WILEY 3R WGID

STE %N\N

. Excel Add-in Development in C/C++ |

Applications in Finance

Steve Dalton

John Wiley & Sons, Ltd

. Excel Add-in Development in C/C++ |

Wiley Finance Series

For other titles in the Wiley Finance Series
please see www.wileyeurope.com/finance

. Excel Add-in Development in C/C++ |

Applications in Finance

Steve Dalton

John Wiley & Sons, Ltd

Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19
8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (444) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned
in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Dalton, Steve.
Excel add-in development in C/C++ : applications in finance / Steve Dalton.
p. cm.
Includes bibliographical references and index.
ISBN 0-470-02469-0
1. Microsoft Excel (Computer file) 2. Business — Computer programs. 3. C (Computer program
language) 4. C++ (Computer program language) 5. Computer software — Development. 1. Title.
HF5548 . 4.M523D35 2004
005 .54 — dc22 2004016908

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0-470-02469-0

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Preface

Acknowledgements

1 Introduction

1.1
1.2

1.3
1.4
1.5
1.6
1.7

Typographical and code conventions used in this book
What tools and resources are required to write add-ins
1.2.1 VBA macros and add-ins

1.2.2 C/C++ DLL add-ins

1.2.3 C/C++ DLLs that can access the C API and XLL add-ins
1.2.4 C/C++/C# .NET add-ins

To which versions of Excel does this book apply?
About add-ins

Why is this book needed?

How this book is organised

Scope and limitations

2 Excel Functionality

2.1
22
23
24
2.5
2.6

Overview of Excel data organisation

A1 versus R1C1 cell references

Cell contents

Worksheet data types and limits

Excel input parser

Data type conversion

2.6.1 The unary = operator

2.6.2 The unary — operator (negation)

2.6.3 Number-arithmetic binary operators: + - */*
2.6.4 Percentage operator: %

2.6.5 String concatenation operator: &

2.6.6 Boolean binary operators: =, <, >, <=, >=,<>
2.6.7 Conversion of single-cell references

2.6.8 Conversion of multi-cell range references
2.6.9 Conversion of defined range names

2.6.10 Explicit type conversion functions: N(), T(), TEXT(), VALUE()

XV

xvii

0NN B PR PR WWN = -

10
10
12
12
13
13
13
13
13
13
14
14
15
16

vi Contents

2.6.11 Worksheet function argument type conversion 16
2.6.12 Operator evaluation precedence 18
2.7 Excel terminology: Active and current 19
2.8 Commands versus functions in Excel 19
2.9 Types of worksheet function 21
2.9.1 Function purpose and return type 21
2.9.2 Array formulae — The Ctrl-Shift-Enter keystroke 21

2.9.3 Required, optional and missing arguments and variable
argument lists 22
2.10 Complex functions and commands 22
2.10.1 Data Tables 22
2.10.2 Goal Seek and Solver Add-in 23
2.11 Excel recalculation logic 24
2.11.1 Marking dependents for recalculation 25

2.11.2 Triggering functions to be called by Excel — the trigger
argument 26
2.11.3 Volatile functions 26

2.11.4 Cross-worksheet dependencies — Excel 97/2000 versus
2002/2003 27
2.11.5 User-defined functions (VB Macros) and add-in functions 29
2.11.6 Data Table recalculation 31
2.12 The Add-in Manager 32
2.13 Loading and unloading add-ins 32
2.13.1 Add-in information 33
2.14 Paste Function dialog 33
2.14.1 Function category 34
2.14.2 Function name, argument list and description 34
2.14.3 Argument construction dialog 34
2.15 Good spreadsheet design and practice 35
2.15.1 Filename, sheet title and name, version and revision history 35
2.15.2 Magic numbers 35
2.15.3 Data organisation and design guidelines 36
2.15.4 Formula repetition 37

2.15.5 Efficient lookups: MATCH(), INDEX() and OFFSET() versus

VLOOKUP() 37
2.16 Some problems with very large spreadsheets 40
2.17 Conclusion 40
3 Using VBA 41
3.1 Opening the VB Editor 41
32 Using VBA to create new commands 42
3.2.1 Recording VB macro commands 42
33 Assigning VB command macros to control objects in a worksheet 44
34 Using VBA to trap Excel events 45
35 Using VBA to create new functions 47
3.5.1 Function scope 47

3.5.2 Declaring VB functions as volatile 47

Contents

vil

3.6

3.7

3.8
39
3.10

Using VBA as an interface to external DLL add-ins

3.6.1 Declaring DLL functions in VB

3.6.2 Call-by-reference versus call-by-value

3.6.3 Converting argument and return data types between VB
and C/C++

3.6.4 VB data types and limits

3.6.5 VB/OLE Currency type

3.6.6 VB/OLE Strings

3.6.7 Passing strings to C/C++ functions from VB

3.6.8 Returning strings to VB from a DLL

3.6.9 Variant data type

3.6.10 Variant types supported by VBA

3.6.11 Variant types that Excel can pass to VB functions

3.6.12 User-defined data types in VB

3.6.13 VB object data type

Excel ranges, VB arrays, SafeArrays, array Variants

3.7.1 Declaring VB arrays and passing them back to Excel

3.7.2 Passing arrays and ranges from Excel to VB to C/C++

3.7.3 Converting array Variants to and from C/C++ types

3.7.4 Passing VB arrays to and from C/C++

Commands versus functions in VBA

Creating VB add-ins (XLA files)

VB versus C/C++: Some basic questions

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or
Visual Studio .NET

4.1
4.2
43
4.4
4.5

4.6

4.7

4.8
4.9

4.10

Windows library basics

DLL basics

DLL memory and multiple DLL instances
Multi-threading

Compiled function names

4.5.1 Name decoration

4.5.2 The extern "C" declaration

Function calling conventions: __cdecl, stdcall,
_ fastcall

Exporting DLL function names

4.7.1 Definition (* .DEF) files

4772 The declspec(dllexport) keyword
What you need to start developing add-ins in C/C++
Creating a DLL using Visual C++ 6.0

4.9.1 Creating the empty DLL project

4.9.2 Adding code to the project

49.3 Compiling and debugging the DLL
Creating a DLL using Visual C++ .NET 2003
4.10.1 Creating the empty DLL project

4.10.2 Adding code to the project

4.10.3 Compiling and debugging the DLL

48
48
48

49
50
51
52
54
55
57
58
59
62
64
64
66
68
69
70
71
72
72

75
75
75
76
76
77
77
78

79
80
81
82
82
83
83
84
86
87
87
91
91

viii

Contents

4.11 Accessing DLL functions from VB
4.12 Accessing DLL functions from Excel

Turning DLLs into XLLs: The Add-in Manager Interface
5.1 Adding the Excel library and header files to a DLL project
5.2 What does the Add-in Manager do?
5.2.1 Loading and unloading installed add-ins
5.2.2 Active and inactive add-ins
5.2.3 Deleted add-ins and loading of inactivate add-ins
53 Creating an XLL: The x1Auto interface functions
54 When and in what order does Excel call the XLL interface
functions?
5.5 XLL functions called by the Add-in Manager and Excel
5.5.1 x1lAutoOpen
5.52 xlAutoClose
5.53 xlAutoAdd
5.54 x1AutoRemove
5.5.5 x1AddInManagerInfo
5.5.6 xlAutoRegister
5.577 xlAutoFree

Passing Data between Excel and the DLL
6.1 Handling Excel’s internal data structures: C or C++7?
6.2 How Excel exchanges worksheet data with DLL add-in functions
6.2.1 Native C/C++ data types
6.2.2 Excel floating-point array structure: x1_array
6.2.3 The xloper structure
6.2.4 The x1ref structure
6.2.5 The x1lmref structure
6.2.6 The oper structure
6.3 Defining constant x1opers
6.4 A C++ class wrapper for the xloper - cpp xloper
6.5 Converting between x1lopers and C/C++ data types

6.6 Converting between x1loper types
6.7 Converting between xlopers and Variants
6.8 Detailed discussion of xloper types

6.8.1 Freeing x1loper memory

6.8.2 Worksheet (floating point) number: x1typeNum

6.8.3 Byte-counted string: x1typeStr

6.8.4 Excel Boolean: x1typeBool

6.8.5 Worksheet error value: x1typeErr

6.8.6 Excel internal integer: x1typeInt

6.8.7 Array (mixed type): x1typeMulti

6.8.8 Worksheet cell/range reference: x1typeRef and
xltypeSRef

6.8.9 Empty worksheet cell: x1typeNil

6.8.10 Worksheet binary name: x1typeBigData

92
94

95
95
95
95
96
96
96

97
98
98
99
99
100
101
102
103

105
105
105
106
107
111
118
118
119
121
121
126
126
127
130
131
132
135
138
140
142
145

150
155
157

Contents

ix

8

6.9 Initialising x1lopers
6.10 Missing arguments

Memory Management
7.1 Excel stack space limitations
7.2 Static add-in memory and multiple Excel instances
7.3 Getting Excel to free memory allocated by Excel

7.3.1 Freeing xloper memory within the DLL call

7.3.2 Freeing x1loper memory returned by the DLL function
7.4 Getting Excel to call back the DLL to free DLL-allocated memory
7.5 Returning data by modifying arguments in place

Accessing Excel Functionality Using the C API
8.1 The Excel 4 macro language (XLM)
8.1.1 Commands, worksheet functions and macro sheet functions
8.1.2 Commands that optionally display dialogs — the
x1Prompt bit
8.2 The Excel4 () C API function
8.2.1 Introduction
8.2.2 Excel4 () return values
8.2.3 Calling Excel worksheet functions in the DLL using

Excel4 ()

8.2.4 Calling macro sheet functions from the DLL using
Excel4 ()

8.2.5 Calling macro sheet commands from the DLL using
Excel4 ()

8.3 The Excel4v () C API function
8.4 What C API functions can the DLL call and when?
8.5 Registering and un-registering DLL (XLL) functions
8.5.1 The x1fRegister function
8.5.2 Specifying which category the function should be listed
under
8.5.3 Specifying argument and return types
8.5.4 Giving functions macro sheet function permissions
8.5.5 Specifying functions as volatile
8.5.6 Returning values by modifying arguments in place
8.5.7 The Paste Function dialog (Function Wizard)
8.5.8 Function help parameter to x1fRegister
8.5.9 Argument help parameters to x1fRegister
8.5.10 Managing the data needed to register exported functions
8.5.11 Getting and using the function’s register ID
8.5.12 Un-registering a DLL function
8.6 Registering and un-registering DLL (XLL) commands
8.6.1 Accessing XLL commands
8.6.2 Breaking execution of an XLL command
8.7 Functions defined for the C API only
8.7.1 Freeing Excel-allocated memory within the DLL: x1Free

157
160

161
161
162
162
163
164
166
168

169
169
170

171
171
171
173

174

176

178
178
180
182
183

185
186
188
189
189
190
191
191
191
194
195
196
198
199
199
199

Contents

8.8

8.9

8.10

8.7.2 Getting the available stack space: x1Stack

8.7.3 Converting one xloper type to another: x1Coerce

8.7.4 Setting cell values from a command: x1Set

8.7.5 Getting the internal ID of a named sheet: x1SheetId

8.7.6 Getting a sheet name from its internal ID: x1SheetNm

8.7.7 Yielding processor time and checking for user breaks:
x1lAbort

8.7.8 Getting Excel’s instance handle: x1GetInst

8.7.9 Getting the handle of the top-level Excel window:
x1GetHwnd

8.7.10 Getting the path and file name of the DLL: x1GetName

Working with binary names

8.8.1 The x1typeBigData xloper

8.8.2 Basic operations with binary names

8.8.3 Creating, deleting and overwriting binary names

8.8.4 Retrieving binary name data

8.8.5 Example worksheet functions

Workspace information commands and functions

8.9.1 Setting the application title: x1fAppTitle

8.9.2 Setting the document window title: x1fWindowTitle

8.9.3 Getting a reference to the active cell: x1fActiveCell

8.9.4 Getting a list of all open Excel documents:
xlfDocuments

8.9.5 Information about a cell or a range of cells:
x1fGetCell

8.9.6 Sheet or workbook information: x1fGetDocument

8.9.7 Getting the formula of a cell: x1fGetFormula

8.9.8 Getting a cell’s comment: x1fGetNote

8.9.9 Information about a window: x1fGetWindow

8.9.10 Information about a workbook: x1fGetWorkbook

8.9.11 Information about the workspace: x1fGetWorkspace

8.9.12 Information about the selected range or object:
xl1fSelection

8.9.13 Getting names of open Excel windows: x1fWindows

8.9.14 Converting a range reference: x1fFormulaConvert

8.9.15 Converting text to a reference: x1fTextref

8.9.16 Converting a reference to text: x1fReftext

8.9.17 Information about the calling cell or object: x1fCaller

Working with Excel names

8.10.1 Specifying worksheet names and name scope

8.10.2 Basic operations with Excel names

8.10.3 Defining a name on a worksheet: x1cDefineName

8.10.4 Defining and deleting a name in the DLL: x1fSetName

8.10.5 Deleting a worksheet name: x1cDeleteName

8.10.6 Getting the definition of a named range: x1fGetName

8.10.7 Getting the defined name of a range of cells: x1fGetDef

8.10.8 Getting a list of named ranges: x1fNames

201
201
203
204
205

206
207

207
208
209
210
210
211
212
213
213
214
214
215

215

215
217
221
221
222
225
227

233
234
234
235
236
237
239
239
241
241
242
244
245
247
248

Contents

X1

8.11

8.12

8.13

8.14

Working with Excel menus

8.11.1 Menu bars and ID numbers and menu and command
specifiers

8.11.2 Short-cut (context) menu groups

8.11.3 Getting information about a menu bar: x1fGetBar

8.11.4 Creating a new menu bar or restoring a default bar:
x1fAddBar

8.11.5 Adding a menu or sub-menu: x1fAddMenu

8.11.6 Adding a command to a menu: x1fAddCommand

8.11.7 Displaying a custom menu bar: x1fShowBar

8.11.8 Adding/removing a check mark on a menu command:
x1lfCheckCommand

8.11.9 Enabling/disabling a custom command or menu:
x1fEnableCommand

8.11.10 Changing a menu command name: x1fRenameCommand

8.11.11 Deleting a command from a menu: x1fDeleteCommand

8.11.12 Deleting a custom menu: x1fDeleteMenu

8.11.13 Deleting a custom menu bar: x1fDeleteBar

Working with toolbars

8.12.1 Getting information about a toolbar: x1fGetToolbar

8.12.2 Getting information about a tool button on a toolbar:
x1£GetTool

8.12.3 Creating a new toolbar: x1fAddToolbar

8.12.4 Adding buttons to a toolbar: x1cAddTool

8.12.5 Assigning/removing a command on a tool:
x1lcAssignToTool

8.12.6 Enabling/disabling a button on a toolbar:
x1fEnableTool

8.12.7 Moving/copying a command between toolbars:
xlcMoveTool

8.12.8 Showing a toolbar button as pressed:
x1lfPressTool

8.12.9 Displaying or hiding a toolbar: x1cShowToolbar

8.12.10 Resetting a built-in toolbar: x1fResetToolbar

8.12.11 Deleting a button from a toolbar: x1cDeleteTool

8.12.12 Deleting a custom toolbar: x1fDeleteToolbar

Working with custom dialog boxes

8.13.1 Displaying an alert dialog box: x1cAlert

8.13.2 Displaying a custom dialog box: x1fDialogBox

8.13.3 Restricting user input to dialog boxes:
xlcDisableInput

Trapping events

8.14.1 Trapping a DDE data update event: x1cOnData

8.14.2 Trapping a double-click event: x1cOnDoubleclick

8.14.3 Trapping a worksheet data entry event: x1cOnEntry

8.14.4 Trapping a keyboard event: x1cOnKey

8.14.5 Trapping a recalculation event: x1cOnRecalc

249

249
250
252

254
254
257
260

260

262
263
264
265
266
266
267

267
268
269

269

270

270

271
271
272
272
273
273
273
274

277
277
278
279
279
280
281

Xil

Contents

9

8.15

8.16

8.14.6 Trapping a window selection event: x1cOnWindow

8.14.7 Trapping a system clock event: x1cOnTime

Miscellaneous commands and functions

8.15.1 Disabling screen updating during command execution:
xlcEcho

8.15.2 Displaying text in the status bar: x1cMessage

8.15.3 Evaluating a cell formula: x1fEvaluate

The XLCallver () C API function

Miscellaneous Topics

9.1
9.2

9.3

9.4

9.5

9.6
9.7
9.8

9.9

9.10

Timing function execution in VB and C/C++

Relative performance of VB, C/C++: Tests and results

9.2.1 Conclusion of test results

Relative performance of C API versus VBA calling from a
worksheet cell

Detecting when a worksheet function is called from the Paste
Function dialog (Function Wizard)

Accessing Excel functionality using COM/OLE Automation using
C++

9.5.1 Initialising and un-initialising COM

9.5.2 Getting Excel to recalculate worksheets using COM
9.5.3 Calling user-defined commands using COM

9.5.4 Calling user-defined functions using COM

9.5.5 Calling XLM functions using COM

9.5.6 Calling worksheet functions using COM

Maintaining large data structures within the DLL

A C++ Excel name class example, x1Name

Keeping track of the calling cell of a DLL function

9.8.1 Generating a unique name

9.8.2 Obtaining the internal name of the calling cell

9.8.3 Naming the calling cell

9.8.4 Internal XLL name housekeeping

Multi-tasking, multi-threading and asynchronous calls in DLLs
9.9.1 Setting up timed calls to DLL commands: x1cOnTime
9.9.2 Starting and stopping threads from within a DLL
9.9.3 Calling the C API from a DLL-created thread

A background task management class and strategy

9.10.1 Requirements

9.10.2 Communication between Excel and a background thread
9.10.3 The software components needed

9.10.4 Imposing restrictions on the worksheet function
9.10.5 Organising the task list

9.10.6 Creating, deleting, suspending, resuming the thread
9.10.7 The task processing loop

9.10.8 The task interface and main functions

9.10.9 The polling command

9.10.10 Configuring and controlling the background thread

281
282
282

282
283
283
283

285
285
289
293

293

294

295
297
299
300
302
303
303
305
307
309
310
311
313
315
316
316
318
320
320
321
322
322
323
324
326
326
328
330
331

Contents

xiii

9.10.11 Other possible background thread applications and
strategies
9.11 How to crash Excel

10 Example Add-ins and Financial Applications
10.1 String functions
10.2 Statistical functions
10.3 Matrix functions — eigenvalues and eigenvectors
10.4 Interpolation functions: lines, curves and splines
10.5 Lookup and search functions
10.6 Financial markets date functions
10.7 Building and reading discount curves
10.8 Building trees and lattices
10.9 Quasi-random number sequences
10.10 Generating correlated random samples
10.11 Monte Carlo simulation
10.11.1 Using Excel and VBA only
10.11.2 Using Excel and C/C++ only
10.11.3 Using worksheet functions only
10.12 Calibration

References
Web Links and Other Resources

Index

331
332

335
335
344
351
353
357
363
371
374
374
375
376
377
379
381
381

383
385
387

Preface

This book is intended to provide the reader with a guide to the issues involved with
creating powerful and reliable add-ins for Excel. With years of use, many people build
up the experience and understanding needed to create custom functions for Excel in C
and C++. However, given the very limited books and resources available, this can be a
largely trial-and-error process. The motivation in writing this book is to create something
I wish I had had through the years: a coherent explanation of the relevant technology,
what steps to follow, what pitfalls to avoid, and a good reference guide. With these things
at your side, writing C/C++ DLL and XLL resources can be almost as easy as writing
them in Visual Basic, but yields the enormous performance benefit of compiled C/C++
and the Excel C APL

In setting goals for this book, I was particularly inspired by two excellent books that I
have grown to admire more and more over the years, as they have repeatedly proven their
worth; The C Programming Language (Kernighan and Ritchie) and Numerical Recipes
in C (Press, Teukolsky, Vetterling and Flannery), albeit that the style of C-coding of the
latter can be somewhat dense. If this book achieves a fraction of the usefulness of either
of these then you will, I hope, be happy to own it and I will be happy to have written it.

This book is intended for anyone with at least solid C and/or C++ foundation skills, a
good working knowledge of Excel, a little experience with VBA (though not necessary)
and the need to make Excel do things it doesn’t really want to do, or do them faster,
more cleanly, more flexibly. A reasonable grasp of basic software development concepts
and techniques is assumed. (Section 1.1 Typographical and code conventions used in this
book, on page 1, provides more detail of the coding style of the examples given.)

The example add-in project included on the CD ROM is intended to demonstrate some
of the most important or difficult concepts described in the book, as well as the possibilities
that are opened up when you can really play with Excel. These reflect my professional
background in the financial markets, although if you are not of that world, you should
still find that the techniques described are very widely applicable.

There is an enormous amount of material that could have been included in a book on this
subject that has either been pared down to the briefest of coverage or omitted completely.
I fully accept that there will be those who, perhaps rightly, feel that certain things should
have been covered in a book that boasts such a title, and I can only apologise. Any future
editions will, I hope, provide an opportunity to rectify the most heinous and unpopular
of these shortcomings.

XVi Preface

The first spreadsheet application I encountered was a version of Visicalc in 1984 that
ran on a 64K RAM Atari games console. It was dizzyingly slow and I had no practical
use for it at the time. Nevertheless, all the essential elements of a modern spreadsheet
application were there. Like the bicycle, many improvements have been made since the
very early versions but the basic design was virtually right first time. Spreadsheet users
have continued to find applications well beyond the intentions of early designers. It’s a
safe bet that spreadsheets will be an important tool for many decades to come. It’s also
safe to say that, for some people, what comes out of the box will never be enough. This
book is for those people.

Acknowledgements

I would like to acknowledge and sincerely thank the following people: Alister Morton
for first demystifying the C API for me many many years ago; Sean Storey for his help
with certain C++ language and style points and for his general input and proof-reading;
Fredrik Wahlgren for his very valuable help with the section on COM and automation,
and for his general comments; Mike Trutt for his proof-reading and comments on writing
style; Rob Bovey for his early comments and encouragement, and for his later help; Mike
Clinch for his consistently good advice without which life would be very much more
difficult; Les Clewlow and Chris Strickland for their perspective as authors and for their
encouragement as friends and lastly, all those who’ve had to put up with me having one,
rather boring and obsessive, topic of conversation for the time it has taken to complete
this first edition.

1
Introduction

1.1 TYPOGRAPHICAL AND CODE CONVENTIONS USED
IN THIS BOOK

To distinguish between the text of the book, Visual Basic code, C/C++ code, and Excel
worksheet functions, formulae and cell references, the following fonts are used throughout:

Excel functions and formulae Arial

Windows application menus and control button text | Arial

Visual Basic code Lucida Console
C/C++ code Courier
Directory paths, file names and file masks Courier

Passages of source code appear as boxed text in the appropriate font.

The spelling and grammar used throughout this book are British Isles English, with the
occasional Microsoft extension such as dialog.

Examples of non-VB code are mostly in C++-flavoured C. That is, C written in C++
source modules so that some of the useful C++ features can be used including:

the declaration of automatic variables anywhere in a function body;

the use of the bool data type with associated true and false values;
the use of call-by-reference arguments;

C++ style comments.

C functions and variables are written in lower case with underscores to improve readabil-
ity, for example, ¢_thing. In the few places C++ classes are used, class and instance
names and member functions and variables are written in proper case, and in general,
without underscores, for example, CppThing. Class member variables are prefixed with
‘m_’ to clarify class body code. Beyond this, no coding standard or variable naming con-
vention is applied. Names of XLL functions, as registered with Excel, are generally in
proper case with no underlines, to distinguish them from Excel’s own uppercase function
names, for example, MyCppFunction.

Where function names appear in the book text, they appear in the appropriate font
with trailing parentheses but, in general, without their arguments. For example, a C/C++
function is written as ¢_function() or CppFunction () and an Excel worksheet
function is written as Excel_Function(). VB functions may be written as VB_Function(), or
simply VB_Function where the function takes no arguments, consistent with VB syntax.

Code examples mostly rely on the Standard C Library functions rather than, say, the
C++ Standard Template Library or other C++ language artefacts. Memory allocation
and release use malloc (), calloc () and free (), rather than new and delete or
the Win32 global memory functions. (There are one or two exceptions to this.) This
is not because the choice of the C functions is considered better, but because it is a

2 Excel Add-in Development in C/C++

simple common denominator. It is assumed that any competent programmer can alter the
examples given to suit their own preferences. String manipulation is generally done with
the standard C library functions such as strchr (), rather than the C++ String class.
(There is some discussion of BSTR strings and the functions that handle them, where the
topic is interoperability of C/C++ DLLs and VB.)

The standard C library sprintf () function is used for formatted output to string
buffers, despite the fact that it is not type-safe and risks buffer overrun. (The book avoids
the use of any other standard input/output routines.)

The object oriented features of C++ have mostly been restricted to two classes. The
first is the cpp_xloper, which wraps the basic Excel storage unit (the xloper) and
greatly simplifies the use of the C API. The second is the x1Name which greatly simplifies
the use of named ranges. (Strictly speaking, defined names can refer to more than just
ranges of cells.) There are, of course, many places where an add-in programmer might
find object-abstraction useful, or the functionality of the classes provided in this book
lacking; the choice of how to code your add-in is entirely yours.

C++ throw and catch exception handling are not used or discussed, although it is
expected that any competent C++ programmer might, quite rightly, want to use these.
Their omission is intended to keep the Excel-related points as the main focus.

Many other C++ features are avoided in order to make the code examples accessible
to those with little C++ experience; namespaces, class inheritance and friends, streams
and templates. These are all things that an experienced C++ programmer will be able to
include in their own code with no problem, and are not needed in order to address the
issues of interfacing with Excel.

The C++ terms member variable and member function, and their VB analogues prop-
erty and method, are generally used in the appropriate context, except where readability
is improved.

1.2 WHAT TOOLS AND RESOURCES ARE REQUIRED
TO WRITE ADD-INS

Licensed copies of a 32-bit version of Excel and a 32-bit Windows OS are both assumed.
(16-bit systems are not covered in this book). In addition, and depending on how and
what you want to develop, other software tools may be required, and are described in this
section. Table 1.1 summarises the resources needed for the various levels of capability,
starting with the simplest.

Table 1.1 Resources required for add-in development

What you want Required resources Where to get them
to develop
VBA macros and add-ins VBA (for Excel) Supplied with Excel
Win32 DLLs whose VBA Supplied with Excel

functions can be

accessed via VB A compiler capable of Various commercial and
building a Win32 DLL from shareware/freeware
the chosen source language sources

(which does not have to be
C or C++)

Introduction 3

Table 1.1 (continued)

C/C++ Win32 DLLs
whose functions can be
accessed via VB and that
can control Excel using
OLE/COM Automation

VBA

A C/C++ compiler capable of
building Win32 DLLs, and
that has the necessary library
and header file resources for
OLE COM Automation

Supplied with Excel

Various commercial and
shareware/freeware

sources. Microsoft IDEs
provide these resources.
(See below for details.)

C/C++ Win32 DLLs that
can access the Excel

C API whose functions
can be accessed directly
by Excel without the use
of VBA.

A C/C++ compiler capable of
building Win32 DLLs.

The C API library and header
files.

Various commercial and
shareware/freeware
sources.

Downloadable free from
Microsoft at the time of

writing. (See below for
details.) Static library
also shipped with
Excel.

A copy of the XLLM (Excel 4
macro language) help file.
(Not strictly required but a
very useful resource.)

.NET add-ins and
controllers.

Excel 2002 or later.

A C/C++/C# compiler
capable of building .NET
components for Microsoft
Office applications.

At the time of writing, a good starting point for locating Microsoft downloads is
www.microsoft.com/downloads/search.asp.

1.2.1 VBA macros and add-ins

VBA is supplied and installed as part of all 32-bit versions of Excel. If you only want
to write add-ins in VB, then that’s all you need. The fact that you are reading this book
already suggests you want to do more than just use VB.

1.2.2 C/C++ DLL add-ins

It is, of course, possible to create Win32 DLLs using a variety of languages other than C
and C++. You may, for example, be far more comfortable with Pascal. Provided that you
can create standard DLLs you can access the exposed functions in Excel via VB. If this
is all you want to be able to do, then all you need is a compiler for your chosen language
that can build DLLs.

Chapter 4 Creating a 32-bit Windows (Win32) DLL using Visual C++ 6.0 or Visual
Studio .NET, page 75, contains step-by-step examples of the use of Microsoft’s Visual
Studio C++ version 6.0 Standard Edition and Visual Studio C++ .NET 2003 integrated
development environments (IDEs). The examples demonstrate compiler and project set-
tings and show how to debug the DLL from within Excel. No prior knowledge of these
IDEs is required. (Standard Win32 DLLs are among the simplest things to create.) Other
IDEs, or even simple command-line compilers, could be used, although it is beyond the
scope of this book to provide examples or comparisons.

4 Excel Add-in Development in C/C++

1.2.3 C/C++ DLLs that can access the C API and XLL add-ins

If you want your DLL to be able to access the C API, then you need a C or C++ compiler,
as well as the C API library and header file. The C API functions and the definitions of the
data types that Excel uses are contained in the library and header files x1call32.1ib
and x1call.h. Both of these are contained in a sample project, downloadable from
Microsoft at the time of writing, free of charge, at download.microsoft.com/download/
platformsdk/sample27/1/NT4/EN-US/Frmwrk32.exe. It is also possible to link Excel’s
library in its DLL form, x1call32.d11, in your DLL project, removing the need to
obtain the static . 1ib version. This file is created as part of a standard Excel installation.
Another approach is to create the . 1ib file from the . d11 file, as discussed in section 5.1.

This framework project is also included with Microsoft’s Excel 97 Developer’s Kit
(1997, Microsoft Press) on its accompanying CD ROM. The book contains a great
deal of useful reference data, and describes the framework project in detail, something
beyond the scope of this book. It is perhaps a little short on practical guidance, but
owning a copy is nevertheless recommended. At time of writing, this book is now out
of print, but still available on the Microsoft Developer Network (MSDN) website at
msdn.microsoft.com/library/default.asp?url =/library/officedev/office97/edkfrnt.htm.

An XLL add-in is a DLL that exports a set of interface functions to help Excel load and
manage the add-in directly. These functions, in turn, need to be able to access Excel’s func-
tionality via the C APL, if only to be able to register the exported functions and commands.
Only when registered can they be accessed directly from the worksheet (if functions) or via
menus and toolbars (if commands). The C API is based on the XLLM (Excel 4 macro lan-
guage). This book provides guidance on the most relevant C API functions in Chapter 8.
However, for a full description of all the C API’s XLM equivalents you should ideally
have a copy of the XLLM help file, which is typically named Macrofun.hlp. This
is, at the time of writing, downloadable in the form of a self-extracting executable from
Microsoft at download.microsoft.com/download/excel97win/utility4/1/WIN98/EN-US/
Macrofun.exe.

1.24 C/C++/C# NET add-ins

This book does not cover .NET and C#. These technologies are an important part of
Microsoft’s vision for the future. The resources required to apply these technologies are
Visual Studio .NET and a .NET-compatible version of Excel, i.e., Excel 2002 and later.
The principle purpose of this book is to bring the power of compiled C and C++ to Excel
users, rather than to be a manual for implementing these new technologies.

1.3 TO WHICH VERSIONS OF EXCEL DOES THIS
BOOK APPLY?

Table 1.2 shows the marketing names and the underlying version numbers to which this
book applies. Excel screenshots in this book (worksheets, dialogs, etc.) are all those of
Excel 2000. Most of the interface differences between versions 2000 and 2003 (the latest
at the time of writing) are quite superficial. The workbooks on the CD ROM are Excel
2000 format. (Contact ccppaddin@eigensys.com if you require 97 format files.)

Introduction 5

Table 1.2 Excel version numbers

Product marketing name | Version number
Excel 97 (SR-1, SR-2) 8
Excel 2000 9
Excel 2002 10
Excel 2003 11

1.4 ABOUT ADD-INS

An add-in is simply a code resource that can be attached to a standard application to
enhance its functionality. Excel is supplied with a number of add-ins that can be installed
according to the user’s preference and need. Some provide specialist functions not needed
by the average user, such as the Analysis ToolPak (sic), and some that provide complex
additional functionality such as the Solver add-in.

Add-ins come in two main flavours: interpreted macros and compiled code resources.
Version 4 of Excel introduced macro sheets which could contain macros written in the
Excel macro language (XLM). These comprised columns of instructions and calculations
that either led to a result being returned to the caller, if functions, or that performed
some action such as formatting a cell, if commands. Macro sheets could be part of a
workbook or saved and loaded separately so as to be accessible to any workbook. Despite
their flexibility they were relatively slow and did not promote sensible structured coding.
In fact they encouraged the exact opposite given that, for example, they could modify
themselves whilst executing.

Version 5 introduced Visual Basic worksheets. This enabled coding of functions and
commands as before but promoted better coding practices and made implementation of
algorithms from other languages easier. Excel 97 replaced these VB-sheets with Visual
Basic for Applications and the Visual Basic Editor (VBE) — a comprehensive IDE com-
plete with context-sensitive object-oriented help, pre-compiler, debugger and so on.

Macros, be they XLM or VB, are interpreted. When run, the interpreter reads each
line one-by-one, makes sense of it while checking for errors in syntax, compiles it and
only then executes the instructions. Despite the fact that VBA does some of this work in
advance, this is a slow process. The VBA approach avoids the need for tools to create fully
pre-compiled code making the creation of add-ins possible for the non-expert programmer.
VBA makes Excel application objects accessible and is therefore the obvious choice for
a host of user-defined commands and functions where speed of development rather than
speed of execution is the prime concern. Additionally, Microsoft have not updated the C
API since the release of Excel 97 and only support XLM for backwards compatibility.
New functionality and objects added since this release are only available to applications
that can access Excel’s COM-exposed objects. This is not too serious as the type of
functionality added is that which it is most appropriate to access from VBA (or VB),
rather than via the C API, anyway.

The other main flavour of add-in is the pre-compiled code resource which has none
of the execution overhead of interpreted languages and is therefore extremely fast by
comparison. The cost is the need to use and so understand, another development language,
and another compiler or IDE. In essence, this is no harder than using VBA and the VB

6 Excel Add-in Development in C/C++

editor. The additional requirement is to know what Excel expects from and provides to
anything calling itself an Excel add-in. In other words, you need to understand the Excel
interface. The two interfaces that have been available over recent years are the C API and
COM (the Common Object Model also known as Automation). COM provides access to
Excel’s exposed objects, their methods and properties. VBA itself is a COM Automation
application. Section 9.5 Accessing Excel functionality using COM/OLE Automation, on
page 295, discusses some very basic COM concepts.

VB macros can be saved as Excel add-ins with very little effort but the resulting code is
still slower than, say, compiled C add-ins. (Some performance comparisons are given in
section 9.2 Relative performance of VB, C/C++: Tests and results on page 289). Despite
the rapid development and flexibility of VB, it lacks some of the key language concepts
present in C and C++, in particular, pointers. These can sometimes be critical to the
efficient implementation of certain algorithms. One example of where this is especially
true is with the manipulation of strings.

The advent of .NET changes a number of things. For example, VB code resources can
be compiled and the functions contained made accessible directly from a worksheet, at
least in Excel 2002 and later. C, C++ and C# resources can similarly be accessed directly
from a worksheet without the need to use the C API.

1.5 WHY IS THIS BOOK NEEDED?

For anyone who decides that VBA just isn’t up to the task for their application or who
wants to decide the best way to make an existing C or C++ code resource available within
Excel, just the task of weighing up all the options can at first seem daunting. There is
at the time of writing no published text written specifically to help someone make this
decision and then follow it through with practical step-by-step guidance. There are a
number of commercial products that enable developers to access the power of the Excel
via C API indirectly, through some sort of managed environment and set of classes. These
are beyond the scope of this book, but do make sense for certain kinds of project.

The Excel C API is documented in Microsoft’s Excel 97 Developer’s Kit (1997,
Microsoft Press), out of print at the time of writing. This book tries to complement
that text as far as possible, providing information and guidance that it lacks. Where they
overlap, this book tries to present information in a way that makes the subject as easy
as possible to grasp. The Developer’s Kit is a revision of an earlier version written for
the 16-bit Excel 95, and contains much that was only relevant to developers making
a transition from 16-bit to 32-bit. It provides a very comprehensive reference to the
Microsoft BIFF (binary interchange file format) which is, however, of little use to most
add-in writers.

Writing Win32 DLLs is fairly straightforward, but it is easy to get the impression that
it is highly technical and complex. This is partly because available literature and articles
often contain much that is no longer current (say relating to 16-bit versions of Windows),
or because they concentrate heavily on 16- to 32-bit transition issues, or are simply badly
written. Having said that, there are a few complexities and these need to be understood
by anyone whose add-ins need to be robust and reliable. Overcoming the complexities
to speed up the creation of fast-execution add-ins in C and C++ is what this book is
all about.

Introduction 7

1.6 HOW THIS BOOK IS ORGANISED

The book is organised into the following chapters:

Chapter 2 Excel Functionality

Basic things that you need to know about Excel, data types, terminology, recalculation
logic and so on. Knowing these things is an important prerequisite to understanding
subsequent chapters.

Chapter 3 Using VBA

Basic things about using VBA: creating commands and functions; accessing DLL func-
tions via VB; VB data types; arrays and user-defined data structures, and how to pass
them to DLLs and return them to Excel.

Chapter 4 Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0

How to create a simple Win32 DLL, in VC or VC++ .NET, and export the functions
so they can be accessed by VB, for example. Lays the foundation for the creation of
XLLs — DLLs whose functions can be accessed directly by Excel.

Chapter 5 Turning DLLs into XLLs: The Add-in Manager Interface

How to turn a DLL into an add-in that Excel can load using the add-in manager: an
XLL. The functions that Excel needs to find in the DLL. How to make DLL functions
accessible directly from the worksheet.

Chapter 6 Passing Data between Excel and the DLL
The data structures used by the Excel C API. Converting between these data structures
and C/C++ data types. Getting data from and returning data to Excel.

Chapter 7 Memory Management
Stack limitations and how to avoid memory leaks and crashes. Communication between
Excel and the DLL regarding responsibility for memory release.

Chapter 8 Accessing Excel Functionality Using the C API

The C interface equivalent to the XLM macro language and how to use it in a DLL.
Information about some of the more useful functions and their parameters. Working with
named ranges, menus, toolbars and C API dialogs. Trapping events within a DLL.

Chapter 9 Miscellaneous Topics

Timing function execution speed. A brief look at how to access Excel’s objects and
their methods and properties using IDispatch and COM. Keeping track of cells. Multi-
tasking, multi-threading and asynchronous calls into a DLL add-in. Setting up timed calls
to commands.

Chapter 10 Example Add-ins and Financial Applications
Examples that show how the previous chapters can be applied to financial applications
such as, for example, Monte Carlo simulation.

8 Excel Add-in Development in C/C++
1.7 SCOPE AND LIMITATIONS

The early chapters are intended to give just enough Excel and VBA background for the
later chapters. There are literally dozens of books about Excel and VBA ranging from
those whose titles are intended to coerce even the most timid out of the shadows, to
those with titles designed to make them a must-buy for MBA students, such as ‘Essential
Power Excel Tips For Captains Of Industry And Entrepreneurs’. (At the time of writing,
this was a fictitious book title.) There are, of course, many well-written and comprehensive
reference books on Excel and VBA. There are also a number of good specialist books
for people who need to know how best to use Excel for a specific discipline, such as
statistical analysis, for example.

The book is primarily focused on writing add-in worksheet functions. The reasons for
this are gone into in later sections, such as section 2.8 Commands versus functions in
Excel on page 19. One reason is that commands often rely on the creation of user-defined
dialogs, which is a task far better suited to VBA. Even if the functionality that your
command needs is already written in C/C++ code in a DLL, it can still easily be accessed
from VB. Another reason is that, in general, commands do not have the same speed
of execution requirements as worksheet functions — one of the main reasons for using a
C/C++ DLL for functions.

Commands are covered to a certain extent, nevertheless. They can be a useful part of
a well planned interface to a DLL. Knowing how to create and access them without the
use of VB is important. Knowing how to create menus and menu items is important if
you want DLL. commands to be accessed in a seamless way. Chapter 8 Accessing Excel
Functionality Using the C API on page 169 covers these topics.

The Excel COM interface is largely beyond the scope of this book, mainly to keep the
book focused on the writing of high performance worksheet function, which COM does
not help with. The other main reason is that if you need functionality that COM provides
and the C API does not, for example, access to certain Excel objects, you are probably
better off using VBA.

This book is not intended to be industry-specific or profession-specific except in the final
chapter where applications of particular interest in certain areas of finance are discussed.
It should be noted that the book is not intended to be a finance text book and deliberately
avoids laborious explanations of things that finance professionals will know perfectly
well. Nor are examples intended to necessarily cover all of what is a very broad field.
It is hoped that readers will see enough parallel with their own field to be able to apply
earlier sections of the book to their own problems without too much consternation.

2
Excel Functionality

2.1 OVERVIEW OF EXCEL DATA ORGANISATION

Excel organises data, formulae and other objects into a 2-dimensional grid of cells (65,536 =
216 rows by 256 = 28 columns), one grid per worksheet, with as many sheets per work-
book as system resources allow. Each cell can contain several different types of data as
well as format information and embedded comments. (A workbook can also contain VB
code modules associated with a particular worksheet object or the workbook object.)

Excel, like all Microsoft Office applications, provides two types of command-access
objects: menu bars and toolbars. There are many other Windows objects, but cells,
worksheets, workbooks and command-access objects are of most interest to an add-in
developer. The hierarchy of these objects, simply represented, is as follows:

Table 2.1 Simple representation of primary Excel objects

Application: Excel
Workbooks Menu bars Toolbars
Worksheets and other sheet types Menus Toolbar buttons
Ranges of cells Charts, drawings | Control objects Menu items
and individual and other Excel (Command
cells and non-Excel buttons, etc.) Sub-menu items
objects

2.2 A1 VERSUS R1C1 CELL REFERENCES

Excel supports two styles of cell reference, both used for display and input. The default
(and by far most commonly used) is the A1 style where the alphabetic part of the reference
represents the column (from A to 1V) and the numeric part represents the row (from 1 to
65,536). The other is referred to as the R1C1 style. The main reason spending any time
discussing these is that some of the C API functions require or return range addresses
in one form only. Some of Excel’s VBA functionality also requires R1C1 notation, for
example, when setting graph source-data ranges. Table 2.2 summarises both styles.

Table 2.2 A1 and R1C1 style comparisons

A1 style R1C1 style
Row-column order Column then row | Row then column
Top row in sheet 1 R1
Bottom row in sheet 65536 R65536

(continued overleaf’)

10 Excel Add-in Development in C/C++

Table 2.2 (continued)

A1 style R1C1 style
Left-most column in sheet A C1
Right-most column in sheet v C256
Relative reference style as shown by formula =A2 =A2 =R[1]C[-1]
entered into cell B1.
Absolute reference style as shown by formula =A2 =A2 =R2C1
entered into cell B1.
Mixed reference style as shown by formula =A$2 =$A2 =R2C[-1]
entered into cell B1.
Relative reference in same row or column as shown =A2 =RC[1] (in cell A1)
by formula =A2 entered into cells B2 and A1. =RMIC (in cell B2)

Note: The index in square brackets in relative references in R1C1 style can be any number
from —65,535 to +65,535 inclusive.

2.3 CELL CONTENTS

Internally, a cell within Excel has a great deal of data associated with it. This includes the
display format, attached comments (notes), protection status, etc. The two most important
properties for someone wishing to write functions are:

1. The cell’s formula — a text string that Excel parses to an internal compiled form, and
which is then used to re-evaluate the cell in a recalculation.

2. The cell’s value — if the cell contains a formula, the result of its evaluation, otherwise
the data that was entered directly by the user or an Excel command or macro.

24 WORKSHEET DATA TYPES AND LIMITS

From a spreadsheet user’s perspective, the fype of value of any non-empty cell (or group
of cells in the case of an array) will always be one of the following:

a number (floating point);

a Boolean value (TRUE or FALSE);

a character string;

an Excel-specific error code;

an array comprised, in general, of a mixture of the above types.

Excel will always evaluate a cell formula to one of these data types. Sometimes the
function in the cell will return something other than one of these, such as a range reference,
but Excel will then evaluate this to one of these types.

The formatting applied to a cell can, of course, make the appearance of a number it
contains very different. A number may appear as a date, a time, a percentage, a currency
amount, in scientific notation or as a formatted fraction. Note that Excel doesn’t distinguish
between integer and floating-point numbers on a worksheet. A function that takes integer

Excel Functionality 11

arguments, such as DATE(year, month, day), will truncate any non-whole number argument
rather than complain about the number type.
The limits on each of the above five data types are as follows:

Table 2.3 Worksheet data types and limits

Number Floating point range:

4 x where

1.0 x 107397 < |x] < 1.0 x 101308

(Max values of x may display as +1.0E+308.)

Floating point accuracy:
15 decimal places displayed. Sometimes 16 places are stored internally
depending on binary representation of mantissa.

Integer (stored by Excel as floating point):
+i where
0 < |i| < 1,000,000,000,000,000 (10'%)
(Outside these bounds, floating point representations truncate lowest
order digits.)
Notes:
1. Certain number formats have narrower limits than these, e.g., dates
and times.
2. Integer division is, in fact, floating point division and may, in
extreme cases, yield non-integer results where the true result should
be an integer.

Boolean TRUE
FALSE

Character string Maximum length: 32,767 =2 — 1
Minimum length: Zero (Empty string: ="")

Allowable characters:
e ASCII codes: 1 to 255 inclusive
(Note: Only codes 32 and above print on screen.)

Notes: Only 1,024 characters can be displayed in a cell, but all 32,767 are
displayed in the formula bar. The C API is limited to a maximum string
length of 255.

Excel error #NULL!
#DIV/0!
#VALUE!
#REF!
#NAME?
#NUM!
#N/A

Array A one- or two-dimensional collection of mixed-type elements that can be
any one of the above types.

(continued overleaf’)

12

Excel Add-in Development in C/C++

Table 2.3 (continued)

Literal arrays are enclosed in curly braces { and }, row-by-row (sometimes
referred to as row-major). Row elements are delimited by commas, and
rows themselves are delimited by semi-colons. For example, {1, “A”;
TRUE, NA()} represents the 2 x 2 matrix

1 A
TRUE #N/A

2.5 EXCEL INPUT PARSER

When a user types input to a cell in Excel and commits the data (by pressing enter, tab
or selecting another cell), Excel performs several operations in the order outlined below.
In essence, it is attempting to guess what kind of input the user was providing, and then
tries to interpret accordingly. Understanding the order in which Excel does these things
may help you when creating your own functions or commands.

1.

If the input starts with a string prefix (a single quote mark) Excel places all of the
input characters in the cell as fyped, with no modification. (The string prefix is not
displayed.) If the input begins with =, + or -, it assumes a formula and uses its formula
parser to check the syntax. An error dialog appears if the formula does not make sense.
Otherwise Excel will try and figure out if the user typed something that looked like a
date, a time, a currency amount, a percentage, or just a number. If none of these, it
reverts to considering the input as a string and places it in the cell unchanged.

Note: This tendency to recognise dates and times before text can be quite annoy-

ing, especially if you intended to input a string such as the ratio ‘“2:1”. Excel will
change the format of the cell to a time format and convert the input to the numeric
value 0.084027777 (the fraction of the day that has passed at 02:10 a.m.). Having to
remember to prefix such inputs with a single quote mark can be frustrating.
Where the input is seen as a possible formula, Excel attempts to identify, convert and
evaluate function arguments and nested functions starting with the innermost, i.e., most
nested. Cell references and ranges are converted to values, which are then converted
to the right data types if necessary and so on. Where a token that is not recognised as
a function or defined name is encountered, the conversion and evaluation fails with a
#NAME? error. Otherwise defined names are converted just as the cells or expressions
they represent would be.

. Once the input has been accepted, Excel attempts to recalculate those things that

depend on the new input. If the input was a number and cell previously contained a
number, Excel will only recalculate if the value has changed. If a new formula has been
entered with references to new inputs, Excel verifies that no circular references have
been created by this new formula. If a cell does depend on inputs which themselves
depend on the value of this cell, Excel complains.

Depending on the optional Excel or cell format settings, Excel may resize the column
width or row height.

2.6 DATA TYPE CONVERSION

Excel always attempts to convert data from one type to another where required. This
section explains when Excel tries to do this, and when it is and is not successful.

Excel Functionality 13

2.6.1 The unary = operator

It may seem too obvious to mention, but the = sign at the start of a cell or array formula
is a unary operator that evaluates whatever appears to its right. The result will always
be one of the four basic types: a number, a string, a Boolean true/false, or an error. Cell
references are converted to the values of the cells they refer to. Formulae are evaluated
to the outermost function’s return value or the lowest-precedence operator result. This
process results in an error value if a function could not be called or an operator could not
be applied. (Conversion of cell references is covered in more detail below.)

2.6.2 The unary — operator (negation)

The unary negation operator, or more simply the minus sign, converts the operand imme-
diately to its right to a number and then negates its value. Boolean true and false are
converted to 1 and 0. A double negation will therefore convert text representations of
numbers to real numbers, as does the VALUE() function. Both produce a #VALUE! error if
the conversion fails.

2.6.3 Number-arithmetic binary operators: + - */*

Where Excel is evaluating a cell that contains any of the number-arithmetic binary oper-
ators, strings will be converted to numbers where possible, i.e., where they are in one of
the number formats that Excel recognises. (This includes date and time formats where
the resulting number after conversion is the date-time serial number.)

2.6.4 Percentage operator: %

The unary percentage operator — the divide by 100 operator — acts on the operand imme-
diately to its left. It has the highest operator precedence so that =1/2% will evaluate to 50
not to 0.005. Excel attempts to convert this operand to a number where it is not already
one. As with the number arithmetic binary operators, all recognised number formats will
be converted, so that, perhaps bizarrely, the formula ="1-Jul-2002 12:37:03"% evaluates to
374.385 rather than to an error. (Note that in this example Excel converts the date string
to a number and then applies the % operator.) The equally strange formula =TRUE%
evaluates to 0.01.

2.6.5 String concatenation operator: &

Where the string concatenation operator & is used, Excel will convert numbers to strings
in a default number format, unrelated to any display format, with as much precision as
required to represent the number accurately, up to the maximum precision supported.

2.6.6 Boolean binary operators: =<, >,<=, >=,<>

Where these operators are acting on strings, evaluations are case-insensitive. (The Excel
function EXACT() performs a case-sensitive equality test.) In fact, Excel converts upper
case A-Z to lower case before making the comparison, as can be seen from the 3rd and
4th examples in Table 2.4:

14 Excel Add-in Development in C/C++

Table 2.4 Case-insensitive string comparisons

Formula.evaluates to:
="A"="g" TRUE
="a">"Z2" FALSE
="Z">"" TRUE
=CHAR(90)>CHAR(91) TRUE

Apart from string case conversion, Excel does not convert operands for these operators.
Table 2.5 shows some examples of the consequences:

Table 2.5 Mixed-type comparisons

Formula.evaluates to:
=123="123" FALSE
=123>"121" FALSE
=123<>"123" TRUE
=TRUE ="TRUE" FALSE

2.6.7 Conversion of single-cell references

Excel will convert a single-cell reference to the value of the cell referred to, unless it is
being passed to a function that expects a reference as its parameter rather than a value.
(Later chapters go into detail on such functions, but a simple example is ROW(), which
extracts and returns the row number of a cell reference.) If an operator or function using
the reference requires a different data type than that of the reference’s value, then Excel
will also attempt to convert to the required type. (See next section for more detail.) For
example, if a cell contains the formula =SUM(A1,B1), with A1 containing the number 123
and B2 the string "456", Excel will convert the reference Al to the value of that cell, 123,
and the reference B1 to the string "456" and then to the argument type expected by SUM(),
the number 456, leading finally to a result of 579.

2.6.8 Conversion of multi-cell range references

Some functions will work equally well with single cell references and range references,
for example, SUM(A1,B1,C1) gives the same result as SUM(A1:C1). In the latter case, the
SUM() function converts the range A1:C1 to a mixed type array of values and then iterates
through that converting and summing values where possible. The work of handling the
range argument is done within the code of the SUM() function.

However, there are cases where Excel needs to convert a range argument before calling
a function or applying an operator. Here the behaviour is a little more complex. Table 2.6
shows how Excel copes with range arguments in combination with a simple arithmetic
operation, plus one in this case. (The strings in row 3 indicate the formulae entered in the

Excel Functionality 15

cells immediately below.) Clearly range 4+ 1 is a meaningless operation without range
being converted or interpreted somehow.

Table 2.6 Range reference argument conversion examples

B C D E F
3 Static values |{=B4:B8+1} |{=SUM(B4:B8+1)} |=SUM(B4:B8+1) |=B4:B8+1
4 1 2 20 2 2
5 2 3 20 3 3
6 3 4 20 4 4
7 4 5 20 5 5
8 5 6 20 6 6
9 #N/A 20 #VALUE! #VALUE!

In column C, range + 1 is entered as an array formula (see section 2.9.2 on page 21).
Excel interprets this as an instruction to add 1 to each of the cells in the input range,
and place the results one-by-one into the corresponding cells in the output range. Where
there is no corresponding output cell, Excel places #N/A. Essentially, B3:B8+1 is converted
to an array which is then mapped onto the array formula’s range. What Excel is doing
is treating the range as if it were a matrix and interpreting the operation ‘add 1’ as an
instruction to add one to each element of the matrix.

In column D, Excel again performs the same matrix operation when confronted with
B3:B4+1, and passes the resulting matrix to SUM() which then adds the elements and returns
a single value. The formula is entered as an array formula and therefore this single value
gets copied to every cell under the array. (Note that the formula =SUM(B4:B8,1) would have
yielded 16, not 20.) Had the formula not been entered as an array formula, the behaviour
would have been very different, as shown in columns E and F.

In columns E and F, the respective formula is duplicated in each of the cells in rows 4
to 9. (The absolute reference $ signs do not effect the way the cells are evaluated.)
The perhaps surprising thing is that Excel returns a result that is different depending on
the location of the cell as well as the formula within it. This is a unique behaviour in
Excel. Excel converts the range reference to a single cell reference that corresponds to
the location of the calling cell. For example, cell F4 is calculated as if the reference were
to cell B4; cell F5 as if it were to cell BS, and so on. There is no corresponding cell in
the input range for cells E9 and F9 so Excel returns #VALUE! to indicate that it could not
convert the range argument.

2.6.9 Conversion of defined range names

Where a cell formula contains a token that cannot be interpreted as a constant (either
numeric or string within double-quotes) or a cell reference, Excel searches for a named
range on the current sheet and then the current workbook. (See below for an explanation
of the term current.)

16 Excel Add-in Development in C/C++

Names can be specified in any of the following forms:

e [Book1.xIs]Sheet1!Name
o Sheet1!Name — where the workbook is taken to be the current workbook
o Name — where the workbook and sheet are the current ones.

If the sheet is specified, Excel will search for the name’s definition on that sheet. If a
workbook and sheet name are specified, Excel will search in that workbook and sheet.
If the name is found, it is replaced by its definition (typically a reference to cells in
a workbook), then converted to a value or array of values if necessary, following the
same rules as outlined above. Note that if the name refers to a multi-cell range, this is
interpreted and converted as described above in section 2.6.9.

2.6.10 Explicit type conversion functions: N(), T(), TEXT(), VALUE()

Explicit type conversion is possible with the functions VALUE() and TEXT() with the advan-
tage that TEXT() provides control over the text format where an implicit conversion does
not. Type conversion can also be constrained with the functions N() and T(). Table 2.7
summarises the action of these functions on the basic data types:

Table 2.7 Explicit worksheet data type conversion

Input argument type

Number String Boolean Error
N() Returns the Returns zero. N(TRUE) — 1 Returns the Excel
(unformatted) N(FALSE) — 0 error unchanged.
number.
T() Returns empty Returns the string. Returns empty string.
string.

TEXT() |Returns a string of | Converts to a number | Converts to "TRUE" or
the number in the |then back to a string |"FALSE" regardless of
given format. in the given format. If | the given format.
the conversion fails,
returns #VALUE!

VALUE() | Returns the Converts to a number. | Returns #VALUE!
(unformatted) If the conversion
number. fails, returns #VALUE!

Other type conversion functions are also provided by Excel, i.e., DATEVALUE() which
converts a date string to a serial date-time number and TIMEVALUE() which converts a
time string to a serial date-time number.

2.6.11 Worksheet function argument type conversion

Excel will attempt to convert arguments being passed to functions, regardless of whether
they are Excel’s built-in worksheet functions, a third party’s add-in functions or
user-defined VB functions. Worksheet functions can take as arguments any combination
of the following:

Excel Functionality 17

a single literal value;

an array of literal values;

a reference to a single cell;

a reference to a rectangular range of cells.

el s

In the first two cases, the values themselves can be any one of the basic Excel data types
(see Worksheet data types and limits above for more detail).

Excel attempts to convert from the supplied type to the function’s required type.
(Chapter 8 Accessing Excel Functionality Using the C API, on page 169, explains how
to construct and declare functions whose arguments are to be passed as is, without con-
version.) Where Excel cannot convert an argument to the declared type, the function is
evaluated to #VALUE!. Note that Excel does not call the code of the underlying function
if this happens.

Consider a function that takes an array of values. Suppose it is passed a reference to a
rectangular range: Excel will convert the range to an array of the values that those cells
contain. However, in contrast to single-cell references, Excel will not convert the types
of those values. For example, the formula =SUM({123,"123"}) (note the curly braces which
surround a literal array in Excel) evaluates to the number 123 since the second value in the
array is not converted from a string to a number. The formula =SUM(123,"123"), however,
evaluates to 246 as Excel is quite happy to convert the string argument "123 " to the number
123 before passing it to SUM(). The reason for this is that such functions are declared as
taking an Excel array type in which each element can be any one of a number of basic
data types, regardless of the types of the other elements. Excel cannot know what types the
function ideally wants and leaves any element conversion to the function itself.

Note that some functions can accept one of a number of types, for example, in the
function IF(fest, if true, if false), the second and third arguments can be any type and are
passed and returned unconverted depending on the outcome of the test. The fact that
range references are not converted prior to IF() being called is most easily evidenced with
a formula such as =ROWS(IF(A1,B1:B2,C1:C3)), which will return either the value 2 or 3
depending on the value of A1.

Table 2.8 details the conversions that Excel attempts to make (if necessary) in passing
arguments to worksheet functions:

Table 2.8 Worksheet function argument type conversion

Supplied argument Excel will attempt, if required, to convert to. ..

Number Integer

Floating point — Integer (by truncation of digits after
the decimal point)

(Converse does not apply, as all worksheet numbers are
floating point.)

String

In default number format with as much precision as
required to represent the number up to the maximum
precision supported by Excel.

Boolean
Zero — FALSE

(continued overleaf)

18 Excel Add-in Development in C/C++

Table 2.8 (continued)

Supplied argument

Excel will attempt, if required, to convert to. ..

Non-zero — TRUE

String

Number
Must be any one of Excel’s known number formats
including date, time, etc.

Boolean
Must be ‘true’ or ‘false’ (not case-sensitive).

Boolean

Number

True — 1

False — 0

(Conversion not always performed).

String
True — “TRUE”
False — “FALSE”

Single cell reference

Ist step:
Value of cell referred to.

2nd step:

Number — Integer, String or Boolean
String — Number or Boolean
Boolean — Number or String

Multiple cell reference

Array
(Note: each element in the array has the same data type
as the corresponding cell’s value).

2.6.12 Operator evaluation precedence

Table 2.9 Operator evaluation precedence

Operators (operation) Notes

Name lookup and substitution

Reference-to-value and type conversion

() and worksheet functions Evaluated left to right

%, unary —

=4"50% evaluates to 2

*/

Binary +—

&

=4+28&1+5="66" evaluates to TRUE

Binary =, <, >, <=, >=, <> Evaluated left to right

Excel Functionality 19
2.7 EXCEL TERMINOLOGY: ACTIVE AND CURRENT

Excel functions that provide information about a cell, a range of cells or a sheet in a
workbook often make a distinction between the workbook, sheet or cell that the user is
currently looking at, and the workbook, sheet or cell from which the function was called.!
The same is true of commands that affect a workbook or one of its constituents. The terms
active and current are used to make the distinction, which can be quite confusing. Here
is a clear definition:

Table 2.10 Active versus current terminology

Term Definition

Active workbook The one that the user is currently looking at. If Excel does not have
focus then the active workbook is the one that was visible when Excel
last had focus.

Active sheet The one that the user is currently looking at. If Excel does not have
focus then the active sheet is the one that was visible when Excel last
had focus. The active sheet is always in the active workbook.

Active cell The one into which input would be placed if the user started typing.
This cell may not be visible if the user has scrolled off to one side. If
Excel does not have focus then the active cell is that cell on the sheet
that was active when Excel last had focus. The active cell is always on
the active sheet.

Current workbook The one that is currently being recalculated by Excel. The active and the
current workbook may or may not be the same at any given moment.

Current sheet The one that is currently being recalculated. The active and the current
sheet may or may not be the same at any given moment. The current
sheet is always in the current workbook.

Current cell The one which is currently being evaluated. The active and the current
cell may or may not be the same at any given moment. They will be the
same if the calculation of the cell results from, say, the user entering
new contents to the cell. The current cell is always on the current sheet.

2.8 COMMANDS VERSUS FUNCTIONS IN EXCEL

There is an important distinction in Excel between functions, represented by formulae
in worksheet cells that may or may not take arguments but always return a value, and
commands which are equivalent to a user doing something. For example, NOW() is a
function: it returns a number representing the date and time right now. In contrast, the
action taken by Excel to format a cell when a user presses a formatting icon on a toolbar
is a command.

I There are other components that can be active, e.g., components of a chart that have been selected, which are
not covered here.

20 Excel Add-in Development in C/C++

Commands are allowed to do just about anything in Excel. Functions are given far less
freedom. VB functions are given a little more freedom than DLL add-ins. (Some of the
details of the differences between these two are discussed in the later chapters on VB
and C/C++.) It is easy to see why there needs to be some difference between functions
and commands: it would be a bad thing to allow a function in a worksheet cell to press
the undo icon whenever it was calculated. On the other hand, allowing a user-defined
command to do this is perfectly reasonable.

Most (but not all) of this book is concerned with writing functions rather than commands
simply because commands are better written in VB and may well require dialog boxes
and such things to interact with the user. Chapter 3 Using VBA on page 41 does talk
about VB commands, but not in great detail; there are plenty of books which talk at great
length about these things. Later chapters concerning the C API do talk about commands,
but the focus is on worksheet functions.

Table 2.11 gives a non-exhaustive summary of the things that commands can do that
functions can’t.

Table 2.11 Capabilities of commands versus functions

Action Command Function

Open or close a workbook Yes No

Create or delete a worksheet Yes No

Change the current selection Yes No

Change the format of a cell, worksheet or other object Yes No

Take arguments when called No Yes

Return a value to the caller No Yes

Access a cell value (not via an argument) Yes C APIL:
Sometimes?
VBA: Yes

Change a cell value Yes Only the

calling cell or
array and only
by return value

Read/write files Yes Yes
Start another application or thread Yes Yes
Set up event-driven Windows call-backs Yes Yes
Call a command-equivalent Excel 4 macro, C API function, Yes No

or Excel object method

2 Worksheet functions are more limited than macro sheet functions in their ability to access the values of other
cells not passed in as arguments. For more details on this subject see section 8.5.4 Giving functions macro
sheet function permissions on page 188.

Excel Functionality 21

2.9 TYPES OF WORKSHEET FUNCTION

This book assumes a frequent-user level of familiarity with Windows, Windows applica-
tions, Excel and its user interface. This section assumes that readers are familiar with the
most common commands, menus, functions, how to use them, how to use Excel help and
so on. This section says nothing about these standard features, but instead discusses how
functions fall into certain types. When considering writing your own, it is important to
be clear about what kind of function you are creating.

2.9.1 Function purpose and return type

Individual worksheet cells are either empty or are evaluated to one of four different
data types:

Numbers;

Boolean (TRUE/FALSE);
Strings;

Error values.

(See section 2.4 Worksheet data types and limits on page 10.) Functions, however, can
evaluate to arrays and range references as well as to these four types. (The functions
INDIRECT(), OFFSET() and ADDRESS(), for example, all return references.)

Functions that return references are generally only of use when used to create range
(or array) arguments to be passed to other functions. They are not usually intended as the
end-product of a calculation. Where such a function returns a single cell reference, Excel
will attempt to convert to a value, in the same way that =A1 on its own in a cell will be
reduced to the value of A1. The formula =A1:A3 on its own in a cell will produce a #VALUE!
error, unless it is entered as an array formula into one or more cells (see next section).

As shown by examples later in this book, you can create functions that do useful things,
without needing to return anything important, except perhaps a value that tells you if they
completed the task successfully or not. A simple example might be a function that writes
to a data file whenever a certain piece of information changes.

In thinking about what you want your own functions to do, you should be clear about
the purpose of the function and therefore of its return type and return values, before you
start to code it.

2.9.2 Array formulae — The Ctrl-Shift-Enter keystroke

Functions can return single values or arrays of values, and many can return either. For
example, the matrix formula, MMULT(), returns an array whose size depends on the sizes
of the input arrays. Such functions need to be called from a range, rather than from a
single cell, in order to return all their results to the worksheet.

To enter an array formula you need to use the Ctrl-Shift-Enter keystroke. Instead of the
usual Enter to commit a formula to a single cell, Ctrl-Shift-Enter instructs Excel to accept
the formula as an array formula into the selected group of cells, not just the active cell.
The resulting cell formula is displayed in the formula bar as usual but enclosed within
curly braces, e.g., {=MMULT(A1:D4,F1:14)}. The array formula can then only be modified as
a whole. Excel will complain if you attempt to edit or move part of an array, or if you
try to insert or delete rows or columns within it.

22 Excel Add-in Development in C/C++

The all-or-nothing edit feature of array formulae makes them useful for helping to
protect calculations from being accidentally overwritten. The worksheet protection feature
of Excel is stronger. It allows precise control over what can be modified with password
protection. However, it also disables other features that you might want to be accessible,
such as the collapse and expansion of grouped rows and columns. Array formulae provide
a half-way house alternative.

Functions and operators that usually take single cell references can also be passed
range arguments in array formulae. How Excel deals with these is covered above in
section 2.6.8.

2.9.3 Required, optional and missing arguments and variable argument lists

Some functions take a fixed number of arguments, all of which need to be supplied
otherwise an error will be returned, for example DATE(). Some take required and optional
arguments, for example, VLOOKUP(). Some take a variable number such as SUM(). A few
functions have more than one form of argument-list, such as INDEX(), equivalent to the
concept of overloading in C++.

With C/C++ DLL functions, Excel handles variable length argument lists by always
passing an argument, regardless of whether the user provided one. A special missing data
type is passed. If the argument can take different types, say, a string or a number, the
function can be declared in such a way that Excel will pass a general data type. It is then
up to the function’s code whether to execute or fail with the arguments as provided. This
and related subjects are covered in detail in Chapter 6 Passing Data between Excel and
the DLL on page 105.

2.10 COMPLEX FUNCTIONS AND COMMANDS
2.10.1 Data Tables

Data Tables provide a very useful way of creating dynamic tables without having to
replicate the calculations for each cell in the table. Once the calculation has been set
up for a single result cell (not in the table), a table of results for a range of inputs is
produced. Excel plugs your inputs in one-by-one and then places the resulting value in
the Data Table. Data Tables can be based on one input to produce a single row or column
of results, or on two inputs to produce a 2-dimensional table.

Tables are set up with the Data/Table. . . command, invoking a simple wizard that prompts
you to specify the input row and/or column for the table. This book doesn’t go into any
detail (refer to Excel’s help to find out more), but it is worth considering what they are.
If you look at the formula that Excel puts in part of the table where the results are placed,
you will see that there is an array formula {=TABLE(...)}. On the face of it, therefore, it
looks like a Data Table is just another function entered as an array formula. It gives the
appearance of being recalculated like a function, except that Excel enables you to turn
the automatic recalculation of tables off using Tools/Options. . ./Calculation.

However: you can’t edit and re-enter the cells under the TABLE() function, even if you
have changed nothing; the Paste Function dialog does not recognise TABLE() as a valid
function; you can’t move the cells that are immediately above or to the left of the cells

Excel Functionality 23

occupied by the TABLE() function; you can’t set up a table other than with the Data
Table wizard.

The best way to think of a Data Table is as a completely different type of object that
allows a complex set of calculations in the worksheet to be treated as a user-defined
function in this very specific way. An example of where use of a Data Table might be
preferable to writing a VB or C/C++ function might be the calculation of net income after
tax. This depends on many pieces of information, such as gross income, tax allowances,
taxation bands, marital status, etc. Coding all this into a user-defined function may be
difficult, take an unjustifiably long time, involve the passing of a large number of argu-
ments, and might be hard to debug. A well laid-out spreadsheet calculation, complete with
descriptive labels for the inputs, and a Data Table, provide an excellent way of creating
a source for a lookup function.

One thing to watch is that Excel does not detect circular references resulting from the
input calculation depending on the table itself. In other words, it will allow them. Every
time the table is recalculated, the circular reference will feed back one more time. There’s
no reason someone in their right mind would want to do this, of course, but be warned.

Warning: Data Tables can recalculate much more slowly than repeated calculation of
cells. Excel’s recalculation logic can also be a little hard to fathom with large Data
Tables — it’s not always clear when the calculation is complete.

2.10.2 Goal Seek and Solver Add-in

Excel provides two ways of solving for particular static cell values that produce a certain
value in another cell. These are both commands, not functions, so you cannot automatically
re-solve when something in your sheet changes. To achieve this you would need to write
a user-defined function that will implement some kind of solver. The simplest of Excel’s
solvers is the Goal Seek (Tools/Goal seek...) which invokes the following dialog, and
provides a way of solving for one final numerical value given one numerical input.

Set cell; iD3 E

To value: |1.5

By changing cell: iC3 _"‘:i
(9] Canicel |

Figure 2.1 Excel’s Goal Seek dialog

The second and more powerful method is the Solver Add-in, supplied with Excel and
accessible through the Tools/Solver. .. menu command once the add-in has been installed.

24 Excel Add-in Development in C/C++

The dialog that appears is shown in Figure 2.2.

Solver Parameters _| il_l

X

Set Target Cell: $0E3 B Solve I
Equal To: FMax CMo O Valeof 15 Close |
By Changing Cells:
[$cta i GLIEss |
-Subject to the Constraints: Options
=] Ald |
Change

Eeset All

LI Delete |

il

Help

Figure 2.2 Excel’s Solver add-in dialog

This is a far more flexible solver, capable of solving for a number of inputs to get to the
desired single cell value, maximum or minimum. The user can also set constraints to avoid
unwanted solutions and options that dictate the behaviour of the algorithm. Section 10.12
Calibration, on page 381, talks more about this very powerful tool.

The complexities governing when solutions converge, when they are unlikely to, when
there may be multiple solutions, and to which one you are most likely to converge, are
beyond the scope of this book. (Excel provides help for the solver via the Tools/Solver. . .
dialog’s Help button.) If you intend to rely on a solver for something important you either
need to know that your function is very well behaved or that you understand its behaviour
well enough to know when it will be reliable.

2.11 EXCEL RECALCULATION LOGIC

The first thing to say on this often very subtle and complex subject is that there is much
more that can be said than is said here. This section attempts to provide some basic insight
and a foundation for further reading.

Excel recalculates by creating lists of cells which determine the order in which things
should be calculated. Excel constructs this by inspecting the formulae in cells to deter-
mine their precedents, establishing precedent/dependent relationships for all cells. Once
constructed, cells in the lists thus generated are marked for recalculation whenever a
precedent cell has either changed or has itself been marked for recalculation. Once this
is done Excel recalculates these cells in the order determined by the list.

After an edit to one or more formulae, lists may need to be reconstructed. However,
most of the time edits are made to static cells that do not contain formulae and are not
therefore dependent on anything. This means that Excel does not usually have to do this
work whenever there is new input.

As this section shows, this system is not infallible. Care must be taken in certain cir-
cumstances, and certain practices should be avoided altogether. (VB code and spreadsheet

Excel Functionality 25

examples are contained in the spreadsheet Recalc Examples.xls on the CD ROM.)
Further, more technically in-depth reading on the subject of this section is available on
Microsoft’s website.

2.11.1 Marking dependents for recalculation

Excel’s method, outlined above, results in a rather brute-force recalculation of dependents
regardless of whether the value of one the cells in a list has changed. Excel simply marks
all dependents as needing to be recalculated in one pass, and then in the second pass
recalculates them. This may well be the optimum strategy over all, but it’s worth bearing
in mind when writing and using functions that may have long recalculation times. Consider
the following cells:

Cell Formula

B3 =NOW()

B4 =INT(B3)

B5 =NumCalls_1(B4)

The VB macro NumCalls_1(), listed below, returns a number that is incremented with
every call, effectively counting the times B5 is recalculated. (For more information on
creating VB macro functions, see Chapter 3 Using VBA on page 41).

Dim CallCountl As Integer ' Scope is this VB module only
Function NumCalls_1(d As Double) As Integer

CallCountl = CallCountl + 1
NumCalls_1 = CallCountl

End Function

Pressing {F9} will cause Excel to mark cell B3, containing the volatile function NOW(),
for recalculation (see section 2.11.3 Volatile functions below). Its dependent, B4, and then
B4’s dependent, B5, also get marked as needing recalculation. Excel then recalculates all
three in that order. In this example, the value of B4 will only change once a day so
Excel shouldn’t need to recalculate B5 in most cases. But, Excel doesn’t take that into
consideration when deciding to mark B5 for recalculation, so it gets called all the same.
With every press of {F9} the value in B5 will increment.

A more efficient method might appear to be only to mark cells as needing recalculation
if one or more of their precedents’ values had changed. However, this would involve
Excel changing the list of cells-to-be-recalculated after the evaluation of each and every
cell. This might well end up in a drastically less efficient algorithm — something critics
often overlook.

Where a number is directly entered into a cell, Excel is a little more discerning about
triggering a recalculation of dependents: if the number is re-entered unchanged, Excel
will not bother. On the other hand, if a string is re-entered unchanged, Excel does recal-
culate dependents.

26 Excel Add-in Development in C/C++

2.11.2 Triggering functions to be called by Excel — the trigger argument

There are times when you want things to be calculated in a very specific order, or for
something to be triggered by the change in value of some cell or other. Of course, Excel
does this automatically, you might say. True, but the trigger is the change in value of
some input to the calculation. This is fine as long as you only want that to be the trigger.
What if you want something else to be the trigger? What if the function you want to
trigger doesn’t need any arguments? For example, what if you want to have a cell that
shows the time that another cell’s value last changed so that an observer can see how
fresh the information is?

The solution is simple: the trigger argument. This is a dummy argument that is of
absolutely no use to the function being triggered other than to force Excel to call it.
(Section 9.1 Timing function execution in VB and C/C++ on page 285 relies heavily on
this idea.) The VB function NumCa11s_1() in the above section uses the argument solely
to trigger Excel to call the code.

In the case of wanting to record the time a static numeric cell’s value changes, a simple
VB function like this would have the desired effect:

Function Get_Time(trigger As Double) As Double
Get_Time = Now

End Function

The argument trigger is not used in the calculation which simply returns the current
date and time as the number of days from 1st January 1900 inclusive by calling VB’s
Now function. It just ensures the calculation is done whenever the static trigger changes
value (or when Excel decides it needs to do a brute-force recalculation of everything on
the sheet).’

The concept of a trigger argument can, of course, usefully be applied to C/C++ add-in
functions too, and is extensively used in later sections of this book.

2.11.3 Volatile functions

Excel supports the concept of a volatile function, one whose value cannot be assumed to
be the same from one moment to the next even if none of its arguments (if it takes any) has
changed. Excel re-evaluates cells containing volatile functions, along with all dependents,
every time it recalculates, usually any time anything in the workbook changes, or when
the user presses {F9}.

It is easy to create user-defined functions that are optionally volatile (see the VB macro
NumCalls_1() in the above section), by using a built-in volatile function as a trigger
argument. Additionally, VB and the C API both support ways to tell Excel that an add-in
function should be treated as volatile. With VB, Excel only learns this when it first calls
the function. With the C API a function can be registered as volatile before its first call.

Among the standard worksheet functions, there are five volatile functions:

o NOW();
o TODAY();

3 If the trigger were itself the result of a formula, this function might be called even when the value of the trigger
had not changed. See section 2.11.5 User-defined functions (VB Macros) and add-in functions on page 25.

Excel Functionality 27

e RAND();
o OFFSET(reference, rows, column, [height], [width]);
o INDIRECT().

NOW() returns the current date and time, something which is, in the author’s experi-
ence, always changing. TODAY() is simply equivalent to INT(NOW()) and used not to exist.
RAND() returns a different pseudo-random number every time it is recalculated. These
three functions clearly deserve the volatile status Excel gives them. OFFSET() returns a
range reference, relative to the supplied range reference, whose size, shape and relative
position are determined by the other arguments. OFFSET()’s case for volatile status is a
little less obvious. The reason, simply stated, is that Excel cannot easily figure out from
the arguments given whether the contents of the resulting range have changed, even if
the range itself hasn’t, so it assumes they always have, to be on the safe side.

The function INDIRECT() causes Excel to reconstruct its precedent/dependant tree with
every recalculation in order to maintain its integrity.

Volatile functions have good and bad points. Where you want to force a function that is
not volatile to be recalculated, the low-cost (in CPU terms) volatile functions NOW() and
RAND() act as very effective triggers. The down-side is that they and all their dependants
and their dependants’ dependants are recalculated every time anything changes. This is true
even if the value of the dependants themselves haven’t changed — see the VB macro func-
tion NumCal1ls_1() in the section immediately above. Where OFFSET() and other volatile
functions are used extensively, they can lead to very slow and inefficient spreadsheets.

2.11.4 Cross-worksheet dependencies — Excel 97/2000 versus 2002/2003
Excel 97 and 2000

Excel 97 and 2000 construct a single list for each worksheet and then recalculate the
sheets in alphabetical order. As a result, inter-sheet dependencies can cause Excel to
recalculate very inefficiently.

For example, suppose a simple workbook only contains the following non-empty cells,
with the following formulae and values. (The VB macro NumCal1s_4 (), which returns an
incremented counter every time it is called, is a clone of NumCal1s_1() which described
in section 2.11.1 above.)

Sheetl:

Cell Formula Value

C11 | =NumCalls_4(NOW()+Sheet2!B3) 1

Sheet2:

Cell Formula Value
B3 =B4/2 1
B4 2

Excel is, of course, aware of the dependency of Sheet1!C11 on Sheet2!B3 but they both
appear in different lists. Excel’s thought process goes something like this:

1. Something has changed and I need to recalculate.

28 Excel Add-in Development in C/C++

2. The first sheet in alphabetical order is Sheet1 so I'll recalculate this first.
3. Cell Sheet1!C11 contains a volatile function so I'll mark it, and any dependents, for

recalculation, then recalculate them.

4. The second sheet in alphabetical order is Sheet2 so I’ll recalculate this next.
5. Cell Sheet2!B4 has changed so I'll mark its dependents for recalculation, then recalcu-

late them.

6. Now I can see that Sheet2!B3 has changed, which is a precedent for a cell in Sheet1,
so I must go back and calculate Sheet! again.

7. Cell Sheet1!C11 not only contains a volatile function, but is dependent on a cell in
Sheet2 that has changed, so I'll mark it, and any dependents, for recalculation, then

recalculate them.

In this simple example, cell Sheet1!C11 only depends on Sheet2!B3 and the result of the
volatile NOW() function. Nothing else depends on Sheet1!C11, so the fact that it gets
recalculated twice when Sheet2!B4 changes is a fairly small inefficiency. However, if
Sheet2!B3 also depended on some other cell in Sheet! then it is possible that it and all its
dependents could be recalculated twice — and that would be very bad.

If cell Sheet2!B4 is edited to take the value 4, then Excel will start to recalculate the
workbook starting with Sheet!. It will recognise that Sheet1!C11 needs recalculating as
it depends on the volatile NOW() function, but it will not yet know that the contents of
Sheet2!B3 are out of date. Once it is finished with Sheet!, halfway through workbook

recalculation, both sheets will look like this:

Sheetl:

Cell Formula Value
C11 =NumCalls_4(NOW()+Sheet2!B3) 2
Sheet2:

Cell Formula Value
B3 =B4/2 1
B4 4

Now Excel will recalculate Sheet2!B3, which it has marked for recalculation as a result of

Sheet2!B4 changing. At this point Sheet? looks like this:

Sheet2:

Cell |Formula Display
B3 =B4/2 2

B4 4

Finally Excel will, again, mark Sheet1!C11 as needing recalculation as a result of Sheet2!B3
changing, and recalculate Sheet1, re-evaluating Sheet1!C11 for the second time including

Excel Functionality 29

the call to NOW() and to NumCalls_4(). After this Sheet1 will look like this:

Sheetl:

Cell Formula Display
C11 | =NumCalls_4(NOW()+Sheet2!B3) 3

If NumCalls_4() were doing a lot of work, or Sheet1!C11 was a precedent for a large number
of calculations on Sheet1 (or other sheets) then the inefficiency could be costly.

One way around this is to place cells that are likely to drive calculations in other
sheets, in worksheets with alphabetically lower names (e.g., rename Sheet2 as A_Sheet2),
and those with cells that depend heavily on cells in other sheets with alphabetically higher
(e.g., rename Sheet1 as Z_Sheet).

It is, of course, possible to create deliberately a workbook that really capitalises on this
inefficiency and results in a truly horrible recalculation time. This is left as an exercise
to the reader. (See section 2.15 Good spreadsheet design and practice on page 35.)

Excel 2002/2003

The above problem is fixed in Excel 2002 and 2003 by there being just one tree for the
entire workbook. In the above example, Excel would have figured out that it needed to
recalculate Sheet2!B3 before Sheet1!C11. When Sheet2!B4 is changed, Sheet1!C11 is only
recalculated once. However, unless you know your spreadsheet will only be run in Excel
2002 and later, it’s best to heed the alphabetical worksheet naming advice and minimise
cross-spreadsheet dependencies particularly in large and complex workbooks.

2.11.5 User-defined functions (VB Macros) and add-in functions

Excel’s very useful INDIRECT() function creates a reference to a range indirectly, i.e.,
using a string representation of the range address. From one recalculation to the next, the
value of the arguments can change and therefore the line of dependency can also change.
Excel copes fine with this uncertainty. With every recalculation it checks if the line of
dependency needs altering.

However, where a macro or DLL function does a similar thing, Excel can run into
trouble. The problem for Excel is that VB functions and DLL add-in functions are able to
reference the values of cells other than those that are passed in as arguments and therefore
can hide the true line of dependency.

Consider the following example spreadsheet containing these cells, entered in the order
they appear:

Cell Formula Value/Display Comment
B4 1 Static numeric value
B5 =NOW() 14:03:02 Volatile input to B6
B6 =RecalcExample1(B5) | 1 Call to VB function

30 Excel Add-in Development in C/C++

An associated VB module contains the macro RecalcExample1() defined as follows:

Function RecalcExamplel(r As Range) As Double

RecalcExamplel = Range("B4").Value

End Function

Editing the cell B4 to 2, in all of Excel 97/2000/2002/2003, will leave the spreadsheet
looking like this:

Cell Formula Value/Display Comment

B4 2 New numeric value
B5 =NOW() 14:05:12 Updated input to B6
B6 =RecalcExample1(B5) |1 Call to VB function

In other words, Excel has failed to detect the dependency of RecalcExample1() on B4.
The argument passed to RecalcExample1() in this case is volatile so you might expect the
function to be called whenever there is a recalculation. However, the macro is declared
as taking a range as an argument, which itself is not volatile. Therefore Excel does not
mark B6 for recalculation and the cell does not reflect the change in value of B4. If cell BS
is edited, say by pressing {F2} then {Enter}, then B6 is recalculated once, but then reverts
to the same blindness to changes in B4’s value.
Now consider the following cells and macro in the same test sheet:

Cell Formula Value/Display Comment
C4 1 Static numeric value
C5 =NOW() 14:12:13 Volatile input to C6
C6 =RecalcExample2(C5) |1 Call to VB function

Now consider the following the macro RecalcExample2() defined as follows:

Function RecalcExample2(d As Double) As Double
RecalcExample2 = Range("C4").Value

End Function

Excel Functionality 31

Editing the cell C4 to 2 (in Excel 2000) will leave the spreadsheet looking like this:

Cell Formula Value/Display Comment

C4 2 New numeric value
C5 =NOW() 14:14:11 Updated input to C6
C6 =RecalcExample2(C5) |2 Call to VB function

In this case Excel has updated the value of C6. However, Excel has not detected the
dependency of RecalcExample2() on C4. The argument passed to RecalcExample2() is volatile
and the macro takes a double as an argument (rather than a range as in the previous
example), therefore Excel marks it for recalculation and the cell ends up reflecting the
change in value of C4. If C5 had not contained a volatile number, the dependency of C6
on C4 would still have been missed.

Because Excel is effectively blind to VB functions accessing cells not passed to it as
arguments, it is a good idea to avoid doing this. In any case, it’s an ugly coding practice
and should therefore be rejected purely on aesthetic grounds. There are perfectly legitimate
uses of Range() .value in VB, but you should watch out for this kind of behaviour.

Excel behaves a little (but not much) better with DLL functions called directly from the
worksheet. The workbook Recalc_Examples.x1ls contains a reference to an example
add-in function called C_INDIRECT1(trigger, row, column) which takes a trigger argument,
the column (A =1, B =2, ...) and the row of the cell to be referenced indirectly by the
DLL add-in. This function reads the value of the cell indicated by the row and column
arguments, tries to convert this to a number which it then returns if successful. (The source
for the function is contained in the example project on the CD ROM and is accessible by
loading the Example.x11 add-in.)

It is easy to see that Excel will have a problem making the association between values
for row and column of a cell and the value of the cell to which they refer. Where the
trigger is volatile, the function gets called in any case, so the return value will reflect any
change in the indirect source cell’s value. If the row and column arguments are replaced
with ROW(source cell) and COLUMN(source cell), Excel makes the connection and changes
are reflected, regardless of whether the trigger is volatile or not.

Where the cell reference is passed to the DLL function as a range, as is the case
with C_INDIRECT2(trigger, ref) in the example add-in — analogous to the VB macro
RecalcExample1() — Excel manages to keep track of the dependency, something that VB
fails to do.

The advice is simple: avoid referencing cells indirectly in this way in worksheet func-
tions. You very rarely need to do this. If you think you do, then perhaps you need to
rethink how you’re organising your data.

2.11.6 Data Table recalculation

See section 2.10.1 Data Tables on page 22 for more about Data Tables and how Excel
treats them differently.

32 Excel Add-in Development in C/C++
2.12 THE ADD-IN MANAGER

The Add-in Manager is that part of the Excel application that loads, manages and unloads
functions and commands supplied in add-ins. It recognises three kinds of add-ins:

e standard Win32 DLLs that contain a number of expected interface functions;
e compiled VB modules;

e Excel 4 Macros (XLM) modules (for backwards-compatibility).

(DLLs can be written in C/C++ or other languages such as Pascal.)

The file extensions expected for these types are * .XLA for VB module add-ins and
* . XLL for DLL add-ins. Any file name and extension can be used, as Excel will recognise
(or reject) the file type on opening it. (See section 3.9 Creating VB add-ins (XLA files) on
page 72 for a brief description of how to create XLLA add-ins.)

For XLL add-ins written in C and C++, there are a number of other things the pro-
grammer has to do to enable the Add-in Manager to load, access and then remove, the
functions and commands they contain. Chapter 5 Turning DLLs into XLLs: The Add-in
Manager Interface, on page 95, describes the interface functions the add-in must provide
to be enable Excel to do these things.

2.13 LOADING AND UNLOADING ADD-INS

Excel ships with a number of standard add-in packages, a description of which is beyond
the scope of this book. The Tools/Add-ins. .. dialog (see Figure 2.3) lists all the add-ins
that Excel is aware of in that session, with those that are active having their check-boxes
set. Making a known add-in active is simply a case of checking the box. If Excel doesn’t
know of an add-in’s existence yet, it is simply a question of browsing to locate the file.

#Ix]

Add-Tns available:

[Access Links =
Analysis ToolPak]
¥ snalysis ToolPak - WBA
™ autosave Add-in
™ conditional Surn Wizard
™ Eura Currency Tools
¥ Garkohl
[Internet Assistant YBA
E J=d

Jsd_Rel
™ Lookup Wizard LI

FAnalysis ToolPak

i

Cancel

Browse. ..

Provides functions and interfaces for financial and scientific
data analysis

Figure 2.3 Excel’s Add-in Manager dialog

Excel Functionality 33

Excel’s known list of add-ins is stored in the Windows Registry. Add-ins remain listed
even if the add-in is unselected — even if Excel is closed and restarted. To remove the
add-in from the list completely you must delete, move or rename the DLL file, restart
Excel, then try to select the add-in in the Add-in Manager dialog. At this point Excel will
alert you that the add-in no longer exists and ask you if you would like it removed from
the list.*

2.13.1 Add-in information

The Add-in Manager dialog (see Figure 2.3) displays a short description of the contents
of the add-in to help the user decide if they want or need to install it. Chapter 5 Turning
DLLs into XLLs: The Add-in Manager Interface, on page 95, explains how to include and
make available this piece of information for your own add-ins.

2.14 PASTE FUNCTION DIALOG

Hand-in-hand with the Add-in Manager is the Paste Function dialog (sometimes known
as the Function Wizard). The feature is invoked either through the Insert/Function. . . menu
or via the ‘ fx’ icon on a toolbar. If invoked when the active cell is empty, the following
dialog appears (in Excel 2000) allowing you to select a function by category or from a
list of all registered functions. If invoked while the active cell contains a function, the
argument construction dialog box appears — see section 2.14.3 below.

Paste Function 1|_>§_|

Function category: Function name:

Most Recently Used a| [anD =]
Al T | |FALSE

Financial
Date & Time MNOT

Math & Trig CR.

Statistical TRLUE

Lookup & Reference

Databaze |-

Text

|Information L‘ ll

IF(logical_test,value_if_truevalue_if_false)

Returns one value if a condition you specify evaluates to TRUE and another
value if it evaluates to FALSE.

(2) | 84 Cancel

Figure 2.4 Excel’s Paste Function dialog (Excel 2000)

4You can edit the registry, something you should not attempt unless you really know what you are doing. The
consequences can be catastrophic.

34 Excel Add-in Development in C/C++

2.14.1 Function category

In the left-hand list box are all the function categories, the top two being special categories
with obvious meanings. All functions are otherwise listed under one and only one specific
category. Many of these categories are hard-coded Excel standards. Add-ins can add
functions to existing categories or can create their own, or do both. If functions have
been defined in a VB module or have been loaded by the Add-in Manager from an XLA
add-in file, then the category UDF (in Excel 2000) or User Defined (in Excel 2002 and
later) appears and the functions are listed under that.

2.14.2 Function name, argument list and description

Selecting a category will cause all the functions in that category to be listed in alphabetical
order in the right-hand list box. The figure shows the Logical category selected and all
six logical functions. Selecting a function name causes the name as it appears in the
spreadsheet, a named comma-separated argument list and a description of the function
to be displayed below the list boxes. In the above example the arguments and function
description for the IF() function are shown.

2.14.3 Argument construction dialog

Pressing OK in the Paste Function dialog causes the argument construction dialog to
appear for the highlighted function. Invoking the Paste Function command on an active
cell containing a function has the same effect. The figure below shows this for the IF()
function. Where invoked on an empty cell the dialog is blank. Where invoked on an
existing formula, the fields are populated with the expressions read from the cell’s formula.

This dialog has a number of important features that should be understood by anyone
wanting to enable users to access their own add-in functions in this way. These are
highlighted in the following diagram which shows the Excel 2000 dialog.

IF @ —
Lugical_testl @) y =
Value_if_truel y =
Value_if_falsel y i

(3>ReUJmS one value if & condition you specify evaluates to TRUE and another value if it
evaluates to FALSE.

Logical_test is any value or expression that can be evaluated to TEUE or FALSE.@

C\ @l Formula result = 04 I Cancel |
5

Figure 2.5 Paste Function argument construction dialog (Excel 2000)

(1) Argument name — from the argument list in the Paste Function dialog. (Bold type
indicates a required argument; normal type, an optional one.)

(2) Argument expression text box — into which the user enters the expression that Excel
evaluates in preparation for the function call.

Excel Functionality 35

(3) Function description — as shown in the Paste Function dialog.

(4) Argument description — for the currently selected argument, providing a brief expla-
nation of the argument purpose, limits, etc.

(5) A context-specific help icon — used to get help specific to this function. In Excel 2002
and 2003, the help button is replaced with a text hyperlink.

The dialog also provides helpful information relating to the values that the argument
expressions evaluate to and the interim function result. (Note that Excel attempts to
evaluate the function after each argument has been entered.) If the function is a built-
in volatile function, the word volatile appears after the equals just above the function
description.

Once all required arguments have been provided, pressing OK will commit the function,
with all its argument expressions as they appear in the dialog, to the active cell or cells.

Section 8.5 Registering and un-registering DLL (XLL) functions, on page 185, explains
in detail how to register DLL functions that the Paste Function dialogs can work with. In
other words, how to provide Excel with the above information for your own functions.

2.15 GOOD SPREADSHEET DESIGN AND PRACTICE

2.15.1 Filename, sheet title and name, version and revision history

Ever since the demise of DOS 8.3 format filenames, it has been possible to give documents
more descriptive names. This is a good thing. Having to open old documents because you
can’t remember what they did is a real waste of time. You should add a version number
(e.g., v1-1, using a dash instead of a dot to avoid confusion with the filename/extension
separator), particularly where a document may go through many revisions or is used
by others.

In addition to the filename version, you should consider including version information
in the worksheets themselves, especially where workbooks are used by many people.
These could be for each sheet, for the whole workbook or whatever is appropriate, but at
least should include an overall workbook version number matching the filename version.

A revision history (the date; who made the changes; what changes were made) is easy
to create and maintain and can save a lot of time and confusion. For complex workbooks,
creating a revision history worksheet at the front of the workbook with all this information
for easy reference can save a great deal of time and heartache later.

You should consider giving every sheet a descriptive title in cell A1, in a good sized font
so that you can’t help but know what you’re looking at. Using the Freeze Panes feature
(Window/Freeze Panes) is a good idea, so that the title, and any other useful information,
is visible in cases where the data extends deep into the spreadsheet.

Naming sheets descriptively is also easy (double-click on the tab’s name) and pays divi-
dends. For display reasons these may need to be abbreviated where there are many tabs. Be
careful with the alphabetical order of sheet names where there are cross-worksheet links.
(See section 2.11.4 Cross-worksheet dependencies — Excel 97/2000 versus 2002/2003 on
page 27 for an explanation.)

2.15.2 Magic numbers

Magic numbers are static numbers that appear in calculations or in their own cells without
much, if any, explanation. They are a very bad thing. Sometimes you may feel that

36 Excel Add-in Development in C/C++

numbers need no explanation, such as there being 24 hours in a day, but err on the side
of caution. It is not obvious that the number 86,400 is the number of seconds in a day,
for example. A simple comment attached to the cell might be all that’s needed to avoid
later confusion or wasted time spent decrypting and verifying the number.

Putting magic numbers into calculations themselves, rather than accessing by reference
to a cell that contains them, is generally to be avoided, even though this leads to a slightly
more efficient recalculation. They are hidden from view and awkward to change if the
assumptions that underpin them change. There may also be many less-obvious places
where the number occurs, perhaps as a result of cell copying, and all occurrences might
not be found when making changes.

Where magic numbers represent assumptions, these should be clearly annotated and
should ideally be grouped with other related assumptions in the worksheet (or even work-
book) so that they are easy to review and modify.

2.15.3 Data organisation and design guidelines

Data in a spreadsheet can be categorised as follows:

e Variable input data to be changed by the user, an external dynamic data source, the
system clock or other source of system data.

e Fixed input (constant) data to be changed only rarely, representing assumptions, numer-
ical coefficients, data from a particular publication or source that must be reproduced
faithfully, etc.

e Static data, typically labels, that make the spreadsheet readable and navigable and
provide users with help, instructions and information about the contents and algorithms.

e Calculated data resulting from the action of a function or command.

There might also be cells containing functions whose values are largely irrelevant but that
perform some useful action when they are re-evaluated, for example, writing to a log file
when something changes.

Here are some guidelines for creating spreadsheets that are easy to navigate, maintain
and understand:

1. Provide version and revision data (including name and contact details of the author(s) if
the workbook is to be used by others).

2. Group related assumptions and magic numbers together and provide clear comments
with references to other documents if necessary.

3. Group external links together, especially where they come from the same source, and
make it clear that they are external with comments.

4. Avoid too much complexity on a single worksheet. Where a worksheet is becoming
over-complex, split it in two being careful to make the split in such a way that
cross-worksheet links are minimised and that these links are clearly commented in
both sheets.

5. Avoid too much data on a single worksheet. Too much may be difficult to define — a
very large but simple table would be fine, but 100 small clusters of only loosely
related data and formulae are probably not.

