)/w(s) that 

characterizes the controller effect in reducing the effect of the 

perturbation w(s) on the error E(s) [23]. This transfer function can be 

obtained from the above five equations, by eliminating d, d1, d2 and u 

 

E(s)/w(s) = B(s) + B2(s) · K(s) / [1 - B1(s) · K(s)] 

 

The ideal effect is E(s) = 0 and this requires 

  

B(s) + B2(s) K(s) / [1 - B1(s) · K(s)] = 0 

 

This equation permits to calculate the transfer function of the feedback 

control 

 

K(s) = B(s) / [B1(s) · B(s) – B2(s)] 

 

In practical applications, the three transfer function for the above  

beam model are obtained experimentally using frequency response 

measurements, [19, 34]. A block diagram for these experiments is shown 

in Fig. 5.11. 

The sinusoidal signal generator receives the command signal I
(c)

(ω) = 

I
(c)

 · 
 
sin (ωt) over the   range of frequencies significant for the beam 

vibration control, for example 0.01 to 100 Hz., i.e. four orders of 

magnitude of frequency variation. This input to the sinusoidal signal 

generator is usually an analog voltage signal and the electromechanical 

signal generator will have the output I (ω) = I · sin (ωt), a sinusoidal 

transversal excitation applied to the beam, often with a phase difference 
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ignored here. The output transversal displacement of the beam O(ω), is 

measured by a signal transducer that produces the analog voltage Om(ω) 

transmitted to the Analog Input of a Data Acquisition Board installed in a 

PC.   

 

 

 

 

 

 

 

 

                      

 

 

 

 

 

 

 

 

 

                                                             

                                 

                                                      

Fig. 5.11 Experimental determination of the transfer function of a beam 

 

A suitable data acquisition and processing software, for example 

LabVIEW
TM

 or MATLAB
TM

 can be used for obtaining the experimental 

Bode diagrams amplitude and phase versus frequency ω. Next step is to 

obtain an approximation of the transfer function of the beam using  

the experimental Bode diagrams. For example, Log-magnitude diagram 

can be used to determine asymptotic log-magnitude straight line  
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approximations with slopes restricted to integer multiples of +/- 20 

dB/decade [34]. After determining corner frequencies, the damping ratio 

result from the amount of local resonant peak. The phase diagram is used 

to check the resulting transfer function obtained from log-magnitude 

curves. Non-minimum phase behavior, typical for flexible beams, can be 

identified from the high frequency phase that results 180
0
 away in 

computed phase versus experimental phase diagram, indicating that a 

positive zero was missing and has to be included in the transfer function.  

Propagation time of the signals in the beam can be identified from the 

constant rate of change T between computed and experimental phase 

angles, i.e –Tω, then the propagation delay is given by the multiplicative 

factor e
–Tω

.   

An example of experimentally determined transfer function, limited 

to the first three modes of vibration, could be 

 

Om(ω) / I
(c)

(ω) = k · (s - z) · e
–Tω

 / [(s + p1) · (s + p2) · (s + p3)] 

 

This transfer function includes not only the beam, but also the transfer 

functions of the sinusoidal signal generator and the of transducer. 

Assuming that the effect of the transfer functions of the sinusoidal signal 

generator and the transducer are not significant, the three transfer 

functions from Fig. 5.10 can be written as 

  

B(s) = k · (s - z) · e
–Tω

 /[(s + p1) · (s + p2) · (s + p3)] 

B1(s) = k1 · (s - z1) · e
–T

1
ω
 /[(s + p

(1)
1) · (s + p

(1)
2) · (s + p

(1)
3)] 

B2(s) = k2  · (s - z2) · e
–T

2
ω
 /[(s + p

(2)
1) · (s + p

(2)
2) · (s + p

(2)
3)] 

 

The resulting transfer function of the feedback controller would be in this 

case: 

 

K(s) =  B(s) / [B1(s) · B(s) – B2(s)] = 

{k · (s - z) · e
–Tω

 /[(s + p1) · (s + p2) · (s + p3)]}/{k1 · (s - z1) · e
–T

1
ω
 · k ·  

(s - z) ·  e
–Tω

 /[(s + p1) · (s + p2) · (s + p3) · (s + p
(1)

1) · (s + p
(1)

2) ·  

(s + p
(1)

3)] - k2 · (s - z2) · e
–T

2
ω
 /[(s + p

(2)
1) · (s + p

(2)
2) · ( s + p

(2)
3)]} = 

{k · (s - z) · e
–Tω

 / [(s + p1) · (s + p2) · (s + p3)]}/ {k · k1 (s - z) · (s- z1) · 
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e
–(T +T

1
)ω 

/ [(s + p1) · (s + p2) · (s + p3) · (s + p
(1)

1) · (s + p
(1)

2) · (s + p
(1)

3)] - 

k2  · (s - z2) · e
–T

2
ω
 /[(s + p

(2)
1) · (s + p

(2)
2) · (s + p

(2)
3)]} 

 

The common denominator of this transfer function is  

 

{k · k1 · (s - z) · (s - z1) · e
–(T +T

1
)ω

 · [(s + p
(2)

1) · (s + p
(2)

2) · (s + p
(2)

3)] -  

k2 · (s - z2) · e
–T

2
ω
 · [(s + p1) · (s + p2) · (s + p3) · (s + p

(1)
1) · (s + p

(1)
2) ·  

(s + p
(1)

3)]} 

 

Even when all delays are insignificant, T = T1 = T2 = 0, the denominator 

of K(s) is a 7-th order polynomial in s, difficult to implement. Results 

were reported for third order controllers, but this would limit feedback 

control to the first three lower frequencies of the transfer function, 

leaving all other higher frequencies with no control [23]. Significant 

work has to be done in this case to verify if spillover effects to higher 

frequencies and other types of vibrations do not lead to highly oscillating 

or unstable open loop dynamics. Moreover, this transfer function based 

control is effective only if the parameters do not vary in time.  

Feedback modal control is presented in the next section.  

 

5.3.4 Feedback Modal Control   

 

Feeedback control of vibrations in beams can be achieved using various 

methods, as for example, modal control and wave reflection control. In 

this section modal control will be presented modal control of beam 

vibration [109].  

 

a) Modal control of a 2 DOF mechanical system 

 

To illustrate the concept of modal control, first will be presented the 

simple case of an under-actuated 2 DOF mechanical system, shown in 

Fig. 5.12. 

In Ch. 3.2 was derived the model for this system  

 

m1 · d
2
 x1/dt

2
 + k1 · x1 + k2 · (x1 – x2) = f1 
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m2 · d
2
 x2/dt

2
 + k2 (x2 – x1) = 0 

 

with one measured output   

 

y1 = x1 

 

and one input f1. 

 

 

 

 

 

 

 

 

 

Fig. 5.12 An under-actuated 2 DOF mechanical system 

 

 

Initial conditions are assumed  

 

x1(0) = x10 

x2(0) = x20 

dx1(t) / dt|t=0 = v10 

dx2(t) / dt|t=0 = v20 

 

In matrix form this equation becomes 

 
..

⋅ + ⋅ =M X K X F  

 

where 

 

 

k1 
f1 

       m2 k2        m1 

y1 = x1 x2 
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subject to initial conditions: 
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Modal analysis requires to determine the eigenvalues and the eigenvetors 

of this system and this is facilitated by a first transformation of variables 

X into Q [23] using 

 

QMX ⋅= −1/2
 

 

or 

 

XMQ ⋅= 1/2
 

 

where  
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
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The above matrix equation of motion becomes 

 

FQMKQMM =⋅⋅+⋅⋅ −− 1/2
..

1/2  

Pre-multiplying with 2/1−M gives 

 

FMQMKMQMMM ⋅=⋅⋅+⋅⋅ −−−−− 1/21/21/2
..

1/21/2  

where 

 

IMMM =⋅⋅ −− 1/21/2  
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previous matrix equation of motion becomes 
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
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(0)

.

Q  

~

K  is a symmetric matrix that has the same structure as the definition of 

squared natural frequency for a single degree of freedom mass-spring-

damper system k / m = 1mk −⋅ = 1/21/2 mkm −− ⋅⋅ . 

Assuming the solution 

 
jωte= ⋅Q V  

such that 

 

2 jωt
ω e=− ⋅ ⋅

..

Q V  

For F = 0, the last matrix equation becomes 

 

- 2 jωt jωt
ω e e 0⋅ ⋅ + ⋅ ⋅ =

~

V K V  

or 

 

VKV
~

⋅=⋅2
ω  

or, after denoting 

 

λω
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VKV
~

⋅=⋅λ  

or  

 

0)λ(
~
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The determinant equal to zero 

  

0)λ(
~

=⋅⋅− VIK  

gives the characteristic equation for obtaining eigenvalues. 

The solutions 1λ and 2λ can be written as a diagonal matrix 

 









λ

λ
=

2

1

0

0
Λ  

known as the matrix of eigenvalues while V is the corresponding 

eigenvector, i.e.  









=

12

11

1
v

v
V  for 1λ  

and  

 









=

22

21

1
v

v
V  for 2λ  

These eigenvectors correspond to mode shapes.  

A second transformation of variables Q into R is given by [23] 

 

RPQ ⋅=  

such that 

 

RPMQMX ⋅⋅=⋅= −− 1/21/2
 

where  

 









=

2

1

r

r
R  
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and       

    

[ ] 







==

2212

2111

21
vv

vv
VVP  

P is the modal matrix, that has the property P
T 
· P = I. 

Substituting Q by R in 
~

FQKQI
~..

=⋅+⋅  

gives 

 
.. ~ ~

⋅ + ⋅ ⋅ =P R K P R F  

Pre-multiplying by P
T 

gives 

~

⋅ ⋅ +⋅ ⋅ ⋅ = ⋅

.. ~
T T TP P R P K P R P ΦΦΦΦ  

Taking into account that P
T 
· P = I and that PΚP

~

⋅⋅T gives the diagonal 

eigenvalues matrix Λ  

 









==⋅⋅

2

1
~

T

λ0

0λ
ΛPKP  

the above second order differential equation in 

 XMPXMPR ⋅⋅=⋅⋅= − 1/2T1/21  

becomes  
.. ~

T
⋅ + ⋅ = ⋅I R R P FΛΛΛΛ  

with initial conditions 
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








⋅⋅
⋅⋅

=
20

1/2T

10
1/2T

x

x
(0)

MP

MP
R  

After denoting 

 













Ω
Ω

==
2

2

2

12

0

0
ΩΛ  

and given  









=












=

2221

1211

T

2

T
T

vv

vv

V

V
P 1  

we obtain 

 













⋅⋅
⋅⋅

=










 ⋅








=











 ⋅












= −

−−−

1

1/2

121

1

1/2

1111

1/2

1

2221

12111

1/2

1

T

2

T

1
~

T

fmv

fmv

0

fm

vv

vv

0

fm

V

V
FP  

The above matrix equation of motion can be written in scalar form as 

121

1/2

11

2

1

..

v(t)fm(t)rΩ(t)r
1

⋅⋅=⋅+ −
 

211

2/1

12

2

2

..

v)t(fm)t(r)t(r
2

⋅⋅=⋅Ω+ −
 

These are decoupled modal equations of the above under-actuated 2 DOF 

mechanical system. Figure 5.13 shows the decoupled modes, equivalent 

to the system from Fig. 5.12. 

It can be observed that, even if only the mass 1m in Fig. 5.12 is 

subject to the external undefined force )t(f1 and 2m is subject to no 

force, both unit masses for modes 1 and 2 are actuated, but cannot be 

independently controlled by the single force )t(f1 . Choosing feedback  
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control to determine )t(f1 for mode 1, for mode 2, v21 · m1
-1/2

 · f1 cannot 

be modulated any more to satisfy control needs for mode 2. The term 

v21m1 
-1/2

f1 will however excite mode 2 as a spillover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.13 Decoupled modal equivalent of the mechanical system from Fig. 5.12 

 

 

5.3.5 Modal Control in Beam Vibration  

 

The generic solution to the direct problem, presented in the previous 

section as direct problem for beam vibration modeling as a double 

infinite series cannot be used for solving analytically the inverse problem 

that would give the excitation f(x, t) that would produce the desired 

transversal displacement yd(x, t). Consequently, this non-closed form 

solution cannot be used for obtaining a feed-forward control law. This 

solution was however used for the formulation of the feedback control in 

the form of reduced order modal control, presented in the specialized 

literature [17, 23].  

Ω1
2
 

v11 · m1 
-1/2

 · f1  

       1 

r1  

Ω2
2
 

v21 · m1 
-1/2

 · f1  

1 

r2  
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The first three modes, they contain sin x · (π / l),  sin 2 · (π / l) and sin 

3 x · (π / l) give the shapes shown in Fig. 5.14. The number of nodes for 

mode n is n - 1. Modal control can be implemented, for maximum 

efficiency, with actuators located mid-distance between adjacent nodes, 

i.e. x = l / 2 for n = 1, x = l / 4 or 3 · l / 4 for n = 2 and x = l / 6, l / 2 or  

5 · l / 6 for n = 3. This shows that there are required as many different 

actuators as the number of modes desired to control. Space, cost and 

design constraints limit the number of modes that can be controlled to, 

normally, less than 10. Modes that are not controlled but can be excited 

by the actuators outputs for the modes intended to control result in 

spillover phenomenon that has to be addressed separately [23].  

