
A High Efficiency Distributed Mutual Exclusion
Algorithm

Dan Liu, Xinsong Liu, Zhijie Qiu, and Gongjun Yan

8010 Division
Department of Computer Science

University of Electronic Science and Technology
Chengdu, Sichuan 610054, P.R.China

liudan@uestc.edu.cn
http://teacher.uestc.edu.cn/teacher/teacher.jsp?TID=yrewy

Abstract. A high efficiency Distributed Mutual Exclusion (DMX)
algorithm based on RA algorithm, is presented. It puts different mutual
exclusion operations for reading and writing requests. The algorithm,
belonging to nontoken-based type, saves the message complexity while
has T synchronization delay. A read/write globe clock stamp which
based on the Lamport clock stamp is put forward for the read/write
operations. Using the read/write globe clock stamp, reading and writing
requests can access Critical Sections (CS) with fairness. Furthermore,
a dynamic detection mechanism is adopted in the algorithm to realize
self-stability.

Keywords: distributed mutual exclusion, read/write clock stamp, self-
stability

1 Introduction

DMX algorithms have been studied intensively in the last 20 years. Several
taxonomic research papers of the algorithms have been published[1,2,3,11,12],
which can be grouped into two classes, nontoken-based and token-based. The
performance of DMX algorithms is generally measured by two metrics: first, the
message complexity, which is the number of messages necessary per CS invoca-
tion; second, the synchronization delay, which is the time required after a process
leaves the CS and before the next process enters the CS. The token-based algo-
rithms can reduce a message complexity to O(logN), and their synchronization
delay can reduce to O(logN)T. The nontoken-based algorithms generally have
a message complexity between N and 3(N-1), and have a synchronization delay
between T and 2T.

The proposed algorithm belongs to nontoken-based type. Based on Ricart-
Agrawala(RA) algorithm[8], it reduces the message complexity and keeps the
same synchronization delay as RA algorithm. The algorithm provides different
methods for reading mutual exclusion and writing mutual exclusion to reduce the
message complexity. According to the Lamport globe clock stamp, a read/write

X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 75–84, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

76 D. Liu et al.

globe clock stamp suitable for read/write mutual exclusion, is presented. Sub-
numbering for reading requests, is brought in to avoid deadlock and starvation.

Many DMX algorithms try to reduce message complexity [6,7,8], that, maybe
lead to a less stable system. So these algorithms are always under the assumption:
the processes communicate through the asynchronous message passing over an
error-free underlying communication network, while the message transit times
may vary. Adopting a reply and timeout mechanism, the proposed algorithm is
self-stability[4,5,10]. It can tolerate transient failures of communication network,
and be more reliable and practical.

The structure of the paper is arranged as following: Section 2 introduces the
system model of RA algorithm; Section 3, the proposed algorithm is presented
in details. The performance analysis of the algorithm is given in Section 4, and
in Section 5 conclusions of the algorithm are provided.

2 RA Algorithms Review

In this section, the general system model of RA algorithm, which is the basis of
the proposed algorithm, is described.

2.1 System Model

The RA algorithm runs under the following system model. There are N nodes
in the system, which are connected with a communication network. The system
has no shared memory, that, the nodes exchange information only via message
transfer. The network guarantees error-free FIFO delivery with bounded message
delay.

Two types of messages are exchanged among nodes: REQUEST and REPLY .
While wanting to enter CS, a node sends the REQUEST messages to other nodes
and waits for their REPLY. Each REQUEST for per CS invocation is assigned
a priority p, which is implemented by the Lamport globe clock stamp[7]. To
achieve fairness and to prevent deadlock and starvation, the REQUESTs should
be ordered by priority for per CS invocation.

Define p as p=(SN,SiteID), where SN is a unique locally assigned sequence
number to the request and SiteID is the process identifier. SN is determined as
follows. Every node maintains the highest sequence number seen so far in a local
variable Highest-M-Seen. While making a request, a node uses a sequence num-
ber which is one larger than the value of Highest-M-Seen. When a REQUEST
is received, Highest-M-Seen is updated as follows.

Highest-M-Seen=Maximum (Highest-M-Seen, sequence number in the RE-
QUEST)

Priorities of two REQUESTs , p1=(SN1, SiteID1) and p2=(SN2, SiteID2)
are compared as follows. Priority of p1 is greater than priority of p2 if SN1 < SN2
or (SN1 = SN2 and SiteID1 < SiteID2).
Definition 1. Si and Sj are concurrent if Si’s REQUEST is received by Sj

after Sj has made its REQUEST, and Sj ’s REQUEST is received by Si after Si

has made its REQUEST. Where Si represents node i.