6. Avoid excessive and unnecessary formula repetition, and repetition of expressions
within a single formula.

Excel Functionality 37

7. Avoid over-complex formulae. Even where repetition within the formula isn’t a con-
cern, consider breaking large formulae down into several stages. Large and complex
formulae are not only difficult to read and understand later, but make spreadsheets
harder to debug.

8. Use named ranges. This not only makes formulae that reference the data more readable
and easier to understand but also makes accessing the data in VB or a C/C++ add-in
easier and the resulting code independent of certain spreadsheet changes.

9. Use formatting (fonts, borders, shading and text colours) not only to clarify the
readability, but also to make a consistent distinction between, say, variable inputs,
external dynamic data and ‘static’ assumption data.

10. Use hyperlinks (press Ctrl-K) to navigate from one part of a large book to another.

2.154 Formula repetition

Excel is a faithful servant. It will do what you tell it to do without question and, more
significantly, without optimisation. A cell formula such as

=IF(VLOOKUP(WS5,B3:B10,1)<SUM(A3:A10),VLOOKUP(W5,83:B10,1)+SUM(A3:A10),
VLOOKUP(W5,83:B10,1)-SUM(A3:A10))

will cause Excel to evaluate the VLOOKUP() and SUM() functions twice each. It has no
ability to see that the same result is going to be used several times. (You can easily verify
this kind of behaviour using a VB macro such as NumCalls_1() listed in section 2.11.1
on page 25). The obvious solution is to split the formula into 3 cells, the first containing
VLOOKUP(), the second containing SUM() and the third containing IF() with references to
the other two cells.

Repetitions may not be so obvious as this and do not all need to be removed. Sometimes
the action of a fairly complex formula is clearer to see when it contains simple repetitions
rather than references to cells somewhere far away in the workbook.

Generally speaking, trying to do things in a minimum number of cells can lead to
over-complex formulae that are difficult to debug and can lead to calculation repetition.
You should err on the side of using more cells, not fewer. Where this interferes with the
view you are trying to create for the user (or yourself), use the row/column hide feature
or the Data/Group and Outline/Group feature to conceal the interim calculations, or move the
interim calculations to another part of the same worksheet.

2.15.5 Efficient lookups: MATCH(), INDEX() and OFFSET() versus VLOOKUP()

One of the most commonly used and useful features of spreadsheets is the lookup. For
the basics of what a lookup is, how it works and the variations read Excel’s help. In using
lookups it is important to understand the relative costs, in terms of recalculation time, of
the various strategies for pulling values out of large tables of data.

Tables of data usually stretch down rather than across. We think in terms of adding
lines at the bottom of a table of data rather than adding columns to the right. We read
documents line-by-line, and so on. This bias is, of course, reflected in the fact that Excel
has 256 times as many rows than columns. Consequently, most lookup operations involve
searching a vertical column of data, typically using VLOOKUP(). However, it is easy to
create situations where the use of this function becomes very inefficient.

38 Excel Add-in Development in C/C++

Take, for example, the following task: to extract 3 pieces of data from the row
in the table shown below where the left-most column contains the number 11. (See
Vlookup Match Example.xls on the CD ROM.)

B3 Microsoft Excel - viookup_example.xls ;IEIEI

‘[@ File Edit Wiew Insert Format Tools Data Window Help ;liliﬂ

DeEe @Ry (smd o - azadlilws -3 »2 =2
o [l]

A [TE T E T E e s

VLOOKUP EXAMPLE

Lookup Column2 Column3 Columnd
11 0.3731 06345 0.2401

Lookup table I |

Column1, Column?2 ColumnSl Columnd
1 09354 01033 04158
2 043829 08575 04813
3 0.0604 02573 01587
5 0.1080 0.8807 0.0161
7 0.2971 09126 0.3311
11 03731 06945 0.2401
17 03986 06492 09358
19 01499 08233 06874

16 23 0.0866 0.0616 0.7538

| i 29 0.5559 0.7869 0.0461
18 31 0.8354 0.2200 0.7044

| kgt | a7 0.2685 0.7189 0.2776
20

2

14 4 [» M\ Wlookup / Matchindex / [«]

Figure 2.6 VLOOKUP example worksheet

This is easily achieved, as shown, with the following three formulae:

Cell Formula

B4 =VLOOKUP(A4,A8:D19,2)
C4 =VLOOKUP(A4,A8:D19,3)
D4 =VLOOKUP(A4,A8:D19,4)

At first glance there seems to be no formula repetition, so no problem. In fact, Excel has
had to do the same thing three times: search down column A looking for the number 11.
In a small table this isn’t a big problem, but in a large table with hundreds or thousands
of entries this becomes a lot of work. The solution is to use the functions MATCH() and
INDEX() in combination as shown here.

Excel Functionality

39

E3 Microsoft Excel - viookup_example.xls
| Ele Edit View Insert Format Tools Data Window Help

=lo|x]
=l %]

DzHa 8RRy s ea--

colmE oAb mcon @A R = 2

E20 ﬂ =
A B D | E | F e | =

1 |MATCH & INDEX EXAMPLE
2
3 |Lookup Match Columnz Column3 Columnd
4 11 6 03731 06945 0.2401
5
6 |Lookup table
7 Columnt Column2| Column3 Columnd
8 1 09354 01033 04158
g 2 04329 08575 04813
10 3 0.0604 0.2573 0.1587
L) 01090 0.8807 0.0161
| 12 702971 09126 03311
13 11 0.3731 06945 02401
14 17 0.3986) 0.6492 09358
it 19 01498 08233 06874
16 23 00866 00616 07538
17 29 05559 07869 00461
18 31 0.8354 0.2200 0.7044
18 a7 02685 07189 02776
20 I !
21
4] 4[» M} Viookup \MatchIndex / |4]

Figure 2.7 MATCH & INDEX example worksheet

The MATCH() function does the part that Excel would otherwise repeat, determining the
correct row in the table. Once done, the required values can be extracted with the very
efficient INDEX() function. This will be close to three times faster than the VLOOKUP()-only

solution for large tables. The resulting formulae look like this:

Cell Formula
B4 | =MATCH(A4,A8:D19,0)
C4 | =INDEX(B8:B19,B4)
D4 | =INDEX(C8:C19,B4)
E4 | =INDEX(D8:D19,B4)

Note: An additional benefit of MATCH() and INDEX() over VLOOKUP(), where you know

the lookup value is in the table and can safely pass zero as the 3rd parameter, is that it
doesn’t require the lookup column to be ordered. Also, Excel will happily find a string

not just a number. In this example, INDEX() takes a more precise reference to the source
column. If a column is inserted, MATCH() and INDEX() won’t care whereas the formulae

in the VLOOKUP() example will all need to be edited.

40 Excel Add-in Development in C/C++

The OFFSET() function is similar to INDEX() except that it returns a reference to a cell or
range of cells rather than a value of a single cell. This gives it more power than INDEX()
but at a cost: it is a volatile function. (See section 2.11.3 on page 26.) Excel can’t know
from one call to the next what range will result, and needs to recalculate each time.
Therefore OFFSET() should never be used when INDEX() will do. Trying to get around this
with INDIRECT() will not work, as this function too is volatile.

2.16 SOME PROBLEMS WITH VERY LARGE SPREADSHEETS

Despite being a wonderful tool for a surprisingly broad range of data analysis tasks, Excel
does have its limits. This is most obvious when it comes to memory utilisation in very
large workbooks. Excel can become alarmingly slow, and even unstable, when asked to
perform routine operations on large groups of cells. Even the act of deleting a large block
of cells in a workbook that is straining the memory resources of the host machine, can
take tens of minutes to complete. If Excel runs out of memory for the undo information,
it may alert the user that the operation cannot continue with undo. Even then, it still
may fail and Excel might even crash. Excel’s often graceless handling of out-of-memory
conditions is one of its (very few) weaknesses, one which Microsoft improves with every
new release.

2.17 CONCLUSION

For normal use you don’t need to worry about some of the subtle complexities that
this chapter tries to shed light on. Where the demands are more rigorous, however, the
need to be aware of the most efficient way to use Excel and how to avoid some of its
recalculation problems becomes more important. It can even be critical to the spreadsheet
doing properly what you want it to.

3
Using VBA

This chapter provides only a brief introduction to using VBA to create commands and
functions. It is not intended to be a detailed how-to guide to VB in Excel. It touches
briefly on:

the creation of VB commands and macro functions;
passing data between VBA and Excel;

accessing DLL functions from VBA;

passing data between VBA and a DLL.

For those who want to know more about VB, VBA and the subjects raised in this chapter,
some VB-related titles are included in the book list at the end of the book.

If you don’t want to bother with the Add-in Manager and Paste Function dialog in
Excel, then you can access all of your C/C++ code from VBA and this chapter explains
how. It describes what you need to know to be able to access your DLL code and how
to pass and convert arguments and return types.

VBA is a very powerful application enabling complex things to be done very easily.
But this book is intentionally about doing things that are beyond the scope or perfor-
mance of VB. If you want to know more about VBA’s capabilities, experiment. The VB
editor is easy to use, especially to anyone with experience of, say, Visual C++, and the
Tools/Macro/Record New Macro... menu option provides a great how-fo guide for writing
commands and is some help with code you might want to include in a function.

Section 3.8 on page 71 includes a VB-specific discussion of the differences between
commands and functions. Sections 2.8 Commands versus functions in Excel, on page 19,
and 8.1.1 Commands, worksheet functions and macro sheet functions, on page 170, together
provide a more general discussion of this topic.

3.1 OPENING THE VB EDITOR

There are several ways of bringing up the VB editor:

e through the Tools/Macro/Visual Basic Editor;

e with the keyboard short-cut {Shift F11} ;

e by installing the VB Editor command icon onto a toolbar via the Tools/Customise
dialog.

The third option is recommended, since, once done, it saves a lot of time, although the
keyboard short-cut is quick if you can remember it.

42 Excel Add-in Development in C/C++

If you have done this with a blank spreadsheet, you should then see something like this:

Todk. gtine Window e

wle WEEE T

(= J[=]
T B atpvbaenals (ATPVEALNALA)
+ B hrrvs: [RINCRES.51A]
= B VAPt (k)
) % Mirzaft Ewd Ohjpcks
] St (el
W Steet2 (heet2)
WY Sraatd (Shest)
) Theworkoock

gl 2 i

P pLofigTolat Bare
Eravieusmiiee Fase
rutiCoulan Trim
frebiecutineg Fase
ErabieFiotiahe Fane

rabietelecton 0 - ThoReeTictong
Poarn 1
fecmtdrng
frdacweh 111
chik i

Figure 3.1 The Visual Basic Editor interface

In the above example, you will see several documents referred to in the top left-hand
pane (the Project Explorer window). The first two in this screen shot belong to standard
add-ins that have been loaded by Excel, and the third belongs to the default-named
workbook, Book1, that Excel created on being opened.

For each sheet in Book1 there is a corresponding object listed. There is also an object
associated with the entire workbook. Each of these has an associated VB code container
which can be opened and edited by double-clicking on the object’s name in the Project
Explorer window. The top right pane, which contains the VB source editor, then displays
whatever VB code is associated with that object. For a new spreadsheet, these VB code
modules are empty.

3.2 USING VBA TO CREATE NEW COMMANDS

Commands can be associated with individual worksheets or with the entire workbook. To
be accessible in the right place — to have the right scope — VB code for these must be
placed in the appropriate VB code object. A command that is coded in the Sheet3 code
object will not run successfully if invoked from another sheet. If you only intend it to be
invoked from Sheet1, then code it into Sheet1. If you want it to be accessible in all sheets
in the workbook, place it in the Workbook code module.

3.2.1 Recording VB macro commands

This is the easiest way to create simple commands and to learn how to use the Excel VB
objects to do things in your own commands. The Tools/Macro/Record new macro... command

Using VBA 43

is all you need to remember. The following dialog enables you to tell Excel and the VBE
where to place the code it generates and what to call it. It also places a handy little
comment into the code.

Macro narne:
[Macro1
Shortout key: Store macro in:
Ctrl+r IThis intorkbaok j
Description:

Macro recorded 27/05/2002 by Steve Dalton

(04 | Cancel |

Figure 3.2 VBA Record Macro dialog

If you elect to place the code in This Workbook (as shown) you will see that a new
folder appears called Modules, containing a new code module, by default called Module1.
Double-clicking on the name Module1 will cause the editor to display the code, something
like this:

i Mirosaft Visual Dk - Dokl - [ModuleL (Codke]| =Inix]
B o Bt e ot R Gebug W6 Tock B3 indow b =lmix]
EE-E @Ry o al HE
gt VBARpd R -: =] [Racat =
26 kst (ATTVRARY L A] |
& B Mrwcees (TUMCLS ¥R
- & voARroject (fonk L) Dal
5 Microsoft Excel Objects
] itz (3
W) Shent (et}
] stoacs o)
A Thaworkbosk
5 Makks:
o ket
[Mnche) oo e =
s | Camen e |
e T

Enprisnn ik Ty L certunt -

Figure 3.3 VBE Recorded Macro dialog

The command code procedure is in a Sub/End Sub code block declaration. It has no
return type or return value and takes no arguments. If you want to communicate something
to the user, such as success or failure, your command will have to open an alert or dialog
box containing what you want to convey or write directly to a predetermined cell or
named range.

44 Excel Add-in Development in C/C++

You can, of course, create your own code modules and add your own Sub/End Sub
commands manually.

3.3 ASSIGNING VB COMMAND MACROS TO CONTROL
OBJECTS IN A WORKSHEET

Control objects include:

checkboxes;

text boxes;

command buttons;

option buttons (radio buttons);

list boxes;

combo boxes (text box with list box);
toggle buttons;

spin buttons;

scroll bars;

... and many others.

Each one of these objects can be placed into a worksheet using the Control Toolbox
toolbar. They all have events and properties associated with them and can have code
associated with those events. For example, creating a command button, which would be
given the default name CommandButtonl, and then right-clicking and selecting Edit code
will cause the VBE to appear with an empty command code declaration placed within
the container worksheet’s VB code object, like this:

4 Microsoft Visusl Dask: - Bookl [design] - [Sheetl (Code)] - _loix|

G e £t Yow [ret Formar Gt Bin ek SR Wndow B =l=ix|
Ba- o CBM o s NEPWT Wz .

et || [Commanitiunest = [cilex =
oma

Private Sub CoamandBultonl Clicki)

o B g (ATPVRAEN %LA)
+ 8 funcres (MINCRES KLA] Erd fuk
8 voaProject (Dookl)
= 5 Mroso Eacol et
] St (Ehestt)
) e s
W) Fwers (shess)
&) Thewarkhock

:
L
S

1-
H
£
H
1
»

|EH]

Figure 3.4 VBE worksheet code showing command button event trap

Using VBA 45

Above the code editor pane are two list boxes, one showing the object to which the
event applies, in this case CommandButtonl, and the other the action, in this case Click.
Changing the action will cause the VBE to create a new empty command with a declaration
that reflects the selected action. The code these code blocks contain will then be invoked
whenever the specified action occurs.

3.4 USING VBA TO TRAP EXCEL EVENTS

As shown above, the VB code associated with a worksheet can also contain code asso-
ciated with events corresponding to the worksheet itself. Selecting Worksheet in the
left-hand list box above the code editor pane will cause the VBE to create an empty
code block such as this:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

End Sub

Whenever the cursor is in a piece of worksheet command code, the right-hand list box
will give access to all the events associated with the worksheet object. As with control
object actions, changing the action will cause the VBE to create a new empty command
with a declaration that reflects the selected action. Similarly, in the ThisWorkbook code
object, events relating to (or visible to) the entire workbook can be accessed and command
code written that will be executed every time that event occurs.

Trapping Excel commands can be very useful, for example, enabling you to do
things when:

a workbook is closed;

a worksheet is selected;

a change is made;

a single cell is selected or edited.

(To achieve the last example, you would need to create a trap for the whole worksheet
and then inspect the argument.) What is important to remember is that code associated
with a trapped Excel event is a command. You can call function code from a command
but you cannot call a command from a worksheet function. Command code cannot return
a value.

The code module associated with the workbook supports the following event traps in
Excel 2000:

Activate;
AdddinInstall;
AdddinUninstall;
BeforeClose;
BeforePrint;
Deactivate;
NewSheet;
Open;

46 Excel Add-in Development in C/C++

SheetActivate;
SheetBeforeDoubleClick;
SheetBeforeRightClick;
SheetCalculate;
SheetChange;
SheetDeactivate;
SheetFollowHyperlink;
SheetSelectionChange;
WindowActivate;
WindowDeactivate;
WindowResize.

By Excel 2003, the following traps also exist:

PivotTableCloseConnection;
PivotTableOpenConnection;
SheetPivotTableUpdate;
Sync.

Each of these events is trapped by a subroutine in this module with the name Workbook_*
where * is replaced by one of the above event names. For example, the following routine
traps the recalculation of any and all sheets in the workbook.

Private Sub Workbook_SheetCalculate(ByVal Sh As Object)

End Sub

The code module associated with the worksheet supports the following subroutine traps:

Activate;
BeforeDoubleClick;
BeforeRightClick;
Calculate;

Change;

Deactivate;
FollowHyperlink;
SelectionChange.

By Excel 2003, the following trap also exists:
e PivotTableUpdate;

In other words, the sheet object supports the trapping of these events sheet-by-sheet. If
you want to trap an event for all sheets, use the event trap in the workbook module. If
you want to trap the event just in that sheet, use the event trap in the sheet module.
Similarly, user-form objects in VB support a number of trappable events accessed via
routines in their associated code modules, as do other embedded objects in a workbook.

Using VBA 47
3.5 USING VBA TO CREATE NEW FUNCTIONS

Creating new functions is very straightforward. Code is declared and contained within
a Function/End Function code block. This must be placed in a VB code module
listed under Modules in the VBE in order for Excel to be able to recognise it as a user-
defined worksheet function. Function code placed in the code module associated with
a workbook or sheet will not be accessible from the worksheet. Creating a new code
module is easily done by right-clicking on any of the objects in the VB project associated
with the workbook (in the Workspace window: the left-most pane in the default view)
and then selecting Insert../Module. This causes the editor to create a new VB code module
object in the workbook and opens it for editing in the edit window.

3.5.1 Function scope

Function code can, of course, be placed anywhere in any code module, but its scope will
be limited to the VB project associated with the workbook. Other open workbooks will
not be able to access the function.

Functions created in the code object associated with one of the workbook objects, such
as a worksheet, work fine, but can only be called by command code or other function in
that code object, and definitely not from the worksheet.

Commands within the project can also call the project’s functions including those in
code modules. (Remember, functions cannot call commands regardless of scope.)

VB functions and commands can be given greater scope by saving and loading them
as an XLA add-in file. (See section 3.9 Creating VB add-ins (XLA files) on page 72 for a
brief description of how to create XLLA add-ins.) Once loaded, worksheet functions they
contain can be accessed by any open workbook. Function scope can also be restricted by
prefacing function names with the Private keyword.

There is more to function and variable scope than touched on here, including the
PubTic and Private keywords and the Option Private Module statement. For more
about these you should refer to VBA’s help.

3.5.2 Declaring VB functions as volatile

It is often useful and sometimes necessary for a function to be called every time Excel
recalculates rather than just when an input has changed. This requires that Excel be
informed that the function is volatile. This is easily achieved in VBA by calling the appli-
cation method Application.Volatile immediately after the dimensioning of variables.
(Note: Excel does not know the function is to be treated as volatile until it has been called
at least once.) The following VBA code shows an example.

Function Volatile_Fn_Example(trigger As Integer) As Double
Dim val As Double
AppTlication.Volatile
val = 2.123 ' arbitrary meaningless number for example only
Volatile_Fn_Example = Now * val

End Function

48 Excel Add-in Development in C/C++

This is a particularly important thing to do when using VB as a wrapper or interface to
DLL functions that need to be treated as volatile, say, those that return some external
dynamic information.

3.6 USING VBA AS AN INTERFACE TO EXTERNAL
DLL ADD-INS

3.6.1 Declaring DLL functions in VB

Both functions and commands written in C/C++ (or other languages where code is com-
piled to a Win32 DLL) can be accessed directly in VB using the Declare statement
whose syntax is as follows:

Syntax 1

[Public | Private] Declare Sub name Lib "Tibname" [Alias
"aliasname"] [([arglist])]

Syntax 2

[Public | Private] Declare Function name Lib "Tibname" [Alias
"aliasname"] [([arglist])] [As type]

Syntax 1 relates to commands; syntax 2, to functions. The optional Pub1ic and Private
keywords specify the scope of the imported function — the entire VB project or just the
VB module, respectively.

The name is the name you want to use within the VB code. If this is different from the
name in the DLL then the Alias "aliasname" specifier must be used and should give
the name of the function as exported in the DLL. If you want to access a DLL function
by reference to an ordinal number in the DLL, then specify an alias name which is the
ordinal prefixed by #.

If the imported function is to be treated as a volatile worksheet function, then the VBA
wrapper function must invoke the method AppTlication.VolatiTe.

3.6.2 Call-by-reference versus call-by-value

VB does not have the concept of pointers that exists in the world of C/C++. In the world
of VB, functions can modify their arguments if they have been passed by reference using
the ByRef keyword. In fact, this is the default behaviour for VB. In the example code
below go_double_me(2.1) would return the value 4.2.

Function double_me(ByRef d as Double) as Boolean

d=d* 2
double_me = True

End Function

Using VBA 49

Function go_double_me(d as Double) as Double
Call double_me(d)
go_double_me = d

End Function

As ByRef is the default in VB, this keyword can be removed with no change to the
behaviour of the code. In contrast, substituting ByRef with ByVal would have the effect
that go_double_me () would return exactly what was passed to it un-doubled. (Note the
inclusion of the Call keyword, without which the function would be called as ByVal,
but which also has the effect of suppressing the return value of the called function.)

In C the default is call-by-value, with call-by-reference achievable only with the use of
pointers. In C++ there is also the option of passing reference arguments as well as pointers.
C++ reference arguments (prefixed with an ampersand ‘&’ in the function declaration)
work in exactly the same way as VB’s call-by-reference, allowing access to the value
of the variable without the need to de-reference a pointer. This is all summarised in
Table 3.1.

Table 3.1 Call by value versus by ref in VB, C and C++

VB C C++

Call by ref [ByRef] arg As VB type C_type *p_arg CPP_type *p_arg
CPP_type &arg

Call by value Byval arg As VB_type C _type arg CPP type arg

When passing arguments to C/C++ DLL functions, care should be taken with certain data
types. The VB String is passed as a pointer to a string structure when passed ByVal,
and as a pointer to a pointer when passed ByRef. (See next section for more detail on
String and other VB data types.)

3.6.3 Converting argument and return data types between VB and C/C++

By and large, VB uses similar native data types to C/C++, although there are some
differences:

e VB integers are all signed 16-bit, equivalent to a C short.
e VB doesn’t support pointers.

They also have much in common:

e VB allows definition of user-defined data types, using the Type statement, closely
analogous to C’s typedef struct.

e VB uses a number of OLE/COM data types such as Variant which are also defined
for C/C++ in Windows in the OLE/COM header files.

50 Excel Add-in Development in C/C++

These things are all discussed in the following sections. Table 3.2 below gives a summary
of the data types in VB, their value ranges where appropriate, and the equivalent data
types in C/C++.

Accuracy note

VB permits greater ranges of value of its variables than Excel does. In particular:

e The range of a VB DoubTe is slightly greater than the range of an Excel number. (All
Excel numbers are stored as 8-byte floating-point.)

e The VB Date type can represent dates as early as 1-Jan-0100 using negative serialised
dates. Excel only allows serialised dates greater than or equal to zero.

e The VB Currency type — a scaled 64-bit integer — can achieve accuracy not matched
in Excel.

The table in section 2.4 Worksheet data types and limits on page 10 provides details of
Excel’s data type range values.

3.6.4 VB data types and limits

VB in Excel provides access to a very large number of pre-defined object types relating
to Excel, Microsoft Office, OLE Automation, etc. Only the following 12 (excluding user-
defined types) are easily accessible to C/C++ functions called from VB. There is no easy
way to pass a VB Range variable to a C/C++ DLL function. It’s not impossible — you
could assign it to a Variant argument and pass that, but you would then have to use the
COM IDispatch interface to interrogate the object that the C VARIANT would contain.
This starts to get complicated. Passing a range reference, for example, is far easier using
the C APL But, be warned: the C API does not expose as many of Excel’s objects and
properties as VB.

Table 3.2 VB data types and limits, and their C/C++ equivalents

Visual Basic Range in VB C/C++

Byte Min: O unsigned char
Max: 255=28—1

Boolean —1 (TRUE) signed short
0 (FALSE) (16-bit)
Integer Min: —32,768 = —21° signed short
Max: +32,767 =2 —1 (16-bit)
Long Min: —2,147,483,648 = —23 signed long (32-bit)

Max: +2,147,483,647 =231 —1

Currency Min: —922,337,203,685,477.5808 CY in <wtypes.h>
=—-2%3/10,000 = _ int64 (scaled)
Max: +922,337,203,685,477.5807
(263 —1)/10,000 (see below)

Using VBA 51

Table 3.2 (continued)

Single Positive values float (4-byte)
Min: 4+1.401298e—45
Max: +3.402823e+38
Negative values
Min: —1.401298e—45
Max: —3.402823e+38
Double Positive values double (8-byte)
Min: 44.94065645841247e—324
Max: +1.79769313486232e+308
Negative values
Min: —4.94065645841247e—324
Max: —1.79769313486231e+308
Date Min: —657,434.0 DATE in <wtypes.h>
(1-Jan-0100 00:00:00 a.m.) |= double (8-byte)
Max: ~2,958,465.999,999,94 (see below)
(31-Dec-9999 23:59:59.995)
String BSTR in <wtypes.h>
(see below)
Variant VARIANT in <oaidl.h>

(see below)

Object type

(see below)

Array

(see below)

User-defined type

(see below)

3.6.5 VB/OLE Currency type

The VB/OLE Currency data type is passed to C/C++ as a structure of type CY, defined
in the Windows header file <wtypes.h> as follows:

struct

{

long Hij;

CY;

typedef union tagCyY

unsigned long Loj;

LONGLONG inté64;

The 64-bit integer structure LONGLONG is defined using the non-ANSI 64-bit integer
type inte4 and represents non-integer numbers to 4 decimal places scaled up by a

52 Excel Add-in Development in C/C++

factor of 10,000. In Win32 environments, various operations and macro definitions are
defined for int64 variables in <winnt .hs>, such as logical and arithmetic bit shifts.
However, the simplest way to deal with this data type is to cast it to a double as in this
example code. In theory, this conversion is at the expense of some accuracy. However,
this is true only for values which are outside the range of Excel in the first place.

CY ¢ = some_function_that_returns_a CY(some_argument) ;
double d = (double) (c.inté4) / le4; // Divide to undo the scaling

You will encounter this data type when your C/C++ DLL is passed an array of VARIANTS
by VB created from an Excel Range object’s Value property, where one or more cells
in the Range have been formatted using the standard currency format for the regional
settings in force at the time. This is mildly annoying: the value of a cell should be its
underlying value regardless of the display format. (Excel and VB do a similar thing for
worksheet cells formatted as dates.) If you are handling arrays of data originating in Excel
worksheet ranges, you will need to deal with this data type. (See sections 3.6.9 Variant
data type and 3.7 Excel ranges, VB arrays, SafeArrays, array Variants below for more
detail and some example code.)

3.6.6 VB/OLE Strings

The VB String data type is an OLE data type defined for C/C++as BSTRin <wtypes.h>.
The BSTR is implemented as a pointer to a zero-terminated array of type unsigned
short —a string of 16-bit wide characters. However, Excel passes and accepts null-
terminated byte-strings. VBA for Excel understands this and stores the bytes of the string
in the high and low bytes of the array pointed to by the BSTR.

For example, the text "Test string" passed from VB to a C/C++ function would be
stored as shown in Table 3.3.

Table 3.3 Excel VBA string passed to C/C++: Example

—_

Passed in as Value Value

BSTR bstr (unsigned short) (byte string)

(*bstr) [0] 0x6554 ((char *) (*bstr)) [0] = 0x54 = 'T'
((char *) (*bstr)) [1] = 0x65 = 'e'

(*bstr) [1] 0x7473 ((char *) (*bstr)) [2] = 0x73 = 's'
((char *) (*bstr)) [3] = 0x74 = 't!'

(*bstr) [2] 0x7320 ((char *) (*bstr)) [4] = 0x20 = ' !
((char *) (*bstr)) [5] = 0x73 = 's'

(*bstr) [3] 0x7274 ((char *) (*bstr)) [6] = 0x74 = 't'
((char *) (*bstr)) [7] = 0x72 = 'r'

Using VBA 53

Table 3.3 (continued)

(*bstr) [4] 0x6e69 ((char *) (*bstr)) [8] = 0x69 = 'i'
((char *) (*bstr)) [9] = 0x6e = 'n'
(*bstr) [5] 0x0067 ((char *) (*bstr)) [10] = 0x67 = 'g'

((char *) (*bstr)) [11] = 0x00 = Null
termination of ANSI byte string

(*bstr) [6] 0x0000 Zero termination of BSTR string

The text "Test" would be stored as shown in Table 3.4.

Table 3.4 Excel VBA string passed to C/C++: Example 2

Passed in as Value Value

BSTR bstr (unsigned short) (byte string)

(*bstr) [0] 0x6554 ((char *) (*bstr)) [0] = 0x54 = 'T'
((char *) (*bstr)) [1] = 0x65 = 'e'

(*bstr) [1] 0x7473 ((char *) (*bstr)) [2] = 0x73 = 's'
((char *) (*bstr)) [3] = 0x74 = 't

(*bstr) [2] 0x0000 Zero termination of BSTR string and null
termination of ANSI byte string combined

How long is a piece of string? As can be seen from these two examples, string length
is dependent on what you are thinking of as the string. OLE provides two functions for
determining the length of a BSTR: SysStringLen () and SysStringByteLen ().
They would return the following when applied to these example strings:

Table 3.5 BSTR string length comparisons

String SysStringLen () SysStringByteLen () Bytes allocated
Test string 6 11 14
Test 2 4 6

For strings of bytes passed in a BSTR from VB you should use SysStringByteLen ().

Warning: When VB passes strings to C/C++ via a Variant argument of type VT _BSTR,
the string is not a byte-string, but a null-terminated string of unsigned shorts. Care
must be taken to distinguish between these two cases, as different system functions are
required to read and create these. (See section 3.6.10 Variant types supported by VBA on
page 58.)

54 Excel Add-in Development in C/C++

3.6.7 Passing strings to C/C++ functions from VB

When passed ByVal to C/C++ a VB String arrives as a BSTR. You could declare the
argument as an unsigned short *. (Note that in doing this you would make your
code dependent on the particular implementation of the BSTR type.) You can also declare
your argument as char *, having the effect of casting the pointer directly to the memory
allocated to the BSTR.

When passed ByRef a VB string arrives as a pointer to a BSTR, equivalent to a pointer
to a pointer to an unsigned short, which you could declare as BSTR * or simply
as unsigned short **. VB will always pass a non-null pointer to the BSTR. The
pointer that this points to will be set to null if the string was declared in VB (using Dim)
but not allocated a value. Consider the following piece of VB code:

' Argument 1is passed ByRef by default
Declare Function C_BSTR_Examplel Lib "example.x11" _
(s As String) As Boolean

Function VB_BSTR_EXAMPLE(Trigger As Variant) As Boolean
Dim s As String

' Call 1: String is dimensioned but not initialised
C_BSTR_Example (s)

' Call 2: String is initialised to an empty string

S =
C_BSTR_Example (s)

' Call 3:
s = "Test string"
C_BSTR_Example (s)
VB_BSTR_EXAMPLE = True

End Function

Suppose that the C/C++ function is prototyped as follows:

// Function definition corresponding to VB definition of
// Declare Function C_BSTR_Examplel ... (s As String) As Boolean,
// i.e. argument passed ByRef.

short _ stdcall C BSTR_Examplel (BSTR *ptr bstr)

{

if (!ptr bstr) // Should never be NULL, but...
return 0; // Return VB False

if (I*ptr bstr) // Is string initialised?
return 0; // Return VB False if not

for(int 1 = 0; ; 1++)
{
if (! ((char *) (*ptr_bstr)) [i])
break;

}

return -1; // Return VB True

Using VBA 55

Incall 1, ptr_ bstr will have a non-null value so there is no need to check if ptr_ bstr
is NULL (unless you’re particularly distrusting of VB or think that something less reliable
might also call the function). On the other hand, the pointer pointed to by ptr bstr
will have a null value in this case, so in general there is a need to check if *ptr bstr
is NULL.

In call 2, the value *ptr bstr will now be non-null as the VB String variable was
assigned a value. However, as the string is an empty string, the first (and only) unsigned
short will be the zero string-terminator. In other words the value *ptr bstr[0], or
equivalently **ptr bstr, will be zero in this case. It is entirely up to you if you check
immediately for this condition or allow subsequently called functions that access the string
to do the checking.

In call 3, not only has the VB variable been assigned a value, but it is a non-empty string
and *ptr_ bstr will, in this case, point to an array of unsigned shorts as detailed above.

As such strings are firstly UNICODE and secondly allocated in VB, care is needed
on the C/C++ DLL side. OLE provides a number of functions that deal with BSTR vari-
ables, among them SysAllocStringBytelen (), SysReAllocString (), SysRe-
AllocStringLen (), SysFreeString () and SysStringLen ().

If you want to store the strings beyond the current call to your DLL, you should make
you own deep copies of them and store those, rather than store a shallow copy of the
pointer. Otherwise, if and when the calling program frees the memory later, it would
invalidate your pointer.

3.6.8 Returning strings to VB from a DLL

There are, of course, three ways to return any value to a calling program:

1. Modify the passed-in arguments (if you have access to them).
2. Via the function’s return value.
3. Via some commonly accessible memory.

You should ignore the third option as the first two are by far the most sensible and both
fairly straightforward.

In general, if you want to modify a passed-in argument in your C code, you should pass
it ByRef (the default), i.e., accept a pointer that you can de-reference to change the value
of the caller’s variable. For the BSTR type, even though it is already a pointer you must
still pass it as ByRef to be able to modify the passed in string. Also you must use the
OLE functions to resize the string if you want to increase or decrease its length. Resizing
frees the original memory and allocates some new space, but without causing the calling
program (VB in this example) a problem, as it too uses the OLE interface. If you want
something you can chop about and manipulate locally, however, you should simply make
a deep copy of the string.

If you want to assign a new value to a passed-in argument, you must check first to
see if it has been allocated, i.e., if the BSTR’s value (a pointer) is not null, and free the
memory with a call to SysFreeString () before overwriting the pointer value in order
to prevent memory leaks.

The following code shows how to pass strings back from a C/C++ DLL to VB via a
return value. The important point is the use of the OLE SysAllocStringByteLen ()

56 Excel Add-in Development in C/C++

function to allocate new space for the string. This enables VB to free the string when it
is done with it.

// Example code to create and return a BSTR to VB.
// Creates a string of the 1lst 'n' A-Z characters.

BSTR _ stdcall C BSTR Example2 (short n) // C short=VB Integer(16-bit)
{
if(n <= 0 || n > 26)
return NULL;

// 1lst argument is initialisation string, but we want

// to initialise this ourselves so pass NULL. 2nd

// argument is number of bytes in the byte-string NOT

// including the null termination space for which space is
// allocated and which is added by SysAllocStringBytelLen/()

//
// Returns NULL if unsuccessful at allocating memory, which
// must be freed by a call to SysFreeString(). In this

// example, freeing memory is left to the caller, i.e. VBA

BSTR bstr = SysAllocStringByteLen (NULL, n);

if (*bstr)
{
char ¢ = 'A';
for(int i = 0; 1 < n;)
((char *) (bstr)) [i++] = c++;

}

return bstr;

Here is the VB declaration and an example of VB code that calls this. (Note the explicit
inclusion of ByVal in the argument list.)

Declare Function C_BSTR_Example2 Lib "example.x11" _
(ByvVal n As Integer) As String

Function VB_BSTR_EXAMPLE2(Length As Integer) As String
VB_BSTR_EXAMPLE2 = C_BSTR_Example2(Length)

End Function

VBA takes care of freeing the returned BSTR using the correct OLE Automation interface
call. Even though it looks like the combination of these two pieces of code should result
in a memory leak, it is, in fact, perfectly fine.

(Note: The Add-in Manager and the C API provide easier passing of strings between
the spreadsheet and add-in than VB, as Excel passes strings as ANSI C null-terminated
byte strings, enabling functions that are accessed directly from Excel to declare strings as
char *. Responsibility for freeing up DLL-allocated string memory, however, reverts
to the DLL programmer. See section 7.4 Getting Excel to call back the DLL to free DLL-
allocated memory on page 166 for details.)

Using VBA 57

3.6.9 Variant data type

A Variant is a multi-type variable that can contain (or point to) a variety of different data
types. It superficially makes all data types look the same enabling functions to be declared
that take Variants as arguments or return them. Such functions can therefore process more
than one, or even all, data types. In VB, it is the default data type for variables: the
omission of the As Type data type specifier anywhere it might appear is equivalent to a
declaration of As Variant.

It is good practice to declare all argument, return and variable types explicitly. The
code is far more readable, errors in scope are also avoided and VB is not saddled with
unnecessary type conversions. The Option Explicit statement at the top of a code
module forces the programmer to do just this.

The OLE Variant is represented in VB by the Variant data type and in C/C++ by the
VARIANT structure. When passed ByVal to C/C++ a Variant arrives as a VARIANT.
The C structure can be thought of as containing two key (top-level) components:

e a VARTYPE vt (defined as an unsigned short in <wtypes.h>) containing a
numeric code corresponding to the type of data the variant contains;

e a large union of all the data types (some of which are pointers) that the OLE Vari-
ant supports.

Here is a simple C/C++ example which, if exported from a DLL and declared in VB,
would simply convert a VB Integer to a Variant of integer type:

VARIANT _ stdcall int_to_variant (short val)

{

VARIANT v;

// Good practice to initialise the variant structure first
VariantInit (&v) ;

// This VARTYPE specifies a 2-byte signed integer (i.e. a short),
// equivalent to a VB Integer
v.vt = VT_I2;

// Assign the passed-in value to the 'short' union member
v.ival = val;

return v;

Variants are important in the context of this book insofar as they play an important role in
the simplest way of passing of arrays of data from worksheet ranges to C/C++ DLLs via
VB. (There are ways to do this that don’t involve Variants.) They are also used to return
variable-sized arrays of data from VB back to array formulae in the worksheet. (Use of
Variants is the only way to do this.) The subject of passing arrays to and fro is covered in
detail below in section 3.7 Excel ranges, VB arrays, SafeArrays, array Variants on page 64.

Variants are also useful in getting data from, and returning data to, cells in Excel where
the type could be one of a number of things, say a string or a number.

The C API opens up some of Excel’s internal data storage structures, by-passing the
need for Variants. These structures do, nevertheless, have much in common with Variants.
(See Chapter 6 Passing Data between Excel and the DLL on page 105.)

58 Excel Add-in Development in C/C++

3.6.10 Variant types supported by VBA

Of the many data types supported by the OLE Variant, only the following are supported
by VBA in Excel, and therefore only these need to be handled by a DLL function that is
called from VBA.

Table 3.6 VBA — supported Variant types

Data type VARTYPE Numeric value C union member
Empty VT_EMPTY 0 (No associated data)
Long signed 32-bit | VT_TI4 2 long 1lval
integer
Short signed VT_I2 3 short ival
16-bit integer
4-byte VT_R4 4 float fltval
single-precision
8-byte VT_RS8 5 double dblval
double-precision
Currency VT_CY 6 CY *pcyVal
Date VT_DATE 7 DATE date

(DATE is defined as double)
String VT_BSTR 8 BSTR bstrVal
Object VT_DISPATCH 9 IDispatch *pdispval

(See VB Object type below)
Error VT_ERROR 10 ULONG ulvVal

(Easier to use than SCODE)
Boolean VT_BOOL 11 short boolVal
Variant VT_VARIANT | * 12 VARIANT *pvarVal or
(see notes below) SAFEARRAY *parray
ByRef VT _BYREF | * 16384 Pointer to one of the above data types
(see notes below) 0x4000
Array VT ARRAY | * 8192 SAFEARRAY *parray
(see notes below) 0x2000

Array and ByRef note

The VT _ARRAY and VT BYREF bits are bit-wise or’d with the value of the associated
data type. In a Variant array, therefore, the data type not only says that the Variant is an
array but also what is the data type of the elements. If the Variant’s data type is bit-wise
or’d with the VT _BYREF bit, then the Variant contains a pointer to the given data type.

Using VBA 59

If both bits are set, then the array that the Variant contains is an array of pointers to the
given data type.

Variant note

A Variant will only contain a Variant in conjunction with one or both of the VI ARRAY
and VT_BYREF bits. If the VT_BYREF bit is set then the pointer is accessed via the
VARIANT *pvarVal data member. If it is the VT _ARRAY bit, then the Variant contains
an array of Variants whose individual elements may be of mixed-type, and are accessed
via the SAFEARRAY *parray data member. (See also note below.)

Array of Variants note

A Variant type of particular interest is a Variant containing an array of Variants. Such
arrays are created when assigning a worksheet Range.Value property in VB to a
Variant — one of the ways of passing an array originating in a range of worksheet cells
to a C/C++ DLL. (See section 3.7 Excel ranges, VB arrays, SafeArrays, array Variants
on page 64 for details.)

String note

When VB passes strings to C/C++ via a Variant argument of type VT BSTR, the string
is a string of unsigned shorts, i.e., UNICODE wide characters. Care must be taken
to distinguish between this case and when VB passes a VB String, which is a BSTR
interpreted as a byte-string. Different system functions are required to read and cre-
ate each type of string. (See also section 3.6.6 VB/OLE Strings on page 52.) In the
case of Variant strings, the functions SysStringLen () and SysAllocStringLen ()
should be used in place of SysStringByteLen() and SysAllocStringByte-
Len () respectively. The wide-char string to byte-string system conversion functions
MultiByteToWideChar () and WideCharToMultiByte (), and their C library ana-
logues mbstowcs () and wcstombs (), are also useful. (See the Variant conversion
routines in the example project source file x1oper . cpp, and also section 3.7 below.)

3.6.11 Variant types that Excel can pass to VB functions

Within Excel, VB functions declared with Variant arguments will be passed an even
more limited subset by Excel worksheet formulae, namely:

Table 3.7 Variant types passed to VBA from Excel worksheets

VARTYPE Arguments that will be passed as this type

VT RS8 All numbers, with the exception of those formatted as dates or in the
currency format.

VT BOOL Excel’s TRUE and FALSE values. NOTE: Excel converts TRUE and
FALSE to the numbers 1 and O respectively, whereas the Variant
stores these as — 1 and 0. Care should be taken where conversions
are being made.

(continued overleaf’)

60 Excel Add-in Development in C/C++

Table 3.7 (continued)

VARTYPE Arguments that will be passed as this type
VT_DATE Any number formatted in one of Excel’s date formats or date-time
formats. (Numbers displayed with a time format are passed as
VT RS.)
VT BSTR All strings. (See note in above section.)
VT _DISPATCH Ranges (single-cell and multi-cell).
VT _ARRAY | Literal arrays.

VT_VARIANT

VT_CY Any number formatted in the currency format defined for the current
regional settings.

VT ERROR All Excel error values.

VT_EMPTY All empty cells or omitted arguments.

A VB function declared as follows will return the type of the Variant as a number,
using the VB function VarType(), except that ranges are converted, rather than Var-
Type returning VT _DISPATCH. Single cell ranges are converted to the data type of the
cell’s value. Multi-cell ranges are converted to arrays of Variants, type VI ARRAY |
VT VARIANT.

Function VariantType(v As Variant) As Integer
VariantType = VarType(v)

End Function

The following VB function will similarly convert the Range to a Variant before calling
VarType(Q).

Function VariantRangeType(r As Range) As Integer
VariantRangeType = VarType(r)

End Function

In both of these cases, the function VarType() is passing back the type of the Range
object’s Value property.

The following VB code, which declares and calls a simple DLL function that returns
a Variant, does no such conversion of ranges references, and therefore would return
the value 9 (VT_DISPATCH) for anything other than literal arguments. For example, a
worksheet formula =VariantTypeC(A1) would return 9 regardless of the contents of cell Af.

Using VBA 61

Declare Function C_vt_type Lib "example.d11" _
(ByRef arg As Variant) As Integer

Function VariantTypeC(v As Variant) As Double

VariantTypeC = C_vt_type(v)

End Function

Where the intention of the DLL function is to operate on the value of the range passed
in, it is therefore necessary to convert the Range to one or more values. The simplest way
to achieve this is to detect that the passed-in Variant is a range and then convert it to an
array Variant, like so:

Declare Function C_vt_fn Lib "example.d11" _
(ByRef arg As Variant) As Integer

Function VariantFn(v As Variant) As Double

If IsObject(v) Then

VariantFn = C_vt_fn(v.Value)
Else

VariantFn = C_vt_fn(v)
End If

End Function

It is then the task of the DLL code to determine if the passed-in Variant is a simple
value or an array. Note that in the above case, single-cell references are converted to 1x1
arrays. (See section 3.7 Excel ranges, VB arrays, SafeArrays, array Variants on page 64
for more about arrays.)

Excel error values are most easily read from the ulval property of the variant. The
numerical value is equivalent to the 2,148,141,008 plus the error code used in the C API
and defined in the header file x1call32.h. Variants containing Excel error values can
also be created in VB using the CVerr() VB function. Table 3.8 provides a comparison
of the various representations.

Table 3.8 Excel error codes

Error Variant ulval value C API value CVerr () argument
#NULL! 2148141008 0 2000
#DIV/O! 2148141015 7 2007
#VALUE! 2148141023 15 2015

#REF! 2148141031 23 2023
#NAME? 2148141037 29 2029
#NUM! 2148141044 36 2036

#N/A 2148141050 42 2042

62 Excel Add-in Development in C/C++

3.6.12 User-defined data types in VB

In C, a user-defined type is defined with a simple typedef struct {...} name;
statement block. A virtually identical construct exists in VB: Type name ... End Type.
Care needs to be taken to ensure that the variables within the type definition blocks in
C and VB are equivalent data types and in the same order. You don’t need to give the
variables or the structure itself the same names in both languages — all that is passed is
a pointer to a block of memory that needs to be interpreted in the same way in both
places.

Important note

VB aligns the elements of structures along 4-byte boundaries but the default for VC 6.0
and VC .NET is to align to an 8-byte boundary. To avoid run-time errors or what would
look like corruption of data you need to use a #pragma pack (4) statement where the
C structure is defined (the recommended approach), or change the project settings default
using a “/Zp4” compiler command line flag.

Here are some examples of good and bad user-type definitions:

Table 3.9 VB user type and C typedef examples

VB

C

Comments

Type VB_User_Type
i as Integer
d as Double
s as String
End Type

#pragma pack(4)

typedef struct

{

short ival;
double dval;
BSTR bstr;

C_user_type;

// restore default
#pragma pack ()

GOOD.

Note the different names of the structure
and the variables contained within it.
Note also the #pragma pack (4)
which is required in order to prevent
run-time errors.

Type User_Type
i as Integer
d as Double
s as String
End Type

typedef struct

{

short ival;
double dval;
BSTR bstr;

C_user_type;

BAD

Missing #pragma pack (4) will cause
the double and the string to be
misaligned and cause a run-time error.

Type User_Type
i as Integer
End Type

#pragma pack (4)

typedef struct

{
}

int 1i;
C_user_type;

#pragma pack ()

BAD

C/C++ int is a 32-bit variable. VB’s
Integer is 16-bit.

Using VBA

63

Table 3.9 (continued)

Type User_Type #pragma pack (4) BAD
i as Integer . det ot .
d as Double ypedef struc

{ Corresponding variables must

End Type be in the same order.

double d;
short i;

C_user_type;

#pragma pack ()

User-defined types are best passed ByRef (the default) arriving at C/C++ as a pointer
the structure. Here is some example code, first the VB...

to

Type VB_User_Type
i As Integer
d As Double
s As String
End Type

Declare Function C_user_type_example Lib "example.d11" _
(Arg As VB_User_Type) As Integer

Function VB_USER_TYPE_TEST(i As Integer, d As Double, s As String) _
As Integer

Dim t As VB_User_Type
t.i =1
t.d =d
t.s = s

VB_USER_TYPE_TEST = C_user_type_example(t)

End Function

.. and the corresponding C/C++ code:

#pragma pack(4) // required to be consistent with VB
typedef struct
short ival;
double dval;
BSTR bstr;
C user type;
#pragma pack() // restore the default
short _ stdcall C_user_ type_ example (C_user_type *arg)

{

short retval;

64 Excel Add-in Development in C/C++

if (arg == NULL)
return O;

retval = arg->ival;
retval += (short) (arg->dval) ;

if (arg->bstr)
retval += SysStringBytelen (arg-s>bstr) ;

return retval;

This example code simply returns the sum of the integer argument, the integer part of the
floating-point argument and, if it has been initialised, the byte-length of the BSTR.

3.6.13 VB object data type

VB objects are passed from VB to DLLs as dispatch pointers for use with the OLE 2
IDispatch interface. For example, range arguments passed to VB functions declared as
taking Variants are of this type. If passed directly to DLL functions also declared as taking
Variants, the DLL will have to understand the IDispatch interface in order to access the
cell values. This can be avoided by converting ranges to array Variants as demonstrated in
the example in section 3.6.11 above, and is discussed more in section 3.7 Excel ranges,
VB arrays, SafeArrays, array Variants on page 64.

The OLE/COM IDispatch interface enables programs (known as OLE Automation Con-
trollers) to access the objects of other applications. Although this is relevant to the general
subject of writing add-ins for Excel, the scope of this book does not cover these topics
and all the mechanisms that these things entail. The Microsoft Excel 97 Developer’s Kit
contains a chapter on doing just this as well as there being numerous other texts, and
online help on MSDN.

3.7 EXCEL RANGES, VB ARRAYS, SAFEARRAYS,
ARRAY VARIANTS

The usefulness of arrays, especially in passing blocks of data between Excel, VB and
C/C++ (in both directions) makes them an important topic. There are a number of different
ways in which each of Excel, VB and C/C++ treat arrays. This can lead to some confusion
and complexity. This section aims to reduce this by providing an overview of the different
ways arrays can be created and represented, and to recommend an approach that removes
much of the complexity.

Firstly, it is helpful to simply list all of the various array types:

e Excel literal worksheet array: can contain all of the basic worksheet data types. (See
section 2.4 Worksheet data types and limits on page 10 for more information.)

e Excel range reference: an Excel object that refers to a collection of cells, whose values
can intuitively be thought of as matrices or vectors, although, strictly speaking, not
really an array.

Using VBA 65

e VB array: OLE SafeArray type, used to represent an array whose elements are all of
the same type, determined at declaration. Supports all the basic data types and Variants.

e VB array Variant: An OLE Variant that contains an array; not to be confused with an
array of Variants. The array contained is of type SafeArray. Its elements can be of any
type including Variants.

e C/C++ SafeArray: An OLE SafeArray, analogous to the VB array.

e C/C++ array Variant: An OLE Variant containing an OLE SafeArray, analogous to the
VB array Variant.

e C/C++ array: A flexible memory block accessible with pointers and square-bracket
indexing.

The goal of this section, consistent with the focus of the book, is to demonstrate how
best to move data into and out of Excel worksheets, using user-defined functions. More
specifically, the goal is to get arrays of worksheet data into a C/C++ DLL via VB and to
return data back to the worksheet. The key to the whole issue is the array Variant for the
following reasons:

1. It is supported in both VB and C/C++.

2. In C/C++ the contained SafeArray’s data are easily accessed and converted.

3. It supports arrays of all the required types, including Variants so that it can represent
mixed-type arrays of worksheet data. (See sections 3.6.10 Variant types supported by
VBA and 3.6.11 Variant types that Excel can pass to VB functions.)

4. VB arrays are easily converted to array Variants.

5. Excel range objects are easily converted to array Variants.

6. Excel literal arrays are passed as array Variants to VB functions declared with Vari-
ant arguments.

7. Being an OLE data type, inter-process memory management is simplified.

Reason number 5 is perhaps the most important: the Range object is fairly easily handled
in VB, but if passed directly to C/C++, its properties (specifically, cell contents) can only
be accessed using the IDispatch interface. VB worksheet functions declared as taking
Variant arguments can be passed either literal values and arrays, or ranges when called
from the worksheet.

Here is an overview of the best steps to take in setting up VB and C/C++ functions
that together are capable of taking and returning an array:

1. Declare the VB function as taking a Variant argument and returning a Variant. This
ensures that literal values, literal arrays, single- and multi-cell ranges are all passed to
the function and that an array Variant can be returned to Excel.

2. Detect passed-in range objects using the VB IsObject() function and convert them
to array Variants. (See below for details.)

3. Declare C/C++ functions as taking Variant arguments and returning a Variant.

4. Pass the VB Variant, which may be a single value or an array Variant, through to the
C/C++ function.

5. Let the C/C++ function detect whether or not it has been passed an array Variant.

6. Use the OLE SafeArray functions to access or convert the array Variant data. (See
below for details.)

7. Use the OLE Variant and SafeArray functions to create a new array Variant and to
populate its elements.

66 Excel Add-in Development in C/C++

8. Return the array Variant to VB from C/C++.
9. Return the array Variant to Excel from VB.

The following sub-sections cover in more detail the various steps involved as well as
providing more background information.

3.7.1 Declaring VB arrays and passing them back to Excel

VB arrays are fairly straightforward. They can be declared statically with statements such
as these:

Dim integer_array(0 To 5) As Integer ' 6 elements, zero-indexed
Dim square_array(l To 3, 1 To 3) As Double ' 9 elts, unit-indexed
Dim variant_array(l to 4) As Variant ' 4 Variant elts

The Option Base statement at the top of the code module tells VB what the lower bound
on an omitted array index should be for all arrays in that module. For example. . .

' Specify a default array Tower bound of 1
Option Base 1

... then the array square_array above can, equivalently but more readably, be declared
as follows:

Dim square_array(3, 3) As Double ' 9 elements, unit-indexed

Arrays can also be declared without dimensions and then re-dimensioned dynamically
later. A data type must be specified at declaration and cannot be changed. Here’s
an example:

' Don't need to specify the number of or size of the dimensions
Dim array() As Double

' Allocate space for NumRows x NumCols elements
ReDim array(NumRows, NumCols)

Arrays can be declared with up to 60 dimensions, but for practical Excel add-in purposes,
1 or 2 is usually all you need given the two-dimensional nature of Excel worksheets.

Arrays are most easily returned to Excel as array Variants as shown in the following
examples. The conversion from VB array to array Variant is implicit in the assignment of
the array to the Variant return value. The type of the array elements is inherited from the
data type of the VB array. Excel understands how to copy the contents of array Variants
into the calling cell(s).

Note that these VB functions would need to be entered on the worksheet as array
formulae. (See section 2.9.2 Array formulae — The Ctrl-Shift-Enter keystroke on page 21
for details of how to enter array formulae into a worksheet.) Note also that a 1-dimension
VB array is interpreted by Excel as a single column vector, and that a 2-dimension array
has its indices interpreted as row then column.

Using VBA 67

Returning a rectangular array

This example returns a 3x3 array of integers, populated row-by-row with the numbers
1to9.

Function VB_ARRAY_RETURN_EXAMPLE(trigger as Variant) As Variant

a(num rows, num columns)
Dim a(l1 To 3, 1 To 3) As Integer

! Row 1
a(l, H =1
a(l, 2) =2
a1, 3) =3
! Row 2
a2, 1) =4
a(2, 2) =5
a2, 3) =6
! Row 3
a3,) =7
a3, 2) =8
a3, 3) =9

VB_ARRAY_RETURN_EXAMPLE = a

End Function

Returning a row vector

To return a row vector, the array, if static, should be declared as in this example. Note
that the base in this example is zero, not 1. It makes no difference to the worksheet cells
what the base of the array is, provided that there are 3 elements.

Function VB_ROW_VECTOR(trigger As Variant) As Variant
Dim a(0 To 2) As Integer
a0
a(l)
a(2)

VB_ROW_VECTOR = a

1
2
3

End Function

Returning a column vector

To return a column vector, the array, if static, should be declared as in this example:

Function VB_COLUMN_VECTOR(trigger As Variant) As Variant

a(num rows, num columns)
Dim a(l1 To 3, 1 To 1) As Integer

68 Excel Add-in Development in C/C++

a(l, 1) =1
a2, 1) =2
a3, 1) =3

VB_COLUMN_VECTOR = a

End Function

3.7.2 Passing arrays and ranges from Excel to VB to C/C++

Arrays in Excel can either be literal arrays, e.g., {1,2,3;4,5,6}, or range references. A VB
function must be declared as taking a Variant argument if it is to be able to accept either
form of input. (Such functions can then also accept single cell references and single literal
values t0o0.)

Literal arrays are passed as array Variants with Variant elements. The sub-types are
inherited from the types of the literal array elements. (Single literal values are passed as
simple Variants whose sub-type is that of the literal value.)

Range references, including single cell references, are passed as object Variants of
type VT _DISPATCH; easily detected using the function IsObject(). If these are to be
passed on to a C/C++ DLL function, they are best converted to array Variants. This is
most easily done using the Range object’s Value property. The array’s elements are
initialised with the data from the cells. The elements of the array are type Variant, and
their sub-type is inherited from the corresponding cell. Note that the sub-type of an array
element is, in general, affected by the display format of a cell — see section 3.6.4 on
page 50 for details.

The following code shows an example VB interface function that either passes a single
Variant or an array Variant to a DLL function, depending on whether it was passed a
range reference or a literal array or value. Note that a single-cell reference is converted
to a 1x1 array.

Declare Function C_vt_function Lib "example.dl1" _
(ByRef arg As Variant) As Variant

Function VtFunction(v As Variant) As Variant

If IsObject(v) Then

VtFunction = C_vt_function(v.Value)
Else

VtFunction = C_vt_function(v)
End If

End Function

The C/C++ DLL function would be prototyped as follows:

VARIANT _ stdcall C vt function (VARIANT *pv) ;

Using VBA 69

A VB interface function declared as taking a range argument, would not be able to receive
literal values from the worksheet. If this were not a problem, then the VB code might
look like this, given that there is no need to call IsObject().

Function VtFunction(r As Range) As Variant
VtFunction = C_vt_function(r.Value)

End Function

The following line would have resulted in a Variant of type VT DISPATCH being passed
to the DLL function.

VtFunction = C_vt_function(r)

3.7.3 Converting array Variants to and from C/C++ types

Array Variants are Variants that contain an array. The array itself is an OLE data type

called the SafeArray, declared as SAFEARRAY in the Windows header files. An under-

standing of the internal workings of the SAFEARRAY is not necessary to bridge between

VB and C/C++. All that’s required is a knowledge of some of the functions used to

create them, obtain handles to their data, release data handles, find out their size (upper

and lower bounds), find out what data-type the array contains, and, finally, destroy them.
The key functions, all accessible in C/C++ via the header windows . h, are:

SafeArrayCreate ()
SafeArrayDestroy ()
SafeArrayAccessData ()
SafeArrayUnaccessData ()
SafeArrayGetDim ()
SafeArrayGetElemsize ()
SafeArrayGetLBound ()
SafeArrayGetUBound ()
SafeArrayGetElement ()

SafeArrayPutElement ()

To convert an array Variant, the C/C++ DLL code needs to do the following:

e Determine that the Variant is an array by testing its type for the VT _ARRAY bit.

e Determine the element type by masking the VT _ARRAY bit from its type.

e Determine the number of dimensions using the SafeArray cDims property or by using
the SafeArrayGetDim () function.

e Determine the size of the array using SafeArrayGetUBound () and SafeAr-
rayGetLBound () for each dimension.

e Convert each array element from the possible Variant types that could originate from
a worksheet cell to the desired data type(s).

70 Excel Add-in Development in C/C++

To create an array Variant, the C/C++ DLL code needs to do the following:

e Call safeArrayCreate (), having initialised an array of SAFEARRAYBOUND struc-
tures (one for each dimension), to obtain a pointer to the SafeArray.

Initialise a VARIANT using VariantInit ().

Assign the element type bit-wise or’d with VT _ARRAY to the Variant type.

Assign the SafeArray pointer to the Variant parray data member.

Set the array element data (and sub-types, if Variants).

The final points in each set of steps above can be done element-by-element using SafeAr-
rayGetElement () and SafeArrayPutElement (),or, more efficiently, by accessing
the whole array in one memory block using SafeArrayAccessData () and SafeAr-
rayUnaccessData (). When accessing the whole block in one go, it should be borne
in mind that SafeArrays store their elements column-by-column, in contrast to Excel’s
C API array types, the x1_array (see page 107) and the x1typeMulti xloper (see
page 111), where the elements are stored row-by-row.

Array Variant arguments passed by reference can be modified in place, provided that
the passed-in array is first released using SafeArrayDestroy () before being replaced
with the array to be returned.

The cpp_x1loper class converts Variants of any type to or from an equivalent x1oper
type. (See sections 6.2.3 The xloper structure on page 111, and 6.4 A C++ class
wrapper for the x1loper - cpp_xloper on page 121. See also the Variant conversion
routines in the example project source file, x1oper . cpp.) The following example code
demonstrates this:

VARIANT _ stdcall C vt _array example (VARIANT *pv)

{
static VARIANT vt;

// Convert the passed-in Variant to an xloper within a cpp_xloper
cpp_xloper Array (pv) ;

// Access the elements of the xloper array using the cpp_ xloper
// accessor functions...

// Convert the xloper back to a Variant and return it
Array.AsVariant (vt) ;
return vt;

Note on memory management

One advantage of passing Variant SafeArrays back to VB is that VB can safely delete the
array and free its resources, and will do this automatically once it has finished with it. Equally,
if a passed-in array parameter is used as the means to return an array, and an array is already
assigned to it, the DLL must delete the array using SafeArrayDestroy () before creating
and returning a new one. (The freeing of memory passed back to Excel directly from an XLL
is a little more complex — see Chapter 7 Memory Management on page 161 for details.)

3.7.4 Passing VB arrays to and from C/C++

You may want to pass a VB array directly to or from a DLL function. When passing a
VB array to a DLL, the C/C++ function should be declared in the VB module as shown
in the following example. (The ByRef keyword is not required as it is the default.)

Using VBA 71

Declare Function C_safearray_example "example.d11" _
(ByRef arg() As Double) As Double

The corresponding C/C++ function would be prototyped as follows:

double _ stdcall C_SafeArray Example (SAFEARRAY **pp Arg) ;

As you can see, the parameter ByRef arg() is delivered as a pointer to a pointer to a
SAFEARRAY. Therefore it must be de-referenced once in all calls to functions that take
pointers to SAFEARRAYs as arguments, for example, the OLE SafeArray functions.

When returning VB arrays (i.e., SafeArrays) from the DLL to VB, the process is similar
to that outlined in the previous sections for array Variants. SafeArray arguments passed by
reference can also be modified in place, provided that the passed-in array is first released
using SafeArrayDestroy ().

In practice, once you have code that accepts and converts array Variants, it is simpler
to first convert the VB array to array Variant. This is done by simple assignment of the
array name to a Variant.

3.8 COMMANDS VERSUS FUNCTIONS IN VBA

Section 2.8 Commands versus functions in Excel on page 19 describes the differences
between commands and functions within Excel. The differences between the parallel
concepts of commands and functions in VBA are summarised in the Table 3.10.

Table 3.10 Commands versus functions in VBA

Commands Functions
Purpose Code containing instructions to be Code intended to process arguments
executed in response to a user action |and/or return some useful information.
or system event. May be worksheet functions or VB
functions.
VB code Macro command: Function FunctionName(...)As
(see also Sub CommandName(...) return_type
sections .
below) End Sub

Command object event: FunctionName = rtn_val

Sub CmdObjectName_event(...) End Function
End Sub
‘Workbook/worksheet event action:

Sub ObjectName_event(...)

End Sub

(continued overleaf’)

72

Excel Add-in Development in C/C++

Table 3.10 (continued)

Commands

Functions

VB code
location

Macro command:

e Worksheet code object

e Workbook code object

e VB module in workbook

e VB module outside workbook

Worksheet function:
e VB module in workbook
e VB module outside workbook

VB project function:

e Worksheet code object

Command object event: e Workbook code object

e Code object of command object e VB module in workbook
container e VB module outside workbook

Worksheet object event:
e Worksheet code object

Workbook object event:
e Workbook code object

3.9 CREATING VB ADD-INS (XLA FILES)

VB macros can be saved as Excel add-ins simply by saving the workbook containing the
VB modules as an XLA file, using the File/Save As... menu and selecting the file type
of Microsoft Excel Add-in (*.xla). When the XLLA is loaded, the Add-in Manager makes the
functions and commands contained in the XL A file available. There are no special things
that the VB programmer has to do for the Add-in Manager to be able to recognise and load
the functions. Note that the resulting code runs no faster than regular VB modules — still
slower than, say, a compiled C add-in.

3.10 VB VERSUS C/C++: SOME BASIC QUESTIONS

This chapter has outlined what you need to do in order to create custom worksheet
functions and commands using only VB (as well as using VB as an interface to a C/C++
DLL). You might at this point ask yourself if you need to go any further in the direction
of a full-blown C/C++ add-in. Breaking this down, the main questions to ask yourself
before making this decision are:

1. Do I really need to write my own functions or are there Excel functions that, either
on their own or in simple combination, will do what I need?

2. What Excel functionality/objects do I need to access: can I do this using the C API,

or do I need to use VBA or the OLE interface?

Is execution speed important?

4. What kind of calculations or operations will my function(s) consist of and what kind
of performance advantage can I expect?

5. Is development time important to me and what language skills do I have or have
access to?

6. Is there existing source code that I want to reuse and how easily can it be ported to
any of VB, C or C++?

7. Does my algorithm involve complex dynamic memory management or extensive use
of pointers?

e

Using VBA 73

8. Who will need to be able to access or modify the resulting code?
9. Is the Paste Function (Function Wizard) important for the functions I want to create?
10. Do I need to write worksheet functions that might need a long time to execute, and
so need to be done on a background thread by a remote application?

With regard to the second point, it should be noted that C API can only handle byte-
counted strings with a maximum length of 255 characters. At one time, strings within
Excel were limited to this length, but not any more. If you need to be able to process
longer strings you will not be able to use the C API, but you will still be able to use your
C/C++ routines accessing them via VB, as VB supports a BSTR string variable capable
of supporting much longer strings.

This book cannot answer these questions for you, however, question 4 is addressed in
section 9.2 Relative performance of VB, C/C++: Tests and results on page 289.

4

Creating a 32-bit Windows (Win32) DLL
Using Visual C++ 6.0 or Visual Studio .NET

This chapter covers the steps involved in creating a stand-alone Win32 Dynamic-Link
Library using Microsoft Visual C++. It explains, through the creation of an example
project, how to create a DLL containing functions that can be accessed by VB without
the need for the Excel C API library and header files. (Without these things, however,
the DLL cannot call back into Excel via the C APIL.) Nevertheless, it is possible to create
very powerful C/C++ add-ins with just these tools.

A full description of DLLs and all the associated Windows terminology is beyond
the scope of this book. Instead, this section sets out all the things that someone who
knows nothing about DLLs needs to know to create add-ins for Excel; starting with
the basics.

4.1 WINDOWS LIBRARY BASICS

A library is a body of (compiled) code which is not in itself an executable application but
provides some functionality and data to something that is. Libraries come in two flavours:
static and dynamic-link. Static libraries (such as the C run-time library) are intended to
be linked to an application when it is built, to become part of the resulting executable
file. Such an application can be supplied to a user as just the executable file only. A
dynamic-link library is loaded by the application when the application needs it, usually
when the application starts up. An application that depends on functionality or data in a
DLL must be shipped to a user as the executable file plus the DLL file for it to work.
One DLL can load and dynamically link to another DLL.

The main advantage of a DLL is that applications that use it only need to have one
copy of it somewhere on disk, and have much smaller executable files as a result. A
developer can also update a DLL, perhaps fixing a bug or making it more efficient,
without the need to update all the dependent applications, provided that the interface
doesn’t change.

4.2 DLL BASICS

The use of DLLs breaks into two fairly straightforward tasks:

e How to write a DLL that exports functions.
e How to access functions within a DLL.

DLLs contain executable code but are not executable files. They need to be linked to
(or loaded by) an application before any of their code can be run. In the case of Excel,
that linking is taken care of by Excel via the Add-in Manager or by VBA, depending on

76 Excel Add-in Development in C/C++

how you access the DLL’s functions. (Chapter 5 Turning DLLs into XLLs: The Add-in
Manager interface, on page 95, provides a full explanation of what the Add-In Man-
ager does.)

If your DLL needs to access the C API it will either need to be linked statically
at compile-time with Excel’s 32-bit library, x1call32.1ib, or link dynamically with
the DLL version, x1call.dll, at run-time. The static library is downloadable from
Microsoft in an example framework project. (See section 1.2 What tools and resources
are required to write add-ins on page 2.) The dynamic-link version is supplied as part of
a standard 32-bit Excel installation.

4.3 DLL MEMORY AND MULTIPLE DLL INSTANCES

When an application runs, Win32 assigns it a 32-bit linear address space known as its
process. Applications cannot directly access memory outside their own process. A DLL
when loaded must have its code and data assigned to some memory somewhere in the
global heap (the operating system’s available memory). When an application loads a DLL,
the DLL’s code is loaded into the global heap, so that it can be run, and space is allocated
in the global heap for its data structures. Win32 then uses memory mapping to make these
areas of memory appear as if they are in the application’s process so that the application
can access them.

If a second application subsequently loads the DLL, Win 32 doesn’t bother to make
another copy of the DLL code: it doesn’t need to, as neither application can make changes
to it. Both just need to read the instructions contained. Win32 simply maps the DLL code
memory to both applications’ processes. It does, however, allocate a second space for a
private copy of the DLL’s data structures and maps this copy to the second process only.
This ensures that neither application can interfere with the DLL data of the other. (16-bit
Windows” DLLs used a shared memory space making life very interesting indeed, but
the world has moved on since then.)

What this means in practice is that DLL writers don’t need to worry about static and
global variables and data structures being accessed by more than one user of their DLL.
Every instance of every application gets its own copy. Each copy of the DLL data is
referred to as an instance of the DLL.

44 MULTI-THREADING

DLL writers do need to worry about the same running instance of an application call-
ing their DLL many times from different threads. Take the following piece of C code
for example:

int _ stdcall get_num calls(void)

{

static int num calls = 0;

return ++num calls;

}

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 77

The function returns an integer telling the caller how many times it has been called. The
declaration of the automatic variable num calls as static, ensures that the value
persists from one call to the next. It also ensures that the memory for the variable is
placed in the application’s copy of the DLL’s data memory. This means that the memory
is private to the application so the function will only return the number of times it has
been called by this application.

The problems arise when it may be possible for the application to call this function
twice from different threads at the same time. The function both reads and modifies the
value of the memory used for num calls, so what if one thread is trying to write while
the other is trying to read? The answer is that it’s unpredictable. In practice, for a simple
integer, this is not a problem. For larger data structures it could be a serious problem.
The best way to avoid this unpredictability is the use of critical sections.

Windows provides a function GetCurrentThreadId () which returns the current
thread’s unique system-wide ID. This provides the developer with another way of mak-
ing their code thread-safe, or altering its behaviour depending on which thread is cur-
rently executing.

4.5 COMPILED FUNCTION NAMES

4.5.1 Name decoration

When compilers compile source code they will, in general, change the names of the
functions from their appearance in the source code. This usually means adding things to
the beginning and/or end of the name and, in the case of Pascal compilers, changing the
name to all uppercase. This is known as name decoration and it is important to understand
something about the way C and C++ compilers do this so that the functions we want to
be accessible in our DLL can be published in a way the application expects.!

The way the name is decorated depends on the language and how the compiler is
instructed to make the function available, in other words the calling convention. (See
below for more details on and comparisons of calling conventions.) For 32-bit Windows
API function calls the convention for the decoration of C-compiled functions follows this
standard convention:

A function called function name becomes function namee@n where n is the
number of bytes taken up by all the arguments expressed as a decimal, with the bytes
for each argument rounded up to the nearest multiple of four in Win32.

Note that the decorated name is independent of the return type. Note also that all pointers
are 4 bytes wide in Win32, regardless of what they point to.
Expressed slightly differently, the C name decoration for Win API calls is:

e Prefix —
e Suffix @n where n = bytes stack space for arguments
e Case change None

' The complexity of name decoration is avoided with the use of DEF files and C++ source code modules, see
later in this chapter.

78 Excel Add-in Development in C/C++

Table 4.1 gives some examples:

Table 4.1 Name decoration examples for C-compiled exports

C source code function definition Decorated function name
void examplel (char argl) _examplel@4
void example2 (short argl) _example2@4
void example3 (long argl) _example3@4
void example4 (float argl) _example4@4
void example5 (double argl) _example5@8
void exampleé6 (void *argl) _example6@4
void example7 (short argl, double arg2) _example7@12
void example8 (short argl, char arg2) _example8@8

Win32 C++ compilers use a very different name-decoration scheme which is not described
as, among other reasons, it’s complicated. It can be avoided by making the compiler use
the standard C convention using the extern "C" declaration, or by the use of DEF
files. (See below for details of these last two approaches.)

4.5.2 The extern "C" declaration

The inclusion of the extern "C" declaration in the definition of a function in a C++
source file instructs the compiler to externalise the function name as if it were a C
function. In other words, it gives it the standard C name decoration. An example decla-
ration would be:

extern "C" double c_name function(double arg)

{
}

An important point to note is that such a function must also be given an extern "C"
declaration in all occurrences of a prototype, for example, in a header file. A number
of function prototypes, and the functions and the code they contain, can all be enclosed
in a single extern "C" statement block for convenience. For example, a header file
might contain:

extern "C"

{

double c_name_function(double arg) ;
double another c name function(double arg) ;

}

double cplusplus_name_ function(double arg) ;

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 79

4.6 FUNCTION CALLING CONVENTIONS:
__cdecl, stdcall, fastcall

The Microsoft-specific keyword modifiers, cdecl, stdcall and _ fastcall,
are used in the declaration and prototyping of functions in C and C++. These modifiers
tell the compiler how to retrieve arguments from the stack, how to return values and what
cleaning up to do afterwards. The modifier should always come immediately before the
function name itself and should appear in all function prototypes as well as the definition.

Win32 API applications and DLLs, as well as Visual Basic, all use the
___stdcall calling convention whereas the ANSI standard for C/C++ is _ cdecl.
By default, VC compiles functions as __ cdecl. This default can be overridden with
the compiler option Gz. However, it’s better to leave the default compiler settings alone
and make any changes explicit in the code. Otherwise, you are setting a trap for you or
someone else in the future, or creating the need for big warning comments in the code.

The modifier fastcall enables the developer to request that the compiler use a
faster way of communicating some or all of the arguments and it is included only for
completeness. For example, the function declaration

void _ fastcall fast_ function(int i, int j)
would tell the compiler to pass the arguments via internal registers, if possible, rather
than via the stack.

Table 4.2 summarises the differences between the three calling conventions. (It’s really

not necessary to remember or understand all of this to be able to write add-ins).

Table 4.2 Summary of calling conventions and name decoration

___cdecl

___stdcall

_ fastcall

Argument passing
order

Right-to-left on the
stack.

Right-to-left on the
stack.

The first two DWORD (i.e.
4-byte) or smaller
arguments are passed in
registers ECX and EDX.
All others are passed
right-to-left on the stack.

Argument passing
convention

By value except
where a pointer or
reference is used.

By value except
where a pointer or
reference is used.

By value except where a
pointer or reference is
used.

Variable argument
lists

Supported

Not supported

Not supported

Responsibility for
cleaning up the

Caller pops the
passed arguments

Called function pops
its arguments from

Called function pops its
arguments from the

extern "C":
Prefix: _

stack from the stack. the stack. stack.
Name-decoration C functions: C functions: Prefix: @
convention C++ fns declared as C++ fns declared as Suffix: @n

extern "C":
Prefix:

n = bytes stack space for
arguments

(continued overleaf’)

80 Excel Add-in Development in C/C++

Table 4.2 (continued)

_ cdecl

__stdcall

_ fastcall

Suffix: none

Case change: none

C++ functions:

A proprietary name
decoration scheme is
used for Win32.

Suffix: @n
n = bytes stack space
for arguments

Case change: none

C++ functions:

A proprietary name
decoration scheme is
used for Win32.

Case change: none

Compiler setting to
make this the

/Gz

/Gd
or omitted

/Gr

default:

Note: The VB argument passing convention is to pass arguments by reference unless
explicitly passed by value using the ByVal keyword. Calling C/C++ functions from VB
that take pointers or references is achieved by default or with the explicit use of the ByRef
keyword.

Note: The Windows header file <Windef . h> contains the following definitions which,
some would say, you should use in order to make the code platform-independent. How-
ever, this book chooses not to use them so that code examples are more explicit.

#define WINAPI
#define WINAPIV

__stdcall
__cdecl

4.7 EXPORTING DLL FUNCTION NAMES

A DLL may contain many functions not all of which the developer wishes to be accessible
to an application. The first thing to consider is how should functions be declared so that
they can be called by a Windows application. The second thing to consider is how then
to make those functions, and only those, visible to an application that loads the DLL.

On the first point, the declaration has to be consistent with the Windows API call-
ing conventions, i.e., functions must be declared as __ stdcall rather than _ cdecl.
For example, double stdcall get system time C(long trigger) can be
used by the DLL’s host application but long current system time (void) can-
not. (Both these functions appear in the example DLL later in this chapter.)

On the second point, the DLL project must be built in such a way that the stdcall
functions you wish to export are listed in the DLL by the linker. There are two ways to
do this:

1. list the function name in a definition (* . DEF) file, OR
2. use the declspec (dllexport) keyword in the declaration.

In practice, the only reason to declare functions with __ stdcall in your DLL is pre-
cisely because you intend to make them visible externally to a Windows application such
as Excel.

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 81

4.7.1 Definition (* .DEF) files

A definition file is a plain text file containing a number of keyword statements followed
by one or more pieces of information used by the linker during the creation of the DLL.
The only keyword that needs to be covered here is EXPORTS. This precedes a list of the
functions to be exported to the application. The general syntax of lines that follow an
EXPORTS statement is:

entryname [=internalname] [@ordinal [NONAME]] [DATA] [PRIVATE]

Example 1

Consider the following function declaration in a C++ source file:

extern "C" double _ stdcall get_system time C(long trigger) ;

Given the decoration of the function name, this would be represented in the definition file
as follows:

EXPORTS
; (Comment) This function takes a single 'long' argument
get_system time C= get system time Ce@4

In the above example, get _system time C is the entryname: the name you want
the application to know the function by. In this example, the same undecorated name has
been chosen as in the source code, but it could have been something completely different.
The internalname is the decorated name. As the function is declared as both extern
"c" and _ stdcall it has been decorated as set out in the table in section 4.6 on
page 79.

The keywords PRIVATE, DATA and @ordinal [NONAME] are not discussed as they
are not critical to what we are trying to do here.

Example 2

We could also have declared the C++ function (in the C++ source code file) without the
extern "C" like this:

double _ stdcall get_system time C(long trigger) ;

The corresponding entry in the .DEF file would be:

EXPORTS
get_system time C

In this case the linker does all the hard work. We have no extern "C" statement and
no name decoration reflected in the DEF file. The linker makes sure on our behalf that
the C++ decorated name is accessible using just the undecorated name.

Example 2 is the best way to make functions available, as it’s the simplest. However,
if you find that Excel cannot find your functions, you can use extern "C" and the
decorated name in the DEF file as in Example 1.

The only other thing worth pointing out here is the very useful comment marker for
.DEF files, a semi-colon, after which all characters up to the end of the line are ignored.

82 Excel Add-in Development in C/C++

For example, the above DEEF file could look like this:

EXPORTS
; My comment about the exported function can go here
; after a semi-colon...

get_system time C ; ...plus more comments here

4.7.2 The _ declspec(dllexport) keyword

The declspec(dllexport) keyword can be used in the declaration of the function
as follows:

__declspec(dllexport) double _ stdcall get system time C(long trigger)

{
}

The declspec (dllexport) keyword must be placed at the extreme left of the
declaration. Functions declared in this way do not need to be listed in a DEF file. However,
if you want to avoid the function being made available with the C++ name decoration
you would need to declare the function as follows:

extern "C" _ declspec(dllexport) double _ stdcall
get_system time C(long trigger)

{

}

The problem now is that the linker will make the function available as get system
_time C@4 and, if we are telling the application to look for a function called get
system time C, it will not be able to find it. The two solutions are, therefore, to
tell the application to look for the decorated name or to use a DEF file containing the
decorated name.

NOTE: USING A DEF FILE MAKES THE SOURCE CODE CLEANER AND GIVES
MORE CONTROL OVER THE NAME THAT’S ULTIMATELY PUBLISHED.

4.8 WHAT YOU NEED TO START DEVELOPING ADD-INS
IN C/C++

This chapter shows the use of Microsoft Visual C++ 6.0 Standard Edition and Visual
Studio .NET (in fact, Visual C++ .NET, which is a subset of VS .NET). Menu options
and displays may vary from version to version, but for something as simple as the creation
of DLLs, the steps are almost identical. This is all that’s needed to create a DLL whose
exported functions can be accessed via VB.

However, to create a DLL that can access Excel’s functionality or whose functions you
want to access directly from an Excel worksheet, you will need Excel’s C API library
and header file, or COM (see section 9.5). (See also section 4.12 below, and Chapter 5
Turning DLLs into XLLs: The Add-in Manager interface on page 94.)

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 83

4.9 CREATING A DLL USING VISUAL C++ 6.0

This section refers to Visual C++ 6.0 as VC. Visual Studio 6.0 has the same menus and
dialogs. Section 4.10 on page 87 covers the same steps as this section, but for the Visual
C++ .NET 2003 and Visual Studio .NET 2003 IDEs, which this book refers to as VC.NET
to make the distinction between the two.

4.9.1 Creating the empty DLL project

This example goes step-by-step through the creation of a DLL called GetTime.d1l1l
which is referred to in the following chapter and expanded later on. It will export one
function that, when called, will return the date and time in an Excel-compatible form to
the nearest second.

The steps are:

il NS

o

Open the Visual C++ IDE.

Select File/New. ..

On the New dialog that appears select the Projects tab.

Select Win32 Dynamic-Link Library, enter a name for the project in the Project name: text
box and select a location for the project as shown and press OK.

© 0

New 2lx]
Files = Projects | \Workspaces | Other Documents I
.2 ATL COM AppWizard Project name:
3 DevStudio Add-in\Wizard IG efTime
ISAP Extension Wizard
< Makefile B
i MFC Active Controldizard s -
] MFC AppiWizard (dil) iC:'\D EVELOPGefTime J
MFC AppiWizard (exe)
T Utility Project
IB]4in32 Application
|—]'Win32 Consale Application @ Create newworkspace
I%] Win32 Dynamic-Link Librane " Add o currentworkspace
%] 4in32 Stalic Library I Bependency of
[4sD =l
Platiorms;
¥lin32
ok | Concel |

Select Create an empty DLL project on the following dialog and press Finish.

Select OK to clear the message dialog that tells you that the project will be created
with no files.

Make sure the Workspace window is visible. (Select View/Workspace if it isn’t.)
Expand the GetTime files folder.

Right-click on the Source Files sub-folder and select Add Files to Folder. ..

In the File name: text box type GetTime.cpp. [The Files of type: text box should now
contain C++ Files (...).]

84 Excel Add-in Development in C/C++

Microsoft Visual ©+ + _XJ

Q) ChDevelop\GetTima\GetTime cpp
The specified fle does not exist,
Do yoll want to add a reference to the project amyway?

11. The following dialog will appear. Select Yes.

12. Expand the Source Files folder in the Workspace window and you will now see the
new file listed.

13. Double-click on the icon immediately to the left of the file name GetTime.cpp. You
will see the following dialog:

Microsoft Visual C++] ﬁl

@) Froject file C\DevelopiGetTimelGetTime.cpp does not exist,
Do you want to create a new fle?

14. Select Yes.
15. Repeat steps 10 to 14 to create and add to Source Files a file called GetTime.def.

The project and the required files have now been created!

It has no code, of course, so all it’s doing at this point is taking up disk space, but now
you’re ready to start writing code.

If you explore the directory in which you created the project you will see the following
files listed:

GetTime.cpp |A C++ source file. This will contain our C or C++ source code.
(Even if you only intend to write in C, using a .cpp file extension
allows you to use some of the simple C++ extensions such as the
bool data type.)

GetTime.def A definition file. This text file will contain a reference to the
function(s) we wish to make accessible to users of the DLL (Excel
and VBA in this case).

You will also see a number of project files of the form GetTime. *.

4.9.2 Adding code to the project

To add code to a file simply double-click on the file name and VC will open the text file
in the right hand pane. We will add some simple code that returns the system time, as
reported by the C run-time functions, as a fraction of the day, and export this function

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 85

via a DLL so that it can be called from VB. Of course, VB and Excel both have their
own functions for doing this but there are two reasons for starting with this particular
example: firstly, it introduces the idea of having to understand Excel’s time (and date)
representations, should you want to pass these between your DLL and Excel. Secondly,
we want to be able to do some relative-performance tests, and this is the first step to a
high-accuracy timing function.

For this example, add the following code to the file GetTime. cpp:

#include <windows.h>
#include <time.h>

#define SECS PER DAY (24 * 60 * 60)

// Returns the time of day rounded down to the nearest second as
// number of seconds since the start of day.

long current_system_time (void)

time t time t T;
struct tm tm T;

time (&time t T);
tm_T = *localtime(&time t_T);

return tm T.tm sec + 60 * (tm T.tm min + 24 * tm T.tm hour) ;
// Returns the time of day rounded down to the nearest second as a
// fraction of 1 day, i.e. compatible with Excel time formatting.
// Wraps the function long current system time(void) providing a

// trigger for Excel using the standard calling convention for
// Win32 DLLs.

return current_system time() / (double)SECS_PER DAY;

The function long current system_ time (void) getsthe systemtimeasatime t,
converts it to a struct tm and then extracts the hour, minute and second. It then converts
these to the number of seconds since the beginning of the day. This function is for internal
use only within the DLL and is, therefore, not declared as ___stdcall.

The function double stdcall get system time C(long trigger) takes
the return value from long current system time (void) and returns this divided
by the number of seconds in a day as a double. There are three things to note about
this function:

1. The declaration includes the ~ stdcall calling convention. This function is going
to be exported so we need to overwrite the default cdecl so that it will work with
the Windows API.

2. There is a trigger argument enabling us to link the calling of this function to the change
in the value of a cell in an Excel spreadsheet. (See section 2.11.2 Triggering functions
to be called by Excel — The Trigger Argument on page 26.)

86 Excel Add-in Development in C/C++

3. The converted return value is now consistent with Excel’s numeric time value
storage.

Now we need to tell the linker to make our function visible to users of the DLL. To do
this we simply need to add the following to the file GetTime.def:

EXPORTS
get_system_time C

That’s it.

4.9.3 Compiling and debugging the DLL

In the set up of the DLL project, the IDE will have created two configurations: debug and
release. By default, the debug configuration will be the active one. When you compile
this project, VC will create output files in a debug sub-folder of the project folder called,
not surprisingly, Debug. Changing the active configuration to release causes build output
files to be written to the Release sub-folder. As the name suggests the debug configu-
ration enables code execution to be halted at breakpoints, the contents of variables to be
inspected, the step-by-step execution of code, etc.

Without getting into the details of the VC user interface, the Build menu contains the
commands for compiling and linking the DLL and changing the active configuration.
The Project menu provides access to a number of project related dialogs and commands.
The only one that’s important to mention here is Project/Settings, which displays the fol-
lowing dialog (when the Debug tab is selected, as in this case):

2[x]
Settings For 1Win32 Debug vl General Debug | CiC++ | Link | Resources | MID-;: EE

-

Calegony |General LJ

Executable for debug session:
|C:‘Pr0gram Files\Microsoit Office\Dfice\EXCEL EXE _}J

Working directory:

Frogram arguments:

Remote executable path and file name:

ok | Concel |

As you can see, these are the settings for the debug configuration. The full path and
filename for Excel has been entered as the debug executable. Now, if you select Build/Start
Debug. . ./Go, or press {F5}, VC will run Excel. If your project needs rebuilding because
of changes you’ve made to source code, VC will ask you if you want to rebuild first.

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 87

So far all we’ve done is created a DLL project, written and exported a function and
set up the debugger to run Excel. Now we need to create something that accesses the
function. Later chapters describe how to use Excel’s Add-in Manager and Paste Function
wizard, but for now we’ll just create a simple spreadsheet which calls our function from
a VB module.

To follow the steps in the next section, you need to run Excel from VC by debugging
the DLL. (Select Build/Start Debug. . ./Go or press {F5}.) This enables you to experiment by
setting breakpoints in the DLL code.

You can also specify a spreadsheet that Excel is to load whenever you start a debug
session. This example shows the name and location of a test spreadsheet called Get -
TimeTest .x1ls entered into the Program arguments field. (Excel interprets a command
line argument as an auto-load spreadsheet.)

Settings For. |['\Win32 Debug - General Debug | CfCes l Linkl Feszources | MIC EE
* @m

Categony

Executable for debug session:
iC:\Prngram Files\Microsoft OfficetOffice\EXCEL EXE J

Warking directany:

Program arguments:
ic::\D evelop\GetTime\GetTime Testxls

Femote executable path and file name:

(8]8 | Cancel |

Next time Build/Start Debug. . ./Go is selected, or {F5} is pressed, VC will run Excel and
load this test spreadsheet automatically. This is a great time-saver and helps anyone who
might take over this project to see how the DLL was supposed to work.

4.10 CREATING A DLL USING VISUAL C++ .NET 2003

This section refers to Visual C++ .NET 2003 as VC.NET. Visual Studio .NET 2003 has
the same menus and dialogs. Section 4.9 on page 83 covers the same steps as this section,
but for the Visual C++ 6.0 and Visual Studio C++ 6.0 IDEs, which this section refers to
as VC to make the distinction between the two.

4.10.1 Creating the empty DLL project

This example goes step-by-step through the creation of a DLL called NETGetTime.d11l
which is referred to in the following chapter and expanded later on. It will export one
function that, when called, will return the date and time in an Excel-compatible form to
the nearest second.

88 Excel Add-in Development in C/C++

1. Open the Visual C++ .NET IDE which should appear something like this:

¥ Microsolt Development Emdronment [design] - Start Page

REFRRR-,

7 x|

Open an Exdsting Project
2

lw-tb - nx

Installng Help for Visus! Studio

New Project Open Project

| Ready

2. On the New Project dialog that appears, select the Win32 folder.
3. Select Win32 Project and enter a name for the project in the Name: text box and select
a location for the project as shown and press OK.

MNew Project X|
PBroject Types:! Templates: Ba |5E

=3 Visual C++ Projects

{0 Setup and Deployment Projects
- Other Prajects
{3 Wisual Studio Salutions

|A Win32 console application or other Win32 project.

Hame: | METGetTime

Location: I C\Develop LI Browse... |

Project will be created at C:\Develop\NETGeITime,

FMare | Ok I Cancel | Help |

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 89

4. The following dialog will then appear:

Win32 Application Wizard - NETGetTime x|

Welcome to the Win32 Application Wizard ﬁ

This wizard gernerates a Win32 application project. The project can be a Windows application, a console application,
a DLL, or a static library,

These are the current project settings:
& ‘Windows application
Applicat
Click Finish from any window to accept the current settings.

After you create the project, see the project's readme. bt file for
information about the project featres and files that are generated.

Finish cancel | Heb |

5. Select the Application Settings tab, after which the following dialog should appear:

Win32 Application Wizard - NETGetTime

Application Settings
Specify the type of spplication you will build with this project and the options or libraries you want supported.

Application type: Add support for:
 wWindows application I= faTi

Application Settings

 Console application =
o
 Static liorary

Additional options:
I¥ Ernpty project

Finish cancel | Heb |

90 Excel Add-in Development in C/C++

6. Select the DLL radio button, check the Empty Project checkbox and press Finish. You
should now see something like this:

30 NETGet Time - Micrasoft Visual €+ + [design] - Start Page
Bt Edt Yew Project Bukd Debug Tock Window Hep
Srin-c AP LR .o B0 b Doy i

in oS
ﬂ=l Dipen an Existing Project j:ﬁ::.z
2 S wsource Fikes
Neme Moffed
I e) .:. Hivcporros @ommcine] |
[Resiy] [4
7. Make sure the Solution Explorer is visible. (Select View/Solution Explorer if it isn’t.)
8. Expand the NETGetTime folder.
9. Right-click on the Source Files sub-folder and select Add/Add new item. . .
10.

In the Add New ltem dialog, select the C++ File (.cpp) in the Templates pane, type
GetTime. in to the Name: text box.

11. Expand the Source Files folder in the Solution Explorer and you will now see the new
(completely empty) file listed.

12. Repeat steps 9 to 11, selecting instead the Module Definition File (.def) in the Templates
pane, to create and add to Source Files a file called GerTime.def.

The project and the required files have now been created!

It has no code of course so all it’s doing at this point is taking up disk space, but now
you’re ready to start writing code.

If you explore the directory in which you created the project, you will see the following
files listed:

GetTime.cpp |A C++ source file. This will contain our C or C++ source code.
(Even if you only intend to write in C, using a . cpp file extension

allows you to use some of the simple C++ extensions such as the
bool data type.)

GetTime.def A definition file. This text file will contain a reference to the

function(s) we wish to make accessible to users of the DLL (Excel
and VBA in this case).

You will also see a number of project files of the form NETGetTime. *.

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 91

4.10.2 Adding code to the project

The process of adding code is essentially the same in VC as in VC.NET. Section 4.9.2
on page 84 goes through this for VC, adding two functions to GetTime.cpp and an
exported function name to the DEF file. These functions are used in later parts of this
book to run relative performance tests. If you are following these steps with VC.NET,
you should go to section 4.9.2 and then come back to the following section to see how
to compile and debug.

4.10.3 Compiling and debugging the DLL

In the set up of the DLL project, the IDE will have created two configurations: debug and
release. By default, the debug configuration will be the active one. When you compile
this project, VC.NET will create output files in a debug sub-folder of the project folder
called, not surprisingly, Debug. Changing the active configuration to release causes build
output files to be written to the Release sub-folder. As the name suggests, the debug
configuration enables code execution to be halted at breakpoints, the contents of variables
to be inspected and the step-by-step execution of code, etc.

Without getting into the details of the user interface, the Build menu contains the com-
mands for compiling and linking the DLL and changing the active configuration. The
Project menu provides access to a number of project related dialogs and commands. The
only one worth mentioning here is the Project/NETGetTime Properties. . ., which displays the
following dialog (with the Debug settings selected in this case):

NETGetTime Property Pages il
Configuration: |Actve{Debug) | Blatform: |Activediin2) 'l Configuration Manager... |
[& configuration Prepertie B Action |

zeneral Command C\Program FilesiMicrosoft Dﬁ"n:e\omce\EXCEL.ExE| _'i
% Debuoging Command Arguments
[G+ wierking Directory
(3 Linker Attach Mo
(23 Browss Inforration Symbal Path
5 Build Events E Debuggers
= IO.lshnm Build Step Debugger Typs AUt
(5 web Deployment El Remote Settings |
Connection Local

Remate Maching
Remate Command
HTTP URL

Command
The debug command when using the Local Connection.

As you can see, these are the settings for the debug configuration. The full path and
filename for Excel has been entered as the debug executable. Now, if you select Debug/Start,
or press {F5}, VC.NET will run Excel. If your project needs rebuilding because of changes
you’ve made to source code, VC.NET will ask you if you want to rebuild first.

92 Excel Add-in Development in C/C++

So far all we’ve done is created a DLL project, written and exported a function and
set up the debugger to run Excel. Now we need to create something that accesses the
function. Later chapters describe how to use Excel’s add-in manager and Paste Function
wizard, but for now we’ll just create a simple spreadsheet which calls our function from
a VB module.

To follow the steps in the next section, you need to run Excel from VC.NET by
debugging the DLL. (Select Build/Start Debug. ../Go or press {F5}.) This enables you to
experiment by setting breakpoints in the DLL code.

You can also specify a spreadsheet that Excel is to load whenever you start a debug
session. This example shows the name and location of a test spreadsheet called Get -
TimeTest .x1s entered into the Command Arguments field. (Excel interprets a command
line argument as an autoload spreadsheet.)

NETGetTime Property Pages ﬁl
Configuration: |ActiveDebug) > | Platform: |Active(Ain32) 'l Configuration IManager... |
[configuration Propertie [l Action |

zeneral Cammand C \Program FilesiMicrosoft Ofice\Ofice\EXCEL EXE |
& Dabuoging Command Arguments C:\Develo\NETGetTime\GetTimaTest xls -
[G+ witerking Directery
33 Linker Attach No
|'{'J Browss Information Syrbal Path
5 Build Events E Debuggers
(23 Custom Build Step Debuager Type Auto
(5 web Deployment El Remote Settings |
Connection Local

Remote Machine
Remote Command
HTTP LRL

Command Arguments
The command line arguments to pass to the spplication.

0K, I Cancel ! Apphy l Help |

Next time Debug/Start is selected, or {F5} is pressed, VC.NET will run Excel and load this
test spreadsheet automatically. This is a great time-saver and helps anyone who might
take over this project to see how the DLL was supposed to work.