 

5.4 Direct Problem in Free Vibrations in Membranes 

 

The membrane shown in Fig 5.15 has a small transversal (along z axis) 

displacement u(x, y, t), in the plane x, y from the equilibrium position 

[17, 25, 109]. 

The equation for free vibrating membrane for transversal displacement 

u(x, y, t) is [17, 23, 35]  

 

2

2

2

2

2

2

y

u(x,y,t)

x

u(x,y,t)

t

u(x,y,t)
))h(/m(

∂
∂

+
∂

∂
=

∂
∂

⋅σ  

where 

 

m  is mass per unit area 

h⋅σ  is the uniform tensile force  

 

The solution can be obtained using the method of separation of 

variables [14, 17] 

 

u(x, y, t) = W(x, y) · θ(t) 

 

where W(x, y) is mode shape function and θ(t) is the free vibration time 

dependence.  
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Fig. 5.14 The first three mode shapes for a simply supported beam 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.15 Membrane vibrating transversally 
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Assuming a harmonic function θ(t) of unit amplitude frequency  ω 

 

θ(t) = sin ωt 

 

and a double sine series representation for W(x, y) for a simply 

supported rectangular membrane a by b with fixed boundaries 

 

)b/xnsin()a/xnsin(W)y,x(W
1n

n,m

1m

⋅π⋅⋅⋅π⋅⋅= ∑∑
∞

=

∞

=

 

membrane equation becomes 

 

))h/(m(b/na/m 2222222 ⋅σω=⋅π+⋅π  

 

with the solution for the radial frequency of the mode m · n 

 

))]h/(m/()b/na/m[( 2222
mn ⋅σ+π=ω  

Similar to the case of the beam, the direct problem solution for the 

membranes cannot be used for obtaining the feed-forward control law. 

This direct problem solution, a triple infinite series, can be plotted using 

MAPLE [25] and can be simulated using FEMLAB [36]. 

 

5.4.1 Membrane Vibration Solution Plotting   

 

Membrane vibration solution plotting using MAPLE shown in Fig. 5.16 

a to e is obtained for: 

-initial conditions:  

 

u(x, y, 0)= Φ(x, y) 

du(x, y, 0)/dt = Ψ(x, y) 

 

-boundary conditions for the membrane fixed at four corners: 

for t > 0, u = 0 for the four corners and for t = 0,  du / dt = 0. 
  



Advanced Mechatronics 228

 

a (t = 0) 

           

b (t = 5) 

              

c (t = 10) 

Fig. 5.16 MAPLE simulation results for membrane transversal vibrations 
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d (t = 20) 

            

e (t = 30) 

Fig. 5.16 (Continued ) 

 

These results for the direct problem of free membrane vibration, subject 

to non-zero initial conditions, show even in qualitative analysis the 

complexity of u(x, y, t) shape change over time. Inverse problem consists 

in obtaining the required input forces to achieve a desired output ud(x, y, 

t). Real-time application of an inverse problem solution is not practical at 

this time. 
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5.4.2 Simulation of Membrane Using FEMLAB 

 

Finite elements method can be used to solve numerically membrane 

equation [36]. A commercial software, FEMLAB
TM

, was used for this 

purpose.  

Boundary condition for free vibration membrane simulation were: 

-Fixed at left and right.  

-Front and back are free to vibrate. 

The results are shown in Fig. 5.17 a to e. Initial conditions are nonzero, 

as shown in Fig. 5.17 a. 

 

 

a (t = 0) 

 

b (t = 5) 

Fig. 5.17 FEMLAB simulation results for membrane transversal vibrations 
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c (t = 10) 

 

d (t = 20) 

 

e (t = 30) 

Fig. 5.17 (Continued ) 
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Similar to the membrane vibration, the solution for the direct problem for 

plate vibration consists in multiple sums of infinite series for an infinity 

of vibration modes and results in complex time varying shapes [55]. 

Also, feedback control of vibration displacement can be achieved in 

modal control only for the first few modes. An example of analytical and 

experimental study of plate vibration control reduced to the first two 

modes of vibration is reported in [23]. 

 

Problems 

 

1. Assume the experimentally determined transfer functions, limited to 

the first two modes of vibration 

          

Om(ω) / I
(c)

(ω)= k · (s - z) · e
–Tω

 / [(s + p1) · ( s + p2)] 

 

      for the tree transfer functions from Fig. 5.10  Obtain the resulting 

transfer function of the feedback controller and  determine the order 

of its denominator. 

 

2. For the mechanical system, shown in Fig. 5.18, the force input 

subject to control is f(t), the external force perturbation is fext and the 

displacement output is y(t). B and b are viscous friction coefficients 

and K is spring constant. Obtain the model for the direct problem and 

the position control condition. 

 

 

 

 

 

 

 

 

 

 

                                     

Fig. 5.18 Mechanical system 
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3. For the mechanical system, shown in Fig. 5.19, obtain the transfer 

function for the direct problem and the block diagram for PID 

position control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

Fig. 5.19 Position control diagram for vibration suppression  

 

4.   Assume a flexible shaft represented by a single finite element model. 

For the case that T1 = 0 and T2 = τ2, draw the block diagram for the 

closed loop control to bring θ2(s) towards θ2(s). Show the 

relationship between θ1(s) and θ2(s). 

 

5.  For the under-actuated 2 DOF mechanical system, shown in Fig.   

5.20, obtain the decoupled modal equivalent  
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Fig. 5.20 An under-actuated 2 DOF mechanical system 
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Chapter 6 

Acousto-Mechatronics  

6.1 Acousto-Mechatronic Systems 

 

Distributed parameters acousto-mechatronic systems are mixed systems 

containing acoustic field transmission under computerized tight 

integration. Such systems can function only under permanent computer 

monitoring and control of the state variables of the acoustic field [82-84]. 

Similar to other Distributed Parameters Systems (DPS), a finite number 

of point sensors and actuators result in an under-sensed and under-

actuated acoustic system. This chapter focuses on room acoustics and the 

use of direct and reflected ray propagation in discrete inverse problems 

solving for parameters estimation. 

 

6.1.1 Recording Studio 

 

Figure 6.1 shows the conceptual diagram of a sound recording studio. 

Acoustic signals from voice, musical instruments and other sound 

sources to be recorded are assumed transmitted through the enclosed 

space of a room (recording studio), in fact a Distributed Parameters 

System. These acoustic signals, modified by the room acoustics 

(reverberations, wall sound absorption etc) are inputs to microphone(s) 

or microphones, i.e. sensors converting acoustic signals into modulated 

voltage signals [21, 85]. A recording system records these signals on 

hard-drives, tapes, CDs etc. Often recoding takes place in an un-echoic 

studio in order to avoid reflected waves. Sound effects in records can be, 

however, added by digital signal post-processing. 
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Fig. 6.1 Conceptual diagram of a recording studio 

 

 

6.1.2 Active Sound Control in Halls 

 

Figure 6.2 shows the conceptual diagram of a room (hall) active 

acoustics. Modulated voltage signals from, for example, microphone on a 

stage or from sound recording,  provide inputs to speakers (i.e. actuators) 

that generate acoustic signal outputs, transmitted further in a room (hall), 

assumed an enclosed space modeled as a DPS. These acoustic signals, 

modified by the room acoustics (reverberations, wall sound absorption 

etc) arrive to audience ears, i.e. to acoustic receivers [21, 85-87]. 

This system will also be analyzed in this section as a distributed 

parameters acousto-mechatronic system. 
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Fig. 6.2 Conceptual diagram of a room (hall) active acoustics 

 

 

6.1.3 Active Noise Control  

 

Figure 6.3 shows the active control scheme for noise control in a duct. 

The external perturbation is, in this case, a noise source of pressure  

w(xe, t) at xe, that propagates in a duct. The noise is measured with a 

microphone placed at xe, that has the output wm(xe, t). A feedback 

controller produces the analog voltage command u
(c)

 sent to a speaker. 

The sound generated by the speaker, y(xu, t), combines with the noise 

and both propagate in the duct. A monitoring microphone, placed at xe, 

produces and output voltage E(xd, t) which, in the case of ideal active 

(feed-forward) control, is supposed to be zero [23]. 

This negative feedback system, with non-collocated sensor, actuator 

and output is designed to make the signal E(xd, t) tend toward its desired 

zero value. 
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Fig. 6.3 Active noise control in a duct 

 

 

6.2 Distributed Parameters Models of Sound Transmission 

 

6.2.1 Wave Equation for Planar Sound Wave 1D Propagation in a 

Free Sound Field 

 

A simple case of acoustic wave propagation of the plane sound wave 

propagating in a free (nonreflecting) 3D space is shown in Fig. 6.4. 

Assuming a wave propagating in x direction from a source located xs at 

constant sound speed c, the equation for the plane sound wave (i.e. far 

from the source, such that spherical waves can be approximated by 

planar waves) is the same as the equation for vibrating string [17, 21, 39]  

 

2

2
2

2

2

x

)t,x(u
c

t

)t,x(u

∂

∂
=

∂

∂
 

 

where  

 

Duct 

u
 (c) 
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wm(xe, t)  
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Microphone 

 

xu  

xd  

E(xd, t)  

y(xu, t)
 

w(xe, t)  

xe  

Monotoring 

Microphone  

(xd,t) = d
2
y(xd,t)/dt

2
  

x=0  
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u(x, t) is the displacement of the longitudinal sound wave in the positive 

and negative direction about an equilibrium position  

 

ue(x, t) = 0 

 

and 

 

c=√β / ρ0 

 

β is the bulk modulus (modulus of elasticity of the medium) 

ρ0 is the density 

 

 

 

                         

                     

Fig. 6.4 Planar sound wave propagation 

 

Assuming that the source, seen from a far point x, can be represented as a 

planar wave source generating a simple harmonic motion with frequency 

 

ω=2 · π · f = 2 · π / T 

 

then 

 

u = Us · cos ω · t 

 

and the plane traveling waves with velocity c arrive at a location x after  

x / c, such that the displacement u(x, t), in case of no attenuation, is given 

by 

 

u(x, t) = Us  · cos ω · (t – x / c) 

 

or 

 

 

u(x, t) x 
xs 
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u(x, t) = Us · cos (ω · t - k · x) 

 

where the wave-number k is 

 

k = ω / c = 2 · π / λ 

 

and the wavelength is  

 

λ = 2 · π · c / ω 

 

The proposed solution is 

 

u(x, t) = Us ·  cos ω · (t – x / c) 

  

with 

 

)xkt( cosU
t

)t,x(u 2
s2

2

⋅−⋅ω⋅ω⋅−=
∂

∂
 

 

while 

 

)xkt( coskU
x

)t,x(u 2
s2

2

⋅−⋅ω⋅⋅−=
∂

∂
 

 

is a solution of the sound wave displacement equation 

 

2

2
2

2

2

x

)t,x(u
c

t

)t,x(u

∂

∂
=

∂

∂
 

 

where, as above, 

 

c = k / ω 

 

The plane wave of the longitudinal vibration of the air about an 

equilibrium position can be interpreted as a traveling sound pressure 
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wave, which is a variation of the pressure, associated with sound 

propagation, about the local static value of the atmospheric pressure 

generally (approx. 10,000 Pa). For the free (nonreflecting) sound 

propagation case, this wave propagates in the positive x-direction, such 

that any value U of the wave U = Us · cos(ω· t - k · x) can be seen as 

traveling rightwards with velocity c.  

Stress-strain Hook equation, (in this case for pressure p and strain 

δu(x, t) / δx) can be written as 

 

p = - β · δu(x, t) / δx 

 

showing that a layer of the propagation medium is compressed by a 

positive p and the strain which explains the negative sign 

 

δu(x, t) / δx = - p / β 

 

For the above solution of the sound wave displacement equation 

 

u(x, t) = Us · cos (ω· t - k · x) 

 

the time derivative is 

 

δu(x, t)/δx =  Us  · k · sin (ω· t - k · x) 

 

and the pressure solution becomes 

 

p = - β · δu(x, t) / δx = - β · k · Us · sin (ω· t - k · x) 

 

such that, for 

 

c = ±√β / ρ0 

 

or 

 

β = c
2
 · ρ0 
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and 

 

k= ω / c 

 

gives 

 

p = - β · k · Us · sin (ω· t - k · x) = - c · ω · ρ0 · Us   · sin (ω· t - k · x) 

 

Second derivative, with regard to time, is 

 

)xkt(sin )U c(
t

)t,x(p 2
s02

2

⋅−⋅ω⋅ω⋅⋅ρ⋅ω⋅=
∂

∂
 

 

while, with regard to x, is 

 

)xkt(sin k)U c(
x

)t,x(u 2
s02

2

⋅−⋅ω⋅⋅⋅ρ⋅ω⋅=
∂

∂
 

Sound pressure wave equation gives [21, 57] 
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∂
 

 

For, c = ±√β / ρ0, both Us · sin (ω · t - k · x) and Us · sin (ω · t + k · x) 

verify the wave equation. 