A High Efficiency Distributed Mutual Exclusion Algorithm 77

2.2 Ricart-Agrawala Algorithm

Each node Si uses the following local integer variables: my-seq-mi, replycounti,
highest-m-seeni, and also uses the following vectors:

RDi[1:N] of Boolean. RD i[j] indicates if Si has deferred the REQUEST sent
by Sj

The RA algorithm is outlined in Fig.1. The REPLY messages sent by a
process are blocked only by processes which request the CS with higher priority.
Thus, when a process sends REPLY messages to all deferred requests, the process
with the next highest priority request receives the last needed REPLY message
and enters the CS. The execution of CS requests in this algorithm is always
ordered by decreasing priority. For each CS invocation, there are exactly 2(N-1)
messages: (N-1) REQUESTs and (N-1) REPLYs.

1) Initial local state for node Si

– int my-seq-mi = 0
– int replycounti = 0
– int array of Boolean RDi[j] = 0, ∀j ∈ {1...M}
– int highest-m-seeni = 0

2) InvMulEx: Si executes the following to invoke mutual exclusion
– my-seq-mi = highest-m-seeni + 1
– Make a REQUEST(Pi) message: where Pi = (my-seq-mi,i)
– Send REQUEST(Pi) message to all the other processes
– replycounti = 0
– RDi[k] = 0, ∀k ∈ {1...N}

3) RcvReq: node Si receives message REQUEST(Pj), where Pj = (SNj , j),
from node Sj

– a. If Si is requesting then there are two cases
• Si’s REQUEST has a higher priority than Sj ’s REQUEST. In this

case, Si sets RDi[j] = 1 and highest-m-seeni = max(highest-m-seeni,
SNj)

• Si’s REQUEST has a lower priority than Sj ’s REQUEST. In this
case, Si sends REPLY to Sj

– b. If Si is not requesting then send REPLY to Sj

4) RcvReply: node Si receive REPLY from node Sj

– replycounti = replycounti +1
– if (CheckExecuteCS) then execute CS

5) FinCS: node Si finish executing CS
– Send REPLY to all nodes Sk, such that RDi[k]=1

6) CheckexecuteCS
– If (replycounti = N-1), then return true else return false

Fig 1. Ricart-Agrawala algorithm

78 D. Liu et al.

3 The Proposed DMX Algorithm

3.1 Basic Idea

The system model that the proposed algorithm requires is almost the same as
the section 2. But it is self-stability, and is able to recover from transient errors
by itself. It is realized by lock mechanism. A process must get the lock of a
CS before entering it, and release the lock after finishing to execute the CS.
Each node Si runs a lock module which is realized by the proposed algorithm.
The lock module has no independent threads, and some skills such as sleeping
processes and waking up processes are used in it. The module has two queues.
One is Request Queue(RQ), which maintains all the requests that have not
been finished. Another is Lock Queue(LQ), which maintains all the locks in the
system.

There are two types of net locks, Reading(R) lock and Writing(W) lock. A
process requests a R-lock when only executing reading operations in CS, while it
requests a W-lock when executing writing operations in CS. No mutual exclusion
requirements are required between R-locks. But R-lock and W-lock, W-lock and
W-lock need do mutual exclusion operations. A R-lock is recorded at local while
a W-lock is recorded at all the nodes in the system.

Four types of messages are used in the proposed algorithm: REQUEST, RE-
PLY, CREPLY and RELEASE. The functions of REQUEST and REPLY are
the same as their functions in RA algorithm. CREPLY serves as a collective
reply and RELEASE serves as a release request message. Their functions will
describe in detail in the following context.

The proposed algorithm refers to the idea of the Lodha, S. and Kshemkalyani,
A. (LK) algorithm[9] to reduce the message complexity. But LK algorithm does
not consider that reading and writing requests have different requirements for
mutual exclusion. In the proposed algorithm, the idea is as follows. Without loss
of generality, Si represents site i, and Pi represents a process which is running
at Si, and Ri represents a REQUEST message which is sent by Pi.

When Pj receives Ri for a lock, at the same time Pj wants the same lock
and sends Rj . If Rj has a higher priority, then Ri serves as a reply to Pj and Pi

need not send REPLY to Pj . If Pj has a lower priority, then Rj serves as a reply
to Pi. So, when there are concurrent requests, REQUEST messages can serve as
REPLY to reduce message complexity.