4.11 ACCESSING DLL FUNCTIONS FROM VB

VB provides a way of making DLL exports available in a VB module using the Declare
statement. (See section 3.6 Using VBA as an interface to external DLL add-ins on page 48
for a detailed description.) In the case of the example in our add-in the declaration in our
VB module would be:

Declare Function get_system_time_C Lib "GetTime.d11" _
(ByVal trigger As Long) As Double

(Note the use of the line continuation character ‘_’.)

Creating a 32-bit Windows (Win32) DLL Using VC 6.0 or VS. NET 93

As described in Chapter 3 Using VBA on page 41, if you open a new VB module
in GetTimeTest.x1ls and add the following code to it, you will have added two
user-defined functions to Excel, Get_C_System_Time() and Get_VB_Time().

Declare Function get_system_time_C Lib "GetTime.d11" _
(Byval trigger As Long) As Double

Function Get_C_System_Time(trigger As Double) As Double
Get_C_System_Time = get_system_time_C(0)

End Function

Function Get_VB_Time(trigger As Double) As Double

Get_VB_Time = Now

End Function

(Note that the full path of the DLL is, in general, required in the VB Declare statements.)
Back in Excel, the following simple spreadsheet has been created:

FA Microsoft Excel - GetTimeTest.xls - ol x|
]@ Fle Edit View Insert Format Tools Data Window Help _|&lx|
D@ SR w-=-|= A 4 w00% «8 R 20 2
A13 -] = | C run-time function
A I B [T b I§
1 GetTime.dll Test Spreadsheet
2 |
| 5 |
4 Excel NOW function 15:07:00.93
5 VB Now function 15:07:00.00
6 C run-time function 15:07:00.00
L7
8 |
9 4
10 -
4 4[> [¥i\sheet1 / JEY JIN
Cell Formula
B4 =NOW()

B5 =Get_VB_Time(B4)
B6 =Get_C_System_Time(B4)

Here, cell B4 will recalculate whenever you force a recalculation by pressing {F9}, or
when Excel would normally recalculate, say, if some other cell’s value changes. (The

94 Excel Add-in Development in C/C++

Now() function is volatile and is re-evaluated whenever Excel recalculates despite not
depending on anything on the sheet.) The fact that B4 is a precedent for B5 and B6
triggers Excel to then re-evaluate these cells too. (See section 2.11.2 Triggering functions
to be called by Excel — The Trigger Argument on page 26.)

Pressing {F9} will therefore force all three cells to recalculate and you will see that the
C run-time functions and the VB Now function are in synch. You should also see that
the NOW() function is also in synch but goes one better by showing 100 ths of a second
increments. (This is discussed more in Chapter 9 where the relative execution speeds of
VB and C/C++ are timed and compared.)

4.12 ACCESSING DLL FUNCTIONS FROM EXCEL

In order to access DLL functions directly from Excel, as either worksheet functions or
commands, without the need for a VBA wrapper to the functions, you need to provide an
interface — a set of functions — that Excel looks for when using the Add-in Manager to
load the DLL. This is covered in detail in Chapter 5 Turning DLLs into XLLs: The Add-in
Manager Interface as well as subsequent sections. The interface functions are intended
to be used to provide Excel with information it needs about the DLL functions you are
exporting so that it can integrate them — a process know as registration, covered in detail
in section 8.5 Registering and un-registering DLL (XLL) functions on page 182.

5

Turning DLLs into XLLs: The Add-in
Manager Interface

5.1 ADDING THE EXCEL LIBRARY AND HEADER FILES
TO A DLL PROJECT

An XLL is simply a DLL that supports an interface through which Excel and the DLL can
communicate effectively and safely. This communication is 2-way: the DLL must export a
number of functions for Excel to call; the DLL needs access to functions through which it
can call Excel. For the latter, the DLL requires access to an Excel library, x1call32.1ib
(or its DLL equivalent), and a header file that defines the data structures and constant
definitions and enumerations used by Excel. These two files can be sourced as described
in section 1.2 What tools and resources are required to write add-ins on page 2. The DLL
version of the library is installed automatically with every 32-bit Excel version.

The precise steps for adding these files to your project can vary from one compiler and
IDE to another, especially when adding a static library to your build. In both VC6 and
VC.NET the static library can be explicitly added via the project options settings. In VC6
it can, alternatively, be added to the build more directly as a source file.

Where dynamically loading x1call32.d11, it is not necessary to include a refer-
ence to the file in the project settings — this is done in code using the Windows API
LoadLibrary () or GetModuleHandle () functions. In fact, when doing this, any
reference to the static library should be removed from the build.

Another approach is to create a static library from x1call32.d11 and a DEF file
consistent with this.! An in-depth discussion of this is beyond the scope of this book,
although an Internet search will yield much relevant material. Once the DEF file has been
obtained or created, the static library can be made using the LIB.EXE utility supplied
with Visual Studio as in the following command line example:

C:\>1lib /def:xlcall32.def

A DEF file that contains the following lines will work subject to LIB.EXE being able to
find a path to x1call32.d11l.

LIBRARY xlcall32.dll

EXPORTS

Excel4 @1 NONAME

Excel4v @2 NONAME

LPenHelper @3 NONAME
XLCallVer @4 NONAME

5.2 WHAT DOES THE ADD-IN MANAGER DO?

5.2.1 Loading and unloading installed add-ins
The Add-in Manager is responsible for loading, unloading and remembering which add-
ins this installation of Excel has available to it. When an XLL (see below for more

! An example of a command line utility that creates a DEF file from a static library file is MakeDef . exe by
George Hazan, freely available at time of writing via www.codeguru.com.

96 Excel Add-in Development in C/C++

explanation of the term XLL) is loaded, either through the File/Open... command menu or
via Tools/Add-ins... , the Add-in Manager adds it to its list of known add-ins.

Warning: In some versions of Excel, the Add-in Manager will also offer to make a
copy of the XLL in a dedicated add-in directory. This is not necessary. In some versions,
a bug prevents the updating of the XLL without physically finding and deleting this copy,
so you should, in general, not let Excel do this.

5.2.2 Active and inactive add-ins

When an add-in is loaded for the first time it is active, in the sense that all the exposed
functions, once registered properly, are available to the worksheet. The Add-in Manager
allows the user to deactivate an add-in without unloading it by un-checking the checkbox
by the add-in name, making its functions unavailable. (This is a useful feature when
you have add-ins with conflicting function names, perhaps different versions of the same
add-in.)

5.2.3 Deleted add-ins and loading of inactivate add-ins

On termination of an Excel session, the Add-in Manager makes a record of the all active
add-ins in the registry so that when Excel subsequently loads, it knows where to find them.
If a remembered DLL has been deleted from the disk, Excel will mark it as inactive and
will not complain until the user attempts to activate it in the Add-in Manager dialog. At
this point Excel will offer to delete it from its list.

If the Excel session in which the add-in is first loaded is terminated with the add-in
inactive, Excel will not record the fact that the add-in was ever loaded and, in the next
session, the add-in will need to be loaded from scratch to be accessible.

If the Excel session was terminated with the add-in active then a record is made in the
registry. Even if subsequent sessions are terminated with the add-in inactive Excel will
remember the add-in and its inactive state at the next session. The inactive add-in is still
loaded into memory at start up of such a subsequent session. Excel will even interrogate
it for information under certain circumstances, but will not give the DLL the opportunity
to register its functions.

5.3 CREATING AN XLL: THE x1Auto INTERFACE
FUNCTIONS

An XLL is a type of DLL that can be loaded into Excel either via the File/Open... command?
menu or via Tools/Add-ins... or a command or macro that does the same thing. To be an
XLL, that is to be able to take advantage of Excel’s add-in management functionality, the
DLL must contain and export a number of functions that Excel looks for. Through these
the DLL can add its functionality to Excel’s. This includes enabling Excel and the user to
find functions via the Paste Function wizard, with its very useful argument-specific help
text. (See section 2.14 Paste Function dialog.)

These functions, when called by Excel, give the add-in a chance to do things like
allocate and initialise memory and data structures and register functions (i.e., tell Excel
all about them), as well as the reverse of all these things at the appropriate time. They
can also display messages to the user providing version or copyright information, for

2 Excel 2000 and earlier versions only.

Turning DLLs into XLLs: The Add-in Manager Interface 97

example. The DLL also needs to provide a function that enables the DLL and Excel to
cooperate to manage memory, i.e., to clean up memory dynamically allocated in the DLL
for data returned to Excel.

The functions that do all these things are:

x1AutoOpen
x1lAutoClose
x1AutoAdd
x1AutoRemove
x1AddInManagerInfo
xlAutoRegister
x1lAutoFree

The following sections describe these functions, which can be omitted in most cases.
(Note: These functions need to be exported, say, by inclusion in the DLL’s .DEEF file, in
order to be accessible by Excel.)

5.4 WHEN AND IN WHAT ORDER DOES EXCEL CALL THE
XLL INTERFACE FUNCTIONS?

Table 5.1 XLL interface function calling

Action Functions called

User invokes Add-in Manager dialog for the x1AddInManagerInfo
first time in this Excel session. The add-in was
loaded in previous session.

In the Add-in Manager dialog, the user x1AutoRemove
deactivates (deselects) the add-in and then x1AutoClose
closes the dialog.

In the Add-in Manager dialog, the user x1AutoAdd

activates the add-in and then closes the dialog. x1AutoOpen

User loads the add-in for the first time. x1AddInManagerInfo
x1AutoAdd
x1AutoOpen

User starts Excel with the add-in already x1AutoOpen

installed in previous session.

User closes Excel with the add-in installed but No calls made.
deactivated.

User closes Excel with the add-in installed and x1AutoClose
activated. x1AddInManagerInfo

User starts to close Excel but cancels when x1AutoClose
prompted to save their work. (See note below.)

98 Excel Add-in Development in C/C++

Note: If the user starts to close Excel, causing a call to x1AutoClose, but then
cancels when prompted to save their work, Excel does not then call any of the x1Auto
functions to reinitialise the add-in. Even if x1AutoClose attempts to unregister the
worksheet functions, a bug in the C API prevents this from being successful. Therefore
Excel continues to run and the worksheet functions continue to work. The problems arise
where, for example, memory or other resources are released in the call to x1AutoClose
or where custom menus are removed. These disappear until reinstated with a call to
x1lAutoOpen.

Note: If the user deactivates an add-in in the Add-in Manager dialog, but reloads the
same add-in (as if for the first time) before closing the dialog, Excel will call x1AutoAdd
and x1AutoOpen without calling x1AutoRemove or x1AutoClose. This means the
add-in re-initialises without first undoing the first initialisation, creating a risk that custom
menus might be added twice, for example. To avoid adding menus twice it is necessary
to check if the menu is already there.

Warning: Given the order of calling of these functions, care is required to ensure that
no activities are attempted that require some set-up that has not yet taken place. For this
reason it is advisable to place your initialisation code into a single function and check
in all the required places that this initialisation has occurred, using a global variable. A
satisfactory approach is to check in both x1AddInManagerInfo and x1AutoAdd, and
to call x1AutoOpen explicitly if the add-in has not been initialised. As well as being
the place where all the initialisation is managed from, x1AutoOpen should also detect
if it has already been called so that things are not initialised multiple times.

5.5 XLL FUNCTIONS CALLED BY THE ADD-IN
MANAGER AND EXCEL

5.5.1 xlAutoOpen

e int stdcall xlAutoOpen(void) ;

Excel calls this function whenever Excel starts up or the add-in is loaded. Your DLL can
do whatever initialisation you want it to do at this point. The most obvious task is the
registration of worksheet functions, but other tasks (such as setting up of custom menus,
initialisation of data structures, initialisation of background threads) are also best done
here. (See Chapter 8 for details.)

The function should return 1 to indicate success.

Here is a simple example which uses a DLL function register function() that
registers a function with Excel that is exposed by the DLL according to an index number.
Section 8.5 provides details.

bool x11 initialised = false;

int _ stdcall xlAutoOpen (void) // Register the functions

{
if (x11 initialised)
return 1;

for(int 1 = 0 ; i < NUM_FUNCS; i++)
register_ function(i);

Turning DLLs into XLLs: The Add-in Manager Interface 99

x11_initialised = true;
return 1;

5.5.2 xlAutoClose

e int stdcall xlAutoClose (void) ;

Excel calls this function whenever Excel closes down or the add-in is unloaded. Your
DLL can do whatever cleaning up you need to do at this point, but should un-register
your worksheet functions and free memory at the very least. (See section 8.5 Registering
and un-registering DLL(XLL) functions on page 182 below for more detail.)

The function should return 1 to indicate success.

Here is a simple example which uses a DLL function unregister function ()
that un-registers a function exposed by the DLL, and previously registered with Excel,
according to an index number.

int _ stdcall xlAutoClose (void)

{
if (1x11 initialised)
return 1;

for(int i = 0 ; i < NUM_FUNCS; i++)
unregister function(i)

x11 initialised = false;
return 1;

5.5.3 =xlAutoAdd
e int stdcall xlAutoAdd(void) ;

Excel calls this function when the add-in is either opened (as a document using File/Open...)
or loaded via the Add-in Manager (Tools/Add ins...) or whenever any equivalent operation
is carried out by a macro or other command. In both of these cases, Excel also calls
x1AutoOpen () so this function does not need to register the DLL’s exposed functions
if that has been taken care of in x1AutoOpen (). Omitting this function has no adverse
consequences provided that any necessary housekeeping is done by x1AutoOpen ().

The function should return 1 to indicate success.

Here is a simple example which uses a DLL function new_xlstring() to create a
byte-counted string which needs to be freed by the caller when no longer required.

int _ stdcall xlAutoAdd (void)

{
if (1x11 initialised)
x1AutoOpen () ;

xloper xStr, xInt;

100 Excel Add-in Development in C/C++

xStr.xltype = xltypeStr;
xStr.val.str = new_xlstring("Version 1.0 has been loaded") ;

xInt.xltype = xltypelnt;
xInt.val.w = 2; // Dialog box type.

Excel4d (xlcAlert, NULL, 2, &xStr, &xInt);
// Free memory allocated by new xlstring()

free(xStr.val.str) ;
return 1;

Using the C++ xloper class cpp_xloper, introduced in section 6.4, the above code
can be rewritten as follows:

int _ stdcall xlAutoAdd (void)
{
cpp_xloper xStr("Version 1.0 has been loaded") ;
cpp_xloper xInt(2); // Dialog box type.
Excel4d (xlcAlert, NULL, 2, &xStr, &xInt);
return 1;

5.54 =xlAutoRemove

e int stdcall xlAutoRemove (void) ;

Excel calls this function when the add-in is deselected via the Add-in Manager dia-
log (Tools/Add-Ins...), or whenever any equivalent operation is carried out by a macro or
other command. In this case, Excel also calls x1AutoClose () so this function does
not need to un-register the DLL’s exposed functions if that has been taken care of in
x1AutoClose (). Omitting this function has no adverse consequences provided that
any necessary housekeeping is done by x1AutoClose ().

The function should return 1 for success.

The following example displays a message and uses a DLL function new_xlstring ()
to create a byte-counted string which needs to be freed by the caller when no longer
required.

int _ stdcall xlAutoRemove (void)

{

xloper xStr, xInt;

xStr.xltype = xltypeStr;
xStr.val.str = new_xlstring("Version 1.0 has been removed") ;

xInt.xltype = xltypelnt;
xInt.val.w = 2; // Dialog box type.

Excel4d (xlcAlert, NULL, 2, &xStr, &xInt);

Turning DLLs into XLLs: The Add-in Manager Interface 101

// Free memory allocated by new xlstring()
free(xStr.val.str);
return 1;

Using the C++ xloper class cpp_xloper, introduced in section 6.4, the above code
can be rewritten as follows:

int _ stdcall xlAutoRemove (void)

cpp_xloper xStr("Version 1.0 has been removed") ;
cpp_xloper xInt(2); // Dialog box type.

Excel4 (xlcAlert, NULL, 2, &xStr, &xInt);

return 1;

5.5.,5 xl1AddInManagerInfo

e xloper * stdcall xlAddInManagerInfo (xloper *);

Excel calls this function the first time the Add-in Manager is invoked. It should return
an xloper string with the full name of the add-in which is then displayed in the Add-in
Manager dialog (Tools/Add-Ins...). (See example below.) If this function is omitted, the
Add-in Manager dialog simply displays the DOS 8.3 filename of the add-in without the
path or extension.

The function should return 1 to indicate success.

Here is a simple example which uses a DLL function new_xlstring() to create a
byte-counted string that is marked for freeing once Excel has copied the value out.

xloper * _ stdcall xlAddInManagerInfo (xloper *p_arg)

{
if (1x11l initialised)
x1AutoOpen () ;

static xloper ret_ oper;

ret_oper.xltype = xltypeErr;
ret oper.val.err = xlerrValue;

if (p_arg == NULL)
return &ret oper;

if ((p_arg->xltype == xltypeNum && p_arg->val.num == 1.0)
| | (p_arg->xltype == xltypeInt && p_arg->val.w == 1))
// Return a dynamically allocated byte-counted string and tell Excel
// to call back into the DLL to free it once Excel has finished.
ret_oper.xltype = xltypeStr | xlbitDLLFree;
ret oper.val.str = new xlstring("My Add-in");
}

return &ret_oper;

102 Excel Add-in Development in C/C++

Using the C++ xloper class cpp_xloper, introduced in section 6.4, the above code
can be rewritten as follows:

xloper * _ stdcall xlAddInManagerInfo (xloper *p_arg)

{
if (!x11l_initialised)
x1AutoOpen () ;

cpp_xloper Arg(p_arg);
cpp_xloper RetVal;

if (Arg == 1)
RetVal = AddinName;
else
RetVal = (WORD)xlerrValue;

return RetVal.ExtractXloper () ;

Invoking the Add-in Manager calls this function resulting in the following being displayed:

Add-Ins available:

™ Internet Assistant VBA
™ Lookup Wizard

s Quer Add-in

|7 Cancel |
[~ COBC Add-in
[~ Recalc_Tests J Browse.. |

[~ Repart Manager

™ Solver Add-in

[Termplate Utilities

[Ternplate Wizard with Data Tracking
™ Undate Add-in Links

y Add-in

5.5.6 xlAutoRegister

e xloper * stdcall xlAutoRegister (xloper ¥*);

This function is only called from Excel 4 macro sheets when an executing macro encoun-
ters an instance of the REGISTER () macro sheet function where information about the
types of arguments and return value of the function are not provided. x1AutoRegis-
ter () is passed the name of the function in question and should search for the function’s
arguments and then register the function properly, with all arguments specified. (See
section 8.5 on page 182.) As macro sheets are deprecated, and outside the scope of this
book, this function is not discussed any further. The function can safely either be omitted
or can be a stub function returning a NULL pointer.

Turning DLLs into XLLs: The Add-in Manager Interface 103

5.5.7 xlAutoFree

e void _ stdcall xlAutoFree (xloper *);

Whenever Excel has been returned a pointer to an x1oper by the DLL with the x1bit -
DLLFree bit of the x1type field set, it calls this function passing back the same pointer.
This enables the DLL to release any dynamically allocated memory that was associated
with the x1oper. Clearly the DLL can’t free memory before the return statement, as
Excel would not safely be able to copy out its contents. The x1AutoFree () function
and the x1bitDLLFree bit are the solution to this problem. (See also Chapter 7 Memory
Management on page 161 for more about when and how to set this bit.)

Returning pointers to xlopers with the x1bitDLLFree bit set is the only way to
return DLL-allocated memory without springing a memory leak. The next-best solution
is to allocate memory, assign it to a static pointer, and free it the next time the function
gets called.

Typically, your DLL will need to contain this function when

e returning DLL-allocated x1oper strings;

e returning DLL-allocated range references of the type x1typeRef;

e returning DLL-allocated arrays of x1opevrs. If the array contains string x1opers that
refer to memory that needs to be freed then x1AutoFree () should do this too. (See
example below.)

There are a few points to bear in mind when dealing with arrays:

e The array memory pointed to by an array xloper can be static or dynamically allo-
cated. The x1bitDLLFree bit should only be set for arrays where the memory was
dynamically allocated by the DLL.

e Array elements that are strings may be static, or may have had memory allocated for
them by either the DLL or Excel.

e Excel will only call x1AutoFree () for an array that has the x1bitDLLFree bit
set, which should be one that was dynamically allocated in the DLL.

e A static array containing dynamic memory strings will leak memory.

e A DLL-created dynamic array containing Excel-allocated strings requires that the
x1bitXLFree bit be set for each string, and x1AutoFree () needs to detect this.

e You should not pass arrays of arrays, or arrays containing references, back to Excel:
your implementation of x1AutoFree () does not need to check for this. (The example
implementation below would, in fact, cope fine with this, but the inclusion of a reference
in an array would confuse and possibly destabilise Excel.)

The following code provides an example implementation that checks for arrays, range
references and strings — the three types that can be returned to Excel with memory still
needing to be freed. The function can call itself recursively when freeing array elements.
For this reason the function checks for an argument that has the x1bitXLFree bit set.
Excel will never call this function for an x1oper with this bit set, but this implementation
copes with Excel-created strings in DLL-created arrays.

104 Excel Add-in Development in C/C++

void _ stdcall xlAutoFree (xloper *p_op)

{

if (p_op->xltype & xltypeMulti)

{

// Check if the elements need to be freed then check if the array
// itself needs to be freed.

int size = p_op->val.array.rows * p_op->val.array.columns;
xloper *p = p_op->val.array.lparray;

for(; size-- > 0; p++)
if (p->x1ltype & (xlbitDLLFree | xlbitXLFree))
x1AutoFree (p) ;

if (p_op->xltype & xlbitDLLFree)
free (p_op->val.array.lparray) ;

}

else if (p_op->xltype == (xltypeStr | xlbitDLLFree))

{
}

else if (p_op->xltype == (xltypeRef | xlbitDLLFree))

{
}
else if (p_oper->xltype | xlbitXLFree)

{
}

free(p_op->val.str) ;

free(p_op->val.mref.lpmref) ;

Excel4 (x1Free, 0, 1, p_op);

6
. Passing Data between Excel and the DLL __|

Where DLL functions are being accessed directly by Excel, you need to understand how
to pass and return values. You need to think about the data types of both the arguments
and return value(s). You need to know whether arguments are passed by reference, (by
pointer, as the interface is C), or by value. You need to decide whether to return val-
ues via the function’s return value or by modifying arguments passed in by reference.
Where the data you want to pass or return is not one of the simple data types, you
need to know about the data structures that Excel supports and when their use is most
appropriate.

Finally, you need to know how to tell Excel about your exported functions and tell
it all the above things about the arguments and return values. This point is covered in
detail in section 8.5 Registering and un-registering DLL (XLL) functions on page 182.
This chapter concentrates on the structures themselves.

6.1 HANDLING EXCEL’S INTERNAL DATA STRUCTURES:
C OR C++?

The most flexible and important data structure used by Excel in the C API is defined as the
xloper in the SDK header file. This 10-byte C structure, the union that it contains and
the sub-structures in the union, are all described in detail in this chapter. An understanding
of xlopers and, very importantly, how to handle the memory that can be pointed to by
them is required to enable direct communication between the worksheet and the C/C++
DLL: all exported commands and worksheet functions need to be registered, something
that involves calling a function in the C API using xlopers.

The handling of x1opers is something well suited to an object oriented (OO) approach.
Whilst this book intentionally sticks with C-style coding in most places, the value of the
OO features of C++ are important enough that an example of just such a class is valu-
able. The cpp xloper class is described in section 6.4. Many of the code examples
in subsequent sections and chapters use this class rather than xlopers. In some cases,
examples using both approaches have been provided to show the contrast in the result-
ing code.

Where x1opers have been used rather than this class, this is either because the intention
is to show the detailed workings of the x1oper as clearly as possible, or because use of
the class, with its overhead of constructor and destructor calls, would be overkill.

6.2 HOW EXCEL EXCHANGES WORKSHEET DATA
WITH DLL ADD-IN FUNCTIONS

Where DLL functions take native C data type arguments such as ints, doubles and
char * null-terminated strings, Excel will attempt to convert worksheet arguments as
described in section 2.6 Data type conversion on page 12. Return values that are native
data types are similarly converted to the types of data that worksheet cells can contain.

106 Excel Add-in Development in C/C++

Excel can also pass arguments and accept return values via one of three pre-defined
structures. In summary, this gives the DLL and Excel four ways to communicate:

Via native C/C++ data types, converted automatically by Excel.
. Via a structure that describes and contains 2-dimensional arrays of 8-byte doubles,
which this book refers to as an x1_array.
3. Via a structure that can represent the contents of any cell; numbers, strings, Boolean
true or false, Excel error values and arrays, referred to as an oper.

4. Via a structure that can not only represent the contents of any cell, but also ranges
and a few other things, named the x1oper in the SDK header file. This structure is
covered in depth in the next few sections.

DN =

Not all of the data types that the x1oper can contain will be passed or returned in calls
from a worksheet function. Some are only used internally, for example, when calling back
into Excel from the DLL through the C APL

6.2.1 Native C/C++ data types

Excel will pass arguments and accept return values for all of the following native C/C++
data types, performing the necessary conversions either side of the call to the DLL.

[signed] char * (null-terminated string);
unsigned char * (byte-counted string).

e [signed] short [int] (16-bit);

e [signed] short [int] * (16-bit);

e unsigned short [int] (16-bit = DWORD);
e [signed] [long] int (32-bit);

e [signed] [long] int * (32-bit);

e unsigned [long] int (32-bit);

e double;

e double *;

[]

[)

Other types, e.g., bool, char and float, are not directly supported and declaring
functions with types other than the above may have unpredictable consequences. Casting
to one of the supported data types is, of course, a trivial solution, so in practice this should
not be a limitation.

If Excel cannot convert an input value to the type specified then it will not call the
function but will instead return a #VALUE! error to the calling cell(s). Excel does permit
DLL functions to return values by modifying an argument passed by a pointer reference.
The function must be registered in a way that tells Excel that this is how it works and,
in most cases, must be declared as returning void. (See section 8.5 Registering and
un-registering DLL (XLL) functions on page 182 for details.)

Note: Returning values by changing an argument will not alter the value of a cell from
which that value originally came. The returned value will be deposited in the calling cell
just as if it were returned with a return statement.

Passing Data between Excel and the DLL 107

6.2.2 Excel floating-point array structure: x1_array

Excel supports a simple floating-point array structure which can be defined as follows
and is passed to or returned from the DLL by pointer reference:

typedef struct

WORD rows;
WORD columns;
double array[l]; // Start of array[rows * columns]

}

x1_array;

In some texts this structure is called FP or _FP, but since the name is private to the DLL
(and the structure is not defined in the SDK header file) it is up to you. The above name
is more descriptive, and this is how the rest of the book refers to this structure.

Warning: Excel expects this structure to be packed such that array [1] is eight bytes
after the start of the structure. This is consistent with the default packing of Visual Studio
(6.0 and .NET), so there’s no need to include #pragma pack () statements around its
definition. You need to be careful when allocating memory, however, that you allocate
8 bytes plus the space for array[rows * columns]. Allocating 4 bytes plus the
space for the array will lead to a block that is too small by 4 bytes. A too-small block
will be overwritten when the last array element is assigned, leading to heap damage and
destabilisation of Excel. (See the code for x1 array examplel () below).

Note: The array stores its elements row-by-row so should be read and written to accord-
ingly. The element (r,c), where r and c count from zero, can be accessed by the
expression array [r*rows + c]. The expression array [r] [c] will produce a com-
piler error. A more efficient way of accessing the elements of such an array is to maintain
a list of pointers to the beginning of each row and then access the elements by off-
setting each start-of-row pointer. (Numerical Recipes in C, Chapter 1, contains very clear
examples of this kind of thing.)

Later sections provide details of two (closely related) data structures, both capable of
passing mixed-type arrays, the oper and the xloper. The x1 array structure has
some advantages and some disadvantages relative to these.

Advantages:

e Memory management is easy, especially when returning an array via an argument
modified in place. (See notes below.)
e Accessing the data is simple.

Disadvantages:

e x1 arrays can only contain numbers.

e If an input range contains something that Excel cannot convert to a number, Excel will
not call the function, and will fail with a #VALUE! error. Excel will interpret empty
cells as zero, and convert text that can be easily converted to a number. Excel will not
convert Boolean or error values.

e Returning arrays via this type (other than via arguments modified in place) presents
difficulties with the freeing of dynamically allocated memory. (See notes below.)

e This data type cannot be used for optional arguments. If an argument of this type is
missing, Excel will not call the function, and will fail with a #VALUE! error.

108 Excel Add-in Development in C/C++

Note: It is possible to declare and register a DLL function so that it returns an array of
this type as an argument modified-in-place. The size of the array cannot be increased,
however. The shape of the array can be changed as long as the overall size is not
increased — see x1_array example3 () below. The size can also be reduced — see
x1 array example4 () below. Returning values in this way will not alter the value
of the cells in the input range. The returned values will be deposited in the calling cells
as if the array had been returned via a return statement. (See section 8.5 Registering
and un-registering DLL (XLL) functions on page 182 for details of how to tell Excel that
your DLL function uses this data structure.)

Note: Freeing dynamic memory allocated by the DLL is a big problem when returning
arrays using this type. You can declare a static pointer, initialise it to NULL and check
it every time the function is called — see x1_array examplel () below. If it is not
null, you can free the memory allocated during the last call before re-executing and re-
allocating. This ensures that the DLL doesn’t suffer from leakage, but it does suffer from
retention. This might only be a problem for very large arrays. It is a problem that is
solved with the use of xlopers. (See section 6.2.3 below and also Chapter 7 Memory
Management on page 161 for more details.)

Examples

The following examples provide code for four exportable functions, one of which creates
and returns an array of this type, the others returning an array via a passed-in array
argument. Note the differences in memory management.

The first allocates memory for an array of the specified size, and assigns some simple
values to it, and returns a pointer to it to Excel.

x1l_array * _ stdcall x1_array examplel (int rows, int columns)

{
static x1_array *p_array = NULL;

if (p_array) // free memory allocated on last call

free(p_array) ;
p_array = NULL;

}

int size = rows * columns;

if (size <= 0)
return NULL;

size t mem size = sizeof (x1 array) + (size-1) * sizeof (double) ;
if ((p_array = (x1_array *)malloc(mem_size)))

p_array->rows = YOows;
p_array->columns = columns;

for(int i = 0; 1 < size; 1i++)
p_array-sarray[i] = 1 / 100.0;

}

return p_array;

Passing Data between Excel and the DLL 109

Note: If the memory were allocated with the following line of code, instead of as above,
the memory block would be too small, and would be overrun when the last element
of the array was assigned. Also, Excel would misread all the elements of the array,
leading to unpredictable return values, invalid floating point numbers, and all kinds
of mischief.

// Incorrect allocation statement!!!
p_array = (xl_array *)malloc(2*sizeof (WORD) + size*sizeof (double)) ;

A related point is that it is not necessary to check both that a pointer to an x1_array
and the address of the first data element are both valid or not NULL. If the pointer to
the x1 array is valid then the address of the first element, which is contained in the
structure, is also valid.

Warning: There is no way that a function that receives a pointer to an x1_array can
check for itself that the size of the allocated memory is sufficient for all the elements
implied by its rows and columns values. An incorrect allocation outside the DLL could
cause Excel to crash.

The next example modifies the passed-in array’s values but not its shape or size.

void _ stdcall xl1 array example2(xl_array *p_array)

{

if (!p_array || !p_array->rows
|| 'p_array->columns || p_array->columns > 0x100)
return;

int size = p_array->rows * p_array->columns;

for(int 1 = 0; 1 < size; i++)
p_array->array[i] = 1 / 10.0;

The next example modifies the passed-in array’s values and shape, but not its size.

void _ stdcall x1_array example3 (xl_array *p_array)

{

if (!p_array || !p_array-s>rows
|| !'p_array-scolumns || p_array->columns > 0x100)
return;

int size = p_array->rows * p_array->columns;

// Change the shape of the array but not the size
int temp = p_array->rows;
p_array->rows = p_array->columns;
p_array->columns = temp;

// Change the values in the array
for(int i = 0; 1 < size; i++)
p_array->array[i] /= 10.0;

110 Excel Add-in Development in C/C++

The next example modifies the passed-in array’s values and reduces its size.

void _ stdcall x1_array example4 (xl_array *p_array)

{

if (!p_array || !p_array-s>rows
|| !p_array-s>columns || p_array->columns > 0x100)
return;

// Reduce the size of the array
if (p_array->rows > 1)
p_array->rows--;

if (p_array->columns > 1)
p_array->columns--;

int size = p array->rows * p array->columns;
// Change the values in the array

for(int i = 0; 1 < size; 1i++)
p_array-sarray[i] /= 10.0;

In memory the structure is as follows, with the first double aligned to an 8-byte boundary:

1-2 3-4 4-8 9-16 17-24

WORD WORD double [double. . .]

Provided that the values of the first two WORDs are initialised in a way that is consistent
with the number of doubles, any structure that obeys this format can be passed to and
from Excel as this data type.

For example:

typedef struct

{
WORD rows;
WORD columns;
double top_left;
double top_ right;
double bottom left;
double bottom right;

two_by two_array;

If rows and columns are initialised to 2, this structure can be passed or received as
if it were an x1_array. This could simplify and improve the readability of code that
populates an array, in some cases.

Warning: The following structure definition and function are (perhaps obviously) incor-
rect. The code will compile without a problem, but Excel will not be able to read the
returned values as it expects the structure to contain the first element of the array, not a

Passing Data between Excel and the DLL 111

pointer to it. A similar function that tried to interpret an x1_array passed from Excel
as if it were an instance of this example, would encounter even worse problems as it
attempted to read from invalid memory addresses.

typedef struct

WORD rows;
WORD columns;
double *array; // Should be arrayl[l];

x1 array; // OH NO IT ISN'T!!!

x1_array * _ stdcall bad xl1_array example(int rows, int columns)
static x1_array rtn array = {0,0, NULL};
if (rtn_array.array) // free memory allocated on last call

free(rtn_array.array) ;
rtn array.array = NULL;

}

int size = rows * columns;

if (size <= 0)
return NULL;

if (! (rtn_array.array = (double *)malloc (size*sizeof (double))))

{

rtn_array.rows = rows;
rtn_array.columns = columns;

for(int i = 0; 1 < size; i++)
rtn_array.arrayl[i]l = i / 10.0;

}

return &rtn array;

6.2.3 The xloper structure

Internally, the Excel C API uses a C structure, the x1oper, for the highest (most general)
representation of one or more cell’s contents. In addition to being able to represent cell
values and arrays, it can also represent references to single cells, single blocks of cells
and multiple blocks of cells on a worksheet. There are also some C API-specific data
types not supported as worksheet values or arguments to worksheet functions: the integer
type, the XLLM macro flow type and the binary data block type.

The x1oper contains two parts:

e A 2-byte WORD indicating the data type of the xloper.
e An 8-byte C union interpreted according to the type of xloper.

The structure can be defined as follows and is passed to or returned from the DLL by
reference, i.e., using pointers. The definition given here is functionally equivalent to the
definition as it appears in the SDK header file, except for the removal of the XLM flow-
control structure which is not within the scope of this book. The same member variable

112 Excel Add-in Development in C/C++

and structure names are also used. The detailed interpretation of all the elements and the
definitions of the x1ref and x1lmref structures are contained in the following sections.

typedef struct _xloper

{

union

{
double num; // xltypeNum
char *str; // xltypeStr
WORD _bool; // xltypeBool
WORD err; // xltypeErr

short int w; // xltypelnt

struct

{

struct _xloper *lparray;
WORD rows;
WORD columns;

array; // xltypeMulti

struct

{

WORD count; // Ignored, but set to 1 for safety!
xlref ref;

}

sref; // xltypeSRef

struct

{

xlmref *lpmref;
DWORD idSheet;

mref; // xltypeRef
// XLM flow control structure omitted.

struct

{

union

BYTE far *1lpbData; // data passed to XL
HANDLE hdata; // data returned from XL

}
h;
long cbData;

}

bigdata; // xltypeBigData
1
val;

WORD xltype;

xloper;

The following table shows the values that the x1type field can take, as well as whether
you can expect that Excel might pass one to your DLL function. The table also shows
the values that can be passed via the oper structure covered in section 6.2.6 The oper
structure on page 119. (Whether Excel passes xlopers or opers depends on the way

Passing Data between Excel and the DLL

113

the function arguments are registered with Excel. See section 8.5 Registering and un-
registering DLL (XLL) functions on page 182 for details.)

Table 6.1 xloper types passed from worksheet to add-in

Constant as defined Hexadecimal Passed from Excel Passed from Excel
in xlcall.h representation worksheet to add-in worksheet to add-in as
as xloper: oper (see page 119):
x1typeNum 0x0001 Yes Yes
x1ltypeStr 0x0002 Yes Yes
x1typeBool 0x0004 Yes Yes
x1typeRef 0x0008 Yes No
x1typeErr 0x0010 Yes Yes
xltypeMulti 0x0040 Yes Yes
x1ltypeMissing 0x0080 Yes Yes
xltypeNil 0x0100 Yes! Yes
xltypeSRef 0x0400 Yes No
x1ltypelnt 0x0800 No No
xltypeBigData 0x0802 N/A (see below)

The following exportable example function returns information about all the

types that might be encountered in a call from a worksheet cell:

xloper

{

{

case
case
case
case
case
case
case
case

if (px1 == NULL)
return NULL; // should never be passed in by Excel

switch (pxl->xltype)

xltypeNum:
xltypeStr:
xltypeBool:
xltypeRef:
xltypeSRef:
xltypeErr:
xltypeMulti:

xltypeMissing:
default:

return
return
return
return
return
return
return
return
return

"0x0001
"0x0002
"0x0004
"0x0008
"0x0400
"0x0010
"0x0040
"0x0080

char * _ stdcall xloper type str(xloper *pxl)

xltypeNum";
xltypeStr";
xltypeBool";
xltypeRef";
xltypeSRef";
xltypeErr";
xltypeMulti";
xltypeMissing";

"Unexpected type";

// Header contains definition of xloper and the constants for xltype
#include <xlcall.h>

1 Only as part of a literal array where a value is omitted, e.g., {1, , 3}.

114 Excel Add-in Development in C/C++

The declaration of an argument as an xloper * tells Excel that the argument should be
passed in without any of the conversions described in section 2.6.11 Worksheet function
argument type conversion, page 16. This enables the function’s code to deal directly
with whatever was supplied in the worksheet. Excel will never pass a null pointer even
if the argument was not supplied by the caller. An xloper is still passed but of type
x1ltypeMissing. The check for a NULL argument in the above code is just good practice
(because you never know).

The above function simply checks for the type of the xloper, represented in the
x1type data member of the xloper structure, and returns a descriptive string con-
taining the hexadecimal value and the corresponding defined constant. This function
can only be called from a worksheet once it has been registered with Excel, a topic
covered in detail in section 8.5 Registering and un-registering DLL (XLL) functions on
page 182. The name with which the function is registered in the example project add-in is
XloperTypeStr.

Table 6.2 shows some examples of calls to this function and returned values:

Table 6.2 xloper types as passed by Excel to the XLL

Worksheet cell formula Returned value Comment
=XloperTypeStr(2) 0x0001 xltypeNum Same for integers
=XloperTypeStr(2.1) and doubles.
=XloperTypeStr("2") 0x0002 xltypeStr
=XloperTypeStr("")
=XloperTypeStr(TRUE) 0x0004 xltypeBool
=XloperTypeStr(Sheet2!A1) 0x0008 xltypeRef Call is not made
=XloperTypeStr(Sheet2!A1:A2) from Sheet2
=XloperTypeStr(A1) 0x0400 xltypeSRef

=XloperTypeStr(A1:A2)
=XloperTypeStr(INDIRECT("A1:A2"))

=XloperTypeStr(NA()) 0x0010 xltypeErr
=XloperTypeStr(1/0)

=XloperTypeStr(#REF!)

=XloperTypeStr(LOG(0))

=XloperTypeStr({1,2,"3"}) 0x0040 xltypeMulti
=XloperTypeStr() 0x0080 xltypeMissing

So, an xloper will always have two first-level components; a WORD xltype and a
union val. The SDK header file provides definitions of constants for x1type and the
following table gives some detail of the corresponding val union constituents.

Passing Data between Excel and the DLL 115

Table 6.3 The xloper expanded

x1ltype Value Union members (val. *)
constants
x1ltypeNum 0x0001 double num
xltypeStr 0x0002 unsigned char *str
xltypeBool 0x0004 WORD _bool
xltypeRef 0x0008 struct mref
\
DWORD mref.idSheet
x1lmref *mref.lpmref
\
WORD mref.lpmref-s>count
xlref mref.lpmref->reftbl[1]
\
WORD mref.lpmref->reftbl[].rwFirst
WORD mref.lpmref->reftbl[].rwlLast
BYTE mref.lpmref->reftbl[].colFirst
BYTE mref.lpmref->reftbl[].collLast
with reftbl []’s array index running from 0 to
(count - 1) inclusive.
xltypeErr 0x0010 WORD err
xltypeFlow 0x0020 (Supports XLM flow-control, not covered in this book).
xltypeMulti 0x0040 struct array
\
WORD array.rows
WORD array.columns
Xloper *array.lparray
1
WORD array.lparray[] .xltype
union array.lparrayl[].val
with 1parray []’s array index running from 0 to
(val.array.rows * val.array.columns - 1)
inclusive.
xltypeMissing 0x0080 No data associated with this x1oper.
x1ltypeNil 0x0100 No data associated with this x1oper.

(continued overleaf)

116 Excel Add-in Development in C/C++

Table 6.3 (continued)

x1ltype Value Union members (val. *)
constants
xltypeSRef 0x0400 struct sref
\

WORD sref.count (always = 1)
xlref sref.ref

\

WORD sref.ref.rwFirst

WORD sref.ref.rwlLast

BYTE sref.ref.colFirst

BYTE sref.ref.collast

xltypeInt 0x0800 signed int w
xltypeBigData 0x0802 struct bigdata
!

long bigdata.cbData
union bigdata.h

\

BYTE *bigdata.h.lpbData
HANDLE bigdata.h.hdata

In addition to the above values for data types, the following bits are used to signal to
Excel that memory needs to be freed after the DLL passes control back to Excel. How
and when these are used is covered in Chapter 7 Memory Management on page 161.

x1bitXLFree 0x1000

x1lbitDLLFree 0x4000

Warning: An x1loper should not have either of these bits set if it might be passed as an
argument in a call to Excel4 () or Excel4v (). This can confuse Excel as to the true
type of the xloper and cause the function to fail with an x1retFailed error (=32).

Note: Setting x1bitXLFree on an xloper that is to be used for the return value for
a call to Excel4 (), prior to the call, will have no effect. The correct time to set this
bit is:

e after the call that sets its value;
e after it might be passed as an argument in other calls to Excel4 ();
e before a pointer to it is returned to the worksheet.

For example, the following code will fail to ensure that the string allocated in the call
to Excel4 () gets freed properly, as the x1type field of ret oper will be reset in a
successful call. (See also Chapter 7 Memory Management on page 161.)

Passing Data between Excel and the DLL

117

xloper * _ stdcall bad example (void)
{
static xloper ret_oper;
ret_oper.type |= xlbitXLFree; // WRONG: will get reset
Excel4 (x1GetName, &ret oper, 0);
return &ret_ oper;

Warning: When testing the type of the x1oper there are a few potential snares, as shown

by the following code example:

int _ stdcall xloper_ type(xloper *p op)

// Unsafe. Might be xltypeBigData == xltypeStr | xltypelnt
if (p_op->xltype & xltypeStr)
return xltypeStr;

// Unsafe. Might be xltypeBigData == xltypeStr | xltypelnt
if (p_op->xltype & xltypelnt)
return xltypelnt;

// Unsafe. Might be xltypeStr or xltypelnt
if (p_op->xltype & xltypeBigData)
return xltypeBigData;

// Unsafe. Might have xlbitXLFree or xlbitDLLFree set
if (p_op->xltype == xltypeStr)
return xltypeStr;

// Unsafe. Might have xlbitXLFree or xlbitDLLFree set
if (p_op->xltype == xltypeMulti)
return xltypeMulti;

// Unsafe. Might have xlbitXLFree or xlbitDLLFree set
if (p_op->xltype == xltypeRef)
return xltypeRef;

// Safe.
if ((p_op->xltype & xltypeBigData) == xltypeStr)
return xltypeStr;

// Safe.
if ((p_op->xltype & ~(xlbitXLFree | xlbitDLLFree)) == xltypeRef)
return xltypeRef;

return 0; // not a valid xltype

Some of the above unsafe tests might be perfectly fine, of course, if you know that the type
cannot be x1typeBigData, or can only be, say, x1typeBigData or x1typeErr, or
that neither of the bits x1bitXLFree or x1bitDLLFree can be set. But you should

be careful.

118 Excel Add-in Development in C/C++

6.2.4 The x1lref structure

The x1ref structure is a simple structure defined in the SDK header file x1call.h
as follows:

typedef struct xlref
WORD rwFirst;
WORD rwLast;
BYTE colFirst;
BYTE colLast;

}i

This structure is used by Excel to denote a rectangular block of cells somewhere on a
worksheet. (Which worksheet is determined by the x1oper that either contains or points
to this structure.) Rows and columns are counted from zero, so that, for example, an
x1lref that described the range A1:C2 would have the following values set:

e rwFirst = 0
e rwlLast = 1
e CcolFirst = 0
e colLast = 2

The xlopers that describe ranges on worksheets either contain an xlref
(x1ltypeSRef) or point to a table of x1refs (xltypeRef).

Warning: A range that covers an entire column on a worksheet (e.g. A:A in a cell
formula, equivalent to A1:A65536) is, in theory, represented in this data type but, whether
by design or flaw, will be given the rwLast value of 0x3££ff instead of Oxf£££. This
limitation could cause serious bugs in your DLL if you are not aware of it. One possible
reason for this seemingly strange behaviour is the fact that the array xloper type, the
x1ltypeMulti, can only support 65,535 rows rather than 65,536.

6.2.5 The x1lmref structure

The x1mref structure is simply an array of x1refs (see above). The only place this is
used is in an xloper of type x1typeRef which contains a pointer to an x1mref. It is
defined in the SDK header file x1call.h as follows:

typedef struct xmlref

{

WORD count;
xlref reftbl[1]; /* actually reftbl [count] */

}i

Excel uses the x1lmref in an x1typeRef xloper to encapsulate a single reference
to multiple rectangular ranges of cells on a specified worksheet. A single rectangular
block on a sheet may also be represented by an x1typeRef xloper, in which case
the xlmref count is setto 1.

To allocate space for an x1mref representing, say, 10 rectangular blocks of cells (each
described by an x1ref), you would allocate space for one x1lmref and nine xlrefs

Passing Data between Excel and the DLL 119

as the space for the first x1ref is contained in the x1mref. In practice you would only
rarely need to do this. A single x1mref, with its count set to 1, is all you need to describe
a specific range of cells, and that is almost always sufficient.

If you are writing functions that you want to be able to handle such multiple block
references, you will need to iterate through each x1ref, to collect and analyse all the data.

6.2.6 The oper structure

Excel supports a simplified x1oper structure, sometimes referred to as an oper. This
can represent any of the data types that a worksheet cell can evaluate to: floating-point
numbers, strings, Boolean true/false, and Excel errors. It can also represent empty cells,
missing arguments and arrays whose elements are themselves opers.

The structure can simply be defined as follows and is passed to or returned from the
DLL by pointer reference:

typedef struct _oper

union

{
double num;
char *str;
WORD _bool;
WORD err;

struct

{

struct _oper *lparray;
WORD rows;
WORD columns;
array;
val;

WORD type;

oper;

As you can see, this structure is a simply a slimmed-down x1loper, missing the ability to
represent true integers, worksheet ranges and XLM macro flow-control values. The values
that the type field can take are identical to the corresponding values in the x1type field
of the xloper. Its appearance in memory is identical to the x1loper enabling opers
to be cast up to xlopers and xlopers to be cast down to opers. You do need to be
careful when casting down that the type field is one of the following:

x1ltypeNum;
xltypeStr;
xltypeBool;
xltypeErr;
xltypeMulti;
x1ltypeNil;
xltypeMissing.

120 Excel Add-in Development in C/C++

Both the x1oper and the oper appear the same in memory, so functions prototyped as
taking pointers to xlopers can be registered with Excel as taking pointers to opers.
(See section 8.5.3 Specifying argument and return types on page 186.) This is a very
useful technique. If Excel is passed a range in the function call, it will de-reference it for
you. This can greatly simplify DLL code that does not need to know anything about the
range, but is only concerned with the values within that range. Since an Excel-supplied
oper can be treated as an xloper, there is even no need to define the oper structure
anywhere in your code.

The following example shows a simple function that is a good candidate for being
registered as taking an oper argument rather than an xloper.

char * _ stdcall what_is_ it (xloper *p_oper)

{

switch (p_oper->xltype)

{

case xltypeStr: return "It's a string";
case xltypeNum: return "It's a number";
default: return "It's something I can't handle";

}

Note that the x1type field is equivalent to the type field described in the oper definition
above, and that there’s no need to refer to an oper structure. The function doesn’t need
to coerce a reference to either a string or a number — Excel will have already done this
if required. The function just needs to see what type of value it was passed.

The following example shows a function that is not such a good candidate to be
registered as taking an oper argument. The reason is that it performs a conversion using
the x1Coerce function (see section 8.7.3 on page 201). If Excel has already had to
convert from a range reference to an oper, a call to this function will end up doing
two conversions. If registered as taking an x1oper, Excel would pass a range reference
unconverted and only one conversion would end up taking place.

xloper * _ stdcall convert_ it (xloper *p oper, int to_a_number)

{

static xloper ret_val;
xloper targe_type;

targe_type.xltype = xltypelnt;
targe type.val.w = (to_a number ? xltypeNum : xltypeStr);

Excel4 (x1Coerce, &ret_val, 2, p_oper, &targe_ type);

return &ret_val;

Warning: Care should be taken when returning xlopers from functions registered
with Excel as returning opers — returning a non-oper type could confuse Excel and
cause problems. My recommendation would be always to register functions as returning
xlopers. This not only avoids this problem, but helps with memory management.

Passing Data between Excel and the DLL 121
6.3 DEFINING CONSTANT xlopers

Two of the x1oper types do not take values, x1typeMissing and x1typeNil. A few
others take just a limited number of values: x1typeBool takes just two; x1typeErr,
seven. It is convenient and computationally very efficient to define a few constant values,
and in particular pointers to these, that can be passed as arguments to Excel4 () or can
be returned by functions that return x1oper pointers. The following code sample shows
a definition of a structure that looks like an x1oper in memory, but that can be initialised
statically. It also contains some xloper pointer definitions that perform a cast on the
address of instances of this structure so that they look like x1opers.

Many of the code examples later in this book use these definitions.

typedef struct

WORD wordl;
WORD word2;
WORD word3;
WORD word4;
WORD xltype;

const_xloper;

const_xloper xloperBooleanTrue = {1, 0, 0, 0, xltypeBool};
const_xloper xloperBooleanFalse = {O, o, 0, O, xltypeBool};
const_xloper xloperMissing = {0, 0, 0, 0, xltypeMissing};

0, 0, xltypeNil};

const_xloper xloperNil = {0, , ,
, 0, 0, 0, xltypeErr};
0, 0

0,
const_xloper xloperErrNull = {o
const_xloper xloperErrDiv0 = {7, 0, 0, 0, xltypeErr};
const_xloper xloperErrValue = {15, 0, 0, 0, xltypeErr};
const_xloper xloperErrRef = {23, 0, 0, 0, xltypeErr};
const_xloper xloperErrName = {29, 0, 0, 0, xltypeErr};
const_xloper xloperErrNum = {36, 0, 0, 0, xltypeErr};
const_xloper xloperErrNa = {42, 0, 0, 0, xltypeErr};

xloper *p x1True = ((xloper *)&xloperBooleanTrue) ;
xloper *p xlFalse = ((xloper *)&xloperBooleanFalse) ;
xloper *p_xlMissing = ((xloper *)&xloperMissing) ;
xloper *p xINil = ((xloper *)&xloperNil) ;

xloper *p x1ErrNull = ((xloper *)&xloperErrNull) ;

xloper *p_ x1ErrDiv0 = ((xloper *)&xloperErrDiv0) ;
xloper *p xlErrValue = ((xloper *)&xloperErrValue) ;
xloper *p_xlErrRef = ((xloper *)&xloperErrRef);
xloper *p_xlErrName = ((xloper *)&xloperErrName) ;
xloper *p x1ErrNum = ((xloper *)&xloperErrNum) ;
xloper *p_xl1ErrNa = ((xloper *)é&xloperErrNa) ;

6.4 A C++ CLASS WRAPPER FOR THE
xloper - cpp_ xloper

This book deliberately avoids being about object oriented (OO) programming so that it is
completely accessible to those with C skills only or those with C resources they wish to
use with Excel. However, wrapping x1opers up in a simple C++ class greatly simplifies
their handling as the following sections aim to demonstrate.

The creation of a simple class to do this is, in itself, a helpful exercise in understanding
xloper use, in particular the management of memory. The class code that follows is

122 Excel Add-in Development in C/C++

intentionally simple and so accessible to those with little or no C++ or OO experience. It
is meant to serve as an example of the simplifications possible using a simple class rather
than to be held up as the ideal class for all purposes. Many alternative designs, though
inevitably similar, would work just as well, perhaps better.”

When designing a new class, it is helpful to make some notes about the purpose of
the class — a kind of class manifesto (apolitically speaking). Here are some brief notes
summarising in what circumstances xlopers are encountered and describing what the
class cpp xloper should do:

A DLL needs to handle x1opers when:

o they are supplied to the DLL as arguments to worksheet functions and XLL interface
functions and need to be converted before being used within the DLL;

e they need to be created to be passed as arguments in calls to Excel4 () and Excel4v ()
(see section 8.2 The Exceld() C API function on page 171);

e they are returned from calls to Excel4 () and Excel4v () and need to be converted
before being used within the DLL,;

e They need to be created for return to the worksheet.

The class cpp_xloper should (therefore) do the following:

1. It should make the most of C++ class constructors to make the creation and initialisation
of xlopers as simple and intuitive as possible.

2. It should make use of the class destructor so that all the logic for freeing memory in
the appropriate way is in one place.

3. It should make good use of C++ operator overloading to make assignment and extrac-
tion of values to and from existing cpp xlopers easy and intuitive.

a. It should use ‘=" to assign values (were possible).

b. It should use unary ‘&’ to obtain the address of the xloper it contains in order to
look as much like an x1oper as possible. (This might jar with some people as it
carries the risk of making the code deceptive, but it makes the setting up of calls
to Excel4 () easy and identical to calls using x1opers directly.)

c. It should use the int, bool, double, double * and char* conversion operators
so that C-style casts work intuitively.

d. It should overload the == operator to make type and value comparison easy.

4. Tt should change the xloper type and deal with any memory consequences of an
assignment of a value to an existing cpp_xloper.

5. It should provide a clean way to convert between x1opers and supported OLE/COM
variants.

6. It should provide a method for obtaining a pointer to a static x1loper that can be
returned to Excel. It should, at the same time, clean up the resources associated with
the cpp_xloper, and handle any signalling to Excel about memory that still needs
to be freed.

2 There is, at the time of writing, a C++ wrapper called XLW developed by Jérdme Lecomte which can be
accessed via the Source Forge website at http:/xIw.sourceforge.net/. A review of this open source project is
beyond the scope of this book, other than to say that it wraps more than just the Excel data structures: it
also wraps access to many of the C API functions. It is well worth looking at, if only to see the variety of
approaches and resources that can be employed.

Passing Data between Excel and the DLL 123

The cpp xloper class (included in the CD ROM) is a fairly thin skin to the xloper,
exposing the following types of member functions:

e A number of constructor member functions, one for each of the types of x1loper that
one regularly needs in this context.

e A number of assignment functions, to change the type or value of an xloper.

e A number of type conversion operator functions that simplify the copying of an
xloper’s value to a simple C/C++ variable type.

e A number of functions that simplify the getting and setting of values within an
xltypeMulti array.

e An overloaded address of operator (&) for the address of the x1oper, and a function
that returns the address of the cpp xloper object to compensate for the hijacking
of ‘&’.

e Some simple private functions that are self-explanatory.

The class contains some private data members:

e The xloper, m_Op.

e A Boolean, m_RowByRowArray, that determines if x1typeMulti arrays have their
elements stored row-by-row or not.

e A Boolean, m_DLLtoFree, that determines if any memory pointed to by the xloper
was dynamically allocated by the DLL. (This is set during construction or assignment
and referred to during destruction or reassignment.)

e A Boolean, m_XLtoFree, that determines if any memory pointed to by the xloper
was dynamically allocated by Excel. (This must be set using the SetExceltoFree ()
method, as the class has no way of knowing automatically. It is referred to during
destruction or reassignment.)

Here is a listing of the header file cpp_xloper.h:

#include "xlcall.h"
#include "xloper.h"

class cpp_xloper

public

/= e

// constructors

/ /=== mm e e
cpp_xloper () ; // created as xltypeMissing
cpp_xloper (xloper *p oper); // contains copy of given xloper
cpp_xloper (char *text) ; // xltypeStr
cpp_xloper (int w) ; // xltypelnt
cpp_xloper (int w, int min, int max); // xltypeInt (or xltypeMissing)
cpp_xloper (double d) ; // xltypeNum
cpp_xloper (bool b) ; // xltypeBool
cpp_xloper (WORD e) ; // xltypeErr
cpp_xloper (WORD, WORD, BYTE, BYTE); // xltypeSRef
cpp_xloper (char *, WORD, WORD, BYTE, BYTE); // xltypeRef from sheet name
cpp_xloper (DWORD, WORD, WORD, BYTE, BYTE); // xltypeRef from sheet ID
cpp_xloper (VARIANT *pv) ; // Takes its type from the VARTYPE

124 Excel Add-in Development in C/C++

// xltypeMulti constructors

cpp_xloper (WORD rows, WORD cols); // array of undetermined type
cpp_xloper (WORD rows, WORD cols, double *d_array); // array of xltypeNum
cpp_xloper (WORD rows, WORD cols, char **str array); // xltypeStr array
cpp_xloper (WORD &rows, WORD &cols, xloper *input oper); // from SRef/Ref
cpp_xloper (WORD rows, WORD cols, cpp_xloper *init_array) ;

cpp_xloper (x1l_array *array) ;

cpp_xloper (cpp_xloper &source); // Copy constructor
/) ==
// destructor
/) ==

~cpp_xloper () ;
/==
// Overloaded operators
T REEEEET TS

cpp_xloper &operator=(const cpp xloper &source) ;

void operator=(int) ; // xltypelnt

void operator=(bool b); // xltypeBool

void operator=(double) ; // xltypeNum

void operator=(WORD e) ; // xltypeErr

void operator=(char *); // xltypeStr

void operator=(xloper *); // same type as passed-in xloper

void operator=(VARIANT *); // same type as passed-in Variant

void operator=(xl_array *array) ;

bool operator==(cpp_xloper &cpp_op2) ;

bool operator==(int w) ;

bool operator==(bool Db);

bool operator==(double d);

bool operator==(WORD e) ;

bool operator==(char *text) ;

bool operator==(xloper *);

bool operator!=(cpp_xloper &cpp_op2) ;

bool operator!=(int w);

bool operator!=(bool b);

bool operator!=(double d);

bool operator!=(WORD e) ;

bool operator!=(char *text) ;

bool operator!=(xloper *);

void operator++ (void) ;

void operator-- (void) ;

operator int (void) ;

operator bool (void) ;

operator double (void) ;

operator char *(void) ;

xloper *operator&() {return &m Op;} // return xloper address
/=== = oo
// property get and set functions
/= oo

int GetType (void) ;

void SetType (int new_type) ;
bool SetTypeMulti (WORD array rows, WORD array cols);

bool SetCell (WORD rwFirst, WORD rwLast, BYTE colFirst, BYTE colLlast) ;
bool GetVal (WORD &e) ;

bool IsType (int) ;

bool IsStr(void) {return IsType (xltypeStr)
bool IsNum(void) {return IsType (xltypeNum) ;
bool IsBool (void) {return IsType (xltypeBool)

i}
}
i}

Passing Data between Excel and the DLL 125

//
/7

//
//

bool IsInt (void) {return IsType (xltypelnt);}

bool IsErr(void) {return IsType (xltypeErr);}

bool IsMulti(void) {return IsType (xltypeMulti) ;}

bool IsNil (void) {return IsType (xltypeNil) ;}

bool IsMissing(void) {return IsType (xltypeMissing);}

bool IsRef (void) {return IsType (xltypeRef | xltypeSRef);}
bool IsBigData (void) ;

property get and set functions for xltypeMulti
int GetArrayElementType (WORD row, WORD column) ;
bool GetArraySize (WORD &rows, WORD &cols) ;
xloper *GetArrayElement (WORD row, WORD column) ;

bool GetArrayElement (WORD row, WORD column, int &w);

bool GetArrayElement (WORD row, WORD column, bool &b);

bool GetArrayElement (WORD row, WORD column, double &d) ;

bool GetArrayElement (WORD row, WORD column, WORD &e) ;

bool GetArrayElement (WORD row, WORD column, char *&text); // deep copy

bool SetArrayElementType (WORD row, WORD column, int new_type);
bool SetArrayElement (WORD row, WORD column, int w);

bool SetArrayElement (WORD row, WORD column, bool b);

bool SetArrayElement (WORD row, WORD column, double d);

bool SetArrayElement (WORD row, WORD column, WORD e) ;

bool SetArrayElement (WORD row, WORD column, char *text);

bool SetArrayElement (WORD row, WORD column, xloper *p source) ;

int GetArrayElementType (DWORD offset) ;
bool GetArraySize (DWORD &size) ;
xloper *GetArrayElement (DWORD offset) ;

bool GetArrayElement (DWORD offset, char *&text); // makes new string
bool GetArrayElement (DWORD offset, double &d) ;

bool GetArrayElement (DWORD offset, int &w);

bool GetArrayElement (DWORD offset, bool &b);

bool GetArrayElement (DWORD offset, WORD &e) ;

bool SetArrayElementType (DWORD offset, int new type);
bool SetArrayElement (DWORD offset, int w);

bool SetArrayElement (DWORD offset, bool b);

bool SetArrayElement (DWORD offset, double d);

bool SetArrayElement (DWORD offset, WORD e) ;

bool SetArrayElement (DWORD offset, char *text);

bool SetArrayElement (DWORD offset, xloper *p_source) ;

void InitialiseArray (WORD rows, WORD cols, double *init data) ;
void InitialiseArray (WORD rows, WORD cols, cpp xloper *init array);
bool Transpose (void) ;

double *ConvertMultiToDouble (void) ;

other public functions

void Clear (void) ; // Clears the xloper without freeing memory

void SetExceltoFree(void); // Tell the destructor to use xlFree
cpp_xloper *Addr (void) {return this;} // Returns address of cpp_xloper
xloper *ExtractXloper (bool ExceltoFree = false); // extract xloper
void Free (bool ExceltoFree = false); // free memory

126 Excel Add-in Development in C/C++

bool ConvertToString (bool ExceltoFree) ;
bool AsVariant (VARIANT &var); // Return an equivalent Variant
x1_array *AsDblArray(void); // Return an x1_array

private:
xloper m_Op;
bool m_RowByRowArray;
bool m _DLLtoFree;
bool m XLtoFree;

}i

A full listing of the body of class code is included on the CD ROM in the example project
source file cpp xloper.cpp. Sections of it are also reproduced below as examples of
the low level handling of x1opers and conversion to and from C/C++ types.

6.5 CONVERTING BETWEEN xlopers AND C/C++
DATA TYPES

The need to convert arguments and return values can, in many cases, be avoided by declar-
ing functions as taking C-type arguments and returning C-type values. (How you inform
Excel what type of arguments your DLL function expects and what type of return value
it outputs is covered in section 8.5 Registering and un-registering DLL (XLL) functions
on page 182.)

However, conversion from C/C++ types to xlopers is necessary when accessing
Excel’s functionality from within the DLL using the C API. This includes when you
want to register your add-in functions. Excel demands that inputs to the interface func-
tions Excel4 () and Excel4v () are given as pointers to xlopers. Also, values
are returned via xlopers. Fortunately, this conversion is very straightforward in most
cases.

If you want to accept input from Excel in the most general form, it is necessary to
declare DLL functions as taking xloper * arguments. Unless they are to be passed
directly back into Excel via the C API interface, you would then need to convert them.
Excel should never pass in a null xloper * pointer even if the argument is missing.
The x1oper will have the type x1typeMissing instead.

Conversion is also necessary when you want to declare a DLL function as being capable
of returning different data types, for example, a string or a number. In this case the function
needs to return a pointer to an xloper that is not on the stack, i.e., that will survive the
return statement.

The following sections provide a more detailed discussion of the xloper types and
give examples of how to convert them to C/C++ types or to create them from C/C++
types. Some of the examples are function methods from the cpp xloper class.

6.6 CONVERTING BETWEEN xloper TYPES

The cpp_xloper relies on a set of routines for converting from one xloper type to
another, as well as to and from native C/C++ types. Many of these routines are reproduced
in the examples in section 6.8 below. Of particular importance is the Excel C API function
x1Coerce. This function, accessed via the C API interface function Excel4 (), attempts

Passing Data between Excel and the DLL 127

to return an xloper of a requested type from the type of the passed-in xloper. It is
covered in detail in section 8.7.3 Converting one xloper type to another:. x1Coerce
on page 201. In the examples that follow, this function is itself wrapped in a function
whose prototype is:

bool coerce_ xloper (xloper *p_op, xloper &ret_val, int target_type);

This attempts to convert any x1loper to an xloper of target type. Itreturns false
if unsuccessful and true if successful, with the converted value returned via the pass-by-
ref argument, ret _val. The code for this function is listed in section 8.7.3 on page 201.

6.7 CONVERTING BETWEEN xlopers AND VARIANTS

Chapter 3 Using VBA discusses the OLE Variant structure and the various types supported
by VBA, as well as the more limited subset that Excel passes to VBA functions declared
as taking Variant arguments. It is also useful to have a number of conversion routines in
an XLL that you also wish to use as interface to VBA, or that you might want to use to
access COM. The cpp xloper class has a number of these:

cpp_xloper (VARIANT *pv); // Takes its type from the VARTYPE
void operator= (VARIANT *); // Same type as passed-in Variant
bool AsVariant (VARIANT &var); // Return an equivalent Variant

The first two, a constructor and an overloaded assignment operator, rely on the following
routine. (The code for the function array vt to xloper () is a variation on this
function. All the following code is listed in x1oper . cpp in the example project on the
CD ROM.)

#include <ole2.h>
#define VT_XL_ERR_OFFSET 2148141008ul

bool vt _to_xloper (xloper &op, VARIANT *pv, bool convert array)

{

if (pv->vt & (VT_VECTOR | VT_BYREF))
return false;

if (pv->vt & VT_ARRAY)
{
if (!convert_array)
return false;

return array vt to_xloper (op, pv);

}

switch (pv->vt)

{

case VT _R8:
op.xltype = xltypeNum;
op.val.num = pv->dblval;
break;

128 Excel Add-in Development in C/C++

case VT_I2:
op.xltype = xltypelnt;
op.val.w = pv->iVal;
break;

case VT_BOOL:
op.xltype = xltypeBool;
op.val._bool = pv->boolval;
break;

case VT_ERROR:
op.xltype = xltypeErr;
op.val.err = (unsigned short) (pv->ulvVal - VT XL ERR_OFFSET) ;
break;

case VT_BSTR:
op.xltype = xltypeStr;
op.val.str = vt_bstr to xlstring(pv-sbstrval) ;
break;

case VT_CY:
op.xltype = xltypeNum;
op.val.num = (double) (pv->cyVal.inté4 / le4);
break;

default: // type not converted
return false;
1

return true;

The third converts in the other direction and relies on the following routine:

bool xloper_ to_vt (xloper *p_op, VARIANT &var, bool convert array)

{

VariantInit (&var); // type is set to VT_EMPTY

switch(p_op->xltype)

{

case xltypeNum:
var.vt = VT_RS8;
var.dblval = p op->val.num;
break;

case xltypelInt:
var.vt = VT_I2;
var.ival = p op->val.w;
break;

case xltypeBool:
var.vt = VT_BOOL;
var.boolval = p op->val._bool;
break;

case xltypeStr:
var.vt = VT BSTR;
var.bstrVal = xlstring to_vt_bstr(p_op->val.str);
break;

Passing Data between Excel and the DLL

129

case xltypeErr:
var.vt = VT_ERROR;
var.ulvVal = VT_XL_ERR_OFFSET + p_op->val.err;
break;

case xltypeMulti:
if (convert array)

{

VARIANT temp_ vt;
SAFEARRAYBOUND bound [2] ;
long elt_index[2];

bound [0] .1Lbound = bound[1] .1Lbound = 0;
bound [0] .cElements = p_op->val.array.rows;
bound[1] .cElements = p_op->val.array.columns;

var.vt = VT_ARRAY | VT _VARIANT; // array of Variants
var.parray = SafeArrayCreate (VT _VARIANT, 2, bound) ;

if (!var.parray)
return false;

xloper *p op_temp = p_op->val.array.lparray;
for(WORD r = 0; r < p_op->val.array.rows; I++)
{

for (WORD ¢ = 0; ¢ < p_op->val.array.columns;)

// Don't convert array within array
xloper_to_vt(p_op_temp++, temp_vt, false);

elt index[0] = r;
elt_index[1] = c++;

}
}
break;

}

// else, fall through to default option

default: // type not converted
return false;
}

return true;

SafeArrayPutElement (var.parray, elt index, &temp vt);

It is important to note that Variant strings are wide-character OLE BSTRs, in contrast
to the byte-string BSTRs that Excel VBA uses for its String type when exchanging
data with Excel and with a DLL declared as taking a String (in VB)/BSTR (in C/C++)

argument. The following code shows both conversions:

// Converts a VT BSTR wide-char string to a newly allocated C API
// byte-counted string. Memory returned must be freed by caller.

char *vt_bstr to_xlstring(BSTR bstr)

{
if (!bstr)
return NULL;

130 Excel Add-in Development in C/C++

int len = SysStringLen (bstr) ;

if (len > 255)
len = 255; // truncate

char *p = (char *)malloc(len + 2);

// VT_BSTR is a wchar t string, so need to convert to a byte-string
if(!p || westombs(p + 1, bstr, len + 1) < 0)
{
free(p) ;
return false;

}

pl0] = (char)len;
return p;

}

// Converts a C API byte-counted string to a VT_BSTR wide-char string
// Does not rely on (or assume) that input string is null-terminated.

BSTR xlstring to_vt_bstr(char *str)

{
if (!str)
return NULL;

wchar t *p = (wchar t *)malloc(str[0] * sizeof (wchar t));
if(!p || mbstowecs(p, str + 1, str[0]) < 0)
{

free(p) ;

return NULL;

}

BSTR bstr = SysAllocStringLen(p, str[0]);
free(p);
return bstr;

6.8 DETAILED DISCUSSION OF xloper TYPES

This section describes in more detail the things you need to know about each xloper
type to be able to work with it, specifically:

When you will encounter it.

When you need to create it.

How you create an instance of it.

How you convert it to a C/C++ data type.
What the memory considerations are.
How you can avoid using it.

Bear in mind that you may not need to use these structures in those cases where you
have declared functions as taking and returning simple C/C++ data types. You only need
to use x1opers in the following circumstances:?

3 You can, of course, avoid using xlopers by using a VB interface and variants in many of these cases.

Passing Data between Excel and the DLL 131

e When implementing the XLL Add-in Manager interface functions that take xloper
* arguments.

e When receiving arguments of types that are only supported in xlopers (cell or
range references).

e When receiving arguments that might take different types.

e When receiving arguments that you explicitly DO NOT want Excel to convert before
passing them to the DLL.

e Where a function’s return type requires the use of xlopers (for example, errors or
arrays that contain more than just numbers) or might take on more than one data type
(a string, a number or an error value).

e When calling into the C API via calls to Excel4 () or Excel4v ().

The code examples that follow use the C xloper structure directly in some cases, and
the C++ class cpp_xloper, described on page 121, in others. Those that use the latter
are those where the use of C++ constructors, destructors and operator overloading makes
the code far more straightforward: the handling of the elements of the xloper and mem-
ory are hidden in the class implementation. The majority of the examples that deal with
xltypeMulti, xltypeSRef and xltypeRef types only use cpp_ xlopers.

6.8.1 Freeing xloper memory

Some of the code samples below call one or both of the functions free xloper ()
and cpp xloper::Free() before assigning values to a passed-in xloper or
cpp_xloper. These functions clear any memory that might be associated with the
xloper according to its type and how the memory was allocated in the first place.
The function free_xloper (), that deals with x1opers and has no knowledge of the
cpp_xloper class, needs one of two bits in the x1type field to be set in order to know
how to free memory: x1bitDLLFree or x1lbitXLFree. This must be done in the
DLL with some knowledge of how they were originally created. (See Chapter 7 Memory
Management on page 161 for more details.)
Here is the code for both of these functions:

void free_ xloper (xloper *p op, bool use_xlbits)
{
// I1If created by Excel and the DLL has set this bit, then use Excel
// to free the memory.
if (use_xlbits && (p_op->xltype & xlbitXLFree))
{
p_op->xltype &= ~xlbitXLFree;
Excel4 (x1Free, 0, 1, p_op);
return;

}

WORD dll free = use xlbits ? xlbitDLLFree : 0;
WORD x1 free = use_xlbits ? xlbitXLFree : 0;

if (p_op->xltype & xltypeMulti)

// First check if elements need to be freed then check if the array

132 Excel Add-in Development in C/C++

// itself needs to be freed.
int limit = p_op->val.array.rows * p_op->val.array.columns;
xloper *p = p_op->val.array.lparray;

for(int i = limit; i--; p++)
if (p->xltype & (x1_free | dll_free))
free xloper(p, use xlbits);

if (p_op->xltype & dll_ free)
free(p_op->val.array.lparray) ;

}

else if (p_op->xltype == (xltypeStr | dll_free))

{
}
else if (p_op->xltype == (xltypeRef | dll_free))

{
}

free(p_op->val.str) ;

free(p_op->val.mref.lpmref) ;

void cpp_xloper::Free(bool ExceltoFree) // free mem and initialise

if (ExceltoFree)
m_XLtoFree = true;

if (m_XLtoFree)

{
}

else if (m _DLLtoFree)

{
}

// Reset the properties ready for destruction or reuse
Clear () ;

Excel4 (x1Free, 0, 1, &m Op);

free_xloper (&m Op, false);

6.8.2 Worksheet (floating point) number: x1typeNum

When you will encounter it

This x1loper type is used by Excel for all numbers passed from worksheets to a DLL,
whether floating point or integer. It is also returned by a number of the C API functions.

When you need to create it

A number of Excel’s own functions take floating point numbers as arguments, for example,
Excel’s mathematical worksheet functions. When calling them from within the DLL this
data type should be used. Where you are passing an integer argument, you can use the
x1ltypelInt type, although there is no advantage in doing this.

Passing Data between Excel and the DLL 133

Using this kind of x1oper is the most sensible way to pass numbers back to Excel in
those cases where you may also wish to return, say, an Excel error.

How you create an instance of it

The code to populate an x1oper of this type is:

void set_to_double(xloper *p op, double d)
{
if (!p_op) return;
p_op->xXltype = xltypeNum;
p_op->val.num = d;

Using the cpp_xloper class, creation can look like any of these:

double x, y, z;

/] ..

cpp_xloper Operl(x); // creates an xltypeNum xloper, value = x
cpp_xloper Oper2 = y; // creates an xltypeNum xloper, value = y
cpp_xloper Oper3; // creates an xloper of undefined type

// Change the type of Oper3 to xltypeNum, value = z, using the
// overloaded operator=
Oper3 = z;

// Create xltypeNum=z using copy constructor
cpp_xloper Oper4 = Oper3;

The code for the x1typeNum constructor is:

cpp_xloper: :cpp_xloper (double d)
{

Clear () ;
set_to_double (&m Op, 4d);

The code for the overloaded conversion operator ‘=’ is:

void cpp_xloper::operator=(double d)

Free() ;
set_to_double (&m Op, d);

134 Excel Add-in Development in C/C++

How vou convert it to a C/C++ data type

The following code example shows how to access (or convert, if not an x1typeNum)
the value of the xloper:

bool coerce_to_double (xloper *p op, double &d)

{
if (!p_op)
return false;

if (p_op->xltype == xltypeNum)

d = p_op->val.num;
return true;

}

// xloper is not a floating point number type, so try to convert it.
xloper ret_val;

if (!coerce_ xloper(p_op, ret_val, xltypeNum))
return false;

d = ret_val.val.num;
return true;

Using the cpp_xloper class the conversion would look like this:

cpp_xloper Oper;
// Some code that sets Oper's value...

double result = (double)Oper; // use the overloaded cast

The code for the overloaded cast operator (double) is:

cpp_xloper: :operator double (void)

{

double d;

if (coerce_to_double (&m Op, d))
return d;

return 0.0;

What the memory considerations are

None (unless the 10 bytes for the xloper itself are dynamically allocated), as the
double wval.num is contained entirely within the xloper.

Passing Data between Excel and the DLL 135

How you can avoid using it

Declare functions as taking double arguments and/or returning doubles: Excel will do
the necessary conversions.

6.8.3 Byte-counted string: x1typeStr

When you will encounter it

This xloper type is used by Excel for all text passed from worksheets to a DLL. It is
also returned by a number of the C API functions.

When you need to create it

A number of Excel functions take text arguments. Perhaps most importantly, from the
point of view of making DLL functions accessible directly from the worksheet, is the
function that registers DLL functions. (See section 8.5 Registering and un-registering
DLL (XLL) functions on page 182.) When calling them from the DLL, this data type
should be used. It is also the most sensible way to pass strings back to Excel where you
may also sometimes want to return, say, an Excel error.

How you create an instance of it

The code to populate an x1oper of this type is:

void set_to_ text (xloper *p op, char *text)

{

if (!p_op) return;

if ((p_op->val.str = new xlstring(text)) == NULL)
p_op->xltype = xltypeMissing;

else
p_op->xXxltype = xltypeStr;

The code for new xlstring() is:

char *new_xlstring(char *text)

{

if (!'text) return NULL;
int len = strlen(text);
if (len == 0) return NULL;

if (len > 255) 1len = 255; // truncate

char *p = (char *)malloc(len + 2);
memcpy (p + 1, text, len + 1);
pl0] = (char)len;

return p;

136 Excel Add-in Development in C/C++

Using the cpp_x1loper class, creation can look like any of these (note that the constructor
creates a deep copy of the string, rather than storing a pointer to the initial strings):

char *x, *y, *z;
//... Initialise the strings, then...

cpp_xloper Operl(x); // creates an xltypeStr xloper, value = x
cpp_xloper Oper2 = y; // creates an xltypeStr xloper, value =y
cpp_xloper Oper3; // creates an xloper of undefined type

// Change the type of Oper3 to xltypeStr, value = z, using the
// overloaded operator =
Oper3 = z;

// Create xltypeStr=z using copy constructor
cpp_xloper Oper4 = Oper3;

The code for the x1typeStr constructor is:

cpp_xloper: :cpp_xloper (char *text)
{
Clear () ;
set_to_text (&m Op, text);
m_DLLtoFree = true;

}

Note that in this example it is necessary to set m_DLLtoFree = true to ensure that, at
destruction or assignment of a different value, the memory will be freed in the right way.
The code for the overloaded conversion operator ‘=’ is:

void cpp xloper::operator=(char *text)
{
Free() ;
set_to_text (&m_Op, text);
m_DLLtoFree = true;

}

How vyou convert it to a C/C++ data type

The following code example shows how to get at the string pointed to by the xloper.
Note that, when making a copy, the code does not assume that a byte-counted string
(which might have been created by Excel) is null terminated. This would be an unsafe
assumption.

bool coerce_to string(xloper *p op, char *&text)

{

char *str;
xloper ret_val;

text = 0;

if (!p_op)
return false;

Passing Data between Excel and the DLL 137

if (p_op->xltype != xltypeStr)
// xloper is not a string type, so try to convert it.
if (!coerce xloper(p_op, ret_val, xltypeStr))
return false;

str = ret_val.val.str;

else if (! (str = p_op->val.str)) // make a working copy of ptr
return false;

int len = str[0];

if ((text = (char *)malloc(len + 1)) == NULL) // caller to free
return false;

if (len)
memcpy (text, str + 1, len);

text[len] = 0; // terminate the copy of the string
// Is the string from which the copy was made was created in a call
// to coerce_xloper above, then need to free it with a call to xlFree
if (p_op->xltype != xltypeStr)
Excel4 (x1Free, 0, 1, &ret_val);

return true;

Using the cpp_xloper class the conversion would look like this:

// Construct an xltypeStr cpp xloper. Destructor will clean up memory
// when Oper is no longer required.
cpp_xloper Oper ("Test string");

char *string copy = (char *)Oper;

// ... after using the result, free the string memory
free(string copy);

The code for the overloaded conversion operator (char *) is:

cpp_xloper: :operator char *(void)
char *p;

if (coerce_to_string(&m Op, p))
return p;

return NULL;

What the memory considerations are

When Excel passes you an x1ltypeStr it is best to avoid doing anything other than
reading it. If you need to modify it, make a copy. When you are allocating memory for

138 Excel Add-in Development in C/C++

strings to be returned to Excel, the returned pointer is forgotten about by Excel once
it has copied out the text. Obviously, associated memory cannot be freed by the DLL
before returning from the function. This makes returning dynamically allocated strings to
Excel as char * a bad idea. Returning an x1typeStr xloper gives you the ability
to instruct Excel to call back into your DLL once it has finished. Then you can release
the memory. (This topic is covered in section 7.4 Getting Excel to call back the DLL to
free DLL-allocated memory on page 166.)

The following example code would leak memory every time it was called with a valid
value of 1.

char * _ stdcall bad_string example (short i)

{

if(i < 1 || i > 26) return NULL;
char *rtn_string = (char *)malloc(i + 1);
for(char *p = rtn string; i; *p++ = 'A' + --1);

return rtn string;

Where an x1oper points to a static byte-counted string, there is nothing to worry about.

How you can avoid using it

Declare functions as taking null-terminated char * arguments and/or returning char
*. Excel will do the necessary conversions, but, beware: returning dynamically allocated
strings in this way will result in memory leaks.

6.8.4 Excel Boolean: x1typeBool

When you will encounter it

This x1oper type is used by Excel for all Boolean (true or false) values passed from
worksheets to a DLL. It is also returned by a number of the C API functions.

When you need to create it

A number of Excel’s own functions take Boolean arguments, often to trigger non-default
behaviour. When calling them from within the DLL using the C API this data type should
be used. (Excel will attempt to convert numeric x1typeNum or x1typeInt arguments
to true or false values.) If you want your worksheet function to evaluate to TRUE or FALSE
then you have no choice but to use this type.

How vou create an instance of it

The code to populate an x1oper of this type is:

void set_to_bool (xloper *p_op, bool b)
{
if (!p_op) return;
p_op->xltype = xltypeBool;
p_op->val. bool = (b ? 1 : 0);

}

Passing Data between Excel and the DLL 139

Using the cpp_xloper class, creation can look like any of these:

bool x, vy, z;

/] ..

cpp_xloper Operl(x); // creates an xltypeBool xloper, value = x
cpp_xloper Oper2 = y; // creates an xltypeBool xloper, value = y
cpp_xloper Oper3; // creates an xloper of undefined type

// Change the type of Oper3 to xltypeBool, value = z, using the
// overloaded operator =
Oper3 = z;

// Create xltypeBool=z using copy constructor
cpp_xloper Oper4 = Oper3;

The code for the x1typeBool constructor is:

cpp_xloper: :cpp_xloper (bool b)

Clear () ;
set_to _bool (&m_Op, b);

The code for the overloaded conversion operator ‘=’ is:

void cpp xloper::operator=(bool b)

Free() ;
set_to_bool (&m_Op, b);

How you convert it to a C/C++ data type

The xloper, being a C structure, does not know about the C++ bool type. Its value is
represented within the xloper as integer 1 (TRUE) or O (FALSE).

The following code example shows how to access (or convert, if not an x1typeBool)
the value of the x1oper:

bool coerce_to_bool (xloper *p_op, bool &b)

if (!p_op)
return false;

if (p_op->xltype == xltypeBool)
{
b = (p_op->val._bool != 0);
return true;

}

// xloper is not a Boolean number type, so try to convert it.
xloper ret_val;

if (!coerce_ xloper(p_op, ret_val, xltypeBool))

140 Excel Add-in Development in C/C++

return false;

b = (ret_val.val. bool != 0);
return true;

Using the cpp_xloper class the conversion would look like this:

cpp_xloper Oper;
// Some code that sets Oper's value...

bool result = (bool)Oper;

The code for the overloaded conversion operator (bool) is:

cpp_xloper: :operator bool (void)

{

bool b;

if (coerce_to_bool (&m_Op, b))
return b;

return false;

}

What the memory considerations are

None (unless the 10 bytes for the x1oper itself are dynamically allocated), as the integer
_bool is contained entirely within the xloper.

How vou can avoid using it

Declare functions as taking int arguments and/or returning ints: Excel will do the
necessary conversions.

6.8.5 Worksheet error value: x1typeErr

When you will encounter it

This xloper type is used by Excel for all error values passed from worksheets to a
DLL. When you want your DLL code to be called even if one of the inputs evaluates to
an error (such as range with invalid references — #REF!), you should declare arguments
as xlopers. Otherwise Excel will intercept the error and fail the function call before the
DLL code is even reached.

This xloper type is returned by most of the C API functions when they fail to
complete successfully. DLL functions accessed via VB that accept Variant arguments, or

Passing Data between Excel and the DLL 141

arrays of Variants, may need to convert between the Variant representation of Excel errors
and the C API error codes. This is discussed in section 3.6.11 Variant types that Excel
can pass to VB functions on page 59.

When you need to create it

Excel’s error codes provide a very well understood way of communicating problems to
the worksheet, and are therefore very useful. They have the added benefit of propagating
through to dependent cells. It’s a good idea to declare fallible worksheet functions as
returning x1opers so that errors can be returned, in addition to the desired output type.

You might even want to pass an error code into a C API function, although this
is unlikely.

How you create an instance of it

An example of code to populate an x1loper of this type is:

void set to err(xloper *p op, WORD e)

{

if (!p_op) return;

switch (e)

{

case xlerrNull:

case xlerrDivO0:

case xlerrValue:

case xlerrRef:

case xlerrName:

case xlerrNum:

case xlerrNA:
p_op->xltype = xltypeErr;
p_op->val.err = e;
break;

default:
p_op->xltype = xltypeMissing; // not a valid error code

Using the cpp xloper class, creation can look like any of these:

WORD x, vy, 2zZ;

/] ..

cpp_xloper Operl(x); // creates an xltypeErr xloper, value = x
cpp_xloper Oper2 = y; // creates an xltypeErr xloper, value =y
cpp_xloper Oper3; // creates an xloper of undefined type

// Change the type of Oper3 to xltypeErr, value = z, using the
// overloaded operator =
Oper3 = z;

// Create xltypeErr=z using copy constructor
cpp_xloper Oper4 = Oper3;

142 Excel Add-in Development in C/C++

The code for the x1typeErr constructor is:

cpp_xloper::cpp_xloper (WORD e)

Clear () ;
set_to_err(&m Op, e);
}

The code for the overloaded conversion operator ‘=" is:

void cpp_xloper::operator= (WORD e)

{

Free () ;
set_to err(&m Op, e);
}

How vou convert it to a C/C++ data type

It is unlikely that you will need to convert an error type to another data type. If you do
need the numeric error value, it is obtained from the err element of the xloper’s val
union.

What the memory considerations are

None (unless the 10 bytes for the x1oper itself are dynamically allocated), as the integer
err is contained entirely within the xloper.

How you can avoid using it

If you want to write worksheet functions that can trap and generate errors, you can’t.

6.8.6 Excel internal integer: x1typeInt

When you will encounter it

This x1loper type is NEVER passed by Excel from worksheets to a DLL. Some of the
C API functions might return this type.

When you need to create it

A number of Excel’s own functions take integer arguments and when calling them from
within the DLL this data type should be used. (Excel will try to convert the x1typeNum
type, if that is passed instead.) It can be used to pass integers, within its range, back to
Excel, especially in those cases where you might also want to return, say, an Excel error.
Again, the x1typeNum type can also be used for this and using x1typeInt does not
deliver any advantage in this case.

Passing Data between Excel and the DLL 143

How you create an instance of it

The code to populate an x1oper of this type is:

void set_to_int (xloper *p op, int w)
{
if (!p_op) return;
p_op->xXltype = xltypelnt;
p_op->val.w = w;

Using the cpp _xloper class, creation can look like any of these:

int x, vy, z;

/] ..

cpp_xloper Operl(x); // creates an xltypeInt xloper, value = x
cpp_xloper Oper2 = y; // creates an xltypelnt xloper, value =y
cpp_xloper Oper3; // creates an xloper of undefined type

// Change the type of Oper3 to xltypelnt, value = z, using the
// overloaded operator =
Oper3 = z;

// Create xltypelnt=z using copy constructor
cpp_xloper Oper4 = Oper3;

The code for the x1typeInt constructor is:

cpp_xloper: :cpp_xloper (int w)

Clear () ;
set_to_int (&m Op, w);

The code for the overloaded conversion operator ‘=" is:

void cpp xloper::operator=(int w)

Free () ;
set_to_int (&m Op, w);

How you convert it into a C/C++ data type

The following code example shows how to access (or convert, if not an xltypeInt)
the x1loper:

bool coerce to_int (xloper *p op, int &w)
{
if (!1p_op)
return false;

144 Excel Add-in Development in C/C++

if (p_op->xltype == xltypelnt)

w = p_op->val.w;
return true;

}
if (p_op->xltype == xltypeErr)

w = p_op->val.err;
return true;

}

// xloper is not an integer type, so try to convert it.
xloper ret_val;

if (!coerce_xloper (p_op, ret_val, xltypelnt))
return false;

w = ret_val.val.w;
return true;

Using the cpp_xloper class the conversion would look like this:

cpp_xloper Oper;
// Some code that sets Oper's value...

int result = (int)Oper;

The code for the overloaded conversion operator (int) is:

cpp_xloper: :operator int (void)

{

int 1i;

if (coerce_to_int (&m Op, 1))
return 1i;

return O;

What the memory considerations are

None (unless the 10 bytes for the x1oper itself are dynamically allocated), as the integer
w is contained entirely within the x1loper.

How vou can avoid using it

Declare functions as taking int arguments and/or returning ints: Excel will do the
necessary conversions.

Passing Data between Excel and the DLL 145

6.8.7 Array (mixed type): x1typeMulti

This x1oper type is used to refer to arrays whose elements may be any one of a number
of mixed x1oper types. The elements of such an array are stored (and read) row-by-row
in a continuous block of memory.*

There are important distinctions between such an array and an xloper that refers to
a range of cells on a worksheet:

e The array is not associated with a block of cells on a worksheet.

e The memory for the array elements is pointed to in the x1typeMulti. (In range
xlopers this is not the case. The data contained in the range of cells can only be
accessed indirectly, for example, using x1Coerce.)

e Some Excel functions accept either range references or arrays as arguments, whereas
others will only accept ranges.

An xltypeMulti is far more straightforward to work with than the range xloper
types. Accessing blocks of data passed to the DLL in an x1typeMulti is quite easy.
Their use is necessary if you want to pass arrays to C API functions where the data is
not in any spreadsheet.

When you will encounter it

If a DLL function is registered with Excel as taking an x1oper, an x1typeMulti is only
passed to the DLL when the supplied argument is a literal array within the formula, for
example, =SUM({1,2,3}). If the function is registered as taking an oper, an x1typeMulti
is passed whenever the function is called with a range or a literal array. In this case, Excel
handles the conversion from range xloper to array oper before calling the DLL.

Many of the C API functions return x1typeMulti xlopers, especially those return-
ing variable length lists, such as a list of sheets in a workbook. (See section 8.9.10
Information about a workbook: x1fGetWorkbook on page 225 for details of this par-
ticular example.)

When you need to create it

A number of Excel’s own functions take both array and range arguments. When calling
them from within the DLL, an x1typeMulti should be used unless the data are on
a worksheet. In that case, it is better to use a range xloper. (Note that not all C
API functions that take ranges will accept arrays: those returning information about a
supposedly real collection of cells on a real worksheet will not.)

This x1oper type provides the best way to return arrays of data that can be of mixed
type back to a worksheet. (Note that to return a block of data to a worksheet function, the
cell formula must be entered into the worksheet as an array formula.) It can also provide
a stepping stone to reading the contents of a worksheet range, being much easier to work
with than the x1opers that describe ranges x1typeSRef and x1typeRef. One of the
cpp_xloper constructors below shows the conversion of these types to x1typeMulti
using the x1Coerce function.

4 Variant arrays passed from VB to a C/C++ DLL store their elements column-by-column. See section 3.7 Excel
ranges, VB arrays, SafeArrays, array Variants on page 64 for details.

146 Excel Add-in Development in C/C++

Warning: A range that covers an entire column on a worksheet (e.g., A:A in a cell
formula, equivalent to A1:A65536) can, in theory, be passed into a DLL in an xloper
of type x1typeSRef or x1typeRef. However, there is a bug. The x1oper will be
given the rwLast value of 0x3fff instead of Oxffff. Even if this were not the case,
coercing a reference that represented an entire column to an x1typeMulti would fail.
The rows field in the x1typeMulti, being a WORD that counts from 1, would roll back
over to zero. In other words, the x1typeMulti is limited to arrays from ranges with
rows from 1 to 65,535 inclusive OR 2 to 65,536 inclusive. You should bear this limitation
in mind when coding and documenting your DLL functions.

How vyou create an instance of it

The cpp xloper class makes use of a function set _to xltypeMulti () that pop-
ulates an xloper as this type. The code for the function set to xltypeMulti ()
is:

bool set_to xltypeMulti (xloper *p op, WORD rows, WORD cols)

{

int size = rows * cols;

if (lp_op || !size || rows == Oxffff || cols > 0x00ff)
return false;

p_op->xltype = xltypeMulti;

p_op->val.array.lparray = (xloper *)malloc (sizeof (xloper) *size);
p_op->val.array.rows = rows;

p_op->val.array.columns = cols;

return true;

The class cpp_xloper contains four constructors for this xloper type and these are
listed below.
The first constructor creates an un-initialised array of the specified size.

cpp_xloper: :cpp_xloper (WORD rows, WORD cols)

{

Clear () ;
xloper *p_oper;

if (!set_to xltypeMulti (&m Op, rows, cols)
|| '(p_oper = m Op.val.array.lparray))
return;

m_DLLtoFree = true;

for(int i = rows * cols; i--; p_oper++)
p_oper->xltype = xltypeMissing; // a safe default

The second constructor creates an array of x1ltypeNum xlopers which is initialised
using the array of doubles provided.

Passing Data between Excel and the DLL 147

cpp_xloper: :cpp_xloper (WORD rows, WORD cols, double *d_array)

Clear () ;
xloper *p_oper;

if (1d_array || !set_to xltypeMulti(&m Op, rows, cols)
|| '(p oper = m Op.val.array.lparray))
return;

m_DLLtoFree = true;

for(int i = rows * cols; i--; p_oper++)
{
p_oper->xltype = xltypeNum;
p_oper->val.num = *d_array++;

The third constructor creates an array of xltypeStr xlopers which contain deep
copies of the strings in the array provided. (The cpp xloper class always creates copies
of strings so that there is no ambiguity about whether the strings in a dynamically allocated
array should themselves be freed — they will always need to be. See section 5.5.7 xlAuto-
Free on page 103, and Chapter 7 Memory management on page 161 for more details.)

cpp_xloper: :cpp_xloper (WORD rows, WORD cols, char **str_ array)

Clear () ;
xloper *p_oper;

if (Istr_array || !set to xltypeMulti (&op, rows, cols)
|| '(p_oper = op.val.array.lparray))
return;

m_DLLtoFree = true;
char *p;

for(int i = rows * cols; i--; p_oper++)

{

P = new_xlstring(*str_ array++);
if (p)

p_oper->xltype = xltypeStr;
p_oper->val.str = p;

else

{

p_oper->xltype = xltypeMissing;

The fourth constructor creates an array of x1opers from either of the worksheet range types,
xltypeSRef and x1typeRef, leaving the hard work to the x1Coerce function.> The

31In fact x1Coerce doesn’t care what type the input xloper is. It will attempt to convert it to an x1type-
Multi regardless. Even if it is a single cell or, say, numerical value, it will return a 1x1 array. This makes it
a very powerful tool.