For an enclosed propagation medium, like a finite length duct, 

incident waves propagating in the + x direction Us · cos(ω · t - k · x)  

interfere with the reflecting waves propagating in the – x direction Us · 

cos(ω · t + k · x), (ignoring for now phase difference), forming standing 

waves 
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Us · cos(ω· t - k · x) + Us · cos(ω · t + k · x) = 

2 · Us · (cos k · x) · (cos ω · t) 

 

i.e. non propagating waves (given that there is no factor ω · t ± k · x), 

oscillating locally at x, with amplitude 2 · Us · (cos k · x) and with the 

time variation cos ωt [60]. 

 

6.2.2 Wave Equation for Planar Sound Wave 3D Propagation a  

Free Sound Field 

 

In this section is analyzed the case of acoustic wave propagation as a 

plane sound wave propagating in a free (nonreflecting) 3D space, shown 

in Fig. 6.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 

                              

Fig. 6.5 Planar sound wave propagation in 3D free space 

 

The wave propagates in (x, y, z) space from a source located (xs, 0, 0) at 

constant sound speed c. The equation for the plane sound wave 

displacement u(x, y, z, t) is 

 

u(x, y, x, t) 

x 

xs , 0, 0 

y 

z 
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or, in compact notation, 
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where 

ue(x, y, z, t) = 0 is the displacement of the longitudinal sound wave in the 

positive and negative direction about a equilibrium position, and  

 

c=√β / ρ0 

 

β is the bulk modulus (modulus of elasticity of the medium) 

ρ0 is air density. 

The plane wave of the longitudinal vibration of the air about an 

equilibrium position can be interpreted as a traveling sound pressure 

wave, which is a variation of the pressure, associated with sound 

propagation, about the local static value of the atmospheric pressure 

generally (approx. 10,000 Pa).   

Stress-strain Hook equation, (in this case for pressure p and strain  

δu(x, t) / δx) is 

 

p = - β δu(x, t) / δx 

 

showing, as in the case of 1D propagation, that for a layer of the 

propagation medium compressed by a positive p, the strain has a 

negative value.  

Based on this, sound pressure p (x, y, z, t) wave equation results as 

[21, 82, 83] 

 

0

)
z

)t,z,y,x(p

y

)t,z,y,x(p

x

)t,z,y,x(p
(c

t

)t,z,y,x(p
2

2

2

2

2

2
2

2

2

=

∂

∂
+

∂

∂
+

∂

∂
−

∂

∂
 



Acousto-Mechatronics 245

or, in compact notation 

  

0)t,z,y,x(pc
t

)t,z,y,x(p 2

2

2

=∆⋅−
∂

∂
 

 

Assuming a planar wave source generating a simple harmonic motion 

with frequency ω = 2 · π · f = 2 · π/T 

 

u = Us · cos ωt 

 

a plane traveling waves along x-coordinate with velocity c arrive at a 

location x after x/c, and the displacement u(x, t), in case of no 

attenuation, is given by 

 

u(x, t) = Us · cos ω(t – x / c) = Us · cos (ω· t - k · x) 

 

where the wave-number k is 

 

k = ω / c = 2 · π / λ 

 

and λ is the wavelength   

 

6.2.3 Sound Wave Propagation in an Enclosed Sound Field 

 

The above wave equations can be used for modeling the sound 

propagation in an enclosed space, by defining the specific boundary 

conditions. 

For example [56] 

-for hard boundaries, (walls), with surface normal vector n 

 

0
n

p
=

∂
∂

 

 

-for a pressure source of constant pressure p0, located on the boundary 
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p = p0 

 

Numerical solvers for partial differential equations, for example 

FEMLAB
TM

, give the numerical solutions for the sound wave equation 

for the particular boundary conditions for the enclosed space [56, 57]. 

 

6.3 Calculation of Room Eigenvalues and Eigenvectors for a 

Rectangular Cavity or Room 

 

 A rectangular cavity of dimensions X, Y and Z is shown in Fig. 6.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

Fig. 6.6 Rectangular enclosed space XYZ 

 

The calculation of eigenvalues is based on the sound wave equation for 

an assumed time harmonic solution [57] 

 

p(x, y, z, t) = P(x, y, z) · e
jωt 

 

such that 

y 

z 

x 

Y 

X 

Z 
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tj2

2

2

e)z,y,x(P
t

)t,z,y,x(p ω⋅ω−=
∂

∂
 

 

and 

 

)z,y,x(Pe)z,y,x(p tj ∆⋅=∆ ω  

 

The pressure wave equation gives  

 

0)z,y,x(Pece)z,y,x(P tj2tj2 =∆⋅⋅−⋅ω− ωω  

 

This results in the Helmholz equation [21, 57] 

 

0)z,y,x(P)c/()z,y,x(P 2 =⋅ω+∆  

or 

 

0)z,y,x(Pk
z

)z,y,x(P

y

)z,y,x(P

x

)z,y,x(P 2

2

2

2

2

2

2

=⋅+
∂

∂
+

∂

∂
+

∂

∂
 

where  k= ω / c. 

The method of separation of variables for P(x, y, z)  

 

P(x, y, z) = A(x) · B(y) · C(z) 

 

gives  

 

0)z(C)y(B)x(Ak

)y(B)x(A
z

)z(C
)Z(C)x(A

y

)y(B
)z(C)y(B

x

)x(A

2

2

2

2

2

2

2

=⋅⋅⋅+

⋅
∂

∂
+⋅

∂

∂
+⋅

∂

∂

 

 

where, for 3D propagation, the wave number 3D vector k is 

 

k = kx · i + ky · j +kz · k 

 

and |k|
2
 = k

2 
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k
2
 = kx

2
 + ky

2
 + kz

2  
= (ω / c)

2 

 

or 

 

ω = c √( kx
2
 + ky

2
 + kz

2
)

 

 

After dividing by A(x) · B(y) · C(z), the following equation results 

 

0 k k  k
dz)z(C

)z(Cd

dy)y(B

)y(Bd

dx)x(A

)x(Ad 2

z

2

y

2

x2

2

2

2

2

2

=+++
⋅

+
⋅

+
⋅

 

 

or 

 

0 )k 
dz)z(C

)z(Cd
()k  

dy)y(B

)y(Bd
()k

dx)x(A

)x(Ad
(

2

z2

2
2

y2

2
2

x2

2

=+
⋅

++
⋅

++
⋅

 

 

The three terms in this equation are equal to zero for all x, y and z only if  

each separate term is equal to zero 

 

0)k
dx)x(A

)x(Ad
(

2

x2

2

=+
⋅

 

 

0)k
dy)y(B

)y(Bd
(

2

y2

2

=+
⋅

 

 

0)k
dz)z(C

)z(Cd
(

2

z2

2

=+
⋅

 

 

For the nontrivial case that A(x), B(y) and C(z) are all non-zero, three 

separate second order ordinary differential equations result [21] 
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0)x(A)k
dx

d
(

2

x2

2

=⋅+  

 

0)y(B)k
dy

d
(

2

y2

2

=⋅+  

 

0)z(C)k
dz

d
(

2

z2

2

=⋅+  

 

These equations suggest harmonic spatial solutions, for example sin or 

cos types. For the cos type, the solutions could be cos kxl · x, cos kym · y 

and cos kzn · z, for l. m, n = 0,1,2,3,…  

Consider a room with all boundaries, i.e. all walls, ceiling and floor, 

assumed as hard boundaries, 

 

Xxand0xfor0
x

)t,z,y,x(p
===

∂
∂

 

 

Yyand0yfor0
y

)t,z,y,x(p
===

∂
∂

 

 

Zzand0zfor0
z

)t,z,y,x(p
===

∂
∂

 

 

For the wave equation  

 

0)t,z,y,x(pc
t

)t,z,y,x(p 2

2

2

=∆⋅−
∂

∂
 

 

and for an assumed time harmonic solution [57] 

 

p(x, y, z, t) = P(x, y, z) · e
jωt 

 

the spatial part P(x, y, z) has to be formed of cos terms, such that lmn 

solutions for  p(x, y, z, ) could be 
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plmn(x, y, z, t) = Almn · (cos kxl · x) · (cos kym · y) · (cos kzn · z) · e
jωt

 

                    

for l, m, n = 0,1,2,3,… that can be made to verify the above hard 

boundary conditions i.e.  

 

δp(x, y, z, t) / δx = -Almn · kxl · (sin kxl · x) · (cos kym · y) · (cos kzn · z) · e
jωt

 

=0                                for x =0 and  x=X 

 

δp(x, y, z, t) / δy = -Almn · kyl · (cos kxl · x) · (sin kym · y) · (cos kzn · z) · e
jωt 

=0                                 for y=0  and  y=Y 

 

δp(x, y, z, t) / δy = -Almn · kzl · (cos kxl · x) · (sin kym · y) · (sin kzn · z) · e
jωt 

=0                                  for z=0  and  z=Z 

 

In case of x = 0, y = 0 and z = 0, the above conditions are satisfied due to 

the factors sin (kxl · 0) = 0, sin (kym · 0) = 0 and sin (kzn · 0) = 0, 

respectively. 

In case of x = X,  

 

δp(x, y, z, t) / δx= -Almn · kxl (sin kxl · X) · (cos kym · y) ·  (cos kzn · z)  · e
jωt

 

=0 

 

is satisfied when  sin (kxl · X) = 0, or when  

 

kxl = π · l /X    for l = 0,1,2,3,… 

 

Similarly, for the other two boundary conditions 

 

kym = π · m /Y    for m = 0,1,2,3,… 

kzn = π · n /Z     for n = 0,1,2,3,… 

 

This gives 

 

klmn
  
= √(kx

2
 + ky

2
 +kz

2
)

 
 = π √ [(l /X)

 2 
+(m /Y)

 2
 + (n /Z)

 2
] 

for l. m, n = 0,1,2,3,… 
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and 

 

ωlmn= c · π · √ [(l /X)
 2
 + (m /Y)

 2
 + (n /Z)

 2
] =  2 · π · f lmn 

for l. m, n = 0,1,2,3,… 

 

or, modal frequencies 

 

f lmn = (c/2) · √ [(l /X)
 2
 + (m /Y)

 2
 + (n /Z)

 2
] 

for l. m, n = 0,1,2,3,… 

 

This shows that larger room dimensions, X, Y, Z lead to lower modal 

frequencies f lmn.  

 

Example 6.1 For a rectangular room, as shown in Fig. 6.6, with 

dimensions X = 2 [m], Y = 1 [m] and Z = 1[m], calculate natural 

frequencies for the first few modes, in case of sound speed in air c = 

343.6 [m/s]. 

 

Natural frequencies are given by 

 

f lmn = (171.8) · √ [(l /2)
 2
 + (m)

 2
 + (n)

 2
] 

for l. m, n = 0,1,2,3,… 

 

such that 

 

f 000  = (171.8) √ [(0 /2)
 2 

+(0)
 2
 + (0)

 2
] = 0         i.e. no sound transmission 

f 100  = (171.8) √ [(1 /2)
 2 

+(0)
 2
 + (0)

 2
]= 85.9 [Hz] 

f 010  = (171.8) √ [(0 /2)
 2 

+(1)
 2
 + (0)

 2
] = 171.8 [Hz] 

f 001  = (171.8) √ [(0 /2)
 2 

+(0)
 2
 + (1)

 2
] = 171.8 [Hz] 

f 110  = (171.8) √ [(1 /2)
 2 

+(1)
 2
 + (0)

 2
] = 192.1 [Hz]  etc. 

 

Larger rooms have lower modal frequencies. For example, for X = 200 

[m], Y = 1 [m] and Z = 1[m],  

 

f 100 = (171.8) · √ [(1 /200)
 2
 + (0)

 2
 + (0)

 2
] =  8.59 [Hz] 
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a f 100 ten times smaller than for X = 2 [m], Y = 1 [m] and  Z = 1[m] 

 

Given that for hard boundaries, 

 

plmn(x, y, z, t)= Almn · (cos kxl · x) · (cos kym · y) · (cos kzn · z)  · e
jωt

 

for l, m, n = 0,1,2,3,… 

 

and that for x = 0, y = 0 and z = 0 and for x = X, y = Y and z = Z 

 

cos kxl · x=1 

cos kym · y=1 

cos kzn · z =1 

 

for all modes l. m, n = 0,1,2,3,…, the placement of sound sources and 

sound receivers at the corners of the room provide local maximum values 

for all modal components, while in any other point, x, y, z, in the room, 

some modal components are not at maximum, and some might be zero if 

in a node [21, 57]. 

