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Abstract

On the ducar complexity A(Z) of a periodically repeated random
bit sequence 2, R. Rueppel proved that, for two extreme cases of the
period T, the expected linear complexity E[A(%)]is almost equal to T,
and suggested that E[A(Z)] would be close to T in general (6, pp. 33-
52] [7, 8]. In this note we obtain bounds of E[A(%)], as well as bounds
of the variance Var[A(2)], both for the general case of T, and we
estimate the probability distribution of A(Z). Our results on E[A(2)]
quantify the closeness of £{A(%)] and T, in particular, formally confirm
R. Rueppel’s suggestion.
Keywords: Linear Complexity, Random Sequences.

1 Introduction
The linear complexity [8, p. 32] (or linear equivalence [1, p.199]) of a sequence
1s the length of the shortest linear shift register (LFSR) by which the given
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sequence could be generated. Since there exists an efficient algorithm for
finding the shortest LFSR which generates a given sequence (the Berlekamp-
Massey LFSR synthesis algorithm [5]), the linear complexity is particularly
important as a measure of the nnpredictability of sequences. The statisti-
cal properties of the linear complexity of a periodically repeated random bit
string are of considerable practical interest [6, pp. 33-52] [7, 8], since de-
terministically generated key streams in cipher systems must be ultimately
periodic.

Given T, let 27 = zg,2z1,. .., 27 ve vinary sequence where 2; (0 < ¢ <
T —1) is selected according to a fair coin tossing experiment, and let % be the
semi-infinite sequence by periodically repeating the random bit string z7. Let
Z be the sample space consisting of all the possible semi-infinite periodically
repeated random sequences Z. The eiements in Z are equiprobable. Since
|Z| = 2T, where | Z| denote the size of £, so the probability of the occurrence
of each % is equal to 1/|Z| = 27T, Let A(Z) denote the linear complexity of
Z, then A(Z) is a random variable on the sample space Z. Let E[A(Z)] be
the expected linear complexity of Z, and Var[A(Z)] the variance of the linear
complexity A(Z).

R. Rueppel computed E[A(Z}] in ¢wo extreme cases: when T = 2" — 1
(any prime n) and when T' = 2™ (any m) [6, pp. 33-52] [7, 8]. In both cases
he proved that E[A(Z)] is aimost equal to T, or more precisely, E[A(Z)] >~
e~1/"(2" — 3/2) when T = 2" — 1, and

E[AG)]=2"—1+2"7" (1)

when T = 2™, and suggested that in the general case E[A(Z)] would be close
to T.

D. Gollmann (2] proved that, when T' = p*, p > 2 prime, and p? is not a
factor of 2P~ — 1,

EA(Z)] =p" - é —-(p—1) E p'27", (2)

et

where n, is the degree of the irreducible polynomials with period p over
GF(2).
In this note we consider E[A(Z)], as well as Var[A(Z)], both for the

~

general case. We obtain expressions for E[A(Z)] and for Var[A(Z)], and
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we bound E[A(3)] and Var{A(Z)] in terms of the arithmetic function d(T),
and then we bound E[A(Z)] and Var{A(::] in terms of analytic functions,
or more precisely, we show that for any ¢ >0, (i) E[A(3)] > T —T*¢
and Var[A(3)] < T¢, provided T is large enough, (ii) E[A(Z)] > T —
T(+e)log2/loglogT and Var[A(2)] < T(+e)log2/logleT  provided T is large
enough, and (i) BIA(S ~ T — /g TY0+0lo82 and Var(A(2)] < log,(1 +
T)(log T)(*+9)122 for almost ~11 7 ‘=ee Remark 1 in section 4). We also es-
timate the probability dls*mbuvon of \(Z), for any ¢ > § > 0 we get that
Prob.(A(2) > T —T¢) > 1 — 77+ for large enough T. Our results on
E[A(2)] quantify the closeness of E[\A(%)] and T, and in particular formally
confirm R. Rueppel’s suggestion.

In this paper the base of the iogarithms is e, i.e., log = log,, unless
indicated otherwise.

2 Expressions for £|{A(Z)] and Var[A(7)]

We identify the sequence 3 with its generating function Z(z), defined over
the binary fleld GF(2), as Z(z) = Y2, ijj. It is known that z(z) is equal to
a rational fraction #(z) = 2*(z)/(1 — zT) = P(3,z)/C(z,z), where 2*(z) =

JT 2,27, P(,z) and C(%,z) are coprime to each other. It is also known
that C(2,x) is the minimal polynomial [1, p.201][8, p. 26] of Z, and A(Z) =
degC(2,z), where degC(Z,z) is the degree of C(Z, ).