148 Excel Add-in Development in C/C++

types of the elements of the resulting array reflect those of the worksheet range originally
referred to. The resulting array must only be freed by Excel, either in the DLL via a call to
x1Free, or by being returned to Excel with the x1bitXLFree bit set in x1type. (See
the destructor code for how the class takes care of this, and Chapter 7 Memory Management
on page 161.)

cpp_xloper: :cpp_xloper (WORD &rows, WORD &cols, xloper *input oper)

{

Clear () ;

// Ask Excel to convert the reference to an array (xltypeMulti)
if (!coerce_xloper (input_oper, op, xltypeMulti))

{
}

else

{

rows = cols = 0;

rows = op.val.array.rows;
cols = op.val.array.columns;
// Ensure destructor will tell Excel to free memory
XLtoFree = true;
}

The class also contains a number of methods to set elements of an existing array,
for example:

bool cpp_xloper::SetArrayElement (WORD row, WORD column, char *text)

{

if (XLtoFree)
return false; // Don't assign to an Excel-allocated array

// Get a pointer to the xloper at this (row, column) coordinate
xloper *p op = GetArrayElement (row, column) ;

if (!p_op)
return false;

if (m_DLLtoFree)

{
p_op->xltype |= xlbitDLLFree;
free_xloper (p_op) ;

}

set_to_text(p op, text);

return true;

Creating and initialising static arrays of xlopers is covered in section 6.9 Initialising
xlopers on page 157. As this section discusses, the easiest way to do this is to create
and initialise arrays of cpp xlopers and use this array to initialise a cpp_xloper
of x1typeMulti using either one of the constructor methods or one of the initialisa-
tion methods.

Passing Data between Excel and the DLL 149

How you convert it to a C/C++ data type

The following cpp_xloper method converts an x1typeMulti array into an array of
doubles. In doing this, it allocates a block of memory, coerces the elements one-by-one
into the array and then returns a pointer to the allocated block. The memory allocated
then needs to be freed by the caller once it is no longer required. The code relies on
another method that returns a given (row, column) element as a double via an argument
passed by reference, coercing it to a double if required. The class contains similar
methods for converting elements of the array to text, integers, Boolean and Excel error
values (as integers). There are also methods that use a single offset parameter rather
than a (row, column) pair — more efficient if accessing all the elements in the array
one-by-one.

double *cpp_xloper::ConvertMultiToDouble (void)
{
if (m Op.xltype != xltypeMulti)
return NULL;

// Allocate the space for the array of doubles
int size = m Op.val.array.rows * m_Op.val.array.columns;
double *ret_array = (double *)malloc(size * sizeof (double)) ;

if (lret_array)
return NULL;

// Get the cell values one-by-one as doubles and place in the array.
// Store the array row-by-row in memory.
xloper *p op = m Op.val.array.lparray;

if (!p_op)

free(ret_array);
return NULL;

}

for(int index = 0; index < size; index++)
if (lcoerce to double(p op++, ret arrayl[index]))
ret_array[index] = 0.0;

return ret_array; // caller must free the memory!

The class also contains a number of methods that retrieve elements of an array as a
particular data type (converted if required and if possible), for example:

bool cpp_xloper::GetArrayElement (DWORD offset, double &d)

return coerce_to double (GetArrayElement (offset), d);

What the memory considerations are

These x1opers contain a pointer to a block of memory. If this points to a static block,
or a dynamic block created at DLL initialisation, there is no need to free the memory

150 Excel Add-in Development in C/C++

after use. It’s usually easier and makes much more sense, however, to create and destroy
the memory as required. Where the xloper was created by Excel, say, with a call to
x1Coerce, the memory must be freed by Excel as outlined in Chapter 7.

Where x1typeMulti xlopers are being returned to Excel, and where the memory
they reference has been dynamically allocated by the DLL or by Excel, the appropriate bit
in the x1type field must be set to ensure the memory is released. Where the elements
of the array themselves have memory allocated for them, they also need to have the
appropriate bit set. (See Chapter 7 Memory Management on page 161.)

The cpp xloper class always allocates a block of memory for the xloper array
and sets a Boolean (m_DLLtoFree) to true to tell the destructor to free it when done.

How you can avoid using it

If you only want to work with arrays of doubles, you have the option of using the
x1 array structure discussed in section 6.2.2 on page 107. If you want to receive/return
mixed-value or string arrays from/to a worksheet, or you want to work with C API
functions that take or return arrays, then you can’t avoid using this type.

6.8.8 Worksheet cell/range reference: x1typeRef and x1typeSRef

When you will encounter them

These two xloper types are used by Excel for all references to single cells and ranges
on any sheet in any open workbook. Each type contains references to one or one or more
rectangular blocks of cells. The x1typeSRef is only capable of referencing a single
block of cells on the current sheet. The x1typeRef type can reference one or more
blocks of cells on a specified sheet, which may or may not be the current sheet. For this
reason, an xltypeRef xloper is also known as an external reference as it refers to
an external sheet, i.e., not the current sheet.

Where a range is passed to a DLL function and is only used as a source of data, it
is advisable to convert to an x1typeMulti — a much easier type to work with. Arrays
of type x1typeMulti resulting from conversion from one of these types have their
elements stored row-by-row. Where the range is being used as an argument in a call to
Excel4 () it is better to leave it unconverted. Where DLL functions are declared as
taking oper arguments, Excel will convert range references to x1typeMulti or one of
the single cell value types (or x1typeNil in some cases). (See section 8.5 Registering
and un-registering DLL (XLL) functions on page 182.)

The C API function x1fSheetId returns the internal ID of a worksheet within an
xltypeRef xloper.

When you need to create them

A number of Excel functions take range or array arguments. A few take just ranges. When
calling them from within the DLL you need to create one of these types depending on
whether you want to access a range on the current sheet or not. (Note that you can use
x1ltypeRef to refer explicitly to the current sheet if you prefer not to have to think
about whether it is current or not.)

Passing Data between Excel and the DLL 151

If you want to pass a range reference back to Excel (for use as input to some other
worksheet function) you will need to use one of these types depending on the whether
the reference is in the context of the current sheet (use xltypeSRef) or some other
(use x1ltypeRef).

How you create an instance of either of them

The first example shows how to populate an xloper of type xltypeSRef. Note
that there is no need to specify a worksheet, either by name or by internal ID. Also

there’s no need to allocate any memory, as all the data members are contained within the
xloper’s 10 bytes.

bool set_to_xltypeSRef (xloper *p op, WORD rwFirst, WORD rwLast,
BYTE colFirst, BYTE colLast)
{

if (!p op || rwFirst < rwLast || colFirst < colLast)
return false;

// Create a simple single-cell reference to cell on current sheet
p_op->xltype = xltypeSRef;
p_op->val.sref.count = 1;

xlref &ref = p op->val.sref.ref; // to simplify code
ref.rwFirst = rwFirst;

ref.rwLast = rwLast;

ref.colFirst = colFirst;

ref.collLast = collLast;

return true;

The second example shows how to populate an xloper of type xltypeRef. This
requires that an internal ID for the sheet be provided as a DWORD idSheet. (One of
the cpp_xloper constructors listed below shows how to obtain this from a given sheet
name using the x1SheetId C API function.) Note that not all of the information carried
by an x1typeRef is contained within the 10 bytes of the xloper and, in this example,
a small amount of memory is allocated in setting it up. (Another example might have
used a static x1mref structure.)

bool set_to xltypeRef (xloper *p op, DWORD idSheet, WORD rwFirst,
WORD rwLast, BYTE colFirst, BYTE colLast)

if(!p op || rwFirst < rwLast || colFirst < colLast)
return false;

// Allocate memory for the xlmref and set pointer within the xloper
xlmref *p = (xlmref *)malloc (sizeof (xlmref)) ;

if (!p)

{
p_op->xltype = xltypeMissing;
return false;

152 Excel Add-in Development in C/C++

p_op->xltype = xltypeRef;
p_op->val.mref.lpmref = p;
p_op->val.mref.idSheet = idSheet;
p_op->val.mref.lpmref->count = 1;

xlref &ref = p->reftbl[0];// to simplify code
ref.rwFirst = rwFirst;

ref.rwlLast = rwlLast;

ref.colFirst = colFirst;

ref.collLast = colLast;

return true;

Converting an array of doubles, strings or any other data type fo an x1typeRef or an
x1ltypeSRef is never a necessary thing to do. If you need to return an array of doubles,
integers or strings (mixed or all one type) to Excel via the return value of your DLL
function, you should use the x1typeMulti xloper. If you want to set the value of a
particular cell that is not the calling cell, then you can use the x1Set function, although
this can only be called from a command, not from a worksheet function.

The cpp xloper class constructor for the x1typeSRef is:

cpp_xloper: :cpp_xloper (WORD rwFirst, WORD rwLast, BYTE colFirst,
BYTE collLast)
{

Clear () ;
set_to_xltypeSRef (&m Op, rwFirst, rwLast, colFirst, colLast);

The two cpp_xloper class constructors for the x1typeRef are as follows. The first
creates a reference on a named sheet. The second creates a reference on a sheet that is
specified using its internal sheet ID.

cpp_xloper: :cpp_xloper (char *sheet name, WORD rwFirst, WORD rwLast,
BYTE colFirst, BYTE colLast)

Clear () ;

// Check the inputs. No need to check sheet name, as
// creation of cpp_xloper will set type to xltypeMissing
// 1if sheet name is not a valid name.
if (rwFirst < rwLast || colFirst < colLast)
return;

// Get the sheetID corresponding to the sheet name provided. If

// sheet_name is missing, a reference on the active sheet is created.
cpp_xloper Name (sheet name) ;
cpp_xloper RetOper;

int x14 = Excel4 (x1SheetId, &RetOper, 1, &Name) ;
RetOper.SetExceltoFree() ;
DWORD ID = RetOper.m_Op.val.mref.idSheet;

if (x14 == xlretSuccess
&& set_to_xltypeRef (&m_Op, ID, rwFirst,rwLast,colFirst,colLast))

Passing Data between Excel and the DLL 153

{

// created successfully
m_DLLtoFree = true;

}

return;

Here is the code for the second constructor. It is much simpler than the above, as the
constructor does not need to convert the sheet name to an internal ID.

cpp_xloper: :cpp_xloper (DWORD ID, WORD rwFirst, WORD rwLast,
BYTE colFirst, BYTE colLast)

Clear () ;

if (rwFirst <= rwlLast && colFirst <= colLast
&& set_to_xltypeRef (&m Op, ID, rwFirst,rwLast,colFirst,colLast))

// created successfully
m_DLLtoFree = true;

return;

How you convert them to a C/C++ data type

Converting a range reference really means looking up the values from that range. The
most straightforward way to do this is to convert the xloper to x1typeMulti. The
result can then easily be converted to, say, an array of doubles. (See above discussion
of x1typeMulti.) The following example code shows how to do this in a function that
sums all the numeric values in a given range, as well as those non-numeric values that can
be converted. It uses one of the x1typeMulti constructors to convert the input range
(if it can) to an array type. The cpp xloper member function ConvertMultiTo
Double () attempts to convert the array to an array of doubles, coercing the individual
elements if required.

double _ stdcall coerce and sum(xloper *input)

{

WORD rows, cols;
cpp_xloper Array(rows, cols, input); // converts to xltypeMulti

if (!Array.IsType (xltypeMulti))
return 0.0;

// Get an array of doubles
double *d _array = Array.ConvertMultiToDouble () ;

if (1d_array)
return 0.0;

double sum = 0.0;
double *p = d_array;

154 Excel Add-in Development in C/C++

for (unsigned int i = rows * cols; i--;
sum += *p++;

// Free the double array
free(d_array) ;
return sum;

What the memory considerations are

As can be seen from the above code examples, x1typeRef xlopers point to a block of
memory. If dynamically allocated within the DLL, this needs to be freed when no longer
required. (See Chapter 7 Memory Management on page 161 for details.) For x1typeS-
Ref xlopers there are no memory considerations, as all the data is stored within the
xloper’s 10 bytes.

How vyou can avoid using them

If you only want to access values from ranges of cells in a spreadsheet then declaring DLL
functions as taking xloper arguments but registering them as taking oper arguments
forces Excel to convert x1typeSRef and xltypeRef xlopers to one of the value
types (or x1typeNil in some cases). (See section 8.5 Registering and un-registering
DLL (XLL) functions on page 182.) However, Excel may not call your code if this con-
version fails for some reason, and there is an unnecessary overhead if the argument is
only to be passed as an argument to a C API function.

If you only want to access numbers from ranges of cells, then you do have the option
of using the x1 array data type described in section 6.2.2 on page 107.

If you want to access information about ranges of cells in a spreadsheet, or you want
complete flexibility with arguments passed in from Excel, then you cannot avoid their use.

Examples

The first example, count _used_cells (), creates a simple reference (x1typeSRef)
to a range on the sheet from which the function is called. (Note that this will always
be the current sheet, but may not be the active sheet.) It then calls the C API func-
tion Excel4 (x1fCount,...), equivalent to the worksheet function COUNT(), to get
the number of cells containing numbers. (The pointer p_ x1ErrValue points to a static
xloper initialised to #VALUE!. See section 6.3 Defining constant x1lopers on page 121
for more detail.)

xloper * _ stdcall count used cells(int first row, int last_row,
int first_col, int last_col)

if (first_row > last row || first col > last_col)
return p_xlErrValue;

// Adjust inputs to be zero-counted and cast to WORDs and BYTEs.
WORD fr = (WORD) (first_row - 1);

Passing Data between Excel and the DLL 155

WORD 1lr = (WORD) (last_row - 1);
BYTE fc = (BYTE) (first_col - 1);
BYTE lc = (BYTE) (last_col - 1);

cpp_xloper InputRange (fr, lr, fc, 1lc);
cpp_xloper RetVal;

Excel4 (x1fCount, &RetVal, 1, &InputRange);
return RetVal.ExtractXloper (false) ;

The second example count used _cells2 () does the same as the first except that it
creates an external reference (x1typeRef) to a range on a specified sheet before calling
the C API function. Note that this sheet may not be the one from which the function is
called. Note also that a different constructor is used.

xloper * _ stdcall count used cells2(char *sheetname, int first row,
int last_row, int first col, int last_col)
{

if (first row > last row || first col > last col)
return p_xlErrValue;

// Adjust inputs to be zero-counted and cast to WORDs and BYTEs.

WORD fr = (WORD) (first_row - 1);
WORD 1lr = (WORD) (last_row - 1);
BYTE fc = (BYTE) (first_col - 1);
BYTE lc = (BYTE) (last_col - 1);

cpp_xloper InputRange (sheetname, fr, 1lr, fc, 1lc);
cpp_xloper RetVal;

Excel4 (x1fCount, &RetVal, 1, &InputRange) ;
return RetVal.ExtractXloper (false) ;

6.8.9 Empty worksheet cell: x1typeNil

When you will encounter it

The x1typeNil xloper will typically turn up in an array of xlopers that has been
created from a range reference, where one or more of the cells in the range is completely
empty. Many functions ignore nil cells. For example, the worksheet function =AVERAGE()
returns the sum of all non-empty numeric cells in the range divided by the number of
such cells. If a DLL function is registered with Excel as taking an oper argument and
the function is entered on the worksheet with a single-cell reference to an empty cell, then
Excel will also pass an xloper of this type. If registered as taking an xloper argu-
ment, then the passed-in type would be x1typeSRef or x1typeRef. (See section 8.5
Registering and un-registering DLL (XLL) functions on page 182.)

When you need to create it

There’s an obvious contradiction if a worksheet function tries to return an x1oper of this
type to a single cell: the cell has a formula in it and therefore cannot be empty. Even if

156 Excel Add-in Development in C/C++

the cell is part of an array formula, it’s still not empty. If you return an array of xlopers
(x1typeMulti) containing x1typeNil elements, they will be converted by Excel to
numeric zero values. If you want to return a neutral non-numeric cell in an array, you
will need to convert to an empty string. If, however, you want to clear the contents of a
cell completely, something that you can only do from a command, you can use the C API
function x1Set — see section 8.7.4 on page 203 — and pass an x1typeNil xloper.

How you create an instance of it

The following example shows how to do this in straight C code:

xloper op;
op.xltype = xltypeNil;

Or...

xloper op = {0.0, xltypeNil};

The default constructor for the cpp_xloper class initialises its x1oper to x1typeNil.
The class has a few methods for setting the x1oper type later, which can also be used
to create an xloper of type x1typeNil. For example:

cpp_xloper op; // initialised to xltypeNil
op.SetType (x1ltypeNil) ;

// array elements are all initialised to xltypeNil

cpp_xloper array op ((WORD)rows, (WORD)columns) ;

/] ...

array op.SetArrayElementType ((WORD)row, (WORD)col, xltypeNil) ;
array op.SetArrayElementType ((DWORD)offset, xltypeNil) ;

You can also create a pointer to a static structure that looks like an xloper and is
initialised to x1typeNil. (See section 6.3 Defining constant x1opers on page 121 for
more details.)

How vou convert it to a C/C++ data type

How you interpret an empty cell is entirely up to your function, whether it is looking
for numerical arguments or strings, and so on. If it really matters, you should check your
function inputs and interpret it accordingly. Excel will coerce this type to zero if asked
to convert to a number, or the empty string if asked to convert to a string. If this is not
what you want to happen, you should not coerce x1opers of this type using x1Coerce
but write your own conversion instead.

What the memory considerations are

There is no memory associated with this type of xloper.

Passing Data between Excel and the DLL 157

How you can avoid using it

If you are accepting arrays from worksheet ranges and it matters how you interpret empty
cells, or you want to fail your function if the input includes empty cells, then you need
to detect this type. If you want to completely clear the contents of cells from a command
using x1Set, then you cannot avoid using this type.

6.8.10 Worksheet binary name: x1typeBigData

A binary storage name is a named block of unstructured memory associated with a
worksheet that an XLL is able to create, read from and write to, and that gets saved with
the workbook.

A typical use for such a space would be the creation of a large table of data that you
want to store and access in your workbook, which might be too large, too cumbersome or
perhaps too public, if stored in worksheet cells. Another use might be to store configuration
data for a command that always (and only) acts on the active sheet.

The x1ltypeBigData xloper type is used to define and access these blocks of
binary data. Section 8.8 Working with binary names on page 209 covers binary names
in detail.

6.9 INITIALISING xlopers

C only allows initialisation of the first member of a union when initialising a static or
automatic structure. This pretty much limits x1lopers to being initialised to floating point
numeric values only, given that double num is the first declared element of the val
union of the x1oper and assigning a type.

For example, the following declarations are all valid:

xloper op pi = {3.14159265358979, xltypeNum};
xloper op nil = {0.0, xltypeNil};

xloper op_false = {0.0, xltypeBool};

xloper op _missing = {0.0, xltypeMissing};

These will compile but will not result in the intended values:

xloper op_three = {3, xltypelnt};
xloper op_true = {1, xltypeBool};

This will not compile:

xloper op hello = {"\5Hello", xltypeStr};

This is very limiting. Ideally, you would want to be able to initialise an xloper to
any of the types and values that it can represent. In particular, creating static arrays of
x1lopers and initialising them becomes awkward: it is only possible to initialise the type;

158 Excel Add-in Development in C/C++

something that still has some value in tidying up code. Initialising the value as well as
the type is something you might need to do when:

e creating a definition range for a custom dialog box;

e creating a array of fixed values to be placed in a spreadsheet under control of a command
or function;

e setting up the values to be passed to Excel when registering new commands or new
worksheet functions. (See section 8.5 Registering and un-registering DLL (XLL) func-
tions on page 182.)

There are a couple of ways round this limitation. The first is the definition of an x1oper-
like structure that is identical in memory but allows itself to be declared statically and
then cast to an xloper. This is achieved simply by changing the order of declaration
in the union. This approach still has the limitation of only allowing initialisation to one
fundamental data type. The following code fragment illustrates this approach:

typedef struct

{

union {char *str; double num;} val; // don't need other types
WORD xltype;

}

str_ xloper;

str xloper op hello = {"\5Hello", xltypeStr};

xloper *pop_hello = (xloper *)&op_hello;

The second approach is to create a completely new structure that can be initialised stat-
ically to a range of types, but that requires some code to convert it to an xloper. One
example of this approach would be to redefine the x1loper structure to include a few
simple constructors. Provided the image of the structure in memory was not altered by
any amendments, all of the code that used x1opers would still work fine.

The C++ class cpp_xloper is another example, but one that really harnesses the
power of C++. It can be initialised in a far more intuitive way than an xloper to any
of the data types supported by the xloper. Arrays of cpp_xlopers can be initialised
with bracketed arrays of initialisers of different types: the compiler calls the correct con-
structor for each type. Once the array of cpp xlopers has been initialised it can be
converted into a cpp_xloper of type xltypeMulti very easily, as the class con-
tains a member function to do just this. (See sections 6.4 A C++ class wrapper for the
xloper — cpp_xloper on page 121, and 6.8.7 Array (mixed type): x1typeMulti on
page 145 for more details.)

The following code initialises a 1-dimensional array of cpp_ xlopers with values of
various types needed to define a simple custom dialog definition table. (Note that the
empty string initialises the cpp_xloper to type x1typeNil.) The dialog displayed by
the command get username () requests a username and password. (See section 8.13
Working with custom dialog boxes on page 273 for details of how to construct such a
table, and the use of the x1fDialogBox function.) The cpp xloper array is then
converted into an x1typeMulti xloper (wrapped in a cpp xloper) using the con-
structor.

Passing Data between Excel and the DLL 159

#define NUM_DIALOG_COLUMNS 7
#define NUM_DIALOG_ROWS 10

cpp_xloper UsernameDlg[NUM _DIALOG_ROWS * NUM DIALOG_COLUMNS] =

ww, ww_ ww_ 372, 200, "Logon", "", // Dialog box size

1, 100, 170, 90, ", "OK", "", // Default OK button

2, 200, 170, 90, "", "Cancel", "", // Cancel button

5, 40, 10, "", """, "Please enter your username and password.","",
14, 40, 35, 290, 100, "", "", // Group box

5, 50, 53, "", "w, "Username", "", // Text

6, 150, 50, ", wr, wr_ wMyName", // Text edit box

5, 50, 73, "", ", v"pagsword", "", // Text

6, 150, 70, "mw, wn owmwm oowkkxkkxkkx o // Text edit box

13, 50, 110, "", m"m, "Remember username and password", true,

}i
int _ stdcall get_username (void)

xloper ret_val;
int x14;

cpp_xloper DialogDef ((WORD) NUM DIALOG ROWS,
(WORD) NUM_DIALOG_COLUMNS, UsernameDlg) ;
do

{

x14 = Excel4 (xlfDialogBox, &ret_val, 1, &DialogDef) ;

if (x14 || (ret_val.xltype == xltypeBool
&& ret_val.val. bool == 0))
break;

// Process the input from the dialog by reading
// the 7th column of the returned array.

// ... code omitted

Excel4 (x1Free, 0, 1, &ret_val);
ret_val.xltype = xltypeNil;

}

while (1) ;

Excel4 (x1Free, 0, 1, &ret_val);
return 1;

The above approach doubles up the amount of memory used for the strings. (The
cpp_xloper makes deep copies of initialisation strings.) This should not be a huge
concern, but a more memory-efficient approach would be to use a simple class as follows
that only makes shallow copies:

// This class is a very simple wrapper for an xloper. The class is
// specifically designed for initialising arrays of static strings
// in a more memory efficient way than with cpp_ xlopers. It contains
// NO memory management capabilities and can only represent the same
// simple types supported by an oper. Member functions limited to
// a set of very simple constructors and an overloaded address-of

// operator.

160 Excel Add-in Development in C/C++

class init_xloper

{

public:
init xloper () {op.x1type = xltypeNil;}
init xloper (int w) {op.x1ltype = xltypelnt; op.val.w = w;}

init xloper (double d) {op.xltype x1ltypeNum; op.val.num = d;}
init_xloper (bool b)
{
op.xltype = xltypeBool;
op.val. bool = b ? 1 : 0;
init xloper (WORD err) {op.xltype = xltypeErr; op.val.err = err;}
init_xloper (char *text)
{
// Expects null-terminated strings.
// Leading byte is overwritten with length of string
if (*text == || (*text = strlen(text + 1)) == 0)
op.xltype = xltypeNil;
else
{
op.xltype = xltypeStr;
op.val.str = text;

}
i
xloper *operator&() {return &op;} // return xloper address
xloper op;

6.10 MISSING ARGUMENTS

XLL functions must be called with all arguments provided, except those arguments that
have been declared as xlopers or opers. Excel will not call the DLL code until all
required arguments have been provided.

Where DLL functions have been declared as taking x1oper arguments, Excel will pass
an xloper of type x1ltypeMissing if no argument was provided. If the argument is a
single cell reference to an empty cell, this is passed as an xloper of type x1typeRef
or x1typeSRef, NOT of type xltypeMissing. However, if the DLL function is
declared as taking an oper argument, a reference to an empty cell is passed as type
x1ltypeNil. You will probably want your DLL to treat this as a missing argument in
which case the following code is helpful. (Many of the later code examples in this book
use this function.)

inline bool is_xloper missing(xloper *p op)

{
}

return !p op || (p_op->xltype & (xltypeMissing | xltypeNil))!=0;

7
Memory Management

7.1 EXCEL STACK SPACE LIMITATIONS

Since Excel 97, there have been about 44 Kbytes normally available to a DLL on a stack
that is shared with Excel. (In fact, it is Excel’s stack; the DLL gets to share it.) Stack
space is used when calling functions (to store the arguments and return values) and to
create the automatic variables that the called function needs. No stack space is used by
function variables declared as static or declared outside function code at the module
level or by structures whose memory has been allocated dynamically.

This example, of how not to do things, uses 8 bytes of stack for the argument, another
8 for the return value, 4 bytes for the integer in the for loop, and a whopping 48,000 bytes
for the array — a total of 48,020 bytes. This function would almost certainly result in stack
overflow if called from Excel.

double stack hog example (double arg)

{

double pig array[6000];

pig_array[0] = arg;
for(int 1 = 1; 1 < 6000; i++)
pig arrayl[i] = pig array[i - 1] + 1.0;

return pig array[5999];

To live comfortably within the limited stack space, you only need to follow these sim-
ple guidelines:

Don’t pass large structures as arguments to functions. Use pointers or references instead.
Don’t return large structures. Return pointers to static or dynamically allocated memory.
Don’t declare large automatic variable structures in the function code. If you need them,
declare them as static.

e Don’t call functions recursively unless you’re sure the depth of recursion will always
be shallow. Try using a loop instead.

The above code example is easily fixed (at least from the memory point of view) by the
use of the static keyword in the declaration of pig array[].

When calling back into Excel using the Excel4 () function, Excel versions 97 and
later check to see if there is enough space for the worst case (in terms of stack space
usage) call that could be made. If it thinks there’s not enough room, it will fail the
function call, even though there might have been enough space for this call. Following
the above guidelines and being aware of the limited space should mean that you never
have to worry about stack space. If you are concerned (or just curious) you can find out
how much stack space there currently is with a call to Excel’s x1Stack function as the

162 Excel Add-in Development in C/C++

following example shows:

double _ stdcall get_stack(void)

{

xloper retval;

if (xlretSuccess != Excel4 (x1lStack, &retval, 0)
return -1.0;

return (double) (unsigned short)retval.val.w;

The need to cast the signed integer that x1Stack returns to an unsigned integer is a hang-
over from the days when Excel provided even less stack space and when the maximum
positive value of the signed integer (32,768) was sufficient. Once more stack was made
available, the need emerged for the cast to avoid a negative result.

7.2 STATIC ADD-IN MEMORY AND MULTIPLE
EXCEL INSTANCES

When multiple instances of Excel run, they share a single copy of the DLL executable code.
In Win32 there are no adverse memory consequences of this as each instance of the program
using the DLL gets its own memory space allocated for all the static memory defined in
the DLL. This means that in a function such as the following the returned value will be the
number of times this instance of the program has called this function in the DLL.

int _ stdcall count_calls(void)

{

static int num calls = 0;

return ++num_calls;

}

(This was not the case in 16-bit Windows environments and meant a fair amount of fussing
around with instance handles, blocks of memory allocated for a given instance, etc).

7.3 GETTING EXCEL TO FREE MEMORY ALLOCATED
BY EXCEL

When calling the Excel4 () or Excel4v () functions, Excel will sometimes allocate
memory for the returned value (an x1oper). It will always do this if the returned value
is a string, for example. In such cases it is the responsibility of the DLL to make sure
the memory gets freed. Freeing memory allocated by Excel in this way is done in one of
two ways depending on when the memory is no longer needed:

1. Before the DLL returns control to Excel.
2. After the DLL returns control to Excel.

These cases are covered in the next two sub-sections.
Table 7.1 summarises which x1oper types will and will not have memory that needs
to be freed if returned by Excel4 ().

Memory Management 163

Table 7.1 Returned xlopers for which Excel
allocates memory

Type of xloper Memory allocated if
returned by Excel4 ()

x1typeNum No
xltypeStr Yes
x1ltypeBool No
xltypeRef Yes!
xltypeErr No
x1ltypeMulti Yes

xltypeMissing |No

xltypeNil No
x1ltypeSRef No
x1ltypelnt No

xltypeBigbata |No

7.3.1 Freeing xloper memory within the DLL call

Excel provides a C API function specifically to allow the DLL to tell Excel to free
the memory that it itself allocated and returned in an xloper during a call to either
Excel4 () or Exceldv (). This function is itself is called using Excel4 () and is
defined as x1Free (0x4000).

This function does not return a value and takes the address of the x1oper associated
with the memory that needs to be freed. The function happily accepts x1opers that have
no allocated memory associated with them, but be warned, NEVER pass an x1oper with
memory that your DLL has allocated: this will cause all sorts of unwanted side effects.

The following code fragment shows an example of Excel4 () returning a string for
which it allocated memory. In general, the second argument in the Excel4 () is normally
a pointer to an xloper that would contain the return value of the called function, but
since x1Free doesn’t return a value a null pointer is all that’s required in the second
call to Excel4 () in the example.

xloper dll_name;

// Get the full path and name of the DLL.
Excel4 (x1GetName, &dll_name, 0);

// Do something with the name here, for example...
int len = strlen(dll_name.val.str + 1);

// Get Excel to free the memory that it allocated for the DLL name
Excel4 (x1Free, 0, 1, &dll_name) ;

' The C API function x1fSheetId returns this type of xloper but does not allocate memory.

164 Excel Add-in Development in C/C++

If you know for sure that the call to Excel4 () you are making NEVER returns a type
that has memory allocated to it, then you can get away with not calling x1Free on the
returned xloper. If you're not sure, calling x1Free won’t do any harm.

Warning: Where the type is xltypeMulti it is not necessary to call x1Free for
each of the elements, whatever their types. In fact, doing this will confuse and destabilise
Excel. Similarly, converting elements of an Excel-generated array to or from an xloper
type that has memory associated with it may cause memory problems.

The cpp_xloper class contains a member function, SetExceltoFree (), that sets
a flag telling the class to use x1Free to free memory when the destructor is eventually
called, or before a new value is assigned. The advantage of this, over using xlopers
and x1Free directly, is that calling this method does not free the memory at that point:
the method can be called immediately after the memory has been allocated in the call to
Excel4 (), rather than after its last use. This makes the code much more manageable
and leaks much less likely. The following code fragment shows an example of its use.
Note that the object Caller is used after the call to SetExceltoFree ().

// Get a reference to the calling cell
cpp_xloper Caller;

if (Excel4 (x1fCaller, &Caller, 0))
return p_xlFalse;

// Set a flag to tell the destructor to use xlFree to free memory
Caller.SetExceltoFree() ;

// Convert the reference to text with the full
// workbook/current sheet/range in Al form

cpp_xloper GetCellArg(1l) ;
cpp_xloper RefTextAl;

Excel4 (x1fGetCell, &RefTextAl, 2, &GetCellArg, &Caller);

RefTextAl.SetExceltoFree () ;

7.3.2 Freeing xloper memory returned by the DLL function

This case arises when the DLL needs to return the x1loper, or a pointer to it, to Excel.
Excel has no way of knowing that the x1oper memory it is being passed was allocated
(by itself) during the DLL call, so the DLL function has to tell Excel this fact explicitly
so that Excel knows it has to clean up afterwards. The DLL does this by setting the
x1bitXLFree bit in the x1type field of the x1oper as shown in the following code,
which returns the full path and name of the DLL.

xloper * _ stdcall xloper memory example (int trigger)
static xloper dll_name;
Excel4 (x1GetName, &dll name, 0);

// Excel has allocated memory for the DLL name string which cannot be
// freed until after being returned, so need to set this bit to tell

Memory Management 165

// Excel to free it once it has finished with it.
dll name.xltype |= xlbitXLFree;

return &dl1l_name;

}

The cpp_xloper class contains a method for returning a copy of the contained x1loper,
xloper * ExtractXloper (bool ExceltoFree). This method sets the x1bitXL-
Free bit if either the Boolean argument was set to true or a call to cpp xloper: :
SetExceltoFree () had been made. (See next section for a listing of the code for
ExtractXloper().)

Note: Setting x1bitXLFree on an x1loper that is to be used for the return value for
a call to Excel4 (), prior to the call to Excel4 () that allocates it, will have no effect.
The correct time to set this bit is:

e after the call that sets its value;
e after it might be passed as an argument to other Excel4 () calls;
e before a pointer to it is returned to the worksheet.

The following code will fail to ensure that the string allocated in the call to Excel4 ()
gets freed properly, as the type field of ret oper is completely overwritten in the call:

xloper * _ stdcall bad examplel (void)
{
static xloper ret_oper;
ret oper.type |= xlbitXLFree;
Excel4 (x1GetName, &ret_oper, 0);
return &ret_oper;

The following code will confuse the call to x1fLen, which will not be able to determine
the type of ret oper correctly.

xloper * _ stdcall bad_example2 (void)

{

static xloper ret_oper;
Excel4 (x1GetName, &ret_oper, 0);
ret_oper.type |= x1lbitXLFree;

xloper length;
Excel4 (x1fLen, &length 1, &ret_oper) ;

return &ret_oper;

The following code will work properly.

xloper * _ stdcall good_example (void)

{

static xloper ret_oper;
Excel4 (x1GetName, &ret oper, 0);

166 Excel Add-in Development in C/C++

xloper length;
Excel4 (x1fLen, &length 1, &ret_oper);

ret oper.type |= xlbitXLFree;
return &ret_oper;

7.4 GETTING EXCEL TO CALL BACK THE DLL TO FREE
DLL-ALLOCATED MEMORY

If the DLL returns an xloper, or, in fact, a pointer to an xloper, Excel copies the
values associated with it into the worksheet cell(s) from which it was called and then
discards any temporary copies it has made or that were made on the stack for the return
value. It does not automatically free any memory that the DLL might have allocated
in constructing the xloper. If this memory is not freed, however, the DLL will leak
memory every time the function is called. To prevent this, the C API provides a way to
tell Excel to call back into the DLL once it has finished with the return value, so that the
DLL can clean up. The call-back function is one of the required XLL interface functions,
x1AutoFree. (See section 5.5.7 on page 103 for details.)

It is the responsibility of the DLL programmer to make sure that their implementation
of x1AutoFree understands the data types that will be passed back to it in this call,
and that it knows how to free the memory. For arrays of x1opers (x1typeMulti), this
will, in general, mean freeing the memory associated with each element, and only then
freeing the array memory itself. Care should also be taken to ensure that memory is freed
in a way that is consistent with the way it was allocated.

The DLL code instructs Excel to call x1AutoFree by setting the x1bitDLLFree bit
in the x1type field of the returned xloper. The following code shows the creation of
an array of doubles with random values (set with calls to Excel4 (x1fRand, ...)),
in an x1typeMulti xloper, and its return to Excel.

xloper * _ stdcall random array(int rows, int columns)
int array size = rows * columns;
static xloper ret_ oper;
xloper *array;

if (array_size <= 0)
return NULL;

array = (xloper *)malloc(array size * sizeof (xloper)) ;

if (array == NULL)
return NULL;

for(int i = 0; i < array size; i++)
Excel4 (x1fRand, array + i, 0);

// Instruct Excel to call back into DLL to free the memory
ret oper.xltype = xltypeMulti | xlbitDLLFree;
ret_oper.val.array.lparray = array;

Memory Management 167

ret_oper.val.array.rows = rows;
ret_oper.val.array.columns = columns;

return &ret_oper;

After returning from this function, the DLL will receive a call to its implementation of
x1AutoFree in which the address of the x1oper is passed. The code for that function
should detect that the type is x1typeMulti and should check that each of the elements
themselves do not need to be freed (which they don’t in this example). Then it should
free the xloper array memory.

The following code does the same thing, but using the cpp_xloper class introduced in
section 6.4 on page 121. The code is simplified, but the same things are happening — just
hidden within the class.

xloper * _ stdcall random array(int rows, int columns)
cpp_xloper array ((WORD)rows, (WORD)columns) ;

if (larray.IsType (xltypeMulti))
return NULL;

DWORD array size;
array.GetArraySize (array size);

for (DWORD i = 0; i < array size; i++)
Excel4 (x1fRand, array.GetArrayElement (i), 0);

return array.ExtractXloper (false) ;

The cpp_xloper class contains a method for returning a copy of the contained xloper,
xloper *cpp xloper::ExtractXloper (bool ExceltoFree). Unless the
Boolean argument was set to true or a call to cpp_xloper: :SetExceltoFree ()
had been made, this method sets the x1bitDLLFree bit for types where the class had
allocated memory. Here is a listing of the code for ExtractXloper ().

xloper *cpp_xloper::ExtractXloper (bool ExceltoFree)

{

static xloper ret_val;
ret_val = m_Op;

if (ExceltoFree || m_XLtoFree)

{

ret val.xltype |= xlbitXLFree;

}

else if (m_DLLtoFree)

{

ret val.xltype |= xlbitDLLFree;

if (m_Op.xltype & xltypeMulti)

168 Excel Add-in Development in C/C++

int limit
xloper *p

m _Op.val.array.rows * m_Op.val.array.columns;
m_Op.val.array.lparray;

for(int i = limit; i--; p++)
if (p->xltype == xltypeStr |p->xltype == xltypeRef)
p->x1ltype |= xlbitDLLFree;

// Prevent the destructor from freeing memory by resetting properties

Clear () ;
return &ret_val;

}

7.5 RETURNING DATA BY MODIFYING ARGUMENTS
IN PLACE

Where you need to return data that would ordinarily need to be stored in dynamically
allocated memory, you need to use the techniques described above. However, in some
cases you can avoid allocating memory, and the worry of how to free it. This is done by
modifying an argument that was passed to your DLL function as a pointer reference — a
technique known as modifying in place. Excel accommodates this for a number of argu-
ment types, provided that the function is declared and registered in the right way. (See
section 8.5.6 Returning values by modifying arguments in place on page 189 for details
of how to do this.)

There are some limitations. Where the data is a string (a null-terminated char ¥*),
Excel allocates enough space for a 255-character string only — not 256! Where the data
is an array of doubles of type x1 array (see section 6.2.2 Excel floating-point array
structure: x1_array on page 107) the returned data can be no bigger than the passed-in
array. Arrays of strings cannot be returned in this way.

8

Accessing Excel Functionality
Using the C API

This chapter sets out how to use the C API, and the API’s relationship to the Excel 4
macro language. Many of the XLM functions, and their C API counterparts, take mul-
tiple arguments and can return a great variety of information, in particular the workspace
information functions. It is not the intention of this book to be a reference manual for
the XLM language. (The Microsoft XLLM help file Macrofun.hlp is still freely down-
loadable from Microsoft at the time of writing.) Instead this chapter aims to provide a
description of those aspects of the C API that are most relevant to writing worksheet
functions and simple commands. Therefore many of the possible arguments of some of
the C API functions are omitted. Also, this chapter is focused on using the C API rather
than XLM functions on a macro sheet.

As described in detail in section 8.2 below, the C API is accessed via two functions,
Excel4 () and Excel4v (). These functions, and hence C API, can be wrapped up in a
number of ways that arguably make its use easier. This book intentionally does not present
a wrapped view of the C API, so that its workings are exposed as clearly as possible.
C++ wrappers can be envisaged that make implementation of XLLs more straightforward,
rapid and the resulting code more easily maintained.'

8.1 THE EXCEL 4 MACRO LANGUAGE (XLM)

Excel 4 introduced a macro language, XLLM, which was eventually mapped to the C API
in Excel 5. Support for XLLM and the functionality of the C API remain unchanged up to
Excel 2003 (the latest version at the time of writing). The fact that it remains unchanged
is clearly a weakness of the C API relative to VBA: VBA has better access to Excel
objects and events than the C API. When writing commands to manipulate the Excel
environment, life is much easier in VB. The real benefits of using C/C++ DLLs and the C
API are realised in worksheet functions. You can have the best of both worlds, of course.
VB commands and DLL functions that use the C API are easily interfaced, as described
in section 3.6 Using VBA as an interface to external DLL add-ins on page 48.

This book is not about writing Excel 4 macro sheets, but some understanding of the
syntax of the XLM functions and commands is important when using the C API — the C
API mirrors XLM syntax. At a minimum, registering DLL functions requires knowledge of
the XLLM function REGISTER(). The arguments are identical to those of the C API function
x1fRegister, one of the enumerated function constants used in calls to Excel4 ()
and Excel4v (). If you're relying heavily on the C API, then sooner or later you’ll
need to know what parameters to pass and in what order for one or more of the XLM
functions. This chapter covers the aspects of the XLLM most relevant to the subject of this
book. A Windows help file, Macrofun.hlp, downloadable from Microsoft’s website,

! One example, freely available at the time of writing, is the XLW C++ wrapper developed by Jérome Lecomte.
This can be accessed at the time of writing via the Source Forge website at xlw.sourceforge.net. A review of
this open source project is beyond the scope of this book, but it is well worth looking at, if only to see the
variety of approaches and resources that can be employed.

170 Excel Add-in Development in C/C++

provides a great deal more information than given in this chapter. However it only relates
to XLM as used in a macro sheet, and therefore, from a C API point of view, has holes
that this chapter aims to fill.

As described below, the Excel4 () and Excel4v () Excel library functions pro-
vide access to the Excel 4 macro language and Excel’s built-in worksheet functions
via enumerated function constants. These are defined in the SDK header file as either
x1f FunctionName in the case of functions, or x1cCommandName in the case of com-
mands. Typically, an Excel function that appears in uppercase on a sheet appears in
proper case in the header file. For example, the worksheet function INDEX() is enumerated
as x1fIndex, and the macro sheet function GET.CELL() becomes x1fGetCell. There
are also a small number of functions available only to the C API that have no equivalents
in the macro language. These are listed in Table 8.1 and described in detail in section 8.7
Functions defined for the C API only on page 199.

Table 8.1 C API-only functions

Enumerated constant Value
x1Free 16384
x1Stack 16385
x1Coerce 16386
x1lSet 16387
x1SheetId 16388
x1SheetNm 16389
x1Abort 16390
x1GetInst 16391
x1GetHwnd 16392
x1GetName 16393
x1EnableXLMsgs 16394
x1DisableXLMsgs 16395
x1DefineBinaryName | 16396
x1GetBinaryName 16397

Note: Some C API functions (starting x1f-) are, in fact, commands or command-
equivalents. They cannot be called from DLL functions that are called (directly or
indirectly) from worksheet cells. However some functions that perform seemingly
command-like operations surprisingly can be called in this way, for example
x1fWindowTitle and x1fAppTitle which are described below.

8.1.1 Commands, worksheet functions and macro sheet functions

Excel recognises three different categories of function:

1. Commands

Accessing Excel Functionality Using the C API 171

2. Macro sheet functions
3. Worksheet functions

Sections 2.8 Commands versus functions in Excel on page 19, 3.8 Commands versus
functions in VBA on page 71 and 8.5.4 Giving functions macro-sheet function permissions
on page 188 discuss the differences in the way Excel treats these functions and what
functions in each category can and cannot do.

8.1.2 Commands that optionally display dialogs — the x1Prompt bit

Many Excel commands can optionally invoke dialogs that allow the user to modify inputs
or cancel the command. These dialogs will all be familiar to frequent Excel users, so a
list of those commands that permit this and those that don’t is not given here. The only
important points to address here are (1) how to call the command using Excel4 () to
display the dialog, (2) what are the differences in setting up the arguments for the call to
the command with and without the dialog being displayed, and (3) what return value to
expect if the user cancels the command.

The first point is very straightforward. The enumerated function constant, for example
x1cDef ineName, should be bit-wise or’d with the value 0x1000, defined as x1Prompt
in the SDK header file.

On the second point, the arguments supplied pre-populate the fields in the dialog
box. Any that are not supplied will result in either blank fields or fields that contain
Excel defaults.

Any command function that can be called in this way will return true if successful and
false if cancelled or unsuccessful.

For example, the following command calls the x1cDefineName function with the
dialog displayed.

int _ stdcall define new_ name (void)

// Get the name to be defined from the active cell. First get a
// reference to the active cell. No need to evaluate it, as call
// to xlcDefineName will try to convert contents of cell to a

// string and use that.

cpp_xloper Name;
int x14 = Excel4 (x1fActiveCell, &Name, O0) ;

Name.SetExceltoFree () ;

if (1x1l4 && !Name.IsType (xltypeErr))
Exceld (x1lcDefineName | x1Prompt, 0, 1, &Name) ;

return 1;

8.2 THE Excel4 () C API FUNCTION

8.2.1 Introduction

Once inside the DLL you will sometimes need or want to call back into Excel to access
its functionality. This might be because you want to take advantage of Excel’s ability

172 Excel Add-in Development in C/C++

to convert from one data type to another (especially where the input might be one of a
number of things that Excel has passed to you as an argument to a function), or because
you need to register or un-register a DLL function or free some memory that Excel has
allocated. Excel provides two functions that enable you to do all these things, Excel4 ()
and Excel4v (). These are essentially the same function, the first taking a variable
argument list, the second fixed but with a variable sized array of arguments that you wish
to pass in.
The syntax for Excel4 () is:

int Excel4 (int x1fn, xloper *RetVal, int count, ...);

Note that the calling convention is ___cdec1 in order to support the variable argument list.
Here is a brief overview of the arguments:

Table 8.2 Excel4 () arguments

Argument

Meaning

Comments

int x1fn

A number corresponding to a
function or command
recognised by Excel as part of
the C APL

Must be one of the predefined
constants defined in the SDK
header file x1call.h

xloper *pRetVal

A pointer to an xloper that
will contain the return value of
the function x1£n if

Excel4 () was able to call it.

If a return value is not required
by the caller, NULL (zero) can
be passed.

If Excel4 () was unable to
call the function, the contents
of this are unchanged.

Excel allocates memory for
certain return types. It is the
responsibility of the caller to
know when and how to tell
Excel to free this memory.
(See x1Free and
x1lbitXLFree.)

If a function does not return
an argument, for example,
x1Free, Excel4 () will
ignore pRetval.

int count

The number of arguments to
x1£fn being passed in this call
to Excel4 ().

The maximum value is 30.

xloper *argl

A pointer to an xlopers
containing the arguments for
x1fn.

Missing arguments should be
passed as xlopers of type
xltypeMissing.

xloper *arg30

Accessing Excel Functionality Using the C API 173

The x1£n function being executed will always be one of the following:

an Excel worksheet function;

a C API-only function;

an Excel macro sheet function;

an Excel macro sheet command function.

These function enumerations are defined in the SDK header file x1call.h as either

x1f- or x1lc-prefixed depending on whether they are functions or commands. There are

also a number of non-XLM functions available only to the C API, such as x1Free.
The following sections provide more detail.

8.2.2 Excel4 () return values

The value that Excel4 () returns reflects whether the supplied function (designated by
the x1£fn argument) was able to be executed or not. If successful Excel4 () returns zero
(defined as x1retSuccess), BUT this does not always mean that the x1fn function
executed without error. To determine this you need to check the return value of the x1fn
function passed back via the xloper *pRetVal. Where Excel4 () returns a non-zero
error value (see below for more details) you do know that the x1fn function was either
not called at all or did not complete.

The return value is always one of the values given in Table 8.3. (Constants in paren-
theses are defined in the SDK header file x1call.h.)

Table 8.3 Excel4 () return values

Returned value Meaning

0 (xlretSuccess) The x1£n function was called successfully, but you need also
to check the type and/or value of the return xloper in case
the function could not perform the intended task.

1 (xlretAbort) The function was called as part of a call to a macro that has
been halted by the user or the system.

2 (xlretInvXlfn) The x1£n function is not recognised or not supported or
cannot be called in the given context.

4 (xlretInvCount) The number of arguments supplied is not valid for the
specified x1£fn function.

8 (xlretInvXloper) One or more of the passed-in xlopers is not valid.

16 (xlretStackOvfl) Excel’s pre-call stack check indicates a possibility that the
stack might overflow. (See section 7.1 Excel stack space
limitations on page 161.)

32 (xlretFailed) The x1£fn command (not a function) that was being executed
failed.

(continued overleaf’)

174 Excel Add-in Development in C/C++

Table 8.3 (continued)

Returned value Meaning

64 (xlretUncalced) A worksheet function has tried to access data from a cell or
range of cells that have not yet been recalculated as part of
this workbook recalculation. Macro sheet-equivalent functions
and commands are not subject to this restriction and can read
uncalculated cell values. (See section 8.1.1 Commands,
worksheet functions and macro sheet functions, page 170, for
details.)

8.2.3 Calling Excel worksheet functions in the DLL using Excel4 ()

Excel exposes all of the built-in worksheet functions through Excel4 (). Calling a work-
sheet function via the C API is simply a matter of understanding how to set up the call
to Excel4 ()and the number and types of arguments that the worksheet function takes.
Arguments are all passed as pointers to x1opers so successfully converting from C/C++
types to x1loper is a necessary part of making a call. (See section 6.5 Converting between
xlopers and C/C++ data types on page 126.)

The following code examples show how to set up and call Excel4 () using xlopers
directly, as well as with the cpp_xloper class defined in section 6.4 on page 121. The
example function is a fairly useful one: the =MATCH() function, invoked from the DLL by
calling Excel4 () with x1fMatch.

Worksheet function syntax: =MATCH(lookup_value, lookup_array, match_type)

The following code accepts inputs of exactly the same type as the worksheet function
and then sets up the call to the worksheet function via the C APIL. Of course, there is no
value in this other than demonstrating how to use Excel4 ().

xloper * _ stdcall Excel4 match(xloper *p_ lookup value,
xloper *p lookup_ array, int match_ type)
{

static xloper match retval = {0, xltypelInt};
xloper match_type oper;

// Convert the integer argument into an xloper so that a pointer
// to this can be passed to Excel4 ()
match type oper.val.w = match type;

int x14 = Excel4(
x1fMatch, // 1lst arg: the function to be called
&match_retval,// 2nd arg: ptr to return value
3, // 3rd arg: number of subsequent args
p_lookup_ value, // fn argl
p_lookup_array, // fn arg2
&match_type oper);// fn arg3

// Test the return value of Excel4 ()
if(x14 != xlretSuccess)
{
match retval.xltype = xltypeErr;
match_retval.val.err = xlerrValue;

Accessing Excel Functionality Using the C API 175

}

else
// Tell Excel to free up memory that it might have allocated for
// the return value.

match retval.xltype |= xlbitXLFree;
}

return &match_ retval;

}

The above example shows how the following steps have been taken:

1. Conversion of arguments to the Excel4 () function into xlopers. (Here the integer
match_type is converted to an internal integer x1oper. It could have been converted
to a floating point x1oper.)

2. Passing of the correct constant for the function to be called to Excel4 (), in this case
x1fMatch = 64.

3. Passing of a pointer to an xloper that will hold the return value of the function. (If
the function does not return a value, passing NULL or 0 is permitted.)

4. Passing a number telling Excel4 () how many subsequent arguments (the arguments
for the called function) are being supplied. x1fMatch can take 2 or 3 arguments, but
in this case we pass 3.

5. Passing of pointers to the arguments.

6. Collection and testing of the return value of Excel4 ().

In some cases, you might also want to test the type of the returned x1loper to check that
the called function completed successfully. In most cases a test of the x1type to see if
it is x1typeErr is sufficient. In this case we are returning the x1loper directly, so can
allow the spreadsheet to deal with any error in the same way that it would after a call to
the MATCH() function itself.

Note: If Excel was unable to call the function, say, if the function number was not valid,
the return value xloper would be untouched. In some cases it may be safe to assume
that Excel4 () will not fail and simply test whether the x1£fn function that Excel4 ()
was evaluating was successful by testing the x1type of the return value xloper.

Some simplifications to the above code example are possible. The function
Excel4 match() need not be declared to take an integer 3rd argument. Instead, it
could take another x1oper pointer. Also, we can be confident in the setting up of the
call to Excel4 () that we have chosen the right function constant, that the number of
the arguments is good and that we are calling the function at a time and with arguments
that are not going to cause a problem. So, there’s no need to store and test the return
value of Excel4 () and the x1fMatch return value can be returned straight away. If
x1fMatch returned an error, this will propagate back to the caller in an acceptable way.

The function could therefore be simplified to the following (with comments removed):

xloper * _ stdcall Excel4 match(xloper *p lookup value,
xloper *p_lookup_ array, xloper *p match type)
{

static xloper match_retval;

176 Excel Add-in Development in C/C++

Excel4 (x1fMatch, &match retval, 3,
p_lookup_value, p_lookup array, p_match_ type);

return &match retval;

}

As already mentioned, there is no point in writing a function like this that does exactly
what the function in the worksheet does, other than to demonstrate how to call worksheet
functions from the DLL. If you want to customise a worksheet function, a cloned function
like this is, however, a sensible starting point.

8.2.4 Calling macro sheet functions from the DLL using Excel4 ()

Excel’s built-in macro sheet functions typically return some information about the Excel
environment or the property of some workbook or cell. These can be extremely useful
in an XLL. Two examples are the functions =CALLER() and =GET.CELL() and their C API
equivalents x1fCaller and x1fGetCell. The first takes no arguments and returns a
reference to the cell or object from which the function (or command) was called. The
second takes a cell reference and an integer value and returns some information. What
information depends on the value of the integer argument. Both of the C API functions
are covered in more detail later on in this chapter.

The following code fragment shows an example of both functions in action. This func-
tion toggles the calling cell between two states, 0 and 1, every time Excel recalculates. (To
work as described, the function needs to be declared a volatile function — see section 8.5.5
Specifying functions as volatile on page 189.)

xloper * _ stdcall toggle_ caller (void)
{

xloper Caller;

xloper GetCell param;

static xloper RetVal;

GetCell param.xltype = xltypelnt;
GetCell param.val.w = 5; // contents of cell as number

Excel4 (x1fCaller, &Caller, 0);
Excel4 (x1fGetCell, &RetVal, 2, &GetCell param, &Caller);
if (RetVal.xltype == xltypeNum)

RetVal.val.num = (RetVal.val.num == 0 ? 1.0 : 0.0);

Excel4 (x1Free, 0, 1, &Caller);
return &RetVal;

An alternative method of getting the calling cell’s value is to use the C API x1Coerce
function, also covered in more detail below, to convert the cell reference to the desired
data type, in this case a number. The equivalent code written using the cpp xloper

Accessing Excel Functionality Using the C API 177

class and x1Coerce would be:

xloper * _ stdcall toggle caller (void)
{
cpp_xloper Caller;
Excel4 (x1fCaller, &Caller, 0);
Caller.SetExceltoFree() ;

cpp_xloper RetVal;

cpp_xloper TypeNum(xltypeNum) ;

Excel4d (x1Coerce, &RetVal, 2, &Caller, &TypeNum) ;
RetVal = ((double)RetVal == 0.0) ? 1.0 : 0.0;
return RetVal.ExtractXloper () ;

Circular reference note: In the above example, the function gets information about the
calling cell, its value, and then returns a function of it to that same cell. This gives
Excel an obvious dilemma: the function depends on itself so there is a circular refer-
ence. How Excel deals with this depends on how the toggle caller () was regis-
tered. If registered as a worksheet function, the call to x1fGetCell will return the
error code 2 (x1lretInvXlfn). Excel considers functions like x1fGetCell to be
off-limits for normal worksheet functions, getting round this and other problems that
can arise. This is the same rejection as you would see if you entered the formula
=GET.CELL(5,A1) in a worksheet cell — Excel would display an error dialog saying “That
function is not valid”. (Such functions were introduced only to be used in Excel macro
sheets.) The equivalent code that calls x1Coerce would also fail, this time with an
error code of 64 (x1lretUncalced). In this case Excel is complaining that the source
cell has not been recalculated. If toggle caller () had been registered as a macro
sheet function, Excel is more permissive; the function behaves as you would expect.
Section 8.5.4 Giving functions macro sheet function permissions on page 188 describes
how to do this.

Being able to give your XLL worksheet functions macro sheet function capabilities
opens up the possibility of writing some really absurd and useless functions. Some poten-
tially useful ones are also possible, such as the above example, and the following very
similar one that simply counts the number of times it is called. In this case, the example
uses a trigger argument, and effectively counts the number of times that argument changes.

xloper * _ stdcall increment caller (int trigger)
{

xloper Caller;

xloper GetCell param;

static xloper RetVal;

GetCell param.xltype = xltypelnt;
GetCell param.val.w = 5; // contents of caller as number

Excel4 (x1fCaller, &Caller, 0);
Excel4 (x1fGetCell, &RetVal, 2, &GetCell param, &Caller);

if (RetvVal.xltype == xltypeNum)
RetVal.val.num += 1.0;

178 Excel Add-in Development in C/C++

Excel4 (x1Free, 0, 1, &Caller);
return &RetVal;

8.2.5 Calling macro sheet commands from the DLL using Excel4 ()

XLM macro sheet commands are entered into macro sheet cells in the same way as work-
sheet or macro sheet functions. The difference is that they execute command-equivalent
actions, for example, closing or opening a workbook. Calling these commands using
Excel4 () is programmatically the same as calling functions, although they only exe-
cute successfully if called during the execution of a command. In other words, they are
off-limits to worksheet and macro sheet equivalent functions. Sections 8.11 onwards to
the end of the chapter contain numerous examples of such calls.

8.3 THE Excel4v () C API FUNCTION

The syntax for Exceldv () is:

int _ stdcall Excel4v(int x1fn, xloper *RetVal, int count,
xloper *opersl(]);

which returns the same values as Excel4 ().

Table 8.4 Excel4v () arguments

Argument Meaning Comments
int x1fn A number corresponding to a Must be one of the predefined
function or command recognised constants defined in the SDK
by Excel as part of the C API. header file x1call.h.
xloper *RetVal A pointer to an xloper that will If Excel4v () was unable to
contain the return value of the call the function, the contents
function x1fn if Exceldv () was of this are unchanged.

able to call it.
Excel allocates memory for

If a return value is not required by certain return types. It is the
the caller, NULL (zero) can be responsibility of the caller to
passed. know when and how to tell

Excel to free this memory. (See
x1Free and x1bitXLFree.)

int count The number of arguments to x1fn As with Excel4 () the
being passed in this call to maximum value is 30.
Excel4v ().

xloper *opers [] An array, of at least count

elements, of pointers to xlopers
containing the arguments for x1fn.

Accessing Excel Functionality Using the C API

The following example simply provides a worksheet interface to Excel4v () allowing
the function number and the arguments that are appropriate for that function to be passed
in directly from the sheet. This can be an extremely useful tool but also one to be used
with great care. This section outlines some of the things this enables you to do, but first

here’s the code with comments that explain what is going on.

xloper
xloper
xloper
xloper
xloper
xloper

*arg2, xloper *arg3,

xloper * _ stdcall XL4 (int x1fn, xloper *arg0, xloper *argl,

xloper *arg4,

*arg5s,
*args8,
*argll,
*argl4,

xloper *argé6,
xloper *arg9,
xloper *argl2,
xloper *argls,

xloper *arg7,
xloper *arglo,

xloper *argl3s,
xloper *argle,

*argl7, xloper *argls8)

xloper *arg arrayl[19];
static xloper ret xloper;

//
//

Fill in array of pointers to the xloper arguments ready for the

call to Excel4dv ()

arg array [0]
arg array[1]
arg_array[2]
arg_array [3]
arg array [4]
arg array[5] =
arg_array [6]
arg_array[7]
arg array [8]
arg array [9]
arg_array[10]
arg_array[11]
arg_array[12]
arg array[13]
arg array[14]
arg_array[15]
arg_array[16]
arg array[17]
]

= argo0;

argl;
arg2;
arg3;
arg4;
args;
arge6;
arg7;
args8;
arg9;
arglo;
argll;
argl2;
argl3;
argl4;
argls;
arglé6;
argl7;
arglsg;

arg array[18
// Find the last non-missing argument
for(int i = 19; --1 >= 0;)
if (arg_array[i]->xltype != xltypeMissing)
break;

Call the function
int retval = Excel4v (xlfn,

!/

&ret_xloper, i + 1, arg array);

if (retval
{
If the call to Excel4v() failed, return a string explaining
and tell Excel to call back into the DLL to free the memory
about to be allocated for the return string.
ret _xloper.xltype = xltypeStr | xlbitDLLFree;
ret_xloper.val.str = new xlstring(Excel4_err msg(retval)) ;

= xlretSuccess)
//
//

why

}

else

{

// Tell Excel to free up memory that it might have allocated for

180 Excel Add-in Development in C/C++

// the return value.
ret_xloper.xltype |= xlbitXLFree;
}

return &ret_xloper;

}

The function Excel4 err msg () simply returns a string with an appropriate error mes-
sage should the call to Excel4v () fail, and is listed below. The function
new_xlstring() creates a byte-counted string from this.

char *Excel4 err msg(int err num)

{

switch (err_num)

{

case xlretAbort: return "XL4: macro halted";

case xlretInvXlfn: return "XL4: invalid function number";
case xlretInvCount: return "XL4: invalid number of args";
case xlretInvXloper: return "XL4: invalid oper structure";
case xlretStackOvfl: return "XL4: stack overflow";

case xlretUncalced: return "XL4: uncalced cell";

case xlretFailed: return "XL4: command failed";

default: return NULL;

}

The function XL4 () takes 20 arguments (one for the C API function code, and up to 19
function arguments). The Excel worksheet limit for any function is 30 arguments, but the
means by which functions are registered (see section 8.5 below) imposes this limit on
exported XLL functions.

8.4 WHAT C API FUNCTIONS CAN THE DLL
CALL AND WHEN?

The C API was designed to be called from DLL functions that have themselves been
called by Excel while executing commands, during worksheet recalculations or during
one of the Add-in Manager’s calls to one of the x1Auto- functions. DLL routines can
be called in other ways too: the D11Main () function is called by the operating system;
VB can call exported DLL functions that have been declared within the VB module; the
DLL can set up operating system call-backs, for example, at regular timed intervals; the
DLL can create background threads.

Excel is not always ready to receive calls to the Excel4 () or Excel4dv () func-
tions. The following table summarises when you can and cannot call these functions
safely.

Accessing Excel Functionality Using the C API

181

Table 8.5 When it is safe to call the C API

When called Safe to call? Additional comments

During a call to the DLL from: Yes In all these cases Excel is

e an Excel command, running a command, i.e., these

e a user-defined command in a are all effectively called as a
macro sheet, result of a user action, e.g.,

e a user-defined command starting Excel, loading a
subroutine in a VB code workbook, choosing a menu
module, option, etc.

e the Add-in Manager to one
of the x1Auto- functions, All x1£-, x1c- and the C

e an XLL command run using API-only functions are
the x1cOnTime C API available.
function.

During a call to the DLL from Yes DLL functions called from VB

a user-defined VBA worksheet in this way cannot call macro

function. sheet C API functions such as

the workspace information
function x1fGetWorkbook.

During a direct call to a macro Yes Most of the x1£- functions and

sheet equivalent function, the C API-only functions are

called as a result of available. (A number of the

recalculation of a worksheet x1£- functions are, in fact,

cell or cells. command-equivalents and can
only be called from
commands.)
Note: Functions within VB
modules that are called as a
result of a worksheet
recalculation are worksheet
function equivalents not
macro-sheet equivalents.

During a direct call to a Yes Only worksheet equivalent

worksheet equivalent function, x1£- functions and the C

called as a result of API-only functions are

recalculation of a worksheet available. A large number of

cell or cells. the x1£- functions are only
accessible to macro sheet
equivalent functions. Calling
these will either result in
Excel4 () returning
xlretFailed.

(continued overleaf’)

182 Excel Add-in Development in C/C++

Table 8.5 (continued)

When called Safe to call? Additional comments

Note that some
otherwise-permitted x1 £-
functions that attempt to
obtain the values of
unrecalculated cells will fail,
returning xlretUncalced,
unless called from macro sheet
equivalent

functions.

Functions within VB modules
that are called as a result of a
worksheet recalculation are
subject to the above

restrictions.
During a call to a DLL No In both of these cases, calling
function by the operating Excel4 () or Excel4dv ()
system. will have unpredictable results
and may crash or destabilise
Excel.
During an execution of a No See section.9.5 /‘chesfving
background thread created by Excel functionality using
the DLL. COM/OLE for information

about how to call Excel in such
cases, including how to get
Excel to call into the DLL
again in such a way that the C
API is available.

8.5 REGISTERING AND UN-REGISTERING DLL (XLL)
FUNCTIONS

Registering functions is an essential step in making your DLL functions accessible on the
worksheet (without going via VB). It is also the means by which you specify what a user
sees when they invoke the Paste Function or Add-in Manager dialogs. Functions can be
registered from any command at any time, the most sensible place being the x1Aut oOpen
XLL interface function. (See section 5.5 XLL functions called by the Add-in Manager and
Excel on page 98 for details of when this function is called.)

When your DLL is unloaded, registered functions should, in theory, be un-registered so
that Excel knows they are inaccessible — something best done in the x1AutoClose XLL
interface function. However, a bug in Excel prevents functions from being unregistered
properly. This is not a great concern, as it does nothing to destabilise Excel.

Accessing Excel Functionality Using the C API 183

Registering functions is equivalent in many ways to declaring DLL functions in VBA.
The required minimum information is very similar: the DLL path and file name, the
function name as exported, the argument types and the return type. However, Excel
allows the DLL to tell it many more things about the function at the same time, such as
the calling equivalence of the function (worksheet or macro sheet equivalent), whether or
not the function is volatile, as well as providing information for the Add-in Manager and
the Paste Function dialog.

8.5.1 The x1fRegister function

Overview: Registers and un-registers DLL and XLL commands and
functions.

Enumeration value: 149 (x95)

Callable from: Commands only.
Return type: An x1ltypeNum xloper.
Arguments: See table below.

Registering and un-registering commands and functions is accomplished with calls to the
same function, x1fRegister. All arguments can be passed in as byte-counted string
x1lopers, although numerical values can be passed in some cases. Their meaning is given
in the following table. To register a worksheet function, at least the first 5 are required. To
register a command, at least 6 are needed. (See section 8.6 Registering and un-registering
DLL (XLL) commands on page 196 for more about commands.)

Table 8.6 x1fRegister arguments for registering functions

Argument Required or Description
number optional
1 Required The full drive, path and filename of the DLL containing the
function.
2 Required The function name as it is exported. Note: This is

case-sensitive.

3 Required The return type, argument type and calling permission
string. (See sections 8.5.3, 8.5.4 and 8.5.5 for details.)

4 Required The function name as you wish it to appear in the
worksheet.
Note: This is case-sensitive.

5 Required The argument names as a comma-delimited concatenated
string, e.g., "Argl, Arg2,Arg3". Excel uses this string to
work out the number of arguments and to determine the
text to show to the left of each of the corresponding
text-boxes in the Paste Function dialog.

(continued overleaf’)

184 Excel Add-in Development in C/C++

Table 8.6 (continued)

Argument Required or Description
number optional
6 Optional The function type: 1 or omitted = Function; 2 = Command.
7 Optional The Paste Function category in which the function is to be

listed. If omitted the function is listed under User Defined.
(See section 8.5.2 for details.)

8 Optional (Not used).
9 Optional The help topic.
10 Optional A brief description of the function, e.g., "This

function returns the factorial of positive
integers less than 20". This text is displayed in
the Paste Function dialog.

11 Optional Help for the 1st argument, e.g., "A positive integer
less than 20". This text is displayed in the Paste
Function dialog when the text box relating to this argument
is selected.

12 Optional Help for the 2nd argument.

30 Optional Help for the 20th argument.

Excel4 () and Excel4dv ()’s limit of 30 arguments, through which all these arguments
must be passed in order to register the function, imposes the limit of 20 arguments for any
DLL function that you wish to export and make available on the worksheet. In practice
this is not too much of a problem. If you really need to pass more information than this,
combining data into a single array or range argument is the most obvious solution.

Note: A curious Excel bug sometimes causes the truncation of the last 2 characters of
the last argument help text in the Paste Function dialog. This can be avoided by padding
with a couple of spaces or by passing an extra blank text argument.

Here is an example of code that registers a function using the cpp xloper class
to ease creation of the arguments. Note that, in practice, registering functions one by
one like this, each with its own registration function, would be extremely cumbersome.
Section 8.5.10 Managing the data needed to register exported functions on page 191
describes a much more efficient and organised approach.

bool register_ example (void)
{
cpp_xloper Dl1lName;
cpp_xloper FunctionName ("exponent function");
cpp_xloper TypeText ("BB"); // = return a double, take a double
cpp_xloper Worksheet function name ("MY EXP");
cpp_xloper Arguments ("Exponent") ;

Accessing Excel Functionality Using the C API 185

cpp_xloper FunctionType (1) ;

cpp_xloper Category("My functions");

cpp_xloper Description("Returns e to the power of Exponent");
cpp_xloper ArglHelp ("Any number such that |n| <= 709");
cpp_xloper RetVal;

// Get the full path and name of the DLL.
if (Excel4d (x1GetName, &DllName, 0) != xlretSuccess)
return false;

// Tell destructor to use Excel to free the string memory when done.
Dl1Name.SetExceltoFree () ;

int XL4 ret val = Excel4 (xlfRegister,
&RetVal,
11, // number of subsequent arguments
&D11Name,
&FunctionName,
&TypeText,
&WorksheetFunctionName,
&Arguments,
&FunctionType,
&Category,
p_x1lMissing, // no short-cut
p_x1Missing, // no help topic
&Description,
&ArglHelp) ;

if (XL4_ret_val)

{

cpp_xloper Message ("Could not register MY EXP");
cpp_xloper Type(2); // Dialog box type.

Excel4 (xlcAlert, NULL, 2, &Message, &Type);
return false;

}

return true;

Warning: It is possible to register the same DLL function twice, giving it a different
worksheet name, the 4th argument, in both cases. You might want to do this so that, for
example, in one case it is volatile and in the other it is not. Or you might want to register
it as taking an xloper argument in one case and an oper argument in the other. (The
following sections discuss how to specify these things.) Excel will not complain if you
do this, but it may be unable to distinguish between the two functions, and the desired
differentiation might not occur. The simple work-around is to create a wrapper to the
function and export both the function and the wrapper.

8.5.2 Specifying which category the function should be listed under

Argument 7 to x1fRegister tells Excel which function category to list worksheet
functions under in the Paste Function dialog. This can be a number or text corresponding
to one of the hard-coded standard categories, or the text of a new category specified by
the DLL. If the text given does not exist already, Excel will create a new category with
that name. Creating a new category for a given DLL is a good idea, especially where they

186 Excel Add-in Development in C/C++

are to be distributed. It makes it clear which DLL and software provider the functions
are associated with.

The standard categories that are visible when viewing the Paste Function dialog from
within a worksheet are:

Table 8.7 Standard worksheet
function categories

Number Text
1 Financial
2 Date & Time
3 Math & Trig
4 Text
5 Logical
6 Lookup & Reference
7 Database
8 Statistical
9 Information
14 User Defined

There are also a number of categories that are only visible when viewing the Paste
Function dialog from within a macro sheet. As this book is not about XLM or macro
sheets, these are mentioned only for completeness:

Table 8.8 Macro sheet function

categories
Number Text
10 Commands
11 Actions
12 Customising
13 Macro Control

8.5.3 Specifying argument and return types

The string supplied as argument 3 to x1fRegister encodes the return type of the
function in its first letter and the types of the arguments in its subsequent letters. (In
fact it is used to specify more than just this — see sections 8.5.4, 8.5.5 and 8.5.6.) Excel
uses these letters to ensure it does the necessary conversions of inputs and return values.
Note that Excel has no way to check that the letters used correspond to the function as
defined in the DLL code. The x1fRegister function will be successful even if they

Accessing Excel Functionality Using the C API 187

don’t match. However, Excel will have problems calling the function, so you need to be
sure you’ve specified these correctly.
The following table shows how the various data types are encoded:

Table 8.9 Registered function argument and return types

Data type Pass by | Pass by ref Comments
value (pointer)
Boolean A L Implemented as short
Oorl

double B E
char * C,F Null-terminated string
unsigned char * D, G Byte-counted string
unsigned short int H Also defined as DWORD
signed short int I M
signed long int J N
struct x1_array K See section 6.2.2, page 107
struct oper P See section 6.2.6, page 119
struct xloper R See section 6.2.3, page 111

If a function uses a pass-by-reference (pointer) type for its return value, you can pass a
null pointer as the return value. Microsoft Excel will translate this to the #NUM! error.

Examples

Full explanations of # (indicating a macro sheet equivalent function) and ! (indicating a
volatile function) and the leading numeral (indicating the position of an argument to be
modified in place as the return value) are given below in sections 8.5.4, 8.5.5 and 8.5.6

respectively.

Table 8.10 Example argument strings for registered functions

Calling specifier Description

(3rd argument to

x1fRegister)

BB Take a double. Return a double.

BJJ Take two signed long integers. Return a double.

CB Take a double. Return a null-terminated C string.

1F Take a null-terminated C string and modify it in-place.

(continued overleaf’)

188 Excel Add-in Development in C/C++

Table 8.10 (continued)

Calling specifier Description

(3rd argument to

x1fRegister)

1G Take a byte-counted string and modify it in-place.

2BF Take a double and a null-terminated C string and modify the string (the

2nd argument) in-place. Function must return void.

FBF As above example, except function can return anything: Excel will
ignore it.

CD Take a byte-counted string and return a null-terminated C string.

2EEE Take three pointers to double and modify the 2nd argument in-place.

1K Take and return a floating-point array structure (see section 6.2.2) by

modifying in-place the first and only argument.

KJJ Take two signed long integers. Return a floating-point array structure.
(See section 6.2.2.)

RR Take a pointer to x1loper. Return a pointer to xloper.
J! Take no arguments. Return a signed long integer. Function is volatile.
RJIJIT# Take four signed long integers. Return a pointer to x1loper. Function

has macro sheet equivalence and is able to reference uncalculated cells
and macro sheet information functions.

1RR#! Take two pointers to xloper. Return an xloper via the first argument
by modifying in place. Function is volatile and has macro sheet
equivalence.

RPP Take two pointers to oper. Return a pointer to xloper.

8.5.4 Giving functions macro sheet function permissions

Excel allows macro sheet functions to do a number of things that ordinary worksheet
functions cannot. For example, they are able to access the current value of any cell,
whether or not that cell is in need of recalculation. They are also permitted to call a number
of workspace information functions that are off-limits to worksheet functions. Effectively,
macro sheet functions have a higher permission level than worksheet functions.

When registering DLL functions, (not commands), you tell Excel whether your function
should have macro sheet function permissions or not. By default it will not, but is given
them by appending a ‘#’ character to the end of the type string, argument 3. For example
a function declared as “BB#” (a function that takes a double and returns a double)
will be able to access the value of all uncalculated cells.

Excel forbids the use of built-in macro sheet functions in worksheets. Try entering the
formula =Get.Note(A1) in a worksheet — Excel will complain that the function “is not valid”.
Fortunately, it does allow add-in functions declared as macro sheet functions to be called

Accessing Excel Functionality Using the C API 189

from a worksheet. This opens up the possibility for worksheet functions to access a much
wider range of information and functionality.

Note: If a function that is only defined as a worksheet function attempts to refer-
ence an uncalculated cell in a call to Excel4 (), the call will fail, returning the value
xlretUncalced.

8.5.5 Specifying functions as volatile

The concept of volatile functions is explained in section 2.11.3 Volatile functions on
page 26.

By default, DLL worksheet functions are not volatile. They only recalculate when
their precedents change. To make a DLL function volatile it is only necessary to place
an exclamation mark ‘!’ at the end of the type string in argument 3. For example a
function declared as “BB!” (a function that takes a double and returns a double) will
be recalculated every time Excel performs a recalculation.

Be careful about registering functions in this way. Excel not only recalculates volatile
functions with every recalculation, but also all their dependents too.

8.5.6 Returning values by modifying arguments in place

Where an argument is passed to a DLL function via a pointer it is possible for the DLL
to return its value via this argument — a technique known as modifying in place. This
leaves the burden of memory management to Excel. Excel will both allocate the memory
for the argument and clean up once it has copied out the returned data. Care must be
taken not to expect too much of Excel, however. Strings can only be a maximum of 255
characters in length (the amount of space Excel allocates for these). Where the data is
an array of doubles of type x1 array (see section 6.2.2 Excel floating-point array
structure: x1_array on page 107) the returned data can be no bigger than the passed-in
array. Arrays of strings cannot be returned in this way.

Excel also needs fair warning that you intend to do this and only permits one argument
(and always the same one) to be used in this way. This is done within the return and
argument type string passed as the 3rd argument to x1 fRegister. Instead of specifying
a return type as the first character, a single digit from 1 to 9 informs Excel that the
corresponding argument, counting from 1, is to be used, which must be one of the passed-
by-ref types. Functions that Excel expects to return their arguments in this way must be
declared as void.

Excel also permits functions that return strings, by modifying either the F or G type,
to be declared as returning something other than void. This might be useful if you have
a function that returns some modified text both in this way and by returning a pointer.
The latter return method enables the function to be called within the calling of another
function. For example, a function might be declared as follows:

char * _ stdcall my conversion function(char *input text)

{

// Modify the input text
return input_text;
}

190 Excel Add-in Development in C/C++

... and called as follows. ..

int length = strlen(my conversion function(input text));

This example could also be registered with Excel with a type string of FF. This instructs
Excel to find the first argument that matches the given return type, in this case F, and
extract the return value from that. The return value pointer that was placed on the stack
by the function is discarded and ignored. When passing the argument to the DLL, Excel
allocates a 256 byte buffer, regardless of the length of the passed-in string, so the returned
string can be up to 255 characters in length including the null termination.

8.5.7 The Paste Function dialog (Function Wizard)

The dialogs shown below illustrate where some of the arguments to x1fRegister end
up being displayed.

21x|

Function categary: Function name: _—1 | Argument 4
Most Recently Used

Argument 7

Argument 5

Argument 4 Infor mation Li
-

IF(logical_test value_if_true,value_if_false) Argument 10

Returns one value if a condition you specify evaluates to TRUE and another

value If it evaluates to FALSE.
@) \ oK I Cancel]
N~ . .
Access to help link in Argument 9
From e |
Argument 5 ogical._test | =5

Valie_if e 5- Argument 11
valie_f_fake -

Returns ane valie if 3 condition you spacify evalustes and anather vals if it
evalustes o FALSE.
Logical_test |z any value o enpression that can be evaluated o TRUE or FALSE.

El Foreula result = lII Cancel

Figure 8.1 The Paste Function and argument construction dialogs

Note: Arguments 11 to 20 cannot be assigned from VB via the COM interface (at time
of writing) for user-defined functions or COM DLLs. If parameter names are too long
they will work, but they will not display correctly.

Accessing Excel Functionality Using the C API 191

8.5.8 Function help parameter to x1fRegister

The above screen-shots show where the function help parameter, passed as the 10th
argument to x1fRegister, is used. Choosing your words well makes a big difference
to the ease with which the user can find the right function.

8.5.9 Argument help parameters to x1fRegister

As can be seen in the above screen-shot, the dialog that assists with the entry of function
arguments displays at the bottom the parameter name (as extracted from the Sth argument
passed to x1fRegister) in bold, followed by a very useful piece of text explaining
something about the parameter. For specialised or complex functions this is a very valuable
piece of help to provide the user. It could be as simple as detailing the units in which a
number should be input, or the limits within which the function will work properly.

These are provided to the x1fRegister function as arguments 11 to 30.

For some reason, these fields are not (currently) exposed via the COM interface and
therefore not accessible to VB. At the time of writing, the C API provides the only way
to specify these things for user-defined functions.

Note: One of the strange quirks of the x1 fRegister function, at least as it is exposed
via the C API, is a small bug that truncates the very last of these strings (corresponding
to the help for the very last argument). It is not serious and easy to work around: Just
pad the last string with an extra space or two.

8.5.10 Managing the data needed to register exported functions

One practical issue to grapple with is how best to manage all the data associated with the
functions (and commands) you want to export. For every function there are at least 5 and
up to 30 arguments to be passed to x1fRegister. Deciding how best to initialise them
and then pass them is quite important. Getting it right makes adding to or modifying the
data easy. Getting it wrong makes your code a mess. It’s certainly not worth losing sleep
over, but here are some thoughts and suggestions.

The example in section 8.5.1 above showed a function dedicated to registering a single
exported function. While you can do this, and call all such functions from your imple-
mentation of x1AutoOpen, it’s error-prone and a lot of work. Not only this but your
project will suffer from rapid code inflation. If you are a contract programmer paid per
line of code then this is the approach to take.

A better approach is to define all these arguments in one structure, that is then processed
by a function that iterates through, registering the functions one-by-one. One simple
approach is to set up a 2-dimensional array of pointers to char * and then initialise this
with the arguments, all as strings. Even where an argument is numeric, representing it as
a string is not too inefficient: processing is only done once at the time you register your
functions. Excel will happily convert strings to numbers, so there is no need to convert
them before passing them as xlopers to x1fRegister.

The width of the array should be sufficient to store all of the 29 arguments that, together
with the DLL name, make up the maximum 30. (You could make the array narrower if
you know the maximum number of arguments you’ll be declaring.) The length need only
be the number of functions being exported. For a DLL that exports 50 functions, the size

192 Excel Add-in Development in C/C++

of the array is only 5,800 bytes plus the size of the static strings — very respectable by
today’s standards.

One benefit of this approach, apart from its simplicity, is that the strings can all be
initialised statically. There’s no need to call some function, explicitly or implicitly, to set
everything up before calling the function that finally registers the exported functions. Any
missing arguments can be left as uninitialised or zero-length strings.

A similar approach would be to use the cpp xloper class, or a similar wrapper class
that contained a few basic constructors. A 2-dimensional array of this class can then be
initialised in a very similar way to the char * array mentioned above. You could also
take a class-based approach one step further, creating a class and statically instantiating
one for each exported function one in your project. The class constructor could also
pass a reference of itself to a container class that is then iterated in x1AutoOpen (and
x1AutoClose). Whatever your preferred approach, the goal should be ease of addition
and deletion of XLL exports, modification of the help text, etc.

Preparing the arguments for the call to x1fRegister is then fairly straightfor-
ward. Set up an array of pointers to xlopers and call the function using Excel4v ().
This is preferable to using Excel4 () as, from function to function, you will be pass-
ing a different number of arguments. The advantage of using a wrapper class over
a char * array is that converting and preparing the arguments can be made a little
simpler.

The following code sample shows the declaration and initialisation of a simple array
of strings for the example function in section 8.5.1:

#define MAX_ EXCEL4_ARGS 30
#define NUM_FUNCS 1

char *FuncExports [NUM_FUNCS] [MAX EXCEL4 ARGS - 1] =
{
{

"exponent_ function", // function name as exported

"BB", // return and argument types

"MY_EXP", // function name for Excel use
"Exponent", // Argument string (only 1 in this case)
niw, // Function type (1l:function, 2:command)
"My functions", // Paste Function category

ww // Short-cut text character (Mac only)
nw, // Help file and topic (omitted in this case)
"Returns e to the power of Exponent", // Function help text
"Any number such that |argl| <= 709 ", // Argl help text
}, // end of data for first function to be registered

}i

The following code shows a very simple implementation of x1AutoOpen which cycles
through the array, registering each function.

xloper register fnID[NUM_ FUNCS] ;

int _ stdcall xlAutoOpen (void)

{

for(int i = 0 ; i < NUM_FUNCS; i++)

Accessing Excel Functionality Using the C API 193

register fnID[i] = register function(i);

return 1;

A bug prevents the function (and command) IDs from being used for their intended
purpose of un-registering functions. (See the next two sections.) Therefore the above
code can be replaced with this:

int _ stdcall xlAutoOpen (void)
for(int 1 = 0 ; i < NUM_FUNCS;)
register function (i++);
return 1;

The function register function () registers the specified function using the above
array. The function uses Excel4v () since the number of arguments is variable. The
code uses the cpp xloper class, described in section 6.4 on page 121, to simplify the
handling of Excel4 ()and Excel4v () arguments and return values.

xloper *register function(int index)

// Array of pointers to xloper that will be passed to Excel4v ()
xloper *ptr array[MAX EXCEL4_ ARGS];

// Default to this value in case of a problem

cpp_xloper RetVal ((WORD)xlerrValue) ;

// Get the full path and name of the DLL.
// Passed as the first argument to xlfRegister, so need
// to set first pointer in array to point to this.

cpp_xloper DllName;
if (Excel4d (x1GetName, &DllName, 0) != xlretSuccess)
return NULL;

D1l1Name.SetExceltoFree () ;

ptr_array[0] = &DllName;

int num_args = 1;
[==
// Set up the rest of the array of pointers.
-,

cpp_xloper *fn args = new cpp_xloper [MAX EXCEL4 ARGS - 1];

char *p_arg;
int 1 = 0, num_args = 1;

do

{

194 Excel Add-in Development in C/C++

// get the next string from the char * array
if ((p_arg = FuncExports[fn_index] [i]) == NULL)
break; // that was the last of the arguments for this fn

// Set the corresponding xlfRegister argument
fn_args[i] = p_arg; // convert the string to a cpp_ xloper
ptr_array[num args++] = &(fn_args[i++]); // address of xloper

}

while (num_args < MAX EXCEL4_ ARGS) ;

if (Excel4v (x1fRegister, &RetVal, num_args, ptr_array)
|| Retval.IsType (xltypeErr))
{
char err[256];
sprintf (err, "Couldn't register %s", FuncExports[index] [0]);
cpp_xloper ErrMsg(err) ;
Excel4 (xlcAlert, 0, 1, &ErrMsg);

}

delete[] fn_args;

// RetVal type is xltypeErr or xltypeNum, so no need to free
return RetVal.ExtractXloper (false) ;
}

It would be a simple matter to alter the above code so that arrays of cpp xlopers,
or arrays of look-alike xlopers, are initialised with function information, instead of
char * arrays.

8.5.11 Getting and using the function’s register ID

In the above section, code example register function () registers a function and
returns a pointer to an xloper. If the function was successful this x1loper is of type
x1typeNum and contains a unique register ID. This ID is intended to be used in calls to
x1fUnregister. However, a bug in Excel prevents this from un-registering functions
as intended — see next section.

If you did not record the ID that x1fRegister returned, you can get it at any time
using the x1fRegisterId function. This takes 3 arguments:

D11Name: The name of the DLL as returned by the function x1GetName.

. FunctionName: The name of the function as exported and passed in the 2nd argument
to x1fRegister.

3. ArgRtnTypes: The string that encodes the return and argument types, the call-

ing permission and volatile status of the function, as passed in the 3rd argument

to x1fRegister.

N =

The macro sheet functions that take this ID as an argument are:

e x1fUnregister: (See next section.)
e x1fCall: Calls a DLL function. There is no point in calling this function where the
caller is in the same DLL, but it does provide a means for inter-DLL calling. (The

Accessing Excel Functionality Using the C API 195

macro sheet version of this function, CALL(), used to be available on worksheets. This
enabled a spreadsheet with no XLLM or VB macros to access any DLL’s functionality
without alerting the user to the potential misuse that this could be put to. This security
chasm was closed in version 7.0.)

8.5.12 Un-registering a DLL function

Excel keeps an internal list of the functions that have been registered from a given
DLL as well as the number of times each function has been registered. (You can inter-
rogate Excel about the loaded DLL functions using the x1fGetWorkspace, argu-
ment 44. See section 8.9.11 Information about the workspace: x1fGetWorkspace on
page 227 for details.) When registering a function, the x1 fRegister function does two
things.

1. Increments the count for the registered function.
2. Associates the function’s worksheet name, given as the 4th argument to
x1fRegister, with the DLL resource.

To un-register a function you therefore have to undo both of these actions in order
to restore Excel to the pre-DLL state. The x1fUnregister function, which takes
the register ID returned by the call to x1fRegister, decrements the usage count
of the function. To disassociate the function’s worksheet name, you need to call the
x1fSetName function, which usually associates a name with a resource, but without
specifying a resource. This clears the existing associated resource — the DLL function.
Sadly, a bug in Excel prevents even this two-pronged approach from successfully remov-
ing the reference to the function. In practice, not un-registering functions has no grave
consequences.

Warning: The C API function x1fUnregister supports another syntax which takes
a DLL name, as returned by the function x1f£GetName. Called in this way it un-registers
all that DLL’s resources. This syntax also causes Excel to call x1AutoClose (). You
will therefore crash Excel with a stack overflow if you call x1fUnregister with this
syntax from within x1AutoClose (). You should avoid using this syntax anywhere
within the DLL self-referentially.

The following code sample shows a simple implementation of x1AutoClose (),
called whenever the DLL is unloaded or the add-in is deselected in the Add-in Man-
ager, and the code for the function it calls, unregister function (). The example
uses the same structures and constant delimitations as in section 8.5.10 above. As stated
above, even this will not work as intended, due to an Excel bug. Leaving the body of
x1AutoClose () empty in this example will not have grave consequences, although
there may be other cleaning up tasks you should be doing here.

int _ stdcall xlAutoClose (void)

for(int i = 0 ; i < NUM_FUNCS; i++)
unregister function(i);

return 1;

196 Excel Add-in Development in C/C++

bool unregister function(int fn_index)
// Decrement the usage count for the function using a module-scope
// xloper array containing the function's ID, as returned by
// x1lfRegister or xlfRegisterId functions
Excel4 (x1fUnregister, 0, 1, register ID + fn index);

// Create a cpp_xloper argument with the name that Excel associates
// with the function
cpp_xloper xStr (FuncExports[fn_index] [2]) ;

// Undo the association of the name with the resource
if (Excel4 (x1fSetName, 0 , 1, &xStr) != xlretSuccess)

return false;

return true;

As stated already, given the Excel bug, this un-registration function need not be included
in your project.

8.6 REGISTERING AND UN-REGISTERING DLL (XLL)
COMMANDS

As with functions, XLL commands need to be registered in order to be directly accessible
within Excel (without going via VB). As with worksheet functions, the x1fRegister
function is used. (See section 8.5 for details of how to call this function.) To register a
command, the first 6 arguments to x1fRegister must all be passed.

Table 8.11 x1fRegister arguments for registering commands

Argument Required or Description
number optional
1 Required The full drive, path and filename of the DLL containing the
function.
2 Required The command name as it is exported. Note: This is

case-sensitive.

3 Required The return type which should always be "J"

4 Required The command name as Excel will know how to reference it.
Note: This is case-sensitive.

5 Required The argument names, i.e., an x1typeNil or
x1typeMissing xloper, since commands take no
arguments.

6 Optional The function type: 2 = Command.

Accessing Excel Functionality Using the C API 197

An exported command will always be of the following form:

int _ stdcall x11_ command (void)
{ bool all ok = is_everything ok();
if (lall_ok)
return 0;
return 1;

In practice, Excel does not care about the return value, although the above is a good
standard to conform to.

As there are always 6 arguments to be passed x1fRegister is best called using
Excel4 (), in contrast to functions which are most easily registered by Excel4v ().
The following code demonstrates how to register Excel commands, requiring only the
name of the command as exported in the DLL and the name as Excel will refer to it. The
code uses the cpp_xloper class, described in section 6.4 on page 121, to simplify the
handling of Excel4 () arguments and return values.

xloper *register_ command(char *code name, char *Excel name)

{

., HH-iiib

// default to this value in case of a problem

[mm e
cpp_xloper RetVal ((WORD)xlerrValue) ;

=

// Get the full path and name of the DLL.
// Passed as the first argument to xlfRegister, so need
// to set first pointer in array to point to this.

cpp_xloper DllName;

if (Excel4 (x1GetName, &Dl1lName, 0) != xlretSuccess)

{
Dl1Name.Free (true); // don't really need to do this, but...
return NULL;

Dl1lName.SetExceltoFree () ;

cpp_xloper CodeName (code name) ;
cpp_xloper ExcelName (Excel name) ;
cpp_xloper RtnType ("J");
cpp_xloper FnType(2); // Command

int x14 retval = Excel4 (xlfRegister, &RetVal, 6, &DllName,
&CodeName, &RtnType, &ExcelName, p_x1INil, &FnType);

if (x14 _retval != xlretSuccess || RetVal.IsType (xltypeErr))
display register error (code name, xl4 retval, (int)RetVal);

198 Excel Add-in Development in C/C++

// Err or Num: no need to free, but no harm in doing it anyway
return RetVal.ExtractXloper (true) ;
1

Commands to be exported can simply be described by the two strings that need to
be passed to the above function. These strings can be held in a static array that is
looped through in the x1AutoOpen function. The following code shows the declara-
tion and initialisation of an array for the example command from section 8.1.2, and a
very simple implementation of x1AutoOpen which cycles through the array, registering
each command.

#define NUM_COMMANDS 1

char *CommandExports [NUM_COMMANDS] [2] =

{

// Name in code Name that Excel uses
{"define_new_name", "DefineNewName"},

xloper register cmdID[NUM_COMMANDS] ;

int _ stdcall xlAutoOpen (void)

{
for(int 1 = 0 ; i < NUM_COMMANDS; i++)
register cmdID[i] = register_command (
CommandExports [i] [0], CommandExports[i] [1]) ;

return 1;

A bug prevents the function and command IDs from being used for their intended purpose
of unregistering functions. Therefore the above code can be replaced with:

int _ stdcall xlAutoOpen (void)

{
for(int 1 = 0 ; i < NUM_COMMANDS; i++)
register command (CommandExports[i] [0], CommandExports[i] [1]);

return 1;

8.6.1 Accessing XLL commands

There are a number of ways to access commands that have been exported and registered
as described above.

1. Via custom menus. (See section 8.11 Working with Excel menus, page 249.)
2. Via custom toolbars. (See section 8.12 Working with toolbars, page 266.)

3. Via a Custom Button on a toolbar. (See below.)

4. Directly via the Macro dialog. (See below.)

Accessing Excel Functionality Using the C API 199

5. Via a VB module. (See below.)
6. Via one of the C API event traps. (See section 8.14 Trapping events, page 277.)

In addition, there are a number of C API functions that take a command reference (the
name of the command as registered with Excel), for example x1fCancelKey.

To assign a command (or macro as Excel often refers to commands) to a custom
button, you need to drag a new custom button onto the desired toolbar from the Tools/
Customize. . ./Commands dialog under the Macro category. Still with the customisation dialog
showing, right-clicking on the new button shows the properties menu which enables you
to specify the appearance of the button and assign the macro (command) to it.

To access the command directly from the Macro dialog, you need simply to type the
command’s name as registered. The command will not be listed in the list box as Excel
treats XL commands as if they had been defined on a hidden macro sheet, and therefore
are themselves hidden.

One limitation of current versions of Excel is the inability to assign XLL commands
directly to control objects on a worksheet. You can, however, access an XLL command
in any VB module, subject to scope, using the Application.Run ("CmdName™) VB
statement. If you wish to associate an XLL command with worksheet control, you simply
place this statement in the control’s VB code.

8.6.2 Breaking execution of an XLL command

The C API provides two functions x1Abort and xlfCancelKey. The first checks
for user breaks (the Esc key being pressed in Windows) and is covered in section 8.7.7
Yielding processor time and checking for user breaks: xIAbort, on page 206.

The second disables/enables interruption of the currently executing task. If enabled,
x1fCancelKey also permits the specification of another command to be run on inter-
ruption. This second command is intended to be used to do any necessary cleaning up
before control is returned to Excel.

The function takes 2 arguments: (1) a Boolean specifying whether interruption is per-
mitted (true) or not (false), and (2) a command name registered with Excel as a string.
If the function is called with the first argument set to true, then the command will be
terminated by the user pressing the Esc key. This is the default state when Excel calls
a command, so it is not necessary to call this function except, to explicitly disable or
re-enable user breaks.

8.7 FUNCTIONS DEFINED FOR THE C API ONLY

8.7.1 Freeing Excel-allocated memory within the DLL: x1Free

Overview: Frees memory allocated by Excel during a call to Excel4 ()
or Exceldv () for the return xloper value. This is only
necessary where the returned xloper type involves the
allocation of memory by Excel. There are only 3 xloper
types that can have memory associated with them in this way,
xltypeStr, xltypeRef and x1ltypeMulti, so it is only

200 Excel Add-in Development in C/C++

necessary to call x1Free if the return type is or could be one
of these. It is always safe to call this function even if the
xloper is not one of these types. It is not safe to call this
function on an xloper that was passed in to the DLL as a
function argument from Excel, or that has been initialised by
the DLL with either static or dynamic memory.

(See Chapter 7 Memory management on page 161 for an
explanation of the basic concepts and more examples of the

use of x1Free.)

Enumeration value: 16384 (x4000)

Callable from: Commands, worksheet and macro sheet functions.
Return type: Void.
Arguments: Takes from 1 to 30 arguments, each of them the address of an

xloper that was passed to Excel in a call to Excel4 () or
Excel4v () to contain the return value.

Warning: Where the type is xltypeMulti you do not need to (and must not) call
x1Free for any of the elements, whatever their types. Doing this will confuse and
destabilise Excel.

Note: Where an Excel-allocated x1oper is being returned (via a pointer) from a DLL
function, it is necessary to set the x1bitXLFree bit in the x1type field to alert Excel
to the need to free the memory.