Overall solution of the linear wave equation is obtained by 

superposition and is a triple infinite series (ignoring 0, 0, 0 mode 

corresponding to no sound transmission) 

 

p(x, y, z, t) = Σ l=1 to ∞ Σm=1 to ∞ Σ n=1 to ∞  plmn(x, y, z, t) 

 

or 

 

p(x, y, z, t) = Σ l=1 to ∞Σm=1 to ∞ Σ n=1 to ∞  Almn · (cos kxl  · x) · (cos kym · y) · 

(cos kzn · z) · e
jωt

 

 

or,  

 

p(x, y, z, t) = Σ l=1 to ∞Σm=1 to ∞Σ n=1 to ∞ Almn · (cos π · l · x / X) ·  

(cos π · m · y / Y) · (cos π · n · z / Z) · e
jωt
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Example 6.2 FEMLAB
TM

 Calculate of room eigenvalues assuming the 

simulated room dimensions X= 5 [m], Y= 4 [m] and Z = 2.6 [m], [56, 

57].  

 

The modal frequencies flmn [Hz] of the empty room with hard walls are 

given by 

 

f lmn = (171.8) · √ [(l /5)
 2 

+(m /4)
 2
 + (n /2.6)

 2
] 

for l, m, n = 0,1,2,3,… 

 

such that the eigenvalues are 

 

λ lmn = ωlmn
2 
= 343.6

2
  · π2

 [(l  / 5)
2  

+ (m /4)
2
 + (n  / 2.6)

2
] 

for l, m, n = 0,1,2,3,… 

 

First 13 modal frequencies for l, m, n = 0, 1, 2 (000, 100, 010, 110, 001, 

200, 101, 011, 210, 020, 111, 120, 201) are below the frequency of the 

mode 3,0,0 [37] 

 

f 300 = (171.8) √ [(3 /5)
2 
+(0 /4)

2
 + (0 /2.6)

2
] = 103.08 [Hz] 

 

i.e. the eigenvalue 

 

λ 300 = (ω300)
2 
= (2 · π · f300)

2
 = 4.19 · 10

5
 [rad

2
/s

2
] 

 

FEMLAB solution for hard boundary conditions for sound propagation 

in the room give for the first 15 eigenvalues up to around 10
5
 [rad

2
/s

2
]. 

The eigenvalue 4.207857·10
5
, computed by FEMLAB for the simulated 

room, is very close to the above computed eigenvalue for the empty 

room with hard walls and the same dimensions, λ 300 = 4.19 · 10
5
. 

Besides eigenvalues, FEMLAB permits to determine 3D pressure 

distribution in the simulated room for each eigenvalue.
 

The results for the sound pressure distribution are very different for 

various eigenvalues and are not used for the overall evaluation of room 

acoustic quality. Other modes have very different pressure distributions 
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[37]. As a consequence, sound pressure distributions are not directly 

useful in room acoustic design.
 

Other acousto-mechatronics applications can be found in [23, 58, 59, 

60].
 

 

6.4 Experimental and Simulation Study of Room Acoustics  

 

6.4.1 Introduction 

 

Room acoustics is currently achieved more based on acoustic expert 

knowledge than on engineering design. Among the reasons for this 

situation are the limitations due to unsolved difficulties in solving inverse 

acoustic room problem given acoustic requirements. This section 

investigates means for experimental validation of simulation approaches 

for room acoustics design [88, 89].  

Measurements of room acoustics require the development of a system 

that permits to retain from sensors outputs the part of the signal 

containing useful information and to remove the effect of measurement 

noise and of external noise. Sound dynamics in a room is modeled by 

partial differential equations for sound pressure or intensity. Such a 

model accounts for multiple wall reflections, refractions and attenuation. 

In this process, the sound in the room becomes increasingly complex, 

compared to the input signal and, moreover, the measured signals contain 

also acoustic measurement noise and noise transmitted from outside the 

room. Proper filtering of the measurement noise and outside noise 

benefits from the knowledge of the dynamic content of the acoustic 

signals received by microphones. For this purpose, in this section, room 

acoustics is numerically simulated to obtain a reference signal for the 

proper selection of the cutoff frequency of the low pass filters used to 

remove noise effects. As a result, useful content of the acoustic signal 

can be properly retained after signal filtering the experimental results. 

Moreover, the simulation model is also validated in this process and,  

as a result, this model can be used during the acoustic redesign of a room 

[88, 89]. 
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6.4.2 Proposed Approach 

 

For this acoustic investigation was chosen the rectangular room shown  

in Fig. 6.7, with a length of 9.4 [m], a width of 1.88 [m] and a height of 

2.2 [m], subject external noise. This room, chosen for this preliminary 

simulation and experimental study, has concrete walls and contains no 

furniture. 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                   

Fig. 6.7 Rectangular room for acoustic investigation 

 

An experimental setup for room acoustics measurements is shown in Fig. 

6.8. The location of the sound source (the speaker) is at about 2.1 [m] 

from the location of the receiver (the microphone). The surface reflection 

coefficients in this room with hard surfaces are approx. 0.85. 

The diagram in Fig. 6.8 shows that, for a Single Input Single Output 

(SISO) case, a sound card is sufficient for providing analog voltage input 

to the speaker and for acquiring the analog voltage output from the 

microphone. Moreover, an advanced sound card has adequate sampling 

rate and resolution for an accurate room acoustic investigation.  

Microphone signals were acquired, saved, processed and displayed using 

MATLAB
TM

 toolboxes. These signals were contaminated with outside 

and measurement noise and had to be signal conditioned. In particular, 

signal post-processing requires the proper choice of the cut-off frequency 

y 

z 

x 

1.88 [m] 

9.4 [m] 

2.2 [m] 
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such that it leads to removing the noise while retaining the useful signal. 

This choice can be facilitated by a simulation study of room acoustics for 

the same input signal.  

                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    

Fig. 6.8 Experimental setup for room acoustics measurements 

 

6.4.3 Simulation Model 

 

In order to simulate the transmission of the sound signal to the 

microphone location, following the direct propagation from the speakers 

and reflections from the wall, a room acoustics model, based on the 

impulse response of an enclosure, was developed using image method 

for acoustic ray propagation. Image method is one of methods in 

geometric room acoustics [82, 84, 86].  Allen and Berkley have 

developed an efficient method for obtaining impulse response of a 

rectangular room using image model technique [85]. In this case, a sound 

ray is used instead of a planar sound wave. The propagation of sound 

rays can be calculated using an image source to determine the length of  

 

 

Output to 

speakers 

9.4 m 
Sound Card 

PC 

Input from 

microphone 
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the ray path. Assuming that the room is a homogeneous medium and that 

the refractions are negligible, the sound rays propagate in the straight 

lines in between walls. Other assumptions are: diffraction is negligible, 

the sound source is omni-directional and all walls have the same 

reflection coefficient. In the experimental study, in order to approximate 

an omni-directional speaker, an array of three speakers was used.  

Preliminary simulations were carried out for an input given by a short 

pulse input signal, in order to evaluate if simulation model works as 

expected. 

Simulation results for the signal intensity versus time at microphone 

location are shown in Fig. 6.9, for the case that rigid walls, and in  

Fig. 6.10, for non-rigid walls [88, 89].  

                     

                      
Fig. 6.9 The signal in the case of a room with rigid walls 

 

                             

The results show that the signals have decaying amplitudes and that the 

non-rigid walls lead to lower amplitudes versus time. These results are 

predictable and can be considered that they provide a first confirmation  
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that the simulation model is correct. Complete confirmation will be the 

result of the subsequent simulation and experimental study for a more 

complex input signal. 

         

                                
Fig. 6.10 The signal in the case of a room with non-rigid walls 

 

6.4.4 Simulation Results Based on Ray Propagation Approach 

 

Simulation and experimental investigation of room acoustics was carried 

out in this paper for a representative signal, shown in Fig. 6.11, selected 

from [87].  

The longer period component in this signal is about 15 [ms] and  

the higher period component of about 0.5 [ms]. The corresponding range 

of frequencies, 67 [Hz] to 2000 [Hz] is illustrative for a preliminary 

investigation of room acoustics. The longer sound component 

wavelength is, in this case, approximately 2.5 m, and this limits the 

accuracy of the image method to geometric dimensions of the same 

order. 

In fact, lowest modal frequencies for this room are 18 [Hz] along x, 

90 [Hz] along y and 80 [Hz] along z, such that only along x there is a 

vibration mode with frequency lower than the input signal component 

with the frequency of 67 [Hz]. Consequently, it is expected that direct 
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propagation and sound reflection along the length of the room shown in 

Fig. 6.8 are properly simulated and could serve as a reference for signal 

conditioning for the experimental study. Figure 6.12 shows the 

simulation results for the acoustic signal at microphone location, as a 

result of the output sound from the speaker, subject to the driving signal 

from Fig. 6.11 [88, 89]. 

 

                  
Fig. 6.11 Input signal to the speakers 

 

 

Simulation results at the microphone location from Fig. 6.12 show no 

signal for the first 0.007 [s], i.e. for the time required to the direct sound 

to propagate over the distance of about 2.1 [m] from the speaker to the 

microphone. Afterwards, experimental results in fig. 6.12 from 0.007 to 

0.014 [s] resemble the input signal from Fig. 6.11 for 0 to 0.007 [s] due 

to the fact that the delayed direct wave is received by the microphone 

during this time. Simulation results after 0.015 [s] differ from the input 

signal due to the effect of wall reflections. These signals differ more and 

more due to wall reflections. These signals will serve as a reference for 

the selection of the low-pass filter design for the experimental study.  
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Fig. 6.12 Simulation results for the acoustic signal at microphone location 

 

 

6.4.5 Experimental Results 

 

The experimental study was carried out using the experimental setup 

shown in Fig. 6.8 and the input signal to the speaker shown in Fig. 6.11, 

also used for the above simulation study. 

It was expected to have differences between the experiment results, 

for example, due to the fact that in experiments were used three speakers 

while in simulations was assumed an omni-directional sound source. 

Also, parametric uncertainty, for example in the case of reflection 

coefficients, can further lead to differences between experimental and 

simulation results. Moreover, measurement noise in microphone output 

further modify experimental results. 
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Figure 6.13 shows the non-filtered experimental result at microphone 

location [88, 89].  

 

                 

Fig. 6.13 Non-filtered experimental result at microphone location 

 

The most obvious differences between the simulation result from  

Fig. 6.12 and the experimental result from Fig. 6.13 can be explained by 

the measurement noise in the experimental study. A significant reduction 

of these differences can be expected from the use of a low-pass filter to 

remove the noise [8]. Various values of the cut-off frequency were tried. 

The results are shown in Fig. 6.14 to 6.17, for the following cut-off 

frequencies: in Fig. 6.14, 2000 [Hz], in Fig. 6.15, 1000 [Hz], in Fig. 6.16, 

800 [Hz], in Fig. 6.17, 500 [Hz] [88, 89].  

The best agreement between simulation results from Fig. 6.12 and 

experimental results appears in Fig. 6.16 for a cutoff frequency of 800 

[Hz]. Such agreement between experimental and simulation results also 

permits to conclude that the simulation model used in this investigation 

is validated, subject to satisfying the constraint that it is limited to 

geometric objects larger than the longest wavelength component of the  

 

 



Advanced Mechatronics 262

input signal. Such a simulation model can, consequently be used for the 

acoustic redesign of the room under investigation, for example for the 

evaluation of the effects of changing wall materials, placing acoustic 

reflectors, furniture and audience etc.   

 

 
Fig. 6.14 The low-pass filtered signals for the cutoff frequency of 2000 [Hz] 

 

 
Fig. 6.15 The low-pass filtered signals for the cutoff frequency of 1000 [Hz] 
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Fig. 6.16 The low-pass filtered signals for the cutoff frequency of 800 [Hz] 

 

 

      
Fig. 6.17 The low-pass filtered signals for the cutoff frequency of 500 [Hz] 

 

The room used in these experiments was a simple rectangular room with 

no furniture. More complex room geometry and the presence of furniture  
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result in significantly richer sound signals and in such case the 

simulation study for the proper design of the low pass filter is 

significantly more useful.  

This simulation study based on image method proved useful for the 

proper design of the measurement system for room acoustics, in 

particular for the design of the low-pass filter for removing measurement 

noise. The agreement between experimental and simulation results 

confirms the validity of the simulation model and justify its use acoustic 

redesign of the room. Further advantages of the proposed approach result 

from the possibility of assessing the efficiency of the location of the 

microphones for room acoustics measurement. 

 

6.5 Discrete Inverse Problems Based on Direct and Reflected Ray 

Propagation  

 

6.5.1 Parameters Estimation Using Direct Ray Propagation 

 

Boundary measurement of direct ray propagation in distributed 

parameters systems use a linear model linking the direct wave reception 

by receptors located on the boundary, apart from one another, while the 

sources of the signal are located on the boundary opposite to emitters. 

[67]. 

Figure 6.20 shows I emitters and J receptors on the boundary of an 

acoustic field. Assume the unknown position dependent velocity v(x, y). 