The range of C(2, z) depends on the factorization of 1 —zT. If T = 2Ty,
ged(2,Ty) = 1, it is known [4, pp. 84-65) that 1 —zT = [y, Hd’(d)/"" C3% (),
where for any given d, C'd,J( r) (0 <7 < ¢(d)/nq) are all the dlstmct momc
irreducible polynomials with period d over GF(2), and of the same degree
ng, where ng is the order of 2 modulo d. (i.e., the least positive integer such
that 2"¢ = 1 (mod d)), ¢(d) is the Euler’s function, (i.e., the number of the
integers 7,1 < i < d, coprime to d). As a factor of 1 — 27, C(Z, z) must be of
the form C(Z, z) = [y, ]'Id’(d)/"“ Ce‘“(z (z), 0 < eq,;(%2) < 2™. The exponent
eq;(Z) is a random variable defined on Z with range [0, 2™]. Now we have

A(2) = Tyr, T289 naeq ;(3).
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Lemmal .
1. The random variable ey ;(Z) has the following probability density function

T e R e DAL
[ 2nal e =0,

Prob.(es;(Z) =€) = ¢
(

Fa
| 27 gnae _ gnae=1)) ¢ > (),

2. All the random variables ;,: >, & | Ty, 1 < j < é(d)/ng, are mutually
independent.

Observe that the probability densitv function of e4;(Z) is not dependent
on the parameter j, we denote by £, the expected value of e4;(Z), and by

-~

V4 the variance of eq ;(2).

Lemma 2
ﬂ.nd2"‘ _ 1
Ey=2m—
nd‘. (an —_ 1)
and "
v 2n4(2’" +1) _ (2m+1 + l\(2n4(2m+1) _ 2nd2"‘) -1
d =

2na2™¥ (Qna _ 1)2

Theorem 1 (Expressions) Let T =2mT), gcd(2,Ty) = 1. Then

EIAG) = T - Z d)(2"2" — 1)
dIT; anzm 2ra —1)
and
dn [2na(@™H41) _ (om+1 ng(2m+1) _ 9na2™) _ |
Varia(z)] = T 2 (241 41)(2 ™)~ 1]

dIT, 2ra2™H (2na — 1)2

Theorem 1 gives a way to calculate E[A(Z)] and Var[A(Z)] based on the
factorization of T case by case. In the special case when T = 2™ this is
straightforward. Both of the summations in Theorem 1 contain only one
term with d = 1, from which one obtains (1), as well as

22m+ 41 _ (am+1 4 l)(2(2"'+1) - 22'") -1

22m+1

Var[A(2)] = <2.
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For another exampe, when 7" = p*, p > 2 prime, and p? is not a factor of
op—=1 _ 1 from £ A(Z)]’s expression. in which the summation contains n + 1
terms with d = p*,0 < ¢ < n, and n,. = n,p'"!,1 <1 < n, one obtains (2).
But the real significance of Theorem 1 is that from it one may bound E[A(Z)]
and Var[A(Z)] in terms of the arithmetic function d(n), which is defined to
be the number of all possible positive factors of n, i.e., d(n) = 34 1-

3 Bounds for E{\i:)] and Var[A(7)] by d(n)
Theorem 2 Let T = 2™T;, gcd(2.7), = 1. Then
EAGZ)] > T —aiTy) > T —d(T),
and
Var[A(Z)] < dT)(1 + log, (1 + T1)) < d(T)(1 + logy(L + T))-

With Theorem 2 and the factorization of T, the evaluation for both of
E[A(2)] and Var[A(Z)] becomes easier. In fact, if Ty .= [T, pi*, where p;, 1 <

1=1
i < s, are distinct prime factors, then d(T}) = [T_,(1 + &) [2, p- 238]. Hence
E[A(Z)] > T-TT-,(14+€) and Var{A(2)] < (14+logy(14+T1)) [Ti=, (1+€:)-
What is more interesting is that from Theorem 2 we shall get analytic bounds
for E[A(2)] and Var[A(Z)] based on the orders of d(n).

4 Bounds for E[A(Z)] and Var[A(Z)] by
Analytic Functions

Lemma 3 {2, pp. 259-261, p. 361] Ife > 0, then we have
1. d(n) < n® for all n > n., where n. depends on €.
2. d(n) < n(ite)log2/loglogn f5r 4il n > n,, where n, depends on €.

3. d(n) < (logn)(t+e)log2  for qlmost all numbers n.
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Remark 1 A property P of positive integers n is said to be true for almost
all numbers if lim,;_ N(z)/z = 1, where N(z) is the number of positive
integers less than z which satisfy P.
Remark 2 Lemma 3 provides three kinds of bounds for d(n). The bounds
given in item I and item 2 hold for ‘zrge enough n. The bound given in
item2, a kind of power of n with the =xponent tending slowly to zero when
n goes to infinity, is tighter than the vound given in item I, but the latter
iooks much simpler. The bound zven in item & is the tightest one, but it
holds only tor almost all n.