The following example, a command function, gets the full path and file name of the
DLL, displays it in a simple alert dialog and then frees the memory that Excel allocated
for the string. (Note that only command-equivalent functions can display dialogs.)

int _ stdcall show dll name (void)

{

xloper dll_name;

if (Excel4 (x1GetName, &dl1l name, 0) != xlretSuccess)
return O;

Excel4 (xlcAlert, NULL, 1, &dll_name) ;
Excel4 (x1Free, NULL, 1, &dl11l_name) ;
return 1;

The equivalent code using the cpp xloper class would be as follows. The call to the
member function SetExceltoFree ()informs the class destructor of the need, ulti-
mately, to call x1Free to release the memory. This call is best made immediately after
the initialisation by Excel in the call to Excel4 (). It is not necessary to wait until the
xloper is no longer being used. This is a less bug-prone approach than the above code,
where there’s a risk that not all control paths will clean up properly.

Accessing Excel Functionality Using the C API 201

int _ stdcall show dll name (void)

{

cpp_xloper DllName;

if (Excel4 (x1GetName, &Dl11lName, 0) != xlretSuccess)
return O0;
Dl1lName.SetExceltoFree () ;

Excel4 (xlcAlert, NULL, 1, &Dl1lName) ;
return 1;

8.7.2 Getting the available stack space: x1Stack

Overview: Returns the amount of available space on Excel’s stack in bytes.

Enumeration value: 16385 (x4001)

Callable from: Commands, worksheet and macro sheet functions.
Return type: An x1ltypeInt xloper.
Arguments: None.

Stack space in Excel is very limited. (See section 7.1 Excel stack space limitations on
page 161.) If you are concerned (or just curious) you can find out how much stack
space there currently is with a call to Excel’s x1Stack function as the following
example shows:

double _ stdcall get_stack(void)

{

xloper retval;

if (xlretSuccess != Excel4 (x1Stack, &retval, 0))
return -1.0;

return (double) (unsigned short)retval.val.w;

}

The need to cast the returned signed integer that x1Stack returns to an unsigned integer
is a left-over from the days when Excel provided even less stack space and when the
maximum positive value of the signed integer (32,768) was sufficient. Once more stack
was made available, the need for the cast emerged to avoid a negative result.

8.7.3 Converting one xloper type to another: x1Coerce

Overview: Converts an xloper from one type to another, where possible.
Enumeration value: 16386 (x4002)

Callable from: Commands, worksheet and macro sheet functions.

202 Excel Add-in Development in C/C++

Return type: Various depending on 2nd argument.

Arguments: 1: InputOper: A pointer to the x1loper to be converted

2: TargetType: (Optional.) An integer xloper whose value
specifies the type of xloper to which the first argument is
to be converted. This can be more than one type bit-wise
or’d, for example, x1typeNum | xltypeStr tells Excel
that either one will do.

If the second argument is omitted, the function returns one of
the four value types that worksheet cells can contain. This will
be the same as the first argument unless it is a range xloper
(x1ltypeSRef or x1typeRef) in which case it returns the
value of the top-left cell in the range.

This function will not convert from each type to every one of the others. For example,
it will not convert error values to other types, or convert a number to a cell reference.
Therefore, checking the return value is important. Table 8.12 summarises what conversions
are and are not possible for types covered by this book. Note that even for type conversions
that are possible, the function might fail in some circumstances. For example, you can
always convert an x1typeSRef to xltypeRef, but not always the other way round.
(A question mark in the table indicates those conversions that may or may not work
depending on the contents of the source xloper.)

Table 8.12 x1Coerce conversion summary

Conversion to
-
— L H
£ 9 0 1 1] — 0] In)
3 D o) 3] Y S o7 <]
xltype... 2)] m [i s %) i
Num Y Y N N Y N Y
Str ? ? ? N Y ? ?
Bool Y Y N N Y N Y
Ref ? Y ? ? Y ? ?
g Err N N N N N N N
o=
& [mulei >l Y | 2 | N | 2 ?
o)
% Nil Y Y Y N N Y Y
@]
SRef ? Y ? Y ? Y ?
Int Y Y Y N N Y N

Accessing Excel Functionality Using the C API 203

The following example C++ code attempts to convert any xloper to an xloper of the
requested type. It returns false if unsuccessful and true if successful, returning the
converted value returned via the passed-in pointer. Note that the caller of this function
must take responsibility for ensuring that any memory allocated by Excel4 () for the
xloper ret val is eventually freed by Excel.

bool coerce_ xloper (xloper *p op, xloper &ret_val, int target_ type)
{
// Target will contain the information that tells Excel what type to
// convert to.
xloper target;

target.xltype = xltypelnt;
target.val.w = target type; // can be more than one type

if (Excel4 (x1lCoerce, &ret_val, 2, p_op, &target) != xlretSuccess
|| (ret_val.xltype & target type) == 0)

return false;

return true;

In addition to x1Coerce being useful for converting reference xlopers to opers (by
omitting the TargetType argument), it is particularly useful for converting multi-celled ref-
erences to x1typeMulti arrays that are much easier to work with. Sections 6.8.7 Array
(mixed type): x1typeMulti on page 145, and 6.8.8 Worksheet cell/range reference:
x1ltypeRef and x1typeSRef on page 150 contain examples of its use in this way.

8.7.4 Setting cell values from a command: x1Set

Overview: Sets the values of cells in a worksheet.

Enumeration value: 16387 (x4003)

Callable from: Commands only
Return type: Boolean: true if successful, otherwise false.
Arguments: 1: TargetRange: A reference (x1typeSRef or x1typeRef)

to the cell(s) to which values are to be assigned.

2: Value: (Optional.) A value (x1typeNum, x1ltypeInt,
xltypeStr, xltypeBool, x1typeErr) or array
(x1typeMulti) containing the values to be assigned to
these cells. A value of type x1typeNil, or an xloper
of this type in an array, will cause the relevant cell(s) to be
blanked.

If Value is omitted, the TargetRange is blanked.

204 Excel Add-in Development in C/C++

For those cases where a command function needs to populate one or more cells on a
worksheet with certain fixed values, x1Set provides an efficient means to do this. It can
be a particularly useful way to clear cells. (Omission of the second argument has this
effect.) Excel does not permit this function to be called from worksheet or macro sheet
functions. It would confuse, or at least vastly complicate, its recalculation logic were this
not the case.

Excel maps the values to the target cells in the same way that it maps values to arrays
generally: a single value will be mapped to all cells in the given range; a single row will
be duplicated in all rows; a single column will be duplicated in all columns; a rectangular
array will be written once into the top-left corner of the range. If a single row/column is
too short for the given range or a rectangular array of values is too small then all cells in
the target range not covered will be assigned the #N/A value.

Note: Where x1Set is being used to assign values to a range on a sheet that is not
the active sheet, it will fail if the equivalent range on the active sheet contains an array
formula. This appears to be a bug: Excel seems to be checking the wrong sheet before
assigning the values. In failing, Excel displays the alert “You cannot change part of an
array”.

8.7.5 Getting the internal ID of a named sheet: x1SheetId

Overview: Every worksheet in every open workbook is assigned an
internal DWORD ID by Excel. This ID can be obtained from
the text name of the sheet with the function x1SheetId, and
can be used in a number of C API functions that require a
worksheet ID (rather than a name), and in the construction of
xltypeRef xlopers.

The ID is returned within the idSheet field of an
xltypeRef xloper.

Enumeration value: 16388 (x4004)

Callable from: Commands, worksheet and macro sheet functions.
Return type: An x1ltypeRef xloper if successful, otherwise #VALUE!.
Arguments: 1: SheetName: (Optional.) The sheet name as an xloper

string in the form [Book1.xIs|Sheet1 or simply Sheet1 if the
named sheet is within the workbook from which the
function is called. If omitted the ID of the active sheet is
returned.

Note: The returned x1typeRef xloper has the xlmref pointer set to NULL, so there
is no need to call x1Free once the ID value has been extracted, although it won’t do
any harm. If you want to reuse this x1loper to construct a valid reference, you will need
to allocate memory and assign it to this pointer. Then you can specify which cells on the
sheet to reference. (See the example below.)

Accessing Excel Functionality Using the C API 205

The following example returns a reference to the cell A1 on the given sheet.

{

ret_val
ret_val

ret_val

ret_val

// Sheet ID is
// Now fill in
.val
.val
ret_val.
.val
ret_val.
.val

val

val

xloper * _ stdcall get_al_ ref (xloper *sheet_name)
static xloper ret_val;
Excel4 (x1SheetId, &ret_val, 1, sheet name);

if (ret_val.xltype == xltypeErr)
return &ret_val;

contained in ret val.val.mref.idSheet
the other fields to refer to the cell Al

.mref.lpmref = (xlmref *)malloc (sizeof (xlmref)) ;
.mref.lpmref->count = 1;
.mref.lpmref->reftbl [0] .rwFirst = 0;
.mref.lpmref->reftbl [0] .rwLast = 0;
.mref.lpmref->reftbl [0] .colFirst = 0;
.mref.lpmref->reftbl [0] .colLast = 0;

// Ensure Excel calls back into the DLL to free the memory
ret_val.xltype |= xlbitDLLFree;
return &ret_val;

Using the cpp_xloper class, the same function can be written as follows, constructing
an instance of the class that contains the correct x1oper type, properly initialised:

{

xloper * _ stdcall get_al ref cpp(char *sheet_ name)

cpp_xloper RetVal (sheet_name, (WORD)O, (WORD)O, (BYTE)O, (BYTE)O) ;
return RetVal.ExtractXloper (false) ;

8.7.6 Getting a sheet name from its internal ID: x1SheetNm

Overview:

Enumeration value:

Callable from:

Return type:

Arguments:

Every worksheet in every open workbook is assigned an
internal DWORD ID by Excel. This ID can be obtained from
the text name of the sheet with the function x1SheetId (see
above). Conversely, the text name, in the form
[Book1.xIs]Sheet1, can be obtained from the ID using this
function.

16389 (x4005)
Commands, worksheet and macro sheet functions.
An x1ltypeStr xloper.

1: SheetID: The sheet ID contained within the idSheet field
of an x1ltypeRef xloper.

206 Excel Add-in Development in C/C++

If ID is zero, the function returns the current sheet name. If
the argument was an x1typeSRef xloper, which doesn’t
contain a sheet ID, the function again returns the current sheet
name. This means that, in calling this function, it is not
necessary to check which type of reference x1oper was
supplied.

The SheetID xloper can have the x1mref pointer field, lpmref, set to NULL. This
means that no memory need be allocated in constructing this argument. The argument can
also be a reference to a real range, where memory has been allocated. One example use
of this function is in finding the named range on a worksheet, if it exists, that corresponds
to a given range. The function used for this is x1fGetDef which requires the name of
the worksheet in which the name is defined as its second argument.

Warning: If the ID is not valid, Excel can crash! Only use IDs that have been obtained
from calls to x1SheetId or from x1typeRef xlopers, and that apply to worksheets
that you know are still open.

The following example returns the sheet name given an ID.

xloper * _ stdcall sheet name (double ID)

{

static xloper ret_val;
xloper ID ref oper;

if (ID < 0)

{
}

else

{

ID ref oper.xltype = xltypeMissing;

ID_ref oper.xltype = xltypeRef;
ID_ref oper.val.mref.idSheet = (DWORD)ID;
ID_ref oper.val.mref.lpmref = NULL;
1
Excel4 (x1SheetNm, &ret _val, 1, &ID ref oper);
ret_val.xltype |= xlbitXLFree;
return &ret_val;

8.7.7 Yielding processor time and checking for user breaks: x1Abort

Overview: Returns true if the user has attempted to break execution of an
XLL command or worksheet function (by pressing Esc in
Windows). While checking for an outstanding break, it also
yields some time to the operating system to perform other
tasks.

If PreserveBreak is set to false, the function clears any user
break condition it detects and continues with the execution of
the command. If set to true or omitted, the function checks to
see if the user pressed break, but does not clear the break
condition. This enables the DLL to detect the same break
condition in another part of the code.

Accessing Excel Functionality Using the C API 207

Enumeration value: 16390 (x4006)

Callable from: Commands, worksheet and macro sheet functions.
Return type: An x1ltypeBool xloper.
Arguments: 1: PreserveBreak: (Optional.) Boolean. Default is true.

User breaks can be disabled/enabled using x1fCancelKey, (enumeration 170 deci-
mal), which can take one Boolean argument: true to enable breaks, false to disable them.
Section 10.11 Monte Carlo simulation on page 376 contains an example of a command
that uses both x1fCancelKey and x1Abort.

As this function can be called from worksheet functions as well as commands, it can
be used to end prematurely the execution of very lengthy calculations, as the following
example code shows. Note that the break condition is not cleared in this case, so that a
single break event can terminate the execution of all instances of all functions that check
for this condition. When checking for a break in a command, you would typically clear
the break.

double _ stdcall function break_ example (xloper *arg)

{
if (arg->xltype != xltypeNum)
return -1;

cpp_xloper Break;

for(long 1 = (long)arg->val.num; --1;)
{
// Detect a user break attempt but leave it set so that other
// worksheet functions can also detect it
Excel4 (x1Abort, &Break, 0);

if ((bool)Break)
break;

}

return 1;

8.7.8 Getting Excel’s instance handle: x1GetInst

This function, enumeration 0x4007, obtains an instance handle for the running instance
of Excel that made this call into the DLL. This is useful if there are multiple instances
of Excel running and your DLL needs to distinguish between them. This is far less
necessary than it used to be under 16-bit Windows, where different instances shared
the same DLL memory. The function takes no arguments and returns an xltypeInt
x1loper containing the low part of the instance handle.

8.7.9 Getting the handle of the top-level Excel window: x1GetHwnd

This function, enumeration 0x4008, obtains Excel’s main Window handle. One example
of its use is given in section 9.4 Detecting when a worksheet function is called from the
Paste Function dialog (Function Wizard) on page 294. The function takes no arguments

208 Excel Add-in Development in C/C++

and returns an x1ltypeInt xloper containing the handle. The value returned is a 2-
byte short, whereas the HWND used by the Windows API is a 4-byte 1ong. The returned
value is therefore the low part of the full handle. The following code shows how to obtain
the full handle using the Windows API EnumWindows () function.

#define CLASS NAME BUFFER_SIZE 50

typedef struct

{
short main x1 handle;
HWND full handle;

get_hwnd_struct;

// The callback function called by Windows for every top-level window
BOOL _ stdcall get_hwnd enum proc (HWND hwnd, get hwnd struct *p_enum)
{
// Check if the low word of the handle matches Excel's
if (LOWORD ((DWORD) hwnd) != p_enum->main x1 handle)
return TRUE; // keep iterating

char class_name [CLASS NAME BUFFER_SIZE + 1];
// Ensure that class_name is always null terminated
class_name [CLASS NAME BUFFER SIZE] = 0;

GetClassName (hwnd, class_name, CLASS_NAME BUFFER_SIZE) ;

// Do a case-insensitive comparison for Excel's main window
// class name
if (_stricmp(class_name, "xlmain") == 0)
p_enum->full handle = hwnd;
return FALSE; // Tells Windows to stop iterating

}

return TRUE; // Tells Windows to continue iterating

}

HWND get_x1 main_handle (void)

{

xloper main x1 handle = {0.0, xltypeNil}; // safe initialisation

if (Excel4 (x1GetHwnd, &main_x1 handle, 0))
return O;

get_hwnd_struct es = {main x1 handle.val.w, 0};
EnumWindows ((WNDENUMPROC) get _hwnd_enum proc, (LPARAM)& es) ;
return es.full handle;

8.7.10 Getting the path and file name of the DLL: x1GetName

Overview: It is sometimes necessary to get the path and file name of the
DLL that is currently being invoked. The one place this
information is required is in the registration of XLL functions
using x1fRegister, where the first argument is exactly this
information.

Accessing Excel Functionality Using the C API 209

Enumeration value: 16393 (x4009)

Callable from: Commands, worksheet and macro sheet functions.
Return type: An x1ltypeStr xloper.
Arguments: None.

The following code examples show how to call this function using the cpp xloper
class or just xlopers.

char *get dll namel (void)

{
cpp_xloper dll_name;
int x14 = Excel4 (xlGetName, &dll name, O0);
dll_name.SetExceltoFree () ;

if (x14 || !dll name.IsStr())
return NULL;

// Return a copy of the string (needs to be freed by the caller)
return (char *)dll_name;

char *get dll name2 (void)
{
xloper dll_name;
int x14 = Excel4 (xlGetName, &dll name, O0);

if (x14 || dll_name.xltype != xltypeStr)
return NULL;

// Make a copy of the string (needs to be freed by the caller)
int len = dll_name.val.str[0];
char *name = (char *)malloc(len + 1);

memcpy (name, dll_name.val.str + 1, len);
name [len] = 0;

Excel4 (x1Free, 0, 1, &dll name);

return name;

8.8 WORKING WITH BINARY NAMES

A binary name is a named block of unstructured memory associated with a worksheet that
an XLL is able to create, read from and write to, and that gets saved with the workbook. A
typical use for such a space would be the creation of a large table of data that you want to
store and access in your workbook, which might be too large, too cumbersome or perhaps
too public, if stored in worksheet cells. Another use might be to store configuration data
for a command that always (and only) acts on the active sheet.

210 Excel Add-in Development in C/C++

The x1typeBigData xloper type is used to define and access these blocks of binary
data together with the C APl functions x1DefineBinaryName and x1GetBinaryName.
(The enumeration codes for these functions are 16396/x400c and 16397/x400d respectively.)

Apart from this method of storing data being more memory-efficient, accessing a table
of data in the DLL is quicker than accessing the same data from the workbook, even if
the table is small and despite Excel providing some fairly efficient ways to do this. This
may be a consideration in optimising the performance of certain workbook recalculations.
The fact that data get saved automatically with a workbook is clearly an advantage in
some circumstances.

However, there are a number of limitations that can make working with these names
too much trouble in most cases, given alternative approaches. The problems with binary
names are:

e They are associated with the worksheet that was active at the time of creation.

e Data can only be retrieved when the associated worksheet is active.

e Worksheet functions cannot activate a sheet, so that one sheet’s binary names cannot
be accessed by a function in another sheet.

o Excel (including the C API) provides no straightforward® way to interrogate the sheet
for all the binary names that are defined in a given (or even the active) sheet.

e If a name is created and then forgotten about, the workbook carries around excess
baggage.

e The data is inaccessible except via an add-in using the C API that knows the name of
the data in advance.

8.8.1 The xltypeBigData xloper

The x1typeBigData xloper is used to define, delete and access these blocks of
data. To create such a space in the workbook, the x1typeBigData is populated with
a pointer to the data to be stored and the data length, and passed to Excel in a call
to x1DefineBinaryName. When the block of binary data needs to be accessed, via
a call to x1GetBinaryName, the handle to the data is returned to the DLL in an
x1ltypeBigData xloper. The DLL then executes a Windows global lock to get a
pointer to the data. (This x1loper type is only used in this context and is never passed
into the DLL or returned to Excel.) These two C API functions are only accessible via
the C API, in common with the functions in section 8.7 above.

This x1oper type is only used when calling one of these two C API functions. Given
its limited uses, it has not been included in the cpp xloper class.

8.8.2 Basic operations with binary names

In general, you need to be able to perform the following basic operations:

Store a block of data in the active sheet with a given name.
Retrieve a block of data from the active sheet with a given name.
Find out if a block with a given name exists on the active sheet.
Delete a block with a given name from the active sheet.

2 Straightforward means using standard Excel or C API functions. Reading the workbook file as a binary file
and interpreting the contents directly is one very non-straightforward way.

Accessing Excel Functionality Using the C API 211

On top of this, one can easily see the need for some higher-level functions:

e Find out if a block with a given name exists in a workbook.
e Get a list of all the names in a given worksheet.

The first of these latter functions involves changing the active worksheet, something that
can only be done from a command, not from a worksheet or macro function. The second
is most easily achieved with a higher-level strategy. Possible approaches are:

1. Use a restrictive naming scheme, for example, Bnamel, Bname2, ...

2. Store a list of names using a standard binary name, say, BnameList, and build
maintenance of this list into your binary name creation and deletion functions. Use
this list to find all the names in a sheet.

The second approach is the most sensible, as your add-in will then be able to mirror the
functionality of Excel’s worksheet ranges. This book does not provide an example as it
is assumed that, once the basics of binary names have been explained, any competent
programmer could implement such a scheme.

8.8.3 Creating, deleting and overwriting binary names

The following function creates or deletes a binary name according to the given inputs.
This function will only work when called from a command or macro sheet function. If
the name already exists, the call to x1DefineBinaryName is equivalent to deleting
and creating anew. This function is easily wrapped in an exportable worksheet function,
as shown in the example in section 8.8.5 on page 213 below.

int bin name (char *name, int create, void *data, long len)

{
if (Iname)
return 0;

cpp_xloper Name (name) ;
if (create)

if(!data || !len)
return 0;

xloper big;

big.xltype = xltypeBigData;
big.val.bigdata.h.lpbData = (unsigned char *)data;
big.val.bigdata.cbData = len;

if (Excel4 (x1DefineBinaryName, 0, 2, &Name, &big))
return O;

}

else

{
}

return 1;

Excel4 (x1DefineBinaryName, 0, 1, &Name) ;

212 Excel Add-in Development in C/C++

8.8.4 Retrieving binary name data

The following code gets a copy of the data and block size or returns zero if there is an
error. Note that this function hides the data handle and the calls to GlobalLock () and
GlobalUnlock (), and requires the caller to free the pointer to the data when done.
This function is only successful if the name is defined on the active sheet. It can be called
from either a command or a macro sheet equivalent worksheet function. Although the
following function is not exportable as it stands, wrappers can easily be created, say, to
provide access via VB or an Excel worksheet function (see next section).

int get_binary data(char *name, void * &data, long &len)
{
if (!name)
return O;

cpp_xloper Name (name) ;
xloper big;

if (Excel4 (x1GetBinaryName, &big, 1, &Name)
|| big.xltype != xltypeBigData)
return O0;

len = big.val.bigdata.cbData;
if (! (data = malloc(len)))
return O;

void *p = GlobalLock (big.val.bigdata.h.hdata);
memcpy (data, p, len);

GlobalUnlock (big.val.bigdata.h.hdata) ;

return 1;

A stripped-down version of the above function can be used to determine if the name
exists on the active sheet. To find out if the name is defined in any sheet in a workbook,
it would be necessary to iterate through all of the sheets, making each sheet active in
turn; something that can only be done by a command function.

int _ stdcall bin_exists(char *name)

if (!name)
return O0;

cpp_xloper Name (name) ;
xloper big;

int x14 = Excel4d (x1GetBinaryName, &big, 1, &Name) ;

if (x14 || big.xltype != xltypeBigData)
return O0;

return 1;

Accessing Excel Functionality Using the C API 213

8.8.5 Example worksheet functions

The following exportable worksheet functions demonstrate the creation, deletion and
retrieval of a text string as a binary name in the active sheet. These functions are
included in the example project in the source file BigData.cpp and are called in
the example worksheet Binary Name Example.xls. The functions are registered
as "RCP#" and "RC#! " respectively, i.e., both are macro sheet equivalent functions and
get _bin string() is volatile.

xloper * _ stdcall set_bin string(char *name, xloper *p string)
int create = (p_string->xltype == xltypeStr ? 1 : 0);

if (create)

{
long len = p_string-s>val.str[0] + 1; // Include null
char *p = p_string->val.str + 1; // Start of string

if (bin_name (name, create, p, len))
return p_xlTrue;

return p_xlErrValue; // couldn't create

}

if (bin_name (name, 0, NULL, 0))
return p_x1ErrName; // deleted ok
else
return p_xlErrValue; // couldn't delete
}

xloper * _ stdcall get bin string(char *name)
{

void *string;

long len;

if (get_binary data(name, string, len))

// Constructor will truncate if too long
cpp_xloper RetVal ((char *)string);
return RetVal.ExtractXloper() ;

}

return p_xlErrName;

}

8.9 WORKSPACE INFORMATION COMMANDS
AND FUNCTIONS

This section describes the most relevant capabilities of the following functions:

x1fAppTitle
x1fWindowTitle
x1fActiveCell
x1fDocuments
x1fGetCell
x1fGetDocument
x1fGetFormula

214 Excel Add-in Development in C/C++

x1fGetNote
x1fGetWindow
x1fGetWorkbook
x1lfGetWorkspace
x1fSelection
x1fWindows
x1fFormulaConvert
x1fTextRef
x1fCaller

Few, if any, details are given of these functions’ ability to get information about cell
formatting or graphs. The intention is to keep the focus primarily on the creation of
worksheet functions. For a full description of these functions you should refer to the
XLM macro language help file, Macrofun.hlp, freely downloadable at the time of
writing from Microsoft’s website.

8.9.1 Setting the application title: x1 fAppTitle

Overview: Attempts to coerce the argument to a string and set this as the
application title. Returns true if successful, false if
unsuccessful.

If the argument is omitted, resets the application title to the
default value, Microsoft Excel, and returns true.

Enumeration value: 262 (x106)

Callable from: Commands and macro sheet functions.
Return type: Boolean.
Arguments: Application title (optional).

This function is useful if you want to display, say, some progress indicator or other
information on the title bar. This information is also shown on the application’s start-bar
button when minimised.

8.9.2 Setting the document window title: x1fWindowTitle

Overview: Attempts to coerce the argument to a string and then sets the
active document title to this string. Returns true if successful,
false if unsuccessful.

If the argument is omitted, resets the document title to the
default value and returns true.

Enumeration value: 263 (x107)
Callable from: Commands and macro sheet functions.
Return type: Boolean.

Arguments: 1: (Optional.) Document window title.

Accessing Excel Functionality Using the C API 215

8.9.3 Getting a reference to the active cell: x1fActiveCell

Overview: Returns a reference to the active cell on the active work sheet,
or an error if this could not be obtained.

Enumeration value: 94 (x5e)

Callable from: Commands and macro sheet functions.
Return type: Cell reference x1typeSRef xloper.
Arguments: None.

This function is useful only in commands, where the action to be performed relates to
the active cell’s contents or properties, or where the active cell is to be altered.

Circular Reference Note: If you call this function from a worksheet cell that is the
active cell, Excel detects that the call is self-referential and displays a circular reference
alert dialog. This is a good reason not to use this function in this way.

8.9.4 Getting a list of all open Excel documents: x1fDocuments

Overview: Returns a row vector containing a list of all open workbook
documents, or an error if unsuccessful. If there are no open
workbooks, the function returns #NA.

Enumeration value: 93 (x5d)

Callable from: Commands and macro sheet functions.
Return type: A row vector of strings in an x1typeMulti xloper.
Arguments: None.

8.9.5 Information about a cell or a range of cells: x1fGetCell

Overview: The first argument corresponds to the information you are
trying to get, and the second is a reference to the cell or range
of cells about which you want to know something. The
meaning of the most relevant of the 66 values is given in
Table 8.13.

Enumeration value: 185 (xb9)

Callable from: Commands and macro sheet functions.
Return type: Various, depending on the value of the first argument.
Arguments: 1: ArgNum: A number from 1 to 66 inclusive.

2: Ref: A cell reference.

216 Excel Add-in Development in C/C++

Table 8.13 Selected arguments to x1fGetCell

ArgNum What the function returns

1 Absolute-style reference of the top left cell in reference as text in the
[Book1.xIs]Sheet1!A1 style.

5 The value of the top left cell.

6 The formula in the top left cell in A1 or R1C1 style as determined by
workspace settings.

7 The number format of the top left cell.

14 Returns true if the top left cell is locked.

15 Returns true if the top left cell’s formula is hidden.

16 Returns 2-column row vector:

1st column: Width of the left column
2nd column: True if the width is the standard width, false if a custom width
has been set.

17 Height of top row in points.

32 The name of the workbook and sheet containing the reference in the form
[Book1.xIs]Sheet1, unless the window contains only a single sheet that has the
same name as the workbook without its extension, in which case the form
BOOK1.XLS.

41 Returns the formula in the active cell without translation into the language
set for the workspace.

46 True if the top left cell has a text note.

48 True if the top left cell contains a formula, false if constant.

49 True if the cell is part of an array formula.

52 If the top left cell is a string constant, the text alignment character (),

otherwise empty text ("").

53 The top left cell as displayed, converted to text, including formatting
numbers and symbols.

62 The name of the workbook and the current sheet in the form
[Book1.xIs]Sheet1.

66 The workbook name containing the range in the form Book1.xls.

The Excel4 () function set-up and call would be as shown in the following C/C++
code. This is an example of an exportable function that simply wraps up the call to
x1fGetCell and returns whatever is returned from that call.

Accessing Excel Functionality Using the C API 217

{

xloper arg;

arg.xltype =

xloper * _ stdcall get cell(int arg num, xloper *p ref)

static xloper ret_xloper;

xltypelnt;
arg.val.w = arg_num;

Excel4 (x1fGetCell, &ret xloper, 2, &argl, p ref);
// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype |= xlbitXLFree;

return &ret_xloper;

Using the cpp xloper class, the equivalent code would be:

{

xloper * _ stdcall get_cell (xloper *pRef, int arg num)

cpp_xloper Arg(arg_num, 1, 66);
cpp_xloper RetVal;

Excel4 (x1fGetCell, &RetVal, 2, &Arg, pRef);

return RetVal.ExtractXloper (true) ;

8.9.6 Sheet or workbook information: x1fGetDocument

Overview:

Enumeration value:

Callable from:
Return type:

Arguments:

The first argument corresponds to the information you are
trying to get. The second is the name of a sheet or workbook,
depending on the context, about which you want to know
something. The meaning of the most useful of these 88 values
is given in Table 8.14.% If the second argument is omitted,
information about the active (not the current) sheet or
workbook is returned.

Name can also be specified as workbook-and-sheet in the form
[Book1.xIs]Sheet1 where the context allows.

188 (xbc)
Commands and macro sheet functions.

Various, depending on the value of the first argument.

1: ArgNum: A number from 1 to 88 inclusive.
2: Name: (Optional.) Sheet or workbook name as text.

3 For values not covered, see the Macro Sheet Function Help included with the Excel SDK.

218 Excel Add-in Development in C/C++

Table 8.14 Selected arguments to x1fGetDocument

ArgNum What the function returns
1 If Name is a sheet name:

e If more than one sheet in the current workbook, returns the name of
the sheet in the form [Book1.xIs]Sheet1.

o If only one sheet in the current workbook, but the name of the
workbook is not Name, returns the sheet Name in the form
[Book1.xIs]Sheet1

o If only one sheet in the current workbook and the workbook and
sheet are both called Name, returns the name of the workbook in the
form Book1.xls

o If sheet Name does not exist in the current workbook, returns #N/A

If Name is a workbook name:

e If more than one sheet in the given workbook, the name of the first
sheet in the form [Book1.xIs]Sheet1

e If one sheet in the given workbook, and the sheet name is not also
Name, the name of that sheet in the form [Book1.xIs]Sheet1

e If one sheet with the same name as the given workbook, the name of
the workbook in the form Book1.xls

e If workbook Name is not open, returns #N/A

If Name is omitted:

e If more than one sheet in the active workbook or the sheet name is
not the same as the active workbook name, the name of the active
sheet in the form [Book1.xIs]Sheet1.

o If one sheet with the same name as the active workbook, the name of
the workbook in the form Book1.xls

(See also ArgNum 76 and 88 below, which return the names of the

active worksheet and the active workbook respectively.)

2 Path of the directory containing workbook Name if it has already been

saved, else #N/A

3 A number indicating the type of sheet. If given, Name is either a sheet
name or a workbook. If omitted the active sheet is assumed. If Name is

a workbook, the function returns 5 unless the book has only one sheet

with the same name as the book, in which case it returns the sheet type.

1 = Worksheet

2 = Chart

3 = Macro sheet

4 = Info window if active

5 = Reserved

6 = Module

7 = Dialog

Accessing Excel Functionality Using the C API 219

Table 8.14 (continued)

4 True if changes made to the sheet since last saved.

5 True if the sheet is read-only.

6 True if the sheet is password protected.

7 True if cells in the sheet or the series in a chart are protected.

8 True if the workbook windows are protected. (Name can be either a

sheet name or a workbook. If omitted the active sheet is assumed.)

9 The first used row or O if the sheet is empty. (Counts from 1.)
10 The last used row or O if the sheet is empty. (Counts from 1.)
11 The first used column or O if the sheet is empty. (Counts from 1.)
12 The last used column or O if the sheet is empty. (Counts from 1.)
13 The number of windows that the sheet is displayed with.
14 The calculation mode:

1 = Automatic

2 = Automatic except tables

3 = Manual

15, 18, 19,20 | Options dialog box, Calculation tab checkbox settings as either true or
false:

15: Returns the Iteration checkbox state

18: Returns the Update Remote References checkbox state

19: Returns the Precision As Displayed checkbox state

20: Returns the 1904 Date System checkbox state

16 Maximum number of iterations.
17 Maximum change between iterations.
33 The state of the Recalculate Before Saving checkbox in the Calculation tab

of the Options dialog box.

34 True if the workbook is read-only recommended.
35 True if the workbook is write-reserved.
36 If the workbook has a write-reservation password and it is opened with

read/write permission, returns the name of the user who originally saved
it with the write-reservation password.

If the workbook is opened as read-only, or if a password has not been
added, returns the name of the current user.

48 The standard column width setting.

(continued overleaf’)

220

Excel Add-in Development in C/C++

Table 8.14 (continued)

68 | The workbook name without path.

76 | The name of the active sheet in the form [Book1.xIs|Sheet1

84 The value of the first circular reference on the sheet, or #N/A if none.

87 | The position of the given sheet in the workbook. If the workbook name is not given

with the sheet name, operates on the current workbook. (Includes hidden sheets and
counts from 1.)

88 The workbook name in the form Book1

The Excel4 () function set-up and call would be as shown in the following C/C++
code example of an exportable function that wraps up the call to x1fGetDocument and
returns whatever is returned from that call.

{

/7
//

xloper * _ stdcall get_document (int arg num, char *sheet name)

xloper argl, arg2;
static xloper ret_xloper;

if (arg num < 1 || arg num > 88)
return p_ xlErrValue;

argl.xltype = xltypelnt;
argl.val.w = arg num;

if (sheet_name)

{

arg2.xltype = xltypeStr;
arg2.val.str = new_xlstring(sheet name) ;

}

else
arg2.xltype = xltypeMissing;

Excel4 (x1fGetDocument, &ret_ xloper, 2, &argl, &arg2);
Tell Excel to free up memory that it might have allocated for
the return value.

ret xloper.xltype |= xlbitXLFree;

if (sheet_name)
free(arg2.val.str);

return &ret_xloper;

Using the cpp xloper class, the equivalent code becomes:

xloper * _ stdcall get_document (int arg num, char *sheet_ name)

{

cpp_xloper Argl(arg num, 1, 88);

Accessing Excel Functionality Using the C API 221

if (!Argl.IsType (xltypelnt))
return p_xlErrValue;

cpp_xloper Arg2 (sheet_ name) ;

cpp_xloper RetVal;

Excel4d (x1fGetDocument, &RetVal, 2, &Argl, &Arg2);
return RetVal.ExtractXloper (true) ;

8.9.7 Getting the formula of a cell: x1fGetFormula

Overview: Returns the formula, as text, of the top left cell in a given
reference. The formula is returned in R1C1 style (see
section 2.2, A1 versus R1C1 cell references for details).

Enumeration value: 106 (x6a)

Callable from: Commands and macro sheet functions.
Return type: Text or error.
Arguments: Ref. A reference x1loper.

The Excel4 () function set-up and call would be as shown in the following C/C++
code example of an exportable function that wraps up the call to x1fGetFormula. The
function returns the formula as a string.

xloper * _ stdcall get_formula(xloper *p_ref)

cpp_xloper RetVal;
Excel4 (x1fGetFormula, &RetVal, 1, p_ref);

// Extract and return the xloper, using Excel to free memory
return RetVal.ExtractXloper (true) ;

}

8.9.8 Getting a cell’s comment: x1fGetNote

Overview: Returns the text of the comment attached to the top left cell in
the given reference. If no comment has been added to the cell,
it returns an empty string.

Enumeration value: 191 (xbf)
Callable from: Commands and macro sheet functions.
Return type: Text.

Arguments: Ref. A reference xloper.

222

Excel Add-in Development in C/C++

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fGetNote. The arguments
passed in are a row and column numbers that count from 0. The function creates a
reference to a single cell on the current sheet and returns the comment as a string.

{

xloper Arg;

//
Arg.xltype

!/

/7

int retval

//
//

Tell Excel
the return
ret_xloper.

xloper * _ stdcall get_note(long row,

Arg.val.sref.

First row in
Arg.val.sref.
Arg.val.sref.

First column
Arg.val.sref.
Arg.val.sref.

long column)

static xloper ret_xloper;

= xltypeSRef;
count = 1;
sheet = row 0

ref.rwFirst =
ref.rwLast = (WORD)row;
in sheet = column 0

ref.colFirst =
ref.collLast = (BYTE)column;

= Excel4 (x1fGetNote, &ret xloper, 1,
to free up memory that it might have
value.

xltype | = xlbitXLFree;

Create a simple single-cell reference to cell on current sheet

&Arg) ;

allocated for

return &ret_xloper;

The following code is equivalent to the above, but uses the cpp_xloper class.

{
/7

xloper * _ stdcall get note(long row,

long column)

Create a simple single-cell reference to cell on current sheet

cpp_xloper Arg((WORD)row, (WORD)row, (BYTE)column, (BYTE)column) ;
cpp_xloper RetVal;
Excel4d (x1fGetNote, &RetVal, 1, &Arg);

return RetVal.ExtractXloper (true) ;

8.9.9 Information about a window: x1fGetWindow

Overview:

The function returns information about an open worksheet
window.

The first argument corresponds to the information you are
trying to get. The meaning of the most useful of these 31
values is given in Table 8.15.4

4 For values not covered, see the Macro Sheet Function Help included with the Excel SDK.

Accessing Excel Functionality Using the C API 223

The second is the name of the window about which you want
to know something. If omitted, information about the active
window is returned. (Remember that Excel enables multiple
windows to be opened providing views to the same
workbook.) The text should be entered in the form it appears
in the window title bar, i.e. Book1.xls or Book1.xls:n if one of
multiple open windows.

Enumeration value: 187 (xbb)

Callable from:
Return type:

Arguments:

Commands and macro sheet functions.
Various, depending on the value of the first argument.

1: ArgNum: A number from 1 to 31 inclusive.
2: WindowName: (Optional.) Window name as text.

Table 8.15 Selected arguments to x1f£GetWindow

ArgNum What the function returns
1 e If more than one sheet in the workbook, returns the name of the active sheet
in the form [Book1.xls]Sheet1
e If only one sheet in the workbook with a different name to the workbook,
returns the sheet name in the form [Book1.xIs]Sheet1
e If one sheet in the workbook, both having the same name, returns the name
of the workbook in the form Book1.xls
e If a window of that name is not open, returns #VALUE!
2 The number of the window. Always 1 unless there are multiple windows, in
which case the number displayed after the colon in the window title.
7 True if hidden.
8 True if formulas are displayed.
9 True if gridlines are displayed.
10 True if row and column headings are displayed.
11 True if zeros are displayed.
20 True if window is maximised.
23 The size of the window:
1 = Restored
2 = Minimised
3 = Maximised
24 True if panes are frozen.

(continued overleaf’)

224 Excel Add-in Development in C/C++

Table 8.15 (continued)

ArgNum What the function returns
25 The magnification of the window as a % of normal size.
26 True if horizontal scrollbars displayed.
27 True if vertical scrollbars displayed.
28 The ratio of horizontal space allotted to workbook tabs versus the horizontal

scrollbar. (Default =1 :0.6.)

29 True if workbook tabs displayed.
30 The title of the active sheet in the window in the form [Book1.xIs]Sheet1
31 The workbook name, in the form Book.xls excluding the read/write status.

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fGetWindow and returns
whatever is returned from that call:

xloper * _ stdcall get window(int arg num, char *window_name)

{
xloper argl, arg2;
static xloper ret_xloper;

if(arg num < 1 || arg _num > 31)
return p_xlErrValue;

argl.xltype = xltypelnt;
argl.val.w = arg num;

if (window_name)
{
arg2.xltype = xltypeStr;
arg2.val.str = new_xlstring(window_name) ;

}

else
arg2.xltype = xltypeMissing;
Excel4 (x1fGetWindow, &ret xloper, 2, &argl, &arg2);
// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype | = xlbitXLFree;

if (window_name)
free(arg2.val.str);

return &ret_xloper;

Accessing Excel Functionality Using the C API 225

The following code is equivalent to the above, but uses the cpp_xloper class.

xloper * _ stdcall get_window(int arg_num, char *window_name)
cpp_xloper Argl(arg num, 1, 31);

if (1Argl.IsType (x1typelnt))
return p_xlErrValue;

cpp_xloper Arg2 (window_name) ;

cpp_xloper RetVal;

Excel4d (x1fGetWindow, &RetVal, 2, &Argl, &Arg2);
return RetVal.ExtractXloper (true) ;

8.9.10 Information about a workbook: x1 fGetWorkbook

Overview:

Enumeration value:

Callable from:
Return type:

Arguments:

The function returns information about an open workbook.

The first argument corresponds to the information you are
trying to get. The meaning of the most useful of these 38
values is given in Table 8.16.

The second is the name of the workbook about which you
want to know something. If omitted information about the
active workbook is returned.

268 (x10c)
Commands and macro sheet functions.
Various, depending on the value of the first argument.

1: ArgNum: A number from 1 to 38 inclusive.
2: WorkbookName: (Optional.) Workbook name as text.

Table 8.16 Selected arguments to x1fGetWorkbook

ArgNum What the function returns
1 A horizontal array of the names of all sheets in the workbook.
3 A horizontal array of the names of workbook’s currently selected sheets.
4 The number of sheets in the workbook.
14 True if the workbook structure is protected.

(continued overleaf)

5 For values not covered, see the Macro Sheet Function Help included with the Excel SDK.

226 Excel Add-in Development in C/C++

Table 8.16 (continued)

ArgNum What the function returns
15 True if the workbook windows are protected.
24 True if changes were made to the workbook since last saved.
33 The title of the workbook as in the Summary Info dialog box.
34 The subject of the workbook as in the Summary Info dialog box.
35 The author of the workbook as in the Summary Info dialog box.
36 The keywords for the workbook as in the Summary Info dialog box.
37 The comment for the workbook as in the Summary Info dialog box.
38 The name of the active worksheet.

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fGetWorkbook and
returns whatever is returned from that call:

xloper * _ stdcall get_workbook (int arg num, char *book_name)

{
xloper argl, arg2;
static xloper ret_xloper;

if(arg num < 1 || arg _num > 38)
return p_xlErrValue;

argl.xltype = xltypelnt;
argl.val.w = arg num;

if (book name)
{
arg2.xltype = xltypeStr;
arg2.val.str = new_xlstring(book_name) ;

}

else
arg2.xltype = xltypeMissing;

Excel4 (x1fGetWorkbook, &ret xloper, 2, &argl, &arg2);
// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype |= xlbitXLFree;

if (book_name)
free(arg2.val.str);

return &ret_xloper;

Accessing Excel Functionality Using the C API 227

The following code is equivalent to the above, but uses the cpp_xloper class.

xloper * _ stdcall get workbook (int arg num, char *book name)

{

cpp_xloper Argl(arg num, 1, 38);

if (IArgl.IsType (x1ltypelnt))
return p_xlErrValue;

cpp_xloper Arg2 (book name) ;

cpp_xloper RetVal;

Excel4 (x1fGetWorkbook, &RetVal, 2, &Argl, &Arg2);
return RetVal.ExtractXloper (true) ;

8.9.11 Information about the workspace: x1fGetWorkspace

Overview: The function returns information about the workspace.

The argument corresponds to the information you are trying to
get. The meaning of the most useful of these 72 values is
given in Table 8.17.°

Enumeration value: 186 (xba)

Callable from: Commands and macro sheet functions.
Return type: Various, depending on the value of the first argument.
Arguments: ArgNum: A number from 1 to 72 inclusive.

Table 8.17 Selected argument to x1fGetWorkspace

ArgNum What the function returns
1 The current environment and version number, e.g., Windows (32-bit) NT 5.00.
2 The Excel version number as a string.
3 If fixed decimals are set, returns the number of decimals, otherwise 0.
4 True if in R1C1 mode.
5 True if scroll bars are displayed.
See also x1fGetWindow with ArgNum = 26 and 27.
6 True if the status bar is displayed.
7 True if the formula bar is displayed.

(continued overleaf)

6 For values not covered, see the Macro Sheet Function Help included with the Excel SDK.

228 Excel Add-in Development in C/C++

Table 8.17 (continued)

ArgNum What the function returns
8 True if remote DDE requests are enabled.
9 The alternate menu key or #N/A if no alternate menu key is set.

10 The current mode that Excel is in:

0 = Normal

1 = Data Find

2 = Copy

3 =Cut

4 = Data Entry

5 = Unused

6 = Copy and Data Entry

7 = Cut and Data Entry
15 Maximised/minimised state of Excel:

1 = Neither

2 = Minimised

3 = Maximised

16 Kilobytes of free memory.

17 Kilobytes of total memory available to Excel.

20 If a group is present in the workspace, a horizontal array of sheets in the
group, otherwise #N/A

21 True if the standard toolbar is displayed.

22 DDE application-specific error code.

23 Full path of the default start-up directory.

24 Full path of the alternate start-up directory, or #N/A if not specified.

25 True if set for relative reference macro recording.

26 Name of user.

27 Name of organisation.

32 The full path of the location of Microsoft Excel.

33 A horizontal array of the names in the Insert.. . list (accessed from the
worksheet tab context menu) in the order they appear. (Note that not all of
these are available from the File/New. .. list.)

34 A horizontal array containing template path and filenames corresponding to the
array returned with ArgNum = 33. Returns #N/A for built-in document types.

Accessing Excel Functionality Using the C API 229

Table 8.17 (continued)

ArgNum What the function returns

36 True if the Allow Cell Drag And Drop check box is selected in the Edit tab of the
Options dialog box.

37 A 45-item horizontal array of the items related to country versions and
settings. (See next table for details.)

40 True if screen updating is enabled during macro execution.

41 A horizontal array of cell ranges, in R1C1 style, that were previously selected
with the Goto command from the Edit menu or macro function equivalent.

44 A three-column array of all currently registered DLL procedures. (See
section 8.5, Registering and un-registering DLL (XLL) functions for details of
the meaning of the data returned in column 3.)

Column 1:
The full path and filename of the DLLs that contains the procedure.

Column 2:
The exported name of the DLL function (which may not be the same as the
name as it appears in the worksheet).

Column 3:
String specifying the data type of the return value, the number and type of the
arguments, whether volatile or a macro sheet function.

46 True if the Move Selection After Enter checkbox is selected in the Edit tab of the
Options dialog box.

48 Pathname of the Excel library subdirectory.

50 True if the full screen mode is on.

51 True if the formula bar is displayed in full screen mode.

52 True if the status bar is displayed in full screen mode.

54 True if the Edit Directly In Cell checkbox is set on the Edit tab in the Options
dialog box.

55 True if the Alert Before Overwriting Cells checkbox in the Edit tab on Options
dialog box is set.

56 Standard font name in the General tab in the Options dialog box.

57 Standard font size in the General tab in the Options dialog box.

58 True if the Recently Used File List checkbox in the General tab on the Options
dialog box is set.

59 True if the Display Old Menus checkbox in the General tab on the Options dialog
box is set.

(continued overleaf)

230 Excel Add-in Development in C/C++

Table 8.17 (continued)

ArgNum What the function returns

60 True if the Tip Wizard is enabled.

61 Number of custom list entries in the Custom Lists tab of the Options dialog box.

64 True if the Ask to Update Automatic Links checkbox in the Edit tab of the Options
dialog box is set.

65 True if the Cut, Copy, and Sort Objects with Cells checkbox in the Edit tab on the
Options dialog box is set.

66 Default number of sheets in a new workbook from the Edit tab on Options
dialog box.

67 Default file location from the General tab in the Options dialog box.

68 True if the Show ToolTips checkbox on the Toolbars dialog box is set.

69 True if the Large Buttons checkbox in the Toolbars dialog box is set.

70 True if the Prompt for Summary Info checkbox in the General tab on the Options

dialog box is set.

71 True if Excel was opened for in-place object editing (OLE).

72 True if the Color Toolbars checkbox is set in the Toolbars dialog box.

Table 8.18 gives the meaning of the 45 horizontal array elements related to country
versions and settings returned by this function with ArgNum = 37.

Table 8.18 Country settings returned by x1fGetWorkspace

Category Array index Description of data returned

Country codes 1 Number corresponding to the country
version of Excel.

2 Number corresponding to the current
country setting in the Microsoft Windows
Control Panel.

Number separators 3 Decimal separator
4 1000s separator
5 List separator
R1C1-style references 6 Row character

7 Column character

Accessing Excel Functionality Using the C API 231

Table 8.18 (continued)

Category Array index Description of data returned
8 Lower case row character
9 Lower case column character
10 Character used instead of [
11 Character used instead of]
Array characters 12 Character used instead of {
13 Character used instead of }
14 Column separator
15 Row separator
16 Alternate array item separator used if the array
separator is the same as the decimal separator
Format code symbols 17 Date separator
18 Time separator
19 Year symbol
20 Month symbol
21 Day symbol
22 Hour symbol
23 Minute symbol
24 Second symbol
25 Currency symbol
26 General symbol
Format codes 27 Number of decimal digits used in currency
formats
28 Number indicating the current format for
negative currencies where currency is any
number and $ represents the currency symbol.
29 Number of decimal digits used in non-currency
formats
30 Number of characters to use in month names
31 Number of characters to use in weekday names
32 Number indicating the date order

(continued overleaf)

232 Excel Add-in Development in C/C++

Table 8.18 (continued)

Category Array index Description of data returned
Boolean 33 True if using 24-hour time, otherwise false
format values for 12-hour time.

34 True if not displaying functions in English.
35 True if using the metric system, otherwise

false if imperial.

36 True if a space inserted before currency
symbol.

37 True if currency symbol precedes currency
values.

38 True if minus sign used for negative

numbers, otherwise false if parentheses.

39 True if trailing zeros displayed for zero
currency values.

40 True if leading zeros displayed for zero
currency values.

41 True if leading zero displayed in months
where months are displayed as numbers.

42 True if leading zero shown in days where
days are displayed as numbers.

43 True if using four-digit years, false if
two-digit.
44 True if date order is month-day-year when

displaying dates in long form, otherwise
false if day-month-year.

45 True if leading zero shown in the time.

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fGetWorkspace and
returns whatever is returned from that call:

xloper * _ stdcall get_workspace (int arg_num)

{

xloper arg;
static xloper ret_xloper;

if(arg num < 1 || arg_num > 72)
return p_ xlErrValue;

Accessing Excel Functionality Using the C API 233

arg.xltype =

xltypelnt;
arg.val.w = arg_num;

Excel4 (x1fGetWorkspace, &ret xloper, 1, &arg);

// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype |= xlbitXLFree;

return &ret_xloper;

The following code is equivalent to the above, but uses the cpp xloper class.

{

xloper * _ stdcall get_workspace (int arg_num)
cpp_xloper Arg(arg_num, 1, 72);

if (1Arg.IsType (x1ltypelnt))
return p_xlErrValue;

cpp_xloper RetVal;
Excel4 (x1fGetWorkspace, &RetVal, 1, &Arg) ;
return RetVal.ExtractXloper (true) ;

8.9.12 Information about the selected range or object: x1fSelection

Overview:

Enumeration value:

Callable from:
Return type:

Arguments:

The function returns information about the selected cells or
objects in the active sheet. If cells are selected, the function
returns the address in the form [Book1]Sheet1!A1:B2. If one or more
objects are selected, the function returns a comma-delimited list
of the object identifiers, e.g., CommandButton1,CommandButton2,. . ..

95 (x5f)
Commands and macro sheet functions.
Text.

None.

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fSelection. Note that a
trigger argument is included in this case to provide a means for the function to be called

from a worksheet.

xloper * _ stdcall selection(int trigger)

{

cpp_xloper RetVal;
Excel4 (x1fSelection, &RetVal, 0);

234

Excel Add-in Development in C/C++

// Extract & return the xloper. Arg=true to ensure Excel frees memory

}

return RetVal.ExtractXloper (true) ;

8.9.13 Getting names of open Excel windows: x1fWindows

Overview: The function returns the names of currently open worksheet

windows in this instance of Excel. The names are returned in
a horizontal array in the form Book1.xls, or Book1.xls:2 if there
are multiple windows into the same workbook.

The first argument specifies to the type of windows to list:
1 or omitted = non-add-in windows only.

2 = add-in windows only.

3 = all windows.

The second is an optional text mask that may contain wildcard
characters. If supplied, only names that match are returned.

Enumeration value: 91 (x5b)

Callable from: Commands and macro sheet functions.
Return type: Various, depending on the value of the first argument.
Arguments: 1: MatchType: (Optional.) A number from 1 to 3 inclusive.

2: Mask: (Optional.) Window name mask as text.

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fWindows.

{

//

xloper * _ stdcall xl1 windows (int match type, char *mask)

cpp_xloper Argl(match_type, 1, 3);

cpp_xloper Arg2 (mask) ;

cpp_xloper RetVal;

Excel4 (x1fWindows, &RetVal, 2, &Argl, &Arg2);

Extract and return xloper. Arg=true to ensure Excel frees memory
return RetVal.ExtractXloper (true) ;

8.9.14 Converting a range reference: x1fFormulaConvert

Overview: This function converts a text formula’s cell or range

references to another form depending on its arguments. The
formula can be as simple as an equals sign and a cell or range
reference, but must always be valid. Conversion can be any
mixture of A1 to or from R1C1, or absolute to or from relative.
The converted formula is returned as a string.

Accessing Excel Functionality Using the C API 235

Enumeration value: 241 (xf1)

Callable from: Commands and macro sheet functions.
Return type: Text string.
Arguments: 1: FormulaStr. Text string containing the input cell reference.

2: FromAl. Boolean. True if FormulaStr uses A1 style
references.

3: ToAl: (Optional.) Boolean. True if function is to return a
formula using A1 style references. If omitted, the style is
the same as the supplied formula.

4: ToRefType: (Optional.) Number from 1 to 4 indicating the
absolute/relative type of the returned reference. If omitted,
no conversion is done. 1 = row and column absolute, 2 =
absolute row only, 3 = absolute column only, 4 = row and
column relative.

5: RelativeRef: (Optional.) If required, the cell reference (an
x1ltypeSRef or x1typeRef xloper) which R1C1 style
references should be interpreted as being relative to.

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fFormulaConvert.
Note that the Boolean arguments are passed to the function as integers and converted
in the cpp_xloper constructer call. Note also that the 5th argument of the exported
function is passed in directly as an xloper. This is the only way to prevent Excel
converting from the reference to some other data type.

xloper * _ stdcall formula convert (char *p ref, int from Al,
int to_Al, int abs_rel type, xloper *p rel ref)
{

cpp_xloper Argl (p_ref);
cpp_xloper Arg4 (abs_rel type, 1, 4);
cpp_xloper RetVal;

Excel4 (x1lfFormulaConvert, &RetVal, 5, &Argl,
from Al ? p x1True : p xlFalse,
to_Al ? p_x1True : p_xlFalse,
&Arg4, p_rel ref);

// Extract and return xloper. Arg=true to ensure Excel frees memory
return RetVal.ExtractXloper (true) ;

8.9.15 Converting text to a reference: x1fTextref

Overview: This function converts a text cell reference to an absolute
reference xloper.

Enumeration value: 147 (x93)

236 Excel Add-in Development in C/C++

Callable from: Commands and macro sheet functions.
Return type: An x1ltypeRef xloper.
Arguments: 1: ReferenceStr: Text string containing the input cell reference

2: AlStyle: (Optional.) Boolean. True indicates that the given
reference is in A1 style. False or omitted indicates R1C1
style.

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fTextref. Note that the
Boolean argument is passed as a pointer to a constant xloper.

xloper * _ stdcall text ref (char *p ref, int Al style)
{
cpp_xloper Argl (p_ref);
cpp_xloper RetVal;
Excel4 (x1fTextref, &RetVal, 2, &Argl,
Al_style ? p _x1True : p_xlFalse);
// Extract and return xloper. Arg=true to ensure Excel frees memory
return RetVal.ExtractXloper (true) ;

Note: The reference as text must not have a leading ‘=’. For example, the function
x1fGetName returns the address of a given named range but includes a leading ‘=" that
should be removed before it can be converted to a range xloper using x1fTextRef.

8.9.16 Converting a reference to text: x1 fReftext

Overview: This function converts a cell reference to a string x1loper of
the form [Book1.xIs]Sheet1! R1C1.

Enumeration value: 146 (x92)

Callable from: Commands and macro sheet functions.

Return type: Text string.

Arguments: 1: Reference: A reference xloper (xltypeSRef or
x1ltypeRef).

2: AlStyle: (Optional.) Boolean. True requests that the
returned text is in A1 style. False or omitted requests R1C1
style.

This function is useful when, for example, converting a reference to an R1C1 style string
to be passed to the x1fGetDef function, which returns the defined name (if it exists)
associated with the original reference. (See section 8.10 Working with Excel names on
page 239.) This function is used for this purpose in the example project in the code of the
x1Name class. The function x1f£GetCell, argument=1, also returns an address string
but only in A1 style.

Accessing Excel Functionality Using the C API 237

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1fReftext.

{
cpp_xloper Arg2 (Al_style != 0);
cpp_xloper RetVal;

xloper * _ stdcall ref text (xloper *p_ref, int Al style)

Excel4 (x1fReftext, &RetVal, 2, p ref, &Arg2);
// Extract and return xloper. Arg=true to ensure Excel frees memory
return RetVal.ExtractXloper (true) ;

8.9.17 Information about the calling cell or object: x1fCaller

Overview:

Returns information about what originally initiated this call

into the DLL. It can be called many times in the same call and
will return the same information every time.

Enumeration value: 89 (x59)
Callable from:

Return type:
Table 8.19.)

Arguments: None.

Commands, worksheet and macro sheet functions.

Various depending on the how the DLL was called. (See

Table 8.19 Return types and information for x1fCaller

Where the DLL was called from:

What x1fCaller returns:

A single cell on a worksheet.

A single-cell x1typeSRef or xltypeRef
xloper of that cell.

A multi-cell array formula on a worksheet.

A multi-cell x1typeSRef or x1typeRef
xloper.

A command on a menu bar

A horizontal 3-element array:

e the command’s position number
e the menu number

e the menu bar number

A command attached to a toolbar

A horizontal 2-element array:
e the command’s position number
e the command bar name

A command attached to a control object

The object’s ID

A trapped data entry or double-click event
on a worksheet

A single-cell x1typeSRef or x1ltypeRef
xloper of the affected cell or range of
cells.

Others

#REF!

238 Excel Add-in Development in C/C++

Note: x1fCaller can sometimes return an xloper that has had memory allocated
by Excel. When the xloper is done with, the memory must be freed by Excel. (See
section 7.3, Getting Excel to free memory allocated by Excel for details.)

Warning: The DLL can be called by the operating system, for example, D11Main () or
during a Windows call-back. Calling x1fCaller in these contexts is not necessary and
may have strange and undesirable consequences.

Note that some of Excel’s built-in functions behave differently when called from a
single cell or a number of cells in an array formula. This kind of behaviour can be
replicated in DLL functions by detecting the type of the caller, and the size if it is a
range. (See section 2.6.8 Conversion of multi-cell range references on page 14 for more
detail.) You can also use the x1fGetCell function, with argument 49, to detect if a
given cell reference is part of an array.

Apart from the usefulness of this function in determining the type of caller, it plays
an important role in the naming and tracking of cells that are performing some important
task. See section 8.10 immediately below and sections 9.7 to 9.10. It also can play an
important role in returning the pre-call value of the calling cell. This can be useful in
stopping the propagation of errors as the following simple function demonstrates:

xloper * _ stdcall CurrentValue (xloper *rtn_input, xloper *rtn_value)

{

cpp_xloper RetVval;

if (rtn_input->xltype == xltypeBool && rtn input->val. bool == 1)
return rtn_value;

cpp_xloper Caller;
Excel4 (x1fCaller, &Caller, 0);
Caller.SetExceltoFree () ;

if (!Caller.IsType (x1ltypeSRef | xltypeRef))
return NULL;

Excel4 (x1Coerce, &RetVal, 1, &Caller) ;
RetVal.SetExceltoFree () ;

if (RetVal.IsType (x1ltypeErr))
RetVal = 0.0;

return RetVal.ExtractXloper (false) ;

The function takes two optional arguments. The default behaviour of the function is to
return the existing value of the cell. (For this to work the function must be registered as
a macro sheet equivalent function.) The optional arguments override this and force the
return of a supplied value if the first argument is set to true. An example of the use of
such a function would be as follows:

=IF(OR(ISNA(Al),ISERR(Al)),CurrentvValue (B1,C1l),Al)

Any error that exists in A1 will not be propagated to the result of this formula.

Accessing Excel Functionality Using the C API 239
8.10 WORKING WITH EXCEL NAMES

Excel supports the concept of named ranges within sheets. In ordinary Excel use, these are
easy to create and access, and aid the formation of easy to read and maintain spreadsheets.
The C API provides a number of functions for accessing and managing these names. Excel
also supports a type of hidden name that is only accessible within a DLL using the C
API. (The latter type has its origins as a private Excel 4 macro sheet name.)

In practice, Excel named ranges are best handled in the DLL with a C++ class. An
example of a simple class, x1Name, is provided on the CD ROM and discussed in
section 9.7 A C++ Excel name class example, x1Name on page 307. The class supports
the reading of values from named ranges, writing values to them using simple data types,
as well as creation, deletion and validation. It also assists with the creation of internal
names, especially those associated with the calling cell; a very useful technique when
dealing with internally held data structures and background tasks.

Before this, sections 8.10.1 to 8.10.8 provide a low-level look at Excel’s defined name
logic and the C API’s name handling capabilities.

8.10.1 Specifying worksheet names and name scope

A defined name in Excel is simply a text string that has an associated definition. The
definition can be a constant value (a number, Boolean value or string but not an error
value), an array of constant values, or a reference to a range of cells on a worksheet.

Names are associated with either a worksheet (or an Excel 4 macro sheet). The relevance
of macro sheets here is only that Excel treats functions in an XLL as if they were on
a hidden Macro sheet. Macro sheets and DLLs using the C API, can define worksheet
names on a given worksheet but also can create internal (or Macro sheet) names. Both
can represent all of the basic Excel data types including range references. From a DLL
point of view, it is helpful to think of the two types of names as follows:

1. Worksheet names: defined on a worksheet and persist when the workbook is saved
and reloaded.

2. DLL names: defined in a DLL and are only accessible directly by DLLs. Persist only
as long as the current Excel session.

Both types of names follow the same naming rules:

e Names can be up to 255 characters in length. (You should use a much shorter length
so that worksheet names, when appended to a filename and sheet name, are still well
within the 255 character limit for C API compatibility.)

e Names are case-sensitive and can contain the characters ‘A’ to ‘Z’, ‘a’ to ‘z’, ‘\’
and ‘.

e The numerals 0 to 9, ‘?” and ‘.’ are permitted except that names cannot begin
with these.

e Names cannot contain spaces, tabs, non-printable characters or any of ! "$%%&* () {}
[1:;'@#~<>/|-+=— as well as some other non-alpha and extended ASCII charac-
ters, including other currency symbols.

Worksheet names

In general, worksheet names are specified in formulae by the workbook, sheet and
name. The most general name specification in a worksheet cell would be of the form

240 Excel Add-in Development in C/C++

[Book1.xIs]Sheet1!Name. Where the use of the name is within the workbook that contains
the definition, the filename is not required and its display, including the brackets that
contain it, is suppressed. The sheet name and exclamation mark are also not required,
and their display suppressed, except when there are two identically named ranges on sep-
arate sheets of the same workbook. In this case, they do need to be referred to as, say,
Sheet1!Name and Sheet2!Name.

Worksheet names are saved with the workbook and can be used in the sheet in exactly
the same way that references are, for example ={RangeName} or =SUM(RangeName). Where
identical names are defined on different sheets in the same workbook, Excel can display
some curious behaviour. Ordinarily, cutting and pasting a named range from one sheet to
another simply redefines the name’s definition to reflect its new location. If a named range
with the same name already exists in the paste-to sheet, Excel suppresses the name but
does not invalidate or delete it: the pre-existing name masks the added name. Cutting and
pasting the (masked) named range to another sheet reveals the name again. The situation
can get quite confusing so, in general, it’s best not to tempt fate in this way, and to keep
range names unique within a workbook.

DLL names

Excel names that are defined as internal to a DLL (see function x1fSetName below
for details) cannot be accessed directly in worksheet formulae, unlike worksheet names.
They can only be accessed by the C API functions x1fSetName and x1fGetDef in
the DLL.

How Excel resolves worksheet and DLL names

The steps Excel takes when interpreting a reference in a worksheet (such as Name) are:

1. Look for a definition of the name on the current worksheet.
2. If not found, look for a definition in the current workbook.
3. If still not found, return a #NAME? error.

If the name is referred to as Sheet1!Name then Excel looks for the name in the specified
sheet in the current workbook and returns #REF! if the sheet does not exist or #NAME? if
the name is not defined there.

If the name is referred to as [Book1.xIs]Sheet1!Name then Excel looks for the name in the
specified sheet in the specified workbook and returns #REF! if the workbook is not open
or the sheet does not exist, or returns #NAME? if the name is not defined. If the workbook
is closed, the full path name is required as follows (Excel will prompt for the worksheet
name on a closed workbook, if omitted.):

='C:\Example Folder)\[Bookl.x1ls]Sheetl' IName

When accessing a worksheet named range from within the DLL using the x1fGetName
function (see below), the name must be prefixed by ‘!’ unless the worksheet name is
specified. Otherwise Excel will look for the given name in a hidden name-space that is
only accessible by DLLs running in this instance of Excel. (See DLL Names above.)

Accessing Excel Functionality Using the C API 241

8.10.2 Basic operations with Excel names

There are a number of things you might want to do with names. These operations, and
the functions that you would use to execute them, are summarised here:

e Find out if a given name is defined and, if so, what its definition is (x1f£GetName,
not to be confused with x1GetName which returns the name of the DLL).

e Given a reference or value, find out the corresponding defined name if it exists

(x1fGetDef).

Create, define or redefine a name on a worksheet (x1cDefineName).

Delete a defined name from a given worksheet (x1cDeleteName).

Create, define or redefine a name in the DLL-space (x1fSetName).

Delete a defined name from the DLL-space (x1fSetName).

Get the value(s) corresponding to the defined name (x1fEvaluate).

Set the value of cells in a given named range (x1f£GetName and x1Set).

Get a list of all defined worksheet names. (x1fNames).

All of these basic operations, except for the last, have been encapsulated in the x1Name
class in section 9.7. The class also provides simple member functions that inform the
caller whether the name is defined and, if so, whether the range reference is still valid.

It is important to remember that Excel names can be valid in the sense that they are
defined, but at the same time have invalid range definitions. This can come about when
a named cell is deleted by a row or column deletion, a sheet deletion or as a result of a
cell cut and paste.

8.10.3 Defining a name on a worksheet: x1cDefineName

Overview: Defines a name on a worksheet. The name can represent a
constant value (which can be a number, Boolean value or
string but not an error value), an array of constant values or a
reference to one or more cells.

The function performs the same operation as if the user had
selected the menu option Insert/Name/Define. .. and will, in
fact, display the dialog box if used in conjunction with the
x1Prompt bit.

Enumeration value: 32829 (x803d)

Callable from: Commands only.

Return type: Boolean or error.

Arguments: 1: Name: A string satisfying the rules in section 8.10.

2: Definition: (Optional.) One of the following:
e A formula (as text using R1C1 style references)

242 Excel Add-in Development in C/C++

e A constant (as an xloper of that type or as text with or
without a leading =)
e An array of values. (See note below.)

If Definition is omitted, the function defines the name as
referring to the currently selected cell(s) on the active
worksheet.

Note: There are two ways to specify a literal definition for a name that you wish to
define as a constant. For example, a literal array can be passed as a string of the form
"={1,2;3,4}", or as an xloper of type x1ltypeMulti. The following example com-
mands are equivalent and demonstrate this. Both create a name on the active sheet, so
that the formula =SUM(XLL_test_name), if entered anywhere in the active workbook, would
return 45.

int _ stdcall define name example 1 (void)

{

cpp_xloper Name ("XLL test name") ;
cpp_xloper Definition("={1,2,3;4,5,6;7,8,9}");

Excel4 (xlcDefineName, 0, 2, &Name, &Definition) ;
return 1;

int _ stdcall define name_ example 2 (void)
{
double array[9] = {1,2,3,4,5,6,7,8,9};
cpp_xloper Name ("XLL_ test name") ;
cpp_xloper Definition(array, 3, 3);

Excel4d (xlcDefineName, 0, 2, &Name, &Definition) ;
return 1;

8.10.4 Defining and deleting a name in the DLL: x1fSetName

Overview: Used to define or delete an Excel name that cannot be directly
seen or accessed from a worksheet, only from a DLL. The
name is created for the current session of Excel only and is
defined in a name-space that is shared by all currently
Excel-loaded DLLs. This means that such names could be
used for inter-DLL communication, for example, to advertise
that a DLL is present. Names should be chosen carefully to
avoid conflicts or accidental deletions.

Enumeration value: 88 (x58)

Callable from: Commands and macro sheet functions.

Accessing Excel Functionality Using the C API 243

Return type: Boolean true if successful, otherwise #NAME? If the name does
not exist or error if it could not be created.

Arguments: 1: Name: A string satisfying the rules in section 8.10.

2: Definition: (Optional.) One of the following:
e A formula (as text using R1C1 style references)
e A constant (as an xloper of that type or as text with or
without a leading =)
e An array of values.

If Definition is omitted, the function deletes the name.

The most useful application of such a name is to keep track of an instance of a DLL func-
tion call from a specific cell, even if the cell is moved. Unlike the function
x1cDef ineName which can only be called from a command, this function can be called
from a worksheet function (provided it has been registered as a macro-sheet equivalent
function), enabling a function to name its calling cell. Chapter 9 and Chapter 10 both
contain example techniques and applications that rely on the DLL being able to do this.

The function x1fNames (see section 8.10.8 below) returns a horizontal array of all the
worksheet names defined in a specified workbook. Unfortunately, this does not include
names created with x1fSetName. For this reason, the DLL should maintain an internal
list of such names. The example class x1Name, see section 9.7 below, adds every internal
name it creates to a Standard Template Library (STL) container class. The source files
X11lNames.cpp and X11Names.h in the example project on the CD ROM contain a
full listing of the code for both the x1Name class and the STL map.

As with the definition of a worksheet name, the Definition argument string can be a
formula, for example, "=SQRT (2*PI ()) ". When retrieving the value of the name, this
formula must be evaluated using the x1fEvaluate function before the value can be
used. (In this rather simplistic example, it would be better to evaluate first and define the
name as the value instead.)

Note: If you want to set the name to be defined as the value of a cell reference, rather
than the reference itself, it is necessary to obtain that value using either the x1fDeref or
the x1Coerce function before passing it to x1 fSetName. Passing the reference directly
defines the name as the reference instead of the value.

The following code lists a function that creates an internal DLL name, or retrieves its
value. If the 4th argument is Boolean and true, the function deletes the name. (The call
to x1fSetName fails gracefully if the name is not defined.)

xloper * _ stdcall xl1ll name(char *name_text, xloper *p_defn,
xloper *p as_value), xloper *p delete)
{

cpp_xloper Name (name_text); // make a deep copy
cpp_xloper Defn(p_defn); // make a shallow copy
cpp_xloper AsValue(p_as_value); // shallow copy
cpp_xloper Delete(p_delete);

cpp_xloper RetVal;

int x14;

if (Delete == true)

244 Excel Add-in Development in C/C++

{
Excel4d (x1fSetName, 0, 1, &Name) ;
// Remove from the DLL's list of internal names.
clean x11 name_list();
return p_xl1True;

}

if (Defn.IsType (xltypeNil | xltypeMissing))
{
// function is just asking for the name to be evaluated
Excel4 (x1fEvaluate, &RetVal, 1, &Name) ;
return RetVal.ExtractXloper (true) ;

}

if (AsValue==true && Defn.IsType (xltypeSRef | xltypeRef))
{
// Create a name defined as the value of the given reference
cpp_xloper Val;
x14 = Excel4 (xlCoerce, &Val, 1, &Defn);
Val.SetExceltoFree () ;

if (x14 | | Val.IsType (x1ltypeErr))
return p_xlFalse;

Excel4 (x1fSetName, &RetVal, 2, &Name, &Val) ;

}

else
// Create a name defined as the given reference
Excel4 (x1fSetName, &RetVal, 2, &Name, &Defn);

// Add to DLL's list of internal names. Done automatically by the
// the x1Name constructor

x1Name R (name_text) ;

return RetVal.ExtractXloper (true) ;

8.10.5 Deleting a worksheet name: x1cDeleteName

Overview: Deletes a defined worksheet name. Once this operation has
completed, any cells that reference the deleted name will
return the #NAME? error.

The function performs the same operation as if the user had
selected the menu option Insert/Name/Define. .. and deleted the
name in the Define Name dialog.

Enumeration value: 32878 (x806¢)
Callable from: Commands only.
Return type: Boolean or error.

Arguments: 1: Name: A string satisfying the rules in section 8.10.

Accessing Excel Functionality Using the C API 245
8.10.6 Getting the definition of a named range: x1fGetName
Overview: Returns the definition of a given named range as text. The output

of the function depends on where the input range is defined and
on whether the range was defined on the active sheet.

Enumeration value: 107 (x6b)

Callable from: Commands only.
Return type: Text or an error value.
Arguments: 1: Name: A string satisfying the rules in section 8.10. (See table

below for examples.)

2: ReturnedInfo: A number specifying the type of information to
return about the name. If 1 or omitted, returns the name’s
definition (see following table for details). If 2, returns a
Boolean which is true if the scope of the name is limited to
the current sheet.

Example

Suppose that three ranges have been defined but with the same name, TestName, in three
places as shown in Table 8.20. Suppose also that Book1 is an open workbook containing

Sheet1, Sheet?2 and Sheet3.

Table 8.20 Example range definitions

Full name Where defined Definition
TestName DLL (see x1fSetName) [Book1.xIs]Sheet3!R1C1:R2C2
[Book1.xIs]Sheet1!TestName Book1, Sheet1 [Book1.xIs]Sheet1!'R2C2:R3C3
[Book1.xIs]Sheet2! TestName Book1, Sheet?2 [Book1.xIs]Sheet2!R3C3:R4C4

Table 8.21 summarises the values returned by x1 £GetName in various contexts when the
second argument is omitted. (See section 2.2, A1 versus R1C1 cell references on page 9
for an explanation of the R1C1 address style.)

Table 8.21 Example x1fGetName return values

Name passed as. . . The active The Value returned
sheet: current
sheet:
TestName Any. Any. =[Book1.xIs]Sheet3!IR1C1:R2C2

The definition supplied in
the call to x1fSetName.
This may be a constant
value or array, or a
worksheet range as in this
example.

(continued overleaf’)

246 Excel Add-in Development in C/C++

Table 8.21 (continued)

Name passed as. . . The active The Value returned
sheet: current
sheet:
| TestName Sheet1 Any. =R2C2:R3C3
| TestName Sheet2 Any. =R3C3:R4C4
| TestName Sheet3 Any. =Sheet1!R2C2:R3C3 Name on
Sheet2 is masked by name
on Sheet1.
| TestName Any sheet | Any. #NAME?
in any
other
workbook.
Sheetl!TestName Sheet1 Any. =R2C2:R3C3
Sheetl!TestName Sheet2 Any. =[Book1.xIs]Sheet1!R2C2:R3C3
Sheetl!TestName Sheet3 Any. =[Book1.xIs]Sheet1!R2C2:R3C3
Sheetl!TestName Any sheet | Any sheet |#NAME?
in any in any
other other
workbook. | workbook.
Sheetl!TestName Any sheet | Bookl: =[Book1.xIs]Sheet1!R2C2:R3C3
in any Sheet1,
other Sheet? or
workbook. | Sheet3
[Bookl.x1ls] Sheetl!TestName | Sheetl Any. =R2C2:R3C3
[Bookl.x1ls] Sheetl!TestName | Any other |Any. =[Book1.xIs]Sheet1!R2C2:R3C3
sheet in
any
workbook.

As you can see from the above table, the behaviour of this function, whilst being logical
in its own interesting way, is a little confusing. Consequently, it’s best to use the most
explicit form of the name, as shown at the bottom of the table, to avoid ambiguity or the
need to check which is the active sheet before interpreting the result. Where the name is
defined within the DLL, its definition is only accessible as shown at the top of Table 8.21.
If the name is a worksheet name it must be prefixed with at least the ‘!’

Where a DLL name was defined as a constant value, even where this is a number,
the function returns a string in which the value is prefixed with ‘=’. For example, if
the value 1 was assigned, it returns “=1" and if the value “xyz” was assigned it returns
="xyx".

Accessing Excel Functionality Using the C API 247

The Excel4 () function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to x1f£GetName.

xloper * _ stdcall GetName (char *name, xloper *p_info_ type)

{
cpp_xloper Argl (name) ;
cpp_xloper RetVal;
int retval = Excel4 (x1fGetName, &RetVal, 1, &Argl, p_info_type);

return RetVal.ExtractXloper (true) ;

}

If the name is defined as a reference to one or more cells, (the most common reason
for defining a name), then to convert the text definition returned by x1fGetName you
need to use x1fTextRef, after stripping the leading ‘=’ from the text address. (See
section 8.9.15 Converting text to a reference: x1fTextref on page 235, and also the
x1Name class code listed on the CD ROM and discussed below.)

8.10.7 Getting the defined name of a range of cells: x1fGetDef

Overview: Returns the defined name of a range of cells (or other
nameable object) given the corresponding range as text (or
object ID). If no name corresponds to the reference provided,
it returns #NAME?.

Enumeration value: 145 (x91)

Callable from: Commands and macro sheet functions.

Return type: Text or an error value.

Arguments: 1: DefinitionText: A text representation of anything that a

name can be assigned to. If a range of cells, then the range
address must be expressed in R1C1 form.

2: Documentlext: The name of the sheet in the current
workbook containing the object or range specified in
DefinitionText. If omitted the sheet is assumed to be the
DLL, i.e., the function returns the internal name if it exists.

3: TypeNum: A number indicating the type of name to find. 1
or omitted will only search for names that are not hidden, 2
only for names that are hidden and 3 for all names.

Where the range name is defined on a worksheet, the first argument should be passed as in
the following code fragment, which places the name, if it exists, or #fNAME? in RetVal:

cpp_xloper Address("R1C1l"); // Cell Al
cpp_xloper Sheet ("Sheetl");
cpp_xloper RetVal;

248 Excel Add-in Development in C/C++

Excel4 (x1fGetDef, &RetVal, 2, &Address, &Sheet) ;
RetVal.SetExcelToFree () ;

Where the range name is defined within the DLL, only the first argument should be
provided as in the following code fragment:

cpp_xloper Address (" [Bookl.xls]Sheetl!R1C1") ;
cpp_xloper RetVal;

Excel4 (x1fGetDef, &RetVal, 1, &Address);
RetVal.SetExcelToFree () ;

8.10.8 Getting a list of named ranges: x1fNames

Overview: Returns a horizontal array of all the names defined in the
specified workbook. (Unfortunately, this function does not
return Excel names created within the DLL using
x1fSetName. For this reason the DLL should maintain an
internal list of the hidden DLL names it has created.)

If no names match the criteria, the function returns #N/A.

Enumeration value: 122 (x7a)

Callable from: Commands and macro sheet functions.

Return type: Horizontal array (x1typeMulti) of strings (x1typeStr).
Arguments: 1: Workbook/Worksheet: (Optional.) A string in the form

Book1.xls or [Book1.xIs]Sheet1. If omitted the current
workbook is searched.

2: NameType: (Optional.) Integer indicating the type of names
to select: 1 or omitted = unhidden names, 2 = hidden
names, 3 = all names.

3: Mask: (Optional.) A wildcard match string. For example
“s*” will return all names starting with S. (Note: Searches
are not case-sensitive). If omitted all names of NameType
are returned.

Note: This function will not return the names of any binary storage blocks created with
the x1DefineBinaryName function (see section 8.8 Working with binary names on
page 209). Nor does it list names defined by a DLL within this session of Excel using
x1fSetName. The DLL should therefore maintain its own list of such names using, for
example, one of the C++ Standard Template Library containers or a simple linked list
coded in C.

Where a workbook contains distinct sheets which have duplicate defined names, as in
the example in section 8.10.6 on page 245, the function will behave slightly differently

Accessing Excel Functionality Using the C API 249

depending on whether the first argument is omitted or not. If omitted, the function returns
an array of the names in the current workbook with no duplicates. If the workbook is
explicitly provided in the first argument, the function returns the array with duplicate
names repeated.

8.11 WORKING WITH EXCEL MENUS

Excel displays one menu bar for each sheet type, the most familiar being the default
worksheet menu bar which normally contains nine menus:

File Edit View Insert Format Tools Data Window Help

Customising this and other menu bars, the menus they contain and the commands that the
menus contain, enables the DLL to make its own command functions easily accessible.
(Remember that commands can perform operations that worksheet functions cannot.)
Creating menus using the XLLM functions via the C API is fairly easy, as this section
aims to show, but complex commands, especially those with complex dialogs and so on,
are far better developed in VB. Including a few commands within an XLL can greatly
simplify the provision of functionality of a DLL that primarily exists to provide worksheet
functions. For example, a command that displays a simple dialog showing DLL version
information or that allows configuration of one or more worksheet functions, can make
the DLL functionality very much more user-friendly.

The highest level menu object is the menu bar, such as the one shown above, containing
one or more menus, e.g. File, with each menu in turn providing access to one or more
commands or sub-menus, the latter with its own commands. Excel has a number of built-
in menu bars relating to different types of sheet, for example, there is a worksheet menu
bar and a chart menu bar. Excel switches automatically between these when the user
changes the active sheet.

As well as the add-in developer being able to change existing menu bars, they can
also create custom menu bars. The creation of a custom menu bar does not automatically
display it — it must be explicitly invoked, replacing the previous menu bar in the process.
The display of a custom menu bar also suppresses the automatic switching between menu
bars when the sheet type changes. So, unless you deliberately want to restrict the user
in what they can do with Excel, it is better to add menus and/or commands to existing
menu bars than to use custom bars.

Menus and commands can be accessed with Alt-key sequences. These are defined at
the point that the new menu or command is registered with Excel, using an ampersand
‘&’ before the relevant letter in the displayed string. When adding menus or commands
care should be taken to avoid conflicts with existing items, especially Excel’s built-in
menus and commands.

8.11.1 Menu bars and ID numbers and menu and command specifiers

Internally, Excel represents each of the built-in menu bars by an ID number as shown in
Table 8.22. Custom menu bars are assigned an ID number outside this range.

250 Excel Add-in Development in C/C++

Table 8.22 Built-in menu bar IDs

Bar ID number Built-in menu bar description
lto6 No longer used. These all correspond to versions of Excel 5.0 and
earlier.
7,8,9 Short-cut menu groups (see next section)
10 Worksheets (and Excel 4 macro sheets)
11 Chart sheets
12 No longer used (Excel 4.0 and earlier)
13 to 35 Reserved for use by Excel’s short-cut menus.
36 to 50 Returned by x1fAddBar when creating custom menu bars.

Each menu bar contains a number of menus which can either be referred to by name (the
displayed text) or position number counting from 1 from the left.
Each menu contains a number of lines comprised of the following three types:

e Commands

e Separator lines

e Sub-menus, containing. . .
o Commands
o Separator lines

These lines can be referred to either by name (the displayed text) or position number
counting from 1, top to bottom. (Counting includes separator lines.) Where the line is a
sub-menu, its sub-commands can also be referred to by name or position number in the
same way.

Some of the menu management functions take search strings that can contain wildcards.
These strings can be the name of a menu or a menu item. Ampersands, indicating the
Alt-key access key, are ignored in these searches. An ellipsis ‘... needs to be included
if the command contains one. (The ellipsis has no function, but, by convention, indicates
that the command will display a dialog box.) Searches are not-case sensitive. Where text
is provided in order to create a new menu, the position of any ampersand is important to
avoid conflicts with built-in menus.

Note: Built-in menu-bars and menus can change from version to version and, as this
section shows, can be altered by add-ins even during an Excel session. Therefore, menus
and commands should generally be specified as text rather than by position.

8.11.2 Short-cut (context) menu groups

The short-cut drop-down menus referred to in the above table (Bar ID numbers 7, 8 and 9)
are displayed by right-clicking on the relevant object, and are consequently also referred to
as context menus. Conceptually, a short-cut menu bar is an invisible menu bar containing
a number of invisible short-cut menus, whose drop-down list of commands only becomes

Accessing Excel Functionality Using the C API 251

visible when you right-click on the associated object. For example, right clicking on a
worksheet cell displays a context menu containing the most common cell operations:
Cut, Copy, Paste, Paste Special. . ., Insert.. ., Delete. .., Clear Contents, Insert Comment, Format
Cells. . ., Pick From List..., Hyperlink. ...

Commands can be added and deleted in exactly the same way as with menus on visible
menu bars, except that instead of being able to specify a menu as either a text argument
or position number (see below), the drop-down menu of a specified must be specified by
the number shown in Table 8.23:

Table 8.23 Short-cut menus

Worksheet short-cut bar | Menu number Corresponding object description
ID
7 1 Toolbars
2 Toolbar buttons
3 No longer used
4 Worksheet cells
5 Entire column selection
6 Entire row selection
7 Workbook tab
8 Excel 4 Macro sheet cells
9 Workbook title bar
10 Desktop (Windows only)
11, 12, 13, 14 These menus refer to VB code modules which are no
longer supported.
Non-worksheet object | Menu number Corresponding object description
short-cut bar ID
8 1 Drawn and imported objects
2 Buttons on sheets
3 Text boxes
4 Dialog sheet
Chart short-cut bar ID | Menu number Corresponding object description
9 1 Series
2 Chart and axis titles
3 Plot area and walls
4 Entire chart
5 Axes
6 Gridlines
7 Floor and arrows
8 Legend

252 Excel Add-in Development in C/C++

8.11.3 Getting information about a menu bar: x1fGetBar

Overview: Provides information about a menu bar.

Enumeration value: 182 (xb6)

Callable from: Commands only.
Return type: Various. (See below.)
Arguments: 1: MenulD: The menu bar ID number.

2: Menu: The menu as either text or position number.

3: MenuPosition: The command (i.e., menu item) as text or
position number.

4: SubMenuPosition: The sub-command as text or position
number.

If all arguments are omitted, the function returns the ID number of the currently displayed
menu bar, which can then be used as an argument to other menu-management functions.

Where MenulD is given, Menu and MenuPosition must also be provided, although
MenuPosition may be passed as x1typeMissing.

If MenuPosition is zero or x1typeMissing, the function returns the position number
of the menu on the menu bar (if the menu was specified as text), or as text (if specified
by its position number). If the menu is returned as text, it includes the ampersand if there
is an Alt-key associated with it. If the menu cannot be found or the position number is
not valid, the function returns #N/A.

If MenuPosition is specified as a number, the function returns the command in that
position as text including any ampersand or ellipsis. If the number corresponds to a
command separator line, the returned text is a single dash ‘-’. If there is no menu item
at that position or the menu is not valid the function returns #N/A.

If MenuPosition is specified as text, the function returns the position of the command
in the menu. If the text provided is a single dash, the function returns the position of the
first separator line, and if two dashes “--”, the position of the second separator line, and
so on. If the specified text cannot be located, the function returns #N/A. (Functions that
take the position of a command on a menu or sub-menu also accept text. Two dashes will
be treated as equivalent to the position of the second separator.)

In calling the function to obtain command information as described above, SubMenu-
Position can be omitted.

If SubMenuPosition is specified, the first three arguments must also be provided. The
argument functions in the same way as when passed only three arguments, except that it
returns the position of a command on the sub-menu or the text, depending on whether it
was given as text or number. The function returns #N/A if the arguments are not valid.
Consequently, a call to this function with SubMenuPosition set to 1 will return #N/A if
the given menu item is not a sub-menu, giving a fairly easy means of determining which
type of menu item is at each position on a menu.

Note: Built-in menu-bars and menus can change from one Excel version to another,
and they can be altered by add-ins during an Excel session. Menus and commands should
therefore be specified as text rather than by position.

Accessing Excel Functionality Using the C API

The following example function returns a number specifying whether a menu item is
a command, separator line or sub-menu, returning 1, 2 or 3 respectively. It returns O if
the position is invalid for this menu and —1 if the inputs did not correspond to a valid
menu. The menu argument is declared as an integer so that the function will work with
short-cut menus that cannot be specified by a text value. The function makes use of
the cpp_ xloper class to simplify the management of the arguments for Excel4 ().

Remember that this function can only be called during execution of a command.

int menu_item_ type(int bar ID, xloper *pMenu, int position)
{
if (position <= 0)
return -1;

cpp_xloper BarID(bar ID);
cpp_xloper Pos (1) ;
cpp_xloper RetVal;

// Check that bar ID and menu are valid by asking for the
// text of the menu at position 1
if (Excel4 (x1fGetBar, &RetVal, 3, &BarID, pMenu, &Pos)
|| !RetVal.IsType (xltypeStr))
return -1;

// Get Excel to free the memory before re-use
RetVal.Free (true) ;

// Get the text of the menu item at the given position
Pos = position;

if (Excel4 (x1fGetBar, &RetVal, 3, &BarID, pMenu, &Pos)
|| 'Retval.IsType (x1ltypeStr))

return O;

// Is it a separator line?

char *p = (char *)RetVal;
bool is separator = (*p == '-"');
free(p);

RetVal.Free (true) ;

if (is_separator)
return 2;

// Is it a command? Try and get the text of the 1lst sub-menu item
cpp_xloper SubCmd (1) ;

if (Excel4 (x1fGetBar, &RetVal, 4, &BarID, pMenu, &Pos, &SubCmd)
|| !'Retval.IsType (x1ltypeStr))
{
// It's a command
return 1;

}

RetVal.SetExceltoFree () ;

// It's a sub-menu
return 3;

254 Excel Add-in Development in C/C++

8.11.4 Creating a new menu bar or restoring a default bar: x1fAddBar

Overview:

Enumeration value:
Callable from:
Return type:

Arguments:

Creates an new user menu bar or restores a built-in menu bar.

If the argument is omitted it creates a new menu bar and returns
an ID. This ID is used when adding or deleting menus and
commands, displaying it (using x1fShowBar), deleting it and so
on. Excel permits up to 15 custom menu bars to be defined. If
this limit has already been reached the function will fail with a
#VALUE! error.

If the argument is a valid built-in menu bar ID number the
function restores the original menu bar, effectively removing any
and all customisations: yours and everyone else’s. If successful,
it returns the ID number of the restored menu bar, otherwise it
returns #VALUEL

151 (x97)
Commands only.
Boolean, integer or error.

1: MenulD. (Optional.) A menu bar ID number

8.11.5 Adding a menu or sub-menu: x1fAddMenu

Overview:

Enumeration value:
Callable from:
Return type:

Arguments:

Can be used to add a menu to an existing menu bar with one or
more commands, or to add a sub-menu and commands to an
existing menu. It can also restore a deleted built-in menu.

152 (x98)
Commands only.
Boolean or error.

1: MenulD: The menu bar ID number.

2: MenuRef: The name of a built-in menu or an array (or
reference to a block of cells) containing the menu description
(see below for details).

3: MenuPosition: (Optional.) Specifies the position of the menu
item at which commands described in the menu description
are to be placed. This can be a number or the text of an
existing menu item. (The n" separator line can be specified by
a string of ‘n’ dashes.)

Accessing Excel Functionality Using the C API 255

4: SubMenuPosition: (Optional.) Specifies the position on the
sub-menu at which commands described in the sub-menu
description are to be placed. This can be a number or the text
of an existing sub-menu item. (The n separator line can be
specified by a string of ‘n’ dashes).

If MenuRef is simply the name of a built-in menu, the remaining arguments are not
required and the function restores the menu to its original default state, returning the
position number of the restored menu. To restore it to its original position, you need to
specify this in MenuPosition, otherwise it is placed at the right of the menu bar.

If not simply the name of a menu, MenuRef is an array that describes the menu to be
added or extended as shown in Table 8.24.

Table 8.24 Custom menu definition array

Required columns Optional columns
Menu text (blank) (blank) (blank) (blank)
Command] text Commandl Name (not used) Status bar text Help reference
Command? text Command2 Name (not used) Status bar text Help reference

Notes:

e The first two columns and at least two rows are required.

e The second column contains the command name as passed to Excel in the 4th argument
to x1fRegister or the name of some other command macro VB function.

e If the command is not a recognised name Excel will not complain until the user attempts
to run the command, at which point an alert dialog with the message “The macro
'command _name"' cannot be found.” is displayed.

e The third column would contain a short-cut key for Macintosh systems and is therefore
not used in Windows DLLs.

e The fifth column contains a help reference in the form HelpFile ! TopicNum where
HelpFile is a standard Windows help file.

e The third, fourth and fifth columns are all optional.

e This table can be passed to the function as either an x1loper of type x1ltypeMulti
or as a reference to range of cells on a worksheet.

If MenuPosition is omitted, commands in the MenuRef are placed at the end of the
list of existing menu items and the function returns the position number of the first
new command.

If argument SubMenuPosition is given, the function adds a sub-menu (or adds com-
mands if the sub-menu already exists) to the menu specified by the position in Menu-
Position. SubMenuPosition specifies the position on the sub-menu at which to place the
commands. Again, this can be a number or text specifying the line before which the
commands will be placed. If SubMenuPosition is omitted, then the commands are placed
at the end of the menu, not the sub-menu.

256 Excel Add-in Development in C/C++

Example 1

The following code fragment adds a new menu, with two commands separated by a line,
at the right of the worksheet menu bar and records the position number so that it can be
modified or deleted. (Note: Referring to the menu by its text “&XLL test” is better as
the position number could be altered by other menu changes.)

The code creates an array of strings for the MenuRef parameter in an x1typeMulti
xloper, as shown in this table, using the cpp xloper class.

"&XLL test" "
"&XLL command 1" "XLL_CMD1"
n_n nn
"X&LL command 2" "XLL_ CMD2"
char *menu_txt[8] = {"&XLL test", "", "&XLL command 1", "XLL_CMD1",
mow own o owx¥&LL command 2", "XLL_CMDZ"};
cpp_xloper BarNum(10); // the worksheet menu bar

cpp_xloper MenuRef (menu_txt, (WORD)4, (WORD)2); // 4 rows, 2 columns
cpp_xloper RetVal;

int x14 = Excel4 (x1fAddMenu, &RetVal, 2, &BarNum, &MenuRef) ;

if (x14 == 0 && !RetVal.IsType (x1ltypeErr))
int test_menu position = (int)RetVal;
Example 2

The following code fragment inserts the same new menu as in Example 1, to the imme-
diate left of the Help menu on the worksheet menu bar.

char *menu_txt[8] = {"&XLL test", "", "&XLL command 1", "XLL_CMD1",
n-mw, ww, "X&LL command 2", "XLL_CMD2"};

cpp_xloper BarNum(10); // the worksheet menu bar

cpp_xloper MenuRef (menu_txt, (WORD)4, (WORD)2); // 4 rows, 2 columns
cpp_xloper MenuPos ("Help") ;

cpp_xloper RetVal;

int x14 = Excel4 (x1fAddMenu, &RetVal, 3, &BarNum, &MenuRef, &MenuPos) ;

if (x14 == 0 && !RetVal.IsType (x1ltypeErr))
int test_menu position = (int)RetVal;
Example 3

The following code fragment inserts the same menu as in Example 1 as a sub-menu just
before the Table... command on the Data menu on the worksheet menu bar.

Accessing Excel Functionality Using the C API 257

cpp_xloper RetVal;

char *menu_txt[8] = {"&XLL test", "", "&XLL command 1", "XLL_CMD1",
n-n, wn, "X&LL command 2", "XLL_ CMD2" } ;
cpp_xloper BarNum(10); // the worksheet menu bar

cpp_xloper MenuRef (menu_txt, (WORD)4, (WORD)2); // 4 rows, 2 columns
cpp_xloper MenuPos ("Data") ;
cpp_xloper SubMenuPos ("Table...");

int x14 = Excel4 (x1fAddMenu, &RetVal, 4, &BarNum, &MenuRef, &MenuPos,
&SubMenuPos) ;

Example 4

The following code fragment restores the Data menu to the worksheet menu bar in its
default position (just left of the Window menu). This presupposes that the menu was deleted
with the x1fDeleteMenu command. Note that the menu will be restored in the same
state in which it was deleted which may not be the Excel’s default. (To restore a menu
to its default state use the x1fAddCommand function.) Note also that this code assumes
that the Window menu has not itself been deleted.

cpp_xloper RetVal;

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper MenuRef ("Data"); // Just the menu name!
cpp_xloper MenuPos ("Window"); // Default posn: left of Window menu

Excel4 (x1fAddMenu, &RetVal, 3, &BarNum, &MenuRef, &MenuPos) ;

8.11.6 Adding a command to a menu: x1fAddCommand

Overview: Adds a command to an existing menu or sub-menu, or restores a
modified built-in menu to its default state.