The propagation from emitter Ei to receptor Rj, is characterized by the 

position variable along Ei to Rj, with α from Ei to R j and the velocity is 

v(α) dependent of α. The propagation time Tij from Ei to Rj is given by 

[67] 

 

∫=
j

i

R

E

ij
)(v

d
T

α
α

 

 

In order to obtain a linear equation, v [m/s] in the denominator is 

replaced by slowness with s(α) unit [s/m],  
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s(α) =1 / v(α) 

 

such that 

 

∫ ⋅=
j

i

R

E

ij d)(sT αα  

 

 

 

 

 

 

 

 

 

 

 

 

      

 

                   

Fig. 6.20 Four pixel representation of direct ray propagation 

 

The discrete form of the integration is obtained for K= pixels. For even 

numbers J = I, K is 

 

K= (I / 2) · (J /2) = J
2 
/ 4 

 

such that  

 

∑
=

⋅=
K

1k

kijj shT      for j-1,2,…, J 
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where hij  = α k (i, j) is the length of the segment Ei to Rj, that crosses the 

pixel which has the slowness sk. In matrix form, the direct problem is 

 

T = h · s 

 

where matrix h is [J · K]. 

The estimation of slowness sk in each pixel k = 1,2,…,K, results form 

the inverse problem 

 

s = h
-1

 · T 

 

Example 6.3 Numerical estimation of slowness for J = I = 4 measure-

ment values for y [1·4] from receptors Rj, j = 1, 2, 3, 4 and K = J
2 
/ 4 = 4 

pixels. Assume 

 

                                              y = 

2.1000 

2.0000 

2.1000 

2.0000 

 

and the four pixels shown in Fig. 6.21 of 1 [m] by 1 [m] each. The square 

matrix h [4 · 4] results as follows 

 

h = 

2     2     0     0 

0     0     2     2 

2     0     2     0 

0     2     0     2 

 

 

Is the problem even-determined? 
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Fig. 6.20 Four pixel representation of direct ray propagation                    

 

MATLAB solution is 

 

h=[2 2 0 0;0 0 2 2;2 0 2 0;0 2 0 2] 

 

h = 

 

     2     2     0     0 

     0     0     2     2 

     2     0     2     0 

     0     2     0     2 

 

>> inv(h) 

Warning: Matrix is singular to working precision. 

 

ans = 

 

   Inf   Inf   Inf   Inf 

   Inf   Inf   Inf   Inf 

   Inf   Inf   Inf   Inf 

   Inf   Inf   Inf   Inf 

 

 
E2 

 

 

 

 

E1 

       E3                            E4 

 
R2 

 

 

 

 

R1 

         R3                 R4  

s1 

 

s3 

 
s4 

 

s2 
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>> rank(h) 

ans = 

     3 

The square matrix h [4 · 4] is of rank = 3 and makes this problem under-

determined, for the number of unknowns = 4 and the solution requires 

the calculation of the pseudo-inverse. 

>> pinv(h) 

ans = 

    0.1875   -0.0625    0.1875   -0.0625 

    0.1875   -0.0625   -0.0625    0.1875 

   -0.0625    0.1875    0.1875   -0.0625 

   -0.0625    0.1875   -0.0625    0.1875 

>> y=[2.1; 2; 2.1; 2] 

y = 

    2.1000 

    2.0000 

    2.1000 

    2.0000 

>> s=pinv(h)*y 

s = 

    0.5375 

    0.5125 

    0.5125 

    0.4875 

>> 
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Next example considers eight measurements y [8 · 1] for estimating four 

unknown slowness values s [4 · 1]. 

 

Example 6.4 Obtain the numerical estimation of slowness for an over-

determined problem with 

 

                                              y = 

2.1000 

2.3000 

2.0000 

2.3000 

2.1000 

2.3000 

2.0000 

2.3000 

 

and the non-square matrix h [8·4] 

 

                            h = 

2.0000    2.0000         0         0 

0    2.3400    2.3400         0 

0         0    2.0000    2.0000 

2.3400         0         0    2.3400 

2.0000         0    2.0000         0 

2.3400         0         0    2.3400 

0    2.0000         0    2.0000 

0    2.3400    2.3400         0 

 

MATLAB solution is 

 

>> inv(h) 

??? Error using ==> inv 

Matrix must be square. 

 

>> pinv(h) 
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ans = 

 

0.1514   -0.0226   -0.0986    0.0843    0.1514    0.0843   -0.0986   -0.0226 

0.1514    0.0843   -0.0986   -0.0226   -0.0986   -0.0226    0.1514    0.0843 

-0.0986   0.0843    0.1514   -0.0226    0.1514   -0.0226   -0.0986    0.0843 

-0.0986  -0.0226    0.1514    0.0843   -0.0986    0.0843    0.1514   -0.0226 

 

>> rank(h) 

 

ans = 

 

     4 

 

For  

 

y = 

 

    2.1000 

    2.3000 

    2.0000 

    2.3000 

 

the estimation of s results as follows 

 

>> y=[2.1;2.3;2;2.3;2.1;2.3;2;2.3] 

 

y = 

 

    2.1000 

    2.3000 

    2.0000 

    2.3000 

    2.1000 

    2.3000 

    2.0000 

    2.3000 
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>> s=pinv(h)*y 

 

s = 

 

    0.5253 

    0.5003 

    0.5003 

    0.4753 

 

>> 

 

The pseudo-inverse is used for this over-determined problem, but input 

data have to be physically relevant and with reduced measurement noise 

to make the estimation accurate enough.   

 

6.5.2 Other Inverse Problems Using Ray Propagation 

 

Direct ray propagation model can also be used for the estimation of  

the unknown location of an emitter using a solution similar to 

triangularization using multiple receptors measurement of the signal 

arrival time form a single emitter. [67]. 

Boundary measurement of single ray reflection in distributed 

parameters systems is used in tomographic imaging [67]. It consists in an 

inverse problem of estimating the location of an anomaly given travel 

time measurements of signal from an emitter to the anomaly and 

reflected to a receptor. Reference [67] gives a detailed presentation and 

examples of application for crack location inside a solid body by 

measuring the first reflection time.  

 

 

Problems 

 

1. For a rectangular room, as shown in Fig. 6.6, with dimensions  

X = 9.4 [m], Y = 2.2 [m] and Z = 1.88 [m], calculate the natural 

frequencies for the first five modes, in case of sound speed in air  

c = 343.6 [m/s]. 
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2. Estimate the slowness for J = I = 4 measurement values for y [1 · 4] 

from receptors Rj, j = 1 to 4 and K = 4 pixels, given 

                                          y = 

2.0100 

2.0001 

2.0500 

2.0002 

 

and h from Example 6.3. 

 

3. Repeat problem 2 for 

                                    h = 

2     3     0     0 

0     0     2     3 

2     0     2     0 

0     2     0     2 

 

4. Obtain the numerical estimation of slowness for an over-determined 

problem with 

                                          y = 

2.0100 

2.1000 

2.0000 

2.2000 

2.1500 

2.2000 

2.0100 

 2.200 

and h from Example 6.4.  
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Chapter 7 

Thermo-Mechatronics   

7.1 Direct Problem: Heat Flow Modeling and Simulation 

 
7.1.1 Direct Problem Solving for 2-Dimentional (2D) Heat  

Conduction from a Distributed Heat Source 
 

Direct problem refers to the effect of heat density or a distributed heat 

flux F(x, y, t) sources on the distributed parameters system temperature 

u(x, y, t). For 2-dimensional (2D) forced heat flow case the model is [25] 

 

)t,y,x(F)
y

)t,y,x(u

x

)t,y,x(u
(k

t

)t,y,x(u
2

2

2

2

+
∂

∂
+

∂

∂
⋅=

∂

∂
 

 

or, in compact form 

 

xx yyu k (u u ) F′= ⋅ + +  

 

or, in a more compact form 

 

Fuku 2
t +∇⋅=  

 

where  

 

u(x, y, t) is the temperature in a solid body in the point x, y at time t 

k is diffusivity given by 

k = K / (σ · τ) 
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σ is the specific heat of the solid body conducting the heat  

τ is the volume density [kg/m
3
] 

F(x, y, t) is heat density (or heat flux) from an internal distributed heat 

source. 

Boundary conditions are specific to each particular case. For 

example, for an insulated surface the boundary condition is given by  

∇u · n = 0 where n is the vector normal to that surface. 

Initial conditions take the form 

 

u(x, y, 0) = φ(x, y) 

 

The method of separation of variables leads to the proposed solution 

 

u(x, y, t) = X(x) · Y(y) · T(t). 

 

Substituting it in the homogenous heat equation (F = 0) 

 

xx yyu k (u u )′= ⋅ +  

 

gives 

 

))t(T)y(Y)x(X)t(T)y(Y)x(X(k)t(T)y(Y)x(X ⋅′′⋅+⋅⋅′′⋅=′⋅⋅  

 

or 

 

)y(Y

)y(Y

)x(X

)x(X

)t(Tk

)t(T ′′
+

′′
=

⋅

′
 

 

To achieve validity for all x, y, t, this equation is separated into three 

ordinary differential equations, one first order and two second order  

 

λ=
⋅

′

)t(Tk

)t(T
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1
)x(X

)x(X
λ=

′′
 

 

2
)y(Y

)y(Y
λ=

′′
 

 

where λ, λ1 and  λ2 are constants to be determined separately. 

The first ordinary differential equation, a first order equation, gives 

the time-dependent amplitudes. For the given initial conditions, Fourier 

series gives [25] 

 

)e1(
a

F
)t(T

ta

mn

mn
mn

mn−−=  

 

where the coefficients are given in specialized literature[25]. 

For the above boundary conditions, the solution u(x, y, t) of the direct 

problem for this linear system is obtained by superposition for the last 

two second order ordinary spatial differential equations as a double 

infinite series with sinusoidal shape functions   

 

mn mnm
u(x, y, t) T (t) sin(n x) P sin(m y)

n

∞ ∞

= =
= ⋅ ⋅ π ⋅ ⋅ ⋅ ⋅ π ⋅∑ ∑1 1

 

 

This solution verifies the above boundary conditions for πλ ⋅= n1 and 

πλ ⋅= m2 for n, m = 0, 1, 2, 3….  

The general solution becomes 

 

)ymsin(P)xnsin()e1()
a

F
()t,y,x(u mn

ta

1m
mn

mn

1n

mn ⋅π⋅⋅⋅⋅π⋅⋅−⋅= ∑∑
∞

=

∞

=

 

 

This direct problem solution is not in closed form and, as in Ch. 6, this 

results in major difficulties in solving the inverse problem of determining 

F(x, y, t) for achieving a desired u(x, y, t). 
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MAPLE and FEMLAB examples illustrate the use of double infinite 

series solution of the heat flow direct problem. 

 

7.1.2 Direct Problem Simulation of 2D Heat Flow for a Continuous 

Point-Heat Source Input Using MAPLE
TM 

 

As an example, the following 2-D heat flow problem, for a square thin 

plate of 1 [m] by 1[m], with the temperature fixed at 0 at all points along 

the square boundaries, is presented in the form of MAPLE plot, shown in 

Fig. 7.1, for a particular constant internal heat source, given by [25, 107] 

 

F(x, y) = 30 · sin(2 · π · x)  · sin(2 · π · y)    for  0≤ x ≤ 0.5 and  0≤ y ≤ 0.5 

            = 0                                                    for  0.5< x ≤ 1  and  0.5< y≤ 1 

 

Fig. 7.1 MAPLE plot for the internal heat source 

 

The results are based on the above double series solution of the heat flow 

equation, for the non-oscillatory time variation of the temperature u(0.5, 

0.5, t) at the heat source located in the center (0.5. 0.5) of the square 

plate.  

Results for the spatial variation of the temperature u(x, y, 0.05) are 

shown in Fig. 7.2. 
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Fig. 7.2 Spatial variation of the temperature u(x, y, 0.05)   

 

Results for the spatial variation of the steady state temperature  

u(x, y, ∞) are shown in Fig. 7.3. Spatial temperature distribution over 

time, shown in Fig. 7.1 for t = 0, Fig. 7.2 for t = 0,5 [s] and Fig. 7.3 for  

t → ∞, is dominated by a uni-modal shape with maximum at (0.25, 0.25), 

which coincides with the location of the maximum of heat source 

temperature, shown in Fig. 7.1.  

These results show that single input F(x, y) cannot generate an 

arbitrarily shaped desired temperature distribution and also that 

temperature sensors, located at the plate boundaries, receive delayed and 

reduced temperature variations over time. This illustrates the difficulties 

in solving inverse problems of the control of point sources of heat to 

achieve a desired temperature distribution and of remote monitoring of 

the temperature. In fact, this remote monitoring of temperature was one 

of the first studied ill-posed inverse problems [30].  
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Fig. 7.3 Spatial variation of the steady state temperature u(x, y, ∞) 

 

7.1.3 Direct Problem Simulation of 2D Heat Flow for a Short 

Temperature Pulse Input Using FEMLAB
TM 

 

In this section, FEMLAB
TM 

simulations are carried out for an unknown 

heat source located at the center of a rectangular plate that produces a 

fast temperature change, represented as a short pulse [56, 57].  The 

simulations were carried out for a rectangular steel plate of dimensions 

1.5 [m] by 2 [m], subject to a heat source of 0.2 [m] diameter at the 

center. Outer boundary   is assumed thermally insulated at all sides. Inner 

domain of the circular heat source has boundary conditions that 

correspond to a very intense heat source Q = 10
6
 MW for t < 1 (i.e. for a 

heat source that is on for less than 1 second and then is shut-off.). Initial 

temperature is 0 [
0
C]. 
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Figures 7.4–7.9 show the 2D spatial distribution of the temperature  

u(x, y, t) versus time [36]. 