When Pi receives Rj for a lock while it does not want the lock, it sends
REPLY to Pj . When exiting CS and releasing the lock it has got, Pi will select
the next highest priority Rk, which is not replied, from the requests set, and
send CREPLY to Pk as a collective reply from all processes that had made
higher priority requests than Rk. When receiving CREPLY, that means all the
requests, which with higher priorities than Rk, have finished to access CS, and
Pk can delete the requests. From this point, the number of REPLY is reduced.

To reduce the message complexity and design complexity, the reading re-
quests are not sent to other nodes. But that will bring some problems as follows.
If Pi has only reading requests, then there are only local reading requests and

A High Efficiency Distributed Mutual Exclusion Algorithm 79

remote writing requests in RQi. Because other nodes have not P ′
is reading re-

quests, no node will send CREPLY to Pi when it releases lock, and the other
nodes’ requests will exist in RQi forever. So these requests in RQi will not be
processed and their owner will wait for the reply forever. To avoid the case, while
exiting a CS, Pi sends RELEASE messages to the nodes which have not mes-
sages in RQi, that, means the nodes have not writing request. When receiving
the RELEASE messages, the nodes can delete corresponding requests Ri from
local RQ.

3.2 Read/Write Globe Clock Stamp

When generating a request, the priority of it is also generated. RA algorithm uses
the Lamport clock stamp to define the priority of a request. For the proposed
algorithm, while the reading requests not being sent to all the nodes, some
abnormal cases as follows will happen if using the Lamport clock stamp.

Assuming Pi has many continuous reading requests but no writing requests,
and other nodes have a few requests. By reading requests not spreading to net,
while using Lamport clock stamp, the SN of Pi is large but the other processes in
other nodes have small SN. When a writing request is generated on other nodes
after P ′

is reading requests, it’s priority may be higher than P ′
is reading request

which is generated earlier. To avoid this, the priority of a request is implemented
by the read/write globe clock stamp.

Definition 2. read/write globe clock stamp is defined as (SNw, SNr, SiteID),
the SNw is the same as SN in Lamport clock stamp. SNr is the supplement serial
number. All the continuous reading requests between two writing requests have
the same SNw, and they use different SNr to represent their different priorities.

Priorities of two requests
p1=(SNw1,SNr1,SiteID1) and p2=(SNw2,SNr2,SiteID2) are compared as

follows.
If SNw1 < SNw2 or (SNw1= SNw2 and SiteID1 < SiteID2) or (SNw1 =

SNw2 and SiteID1 = SiteID2 and SNr1 < SNr2) then p1 > p2.

3.3 Realization of a Self-Stability System

In order to realize DMX, all the nodes must negotiate through communication
network. If a message is abnormal when negotiating, the request process may
wait forever and deadlock happens. So, in the proposed algorithm, a reply and
timeout mechanism is used to implement the reliability and avoid deadlock.

When sending a message, two timeout clocks are generated, t1 = τ, t2 = kτ .
If a message is sent but does not receives its reply after t1, it is considered

as lost and will be sent again per t1 interval, until getting the reply of it or
sent for k times. If it has been sent for k times while not getting the reply, the
destination node is considered as failed node, and will be deleted from the group.
So, the source node will not wait a reply from it. Apparently, transient failures
not exceeding t2 can be tolerated by the mechanism.

80 D. Liu et al.

When recovering, a node sends initial messages to all other nodes, so the
other nodes can add it into the group. Using this mechanism, the system can
tolerate transient failures in the communication network and implementation
automatic recovering.

3.4 Implementation of the Proposed Algorithm

Declaration and Data Structure. The lock of a CS is marked as L(j,t,m),
t ∈ {r,w} is the state of a lock, t=r represents a R-lock which is hold by a reading
process, and t=w represents a W-lock which is hold by a writing process. For
R-lock, m represents the share number.

To realize fairness, each process has a priority p which is implemented by
read/write clock stamp. Assuming Pi wants to access CSj , it will generate a
request Ri, marked as R(i,j,p,t,s), where t ∈ {r,w} and s ∈ {l,n}. For a reading
request t=r and for a writing request t=w. The symbol s represents the state of
a request. It may be local block state(l) or net block state(n). L state represents
the request having the qualification to get the lock but it will wait until the
other local process, which has hold the lock, to release it, and n state represents
that the request is waiting for the nodes negotiating to permit the qualification
to get the lock.