Enumeration value: 153 (x99)

Callable from: Commands only.
Return type: Various. (See below.)
Arguments: 1: MenulD. (Optional.) A menu bar ID number.
2: Menu: The name of a menu or its position from the left or its
designated number if a short-cut menu.
3: CommandRef: The ID of a deleted built-in command obtained

from the x1fDeleteCommand function, or a horizontal
array (or range reference) containing the description of the
command to be added. (See below for details.)

258 Excel Add-in Development in C/C++

4: CommandPosition: An optional argument specifying the
position of the menu item at which the command is to be
placed: a number or the text of an existing menu item. (The
n'" separator line can be specified by a string of 7 dashes.)

5: SubMenuPosition: An optional argument specifying the
position on the sub-menu at which the command is to be
placed. This can be a number or the text of an existing
sub-menu item. (The n™ separator line can be specified by a
string of n dashes.)

If CommandRef is simply the name of a built-in menu, the remaining arguments are not
required and the function restores the menu to its original default state, returning the
position number of the restored menu. To restore it to its original position, you need to
specify this in MenuPosition, otherwise it is placed at the right of the menu bar.

CommandRef is a horizontal array as that describes the menu to be added or extended
as shown in Table 8.25.

Table 8.25 Custom command definition array

Required columns Optional columns

Command text Commandl Name (not used) Status bar text Help reference

Notes:

e The array is the same as the 2nd (and subsequent) rows in the MenuRef array described
in the previous section.

e The first two columns are required.

e The second column contains the command name as passed to Excel in the 4th argument
to x1fRegister or the name of some other command macro of VB function.

e If the command is not a recognised name Excel will not complain until the user attempts
to run the command, at which point an alert dialog with the message “The macro
‘command_name' cannot be found.” is displayed.

e The third column would contain a short-cut key for Macintosh systems and is therefore
not used in Windows DLLs.

e The fifth column contains a help reference in the form HelpFile ! TopicNum where
HelpFile is a standard Windows help file.

e The third, fourth and fifth columns are all optional.

If CommandRef is simply the text of a previously deleted built-in command on this
menu, the command is restored in the position specified by CommandPosition and Sub-
CommandPosition.

If CommandPosition is omitted, the command is placed at the end of the menu and the
function returns the position number of the added command.

If argument SubMenuPosition is given, the function adds the command to the sub-menu
at CommandPosition. SubMenuPosition specifies the position on the sub-menu at which

Accessing Excel Functionality Using the C API 259

to place the command. Again this can be a number or text specifying the line before which
the commands will be placed. If SubMenuPosition is zero, the command is placed at the
end sub-menu. If omitted, the command is added to the main menu, not the sub-menu.

Example 1

The following code fragment adds a new command to the bottom of the Tools menu. The
code creates an array of strings for the CommandRef parameter in an x1ltypeMulti
xloper using the cpp xloper class.

char *cmd_txt[2] = {"&XLL command 1", "XLL CMD1"};
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools") ;

cpp_xloper CmdRef (cmd txt, (WORD)1l, (WORD)2); // 1 row, 2 columns

x14 = Excel4 (x1fAddCommand, &RetVal, 3, &BarNum, &Menu, &CmdRef) ;

Example 2

The following code fragment adds a new command before the first separator on the Tools
menu.

char *cmd_txt[2] = {"&XLL command 1", "XLL CMD1"};

cpp_xloper BarNum(10); // the worksheet menu bar

cpp_xloper Menu("Tools") ;

cpp_xloper CmdRef (cmd txt, (WORD)1l, (WORD)2); // 1 row, 2 columns
cpp_xloper CmdPos ("-");

Excel4 (x1fAddCommand, &RetVal, 4, &BarNum, &Menu, &CmdRef, &CmdPos) ;

Example 3

The following code fragment adds a new command to the end of the Macro sub-menu on
the Tools menu.

char *cmd_txt[2] = {"&XLL command 1", "XLL CMD1"};

cpp_xloper BarNum(10); // the worksheet menu bar

cpp_xloper Menu("Tools") ;

cpp_xloper CmdRef (cmd txt, (WORD)1l, (WORD)2); // 1 row, 2 columns
cpp_xloper CmdPos ("Macro") ;

cpp_xloper SubMenuPos (0) ;

Excel4 (x1fAddCommand, &RetVal, 5, &BarNum, &Menu, &CmdRef, &CmdPos,
&SubMenuPos) ;

Example 4

The following code fragment adds a new command to the end of the worksheet cells
short-cut menu (viewed by right-clicking on any cell).

260 Excel Add-in Development in C/C++

char *cmd_txt[2] = {"&XLL command 1", "XLL CMD1"};

cpp_xloper BarNum(7); // the worksheet short-cut menu-group
cpp_xloper Menu(4); // the worksheet cells short-cut menu
cpp_xloper CmdRef (cmd txt, (WORD)1l, (WORD)2); // 1 row, 2 columns
cpp_xloper CmdPos (0) ;

Excel4 (x1fAddCommand, &RetVal, 4, &BarNum, &Menu, &CmdRef, &CmdPos) ;

Example 5

The following code fragment restores the deleted Goal Seek ... command on the Tools
menu in its default position just above Scenarios. . ..

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu ("Tools") ;
cpp_xloper CmdRef ("Goal Seek...");

cpp_xloper CmdPos ("Scenarios...");

Excel4 (x1fAddCommand, &RetVal, 4, &BarNum, &Menu, &CmdRef, &CmdPos) ;

8.11.7 Displaying a custom menu bar: x1 fShowBar

Overview: Displays a custom menu bar or the default built-in menu for the
sheet type.

Enumeration value: 157 (x9d)

Callable from: Commands only.
Return type: Boolean or error.
Arguments: 1: MenulD: (Optional.)

When you create a custom menu bar using x1fAddBar, it is not automatically dis-
played. This function takes one optional argument, the menu bar ID number returned by
x1fAddBar. It replaces the currently displayed menu with the specified one. If the argu-
ment is omitted, Excel displays the appropriate built-in menu bar for the active sheet type.

If the menu bar ID corresponds to a built-in menu bar, Excel only allows the DLL to
display the appropriate type. For example, you could not display the chart menu bar when
a worksheet is active.

Displaying a custom menu bar disables Excel’s automatic switching from one menu bar
to another when the active sheet type changes. Displaying a built-in menu bar reactivates
this feature.

8.11.8 Adding/removing a check mark on a menu command: x1fCheckCommand

Overview: Displays or removes a check mark from a custom command.

Enumeration value: 155 (x9b)

Accessing Excel Functionality Using the C API 261

Callable from: Commands only.
Return type: Boolean or error.
Arguments: MenulD: The menu bar ID number.

1:
2: Menu: The menu as text or position number.

3: Menultem: The command as text or position number.
4:

DisplayCheck: A Boolean telling Excel to display a check if
true, remove it if false.

5: SubMenultem: (Optional.) A sub-menu command as text or
position number.

The C API provides access to a more limited set of menu features than current versions of
Excel provide, and this function reflects this. With Excel 4.0, menus supported the display
of a check-mark immediately to the right of the command name as a visual indication
that something had been selected or toggled. The typical behaviour of such a command is
to toggle the check mark every time the command is run. This function, gives the add-in
developer access to this check-mark.

The function returns a Boolean reflecting the value that was set in DisplayCheck.

Example 1

The following code fragment toggles a check-mark on the custom command XLL command
1 on the Tools menu.

static bool show_check = false;

show_check = !show_check;

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools") ;

cpp_xloper Cmd("XLL command 1");

cpp_xloper Check (show_check) ;

Excel4 (x1fCheckCommand, &RetVal, 4, &BarNum, &Menu, &Cmd, &Check) ;

Example 2

The following code fragment toggles a check-mark on the command XLL command 1 on
the sub-menu XLL on the Data menu.

static bool show_check = false;

show_check = !show_check;

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Data") ;

cpp_xloper Cmd("XLL test");

cpp_xloper Check (show_check) ;

cpp_xloper SubMenuCmd ("XLL command 1");

Excel4 (x1fCheckCommand, &RetVal, 5, &BarNum, &Menu, &Cmd, &Check,
&SubMenuCmd) ;

262 Excel Add-in Development in C/C++

8.11.9 Enabling/disabling a custom command or menu: x1fEnableCommand

Overview: Enables or disables (greys-out) custom commands on a menu or
sub-menu, or enables or disables the menu itself.

Enumeration value: 154 (x9a)

Callable from: Commands only.
Return type: Boolean or error.
Arguments: 1: MenulD: The menu bar ID number.
2: Menu: The menu as text or position number.
3: Menultem: The command as text or position number.
4: Enable: A Boolean telling Excel to enable if true, disable if

false.

5: SubMenultem: (Optional.) A sub-menu command as text or
position number.

The function returns a Boolean reflecting the Enable value.

If Menultem is zero, the function enables or disables the entire menu provided that it
is also a custom menu. If SubMenultem is zero and the specified Menultem is a custom
sub-menu, the function toggles the state of the entire sub-menu.

Example 1

The following code fragment toggles the state of the command XLL command 1 on the
Tools menu.

static bool enable = false;

enable = !enable;

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu ("Tools") ;

cpp_xloper Cmd("XLL command 1");

cpp_xloper State (enable) ;

Excel4 (x1fEnableCommand, &RetVal, 4, &BarNum, &Menu, &Cmd, &State) ;

Example 2

The following code fragment toggles the state of the command XLL command 1 on the
sub-menu XLL on the Data menu.

static bool enable = false;

enable = !enable;
cpp_xloper BarNum(10); // the worksheet menu bar

Accessing Excel Functionality Using the C API 263

cpp_xloper Menu("Data") ;

cpp_xloper Cmd("XLL test");

cpp_xloper State (enable) ;

cpp_xloper SubMenuCmd ("XLL command 1");

Excel4 (x1fEnableCommand, &RetVal, 5, &BarNum, &Menu, &Cmd, &State,
&SubMenuCmd) ;

Example 3

The following code fragment toggles the state of the custom menu XLL test.

static bool enable = false;

enable = !enable;

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("XLL test");

cpp_xloper Cmd(0) ;

cpp_xloper State (enable) ;

Excel4 (x1fAddCommand, &RetVal, 4, &BarNum, &Menu, &Cmd, &State);

Example 4

The following code fragment toggles the state of the sub-menu XLL test on the Data menu.

static bool enable = false;
enable = ! enable;
cpp_xloper BarNum(10); // the worksheet menu bar

cpp_xloper Menu("Data") ;
cpp_xloper Cmd("XLL test");
cpp_xloper State (enable) ;
cpp_xloper SubMenuCmd(0) ;

Excel4 (x1fEnableCommand, &RetVal, 5, &BarNum, &Menu, &Cmd, &State,
&SubMenuCmd) ;

8.11.10 Changing a menu command name: x1fRenameCommand

Overview: Changes the name of any menu or command, custom or
built-in.

Enumeration value: 156 (x9c¢)

Callable from: Commands only.

Return type: Boolean or error.

Arguments: 1: MenulD: The menu bar ID number.

2: Menu: The menu as text or position number.
3: Menultem: The command as text or position number.

264 Excel Add-in Development in C/C++

4: NewName: Text of the new name including any ampersand.

5: SubMenultem: (Optional.) A sub-menu command as text or
position number.

Changing the name of a menu or command is a useful thing to do if the command’s
action is state-dependent and you want to reflect the next action in the command’s text.
This could be anything from showing a toggle that sets or clears some DLL state, or
may be more complex, cycling between many states. Such state-dependent commands are
particularly useful for managing background or remote processes.

If Menultem is zero the menu is renamed. If the command could not be found the
function returns #VALUE!, otherwise it returns true.

Example

The following code fragment changes the name of the command XLL command 1 on the
Tools menu.

static bool enable = false;

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu ("Tools") ;

cpp_xloper Cmd("XLL command 1");

cpp_xloper NewText ("Ne&w name") ;

Excel4 (x1fRenameCommand, &RetVal, 4, &BarNum, &Menu, &Cmd, &NewText) ;

8.11.11 Deleting a command from a menu: x1fDeleteCommand

Overview: Deletes a command or sub-menu from a menu.

Enumeration value: 159 (x9f)

Callable from: Commands only.
Return type: Various. (See below).
Arguments: 1: MenulD: The menu bar ID number.

2: Menu: The menu as text or position number.
3: Menultem: The command as text or position number.

4: SubMenultem: (Optional.) A sub-menu command as text or
position number.

If the command cannot be found the function returns #VALUE!, otherwise it returns true
when deleting a custom command or an ID when deleting an Excel command. This ID
is a string containing the text of the command including ampersand, that can be used as
the CommandRef parameter in a call to x1fAddCommand.

Accessing Excel Functionality Using the C API 265

Note: If the deletion of a command promotes a separator line to the top of the menu,
Excel will automatically delete the separator too. If you want to be able to restore a
command and the separator, you will need to check for this before deleting the command.

Note: Remember to store the information needed to be able to restore commands and
undo your changes, especially when deleting built-in commands.

Example 1

The following code fragment deletes the command XLL command 1 on the XLL test custom
menu. In this case, the function will return a Boolean x1oper if successful.

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu ("XLL test");
cpp_xloper Cmd("&XLL command 1");

Excel4 (x1fDeleteCommand, &RetVal, 3, &BarNum, &Menu, &Cmd) ;

Example 2

The following code fragment deletes the command &Print. .. from the File menu. In this
case the function will return a string xloper if successful. This example discards the
return value, getting Excel to free any memory allocated for the string using one of the
class methods. If the object RetVal is to be reused, this avoids a memory leak.

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("File");
cpp_xloper Cmd("&Print...");

Excel4 (x1fDeleteCommand, &RetVal, 3, &BarNum, &Menu, &Cmd) ;
RetVal.Free (true);//Get Excel to free the memory

8.11.12 Deleting a custom menu: x1fDeleteMenu

Overview: Deletes a menu.

Enumeration value: 158 (x9e¢)

Callable from: Commands only.
Return type: Boolean or error.
Arguments: 1: MenulD: The menu bar ID number.

2: Menu: The menu as text or position number.

3: SubMenultem: (Optional.) A sub-menu command as text or
position number.

Note: Excel does not permit the deletion of short-cut menus, however, these can be
disabled and re-enabled with the x1 fEnableCommand function.

If the function cannot find or delete the menu, it returns #VALUE!, otherwise it returns
‘true’.

266 Excel Add-in Development in C/C++

Warning: The action of SubMenultem is intended, according to the XLM reference
manuals, to delete the specified sub-menu on the given menu. Instead it deletes the menu
itself. Use x1fDeleteCommand to delete a sub-menu.

Note: Remember to store the information needed to restore menus and undo changes,
especially when deleting built-in menus. Simply restoring Excel defaults may delete other
custom menu items.

Example 1

The following code fragment deletes the Data menu.

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Data") ;
Excel4 (x1fDeleteMenu, &RetVal, 2, &BarNum, &Menu) ;

8.11.13 Deleting a custom menu bar: x1fDeleteBar

Overview: Deletes a custom menu bar.

Enumeration value: 200 (xc8)

Callable from: Commands only.

Return type: Boolean or error.

Arguments: 1: MenulD: The menu bar ID number returned by the call to
x1fAddBar.

If called with an invalid ID the function returns the #VALUE! error.

8.12 WORKING WITH TOOLBARS

Toolbars (also known as command bars) provide the user with a number of graphical
controls, typically buttons, that give short-cuts to commands. They can also contain list
and text boxes that enable setting of certain object properties quickly.

This section only deals very briefly with the toolbar customising functions of the C API:
it is recommended that you use other means to modify command bars if you intend to
rely heavily on them. The functions and their argument types are listed and a little detail
given, but no code samples. Excel’s internal toolbar and tool IDs are not listed.” If you
want to know them, you can fairly easily extract information about all Excel’s toolbars
using the x1fGetToolbar and x1fGetTool functions (described briefly below) using
the following steps:

1. Get an array of all toolbar IDs as text (both visible and hidden) using the
x1fGetToolbar function, passing only the first argument set to 8.

7 For a full listing of tools and toolbar IDs, you should try to get a copy of a Visual Basic User’s Guide for
Excel, which lists them all.

Accessing Excel Functionality Using the C API 267

2. For each ID in the returned horizontal array, call x1fGetToolbar again with the
first argument set to 1 and the second set to the ID, to obtain an array of all the tool
IDs on that toolbar.

The above section on customising menu bars provides a relatively easy way to provide
access to commands contained within the DLL if you need to.

8.12.1 Getting information about a toolbar: x1fGetToolbar

Overview: Gets information about a toolbar.

Enumeration value: 258 (x102)

Callable from: Command and macro sheet functions.
Return type: Various. See Table 8.26 below.
Arguments: 1: InfoType: A number from 1 to 10 indicating the type of

information to obtain. (See table below.)
2: BarID: The name as text or the ID number of a toolbar.

Table 8.26 Information available using x1fGetToolbar

InfoType What the function returns

1 Horizontal array of all tool IDs on the toolbar. (Gaps = zero.)

Horizontal position in the docked or floating region.

Vertical position in the docked or floating region.

Toolbar width in points.

Toolbar height in points.

Docked at the top (1), left (2), right (3), bottom (4) or floating (5).

True if the toolbar is visible.

Horizontal array of toolbar IDs, names or numbers, all toolbars.

O | 0| I |||l B~ LI

Horizontal array of toolbar IDs, names or numbers, all visible toolbars.

True if the toolbar is visible in full-screen mode.

—_
(=)

Values of InfoType 8 and 9 do not require a BarID argument.
8.12.2 Getting information about a tool button on a toolbar: x1fGetTool

Overview: Gets information about a tool button on a toolbar.
Enumeration value: 259 (x103)

Callable from: Command and macro sheet functions.

268 Excel Add-in Development in C/C++

Return type:

Arguments:

Various. See Table 8.27 below.

: InfoType: A number from 1 to 9 indicating the type of

information to obtain. (See table below.)

: BarID: The name as text or the ID number of a toolbar.
: Position: The position of the button (or gap) on the toolbar

counting from 1 at the left if horizontal, or the top if vertical.

Table 8.27 Information available using x1f£GetTool

InfoType

What the function returns

—

The button’s ID number or zero if a gap at this position.

The reference of the macro assigned to the button or #N/A if none assigned.

True if the button is down.

True if the button is enabled.

True if the face on the button is a bitmap, false if a default button face.

The help reference of a custom button, or #N/A if built-in.

The balloon text reference of a custom button, or #N/A if built-in.

The help context string of a custom button.

O | 0| I ||| | W]

The tip text of a custom button.

8.12.3 Creating a new toolbar: x1fAddToolbar

Overview:

Enumeration value:

Callable from:

Arguments:

Creates a custom toolbar.
253 (xfd)
Commands only.

1: BarText: A string that you want to be associated with the new
toolbar.

2: ToolRef : A number specifying a built-in button or an array
containing a definition of one or more custom and/or built-in
buttons. (See Table 8.28 below.)

Table 8.28 Array of information for adding buttons to a toolbar

Required Do not provide for built-in tool IDs or zero.
Optional for custom tools.
Tool ID | Command Default | Default | Face Status | Balloon | Help | Tip text
text state is state is graphic | text text topic

down enabled | reference

Accessing Excel Functionality Using the C API 269

Note: Any arguments omitted from such a range should be passed as xloper array
elements of x1typeNil.

Column notes (from left to right):

1.

2.

LW

Can contain the ID of a built-in button, zero to represent a gap or the ID (text name
or number between 201 and 231 inclusive) of a custom tool.

The name of the DLL command as registered with Excel in the 4th argument of the
x1fRegister function.

A Boolean instructing Excel whether to display the button as depressed by default if
true. If omitted or true, the button is up by default.

A Boolean determining whether the tool is enabled by default (true) or not (false
or omitted).

A reference to a defined picture object. If omitted, Excel uses a default face graphic.
The text to be displayed in the status bar when the button is pressed.

The balloon text for the tool.

A reference to a help topic as text of the form HelpFile!TopicNum.

The mouse-over text displayed when the mouse is over the button.

8.12.4 Adding buttons to a toolbar: x1cAddTool

Overview: Adds a tool button to a toolbar.

Enumeration value: 33045 (x8115)

Callable from: Commands only.
Arguments: 1: BarID: A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted.

3: ToolRef: A number specifying a built-in button or an array
containing a definition of one or more custom and/or built-in
buttons. (See Table 8.28 above for a detailed description.)

8.12.5 Assigning/removing a command on a tool: x1cAssignToTool

Overview: Gets information about a tool button on a toolbar.

Enumeration value: 33061 (x8125)

Callable from: Commands only.
Arguments: 1: BarID: A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

270 Excel Add-in Development in C/C++

3: Command: The name of the DLL command as registered with

Excel in the 4th argument of the x1fRegister function.

If Command is omitted, the function removes the existing association between the tool
button and the command. If the button is a custom button then Excel prompts the user
to assign a command next time the button is pressed by displaying the Assign Macro
dialog. The user can manually enter a registered DLL command name to assign another
command if they wish. If the button is a built-in tool, the action reverts to the Excel

default action.

8.12.6 Enabling/disabling a button on a toolbar: x1fEnableTool

Overview:
Enumeration value:
Callable from:

Arguments:

Enables or disables a tool button on a toolbar.

265 (x109)

Commands only.

1:

BarID: A number of a built-in toolbar, or the text of a custom
toolbar.

: Position: The position on the toolbar counting from 1 at the

left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

: Enable: A Boolean value enabling the button if true or

omitted, disabling it if false.

8.12.7 Moving/copying a command between toolbars: x1cMoveTool

Overview:

Enumeration value:
Callable from:
Return type:

Arguments:

Moves or copies tools between toolbars and resizes drop-down
lists on toolbars.

33058 (x8122)

Commands only.

Various. See table below.

1:

SourceBarID: A number of a built-in toolbar, or the text of a
custom toolbar.

SourcePosition: The position on the toolbar counting from 1
at the left if horizontal, or the top if vertical, at which tools
are to be inserted. Can be a built-in or custom button.

: TargetBarID: A number of a built-in toolbar, or the text of a

custom toolbar.

Accessing Excel Functionality Using the C API 271

4: TargetPosition: The position on the toolbar counting from 1 at
the left if horizontal, or the top if vertical, at which tools are
to be inserted. Can be a built-in or custom button.

5: Copy: A Boolean value: copy if true, move if false or omitted.

6: DropListWidth: The desired width in points of the drop-down
list.

If TargetBarID is omitted, the tool is moved within the SourceBarID toolbar. If the reason
for calling the function is to resize a drop-down list, Copy and TargetPosition are not
required but should be supplied as x1typeMissing. If this is not the reason for the
call, the DropListWidth argument is ignored.

8.12.8 Showing a toolbar button as pressed: x1fPressTool

Overview: Depresses or releases a button on a toolbar.

Enumeration value: 266 (x10a)

Callable from: Commands only.
Arguments: 1: BarID: A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

3: Pressed: A Boolean value. The button is depressed if true, or
normal if false or omitted.

Note: This function will not work on built-in buttons or buttons to which no command
has been assigned.

8.12.9 Displaying or hiding a toolbar: x1cShowToolbar

Overview: Activates a toolbar.
Enumeration value: 32988 (x80dc)
Callable from: Commands only.

Arguments: 1: BarID: A number of a built-in toolbar, or the text of a
custom toolbar.

2: IsVisible: A Boolean value. The toolbar is visible if true,
hidden if false.

3: DockPosition: 1 top; 2 left; 3 right; 4 bottom; 5 floating.

272 Excel Add-in Development in C/C++

4:

10:

HorizontalPosition: The distance in points between the left
of the toolbar and (1) the left of the docking area if docked,
(2) the right of the right-most toolbar in the left docking area
if floating.

: VerticalPosition: The distance in points between the top of

the toolbar and the top of (1) the docking area if docked,
(2) Excel’s workspace if floating.

ToolbarWidth: The width in points. If omitted, the existing
width is applied.

Protection: A number specifying the degree of protection
given to the toolbar. (See Table 8.29 below.)

1 ShowToolTips: Boolean. Mouse-over ToolTips are displayed

if true, not if false.

ShowLargeButtons: Boolean. Large buttons are displayed if
true, not if false.

ShowColourButtons: Boolean. Toolbar buttons are displayed
in colour if true, not if false.

Table 8.29 Toolbar protection parameter values

Protection

Description

0 or omitted

Can be resized, docked, floated and buttons can be added and removed.

1

As 0 except that buttons can not be added or removed.

As 1 except that it cannot be resized.

As 2 except that it cannot be moved between docked and floating states.

2
3
4

As 3 except that it cannot be moved at all.

8.12.10 Resetting a built-in toolbar: x1fResetToolbar

Overview:
Enumeration value:
Callable from:

Arguments:

Resets a built-in toolbar.
256 (x100)

Command and macro sheet functions.

1: BarID: The number of a built-in toolbar.

8.12.11 Deleting a button from a toolbar: x1cDeleteTool

Overview:

Enumeration value:

Deletes a tool button from a toolbar.

33057 (x8121)

Accessing Excel Functionality Using the C API 273

Callable from: Commands only.
Arguments: 1: BarID: A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

8.12.12 Deleting a custom toolbar: x1fDeleteToolbar

Overview: Deletes a custom toolbar.
Enumeration value: 254 (xfe)
Callable from: Commands and macro sheet functions.

Arguments: 1: BarName: The text name of a custom toolbar

8.13 WORKING WITH CUSTOM DIALOG BOXES

IMPORTANT NOTE: The C API only provides access to the dialog capabilities of the
Excel 4.0 macro language which are very limited and awkward in comparison to those
of VB or MFC. The C API does not support different font sizes, colours, and lacks some
control objects: toggle buttons, spinner buttons, scroll bars, among others. Nevertheless,
getting input from users, say, to configure a DLL function or to input a username, is
something you might decide is most convenient to do using the C APIL. This section
provides a bare-bones description of the relevant functions. You should use an alternative
approach for more sophisticated interaction with the user.

8.13.1 Displaying an alert dialog box: x1cAlert

Overview: Displays an alert dialog.

Enumeration value: 32886 (x8076)

Callable from: Commands only.
Return type: Boolean. See Table 8.30 below.
Arguments: 1: Message: The message text (max length 255 characters: the

limit of a byte-counted string).
2: AlertType: An optional number determining the type of alert
box. (See table below.)

3: HelpReference: An optional reference of the form
HelpFile!TopicNum. If this argument is given, a help button is
displayed in the dialog.

274 Excel Add-in Development in C/C++

Table 8.30 x1cAlert dialog types

AlertType Description Return value

1 Displays message with an OK and a Cancel button. | True if OK pressed.
False if Cancel pressed.

2 or omitted | Displays message with an OK button only and an True.
information icon.

3 Displays message with an OK button only and a True.
warning icon.

8.13.2 Displaying a custom dialog box: x1fDialogBox

IMPORTANT NOTE: It is recommended that this function is only used for relatively
simple dialogs that need to be completely contained within an XLL add-in.

Overview: Displays a custom dialog box.

Enumeration value: 161 (xal)

Callable from: Commands only.
Return type: Array (x1typeMulti) or Boolean false. See below for details.
Arguments: 1: DialogRef: An array containing the data needed to define the

dialog box (see Table 8.31), or a Boolean false value to clear
a still-displayed dialog that has returned control to the DLL.

Returns a modified copy of the original array with values of the elements in the 7th
column of the 2nd and subsequent rows and the position of the button pressed to exit the
dialog in the 7th column, 1st row. Returns false if the Cancel button was pressed.

Strings within the returned array are copies of the original strings or are new strings
input by the user. (Remember that these are byte-counted and not, in general, null-
terminated). A call to x1Free should be used to free the memory of the returned array.

The DialogRef table must be seven columns wide and at least two rows high. The
contents are interpreted as shown in the Table 8.31.

Table 8.31 Custom dialog definition array

1 2 3 4 5 6 7
[HelpRef] Dialog Dialog Dialog | Dialog | Dialog [Default item
Usually blank, Horizontal Vertical width height | nameftitle position]/Item
with ref placed | position position chosen as trigger
in 7th col of
help button
Item number Horizontal Vertical Item Item Item text Initial value/result

position position width height

Accessing Excel Functionality Using the C API 275

Positions are measured in screen units from the top left of the dialog. Screen units corre-
spond to characters in the (fixed-width) system font, where each character is 8 units wide
and 12 units high. Note that the font used in a C API dialog is not in general fixed-width.

Table 8.32 Custom dialog element item numbers

Item number Item type Item number Item type
1 OK button (default) 13 Check box
2 Cancel button 14 Group box
3 OK button 15 List box
4 Cancel button (default) 16 Linked list box
5 Text 17 Icons
6 Text box 18 Linked file list box
7 Integer box 19 Linked drive and directory box
8 Floating point box 20 Directory text box
9 Formula edit box 21 Drop-down list box
10 Reference edit box 22 Drop-down combo box
11 Radio button group 23 Picture button
12 Radio button 24 Help button

Adding 100 to certain item numbers causes the function to return control to the DLL code
when the item is clicked on with the dialog still displayed. This enables the command
function to alter the dialog, validate input and so on, before returning for more user
interaction. The position of the item number chosen in this way is returned in the 1st row,
7th column of the returned array. This feature does not work with edit boxes (items 6, 7,
8, 9 and 10), group boxes (14), the help button (24), or pictures (23). Adding 200 to any
item number, disables (greys-out) the item.

Most of the dialog items are simple and no further explanation is required. For some a
little more explanation is helpful.

Text and edit boxes

Vertical alignment of a text label to the text that appears in an edit box is important
aesthetically. For edit boxes with the default height (set by leaving the height field blank)
this is achieved by setting the vertical position of the text to be that of the edit box+3.

Buttons

Selecting a cancel button (2 or 4) causes the dialog to terminate returning FALSE. Pressing
any other button causes the function to return the offset of that button in the definition
table in the 7th column, Ist row of the returned array.

276 Excel Add-in Development in C/C++

Where you just require OK and Cancel buttons, you should use either types 1 and 2
together, or 3 and 4, depending on which default action you want to occur if the user
presses enter as soon as the dialog appears.

If item width and/or item height are omitted, the button is given the width and/or height
of the previous button in the definition table, or default values if this is the first button in
the definition table.

Radio buttons

A group of radio buttons (12) must be preceded immediately by a radio group item
(11) and must be uninterrupted by other item types. If the radio group item has no text
label the group is not contained within a border. If the height and/or width of the radio
group are omitted but text is provided, a border is drawn that surrounds the radio buttons
and their labels.

List-boxes

The text supplied in a list box item row should either be a name (DLL-internal or on a
worksheet) that resolves to a literal array or range of cells. It can also be a string that
looks like a literal array, e.g. "{1,2,3,4,5,\"A\",\"B\",\"C\"} " (where coded in
a C source file). List-boxes return the position (counting from 1) of the selected item
in the list in the 7th column of the list-box item line. Drop-down list-boxes (21) behave
exactly as list boxes (15) except that the list is only displayed when the item is selected.

Linked list-boxes

Linked list-boxes (16), linked file-boxes (18) and drop-down combo-boxes (22) should
be preceded immediately by an edit box that can support the data types in the list. The
lists themselves are drawn from the text field of the definition row which should be a
range name or a string that represents a static array. A linked path box (19) must be
preceded immediately by a linked file-box (18).

Drop down combo-boxes return the value selected in the 7" column of the associated
edit box and the position (counting from 1) of the selected item in the list in the 7%
column of the combo-box item line.

Creating dialogs

The difficulty of manually putting together dialogs, with trial-and-error positioning and
sizing of components, cried out for the kind of graphical design interface that Excel 5.0
first introduced and that VBA provides in current versions. (This is one of the reasons
for not using the C API to create dialogs.)

Given that there may be times where it is more appropriate or convenient to package
a simple dialog interface into your XLL, the task is made much easier using an XLM
macro sheet to prototype the dialog. The steps are:

1. Open a new Excel workbook.
2. Insert an XLLM macro sheet by right-clicking on one of the worksheet tabs and selecting
Insert. . /MS Excel 4.0 Macro.

Accessing Excel Functionality Using the C API 277

3. Place a label in cell Al in the macro sheet, say, DIgTest, and define this as a name for
cell A2.

4. Place the formula =DIALOG.BOX(DIALOG_DEFN) in cell A2 — (the range name DIALOG_
DEFN is created in a later step).

5. Place the formula =RETURN() in cell A3.

6. Create a table to contain the definition of the dialog (see above) and name the range
DIALOG_DEFN. Do not include a title row in the definition. The location of the table is
not important.

7. Via the Insert/Name/Define. . . dialog, define the name DigTest as a command and assign
a keystroke to it for easy running.

By modifying the contents of your named definition range and executing the command
macro, you can fairly easily design simple dialogs that can be recoded in C/C++ within
the DLL. (This is still a laborious process compared to the use of graphical design tools
such as those that now exist in VB.)

Creating a static initialisation of an array of xlopers in C/C++, to hard-code your
table, is complicated by the fact that C only provides a very limited ability to initialise
unions, such as val in the xloper. Section 6.9 Initialising xlopers on page 157
provides a discussion of this subject and an example of a dialog definition table for a
simple username and password dialog.

A more complex example dialog is included in the example project on the CD ROM
in the Background. cpp source file. It is used to configure and control a background
thread used for lengthy worksheet function execution. The workbook used to design this
dialog, XLM_ThreadCfg Dialog.xls, is included on the CD ROM. It also generates
cpp_xloper array initialisation strings that can be cut and paste into a C++ source file.

8.13.3 Restricting user input to dialog boxes: x1cDisableInput

Overview: Restricts all mouse and keyboard input to the dialog rather
than Excel.
Enumeration value: 32908 (x808c)
Callable from: Commands only.
Return type: Various. See table below.
Arguments: 1: Disable: Boolean. True disables input to Excel, false
enables it.

Warning: Commands that call this function passing true should call passing false before
returning control to Excel.

8.14 TRAPPING EVENTS

The C API provides a few simple Excel event traps which can easily be associated with
DLL commands. The C API enables the setting of traps within the DLL for only a few

278 Excel Add-in Development in C/C++

of its events, namely:

data coming in from an external DDE source;
the user double-clicking on a cell in a worksheet;
the user entering data into a cell in a worksheet;
the user pressing a certain key combination;

the user or the system initiating a recalculation;
the user selecting a new worksheet window;

the system clock reaching a specified time.

Excel generates many events that cannot be trapped (directly) by the DLL using the
C APIL For example, it is not possible to trap a change of selection on the worksheet
or, most sadly, the opening or closing of a workbook. The most straightforward, albeit
slightly messy, way to have your DLL called when a non-C API event occurs is to set a
trap within VBA and use this to call into your DLL. For more details of VB events see
section 3.4 Using VBA fto trap Excel events on page 45. For details of how to call into
your DLL from VB, see section 3.6 Using VBA as an interface to external DLL add-ins
on page 48.

8.14.1 Trapping a DDE data update event: x1cOnData

Overview: Instructs Excel to call a specified command whenever DDE data
is received for a specified worksheet or from a specified source
application. The command is called before Excel performs any
recalculation of the worksheet resulting from the new data.

Enumeration value: 32907 (x808b)

Callable from: Commands only.

Arguments: 1: DataSourceSink: A string determining either the DDE data
source application or the worksheet to which the data is being
sent.

2: Command: The name of the command to be run as passed to
Excel in the 4th argument to x1fRegister or the name of
some other command macro or VB function.

DataSourceSink should be in the format [Bookl.x1ls]Sheet1 if referring to a work-
sheet or, if referring to a DDE source application, SourceApp|DataTopic!Dataltem
or SourceApp|DataTopic or just SourceApp|, where the omission of the later parts
of the specifier implies a wildcard. The given command is run whenever data is being
sent to the sheet (if specified) or from the source application (if specified).

If the DataSourceSink argument is missing and a valid Command argument is provided,
the given command is run whenever any DDE data is received provided that it is not
trapped by a previous, more specific, call to this function.

If Command is missing, the function clears the command associated with the Dara-
SourceSink argument.

Accessing Excel Functionality Using the C API 279

8.14.2 Trapping a double-click event: x1cOnDoubleclick

Overview Instructs Excel to call a specified command whenever the user
double-clicks any object in the specified worksheet or chart,
overriding any default Excel action.

Enumeration value: 33047 (x8117)
Callable from: Commands only.

Arguments: 1: SheetRef: A string of the format [Book1.xIs]Sheet1 specifying
the sheet to which the event applies.

2: Command: The name of the command to be run as passed to
Excel in the 4™ argument to x1fRegister or the name of
some other command macro or VB function.

If SheetRef is missing, the command is run whenever this event occurs on any sheet where
the event has not already been trapped by a previous, more specific, call to this function.

If Command is missing, the function clears the command associated with this event
and sheet.

8.14.3 Trapping a worksheet data entry event: x1cOnEntry

Overview: Instructs Excel to call a specified command whenever the user
enters new data into the specified worksheet. The command is
called before Excel performs any recalculation of the worksheet
resulting from the new data.

Enumeration value: 33048 (x8118)
Callable from: Commands only.

Arguments: 1: SheetRef: A string of the format [Book1.xIs]Sheet1 specifying
the sheet to which the event applies.

2: Command: The name of the command to be run as passed to
Excel in the 4th argument to x1fRegister or the name of
some other command macro or VB function.

If SheetRef is missing, the command is run whenever this event occurs on any sheet where
the event has not already been trapped by a previous, more specific, call to this function.
If Command is missing, the function clears the command associated with this combi-
nation of event and sheet.
The use of other C API functions in the called command may be required to, say,
determine which cell was changed. (A call to x1fActiveCell will determine this.)

280 Excel Add-in Development in C/C++

8.14.4 Trapping a keyboard event: x1cOnKey

Overview: Instructs Excel to call a specified command whenever the user
executes the given keystroke.

Enumeration value: 32936 (x80a8)
Callable from: Commands only.

Arguments: 1: Keystroke: A string that describes the keystroke to be trapped.
(See Table 8.33 below.)

2: Command: The name of the command to be run as passed to
Excel in the 4th argument to x1fRegister or the name of
some other command macro or VB function.

If Keystroke is missing, the command is run whenever this event occurs on any sheet
where the event is not already trapped by a previous, more specific, call to this function.

If Command is an empty string (" ") the keystroke is effectively disabled. If Command
is missing, the function clears the command associated with this keystroke, or re-enables
it if it was disabled in previous call.

The Keystroke argument is constructed as follows: [modifier-key-symbol(s)][key-code],
for example +{ PGDN}.

The modifier key symbols are + (Shift), * (Ctrl) and % (Alt) and can be used in any
combination or not at all. The key code can be any one of the following:

e Any printable single-key character (e.g. 0 or ; or a or Z).

e One of the modifier keys +, * and %, passed within braces, e.g. {"}.

e Other keys that do not correspond to a single character, represented within braces as
shown in the following table.

Table 8.33 Key codes for x1cOnKey keyboard traps

Key Key-code Key Key-code
Backspace {BACKSPACE} {BS} Home {HOME}
Break {BREAK} Ins {INSERT}
Caps Lock {CAPSLOCK} Left {LEFT}

Clear {CLEAR} Num lock {NUMLOCK}
Delete {DELETE} {DEL} Page down {PGDN}

Down {DOWN} Page up {PGUP}

End {END} Right {RIGHT}
Numeric keypad enter {ENTER} Scroll lock {SCROLLLOCK}
Enter ~ Tab {TAB}

Esc {ESCAPE} {ESC} Up {UP}

Help {HELP} Function keys {Fn}, n=1,2,3...

Accessing Excel Functionality Using the C API 281

Note: The trapped keyboard event is based on the physical keys pressed, as mapped for
the geographical settings, rather than the character interpreted by the operating system.
For this reason, pressing the Caps Lock key is itself a keyboard event. Pressing, say, the
A key will always return lowercase a regardless of the Caps Lock state. If you want to
trap Ctrl-a you would pass the string ““a”. If you pass the string “*A” you will need to
press Ctrl-Shift-a on the keyboard even if Caps Lock is set; in other words the strings
“*A” and “*+a” are equivalent.

8.14.5 Trapping a recalculation event: x1cOnRecalc

Overview: Instructs Excel to call a specified command whenever Excel is
about to recalculate the specified worksheet, provided that this
recalculation is a result of the user pressing {F9} or the
equivalent via Excel’s built-in dialogs, or as the result of a
change in worksheet data. The command is not called where the
recalculation is prompted by another command or macro. Unlike
other event traps, there can only be one trap for this event.

Enumeration value: 32995 (x80e3)
Callable from: Commands only.

Arguments: 1: SheetRef: A string of the format [Bookl.x1ls]Sheetl
specifying the sheet to which the event applies.

2: Command: The name of the command to be run as passed to
Excel in the 4th argument to x1fRegister or the name of
some other command macro or VB function.

If SheetRef is missing, the command is run whenever this event occurs on any sheet.
If Command is missing, the function clears the command associated with this combi-
nation of event and sheet.

8.14.6 Trapping a window selection event: x1cOnWindow

Overview: Instructs Excel to call a specified command whenever Excel is
about to switch to the specified worksheet. The command is not
called where the switch is the result of actions of another
command or macro or as a result of a DDE instruction.

Enumeration value: 32906 (x808a)
Callable from: Commands only.

Arguments: 1: WindowRef: A string of the format [Book1.xIs]Sheet1[:n]
specifying the window to which the event applies.

2: Command: The name of the command to be run as passed to
Excel in the 4th argument to x1fRegister or the name of
some other command macro or VB function.

282 Excel Add-in Development in C/C++

If WindowRef is missing, the command is run whenever this event occurs on any win-
dow where the event has not already been trapped by a previous, more specific, call to
this function.

If Command is missing, the function clears the command associated with this combi-
nation of event and window.

8.14.7 Trapping a system clock event: x1cOnTime

Overview: Instructs Excel to call a specified command when the system
clock reaches a specified time.

Enumeration value: 32916 (x8094)
Callable from: Commands only.
Arguments: 1: Time: The time as a serial number.

2: Command: The name of the command to be run as passed
to Excel in the 4th argument to x1fRegister or the
name of some other command macro or VB function.

3: MaxWaitTime: (Optional.) The time as a serial number that
you want Excel to wait before giving up (if it was not able
to call the function at the given time).

4: Clear: (Optional.) A Boolean that clears a scheduled trap if
false.

This function is covered in more detail in section 9.9.1 Setting up timed calls to DLL
commands: x1cOnTime on page 316.

8.15 MISCELLANEOUS COMMANDS AND FUNCTIONS

8.15.1 Disabling screen updating during command execution: x1cEcho

Overview: Disables screen updating during command execution.
Enumeration value: 32909 (x808d)

Callable from: Commands only.

Arguments: 1: UpdateScreen: Boolean. If true Excel updates the

worksheet screen, if false disables it. If omitted, Excel
toggles the state.

Note: Screen updating is automatically re-enabled when a command stops executing.

Accessing Excel Functionality Using the C API 283

8.15.2 Displaying text in the status bar: x1lcMessage

Overview: Displays or clears text on the status bar.

Enumeration value: 32890 (x807a)

Callable from: Commands only.

Arguments: 1: Display: Boolean. If true, Excel displays the given message

and suppresses Excel’s status messages. If false, Excel reverts
to displaying the usual Excel status messages.

2: MessageText: The message to display.

8.15.3 Evaluating a cell formula: x1fEvaluate

Overview: Converts a string cell formula to a value. If the conversion fails,
returns #VALUE!

Enumeration value: 257 (x101)
Callable from: Commands, macro and worksheet functions.

Arguments: 1: Formula: Any string that is syntactically correct. Note that an
equals sign at the start of the string is optional.

This function is useful for retrieving the values corresponding to named ranges on a

worksheet (see the example in section 8.10), and for evaluating functions that are not

available via the C API in cases where the COM interface is also not available. (See

section 9.5 Accessing Excel functionality using COM/OLE Automation on page 295.)
The following exportable worksheet function demonstrates its use:

xloper * _ stdcall evaluate(xloper * p_ formula)

cpp_xloper RetVal;
Excel4 (x1fEvaluate, &RetVal, 1, p_ formula) ;
return RetVal.ExtractXloper (true) ;

}

8.16 THE xLCallVer () C API FUNCTION

This function returns the version number of the 32-bit library and the C API interface func-
tions contained within it. The following example command, simply displays the version
number in a dialog box.

284 Excel Add-in Development in C/C++

int _ stdcall x1_call version(void)

{
cpp_xloper Version(XLCallVer()); // returns an integer
Version.ConvertToString(false); // convert integer to string
Exceld (xlcAlert, 0, 1, &Version); // display the string
return 1;

9
Miscellaneous Topics

9.1 TIMING FUNCTION EXECUTION IN VB AND C/C++

Section 9.2 Relative performance of VB, C/C++: Tests and results relies on the ability to
time the execution of both VB and C/C++ DLL worksheet functions. One fairly obvi-
ous strategy for timing how long a function takes to execute in Excel would be to do
the following:

(1) Record the start time, T1.
(i) Call the function.
(iii) Record the end time, T2.
(iv) Calculate the test execution time T2 — T1.

There are a number of problems to overcome, however, before getting Excel to do this
and these are:

1. How do I start the test?

2. How do I record the time?

3. How do I make sure that steps (i) to (iii) happen in that order with no delays?
4. What if the granularity of the time I can record is large relative to T2 — T1?

1. How do I start the test?

Starting a test is something the tester has to do, and in Excel there are two ways this can
be done: (1) by executing a command, (2) by changing the value of a cell via a cell edit.
The second method simplifies the test set-up and provides an easy way to force other
cells to be recalculated, using trigger values if necessary.

2. How do I record the time?

The obvious (and wrong) answer might be to use Excel’s NOW() function, but this is
a volatile function and will be recalculated every time Excel feels the need to update
the sheet, destroying the results of the test. The right answer is to use a user-defined
function with a trigger argument. This will only be recalculated when the trigger argument
changes.!

3. How do I make sure that steps (i) to (iii) happen in that order with no delays?

To ensure that the time T1 is recorded in step (i) before the cell containing the function
is called in step (ii), the time T1 should be used as a trigger argument for the function to

! There are a number of events that will cause Excel to do an entire rebuild of the calculation dependency tree
and/or a complete recalculation of all cells. One example is the insertion or deletion of a row or column.

286 Excel Add-in Development in C/C++

be tested. This requires that the function being tested is user-defined either in VB or in
a C/C++ add-in. Given that these are exactly the things we want to compare, this is not
a problem.

Ensuring that the test function is called immediately after the time T1 is recorded is
a little trickier. We know that Excel will not call the test function before T1 has been
evaluated as T1 is an argument to the test function. The problems is that we don’t know
what Excel might choose to do in the meantime. The solution is to not give Excel any
other work to do. Create a very simple sheet and have the initial cell edit that started the
test to only be a trigger for this test and no others.

So, for example, you could start the test by editing cell A1, record the time of this
edit in B1 using the Get_Time () macro, then set up the function call in C1 and finally
record the time that Excel finishes calculating C1 with another call to Get_Time() in
D1. The time difference can then be calculated in E1. So, these cells would contain
the formulae:

Table 9.1 Example execution timing formulae

Cell Formula

A1 No formula, just some value acting as a trigger for the test

BI | =Get Time(A1)

C1 =Test_Function(B1, other arguments)
D1 =Get_Time(C1)
E1 =D1-B1

The code for the VB function Get_Time() is simply:

Function Get_Time(trigger As Double) As Double
Get_Time = Now

End Function

Provided that A1, B1 or C1 have no other dependents, the test should give a fairly good
measurement.

4. What if the granularity of the time I can record is large relative to T2 — T1?

Excel reports the system time to a granularity of 1/100 of a second. (Just use the NOW()
function with a custom time display format of [h]:mm:ss.000 and you will see that the
third decimal place on the seconds is always zero.) Unfortunately, VB’s Now function
only provides access to the system time rounded down to the nearest second. (Display
the results of the Get_Time() VB macro with the same display format if you need

Miscellaneous Topics 287

convincing.) The C run-time library function time () only provides access to the system
time to the nearest second as well.

Timing things to VB or C run-time granularity may be fine if all you’re doing is, say,
recording the time-stamp of a piece of data from a live feed — the nearest second would
be fine — or if the calculation you want to time was expected to take 30 seconds or more.
Where you need to calculate time with a finer granularity, you might think the obvious
thing to do would be to access Excel’s NOW() function from within VB and improve VB’s
accuracy by two orders of magnitude. Sadly, this is not one of the functions that VBA
has access to.?

C/C++ programmers have access to a supposedly higher-granularity way of measuring
time than either VB or Excel: the C run-time library function clock (), prototyped in
time.h. This returns a clock_t variable. The constant CLOCKS PER_SEC is defined
as 1000 so that clock () appears to provide the means of measuring time to the nearest
1/1,000 of a second. Unfortunately, this is not quite true. The value returned by clock ()
is in fact incremented approximately once every 10.0144 milliseconds, usually by 10 but
sometimes by 11 to catch up. This has the effect of giving a value of time that is reasonably
correct when rounded to the nearest 10 milliseconds, i.e., to a 100 of a second: effectively
no better than Excel’s NOW() function.

Nevertheless, the following example function, get time C(), uses clock ()
wrapped in a DLL function to return this value. The function still has to do some work
to do to return a time value consistent with Excel and VB’s time format. (An alternative
solution is to simply access Excel’s NOW() function using x1£Now.) This function can be
accessed via VB or exported to Excel as part of an XLL.

double _ stdcall get_time C(short trigger)
static bool first call = true;
static long initial 100ths;
static double initial time;
if (first_call)
{
long T, T last = current_system time();

first call = false; // do this part only once

// Wait till the second changes, so no fractional second
while ((T = current system time()) == T last);

// Round to the nearest 100th second

initial 100ths = (clock() + 5) / CLOCKS PER_100TH SEC;
return initial time = (T / (double)SECS_PER_DAY) ;

}

return initial time + ((clock() + 5 / CLOCKS_PER_100TH_SEC

)
- initial 100ths) / (SECS PER DAY * 100.0);

2 To see the list of worksheet functions that are accessible from within VBA, type WorksheetFunction. in a
VB module. On typing the dot, the editor will display a list.

288 Excel Add-in Development in C/C++

So now we have a way of measuring time to 1/100 of a second, we still have to address
the question of the granularity being large relative to T2 — T1. A spreadsheet user might
really be in trouble if every cell takes many hundredths of a second to evaluate. In this
section, the goal is to test some elementary operations which should take very much less
than 1/100 of a second. Fortunately, the final piece of the puzzle is simple to overcome:
have the test function repeat the operation many times. In practice, the best solution is to
enclose the test within two nested for loops, and pass in limits for each loop as arguments
to the test function.
Finally, we are in a position to specify what is required to run the test:

1. A get_time_C() worksheet function that takes a trigger argument and returns the
time to the nearest 1/100 of a second in an Excel-compatible number format.

2. A wrapper function, that calls the test function in two nested for loops, and that takes a
trigger argument, an outer-loop limit, an inner-loop limit and whatever other arguments
are needed by the test code. (The test function itself performs the test operation within
the two nested for loops.)

3. One version of the wrapper function written in VB and one written in C/C++ so that
a fair comparison can be made.?

In order to simplify the test, the number of worksheet cells can be reduced by enclosing
the two calls to get_time_C () in the test function wrapper. An example VB wrapper
function would look like this:

Declare Function get_time_C Lib "example.d11" (trigger As Integer) _
As Double

Function VB_Test_Example(trigger As Variant, _
Inner_Loops As Integer, Outer_Loops As Integer) As Double

Dim t As Double

Dim i As Integer
Dim j As Integer
Dim Val As Double

t = get_time_C(0) ' record the start time
Val = VB_Test_Function(Inner_Loops, Outer_Loops)
VB_Test_Example = get_time_C(0) - t

End Function

The worksheet formulae for running a test would then be:

Table 9.2 Example single-cell timing formula

Cell Formula
A1 No formula, just some value acting as a trigger for the test
B1 =Test_Function(A1, other arguments)

3 The intention is to measure the execution time of the test function only. However, some account should be
taken of the relative performance of the wrapper functions as well. As later sections show, this is easy to do
and the overhead is not that significant.

Miscellaneous Topics 289

The equivalent C code wrapper would look like this:

double _ stdcall C_test_example(long trigger, long inner loops,
long outer loops)
{

double t = get_time_ C(0);
double val = C_test_fn(0, inner loops, outer loops);
return get_time C(0) - t;

The next section discusses a number of test operations carried out in exactly this
way.

9.2 RELATIVE PERFORMANCE OF VB, C/C++: TESTS
AND RESULTS

This section applies the above test process to the relative performance of VB and C/C++
code for some fundamental types of operations:

Test 0. No action. Tests the relative performance of the wrappers.

Test 1. Assignment of a constant to an integer.

Test 2. Assignment of a constant to a floating-point double.

Test 3. Copying of the value of one integer to another.

Test 4. Copying of the value of one double to another.

Test 5. Assignment of the result of double multiplication to a double.
Test 6. Assignment of the result of an exp() function call to a double.
Test 7. Evaluation of a degree-4 polynomial.

Test 8. Evaluation of the sum of a 10-element double vector.

Test 9. Allocation and de-allocation of memory for an array of doubles.
Test 10. Call to a trivial sub-routine.

Test 11. String manipulation: summing the character values of a string.

More detail, including source code for all of these in C and VB and the test spreadsheet
is provided in the example worksheets and VC project on the CD ROM.

It’s important to remember that this kind of test is not 100% scientific: many factors
can interfere with the results, such as the operating system or Excel deciding to do some
housework behind the scenes. The tests results varied slightly (up to £5%) each time the
tests were run, so they should only be used as a guide to help make the decision about
which environment makes most sense.

The tests gave the following results:*

4 The tests were carried out on a DELL Inspiron 4100 laptop computer running Windows 2000 Professional
version 5.0 (Service Pack 1, build 2195), with a 730 Megahertz Intel Pentium 4 processor and 128 Megabytes
of RAM of which about 20 were free at the time the test was run. No other applications were using significant
CPU during the tests on the PC which was not connected to a network. The DLL tested was built from the
Release configuration. The version of Excel was 2000.

290

Excel Add-in Development in C/C++

Table 9.3 VB function test results

Test action Inner loop Outer loop Other Seconds to
arguments complete

Test0 No action 1,000 30,000 0.72
Test1 Integer const assignment 1,000 30,000 1.99
Test2 Double const assignment 1,000 30,000 240
Test3 Integer variable assignment 1,000 30,000 2.24
Test4 Double variable assignment 1,000 30,000 2.23
Testb Double const multiplication 1,000 30,000 2.39
Test6 Exp() evaluation and 300 30,000 3.68

assignment
Test7 Degree-4 double polynomial 100 30,000 0.64

evaluation (const

coefficients)
Test8 Sum 10-element double 100 30,000 1.46

vector
Test9 Double array allocation test 1 30,000 1,000 1.86
Test10 Simple function call 1,000 30,000 10.70
Test11 Sum of ASCII values of 100 30,000 abcdefghi 19.16

string

Table 9.4 C function test results
Test action Inner loop Outer loop Other Seconds to
arguments complete

Test0 No action 1,000 30,000 0.32
Test1 Integer const assignment 1,000 30,000 0.29
Test2 Double const assignment 1,000 30,000 0.29
Test3 Integer variable assignment 1,000 30,000 0.25
Testd Double variable assignment 1,000 30,000 0.33
Test5 Double const multiplication 1,000 30,000 0.42

Miscellaneous Topics 291
Table 9.4 (continued)
Test action Inner loop Outer loop Other Seconds to
arguments complete
Test6 Exp() evaluation and 300 30,000 3.02
assignment
Test7 Degree-4 double polynomial 100 30,000 0.06
evaluation (const coefficients)
Test8 Sum 10-element double vector 100 30,000 0.07
Test9 Double array allocation test 1 30,000 1,000 0.85
Test10 Simple function call 1,000 30,000 2.37
Test11 Sum of ASCII values of string 1,000 30,000 abcdefghi 0.62
Table 9.5 Test results comparison
Test Action Performance ratio
C/C++ : VB
Test0 No action 1:2.2
Test1 Integer const assignment 1:6.7
Test2 Double const assignment 1:8.8
Test3 Integer variable assignment 1:7.9
Test4 Double variable assignment 1:6.8
Test Double const multiplication 1:5.6
Test6 Exp() evaluation and assignment 1:11
Test7 Deg-4 double polynomial evaluation (const coefficients) 1:95
Test8 Sum of double vector elements (10) 1:21.8
Test9 Double array allocation test 1:21
Test10 | Simple function call 1:45
Test11 Sum of ASCII values of string 1:309
Notes:
Test 0

This was a do nothing test to measure the difference in wrapper function execution times.
Interestingly, as you may have noticed, the do nothing test in C took 10% longer to
execute than the test which assigned a constant value to either an integer or a double!’

5 Despite having looked at the assembler output, the author has no explanation for this. There may be a more
rational explanation, but perhaps the compiler and Windows have a collective sense of humour.

292 Excel Add-in Development in C/C++

Tests 1 to 5

These tests show that C/C++ code is faster by a factor of 6 to 8 for regular variable
assignments and simple algebraic operations.

Test 6

In this test, most of the time is being spent calling the VB Exp() or the C exp () library
functions, which are roughly as efficient as each other. This reflects the fact that, unsurpris-
ingly, VB can call a compiled Microsoft library function just about as quickly as C can. If
you take out the times of Test 0 from scaled-up times for Test 6, the ratio becomes even
closer at 1:1.002. (It is also interesting to note that the statement v = exp(1.5);
executes roughly 45 times slower than v = 1.5; and about 40 times slower than
vl = v2.)

Test 7

In both cases the test code was written so as to use the minimum number of multiplications,
as well additions, to evaluate the polynomial. The relatively large ratio indicates partly
that VB takes far more time to process all of the symbols in the line, despite being
partially pre-compiled. This tends to exaggerate the ratios seen in tests 1 through 5.

Test 8

The same reasoning applies in part to this test as Test 7, i.e., the large number of sym-
bols exaggerate the performance differential. However, it’s clear that C/C++ is far more
efficient at evaluating array index references than VB.

Test 9

This test compares the relative abilities to dynamically allocate memory in the applica-
tion’s process and freeing it again. Given that well-written code should not be doing this
too often, the difference here is not significant.

Test 10

The function called in both cases simply returns its Boolean argument. The ratio here
seems to be typical of simple statements and operations.

Test 11

In this test it was difficult to make a fair comparison without deliberately restraining C
and the powerful low-level string manipulation that it makes possible. The C code makes
use of C’s powerful pointer arithmetic and null-terminated strings to do the job with
typical efficiency. VB, on the other hand, was shackled by its lack of efficient low-level
string handling.

Miscellaneous Topics 293

9.2.1 Conclusion of test results

VB is very efficient, all things considered. However, C/C++ is typically 5 to 10 times
faster for simple operations. If a function needs to do a lot of array manipulation then
the ratio could be closer to 15 to 20. If you are considering writing intensive matrix
manipulation functions or functions that are evaluating complex algebraic expressions
then C/C++ is the best solution. This is especially true if the resulting spreadsheet needs
to be able to recalculate in near real-time or is going to be large (or if you’re the impa-
tient type).

String manipulation is clearly what C excels at (small e). Some might say that test 11
was an unfair test. Not so. If string manipulation is a large part of what you want to do
then don’t hesitate to use C or C++. String-intensive activities would include functions
that, say, read and analysed all types of cell contents and formulae.

9.3 RELATIVE PERFORMANCE OF C API VERSUS VBA
CALLING FROM A WORKSHEET CELL

Apart from the code execution speed of C/C++ versus VB, reviewed in the above section,
there is also the difference between the time it takes Excel to call a VBA function,
compared to an XLL function registered via the C API. This is easily tested using a
simple example function:

In C:

double _ stdcall C_call_test (double d)

{
}

return d;

In VBA:

Function VBA_call test (d As Double)
VBA call _test = d

End Function

The example spreadsheets Call Speed Test - C API.x1s® and Call Speed
Test - VBA.xls on the CD ROM contain replications of this formula with one cell
depending on the previous in the same pattern across all columns from row 2 down. Cell
Al drives a recalculation of all cells. The former workbook contains just over 1,000,000
copies of the function (one per cell) and the latter just over 50,000. From a crude test
(counting the seconds), it can be seen that each C API call is made approximately 20
times faster than a VBA call with the VB editor closed and a staggering 2,000 times
faster than a VBA call with the editor open. Given that the code execution ratio is only

6 Care should be taken when opening and running this example test sheet as it is very large, over 41 Mbytes,
and could cause Excel severe performance problems if there is insufficient available memory.

294 Excel Add-in Development in C/C++

about 7:1, most of this disparity clearly comes from the difference in the speed of the
calling interface.

When calling an XLL function, Excel only has to look up the function in an internal
table to obtain the address, prepare the arguments on the stack, call the function, read the
result back from the stack and deposit it in the cell. The looking-up of the function address
is optimised: the position in the table is noted, so to speak, at the point the function is
entered into the cell. This is a very fast overall operation.

When calling a VBA function, Excel has to do all the work that it previously did,
but must use the COM interface to prepare arguments, call the function and retrieve the
result. As can be seen, this is an extremely slow operation.

In conclusion, where there are a large number of calls to user-defined functions, the
benefit of using the C API becomes even more compelling, especially in applications that
need to run in near real time. The very latest versions of Excel and Windows support a
more direct access of COM DLLs, whether written in VB or C++, from the worksheet,
but there is still a significant calling overhead compared to the directness of the C APIL.

9.4 DETECTING WHEN A WORKSHEET FUNCTION
IS CALLED FROM THE PASTE FUNCTION DIALOG
(FUNCTION WIZARD)

For a number of reasons, you may not want one of your worksheet functions to evaluate
when the user is entering or editing arguments using the Paste Function dialog, otherwise
known as the Function Wizard. The reason might be performance or that the function
communicates with some remote process, for example. Detecting that your function is
being called from this dialog is fairly straightforward.

The dialog has a class name of the form bosa_sdm XLn where n is the current
Excel version. Windows provides an API function, GetClassName (), that obtains this
name from a Windows handle, an HWND variable type. It also provides another function,
EnumWindows (), that calls a supplied callback function (within your DLL) once for
every top-level window that is currently open. The callback function only needs to perform
the following steps:

1. Check if the parent of this window is the current version of Excel (in case there are
multiple versions running).

2. Get the class name from the handle passed in by Windows.

3. Check if the class name is of the form bosa_sdm_XLn (ignoring the Excel ver-
sion number).

The following C++ code demonstrates how to do this.

#define CLASS NAME BUFFER SIZE 50

typedef struct

{
BOOL is_paste fn;
short low_hwnd;

1

fnwiz_enum struct;

Miscellaneous Topics 295

// The callback function called by Windows for every top-level window
BOOL _ stdcall fnwiz_enum proc (HWND hwnd, fnwiz_enum struct *p_enum)

// Check if the parent window is Excel
if (LOWORD ((DWORD) GetParent (hwnd)) != p_enum->low_hwnd)
return TRUE; // keep iterating

char class_name [CLASS NAME BUFFER_SIZE + 1];
// Ensure that class _name is always null terminated
class_name [CLASS_NAME_ BUFFER_SIZE] = 0;

GetClassName (hwnd, class name, CLASS NAME BUFFER SIZE) ;

// Do a case-insensitive comparison for the Paste Function window
// class name with the Excel version number truncated
if (_strnicmp(class_name, "bosa_sdm x1", 11) == 0)
p_enum->is_paste_fn = TRUE;
return FALSE; // Tells Windows to stop iterating

}

return TRUE; // Tells Windows to continue iterating

}

bool called from paste_ fn dlg(void)

{

xloper hwnd = {0.0, xltypeNil}; // super-safe
if (Excel4 (x1GetHwnd, &hwnd, 0))
// Can't get Excel's main window handle, so assume not

return false;

fnwiz_enum_struct es = {FALSE, hwnd.val.w};
EnumWindows ((WNDENUMPROC) fnwiz_enum proc, (LPARAM)&es) ;

return es.is_paste_fn == TRUE;

Note: There are other times when Excel will call functions with this class active, even
though it is not the Function Wizard dialog displayed. One example is during a search and
replace that causes Excel to re-enter modified formulae into a worksheet. If your function
returns some error value when called from the wizard, the newly changed cells will
contain this value and you will need to force a recalculation to flush these errors through.

9.5 ACCESSING EXCEL FUNCTIONALITY USING COM/OLE
AUTOMATION USING C++

Full coverage of the COM/OLE Automation and IDispatch interfaces to Excel, as used
by VBA, for example, is beyond the scope of this book. One reason for this is that you
don’t often need to do things that OLE permits and the C API does not when writing high-
performance worksheet functions. There are, however, a few situations where COM might
be useful or important and this section provides a rudimentary coverage of some of these.
It is important to note that Excel was not designed to allow OLE Automation calls
during normal calls to either XLL commands or functions. The Microsoft view appears
to be that such calls probably won’t work, are definitely not safe and are not recommended.

296 Excel Add-in Development in C/C++

The MSDN Microsoft Knowledge Base Article (KBA) 301443: Automation Calls to Excel
from an XLL May Fail or Return Unexpected Results explains why. However, many
developers’ experience is that in certain cases it is safe to call COM, although care is
needed. Table 9.6 summarises these cases:

Table 9.6 When it is safe to call Excel’s COM interface

Excel’s COM interface called from where: Is it safe?
From an XLL function called directly by Excel No (see KBA 301443)
From an XLL command called directly by KBA 301443 says no.
Excel. (This includes the x1Auto* interface Many developers say yes.

functions” and C API event traps such as
x1cOnTime.)

From a Window’s call-back to an XLL No
From an XLL function called via VBA No
From an XLL command called via VBA Yes
From a stand-alone application Yes
From a COM DLL Yes, subject to the usual distinctions

between commands and functions and
the associated restrictions.

As an aside, there are a few cases where the C API, accessed via Excel4 () and
Exceldv (), is not available even to the XLL. Calling these functions at these times
will have unpredictable results and almost certainly cause Excel to crash. The two most
important cases where the C API is not available are (1) from a background thread, and
(2) when the DLL has been called directly by Windows as a result of, say, a timed call-
back request or during calls to D11Main. (See sections 8.4 What C API functions can
the DLL call and when and 9.9 Multi-tasking, multi-threading and asynchronous calls in
DLLs for more details.)

Where an XLL worksheet function needs to access, say, a new function that was not
available when the C API was written, the C API function x1fEvaluate should be
used, since the COM interface cannot safely be called. (See section 8.15.3 Evaluating a
cell formula: x1fEvaluate on page 283.)

There are two ways to access Excel’s functionality using COM, and these are commonly
know as late binding and early (or vtable) binding. Without going into too much detail,
this section only discusses late binding. This is the method by which a program (or DLL)
must interrogate Excel’s objects at run-time before it is able to access them. There is
an inefficiency associated with this, and the marshalling and conversion of arguments to
object method calls, that is largely addressed and removed by early binding. With early
binding, the compiler makes use of an object library to remove this inefficiency, and is

7 Note that x1AutoFree is an exception: it is a macro-sheet function equivalent, not a command.

Miscellaneous Topics 297

not covered here in order to keep this section simple and compiler-independent. However,
most of the inefficiency can be removed with the use of static or global variables so that
the interrogations need only be done once.

If you want to access COM-exposed Excel methods or properties other than those
discussed in the following sections, you can fairly easily get the syntax and names of
these from VBA, either by recording a macro or via the VBA Excel help.

As a final note before moving on, this section only shows code examples that work
when part of a C++ source module. The syntax for C modules is a little different, and is
not described, in the interests of simplicity.

9.5.1 Initialising and un-initialising COM

A number of things need to be initialised when the XLL is activated and then un-initialised
when the XLL is deactivated. The following outline and code examples get around many
of the inefficiencies of late binding by caching object references and dispatch function
IDs (DISPIDs) in global or static variables.

The steps to initialise the interface are:

Include the system header <comdef . h> in source files using the COM/OLE interface.
Make sure Excel has registered itself in the ROT (Running Object Table).

Initialise the COM interface with a call to OleInitialize (NULL).

Initialise a CLSID variable with a call to CLSIDFromProgID ().

Initialise an IUnknown object pointer with a call to GetActiveObject (). If there
are two instances of Excel running, GetActiveObject () will return the first.

6. Initialise a global pointer to an IDispatch object for Excel with a call to the
QueryInterface () method of the ITUnknown object.

Nk e =

The Excel.Application’s methods and properties are now available. The most sensible
place to call the function that executes these steps is from x1AutoOpen () . The following
code shows how these steps can be accomplished:

IDispatch *pExcelDisp = NULL; // Global pointer
bool InitExcelOLE (void)

if (pExcelDisp)
return true; // already initialised

// Make sure Excel is registered in the Running Object Table. Even
// if it already has, telling it to do so again will do no harm.
HWND hWnd;
if ((hWnd = FindWindow ("XLMAIN", 0)) != NULL)

// Sending WM_USER + 18 tells Excel to register itself in the ROT
SendMessage (hWnd, WM_USER + 18, 0, 0);
}

// Initialise the COM library for this compartment

8 The Microsoft Knowledge Base Articles 147573, 153025 and 138723 provide more background on this topic
as well as links to related articles.

298 Excel Add-in Development in C/C++

OleInitialize (NULL) ;

CLSID clsid;
HRESULT hr;
char cErr[64];
IUnknown *pUnk;

hr = CLSIDFromProgID (L"Excel.Application", &clsid) ;

if (FAILED (hr))
{
// This is unlikely unless you have forgotten to call OleInitialize
sprintf (cErr, "Error, hr = 0x%081lx", hr);
MessageBox (NULL, cErr, "CLSIDFromProgID",
MB_OK | MB_SETFOREGROUND) ;
return false;

}

hr = GetActiveObject (clsid, NULL, &pUnk) ;

if (FAILED (hr))
{

// Excel may not have registered itself in the ROT
sprintf (cErr, "Error, hr = 0x%081lx", hr);
MessageBox (NULL, cErr, "GetActiveObject",

MB_OK | MB_SETFOREGROUND) ;
return false;

}

hr = pUnk->QueryInterface (IID_IDispatch, (void**)&pExcelDisp) ;

if (FAILED (hr))

{
sprintf (cErr, "Error, hr = 0x%081x", hr);
MessageBox (NULL, cErr, "QueryInterface",

MB_OK | MB_SETFOREGROUND) ;

return false;

1

// We no longer need pUnk
pUnk->Release() ;

// We have now done everything necessary to be able to access all of
// the methods and properties of the Excel.Application interface.
return true;

When the XLL is unloaded the XLL should undo the above steps in the following
order:

1. Release the global IDispatch object pointer with a call to its Release ()
method.

2. Set the global IDispatch object pointer to NULL to ensure that subsequent reacti-
vation of the XLL is not fooled into thinking that the object still exists.

3. Un-initialise the COM interface with a call to OleUninitialize().

The most sensible place to call the function that executes these steps is x1AutoClose (),
making sure that this is after any other function calls that might still want to access COM.

Miscellaneous Topics 299

The following code shows how these steps can be accomplished:

void UninitExcelOLE (void)

// Release the IDispatch pointer. This will decrement its RefCount
pExcelDisp->Release() ;
pExcelDisp = NULL; // Good practice
OleUninitialize() ;

Once this is done, the Excel application’s methods and properties can fairly straight-
forwardly be accessed as demonstrated in the following sections. Note that access to
Excel’s worksheet functions, for example, requires the getting of the worksheet functions
interface, something that is beyond the scope of this book.

9.5.2 Getting Excel to recalculate worksheets using COM

This is achieved using the Calculate method exposed by Excel via the COM interface.
Once the above initialisation of the pExcelDisp IDispatch object has taken place,
the following code will have the equivalent effect of the user pressing the {F9} key.
Note that the call to the GetIDsOfNames () method is executed only once for the
Calculate command, greatly speeding up subsequent calls.

HRESULT OLE_ExcelCalculate (void)
{
if (!pExcelDisp)
return S_FALSE;

static DISPID dispid = 0;
DISPPARAMS Params;

char cErr[64];

HRESULT hr;

// DISPPARAMS has four members which should all be initialised
Params.rgdispidNamedArgs = NULL; // Dispatch IDs of named args
Params.rgvarg = NULL; // Array of arguments
Params.cArgs = 0; // Number of arguments
Params.cNamedArgs = 0; // Number of named arguments

// Get the Calculate method's dispid

if (dispid == 0) // first call to this function

{
// GetIDsOfNames will only be called once. Dispid is cached since it
// is a static variable. Subsequent calls will be faster.

wchar t *ucName = L"Calculate";
hr = pExcelDisp->GetIDsOfNames (IID NULL, &ucName, 1,
LOCALE_SYSTEM DEFAULT, &dispid) ;

if (FAILED (hr))
// Perhaps VBA command or function does not exist
sprintf (cErr, "Error, hr = 0x%081x", hr);
MessageBox (NULL, cErr, "GetIDsOfNames",

300 Excel Add-in Development in C/C++

MB OK | MB_SETFOREGROUND) ;
return hr;

}

// Call the Calculate method
hr = pExcelDisp->Invoke(dispid, IID NULL, LOCALE_SYSTEM DEFAULT,
DISPATCH METHOD, &Params, NULL, NULL, NULL);

if (FAILED (hr))
{
// Most likely reason to get an error is because of an error in a
// UDF that makes a COM call to Excel or some other automation
// interface
sprintf (cErr, "Error, hr = 0x%081x", hr);
MessageBox (NULL, cErr, "Calculate", MB_OK \ MB_SETFOREGROUND) ;

}

return hr; // = S OK if successful

Note that calls to Invoke do not have to be method calls such as this. Invoke is also
called for accessor functions that get and/or set Excel properties. For a full explanation
of Invoke’s syntax, see the Win32 SDK help.

9.5.3 Calling user-defined commands using COM

This is achieved using the Run method exposed by Excel via the COM interface. Once
the above initialisation of the pExcelDisp IDispatch object has taken place, the
following code will run any command that takes no arguments and that has been reg-
istered with Excel in this session. (The function could, of course, be generalised to
accommodate commands that take arguments.) Where the command is within the XLL,
the required parameter cmd_name should be the same as the 4th argument passed
to the x1fRegister function, i.e., the name Excel recognises the command rather
than the source code name. Note that the call to the Get IDsOfNames () method to
get the DISPID is done only once for the Run command, greatly speeding up subse-
quent calls.

#define MAX_COM_CMD_LEN 512

HRESULT OLE_RunXllCommand (char *cmd name)
{

static DISPID dispid = 0;

VARIANTARG Command;

DISPPARAMS Params;

HRESULT hr;

wchar t w[MAX COM_CMD LEN + 1];

char cErr[64];

int cmd_len = strlen(cmd _name) ;

if (!pExcelDisp || !cmd name || !*cmd name

Miscellaneous Topics 301

|| (cmd len = strlen(cmd name)) > MAX COM CMD_LEN)
return S_FALSE;

try

// Convert the byte string into a wide char string. A simple C-style
// type cast would not work!
mbstowcs (w, cmd _name, cmd len + 1);

Command.vt = VT _BSTR;
Command.bstrVal = SysAllocString(w) ;

Params.rgdispidNamedArgs = NULL;
Params.rgvarg = &Command;
Params.cArgs = 1;
Params.cNamedArgs = 0;

if (dispid == 0)

wchar t *ucName = L"Run";
hr = pExcelDisp->GetIDsOfNames (IID NULL, &ucName, 1,
LOCALE_SYSTEM DEFAULT, &dispid) ;

if (FAILED (hr))

{

sprintf (cErr, "Error, hr = 0x%081lx", hr);
MessageBox (NULL, cErr, "GetIDsOfNames",
MB_OK|MB_ SETFOREGROUND) ;

SysFreeString (Command.bstrval) ;
return hr;

}

hr = pExcelDisp->Invoke (dispid,IID NULL,LOCALE_ SYSTEM DEFAULT,
DISPATCH_METHOD, &Params, NULL, NULL, NULL) ;

if (FAILED (hr))
{
sprintf (cErr, "Error, hr = 0x%081lx", hr);
MessageBox (NULL, cErr, "Invoke",
MB_OK | MB_SETFOREGROUND) ;

SysFreeString (Command.bstrval) ;
return hr;

}

// Success.

}

catch(_com error &ce)

// If COM throws an exception, we end up here. Most probably we will
// get a useful description of the error.

MessageBoxW (NULL, ce.Description(), L"Run",
MB_OK | MB_SETFOREGROUND) ;

// Get and display the error code in case the message wasn't helpful
hr = ce.Error();

302 Excel Add-in Development in C/C++

sprintf (cErr, "Error, hr = 0x%08lx", hr);
MessageBox (NULL, cErr, "The Error code",
MB_OK|MB_SETFOREGROUND) ;
}
SysFreeString (Command.bstrVal) ;
return hr;

9.5.4 Calling user-defined functions using COM

This is achieved using the Run method exposed by Excel via the COM interface.

There are some limitations on the exported XLL functions that can be called using
COM: the OLE Automation interface for Excel only accepts and returns Variants of
types that this interface supports. It is not possible to pass or retrieve Variant equiva-
lents of xloper types x1ltypeSRef, xltypeSRef, xltypeMissing, x1typeNil
or xltypeFlow. Only types xltypeNum, xltypeInt, xltypeBool, xltypeErr
and x1ltypeMulti arrays of these types have Variant equivalents that are supported.
Therefore only functions that accept and return these things can be accessed in this way.
(The cpp_xloper class contains x1loper-VARIANT conversion routines.)

Once the above initialisation of the pExcelDisp IDispatch object has taken place,
the following code will run any command that has been registered with Excel in this
session. Where the command is within the XLL, the parameter CmdName should be
same as the 4th argument passed to the x1fRegister function, i.e. the name Excel
recognises the command by rather than the source code name. Note that the call to the
GetIDsOfNames () method to get the DISPID is executed only once for the Run
command, greatly speeding up subsequent calls.

// Run a registered XLL function. The name of the function is the
// 1lst element of ArgArray, and NumArgs is 1 + the number of args
// the XLL function takes. Function can only take and return

// Variant types that are supported by Excel.

HRESULT OLE_RunXllFunction (VARIANT &RetVal, int NumArgs,
VARIANTARG *ArgArray)

if (! pExcelDisp)
return S_FALSE;

static DISPID dispid = 0;
DISPPARAMS Params;
HRESULT hr;

Params.cArgs = NumArgs;
Params.rgvarg = ArgArray;
Params.cNamedArgs = 0;

if (dispid == 0)
wchar_t *ucName = L"Run";

hr = pExcelDisp->GetIDsOfNames (IID NULL, &ucName, 1,
LOCALE_SYSTEM DEFAULT, &dispid) ;

Miscellaneous Topics 303

if (hr != S_OK)
return hr;

}

if (dispid)
VariantInit (&RetVal) ;
hr = pExcelDisp->Invoke (dispid, IID NULL,
LOCALE_SYSTEM DEFAULT, DISPATCH METHOD, &Params,
&RetVal, NULL, NULL) ;

}

return hr;

9.5.5 Calling XLM functions using COM

This can be done using the ExecuteExcel4Macro method. This provides access to less of
Excel’s current functionality than is available via VBA. However, there may be times
where it is simpler to use ExecuteExceldMacro than COM. For example, you could set a
cell’s note using the XLM NOTE via ExecuteExceldMacro, or you could perform the COM
equivalent of the following VB code:

With Range("Al™)
.AddComment
.Comment.Visible = False
.Comment.Text Text:="Test comment."
End With

Using late binding, the above VB code is fairly complex to replicate. Using early binding,
once set up with a capable compiler, programming in C++ is almost as easy as in VBA.

The syntax of the ExecuteExcel4dMacro method is straightforward and can be found using
the VBA online help. The C/C++ code to execute the method is easily created by modify-
ing the OLE_RunX11Command () function above to use this method instead of L"Run".

9.5.6 Calling worksheet functions using COM

When using late binding, worksheet functions are mostly called using the Evaluate method.
This enables the evaluation, and therefore the calculation, of anything that can be entered
into a worksheet cell. Within VB, worksheet functions can be called more directly,
for example, Excel.WorksheetFunction.LogNormDist(...). Using late binding, the
interface for WorksheetFunction would have to be obtained and then the dispid of the
individual worksheet function. As stated above, using early binding, once set up with a
capable compiler, programming in C++ is almost as easy as in VBA.

The following example function evaluates a string expression placing the result in the
given Variant, returning S_OK if successful.

304 Excel Add-in Development in C/C++

#define MAX COM_EXPR_LEN 1024

HRESULT CallVBAEvaluate (char *expr, VARIANT &RetVal)
{

static DISPID dispid = 0;

VARIANTARG String;

DISPPARAMS Params;

HRESULT hr;

wchar t w[MAX COM_EXPR LEN + 1];

char cErr[64];

int expr len;

if (!pExcelDisp || !expr || !*expr
|| (expr len = strlen(expr)) > MAX COM EXPR LEN)
return S_FALSE;

try

{

VariantInit (&String) ;

// Convert the byte string into a wide char string
mbstowcs (w, expr, expr len + 1);

String.vt = VT BSTR;
String.bstrvVal = SysAllocString (w) ;

Params.rgdispidNamedArgs = NULL;
Params.rgvarg = &String;
Params.cArgs = 1;
Params.cNamedArgs = 0;

if (dispid == 0)
{
wchar_t *ucName = L"Evaluate";
hr = pExcelDisp->GetIDsOfNames (IID NULL, &ucName, 1,
LOCALE_SYSTEM DEFAULT, &dispid) ;

if (FAILED (hr))

sprintf (cErr, "Error, hr = 0x%081lx", hr);

MessageBox (NULL, cErr, "GetIDsOfNames",
MB_OK | MB_SETFOREGROUND) ;

SysFreeString (String.bstrval) ;

return hr;

}

// Initialise the VARIANT that receives the return value, if any.
// If we don't care we can pass NULL to Invoke instead of &RetVal
VariantInit (&RetVal) ;

hr = pExcelDisp->Invoke (dispid,IID NULL, LOCALE SYSTEM DEFAULT,
DISPATCH METHOD, &Params, &RetVal, NULL, NULL) ;

if (FAILED (hr))
{
sprintf (cErr, "Error, hr = 0x%081x", hr);
MessageBox (NULL, cErr, "Invoke",
MB_OK | MB_SETFOREGROUND) ;
SysFreeString (String.bstrval) ;
return hr;

Miscellaneous Topics 305

}

// Success.
catch(_com error &ce)

// If COM throws an exception, we end up here. Most probably we will
// get a useful description of the error. You can force arrival in
// this block by passing a division by zero in the string

MessageBoxW (NULL, ce.Description(), L"Evaluate",
MB_OK | MB_SETFOREGROUND) ;

// Get and display the error code in case the message wasn't helpful
hr = ce.Error();

sprintf (cErr, "Error, hr = 0x%08lx", hr);
MessageBox (NULL, cErr, "The error code",
MB_OK | MB_ SETFOREGROUND) ;
}
SysFreeString (String.bstrval) ;
return hr;

9.6 MAINTAINING LARGE DATA STRUCTURES WITHIN
THE DLL

Suppose you have a DLL function, call it UseArray, that takes as an argument a large
array of data or other data structure that has been created by another function in the
same DLL, call it MakeArray. The most obvious and easiest way of making this array
available to UseArray would be to return the array from MakeArray to a range of
worksheet cells, then call UseArray with a reference to that range of cells. The work
that then gets done each time MakeArray is called is as follows:

1.

The DLL creates the data structure in a call to MakeArray.

2. The DLL creates, populates and returns an array structure that Excel understands. (See

Nk

sections 6.2.2 Excel floating-point array structure: x1_array and 6.8.7 Array (mixed
type): x1ltypeMulti.)

Excel copies out the data into the spreadsheet cells from which MakeArray was
called (as an array formula) and frees the resources (which might involve a call to
x1AutoFree).

Excel recalculates all cells that depend on the returned values, including UseArray.
Excel passes a reference to the range of cells to UseArray.

The DLL converts the reference to an array of values.

The DLL uses the values.

Despite its simplicity of implementation, there are a number of disadvantages with the
above approach:

MakeArray might return a variable-sized array which can only be returned to a block
of cells whose size is fixed from edit to edit.

There is significant overhead in the conversion and hand-over of the data.

There is significant overhead in keeping large blocks of data in the spreadsheet.

306 Excel Add-in Development in C/C++

e The data structures are limited in size by the dimensions of the spreadsheet.
e The interim data are in full view of the spreadsheet user; a problem if they are private
or confidential.

If the values in the data structure do not need to be viewed or accessed directly from the
worksheet, then a far more efficient approach is as follows:

—_—

DLL creates the data structure in a call to MakeArray as a persistent object.

DLL creates a text label that it can later associate with the data structure and returns
this to Excel.

Excel recalculates all cells that depend on the returned label, including UseArray.
Excel passes the label to UseArray.

DLL converts the label to some reference to the data structure.

DLL uses the original data structure directly.

N

kW

Even if the structure’s data do need to be accessed, the DLL can export access functions
that can get (and set) values indirectly. (When setting values in this way it is important
to remember that Excel will not automatically recalculate the data structure’s dependants,
and trigger arguments may be required.) These access functions can be made to operate
at least as efficiently as Excel’s INDEX(), MATCH() or LOOKUP() functions.

This strategy keeps control of the order of calculation of dependant cells on the spread-
sheet, with many instances of UseArray being able to use the result of a single call
to MakeArray. It is a good idea to change the label returned in some way after every
recalculation, say, by appending a sequence number. (See section 2.11 Excel recalcula-
tion logic, for a discussion of how Excel recalculates dependants when the precedents
have been recalculated and how this is affected by whether the precedent’s values change
or not.)

To implement this strategy safely, it is necessary to generate a unique label that cannot
be confused with the return values of other calls to the same or similar functions. It is also
necessary to make sure that there is adequate clearing up of resources in the event that a
formula for MakeArray gets deleted or overwritten or the workbook gets closed. This
creates a need to keep track of those cells from which MakeArray has been called. The
next section covers the most sensible and robust way to do just this. The added complexity
of keeping track of calls, compared with returning the array in question, means that where
MakeArray returns a small array, or one that will not be used frequently, this strategy
is overkill. However, for large, computationally intense calculations, the added efficiency
makes it worth the effort. The class discussed in section 9.7 A C++ Excel name class
example, x1Name, on page 307, simplifies this effort considerably.

A simpler approach is to return a sequence number, and not worry about keeping track
of the calling cell. However, you should only do this when you know that you will
only be maintaining the data structure from one cell, in order to avoid many cells trying
to set conflicting values. A changing sequence number ensures that dependencies and
recalculations are handled properly by Excel, although it can only be used as a trigger,
not a reference to the data structure. A function that uses this trigger must be able to find
the data structure without being supplied a reference: it must know from the context or
from other arguments. This simpler strategy works well where the DLL needs to maintain
a table of global or unique data. Calls to MakeArray would update the table and return

Miscellaneous Topics 307

an incremented sequence number. Calls to UseArray would be triggered to recalculate
something that depended on the values in the table.

9.7 A C++ EXCEL NAME CLASS EXAMPLE, x1Name

This section describes a class that encapsulates the most common named range handling
tasks that an add-in is likely to need to do. In particular it facilitates:

e the creation of references to already-defined names;

e the discovery of the defined name corresponding to a given range reference;

the reading of values from worksheet names (commands and macro sheet functions
only);

the assignment of values to worksheet names (commands only);

the creation and deletion of worksheet names (commands only);

the creation and deletion of DLL-internal names (all DLL functions);

the assignment of an internal name to the calling cell.

It would be possible to build much more functionality into a class than is contained in
x1Name, but the point here is to highlight the benefit of even a simple wrapper to the C
API’s name-handling capabilities. A more sophisticated class would, for example, provide
some exception handling — a subject deliberately not covered by this book.

The definition of the class follows. (Note that the class uses the cpp_xloper class for
two of its data members.) The definition and code are contained in the example project
on the CD ROM in the files X11Names.h and X11Names . cpp respectively.

class x1Name

public:
/== oo

// constructors & destructor

x1Name () :m_Defined(false), m RefValid(false),m Worksheet (false) {}
x1Name (char *name) {Set(name);} // Reference to existing range
~x1Name () {Clear();}

// Copy constructor uses operator= function
x1Name (const x1Name & source) {*this= source;}

// Object assignment operator
x1Name& operator =(const xlName& source) ;

==
// Assignment operators place values in cell(s) that range refers to.
// Cast operators retrieve values or assign nil if range is not valid
// or conversion was not possible. Casting to char * will return

// dynamically allocated memory that the caller must free. Casting
// to xloper can also assign memory that caller must free.

void operator=(int) ;
void operator=(bool b) ;

308

Excel Add-in Development in C/C++

void
void
void
void
void
void
void
void
void

}i

operator=(double) ;

operator=(WORD e) ;

operator=(char *);

operator= (xloper *); // same type as passed-in xloper
operator= (VARIANT *); // same type as passed-in Variant
operator=(x1l_array *array);

operator+= (double) ;
operator++ (void) {operator+=(1.0);}
operator-- (void) {operator+=(-1.0);}

operator int (void) ;

operator bool (void) ;

operator double (void) ;

operator char *(void); // DLL-allocated copy, caller must free

bool IsDefined(void) {return m Defined;}
bool IsRefValid(void) {return m RefValid;}
bool IsWorksheetName (void) {return m Worksheet;}
char *GetDef (void); // get definition (caller must free string)
char *GetName (void); // returns a copy that the caller must free
bool GetValues (cpp_xloper &Values); // contents as xltypeMulti
bool SetValues (cpp xloper &Values) ;
bool NamelIs (char *name) ;
bool Refresh(void); // refreshes state of name and defn
bool SetToRef (xloper *, bool internal); // ref's name if exists
bool SetToCallersName (void); // set to caller's name if it exists
bool NameCaller (char *name); // create internal name for caller
bool Set (char *name); // Create a reference to an existing range
bool Define (xloper *p_definition, bool in_dll);
bool Define(char *name, xloper *p definition, bool in dll);
void Delete (void); // Delete name and free instance resources
void Clear (void); // Clear instance memory but don't delete name
void SetNote (char *text); // Doesn't work - might be C API bug
char *GetNote (void) ;

protected:
bool m Defined; // Name has been defined
bool m RefVvalid; // Name's definition (if a ref) is valid
bool m Worksheet; // Name is worksheet name, not internal to DLL

cpp_xloper m_RangeRef;
cpp_xloper m_RangeName;

Note that

the overloaded operator (char *) returns the contents of the named cell as
a C string (which needs to be freed by the caller). The function GetName () returns the

name of the range as a C string (which also needs to be freed by the caller).

A simple example of the use of this class is the function range_name () which
returns the defined name corresponding to the given range reference. This function is
also included in the example project on the CD ROM and is registered with Excel as
RangeName(). Note that the function is registered with the type string "RRP#!" so that
the first argument is passed as a reference rather than being de-referenced to a value, as

happens with the second argument.

xloper * _ stdcall range name (xloper *p ref, xloper *p dll)

{

x1Name R;

Miscellaneous Topics 309

// Are we looking for a worksheet name or a DLL name?
bool dll = (p_dll->xltype==xltypeBool && p_dll->val. bool != 0);

if (IR.SetToRef (p_ref, dll))
return p_xlErrRef;

char *p = R.GetName () ;
cpp_xloper RetVal (p) ;
free(p) ;

return RetVal.ExtractXloper (false) ;

The following section provides other examples of the use of this class as well as listings
of some of the code.

9.8 KEEPING TRACK OF THE CALLING CELL OF A DLL
FUNCTION

Consider a worksheet function, call it CreateOne, which creates a data structure that is
unique to the cell from which the function is called. There are a number of things that
have to be considered:

e What happens if the user moves the calling cell and Excel recalculates the function?
How will the function know that the thing originally created is still to be associated
with the cell in its new position, instead of creating a new one for the new cell location?

e What happens if the user clears the formula from the cell? What happens if the user
deletes the cell with a column or row deletion or by pasting another cell over it? What
happens if the worksheet is deleted or the workbook closed? How will the DLL know
how to clean up the resources that the thing was using?

If these questions cannot be addressed properly in your DLL, then you will spring memory
leaks (at the very least). The same questions arise where a function is sending some request
to a remote process or placing a task on a background thread. The answer to these issues
all revolve around an ability to keep track of the calling cell that created the internal
object, or remote request, or background task. In general, this needs to be done when:

e The DLL is maintaining large data structures in the DLL (see above section).

e A background thread is used to perform lengthy computations. The DLL needs to know
how to return the result to the right cell when next called, bearing in mind the cell may
have been moved in the meantime.

e The cell is being used as a means of contributing data, that is only allowed to have
one source of updates, to a remote application.

e The cell is being used to create a request for data from a remote application.

Finding out which cell called a worksheet function is done using the C API function
x1fCaller. However, given that the user can move/delete/overwrite a cell, the cell
reference itself cannot be relied upon to be constant from one call to the next. The solution
is to name the calling cell, that is, define a name whose definition is the range reference of
the calling cell. For a worksheet function to name the calling cell, the name can only be an

310 Excel Add-in Development in C/C++

internal DLL name created using x1fSetName. (Worksheet names can only be created
from commands.) The x1fSetName function is used to define a hidden DLL name. As
with regular worksheet names, Excel takes care of altering the definition of the name
whenever the corresponding cell is moved. Also, the DLL can very straightforwardly
check that the definition is still valid (for example, that the cell has not been deleted in
a row or column delete) and that it still contains the function for which the name was
originally created.

The class discussed in section 9.7 A C++ Excel name class example, x1Name, on
page 307, contains a member function that initialises a class instance to the internal name
that corresponds to the calling cell, if it exists, or names it otherwise. Many of the code
examples that follow use this class which is provided in the example project on the
CD ROM. The sections that immediately follow use the class’ member function code to
demonstrate the handling of internal names, etc.

9.8.1 Generating a unique name

Generating a valid and unique name for a cell is not too complex and various methods
can be devised that will do this. Here’s an example:

1. Get the current time as an integer in the form of seconds from some base time.

2. Increment a counter for the number of names created within this second.

3. Create a name that incorporates text representations these two numbers.” (This could
be a simple 0—9 representation or something more compact if storage space and string
comparison speed are concerns.)

The following code shows an example of just such a method:

#include <windows.h>
#include <stdio.h>
#include <time.h>

char *make_unique_name (void)
time t time t T;
static long name_count = 0;
static unsigned long T last = 0;

time (&time_t_T);
tm tm_T = *localtime(&time t_ T);

// Need an unsigned long to contain max possible value
unsigned long T = tm _T.tm sec + 60 * (tm _T.tm min
+ 60 * (tm T.tm hour + 24 * (tm T.tm_yday

o

+ 366 * tm T.tm year % 100)));

if (T !'= T_last)

T last = T;
name_count = 0;

}

char buffer[32]; // More than enough space

% The name created must conform to the rules described in section 8.10 Working with Excel names on page 239.

Miscellaneous Topics 311

// Increment name_count so that names created in the current
// second are still unique. The name count forms the first
// part of the name.

int ch_count = sprintf (buffer, "x%1d.", ++name_count) ;

int r;
// Represent the time number in base 62 using 0-9, A-Z, a-z.
// Puts the characters most likely to differ at the front
// of the name to optimise name searches and comparisons
for(;T; T /= 62)

if((r = T % 62) < 10)
r += '0';
else if (r < 36)
r += 'A' - 10;
else
r += 'a' - 36;

buffer[ch count++] = r;
buffer[ch count] = 0;
// Make a copy of the string and return it
char *new_name = (char *)malloc(ch_count + 1);

strcpy (new_name, buffer);
return new_name; // caller must free the memory

9.8.2 Obtaining the internal name of the calling cell

The steps for this are:

1. Get a reference to the calling cell using x1fCaller.

2. Convert the reference to a full address specifier complete with workbook and sheet
name in R1C1 form using x1fReftext.

3. Get the name, if it exists, from the R1C1 reference using x1fGetDef.

The following two pieces of code list two member functions of the x1Name class that,
together, perform these steps.

bool x1Name::SetToCallersName (void)

{

Clear () ;

// Get a reference to the calling cell
cpp_xloper Caller;
int x14 = Excel4 (x1fCaller, &Caller, O0);
Caller.SetExceltoFree() ;

if(x14) // if x1fCaller failed
return false;

return SetToRef (&Caller, true); // true: look for internal name

312 Excel Add-in Development in C/C++

bool x1Name::SetToRef (xloper *p_ref oper, bool internal)

{

Clear () ;

1]
o

if ((p_ref oper-s>xltype & (xltypeSRef | xltypeRef)) =
return false;

cpp_xloper RefTextR1C1;
int x14 = Excel4 (xl1fReftext, &RefTextR1Cl, 1, p_ref oper);
RefTextR1C1l.SetExceltoFree () ;

if (x14 || RefTextR1Cl.IsType (xltypeErr))
return false;

// Get the name, if it exists, otherwise fail.