 

 

Fig. 7.4 Temperature u(x, y, 0.0) 

 

 

Fig. 7.5 Temperature u(x, y, 0.2) 
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Fig. 7.6 Temperature u(x, y, 0.8) 

 

 

Fig. 7.7 Temperature u(x, y, 5.0) 
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Fig. 7.8 Temperature u(x, y, 80) 

 

 

Fig. 7.9 Temperature u(x, y, 175) 

 

It can be observed that the fast and significant rise in time of the 

temperature at the location of the heat source, in the center of the 

rectangular plate, leads to slow and a less significant temperature 

increase at locations further away from the heat source. These locations 

are where sensors were assumed to have been placed. The inverse 

problem difficulties in reconstituting (estimating) the heat source input  
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into the center of the plate from remote temperature sensing are clearly 

illustrated by these results. These difficulties arise in general in the case 

of remote sensing, when the propagation of the signal leads to ill-posed 

inverse problems. Further investigations for solving such problems can 

rely on recent results in applying the mollification method [22, 47] and 

regularization methods [41, 93]. 

It can be observed that the values of the temperature decreases as the 

distance from the internal heat source increases. 

As the distance from the source to the estimation point increases it 

takes much longer time for the increase in temperature to arrive at the 

boundary and, moreover, the rate of temperature increase is significantly 

lower. 

These results indicate that significant analytical and simulation 

studies are required for the investigation and testing of solutions to the 

inverse heat problem to be solved for remote monitoring. 

 

7.1.4 Direct Problem Formulation for 3-D Heat Flow 

    

Direct problem is formulated for 3-dimensional (3D) heat conduction 

problem by the non-homogenous equation  

  

Fuku 2
t +∇⋅=  

 

or 

 

F)uuu(k
t

u
zzyyxx +++⋅=

∂
∂

 

 

where  

 

u(x, y ,z ,t) is the temperature in a solid body in the point x, y, z at time t. 

k is diffusivity given by 

k = K / (σ · τ) 

σ is the specific heat of the solid body conducting the heat  

τ is the volume density [kg/m
3
] 
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F(x, y, z, t) is heat density (or heat flux) from an internal heat source.  

  

Issues in remote monitoring and control with point sensors and point 

actuators are the same as for the above 2D example, but obviously are 

even more difficult to solve in real-time. 

 

7.2 Inverse Problem Solution for Remote Temperature Monitoring 

 

7.2.1 Introduction 

 

In this section remote sensing issues will be analyzed taking into account 

that monitoring in this case can lead to inverse problems that are ill-

posed. For this case of sensing the solutions of the resulting ill-posed 

problem of estimation of internal variables of a system from 

measurements on the boundary of the system will be investigated. 

These difficulties are typical issues in real-time remote temperature 

sensing [30, 36].  

Advanced systems require sensing, acquisition and processing of 

signals from multiple sensors [31].  

The development of such systems cannot rely only on traditional 

design tools and requires extensive investigations of new tools based, 

among others, on non-linear discontinuous systems modeling of the field 

propagation of signals and power from the input throughout the system 

and to the sensors.  

In this section the focus is on real-time remote temperature sensing, 

away from heat source location.  

Temperature measurement and heat flow estimation has been 

analyzed for other distributed parameters applications and the inverse 

heat problem solving difficulties were identified and investigated [42, 43, 

35]. For example, for the case of an explosion sensing, the consequences 

and the solutions of the resulting ill-posed problem of estimation of 

internal variables of a system from measurements on the boundary of the 

system are investigated in [22, 30, 44]. Local or distributed catastrophic 

events are spreading in seconds to hours and the propagation medium 

operates as a low pass filter that filter out useful high frequency signal 
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components before reaching remote sensors. This physical low pass filter 

effect is the main cause for inverse problems to become ill-posed. 

In field propagation of signals, three cases can be considered: 

A) Locally initiated heat source (for example, explosions producing heat 

and/or acoustic waves that spread in the free space, floods etc.).  

B) Distributed and moving sources (hurricanes, air and water biological 

contamination, etc). 

C) Infrared waves associated with the heat generation that propagate 

faster over longer distances in free space and with less significant 

attenuation such that their propagation medium acts to a much lesser 

extend as low pass filters.  

Remote temperature sensing is more efficient with infrared radiation 

sensors, but this is not possible in the case of solid or liquid propagation 

fields. 

 

7.2.2 Inverse Problem for Heat Flux Input Remote Estimation from 

Temperature Measurements 

 

This section presents the analytical solution for the identification of the 

difficulties in remote estimation of the unknown heat flux input based on 

the output from sensors located on given boundaries of the thermal field. 

Inverse heat conduction problem is first analyzed considering straight 

line 1D heat conduction equation for x > 0 and t > 0  

 

t

)t,x(u

x

)t,x(u
2

2

∂
∂

=
∂

∂
 

 

where u(x, t) is the temperature (in dimensionless units) in point x at  

time t. 

Exact measurements of the temperature u(xm, t) come from the 

temperature output Tm(t), of the sensor located at x = xm  

 

u(xm, t) = Tm(t) 

Boundary conditions are: 
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u(x, t) < ∞         for a semi-infinite body  

u(0, t) = T(t)      in case that the temperature at x = 0) is the unknown  

ux(0, t) = - q(t)   in case of unknown surface heat flux q(t) entering at  

                              x = 0.   

 

In Ch. 2.3 Fourier transform approach was used for the study of 

frequency effect in the case of the non-collocated temperature input. 

The equation 

 

q k u=− ⋅∇  

 

at the surface (x = 0),  q(0, t) can also be solved using infinite series 

approach proposed by Burggraf [30]. 

The time-domain solution of the 1D equation for remote estimation of 

heat flux qest(0, t) from temperature measurements T, is obtained using 

infinite series approach as follows [25, 30] 

 

qest(0, t) = q(xm, t) + Σ∞n=1{xm
2n-1 

/ [k
n
 · (2n + 1)!]} · 

(d
 n
T 

 
/ dt

 n
) +Σ∞n=1{xm

2n 
/ [k

 n
 · (2n)!]} · (d

 n
q(xm, t) / dt

 n
) 

 

where the heat flux q(xm, t) and its time derivatives are calculated using a 

similar procedure based on infinite series approach.  

It can be observed that the higher the derivatives d
n
T

 
/ dt

n 
the larger 

the values of the multiplicative coefficients {xm
2n-1

/[k
n
 · (2n+1)!]} and 

{xm
2n 

/ [k
n
(2n)!]} for larger distances between sensor location x = xm and 

the surface x = 0. This exact result consists in a series expansion for 

higher derivatives d
n
T

 
/ dt

 n 
and corresponds to the multiplicative 

coefficient function of frequency ω from Ch. 2.3 

 

exp{-√(ω/ 2)[1+ i · sgn(ω)]} 

 

Similar difficulties appear in the case of other inverse problems for 

distributed parameters systems described by elliptic PDE, i.e. for other 

cases of using acoustic or vibration sensing [34, 52, 44]. 

The above equation for the estimation of the heat flux qest(0, t) taking 

into account the effect of the distance xm from the heat flux input to the 
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location of the sensor shows that the estimation for higher frequency 

components, that characterizes fast varying signals, becomes more and 

more difficult as the distance xm increases. 

 

Problems 

 

1. Assume the 2-D heat flow problem, for a square thin plate of 2 [m] 

by 3[m], with the temperature fixed at 0 at all points along the square 

boundaries.   

  Obtain a MAPLE plot, for a constant internal heat source, given             

 by  

 

F(x, y) = 20 · (sin 2 · π · x) · (sin 2 · π · y) 

  for 0 ≤  x ≤ 1 and 0 ≤ y ≤ 1 

  = 0 for 1 < x  ≤ 2 and 1 < y ≤ 3 

 

2. Simulate the heat flow in a rectangular steel plate of dimensions 1 

[m] by 3 [m], subject to a heat source of 0.1 [m] diameter at the 

center. Outer boundary   is assumed thermally insulated at all sides. 

Inner domain of the circular heat source has boundary conditions that 

correspond to a very intense heat source Q = 10
8
 [MW] for a heat 

source that is on for less than 1 second and then is shutoff. Initial 

temperature is 0 [
0
C]. 
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Chapter 8 

Magneto-Mechatronics   

8.1 Introduction 

 

The continuously increasing demands for fast and accurate position 

control systems from opto-electronics, computer hardware and 

peripherals, precision machining, robotics and, recently, auto industry, 

have stimulated the interest in the use of new, non-conventional 

implementations of position control. An interesting solution is offered by 

the use of magnetic bearings for avoiding dry friction, a major source of 

reduced precision in positioning. 

This section will review recent results regarding magnetic bearing 

models, observers and controllers. Models and observers for magnetic 

levitation, magnetic bearings and combined frictionless motor-bearing 

systems will first be presented. The second part will be dedicated to  

the presentation of magnetic bearings and motor-bearings systems 

controllers (PID, state feedback, LQ, time-delay, PDD, PIDD, feedback 

linearization, state derivative feedback and integral controllers etc.). 

Simulation examples will illustrate the models and the controllers. 

In the presentation, a single axis nonlinear model is used. This model 

permits to focus on the performance of the proposed controllers, using  

SIMULINK
TM

 simulators for a linear (PID) controller and then for 

nonlinear controllers (feedback linearization based controller and for a 

state derivative feedback controller) that will illustrate the relative 

improvements in case of nonlinear controllers compared to a linear 

controller [94]. 
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Feed-forward compensation controllers, as well as feedback 

linearization with “integral control” and a full order observer were tested 

on 1D magnetic levitation models [72].  

The results of the effect of sampling rate taking into account fixed 

time delays, analog low pass-filter, and zero-order-hold device effects on 

arious linear (PD, PDD and PIDD) controllers are documented in [95].  

Approaches based on time delay control are presented in [96-98]).  

State feedback for azimuth motion of a frictionless positioning device 

is developed in [97]. Magnetic bearing control used one-step-backward 

plus current step signals for nonlinear compensation. 

LQ control of magnetic bearings, using 1 DOF and 5 DOF models for 

magnetic bearings of a brushless motor was developed in [99]. 

Hysteresis in electromagnetic actuators can be compensated through 

Preisach model inversion. The goal was the compensation of hysteresis 

effects in magnetic suspension systems using soft ferromagnetic 

materials. A 1 DOF model of the system was used [101]. 

In a recent review, of industrial solutions for magnetic bearing 

systems control, only linear controllers were listed [104].  

 

8.2 Direct Model 

 

The model considered in this section for the control of magnetic 

suspension systems through nonlinear control schemes is that of a single 

axis system used for maintaining a ball at a desired height when it is 

subjected to external disturbances [72, 105, 106]. Multi axis systems 

require complex models that would not serve, at this stage of the 

analysis, the purpose of comparing the performance improvement of 

nonlinear controllers versus linear controllers. Fig. 8.1 shows a single 

axis magnetic levitation system used in this section for control analysis. 
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Fig. 8.1 Single axis magnetic suspension system 

 

The system shown in Fig. 8.1 can be modeled by the 1 DOF (Degree of 

Freedom) nonlinear equation of motion [72, 127] and the voltage 

equation for the electric circuit 

 

 

L di(t)/dt = v(t) – Ri(t) 

 

The general form of an affine system 

 

dx / dt = f(x) + g(x) · u 

                       

is obtained by denoting variables for state space representation as follows 

 

x1 = h 

x2 = dh / dt 

x3 = i 

u = v = R · i + L · di / dt 

 

 

2

2

2

h(t))/(i(t)kgm
dt

h(t)d
m ⋅−⋅=
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such that the scalar equations of the nonlinear state space model are 

 

 

Nonlinear model in matrix form is given by 

 

 

For R = 0 and L = 1, the equilibrium position h0 is maintained by a 

current 

   

i0 = h0 · √(m · g / k) 

 

For m = 1 [Kg], g = 9.81 [m/s
2
] and k = 0.1 [Nm

2
/A

2
] the equilibrium 

position for h0 = 0.02 [m] is maintained by i0 = 0.198 [A].  

 

8.3 Simulation Results for Linear Control 

 

The PID controller shown in Fig. 8.2 has as input the error (xd - x1) and 

generates the command u for the nonlinear model given above in matrix 

form. The output of the “Nonlinear model” block is the position variable  

x1 =  h [107]. 
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Fig. 8.2 PID control 

 

The PID controller is given in the SIMULINK model by the s-Function 

 

[num,den] = tfdata(150*tf(-1*[1 20],[1 50])*tf([1 1],[1 0]),'v') 

num = [-150 -3150 -3000] 

den = [1 50 0] 

 

where the proportional gain is chosen 150 and the PD control gains are 

chosen from root locus analysis with a zero at 20 and a pole at 50. The 

integral control is given by (s + 1) / s [105]. 