A reading request R(i,j,p,r,l) is not sent to net, so s=l. R(i,j,p,r,l) is inserted into
RQi. If there is no other concurrent request for the lock of CSj , the requester can
hold the lock. Otherwise while the lock released by other process and R(i,j,p,r,l)
becoming the highest priority request, the requester will hold the lock of CSj .

A writing request R(i,j,p,w,n) must be sent to all the nodes in the system.
Firstly, R(i,j,p,w,n) is inserted into RQi and waits for net negotiating to permit
the qualification to get the lock. When all the nodes approve the requester to
get the lock, the requester can get the lock of CSj if there is no other higher
priorities requests for the lock, otherwise changing R(i,j,p,w,n)to R(i,j,p,w,l) and
waiting for the lock being freed. When the lock is released and R(i,j,p,w,l) becomes
the highest request in RQi, the requester will hold the lock of CSj .

For REPLY or CREPLY, marked as REP(i,j,p) or CREP(j,p), where i rep-
resents the source process, and j represents to request the lock of CSj , and p
represents the priority of corresponding request being replied. When receiving
REP(i,j,p), the receiver process checks whether all the replies of the correspond-
ing requests are received. If so, it changes the corresponding request’s state from
n to l . When receiving CREP(j,p), the receiver deletes all the requests whose
priorities are higher than p from RQ and changes the corresponding request’s
state from n to l.

RELEASE is marked as REL(i,p), where i represents the source process, p
represents the priority of corresponding request. When receiving REL(i,p), a
process deletes the corresponding request.

Algorithm Implementation. The proposed algorithm is composed of ap-
plying R-lock, releasing R-lock, applying W-lock, releasing W-lock, receiving

A High Efficiency Distributed Mutual Exclusion Algorithm 81

REQUEST, receiving REPLY, receiving CREPLY, receiving RELEASE proce-
dures.

Define the requests set for CSj in RQi as Ωj={R | R ∈ R(k,j,p,t,s), k ∈
[1...N]} .

Define the nodes set ωj = {Sk | Sk is active, k ∈ [1...N]}.

(1) Applying R-lock. While wanting to enter CSj and doing reading opera-
tions, Pi applies R-lock.
– 1. Generates R(i,j,p,r,l) and inserts it into RQi.
– 2. If L(j,t,m) exists in LQi goes to 3, else goes to 6.
– 3. If L(j,t,m) is W-lock, blocks Pi on R(i,j,p,r,l), when it is waked up, goes

to 2.
– 4. If a request R(k,j,p′,w,l) exists in RQi where ∀k ∈ [1...N],and p′ > p,

then blocks Pi on R(i,j,p,r,l), when it is waked up, goes to 4.
– 5. m=m+1, Pi holds the R-lock, return.
– 6. If a request R(k,j,p′,w,l) exists in RQi, where k ∈ [1...N],and p′ > p,

then blocks Pi on R(i,j,p,r,l),when it is waked up, goes to 6.
– 7. If there is no lock L(j,r,m) in LQi, generates L(j,r,m), Pi holds L(j,r,m),

return.
(2) Releasing R-lock. While leaving CSj which is entered by reading mode,

Pi will release R-lock
– 1. When Pi releases L(j,r,m), deleting the corresponding request R(i,j,p,r,l)

from RQi, m=m-1, if m �= 0 then return.
– 2. If Ωj=φ then deletes L(j,r,m) from LQi, return.
– 3. Get the highest priority R(k,j,p′,w,s) from Ωj , while it is a writing

request, if k=i then goes to 4 else goes to 5.
– 4. Changes L(j,r,m) to L(j,w,m), and wakes up the blocked process on it,

return.
– 5. Changes L(j,r,m) to L(j,w,m) and sends CREP(i,p′) as the reply of

R(k,j,p′,w,n) to Pk.
(3) Applying W-lock. While wanting to enter CSj and doing writing opera-

tions, Pi will apply W-lock
– 1. Generates R(i,j,p,w,n).
– 2. Sends R(i,j,p,w,n) to the nodes set ωj except local node, and inserts it

into RQi, blocked Pi on R(i,j,p,w,n). When it is waked up, goes to 3.
– 3. Pi gets L(j,w,m), return.

(4) Releasing W-lock. While leaving CSj which is entered by writing mode,
Pi will release R-lock
– 1. When Pi releases L(j,w,m), the corresponding R(i,j,p,w,l) is deleted from

RQi. If Ωj = φ then deletes L(j,w,m) from LQi and goes to 6, else goes
to 2.