// First look for an internal name (the default if the 2nd
// argument to xlfGetDef is omitted) .

if (internal)

{
x14 = Excel4 (x1fGetDef, &m_RangeName, 1, &RefTextR1C1) ;
m_RangeName.SetExceltoFree () ;

if (x14 || !m _RangeName.IsType (xltypeStr))
return m_Defined = m _RefValid = false;

m_Worksheet = false;
// I1If name exists and is internal, add to the list.
// add_name_record() has no effect if already there.
add_name_record (NULL, *this);
1

else
{
// Extract the sheet name and specify this explicitly
cpp_xloper SheetName;
x14 = Excel4 (x1SheetNm, &SheetName, 1, p_ref oper);
SheetName.SetExceltoFree () ;

if (x14 || !SheetName.IsType (xltypeStr))
return m_Defined = m _RefValid = false;

// Truncate RefTextR1Cl at the R1Cl part

char *p = (char *)RefTextR1Cl; // need to free this
RefTextR1C1l = strchr(p, '!') + 1;
free(p) ;

// Truncate SheetName at the sheet name

p = (char *)SheetName;
SheetName = strchr(p, ']1'") + 1;
free(p) ;

x14 = Excel4 (x1fGetDef, &m_RangeName, 2, &RefTextR1Cl, &SheetName) ;
m_RangeName.SetExceltoFree () ;

if (x14 || !m_RangeName.IsType (xltypeStr))
return m_Defined = m _RefValid = false;

Miscellaneous Topics 313

m_Worksheet = true;

}

return m Defined = m_RefValid = true;

}

9.8.3 Naming the calling cell

Where internal names are being used, the task is simply one of obtaining a reference to
the calling cell and using the function x1fSetName to define a name whose definition
is that reference. However, repeated calls to a naive function that did this would lead to
more and more names existing. The first thing to consider is whether the caller already
has a name associated with it (see section 9.8.2 above).

Sometimes the reason for naming a cell will be to associate it with a particular function,
not just a given cell. Therefore, it may be necessary to look at whether the calling function
is the function for which the cell was originally named. If not, the appropriate cleaning
up or undoing of the old association should occur where necessary. If the name already
exists, and is associated with the calling function, then no action need be taken to rename
the cell.

The following code lists the member function of x1Name that names the calling cell, if
not already named. Note that if the name is specified and a name already exists, it deletes
the old name before creating the new one.

bool x1Name: :NameCaller (char *name)

// Check if given internal name already exists for this caller
f /==
if (SetToCallersName () && !m_Worksheet)
{
// If no name specified, then the existing name is what's required
if (Iname || !*name)
return true;

// Check if name is the same as the specified one
if (m_RangeName == name)

return true;

// If not, delete the old name, create a new one.
Delete() ;

// If no name provided, create a unigque name

name = make_unique_name () ;
m_RangeName = name;
free (name) ;

else

{
}

m_RangeName = name;

314 Excel Add-in Development in C/C++

m_Worksheet = false; // This will be an internal name
f == m e e e e
// Get a reference to the calling cell
f == m e e

cpp_xloper Caller;
int x14 = Excel4 (x1fCaller, &Caller, 0);
Caller.SetExceltoFree() ;

if (x14) // if x1lfCaller failed
return m_Defined = m RefValid = false;

cpp_xloper RetVval;
x14 = Excel4 (x1fSetName, &RetVal, 2, &m_RangeName, &Caller);
RetVal.SetExceltoFree () ;

if (x14 || RetVal.IsType (xltypeErr))
return m_Defined = m RefVvalid = false;

m_Defined = m_RefValid = true;
add_name_record (NULL, *this);
return true;

The function add_name_record () adds this new internal name to a list that enables
management of all such names. (See next section for details.) A simple example of
how you would use x1Name’s ability to do this is the following worksheet function
name_me () that assigns an internal name to the calling cell (unless it already has one)

and returns the name. (This function has no obvious use other than demonstration.)

xloper * _ stdcall name me(int create)
{
if (called_from paste_ fn dlg())
return p_xlErrValue;

// Set the xlName to refer to the calling cell.
x1Name Caller;
bool name exists = Caller.SetToCallersName () ;

if (create)

if (Iname exists)
Caller.NameCaller (NULL) ;

// Get the defined name. Need to free this string.
char *name = Caller.GetName () ;
cpp_xloper Name (name) ;
free (name) ;
return Name.ExtractXloper () ;

Miscellaneous Topics 315

// Not creating, so deleting
if (!name_exists)
return p_xlFalse;

// Delete from Excel's own list of defined names
Caller.Delete() ;

// Delete from DLL's list of internal names. This is a
// slightly inefficient method, especially if a large
// number of internal names are in the list. A more
// specific method of deleting from list could easily
// be coded.

clean x11 name list();

return p_xlTrue;

9.8.4 Internal XLL name housekeeping

The reference associated with an internal XLLL name can, for a number of reasons, become
invalid or no longer refer to an open workbook. The user may have deleted a row or
column containing the original caller, or cut and pasted another cell on top of it. The sheet
it was on could have been deleted, or the workbook could have been deleted without ever
being saved.

In general Excel is very good at changing the reference when cells are moved, the
range expands or contracts, the sheet is renamed or moved, the workbook is saved under
a different name, etc. This is one of the main reasons for defining an internal name within
the XLL, of course, as the events through which a user can do these things are not easily
trapped. Being able to clean up unused or invalid internal names, and associated resources,
is clearly very important.

The C API function x1fNames returns an array of worksheet names, but not, unfor-
tunately, internal DLL names. Therefore, it is necessary for the DLL to maintain some
kind of container for the internal names it has created, through which it can iterate to
perform this housekeeping. For C++ programmers, the most sensible way to do this is
using a Standard Template Library (STL) container. (The source file X11Names . cpp in
the example project on the CD ROM contains an implementation of an STL map that is
used by the x1Name class for this purpose.)

The following two steps can be employed to identify whether an internal name is valid
and associated reference with a valid:

e Attempt to get the definition reference for the name using the x1fGetName function.
If this fails, the name is not valid or has not yet been defined.

e Attempt to convert the reference definition returned by x1fGetName (as text in the
form [Bookl.xls]Sheet1!R1C1) to a reference using the x1fTextref function.
If this fails the reference is not valid.

The following code lists the x1Name member function Refresh () that updates the
current cell address of a named range and confirms that the name and the reference are
(still) valid. This function is called whenever the class needs to be sure that the name still
exists and the cell reference is up-to-date.

316 Excel Add-in Development in C/C++

bool x1Name: :Refresh(void)

{

m_RangeRef.Free() ;

cpp_xloper Defn;
int x14 = Excel4 (xl1fGetName, &Defn, 1, &m RangeName) ;
Defn.SetExceltoFree () ;

if(x14 || !Defn.IsType (xltypeStr))
return m_Defined = m RefVvalid = false;

m_Defined = true;

J e

// Now check if the definition is a valid reference

=
char *temp = (char *)Defn; // allocates some memory

Defn = temp + 1; // remove the leading '='
free(temp); // free the temporary memory

x14 = Excel4 (x1fTextref, &m_RangeRef, 2, &Defn, p_xlFalse);
m_RangeRef.SetExceltoFree() ;

m RefValid = !x14 && m_RangeRef.IsType (xltypeSRef | xltypeRef) ;
return m_RefValid;

As well as having a way of detecting whether a name is valid, it is necessary to have a
strategy for when and/or how often the DLL checks the list of internally defined names.
This depends largely on the application. There needs to be a balance between the overhead
associated with frequent checking and the benefit of knowing that the list is good.

In some cases you may not be concerned if the list contains old and invalid names. In
this case a clean-up function that is invoked (1) as a command, or (2) when a new name
is being added or explicitly deleted, would do fine.

In other cases, for example, where you are using a function to contribute some piece
of real-time data, it may be imperative that the application informs the recipient within
a set time that the source cell has been deleted. In this case, it might be sufficient to
set up a trap for a recalculation event using the x1cOnRecalc function that calls such
a function. Or it may be necessary to create an automatically repeating command (see
sections 9.9.1 and 9.10 for examples of this).

Finally, it is probably a good idea, depending on your application, to delete all the
internal names when your XLL is unloaded: calling a function that iterates through the
list to do this from x1AutoClose is the most convenient and reliable way. The function
delete_all_x11l_names () in the example project on the CD ROM does just this.

9.9 MULTI-TASKING, MULTI-THREADING AND
ASYNCHRONOUS CALLS IN DLLS

9.9.1 Setting up timed calls to DLL commands: x1cOnTime

There are two readily accessible ways to execute a command at a given point in the
future. One is to use VBA Application.OnTime method. The other is to use the C API

Miscellaneous Topics 317

command x1cOnTime whose enumeration value is 32916 (0x8094). (It is also possible
to set up a Windows timed callback from a DLL command or a function. However, a
function called back in this way cannot safely use the C API or the COM interface.)

The most accessible of the two is VBA’s Application.OnTime which sets up a
scheduled call to a user-defined command. The method takes an absolute time argument,
but in conjunction with the VB Now function, can be used to set up a relative-time call.
Once the specified time is reached, VB uses COM to call the command function. This
call will fail if Excel is not in a state where a command can be run.'?

The C API function is analogous to the VBA method, and both are analogous to the
XLM ON.TIME command which takes 4 parameters.

1. The time as a serial number at which the command is to be executed. If the integer
(day) part is omitted, the command is run the next time that time occurs, which may
be the next day.

2. The name of the command function, as set in the 4th argument to the x1fRegister
function.

3. (Optional.) Another time, up until which you would like Excel to wait try executing
the command again if it was unable the first time round. If omitted Excel will wait as
long as it takes: until the state of Excel is such that it can run the command.

4. (Optional.) A Boolean value that if set to false will cancel a timed call that has not
yet been executed.

One key difference between the C API and VBA versions is the third parameter, which
tells Excel to execute a command as soon as it can after the specified time. (Excel cannot
execute commands when, for example, a user is editing a cell.) Using x1cOnTime, it is
Excel itself that calls the command directly. This avoids any subtle problems that VBA
might encounter calling the command via COM. A further advantage is that Excel will
not make more than one call to the DLL at a time. In other words, the DLL command
will not be called at the same time as another command or a worksheet function. This
makes the safe management of shared data in the DLL much easier.

The x1cOnTime call returns true if the call was scheduled successfully, otherwise
false. (If an attempt was made to cancel a timed callback that did not exist or was already
executed, it returns a #VALUE! error.)

Below is some example code showing two inter-dependant commands,
on_time_example_cmd () and increment_counter (). Both examples rely heav-
ily on the cpp_xloper class (see section 6.4 A C++ class wrapper for the x1oper -
cpp_xloper on page 118) and the x1Name class (see section 9.7 A C++ Excel name
class example, x1Name on page 307).

The command on_time_example_cmd () toggles (enables/disables) repeated timed
calls to increment_counter (). The command also toggles a check mark on a menu
item associated with the OnTimeExample command in order to inform the user whether
the timed calls are running or not.

The command increment counter ()increments the value held in a named work-
sheet range in the active workbook, Counter, and then sets up the next call to itself using

10 The author has also experienced Excel behaving in an unusual or unexpected way when using this function
to set up a command to be run every n seconds, say. For this reason, this book recommends using the C API
function where robustness is proving hard to achieve.

318 Excel Add-in Development in C/C++

the x1cOnTime command. Note that both commands need to be registered with Excel
using the x1fRegister command, and that increment_counter needs to be regis-
tered with the 4th argument as "IncrementCounter" in order for Excel to be able to
call the command properly.

#define SECS_PER_DAY (60.0 * 60.0 * 24.0)
bool on_time_example_running = false;

int _ stdcall increment counter (void)
if (lon_time_example_ running)
return O0;

x1Name Counter ("!Counter") ;
++Counter; // Does nothing if Counter not defined

// Schedule the next call to this command in 10 seconds' time
cpp_xloper Now;
Excel4 (x1fNow, &Now, O0);
cpp_xloper ExecTime ((double)Now + 10.0 / SECS_PER DAY);
cpp_xloper CmdName ("IncrementCounter") ;
cpp_xloper RetVal;
int x14 = Excel4 (x1cOnTime, &RetVal, 2, &ExecTime, &CmdName) ;
return 1;

}

int _ stdcall on_time_example cmd(void)
{
// Toggle the module-scope Boolean flag and, if now true, start the
// first of the repeated calls to increment_ counter ()
if (on_time_example_running = !on_time_example_ running)
increment_ counter() ;

cpp_xloper BarNum(10); // the worksheet menu bar

cpp_xloper Menu ("&XLL Example") ;

cpp_xloper Cmd("OnT&ime example");

cpp_xloper Status(on_time_ example running) ;

Excel4 (x1fCheckCommand, 0, 4, &BarNum, &Menu, &Cmd, &Status);
return 1;

Note: When Excel executes the timed command it will clear the cut or copy mode state
if set. It can be very frustrating for a user if they only have a few seconds to complete
a cut and paste within the spreadsheet. Making the enabling/disabling of such repeated
calls easily accessible is therefore critically important. This means adding a menu item or
toolbar button, or at the very least, a keyboard short-cut, with which to run the equivalent
of the on_time example cmd () command above.

9.9.2 Starting and stopping threads from within a DLL

Setting up threads to perform tasks in the background is straightforward. The following
example code contains a few module-scope variables used to store a handle for the back-
ground thread and for communication between the thread and a function that would be
called by Excel. The function thread_example () when called with a non-zero argument

Miscellaneous Topics 319

from an Excel spreadsheet for the first time, starts up a thread that executes the function
thread_main (). This example function simply increments a counter with a frequency
of the argument in milliseconds. The function thread_example () when called subse-
quently with a non-zero argument returns the incremented counter value. If called with a
zero argument, thread_example () terminates the thread and deletes the thread object.

#include <windows.h>

bool keep thread running = false;
long thread counter;
HANDLE thread_handle = 0;

// Thread is defined using a pointer to this function. Thread

// executes this function and terminates automatically when this

// functions returns. The void * pointer is interpreted as a pointer
// to long containing the number of milliseconds the thread should

// sleep in each loop in this example.

DWORD WINAPI thread main(void *vp)

{

for (;keep_thread_ running;)

// Do whatever work the thread needs to do here:
thread_counter++;

if (vp)
Sleep (* (long *)vp) ;
else
Sleep(100); // Make life easy for the 0S

}

return ! (STILL ACTIVE) ;

This function thread_example () either kills the background thread, sets up or gets
the value of thread_counter, depending on the value of activate_ms and the
current state of the thread. It is declared as __ stdcall so that it can be accessed as a
worksheet function.

long _ stdcall thread example(long activate_ms)

// Address of thread param is passed to 0S, so needs to persist
static long thread param;

// Not used, but pointer to this needs to be passed to CreateThread()
DWORD thread_ ID;

if (activate _ms)
{
if (thread_handle == 0)
{
thread_counter = 0;
keep_thread running = true;
thread param = activate ms;
thread handle = CreateThread(NULL, 0, thread main,
(void *)& thread param, 0, &thread ID);
return O;

320 Excel Add-in Development in C/C++

}

return thread_counter;

}

if (thread handle)

// Set flag to tell thread to exit
keep_thread_running = false;

// Wait for the thread to terminate.
DWORD code;
for (;GetExitCodeThread (thread handle, &code)
&& code == STILL_ACTIVE; Sleep(10));

// Delete the thread object by releasing the handle
CloseHandle (thread_handle) ;
thread_handle = 0;

}

return -1;

}

The above code makes assumptions that may not be thread-safe. In particular the system
could be simultaneously reading (in thread_example()) and writing (in
thread_main()) to the variable thread_counter. In practice, in a Win32 envi-
ronment, the reading and writing of a 32-bit integer will not be split from one slice of
execution to another on a single processor machine. Nevertheless, to be really safe, all
instructions that read from or write to memory that can be accessed by multiple threads
should be contained within Critical Sections.

Creating a thread from a worksheet function creates the possibility of leaving a thread
running when it is no longer needed, simply by closing the worksheet that contained
the formula that created it. A better solution is to create and destroy threads from, say,
the x1AutoOpen () and x1AutoClose () XLL interface functions or some other user
command. Section 9.10 A background task management class and strategy on page 320
and the associated code on the CD ROM, present a more robust and sophisticated example
of managing and using background threads.

9.9.3 Calling the C API from a DLL-created thread

This is not permitted. Excel is not expecting such calls which will fail in a way which
might destabilise or crash Excel. This is, of course, unfortunate. It would be nice to be able
to access the C API in this way, say, to initiate a recalculation from a background thread
when a background task has been completed. One way around this particular limitation
is to have the background thread set a flag that a timed command can periodically check,
triggering a recalculation, say, if the flag is set. (See section 9.9.1 Setting up timed calls
to DLL commands: x1cOnTime on page 316.)

9.10 A BACKGROUND TASK MANAGEMENT CLASS
AND STRATEGY

This section brings together a number of topics, discussed so far. It describes a strategy for
managing a background thread, using the C API, that can be used for lengthy worksheet

Miscellaneous Topics 321

function recalculations. For brevity, worksheet functions that require this approach are
referred to in this section as long tasks. The reason for wanting to assign long tasks to
their own thread is so that the user is not locked-out of Excel while these cells recalculate.
On a single-processor machine the total recalculation time will, in general, be worse, albeit
imperceptibly, but the difference in usability will be enormous.

To make this work, the key sections that are relied on are:

e Registration custom commands and of volatile macro-sheet equivalent worksheet func-
tions (section 8.5, page 182).

The use of a repeated timed command call (section 9.9.1, page 316).

Managing a background thread (section 9.9.2, page 318).

Working with internal Excel names (section 8.10, page 239).

Keeping track of the calling cell (section 9.8, page 309).

Creating custom menu items (section 8.11, page 249).

Creating a custom dialog box (section 8.13, page 273).

This section discusses the requirements, the design and the function of the various software
components needed to make the strategy work.

Both the strategy and the class around which it is centred, are intended simply to
illustrate the issues involved. They are not intended to represent the only or best way
of achieving this goal. Whatever you do, you should satisfy yourself that your chosen
approach is suitable and stable for your particular needs. More sophisticated solutions are
certainly possible than that proposed here, but are beyond this book’s scope.

9.10.1 Requirements

The high level requirements that drive this example strategy are these:

1. The user must be able to disable/re-enable the background thread from a command.

2. Long task worksheet functions should not, ideally, impose restrictions on the user that

ordinary worksheet functions are not limited by.

Long task worksheet functions must be given the ability to return intermediate values.

4. A number of different long task functions should be supportable without extra coding
other than of the function itself.

5. Changing input values for an in-progress task should cause the existing (old) task to be
abandoned as soon as possible and the task to be re-queued with the new parameters.

6. There should be no hard limit to the number of worksheet functions that can be queued.

het

Other requirements could be envisaged, such as the prioritisation of certain tasks, but for
simplicity the above requirements are all that are considered here.
When farming out tasks to threads there are a number of possible approaches:

(a) Create a thread for each task.

(b) Create a thread for each worksheet function.

(c) Create a single thread on which you execute all tasks for all functions.

(d) Create a pool of threads that have tasks assigned according to their availability.

322 Excel Add-in Development in C/C++

Strategy (a) could very quickly lead to the thread management overhead bringing your
machine to a grinding halt, especially where each worksheet cell might get its own thread.
Strategy (b) improves on this considerably unless there are, say, dozens of functions.
Strategy (d) is perhaps the best approach, but for simplicity of the example strategy
(c) is chosen here. Whilst not having all the capabilities of (d), it still touches on all the
important issues. It also requires that the code is flexible enough to handle many different
functions taking different numbers and types of arguments and returning different values,
both intermediate and final. This satisfies requirements (3) and (4) above.

9.10.2 Communication between Excel and a background thread

There are a number of reasons why the foreground thread (Excel, essentially) and the
background thread need to communicate with each other. Firstly, there is contention
for resources, typically both threads trying to access the same block of memory at the
same time. This is addressed with the use of Critical Sections. Secondly, the work-
sheet functions need to tell the background thread about a new task, or a change to an
outstanding task. Getting the worksheet to communicate with the background thread is
simple, requiring only that memory contention is handled well. Two flags are used in
the example class below that enable the user, via a custom command, to request that the
background thread

1. stops processing the current task.
2. stops processing all tasks.

Lastly, the background thread needs to be able to tell Excel that new information is
available to the worksheet, in response to which Excel needs to recalculate those functions
so that this new information can be acquired. Getting the background thread to tell Excel
that something needs to happen requires that Excel polls to see if something needs to be
done, say, every n seconds. (Remember that background threads cannot safely call directly
into Excel via the C API or COM.) This is achieved here with the use of x1cOnTime
embedded in a command associated with the background thread. This command is referred
to below as the polling command. (See also section 9.9.1 Setting up timed calls to DLL
commands: x1cOnTime on page 316.)

9.10.3 The software components needed

The list of components required is as follows:

Table 9.7 Software components for a background thread strategy

Component Notes

TaskList class e Creates, deletes, suspends and resumes the background
thread and the polling command (in foreground)

e Handles memory contention between threads using critical
sections

e Creates and deletes DLL-internal Excel names associated
with each caller of a long task function (in foreground).
Names are mapped 1-1 to tasks.

Miscellaneous Topics 323

Table 9.7 (continued)

Component

Notes

Maintains a list of tasks and manages the following:

o Addition of new tasks (in foreground)

o Modification of existing tasks (in foreground)

o Deletion of orphaned tasks (in foreground)

o Execution of a task, and the associated state changes (in
background)

Provides an interface for information about current tasks and

access to configuration parameters

Polling command

e Associated with a given instance of a TaskList class

Registered with Excel so that it can be executed via the
x1cOnTime command

Deletes any invalid names in the list

Initiates Excel recalculation

After recalculation initiates cleaning up of orphaned tasks
Schedules the next call to itself

Control/configuration
command(s)

Accessible to the user via custom menu or toolbar
Provides enable/disable thread function

Provides some task execution information
Provides ability to configure thread settings

Long task interface
function

Registered with Excel as a volatile macro sheet function
Takes oper arguments, not xlopers11

Returns immediately if called from the Function Wizard
Responsible for verification of inputs

Returns immediately if inputs invalid or task list thread is
deactivated

Long task main function

Takes a pointer to a task object/structure and returns a
Boolean

Makes no calls, directly or indirectly, to Excel via the C
API or COM

Periodically checks the break task flag within the task
object/structure while performing its task

One reason for registering a long task interface function as a macro sheet function is to
give it the ability to read and return the current value of the calling cell. This may be the
required behaviour if the task has not been completed.

9.10.4 Imposing restrictions on the worksheet function

One potential complication is the possibility that a user might enter a number of long task
function calls into a single cell. For example, a user might enter the following formula

' This is a simplifying restriction that ensures that tasks are driven by values not ranges, and simplifies the
handling of different functions that take different numbers of arguments of different types.

324 Excel Add-in Development in C/C++

into a cell:
=IF(A1,LONG_TASK(B1),LONG_TASK(B2))

Excel’s recalculation logic would attempt to recalculate both calls to the function
LONG_TASK(). (In this example the user should enter =LONG_TASK(IF(A1,B1,B2)) instead.)
In any case, it is not too burdensome to restrict the user to only entering a single long
task in a single cell, say. Should you wish to do so, such rules are easily implemented
using x1fGetFormula described in section 8.9.7 on page 221. This is one of the things
that should be taken care of in the long task interface function. The fact that you might
need to do this is one of the reasons for registering it as a macro sheet function.

The example in this section makes no restriction on the way the interface function is
used in a cell, although this is a weakness: the user is relied upon only to enter one such
function per cell.

9.10.5 Organising the task list

The example in this section uses the following simple structure to represent a task. Note
that a more sensible approach would be to use a Standard Template Library (STL) con-
tainer class. The, some would say, old-fashioned linked list used here could easily be
replaced with such a container. The intention is not to propose the best way of coding
such things, but simply to lay out a complete approach that can be modified to suit coding
preferences and experience.

enum {TASK PENDING = 0, TASK CURRENT
TASK UNCLAIMED = 4, TASK COMPLETE

1, TASK READY = 2,
8};

typedef struct tag task

{

tag_task *prev; // prev task in list, NULL if this is top

tag task *next; // next task in list, NULL if this is last
long start_clock; // set by TaskList class

long end clock; // set by TaskList class

bool break task; // if true, processing of this task should end
short status; // PENDING, CURRENT, READY, UNCLAIMED, COMPLETE
char *caller name; // dll-internal Excel name of caller

bool (* fn ptr) (tag_task *); // passed in function ptr

xloper fn ret val; // used for intermediate and final value
int num args;
xloper arg_array([l]; // 1lst in array of args for this task

task;

This structure lends itself to either a simple linked list with a head and tail, or a more
flexible circular list. For this illustration, the simple list has been chosen. New tasks are
added at the tail, and processing of tasks moves from the head down. A decision needs
to be made about whether modified tasks are also moved to the end or left where they
are. In the former case, the algorithm for deciding which task is next to be processed
simply goes to the next in the list. In the latter case, it would need to start looking at
the top of the list, just in case a task that had already been completed had subsequently
been modified.

Miscellaneous Topics 325

The decision made here is that modified tasks are moved to the end of the list. The
TaskList class, discussed below and listed in full on the CD ROM, contains three
pointers, one to the top of the list, m_pHead, one to the bottom of the list, m_pTail,
and one to the task currently being executed, m_pCurrent.

A more sophisticated queuing approach would in general be better, for example, one
with a pending queue and a done queue, or even a queue for each state. The above
approach has been chosen in the interests of simplicity.

It is important to analyse how a list of these tasks can be altered and by what thread,
background or foreground. The pointers m_pHead and m_pTail will only be modified
by the foreground thread (Excel) as it adds, moves or deletes tasks. The m_pCurrent
pointer is modified by the background thread as it completes one task and looks for the
next one. Therefore, the foreground thread must be extremely careful when accessing the
m_pCurrent pointer or assuming it knows what it is, as it can alter from one moment
to the next. The foreground can freely read through the list of tasks but must use a
critical section when altering a task that is, or could at any moment become, pointed
to by m_pCurrent. If it wants to update m_pCurrent’s arguments, then it must first
break the task so that it is no longer current. If it wants to change the order of tasks in
the list, it must enter a critical section to avoid this being done at the same time that the
background thread is looking for the next task.

By limiting the scope of the background thread to the value of m_pCurrent, and the
task it points to, the class maintains a fairly simple thread-safe design, only needing to
use critical sections in a few places.

The strategy assigns a state to a task at each point in its life cycle. Identifying the
states, what they mean, and how they change from one to another, is an important part of
making any complex multi-threaded strategy work reliably. For more complex projects
than this example, it is advisable to use a formal architectural design standard, such as
UML, with integral state-transition diagrams. For this example, the simple table of the
states below is sufficient.

Table 9.8 Task states and transitions for a background thread strategy

State Notes

Pending e The task has been placed on the list and is waiting its turn to be processed.
e The foreground thread can delete pending tasks.

Current e The state is changed from pending to current by the background thread with a
critical section

e The background thread is processing the task

e If the task’s execution is interrupted, its state goes back to pending

Ready e The task has been completed by the background thread which has changed the
state from current to ready
e The task is ready for the foreground loop to retrieve the result

Unclaimed |e The foreground thread has seen that the task is either ready or complete and
has marked it as unclaimed pending recalculation of the workbook(s)
e If still unclaimed after a workbook recalculation, the task should be deleted

(continued overleaf)

326 Excel Add-in Development in C/C++

Table 9.8 (continued)

State Notes

Complete | e The recalculation of the worksheet cell (that originally scheduled the task)
changes the state from unclaimed to complete

e The task has been processed and the originating cell has been given the final
value

e A change of inputs will change the status back to pending

The unclaimed state ensures that the foreground thread can clean up any orphaned tasks:
those whose originating cells have been deleted, overwritten, or were in worksheets that
are now closed. The distinction between ready and unclaimed ensures that tasks completed
immediately after a worksheet recalculation don’t get mistakenly cleaned up as unclaimed
before their calling cell has had a chance to retrieve the value.

9.10.6 Creating, deleting, suspending, resuming the thread

In this example, where management of the thread is embedded in a class, the most obvious
place to start and finally stop the thread might seem to be the constructor and destructor.
It is preferable, in fact, to have more control than this and start the thread with an explicit
call to a class member function, ideally from x1AutoOpen. Similarly, it is better to
delete the thread in the same way from x1AutoClose.

Threads under Windows can be created in a suspended state. This gives you two choices
about how you run your thread: firstly, you can create it in a suspended state and bring it
to life later, perhaps only when it has some work to do. Secondly, you can create it in an
active state and have the main function that the thread executes loop and sleep until there
is something for it to do. Again for simplicity, the second approach has been adopted in
this example.

Similarly, when it comes to suspending and resuming threads, there are two Windows
calls that will do this. Or you can set some flag in foreground that tells your background
loop not to do anything until you reset the flag. The latter approach is simpler and easier to
debug, and, more importantly, it also allows the background thread to clean up its current
task before becoming inactive. For these reasons, this is the approach chosen here.

9.10.7 The task processing loop

Most of the code involved in making this strategy work is not listed in this book. (It is
included on the CD ROM in the source files Background.cpp and Background.h
which also call on other code in the example project.) Nevertheless, it is helpful to discuss
the logic in this code behind the main function that the thread executes. (When creating
the thread, the wrapper function background_thread_main () is passed as an argu-
ment together with a pointer to the instance of the TaskList class that is creating the
thread.) The loop references three flags, all private class data members, that are used to
signal between the fore- and background threads. These are:

e m_ThreadExitFlagSet: Signals that the thread should exit the loop and return,
thereby terminating the thread. This is set by the foreground thread in the
DeleteTaskThread () member function of the TaskList class.

Miscellaneous Topics 327

e m_SuspendAllFlagSet: Signals that the background thread is to stop (suspend)
processing tasks after the next task has been completed. This is set by the fore-
ground thread in the SuspendTaskThread () member function of the TaskList
class.

e m_ThreadIsRunning: This flag tells both the background and foreground threads
whether tasks are being processed or not. It is cleared by the background thread in
response to m_SuspendAllFlagSet being set. This gives the foreground thread
a way of confirming that the background thread is no longer processing tasks. It is
set by the foreground thread in the ResumeTaskThread () member function of the
TaskList class.

// This is the function that is passed to Windows when creating
// the thread.
DWORD _ stdcall background thread main(void *vp)

{
}

// This member function executes 'this' instance's tasks.
DWORD TaskList::TaskThreadMain (void)

{

return ((TaskList *)vp)->TaskThreadMain() ;

for (; !m _ThreadExitFlagSet;)

{

if (!m_ThreadIsRunning)

// Thread has been put into inactive state
Sleep (THREAD INACTIVE SLEEP MS) ;
continue;

}

if (m_SuspendAllFlagSet)

{
m_ThreadIsRunning = false;
m_pCurrent = NULL;
continue;

}

// Find next task to be executed. Sets m pCurrent to
// point to the next task, or to NULL if no more to do.
GetNextTask () ;

if (m_pCurrent)

{

// Execute the current task and time it. Status == TASK CURRENT
m_pCurrent->start clock = clock();
if (m_pCurrent->fn ptr(m pCurrent))

// Task completed successfully and is ready to be read out
m_pCurrent-s>status = TASK READY;

else

// Task was broken or failed so need to re-queue it
m_pCurrent->status = TASK PENDING;

m_pCurrent->end_clock = clock() ;

}

else // nothing to do, so have a little rest

328 Excel Add-in Development in C/C++

Sleep (m_ThreadSleepMs) ;

}

return ! (STILL_ACTIVE) ;

}

The function TaskList: :GetNextTask () points m_pCurrent to the next task, or
sets it to NULL if they are all done.

9.10.8 The task interface and main functions

In this example, the only constraint on the interface function is that it is registered as
volatile. It is also helpful to register it as a macro-sheet equivalent function which only
takes oper arguments. Its responsibilities are:

1. To validate arguments and place them into an array of xlopers.

2. To call TaskList: :UpdateTask ().

3. To interpret the returned value of UpdateTask () and pass something appropriate
back to the calling cell.

The associated function that does the work is constrained, in this case, by the imple-
mentation of the TaskList class and the task structure, to be a function that takes a
pointer to a task and returns a bool. The following code shows an example interface
and main function pair. The long task in this case counts from one to the value of its
one argument. (This is a useful test function, given its predictable execution time.) Note
that long task example main () regularly checks the state of the break_task
flag. It also regularly calls Sleep (0), a very small overhead, in order to make thread
management easier for the operating system.

// LongTaskExampleMain() executes the task and does the work.

// It is only ever called from the background thread. It is

// required to check the break task flag regularly to see if the

// foreground thread needs execution to stop. It is not required
// that the task populates the return value, fn_ret val, as it does
// in this case. It could just wait till the final result is known.
bool long task _example main(tag task *pTask)

{

long limit;
if (pTask->arg array[0] .xltype != xltypeNum
|| (1imit = (long)pTask->arg array[0].val.num) < 1)

return false;

pTask->fn ret val.xltype = xltypeNum;
pTask->fn ret val.val.num = 0;

for(long i = 1; i <= limit; i++)
if(i % 1000)

if (pTask->break task)
return false;

Miscellaneous Topics

Sleep(0) ;

}

pTask->fn_ret val.val.num = (double)i;

}

return true;

The interface function example below shows how the TaskList class uses Excel error
values to communicate back to the interface function some of the possible states of the

task. It is straightforward to make this much richer if required.

// LongTaskExampleInterface() is a worksheet function called
// directly by Excel from the foreground thread. It is only
// required to check arguments and call ExampleTaskList.UpdateTask ()
// which returns either an error, or the intermediate or final value
// of the calculation. UpdateTask() errors can be returned directly
// or, as in this case, the function can return the current
// (previous) value of the calling cell. This function is registered
// with Excel as a volatile macro sheet function.
xloper * _ stdcall LongTaskExamplelInterface (xloper *arg)
{

if (called_from paste fn dlg())

return p x1ErrNa;

if (arg->xltype != xltypeNum || arg->val.num < 1)
return p_xlErrValue;

xloper arg_array([l]; // only 1 argument in this case
static xloper ret_val;

// UpdateTask makes deep copies of all the supplied arguments
// so passing in an array of shallow copies is safe.
arg_array[0] = *arg;

// As there is only one argument in this case, we could instead

// simply pass a pointer to this instead of creating the array

ret _val = ExampleTaskList.UpdateTask (long task example main,
arg_array, 1);

if (ret_val.xltype == xltypeErr)

{

switch(ret_val.val.err)

// the arguments were not valid
case xlerrValue:
break;

// task has never been completed and is now pending or current
case xlerrNum:
break;

// the thread is inactive
case xlerrNA:
break;

// Return the existing cell value.
get_calling cell value(ret_val);

330 Excel Add-in Development in C/C++

}

ret val.xltype |= x1bitDLLFree; // memory to be freed by the DLL
return &ret_val;

9.10.9 The polling command

The polling command only has the following two responsibilities:

e Detect when a recalculation is necessary in order to update the values of volatile long
task functions. (In the example code below the recalculation is done on every call into
the polling function.)

e Reschedule itself to be called again in a number of seconds determined by a configurable
TaskList class data member.

int _ stdcall long task polling cmd(void)
{
if (ExampleTaskList.m BreakPollingCmdFlag)
return 0; // return without rescheduling next call

// Run through the list of tasks setting TASK READY tasks to

// TASK_UNCLAIMED. Tasks still unclaimed after recalculation are

// assumed to be orphaned and deleted by DeleteUnclaimedTasks () .
bool need_racalc = ExampleTaskList.SetDoneTasks () ;

// 1if (need_racalc) // Commented out in this example
{
// Cause Excel to recalculate. This forces all volatile fns to be
// re-evaluated, including the long task functions, which will then
// return the most up-to-date values. This also causes status of
// tasks to be changed to TASK COMPLETE from TASK UNCLAIMED.
Excel4 (xlcCalculateNow, NULL, 0);

// Run through the list of tasks again to clean up unclaimed tasks
ExampleTaskList.DeleteUnclaimedTasks () ;
}

// Reschedule the command to repeat in m_ PollingCmdFregSecs seconds.
cpp_xloper Now;
Excel4 (x1fNow, &Now, O0);
cpp_xloper ExecTime ((double)Now +
ExampleTaskList.GetPollingSecs () / SECS_PER _DAY) ;

// Use command name as given to Excel in x1fRegister 4th arg
cpp_xloper CmdName ("LongTaskPoll"); // as registered with Excel
cpp_xloper RetVal;

int x14 = Excel4 (xl1lcOnTime, &RetVal, 2, &ExecTime, &CmdName) ;
RetVal.SetExceltoFree () ;

if(x14 || RetVal.IsType (xltypeErr))

{

cpp_xloper ErrMsg("Can't reschedule long task polling cmd") ;
Excel4 (xlcAlert, 0, 1, &ErrMsg);

}

return 1;

Miscellaneous Topics 331

9.10.10 Configuring and controlling the background thread

The TaskList: :CreateTaskThread () member function creates a thread thatis active
as far as the OS is concerned, but inactive as far as the handling of background worksheet
calculations is concerned. The user, therefore, needs a way to activate and deactivate the
thread and the polling command.

As stressed previously, the C API is far from being an ideal way to create dialogs
through which the user can interact with your application. In this case, however, it is very
convenient to place a dialog within the same body of code as the long task functions. You
can avoid using C API dialogs completely by exporting a number of accessor functions
and calling them from a VBA dialog.

The example project source file, Background. cpp, contains a command function
long task_config_cmd (), that displays the following C API dialog that enables the
user to control the thread and see some very simple statistics. (See section 8.13 Working
with custom dialog boxes on page 273.)

LLong Task Thread Configuration

Thread ID: 0x00000560

Thread sleep kime (ms) 250

Command repeat time {5 157

Thread is initialised i Pending tasks: 0
Thread is running r Done tasks: 0

Cancel I Activate J Kill thread

Figure 9.1 Long task thread configuration dialog

This dialog needs to be accessed from either a toolbar or menu. The same source file
also contains a command function long task menu_ setup () that, when called for
the first time, sets up a menu item on the Tools menu. (A second call removes this menu
item.) (The spreadsheet used to design and generate the dialog definition table for this
dialog, XLM ThreadCfg Dialog.xls, is included on the CD ROM.)

9.10.11 Other possible background thread applications and strategies

The strategy and example outlined above lends itself well to certain types of lengthy
background calculations. There are other reasons for wanting to run tasks in background,
most importantly for communicating with remote applications and servers. Examples
of this are beyond the scope of this book, but can be implemented fairly easily as an
extension to the above. One key difference in setting up a strategy for communication
between worksheet cells and a server is the need to include a sent/waiting task state that
enables the background thread to move on and send the next task without having to wait
for the server to respond to the last. The other key difference is that the background
thread, or even an additional thread, must do the job of checking for communication back
from the server.

332 Excel Add-in Development in C/C++
9.1 HOW TO CRASH EXCEL

This section is, of course, about how not to crash Excel. Old versions of Excel were not
without their problems, some of which were serious enough to cause occasional crashes
through no fault of the user. This has caused some to view Excel as an unsafe choice
for a front-end application. This is unfair when considering modern versions. Excel, if
treated with understanding, can be as robust as any complex system. Third-party add-ins
and users’ own macros are usually the most likely cause of instability. This brief section
aims to expose some of the more common ways that these instabilities arise, so that they
can be avoided more easily.

There are a few ways to guarantee a crash in Excel. One is to call the C API when
Excel is not expecting it: from a thread created by a DLL or from a call-back function
invoked by Windows. Another is to mismanage memory. Most of the following examples
involve memory abuse of one kind or another.

If Excel allocated some memory, Excel must free it. If the DLL allocated some memory,
the DLL must free it. Using one to free the other’s memory will cause a heap error. Over-
running the bounds of memory that Excel has set aside for modify-in-place arguments to
DLL functions is an equally effective method of bringing Excel to its knees. Over-running
the bounds of DLL-allocated memory is also asking for trouble.

Passing x1oper types with invalid memory pointers to Excel4 () will cause a crash.
Such types are strings (xltypeStr), external range references (x1typeRef), arrays
(x1typeMulti) and string elements within arrays.

Memory Excel has allocated in calls to Excel4 () or Excel4v () should be freed
with calls to x1Free. Leaks resulting from these calls not being made will eventually
result in Excel complaining about a lack of system resources. Excel may have difficulty
redrawing the screen, saving files, or may crash completely.

Memory can be easily abused within VBA despite VB’s lack of pointers. For example,
overwriting memory allocated by VB in a call to String(), will cause heap errors that
may crash Excel.

Great care must be taken where a DLL exposes functions that take data types that are (or
contain) pointers to blocks of memory. Two examples of this are strings and x1_arrays.
(See section 6.2.2 Excel floating-point array structure: x1_array on page 107.) The
danger arises when the DLL is either fooled into thinking that more memory has been
allocated than is the case, say, if the passed-in structure was not properly initialised, or
if the DLL is not well behaved in the way it reads or writes to the structure’s memory.
In the case of the x1_array, whenever Excel itself is passing such an argument, it can
be trusted. Where this structure has been created in a VB macro by the user’s own code,
care must be taken. Such dangers can usually be avoided by only exposing functions that
take safe arguments such as VARIANT or BSTR strings and SAFEARRAYs.

Excel is very vulnerable to stress when it comes close to the limits of its available
memory. Creating very large spreadsheets and performing certain operations can crash
Excel, or almost as bad, bring it to a virtual grinding halt. Even operations such as copy
or delete can have this effect. Memory leaks will eventually stress Excel in this way.

Calls to C API functions that take array arguments, x1fAddMenu for example, may
crash Excel if the arrays are not properly formed. One way to achieve this is to have
the memory allocated for the array to be smaller than required for the specified rows
and columns.

Miscellaneous Topics 333

There are some basic coding errors that will render Excel useless, although not neces-
sarily crashing it, for example, a loop that might never end because it waits for a condition
that might never happen. From the user’s perspective, Excel will be dead if control has
been passed to a DLL that does this.

A more subtle version of the previous problem can occur when using a background
thread and critical sections. Not using critical sections to manage contention for resources
is, in itself, dangerous and inadvisable. However, if thread A enters a critical section and
then waits for a state to occur set by thread B, and if thread B is waiting for thread A to
leave the critical section before it can set this state, then both threads effectively freeze
each other. Careful design is needed to avoid such deadlocks.

Only slightly better than this are DLL functions, especially worksheet functions, that
can take a very large amount of time to complete. Worksheet functions cannot report
progress to the user. It is, therefore, extremely important to have an idea of the worst-
case execution time of worksheet functions, say, if they are given an enormous range to
process. If this worst-case time is unacceptable, from the point of view of Excel appearing
to have hung, then you must either check for and limit the size of your inputs or use
a background thread and/or remote process. Or your function can check for user breaks
(the user pressing Esc in Windows) — see section 8.7.7 on page 206.

Care should be taken with some of the C API functions that request information about
or modify Excel objects. For example, x1SheetNm must be passed a valid sheet ID
otherwise Excel will crash or become unstable.

10
t Example Add-ins and Financial Applications J

Developers are always faced with the need to balance freedoms and constraints when
deciding the best way to implement a model. Arguably the most important skill a devel-
oper can have is that of being able to choose the most appropriate approach all things
considered: Failure can result in code that is cumbersome, or slow, or difficult to maintain
or extend, or bug-ridden, or that fails completely to meet a completion time target.

This chapter aims to do two things:

1. Present a few simple worksheet function examples that demonstrate some of the basic
considerations, such as argument and return types. For these examples source code is
included on the CD ROM in the example project. Sections 10.1 to 10.5 cover these
functions.

2. Discuss the development choices available and constraints for a number of finan-
cial markets applications. These applications are not fully worked through in the book,
and source code is not provided on the CD ROM. Sections 10.6 and beyond cover
these functions and applications.

Some of the simple example functions could easily be coded in VB or duplicated with
perhaps only a small number of worksheet cells. The point is not to say that these things
can only be done in C/C++ or using the C APL If you have decided that you want or
need to use C/C++, these examples aim to provide a template or guide.

The most important thing that an add-in developer must get right is the function interface.
The choices made as to the types of arguments a function takes, are they required or optional;
if optional what the default behaviour is; and so on, are often critical. Much of the discussion
in this chapter is on this and similar issues, rather than on one algorithm versus another.
The discussion of which algorithm to use, etc., is left to other texts and to the reader whose
own experience may very well be more informed and advanced than the author’s.

Important note: You should not rely on any of these examples, or the methods they
contain, in your own applications without having completely satisfied yourself that
they are correct and appropriate for your needs. They are intended only to illustrate
how techniques discussed in earlier chapters can be applied.

10.1 STRING FUNCTIONS

Excel has a number of very efficient basic string functions, but string operations can
quickly become unnecessarily complex when just using these. Consider, for example, the
case where you want to substitute commas for stops (periods) dynamically. This is easily
done using Excel’s SUBSTITUTE(). However, if you want to simultaneously substitute
commas for stops and stops for commas things are more complex. (You could do this in
three applications of SUBSTITUTE(), but this is messy.) Writing a function in C that does
this is straightforward (see replace mask () below).

336 Excel Add-in Development in C/C++

The C and C++ libraries both contain a number of low-level string functions that can
easily be given Excel worksheet wrappers or declared and used from VBA. (The latter
is a good place to start when optimising VB code.) This section presents a number of
example functions, some of which are just wrappers of standard library functions and
some of which are not. The code for all of these functions is listed in the Example project
on the CD ROM in the source file X11Strings . cpp. When registered with Excel, they

are added to the Text category.

Function count char (exported)

name CountChar (registered with Excel)

Description Counts the number of occurrences of a given character.

Prototype short stdcall count char (char *text, short ch);

Type string

IIICI n

short count

Notes Safe to return a short as Excel will only pass a 255-max character
string to the function. Function does not need to be volatile and
does not access any C API functions that might require it to be
registered as a macro sheet equivalent function.

short _ stdcall count_ char (char *text, short ch)

{

if(ltext || ch <= 0 || ch > 255)
return O0;

= 0;

while (*text)
if (*text++ == ch)
count++;

return count;

Function replace mask (exported)

name ReplaceMask (registered with Excel)

Description | Replaces all occurrences of characters in a search string with
corresponding characters from a replacement string, or removes all
such occurrences if no replacement string is provided.

Prototype void_stdcall replace mask (char *text, char
*old chars, xloper *op_new chars) ;

Type string | "1CCP"

Example Add-ins and Financial Applications 337

Notes Declared as returning void. Return value is the 1st argument
modified in place. Third argument is optional and passed as an oper
(see page 119) to avoid the need to dereference a range reference.

void _ stdcall replace mask(char *text, char *old chars, xloper
*op_new_chars)

{
if (ltext || !old chars)
return;

char *p old, *p;

if ((op_new chars->xltype & (xltypeMissing | xltypeNil)))

// Remove all occurrences of all characters in old_chars
for(; *text; text++)

{
p_old = old_chars;
for (;*p_old;)
{
if (*text == *p_old++)
{
p = text;
do
{
*p = pll];
1
while (* (++p));
}
}
1
return;

}

// Substitute all occurrences of old chars with corresponding new

if (op_new_chars->xltype != xltypeStr
|| (char)strlen(old chars) != op new chars->val.str[0])
return;

char *p_ new;

for(; *text; text++)

{
p_old = old_chars;
p_new = op_new_chars->val.str;
for(; *p_old; p_old++, p_new++)
{
if (*text == *p old)
*text = *p new;
break;
}
}
}

338 Excel Add-in Development in C/C++

Function name reverse_ text (exported)
Reverse (registered with Excel)

Description Reverses a string.

Prototype void stdcall reverse text (char *text);
Type string "1E"

Notes Declared as returning void. Return value is the 1st argument

modified in place. This function is simply a wrapper for the C
library function strrev (). This function is useful in the
creation of Halton quasi-random number sequences, for example.

void _ stdcall reverse text (char *text)

{
}

strrev(text) ;

Function find first (exported)
name FindFirst (registered with Excel)

Description | Returns the position of the first occurrence of any character from a
search string, or zero if none found.

Prototype short stdcall first inclusive (char *text, char
*search text);

Type string | "ICC"

Notes Any error in input is reflected with a zero return value, rather than
an error type. This function is simply a wrapper for the C library
function strpbrk ().

short _ stdcall find first (char *text, char *search text)
if (!text || !search text)
return 0;

char *p = strpbrk(text, search text);

if(!p)
return O0;

return 1 + p - text;

Example Add-ins and Financial Applications

339

Function find first excluded (exported)

name FindFirstExcl (registered with Excel)

Description | Returns the position of the first occurrence of any character that is not
in a search string, or zero if no such character is found.

Prototype short stdcall find first excluded(char *text,

char * search text);

Type string | "ICC"

Notes Any error in input is reflected with a zero return value, rather than an

error type.

short _ stdcall find first_excluded(char *text, char *search_text)

if (ltext || !search text)
return 0;

for (char *p = text; *p; p++)
if (Istrchr (search text, *p))
return 1 + p - text;

return O;

}

Function find last (exported)

name FindLast (registered with Excel)

Description Returns the position of the last occurrence of a given character, or
zero if not found.

Prototype short stdcall find last (char *text, short ch);

Type string "ICI"

Notes Any error in input is reflected with a zero return value, rather than
an error type. This function is simply a wrapper for the C library
function strrchr ().

short _ stdcall find last (char *text, short ch)

{
if(ltext || ch <= 0 || ch > 255)
return O;

char *p = strrchr(text, (char)ch);

340 Excel Add-in Development in C/C++

if (!p)
return O;

return 1 + p - text;

}

Function compare_ text (exported)
name CompareText (registered with Excel)
Description Compare two strings for equality (return 0), A < B (return —1), A >

B (return 1), case sensitive (by default) or not.

Prototype xloper * _ stdcall compare_ text (char *Atext,
char *Btext, xloper *op is case sensitive);

Type string "RCCP"

Notes Any error in input is reflected with an Excel #VALUE! error. Return
type does not need to allow for reference xlopers. Excel’s
comparison operators <, > and = are not case-sensitive and Excel’s
EXACT() function only performs a case-sensitive check for equality.
This function is a wrapper for the C library functions strcmp ()
and stricmp ().

xloper * _ stdcall compare_ text (char *Atext, char *Btext,
xloper *op_1is_case_ sensitive)

static xloper ret oper = {0, xltypeNum};

if (1Atext || !Btext)
return p_xlErrValue;

// Case-sensitive by default
bool case sensitive = (op_is_case sensitive->xltype == xltypeBool
&& op_1is case sensitive->val. bool == 1);

if (!case_sensitive)

ret_oper.val.num = stricmp(Atext, Btext);
else

ret_oper.val.num = strcmp (Atext, Btext);

return &ret_oper;

Function compare nchars (exported)
name CompareNchars (registered with Excel)
Description Compare the first n (1 to 255) characters of two strings for equality

(return 0), A < B (return —1), A > B (return 1), case sensitive (by
default) or not.

Example Add-ins and Financial Applications 341

Prototype

xloper * stdcall compare nchars(char *Atext,
char *Btext, short n_chars, xloper
*op is case_sensitive);

Type string

"RCCIP"

Notes Any error in input is reflected with an Excel #VALUE! error. Return
type does not need to allow for reference x1lopers. This function is
a wrapper for the C library functions strncmp () and
strincmp ().
xloper * _ stdcall compare nchars(char *Atext, char *Btext,

{

short n_chars, xloper *op_is_case_sensitive)

static xloper ret oper = {0, xltypeNum};

if (!Atext || !Btext || n_chars <= 0 || n_chars > 255)
return p_xlErrValue;
// Case-sensitive by default
bool case sensitive = (op_is case sensitive->xltype == xltypeBool
&& op_1is_case_sensitive->val. bool == 1);

if (lcase sensitive)
ret_oper.val.num = strnicmp (Atext, Btext, n_chars);

else

ret_oper.val.num = strncmp (Atext, Btext, n_chars);

return &ret_oper;

Function concat (exported)

name Concat (registered with Excel)

Description | Concatenate the contents of the given range (row-by-row) using the
given separator (or comma by default). Returned string length limit is
255 characters by default, but can be set lower. Caller can specify the
number of decimal places to use when converting numbers.

Prototype xloper * stdcall concat (xloper *inputs, xloper

*p_delim, xloper *p max len, xloper *p num decs) ;

Type string

"RPPPP"

xloper * _ stdcall concat (xloper *inputs, xloper *p_delim,

xloper *p _max_len, xloper *p num decs)

342 Excel Add-in Development in C/C++

cpp_xloper Inputs (inputs) ;

if (Inputs.IsType (xltypeMissing | xltypeNil))
return p_xlErrValue;

char delim = (p_delim->xltype == xltypeStr) ?
p_delim->val.str[1] : ',';

long max_len = (p _max len->xltype == xltypeNum) ?
(long)p max_len->val.num : 2551;

long num _decs = (p_num decs->xltype == xltypeNum) ?
(

long)p_num decs->val.num : -1;
char *buffer = (char *)calloc(MAX CONCAT LENGTH, sizeof (char));
char *p;
cpp_xloper Rounding (num_decs) ;

long total_length = 0;
DWORD size;
Inputs.GetArraySize (size);

if (size > MAX_ CONCAT CELLS)
size = MAX CONCAT CELLS;

for(DWORD i = 0; 1 < size;)
{
if (num_decs >= 0 && num _decs < 16
&& Inputs.GetArrayElementType (i) == xltypeNum)

{
xloper *p op = Inputs.GetArrayElement (i) ;
Excel4 (x1fRound, p_op, 2, p_op, &Rounding) ;

}

Inputs.GetArrayElement (i, p);

if (p)

{

if ((total_length += strlen(p)) < MAX CONCAT_ LENGTH)
strcat (buffer, p);

free(p);

}

if (++1 < size)
buffer[total_length] = delim;

if (++total_length > max_len)

buffer[max len] = 0;
break;
}
}
cpp_xloper RetVal (buffer) ;

free (buffer) ;
return RetVal.ExtractXloper (false) ;

Function name parse (exported)
ParseText (registered with Excel)

Example Add-ins and Financial Applications

343

Description | Parse the input string using the given separator (or comma by

default) and return an array. Caller can request conversion of all
fields to numbers, or zero if no conversion possible. Caller can
specify a value to be assigned to empty fields (zero by default).

Prototype xloper * _ stdcall parse(char *input, xloper

*p delim, xloper *p numeric, xloper *p empty);

Type string | "RCPP"

Notes Registered name avoids conflict with the XLLM PARSE() function.

xloper * _ stdcall parse(char *input, xloper *p delim,

{

/7

xloper *p numeric, xloper *p empty)

if (*input == 0)
return p_xlErrValue;

cpp_xloper Caller;
Excel4 (x1fCaller, &Caller, 0);
Caller.SetExceltoFree() ;

if (!Caller.IsType (xltypeSRef | xltypeRef))
return NULL; // return NULL in case was not called by Excel

char delimiter =
(p_delim->xltype == xltypeStr && p_delim->val.str[0]) ?
p_delim->val.str[1] : ',';

char *p = input;
WORD count = 1;

for (;*p;)
if (*p++ == delimiter)
++count;

cpp_xloper RetVal;

RetVal.SetTypeMulti (1, count) ;
Can't use strtok as it ignores empty fields

char *p last = input;
WORD 1 = 0;
double d;
bool numeric = (p_numeric->xltype == xltypeBool
&& p_numeric->val. bool == 1);
bool empty val = (p_empty->xltype != xltypeMissing) ;

while (i < count)

{

if ((p = strchr(p last, (int)delimiter)))
*po= 0;

if((!p && *p last) || p > p_last)

344 Excel Add-in Development in C/C++

if (numeric)

{
d = atof (p_last) ;
RetVal.SetArrayElement (0, i, d);

}

else
RetVal.SetArrayElement (0, i, p last);

}
else if (empty val) // empty field value

{
}

1++;

RetVal.SetArrayElement (0, i, p_empty);

if (!p)
break;

p_last = p + 1;

}

return RetVal.ExtractXloper (false) ;

}

10.2 STATISTICAL FUNCTIONS

As a mathematics professor once told the author (his student), a statistician is someone
with their feet in the fridge, their head in the oven, who thinks on average they are quite
comfortable. This scurrilous remark does no justice at all to what is a vast, complex
and, of course, essential branch of numerical science. Excel provides many functions
that everyday statisticians, actuaries, and so on, will use frequently and be familiar with.
Finance professionals too are heavy users of these built-in capabilities.! This section only
aims to provide a few examples of useful functions, or slight improvements on existing
ones, that also demonstrate some of the interface issues discussed in earlier chapters.

Financial markets option pricing relies heavily on the calculation of the cumulative
normal (Gaussian) distribution for a given value of the underlying variable (and its
inverse). Excel provides four built-in functions: NORMDIST(), NORMSDIST(), NORMINV() and
NORMSINV(). One small problem with Excel 2000 is that the inverse functions are not pre-
cise inverses. Another is that the range of probabilities for which NORMSINV() works is
not as great as you might wish — see example code below. (Both these problems are fixed
in Excel 2002.) This can lead to accumulated errors in some cases or complete failure.
The function NORMSDIST(X) is accurate to about £7.3 x 1078 and appears to be based on
the approximation given in Abramowitz and Stegun (1970), section 26.2.17, except that
for X > 6 it returns 1 and X < —8.3 it returns zero.

There is no Excel function that returns a random sample from the normal distribution.
The compound NORMSINV(RAND()) will provide this, but is volatile and therefore may not
be desirable in all cases. In addition to its volatility, it is not the most efficient way to
calculate such samples.

! See Jackson and Staunton (2001) for numerous examples of applications of these functions to finance.
2 Inaccuracies in these functions could cause problems when, say, evaluating probability distribution functions
from certain models.

Example Add-ins and Financial Applications 345

This section provides a consistent and more accurate alternative to the NORMSDIST() and
NORMSINV(), as well as functions (volatile and non-volatile) that return normal samples.

The normal distribution with mean zero and standard deviation of 1 is given by the
formula:

N(x) = /2 gt

1 x
gy e
\/2ﬂ./nx

From this the following Taylor series expansion and iterative scheme can be derived:

x*2n—1)

t,=t,_1.————
T e + 1)

Starting with this, it is straightforward to construct a function that evaluates this series
to the limits of machine accuracy, roughly speaking, subject to cumulative errors in the
terms of the summation. These cumulative errors mean that, for approximately |x| > 6,
a different scheme for the tails is needed.

The source code for all these functions in this section is in the module X11Stats.cpp
in the example project on the CD ROM. They are registered with Excel under the category
Statistical.

Function name |ndist taylor (exported)
NdistTaylor (registered with Excel)

Description Returns a two-cell row vector containing (1) the value of N(x)
calculated using the above Taylor series expansion, and (2) a
count of the number of terms used in the summation. For

|x| < 6 this is accurate roughly to within 1074,

Prototype xloper * stdcall ndist taylor(double 4d) ;
Type string "RB"
Notes Uses the expansion for |x| < 6 and the same approximation as

Excel (but not Excel’s implementation of it) for the tails. The
function called is a wrapper to a function that has no knowledge
of Excel data types.

xloper * _ stdcall ndist_taylor (double d)

double retvals|[2];
int iterations;

retvals [0]
retvals[1]

cndist_taylor(d, iterations);
iterations;

346

Excel Add-in Development in C/C++

}

{

//
//
/7

cpp_xloper RetVal ((WORD)1l, (WORD)2, retvals);
return RetVal.ExtractXloper() ;

double cndist_taylor(double d, int &iterations)

if (fabs(d) > 6.0)
{
Small difference between the cndist () approximation and the real
thing in the tails, although this might upset some pdf functions,
where kinks in the gradient create large jumps in the pdf
iterations = 0;
return cndist(d) ;

}

double d2 = d * d;
double last_sum = 0,
double factor = 1.0;
double k2;

sum = 1.0;

for(int k = 1; k <= MAX CNDIST ITERS; k++)

{

k2 = k << 1;
sum += (factor *= d2 * (1.0 - k2) / k2 / (k2 + 1.0));

if (last_sum == sum)
break;

last_sum = sum;

}

iterations = k;
return 0.5 + sum * d / ROOT_2PI;

Function name norm_dist (exported)

Ndist (registered with Excel)

Description Returns the value of N(x) calculated using the same
approximation as Excel (but not Excel’s implementation of it).

Prototype xloper * stdcall norm dist (double d);
Type string "BB"
Notes NORMSDIST, in Excel 2000 and earlier, rounds down to zero

types.

{
}

double _ stdcall norm dist (double d)

return cndist (d) ;

for x < —8.3 and up to 1 for x > 6.15. The function called is
a wrapper to a function that has no knowledge of Excel data

Example Add-ins and Financial Applications 347

#define
#define
#define
#define
#define
#define
#define

B1
B2
B3
B4
B5
PP

0.31938153
-0.356563782
1.781477937
-1.821255978
1.330274429
0.2316419

ROOT_2PI 2.506628274631

double cndist (double d)

{

if(d ==

double t
double e
double n
(da >

return

) return 0.5;

1.0 / (1.0 + PP * fabs(d));

exp(-0.5 * 4 * 4) / ROOT_2PI;

((((B5 * £t + B4) * t + B3) * t + B2) * t + Bl) * t;
0.0) 2 1.0 - e *n : e * n;

Function name

norm_dist inv (exported)
Ndistinv (registered with Excel)

Description Returns the inverse of N(x) consistent with the norm dist ().
Prototype xloper * stdcall norm dist inv(double d);
Type string "BB"

Notes

Returns the inverse of norm dist (). Uses a simple solver to
return, as far as possible, the exact corresponding value and for
this reason may be slower than certain other functions. Code
could be easily modified to return the inverse of NORMSDIST() if
required.

#define NDINV_ITER LIMIT 50

#define NDINV_EPSILON

le-12 // How precise do we want to be

#define NDINV_FIRST NUDGE le-7

// How much change in answer from one iteration to the next
#define NDINV_DELTA le-10

// Approximate working limits of Excel 2000's NORMSINV () function
#define NORMSINV LOWER LIMIT 3.024e-7
#define NORMSINV_UPPER_LIMIT 0.999999

xloper * _ stdcall norm dist_inv(double prob)

{

if (prob <= 0.0 || prob >= 1.0)
return p_xlErrNum;

// Get a

(pretty) good first approximation using Excel's NORMSINV ()

// worksheet function. First check that prob is within NORMSINV's
// working limits

static xloper op_ret_val;

348 Excel Add-in Development in C/C++

double v1, v2, pl, p2, pdiff, temp;
op_ret_val.xltype = xltypeNum;

if (prob < NORMSINV_LOWER_LIMIT)

{
}

else if (prob > NORMSINV_UPPER_LIMIT)

{
}

else

{

v2 = (vl = -5.0) - NDINV_FIRST NUDGE;

v2 = (vl = 5.0) + NDINV_FIRST_NUDGE;

op_ret_val.val.num = prob;
Excel4 (x1fNormsinv, &op_ret val, 1, &op_ret _val);

if (op_ret_val.xltype != xltypeNum)
return p_ x1lErrNum; // shouldn't need this here

v2 = op_ret_val.val.num;
vl v2 - NDINV_FIRST NUDGE;

}

// Use a secant method to make the result consistent with the
// cndist () function

p2 = cndist (v2) - prob;
if (fabs (p2) <= NDINV_EPSILON)

op_ret_val.val.num = v2;
return &op_ret val; // already close enough

}

pl = cndist (vl) - prob;
for (short i = NDINV_ITER LIMIT; --i;)
{
if (fabs (pl) <= NDINV_EPSILON || (pdiff = p2 - pl) == 0.0)

{

// Result is close enough, or need to avoid divide by zero
op_ret_val.val.num = v1;
return &op_ret val;

}

temp = vl1;
vl = (vl * p2 - v2 * pl) / pdiff;

if (fabs (vl - temp) <= NDINV_DELTA) // not much improvement

{

op_ret_val.val.num = vl;
return &op_ret val;

}

v2 = temp;
p2 = pl;
pl = cndist(vl) - prob;

}

return p x1ErrValue; // Didn't converge

Example Add-ins and Financial Applications 349

Table 10.1 shows a comparison of Excel and the above functions from which it can be
seen that Excel 2002 has greatly improved accuracy over 2000.

Table 10.1 Excel’s normal distribution accuracy

Excel 2000 | Excel 2002
Cumulative distribution 4 4
NORMSDIST() 0.999968314 | 0.999968329
NORMSINV() 4.000030458 4
Error (absolute) 3.0458E-05 | —3.26814E-11
Ndist() 0.999968314 | 0.999968314
Ndistinv() 3.999999998 4
Error (absolute) —1.76691E-09 | —5.40723E-12

Both the norm dist () and norm dist inv () functions could easily be made to
return results based on any of the algorithms and methods discussed above, including
Excel’s own worksheet functions, with the addition of an extra method parameter. Both
functions could even be accommodated in a single function interface.

The next two functions return samples from the normal distribution based on the
Box-Muller transform of a standard random variable. (See Clewlow and Strickland,

1998.)

Function nsample BM pair (exported)

name NsampleBoxMullerPair (registered with Excel)

Description | Takes an array of two uncorrelated random numbers in the range (0,
1] and returns two uncorrelated samples from the normal distribution
asal x2or2x 1 array, depending on the shape of the input array.

Prototype void _ stdcall nsample BM pair(xl_array

*p array) ;

Type string

n 1Kl|

Notes

Makes use of the floating point array structure, x1_array, for input
and output. (See section 6.2.2 on page 107.) Does not need to
manage memory and is therefore fast. Only drawback is the limited
error handling: any error in input is reflected with return values of O.

#define TWO_PI

6.28318530717959

void _ stdcall nsample BM pair (xl_array *p_array)

// Max array_size is 0x1000000 =
long array size =

A

256 3
p_array->columns * p array->rows;

350 Excel Add-in Development in C/C++

if (array size == 2)

double rl = p_ array->array[0];
double r2 = p array->arrayl[l];

if(rl > 0.0 && rl <= 1.0 && r2 > 0.0 && r2 <= 1.0)

{
rl = sqgrt(-2.0 * log(rl));
r2 *= TWO PI;

p_array->array[0] = rl * cos(r2);
p_array->array[l] = rl * sin(r2);
return;

}
}
memset (p_array->array, 0, array size * sizeof (double)) ;

}

Function name |nsample BM (exported)
NsampleBoxMuller (registered with Excel)

Description Takes no arguments and returns a sample from the normal
distribution. Generates a pair at a time; remembers one and
returns the other. Uses Excel’s x1£Rand C API function,
equivalent to the RAND() worksheet function, to generate
pseudo-random number inputs for the transformation.

Prototype double _ stdcall NsampleBoxMuller (void) ;
Type string "B
Notes Function takes no arguments and is declared as volatile to ensure

it is called whenever the workbook is recalculated.

double _ stdcall nsample BM(void)

{

static double sample zero;
static bool loaded = false;

if (loaded)

loaded = false;
return sample zero;

}

loaded = true;
xloper ret_val;
Excel4 (x1fRand, &ret val, 0);

double rl = ret_val.val.num;

Excel4 (x1fRand, &ret_val, 0);
double r2 = ret_val.val.num;

rl = sqrt(-2.0 * log(rl));

Example Add-ins and Financial Applications 351

r2 * = TWO PI;

sample_zero = rl * cos(r2);
return rl * sin(r2);

}

Both the above functions perform the same task but in very different ways. The first can
take static or volatile inputs and always returns a pair of samples. The second returns a
single sample but is volatile. This gives the spreadsheet developer less control than with
the first. It would be possible to modify the second so that it took a trigger argument,
which would then obviate the need for it to be declared as volatile.

It is a straightforward exercise to generalise the Box-Muller functions above to, option-
ally, generate samples using the more efficient polar rejection method. (See Clewlow and
Strickland (1998) for details.)

10.3 MATRIX FUNCTIONS - EIGENVALUES
AND EIGENVECTORS

Excel has a number of useful matrix routines, in particular MMULT(), MINVERSE(),
MDETERM(), TRANSPOSE() and SUMPRODUCT](). As well as this, the way that Excel treats
range references in array formulae greatly extends its matrix capabilities. Nevertheless,
there are a number of matrix operations which, though not as fundamental as these, are
valuable for those analysing linear systems. Perhaps the most useful is the calculation of
eigenvectors and eigenvalues. The following example function takes a square symmet-
ric (real) NxN matrix and returns an Nx (N + 1) array containing the eigenvectors and
eigenvalues. The code is contained in the CD ROM and is based on the Jacobi algorithm
published in section 11.1 of Numerical Recipes in C++. (The code for the Jacobi algo-
rithm itself is omitted from the X11Matrix.cpp source code module in the example
project on the CD ROM. However, it can easily be inserted into one of the member
functions of the class, d_matrix. See the read me file on the CD ROM for details.)

The intention here is not to provide a comprehensive set of functions that will attempt
to find the eigenvectors and values of any matrix. As NRC explains very well, this is
a complex subject. The intention of this example is to show how to bridge from Excel
ranges to C/C++ matrices in a safe and efficient way.

Function name |eigen system (exported)
EigenSystem (registered with Excel)

Description Takes a square symmetrical range, or array, containing only
numbers. Returns a square matrix whose columns are the
eigenvectors of the input matrix, with an extra row at the bottom
containing the corresponding eigenvalues. Output is sorted in
descending size of eigenvalue from left to right.

Prototype xloper * stdcall eigen system(xl array *);

Type string "RK"

352 Excel Add-in Development in C/C++

Notes The function takes a pointer to an x1 _array rather than, say,
an xloper. It uses a matrix class, d_matrix, passing the
x1 array data directly to the d_matrix constructor. The
function returns a pointer to an xloper, rather than another
x1_array, so that errors can be communicated more flexibly.

The routine sets a limit of 100x 100 on the input matrix. Excel’s
own matrix functions have a 60x60 limit. This function is an
example of the kind of worksheet function that can take
significant time to execute. Some understanding of how the
execution time grows with matrix size is important.

The interface function for this is:

xloper * _ stdcall eigen system(xl array *p_input)
{
if (called_from paste_ fn dlg())
return NULL;

WORD rows = p_input->rows;
WORD columns = p_input->columns;

if (rows < 2 || rows > 100 || rows != columns)
return p_xlErrValue;

d_matrix Mat (rows, columns, p_input-s>array);
d _matrix Eigenvectors;
d_vector Eigenvalues;

if (!Mat.GetEigenvectors (Eigenvectors, Eigenvalues)
|| !'Eigenvectors.InsertRow(Eigenvalues, -1))
return p_xlErrNum;

cpp_xloper Output (rows + 1, columns, Eigenvectors.data);
return Output.ExtractXloper () ;

Section 10.11 Monte Carlo simulation below discusses an Excel and VBA only interface
solution. The above function is one that you might want to access directly from VB in
this case. The following example code shows a VBA wrapper to the above code. It does
not require that the XLL be loaded by the Add-in Manager, but it does require that the C
API interface be available, i.e., that the XLL is built and linked with the static x1call32
library, or is able to detect that it needs to link dynamically with x1call32.d11. This
VBA wrapper is not the most efficient possible, but does demonstrate the use of a number
of the conversion routines built into the cpp_xloper class.

VARIANT _ stdcall VBA eigen_ system(VARIANT *pv)

{

static VARIANT vt;

Example Add-ins and Financial Applications 353

!/

!/

//
//

//

//
/7

//

Convert the passed-in Variant to an xloper within a cpp_xloper
cpp_xloper Array (pv) ;

Convert the xloper to an x1_array of doubles
x1_array *p_array = Array.AsDblArray();

if (!p_array)

{
xloper to_ vt (p_xlErrValue, vt, false);
return vt;

}

Attempt to convert the array to an xloper xltypeMulti containing
the required output. Function returns a pointer to a static xloper
xloper *p op = eigen system(p_array);

free(p_array); // Don't need this anymore

Re-use the Array cpp_xloper. Assignment operator makes a shallow
copy and preserves the correct destructor information, i.e.,
takes note if either xlbitXLFree or xlbitDLLFree are set.

No need to check if p op is NULL - assignment operator checks.
Array = p_Op;

Convert the xloper back to a Variant
Array.AsVariant (vt) ;
return vt;

Here is an example of the corresponding VBA declaration and usage of this function
from VBA:

Declare Function VBA_eigen_system Lib "example.x11" _

(ByRef arg As Variant) As Variant

Function VbaEigenSystem(v As Variant) As Variant

If IsObject(v) Then

VbaEigenSystem = VBA_eigen_system(v.Value)
Else

VbaEigenSystem = VBA_eigen_system(v)
End If

End Function

10.4 INTERPOLATION FUNCTIONS: LINES, CURVES
AND SPLINES

Interpolation is another area where Excel provides very little native support. Most people
working with data need to interpolate or extrapolate regularly, in at least one dimen-
sion. The recalculation time difference between an inefficient interpolation function,
such as one that uses VB or numerous worksheet cells, and an efficient one can be
significant.

354 Excel Add-in Development in C/C++

For something fundamental to so many data analysis and modelling applications, the fact
that Excel is so short of interpolation functions is very surprising. The Analysis ToolPak
add-in provides linear and logarithmic estimation functions and a linear prediction func-
tion, LINEST(), LOGEST() and FORCAST(), but no, say, INTERP() function. The examples
included do not pretend to fill this gap completely, but do provide example implementa-
tions of two of the most common types of interpolation:

e Piece-wise linear

e Cubic spline
o Natural
o Gradient constrained at one end
o Gradient constrained at both ends

The assumption is that there exists a table of known x’s and known y’s, sorted in ascending
order of x, and that the user wishes to interpolate/extrapolate some unknown value of y
for a given value of x.

In practice, splines have some problems, in common with other polynomial based
approaches: Where the y values are naturally bounded but the function has a maximum
or minimum near the boundary, the spline may want to put the peak out-of-bounds. A
piece-wise linear approach does not have this problem. Another big problem with splines
is that the y value at any one point affects all of the curves between all points. This is
particularly problematic when dealing with yield curves where the input data may well
have sparse patches with less reliable price data. Changing one price can alter parts of
the curve that should, intuitively at least, be unaffected.

A simple but practical improvement to the spline function is to add a blend parameter
(between O and 1) that the returned tabulated 2nd derivatives are scaled by. A value of
0 produces piece-wise linear interpolation. A value of 1, a cubic spline. This blend value
can easily be associated with a slider control on a worksheet.

The second problem can be minimised, although not removed, with a sensible choice
of the y function (or function of y, depending on your point of view) to be interpo-
lated — something that should always be given careful consideration in any case.

The goal with all of these functions is simplicity and speed. Where very large ranges
are involved, the main effort may well be finding the values that surround the value to
be interpolated. The example functions use a bisection method to do this. (If succes-
sive calls are always related, a more efficient strategy is to start the search in the last
known position.)

With cubic spline interpolation, the example opts for a two-stage approach: one func-
tion that returns an array of second derivatives of y with respect to x, MakeSpline(), and
another that interpolates given the x’s, y’s and these derivatives, Splinelnterp(). The first
function allows the user to specify whether the spline is natural or constrained at one or
both ends.

The code for these functions is listed on the CD ROM in the source file Spline. cpp
in the example project, except that code derived from the Numerical Recipes in C is
omitted for licensing reasons. See the read me file on the CD ROM for details.

Example Add-ins and Financial Applications 355

Function make spline (exported)
name MakeSpline (registered with Excel)

Description | Takes a two-column input array with the first column being values
of x in ascending order, the second being corresponding values of y.
Also takes a starting gradient, an end gradient and a mode argument
that determines which, if either, of these is used. 0 = neither is
used, 1 = the start is defined, 2 = the end is defined, 3 = both are
defined. Returns a column of 2nd derivatives of y with respect to x.

Prototype xloper * stdcall make spline(xl array *input,
double grad start, double grad end, int mode) ;

Type string | "RKBBJ"

Notes The function returns an x1loper so that errors can be passed back
easily. The input array is passed as an x1_array to simplify the
code. Excel will not call the function unless it can convert all of the
inputs to numbers.

Function spline interp (exported)
name Splinelnterp (registered with Excel)

Description | Takes a three-column input array with the first column being values
of x in ascending order, the second being corresponding values of
v, the third being 2nd derivatives of y with respect to x. Takes the
value of x for which the corresponding value of y is to be found.
Takes an optional number between O and 1 representing a blend of
linear to cubic interpolation.

Prototype xloper * stdcall spline interp (double x,
x1 array *input, xloper *pBlend) ;

Type string | "RBKP"

Notes The function returns an xloper so that errors can be passed back
easily. The input array is passed as an x1_array to simplify the
code. Excel will not call the function unless it can convert all of the
inputs to numbers.

The function spline interp () uses a binary search on the first
column of the input array, the x’s. For this to work, the input must
be sorted in ascending order of x. The function does not check that
this is true. This is nevertheless a safe assumption if using the
output of make spline (), which fails if this is not the case.

356 Excel Add-in Development in C/C++

Function interp (exported)
name Interp (registered with Excel)

Description | Takes two columns of inputs, the first being values of x in ascending
order, the second being corresponding values of y. Takes the value
of x for which the corresponding value of y is to be found.

Prototype xloper * _ stdcall interp(double x, xl1 array
*xx, xl array *yy, int dont extrapolate) ;

Type string | "RBKKJ"

Notes The function returns an xloper so that error values can be passed
back easily. The input is passed as two x1_arrays, allowing the
range of tabulated x’s to be in a separate block from the known y’s.
Excel will not call the function unless it can convert all of the
inputs to numbers. As with the cubic spline above, the function
assumes that the x’s are in ascending order. The code permits the
input ranges/arrays to be either columns or rows but both must be
the same. If x is outside the range of the tabulated x’s, the function
returns either the lowest or highest value of y, i.e., it assumes y is
flat. If dont _extrapolate is true/non-zero, the function returns
#NUM! if x is outside these limits. The function uses a static
xloper for the return value rather than the cpp xloper class.

The code for this function is as follows:

xloper * _ stdcall interp(double x, x1_array *yy, xl_array *xx,
int dont_extrapolate)
{

// Check that input ranges are same size and shape
if (yy->columns != xx->columns || yy->rows != xx->rows)
return p_xlErrValue;

int low = 0, high, i;
static xloper ret val = {0.0, xltypeNum};

// Check that input is either a row or column and get the size
if (yy->rows == 1)
high = yy->columns - 1;
else if (yy->columns == 1)
high = yy->rows - 1;
else
return p_xlErrValue;

if (high == 0)

ret_val.val.num = yy->array[0];
return &ret_val;

}

Example Add-ins and Financial Applications

357

if (x < xx-»array[0] || x > xx-»arraylhighl)
{
if (dont_extrapolate)
return p_xlErrNum;
ret_val.val.num = yy->array[x < xx-sarray[0] ? 0 : high];
return &ret_val;

}

while (high - low > 1)

{

i = (high + low) >> 1;
if (xx->array[i] > x)
high = 1i;
else
low = 1i;

}

ret val.val.num = yy->array[low] +
(x - xx->arrayl[low]) * (yy-sarraylhigh] - yy->arrayl[low])
/ (xx->arraylhigh] - xx->arrayl[low]) ;

return &ret_val;

10.5 LOOKUP AND SEARCH FUNCTIONS

Lookup and search functions, especially those where the input arrays contain strings, are
far more efficiently coded in C/C++ than the alternatives. Where you need to use two- or
higher-dimensional lookups or searches, or where more complex search or match criteria
are needed, on large amounts of data, you should seriously consider using C/C++. The
following table briefly outlines the limitations of Excel’s own lookup and search functions.

Table 10.2 Excel’s lookup and search functions

SUMIF()

Function Limitations

VLOOKUP() Left-most column (top row) needs to be in ascending order for the function to
work. Lookup value and returned value need to be in the same single range.

HLOOKUP() Only one lookup value can be matched and only against the left-most column
(top row).

LOOKUP() Form: LOOKUP(Lookup_value,Lookup_vector,Result_vector): left-most column needs
to be in ascending order for the function to work. Only one lookup value can
be matched.

MATCH() Only one lookup value can be matched.

COUNTIF() Only one criterion can be applied

Excel includes a number of database functions which do provide a way around many,
if not all, of these limitations, albeit at the expense of more complex workbooks. These

functions are also available via the C API.

358 Excel Add-in Development in C/C++

The primary extension in these examples is to allow for a search on more than one
range, so, for example, a value can be retrieved from a row in a table when values of
two or more elements in that row match specified search criteria. The function MatchMulti()
returns the same kind of information as MATCH() — the offset into the range where the
match was found or #N/A if none found — and, if used in conjunction with the INDEX() func-
tion, extends VLOOKUP() functionality. The functions SumIfMulti() and CountlfMulti() similarly
extend the functions COUNTIF() and SUMIF() respectively.

These functions rely heavily on the cpp_ xloper class, making the code far cleaner
than it would otherwise be if only x1opers had been used. There is only a very small per-
formance cost in using the class, but you could re-implement these things using x1opers
directly if this were a concern. Code for these functions is listed in the example project
source file Lookup . cpp.

Function name | match_multi (exported)
MatchMulti (registered with Excel)

Description Returns the offset corresponding to the position in one to five
search ranges that match the corresponding supplied values. The
offset counts from 1 so that it can be used with the INDEX()
function to retrieve values from, say, an associated data table.
Input search ranges are expected to be either single columns or
single rows, and all search ranges must be the same shape and
size and have at least 2 elements each. Search ranges do not
need to be sorted or all of the same data type. The function
looks for exact matches and is case-sensitive when comparing
strings. The function returns #VALUE! if inputs are not valid and
#N/A if a match cannot be found.

Prototype xloper * _ stdcall match multi (
xloper *valuel, xloper *rangel,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *valueb5, xloper *range5) ;

Type string "RPPPPPPPPPP"

Notes Function arguments are declared as x1opers but registered as
opers. This causes Excel to convert range references to
x1ltypeMulti, simplifying the type-checking and conversion in
the DLL. (If a search range reference is a single cell it will be
converted to a single value, rather than an array, and the
function will fail.) The function returns an xloper so that
errors can be returned.

The code for this function is as follows. The function relies heavily on the cpp xloper
class to simplify the code, in particular for comparing xlopers (the overloaded !=
operator) and for handling arrays.

Example Add-ins and Financial Applications

359

xloper * _ stdcall match multi (

!/

!/

//

//
//

xloper *valuel, xloper *rangel,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *value5, xloper *range5)

Get the arguments into a more manageable form.

Arguments are registered as opers so that range references are

already converted to xltypeMulti.

cpp_xloper args([5] [2] = {{valuel, rangel}, {value2, range2},
{value3, range3}, {value4, range4}, {value5, range5}};

Find the last non-missing value/range pair
int num_searches = 0;

do
{
if (args [num_searches] [0] .IsType (xltypeMissing | xltypeErr)
|| 'args[num_ searches] [1] .IsType (xltypeMulti))
break;

}

while (++num_searches < 5);

if (!num_searches)
return p_xlErrValue;

Check that all the input arrays are the same shape and size
WORD rows, columns;
WORD temp_rows, temp_columns;

args [0] [1] .GetArraySize (rows, columns) ;

Check that input is either single row or single column
if (rows != 1 && columns != 1)
return p_xlErrValue;

for(int i = 1; i < num _searches; i++)

{

args[i] [1] .GetArraySize (temp rows, temp columns) ;

if (rows != temp rows || columns != temp columns)
return p_xlErrValue;

}

DWORD limit = rows * columns;
DWORD offset;

Simple search does not assume search ranges are sorted and
looks for an exact match
for(offset = 0; offset < limit; offset++)
{
for(i = 0; 1 < num _searches; i++)
if (args[i] [0] != args[i] [1] .GetArrayElement (offset))
break;

if (1 == num_searches) // Match found!

{

// Increment the offset as INDEX() counts from 1
cpp_xloper RetVal ((double) (offset + 1));

360 Excel Add-in Development in C/C++

}
}

}

return RetVal.ExtractXloper (false) ;

return p_xlErrNa;

Function
name

sum_if multi (exported)
SumlfMulti (registered with Excel)

Description

Returns the sum of all values in a sum range, where corresponding
values in up to five search ranges match corresponding search values.
Input ranges are expected to be either single columns or single rows,
and all search ranges must be the same shape and size and have at
least 2 elements each. Search ranges are not required to be sorted or all
the same data type. The function looks for exact matches and is
case-sensitive when comparing strings. The function returns #VALUE! if
inputs are not valid. Values in the sum range are converted to numbers
if possible and skipped if not.

Prototype

xloper * stdcall sum if multi(xloper *sum_ range,
xloper *valuel, xloper *rangel,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *valueb, xloper *range5;

Type string

"RPPPPPPPPPPP"

Notes

Function arguments are declared as x1opers but registered as opers.
This causes Excel to convert from references to x1ltypeMulti
xlopers, simplifying the type-checking and conversion that the DLL
function needs to do. (If a search range reference is a single cell it will
be converted to a single value, rather than an array, and the function
will fail.) The function returns an xloper so that errors can be
returned.

The code is similar to the code for the function MatchMulti () above.

{

xloper * _ stdcall sum if multi(xloper *sum_range,
xloper *valuel, xloper *rangel,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *valueb5, xloper *range5)

// Get the arguments into a more manageable form.
// Arguments are registered as opers so that range references are

Example Add-ins and Financial Applications

361

!/

!/

!/

!/

//
//

already converted to xltypeMulti.

cpp_xloper SumRange (sum_range) ;

cpp_xloper args[5] [2] = {{valuel, rangel}, {value2, range2},
{value3, range3}, {value4, range4}, {value5, range5}};

if (!SumRange.IsType (xltypeMulti))
return p xlErrValue;

Find the last non-missing value/range pair
int num searches = 0;

do
{
if (args [num_searches] [0] . IsType (xltypeMissing | xltypeErr)
|| targs[num searches] [1].IsType (xltypeMulti))
break;

}

while (++num_searches < 5);

if (!num_searches)
return p xlErrValue;

Check that all the input arrays are the same shape and size
WORD rows, columns;
WORD temp_rows, temp_columns;

SumRange.GetArraySize (rows, columns) ;

Check that input is either single row or single column
if (rows != 1 && columns != 1)
return p_xlErrValue;

for(int 1 = 0; i < num searches; i++)

{

args[i] [1] .GetArraySize (temp rows, temp_ columns) ;

if (rows != temp_rows || columns != temp columns)
return p_ xlErrValue;

}

DWORD limit = rows * columns;
DWORD offset;
double temp, sum = 0.0;

Simple search does not assume first search range is sorted and
looks for an exact match
for (offset = 0; offset < limit; offset++)

{

for(i = 0; 1 < num searches; i++)
if (args[i] [0] I= args[i] [1] .GetArrayElement (offset))
break;
if (i == num_searches

&& SumRange.GetArrayElement (offset, temp))
sum += temp;
}
cpp_xloper RetVal (sum) ;
return RetVal.ExtractXloper (false) ;

362

Excel Add-in Development in C/C++

Function name |count if multi (exported)

CountlfMulti (registered with Excel)

Description Counts the number of cases where values in up to five search

ranges match corresponding search values. Input ranges are
expected to be either single columns or single rows, and all
search ranges must be the same shape and size and have at least
2 elements each. Search ranges are not required to be sorted or
all the same data type. The function looks for exact matches and
is case-sensitive when comparing strings. The function returns
#VALUE! if inputs are not valid.

Prototype xloper * _ stdcall count if multi(

xloper *valuel, xloper *rangel,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *valueb5, xloper *rangeb5) ;

Type string "RPPPPPPPPPP"

Notes Function arguments are declared as x1opers but registered as

opers. This causes Excel to convert from range references to
x1ltypeMulti xlopers, simplifying the type checking and
conversion that the DLL function needs to do. (If a search range
reference is a single cell it will be converted to a single value,
rather than an array, and the function will fail.) The function
returns an xloper so that errors can be returned.

/7

xloper * _ stdcall count_if multi (

xloper *valuel, xloper *rangel,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *value5, xloper *range5)

Get the arguments into a more manageable form.

Arguments are registered as opers so that range references are

already converted to xltypeMulti.

cpp_xloper args[5] [2] = {{valuel, rangel}, {value2, range2},
{value3, range3}, {value4, range4}, {value5, range5}};

Find the last non-missing value/range pair
int num_searches = 0;

do
{
if (args [num_searches] [0] .IsType (xltypeMissing | xltypeErr)
|| 'args[num searches] [1] .IsType (xltypeMulti))
break;

Example Add-ins and Financial Applications

363

//

!/

/!
//

while (++num_searches < 5);

if (!num_searches)
return p_xlErrValue;

Check that all the input arrays are the same shape and size
WORD rows, columns;
WORD temp_rows, temp_columns;

args [0] [1] .GetArraySize (rows, columns) ;

Check that input is either single row or single column
if (rows != 1 && columns != 1)
return p_xlErrValue;

for(int 1 = 1; i < num searches; i++)

{

args[i] [1] .GetArraySize (temp rows, temp columns) ;

if (rows != temp_rows || columns != temp columns)
return p_ xlErrValue;
DWORD limit = rows * columns;
DWORD offset;
int count = 0;

Simple search does not assume first search range is sorted and
looks for an exact match
for (offset = 0; offset < limit; offset++)

{

for(i = 0; 1 < num searches; i++)
if (args[i] [0] l=args[i] [1] .GetArrayElement (offset))
break;
if (i == num_searches)
count++;

}
cpp_xloper RetVal (count) ;
return RetVal.ExtractXloper (false) ;

10.6 FINANCIAL MARKETS DATE FUNCTIONS

Financial markets rely on conventions that govern the dates on which certain things
happen. For example, there are conventions that determine

interest payment dates;

settlement dates for commodity, stock, bond, cash and currency transactions;
option exercise/expiry dates;

dates on which price or rate fixings are recorded and published;

futures contract expiry and settlement dates;

bond coupon ex-dividend and payment dates;

the list could go on.

The correct calculation of dates and holidays, and the proper application of day-count
and days-in-year conventions are the first things to get right. Pricing and valuation errors

364 Excel Add-in Development in C/C++

caused by just one extra day of interest can be significant in the narrow bid-offer spreads
of the professional markets. This section does not attempt to document all conventions in
all markets. Instead, it picks a few examples of the kinds of things that need to be done
and explores how best to implement functions that do them.

The date functionality of Excel on its own is stretched to do the job of working with
these date conventions. The choices for a financial markets application are:

Use combinations of Excel’s worksheet functions.
Use VB functions.

Use C/C++ functions from a DLL.

Use Microsoft or third-party add-ins.

The first choice, while possible, can lead to complex sets of formulae that are difficult
to debug and change. They can also produce a spreadsheet that is slow to recalculate,
difficult to expand, or that has logic that is difficult for others to follow. VB functions,
though accessible, can be slow. Compiled C/C++ code is fast and, if well commented,
has none of these problems. An example of the fourth choice is the Analysis ToolPak
shipped with Excel which contains a number of bond market date functions, for example,
COUPPCD() which returns the previous coupon payment date on a coupon-bearing bond.
Performance of third party add-ins may not always be sufficient, especially where these
are VBA XLA add-ins.

Market date functions can get a little complex. Take the simple question, ‘Given a
certain start date for a US dollar interest rate swap, what is the first LIBOR fixing date?’.
(This is normally the trade date if the swap is spot-starting, but could be the exercise date
if a swaption.) The solution requires knowledge of London bank holidays, US banking
holidays, and the convention for spot date calculations for dollars in London. (The spot
date is two good London business days forward, unless this falls on a NY holiday in
which case the next day that is not a holiday in either centre.) Even in this case, it might
be possible that two banks trading a dollar swap in Tokyo might also want to avoid
Tokyo banking holidays for spot and settlement dates. Designing function interfaces and
function code that balance flexibility with simplicity is part of the programmer’s art. It is
not possible to say there is a best way, and every set of choices may inevitably have its
drawbacks, but choices must be made.

The discussion focuses on the following market date tasks:?

1. Given any date, find out if it is a GBD in a given centre or union of centres, returning
information about the date if it is not.

2. Given any date, find out if it is the last GBD of the month for a given centre or union
of centres.

3. Given any date, adjust it, if it is not a GBD, to the next or previous GDB given a
centre or centres and a modification rule (for example, FMBDC).

4. Given a valid business trade (fixing) date, calculate the spot (settlement) date in
a given centre or centres for a given transaction type in a given currency or cur-
rency pair.

3 The abbreviations GBD (good business day) and FMBDC (following modified business day convention) are
used from here on.

Example Add-ins and Financial Applications 365

5. Given a valid spot (settlement) date, calculate the trade (fixing) date in a given centre
or centres for a given transaction type in a given currency or currency pair.

6. Given any date, calculate the GBD that is n (interim) GBDs after (before if n < 0),
given an interim holiday database and final date holiday database. (Interim holidays
only are counted in determining whether n GBDs have elapsed. Final and interim
holidays are avoided once n GBDs have elapsed).

7. Given an interest payment date in a regular series, calculate the next date given
the frequency of the series, the rollover day-of-month, the holiday centre or centres,
according to FMBDC.

8. Given two dates, calculate the fraction of a year or the number of days between them
given (i) a day-count/year convention (e.g., Actual/365, Actual/360, 30/360, 30E/360,
Actual/Actual), adjusting the dates if necessary to GBDs given a centre or centres,
and (ii) a modification rule (for example, FMBDC) and a rollover day-of-month.

9. Given any GBD, calculate a date that is m whole months forward or backward, in a
given centre or centres for a given modification rule.

10. Calculate the number of GBDs between two dates given a holiday database.

Many more functions could be added to this list, for example, those relating to futures
contract expiries: this is not intended to be an exhaustive list. It can easily be seen that (3),
(4) and (5) can all be accomplished by a suitably flexible implementation of (6) assuming
that the holiday database(s) reflect all of the centres that are relevant. Less obviously, there
are issues with the mapping of trade dates to settlement dates which is not, in general,
one-to-one. In some cases two or three consecutive trade dates can map to the same spot
date. When n < 0, function (6) must therefore provide a means for the user to determine
which of the possible trade dates, consistent with the given settlement date, they wish to
get — or perhaps a means to get all of them.

The first questions to consider are those relating to holidays. There are three choices:

(i) Generate holidays within the code from algorithms.
(i) Source holidays externally and store them on the worksheet.
(iii) Source holidays externally and store them in the DLL (or a VB module).

Choice (i) is perhaps the ideal choice but does require the coding and testing of the
algorithms which must be capable of adapting to new holidays and rules. For this reason
it may not be the most practical. Choice (ii) provides greater flexibility for the date
functions, which can simply be passed ranges of holidays, but requires that the holidays
are always on an open workbook that uses the data functions. (Holidays can be read from
a closed workbook, but this can be quite inefficient.) Choice (iii) is computationally the
most efficient. Holidays can be loaded into the DLL with worksheet functions that return,
say, a label and sequence number to be passed as an argument to the date functions.
(See section 9.6 Maintaining large data structures within the DLL on page 305.) The raw
holiday input only needs to be verified, sorted and converted once, enabling the most
efficient internal coding of an ‘is it a holiday?’ routine.

It may be that you want your DLL to load holiday tables from a central source. You
may choose to use Excel’s ability to access data from external sources, for example, via
DDE or VB or by accessing an external database. (See Excel’s online help for detail about
the external database access and web access choices.) From within the DLL, the choices
are use the C API’s DDE commands or COM to communicate with another application,

366 Excel Add-in Development in C/C++

or use some other means, perhaps a socket library via one or more background threads. In
the interests of simplicity, which correlates highly with reliability, separating the sourcing
of holidays from the DLL/XLL that contains the date functions is a good idea.

The following set of tables describe a possible interface for functions (1), (2), (6), (7),
(8) and (9). Choice (ii) above is assumed to have been made, i.e., that the holidays are
passed in as ranges of dates on the workbook. It is implementation-dependant, and left
indeterminate, whether holidays would need to be pre-sorted. The functions all expect
that holidays are in a contiguous range in an accessible workbook. Where a function is
to use holidays from multiple centres, it is assumed that a combined range of holidays
exists on a worksheet.

Dates are passed in as numbers (doubles) and should be interpreted according to the
state of the 1904 date system checkbox on the Tools/Options. . ./Calculation dialog. This can
be determined within the DLL with a call to x1fGetDocument with ArgNum set to 20.
(See section 8.9.6 on page 217 for details.) If individual dates were passed in as 16-bit
integers (type “I”), the range of dates supported would be too limited.

Optional arguments are prototyped as xlopers, enabling them to be omitted, but
registered as opers so that range arguments do not need to be de-referenced. Required
arguments may also be prototyped as xlopers for the flexibility that this brings, the
assumption being that the function code will fail if a missing or nil type is passed in.
Excel will not call a function if non-xloper arguments cannot be converted to the
registered types. All of the functions are prototyped as returning an xloper to provide
the greatest flexibility in return type.

Required ranges of holidays are passed in as x1_arrays. Excel will not call the
function if the range contains strings that can’t be converted to numbers, Booleans or
error values. The values of the holidays then needs to be extracted. The cpp xloper
class contains member functions that do just this. (See section 6.4 A C++ class wrapper
for the x1oper — cpp_xloper on page 121.)

Little or no discussion is made of the body of the functions. It is assumed that any
competent programmer could code efficient and safe routines to do the work of testing if
a date (truncated to an integer) occurs in a list of holidays, stepping forward one day if
it is, and so on.