The system is controlled for a specific desired value xd. Feed-forward 

compensation of gravity effect m · g is achieved by applying an input 

voltage v0 = R · i0 = R · h0 · √(m · g / k).  

For R = 5, m = 1, g = 9.81 and k = 0.1, the equilibrium position for  

h0 = 0.02 is maintained by v0 = R · i0 = 5 · 0.1982 = 0.991 [V[. This input 

voltage permits to keep the magnetic ball in the equilibrium position h0 

[94].  

Simulations were carried out for 

a) step input of amplitude xd = 0.018 [m] and the initial condition h(0) = 

0.03 [m] 

b) step input of amplitude xd = 0.03 [m]  and the initial condition h(0) = 

0.18 [m]. 

  

a) Simulation results for step input of amplitude xd = 0.018 [m] and the 

initial condition h(0) = 0.03 [m] are shown in Fig. 8.3. As seen from 

PID 

control 

Nonlinear model in 

matrix form 

x1 = h 

xd 

 

 + 

  - u 
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the response, the system is stable for a significant off-equilibrium 

initial condition. 

 

Fig. 8.3 Position h(t) for a step input of amplitude xd = 0.018 [m] and initial position 

h(0) = 0.03 [m] 

 

b) A higher value of the step input makes the system become unstable 

and the ball falls outside the region where the attraction force of the 

electromagnet is effective. Fig. 8.4 shows the simulation results for 

step input of xd =0.03 [m] and initial position h(0) = 0.018 [m] and 

indicates an unstable system with h(t) diverging indefinitely. 

Fig. 8.4 Position h(t) for a step input of amplitude xd = 0.03 [m] and initial position  

h(0) = 0.018 [m] 
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8.4 State-Input Linearization of a Magnetic Levitation System 

 

8.4.1 Feedback Linearization 

 

Feedback linearization approach defines new state variables function of 

x1, x2 and x3 and a new control variable v generated by a linear feedback 

controller using a nonlinear input transformation. 

For an affine system, a state transformation z =T(x) results from the 

conditions [74] 
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Choosing a simple solution 

 

z1 = T1 = x1 

 

gives 
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The resulting State Transformation z = T(x) is [72] 

 

z1 = x1 

z2 = x2 

g
xm

xk
z

2
1

2
3

3 +
⋅

⋅
−=  

 

Time derivative of z3 gives 
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Inverse state transformation x = T
-1

(z) is 

 

11 zx =  

22 zx =  

 

The original state space model was 

 

  

A new control variable v is defined as  
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v = 3zɺ  

 

such that 
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x
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becomes 
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The solution for u gives 

 

3

1
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3

2
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x
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⋅
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For the linearized system, a full state feedback control law can now be 

applied. The original nonlinear state space model with states x1, x2 and x3 

and input u, subject to the above nonlinear control u and state 

transformation z = T(x), results in a linearized system with new states z1, 

z2 and z3 and new input v [127]. A  Linear Full State feedback can 

generate the new control variable, v. 

 

8.4.2 State-Input Linearization and Linear Feedback Control 

 

The new control variable, v, is given by the Linear Full State feedback 

equation 

 

 

Figure 8.5 shows the block diagram of the feedback linearization control, 

used in simulations for m = 1. 

The blocks from Fig. 8.5 are the following: 

3322d11 zGzG)x(zGv ⋅−⋅−−⋅−=
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-Linear Full State Feedback to generate v given z1, z2 and z3  

-Nonlinear Input Transformation of v into u  

-Nonlinear System Model for the states x1, x2 and x3 given input u  

-State Transformation z = T(x).  

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Fig. 8.5 Full state feedback control and feedback linearization of the nonlinear system 

 

A SIMULINK program was designed based on the block diagram from 

Fig. 8.5.  Simulations were carried out for a step input of xd = 0.035 [m] 

an initial position h(0) = 0.022 [m] and gains G1 = 32, G2 = 32 and G3 = 0 

[94]. The results are shown in Fig. 8.6 

Feedback linearization and full state feedback based controller lead to 

a stable response in the case in which a PID control resulted in an 

unstable system. The desired position xd = 0.035 [m] for the case shown 

in Fig. 8.6 is far from the equilibrium position of 0.02 [m] and is reached 

after a large overshoot. The much smaller overshoot from Fig. 8.3 is 

explained by a desired position of 0.018 [m], much closer to the 

equilibrium position of 0.02 [m]. 
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Fig. 8.6 Position z1 = x1 = h(t) for the system control with feedback linearization 

 

8.5 Nonlinear Controller of a Magnetic Suspension System 

 

This controller includes state derivative feedback and is based on the 

input u and its time derivative [94] for a non-affine system with state 

vector x and scalar input 

 

dx / dt = F(x, u) 

             

Taking the time derivative of dx / dt = F(x, u) 

 

          

the control variable u  obtained from the above equation as du/dt 

 

where the new input v has the dimension of dx
2 
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2
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For the mechanical model of the nonlinear system given in state space 
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0
du

for)
dt

dx

dx

u),(
(v

u

u)(x,

dt

du
1

≠
∂

⋅
∂

−





∂

∂
=

−
FxFF

dt

du

δu

u)(x,

dt

d

x

u),F(

dt

d
2

2

⋅
∂

+⋅
∂

∂
=

Fxxx



Advanced Mechatronics 298

 

the above equation for du/dt gives  

 

 

where v has the dimension of an acceleration.  

The nonlinear controllers, given by this equation and the control 

variable u obtained above as a Nonlinear Input Transformation are 

restricted to conditions in which the variables u and x1 in du/dt equation 

do not cross zero value. This is due to the fact that these variables appear 

in the denominator of the nonlinear control functions. 

A controller consisting of PD feedback plus acceleration feedback, a 

PDA controller, can be chosen for obtaining the new control variable v 

  

where Kp, Kd and Ka are the position velocity and acceleration feedback 

error gains, respectively. Compared to the feedback linearization 

controller from Section 8.4, in this case a third state x3 is not defined, but 

the resulting du/dt has to be integrated. The fact that no state 

transformation z = T(x) is required represents an important computation 

simplification.  

Figure 8.8 contains the following blocks: 

- PDA Control that generates v given states x1and x2 and state derivative 

dx2/dt; 

- Nonlinear Input Transformation with input v and the states x1and x2 

and output du/dt; 
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- Nonlinear System with input u and output the states x1and x2 and state 

derivative dx2/dt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.8 Block diagram for PDA and nonlinear input v transformation controller 

 

The SIMULINK simulation results for state derivative controller for step 

input of 0.035 [m] and initial condition h(0) = 0.0242 [m] are shown in 

Fig. 8.9. 

 

Fig. 8.9 Simulation results for state derivative controller 

PDA   Control 

with gains Kp, 

Kv and Ka   
 

 du / dt 
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The results indicate that, again, the response corresponds to a stable 

system. The steady-state error is very small. The overshoot is high but 

the response shows, as in the case from section IV, a stable system, for a 

case in which a linear control would lead to an unstable system. Better 

transient performance can be obtained by a more elaborate controller 

design. 

The results presented in this chapter permit to conclude that the 

nonlinear controllers, based on state-output linearization and state 

derivative control, while computationally more complex, increased 

significantly the domain of desired positions away from equilibrium for 

which the system remains stable. The proposed state derivative control 

has the supplementary advantage of being computationally less 

demanding than the on state-output linearization approach. 

This analysis, based on a 1- DOF model, ignored many complex 

phenomena of multi-DOF systems but permitted an evaluation of various 

linear and nonlinear controllers to be further considered as valuable 

candidates for use in systems involving magnetic levitation. 

 

Problems 

 

1. Simulate using SIMULINK the PID control from Fig. 8.2 for 

proportional gain is chosen 125 and the PD control gains are 

chosen from root locus analysis with a zero at 25 and a pole at 60 

and an integral control given by (1 + 1 / s), for a) h(0) = 0.04 [m] 

and xd = 0.019 [m] and b) h(0) = 0.019 [m] and xd  = 0.04 [m]. 

 

2. Simulate using SIMULINK the full state feedback control and 

feedback linearization from Fig. 8.5 for h(0) = 0.019 [m] and xd = 

0.04 [m] and proportional gains  G1 = 30, G2 = 30 and G3 = 0. 

 

3. Simulate using SIMULINK the PDA and nonlinear input 

transformation controller from Fig. 8.8 for h(0) = 0.019 [m] and  

xd = 0.04 [m] and proportional gains Kp = 30, Kv = 30 and Ka= 

0.0001. 
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Chapter 9 

Inverse Problems Issues for Non-Minimum 

Phase Systems 

9.1 Direct and Inverse Problems for Non-Minimum Phase 

Nonlinear Systems   

 

9.1.1 Introduction 

 

Feedback linearization is an inverse problem solution, used as a rigorous 

approach for the control of direct problems of non-linear systems. One of 

the most challenging difficulties in solving an inverse problem appears in 

the case that the direct problem corresponds to a non-minimum phase 

system. Even after successful design of a nonlinear controller, the issue 

of the non-minimum phase problem remains. A solution to solve the 

difficulties of inverse dynamics for such systems with non-minimum 

phase dynamics is output redefinition [75]. The output redefinition 

technique is formulated such that the resulting system to be inverted is a 

minimum phase system. This corresponds to a reduced order minimum 

phase approximation. 

 

9.1.2 Direct Problem for Non-Minimum Phase Systems  

 

If the non-minimum phase system is nonlinear, its linearization facilitates 

the calculation of the corresponding positive zeros in the direct problem 

formulation.  The approach used here is Jacobian linearization. 

Consider a non-minimum phase nonlinear time invariant system of 

the form 
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dx / dt = f(x) + g(x) · u 

y = h(x) 

 

where state x y, u are the vectors of states, outputs and control, 

respectively. f(x), g(x) and h(x) are nonlinear functions and assumed to 

be smooth.  

The Jacobian linearization of system about x = 0 is given by 

 

dx / dt = A · x + B · u 

y = C · x 

where 

   

A =δf / δx |x=0 

 

B = g(0) 

 

   C A =δh / δx |x=0 

 

 

After a positive zero is found, matrix C is recalculated by moving 

positive zeros to the left half of s plane as C* using the output 

redefinition technique presented in [74]. The redefined output 

corresponds to a minimum phase system.  

Assume the output rewritten is in form 

 

y = h(x) = C · x + hav(x) 

 

where hav(x) is of order 2 or higher in x.  The new output y* is 

 

y* = C* · x + hav(x) 

 

Consequently, the nonlinear system is approximated by a new system 

 

dx / dt = f(x) + g(x) · u 

y* = C*· x + hav(x) 
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This system is a minimum phase system, and the feedback linearization 

control law can be applied to it to facilitate controller design. 

 

9.1.3 Neural Network Approach to Inverse Dynamics   

 

The complex calculations related to the output redefinition of system 

dynamics make a real-time computation very difficult. In order to 

facilitate the computation of the algorithm for real-time control, a neural 

networks approach was proposed [108, 112]. This method benefits from 

NARMA-L2 toolbox of MATLAB
®
 which can be viewed as a neural 

network based feedback linearization tool. In NARMA-L2 controller, 

control inputs are computed algebraically, no on-line learning is needed 

at this stage any more and the computation required is greatly reduced 

compared with analytical feedback linearization [74, 107]. For this 

purpose, NARMA-L2 Neural Network is trained off-line to identify the 

forward dynamics with the redefined output, which is subsequently 

inverted to force the real output to approximately track a command input.  

Inverse dynamics can be obtained using neural networks. In a first stage, 

neural networks are trained to model the forward dynamics of an affine 

system. In the second stage, this neural network trained as direct problem 

is inverted to obtain an approximate inverse problem formulation.  

Simulation results for an Uninhibited Air Vehicle (UAV) illustrate the 

application of the proposed approach. 

 

9.2 Feedback Linearization of a Non-Minimum Phase UAV 

 

The performance of highly maneuverable UAV systems, requires 

enhanced operational capability in a constrained environment such  

as an air space containing static or moving obstacles. The high 

maneuverability of a UAV can be achieved by improving the flight 

control system using nonlinear control. Feedback linearization and 

dynamic inversion have been extensively applied in flight control 

especially in designing high maneuverable aircrafts and UAVs. [111]. 

Compared with traditional flight control design, which is often based on 

gain scheduling approach by dividing the flight space into linearizable 

subspaces, feedback linearization transforms the nonlinear dynamics of 
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an aircraft into an equivalent linear system over the entire flight 

envelope, thus allowing us to use a global linear controller. However, the 

full-envelope nonlinear inversion of a UAV model is computationally 

intensive, because the UAV is a multi-input-multi-output (MIMO) 

system and it must be inverted in real time [113-115]. Furthermore, the 

exact input-output feedback linearization cannot be directly applied to a 

non-minimum phase UAV model. 