From Theorem 2 and Lemma 3 we may obtain immediately three kinds

of bounds for E[A(Z)].
Theorem 3 (Bounds for E[A(3)]) Ifc > 0, then we have
1. E[A(2)] >T —T¢ for dl T > 7., where T, depends on ¢.

o

E[A(2)] > T — T(+e)log2/loglogT £ (i1 T > T,, where T, depends on €.
3. E[A(2)] > T — (log T)(1+e)log2 for 4imost-all T.

Remark 3 The bounds on £[A(Z)] shown in Theorem 3 quantify the
closeness of E[A(Z)] and T, and in particular, the expected linear com-
plexity E[A(Z)] and the period T are of the same asymptotical order, i.e.,
limr_o E[A(2)]/T = 1, hence formally confirm R. Rueppel’s suggestion.

Theorem 4 (Bounds for Var{A(3)]) Ife > 0, then we have
1. Var[A(2)] < T*, for all T > T,, where T, depends on «.

2. Var[A(2)] < T(+e)log2/loglog T for il T > T., where T, depends on «.
3. Var[A(2)] < (log T)(1+4)e8210g.(1 4+ T'), for almost-all T.

5 Probability Distribution of A(z)

Based on the knowlege on E[A(Z)] and Var[A(Z)], we prove that the linear

complexity A(Z) distributes very close to the length T with a probability
almost equal to 1, provided T is large enough, as shown in the following
theorem.
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Theorem 5 Ife > 6 > 0. then for large enough T we have

P'I"Ob(A(E) > T — TE) > 1 — T—2€+6

6 From GF(2) to GF(q)

With the same arguments the results above can be generalized to the semi-
infinite periodically repeated -andom sequences over any given finite field
GF(q), ¢ = p™, p prime.

Given T, let 2T = 25, z,,. .. .2T-1 be a random sequence of length T' over
GF(q), and Z the semi-infinite sequence by periodically repeating z7. Let Z
be the sample space consisting of all the possible semi-infinite periodically
repeated random sequences Z, then |2 | = ¢¥. We assume the elements in Z
are equiprobable, i.e., the probability of the occurrence of each 3 is equal to
¢~T. Now let n, denote the order of o modulo d, then Theorem 1 extends to

Theorem 6 Let T = p™T, ygcd(p, T1) = 1. Then

¢(d)(g""" —~1)
g (gre —1)

EA(Z) =T-%

d|Ty

and

r s o(d)nq[qra®™H) — (2p™ 4 1)(grele™+1) _ gnar™) _ 1]
VariA(2)] = > nap™ (gna — 1)2 '
d|Ty q q

And Theorem 2 extends to
Theorem 7 Let T = pmT, zcd(p, T1) = 1. Then
E[A(Z)] > T -d(Ty) > T - d(T),
and
Var[A(2)] < d(Ty)(1 + log,(1+Ty)) < d(T)(1 + log,(1+T)).

Hence all the other theorems over GF (2) above can be extended to over
GF(q).

Copyright (c) 1998, Springer-Verlag



175

Acknowiedgement

The authors are very grateful to Fred Piper for his invitation of visiting
RHBNC, University of London, ana for his valuable comments and sugges-
tions about this work. The authors would like to thank the hospitality of the
Department of Mathematics, RHBNC. University of London, where some of
this work was undertaken. Thanks are aiso due to Mike Burmester for his
help in improving the tinglish of this paper.

References

[1] H. Beker and F. Piper. “Civer Systems”, Northwood Books, London,

1982.

2] D. Gollman, “Linear Complevitv of Sequences with Period p"”, Euro-
crypt’26. A Workshop on the Thenry and Application of Chryptographic
Techniques, May 20-22, 1986, in Linkoping, Sweden, pp. 3.2-3.3.

(3] G. H. Hardy a~d E. M. Wright. “An Introduction To The Theory of
Numbers”, Oxiord, The Clarendon Press, 1938.

[4] R. Lidl and H. Niederreiter, “Finite Fields”, Encyclopaedia of Mathe-
matics and its Applications 20, Reading, Mass, Addison-Wesley, 1983.

5] J. L. Massey, “Shift-Register Synthesis and BCH decoding”, IEEE
Trans. on Info. Theory, Vol. IT-15. pp. 122-127, Jan. 1969.

[6] R. A. Rueppel, “New Approaches to Stream Ciphers”,
Ph.D.dissertation, Inst. of Telecommunications, Swiss Federal Inst. of
Technol., Zurich, Dec. 1984.

[7] R. A. Rueppel, “Linear Complexity and Random Sequences”, Presented
at Eurocrypt’85

(8] R. A. Rueppel, “Analysis and Design of Stream Ciphers”, Springer,
3erlin-Heidelberg-New York-London-Paris-Tokyo: ~ Springer-Verlag.
1986.

Copyright (c) 1998, Springer-Verlag