Conversion of day counts to day-month-year structures is less obvious. The following
code shows how this can be done efficiently. Note that the code serialises day-counts
using a signed 32-bit integer, ample for storing the maximum Excel date of 31-Dec-9999.
However, the simplified leap-year assumption in this code means that the conversion is
only valid for dates in the range 1-Jan-1900 to 28-Feb-2100 inclusive.

enum {JAN:l,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC};
int m _days[12] = {0,31,59,90,120,151,181,212,243,273,304,334};

inline int day count (int day, int month, int year)

{

return 1 + day + m_days[month - JAN] +
(month > FEB && ! (year & 3))
+ year * 365 + ((year - 1) >> 2);

}

void count_to_date(int count, int &day, int &month, int &year)

{

Example Add-ins and Financial Applications 367

year = (--count << 2) / 1461;
day = count - year * 365 - ((year - 1) >> 2);

for (month = JAN; month < MAR; month ++)

{

if (m_days[month] >= d)

{
day -= m_days[month - 1];
return;

}

if (! (year & 3))

{

if (m_days[FEB] == --day)
{

day = 29;

month = FEB;

return;

}
for (;month < DEC; month++)
if (m_days[month] >= day)

break;

day -= m_days[month - 1];

The above code assumes that the serial day-count is that which Excel stores when using
its default 1900 date system.* If your application is critically dependent on dates, you
should check the status of this setting and convert all incoming and returned dates. The
following code samples show how to do this. Note that the exported worksheet function
accepts and returns dates as 32-bit integers, type J. Note also that the state of Excel will
not change during a single call to a function, but would need to be checked on every call
to be super-safe. In practice, this is overkill.

bool excel using 1904_system(void)
{
cpp_xloper Usingl904; // initialised to xltypeNil
cpp_xloper Arg(20); // initialised to xltypelInt
Excel4 (x1fGetDocument, &Usingl904, 1, &Arg) ;
if (Usingl904.IsBool () && (bool)Usingl904)
return true;
return false;
}
#define DAYS 1900_TO_1904 1462 // = 1-Jan-1904 in 1900 system

4 Excel mistakenly thinks that 1900 was a leap year and therefore the first correct interpretation of a date under
this system is 1-Mar-1900 which equates to the value 61.

368 Excel Add-in Development in C/C++

int _ stdcall worksheet date fn(int input date)

{

bool using 1904 = excel_using 1904 _system() ;

if (using 1904)
input_date += DAYS_1900_TO_1904;

// Do something with the date
int result = some_date_ fn(input_date);

if (using_1904)
result -= DAYS 1900_TO_1904;

return result;

Description | Given any date, find out if it is a GBD in a given centre or union of
centres, returning either true or false, or information about the date if
not a GBD when requested.

Prototype xloper * _ stdcall is_gbd(double ref date,

x1l array *hols array, xloper *rtn string);

Type string

n RBKP n

Notes

Returns a Boolean, a more descriptive string or an error value. The
first two arguments are required. The first is the reference date. The
second is an array of holidays.

The third argument is optional and, once coerced to a Boolean,
enables the caller to specify a simple true/false return value or, say, a
descriptive string. Where the DLL assumes this is Boolean, a blank
cell would be interpreted as false, i.e., do not return a string.

Description

Given any date, find out if it is the last GBD of the month for a
given centre or union of centres, or obtain the last GBD of the
month in which the date falls.

Prototype

xloper * _ stdcall last_gbd(double date,
x1 array *hols_array, xloper *rtn last gbd);

Type string

n RBKP n

Notes

Returns a Boolean, a date or an error value. The first two arguments
are required. The first is the date being tested. The second is an
array of holidays.

The third argument is optional and, once coerced to a Boolean,
enables the caller to specify a simple true/false return value or the
actual last GBD of the month. Where the DLL assumes this is
Boolean, a blank cell would be interpreted as false.

Example Add-ins and Financial Applications 369

Description | Given any date, calculate the GBD that is n (interim) GBDs after
(before if n < 0), given an interim holiday database and final date
holiday database. (Interim holidays only are counted in determining
whether n GBDs have elapsed and final and interim holidays are
avoided once n GBDs have elapsed.) If n is zero adjust the date
forwards or backwards as instructed if not a GBD. If n < 0 and a
final holidays database has been provided and a number of dates
would map forwards to the same given date, return the latest or all as
directed.

Prototype xloper * stdcall adjust_date(double ref date,
short n gbds, xl1 array *interim hols, xloper
*final hols, xloper *adj backwards, xloper
*rtn all);

Type string | "RBIKPPP"

Notes Returns a Boolean, a date, an array of dates or an error value. The
first three arguments are required. The first is the date being adjusted.
The second is the number of GBDs to adjust the date by. The third is
an array of interim holidays.

The fourth argument tells the function whether to adjust dates
forwards or backwards if n = zero. It is optional, but a default
behaviour, in this case, needs to be coded.

The fifth argument is optional and, interpreted as a Boolean, instructs
the function to return the closest or all of the possible dates when
adjusting backwards.

Description | Given an interest payment date in a regular series, calculate the next
date given the frequency of the series, the rollover day-of-month, the
holiday centre or centres, according to the following modified date
convention.

Prototype xloper * stdcall next rollover (double ref date,
short roll day, short roll month, short rolls pa,
x1l array *hols array, xloper *get previous) ;

Type string | "RBIIIKP"

Notes Returns a date or an error value. All arguments bar the last are
required. The rollover day of month (roll day) is a number in the
range 1 to 31 inclusive, with 31 being equivalent to an end-end
rollover convention. The roll month argument need only be one of
the months on which rollovers can occur.

370 Excel Add-in Development in C/C++

Description | Given two dates, calculate the fraction of a year or the number of
days between them given a day-count/year convention (e.g.,
Actual/365, Actual/360, 30/360, 30E/360, Actual/Actual), adjusting
the dates if necessary to GBDs given a centre or centres and a
modification rule (for example, FMBDC) and a rollover
day-of-month.

Prototype xloper * stdcall date diff (double datel, double

date2, char *basis, xloper *rtn days diff, xloper
*hols _range, xloper *roll day, xloper
*apply fmbdc) ;

Type string

"RBBCPPPP"

Notes

Returns a number of days or fraction of year(s) or an error value. The
first three arguments are required. The requirements for the basis
strings would be implementation-dependent, with as much flexibility
and intelligence as required being built into the function.

The fourth argument is optional and implies that the function returns
a year fraction by default. The last three arguments are optional,
given that none of them might be required if either the basis does not
require GBD correction, or the dates are already known to be GBDs.

Description

Given any GBD, calculate a date that is m whole months forward or
backward, in a given centre or centres for a given modification rule.

Prototype

xloper * _ stdcall months from date (double
ref date, int months, xl1 array *hols array,
xloper *roll day, xloper *apply end end) ;

Type string

"RBJKPP"

Notes

Returns a date or an error value. The first three arguments are
required. The last two arguments are optional. If roll day is
omitted, the assumption is that this information would be extracted
from ref_date subject to whether or not the end-end rule is to be
applied.

Description

Calculate the number of GBDs between two dates given a holiday
database.

Prototype

xloper * _ stdcall gbds_between dates (double
datel, double date2, x1 array *hols array);

Example Add-ins and Financial Applications 371

Type string | "RBBK"

Notes Returns an integer or an error value. All arguments are required. An
efficient implementation of this function is not complicated.
Calculating the number of weekdays and then calculating and
subtracting the number of (non-weekend) holidays is the most
obvious approach.

10.7 BUILDING AND READING DISCOUNT CURVES

There are many aspects of this subject which are beyond the scope of this book. It
is assumed that this is not a new area for readers but for clarity, what is referred to
here is the construction of a tabulated function (with an associated interpolation and
extrapolation scheme) from which the present value of any future cash-flow can be cal-
culated. (Such curves are often referred to a zero curves, as a point on the curve is
equivalent to a zero-coupon bond price.) Curves implicitly contain information about a
certain level of credit risk. A curve constructed from government debt instruments will,
in general, imply lower interest rates than curves contructed from inter-bank instruments,
which are, in turn, lower than those constructed from sub-investment grade corporate
bonds.

This section focuses on the issues that any strategy for building such curves needs to
address. The assumption is that an application in Excel needs to be able to value future
cashflows consistent with a set of market prices of various financial instruments (the input
prices). There are several questions to address before deciding how best to implement
this in Excel:

e Where do the input prices come from? Are they manually input or sourced from a live
feed or a combination of both?

e Are the input prices changing in real-time?

e Does the user’s spreadsheet have access to the input prices or is the discount curve
constructed centrally? If constructed centrally, how is Excel informed of changes and
how does it retrieve the tabulated values and associated information?

e Is the discount curve intended to be a best fit or exact fit to the input prices?

e How is the curve interpolated? What is modelled over time — the instantaneous forward
rate, the continuously compounded rate, the discount factor, or something else?

e How is the curve’s data structure maintained? Is there a need for many instances of
similar curves?

e How is the curve used? What information does the user need to get from the curve?

There is little about building curves that can’t be accomplished in an Excel worksheet,
although this may become very complex and unwieldy, especially if not supported by an
add-in with appropriate date and interpolation functions. The following discussion assumes
that this is not a practical approach and that there is a need to create an encapsulated and
fast solution. There is nothing about the construction of such curves that can’t be done
in VBA either: the assumption is that C/C++ has been chosen.

372 Excel Add-in Development in C/C++

The possibility that the curve is calculated and maintained centrally is not discussed in
any detail, although it is worth noting the following two points:

e The remote server would need a means to inform the spreadsheet or the add-in that the
curve has changed so that dependent cells can be recalculated. One approach would be
for the server to provide a curve sequence number to the worksheet, which can then
be used as a trigger argument.

e The server could communicate via a background thread which would initiate recalcu-
lation of volatile curve-dependent functions when the curve had changed.

In any case, delays that might arise in communicating with a remote server would make
this a strong candidate for use of one or more background threads. It is almost certain
that a worksheet would make a large number of references to various parts of a curve,
meaning that such a strategy would ideally involve the communication of an entire curve
from server to Excel, or to the DLL, to minimise communication overhead.

The discussion that follows focuses on the design of function interfaces that reflect the
following assumptions:

1. Input prices are fed into worksheet cells automatically under the control of some
external process, causing Excel to recalculate when new data arrive.

2. The user can also manually enter input price data, to augment or override.

3. The user will want to make many references to the same curve.

Assumptions (1) and (2) necessitate that a local copy of the curve be generated. Assump-
tion (3) then dictates that the curve be calculated once and a reference to that curve be
used as a trigger to functions that use the curve.

The first issue to address is how to prepare the input data for passing to the curve
building function. The most flexible approach is the creation of a table of information in
a worksheet along the following lines:

Instrument | Start date | End date | Price or | Instrument-specific data. . .
type Rate (multiple columns)

The format, size and contents of this table would be governed by the variety of instruments
used to construct the curves and by the implementation of the curve builder function.
Doing this leads to a very simple interface function when compared to one alternative of,
say, an input range for each type of instrument. The addition of new instrument types,
with perhaps more columns, can be accommodated with full backwards compatibility — an
important consideration. For this discussion, it is assumed that the day basis, coupon
amount and frequency, etc., of input instruments are all contained in the instrument-
specific data columns at the right of the table. (Clearly, there is little to stop the above
table being in columns instead of rows. Even where a function is designed to accept row
input, use of the TRANSPOSE() function is all that’s required.)

Example Add-ins and Financial Applications 373

Description | Takes a range of input instruments, sorts and verifies the contents as
required, creates and constructs a persistent discount curve object
associated with the calling cell, based on the type of interpolation or
fitting encoded in a method argument. Returns a two-cell array of
(1) a label containing a sequence number that can be used as a
trigger and reference for curve-dependent functions, and (2) a
time-of-last-update timestamp.

Prototype xloper * _ stdcall create discount curve (xloper
*input table, xloper *method) ;

Type string | "RPP"

Notes Returns an array {label, timestamp} or an error value. The first
argument is required but as it is an xloper, Excel will always call
the function, so that the function will need to check the xloper
type.

Returning a timestamp is a good idea when there is a need to know
whether a data-feed is still feeding live rates or has been silent for
more than a certain threshold time.

The function needs to record the calling cell and determine if this is
the first call or whether a curve has already been built by this caller.
(See sections 9.6 on page 305 and 9.8 on page 309.) A strategy for
cleaning up disused curves, where an instance of this function has
been deleted, also needs to be implemented in the DLL.

Description Takes a reference to a discount curve returned by a call to
create discount curve () above, and a date, and returns the
(interpolated) discount curve value for that date.

Prototype xloper * stdcall get discount value (char
*curve ref, double date, xloper *rtn type);

Type string "RCBP"

Notes Returns the discount function or other curve data at the given date,
depending on the optional rtn_ type argument, or an error value.

The above is a minimal set of curve functions. Others can easily be imagined and imple-
mented, such as a function that returns an array of discount values corresponding to an
array of input dates, or a function that calculates a forward rate given two dates and
a day-basis. Functions that price complex derivatives can be implemented taking only
a reference to a curve and to the data that describe the derivative, without the need to
retrieve and store all the associated discount points in a spreadsheet.

374 Excel Add-in Development in C/C++
10.8 BUILDING TREES AND LATTICES

The construction of trees and lattices for pricing complex derivatives raises similar issues
to those involved in curve-building. (For simplicity, the term tree is used for both trees
and lattices.) In both cases decisions need to be made about whether or not to use a
remote server. If the decision is to use a server, the same issues arise regarding how to
inform dependent cells on the worksheet that the tree has changed, and how to retrieve
tree information. (See the above section for a brief discussion of these points.) If the
decision is to create the tree locally, then the model of one function that creates the tree
and returns a reference for tree-dependent cells to refer to, works just as well for trees as
for discount curves.

There is however, a new layer of complexity compared to curve building: whereas
an efficient curve-building routine will be quick enough to run in foreground, simple
enough to be included in a distributed add-in, and simple enough to have all its inputs
available locally in a user’s workbook, the same might not be true of a tree. It may be
that creating a simple tree might be fine in foreground on a modern fast machine, in
which case the creation and reference functions need be no more complex than those for
discount curves. However, a tree might be very much more complex to define and create,
taking orders of magnitude more time to construct than a discount curve. In this case, the
use of background threads becomes important.

Background threads can be used in two ways: (1) to communicate with a remote server
that does all the work, or (2) to create and maintain a tree locally as a background task.
(Sections 9.9 Multi-tasking, multi-threading and asynchronous calls in DLLs on page 316,
and 9.10 A background task management class and strategy on page 320, cover these
topics in detail.) Use of a remote server can be made without the use of background
threads, although only if the communication between the two will always be fast enough
to be done without slowing the recalculation of Excel unacceptably.

Trees also raise questions about using the worksheet as a tool for relating instances
of tree nodes, by having one node to each cell or to a compact group of cells. This
then supposes that the relationship between the nodes is set up on the spreadsheet. The
flexibility that this provides might be ideal where the structure of the tree is experimen-
tal or irregular. However, there are some difficult conceptual barriers to overcome to
make this work: tree construction is generally a multi-stage process. Trees that model
interest rates might first be calibrated to the current yield curve, as represented by a
set of discrete zero-coupon bond prices, then to a stochastic process that the rate is
assumed to follow, perhaps represented by a set of market options prices. This may
involve forward induction through the tree and backward induction, as well as numerical
root-finding or error-minimising processes to match the input data. Excel is unidirec-
tional when it comes to calculations, with a very clear line of dependence going one way
only. Some of these things are too complex to leave entirely in the hands of Excel,
even if the node objects are held within the DLL. In practice, it is easier to relate
nodes to each other in code and have the worksheet functions act as an interface to
the entire tree.

10.9 QUASI-RANDOM NUMBER SEQUENCES

Quasi-random sequences aim to reduce the number of samples that must be drawn at ran-
dom from a given distribution, in order to achieve a certain statistical smoothness; in other

Example Add-ins and Financial Applications 375

words, to avoid clusters that bias the sample. This is particularly useful in Monte Carlo
simulation (see section 10.11). A simulation using a sequence of pseudo-random numbers
will involve as many trials as are needed to obtain the required degree of accuracy. The
use of a predetermined set of quasi-random samples that cover the sample space more
evenly, in some sense, reduces the number of trials while preserving the required statistical
properties of the entire set.

In practice such sequences can be thought of simply as arrays of numbers of a given
size, the size being predetermined by some analysis of the problem or by experiment. Any
function or command that uses this information simply needs to read in the array. Where
a command is the end-user of the sequence, you can deposit the array in a range of cells
on a worksheet and access this, most sensibly, as a named range from the command’s
code (whether it be C/C++ or VB). Alternatively, you can create the array in a persistent
structure in the DLL (or VB module). There is little in the way of performance difference
between these choices provided that the code executing the simulation reads the array
from a worksheet, if that’s where it’s kept, once en bloc rather than making individual
cell references.

There is some appeal to creating such sequences in a worksheet — it allows you to
verify the statistical properties easily — the only drawback being if the sequence is so
large that it risks the spreadsheet becoming unwieldy or stretches the available memory.
Where the sequence is to be used by a DLL function, the same choice of worksheet range
or DLL structure is there. Provided that the sequence is not so large as to cause problems,
the appeal of being able to see and test the numbers is a powerful one.

If the sequence is to be stored in a persistent structure in the add-in, it is advisable to
link its existence to the cell that created it, so that deletion of the cell’s contents, or of
the cell itself, can be used as a trigger for freeing the resources used. This also enables
the return value for the sequence to be passed as a parameter to a worksheet function.
(See sections 9.6 Maintaining large data structures within the DLL on page 305 and 9.8
Keeping track of the calling cell of a DLL function on page 309.)

As far as the creation of sequences is concerned, the functions for this are well docu-
mented in a number of places. (Clewlow and Strickland). The creation of large sequences
can be time-consuming. This may or may not be a problem for your application as, once
created, sequences can be stored and reused. Such sequences are a possible candidate
for storage in the worksheet using binary names. (See section 8.8 Working with binary
names on page 209.) If creation time is a problem, C/C++ makes light work of the task,
otherwise VB code might even be sufficient. (Remember that C/C++ with its powerful
pointer capabilities, can access arrays much faster than VB.)

10.10 GENERATING CORRELATED RANDOM SAMPLES

When using Monte Carlo simulation (see next section) to model a system that depends
on many partially related variables, it is often necessary to generate vectors of correlated
random samples from a normal distribution. These are computed using the (real sym-
metric) covariance matrix of the correlated variables. Once the eigenvalues have been
computed (see section 10.3 on page 351)° they can be combined many times with many

3 Note that this relies on code from Numerical Recipes in C omitted from the CD ROM for licensing reasons

376 Excel Add-in Development in C/C++

sets of normal samples in order to generate the correlated samples. (See Clewlow and
Strickland, Chapter 4.)
In practice, therefore, the process needs to be broken down into the following steps:

1. Obtain or create the covariance matrix.

2. Generate the eigenvalues and eigenvectors from the covariance matrix.

3. Generate a vector of uncorrelated normal samples.

4. Transform these into correlated normal samples using the eigenvalues and eigen-
vectors.

5. Perform the calculations associated with the Monte Carlo trial.

6. Repeat steps (3) to (5) until the simulation is complete.

The calculation of the correlated samples is essentially one of matrix multiplication.
Excel does this fairly efficiently on the worksheet, with only a small overhead of con-
version from worksheet range to array of doubles and back again. If the simulation is
unacceptably slow, removing this overhead by storing eigenvalues and vectors within
the DLL and calculating the correlated samples entirely within the DLL is one possible
optimisation.

10.11 MONTE CARLO SIMULATION

Monte Carlo (MC) simulation is a numerical technique used to model complex randomly
driven processes. The purpose of this section is to demonstrate ways in which such
processes can be implemented in Excel, rather than to present a textbook guide to Monte
Carlo techniques.®

Simulations are comprised of many thousands of repeated trials and can take a long
time to execute. If the user can tolerate Excel being tied up during the simulation, then
running it from a VB or an XLL command is a sensible choice. If long simulations need
to be hidden within worksheet functions, then the use of background threads becomes
necessary. The following sections discuss both of these options.

Each MC trial is driven by one or more random samples from one or more probability
distributions. Once the outcome of a single trial is known, the desired quantity can be
calculated. This is repeated many times so that an average of the calculated quantity can
be derived.

In general, a large number of trials need to be performed to obtain statistically reliable
results. This means that MC simulation is usually a time-consuming process. A number
of techniques have been developed for the world of financial derivatives that reduce the
number of trials required to yield a given statistical accuracy. Two important examples
are variance reduction and the use of quasi-random sequences (see above).

Variance reduction techniques aim to find some measure, the control, that is closely
correlated to the required result, and for which an exact value can be calculated ana-
Iytically. With each trial both the control and the result are calculated and difference in

© There are numerous excellent texts on the subject of Monte Carlo simulation, dealing with issues such as num-
bers of trials, error estimates and other related topics such as variance reduction. Numerical Recipes in C contains
an introduction to Monte Carlo methods applied to integration. Implementing Derivative Models (Clewlow and
Strickland), published by Wiley, contains an excellent introduction of MC to financial instrument pricing.

Example Add-ins and Financial Applications 377

value recorded. Since the error in the calculation of the control is known at each trial, the
average result can be calculated from the control’s true value and the average difference
between the control and the result. With a well-chosen control, the number of required
trials can be reduced dramatically.

The use of quasi-random sequences aims to reduce the amount of clustering in a
random series of samples. (See section 10.9 above.) The use of this technique assumes
that a decision is made before running the simulation as to how many trials, and therefore
samples, are needed. These can be created and stored before the simulation is run. Once
generated, they can be used many times of course.

Within Excel, there are a number of ways to tackle MC simulation. The following
sub-sections discuss the most sensible of these.

10.11.1 Using Excel and VBA only

A straightforward approach to Monte Carlo simulation is as follows:

1. Set up the calculation of the one-trial result in a single worksheet, as a function of the
random samples from the desired distribution(s).

2. Generate the distribution samples using a volatile function (e.g., RAND()).

3. Set up a command macro that recalculates the worksheet as many times as instructed,
each time reading the required result from the worksheet, evaluating the average.

4. Deposit the result of the calculation, and perhaps the standard error, in a cell or cells
on a worksheet, periodically or at the end of the simulation.

Using Excel and VBA in this way can be very slow. The biggest optimisation is to control
screen updating, using the AppTlication.ScreenUpdating = True/False statements,
analogous to the C API x1cEcho function, and speeds things up considerably.

The following VB code example shows how this can be accomplished, and is included
in the example workbook MCexamplel .x1s on the CD ROM. The workbook calculates
a very simple spread option payoff, MAX(asset_price_1-asset_price_2, 0), using this VB
command attached to a button control on the worksheet. The worksheet example assumes
that both assets are lognormally distributed and uses an on-sheet Box-Muller transform.
The VB command neither knows nor cares about the option being priced nor the pricing
method used. A completely different option or model could be placed in the workbook
without the need to alter the VB command. (Changing the macro so that it calculates
and records more data at each trial would involve some fairly obvious modifications,
of course.)

Option Explicit
Private Sub CommandButtonl_CTlick()

Dim trials As Long, max_trials As Long

Dim dont_do_screen As Long, refresh_count As Long

Dim payoff As Double, sum_payoff As Double

Dim sum_sqg_payoff As Double, std_dev As Double

Dim rAvgPayoff As Range, rPayoff As Range, rTrials As Range
Dim rStdDev As Range, rStdErr As Range

378 Excel Add-in Development in C/C++

' Set up error trap in case ranges are not defined
' or calculations fail or ranges contain error values
On Error GoTo handleCancel

' Set up references to named ranges for optimum access
Set rAvgPayoff = Range("AvgPayoff")
Set rPayoff Range ("Payoff")
Set rTrials Range("Trials")
Set rStdDev = Range("StdDev')
Set rStdErr Range ("StdErr")

With AppTlication
.EnableCancelKey = x1ErrorHandler 'Esc will exit macro
.ScreenUpdating = False
.Calculation = x1CalculationManual

End With

max_trials = Range("MaxTrials")

' Macro will refresh the screen every RefreshCount trials
refresh_count = Range("RefreshCount")
dont_do_screen = refresh_count

For trials = 1 To max_trials
dont_do_screen = dont_do_screen - 1

AppTlication.Calculate

payoff = rPayoff

sum_payoff = sum_payoff + payoff

sum_sq_payoff = sum_sq_payoff + payoff * payoff

If dont_do_screen = 0 Then
std_dev = Sqr(sum_sq_payoff - sum_payoff _
* sum_payoff / trials) / (trials - 1)

AppTlication.ScreenUpdating = True
rAvgPayoff = sum_payoff / trials
rTrials = trials
rStdDev = std_dev
rStdErr std_dev / Sqr(trials)
AppTlication.ScreenUpdating = False
dont_do_screen = refresh_count
End If
Next

handleCancel:
AppTlication.ScreenUpdating = False
AppTlication.Calculation = xT1CalculationAutomatic
End Sub

The Application.Calculate = xTAutomatic/x1Manual statements control whether
or not a whole workbook should be recalculated when a cell changes. (The C API ana-
logue is x1cCalculation with the first argument set to 1 or 3 respectively.) The VB
Range() .Calculate method allows the more specific calculation of a range of cells.
Unfortunately, the C API has no equivalent of this method. Only the functions x1cCal -
culateNow, which calculates all open workbooks, and x1cCalculateDocument,

which calculates the active worksheet, are provided. (See below.)

Example Add-ins and Financial Applications 379

10.11.2 Using Excel and C/C++ only

If the above approach is sufficient for your needs, then there is little point in making life
more complicated. If it is too slow then the following steps should be considered, in this
order, until the desired performance has been achieved:

1. Optimise the speed of the worksheet calculations. This might mean wrapping an entire
trial calculation in a few C/C++ XLL add-in functions.

2. Port the above command to an exported C/C++ command and associate this with a
command button or menu item.

3. If the simulation is simple enough and quick enough, create a (foreground) worksheet
function that performs the entire simulation within the XLL so that, to the user, it is
just another function that takes arguments and returns a result.

4. If the simulation is too lengthy for (3) use a background thread for a worksheet function
that performs the simulation within the XLL. (See section 9.10 A background task
management class and strategy on page 320.)

Optimisations (3) and (4) are discussed in the next section. If the simulation is too lengthy
for (3) and/or too complex for (4), then you are left with optimisations (1) and (2).

For optimisation (1), the goal is to speed up the recalculation of the worksheet. Where
multiple correlated variables are being simulated, it is necessary to generate correlated
samples in the most efficient way. Once a covariance matrix has been converted to a
system of eigenvectors and eigenvalues, this is simply a question of generating samples
and using Excel’s own (very efficient) matrix multiplication routines. Generation of normal
samples using, say, Box-Muller is best done in the XLL. Valuation of the instruments
involved in the trial will in many cases be far more efficiently done in the XLL especially
where interest rate curves are being simulated and discount curves need to be built with
each trial.

For optimisation (2), the C/C++ equivalent of the above VB code is given below. (See
sections 8.6 Registering and un-registering DLL (XLL) commands on page 196 and 8.6.1
Accessing XLL commands on page 198 for details of how to register XLLL. commands and
access them from Excel.) The command monte_carlo_control () runs the simula-
tion, and can be terminated by the user pressing the Esc key. (See section 8.6.2 Breaking
execution of an XLL command on page 199.)

int _ stdcall monte_ carlo_control (void)

{
double payoff, sum payoff = 0.0, sum sqg payoff = 0.0;
double std_dev;
cpp_xloper Break, CalcSetting(3); // Manual recalculation

Excel4 (x1fCancelKey, 0, 1, p_xl1True); // Enable user breaks
Excel4 (x1fEcho, 0, 1, p_xlFalse); // Disable screen updating
Exceld (xlcCalculation, 0, 1, &CalcSetting); // Manual

long trials, max_trials, dont do_screen, refresh count;
// Set up references to named ranges which must exist

x1Name MaxTrials (" !MaxTrials"), Payoff ("!Payoff"),
AvgPayoff ("!AvgPayoff") ;

380 Excel Add-in Development in C/C++

// Set up references to named ranges whose existence is optional
x1Name Trials("!Trials"), StdDev("!StdDev"), StdErr("!StdErr"),
RefreshCount (" |RefreshCount") ;

if (!MaxTrials.IsRefvalid() || !Payoff.IsRefvalid()
|| !'AvgPayoff.IsRefvalid())

goto cleanup;

if (!RefreshCount.IsRefvalid())

refresh count = 1000;
else
refresh count = (long) (double)RefreshCount;

dont_do_screen = refresh_count;
max_trials = (long) (double)MaxTrials;

for(trials = 1; trials <= max_trials; trials++)

{

Excel4 (x1lcCalculateDocument, 0, 0);
payoff = (double)Payoff;

sum_payoff += payoff;
sum_sq_payoff += payoff * payoff;

if (I--dont_do_screen)
{
std_dev = sgrt (sum_sqg payoff - sum payoff * sum payoff
/ trials) / (trials - 1);

Excel4 (x1fEcho, 0, 1, p x1True);

AvgPayoff = sum payoff / trials;

Trials = (double)trials;

StdDev = std_dev;

StdErr = std_dev / sqgrt((double)trials);

Excel4 (x1fEcho, 0, 1, p_xlFalse);
dont_do_screen = refresh count;

// Detect and clear any user break attempt
Excel4 (x1Abort, &Break, 1, p_xlFalse);

if ((bool)Break)
goto cleanup;

}

cleanup:
CalcSetting = 1; // Automatic recalculation
Excel4 (x1fEcho, 0, 1, p_x1True);
Excel4 (xlcCalculation, 0, 1, &CalcSetting);
return 1;

The above code is listed in MonteCarlo. cpp in the example project on the CD ROM.
Note that the command uses x1cCalculateDocument to recalculate the active sheet
only. If using this function you should be careful to ensure that all the calculations are on
this sheet, otherwise you should use x1cCalculateNow. Note also that the command

Example Add-ins and Financial Applications 381

does not exit (fail) if named ranges Trials, StdDev or StdErr do not exist on the
active sheet, as these are not critical to the simulation.

The above code can easily be modified to remove the recalculation of the payoff from
the worksheet entirely: the input values for the simulation can be retrieved from the work-
sheet, the calculations done entirely within the DLL, and the results deposited as above.
The use of the x1cCalculateDocument becomes redundant, and the named range
Payoff becomes write-only. You may still want to disable automatic recalculation so that
Excel does not recalculate things that depend on the interim results during the simulation.

When considering a hybrid worksheet-DLL solution, you should be careful not to make
the entire trial calculation difficult to understand or modify as a result of being split. It
is better to have the entire calculation in one place or the other. It is in general better to
use the worksheet, relying heavily on XLL functions for performance if needs be. Bugs
in the trial calculations are far more easily found when a single trial can be inspected
openly in the worksheet.

10.11.3 Using worksheet functions only

If a family of simulations can be accommodated within a manageable worksheet function
interface, there is nothing to prevent the simulation being done entirely in the DLL, i.e.,
without the use of VB or XLL commands. Where this involves, or can involve, a very
lengthy execution time, then use of a background thread is strongly advised. Section 9.10
A background task management class and strategy on page 320, describes an approach
for this that also enables the function to periodically return interim results before the
simulation is complete — something particularly suited to an MC simulation where you
might be unsure at the outset how many trials you want to perform.

One drawback of only using functions, is the early ending of the simulation . This is
possible with the use of an input parameter that can be used as a flag to background
tasks. Worksheet functions that are executed in the foreground cannot communicate
interim results back to the worksheet and can only be terminated early through use of the
x1Abort function.

This approach hides all of the complexity of the MC simulation. One problem is that
MC is a technique often used in cases where the calculations are particularly difficult,
experimental or non-standard. This suggests that placing the calculations in the worksheet,
where they can be inspected, is generally the right approach.

10.12 CALIBRATION

The calibration of models is a very complex and subtle subject, often requiring a deep
understanding not only of the model being calibrated but also the background of data — its
meaning and reliability; embedded information about market costs, taxation, regulation,
inefficiency; etc. — and the purpose to which the model is to be put. This very brief
section has nothing to add to the vast pool of professional literature and experience. It
does nevertheless aim to make a couple of useful points on this in relation to Excel.
One of the most powerful tools in Excel is the Solver. (See also section 2.10.2 Goal
Seek and Solver Add-in on page 23.) If used well, very complex calibrations can be
performed within an acceptable amount of time, especially if the spreadsheet calculations
are optimised. In many cases this will require the use of XLL worksheet functions. It
should be noted that worksheet functions that perform long tasks in a background thread

382 Excel Add-in Development in C/C++

(see section 9.10) are not suitable for use with the Solver: the Solver will think that the
cells have been recalculated when, in fact, the background thread has simply accepted the
task onto its to-do list, but not yet returned a final value.

The most flexible and user-friendly way to harness the Solver is via VBA. The functions
that the Solver makes available in VBA are:

SolverAdd
SolverChange
SolverDelete
SolverFinish
SolverFinishDialog
SolverGet
SolverLoad
SolverOk
SolverOkDialog
SolverOptions
SolverReset
SolverSave
SolverSolve

The full syntax for all of these commands can be found on Microsoft’s MSDN web site.
Before these can be used, the VBA project needs to have a reference for the Solver add-in.
This is simply done via the VB editor Tools/References. .. dialog.

The example spreadsheet Solver VBA Example.xls on the CD ROM contains a
very simple example of a few of these being used to find the square root of a given
number. The Solver is invoked automatically from a worksheet-change event trap, and
deposits the result in the desired cell without displaying any Solver dialogs.

The VB code is:

' For this event trap command macro to run properly, VBA must have a
' reference to the Solver project established. See Tools/
' References...

Private Sub Worksheet_Change(ByVal Target As Range)

If Target.Address = Range("Input").Address Then
SolverReset
SolverOK setCell:=Range("Target"), maxMinvVal:=2, _
byChange:=Range("Output")
SolverSolve UserFinish:=True ' Don't show a dialog when done
End If

End Sub

Note that the named range Input is simply a trigger for this code to run. In the example
spreadsheet it is also an input into the calculation of Target. The Solver will complain if
Target does not contain a formula, which, at the very least, should depend on Output.
It is a straightforward matter to associate a similar VB sub-routine with a control object,
such as a command button, and to create many Solver tasks on a single sheet, something
which is fiddly to achieve using Excel’s menus alone.

References

Abramowitz M. and Stegun 1., 1970, Handbook of Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables, Dover Publications, Inc., Mineola, NY.

Clewlow L. and Strickland C., 1998, Implementing Derivative Models, John Wiley & Sons, Chichester.

Jackson M. and Staunton M., 2001, Advanced Modelling in Finance Using Excel and VBA, John Wiley & Sons,
Chichester.

Kernighan B. and Ritchie D, 1988, The C Programming Language, 2nd edn, Prentice Hall, Upper Saddle River,
NIJ.

Liberty J., Teach Yourself C++, 4th edn, Sams Publishing, Indiana.

Microsoft Excel 97 Developer’s Kit, 1997, Microsoft Press, Buffalo, NY.

Press W., Teukolsky S., Vetterling W. and Flannery B., 1988, 1992, Numerical Recipes in C, Cambridge Uni-
versity Press, Cambridge.

Press W., Teukolsky S., Vetterling W. and Flannery B., 2002, Numerical Recipes in C++, Cambridge University
Press, Cambridge.

Satir G. and Brown D., 1995, 1996, C++: The Core Language, O’Reilly & Associates, Inc.

Stroustrup B., 1991, The C++ Programming Language, 2nd edn, Addison-Wesley Publishing Company, Boston,
MA.

Web Links and Other Resources

There are many web resources that are useful and relevant to the subject of this book. Some
are private, run by interested and enthusiastic individuals. Some are run by consultants
both as a public service and as a means of promoting their own services. Many are run
by companies who sell relevant software or services; Microsoft being the most important
example. Some time spent searching the web with keywords such as Excel, XLM, XLL,
will quickly yield the majority of these. A review of these sites or the products and
services they provide is, of course, completely beyond this book’s scope and nothing is
said or implied about their content or quality. Here are just a very few examples that were
current at the time of writing:

http://www.microsoft.com/downloads/search.asp.

http://www.cppreference.com/index.html

http://www.as-ltd.co.uk/xllplus/default.htm

http://managedxll.net/index.html

http://www.appspro.com

http://www.cpearson.com

http://xcelfiles.homestead.com

The following three links are all discussed in section 1.2 What tools and resources are
required to write add-ins on page 2:
msdn.microsoft.com/library/default.asp?url=/library/officedev/office97/edkfrnt.htm.
download.microsoft.com/download/platformsdk/sample27/1/NT4/EN-US/Frmwrk32.exe.
download.microsoft.com/download/excel97win/utility4/1/WIN98/EN-US/Macrofun.exe.

Microsoft run a number of Internet newsgroups that provide a useful forum for questions
and answers, as well as occasional general announcements from Microsoft technical staff.
Here are just three of the many examples:

news://msnews.microsoft.com/microsoft.public.excel

news://msnews.microsoft.com/microsoft.public.excel.sdk

news://msnews.microsoft.com/microsoft.public.excel.programming

The Microsoft Developer Network (MSDN), and the library of Knowledge Base arti-
cles accessible through it, are an invaluable source of information about all Microsoft
products including Excel, VB and Visual Studio. For example, Knowledge Base arti-
cle 198477 relates to access violation run-time errors occurring when writing to static

386 Excel Add-in Development in C/C++

strings under debug with the /ZI compiler flag set in certain versions of Visual Studio.!
There are too many useful and relevant articles to list, but Microsoft’s MSDN site at
http://msdn.microsoft.com provides a comprehensive search facility.

http://xlw.sourceforge.net
A freely available C++ wrapper developed by Jérome Lecomte.

Microsoft make available an executable utility called B2C . EXE which converts passages
of VB COM Automation code into C++ Automation code, with some limitations. (Search
for the executable on the Microsoft download site at the first URL in this section).
Resulting code can be cut and pasted into your Visual C++ source code. The utility is
also available at the following link:

http://support.microsoft.com/default.aspx?scid=kb;EN-US216388

! This problem can be encountered when trying to set the length byte on byte-counted static strings.

#pragma pack 62-4
16-bit software versions 2-3, 6
32-bit software versions 2-3
.DEF files 78-82, 97
.NET add-ins see .NET add-ins
.XLA files 32, 47, 72
.XLL files 32
percentage operator, concepts 13—18
& string concatenation operator 13-18
+ - * | number-arithmetic binary operators, concepts
13-18
=,<,>< => =<> boolean binary operators
= unary operator, concepts 13-18
- unary operator, concepts 13-18
_cdecl 79-80, 85-7
_declspec 80-2
_fastcall 79-80
_int64 51-2
_stdcall 68-71, 76-7, 79-82, 85-7, 98—104,
108-60, 171-80, 287-94, 319-31, 336-44
A1 cell references
concepts 9-10
R1C1 contrasts 9-10, 221, 227-35, 241-9, 311
active concepts 19, 96-8, 204-5, 215
add-in manager
concepts 32-3, 41, 56, 75-6, 82, 87, 95-104,
105-60, 182-3
DLL/XLL transformations 95-104, 131, 182-3
information provisions 33, 97-8, 101-4
uses 95-6, 105-6
add-ins
active/inactive concepts 96
coding selections 2
concepts 2-4, 5-6, 29-33, 76, 82, 95-104,
105-60, 332-3, 335-82
definition 5
deletions 96
financial applications 7, 335-82
loading/unloading processes 32-3, 47, 95-6
overview 2-8
resource requirements 2-4, 76, 82, 95
tool requirements 2-4, 76, 82, 95
types 5-6
Add/Add new item 90
add_name_record 314-15
ADDRESS 21
adjust_date 369-71
alert displays, custom dialog boxes 273-4

13-18

Index

Alias 48-64

Alt key 249-50

ampersands 250

Analysis ToolPak 5

ANSI codes 51-2, 56
Application.Calculate 378
Application.OnTime 316-17
Application.Run 199
Application.ScreenUpdating 377-8
Application.Volatile 47-8
ArgRtnTypes 194-9
arguments

coding/typographical conventions 1-2, 239-40

concepts 1-2, 16—18, 21, 22, 34, 105-60,
161-8, 186-99

construction dialog 34-5

Exceld 172-99

Excel/DLL data-passing 105-60, 171-4,
187-99

lists 22, 34-5
mandatory/optional arguments 22, 160, 366

memory-management guidelines 161-8,
199-201, 332-3

missing arguments 160, 366

modifying-in-place techniques 168, 189-90

Paste Function dialog 33-5, 96-7, 182-99,
294-5
specification processes 186-8
variable lists 22, 172—4
worksheet-function argument-type conversions
16-18, 21, 49-53, 64-71, 105-60, 174-80,
186-99
Array 51-3
array variants, concepts 64-71, 127-30, 332
arrays
C/C++ 64-71, 106-60, 305-7
column vectors 67-8
concepts 7, 10-12, 17-18, 21-3, 51-3,
57-61, 64-71, 103-4, 106-60, 161-8,
187-99, 290-4, 305-7, 332
Ctrl-Shift-Enter keystroke 21-2, 66—7
declarations 66-71, 192—-6
Excel 7, 10-12, 17-18, 21-3, 51-3, 57-61,
64-71, 103-4, 106—-60, 187-99, 305-7, 332
formulae 21-2, 66-71
literal arrays 68-71, 145-6
memory management 70, 108, 332
range references 68-71, 103—4, 234-5

388 Index

arrays (continued)

rectangular arrays 67, 118—19

row vectors 67-8

types 64-71

VB 51-3, 57-61, 64-71, 127-30
array_vt_to_xloper 127-30
ASCII codes 11, 290-4
asynchronous calls 7, 296-7, 316-20
automatic variables, C++ features 1
Automation see COM
AVERAGE 155-6

Background.cpp 326, 331
Background.h 326
background task management
concepts 318-31, 374, 379
configuring/controlling processes 331
critical sections 322-31, 333
Excel communications 322
interfaces 328-31
memory considerations 333
polling commands 330-1
processing loops 326-8
requirements 321-2
software requirements 322-3
suspensions 326-31
task lists 322-31
thread amendments 326-31
worksheet-function restrictions 323-4
BIFF see binary interchange file format
BigDhata.cpp 213
binary interchange file format (BIFF) 6
binary names
amendment functions 211-13
basic operations 210-13
concepts 157, 209-13, 248-9, 315-16, 375
examples 211-13
problems 210
retrievals 212-13, 248
Binary_ Name_Example.xls 213
bonds, dates 363-71
bool data types, C++ features 1, 106
Boolean 50-5
boolean binary operators (=,<,>< => =<>) 13-18
boolean values
concepts 1, 10-12, 13-18, 21-3, 50-5,
106-60, 187-99, 214-49
worksheet-function argument-type conversions
17-18, 21, 50-5, 106-60, 187-99
bosa sdm XLn 294-5
Box-Muller transform 349-51, 379
breaks, commands 199, 206-7, 379
BSTR 2, 51-61, 73, 128-30, 332
buffer overruns 2
Build... 86-7, 91-2
buttons see custom dialog boxes; toolbars
ByRef 48-9, 54-61, 70-1

Byte 50-3
bytes, VB 50-3
Byval 48-9, 54-61, 80, 92-4

C# 3,4
C++

see also financial applications; Visual C++

arrays 64-71, 106—60, 305-7

call-by-reference/value arguments 48-9,
54-61, 70-1, 80

calling conventions 77-80

coding/typographical conventions 1-2, 77-8

concepts 2, 70, 100-4, 105, 121-60, 164-9,
239, 285-94, 307-9, 315-16, 335-82

cpp_xloper 2,70, 100-4, 105, 121-60,
164-8, 176-80, 192-9, 205, 209-13,
220-1, 225, 233, 235, 256-66, 302-3,
317-20, 330-1, 352-3, 366-71

data types 49-64, 77, 105-60

execution speeds 285-94, 364

features 1-2, 169

Monte Carlo simulation 379-81

name classes 2, 239, 307-9, 317-20

name decoration 77-8

object-oriented features 2, 105, 121-2

OLE/COM automation 3-4, 49-72, 122, 182,
283, 295-305

overview 1-8

performance issues 285-94, 364

resource requirements 2-4, 76, 82, 322-3

Standard Template Library 1, 248, 315, 324-5

trigger arguments 27, 85, 233-4, 285-94

VB 41, 48-73, 80, 289-94

see also financial applications

arrays 64-71, 106-60, 305-7

call-by-reference/value arguments 48-9,
54-61, 70-1, 80

calling conventions 77-80, 309-16

data types 49-64, 77, 105-60

execution speeds 285-94, 364

initialisation processes 148, 157-60, 277

library functions 1-2

Monte Carlo simulation 379-81

name decoration 77-8

OLE/COM automation 3-4, 49-72, 122, 182,
283, 295-305

overview 1-8

performance issues 285-94, 364

resource requirements 2-4, 76, 82, 322-3

trigger arguments 27, 85, 233-4, 285-94

VB 41, 48-73, 80, 289-94

xlopers 2, 59-61, 70, 100-4, 105-60,
162-8, 172-284, 302-3, 328-31, 335-82

C API 2-4, 6, 20, 56-61, 70-3, 82, 98, 105-60,

161-8, 169-284, 316—-20

see also xlc...; x1f...

Index 389

access methods 169-80
arrays 70
background task management 318-31, 379
bugs 98
commands 169-284, 316-20
concepts 6, 20, 56, 57-8, 70-3, 82, 98, 105,
111-17, 131, 154-60, 169-284, 2934,
316-20
custom dialog boxes 273-7, 331
DLL calls 180-99, 296-7, 309-16, 320
documentation 6, 215-21
event trapping 277-82
Exceld4 116-17, 120, 126-31, 154-5,
161-8, 169-284, 296-7
exclusive functions 199-209
financial applications 7, 335-82
functions 169-284
memory management 332-3
menus 249-66
miscellaneous commands/functions 282-3
name-handling capabilities 239-49
toolbars 266-73
uses 169-284, 293—-4
VBA contrasts 169-70, 293-4, 317-20
volatile functions 26-7, 189-90
workspace information commands/functions
195-6, 213-39, 241-9, 309-16, 333
XLCallver 283-4
XLM 169-284
xlopers 105-60
calculated data, concepts 36-7
calibration 24, 381-2
CALL 195
Call Speed Test-C API.xls 293
Call Speed Test-VBA.xls 293
call-by-reference arguments, concepts 1, 48-9,
54-61, 70-1, 80, 92-4
call-by-value arguments, concepts 48-9, 54-61,
92-4
CALLER 176-80
calling conventions, concepts 77-80, 309-16
calloc 1
case comparisons, concepts 13—18
catch, exception handling 2
CD ROM 4, 25, 31, 38, 123, 126-7, 239, 277,
289, 293, 307-9, 310, 315, 325-6, 335-6,
345, 351, 354, 376, 377, 380, 382
cells
active/current contrasts 19, 215
concepts 9-19, 203—-4, 215-17, 2334,
239-49, 283, 309-16
contents 10-18, 215-17, 221-2, 233-5,
239-49, 283, 324
evaluations 241, 283
format issues 10-12, 37
information 215-17, 221-2, 233-5, 239-49,
309-16, 324

multi-cell range reference conversions 14-18,
50-3, 64-71, 234-8
naming processes 309-16
single-cell reference conversions 14-18, 2368
tracked calling-cells 309-16
values 10-12, 156-7, 170, 199-209, 283
char 50, 54-5, 78, 105-60, 168, 187-99
C_INDIRECT... 31
circular references 23, 177-80, 215
classes
background task management 320-31
coding/typographical conventions 1-2
concepts 2, 121-60, 239, 307-9, 320-31
cpp_xloper 121-60, 164-8, 176-80,
192-9, 205, 209-13, 220-1, 225, 233, 235,
256-66, 302-3, 317-20, 330-1, 352-3,
366-71
clock 287-94
CLOCKS_PER_SEC 287-94
clock_t 287-94
CLSID 297-305
coding conventions 1-2, 77-8, 170, 239-40
column vectors, VB arrays 67-8
columns, concepts 9-12, 37-40, 67-71, 107-60
COM see Common Object Model
command-access objects
see also menus; toolbars
concepts 9
commands
Alt key 249-50
breaks 199, 206-7, 379
C API 169-284, 316-20
complex commands 22-4
concepts 7-8, 19-20, 41-73, 169-74, 196-9,
203-4, 300-2, 316-20
custom dialog boxes 158-60, 2737, 331
dialog displays 171
disabled screens 282-3
event trapping 277-82
function contrasts 7-8, 19-20, 41, 71-2, 171,
249
list 20
menus 249-66
miscellaneous commands/functions 282-3
OLE/COM automation 300-2
polling commands 330-1
registering/unregistering processes 196-9, 379
timed calls 7, 316-20
toolbars 266-73
user-defined commands 8, 300-2
VB 20, 41-73, 169-70, 316-17
workspace information commands/functions
195-6, 213-39, 241-9, 309-16
XLM 169-284
comments 1, 43, 221-2
C++ features 1
VBE 43

390 Index

Common Object Model (COM)
see also OLE...
commands 300-2
concepts 5-6, 7-8, 49-64, 122-3, 182, 190,
283, 295-305
functions 302-5
initialisation/un-initialisation processes 297-9
recalculation logic 299-300
CompareNchars 340-1
compare_nchars 340-1
compare_text 340-1
CompareText 340-1
compiled function names, DLLs 77-82
compilers 2-4, 5-6, 32, 77-8, 86-7, 91-2
concepts 5-6, 32, 77-8, 867, 91-2
DLLs 86-7,91-2
complex commands/functions, concepts 22-4
concat 341-2
Concat 341-2
concatenation operator (&), strings 13
constant xlopers, concepts 121, 154-5
constants see fixed input data
construction dialog, arguments 34-5
control buttons, coding/typographical conventions
1-2
control objects
concepts 44-5
VB command macros 44-5
Control Toolbox 44
conversions
array variants 69-71, 127-30
data types 12-18, 49-71, 105-60, 171-4,
187-99
defined range names 15-18, 234-5
explicit type conversion functions 16—18
multi-cell range references 14-18, 50-3,
64-71, 234-8
single-cell references 14-18, 236-8
worksheet-function argument-type conversions
16-18, 21, 49-53, 64-71, 105-60, 17480,
186-99
xlopers 126-30, 134, 136-7, 139-40,
142-4, 149, 153-4, 156, 174-80, 201-3,
235-6
xltype 134
x1ltypeBool 139-40
x1ltypeErr 142-3
xltypeInt 143-4
xltypeMulti 149
x1ltypeNil 156
xltypeRef 153-4
xltypeSRef 153-4
xltypeStr 136-7
ConvertMultiToDouble 153-5
copies, XLLs 96
correlated random samples, examples 375-6
COUNT 154-5

count 172-80
COUNTIF 357-63
count if multi 362-3
CountlfMulti 362-3
count_to_date 366-71
count_used_cells 154-5
COUPPCD 364
covariance 375-6, 379
cpp_xloper 2,70, 100-4, 105, 121-60, 164-8,
176-80, 192-9, 205, 209-13, 220-1, 225,
233, 235, 256-66, 302-3, 317-20, 330-1,
352-3, 366-71
::Free 131-60
concepts 105, 121-60, 164-8, 176-80,
192-9, 205, 209-13, 225, 233, 235, 256-66,
302-3, 317-20, 330-1, 352-3, 366-71
initialisation processes 158-9
requirements 122-3
structure 122-6, 158-9
crashes 7, 296-7, 332-3
see also memory...
causes 332-3
create_discount_curve 373
credit risks 371-4
critical sections, background task management
322-31, 333
cross-worksheet dependencies, Excel versions
27-9
Ctrl-K keystroke (hyperlinks) 37
Ctrl-Shift-Enter keystroke, arrays 21-2, 66—7
cumulative normal distributions 344-51
Currency 50-3, 58-61
current concepts 19, 204-5, 215, 240-1
current_system_time 80, 85-7
curves
discount curves 371-4
interpolation functions 353-7
custom dialog boxes
alert displays 273-4
concepts 158-60, 273-7, 331
creation processes 276-—7
input restrictions 277
custom menus 249-50, 254, 260—6
CVerr 61
cY 50-3, 58-61

DATA 81-2
data organisation
good design/practice 36-40, 332-3
spreadsheets 36-40
data structures 7, 16—17, 49-53, 62-3, 105-60,
305-7, 375
data tables
circular references 23, 177-80
concepts 22-4
recalculation logic 22-3, 31

Index 391

data types 7, 10—18, 21-3, 49-64, 105-60,

187-99, 214-38, 332-3

C/C++ 49-64, 77, 105-60

concepts 7, 10-18, 21-3, 49-64, 105-60,
171-4, 187-99, 332-3

conversions 12-18, 49-71, 105-60, 171-4,
187-99

Excel 7, 10-12, 105-60, 187-99

Excel/DLL data-passing 105-60, 171-4,
187-99, 332

object data types 64

user-defined data structures 7, 16—17, 49-53,

62-3

variant data types 49-52, 57-61, 127-30, 302,
332

VB 49-64

worksheets 10-12, 16—18, 49-64, 105-60,
187-99

data-organisation overview, Excel 9
Data/Table... 22-3
DATE 11,22
Date 50, 51-3, 58-61
DATE 51, 58-61
date functions, financial markets 363-71
date dif 370-1
dates 11, 22, 50, 58-61, 84-7, 363-71
day_count 366-71
DDE data-updates, event trapping 278
Debug 86-7, 91-2
debugging 3-5, 86-7, 91-2
Declare 48-64, 92—4
decoration, names 77-8
defined range names
see also named ranges
concepts 15-18, 234-5, 239-49
conversions 15-18, 234-5

definition files (DEF), concepts 78-87, 90-1, 95,

97
delete 1,316
dependents, recalculation logic 24-32
derivatives
see also futures; options; swaps
examples 344, 363-71, 374, 376-7
dialogs
custom dialog boxes 158-60, 273-7, 331
Paste Function dialog 33-5, 41, 73, 87, 91,
96-7, 182-99, 294-5
directory paths, coding/typographical conventions
1-2, 239-40
disabled screens, command execution 282-3
discount curves, examples 371-4
dispatch pointers 64, 297-305
DISPID 300-5
DLL radio button 90
Dl11Main 180-99
Dl1lName 194-9

DLLs 2-4, 7,20, 22, 29-32, 41-73, 75-104,
105-60, 162-8, 169-99, 239-49, 295-305,
309-20

see also XLLs

add-in manager 32, 82, 87, 95-104, 105-60,
182-3

asynchronous calls 7, 296-7, 316-20

basics 75-6

binary names 157, 209-13, 248, 315-16, 375

C API functions 180-99, 296-7, 320

calling conventions 77-80, 176—80, 237-8,
309-16

code-adding processes 84-7, 91-2

compilations 86-7, 91-2

compiled function names 77-82

complexity issues 6

concepts 2-4, 7, 20, 29-32, 48-64, 75-104,
105-60, 162-8, 169-70, 176-99, 239-49,
295-305, 309-20

creation processes 83-92

data structures 105-60, 305-7, 375

debugging 86-7, 91-2

event trapping 277-82

Excel 22,29-31, 48—-64, 105-60, 172-284

exported function names 80-2, 85-94, 191-5,
216-17, 233-4

function declarations 48-64, 80-2, 182-96

interfaces 92-104, 182-99, 295-305

languages 32

large data structures 305-7, 333, 375

memory management 76, 97, 103—4, 105-60,
162-8, 199-201, 305-7, 332-3

missing arguments 160, 366

Monte Carlo simulation 379-81

multi-threading 76-7, 296-7, 316-31

multiple DLL instances 76, 162, 207

name-handling capabilities 239-49

names 77-82, 85-94, 157, 191-5, 209-13,
216-17, 233-4, 239-49, 310-16

passing-data considerations 105-60, 171-4,
187-99

registered/unregistered functions 182-96,
227-33

resource requirements 2-4, 76, 82, 95, 322-3

tracked calling-cells 309-16

VB 20, 41-73, 75-6, 92—-4, 180-3

vC 75, 83-95

VC.NET 87-95

document information 6, 215-21

Double 50, 51-3

double 51-3, 78, 105-60, 347-8

double-clicks, event trapping 279

doubles 47-94, 105-60, 187-99, 290-4

DWORD 151-2, 204-9

dynamic libraries

see also DLLs
concepts 75-6, 95

392 Index

early binding, concepts 296-305
eigen_system 351-3
EigenSystem 351-3
eigenvalues, examples 351-3, 375-6
eigenvectors, examples 351-3, 375-6
ellipsis, menus 250
Empty Project 90
error codes, concepts 10-12, 13-18, 21-3,
58-61, 106-60, 329-30
eternal loops 333
evaluation precedence, operators 18
event trapping
C API 277-82
concepts 45-6, 277-82, 382
DDE data-updates 278
double-clicks 279
keyboard events 280-1
recalculation logic 281, 316
system clocks 282, 316—18
VBA uses 45-6, 382
window selection-events 281-2
worksheet data-entries 279, 382
events 7
EXACT 13
Example.xls 382
examples
calibration 381-2
date functions 363-71
discount curves 371-4
financial applications 7, 335-82
interpolation functions 353-7
lookup and search functions 357-63
matrix functions 21-2, 351-3, 375-6
Monte Carlo simulation 352, 374-81
quasi-random numbers 374-7
statistical functions 344-51
string functions 335-44
trees and lattices 374
Exceld 116-17, 120, 126-31, 154-5, 161-8,
169-284, 296-7, 332
see also C API; XLM...
arguments 172-99
concepts 169-284, 332
macro-sheet commands/functions 170-80,
188-249
return values 173-80, 186—99
syntax 172-3
worksheet-function calls 174-80
Exceldv 116-17, 126-31, 162-8, 169-72,
178-284, 296-7, 332
concepts 169-72, 178-284, 332
syntax 178-80
Exceld4_err msg 180
Excel 97 Developer’s Kit (Microsoft) 4, 6, 64
Excel
95 4-5,6
97 (V8) 5,27-9, 161

2000 (V9) 4-5, 27-9, 34, 45-6, 349
2002 (V10) 4-5, 27-9, 34-5
2003 (V11) 4-5,27-9, 35, 46, 169, 349
arrays 7, 10-12, 17-18, 21-3, 51-3, 57-61,
64-71, 103-4, 106-60, 305-7, 332
background task management 322
coding/typographical conventions 1-2, 77-8,
170, 239-40
concepts 1-8, 9-40
converted data types 12-18, 49-53, 64-77,
105-60
cross-worksheet dependencies 27-9
data structures 105-60, 305-7
data types 7, 10—18, 21-3, 105-60, 187-99,
332
data-organisation overview 9
DLLs 2-4,7, 20, 22, 29-32, 41-73, 75-104,
105-60, 162-8, 169-284, 295-305, 309-16
event trapping 45-6
functionality issues 7, 9-40
good design/practice 35-40, 332-3, 335-82
input parser 12
interfaces 6-7, 32, 48—64, 92-104, 182-99,
295-305
libraries 95
menus 1-2, 7,9, 249-66
missing arguments 160, 366
Monte Carlo simulation 7, 207, 352, 374-81
names 2, 7, 15-18, 35-40, 199-209, 222-5,
234, 239-49, 310-16
OLE/COM automation 3-4, 49-72, 122, 182,
283, 295-305
overview 1-8
passing-data considerations 105-60, 171-4,
187-99
recalculation logic 7, 12, 19, 22-3, 24-32,
93-4, 299-300, 306-7
terminology 19
toolbars 266-73
versions 4-5
XLLs 7, 32, 35, 95-104, 131, 176-80,
182-99, 309-16, 379-81
exception handling 2
ExecuteExcelMacro 303
execution speeds 7-8, 40, 73, 94, 206-7,
285-94, 333, 364
see also performance issues
C/C++ 285-94, 364
concepts 40, 285-94, 333, 364
conclusions 293
large spreadsheets 40, 332
timing tests 285-9
VB 285-94, 364
Exp 290-4
exp 291-4
explicit type conversion functions, concepts 16-18
EXPORTS 81-2, 85-7, 95-104

Index 393

exports 81-2, 85-7, 95-104, 108-60, 191-5, free 1, 108-60
216-17, 233-4 free_xloper 131-60
extern "C" 78-82 Freeze Panes 35
ExtractXloper 167-8, 205-6 Function Wizard see Paste Function dialog
Function/End Function 47-8
F5 key 86, 91-2 functions
F9 key 25-6,93-4 argument optionality 22, 366
File/New... 83-7 C APl 169-284
File/Open... 96-100 calibration 24, 381-2
File/Save As... 72 calling conventions 77-80, 176-80, 237-8,
filenames 309-16
access 208-9 categories 34, 170-1, 185-6

good design/practice 35-40
files, coding/typographical conventions 1-2,
239-40

category lists 185-6
coding/typographical conventions 1-2, 77-8,

f ial licati 239-40
nanc.la app ications command contrasts 7-8, 19-20, 41, 71-2,
calibration 24, 381-2 171. 249

date functions 363-71
discount curves 371-4
examples 7, 335-82
financial markets 363-71
interpolation functions 353-7

complex functions 22-4

concepts 7-8, 19-20, 21-3, 47-73, 170-1,
182-209, 302-3

date functions 363-71

lookup and search functions 357-63 discount curves 3714
matrix functions 21_2’ 351_3’ 375-6 DLL declarations 48764, 8072, 182-96
Monte Carlo simulation 7, 207, 352, 374-81 financial applications 7, 335-82
quasi-random numbers 374-7 interpolation functions 353-7
statistical functions 344-51 lookup and search functions 357-63
trees and lattices 374 mandatory/optional arguments 22, 160, 366
financial markets, date functions 363-71 matrix functions 21-2, 351-3, 375-6
find first 338-9 memory-management guidelines 161-8,
FindFirst 338-9 199-201, 332-3
FindFirstExcl 339 miscellaneous commands/functions 282-3
find first_excluded 338-9 Monte Carlo simulation 7, 207, 352, 374-81
find_last 339-40 names 34, 77-8, 80-2, 310-16
FindLast 339-40 OLE/COM automation ~302—5
Finish 90 Paste Function dialog 33-5, 41, 87, 91, 96-7,
fixed input data, concepts 36-7 182-99, 294—5

float 51,78, 106 quasi-random numbers 374-7
floating-point numbers 10-12, 17-18, 50-3, 78, recursive function-calls 161—8

106-60, 168, 189-99, 332 register IDs 194—6

EOR_CAST }1354‘7(FX) seas registered functions 96—104, 106—8, 16970,
oreign exchange - 182-96. 22733
format issues .o

cells 1012 37 scope issues 47-8, 239-40

ood desien/ ,ractice 37 statistical-function examples 344-51

£ SIgnp string-function examples 335-44

formulae
arrays 21-2, 66-71 tests 285-94
cell references 9-10, 234-5 toolbars 26.6—73
coding/typographical conventions 1-2, 239-40 trees and lattices 374

complexity issues 37 trigger arguments 26-—7, 85, 93—4, 2334,

concepts 9-10, 12, 13-18, 21-2, 36-7, 285-94
66-71, 221-2, 234-5, 283, 324 types 21-3
evaluations 241, 283 unregistered functions 99, 182, 195-6, 227-33
good design/practice 367 user-defined functions 29-31
information 221-2, 234-5, 324 VB 20, 41, 47-73, 79
input parser 12 volatile functions 25, 26-8, 30-1, 35, 47-8,

repetition avoidance 36-7 94, 189-90

394 Index

functions (continued)
worksheet-function argument-type conversions
16-18, 21, 49-53, 64-71, 105-60, 17480,
186-99
worksheet-function types 16-18, 21-3, 170-1
workspace information commands/functions
195-6, 213-39, 241-9, 309-16
XLL interface functions 97-104, 131, 176-80,
182-99, 297-305
XLM 169-284, 303
futures, settlement dates 363-71

Gaussian distributions 344-51
gbds_between_dates 370-1
GET.CELL 170, 176-80
Get.Note 188-9
Get_Time 286-94
GetActiveObject 297-305
GetArrayElement 149
get_bin string 213
GetClassName 294-5
Get_C_System_Time 93-4
GetCurrentThreadId 77
get_discount_value 373
GetIDsOfNames 300-5
GetModuleHandle 95
GetName 308-9
get_system time_C 80-2, 85-7, 92-4
get_system_time _C 92-4
GetTime 83-7, 286-94
GetTime.cpp 84-7, 90-1
GetTime.def 84-7,90-1
GetTime.dll 83-7,92-4
get_time_C 288-94
GetTimeTest.xls 92-4
get_username 158-9
Get VB_Time 93-4
GlobalLock 212
GlobalUnlock 212
Goal Seek command, concepts 23-4
good design/practice, spreadsheets 35-40, 332-3,
335-82

handles, top-level access 207-8, 294-5
header files 3-4, 49-50, 69, 78—80, 95, 105
help 4

Help 24

help 169-70, 191, 255-9, 280-1, 297
HLOOKUP 357-63

HWND 170, 199-209, 294-5

hyperlinks, good design/practice 37

ID numbers, menus 249-52, 254-66

IDEs see integrated development environments
IDispatch 7, 50-1, 64-71, 295-305

IF function 33-4

inactive concepts, add-ins 96-8
INDEX 22, 37-40, 170, 306
INDIRECT 21, 27, 29-31, 40
information provisions 33, 97-8, 101-4, 204-6,
213-49, 309-16, 333
add-in manager 33, 97-8, 101-4
cells 215-17, 221-2, 233-5, 239-49,
309-16, 324
menus 252-3
toolbars 267-8
tracked calling-cells 309-16
workspace information commands/functions
195-6, 213-39, 241-9, 309-16, 333
input parser, Excel 12
Insert/Function... 33
Insert/Name/Define. .. 244
instances, multiple DLL instances 76, 162, 207
INT 25,27
int 105-60, 172-6, 187-99
Integer 50-3
integers, concepts 10-12, 17-18, 50-3, 57-63,
142-60, 162, 290-4
integrated development environments (IDEs),
concepts 3-6, 87-94
interest payments, dates 363-71
interfaces
background task management 328-31
DLL/XLL transformations 95-104, 131,
176-99
DLLs 92-104, 182-99
Excel 6-7, 32, 48—64, 95-104
OLE/COM automation 3-4, 49-72, 122, 182,
283, 295-305
VBA uses 48-64, 92—4
vC 86-7
INTERP 354-7
interp 356
interpolation functions, examples 353-7
interpreted macros, concepts 4-5
IsObject 65-71, 353

keyboards 21-2, 25-6, 41-2, 66-7, 86, 91-4,
199, 207, 249-50, 280-1
see also individual keys
event trapping 280-1

languages, DLLs 32
large data structures, DLLs 305-7, 333, 375
large spreadsheets, problems 40, 332
last_gbd 368-71
late binding, concepts 296-305
lattices, examples 374
leaks 7, 103—4, 138, 332-3

see also memory...
Lecomte, Jérdme 122, 169
LIB.EXE 95
LIBOR 364-5

Index 395

libraries 1, 3—4, 75-94, 95, 248, 315, 324-5, 336
see also DLLs
concepts 75, 95, 336
Excel 95
STD 1, 248, 315, 324-5
types 75, 95
Windows 75-94
limits, worksheet data types 10-12
lines, interpolation functions 353-7
LINEST 354-7
list-boxes, custom dialog boxes 275-7
literal arrays, Excel 68-71, 145-6
literals, worksheet-function argument-type
conversions 17-18, 64-71
loading/unloading processes, add-ins 32-3, 47,
95-6
LoadLibrary 95
LOGEST 354-7
Long 50-3
long data type 50-3, 78-94, 106—-60
long tasks, concepts 321-31
LONGLONG 51-3
LONG_TASK 324
LOOKUP 357-63
lookup and search functions, examples 357-63
lookups, concepts 22, 37-40, 306—7, 357-63

m_ prefixes 1
Mcexamplel.xls 377
macro-sheet commands/functions
concepts 170-80, 188-249
Exceld4 170-80, 188-9, 239
permissions 188-9
Macrofun.hlp 4, 169-70, 214
macros
see also XLM...
concepts 5-6, 29-31, 42-73, 100-4, 169-284
control objects 44-5
VB commands 42-73
magic numbers, concepts 35-6
MakeSpline 354-5
make_spline 355
malloc 1
mandatory/optional arguments, functions 22, 160,
366
MATCH 37-40, 174-5, 306, 357-63
match _multi 358-60
MatchMulti 358-60
matrix functions, examples 21-2, 351-3, 375-6
MAX 377-8
mbstowcs 59-61
MC see Monte Carlo simulation
MDETERM 351-3
m_DLLtoFree 123-6, 150
means, normal distributions 345-51
memory management
see also performance. . .

array variants 70, 108, 332
bad examples 161, 165
binary names 157, 209-13, 248
C APl 332-3
concepts 1-2, 7, 40, 70, 97, 103-4, 105-60,
161-8, 173-80, 199-201, 227-33, 238,
305-7, 332-3
crashes 7, 296-7, 332-3
DLLs 76, 97, 103-4, 105-60, 162-8,
199-201, 305-7, 332-3
free-memory processes 97-8, 103-4, 116-17,
123-6, 162-8, 199-201, 227-33, 238,
305-7, 332-3
guidelines 161-8, 199-201, 332-3
large spreadsheets 40, 108, 332
leaks 7, 103-4, 138, 332-3
modifying-in-place techniques 168, 189-90
multiple Excel instances 162, 207
overflow problems 161, 173—-80
release 7
stack space 161-2, 173-80, 199-201,
227-33, 294, 305-7, 332-3
static add-in memory 162
xlopers 105-60, 162-8, 199-202, 210-13,
238, 332-3
menus 1-2, 7,9, 249-66
see also toolbars
additions 254-66
Alt key 249-50
bars 249-66
checkmarks 260-1
coding/typographical conventions 1-2
command additions 257-60
command specifiers 249-66
concepts 1-2, 9, 249-66
creation processes 249-66
custom menus 249-50, 254, 260-6
deletions 257-8, 264-6
enabled/disabled custom commands/menus
262-3
examples 253-66
help 255-9
ID numbers 249-52, 254—-66
information 252-3
levels 249
line types 250
renamed commands 263-4
right clicks 250-1, 259-60
short-cut menus 250-1
sub-menus 252-66
types 249-50
xlopers 255-66
Microsoft downloads 2-4, 169-70, 214
Microsoft Excel Add-in (*.xla) 72
MINVERSE 351-3
MMULT 21-2, 351-3
models, calibrations 24, 381-2

396 Index

modifiers, function calling conventions 79-80,
168, 189-90
modifying-in-place techniques, memory
management 168, 189-90
Module Definition File 90-1
Monte Carlo simulation (MC) 7, 207, 352,
374-81
C/C++ 379-81
concepts 374-81
examples 352, 374-81
VB 376-8
worksheet functions 381
MonteCarlo.cpp 380
monte_carlo_control 379-81
months_from_date 370-1
m_RowByRowArray 123-6
multi-cell range reference conversions, concepts
14-18, 50-3, 64-71, 234-8
multi-tasking 7, 76-7, 296-7, 316-31
multi-threading 7, 76-7, 296-7, 316-31, 374,
379
background task management 318-31, 374,
379
DLLs 76-7,296-7, 316-31
MultiByteToWideChar 59-61
m_XLtoFree 123-6
MyCppFunction 1

N 16
name classes, concepts 2, 239, 307-9, 317-20
named ranges 2, 7, 15-18, 37, 239-49, 307-9
see also defined range names
concepts 2, 37, 239-49, 307-9
good design/practice 37
name_me 314-16

names
basic operations 199-209, 222-5, 234,
239-49
binary names 157, 209-13, 248, 315-16,
375

cells 309-16
decoration 77-8
DLLs 77-82, 85-94, 157, 191-5, 209-13,
216-17, 233-4, 239-49, 310-16
Excel 2,7, 15-18, 35-40, 199-209, 222-5,
234, 239-49, 310-16
functions 34, 77-8, 80-2, 310-16
menu command names 263-4
worksheets 35-40, 204-6, 222-5, 234,
239-49, 310-16, 333
XLLs 157, 209-13, 248, 315-16
Ndist 346-9
Ndistinv 347-9
ndist_taylor 345-6
NdistTaylor 345-6
NET add-ins, resource requirements 3-4
NETGetTime.dll 87-94

new 1

New 83-7

New Project 88-9

new_xlstring 99-104

next rollover 369-71

normal distributions 344-51

NORMDIST 344-51

norm_dist 346-9

norm dist inv 347-9

NORMINV 344-51

NORMSDIST 344-51

NORMSINV 344-51

NOW 19, 25, 26-31, 93-4, 285-94, 330-1

nsample_BM 350-1

nsample_BM pair 349-51

NsampleBoxMuller 350—1

NsampleBoxMullerPair 349-51

NULL arguments 108-60, 204—-6

number-arithmetic binary operators (+-*/), concepts
13

numbers

data types 10-12, 13-18, 21-3
worksheet-function argument-type conversions

17-18, 21

NumCalls_1 25-9

NumCalls_4 27-9

num calls 77

object data types, VB 64
object-oriented features (OO)
C++ 2,105, 121-2
concepts 2, 5, 105, 121-2
VBE 5
OFFSET 21, 27, 37-40
OLE/COM automation 3-4, 49-72, 122, 182,
283, 295-305
commands 300-2
concepts 295-305
functions 302-5
initialisation/un-initialisation processes 297-9
recalculation logic 299-300
worksheet functions 303-5
OleInitialize 297-305
ON.TIME 317
OO see object-oriented. . .
oper 106, 112-18, 119-20, 133-60, 178-80,
187-99, 323-31
see also xlopers
concepts 106, 112-18, 119-20, 160
structure 119-20
operators
concepts 13-18, 52-3
evaluation precedence 18
types 13-18, 52-3
Option Base 66-71
Option Explicit 57-61
Option Private 47-8

Index 397

options
dates 363-71
pricing 344, 363-71, 374

parse 342-4
ParseText 342-4
Pascal 3
password protection 22, 158-9
Paste Function dialog 33-5, 41, 73, 87, 91, 96-7,
182-99, 294-5
bugs 184, 195
concepts 33-5, 41, 73, 87, 91, 96-7, 182-99,
294-5
examples 190, 294-5
function categories 185-6, 294-5
path information, access 208-9
percentage operator (, concepts 13-18
performance issues 7-8, 28, 40, 73, 94, 206-7,
285-94, 364
see also execution speeds
C/C++ 285-94, 364
concepts 285-94, 364
conclusions 293
large spreadsheets 40, 332
VB 285-94, 364
permissions, macro-sheet commands/functions
188-9
pExcelDisp IDispatch 300-5
pointers, concepts 48-55, 64, 71, 77-8, 107-60,
172-80, 292-4
polling commands, background task management
330-1
precedents, recalculation logic 24-32, 93-4, 189,
306-7
pricing, financial instruments 344, 363-71, 374
Private 47-64
PRIVATE 81-2
Project 83-7, 91-2
Project/NETGetTimeProperties... 91-2
pseudo-random numbers 27, 374-5
Public 47-64

quasi-random numbers 27, 374-7
QueryInterface 297-305

R1C1 cell references
A1 contrasts 9-10, 221, 227-35, 241-9, 311
concepts 9-10, 221, 227-35, 241-9, 311
radio buttons 275-7
RAND 27, 350, 377-8
random numbers, quasi-random numbers 27,
374-7
random samples 344-5, 374-6
Random_Sample.xls 376
Range 52,59, 65-71, 378
range references
arrays 68-71, 103-4, 234-5, 247-8

concepts 14—18, 50-3, 64-71, 1034, 234-5,
247-8
range_name 308-9
RangeName 308-9
RecalcExample 29-31
RecalcExample 29-31
Recalc_Examples.xls 25,31
recalculation logic 7, 12, 19, 22-3, 24-32, 934,
299-300, 306-7, 320-31
concepts 7, 12, 19, 22-3, 24-32, 934,
299-300, 306-7, 320-31
cross-worksheet dependencies 27-9
data tables 22-3, 31
dependents/precedents 24-32, 93-4, 189,
306-7
event trapping 281, 316
trigger arguments 26-7, 93-4, 233-4, 285-94
user-defined functions 29-31
volatile functions 25, 26-8, 30—1, 47-8, 94,
189-90
rectangular ranges of cells, conversions
67, 118-19
recursive function-calls, memory-management
guidelines 161-8
Refresh 315-16
REGISTER 169-70
registered commands/functions 96-104, 106-8,
169-70, 182-96, 227-33
register_ function 98-9, 102-4, 193-6
Release 86-7
release, memory management 7, 162-8
release configurations, concepts 86-7, 91-2
repetition avoidance, formulae 36-7
replace_mask 335-6
ReplaceMask 335-6
resource requirements, add-in writing 2-4, 76, 82,
95
ret_oper 116-17, 165-6
return 106-7
return values
concepts 21, 49-56, 105-60, 173-80,
186-249
Excel4 173-80, 186-99
memory-management guidelines 161-8
worksheet functions 21, 49-56, 105-60,
173-80, 186-249
Reverse 338
reverse_text 338
revision history, good design/practice 35-40
right clicks, menus 250-1, 259-60
ROW 14
row vectors, VB arrays 67-8
rows, concepts 9-12, 37-40, 67-71, 107-60

17-18,

SAFEARRAY 58-61, 69-71, 129-30, 332
SafeArray...() 69-71
safearrays, VB 58-61, 64-71, 332

398 Index

SDK header file 105-6, 111-12, 118, 170-3
sent/waiting task states 331
SetCell 123-6
SetExceltoFree 123-6, 164-8, 200-2, 253
settlement dates 363-71
Shift-F11 keystroke 41-2
short 50, 78, 106—-60
short-cuts, menus/toolbars 250-1, 266
signed long int 50, 106-60, 187-99
signed short int 50, 106-60, 187-99
Single 51-3
single-cell reference conversions, concepts
236-8
skills 335
Solution Explorer 90
Solver... 382
Solver Add-in command, concepts 5, 23-4,
381-2
Solver tools 5, 23—-4, 381-2
concepts 5, 23-4, 381-2
VBA 382
Source Files 84-7, 90
Spline.cpp 354
Splinelnterp 354-5
spline_interp 355
splines, interpolation functions 353-7
spreadsheets
complexity issues 36-7
data organisation 36-7
good design/practice 35-40, 332-3, 335-82
large spreadsheets 40, 332
sprintf 2
stack space, memory management 161-8,
173-80, 199-201, 227-33, 294, 305-7,
332-3
standard deviations 345-51
Standard Template Library (STL) 1, 248, 315,
324-5
static 77, 161-8
static add-in memory, memory management 162
static cells, recalculation logic 24-5
static data, concepts 36-7, 157-8, 161-8, 192
static libraries, concepts 3-4, 75-6, 95
Statistical 345-51
statistical functions, examples 344-51
status bars, text displays 283
Stdbev 381
StdErr 381
STL see Standard Template Library
strchr 2
String 2, 54-5
String 49-50, 51-5, 129-30, 332
string functions, examples 335-44
strings
concatenation operator (&) 13

14-18,

concepts 2, 10-12, 13-18, 21-3, 52-61, 73,
99-104, 106-60, 186-90, 2345, 290-4,
335-44

input parser 12

manipulations 2, 52-6, 103-4, 189-90

VB 49-50, 52-61, 73

wildcards 250

worksheet-function argument-type conversions
17-18, 21, 52-6, 105-60, 186—99

sub-menus 252-66

Sub/End Sub 43-4, 71-2

SUBSTITUTE 335-6

SUM 14-15, 17, 22, 37, 145-6, 240-2
SUMIF 357-63

sum if multi 360-1

SumlfMulti - 360-1

SUMPRODUCT 351-3

swaps 364-5
SysAllocStringByteLen 55-6, 59-61
SysFreeString 55-6, 59-61
SysReAllocString 55-6, 59-61
SysReAllocStringLen 55-6, 59-61
SysStringByteLen 53, 59-61
SysStringLen 53, 55-6, 59-61

system clocks, event trapping 282, 316—18

T 16
TABLE 22-3
tables, data tables 22-4
Target 382
task lists, background task management 322-31
TaskList 322-31
taxation calculations, data tables 23
Taylor series 345-6
Templates 90-1
terminology, Excel 19
Test_Function 286-94
tests
performance issues 285-94
types 285-93
TEXT 16
text displays, status bars 283
threads
amendment processes 326
concepts 296-7, 316-31, 374, 379
multi-threading 7, 76-7, 296-7, 316-31, 374,
379
throw, exception handling 2
timed calls, concepts 7, 316-20
times of cell-changes, trigger arguments 26-7
timing tests, execution speeds 285-9
titles
applications 214
windows 214
worksheets 35-40
TODAY 26-7

Index

399

toolbars 7,9, 41-5, 251-2, 26673
see also menus
additions 268-9
concepts 9, 41-5, 251-2, 266-73
creation processes 268-73
deletions 272-3
enabled/disabled buttons 270
hidden toolbars 271-2
ID numbers 266-8
information 267-8
moved commands 270-1
pressed-button displays 271
resets 272
VBE 41-5
Tools/Add-ins... 32-3, 96-102
Tools/Customise 41-2
Tools/Goal seek... 23-4
Tools/Macro/Record New Macro 41-4
Tools/Macro/Visual Basic Editor 41-2
Tools/Options. . ./Calculate 22-3, 366
Tools/Solver... 23-4
tracked calling-cells, DLLs 309-16
TRANSPOSE 351-3, 372-3
trapped events see event trapping
trees and lattices, examples 374
Trials 381
trigger arguments, concepts 26-7, 85, 934,
233-4, 285-94
Type 49-53, 62-4
type 119-60
Type/End Type 62-4
typedef struct 49, 62-4, 107-60
typographical conventions 1-2, 77-8, 170,
239-40

UDF function category 34
ulval 61
unary = operator, concepts 13-18
unary — operator, concepts 13-18
undo information 40
UNICODE 55, 59
union val 114-15
unloading processes, add-ins 32-3, 47, 95-6
unregistered functions 99, 182, 195-6, 227-33
unregister_function 99, 195-6
unsigned char 50, 106-60, 187-99
unsigned short int 50, 52-5, 57-61,
106-60, 187-99
UpdateTask 328-31
UseArray 305-7
user breaks 199, 206-7
User Defined function category 34
user-defined commands 8, 300-2
see also commands
OLE/COM automation 300-2
user-defined data structures 7, 16—17, 49-53,
62-3

user-defined dialogues, commands 8
user-defined functions
see also functions
OLE/COM automation 302-3
recalculation logic 29-31
User Type 62-3

val.num 134-5

VALUE 13, 15-16, 21, 107-60, 264-5, 317

Value 52, 59-61, 68-71
variable input data, concepts 36-—7
variable lists, arguments 22, 172-4
variable-length argument lists, concepts
variables

C++ features 1

22

coding/typographical conventions 1-2, 239-40

VB 49-53
variance reduction, concepts 376—7

VARIANT 50-2, 57-71, 129-30, 302, 332

Variant 49-50, 51-3, 57-61

variant data types
array variants 64-71, 127-30, 332
concepts 57-61, 127-30, 302, 332
definition 57
VB 49-52, 57-61, 127-30, 332
xlopers 127-30, 302

VariantInit 70-1

VariantTypeC 60-1

VarType 60-1

VARTYPE vt 57-61

VB see Visual Basic

VBA see Visual Basic for Applications

VbaEigenSystem 353

VBE see Visual Basic Editor
VB_User_Type 62-3

VC.NET see Visual C++ .NET...
VC see Visual C++

version numbers 35-40, 227-33, 283-4

good design/practice 35-40
XLCallver 283-4
Visual Basic for Applications (VBA)

C API contrasts 169-70, 293-4, 317-20
commands 20, 41-73, 169-70, 316-17
concepts 2-4, 5-6, 7, 41-73, 75-6, 924,

169-70, 285-94, 353
DLLs 20, 41, 48-73, 92—-4, 180-3
event trapping 45-6, 382
Excel events 45-6
financial applications 364—82
function creation 47-8
interface uses 48-64, 92-4
memory considerations 332
Monte Carlo simulation 376-8
OLE/COM automation 295-305
resource requirements 2-4
shortfalls 6, 293-4
Solver tools 382

400 Index

Visual Basic Editor (VBE) VT_ARRAY 58-61, 69-71, 129-30
concepts 5-6, 41-73, 293-4 VT_BOOL 58-61, 128-30
opening methods 41-2 VT_BSTR 58-61, 128-30
simplicity 41-2 VT_BYREF 58-61
Visual Basic (VB) VT _CY 58-61, 128-30
add-in manager 32, 41, 82 VT_DATE 58-61
arrays 51-3, 57-61, 64-71, 127-30 VT_DISPATCH 58, 60-1, 68-71
assessment 72-3, 285-94 VT_EMPTY 58-61, 128-30
C/C++ 41, 48-73, 80, 289-94 VT_ERROR 58-61, 128-30
call-by-reference/value arguments 48-9, VT_R8 58-61, 127-30
54-61, 70-1, 80, 92—4
coding/typographical conventions 1-2 wcstombs 59-61
command/function contrasts 71-2 WideCharToMultiByte 59-61
commands 20, 41-73, 169-70, 316-17 wildcards 250
concepts 1-2, 5-6, 20, 32, 41-73, 75-6, 79, Win32 DLLs
92-4, 127-30, 169-70, 285-94 see also DLLs
control objects 44-5 concepts 2-4, 7, 32, 75-94
currency data 51-3, 58-61 resource requirements 2-4, 76, 82, 95
data types 49-64 visual C++ 75-94
DLLs 20, 41, 48-73, 75-6, 92-4, 180-3 Win32 Project 88-9
errors 58-61 Windef.h 80
execution speeds 285-94, 364 window selection-events, event trapping 281-2
functions 20, 41, 47-73, 79, 92—-4 Window/Freeze Panes 35
macro-commands 42-73 Windows
memory considerations 332 libraries 75-94
Monte Carlo simulation 376-8 Registry 33
object data types 64 windows.h 69
performance issues 285-94, 364 winnt.h 52
safearrays 58-61, 64-71, 332 WORD 110-18, 154-60, 205
Solver tools 382 workbooks
strings 49-50, 52-61, 73 active/current contrasts 19, 240-1
user-defined data types 49-53, 62-3 concepts 9, 15-19, 213-40
variable range-values 50 Workbook_SheetCalculate 46
variant data types 49-52, 57-64, 127-30, 332 worksheet functions 16-18, 21, 49-56, 64-71,
volatile functions 26-8, 30-1, 47-8, 94 105-60, 1701, 174-80, 294-5, 323-31
worksheets 5-6 background task management 323-3]
XLA files 32,47, 72 concepts 21, 49-56, 105-60, 170-1, 174-80,
Visual C++ .NET 2003 (VC.NET) 323-31
code-adding processes 91-2 Monte Carlo simulation 381
concepts 87-95, 107 OLE/COM automation 303-5
creation processes 87-92 Paste Function dialog 294-5
DLLs 87-95 return values 21, 49-56, 105-60, 173-80,
Visual C++ (VC) 7, 41, 75, 83-95, 289 186-249
see alsoC... worksheets
code-adding processes 84-7 active/current contrasts 19, 204-5
concepts 7, 41, 75, 83-95 complexity issues 36-7
creation processes 83-7 concepts 9-12, 16-19, 21-3, 35-73, 105-60,
DLLs 75, 83-95 214, 222-5, 234, 239-49
Visual Studio.NET 3, 4, 82-3, 87-94, 107 cross-worksheet dependencies 27-9
see also Visual C++ .NET 2003 data types 10-12, 1618, 21-3, 49-64,
VLOOKUP 22, 37-40, 3067, 357-63 105-60, 187-99
Vlookup_Match_Example.xls 38 event trapping 279, 382
void 78, 98—104, 189-90, 200, 336-7 function argument-type conversions 16-18, 21,
volatile functions 49-53, 64-71, 105-60, 174-80
concepts 25, 26-8, 30-1, 35, 47-8, 94, function types 21-3
189-90 good design/practice 35-40, 332-3, 335-82

VB 26-8, 30-1, 47-8, 94 information 214, 222-5, 234, 239-49, 333

Index

401

limits 10-12
names 35-40, 204-6, 222-5, 234, 239-49,
310-16, 333
password protection 22, 158-9
titles 35-40
Worksheet_SelectionChange 45-6
workspace information commands/functions
195-6, 213-39, 241-9, 309-16, 333
wtypes.h 51-3,57
www.microsoft.com/downloads/search/asp 3

x1Abort 170, 199-209

x1AddInManagerInfo 97-8, 101-4

x1_array 70, 106, 107-60, 168, 187-99, 332,
366-71

x1Auto 96-104, 180-1

x1AutoAdd 97-8, 99-104

x1AutoClose 97-8, 99-104, 182-96,
298-305, 316, 320, 326-31

x1AutoFree 97-8, 103-4, 166-8, 305-7

x1AutoOpen 97-104, 191-9, 297-305, 320,
326-31

x1AutoRegister 97-8, 102-4

x1AutoRemove 97-8, 100—4

x1bitDLLFree 103-4, 117, 166-8, 200-2

x1lbitXLfree 116-17, 148, 164-8

x1cAddTool 269

xlcAlert 273-4

xlcall32.def 95

xlcall32.d1l1l 4, 95-104

xlcall32.h 61

xlcall32.1lib 4, 76, 95-104

xlcall.dll 76

xlcall.h 4, 118-19, 173

XLCallVer 283-4

xlcAssignToTool 269-70

xlcCalculateDocument 378, 380-1

xlcCalculateNow 378

xlcDefineName 171, 241-2

xlcDeleteName 241, 244

x1lcDeleteTool 272-3

xlcDisableInput 277

xlcEcho 282-3, 377-8

xlcMessage 283

xlcMoveTool 270-1

x1Coerce 120, 126-30, 145-60, 170, 176-7,
199-209

xlcOnData 278

x1lcOnDoubleclick 279

x1lcOnEntry 279

x1cOnKey 280-1

xlcOnRecalc 281, 316

xlcOnTime 282, 316-18, 323-31

x1lcOnWindow 281-2

xlcShowToolbar 271-2

x1DefineBinaryName 170, 199-209, 210-13,
248

x1DisableXLMsgs 170, 199-209
x1EnableXLMsgs 170, 199-209
x1fActiveCell 215
x1fAddBar 250, 254, 260
x1fAddCommand 257-60, 264
x1fAddMenu 254-7, 332
x1fAddToolbar 268-9
x1fAppTitle 170, 214
x1fcall 194-9

x1fCaller 176-80, 237-8, 309-16
x1fCancelKey 199, 207
x1fCheckCommand 260-1
x1fCommandName 170
x1fDeleteBar 266
x1fDeleteCommand 264-5
x1fDeleteMenu 257-8
x1fDeleteToolbar 273
x1fDialogBox 158-60, 274-7
x1fDocuments 215
x1fEnableCommand 262-3, 265-6
x1fEnableTool 270
x1fEvaluate 241, 283
x1fFormulaConvert 234-5
x1fFunctionName 170
x1fGetBar 252-3

x1fGetCell 170, 176-80, 215-17
x1fGetDef 240-1, 247-8, 311-16
x1lfGetDocument 217-21, 366-71
x1lfGetFormula 221, 324-31
x1fGetName 241, 245-7
x1fGetNote 221-2
x1fGetTool 266-8
x1fGetToolbar 266-7
x1fGetWindow 222-5
x1fGetWorkbook 225-7
x1fGetWorkspace 195-6, 227-33
x1fIndex 170-1

x1fMatch 174-80

x1fn 172-80

x1fNames 241, 248-9, 315-16
x1fPressTool 271

x1Free 148-9, 163-8, 170, 199-209, 332

x1fReftext 236-7, 311-16

x1fRegister 169-70, 183-99, 208-9,

255-66, 282, 300-5, 317-20
x1fRenameCommand 263-4
x1fResetToolbar 272
x1fSelection 233-4
x1fSetName 195-6, 240-9, 310-16
x1fSheetId 150-5, 163
x1fShowBar 260
x1fTextref 235-6
x1fUnregister 194-9
x1fWindows 234
x1fWindowTitle 170, 214

x1GetBinaryName 170, 199-209, 210-13

x1GetHwnd 170, 199-209, 295

402 Index

x1GetInst 170, 199-209 constant xlopers 121, 154-5
x1GetName 170, 199-209, 241 conversions 126-30, 134, 136-7, 139-40,
X11l.Names.cpp 307-9 142-4, 149, 153-4, 156, 174-80, 201-3,
X11l.Names.h 307-9 235-6
X1lMatrix.cpp 351 definition 111-12
X1lNames.cpp 315-16 detailed discussion 130-57
XLLs 7,32, 35,95-104, 131, 176-80, 182-99, free memory 131-2, 238
237-8, 294, 309-16, 379-81 initialisation processes 148, 157-60, 277
see also DLLs memory management 105-60, 1628,
binary names 157, 209-13, 248, 315-16, 199-202, 210-13, 238, 332-3
375 menus 255-66
coding/typographical conventions 1, 239-40 oper 106, 112—18, 119-20
command breaks 199, 206-7, 379 snares 117, 332
command registering/unregistering processes structure 111-18, 131-3, 158
196-9, 379 uses 111-13, 130-60, 172-80, 302, 332,
concepts 7, 32, 35, 95-104, 131, 176-80, 335-82
182-99, 309-16, 379-81 variants 127-30, 302
copies 96 XloperTypeStr 114-15

creation processes 96-104
definition 4
function calls 97-104, 176-80, 182-96,
237-8, 297-305, 309-16
missing arguments 160, 366
Monte Carlo simulation 379-81
names 157, 209-13, 248, 315-16
OLE/COM automation 295-305
X1llStats.cpp 345
X1llStrings.cpp 336
XLM (Excel 4 macro language) 4-6, 20, 32,
100-4, 119-20, 169-284, 303
see also xlc...;x1f...
add-in manager 32, 100-4
C API 169-284
commands 169-284, 317
concepts 4, 5-6, 20, 32, 119-20, 169-284,

x1Prompt 171
xlref 112-60

concepts 112-60

structure 118
xlretAbort 173-80
xlretFailed 116-17, 173-80
xlretInvCount 173-80
xlretInvXlfn 173-80
xlretInvXloper 173-80
xlretStackOovEl 173-80
xlretSuccess 173
xlretUncalced 174-80, 189
x1set 156-7, 170, 199-209, 241
x1SheetId 150-5, 163, 170, 199-209
x1SheetNm 170, 199-209, 333
x1Stack 161-2,201-2

303 xltype 103-4, 112-60, 163-284, 302, 328-31,
custom dialog boxes 273-7 332-3
functions 169-284, 303 see also xlopers
helpfile 4, 169-70 concepts 112-60, 302
menus 249-66 conversions 134
toolbars 266—73 creation processes 133-4
weaknesses 169—70 memory considerations 134-5
workspace information commands/functions uses 132-3, 302
195-6, 213-39, 241-9 values table 112-14
x1lmref xltypeBigData 113-60, 163-284
concepts 112-60 concepts 113-60, 210-13
structure 118-19 uses 157, 210-13
x1Name 2, 239, 307-9, 311-16, 317-20 xltypeBool 113-60, 163-284
xloper.cpp 2, 59-61, 127-30 concepts 113-60
xlopers 2, 59-61, 70, 100-4, 105-60, 162-8, conversions 139-40
172-284, 302-3, 328-31, 332-3, 335-82 creation processes 138-9
see also xltype... memory considerations 140
*arg... 172-96 uses 138-9
*opers 178-80 x1ltypeErr 103-4, 113-60, 163-284
*pRetVal 172-80 concepts 103-4, 113-60
concepts 105-60, 162-8, 172-80, 201-3, conversions 142-3

235-8, 302-3, 332-3 creation processes 141-2

Index 403

memory considerations 142 x1ltypeNum 113-60, 163-284
uses 140-1 concepts 113-60
x1ltypeInt 113-60, 163-284 uses 132-5
concepts 113-60 x1ltypeRef 103-4, 113-60, 163-284, 332
conversions 143—-4 concepts 103-4, 113-60, 332
creation processes 142-3 conversions 153-4
memory considerations 144-5 creation processes 150-3
uses 142-3 memory considerations 154, 332
xltypeMissing 113-60, 163-7, 172-80 uses 150-1, 332
xltypeMulti 113-60, 163-284, 332 x1ltypeRefxlopers 206-7
bugs 146 x1ltypeSRef 113-60, 163-284
concepts 113-60, 332 concepts 103-4, 113-60
conversions 149 conversions 153-4
creation processes 145-8 creation processes 150-3
memory considerations 149-50, 332 memory considerations 154
uses 113-14, 332 uses 150-1
x1ltypeMultixloper 70, 103-4 xltypeStr 113-60, 163-284, 332
xltypeNil 113-60, 163-284 concepts 113-60, 332
concepts 113-60 conversions 136-7
conversions 156 creation processes 135-6
creation processes 155-6 memory considerations 137-8, 332
memory considerations 1567 uses 135-6
uses 155-6 XLW 122, 169

Index compiled by Terry Halliday

WILEY COPYRIGHT INFORMATION AND TERMS OF USE

CD supplement to Excel Add-in Development in C/C++, Applications in Finance
by Steve Dalton

ISBN 0-470-02469-0

CD-ROM Copyright © 2004 Eigensys Limited

Published by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex, PO19 8SQ. All rights reserved.

All material contained with the accompanying CD product is protected by copyright,
whether or not a copyright notice appears on the particular screen where the material is
displayed. No part of the material may be reproduced or transmitted in any form or by
any means, or stored in a computer for retrieval purposes or otherwise, without written
permission from Eigensys, unless this is expressly permitted in a copyright notice or
usage statement accompanying the materials. Requests for permission to store or
reproduce material for any purpose, or to distribute it on a network, should be emailed
to permissions @eigensys.com.

None of the author, Eigensys Ltd or John Wiley & Sons Ltd accept any responsibility or
liability for loss or damage occasioned to any person or property through using
materials, instructions, methods or ideas contained herein, or acting or refraining from
acting as a result of such use. The author, Eigensys and Publisher expressly disclaim all
implied warranties, including merchantability or fitness for any particular purpose. There
will be no duty on the author, Eigensys or Publisher to correct any errors or defects in
the software. The source code and the methods contain are intended solely for example
and clarification. It is the responsibility of the user to ensure that whatever software or
source code is utilised by him/her is suitable for his/her requirements in all respects.