To reduce the computational burden of the onboard computer, off-

line trained neural network controllers were proposed to model the 

inverse dynamics of nonlinear systems [108, 112]. A direct way to do 

this is to train a neural network off-line to model the inverse dynamics of 

an aircraft using input-output pairs [113]. However, since the mathematic 

model of the inverse dynamic is not known a priori, the modeling errors 

could be significant. Therefore, adaptive control or on-line learning must 

be used to cancel out the modeling errors [114, 116]. An alternative way 

to apply inverse dynamics approach is to train neural networks to model 

the forward dynamics of the direct problem of an affine system, and then 

invert the neural network model to obtain an approximate inverse model, 

i.e. to obtain the formulation of the inverse problem of the system [117-

119]. This method can use MATLAB
®
 toolbox NARMA-L2, the neural 

network approach to feedback linearization. A set of neural networks that 

can be trained to approximate the Lie derivatives, such that the feedback 

linearization can be implemented step-by-step using these networks and, 

most importantly, the nonlinearity cancellation can be achieved [120]. 

Non-minimum phase systems result into an unstable system when 

subject directly to exact feedback inversion. A solution in this case is  

the so called approximate feedback linearization. This is done by 

approximating a non-minimum phase system with a minimum phase 

system, such that a bounded error tracking can be achieved [74]. In [120, 

121], an approximate minimum phase model of a Vertical Takeoff and 

Landing (VTOL) aircraft was obtained by neglecting the coupling 

between the rolling moment and lateral acceleration. Similarly, for a 

slightly non-minimum phase Conventional Takeoff and Landing (CTOL) 

aircraft, ignoring some small forces, caused by control surfaces, from the 

equations of the system, will give a minimum phase model [122]. This 

method is only valid for slightly non-minimum phase systems and results 
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in a loss of performance due to the un-modeled dynamics. Another 

method is output redefinition [74, 120]. In this case, the output is 

modified such that the resulting zero dynamics is stable. Output 

redefinition method has been successfully applied to control flexible 

manipulators. In [123], outputs are defined near the tip positions, such 

that the system becomes marginally minimum phase. In the field of flight 

control, the output redefinition method was also called Controlled (CV) 

Variable selection [124]. The selection of CVs is suitable for most 

conventional flight regimes. However, this selection may have to be 

modified for high-angle-of-attack or very-low-speed flight. Furthermore, 

the selection of CVs still relies to some extent on trial and error. In [125], 

the output is redefined using stable/anti-stable factorization performed  

on the zero dynamics of a discrete-time nonlinear non-minimum phase 

system. This is equivalent to moving the positive zero to the left half of s 

plane in continuous-time. This approach is however valid only for a class 

of non-minimum phase systems whose nonlinearities appear in output 

terms. In [126], a method is proposed to modify the output of the 

nonlinear aircraft model based on a transformation performed using the 

Jacobian linearization of the system. This transformation does not affect 

the left-half side zeros, thus the resulting system is essentially the same 

as the original one in the frequency range of interest. Using this 

approach, however, the system performance worsens when the frequency 

of desired output exceeds a certain limit. This limitation must be 

carefully considered in the context of designing tracking controllers for 

high maneuverable UAV. The non-minimum phase problem is still an 

active area of research in feedback control, given that all the methods 

mentioned above have their merits but also many limitations. 

 

9.3 Mathematical Model for UAV Direct Problem   

 

Nomenclature:  

xb, yb, zb body axes  

xe, ye, ze earth axes 

φ, ψ, θ bank angle, yaw angle, pitch angle 

β  angle of sideslip 

α angle of attack 
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Ix, Iy, Iz moments of inertia about body axes 

p, q, r angular velocity components along body axes 

u, v, w linear velocity components along b 

δa, δr, δe aileron, rudder, elevator deflections 

W weight of the aircraft 

V velocity of the aircraft 

G gravitational acceleration 

 

It is important to establish which factor in the equations of a UAV model 

makes system behave non-minimum phase or contributes to positive 

zeros, and how the positive zeros (or the positive eigenvalues of the 

linearized zero-dynamics) change there values when the UAV is flying 

under different conditions. Positive zeros pose limitations on the 

frequency response of a UAV and hence affect its maneuverability.  

The direct problem model has to be accurate enough to represent the 

needed features of the UAV dynamics, but also simple enough to be 

executed in real-time.  

Denote:  

 

aa al l lδ δ αδ
= + ∆α  

 

m m mα α α= + ∆αɺ  

 

q qm m m α= + ɺ  

 

e e em m m z
δ δ α δ

= + ɺ  

 

aa an n n
δ δ αδ

= + ∆α  

 

and the state vector x and the input u vector 

 

x = [ ]Trqp θφβα∆  

 

u [ ]T

era δδδ=  
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where δa, δr and δe denote the deflections of the aileron, the rudder and 

the elevator. 

A direct nonlinear model of a small UAV is presented in detail in 

[108, 111, 112] and was used for simulations and controller design.  

This direct problem model can be linearized into the canonic form 

[112]  

 

dx / dt = A · x +B · u 

y = C · x 

 

where 

 

φ=β= 21 y;y  

                                  

The following [2 · 2] matrix of transform functions   

 

H = y(s) / u(s) = 
11 12

21 22

H H

H H

 
 
 

 

can be obtained as 

 

H(s) = C · (s · I - A)
-1

 · B 

 

where [108, 111, 112] 

0563.0s8411.22s6707.7s364.4s

3756.0s8533.1s2488.0s0071.0
H

234

23

11
++++
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0563.0s8411.22s6707.7s364.4s

1101.271s9397.19s83.45
H

234

2

21
++++

++
−=  

 

0563.0s8411.22s6707.7s364.4s

8293.108s1131.4s64.7
H

234

2

22
++++

++
−=  

For an MIMO linear system, the zeros of H(s) can be calculated as the 

poles the inverse transfer function matrix H
-1

(s) of the system. Then a 

new matrix C
* 

can be determined such that the resulting system has no 

positive zeros. To find the zeros of the system, one may invert the 

transfer matrix H and consider its poles. The inverse transfer matrix H
-1 

is given by 
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Therefore, the zero of the direct problem model H(s) is at s = 5368.31 = b 

which coincides with the positive eigenvalue of the zero-dynamics of the 

UAV nonlinear model. The new system output y* can now be calculated 

using output redefinition to eliminate positive zeros from the direct 

problem. For a system with outputs yi(s), i = 1, 2,…, m, first a constant 

matrix M is defined as link between actual output y and the redefined 

output y* using the equation for y(s) 
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where M has to satisfy the constraint 
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 · H(b)



















∗∗∗

∗∗∗
=

⋯

⋮⋱⋮⋮

⋯

⋯ 000

 

                  

Since the value of the transfer matrix H(s) at s = 5368.31 = b is 

H(b)
. .

. .

 
=  − − 

1 3129 0 2189

1 5891 0 2649
 

the constant matrix M
-1

 can be obtained as 

M
-1 . 
=  
 

1 0 8262

0 1
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A redefined transfer functions matrix can now be obtained without any 

positive zeros. This is the result of redefining the output such that the 

positive zero from H(s)  

 

a) does not appear in the new matrix H*(s) 

 

b) is moved to the left hand side of the s-plane for h*(s) 

 

a) The following equation shows the relationship between H(s) and 

the new H*(s) with the positive zero removed 

 

 

H(s) = M



















 −

100

010

00
b

s
1

⋯

⋮⋱⋮⋮

⋯

⋯

 · H
*
(s) 

where 

0563.0s8411.22s6707.7s364.4s

3589.224s6621.14s115.38
H

234

2

11
++++

++
−=∗

 

 

0563.0s8411.22s6707.7s364.4s

0019.90s8634.21
H

23412
++++

−
=∗

 

 

0563.0s8411.22s6707.7s364.4s

1101.271s9397.19s83.45
H

234

2

21
++++

++
−=∗  

 

0563.0s8411.22s6707.7s364.4s

8293.108s1131.4s64.7
H

234

2

22
++++

++
−=∗  
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The new output matrix C* is computed using 

 

C
* 
= H

*
(s) · [(sI - A)

-1
 · B]

-1 

 

that gives 

C
. . . .

− − − × − × ×∗=  
 

4 4 4
1 5866 10 0 1 862 10 0 1 0 82618 2 3455 10

0 0 0 0 0 1 0
 

This leads to the new output after removing the positive zero b from H(s) 

 

     b)  Using equation,  

h
*
(s)






















−
+

=

100

010

00
bs1

bs1

⋯

⋮⋱⋮⋮

⋯

⋯

 ·  M
-1

 · 
 
H(s) 

the transfer matrix h
*
(s) results from moving the positive zero to the left 

hand side of the s-plane. For b = 5368.31 

 
 

h
*
(s) = 

( )
( )
s .

s .
h h

h h

∗ ∗

∗ ∗

 +
 −  
 = 
   
 
  

11 12

21 22

1 5368 31
0 0

1 5368 31

0 1 0

0 0 1

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 ·  M
-1

 · 
 
H(s) 

where,   

0563.0s8411.22s6707.7s364.4s

3589.224s7039.14s1177.38s0071.0
h

234

23

11
++++

+++
−=∗  
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0563.0s8411.22s6707.7s364.4s

0023.90s8468.21s0041.0
h

234

2

12 ++++

−+
=∗  

 

0563.0s8411.22s6707.7s364.4s

1101.271s9397.19s83.45
h

234

2

21 ++++

++
−=∗  

 

0563.0s8411.22s6707.7s364.4s

8293.108s1131.4s64.7
h

234

2

22 ++++

++
−=∗  

 

The new output matrix c* could be obtained as 

c
. . .− − ⋅ − ⋅∗= 

 

4 432053 10 0 37617 10 0 1 082619 0

0 0 0 0 0 1 0
 

A new transfer function results 

( )
( ) 0563.0s8411.22s6707.7s364.4s

3756.0

s

sy
234

a ++++

−
=

∗
δ

 

The output for UAV model is redefined by moving the positive zeros to 

the left half of s plane, so that these two systems with new outputs are 

now minimum phase and can be inverted.  

 

9.4 Simulation Results for the Neural Controller and Output 

Redefinition  

 

In this section, the NARMA-L2 neural controller and the output 

redefinition technique are applied to a nonlinear non-minimum phase 

UAV system [108, 112, 130].  
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The control scheme for the UAV, shown in Fig. 9.1 is based on the 

inverse problem solution, i.e. the nonlinear inversion of a UAV model in 

real time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.1 UAV Control System based on NARMA-L2 

 

To reduce the significant computation burden of the onboard computer of 

a UAV, an approximate feedback linearization methodology using 

offline trained NARMA-L2 neural networks NNf and NNg is analyzed 

here. The NARMA-L2 neural network is trained off-line for the direct 

problem, to model the forward dynamics of a UAV, with a redefined 

output of the UAV model. Then, the trained neural network (NN) is 

inverted so that it cancels out the nonlinearities of the UAV model. 

NORMA-L2 Controller has as inputs the command inputs yd and the 

UAV model output at time step k and generates the control command for 

the next time step k+1 using the output of the direct NNf and the inverse 

NNg. This becomes the Control Input to the UAV model which forces 

the output y to approximately track the desired output yd. 

The results are shown as dotted lines for the command input and 

continuous line for the actual output. Figure 9.2 shows the response to a 

step input with a settling time of approx. 20 [s].  

 

 

 

u(k+1) = [yd(k+d)-NNf]/NNg 

UAV  

y*
 

yd 

 

 + 

  - 

u(k+1) 

NARNA-L2 Controller
 

y
 



Advanced Mechatronics 314

 
Fig. 9.2 The sideslip angle response to a step command input 

 

The results shown in Fig. 9.3, for square wave input, show that for the 

square wave command input period which decreases from 160 [s] in a) to 

20 [s] in c), the transient regime does not vanish before a new command 

value occurs. This indicates that settling time has to be accounted as a 

limit to the period of the changes in the command input.  

These results exemplify a solution to the non-minimum phase 

problem in UAV control design. Since the feedback linearization cannot 

be directly applied to a UAV, which is non-minimum phase, the output 

redefinition approach redefines the output of the system, such that the 

resulting new system has stable zero-dynamics and the inverse of the 

new system is asymptotically stable.  

   

 
a) square wave period = 160 [s] 

Fig. 9.3 Sideslip angle responses to square wave command inputs 
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b) square wave period = 40 [s] 

 

c) square wave period = 20 [s] 

Fig. 9.3 (Continued ) 

 

In nonlinear case, due to the impossibility to define the transfer function, 

output redefinition cannot be directly implemented. To solve this 

problem, one may first calculate the Jacobian linearization of the 

nonlinear system, and then apply above techniques to the linearized 

system to define the new outputs. As a result, for the nonlinear non- 
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minimum phase system, with its Jacobian linearization, its output can be 

redefined by removing the positive zeros from the transfer function.  
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