– 2. Getting the highest priority request R(k,j,p′,t,s) from Ωj , if k = i then
goes to 3, else goes to 5.

– 3. If it is writing request R(k,j,p′,w,l), wakes up the process blocked on it,
return, else goes to 4.

82 D. Liu et al.

– 4. If no writing request in Ωj , changes L(j,w,m) to L(j,r,m),wakes up
all the blocked processes blocked on the reading requests, goes to 6. If
there is writing request in Ωj , supposing the highest priority writing
request is R(k′,j,p′′,w,s), then changes L(j,w,m) to L(j,r,m), and wakes up
all the processes which are blocked on the reading requests whose priority
p > p”, goes to 6.

– 5. Sends CREP(i,p′) as the reply of R(k,j,p′,w,n) to Pk

– 6. Selects the nodes Sk(k �= i) who has no request in RQi.
– 7. Sends REL(i,p) to Sk, return.

(5) Receiving REQUEST
– 1. When Pj receives R(i,j,p,w,n), inserts it into RQj .
– 2. If there is no local request R(j,j,p′,t,s) in RQj , Pj sends REP(j,p) to Pi

as a reply to R(i,j,p,w,n),return.
– 3. Assuming R(j,j,p′,t,s) is the highest priority request in Ωj , if p′ < p

then goes to 4 else goes to 5.
– 4. If t=w, it means that R(j,j,p′,t,s) has been sent to Pi, this message

should be regard as the reply, return. If t=r, sends REP(j,p) message to
Pi as the reply to R(i,j,p,w,n),return.

– 5. If t=w, R(i,j,p,w,n) will be regarded as the reply from Pi to R(j,j,p′,t,s)
,goes to (6). If t=r, return.

(6) Receiving REPLY or CREPLY
– Pi receives CREP(j,p)

• 1. Sets the receiving mark that REP(i,j,p) has been received.
• 2. If Pi receives REP(k,j,p)(1 ≤ k ≤ N) from all other nodes then

changes R(i,j,p,w,n) to R(i,j,p,w,l), goes to next step, otherwise return.
• 3. If R(i,j,p,w,l) is not the highest priority request in Ωj , return.
• 4. Generates L(j,w,m), inserts it into LQi, wakes up the processes

blocked on R(i,j,p,w,l), return.
– Pi receives CREP(j,p)

• 1. Removes R(k,j,p′,w,l) from Ωj whose priority p′ > p,k ∈ [1...N].
• 2. Changes R(i,j,p,w,n) to R(i,j,p,w,l).
• 3. If R(i,j,p,w,l) is the highest priority request in Ωj , then gener-

ates L(j,w,m), inserts it into LQi, wakes up processes blocked on
R(i,j,p,w,l), return.

• 4. Generates L(j,r,m),m=0,inserts it into LQi, wakes up the processes
blocked on the R(i,j,p′,r,l) whose priority p′ > p, return.

(7) Receiving RELEASE
– 1. While receiving REL(j,p), Pi removes R(i,j,p,w,n) from RQi.
– 2. If Ωj = φ, deletes L(j,t,m) from LQi, return, else gets the highest

priority request R(k,j,p′,t,s) from Ωj , if k=i goes to next step, else return.
– 3. As assumption, R(k,j,p′,t,s) must be reading request, so generates

L(j,r,m), m=0,inserts it into LQi. If no writing request in Ωj , wakes
up all the processes blocked on the messages in RQi, return. Otherwise
gets the highest priority write request R(k′,j,p′′,w,s) from Ωj , wakes up
all the processes blocked on the messages whose priority is higher than
R(k′,j,p′′,w,s),return.

Fig 2. The proposed algorithm

A High Efficiency Distributed Mutual Exclusion Algorithm 83

4 A Performance Analysis

Definition 3. Pi and Pj are concurrent if Ri is received by Pj after Pj has
made Rj , and Rj is received by Pi after Pi has made Ri. CSeti={Rj | Rj is
concurrent with Ri} ∪ {Ri}.

Traditionally, the performance of DMX algorithms is compared on the basis
of synchronization delay and the message complexity. In the proposed algorithm,
the synchronization delay is an average message delay which is the same as that
of RA algorithm, while message complexity is reduced.

The proposed algorithm needs additional communication spending to realize
self-stabilizing. In order to compare the performance at the same condition, the
proposed algorithm’s performance is evaluated without considering the commu-
nication spending to realize self-stabilizing.

1) For writing requests
The request process Pi will send (N-1) requests R(i,j,p,w,n), and receives (N -
| CSeti |) replies.
– | CSeti |≥ 2, there are two cases here

(1) There is at least one writing REQUEST whose p’< p in CSeti, and
the number of nodes who only has reading REQUEST is k. So, Pi will
send one CREPLY and k RELEASE messages. The message complexity
is 2N− | CSeti | +k. When all REQUESTs are concurrent, there are
N + k(0 ≤ k < N) messages.
(2) There is no writing request whose p′ < p in CSeti, and the number of
nodes which only have reading request is k. So, Pi will not send CREPLY.
The message complexity is 2N − 1− | CSeti | +k. When all requests are
concurrent, there are N + k − 1(0 ≤ k < N) messages.

– | CSeti |= 1.This is the worst case, implying that all requests are seri-
alized. In this case the message complexity is 2(N-1), same as RA algo-
rithm.

2) For reading requests
The requester will generate reading request Ri but not send it to other nodes,
the message complexity is as follows.
– | CSeti |≥ 2,there are two cases here

(1) There is at least one writing request whose p′ < p in CSeti. So,Pi

will send one CREPLY. The message complexity is 1.
(2) There is no writing request whose p′ < p in CSeti. So Pi will not
send CREPLY. The message complexity is 0.

– | CSeti |= 1. Imply that all requests are serialized. In this case the
message complexity is 0.

5 Conclusions

In this paper, a high efficiency and self-stabilized DMX lock algorithm is pre-
sented. It can recover from transient failures of the system. Unlike most DMX

84 D. Liu et al.

algorithms, different DMX methods for reading and writing operations, is used to
reduce the message complexity and system design complexity. A new globe clock
stamp—read/write clock stamp, which is suitable for the proposed algorithm,
is presented. The algorithm is proved to be high-performance by performance
analysis.

References

1. Y.-I. Chang, ”A Simulation Study on Distributed Mutual Exclusion” J. Parallel
and Distributed Computing, vol. 33,pp. 107–121, 1996

2. M.Singhal, ”A taxonomy of Distributed Mutual Exclusion” J.Parallel and Dis-
tributed Computing, vol. 18, no.1, pp.94–101, May 1993

3. Raudal C.Burns. ”Semi-Preemptible Locks for a Distributed File System” Perfor-
mance, Computing, and Communications Conference, 2000. IPCCC’00. Conference
Proceeding of the IEEE International , 2000 pp. 397–404

4. Mizuno, M.; Nesterenko, M.; Kakugawa, H. ”Lock-based self-stabilizing distributed
mutual exclusion algorithms” Distributed Computing Systems, 1996, Proceedings
of the 16th International Conference on, 1996, pp. 708–716

5. Dijkstra, E.W. ”Self-stabilizing systems in spite of distributed control” Communi-
cations of the ACM, 17(11),pp. 643–644, November 1974.

6. O. Carvalho and G. Roucairol, ” On Mutual Exclusion in Computer Networks”
Technical Correspondence, Comm. ACM, vol. 26, no. 2, pp. 146–147, Feb. 1983.

7. L. Lamport, Time, ”Clocks and the Ordering of Events in Distributed Systems”
Comm. ACM, vol. 21, no. 7, pp. 558–565, July 1978.

8. G. Ricart and A. K. Agrawala, ”An Optimal Algorithm for Mutual Exclusion in
Computer Networks” Comm. ACM, vol. 24, no. 1, pp. 9–17, Jan. 1981.

9. Lodha, S.; Kshemkalyani, A. ”A fair distributed mutual exclusion algorithm” Par-
allel and Distributed Systems, IEEE Transactions on , Volume. 11, Issue. 6 , June
2000, pp. 537–549

10. Gouda, M.G.; Multari, N.J. ”Stabilizing communication protocols” Computers,
IEEE Transactions on , Volume.40, Issue.4 , April 1991, pp. 448–458

11. Sanders, B. ”The information structure of distributed mutual exclustion algo-
rithms” ACM Transactions on Computer Systems, 5(3),pp.284–299, 1987

12. Raynal,M. ”A simple taxonomy for distributed mutual exclustion algorithm.” ACM
Operating Systems Review, 25(2),pp.47–50, 1991

	Introduction
	emph {RA} Algorithms Review
	System Model
	Ricart-Agrawala Algorithm

	The Proposed DMX Algorithm
	Basic Idea
	Read/Write Globe Clock Stamp
	Realization of a Self-Stability System
	Implementation of the Proposed Algorithm

	A Performance Analysis
	Conclusions

